We experimentally demonstrate the direct generation of polarization-entangled photon pairs in an optical fiber at room temperature by exploiting type-II phase-matched spontaneous parametric down-conversion. A second-order nonlinearity is artificially induced in the 17-cm-long weakly birefringent step-index fiber through the process of thermal poling, and quasi-phase-matching allows for the generation of entangled photons in the 1.5-micron telecom band when the fiber is pumped at 775 nm. A greater-than 80: 1 coincidence-to-accidental ratio is achieved, limited mainly by multiphoton pair generation. Without the need to subtract accidentals or to compensate for walk-off, the raw two-photon interference visibility is found to be better than 95%, and violation of Bell's inequality is observed by more than 18 standard deviations. This makes for a truly alignment-free, plug-and-play source of polarization-entangled photon pairs.

Direct Generation of Polarization-Entangled Photon Pairs in a Poled Fiber

LISCIDINI, MARCO;
2012-01-01

Abstract

We experimentally demonstrate the direct generation of polarization-entangled photon pairs in an optical fiber at room temperature by exploiting type-II phase-matched spontaneous parametric down-conversion. A second-order nonlinearity is artificially induced in the 17-cm-long weakly birefringent step-index fiber through the process of thermal poling, and quasi-phase-matching allows for the generation of entangled photons in the 1.5-micron telecom band when the fiber is pumped at 775 nm. A greater-than 80: 1 coincidence-to-accidental ratio is achieved, limited mainly by multiphoton pair generation. Without the need to subtract accidentals or to compensate for walk-off, the raw two-photon interference visibility is found to be better than 95%, and violation of Bell's inequality is observed by more than 18 standard deviations. This makes for a truly alignment-free, plug-and-play source of polarization-entangled photon pairs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/530262
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 53
social impact