We focus on the H2 desorption properties of the 2NaBH4 + MgH2 system destabilized by different methods. Nanostructured powder mixtures were prepared by ball milling the starting hydrides and nanoconfined reactive composites were obtained by melting infiltration of the hydrides into a Si-based SBA-15 support. NbF5 was tested as catalyst in both the preparations. Structural characterization by X Ray Diffraction and Transmission Electron Microscopy allowed evaluating the successful synthesis of SBA15 matrix, the microstructural features of ball milled and nanoconfined hydrides as well as the success of infiltration process. The evaluation of the sorption properties, by manometric Sievert-type apparatus and thermal desorption spectroscopy, revealed the efficiency of the hydride destabilization, obtained by the different routes, in decreasing the hydrogen release temperature and improving desorption kinetics.

Hydrogen storage in 2NaBH4 + MgH2 mixtures: Destabilization by additives and nanoconfinement

MILANESE, CHIARA;MARINI, AMEDEO
2012-01-01

Abstract

We focus on the H2 desorption properties of the 2NaBH4 + MgH2 system destabilized by different methods. Nanostructured powder mixtures were prepared by ball milling the starting hydrides and nanoconfined reactive composites were obtained by melting infiltration of the hydrides into a Si-based SBA-15 support. NbF5 was tested as catalyst in both the preparations. Structural characterization by X Ray Diffraction and Transmission Electron Microscopy allowed evaluating the successful synthesis of SBA15 matrix, the microstructural features of ball milled and nanoconfined hydrides as well as the success of infiltration process. The evaluation of the sorption properties, by manometric Sievert-type apparatus and thermal desorption spectroscopy, revealed the efficiency of the hydride destabilization, obtained by the different routes, in decreasing the hydrogen release temperature and improving desorption kinetics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/361391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact