Competitive inhibition by phenolic compounds of the ascorbic acid oxidation reaction catalyzed by ascorbate oxidase was investigated at pH 7.0 and 23.0 °C. Inhibition of p-nitrophenol is pH dependent over the range 5.0-8.0, with inhibitor binding favored at higher pH. Bulky substituents on the phenol nucleus reduce or prevent the inhibitory effect. The presence of phenol affects the binding characteristics of azide to the trinuclear cluster of the enzyme. In particular, binding of azide to type 2 copper is prevented, and the affinity of azide to type 3 copper is reduced. In addition, reduction of type 1 copper is observed upon prolonged incubation of ascorbate oxidase with excess phenol and azide, but not with phenol alone. It is proposed that binding of phenolic inhibitors occurs at or near the site where the substrate (ascorbate) binds. NMR relaxation measurements of the protons of phenols in the presence of ascorbate oxidase show paramagnetic effects due to the proximity of the bound inhibitor to a copper center, likely type 1 copper. Copper-proton distance estimates between this paramagnetic center and p-cresol or p-nitrophenol bound to ascorbate oxidase are between 4.4 and 5.9 Å

Inhibition of Ascorbate Oxidase by Phenolic Compounds. Enzymatic and Spectroscopic Studies

MONZANI, ENRICO;CASELLA, LUIGI;
1997-01-01

Abstract

Competitive inhibition by phenolic compounds of the ascorbic acid oxidation reaction catalyzed by ascorbate oxidase was investigated at pH 7.0 and 23.0 °C. Inhibition of p-nitrophenol is pH dependent over the range 5.0-8.0, with inhibitor binding favored at higher pH. Bulky substituents on the phenol nucleus reduce or prevent the inhibitory effect. The presence of phenol affects the binding characteristics of azide to the trinuclear cluster of the enzyme. In particular, binding of azide to type 2 copper is prevented, and the affinity of azide to type 3 copper is reduced. In addition, reduction of type 1 copper is observed upon prolonged incubation of ascorbate oxidase with excess phenol and azide, but not with phenol alone. It is proposed that binding of phenolic inhibitors occurs at or near the site where the substrate (ascorbate) binds. NMR relaxation measurements of the protons of phenols in the presence of ascorbate oxidase show paramagnetic effects due to the proximity of the bound inhibitor to a copper center, likely type 1 copper. Copper-proton distance estimates between this paramagnetic center and p-cresol or p-nitrophenol bound to ascorbate oxidase are between 4.4 and 5.9 Å
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/581639
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact