Cancer induces alteration of hematopoiesis to fuel disease progression. We report that in tumor-bearing mice the macrophage colony-stimulating factor elevates the myeloid cell levels of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway, which acts as negative regulator of the CXCR4 retention axis of hematopoietic cells in the bone marrow. NAMPT inhibits CXCR4 through a NAD/Sirtuin 1–mediated inactivation of HIF1a-driven CXCR4 gene transcription, leading to mobilization of immature myeloid-derived suppressor cells (MDSC) and enhancing their production of suppressive nitric oxide. Pharmacologic inhibition or myeloid-specific ablation of NAMPT prevented MDSC mobilization, reactivated specific antitumor immunity, and enhanced the antitumor activity of immune checkpoint inhibitors. Our findings identify NAMPT as a metabolic gate of MDSC precursor function, providing new opportunities to reverse tumor immunosuppression and to restore clinical efficacy of immunotherapy in patients with cancer.

Nicotinamide phosphoribosyltransferase acts as a metabolic gate for mobilization of myeloid-derived suppressor cells

Travelli C.;Trovato R.;Bronte V.;
2019-01-01

Abstract

Cancer induces alteration of hematopoiesis to fuel disease progression. We report that in tumor-bearing mice the macrophage colony-stimulating factor elevates the myeloid cell levels of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway, which acts as negative regulator of the CXCR4 retention axis of hematopoietic cells in the bone marrow. NAMPT inhibits CXCR4 through a NAD/Sirtuin 1–mediated inactivation of HIF1a-driven CXCR4 gene transcription, leading to mobilization of immature myeloid-derived suppressor cells (MDSC) and enhancing their production of suppressive nitric oxide. Pharmacologic inhibition or myeloid-specific ablation of NAMPT prevented MDSC mobilization, reactivated specific antitumor immunity, and enhanced the antitumor activity of immune checkpoint inhibitors. Our findings identify NAMPT as a metabolic gate of MDSC precursor function, providing new opportunities to reverse tumor immunosuppression and to restore clinical efficacy of immunotherapy in patients with cancer.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1371354
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 59
  • ???jsp.display-item.citation.isi??? ND
social impact