The diffusion of renewable energy sources has now gained a very high importance in contributing to the electrical power needs. Grid-connected photovoltaic or wind energy conversion systems are nowadays highly integrated in the electrical grid, and they provide a consistent share of power to the nearby loads. Although this is true for high-power three-phase systems, problems related to the increasing penetration of low power, distributed generation systems into the grid structure have not been completely investigated yet. This paper proposes a control system based on a Hilbert-filter single-phase PLL with very fast response that allows the detection of fast frequency variations or phase jump in the grid voltage. The novelty resides in the use of a very short FIR transfer function to approximate the Hilbert filter in conjunction with a system that compensates the magnitude error. Simulations and experiments show that this system can be employed to increase the phase-jump ride-through capability of single phase grid-connected inverters. © 2014 IEEE.

High-dynamic single-phase hilbert-based PLL for improved phase-jump ride-through in grid-connected inverters

Zanchetta P.
;
2014-01-01

Abstract

The diffusion of renewable energy sources has now gained a very high importance in contributing to the electrical power needs. Grid-connected photovoltaic or wind energy conversion systems are nowadays highly integrated in the electrical grid, and they provide a consistent share of power to the nearby loads. Although this is true for high-power three-phase systems, problems related to the increasing penetration of low power, distributed generation systems into the grid structure have not been completely investigated yet. This paper proposes a control system based on a Hilbert-filter single-phase PLL with very fast response that allows the detection of fast frequency variations or phase jump in the grid voltage. The novelty resides in the use of a very short FIR transfer function to approximate the Hilbert filter in conjunction with a system that compensates the magnitude error. Simulations and experiments show that this system can be employed to increase the phase-jump ride-through capability of single phase grid-connected inverters. © 2014 IEEE.
2014
9781479956982
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1372927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact