Helicobacter pylori, the main cause of chronic gastritis, plays a central role in the etiology of peptic ulcer disease and gastric cancer. In vitro studies have shown that H. pylori increases gastric epithelial cell turnover, thus increasing the risk for the development of neoplastic clones. The mechanisms by which H. pylori promotes perturbation of cell proliferation are not yet elucidated. To investigate whether products released by H. pylori in culture media interfere with cell cycle progression of human gastric epithelial cells, four cell lines (MKN 28, MKN 7, MKN 74, and AGS) were incubated in the presence of H. pylori broth culture filtrate. Cell cycle analysis showed that a H. pylori-released factor(s) significantly inhibited the G1- to S-phase progression of MKN 28 and MKN 7 cell lines, with a reversible, nonlethal mechanism, independent of the expression of VacA, CagA, and/or urease. The cell cycle inhibition occurred concomitantly with an increase in p27(KIP1) protein levels, a reduction in Rb protein phosphorylation on serine residues 807-811, and a significant decrease in cyclin E-associated cdk2 activity. In contrast, the cell cycle progression of MKN 74 and AGS cell lines was not affected by the H. pylori-released factor(s). In normal human fibroblasts, G1-phase cell accumulation was concomitant with the reduction in Rb protein phosphorylation; that, however, appeared to be dependent on p21(WAF1/CIP1) rather than on p27(KIP1) protein. A preliminary characterization showed that the molecular mass of the partially purified cell cycle inhibitory factor(s) was approximately 40 kDa. These results suggest that H. pylori releases a soluble factor(s) that may affect cell cycle progression of gastric epithelial cells through elevated levels of cdk inhibitor p27(KIP1). This factor(s) might act in vivo on noncolonized distant cells, the most proliferating cells of human gastric mucosa.

Helicobacter pylori releases a factor(s) inhibiting cell cycle progression of human gastric cell lines by affecting cyclin E/cdk2 kinase activity and Rb protein phosphorylation through enhanced p27(KIP1) protein expression

SOMMI, PATRIZIA;SAVIO, MONICA;STIVALA, LUCIA ANNA;SCOTTI, CLAUDIA;VANNINI, VANIO;SOLCIA, ENRICO
2002-01-01

Abstract

Helicobacter pylori, the main cause of chronic gastritis, plays a central role in the etiology of peptic ulcer disease and gastric cancer. In vitro studies have shown that H. pylori increases gastric epithelial cell turnover, thus increasing the risk for the development of neoplastic clones. The mechanisms by which H. pylori promotes perturbation of cell proliferation are not yet elucidated. To investigate whether products released by H. pylori in culture media interfere with cell cycle progression of human gastric epithelial cells, four cell lines (MKN 28, MKN 7, MKN 74, and AGS) were incubated in the presence of H. pylori broth culture filtrate. Cell cycle analysis showed that a H. pylori-released factor(s) significantly inhibited the G1- to S-phase progression of MKN 28 and MKN 7 cell lines, with a reversible, nonlethal mechanism, independent of the expression of VacA, CagA, and/or urease. The cell cycle inhibition occurred concomitantly with an increase in p27(KIP1) protein levels, a reduction in Rb protein phosphorylation on serine residues 807-811, and a significant decrease in cyclin E-associated cdk2 activity. In contrast, the cell cycle progression of MKN 74 and AGS cell lines was not affected by the H. pylori-released factor(s). In normal human fibroblasts, G1-phase cell accumulation was concomitant with the reduction in Rb protein phosphorylation; that, however, appeared to be dependent on p21(WAF1/CIP1) rather than on p27(KIP1) protein. A preliminary characterization showed that the molecular mass of the partially purified cell cycle inhibitory factor(s) was approximately 40 kDa. These results suggest that H. pylori releases a soluble factor(s) that may affect cell cycle progression of gastric epithelial cells through elevated levels of cdk inhibitor p27(KIP1). This factor(s) might act in vivo on noncolonized distant cells, the most proliferating cells of human gastric mucosa.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/135246
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact