Two classes of kinetic models for wealth distribution in simple market economies are compared in view of their speed of relaxation towards stationarity in a Wasserstein metric. We prove fast (exponential) convergence for a model with risky investments introduced by Cordier, Pareschi and Toscani, and slow (algebraic) convergence for the model with quenched saving propensities of Chakrabarti, Chatterjee and Manna. Numerical experiments confirm the analytic results.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Exponential and algebraic relaxation in kinetic models for wealth distribution |
Autori: | |
Data di pubblicazione: | 2008 |
Abstract: | Two classes of kinetic models for wealth distribution in simple market economies are compared in view of their speed of relaxation towards stationarity in a Wasserstein metric. We prove fast (exponential) convergence for a model with risky investments introduced by Cordier, Pareschi and Toscani, and slow (algebraic) convergence for the model with quenched saving propensities of Chakrabarti, Chatterjee and Manna. Numerical experiments confirm the analytic results. |
Handle: | http://hdl.handle.net/11571/138369 |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.