We deal with a class of semilinear parabolic PDEs on the space of continuous functions that arise, for example, as Kolmogorov equations associated to the infinite-dimensional lifting of path-dependent SDEs. We investigate existence of smooth solutions through their representation via forward–backward stochastic systems, for which we provide the necessary regularity theory. Because of the lack of smoothing properties of the parabolic operators at hand, solutions in general will only share the same regularity as the coefficients of the equation. To conclude we exhibit an application to Hamilton–Jacobi–Bellman equations associated to suitable optimal control problems.

Semilinear Kolmogorov equations on the space of continuous functions via BSDEs

Orrieri C.;
2021-01-01

Abstract

We deal with a class of semilinear parabolic PDEs on the space of continuous functions that arise, for example, as Kolmogorov equations associated to the infinite-dimensional lifting of path-dependent SDEs. We investigate existence of smooth solutions through their representation via forward–backward stochastic systems, for which we provide the necessary regularity theory. Because of the lack of smoothing properties of the parabolic operators at hand, solutions in general will only share the same regularity as the coefficients of the equation. To conclude we exhibit an application to Hamilton–Jacobi–Bellman equations associated to suitable optimal control problems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1439055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact