Toothpastes containing biomimetic hydroxyapatite have been investigated in recent years; the behavior of this material in the oral environment has been evaluated directly on dental enamel showing a marked remineralizing activity. To propose microRepair®-based toothpastes (Zn-carbonate hydroxyapatite) for the domiciliary oral hygiene in patients with dental composite restorations, the aim of this study was to evaluate the deposition of Zn-carbonate hydroxyapatite on a polymeric composite resin with Scanning Electron Microscopy/Energy-Dispersive X-ray Spectrometry (SEM/EDS) analysis. Twenty healthy volunteers underwent the bonding of 3 orthodontic buttons on the vestibu-lar surfaces of upper right premolars and first molar. On the surface of the buttons, a ball-shaped mass of composite resin was applied and light-cured. Then, the volunteers were randomly divided into two groups according to the toothpaste used for domiciliary oral hygiene: the Control toothpaste containing stannous fluoride and the Trial toothpaste containing microRepair®. The buttons were debonded after 7 days (T1—first premolar), after 15 days (T2—second premolar), and after 30 days (T3—first molar) to undergo the SEM/EDS analysis. The deposition of calcium, phosphorus, and silicon was assessed through EDS analysis and data were submitted to statistical analysis (p < 0.05). SEM morphologic evaluation showed a marked deposition of the two toothpastes on the surfaces of the buttons. EDS quantitative analysis showed an increase of calcium, phosphorus, and silicon in both the groups, with a statistically significant difference of calcium deposition at T3 for the Trial group. Therefore, the use of toothpaste containing Zn-carbonate hydroxyapatite could be proposed as a device for domiciliary oral hygiene because the deposition of hydroxyapatite on polymeric composite resin could prevent secondary caries on the margins of restorations.

SEM/EDS Evaluation of the Mineral Deposition on a Polymeric Composite Resin of a Toothpaste Containing Biomimetic Zn-Carbonate Hydroxyapatite (microRepair®) in Oral Environment: A Randomized Clinical Trial

Butera A.;Pascadopoli M.;Gallo S.;Scribante A.
2021-01-01

Abstract

Toothpastes containing biomimetic hydroxyapatite have been investigated in recent years; the behavior of this material in the oral environment has been evaluated directly on dental enamel showing a marked remineralizing activity. To propose microRepair®-based toothpastes (Zn-carbonate hydroxyapatite) for the domiciliary oral hygiene in patients with dental composite restorations, the aim of this study was to evaluate the deposition of Zn-carbonate hydroxyapatite on a polymeric composite resin with Scanning Electron Microscopy/Energy-Dispersive X-ray Spectrometry (SEM/EDS) analysis. Twenty healthy volunteers underwent the bonding of 3 orthodontic buttons on the vestibu-lar surfaces of upper right premolars and first molar. On the surface of the buttons, a ball-shaped mass of composite resin was applied and light-cured. Then, the volunteers were randomly divided into two groups according to the toothpaste used for domiciliary oral hygiene: the Control toothpaste containing stannous fluoride and the Trial toothpaste containing microRepair®. The buttons were debonded after 7 days (T1—first premolar), after 15 days (T2—second premolar), and after 30 days (T3—first molar) to undergo the SEM/EDS analysis. The deposition of calcium, phosphorus, and silicon was assessed through EDS analysis and data were submitted to statistical analysis (p < 0.05). SEM morphologic evaluation showed a marked deposition of the two toothpastes on the surfaces of the buttons. EDS quantitative analysis showed an increase of calcium, phosphorus, and silicon in both the groups, with a statistically significant difference of calcium deposition at T3 for the Trial group. Therefore, the use of toothpaste containing Zn-carbonate hydroxyapatite could be proposed as a device for domiciliary oral hygiene because the deposition of hydroxyapatite on polymeric composite resin could prevent secondary caries on the margins of restorations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1439260
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 53
social impact