A multicriteria approach in studying hydrodynamics of a multilayer aquifer system has been used in the Lomellina region (Northern Italy). It involves the reconstruction of the hydrogeological framework coupled to the definition of the hydrochemical and isotopic features of the aquifers. A shallow phreatic aquifer, reaching depths of about 60–80 m from the surface, and deeper aquifers containing confined groundwater, were distinguished. Groundwater generally shows mineralisation decreasing with depth; dissolved ions depict calcium-bicarbonate hydrochemical facies and stable isotopes define the recharge mechanisms, the origin of groundwater, and the hydraulic confinement of deep aquifers. The phreatic aquifer is fed by local infiltration and by streams and irrigation channels. Tritium and Carbon-14 groundwater dating indicate long residence times (on the order of thousands of years) for confined aquifers. The confined aquifers show essentially passive hydrodynamic conditions and maintain a higher piezometric level than the phreatic aquifer. This inhibits the possibility of recent water penetrating far below the surface. The hydrogeological setting of the Lomellina region displays features which are common to other sectors of the Po plain. As a consequence, the results of this study, although conducted on a restricted area, are highly illustrative of groundwater hydrodynamics in large sedimentary aquifers.

Hydrochemistry and isotope geochemistry as tools for groundwater hydrodynamic investigation in multilayer aquifers: a case study from Lomellina, Po plain, South-Western Lombardy, Italy.

PILLA, GIORGIO;SACCHI, ELISA;BRAGA, GIOVANNI;CIANCETTI, GIANFRANCO
2006-01-01

Abstract

A multicriteria approach in studying hydrodynamics of a multilayer aquifer system has been used in the Lomellina region (Northern Italy). It involves the reconstruction of the hydrogeological framework coupled to the definition of the hydrochemical and isotopic features of the aquifers. A shallow phreatic aquifer, reaching depths of about 60–80 m from the surface, and deeper aquifers containing confined groundwater, were distinguished. Groundwater generally shows mineralisation decreasing with depth; dissolved ions depict calcium-bicarbonate hydrochemical facies and stable isotopes define the recharge mechanisms, the origin of groundwater, and the hydraulic confinement of deep aquifers. The phreatic aquifer is fed by local infiltration and by streams and irrigation channels. Tritium and Carbon-14 groundwater dating indicate long residence times (on the order of thousands of years) for confined aquifers. The confined aquifers show essentially passive hydrodynamic conditions and maintain a higher piezometric level than the phreatic aquifer. This inhibits the possibility of recent water penetrating far below the surface. The hydrogeological setting of the Lomellina region displays features which are common to other sectors of the Po plain. As a consequence, the results of this study, although conducted on a restricted area, are highly illustrative of groundwater hydrodynamics in large sedimentary aquifers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/136894
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 56
social impact