Surface wave tests are non-invasive seismic techniques that have traditionally been used to determine the shear wave velocity (i.e. shear modulus) profile of soil deposits and pavement systems. Recently, Rix et al. [J. Geotech. Geoenviron. Engng 126 (2000) 472] developed a procedure to obtain near-surface values of material damping ratio from measurements of the spatial attenuation of Rayleigh waves. To date, however, the shear wave velocity and shear damping ratio profiles have been determined separately. This practice neglects the coupling between surface wave phase velocity and attenuation that arises from material dispersion in dissipative media. This paper presents a procedure to measure and invert surface wave dispersion and attenuation data simultaneously and, thus, account for the close coupling between the two quantities. The methodology also introduces consistency between phase velocity and attenuation measurements by using the same experimental configuration for both. The new approach has been applied at a site in Memphis, TN and the results obtained are compared with independent measurements.

Simultaneous Measurement and Inversion of Surface Wave Dispersion and Attenuation Curves

LAI, CARLO GIOVANNI;
2002-01-01

Abstract

Surface wave tests are non-invasive seismic techniques that have traditionally been used to determine the shear wave velocity (i.e. shear modulus) profile of soil deposits and pavement systems. Recently, Rix et al. [J. Geotech. Geoenviron. Engng 126 (2000) 472] developed a procedure to obtain near-surface values of material damping ratio from measurements of the spatial attenuation of Rayleigh waves. To date, however, the shear wave velocity and shear damping ratio profiles have been determined separately. This practice neglects the coupling between surface wave phase velocity and attenuation that arises from material dispersion in dissipative media. This paper presents a procedure to measure and invert surface wave dispersion and attenuation data simultaneously and, thus, account for the close coupling between the two quantities. The methodology also introduces consistency between phase velocity and attenuation measurements by using the same experimental configuration for both. The new approach has been applied at a site in Memphis, TN and the results obtained are compared with independent measurements.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/370392
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 122
  • ???jsp.display-item.citation.isi??? 105
social impact