We study the dynamical behavior of a quantum cellular automaton which reproduces the Dirac dynamics in the limit of small wave vectors and masses. We present analytical evaluations along with computer simulations, showing that the automaton exhibits typical Dirac dynamical features, such as the Zitterbewegung and, considering the scattering from potential, the so-called Klein paradox. The motivation is to show concretely how pure processing of quantum information can lead to particle mechanics as an emergent feature, an issue that has been the focus of solid-state, optical, and atomic-physics quantum simulators.

Dirac quantum cellular automaton in one dimension: Zitterbewegung and scattering from potential

BISIO, ALESSANDRO;D'ARIANO, GIACOMO;TOSINI, ALESSANDRO
2013-01-01

Abstract

We study the dynamical behavior of a quantum cellular automaton which reproduces the Dirac dynamics in the limit of small wave vectors and masses. We present analytical evaluations along with computer simulations, showing that the automaton exhibits typical Dirac dynamical features, such as the Zitterbewegung and, considering the scattering from potential, the so-called Klein paradox. The motivation is to show concretely how pure processing of quantum information can lead to particle mechanics as an emergent feature, an issue that has been the focus of solid-state, optical, and atomic-physics quantum simulators.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/981679
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact