Abstract: 1-Hexadecanoyl- and 1 -hexadecyl-ferrocene, which undergo one-electron oxidation to the corresponding ferrocenium cations at distinctly different potentials (0.25 and -0.05 V vs. ferrocenium-ferrocene, respectively, in dichloromethane solution, 0.1 mol dm-3 in NBu4ClO4), have been used as carriers for the cross-transport of electrons and perchlorate ions across a bulk dichloromethane membrane. The liquid membrane interfaces an aqueous layer containing [Fe(II)(CN)6]4- (the electron source phase, e.s.p) and an aqueous layer containing Ce(IV) (the electron receiving phase, e.r.p.). The occurrence of the transport is accounted for on the basis of an empirical juxtaposition of the electrochemical scales (i) in water and (ii) in CH2Cl2, which gives the sequence: E-degrees(Ce(IV/III)) > E-degrees[Fe(C5H5)(C5H4COC15H31)+/0] > E-degrees[Fe(C5H5)(C5H4C16H33)+/0] > E-degrees[Fe(III/II)(CN)6(3-/4-)]. The special position of the potential of the aqueous Fe(III)-Fe(II) couple, which is intermediate between those of the two ferrocene derivatives, makes it possible to carry out selective electron-transport experiments: if the e.r.p. contains a mixture of Ce(IV) and Fe(III), when [Fe(C5H5)(C5H4C16H33)] is used as a carrier, both the oxidizing cations are reduced; when [Fe(C5H5)(C5H4COC15H31)] is used, Ce(IV) is reduced, but Fe(III) is left intact. These examples clearly illustrate the novel principle of the selective oxidation and reduction reactions performed under three-phase conditions.

FERROCENE DERIVATIVES AS ELECTRON CARRIERS FOR SELECTIVE OXIDATION AND REDUCTION REACTIONS THROUGH A LIQUID MEMBRANE

FABBRIZZI, LUIGI;LICCHELLI, MAURIZIO;PALLAVICINI, PIERSANDRO
1992-01-01

Abstract

Abstract: 1-Hexadecanoyl- and 1 -hexadecyl-ferrocene, which undergo one-electron oxidation to the corresponding ferrocenium cations at distinctly different potentials (0.25 and -0.05 V vs. ferrocenium-ferrocene, respectively, in dichloromethane solution, 0.1 mol dm-3 in NBu4ClO4), have been used as carriers for the cross-transport of electrons and perchlorate ions across a bulk dichloromethane membrane. The liquid membrane interfaces an aqueous layer containing [Fe(II)(CN)6]4- (the electron source phase, e.s.p) and an aqueous layer containing Ce(IV) (the electron receiving phase, e.r.p.). The occurrence of the transport is accounted for on the basis of an empirical juxtaposition of the electrochemical scales (i) in water and (ii) in CH2Cl2, which gives the sequence: E-degrees(Ce(IV/III)) > E-degrees[Fe(C5H5)(C5H4COC15H31)+/0] > E-degrees[Fe(C5H5)(C5H4C16H33)+/0] > E-degrees[Fe(III/II)(CN)6(3-/4-)]. The special position of the potential of the aqueous Fe(III)-Fe(II) couple, which is intermediate between those of the two ferrocene derivatives, makes it possible to carry out selective electron-transport experiments: if the e.r.p. contains a mixture of Ce(IV) and Fe(III), when [Fe(C5H5)(C5H4C16H33)] is used as a carrier, both the oxidizing cations are reduced; when [Fe(C5H5)(C5H4COC15H31)] is used, Ce(IV) is reduced, but Fe(III) is left intact. These examples clearly illustrate the novel principle of the selective oxidation and reduction reactions performed under three-phase conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/443218
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact