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ABSTRACT

The pronounced seismic vulnerability of unreinforced masonry (URM) structures and their
extensive presence worldwide has prompted significant interest in developing strategies for an
appropriate assessment and retrofit of the existing stock on the one hand, and for the design and
detailing of new construction on the other hand. The seismic performance of existing URM
buildings is generally governed by the activation of local overturning mechanisms, as they have been
typically built without adequate consideration of horizontal actions. However, even though modern
building codes and guidelines have stressed the importance of inhibiting local out-of-plane failure
through structural interventions or new construction details, the in-plane seismic capacity of
masonry walls might still be inadequate to withstand the demand. For this reason, strengthening and
reinforcement solutions, consisting of materials with significant tensile strength applied to or
embedded into the load-bearing masonry walls, are generally employed to cope with this deficiency.

In this thesis, the equivalent-frame modeling (EFM) for masonry structures is first discussed,
highlighting its advantages, assumptions, and limitations through comparison with experimental
results of shake-table tests on masonry buildings and aggregates. Subsequently, a novel three-
dimensional macroelement is proposed to couple the in-plane and out-of-plane response of masonry
walls subjected to lateral loads, resorting to a computationally efficient sectional integration for the
axial-flexural behavior. More specifically, the three-dimensional macroelement builds upon a pre-
existing two-dimensional formulation, which allows to effectively and efficiently reproduce the
nonlinear static and dynamic behavior of an unreinforced masonry panel with a limited number of
degrees of freedom. Furthermore, taking advantage of the proposed three-dimensional formulation,
additional lumped and distributed reinforcement is incorporated into the macroelement, enabling
the explicit modeling of several reinforcing and strengthening layouts. The resulting formulation is
finally validated against the experimental results of a quasi-static cyclic shear-compression test on a
stone-masonry piers strengthened by composite-reinforced mortar (CRM) jacketing.
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1. INTRODUCTION

1.1 RESEARCH MOTIVATION AND OBJECTIVES

During the last decades, the research and engineering community has recognized existing
unreinforced masonry (URM) buildings among the most vulnerable structures under
seismic loading. In fact, ancient and historical masonry constructions were typically built
without explicit design, merely following empirical and geometrical rules. Consequently,
the lack of efficient connections among intersecting walls or with horizontal diaphragms,
the bad arrangement of masonty leaves, the presence of flexible floors and thrusting
elements not effectively restrained, have led to premature local out-of-plane collapses. For
this reason, seismic-prone countries have issued detailing rules for the seismic design of
new, and retrofit of existing, unreinforced masonty structures.

However, even after mitigating the out-of-plane response issues and thus inducing a global
“box-type” behavior, the performance under seismic actions might still be unsatisfactory.
In fact, the in-plane strength and ultimate deformation capacity of masonry structural
elements may not be sufficient to resist the demand imposed on them. For this reason,
strengthening and reinforcement solutions have also been developed to improve the in-
plane response of existing and new elements, respectively, such as jacketing, near-surface-
mounted bars, or embedded rebars in reinforced or confined masonty. To this scope,
additional materials with significant tensile strength are applied to the surface or embedded
into the masonry walls, overcoming one of the most significant deficiencies of this material.

Several modeling approaches for the seismic performance assessment of URM buildings
have been proposed in the literature, ranging from simplified methodologies based on the
limit analysis (Abruzzese ¢f a/., 1992; Milani ¢f al,, 2007) or story mechanisms (Tomazevic,
1987), to more refined ones involving micro-modeling techniques, where bricks, mortar,
and interfaces are modeled in detail through suitable nonlinear finite (Alpha and Monetto,
1994; Anthoine and Pegon, 1996) or discrete elements (Lemos, 2007; Casolo and Pefia,
2007; Calio ef al, 2012). However, if the refined methodologies are well known for their
high computational effort, thus resulting mainly applicable to structural subsystems only,
the simplified counterparts are based on significant approximations, making their field of
application somewhat limited.
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Figure 1.1: Equivalent-frame idealization.

Conversely, the equivalent-frame modeling (EFM) approach strikes a balance between
result accuracy and computational effort (Magenes and Della Fontana, 1998; Lagomarsino
et al., 2013). In this context, each resisting wall is discretized into deformable elements, with
several finite element or macroelement formulations capable of simulating the nonlinear
response of piers and spandrels, and rigid nodes, which define portions of masonry
generally less sensitive to deformations and damage (Figure 1.1). Piers represent the main
vertical elements responsible for withstanding vertical and horizontal loadings, whereas
spandrels may couple their lateral response if effectively connected and supported.
Consequently, the computational time is strongly reduced, as the elements target the
average behavior of the masonty panels rather than focusing on the local behavior of the
material. Despite this simplification, the EFM still yields generally accurate results, making
it a viable choice for ordinary building design and assessment.

Among all the formulations proposed in the literature (Magenes and Della Fontana, 1998;
Roca ez al., 2005; Penelis, 2006; Chen ef al., 2008; Belmouden and Lestuzzi, 2009; Grande
et al., 2011; Raka ez al., 2015; Peruch et al., 2019), the two-dimensional macroelement initially
developed by Brencich and Lagomarsino (1998), further enhanced by Penna ez a/. (2014),
and implemented in the software TREMURI (Lagomarsino e# al, 2013), appears
particulatly suitable and efficient for static and dynamic analyses of masonry structures.
Indeed, its mechanics-based formulation and analytical description of the axial-flexural
response allow capturing both shear and flexural failure mechanisms with a limited number
of degtees of freedom. More specifically, the shear behavior is concentrated at the center
of the macroelement with a Coulomb-like strength criterion, whereas the coupled axial-
flexural response is lumped at its end-interfaces, in correspondence with the two nodes
bounding the macroelement. Moreover, the analytical formulation of the end-interfaces
allows to simulate two-dimensional mechanisms, such as cracking and toe-crushing of the
section, without computationally demanding fiber discretization and numerical integration.

This macroelement has recently been improved by Bracchi ef a/. (2021) and Bracchi and
Penna (2021) by overcoming some of its limitations, such as the inability to simultanecously
capture the correct axial and flexural stiffnesses of a masonry member, and by introducing
additional features, such as a more appropriate axial-flexural constitutive law for the end-



Degree of Doctor of Philosophy in Design, Modeling, and Simulation in Engineering 3

interfaces, to better account for damage accumulation and residual displacements.
Moreover, Bracchi and Penna (2021) include the possibility to consider second-order
geometrical effects and an automatic adaptive calibration of the Coulomb shear criterion
parameters, allowing to model several strength criteria based on a linearization around the
instantaneous axial load.

The equivalent-frame modeling approach has been widely investigated over the last decades
(Kappos et al., 2002; Marques and Lourenco, 2011, 2014; Quagliarini ez a/., 2017; Morandini
¢t al., 2022; Penna et al., 2022; Camata ez al., 2022; Cattati ez al., 2022), concluding that this
simplification is reliable in reproducing the response of URM structures provided that a
box-type behavior and a regular opening layout are guaranteed. Conversely, in case of
irregular opening distribution, additional modeling measures and adjustments of the wall
discretization might be necessary to preserve reasonable results.

Furthermore, being initially conceived for simulating the in-plane response of the walls, the
main drawback of this approach is the common assumption of neglecting the out-of-plane
stiffness and strength of masonry members. Indeed, it is typically assumed that the global
building behavior is governed by the in-plane response of the resisting walls. In reality, in-
plane and out-of-plane lateral responses are not independent from each other, and their
interaction may become relevant in capturing the global building response even when local
out-of-plane overturning mechanisms are substantially inhibited.

In this context, Vanin ¢ a/. (2020) expanded the Penna ef a/. (2014) formulation into an
advanced three-dimensional macroelement, implemented in the open-source software
OpenSees (McKenna, 2011). Unlike the original formulation, this macroelement consists
of an assemblage of two panels bounded by three nonlinear sections, allowing for the one-
way out-of-plane bending to be explicitly simulated. The macroelement also provides
optional second-order geometrical effects, a consistent or lumped mass matrix, an initial-
or tangent-stiffness-proportional damping model, and eventually drift capacity models for
the in-plane direction. However, it lumps the shear response within a nonlinear spring at
mid-height of the element and does not incorporate the adaptive Coulomb criterion
developed by Bracchi and Penna (2021).

In this work, the two-dimensional formulation of the macroelement proposed by Penna e#
al. (2014), Bracchi e al. (2021), and Bracchi and Penna (2021), is revised, improved, and
extended to the three-dimensional space for a better simulation of the nonlinear response
of URM and reinforced masonry buildings. Unlike the three-dimensional macroelement
proposed by Vanin e a/. (2020), this formulation preserves the kinematics of the original
version of Penna ef a/. (2014), which decouples the shear and flexural responses by means
of internal axial and rotational degrees of freedom, and encompasses the adaptive
linearization of the shear strength criteria implemented by Bracchi and Penna (2021).
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Additionally, the versatility of the proposed formulation allows explicitly modeling the in-
plane and out-of-plane contributions of strengthening and reinforcement materials.

1.2 ORGANIZATION OF THE THESIS

Atfter this brief introduction, Chapter 2 deals with the modeling strategies available in the
literature to numerically simulate masonry structures, mainly focusing on the equivalent-
frame approach with nonlinear macroelements. In this context, the latter modeling strategy
is thoroughly described, several macroelements are considered and classified based upon
their formulations, the main laboratory tests to determine mechanical properties are
described, and the procedures for the seismic performance assessment of URM buildings
are explained.

Chapter 3 reports a comparison between an experimental and numerical study on the effect
of different retrofit solutions for stone masonry buildings in earthquake-prone regions. The
study aimed to evaluate the influence of enhanced wall-to-diaphragm connections,
diaphragm stiffness, and masonry strengthening on the dynamic response of the
investigated buildings. The two-dimensional macroelement currently implemented in the
equivalent-frame software TREMURI is used, whereas correction coefficients are applied
to the masonry mechanical properties to account for strengthening interventions, as
suggested by the Italian building code.

Chapter 4 illustrates the numerical simulation of an experimental shake-table test to assess
the seismic vulnerability of a typical building aggregate composed of two adjacent weakly-
connected structural units. In this context, the results of nonlinear static analyses obtained
from three equivalent-frame modeling strategies are compared. In all cases, the numerical
simulations are performed by employing the two-dimensional macroelements currently
implemented in the software TREMURI, which neglects the out-of-plane stiffness and
strength of the masonry member. However, the first strategy involves an unconventional
three-dimensional approach with fictitious frames and membranes, to capture the out-of-
plane behavior of the walls arranged perpendicular to the shaking direction. The second
option still analyzes a three-dimensional model, but all the unconventional features are
removed according to common global modeling practices. Finally, given the low stiffness
of the timber diaphragms, single-wall two-dimensional models atre also analyzed.

Mainly focusing on its axial-flexural behavior, a thorough description of the Penna ez /.
(2014) macroelement is given in Chapter 5, where the in-plane formulation is extensively
reviewed to add a nonlinear correction to better capture toe-crushing phenomena, and to
implement an elasto-fragile tensile strength. Moreover, the extension to the three-
dimensional space is described, to overcome the need for fictitious frames and membranes
dedicated to the out-of-plane response. For this purpose, the end-interfaces are discretized
in a series of analytical stripes, whose numerical integration over the thickness of the
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macroelement returns the coupled in-plane and out-of-plane response. Consequently, a
computationally efficient formulation is preserved. A full-fiber discretization of the end-
interfaces is also provided, to allow comparisons in terms of computational efficiency and
integration results, and to overcome some limitations of the analytical formulation on the
choice of constitutive relationships. Finally, a novel iterative algorithm is presented to
achieve a high convergence rate and numerical robustness, through a combination of initial-
and tangent-stiffness Newton-Raphson methods.

In Chapter 6, the biaxial flexural contribution of lumped and distributed reinforcement is
added to the end-interface formulation, allowing for rebars or surface layers to be explicitly
considered instead of modifying the masonry tensile strength through enhancement
coefficients. The former are modeled following the J2-plasticity theory, providing also an
optional isotropic and kinematic hardening, whereas the latter are characterized by a no-
compression elasto-fragile tensile response, analytically integrated over the length of the
macroelement. The collaboration of the reinforcement with the masonry is enforced
through kinematic compatibility relationships, similarly to the three-dimensional extension
of the masonry macroelement described in Chapter 5.

In Chapter 7, the capabilities of the three-dimensional macroelement proposed in this
thesis are validated through the simulation of an experimental quasi-static cyclic shear-
compression test involving a stone masonry pier retrofitted with composite-reinforced
mortar (CRM) on both sides. In this context, the axial-flexural contribution of the
strengthening layers is explicitly reproduced through further stripes added to the end-
interfaces of the macroelement, as described in Chapter 6, whereas the shear-strengthening
effect of the CRM solution is modeled through an improved tensile strength of the masonry
material, compatible with the findings of the complementary material characterization
campaign. Moreover, cyclic and monotonic analyses investigate the effect on the response
of different constitutive laws for the masonry material and the correspondence between
stripe and fiber end-interface formulations.

Finally, Chapter 8 summarizes the thesis, draws the main conclusions, and presents possible
future developments of this work. A comprehensive list of appendices is included at the
end of the thesis, detailing the numerical implementation of the proposed macroelement.
More specifically, Appendix A, Appendix B, and Appendix C report the elastic stiffness
matrices of the two-dimensional macroelement, three-dimensional macroelement, and
analytical surface layers, together with the computation of the relevant terms. Appendix D
deals with the implementation of fiber-discretized end-interfaces, distinguishing between
elastic and nonlinear contributions. Finally, Appendix E and Appendix F delve into the
analytical corrections responsible for the in-plane response of the individual stripes,
accompanied by the corresponding nonlinear gradients required to define the tangent
stiffness matrix of the three-dimensional macroelement.
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2. EQUIVALENT FRAME MODELING TECHNIQUE FOR
THE SEISMIC RESPONSE ANALYSIS OF MASONRY
BUILDINGS

Adapted from: Zarzour, N., Salvatori, C., Santisi d’Avila, M. P., and Penna, A. Equivalent
frame modeling technique for the seismic response analysis of masonry buildings. I
Masonry Structures: Building archaeology, characterization, modeling and analysis of masonry structures.
(Manuscript in preparation)

2.1 INTRODUCTION

Seismic design and risk assessment of unreinforced masonry (URM) buildings present
significant challenges related with the simulation of the building response to horizontal
loadings in an efficient and reliable way. This chapter focuses on the equivalent frame
modeling (EFM) strategy, according to which load bearing masonry walls are subdivided
into deformable members connected by rigid nodes, inspired by damage observations after
post-earthquake surveys and experimental campaigns. This approach, developed as a
strategy for the seismic analysis of both new and existing URM buildings, is recommended
in several seismic codes (e.g. Eurocode 8, CEN 2004). In fact, it strikes a balance between
accuracy of results and computational efficiency, mainly in the context of professional
practice, in which the spatial model of extended URM buildings is demanded, as well as a
clear interpretation of damage is required.

After a brief overview of modeling strategies, the mechanical characterization of masonry
to calibrate the EFM is discussed, considering various aspects such as structural element
definition and assemblage, connection effects, strength domains, and damage limit
assumptions. Finally, the key parameters and the procedures for the seismic performance
assessment of URM structures are presented.

2.2 MODELING STRATEGIES FOR THE SEISMIC PERFORMANCE ASSESSMENT OF
MASONRY STRUCTURES

Simplified and advanced formulations have been proposed for an efficient and more
comprehensive understanding of the behavior of URM structures. However, because of
the complex and uncertain response of masonry material, the topic is not trivial and is
always open to further improvements.
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The dynamic response of masonry, defined as a composite material made up of units and
mortar arranged with various bond patterns, is strongly affected by the mechanical behavior
of the individual components, especially of mortar joints, which usually represent the
weakest element. The elasto-plastic response of masonry can be modeled by employing
nonlinear constitutive laws associated to each material (units, mortar and interfaces), to the
units and their interfaces only, or to the structural element as a whole, according to the
adopted scale of representation (Lourenco, 1996).

In this context, D’Altri ef a/ (2019) attempted to make some order by comprehensively
reviewing and classifying the modeling strategies available in the literature. Accordingly, the
masonry modeling approaches are distinguished into four main categories: block-based
models, in which masonry is modeled following the actual texture of the material;
continuum modeling, where masonty is represented as a continuum deformable body,
potentially ignoring the actual texture of the material; macroelement models, in which the
structure is discretized into panel-scale deformable elements; and geometry-based models,
where the structure is modeled as a rigid body and the solution is achieved by resorting to
limit analysis procedures.

The block-based approach covers a wide range of methodologies depending on the
modeling assumptions. Even though more refined classifications can be found in the
literature for block-based methods, the one proposed by Lourenco (1996) is adopted in the
following, i.c., detailed (Figure 2.1a) and simplified (Figure 2.1b) micro-modeling
approaches. The first one represents units and mortar joints as continuum elements,
whereas discontinuous elements are employed for unit-to-mortar interfaces (Ali and Page,
1988; Arnau ef al, 2015; Addessi and Sacco, 2016; D’Altti ef al., 2018). The constitutive
behavior of the elements is defined in terms of mechanical parameters calibrated through
small-scale experimental tests. In this spatial discretization strategy, the mesh size is
influenced by the smaller joint elements and returns a significant computational time.

Interface-Unit/Mortar

"Unit"

Unit

Mortar "Joint"

(@) ()

Figure 2.1: Example of (a) detailed micro-modeling, and (b) simplified micro-modeling (Prakash et
al., 2020).
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@)

Figure 2.2: Examples of (a) continuum modeling for buildings (curtesy of Bellinzoni and Morandi,
PE); and (b) more complex structures (Degli Abbati et al., 2019).

On the other hand, in the simplified micro-modeling, mortar joints are not directly
considered. In fact, expanded elements represent the behavior of units, whereas contact
laws simulate mortar layers and unit-to-mortar interfaces (Lotfi and Shing, 1994; Lourenco
and Rots, 1997; Oliveira and Lourenco, 2004; Guo ¢ al, 2022). The simplified micro-
modeling approach based on the discrete element method (DEM) is one of the prevailing
choices and proved successfully accurate in predicting the response of masontry structures
(Damiani ez al, 2023). Simplified micro-modeling approaches allow to reduce the
computational time compared to refined micro-modeling methodologies. However, also
the accuracy may be influenced, as the Poisson effect on mortar layers may not be propetly
captured.

Overall, the significant computational effort required by micro-modeling approaches and
the need to define a large number of mechanical parameters, require expert users and
generally restrict their application to structural subsystems, making them impractical for
conventional building design and assessment. Conversely, in the continuum modeling
(Figure 2.2), masonty is treated as a deformable body consisting of homogeneous material,
without distinguishing between units and mortar layers. Consequently, the spatial
discretization may not directly correspond to masonry units, therefore the possibility of
defining a larger mesh size could reduce the computational efforts. Nonetheless, results
might be sensitive to the adopted element dimensions. For this reason, several efforts have
been made to ensure mesh objectivity, e.g., through defining a characteristic length, as a
function of the element formulation and material properties, or through an adaptive mesh
refinement.

A constitutive relationship is assumed for the masonry material and can be calibrated either
using mechanical parameters deduced from analytical homogenization procedures (de
Felice, 2001; de Felice, 2009; Zucchini and Lourenco, 2009; Marfia and Sacco, 2012;
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Stefanou ez al., 2015; Bertolesi ¢t al., 2017) or directly from experimental tests on masonry
panels (Lourenco ef al., 1998; Pela ¢ al., 2013; Bruggi and Taliercio, 2015; Degli Abbati e
al., 2019). The definition of the mechanical properties is crucial, since the accuracy of the
constitutive laws assigned to the homogenized material governs the structural response.

In the macro-modeling approach, each masonry fagade is subdivided into panel-scale
deformable elements (Figure 2.3), characterized by phenomenological or mechanical-based
constitutive laws. A pioneering macro-modeling strategy is the POR method proposed by
Tomazevic¢ (1978), in which the behavior of each story is described independently, by an
interstory shear force versus displacement curve. This method assumes that only in-plane
shear forces in vertical elements could cause damage, while spandrels and nodal regions are
considered rigid, resulting in strong approximation. Consequently, the displacement
capacity of each story is determined by the superposition of the responses of the individual
masonry piers. Moreover, the axial force variation due to overturning effects and the
internal force redistribution after damage or failure of the elements are not accounted for.

The equivalent frame modeling strategy is a type of macro-modeling approach that
overcomes the limitations of the POR method on the internal force prediction. The
structural model is characterized by deformable macroelements, such as piers and spandrels
connected by rigid nodes (Figure 2.3). In this context, masonry members are still
considered homogeneous but, unlike the continuum strategy, the constitutive laws try to
reproduce the average mechanical behavior of the elements rather than the local response
of the material.

The macroelement response is defined either in terms of assigned strength domains,
considering the coupling of generalized forces for multiaxial loading (Magenes and Della
Fontana, 1998; Lagomarsino ¢ al., 2013), or relying on sectional integrations (Belmouden
and Lestuzzi, 2009; Raka 7 al., 2015). As a result, this methodology ensutes a reasonable
compromise between accuracy of results and computational effort, making it the most
employed solution for the static and dynamic analysis of URM buildings (Figure 2.3c),
mainly in the context of ordinary engineering practice.
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0 Piers
0 Spandrels
Rigid nodes

Figure 2.3: Examples of equivalent frame discretization for masonry buildings: (a) and (b) curtesy of
Prof. Penna; (c) Segovia-Verjel et al. (2019).

Unlike the abovementioned strategies, geometry-based modeling describes the masonry
building response assuming rigid elements, neglecting thus their intrinsic deformability.
These approaches are mostly adopted for studying the equilibrium state in masonry arches
and vaults (O’Dwyer, 1999; Block ¢ a/., 2006; Marmo and Rosati, 2017) and for assessing
global or local mechanisms in masonry buildings (Chiozzi ez al., 2018a,b).

Geometry-based modeling relies on limit analysis solutions, governed by either static or
kinematic theorem. In this context, the static theorem assumes an admissible stress field
that respects a given yield criterion, whereas the kinematic one rests upon the definition of
an admissible kinematic mechanism. The structure geometry consists of the only input
required for the analysis, beyond the definition of the loading conditions. However, the
limit analysis only returns the collapse load multiplier. In particular, the static theorem
provides a lower-bound limit of the collapse multiplier, whereas the kinematic theorem
provides an upper-bound limit.
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2.3 EQUIVALENT FRAME MODELING STRATEGY

When dealing with unreinforced masonry buildings, two types of resisting elements can be
identified: piers and spandrels. Piers are the vertical load-bearing elements, identified
between adjacent openings, supporting both gravity and lateral loads. On the other hand,
spandrels lay horizontally and are positioned above and below the openings. They transfer
vertical loads from the diaphragms to the piers, coupling and restraining also their
horizontal generalized displacements under lateral loads.

The observation of damage after seismic events and experimental campaigns supports the
equivalent frame modeling strategy as a viable approach for the seismic design and risk
assessment of URM buildings. In some cases, the damage is principally localized in
spandrels, whereas piers appear relatively undamaged (Figure 2.4a). This behavior might be
associated with weak spandrels, hindering the transfer of shear load to other structural
elements. Conversely, if stronger spandrels are present, the damage mostly affects masonry
piers (Figure 2.4b), in particular at lower stories. Generally, the damage is diffuse, with piers
and spandrels experiencing cracks (Figure 2.4c). However, even in this case, observations
highlight zones between the resisting elements without significant signs of damage.

The load-bearing capacity of masonry walls is essentially related to the in-plane strength
and stiffness of the involved macroelements (Figure 2.5a), neglecting any out-of-plane
response (Figure 2.5b). In fact, it is assumed that the local mechanisms are prevented
through adequate details such as tie rods, ring beams, solid interlocking among intersecting
walls, and effective connections between vertical walls and horizontal diaphragms. These
measures allow the building to experience the so-called box-like behavior (Figure 2.5¢) and
to obtain a global three-dimensional response during static and dynamic loading. However,
a posteriori analysis is necessary to check for the activation of out-of-plane local
mechanisms, resorting to hands-on simplified calculations, typically based on the kinematic
analysis.

Figure 2.4: Buildings with in-plane damage concentrated (a) in spandrels, (b) in piers, and (c) in both
structural elements (Ma et al., 2022; Bilgin et al., 2020).
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Figure 2.5: (a) in-plane and (b) out-of-plane response of an unreinforced masonry panel. (c) desired
box-like behavior of a masonry building (Touliatos, 1996).

Unfortunately, the EFM approach requitres an a priori estimation of the effective height of
piers and length of spandrels. In this context, various pier discretization ctiteria are
proposed in the literature: some of them rely on experimental tests (Moon 7 al., 2006; Yi
et al., 20006), others on post-earthquake damage observations (Augenti, 2006; Parisi and
Augenti, 2013).

Bracchi ez al. (2015) analyze the in-plane damage pattern experienced by the ground floor
of an URM building after the 6.1 M,, 2012 Emilia earthquake (Figure 2.6). Although the
outer piers are damaged according to a rocking-flexure failure mode (F), due to their higher
aspect ratio (height-to-length ratio), the damage on the inner ones results influenced by the
load direction. In fact, in the case of the rightwards load (Figure 2.6a), the left central pier
fails according to a flexural mechanism (F), whereas the right central pier has a diagonal
crack in shear (S). The opposite behavior is observed when the loading is reversed (Figure
2.6b). The vertical axial load on both piers can be assumed to be similar as they are close
to the frame symmetry axis, but the aspect ratio of the same pier changes with the load
direction. In particular, when the pier is restrained by the ground floor spandrel, under the
window, its effective height decreases and, consequently, the aspect ratio.

—

Figure 2.6: Damage observation after the 6.1 M, 2012 Emilia earthquake: definition of the equivalent
pier height and associated failure mode (S: shear; F: flexure) in the case of (a) rightwards
and (b) leftwards load (Bracchi et al, 2015).
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Figure 2.7: Examples of discretization criteria for masonry piers: (a) Dolce (1991), (b) Lagomarsino et
al. (2013), and (c) Bracchi et al. (2015).
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Therefore, according to Bracchi ez a/. (2015), the same pier can be squat or slender for each
horizontal load direction, depending on the restrained conditions. Nevertheless, in the
framework of the EFM application, the definition of effective dimensions for piers and
spandrels is unique and independent of the loading direction. Consequently, the choice is
usually delegated to engineering judgement, especially in the case of irregular facades.

Three of the most common criteria for determining the effective height of piers in masonry
structures are reported in Figure 2.7. Dolce (1991) proposes an approach in which the
effective pier height is calculated starting from the distance between midpoints of segments
connecting adjacent element corners or element corners with the closest floor levels, with
a maximum inclination of ideal crack lines of 30° (Figure 2.7a). Lagomarsino ez a/. (2013)
propose a similar criterion but without any limitation on the maximum slope of the crack
lines, resulting in generally higher piers (Figure 2.7b). On the other hand, according to
Bracchi ef al. (2015), the effective height of vertical elements could be taken as the minimum
clear distance between adjacent openings (Figure 2.7¢). As a result, this method implicates
smaller piers, especially penalizing the outer ones.

Concerning the identification of spandrels, a straightforward method for regularly
distributed openings considers the spandrel as the portion of masonry between two
vertically alighed openings (Figure 2.82). In case of irregularly distributed openings,
Lagomarsino e al. (2013) suggest conventionally assuming a mean value for the length of
spandrel elements based on the overlapping part between openings at two levels (Figure
2.8b). In situations where the is no overlap between adjacent openings, it is advisable to
treat that portion as a rigid element. Finally, in case of absence of opening, a good practice
is to model the portion as a fully deformable element.

The ability of the different discretization criteria in predicting the response of a building is
comprehensively investigated in the literature. In particular, Siano ez a/ (2018) performs
analyses on walls with regular opening layout by resorting to a finite element discretization,
as well as Siano ez al. (2017), Camata ef al. (2022), Cattati ez al. (2022) and Morandini ez al.
(2022) do for irregular opening distributions, and they compared the results obtained when
adopting different discretization criteria for the equivalent-frame modeling strategy.
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Figure 2.8: Examples of discretization criteria for masonry spandrels in case of (a) regular and (b)
irregular opening distribution (Lagomarsino et al., 2013).

Despite the EFM generally provides satisfactory results for regular geometries, as the
geometrical affinity with an ideal frame configuration decreases, also the accuracy of the
results decreases. In fact, as thoroughly investigated by Morandini ez a/. (2022), particular
attention should be given to small openings. In this context, comparisons with a more
refined modeling approach show only a marginal influence on the lateral response of the
building. Conversely, applying the abovementioned criteria might lead to an unbalanced
discretization, generally resulting in a stiffer and higher base shear resistance prediction.

Similatly, Camata ez a/ (2022) highlights the insufficient accuracy of some discretization
criteria when a discontinuous opening patterns along the height of the facades is provided.
In these cases, the absence of an opening at the ground floor only, might not justify the
assumption of discretizing the ground floor pier with a single element. In fact, compatison
with refined modeling approaches shows a better accuracy when split in two elements
connected through rigid links.

To conclude, even though identifying piers and spandrels elements is rather trivial for
regular masonry facades, it becomes challenging when dealing with irregular opening
layouts. In this context, an a prioti elastic finite element analysis could help to delineate the
equivalent frame structure. Alternatively, in case of very complex geometries, more refined
modeling approaches, such as continuum modeling or geometry-based modeling, are more
convenient and lead to more consistent results.

Furthermore, spandrel elements should be considered only if adequately interlocked to the
surrounding masonry and propetly supported by lintel, arch, or flat arch elements, able to
withstand the masonry member after cracking and ensuring the development of a diagonal
strut resisting mechanism. Otherwise, the collaboration of spandrels is unreliable, and the
model should consider the response of masonty piers only.
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2.4 MACROELEMENTS FOR THE EQUIVALENT FRAME MODELING APPROACH

The equivalent frame modeling strategy consists of identifying a fictitious frame layout
composed of macroelements. The common assumption when adopting this modeling
strategy is to rely only on the in-plane behavior of the walls, thus neglecting the out-of-
plane response of the elements. For this reason, the equivalent frame approach generally
resorts to one or two-dimensional wall elements. However, three-dimensional formulations
can also be adopted (Raka ¢ al, 2015; Vanin ez al, 2020). Moreover, masonty piers and
spandrels are generally characterized by comparable in-plane dimensions, resulting in
prevailing squat elements. Consequently, macroelement formulations account for both
flexural and shear deformations of the members.

In the early stages of the equivalent frame approach, macroelements were primatily
designed to emulate the behavior of a displacement-based beam-column element with
concentrated plasticity. In this context, the flexural and shear nonlinear behaviors are
essentially lumped at the ends of the member, where rigid offsets are also provided to
simulate piet-to-spandrel intersections (Magenes and Della Fontana, 1998; Lagomarsino e#
al., 2013).

More recently, beam-based macroelements have also implemented a force-based
formulation, which allows the exact interpolation of resultant stress components along the
length of the member and mitigates the shear-locking problem (Addessi ef al., 2015).
Additionally, certain formulations adopt a diffuse plasticity (Grande ez a/., 2011; Addessi ez
al., 2014). In this framework, the nonlinear behavior can occur at any point along the
clement length. However, it is worth noticing that this leads to an increase in the
computational time compared to concentrated plasticity (Figure 2.9a).

Alternatively, spring-based macroelements consist of rigid or deformable portions
connected through springs or interfaces (Figure 2.9b,¢). In this case, the formulation mainly
focuses on representing the typical failure mechanisms of a masonry panel, such as flexural
and shear modes (Brencich ez a, 1998; Chen et al., 2008; Penna et a/.,2014; Rinaldin e# a/.,
2016; Vanin et al., 2020).

Elasto-petfectly plastic relationships, governed by assigned strength domains according to
code prescriptions, are the most common observations when dealing with simplified
formulations (Magenes and Della Fontana, 1998; Lagomarsino ¢# al., 2013). On the other
hand, advanced and refined macroelements rely on more complex constitutive laws,
potentially resorting to a sectional fiber integration to determine internal actions. While the
latter approach automatically captures the coupled axial-flexural response without explicitly
defining a strength domain and accurately predicts the stress profile along the section, it
returns an increased computational effort (Raka ez al., 2015).
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To address this drawback, some macroelements implement an analytical integration of the
cross-section, preserving the advantages of a fiber discretization while drastically reducing
the analysis demand. However, this methodology is generally applicable to simple
constitutive relationships (Grande ez /., 2011; Penna e al., 2014; Addessi ez al., 2014; Vanin
et al., 2020).
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Figure 2.9: Examples of macroelements: (a) Raka et al, (2015);.(b) Chen et al., (2008); (c) Vanin et al,
(2020).

2.5 FAILURE MECHANISMS

During post-earthquake surveys and experimental campaigns on masonry buildings,
recurrent in-plane damage patterns are observed. In particular, flexural failure modes atre
associated with the achievement of the maximum bending moment at the extremities of
piers, or with rocking motions governed by tigid-body equilibrium conditions (Figure
2.10a). Shear mechanisms on piers are generally associated with diagonal cracks (Figure
2.10Db) or sliding over the bed joints (Figure 2.10c).
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Figure 2.10: Masonry failure mechanism observations in piers: (a) flexural; (b) diagonal shear; (c)
sliding shear (D’Altri et al., 2019).

On the other hand, in-plane failure of masonry spandrels occurs due to flexural failure
(Figure 2.11a) or diagonal shear failure (Figure 2.11b). In fact, sliding is not a mechanism
that can initiate cracking in spandrels (Beyer and Mangalathu, 2013) due to the orthogonal
direction of shear load with respect to the bed joints.

The occurrence of a particular failure mode in piers and spandrels depends on the aspect
ratio, boundary conditions, mechanical properties of constituents, geometrical features of
masonry (unit aspect ratio, masonty bond pattern), and the level of axial load (Calderini ez
al., 2009). Parametric experimental analyses show that rocking most occurs in slender piers,
whereas bed joint sliding happens in squat piers (Abrams and Shah, 1992; Anthoine ¢f 4/,
1995; Magenes and Calvi, 1997). Diagonal cracking becomes more prevalent as the vertical
compression increases, in an intermediate slenderness range (Vasconcelos and Lourenco,
20006). More specifically, diagonal cracking propagating through blocks is dominant
compared with diagonal cracking propagating through mortar joints if the vertical
compression increases (Lourenco ez al., 2005) or for a higher mortar-to-block strength ratio
(Drysdale and Hamid, 1984). Finally, crushing generally occurs when vertical compression
reaches high levels, approaching the compressive strength of the material.

|

Figure 2.11: Masonry failure mechanism observation in spandrels after the 6.3 M,, 2009 L’Aquila
earthquake: (a) flexural and (b) diagonal shear (Beyer and Dazio, 2012)
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According to the interpretation of post-earthquake damage observations, the failure mode
is influenced by the instantaneous axial load. In fact, during a cyclic lateral loading, the axial
load on piers, especially on those near the edges, may vary depending on the direction of
the excitation. As depicted in Figure 2.12a, a rightward excitation increases the compression
force in the right outer pier, and diagonal cracking may become the primary failure
mechanism (Figure 2.12b). on the other hand, when the load is reversed, the axial force on
the same pier decreases compared to static conditions, potentially leading to flexural
rocking as the governing failure mechanism (Figure 2.12b).

In addition, experimental tests and damage observations after the 6.1 M,, 2009 L’Aquila
earthquake show that spandrels typically exhibit a flexural failure when subjected to small
axial load. On the other hand, in case of moderate axial load, they are prone to shear failure
with diagonal cracks (Beyer and Dazio, 2012). It is worth noticing that the axial load of
spandrels is usually of low intensity, whereas moderate values can be reached with post-
tensioned systems, such as tie-roads. For this reason, crushing in masonry spandrel is
generally of little concern.
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Figure 2.12: (a) masonry frame under vertical and lateral loads; (b) shear strength envelope based on
the applied axial compression force.

2.6 STRENGTH CRITERIA

Within the equivalent frame modeling strategy, homogeneous macroelements govern the
nonlinear response of the masonry building. In this context, each possible failure mode is
usually defined in terms of strength domains, thus accounting for the coupling of the
generalized internal forces. The latter are typically represented as ultimate shear force of
the member versus axial load applied. In the case of flexural failure mode, the shear force
is deduced from the bending moment by dividing by the effective height of the panel.

The intersection of strength domains allows the detection of the failure mode occurring
first, thus the one that governs the nonlinear response of the panel. More specifically, the
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ultimate lateral force is estimated as the lowest shear force obtained by intersecting the
expected failure mode interaction diagrams (Figure 2.12b). After attaining the peak force,
the element can further deform until reaching the collapse condition. The latter is typically
defined in terms of an ultimate displacement and may vary depending on the failure
mechanism experienced.

It is worth noticing that when dealing with elements involving a fiber discretization of the
cross-section, the maximum bending moment associated with a particular axial load is
automatically defined by integrating the contribution of each fiber. On the other hand, the
ultimate shear forces related to the desired failure mechanisms are typically still retrieved
through predefined failure critetia.

Magenes and Calvi (1997) and Calderini e a/. (2009) give an overview of analytical strength
criteria applied to piers, as well as Beyer and Mangalathu (2013) discuss strength criteria for
spandrels. This section lists the most common criteria employed within building codes and
guidelines.

2.6.1 Flexural failure modes

As regards the case of flexural failure mode, hence rocking with possible toe-crushing of
the section, the ultimate bending moment M,, for masonry piers can be easily obtained by
assuming the stress profile characterized by an equivalent rectangular stress-block in

compression and a no-tension behavior, as reported by the following relationship (Magenes
and Della Fontana, 2008):

@2.1)

NL N M+ M}
== (1-—) R
2 n Ny h
where N and N, = f;,, L t represent the axial force acting on the considered element and its
ultimate value, being f;, the compression strength of masonty, whereas L and t the length
and thickness of the cross-section. Eventually, 7 is a coefficient that accounts for the actual
stress distribution along the section. In fact, the equivalent rectangular stress-block
idealization may disagree with the actual stress profile at the compressed toe. For this
reason, a common and validated assumption is to set 77 = 0.85. The ultimate bending
moment can be rewritten in terms of ultimate shear force 1, where i and j indicate the
ends of the members, while h its effective height.
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Figure 2.13: Stress profile assumption for spandrel elements accounting for tensile strength: (a) elasto-
fragile and (b) ductile behavior in tension.

Unlike for piers, the ultimate bending moment of spandrel elements can be computed
assuming a limited horizontal tensile strength fp,;, due to interlocking with the adjacent
nodes (Cattari and Lagomarsino, 2008). In this context, the tensile strength could be
attained by potentially splitting the units or through stair-stepped sliding on the horizontal
mortar bed joints (along the overlapping length between units):

- (for frotHo
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where f}, is the tensile strength of the units, f,o represent the cohesive contribution of the
mortar joints (often conservatively neglected), whereas p and ¢ are the local friction and
interlocking coefficients, being the latter function of the height and overlapping length of
the units. Finally, o, is the mean vertical compressive stress acting at the end sections of
the spandrel element, conventionally assumed as half of the compressive stress on the
adjacent pier.

With this being discussed, the strength domain for the flexural failure mode reported in
(2.1) can be replaced by assuming an elasto-fragile (Figure 2.13a) or ductile behavior in
tension (Figure 2.13b), for the case of rupture of bricks or sliding on the horizontal mortar
joints, respectively. Furthermore, unless accurately and precisely estimated, the axial load
should not be considered for spandrel elements.

The previous assumptions respectively lead to the relationships reported in equations (2.3),
with fj, indicating the horizontal compressive strength of masonty, while L refers to the
depth of the spandrel element:
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It is worth noticing that, in case of ductile behavior both in tension and in compression,
the n factor is neglected. Therefore, the sum of the lengths undergoing plasticity in
compression and in tension covers the whole section. As regards the elasto-fragile
response, instead, the tensile strength of masonry is assumed to be attained first, as it is
generally a fraction of the compressive counterpatt.

On the other side, in spandrel coupled with hotizontal elements capable of resisting tensile
forces, such as tie rods or ring beams, the ultimate bending moment can be computed
following equation (2.4):

m, =t (1- - Z”L ) @.4)

where H,, is the minimum between the tensile strength of the horizontal member coupled
with the spandrel, and the compressive strength of the diagonal masonry strut formed for
equilibrium. The latter can be assumed equal to 0.4 L t f;,. However, as pointed out by Betti
et al. (2008), the maximum axial force in spandrel is generally less than H,, leading to a
possible overestimation of the lateral strength.

Finally, in the case of the simultaneous presence of a tensile resisting member and a non-
negligible tensile strength due to interlocking, the ultimate bending moment should be
taken as the maximum obtained through equations (2.3) and (2.4).

2.6.2 Shear failure modes

The shear strength of masonry members is strongly influenced by the bond pattern and
masonty typology. In this context, shear sliding on the bed joints is typically considered
only in case of masonty piers with regular texture, following a Mohr-Coulomb criterion, as
reported in equation (2.5):

Vu,s =Lt (fvo +u Un) < Vs,lim Vs,lim = fv,lim L't 2.5)

where f,o and p are defined according to equation (2.2), L' represents the compressed
length of the cross-section, whereas o, = N/L't is the average axial stress on the
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compressed part. Finally, V; ;;,,, accounts for the limited tensile strength of units through
the f,, ;;m parameter, as described by several national and international building codes.

The compressed length of the cross-section can be retrieved from the current internal
forces acting on the considered element, leading to equation (2.6), according to the
mechanical and physical length limitations (Magenes and Calvi, 1997). In this context, the
shear span ratio ay is introduced. The latter is defined as the ratio between the distance
from the section of maximum moment to the contraflexure point (hy), and the length of
element cross-section (L).

_3LN(1-2ayp) N

L=
2N+6f,aylLt Nfmt

<L <L (2.6)

Another type of shear failure mechanisms is associated with diagonal cracking. In this
context, when dealing with piers or spandrels made up of irregular masonty, national and
international building codes generally prescribes the Turnsek and Sheppard (1980)
criterion, where the masonry is idealized as a homogeneous material and the failure is
attained once the diagonal tensile strength fi; at the middle section of the panel is
exceeded, as described by equation (2.7):

Via = Eftd 1 +ﬂ @27
’ b fta

where g, = N/L t is the average axial force acting on the considered element, assumed zero
in case of spandrel elements, whereas b = h/L is a cotrection coefficient accounting for
the shear stress distribution along the middle section of the member. The latter is limited
within a range from 1 to 1.5 for very slender and squat piers, respectively.

On the other hand, in the case of piers or spandrel members characterized by regular
masonty, diagonal cracking can occur by ecither a stair-stepped crack through the mortar
joints or failure of the units. In this case, a Mohr Coulomb criterion is still used, but the
local cohesive and friction coefficients, f,o and u, are corrected through the factor k, as
discussed by Mann and Miiller (1982), being ¢ the interlocking coefficient:

- 1
foo =k fo A=kpu k=

(2.8)

The shear failure criterion accounting for stair-stepped cracking in the mortar joints and
consequent sliding along the bed joints, is finally reported:
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where Vy 1, is related to a diagonal cracking with cracks passing through the units, and is
expressed according to the Mann and Muller (1982) theory. However, after a comparison
with experimental tests on brick masonry, Magenes and Calvi (1997) proposed an
additional correction to better account for the shear span ratio. In this context, equations
(2.9) should be divided by a factor equal to (1 + ay).

2.7 MASONRY CONSTITUTIVE PARAMETERS

As discussed, the formulations of strength criteria and constitutive laws, governing the
elastic and plastic behavior of masonty, depend on mechanical parameters. Laboratory tests
are essential to characterize the mechanical properties of materials and calibrate the
constitutive relationships (Figure 2.14).

Detailed and simplified micro-models ate calibrated using tensile and compressive tests
performed separately on the masonry constituents (Figure 2.14a), such as on units
(Ganbaatar ¢f al., 2022) and mortar (Marastoni ez a/., 2016). Additionally, tests on interfaces
are carried out through tests on couplet and triplet samples (Figure 2.14b) composed of
two (Churilov and Jovanoska, 2013) and three (Thaickavil and Thomas, 2018) stack-
bonded units, respectively.

Macroelements are more adequately calibrated using tests on wall samples (Figure 2.14c).
In this context, vertical (Budiwati, 2009) and diagonal (Milosevic ¢ a/., 2013) compression
tests are performed on wallettes. The tensile strength of masonry is not directly addressed,
due to its low value compared to the compressive counterpart and its statistical scattering.
However, diagonal compression tests allow to recover an equivalent value associated with
diagonal shear failure. Similarly, material properties for continuum elements may still be
calibrated by means of tests on wallettes. Nonetheless, small-scale tests may be required to
fully characterize the adopted constitutive formulation.

Quasi-static shear-compression tests (Magenes ¢ a/., 2008; Beyer ¢z al., 2010; Graziotti ez al.,
2012), also named pushover tests (Figure 2.14d), are carried out on panel-scale specimens
to provide an accurate representation of the masontry in-plane behavior and give
information on the drift limit, dominant failure mode and ductility. Pushover tests can be
performed with increasing load, cycles of loading and unloading, and reversed cycles.

Finally, the response of an entire masonry building is reproduced using dynamic shaking-
table tests (Magenes ¢f al., 2010a, Miglietta ¢ al., 2021) and on-site pushover tests (Hogan
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et al., 2018), which are an essential tool for understanding the structural vulnerabilities, to
calibrate numerical modeling approaches, and to determine the effectiveness of
strengthening solutions (Figure 2.14e).

: @) ,,__-> Fondaton .
(e) Building scale: shake table

Figure 2.14: Examples of masonry tests at different scales: (a) Ganbaatar et al. (2022) and Marastoni
et al. (2016); (b) Churilov and Jovanoska (2013) and Thaickavil and Thomas (2018); (c)
Budiwati (2009) and Milosevic et al. (2013); (d) Magenes et al. (2008) and Graziotti et al.
(2012); (e) Magenes et al (2010), Miglietta et al. (2021), and Hogan et al. (2008).
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2.8 THREE-DIMENSIONAL EQUIVALENT FRAME MODEL

In the EFM approach, the three-dimensional response of a building is obtained by
assembling vertical walls and horizontal diaphragms. The typical assumption is to consider
only the wall in-plane strength and stiffness contributions, neglecting any source of out-of-
plane response. Consequently, it is intrinsically assumed that all the local mechanisms are
inhibited and that a box-type behavior can be achieved. However, a posteriori analyses
should be conducted to check that local mechanisms are not activated and ensure the
reliability of results.

URM buildings usually present timber floors, generally composed of a mono-directional or
bi-directional framing completed by a single layer of floorboards, which leads to a relatively
low in-plane stiffness. On the other hand, diaphragms involving an adequate and
collaborating reinforced concrete topping can be assumed as rigid in-plane elements. In
this context, the adequate calibration of the timber floor in-plane stiffness has a significant
impact on the overall response of the building (Zarzour e# al., 2023; Zarzour et al., 2024).

Three- or four-node orthotropic membrane finite elements with a linear-elastic plane-stress
formulation are generally employed to model the diaphragm flexibility. The membrane
stiffness is defined by assuming an isotropic or orthotropic constitutive law, with the latter
being the most employed choice. In this context, the overall response of the element is
governed by three parameters: the Young’s modulus along the longitudinal E; and
transverse E, direction, and the shear modulus G;,, which is the most relevant parameter
as it controls the redistribution of the actions among non-coplanar walls.

If the masonry wall does not extend to the roof, the roof system is generally assumed as a
non-structural element, and its contribution in the analysis is taken into account in terms
of mass only.

2.9 NONLINEAR STATIC AND DYNAMIC ANALYSES

The EFM is widely adopted as a spatial discretization strategy to perform static analyses
within ordinary engineering practice. Nevertheless, it can be applied also for the
investigation of the dynamic structural response. The static analysis is preferred due to the
lower computational time and easier interpretation of the results.

One of the first applications of the nonlinear static analysis, also named pushover analysis,
is reported by Tomazevi¢ (1978), inspiring the name of its POR (Push-Over Response)
method. The pushover analysis consists of a numerical procedure to exploit the nonlinear
behavior of a building under horizontal actions. In this context, a load distribution is
incrementally applied to the structure until its collapse conditions, and the response of the
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structure is expressed in terms base shear restoring force F versus horizontal displacement
of a particular control node D.

The pushover analysis gives exhaustive information about the capacity of the structure at
different limit states, about the global ductility, and about the local failure mechanisms.
Nevertheless, it does not directly involve the seismic demand, as no seismic input amplitude
is explicitly introduced. On the other hand, the nonlinear dynamic analysis allows the
simulation of the structural response when subjected to a predefined ground motion, giving
direct information about the structure capacity associated with the selected seismic event.

In a pushover analysis, the shape of the horizontal load distribution is maintained constant
throughout the analysis, whereas the amplitude is progressively increased to attain the
whole capacity of the investigated building. The pushover analysis stops when a structural
collapse is reached, defined in terms of global strength decay, or in terms of drift at the
element level.

The so-called pushover curve is defined as the base shear restoring force versus horizontal
displacement of a particular control node, and should represent the first-loading
(backbone) curve of the hysteresis loops obtained for cyclic loading. The choice of the
control node is not unique, and the results are strongly influenced by its selection. An
adequate control node should be representative of the global response of the building.
More specifically, in the case of walls with a significant difference in stiffness, especially
when dealing with flexible diaphragms, the control node should be positioned on the
portion expecting the greatest displacements. As an alternative, the control node can be
defined in a fictitious location obtained by considering an averaged floor displacement,
possibly weighted on nodal masses (Galasco et a/., 2000).

Also, the shape of the horizontal force distribution is not unique, and the load distribution
influences the deformed shape of the building. National and international building codes
provide suggestions regarding the shape of the horizontal load distribution, depending on
the building typology. The modal and uniform load distributions are the most employed.
The first assumes a load distribution proportional to the building deformed shape in the
clastic regime, whereas the second is associated with a constant horizontal acceleration
profile with height, in agreement with the soft-story response in the plastic phase.

The modal load pattern can be defined according to the fundamental period mode shape
(unimodal distribution), possibly approximated with a triangular load pattern (height-
proportional distribution), or through a combination of modes that involves a cumulative
effective mass higher than a fixed fraction of the total mass of the building (multimodal
distribution).
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According to Augenti and Parisi (2019), the pushover curves obtained using a uniform load
distribution attain higher base shear forces, compared with the unimodal and triangular
distributions. This is because the centroid of loading distribution is located at a lower
height, inducing a reduced overturning moment. The results obtained using a multimodal
distribution and a dynamic analysis are intermediate.

Pushover analyses are typically reliable when applied to regular three-dimensional buildings,
whose behavior is dominated by the first modal shape, even though some attempts have
been made to consider the influence of higher modes (multimodal distributions). However,
the load distribution applied does not change during the analysis. To overcome this
limitation, pushover analyses with adaptive load patterns have been developed (adaptive
pushover analyses). In this context, the load distribution is updated at each step of the
analysis, reflecting the progressive damage and consequent stiffness decay of the structure.
Adaptive pushover procedures proved better results compared to the non-adaptive
counterparts, especially when performed in displacement control (Pinho and Antoniou,
2005). However, even in this scenario, as the load applied is unidirectional, the responses
of buildings highly prone to torsional modes are still better captured by employing
nonlinear dynamic analyses.

In a nonlinear dynamic analysis, the structural response is instead obtained by solving the
dynamic equilibrium equation, involving not only the restoring forces due to the structural
stiffness, but also the inertial and damping contributions. A time integration procedure is
necessaty for the numerical step-by-step solution of the differential equation representing
the dynamic equilibrium, according to explicit or implicit algorithms (Hughes, 1987;
Chopra, 2001). More specifically, in the explicit time integration methods, the structural
response at the current step is calculated in terms of quantities related to the previous time
step. Consequently, the equations are solved directly since all the terms are already known.
For this reason, explicit methods are characterized by a straightforward implementation
and are computationally less demanding than the implicit counterparts. However, the
reliability of results is associated with a reduced time step size to avoid numerical instability
of the algorithm.

Conversely, in the implicit time integration methods, the response at current time step is
estimated in terms of quantities related to the previous step (known parameters) and to the
current step (unknown parameters). Consequently, an iterative process is necessary, and
the solution of the dynamic equilibrium equation becomes time-consuming, even though
the unconditional stability of some implicit methods allows the use of larger time steps.

Furthermore, it is worth noticing that a single ground motion input is not representative of
the seismic response of a building. For this reason, a set of seismic records or synthetic
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signals should be propetly selected, according to a probabilistic approach, considering the
local seismicity and spectral compatibility requirements.

2.10 COLLAPSE OF MASONRY BUILDINGS

The definition of the collapse limit state of a building can involve a local or global criterion.
More specifically, the analysis can be stopped when a single element or a set of elements,
considered significant for the stability of the building, reach a predefined drift limit. On the
other hand, global criteria are expressed in terms of decay of the global lateral strength of
the building during a pushover analysis.

Defining the displacement capacity according to the achievement of a predefined damage
level in a single element is a conservative assumption, inspired by the behavior of reinforced
concrete buildings, in which the limit condition of different elements in the weakest story
is reached simultaneously due to the similar geometrical dimensions of columns. In this
context, when an element collapses, the analysis can be stopped because the failure of the
building is associated with the first element collapsing. Otherwise, if accepted, the element
maintains only the capacity to catry vertical loads, and its lateral stiffness is set to zero for
the following load steps. Consequently, a force redistribution occurs among the remaining
resisting elements of the model.

On the other hand, a global damage approach based on a lateral strength decay should be
valid only for rigid diaphragms. In fact, if flexible diaphragms are present, some walls may
already be severely damaged.

2.11 BUILDING SAFETY VERIFICATION

The seismic design and the assessment of new and existing masonry buildings are carried
out by comparing the displacement capacity of the structure with the displacement demand
associated to the construction site.

As previously mentioned, the pushover analysis gives exhaustive information about the
capacity. However, the seismic displacement demand is not directly accounted for. For this
reason, national and international building codes provide nonlinear static procedures for
its identification on the capacity curve. In particular, the seismic demand is expressed in
terms of a response spectrum and, accordingly, the comparison between capacity and
demand is performed by means of an equivalent single-degree-of-freedom (SDOF) system.
Therefore, the pushover curve obtained for the three-dimensional multi-degrees-of-
freedom model (F,D) is scaled through the modal participation factor I' to obtain the
capacity cutve representative of an equivalent SDOF (f,d) system. Subsequently, the
SDOF capacity curve (f,d) is idealized as an equivalent bilinear relationship.
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Figure 2.15: Bilinear idealization curves for (a) demand-independent and (b) demand-dependent
procedures.

In case the bilinear relationship is independent of the displacement demand (Figure 2.15a),
an elasto-perfectly plastic curve is typically adopted: the elastic branch is defined by
transitioning to a certain fraction a of the maximum lateral strength f,,,, of the SDOF
system, whereas the yielding force f, is computed through an equivalent energy critetion,
ensuring preservation of the area under the capacity curve until the ultimate displacement
point d,,.

On the other hand, in scenarios where the bilinear relationship depends on the
displacement demand (Figure 2.15b), the initial branch is typically computed according to
the initial tangent stiffness of the equivalent SDOF system. Subsequently, the yielding force
fy is obtained by imposing the passage of the second branch to the force associated with
the displacement demand d., while ensuring the equivalent energy preservation. As the
displacement demand is not known in advance, an iterative procedure is required.

The Capacity Spectrum Method (Freeman e# a/., 1998) and the N2 method (Fajfar ez af,
2000) are the most employed criteria for the identification of the seismic demand. The first
adopt and overdamped spectrum, whereas the second assumes a reduction factor to obtain
an inelastic spectrum.

In the Capacity Spectrum Method (Freeman e al., 1998), the seismic demand is represented
by the so-called acceleration-displacement response spectrum (ADRS). Consequently,
radial lines starting from the origin are characterized by a constant value of period. On the
other hand, the capacity is desctibed by a capacity spectrum obtained from the bilinear
capacity curve by dividing the SDOF forces f by the equivalent mass m* of the system. In
this context, the bilinear relationship is defined according to Figure 2.15b, in which the
initial trial point for the target displacement (associated to the seismic demand) could be
taken by assuming the principle of equal displacements with an elastic SDOF system
(Figure 2.16a).
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Figure 2.16: Graphical representation of the Capacity Spectrum Method (Freeman et al, 1998): (a)
initial target displacement, and (b) next iteration.

An equivalent damping ratio is then estimated as a function of the ductility of the bilinear
relationship, and the associated overdamped ADRS is computed. Finally, the capacity and
the demand spectra are superimposed, and the intersection determines the new
performance point of the structure (Figure 2.16b). The iterations proceed until the
displacement associated to the intersection is close enough to the previous trial.

On the other side, the N2 method (Fajfar ¢# a/., 2000) does not need an iteration procedure.
In this context, the method involves a demand-independent bilinear idealization (Figure
2.15a) and a ductility-based reduction factor R, for evaluating an inelastic spectrum. The
latter is defined as the target load for an equivalent SDOF system having equivalent mass
m” in the case of unlimited elastic behavior, normalized with respect to the yield force f,,
attained in the case of elasto-plastic response:

_m S

R, fy 1 (2.10)

The fundamental period T* of the equivalent SDOF system is computed according to
equation (2.11):

@2.11)

Subsequently, the comparison with the corner period T is performed. The latter is defined
as the upper limit of the period of the constant acceleration branch in the elastic response
spectrum. More specifically, for long-period (T* = T¢) or elastic (R, = 1) structures, the
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equal-displacement rule applies (dyy =d,). On the other hand, the inelastic target
displacement is amplified following the relationships proposed by Vidic ef a/. (1994):

2

dig = Z_Z[(R“ -1) (%) + 1] d, =S,(T") (;) (2.12)

The inelastic displacement demand calculated for the equivalent SDOF system, according
to the Capacity Spectrum Method or the N2 method, need to be converted into the inelastic
displacement demand for the multiple-degree-of-freedom system. This is accomplished by
multiplying the target displacement by the modal patticipation factor I'. Finally, the seismic
performance of the building is assessed by verifying that the ultimate displacement of the
building exceeds the calculated displacement demand.

A comprehensive and critical review on the nonlinear static procedures to estimate the
displacement demand is given by Guerrini e @/ (2017) and Guerrini ez a/. (2021). In
particular, they propose a modified version of the original N2 method to better predict the
inelastic displacement demand in case of short-period structures, such as masonty

buildings.
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ABSTRACT

This paper presents an experimental and numerical study on different retrofit solutions for
stone masonry buildings with timber diaphragms in earthquake-prone regions, aiming at
enhancing wall-to-diaphragm connections, diaphragms’ stiffness, and masonry properties.
The experimental results of incremental dynamic shake-table tests on three full-scale two-
story buildings, complemented by material and component characterization tests, are
initially summarized. The first building specimen was unstrengthened. The second one was
retrofitted at the floor and roof levels with improved wall-to-diaphragm connections and a
moderate increase in diaphragm stiffness. Connections were also improved in the third
specimen together with a significant enhancement of diaphragm stiffness. The calibration
of two numerical models, versus the experimental response of the retrofitted building
specimens, is then presented. The models were further modified and reanalyzed to assess
the effects of masonry mechanical upgrades, which could be achieved in practice through
deep joint repointing or various types of jacketing. These solutions were simulated by
applying correction coefficients to the masonty mechanical properties, as suggested by the
Italian building code. The effectiveness of the experimentally implemented and numerically
simulated interventions are discussed in terms of strength enhancement and failure modes.

Keywords: natural stone masonty; timber diaphragm; seismic retrofit; wall-to-diaphragm
connection; ring beam; diaphragm stiffening; mechanical properties enhancement;
nonlinear pushover analysis; equivalent frame model; nonlinear macroelement.

3.1 INTRODUCTION

Masonry constitutes most of the building stock worldwide, especially concerning heritage
construction systems. Among the different masonry types, natural stone masonty is rather
common in mountain and tural areas as well as in historical centers. As a material, stone
masonty is typically characterized by high heterogeneity and anisotropy combined with low
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tensile and shear strength, often due to the poor mechanical properties of its constitutive
materials. Moreover, historical masonry buildings have been usually conceived to only carry
vertical loads, without any consideration for lateral resistance, and have been subjected to
a continuous process of modification over the ages. These factors result in the high
vulnerability of ordinary and monumental stone masonry buildings, as observed for
example after recent major earthquakes in Italy (D’Ayala and Paganoni, 2011, Carocci,
2012, Da Porto et al., 2012, Lagomarsino, 2011, Penna ez al., 2019, Sorrentino et al., 2019).

Among other parameters affecting the seismic vulnerability of masonry structures, the
degree of connection between intersecting walls and between walls and floors plays a
significant role, as well as the in-plane stiffness of floor diaphragms (Tomazevic e 4/, 1991,
Benedetti ez al, 1998, Rota ¢ al, 2011). In fact, poor connections may lead to the
development of local out-of-plane overturning mechanisms of individual walls, even under
low or moderate shaking intensity (Costa ez al., 2013a, Costa ez al., 2013b, Senaldi ez al.,
2019). On the other hand, excessively flexible floor diaphragms may not allow an efficient
distribution of the horizontal inertia forces among different walls, and may not be effective
at preventing local mechanisms.

Consequently, enhancing the in-plane response of individual masonry walls can influence
the building seismic performance only if local out-of-plane mechanisms are restrained and
sufficient stiffness is provided to the diaphragms, enabling a box-type global behavior of
the structure (Tolles e al., 1996, Vintzileou ef al., 2015, Mouzakis e# al., 2017). At the same
time, however, connection strengthening and diaphragm stiffening interventions can be
implemented only if the masonry walls can resist the forces transferred locally; this often
requires improving the masonry properties, to avoid some detrimental effects observed
over the past three decades (Decanini ez /., 2004, Binda e al., 2005, Valluzzi, 2006, Modena
et al., 2011, Sisti et al., 2019). In particular, masonry disgregation and leaf delamination
typical of poor bond and constituents should be preliminarily addressed by material
enhancements.

In light of these considerations, three main strategies interact with each other in the retrofit
of a stone masonry building (Karantoni e a/., 1992, Frumento ¢f al., 20006):

i improvement of connections;
ii. stiffening of floor diaphragms;
ili.  enhancement of masonry properties.

The first group encompasses interventions such as anchor rods (Modena ef al., 2004,
Moreira et al., 2014, Moreira et al., 2015, Guertini ef al., 2019), tie-rods (Guertini ez al., 2019,
Tomazevic e al,1996, Celik et al., 2009, Caldetini ¢z al., 2014, Podesta and Scandolo, 2019),
and ring beams (Tolles ez al., 2000, Sikka ez al., 2009, Borti ef al., 2009, Guadagnuolo and
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Faella, 2020). Solutions for increasing the diaphragm in-plane shear stiffness include
additional layers of timber planks or panels, or cast-in-place reinforced concrete (RC) slabs,
propetly connected to the existing joists (Modena ez al., 2004, Piazza et al., 2008a, Valluzzi
¢t al., 2010, Nunes ez al., 2020). Several techniques can be adopted to improve masonty
mechanical properties (Valluzzi e al., 2002, Mazzon ef al., 2010) depending on the desired
effect and compatibility issues; this study focuses on the structural effectiveness of deep
joint repointing (Vintzileou and Toumbakari, 2001, Corradi ez a/, 2008) and jacketing with
reinforced plasters and composite materials (Prota e a/., 2006, Papanicolaou ¢ al., 20006,
Botti ef al., 2011, De Felice ¢ al., 2014, Gattesco ¢/ al., 2014, Gattesco and Boem 2015,
Carozzi ¢t al., 2017, Del Zoppo et al., 2019, Turkmen ef al., 2020).

A comprehensive experimental campaign on the seismic performance of double-leaf stone
masonry was undertaken at the EUCENTRE Foundation and at the University of Pavia,
Italy. The project was centered on the uniaxial incremental dynamic shake-table tests of
three full-scale, two-story buildings, representative of various levels of strengthening
interventions on the same original structure (Magenes e/ a/., 2010a, Magenes e/ al., 2013,
Senaldi ez al., 2013). The testing program included material characterization tests (Magenes
et al., 2010b) and in-plane cyclic tests of masonry piers (Magenes ¢ al., 2010c) and spandrels
(Graziotti ez al., 2012).

More specifically, the first building specimen was initially tested in an unretrofitted
configuration, and tie-rods were tensioned only after the activation of a local overturning
mechanism. The second specimen was retrofitted by improving its wall-to-diaphragm
connections with steel and reinforced masonry (RM) ring beams at the first floor and roof
level, respectively; diaphragm stiffness was only slightly increased by adding a layer of 45-
degree oriented timber planks. Connections were also enhanced in the third specimen but
they were associated with a significant increase in diaphragm stiffness; in this case, a
lightweight RC slab was cast on the first-floor and connected to the timber joists and
masonty walls, while additional plywood panels and an RC ring beam were provided to the
roof diaphragm.

After summarizing the experimental work, this paper focuses on the numerical modeling
of the two strengthened building specimens, to simulate the test results and to evaluate
further seismic performance enhancements due to masonry mechanical improvements. An
equivalent frame approach has been adopted, as implemented in the software TREMURI
(Lagomarsino ez al., 2013, Penna ¢f al., 2014), with nonlinear macroelements for masonry
piers and spandrels, linear elastic membranes for floor and roof diaphragms, and linear
clastic elements for ring beams. Material properties have been calibrated against the results
of material and component characterization tests. Nonlinear pushover analyses have been
carried out on the building models, to capture the backbone curves obtained from the
shake-table tests.
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Strengthening interventions for the enhancement of the masonry material have then been
assessed numerically by repeating the pushover analyses after the application of correction
coefficients to the masonry mechanical properties, as suggested by the Italian building code
(MIT, 2018, MIT, 2019), since these retrofit details could not be explicitly modeled through
the chosen macroelement discretization. In particular, correction coefficients compatible
with deep joint repointing or various types of reinforced plasters have been considered.
The effectiveness of different retrofit approaches and combinations is finally discussed.

3.2 EXPERIMENTAL PROGRAM

The three building specimens tested in the experimental campaign are similar in terms of
geometry and masonry  characteristics. They  differ, however, for the
strengthening/stiffening interventions adopted. The following sections describe the
masonry structure and the floor framing common to all three building specimens. Then,
they provide details of the retrofit interventions adopted at the floor and roof levels of
Building 2 (Magenes e al., 2013) and Building 3 (Senaldi ez a/, 2013), while Building 1
(Magenes ¢ al., 2010a) was tested in unstrengthened original configuration.

3.2.1 Masonry structures

The reference geometry of the specimens simulates the characteristics of a common type
of historical residential construction in Italy. The building was designed as a single-room
structure with an external footprint of 5.8 X 4.4 m. It included two stories with pitched
roof, as shown in Figure 3.1 and Figure 3.2. The longitudinal walls, namely the East and
West facades, were oriented in the direction of the shaking table motion, while the North
and South walls were perpendicular to it. In order to induce in-plan shear distortional or
torsional effects under uniaxial shake-table motion, the building was characterized by an
asymmetric distribution of openings on the longitudinal walls.

The structural walls consisted of double-leaf undressed stone masonry with overall nominal
thickness of 32 cm, with some smaller stones mixed with mortar but no loose material to
fill the irregular gaps between the leaves. Connection between intersecting walls was
achieved by providing through stones alternatively in the internal or external leaf of the
two walls at the corners (Figure 3.3a). Through stones were also located at opening edges
(Figure 3.3b,c).
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Figure 3.1: Elevation views and vertical sections of the reference building prototype (Building 1). Units
of cm.
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Figure 3.2: Plan views of the reference building prototype (Building 1). Units of cm.

Figure 3.3: Double-leaf stone masonry: (a) stone interlocking at corners, (b) and (c) through stones at
opening edges.
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3.2.2 Timber floor and roof structures

To reproduce the features of similar existing buildings, the reference timber floor framing
system consisted of 12 X 16 cm joists, inserted within the internal leaf of the supporting
longitudinal walls for about 15 to 20 cm (Figure 3.4a,b).

The inclined roof pitches consisted of 8 X 12 cm rafters, resting on spreader beams above
the longitudinal walls and extending beyond them by approximately 15 cm, to simulate the
roof eaves (Figure 3.5a,b). The rafters were also supported by a 20 X 32 cm ridge beam.
Thin perforated steel plates ensure connection between each pair of rafters matching above
the ridge beam (Figure 3.5¢).

Floor and roof diaphragms were completed by a single layer of 3-cm-thick timber planks,
nailed to the floor joists and roof rafters (Figure 3.4c and Figure 3.5b). The roof was
covered with clay tiles, nailed to the timber planks to avoid any sliding of the tiles during
the dynamic tests.

Building 1 was simply constructed according to the reference details of the unstrengthened
prototype, with flexible floor and roof diaphragms. Different retrofit interventions were
added to the floors and roofs of Building 2 and Building 3 to increase the diaphragm
stiffness, as described in the following paragraphs.

@ R ©

Figure 3.4: Timber floor: (a) and (b) floor joist supported by the internal wall leaf, (c) timber planks
nailed to the floor joists.
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@) (b) ©
Figure 3.5: Timber roof: (a) rafters resting on the spreader beam above longitudinal walls; (b) inside

view of the spreader beam, rafters, and nailed timber planks; (c) rafters supported by the
ridge beam and connected by perforated steel plates.

3.2.3 Retrofit of first-floor diaphragms and connections

The retrofit interventions applied on Building 2 (Magenes ¢# a/., 2013) aimed mainly at
enhanced connection between the masonry walls and the first-floor diaphragm, while only
moderately increasing the timber floor in-plane stiffness. Common interventions from
building strengthening practice were selected for these purposes.

Steel angles with dimensions of 120 x 120 X 10 mm were used as a ring beam to allow an
easy connection with the timber floor and the masonry walls, as shown in Figure 3.6a. The
ring beam was connected to external rectangular steel anchor plates by pre-tensioned 14-
mm-diameter threaded bars, unbonded through the wall thickness.

Anti-shrinkage mortar

Steel plate ©14/500 mm unbonded
AY ) threaded bars
L-shaped steel ring beam
SEL pec see e
- Timber planks

@) b)

Figure 3.6: Building 2, retrofit at the first-floor level: (a) structural detail of the wall-to-diaphragm
connection; (b) steel-angle ring beam at a building corner and 45-degree-oriented
additional timber planks. Units of cm.
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Anti-shrinkage mortar was applied between steel angles or plates and masonry surfaces to
create an even and distributed contact interface and a homogeneous confinement effect
against out-of-plane wall overturning.

The floor in-plane stiffness of Building 2 was moderately increased by adding a second
layer of diagonal timber planks, oriented at 45 degrees with respect to the existing floor
joists and planks (Figure 3.6b). The planks were connected to the joists underneath, using
at least two nails at intermediate intersections and four nails when connecting two adjacent
planks to the same joist.

On the other hand, strengthening of the first floor of Building 3 (Senaldi ez 4/, 2013) was
designed not only to improve its connection with the walls, but also to significantly increase

the in-plane diaphragm stiffness, implementing another common approach (Piazza ef al.,
2008b).

Anti-shrinkage mortar 514500 mm threaded bar Steel welded mesh
‘/7* 2 W i ¥ @8/150){150 mm
Steel plate / :r'ﬁ - / Reinforced concrete slab
=1 100 |
o [oa N \',r v, : \/‘t/ > N R 2 iV g jm
a4 ;\i
: > Timber planks Dirnbier joit
_ = [+ _ @14/300 mm shear connectors

(Turrini - Piazza)

@) (b)

Figure 3.7: Building 3, retrofit at the first-floor level: (a) structural detail of the wall-to-diaphragm
connection and of the RC slab; (b) external steel plates; (c) shear connectors, steel welded
mesh and threaded bars for the wall-to-diaphragm connection; (d) lightweight RC slab
casting. Units of cm.
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A 7-cm-thick lightweight concrete slab was cast above the original floor structure (Figure
3.7a), connected to the timber floor by shear connectors consisting of 14-mm-diameter
reinforcing bars bent at 90 degrees (Turrini and Piazza, 1983) (Figure 3.7¢). The connectors
crossed through the planks and were chemically anchored to the floor joists at a spacing of
30 cm. The slab was reinforced by a 15 X 15 cm steel welded mesh of 8-mm-diameter bars
(Figure 3.7¢,d).

Threaded bars 14 mm in size were embedded by 100 cm in the RC slab and tied against
external steel plates (Figure 3.7b,c), to enhance the wall-to-diaphragm connection and
prevent the activation of overturning mechanisms. Anti-shrinkage mortar was applied
between steel plates and masonry walls to regularize the contact interface.

3.2.4 Retrofit of roof diaphragms and connections

The roof retrofit of Building 2 (Magenes ef a/., 2010a) was conceived mainly to enhance the
connection between walls and diaphragm, while only moderately increasing the timber
pitches in-plane stiffness, as was carried out for the first-floor diaphragm.

The wall-to-roof diaphragm connection of Building 2 was enhanced with a RM ring beam,
made of two solid brick veneers and an inner cement mortar core, located above the
masonry walls (Figure 3.8a). The ring beam was longitudinally reinforced with three layers
of 26 -cm-wide, 5-mm -diameter reinforcement trusses, placed in the bed-joints and
connecting the brick veneers (Figure 3.8¢c). Two 16-mm-diameter reinforcing bars were
located in the mortar core above the longitudinal walls, while two 12-mm-diameter bars
were provided above the gables (Figure 3.8d).

The perimeter timber spreader beam was doweled to the RM ring beam by pairs of
chemically anchored 16 - mm -diameter threaded bars, spaced at 80 cm above the
longitudinal walls and at 75 cm above the gables, while the ridge beam was anchored to a
steel shoe fixed to the ring beam (Figure 3.8b). To avoid the dispersion of epoxy resin into
the masonry voids during injection, a steel sock was inserted in the holes accommodating
the threaded bars.

The timber roof pitches were strengthened by adding a second layer of diagonal timber
planks, oriented at 45 degrees with respect to the existing floor joists and planks, similarly
to the intervention executed on the first-floor diaphragm.

An RC ring beam was provided above the longitudinal walls and transverse gables of
Building 3 (Senaldi ¢z a/., 2013) to improve connection with the roof, while the timber roof
pitches were stiffened by multilayer spruce plywood panels (Figure 3.9a).
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Figure 3.8: Building 2, retrofit at the roof level: (a) structural detail of the RM ring beam; (b) timber
spreader and ridge beams connected to the RM ring beam above a gable; (c) hotizontal
truss reinforcement at corner; d) longitudinal reinforcing bars at corner. Units of cm.

The 32 X 20 cm RC ring beam was cast on top of all perimeter walls. The reinforcement
consisted of four 16-mm-diameter longitudinal bars and 8-mm-diameter stirrups spaced at
20 cm (Figure 3.9b). The rafters were supported by a 16 X 12 cm timber spreader beam,
doweled to the RC ring beam every 40 cm by chemically anchored 16-mm-diameter
threaded bars (Figure 3.9¢).

The roof diaphragm(Figure 3.9d) was stiffened by adding three layers of 2-cm-thick spruce
plywood panels, glued to the planks and to each other with polyurethane adhesive and
connected to the rafters by 10-mm-diameter chemically anchored steel bars every 30 cm.
Panels of adjacent layers were staggered to avoid aligned joints. To improve the mechanical
behavior of the roof, 80 X 5 mm continuous steel plates were placed all along the perimeter
of each pitch.
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Figure 3.9: Building 3, retrofit at the roof level: (a) structural detail of the RC ring beam; (b) ring beam
reinforcement at corner; (c) timber spreader beam connected to the RC ring beam above
a longitudinal wall; (d) spruce plywood layers and continuous steel plate along the
perimeter. Units of cm.

3.2.5 Material properties and masses

The mechanical properties of the masonty constituting the three building specimens were
determined from vertical compression and diagonal compression tests (Magenes e# al.,
2010b). Table 3.1 summarizes the mean values and the dispersions of Young's and shear
moduli, E and G, as well as of compressive and tensile strengths, f,;, and f;.

Table 3.1: Masonry mechanical properties after charactetization tests.

E [MPa] G [MPa] fm [MPa] f: [MPa]
Mean 2550 840 3.28 0.137
St. Dev. 345 125 0.26 0.031

C.oV 13.5% 14.8% 8.0% 21.8%
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C25/30 concrete (normal weight for the ring beam, lightweight for the slab) and B450 steel
reinforcement were used for the strengthening interventions applied to Building 3, whereas
the tests performed on the cement mortar used for the RM ring beam of Building 2
provided a mean compressive of approximately 15 MPa. Young's and shear moduli of
10 GPa and 630 MPa , respectively, were assumed for all timber components,
corresponding to class C22 timber (CEI, 2016a, CEI, 2016b).

A list of the nominal density of the construction materials is given in Table 3.2. Additional
masses of 2 kN/m? were distributed on the first floor of each building specimen, to
simulate the pavement load plus 30% of residential live load. The tiles installed on the roof
provided a total weight of 12.7 kN.

Table 3.2: Construction material densities.

Material p [kg/m’]
Double-leaf stone masonry 2250
Normal weight RC 2500
Lightweight 1500
Steel 7850
Timber 600

3.2.6 Testing protocol and results

The three building specimens were subjected to a similar sequence of unidirectional
dynamic tests, with increasing ground motion intensity obtained by scaling the amplitude
of the selected signal to predefined nominal peak ground acceleration (PGA) levels
(Magenes ¢ al., 2010a, Magenes ef al., 2013, Senaldi e/ al., 2013). The Ulcinj-Hotel Albatros
station Hast—West record of the 15 April 1979 Montenegro event was used for all dynamic
tests, to allow for the comparison of the damage progression and of the effect of the
selected retrofit techniques.

For all three buildings, the first test was carried out with nominal PGA of 0.05g; then,
amplitude scaling factors were increased up to reaching a near collapse conditions. Table
3.3 outlines the testing sequence for the three specimens, with the recorded PGA for each
test run. Discrepancies between the PGA actually recorded for the different specimens
occurred because of difficulties in the control procedure of the shaking table.
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Table 3.3: Shake-table testing protocols.

Test Building 1 PGA [g] Building 2 PGA [g] Building 3 PGA [g]
1 0.07 0.06 0.12
2 0.14 0.14 0.27
3 0.31 0.26 0.55
4 0.50 0.36 0.92
5 0.63 0.56 1.28
6 0.70* 0.71 1.04
7 - 0.88 1.49
8 - 1.16 0.66™

* Test performed on Building 1 after post-tensioning of tie-rods.
** Simulation of an aftershock on the damaged Building 3.

Building 1 was subjected to the last test at PGA of 0.70g only after tightening preinstalled
tie-rods to contrast out-of-plane local mechanisms already activated; because of this
variation in the structural configuration, this test run is not given further consideration.
Additionally, the last test of Building 3, representing a lower-intensity aftershock with PGA
of 0.66g, is not taken into account in the following discussion.

Figure 3.10 shows the backbone cutrves in terms of total base shear versus average top
displacement (at the roof base), by taking the points corresponding to maximum positive
and negative base shear with the associated displacement from each test run; only the last
point of each curve is taken at the maximum positive or negative displacement with the
corresponding base shear. Figure 3.11 represents instead the incremental dynamic test
(IDT) curves in terms of maximum absolute recorded PGA versus maximum absolute
average top displacement from each test run.

The reference Building 1 was characterized by smaller lateral strength and displacement
capacity compared to retrofitted Building 2 and Building 3, and reached near-collapse
conditions at a PGA of 0.63g due to out-of-plane overturning of the upper portions of the
transverse fagades. Instead, Building 2 and Building 3 exhibited a global response up to
higher PGA intensities of 1.16g and 1.49g, respectively, thanks to the effectiveness of the
enhanced wall-to-diaphragm connections. Their ultimate conditions were associated with
in-plane failure mechanisms rather than out-of-plane local overturning.

The IDT cutves of Figure 3.11 show that the same displacement demand was reached for
higher PGA as the connections were enhanced with minor floor stiffness variation
(Building 2 compared to Building 1) and as the diaphragms were significantly stiffened
(Building 3 compared to Building 2). In particular, despite similar lateral strength, Building
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3 underwent smaller displacement demand under higher PGA compared to Building 2,

thanks to better engagement of all longitudinal and transverse piers by the nearly rigid
diaphragms.

None of the specimens suffered from masonry disgregation, leaf delamination, or wall
separation at corners, even though the masonry was characterized by relatively low
strength. This performance was achieved thanks to a combination of mortar binding

quality, sharp-cornered stones, and absence of loose filling, representative of good existing
or improved stone masonry.
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Figure 3.10: Shake table test results: backbone curves.
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Figure 3.11: Shake table test results: incremental dynamic test (IDT) curves.
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3.3 NUMERICAL SIMULATIONS
3.3.1 Modeling strategy

Several approaches can be followed to model masonry structures, ranging from the most
complex micro-modelling techniques to simplified methods based on limit analysis,
equivalent truss models, or story mechanisms (Penna ¢ a/, 2014). In this study, the
intermediate strategy of three-dimensional equivalent-frame modeling was adopted, as it is
one of the most widely used in professional practice to reproduce the global response of
masonry buildings. This choice is particularly appropriate to simulate the response of
structures with fairly regular wall layouts when local mechanisms are prevented. The
TREMURI program (Lagomarsino ez al., 2013) was chosen for this purpose.

The software simulates the behavior of an entire building by assembling vertical walls and
horizontal diaphragms, referring to their in-plane strength and stiffness contributions.
Walls are discretized into two-node macroelements (Penna ef a/, 2014), corresponding to
pier (vertical) and spandrel (horizontal) members, and rigid nodal regions at their
intersections. These macroelements allow one to reproduce the two main in-plane failure
mechanisms of a masonty panel (flexure and shear), keeping a reasonable compromise
between the accuracy of the results and computational effort.

Various strategies are proposed in the literature and codes to discretize masonry walls into
macroelements (Bracchi ez al., 2015). In this work, the pier height was taken as equal to the
one of the adjacent openings, to capture better the damage mechanisms observed during
the shake-table tests and to account for the presence of timber lintels anchored into the
masonry walls, which effectively prevented the diffusion of cracks in the nodal regions
(Penna et al., 2015).

The structural behavior of a building is strongly affected by the in-plane stiffness of floor
and roof diaphragms. For this reason, TREMURI includes linear three- or four-node
orthotropic membrane finite elements, with two in-plane displacement degrees of freedom
at each node. Moreover, the equivalent-frame model of a wall allows one to introduce other
structural elements, such as steel, RC, and RM ring beams, with both linear and nonlinear
beam element formulation.

The out-of-plane flexural responses of diaphragms and walls are not accounted for because
they are considered negligible in the context of the global building response, which is
governed by their in-plane behavior. As a consequence, local disgregation, delamination,
and out-of-plane overturning mechanisms cannot be captured by this modeling technique:
in fact, the underlying assumption of global building modeling is that local mechanisms are
inhibited. For this reason, only Building 2 and Building 3 models were analyzed, since the
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failure of Building 1 was governed by local overturning of the transverse facades (Magenes
et al., 2010a).

As shown in Figure 3.12, the four walls of the models representing the two buildings were
very similar to each other. Differences were limited to cross-sections and materials assigned
to diaphragms and ring-beams. All masses actually present in the experimental building
specimens were considered in the models. In particular, the stone masonry mass was
automatically obtained by assigning its density to nodal regions and macroelements: a
reduced value of 2200 kg/m?® was used to account for the penetration of lighter timber
lintels and joists in the walls. Floor, roof, retrofit components, and additional masses were
instead assigned as lumped nodal values.

Building 2

Building 3

H B

. L]

North facade West facade South facade FEast facade

N1

Figure 3.12: Geometrical discretization of walls in Building 2 and Building 3 models.

3.3.2 Calibration of masonry material properties

The masonry mechanical properties adopted in the numerical models were derived from a
comprehensive characterization campaign carried out on material samples and components
built together with the three building specimens at the EUCENTRE Foundation and
University of Pavia laboratories (Magenes ¢ al, 2010b, Magenes ¢f al., 2010c, Graziotti et
al., 2012).

In particular, the normal compressive strength was directly taken as the mean value from
vertical compression tests on wallettes (Magenes e a/, 2010b). Instead, the Young’s
modulus E and the shear modulus G assigned to the macroelements were different from
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the values obtained from the characterization tests. In fact, the two specimens were built
elsewhere and then transported on the shake-table, resulting in some preliminary cracking
(Magenes ¢ al., 2013, Senaldi ez al., 2013). For this reason, stiffness parameters of masonty
macroelements were reduced to 80% of the characterization values. All spandrels and some
piers were particularly damaged in Building 3: only 40% of the elastic moduli were assigned
to the corresponding macroelements.

The tensile strength associated with diagonal shear cracking was derived from quasi-static
cyclic shear-compression tests on four piers (Magenes e al, 2010c) rather than from
diagonal compression tests to account for geometric and axial load effects. The specimen
dimensions were chosen to be representative of slender and squat piers of the building
prototype. The two specimens of each geometry were tested under distinct levels of axial
compression.

At the end of each test, the maximum positive and negative values of shear strength Vg
and Vg were recorded. By inverting Turnsek and Sheppard’s strength criterion (Turnsek
and Sheppard, 1980), the corresponding tensile strengths fi* and f;~ were obtained from
equation (3.1):

f 0y
_ % 3.1
V=Lt b 1+ 7 3.1

where L, h, and t are pier length, height, and thickness, tespectively, b = h/L is a
coefficient accounting for shear stress distribution in the center of the panel, and oy is the
axial compressive stress. A summary of the tensile strength calculation is reported in Table
3.4. It can be noted that almost all the tensile strength values determined from cyclic shear-
compression tests fall around the mean value from diagonal compression tests (0.137 MPa)
plus or minus one standard deviation (0.031 MPa).

Table 3.4: Determination of the tensile strength from cyclic shear-compression tests on piers.

Piet L h t oo b Vi Vi fi fe
[mm] [mm] [mm] [MPa] [-] [kN] [kN] [MPa] [MPa]
Slender 1 1250 2500 320 0.5 1.5 86 94 0.16 0.18
Slender2 1250 2500 320 0.2 1.5 45 48 0.10 0.11
Squat 1 2500 2500 320 0.5 1 234 225 0.13 0.13

Squat 2 2500 2500 320 0.2 1 135 154 0.10 0.12
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As the shear failure criterion of the macroelement implemented in TREMURI is based on
a Coulomb model, equivalent cohesion ¢, and friction coefficient p,q can be calculated by
linearizing the Turnsek and Sheppard’s criterion (Turnsek and Sheppard, 1980) around the
static axial load Ny = Ltoy due to gravity loads only (Penna e al, 2015), according to
equation (3.2):

I{ dVR 1 f.

Hea = AN 1y, ~ 2b | f. + No/Lt

{ (3.2)
| ft Ny

%™ % Y g f T Hea Ty

The equivalent parameters were assigned, distinguishing between slender piers, squat piers,
and spandrels. For slender piers, the upper-bound tensile strength of 0.18 MPa from Table
3.4, the static axial load acting on the first-story West-wall central pier (68 kN for Building
2, while 78 kN for Building 3), and element dimensions of 1.30 x 1.80 X 0.32 m were
considered. Instead, for squat piers, the lower-bound tensile strength of 0.10 MPa, the axial
load on the first-story East-wall squat pier (149 kN for Building 2, while 173 kN for
Building 3), and dimensions of 3.55 x 1.25 x 0.32m were used. The same equivalent
cohesion and friction coefficient of the slender piers were also applied to the spandrels.

Parameters Gc, and f complete the definition of the nonlinear shear response of the
macroelement (Penna ef al, 2014). In particular, Gc, controls the shear deformation
corresponding to the peak strength, while f governs the softening branch following the
peak. All mechanical properties assigned to the macroelements of the two models are
summarized in Table 3.5.

Table 3.5: Masonry macroelement properties.

E G fm Heq Ceq B Ge,

Model © Element .\ [MPa] [MPa] [-] [MPa] [MPa] [-]
Slenderp. 2030 560 328 0261 0137 0.4 10

Building2  Squatp. 2030 560 328 0328 0109 0.4 10
Spandrels 2030 560 328 0261  0.137 00 10

Slender p.  2030° 560" 328 0253  0.I38 0.4 10

Building3  Squatp.  2030° 560" 328 0315 0111 04 10
Spandrels 1015 280 328 0253 0138 0.0 10

*Value halved for piers with extensive preexisting damage.
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3.3.3 Calibration of membrane and beam element stiffness

The in-plane stiffness of floor and roof diaphragms can be simulated in TREMURI
through orthotropic membrane elements with linear elastic formulation. The mechanical
properties of the aforementioned elements are defined through a principal direction, with
Young’s modulus E;, an orthogonal direction, with Young’s modulus E,, the Poisson
coefficient v, and the shear modulus G;,. The most critical parameter is the last one, which
influences the diaphragm shear stiffness and its ability to redistribute lateral forces among
masonry walls, both in linear and nonlinear phases.

In this work, the mechanical properties for floor and roof diaphragms were evaluated with
equation (3.3):

E _EijAj/s; + Eqatgsin® @ + Egpty, + Ecte
1=

tm

(

|

{E Eiete + Erqty cos? @ + Eppt, + E t, 3.3)
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G12 - <
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where the equivalent shear modulus of the originally existing timber diaphragm, G, .,
includes the three in-series contributions (Brignola ef al., 2008) due to flexural and shear
deformation of each plank and rigid rotation of the plank due to nail slip, according to
equation (3.4):

2 _1

X S X Sj

G, =2 (3.4)
MEAXH%@+%@+QAJ

The symbols that appear in equations (3.3) and (3.4) have the following meanings:

i, E; is oriented parallel to the timber joists, orthogonal to the shaking direction;

il.  E,is oriented parallel to the original timber planks and to the shaking direction;
. tm is the thickness assigned to the model membrane;
iv.  Ey; is the Young’s modulus of timber for the joists;

v.  Ajand s; are the cross-section area and the spacing of the timber joists;
vi.  E, and G, are the Young’s and shear moduli of timber for the existing planks;
vil. te, A,, and I, are the thickness, cross-section area, and moment of inertia of each

existing timber planks;
vili.  E;q is the Young’s modulus of timber for the additional planks;
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ix. tgand @, are the thickness of the additional timber planks or panels and their
orientation with respect to the existing planks;

x.  Epp is the Young’s modulus of timber for the additional panels;

xi.  t, is the thickness of the additional timber panels;

xii.  E_ and G, are the Young’s and shear moduli of concrete;

xiii. ¢t is the thickness of the additional reinforced concrete slab;

Xiv.  Kgep 1s the nailed connection stiffness according to Eurocode 5 (CEIL, 2004a);
Xv. S, is the nail spacing at a plank—joist intersection;

xvi.  x = 1.2 is the shear factor for a rectangular cross-section;

xvil.  C,4 is a correction coefficient accounting for additional timber layers.

Correction coefficients C; were applied to the equivalent shear modulus derive from
equation (3.4), to account for retrofit interventions increasing the diaphragm stiffness
through further planks or plywood layers (Mirra ef al., 2020). C; = 5 was chosen for the
floor and roof diaphragms in Building 2, where an additional plank layer was provided with
45° orientation with respect to the original one. Coefficient C; = 20 was instead used to
simulate Building 3 roof improvement with three additional layers of plywood panels.

The lightweight RC slab cast on the floor of Building 3 was explicitly modeled by
considering its collaboration with the timber floor underneath, as expressed by equation
(3.3). The Young’s modulus of concrete was calculated according to Eurocode 2 (CEI,
2004b) and the Italian building code (MIT, 2018, MIT, 2019) based on the concrete
strength class and density. The concrete shear modulus was approximated as G, = E./2.6,
according to a Poisson’s ratio of v = 0.3.

The values of the main parameters assigned to the floor and roof diaphragms are reported
in Table 3.6. It is noteworthy that combining the literature formulations with the material
properties adopted for the specimens resulted in good agreement with the experimental
results without further calibration of the diaphragm models.

Table 3.6: Floor and roof diaphragm properties.

Model Diaphra tm Ey E, v G2
phragm [m] [MPa] [MPa] [-] [MPa]
Floor 0.05 11 186 9000 0 12
Building 2
Roof 0.05 11 186 9000 0 12
o Floor 0.10 13 928 13 088 0 3881
Building 3
Roof 0.10 8220 9300 0 71
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The quality of the wall-to-diaphragm connections was improved by steel, RM, or RC ring
beams. These components were modeled using linear elastic beam elements with axial
stiffness corresponding to the actual material and cross-section area. The clay RM elastic
moduli were calibrated in a previous numerical study of the same test campaign (Penna ez

al, 2015).

The out-of-plane flexural stiffness of the lightweight RC slab of Building 3 was also
simulated through linear beam elements, with the moment of inertia corresponding to the
actual slab thickness and half the floor width perpendicular to the element; the cross-
section area of these elements was set to zero, as the slab axial stiffness was already assigned
to the linear elastic membrane.

Table 3.7 lists the main properties assigned to the linear elastic beam elements.

Table 3.7: Linear elastic beam elements properties.

Model El E G 4 !
t
ode emen [MPa] [MPa] [cm?] [cm*]
- Steel ring beam 206 000 78 400 232 313
Building 2 .
RM ring beam 5600 1400 16 310 000
E-WRCslab 14 411 5543 0 5370
Building 3 N-S RC slab 14 411 5543 0 7370
RC ringbeam 31000 13 000 640 21333

3.3.4 Comparison between numerical and experimental results

Nonlinear static (pushover) analyses were performed on three-dimensional models of the
two retrofitted buildings described in the previous sections, in order to reproduce the
experimental backbone force-displacement curves. Pushover analyses were catrried out
considering two different horizontal load patterns. The first one, named “Modal”,
consisted of a first-mode-type force distribution, with forces proportional to the product
of nodal masses times the nodal height above the base. In contrast, the second load pattern,
termed “Uniform”, consisted of a force distribution proportional only to the nodal masses.
Due to the vertical regularity and the diaphragm stiffness of both buildings, other load
patterns were not deemed relevant (Marino ez al., 2019).

Figure 3.13 and Figure 3.14 compare experimental backbone curves with numerical
pushover curves. In particulat, since most of the damage occurred at the first story in both
buildings, the uniform distribution (proportional to nodal masses) resulted in curves closer
to the experimental backbones for stiffness and strength. Consequently, the modal
distribution will not be given further consideration.
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Figure 3.13: Comparison between backbone and pushover curves: Building 2.

500

375

250

5
K

=)

Base Shear [kN]

(SR
g

& FExperimental

— Uniform
---Modal

-375

-500

-60 -45 -30 -15 0 15 30 45 60
Displacement fmm]

Figure 3.14: Comparison between backbone and pushover curves: Building 3.

Given the asymmetric experimental response of Building 3, a slightly larger discrepancy
between numerical and experimental curves can be observed than for Building 2.

As depicted in Figure 3.15 and Figure 3.16, both numerical models were able to correctly
capture the damage patterns observed on masonry piers and spandrels at the end of the
shake-table tests. Lines perpendicular to the macroelement axis close to its ends indicate
the extent of flexural cracks. A cross through a macroelement means that its shear strength
was reached. Colors ranging from yellow to brown correspond to increasing levels of shear
damage from moderate to post-peak phase, while a green color indicates axial tension
instead. Both the flexural-rocking mechanism, that characterized the West facade, and the
shear mechanism, observed on the East one, were propetly simulated. Moreover, the
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numerical models correctly reproduced the shear cracking of the transverse South wall
engaged by global torsion of the whole structure.

Experimental

Numerical

w i

North facade West facade South facade East facade

Figure 3.15: Comparison between experimental and numerical damage patterns for Building 2 (with
magnified lateral displacements).
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Figure 3.16: Comparison between experimental and numerical damage patterns for Building 3 (with
magnified lateral displacements).
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3.3.5 Parametric study on masonry mechanical improvements

Various techniques can be used in the professional practice to increase the masonry
mechanical characteristics: their choice should be guided by consideration of compatibility
with the existing substrate. Deep joint repointing and jacketing are two solutions often
adopted for this purpose. The parametric study discussed herein focuses on some
macroscopic effects of masonry improvement on the overall seismic response of masonry
buildings, without addressing specific construction details of any intervention.

Deep joint repointing consists in replacing low-quality mortar with better performing
materials, reaching a depth of a few centimeters from the wall surface. Sometimes, steel
reinforcement is embedded in the new mortar. Jacketing instead covers a variety of
interventions with the application of composite materials to one or both surfaces of
masonry walls. Fiber-reinforced polymers (FRP), fabric-reinforced cementitious matrices
(FRCM), composite-reinforced mortars (CRM), and steel-reinforced grouts (SRG) ate
among the most common jacketing materials.

The effects of these techniques on the masonry strength and stiffness are highly dependent
on the constituents, bond pattern, and thickness of the original walls. Moreover, the
equivalent-frame modeling strategy adopted for this study, relying on macroelement
discretization of the masonry walls, cannot explicitly encompass construction details of the
material strengthening. In light of these considerations, the simplified approach proposed
by the Italian building code (MIT, 2018, MIT, 2019) was followed, which estimates the
mechanical enhancements through simple correction coefficients starting from
unstrengthened material properties. This method was deemed appropriate to compare the
overall impact of increasing levels of masonry mechanical improvements.

Consequently, a parametric study has been conducted with correction coefficients €, of
1.5 and 2.0, similar to the values proposed by the Italian building code for deep joint
repointing and jacketing. Higher values of 3.0 and 4.0 have also been considered, to better
cover the experimental range available in the literature for jacketing alternatives (Corradi e
al., 2008, Borti ez al., 2011, Gattesco ez al., 2014, Gattesco ez al., 2015, Del Zoppo ez al., 2019,
Tirkmen e al, 2020). These coefficients were applied to the masonry Young's and shear
moduli, as well as compressive and tensile strengths. Due to the Coulomb-type shear
strength criterion adopted for the macroelements, equivalent cohesion c., and friction
coefficient p,, were recalculated based on the increased tensile strength using equation

(3.2).

Jacketing techniques rely on layers of composite materials with non-negligible tensile
strength. These interventions can be detailed to provide tensile continuity with the
foundation and across the floors, thus enhancing the pier axial tensile response. For this
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reason, the parametric study was repeated including the axial tensile strength for masonry
macroelements, neglected so far. The mean tensile strength of 0.137 MPa from
experimental material characterization (Magenes e¢# al, 2010b) was assigned to the
unstrengthened models. The same correction coefficients used for the other properties
were also applied to the axial tensile strength in the retrofitted models. Figure 3.17 and
Figure 3.18 show the pushover curves obtained with the uniform load distribution for
Building 2 and Building 3, applying correction coefficients C, between 1.5 and 4.0 and
ignoring any axial tensile strength.
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Figure 3.17: Comparison between pushover curves obtained with various correction coefficients
neglecting any masonry tensile strength: Building 2.
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Figure 3.18: Comparison between pushover curves obtained with various cotrection coefficients
neglecting any masonry tensile strength: Building 3.
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Considering also an improved, non-zero axial tensile strength (Figure 3.19 and Figure 3.20)
had minor effects on the stiffness of both numerical models and on the strength of Building
3; however, it conferred more pronounced hardening to the response of Building 2. All

analyses were stopped at a top displacement equal to the maximum demand from the
dynamic tests.
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Figure 3.19: Comparison between pushover curves obtained with various correction coefficients
including masonry tensile strength: Building 2.
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Figure 3.20: Comparison between pushover curves obtained with various correction coefficients
including masonry tensile strength: Building 3.
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It can be emphasized that applying correction coefficients beyond 1.5 resulted in a sort of
saturation of the global lateral strength for both buildings. This can be understood by
looking at Figure 3.21 and Figure 3.22, which depict the damage patterns when the
maximum experimental displacement is achieved with the analyses. Increasing the
correction coefficient resulted in lower shear damage to the macroelements. Shear failure
on the Hast facade of the unstrengthened models transitioned into a global flexural
mechanism on both longitudinal walls, with strength limited by rigid-body equilibrium and
only barely sensitive to the material properties. The simultaneous enhancement of both
axial and diagonal shear strength did not affect the failure mechanisms: in fact, a flexural
behavior continued to govern the numerical responses with improved masonry properties.

The change of failure mechanism from shear to flexure and the increase in lateral strength,
especially if associated with hardening behavior, constitute a combined positive effect for
the general performance of masonry buildings. In fact, higher lateral strength usually results
in smaller inelastic amplification of the seismic displacement demand (Guerrini ¢z a/, 2017,
Guerrini ¢t al., 2021); however, care should be taken when choosing jacketing materials
which add excessively to the lateral stiffness, as they may result in the opposite effect.
Moreover, larger displacement capacity is typically associated with flexural than with shear
failures, as recognized by building codes which provide deformation, drift or chord-
rotation limitations for various failure modes of piers and spandrels (MIT, 2018, MIT,
2019).
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Figure 3.21: Comparison between damage patterns obtained with various correction coefficients for
Building 2 neglecting any masonry tensile strength (with magnified lateral
displacements).
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Figure 3.22: Comparison between damage patterns obtained with various correction coefficients for
Building 3 neglecting any masonry tensile strength (with magnified lateral
displacements).

3.4 SUMMARY AND CONCLUSIONS

This paper discussed the effectiveness of different seismic retrofit strategies for stone
masonty buildings with flexible timber diaphragms, combining experimental and numerical
findings.

Unidirectional incremental dynamic shake-table tests were performed on three full-scale
two-story buildings, to prove the effectiveness of enhancing wall-to-diaphragm
connections and increasing floor and roof diaphragm stiffness. A local out-of-plane
overturning mechanism developed in the unstrengthened Building 1, but was inhibited by
the selected interventions in Building 2 and Building 3. Moreover, the same lateral
displacement demands were achieved under higher-intensity ground motion as connections
were improved (Building 2 compared to Building 1) and diaphragms significantly stiffened
(Building 3 compared to Building 2).

None of the specimens suffered from masonry disgregation, leaf delamination, or wall
separation at corners, thanks to a combination of mortar binding quality, sharp-cornered
stones, and the absence of loose filling, corresponding to good natural stone masonty.
Generally, preliminary interventions may be required to address poor existing bond and
constituents. Otherwise, connection improvement and diaphragm stiffening would result
ineffective if the masonry walls could not resist the forces transferred locally.
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Nonlinear pushover analyses were carried out on numerical three-dimensional models
based on an equivalent frame approach. The software TREMURI was used for this scope.
Nonlinear macroelements represented the in-plane behavior of masonry piers and
spandrels, while linear elastic elements that of diaphragms and ring beams. This modeling
strategy cannot capture out-of-plane local mechanisms and is appropriate for structures
governed by a global response. Consequently, only Building 2 and Building 3 were
analyzed; Building 1 was excluded because it exhibited out-of-plane overturning of walls.

Material properties were calibrated versus the experimental results from material and
component characterization tests, which were conducted on samples and components
constructed together with the building units. A good match was achieved between the
numerical pushover curves and the experimental backbone curves, as well as between the
simulated and observed damage patterns on the masonry elements.

The two numerical models were subsequently modified to simulate masonry mechanical
upgrades, which could be achieved in practice through deep joint repointing or various
types of jacketing among other techniques. Construction details of the masonry
enhancement could not be explicitly modeled with the chosen equivalent-frame strategy,
relying on macroelement discretization. Consequently, these solutions were simulated
through correction coefficients applied to the masonry elastic moduli, compressive, tensile
and shear strength, as suggested by the Italian building code.

It was shown that, as the shear tensile strength of piers increases, the overall lateral strength
tends to saturate. In fact, failure of the two buildings transitioned from shear to flexural
mechanisms, with the flexural strength limited by rigid-body equilibrium and neatly
independent of material properties. However, flexural mechanisms are generally associated
with larger displacement capacity than shear failures, while higher lateral strength results in
smaller inelastic amplification of the displacement demand, if the elastic petiod does not
increase excessively. Combining these two effects together is expected to have a net
positive impact on the seismic performance of masonry buildings in general.

Special details can be implemented with jacketing techniques to provide tensile continuity
with the foundation and across the floors. This condition was modeled by accounting for
the axial tensile strength of the piers, and by applying to it the same correction coefficient
used for the other material properties. The simultaneous enhancement of shear and axial
tensile strength resulted in appreciable differences only on Building 2, characterized by
more deformable diaphragms: its pushover curves exhibited more pronounced hardening
compared to the case of zero-axial tensile strength. This additional strength would result in
further reduction in the inelastic displacement amplification.
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The experimental and numerical results of this study confirmed that the biggest benefit was
achieved by improving wall-to-diaphragm connections, because this allowed one to prevent
the local out-of-plane overturning of a wall, and by stiffening timber diaphragms. Masonry
mechanical enhancement induced additional positive effects, but to a lesser extent. These
outcomes constitute the basis for future developments related to the selection and design
of appropriate seismic retrofit measures for stone masonry buildings. Among other aspects,
the optimal quantification of the required connection strength and diaphragm stiffness will
be of particular interest.
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ABSTRACT

This paper discusses the effects of different modeling strategies on the simulated global
response of masonry buildings with timber diaphragms under earthquake excitation. The
benchmark for this study was provided by a unidirectional dynamic shake-table test on a
three-story, half-scale natural stone masonry building aggregate, incorporating the main
architectural and structural features of the historical center of Basel (Switzetland). The
global response of the specimen was simulated through nonlinear static analyses using an
equivalent frame approach, with nonlinear macroelements for masonry members and linear
orthotropic membranes for diaphragms. Three modeling strategies were followed. First, an
unconventional modeling strategy was adopted, to implement explicitly the out-of-plane
stiffness of walls orthogonal to the shaking direction through a particular combination of
equivalent frames and membranes. The second option consisted of a 3D model with walls
in both directions and finite-stiffness diaphragms, however neglecting the out-of-plane
overturning response of walls. In the third case, given their low stiffness compared to
masonty walls, the timber diaphragms were considered infinitely flexible and single-wall
2D models were analyzed in the shaking direction. Numerical capacity curves were
compared to experimental backbone curves, showing satisfactory accuracy even when
diaphragm and out-of-plane wall stiffness were neglected.

Keywords: equivalent-frame model; flexible timber diaphragm; nonlinear macroelement;
nonlinear static analysis; out-of-plane response; seismic performance; natural stone
masonty.

4.1 INTRODUCTION

Equivalent-frame modeling approaches are widely accepted for the global analysis of
masonty buildings. Unlike more refined methods, this modeling technique allows a



84 Christian Salvatori

reasonable compromise between accuracy of results and computational effort. However, a
common assumption whenever adopting this modeling technique is not to account for the
out-of-plane response of masonry walls, with the underlying assumption that it is effectively
inhibited by construction details or retrofit interventions. However, this assumption may
be questioned in case of flexible and/or pootly connected diaphragms.

For this reason, three modeling strategies were considered and compared to the
experimental results of a unidirectional, incremental dynamic shake-table test on a three-
stoty, half-scale natural stone masonty building aggregate (Guerrini e a/, 2019; Senaldi ez
al., 2020). The first option involved a complete three-dimensional model of the
experimental prototype, with an unconventional strategy to explicitly account for the out-
of-plane stiffness and strength of the walls orthogonal to the shaking direction (Kallioras
et al., 2019). The second one, following the common practice, ignored this out-of-plane
behavior. Finally, the third solution aimed at simulating an infinitely flexible diaphragm
condition, resulting in single-wall 2D models of the fagades parallel to the shaking direction.

Experimental and numerical outcomes were compared in terms of backbone and pushover
curves, respectively, to quantify the influence of the out-of-plane behavior on the global
response and to further validate the single-wall modeling approach in case of flexible
diaphragms, suggested by national and international building codes (ASCE 2017; MIT
2018).

4.2 BENCHMARK EXPERIMENTAL CAMPAIGN

The adopted modeling strategies were evaluated with reference to a half-scale masonry
building specimen tested on the shake table at the EUCENTRE Laboratories in Pavia,
Italy, within a comprehensive research project aiming at the seismic vulnerability
assessment of the historical center of Basel, CH, (Guertini ez a/.,, 2019; Senaldi ez al., 2020).
The specimen consisted of an aggregate of two adjacent three-story, weakly connected
structural units, characterized by different roof heights and sharing a transverse party wall
(Figure 4.1).

The dimension of the EUCENTRE shake-table imposed constructing the prototype at half
scale (A = 0.5). To obtain physically sound results, the similitude relationship discussed by
Senaldi ¢f a/. (2020) was adopted, where material densities and accelerations were not to be
affected. For this purpose, the same A = 0.5 factor was applied to lengths and stresses,
whereas a 11/2 = 0.707 coefficient had to be used to scale time and period parameters.

4.2.1 Geometry and details

The specimen consisted of five walls: the East and West ones oriented along the shaking
direction, and the North, Centre, and South ones arranged transversely. All the facades
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presented several openings, except for the South and Central ones, which were completely
solid. The entire prototype was 5.79-m-large and 5.58-m-wide, with the roof ridges at
about 6.65m and 7.60 m above the foundation level for the North and South units,
respectively (Figure 4.1).

Construction details of the historical center of Basel were reproduced. Walls consisted of
double-leaf undressed stone masonry and river pebbles, with a thickness starting from
35 cm at the first story and decreasing to 25 cm at the third one. Through stones provided
a better connection between the masonry leaves only at opening edges and corners. Flexible
timber diaphragms were adopted for floors and roofs.
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Figure 4.1: Dimensions of the half-scale masonry building aggregate specimen.
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Three-dimensional timber frames, consisting of trusses and diagonal braces, constituted
the roof structure, whereas 10 X 16 cm timber joists with a single 2-cm-thick layer of
planks formed the flooring systems. The joists of the first two floors were arranged in the
shaking direction (North-South), while the roof trusses were oriented orthogonally (East-
West). The truss tie beams acted as joists for the third floor, spanning perpendicular to the
shaking direction.

Most building aggregates originated from a linear growth along the street. Consequently,
the connection between adjacent units might be weak and vulnerable to local damage due
to their mutual interaction. To reproduce a similar situation, the North (shortest) unit of
the specimen was built first, whereas the South (tallest) unit was realized with some delay,
providing a through-stone every third masonry course.

4.2.2 Material properties and masses

Complementary characterization tests on materials and components constituting the
prototype were conducted at the University of Pavia (Guerrini ¢ a/, 2017). Vertical and
diagonal compression tests allowed evaluating the mean Young’s modulus (3460 MPa),
shear modulus (1520 MPa from vertical and 1900 MPa from diagonal compression),
Poisson’s ratio (0.14), compressive strength (1.30 MPa) and tensile strength (0.17 MPa).
Moreover, cyclic shear-compression tests were performed on masonry piers (Senaldi et al,

2018).

The double-leaf stone masonty had an average density of 1980 kg/m?. In addition to the
self-weight of walls and diaphragms, mortar bags were evenly distributed over each floor
level to emulate superimposed dead and live loads without influencing their stiffness.

4.2.3 Testing protocol

The shake-table input consisted of a seties of ground motion records to simulate increasing
levels of intensity, up to ultimate conditions of the specimen. Three different natural
accelerograms were chosen. The first two were low-intensity records from recent seismic
events in Basel and Linthal, CH, respectively, and were applied with their actual acceleration
amplitude. The third signal came from the Ulcinj station during the 1979, M,, 6.9
Montenegro ecarthquake, with PGA of 0.224 g, and was selected due to its spectral
displacement compatibility with the 475-years-return-period design spectrum for Basel; it
was applied scaling its acceleration amplitude from 25% to 175% in increments of 25%.
The time step of all records was compressed by a factor 11/2 = 0.707 to satisfy the chosen
similitude relationship.
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4.3 NUMERICAL SIMULATIONS

The response of the specimen was simulated through nonlinear static (pushover) analyses
with the equivalent frame modeling approach implemented in the software TREMURI
(Lagomarsino e# al., 2013). Advanced and conventional 3D models, as well as single-wall
2D models, were analyzed to assess the influence of explicitly modeling the walls excited
out-of-plane and the diaphragm stiffness.

4.3.1 In-plane masonry macroelement

The overall behavior of a building can be obtained by assembling vertical walls and
horizontal diaphragms, considering only their in-plane strength and stiffness contributions
(Figure 4.2a). Within the equivalent frame modeling framework, each wall is discretized
into macroelements capable of simulating the response of piers and spandrels, and rigid
nodes, which define portions of masonry less sensitive to deformations and damage (Figure
4.2b and Figure 4.2¢).

Figure 4.2: Numerical model: (a) overall 3D model; (b) East fagade equivalent frame; (c) West fagade
equivalent frame.



88 Christian Salvatori

In this work, the two-dimensional macroelement proposed by Penna e a/. (2014) and the
improved version described by Bracchi ez a/. (2021) and Bracchi and Penna (2021) were
adopted to model spandrel and pier elements, respectively. In fact, the capability of these
macroelements to capture the main failure mechanisms of a masonry panel, together with
their analytically integrated formulation, make them particularly suitable for performing
static and dynamic analyses.

Macroelement mechanical properties were calibrated against the nonlinear response of
piers subjected to in-plane quasi-static cyclic shear-compression tests (Senaldi 7 a/, 2018),
and are summarized in Table 4.1. This required increasing the compressive (f;) and tensile
(fy) strengths by factors of 2.75 and 1.1 respectively, and dividing the Young’s modulus (E)
by a factor of 1.5. The shear modulus was taken as G = 0.3E. Because the macroelement
by Penna ez al. (2014) concentrates flexural deformations at the member ends, multiplying
the Young’s modulus by 3.0 was necessary in order to capture the correct stiffness.
Moreover, the macroelement by Penna ef a/l. (2014) requires dividing the shear modulus by
the shear factor y = 1.2, as it considers the full cross-section also in shear.

The Turnsek and Sheppard’s (1980) criterion was adopted for the shear strength. Since the
shear formulation of the Penna ef a/. (2014) macroelement is based on a Coulomb-like
criterion, equivalent cohesion (c.q) and friction coefficient (u.q) had to be provided by
linearizing the desired criterion at the static axial compression. On the other hand, the
improved version proposed by Bracchi and Penna (2021) is able to calibrate such
parameters automatically; therefore, the tensile strength of masonry (f;) was directly
assigned. Finally, parameters Gc, and 8, which govern the nonlinear shear response at and
beyond the peak strength, complete the description of the macroelements.

Table 4.1: Parameters for the masonry macroelements.

f [ E G p Ceq Beqg  Gc, B
Element ¢ 3
[MPa] [MPa] [MPa] [MPa] [kg/m®] [MPa] [-] [-] [-]
Piers 3.58 0.187 2310 690 1950 - - 10
Spandrels 3.58 - 6930 575 1950 0.17 0.15 10

4.3.2 Floor and roof diaphragms

Timber floor diaphragms were simulated through four-node linear-elastic orthotropic
membranes. These finite elements are thoroughly characterized by defining the Young’s
modulus in the principal (E;) and orthogonal (E,) direction, the Poisson’s coefficient (v),
and the shear modulus (Gy,), which mainly influences the capability of redistributing lateral
forces among masonty walls.
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The diaphragms of the specimen consisted of a single layer of planks nailed to the floor
joists or to the tie-beams of the roof trusses. The membranes were assigned the thickness
of the planks and the equivalent stiffness properties from equation (4.1). The shear
modulus was calculated according to Brignola e a/. (2009), considering the three in-series
contributions of flexural and shear deformation of planks, and the rigid rotation of planks
due to nail slip:

E, A
I(Elzti_’+Et
p Y
{E2=Et @)
-1
lo, =X (Lo X Ly
"2 =4 \ker 52 7 Go A, T 12E, 1,

where A; and i; are the cross-section area and the spacing of the floor joists or roof tie-
beams; t,, A, I,,, and L, are the thickness, cross-section area, moment of inertia, and
length of a plank; y = 1.2 is the shear factor; E, = 10 GPa and G, = 0.75 GPa are the
assumed Young’s and shear modulus of timber; and s, =9 cm is the nail spacing.
kser = 678.7 kN /m has been calculated according to Eurocode 5 (CEN, 2004) for 3-mm-
diameter nails without pre-drilling, assuming a timber density of 415 kg/m3. Table 4.2

summarizes the membrane properties.

The stiffness of each roof pitch was simulated by a pair of diagonal linear truss elements
of cross-section area:

kdb,H Lt

A, =it
" 4 E, cos?(a,)

“.2)

where L; (443 m and 5.00 m) and a, (49.4° and 51.2°) are the length of a truss element
and its angle with respect to the shaking direction; E, = 10 MPa its Young’s modulus; and
kapy (3331 kN/m and 2441 kN/m) the lateral stiffness of the actual roof structures
(Salvatori, 2020), calibrated against the experimental response through nonlinear dynamic
analyses. This resulted in areas of 8.35 cm? and 7.71 cm? for the North and South units,
respectively.
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Table 4.2: Parameters for the masonry macroelements.

Diaphragm 4 K tr Ly A T Eq Ez G1z
[em?] [ecm] [cm] [em] [cm?] [cm*] [MPa] [MPa] [MPa]
s nd
I*and 2 160 53 2 53 240 288 25063 10000 25.48
floor
3rd flpor -
200 48 2 48 240 288 10000 30921 28.32
Notth
3rd floot -
200 43 2 43 240 288 10000 33166 31.35
South

4.3.3 Advanced 3D model

During the incremental shake-table test, the specimen exhibited the activation of an out-
of-plane overturning mechanism of the fagades orthogonal to the shaking direction.
However, a common assumption with equivalent-frame modeling is not to account for this
mode of response, assuming implicitly that it is inhibited by original or retrofit details. To
better reproduce the complete experimental behavior, an unconventional strategy was
employed.

The transverse walls were subdivided in: (i) edge macroelements working in their planes,
connected with the longitudinal facades at the intersections, to captute the so-called flange
effect; and (ii) inner macroelements oriented perpendicular to the transverse walls,
belonging to a fictitious wall P6 along the shaking direction, to model the vertical out-of-
plane behavior (Figure 4.3a and Figure 4.3b). Horizontal truss elements completed the
equivalent frame of fictitious wall P6. The longitudinal stiffness of the floor diaphragms
was equally distributed between the 4 -node membranes and these truss elements.
Additional vertical and horizontal beam elements were assigned to the transverse walls, to
make-up for the in-plane stiffness of the masonry portions attributed to the out-of-plane
piers (Salvatori, 2020).

The horizontal flexural stiffness of the walls excited out of plane was represented by three-
node linear-elastic orthotropic membranes at each level (Figure 4.3¢). Their shear modulus
(Geq) was calculated by equating the elastic shear stiffness of the membrane to the flexural
stiffness of the wall portion resisting horizontal bending:
C (E xh t3> 43

e =P 6sbL? @3

where E = 2310 MPa is the elastic modulus assigned to the masonry; t and h are the
thickness and the height of the wall portion involved in the mechanism; y = 1.2 is the shear
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factor; L is half the length of the transverse wall; b is the distance between consecutive out-
of-plane walls; and s = 2 cm is the membrane thickness. Coefficient § depends on the
boundary conditions, ranging from 3 (simply-supported) to 12 (double-fixed); values of 9,
12, and 6 were assigned to the membranes for the North (4), Center (B, C), and South (D)
walls, respectively, from calibration through nonlinear dynamic analyses (Salvatori, 2020).
The main properties of these membranes are summarized in Table 4.3.

oy ey =
(P4) P2

Figure 4.3: Out-of-plane modeling: (a) plan view with piers of fictitious wall P6 in red; (b) fictitious
frame for wall P6; (c) triangular membranes.
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Table 4.3: Parameters for the out-of-plane three-node orthotropic membranes.

b L 1st floor 20d floor 3t floor
Label ol fem]| Bt G | Bt Gy | Bt Gy
[em] [ecm] [MPa] |[cm] [cm] [MPa]|[cm] [cm] [MPa]
271 262 75 15 28 75 15 28 37 15 14
271 262 | 163 30 328 148 30 298 75 30 151
291 262 | 163 30 306 148 30 277 75 30 141
291 262 | 163 30 306 148 25 161 75 25 82

0w >

4.3.4 Conventional 3D model

The second strategy consisted of following the common modeling practice, that is,
neglecting the out-of-plane response of masonry walls. In this context, all elements of the
unconventional approach explained above, such as the fictitious frame of wall P6, the
additional vertical beam elements, and the three-node membranes were omitted. The
transverse walls were explicitly discretized in piers, spandrels, and nodes, following the
actual opening layout.

4.3.5 Single-wall 2D models

Starting from the conventional 3D model, the two fagades (East and West) parallel to the
shaking direction were extracted to perform 2D single-wall nonlinear static analyses.
Macroelements were added at the intersection with each transverse wall, to capture the
flange effect. The length of these flanges was equal to half the length of the South and
Central walls. For the North facade, only the vertical strip bounded by the first opening
alighment was included.

Horizontal truss elements were modeled with half the longitudinal stiffness of the floor
diaphragms. Moreover, additional masses were introduced to consider the out-of-plane
contributions of the North wall central strip and of the three gables, not explicitly modeled.
The contribution of the North wall and gable had to be considered in terms of dynamic
mass only, because their weight was independently transferred to the ground; for this
reason, the vertical forces generated by their masses were canceled out by applying upwards
static forces.

4.4 COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL RESULTS

Nonlinear pushover analyses were performed on all 3D and single-wall 2D models,
considering two different horizontal force distributions. The first, named “uniform”,
consisted of a force distribution proportional to the nodal masses, whereas the second one,
termed “modal”, represented a first-mode-type force distribution, with forces proportional
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to the product of the nodal masses times their height above the base. In the following
figures, results from the 3D model with the out-of-plane unconventional approach are
labeled “OOP”. Drift limits of 3% and 1% were assigned to both piers and spandrels for
flexural and shear failure, respectively, according to the experimental behavior of masonry

piers subjected to complementary in-plane cyclic shear-compression tests (Senaldi e @/,
2018).

400
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~ 200
=
=, 100
ty
g o
@
% -100 :
2 —&— Fxperimental
& a0 -- - Modal 3D (O0P)
g | el Uniform 3D (O0OP)
-300 ---Modal 3D
------- Uniform 3D
-400

-60 -45 -30 -15 0 15 30 45 60
Third floor displacement fmm]

Figure 4.4: Comparison between numerical and experimental results: entire building.
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Figure 4.5: Comparison between numerical and experimental results: East fagade.
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Figure 4.6: Comparison between numerical and experimental results: West fagade.

Numerical and experimental results were compared in terms of capacity and backbone
curves, respectively. The latter were derived as the envelope of the hysteretic responses of
each dynamic test, taking the point of maximum base shear with the associated average
third-floor displacement. The overall experimental base shear was determined by summing
the inertia contributions at each accelerometer location, as the product between the
recorded acceleration and its tributary mass. For 2D analysis discussion the average
displacement was calculated for each individual fagade; the base shear was evaluated from
the masses of that fagade, plus half the out-of-plane contributions of the transverse walls.

Figure 4.4 compares the global response from both 3D models to the experimental one.
For this building, the modal force distribution underestimated the initial stiffness and, in
the negative verse, also the lateral strength. Instead, the uniform one provided better results
and successfully caught the degrading behavior due to the failure mechanisms. With this
force distribution, explicitly modeling the out-of-plane response led to a particularly good
prediction in the positive direction, with a little stiffness underestimation in the negative
one. On the other hand, the conventional 3D model resulted in a minor strength
overestimation in the positive verse, while yielding more accurate results in the negative
one.

Figure 4.5 and Figure 4.6 show the comparison between numerical and experimental
responses for the individual East and West walls. For each facade, the total base shear of
its piers was plotted against its third-floor mean displacement; in the unconventional 3D
model, the out-of-plane force contributions were distributed evenly among the two
longitudinal walls. Again, the uniform force distribution resulted in better accuracy than
the modal one. For both walls, the capacity curves from 2D models were very close to the
corresponding ones extracted from the conventional 3D model.
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Focusing on the uniform distribution results, both 3D models provided good agreement
with the experimental backbone curve for the East wall. Moreover, despite the two large
openings in the first story introduced a source of irregularity, the numerical models proved
reasonably accurate also in predicting the West facade response; in this case, the 3D model
with out-of-plane features underestimated the stiffness slightly more than the conventional
3D or single-wall 2D models.

4.5 CONCLUSIONS

This paper discussed the numerical simulation of the experimental response of a masonry
building ageregate with timber floors and roofs subjected to a unidirectional incremental
dynamic shake-table test. Two structural units constituted the specimen, which
incorporated structural and architectural features of the historical center of Basel, CH. The
test was simulated by nonlinear static (pushover) analyses, adopting the equivalent-frame
approach implemented in the software TREMURI, with nonlinear macroelements for
masonry members and linear orthotropic membranes or truss elements for floor or roof
diaphragms, respectively.

Three modeling strategies were followed. An unconventional strategy was implemented in
the first 3D model, partially calibrated through nonlinear dynamic analyses; this intended
to capture both the in-plane and out-of-plane behavior of walls and to fully describe the
experimental response, with the activation of local overturning mechanisms of fagades
orthogonal to the shaking direction. The second 3D model followed the common practice
of neglecting the out-of-plane response of masonry walls. Given the low shear stiffness of
floor and roof diaphragms, the third strategy involved single-wall 2D models of the fagades
arranged along the shaking direction.

Pushover capacity curves were compared to the experimental backbone curves. Both
advanced and conventional 3D models simulated well the experimental response adopting
a uniform lateral force distribution. In fact, although the conventional model slightly
overestimated the strength in one loading verse, it better matched the stiffness in the other
one, with some differences when looking at the full building or at each longitudinal wall
results. Also analyzing single-wall 2D models with the assumption of infinitely flexible
diaphragms provided reasonable results, aligned with those extracted from the
conventional 3D model.

This work demonstrated the validity of two common modeling assumptions for the global
seismic analysis of masonry buildings. Neglecting the out-of-plane wall response did not
affect the accuracy of the results, provided local collapse was no reached. Single-wall 2D
analysis was justified by the low stiffness of timber diaphragms. Future investigations will
extend this study to nonlinear dynamic analyses and more articulated aggregate layouts.
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5. ANOVEL MACROELEMENT FOR THE SEISMIC
ANALYSIS OF MASONRY STRUCTURES

5.1 INTRODUCTION

This section desctibes a novel macroelement for the seismic analysis of masonry structures.
Firstly, an overview of the two-dimensional macroelement of Penna e a/. (2014) is given,
as it lays the basis for the development of the proposed three-dimensional formulation. A
limited description of the shear behavior is reported, as no significant improvements or
changes are made with respect to the original version. Conversely, the coupled axial-flexural
response is comprehensively reviewed and discussed, highlighting its advantages,
simplifications, and limitations. Consequently, enhancements of the original axial-flexural
formulation are proposed: the first regards an additional nonlinear correction to improve
the accuracy of the analytical integration of the end-interfaces in capturing toe-crushing
phenomena. Then, an elasto-fragile tensile strength is analytically integrated over the length
of the macroelement to replace the original no-tension constitutive law.

The following part of the chapter involves the extension of the improved two-dimensional
macroelement to the three-dimensional space. In fact, the common assumption when
adopting the equivalent-frame modeling strategy is to consider only the in-plane stiffness
and strength of the macroelements. However, the out-of-plane behavior might be relevant
and, consequently, significantly influence the in-plane response, even when local
mechanisms are inhibited. For this purpose, an out-of-plane discretization of the end-
interfaces of the macroelement is implemented to incorporate the biaxial bending while
preserving the computational efficiency of the formulation. The procedure to compute the
three-dimensional rotation matrix associated with the novel macroelement is also given.

To conclude, the system of equations that governs the nonlinear response of the three-
dimensional macroelement is solved through an adaptive iterative algorithm. In fact, the
full Newton-Rapson method is first discussed. Subsequently, an adaptive version to achieve
a high convergence rate while preserving numerical robustness is proposed.

All the improvements to the original two-dimensional formulation are followed by the
corresponding numerical validations, assuming a fiber discretization of the end-interfaces
of the macroelement as a reference configuration due to its numerical versatility and
straightforward implementation.
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5.2 MACROELEMENT OF PENNA ET AL. (2014)

The two-node macroelement originally proposed by Brencich and Lagomarsino (1998),
further enhanced by Penna ef al, (2014), and currently implemented in the software
TREMURI (Lagomarsino e7 al., 2013), is composed of three parts: two zero-height end-
interfaces (i and j), assumed infinitely rigid with respect to shear actions, where the coupled
axial-flexural behavior is concentrated, and a central body (e) where only shear
deformations are allowed. The two-dimensional kinematic is thoroughly described by eight
degrees of freedom: each node is equipped with three DOFs, that is, the vertical (w) and
horizontal (v) displacements, and the in-plane rotation (@), whereas the remaining ones,
that is, an additional vertical displacement (w,) and in-plane rotation (¢,), belong to the
central body (Figure 5.1).

The peculiar arrangement of the degrees of freedom makes the shear and flexural failure
mechanisms kinematically uncoupled, while preserving compatibility relationships to
ensure equilibrium at the element level. Moreover, the internal DOFs are necessaty to
purify the end-interface generalized displacements from rigid body motions.

Finally, the completely mechanically based formulation, and the capability of representing
the cyclic shear and flexural behavior of a masonry panel with a limited computational
effort and number of degrees of freedom, make the macroelement of Penna 7 al. (2014)
suitable for performing nonlinear static and dynamic analyses of masonty structures in an
effective and efficient manner.

R
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Figure 5.1: Kinematic of the macroelement of Penna ez al. (2014).
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5.2.1 Shear formulation

The Penna ez al. (2014) macroelement is endowed with a nonlinear shear stress-strain cyclic
relationship derived from the Gambarotta and Lagomarsino (1997a,b) continuum model
for masonry. In fact, the macroscopic integration of the aforementioned model,
representing a detailed mechanical-based behavior of mortar joints, allows to adequately
describe the shear response in the inelastic regime.

The macroelement shear behavior is expressed in terms of a Coulomb criterion, therefore
it depends on an elastic contribution limited by the frictional static strength Vg, and on an
additional plastic response governed by the material cohesion V.. The first contribution is
written in terms of static axial load N and equivalent friction coefficient u, provided that a
positive value is obtained, whereas the second is a function of the sliding displacement s
through the nonlinear stiffness parameter k(a), as teported in equation (5.1), with a
representing a state vatiable accounting for shear damage accumulation (Gambarotta and
Lagomarsino, 1997a,b). A more comprehensive description of the formulation is reported
by Penna ef al. (2014).

V=V +1 Ve =uN>0 V. =k(a)s (5.1)

Overall, the macroelement shear force-displacement constitutive law is described through
two parameters, whose influence is depicted in Figure 5.2: the nonlinear shear parameter
Gc, governs the position of the peak, controlling the amplitude of the inelastic
displacement component (Figure 5.2a), whereas f§ is responsible for the slope of the post-
peak softening branch (Figure 5.2b).

Finally, the nonlinear shear force V of the macroelement is obtained by cotrecting the
elastic term by means of the inelastic counterpart s, resulting in equation (5.2) after
assuming no distributed loads along the height (h) of the member and indicating with G
and A the shear modulus and the cross-section area, adequately reduced through the shear
factor y.

GA GA
V=Vj=—Vl-=X—h(u—s):){—h(uj—ui—(peh—s) (5.2)
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Figure 5.2: Monotonic shear response of the macroelement of Penna et al. (2014): influence of (a) Gc;
(for £=0.4) and (b) 8 (for Gc, = 2) parameters.

5.2.2 Axial-flexural formulation

A noteworthy and computationally efficient feature of the Penna ez a/. (2014) macroelement
is the analytical description of the nonlinear axial-flexural response, which allows to account
for cracking effects during rocking motions explicitly, as well as toe-crushing phenomena
due to the limited compressive strength of masonty.

In fact, stresses and displacements resulting from the nonlinear behavior of the
macroelement end-interfaces are analytically obtained by applying inelastic corrections to
the linear contributions; consequently, no post-integration is required:

F"'(u) = Ku+ F*(u) + F**(u) (5.3

where K represents the elastic stiffness matrix, u and F™ (u) the generalized displacement
and internal force vectors, whereas F*(u) and F**(u) the analytical nonlinear cotrection
vectors accounting for cracking and toe-crushing phenomena. Additional details about the
clastic stiffness matrix and its derivation are reported in Appendix A.

As specified by Penna ef a/. (2014), the two end-interfaces of the macroelement are studied
separately. The coupled axial-flexural model is described by the internal axial force N and
bending moment M, as well as by their corresponding kinematic quantities, such as the
vertical displacement w and in-plane rotation ¢, purified from rigid motions:

N=ktLw

[kt l? (5.4)
n- ()
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Figure 5.3: Constitutive law assigned to the end-interfaces (Penna e al., 2014).

whete k = 2E /h is the equivalent axial stiffness of the end-interfaces, being E the Young’s
module of masonry, whereas h, t, and L represent the height, thickness, and length of the
macroelement. The relative vertical displacement w and in-plane rotation ¢ ate obtained
asw =w; —w, and ¢ = @; — @, and as w = w; — w, and ¢ = ¢; — @, for the i'" and j"
interface, respectively.

The system reported in equation (5.4) holds as long as a linear-elastic behavior is ensured.
Conversely, when cracking or toe-crushing occur, the internal axial force and bending
moment are no longer uncoupled, and nonlinear corrections need to be applied. In this
context, the interfaces of the Penna e a/ (2014) macroelement implement a no-tension
nonlinear degrading model, as depicted in (Figure 5.3).

Figure 5.4 shows in grey the effective stress profile on a section undergoing a cracking
phenomenon and highlights in red the portion of stresses to be removed through a
nonlinear correction. Two possible situations are depicted: in the first case, the cracking
phenomenon involves a portion of the section (Figure 5.4a), whereas in the second it
extends to the whole length (Figure 5.4b).

L'er L'cg

Ogy i i

art

oLt

L : L
@ ®)

Figure 5.4: Representation of the stress profile under cracking conditions: effective stress distribution
(in grey) and inelastic correction (in red).
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The cracking condition can be expressed in terms of kinematic variables, by assuming small
displacements and rotations. In this context, focusing on the lower i*" interface, the
cracking length is obtained according to equation (5.5):

L _W+L 5.5
CR,i_l(pl 2 ()

Consequently, the corresponding inelastic corrections are hereafter reported:

kt
{(Ni* ~ 8ol 2w + LIoD2H(L ¢gy)
(5.6)
kt
== - 2 ! i
(M 24(p|(p|(w LioD@w + LIp)?H(L cr;)

where H (L'CR_i) indicates the Heaviside function, assuming a zero value when no cracks
develop on the considered section (i.e., equation (5.5) is not positive), equal to a unit value
otherwise. It is worth noticing that relationships (5.6) apply to the first case (Figure 5.4a).
Conversely, when the cracking phenomenon involves the whole length, the entire elastic
contribution needs to be removed, as the section cannot withstand any tensile load. With
a similar procedure, the equations governing the response of the j** interface can be
obtained, and all the concerning details ate reported in Appendix E.

Despite the high compressive strength characterizing masonty panels, especially compared
to the static axial load applied, experimental tests on masonty piers highlighted toe-crushing
phenomena when subjected to in-plane rocking mechanisms, which limit the ultimate
bending moment and lead to a cyclic stiffness degradation. In this context, the end-
interfaces of the macroelement proposed by Penna e a/. (2014) rely on an elasto-perfectly
plastic degrading model in compression (Figure 5.3).

Unlike cracking conditions, describing the toe-crushing behavior through a single
correction is no longer convenient. Instead, each edge needs to be analyzed independently,
summing the individual contributions to obtain the entire cross-section correction. In this
context, to account for the limited compressive strength of masonty, two damage variables
at the current step (u', '), as well as their maximum recorded value throughout the load
history (u, £), are computed.

Overall, four nonlinear variables are therefore required for both the left and right edges of
cach end-interface (5.7). More specifically, u represents the displacement ductility and,
once a unit value is reached, the stiffness is degraded to the secant value at maximum
displacement, whereas ¢ indicates the dimensionless length involved in the crushing
phenomenon:
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with L and t the length and the thickness of the macroelement, whereas d, = f,,,/k the
yielding displacement, being f,,, and k the compressive strength and the equivalent elastic
stiffness of the end-interfaces, respectively. The sign of the equations depends on the
considered edge, as reported in detail in Appendix F.

Figure 5.5 depicts a list of possible situations that can be experienced depending upon the
mutual behavior of the described damage vatiables. In particular, in Figure 5.5a both the
ductility demand and the dimensionless crushing length are being exceeded on the right
edge, whereas in Figure 5.5b none of them needs to be updated, as no additional
nonlinearity is reached. Conversely, in Figure 5.5¢ and Figure 5.5d only the dimensionless
crushing length and the ductility demand are being respectively exceeded.

Referring to the i*" interface, the inelastic cotrections accounting for the limited
compressive strength of masonry and associated toe-crushing mechanisms are hereafter

reported:

pi—1

(e =re(B=)er vt o) HEE 1)

{ 2 Hy (5.8)
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where the Heaviside function H(-) is now controlled by a positive value of the crushing
length & L, and the sign of the contributions is automatically determined by choosing a
section edge. An analogous procedure can be followed for the j* interface, and the details
are reported in Appendix F.

Despite the computational efficiency of the analytical integration is evident, some
drawbacks must be highlighted. In fact, even though the corrections due to cracking
conditions are exact, the ones accounting for toe-crushing phenomena rely on some
approximations, particularly visible in an unloading phase, where the stress profile along
the section is not linear as assumed by the corrections (Figure 5.5b). Moreover, as
represented in Figure 5.5¢ and Figure 5.5d, the lineatization does not allow to follow the
actual discontinuities of the stress profile. However, as Penna ez al. (2014) reported, a linear
approximation does not induce significant differences in the nodal corrections, providing
thus reliable results.
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Figure 5.5: Representation of the stress profile under crushing conditions: effective stress distribution
(in grey) and inelastic correction (in red).

5.3 IMPROVEMENT OF THE TWO-DIMENSIONAL MACROELEMENT
5.3.1 Additional nonlinear correction for toe-crushing conditions

As previously stated, a noteworthy point of the described macroelement is the formulation
of the end-interfaces, which provides analytical inelastic corrections to obtain the nonlinear
behavior from the linear-elastic response. With the Penna ez a/. (2014) constitutive law, a
sole nonlinear equation suffices to describe both the loading and unloading phases within
toe-crushing phenomena. However, even though some approximations are essential, a
particular condition must be addressed separately to avoid physically unsound results.

In this context, when cracking develops on a section previously damaged by toe-crushing,
causing an overlap between the lengths involved into cracking and toe-crushing
mechanisms of opposite corners (Figure 5.6a), applying the existing correction might lead
to a severe underestimation of internal actions. With this being underlined, additional
equations are derived to address this issue. More specifically, if this is the case, the length
undergoing crushing ¢ L of equations (5.8) is replaced with the compressed length
Lc = L — Ly, leading to the nonlinear corrections reported in equations (5.9), where the
sign of the contributions depends on the interface edge considered. Similar relationships
can be derived for the j®* interface, and the concerning details are reported in Appendix F.
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Figure 5.6: (a) Penna et al. (2014) and (b) improved nonlinear correction effects in the case of overlap
between lengths involved into cracking and toe-crushing mechanisms of opposite corners.
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Figure 5.6a and Figure 5.6b highlight in red the portion of stress intended to be removed
through nonlinear corrections without and with the improvement, respectively. It can be
noticed that the existing corrections significantly overestimate the excess contribution due
to the nonlinear response of the member.

5.3.1.1 Numetrical validation

Numerical compatisons on a section with a length-to-thickness ratdo L/t=75, a
compressive strength of f,, = 3.6 MPa, and a Young’s modulus of E = 2310 MPa, atre
carried out in order to validate the additional correction proposed, and the results are
depicted in Figure 5.7 and Figure 5.8 for the axial force and bending moment, respectively.
In particular, a decreasing axial displacement history is assigned by maintaining an imposed
in-plane rotation constant. The comparison is performed by assuming the results obtained
through a fiber discretization of the end-interfaces as a reference condition, due to its
straightforward implementation and numerical versatility. In fact, as a uniaxial stress-strain
relationship is assigned to each fiber, the numerical integration of their individual
contributions can easily capture the actual stress profile along the section.

Despite the no-tension response of the Penna e 4/ (2014) constitutive law limits the
inaccuracy of the formulation, a non-negligible deviation arises with respect to the
reference fiber solution. On the other hand, the improved correction proved satisfactory
results, tending to follow closely the fiber formulation trend.

As already mentioned, in the case of unloading, the analytical formulation is characterized
by a linearization of the stress profile along the section, which would be highly nonlinear
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otherwise, as depicted in Figure 5.9. The consequence of such an approximation is
noticeable at the beginning of the displacement history imposed, where a difference in
terms of axial force (Figure 5.7) and bending moment (Figure 5.8) with respect to the fiber
formulation is more evident. On the contrary, as the analysis proceeds, the two responses

tend to get closer, leading to comparable results.
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Figure 5.7: Validation of the additional nonlinear correction: axial force.
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Figure 5.8: Validation of the additional nonlinear correction: bending moment.
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Figure 5.9: Stress profile comparison between fiber and improved analytical formulations.

5.3.2 Introduction of an elasto-fragile tensile strength

The common assumption when modeling masonry structures is to neglect the tensile
strength of the material. In fact, its low value compared to the compressive counterpart
and its statistical scattering corroborates this simplification. However, a tensile strength
might improve the accuracy of results and help the analysis to converge when dealing with
elements with low axial loads, such as spandrels. Furthermore, it can be suitable for
representing the influence of masonry strengthening interventions, which strongly rely on
the tensile response of the material employed to improve the seismic performance of the
original structural element, as reported in the following chapters of this document.

In this context, an elasto-fragile tensile response is analytically integrated over the length of
the macroelement, enhancing the original constitutive law and leading to the relationship
reported in (Figure 5.10b). As a result, the cracking length at the cutrrent load step
previously calculated (Lip) needs to be reviewed, and its maximum recorded value
throughout the load history (L¢g) needs to be stored as an additional damage variable. As
a matter of fact, once the tensile strength is reached along a portion of the section, only
that portion is no longer able to carry any tensile stress.
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Figure 5.10: Interface stress-displacement constitutive law: (a) without (Penna er al, 2014) and (b)
with tensile strength.
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It is noteworthy that, unlike the original no-tension formulation, the length in tension Ly
might differ from the current cracking length Lyp, depending on the elastic tensile
displacement threshold d, assumed. Furthermore, identifying a unique correction
accounting for the behavior of both edges is no longer convenient. In fact, individual
corrections need to be provided to each edge, as discussed for the toe-crushing phenomena,
leading to the quantities indicated as Lgg 11, Leg 1 and Lgg gy, Leg gr for the left and right
edges, respectively.

The new definition of the current cracking length Lip, followed by the length in tension Ly
and in compression L, are reported in equation (5.10) referring to the i*" interface (where
the sign of the contributions depends on the edge considered), and clarified in Figure 5.11.
A deeper description is given in Appendix E.

QU
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to+ Lyj=1=+5 Lei=L— Ly, (5.10)
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For each load step, the current and the maximum recorded values of the cracking length at
each section edge are compared, resulting in the six possible conditions reported in Figure
5.11, where the stress portion intended to be removed through an inelastic correction is
highlighted in red. The total cracking length (L:g) of the end-interface is then computed by
summing the single-edge values.

Figure 5.11a represents a condition in which the current cracking length on the left edge
(Leg Lr) exceeds the maximum stored value (Lcg ,r), however without affecting the whole
length of the end-interface. In this case, the section can only rely on the portion where the
elastic tensile threshold has not been exceeded. On the other hand, Figure 5.11b, Figure
5.11¢, and Figure 5.11d, replicate situations where the damage variable L¢g 1+ has not to be
updated because a new tensile nonlinearity has not been reached (i.e., Lgg 17 < Legpr)- In
this context, the stresses involved into the already cracked portions need to be corrected
to be consistent with the expected stress profile.

Unlike the previous cases, which are defined for each section edge, Figure 5.11¢ and Figure
5.11f describe situations where the cracking condition affects the whole length of the end-
interface (i.e., the sum of the cracking lengths of the two edges is greater than the total
length of the end-interface). For this reason, separating the contribution of the two edges
is no longer needed, and the formulation degenerates to the original no-tension behavior
proposed by Penna e al. (2014).



Degree of Doctor of Philosophy in Design, Modeling, and Simulation in Engineering m

L¢ r Ly E L
Legr
o
| Loppr
: ORt i t ORT
L L
(a) (b)
Ly L Ly
Lerar ¢ | Ogy Legr / ORT
oLt
o
L L
© d
. DL | Ly
Ler ; Ler
/ ORT .
oLr E
L L

© ®

Figure 5.11: Analytical conditions addressed for a brittle tensile strength: effective stress profiles and
removed portions colored in grey and red, respectively.

5.3.2.1 Numerical validation

Cyclic in-plane tests are performed by adopting analytical and fiber end-interface
formulations on a section with a length-to-thickness ratio L/t = 5, a Young’s modulus of
E = 2310 MPa, a tensile strength equal to 0.5MPa, and a constant axial load ratio
o = 0.16 f,,, being f,, the compressive strength of masonry, assumed 3.6 MPa. The
results are reported in Figure 5.12 and Figure 5.13.

As expected, a non-zero tensile strength delays the yielding point and provides an additional
source of energy dissipation. Moreover, due to the brittle nature of the constitutive law,
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stiffness and strength are degraded as the section accumulates tensile damage, aligning with
the no-tension response.

A fiber formulation is assumed as a reference due to its straightforward implementation
and versatility. However, since the brittle tensile strength introduces significant
discontinuities in the stress profile along the length of the end-interfaces, a dense
discretization is necessary to reproduce the analytical response. In fact, the analytical
formulation is not based on any approximation, regardless of the condition addressed,
leading always to the numerically exact solution.
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Figure 5.12: Sectional response fidelity with respect to the number of fibers employed: 20 fibers.
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Figure 5.13: Sectional response fidelity with respect to the number of fibers employed: 50 fibers.
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It is worth noticing that the additional nonlinear correction previously derived for the toe-
crushing condition (§5.3.1) still applies, as it is governed by the length in tension, which is
a common parameter between the original no-tension and improved formulations.

5.4 THREE-DIMENSIONAL MACROELEMENT
5.4.1 Coupled in-plane and out-of-plane formulation

The equivalent-frame approach with nonlinear macroelements is widely used for the
seismic performance assessment of masonry structures. Although initially conceived for
simulating two-dimensional walls, in the last decades it has been extended to three-
dimensional buildings, by maintaining only the macroelement in-plane stiffness or by
introducing an elastic out-of-plane one.

The main scope of this section is the formulation of a new macroelement capable of
simultaneously capturing the nonlinear in-plane and out-of-plane response of a masonty
panel, mainly focusing on the biaxial behavior of the end-interfaces. As a matter of fact,
the new macroelement consists of an extension of the previously described Penna ez 4.
(2014) formulation, and it is characterized by fifteen degtrees of freedom (Figure 5.14a): six
located at each end-node, involving the axial displacement (W), the shear ones along the in-
plane and out-of-plane directions (v, and v3), and the three rotations about the
corresponding axes (@q, @,, and @3); whereas, the three remaining DOFs, that is, the
internal axial displacement (W,), and the internal out-of-plane (¢, ) and in-plane (@3.)
rotations, belong to the central body.

As already highlighted, a noteworthy point of the Penna ¢f 4/ (2014) macroelement is its
analytically integrated axial-flexural formulation. However, even though the same could be
done in the three-dimensional space for a no-tension constitutive law (Vanin ez /., 2020),
it would be extremely complex to analytically account for a finite tensile strength or toe-
crushing phenomena under biaxial bending conditions.

To overcome this limitation, as described in Vanin e a/. (2020), the end-interfaces are
divided into n stripes, each endowed with the analytical behavior proposed in the previous
chapters and considered constant along its thickness. As a result, a stripe formulation is
employed: the analytical integration is responsible for the in-plane behavior of each stripe,
whereas the coupled nonlinear sectional in-plane and out-of-plane response can be
approximately computed by integrating the inelastic corrections of each stripe over the
thickness of the macroelement (Figure 5.14c):

N* = Z N; M; = Z M;, = Z(N;; esn) M3 = Z Ms, (6.11)
n n n n
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N = Z Ny My = Z M35 = Z(Nii* en) M5 = Z M3} 6.12)
n n n

n

with e;, representing the centroid out-of-plane coordinate of the n'" stripe, which can be
expressed as:

t 1\ t
e3n = = (n3 _ _) _t (5.13)

where t is the macroelement total thickness, n the number of stripes defined, and ng is the
stripe countet.
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Figure 5.14: Three-dimensional macroelement: (a) node and central-body degrees of freedom, (b) end-
intetface degrees of freedom, (c) stripe discretization, and (d) fiber discretization of the
cross-section.
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Kinematic compatibility equations enforce collaboration of the individual stripes, assuming
a linear profile for the deformations (5.14). Consequently, the inelastic corrections
presented in the previous chapters still apply, provided that the contribution of the nt*
stripe is obtained by accounting for the out-of-plane rotation into the corresponding
vertical displacement:

{Wn =W+ @, ez, (5.14)

P3n = Q3

being w = w, —w;, @, = @, — @5; and @3 = @3, — @5, for the i'" interface, whereas
- - - ith
W =W = We, 92 = @2 = Pz, and @3 = @3, — 5 for j* one.

Despite all the potentialities of the stripe formulation, in case of particulatly demanding
load history, a three-dimensional fiber discretization might be more suitable, leading to
more accurate results. Indeed, the main assumption of the latter is that, as the number of
fibers increases, the solution tends to converge to the numerically exact one. For this
reason, the proposed macroelement also implements a full-fiber discretization of the end-
interfaces, allowing using more refined and appropriate uniaxial stress-strain relationships
(Figure 5.14d), even though slightly increasing the computational time. The fiber
implementation is not directly discussed in the main text of this thesis, as it is mainly used
for validating the fidelity of the analytical integration. However, all the concerning details
are reported in Appendix D.

The shear and torsional behaviors are concentrated in the central body of the
macroelement. However, they are not directly addressed in this thesis. Similarly to the
original macroelement of Penna ef a/ (2014), the shear response is governed by the
Gambarotta and Lagomarsino (1997a,b) continuum model for masonry, considered
completely uncoupled along the two main horizontal directions, whereas the torsional
behavior relies on a linear elastic response. It is worth emphasizing that the improvements
carried out over the years on the macroelement of Penna ef a/. (2014) are also incorporated
in the three-dimensional formulation, such as the correction on the elastic stiffness (Bracchi
et al, 2021), as well as the automatic and adaptive calibration of the shear parameters
(Bracchi and Penna, 2021). However, they are not discussed in this thesis.

5.41.1 Numerical validation

The biaxial flexural formulation of the end-interfaces is validated through numerical tests
petformed on a section with a length-to-thickness ratio L/t =5 and Young’s modulus
E = 2310 MPa, by assigning a constant axial load (25% of the compressive strength of
the material, assumed equal to 3.6 MPa), and by imposing a cyclic biaxial rotation.
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Moreover, no tensile strength is considered, and the section is discretized with a total of
20 out-of-plane stripes and 100 X 20 in-plane and out-of-plane fibers, respectively.

The results in terms of bending moments (Figure 5.15) and vertical displacements (Figure
5.16) are reported by increasing the horizontal angle a between the imposed rotation vector
and the out-of-plane axis. In particular, values of @ = 0° and @ = 90° represent a pure in-
plane and out-of-plane loading, respectively.

It is worth noticing that the resulting values of bending moments Mg and rotations ¢, are
obtained following equation (5.15), with § indicating the angle between the resulting
bending moment and the out-of-plane axis.

Mg = /Mzz + M3 O = /wzz + @3 (5.15)

According to the results, an out-of-plane load significantly reduces the stiffness and
strength of the masonry panel (Figure 5.15), as well as the uplift related to rocking motions
(Figure 5.16). However, despite the fairly good fidelity characterizing the stripe section in
the case of toe-crushing phenomena, the approximations involved in the analytical
formulation result in a light underestimation of the energy dissipation during cyclic
loadings. On the other hand, as the angle @ approaches the pure out-of-plane condition,
the in-plane approximations are of less impact on the response. Consequently, this
discrepancy tends to vanish.
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Figure 5.15: Influence of the out-of-plane behavior on the in-plane response: bending moment.
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Figure 5.16: Influence of the out-of-plane behavior on the in-plane response: uplift of the section.

Figure 5.17 shows the interaction curves of the in-plane and out-of-plane bending moment
as a function of the horizontal angle a. The figure confirms the reduction of the ultimate
in-plane bending moment in the case of toe-crushing conditions and when a simultaneous
out-of-plane load is applied.

It is worth noticing the slight discrepancy in the ultimate bending moment when a pure
out-of-plane load history is applied (i.e., @ = 90°). As a matter of fact, the stripe and fiber
formulation show a different envelope because of the different methodologies employed.
In particular, in the first case, the three-dimensional elastic stiffness matrix is pre-defined,
and then the inelastic cotrections are applied to recover the nonlinear behavior. On the
contrary, in the fiber formulation, the three-dimensional nonlinear stiffness matrix is
directly obtained through the numerical integration of the single-fiber contributions. As a
result, the stripe and fiber formulations slightly overestimates and underestimates the
response, respectively. However, by increasing the number of stripes and fibers, the two
solutions tend to match rapidly.

Eventually, the interaction diagram is also derived through the software VCA SLU (Gelfi,
2006), which consists of a user-friendly tool for computing the ultimate bending moment
of a reinforced concrete (RC) cross-section. In fact, the assumptions of no tensile strength
and elastic-perfectly plastic behavior in compression commonly assumed for the RC
elements also apply to the masonry material.



118 Christian Salvatori

Fiber formulation ——Stripe formulation
60 | —— No toe-crushing ---VCA SLU (Gelfi, 2006)

& =90°

0 50 100 150 200 250 300 350
M, [kNm]

Figure 5.17: Interaction in-plane and out-of-plane curves.
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Figure 5.18: Elastic relation between the rotation () and the resulting bending moment () angles.

Another interesting result lies in the variation of the elastic resulting bending moment angle
B with respect to the imposed rotation angle a. As widely investigated by Dolatshahi e a/.
(2014), and according to Figure 5.18, with the adopted dimensions the imposed angle a
should be almost perpendicular to the longitudinal axis (greater than 75%) to activate the
out-of-plane contribution. The theoretical angle f is calculated as follows:

6 = atan () ana] = atan [(9

3

2
tan a] (5.16)

with I3 and I, the in-plane and out-of-plane moments of inertia of the end-interface,

respectively.
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5.4.2 Three-dimensional transformation matrix

In a space frame, two-node members can be oriented in any direction; as a result, the local
1 — 2 — 3 axes may not coincide with the global x —y — z reference system, thus requiring
the adoption of a transformation matrix. Moreover, unlike the planar case, different
transformation orders can be used, and the results might be affected. For this reason,
assuming and respecting a predefined convention is essential for obtaining consistent
outcomes.

Given the global coordinates of a two-node member, its orientation with respect to the
global axes can be expressed in terms of director cosines:

X, — X Y, —y Z,— 2
Cx=% Cy=% CZ=% (6.17)

being L = /(x; — x)2 + (y, — y1)? + (2, — 2,)? the length of the element. In particular,
C,=0,C, =0, and C, = 0 represent a member belonging to the global y — z, x — z, and
x — ¥ plane, respectively; whereas the simultaneous C, = 0 and C;, = 0, C,, = 0 and C, = 0,
or C, =0 and C, =0, indicate an element parallel to the global z-,y-, and x -axis,
respectively.

Focusing on a member oriented along its own local longitudinal axis (i.e., 1-axis), two
possible local reference systems can be identified. In particular, the so-called 2-right and 2-
up default orientations are adopted for vertical and non-vertical elements, respectively,
providing the weak 2-axis oriented along the global x-axis in the first case, and along the
global z-axis in the latter (Figure 5.19). Consequently, the 3-axis is defined following the
right-hand rule. Eventually, moments and rotations are considered positive when following
the right-thumb rule.

Choosing two different local reference systems depending upon the member orientation is
crucial for the transformation matrix to be always well-defined and, consequently, for the
global stiffness matrix to be invertible. In fact, as comprehensively discussed in the
following, adopting only one local reference system would cause instability of the
algorithm, as it would provide singular matrices.
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Figure 5.19: Local reference system for (a) vertical and (b) non-vertical three-dimensional members.

The adopted local reference system is thoroughly defined after identifying all its local axes.
In this context, the longitudinal 1-axis is simply determined through the director cosines
reported in equation (5.17), and is represented through the unit vector ey:

e, ={C, C, C)T (5.18)

The 2-axis is instead computed by applying the Gram-Schmidt process, which consists of
a sequence of operations allowing to transform a set of linearly independent vectors into a
set of orthogonal vectors spanning the same space spanned by the original set.

The first step of the algorithm involves the identification of the local 1 — 2 plane. In this
context, the latter is obtained by offsetting the element nodes i and j (arranged along the
local 1-axis by definition) towards the positive global z- and x- direction for non-vertical
and vertical members, respectively. Subsequently, a vector vy, connecting the i-node to a
general point k belonging to the 1 — 2 plane is defined. From the computational point of
view, the latter point is usually taken in correspondence with the half-length of the member
offset by a unit value.

The local 2-axis, defined by the unit vector e, is obtained through the Gram-Schmidt
equation reported in the following and illustrated in Figure 5.20:
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Figure 5.20: Gram-Schmidt process for computing an orthogonal vector basis.

e, Vi, — proj(vy,) _ Vig— (Vi -eq) e (5.19)

vy — proj@ydll vy — (i - €y) el

where proj(vy) represents the projection of the vy, vector onto the local 1-axis, identified
by eq, " - " the inner product, whereas || - || indicates the Euclidean norm of the vector.

Eventually, the local 3 -axis is automatically defined following the right-hand rule
convention:

ez = e X e, (5'20)

where " X " represent the cross product, consisting of a binary operation for obtaining a
perpendicular vector with respect to the plane defined by two other given vectors.

The rotation matrix R, which defines the relationship between the adopted local and global
reference systems, is reported in equation (5.21), and builds upon the proper arrangement
of the local unit vectors previously defined:

€1x ely €1z €1x €2x €3y
R =|€2x €2y €22 e; =i{€y e, = €2y e3 =163y (5.21)
€3x €3y €3y €1z €2z €3z
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As previously described, each member has its own local orientation, encoding the adopted
local reference system. However, the default rotation about the local longitudinal 1-axis
can be overwritten by assigning the so-called roll angle 1.

Regardless of the member orientation, the rotation about the longitudinal axis is performed
at last, and the resulting rotation matrix R is given by:

~
I
~

R R, =

X

1 0 0
0 cosy sin 11)] (5.22)
0 —siny cosy

The global transformation matrix T is hence obtained by appropriately assembling the
adopted R matrix to transform the translation and rotation degrees of freedom of both the
member nodes:

R 03x3 03x3 03x3 03x3—
03x3 k 03x3 03x3 03x3
T=103;3 033 R 03,3 0343 (5.23)

03x3 03x3 03x3 R 03x3

-03x3 03x3 03x3 03x3 13x3 “15x15

It is worth noticing that the internal degrees of freedom of the members are not to be
transformed, as they play a predominant role in ensuring local equilibrium and kinematic
admissible displacements of the external DOFs. As a matter of fact, I3,3 represents the
identity matrix.

Finally, the transition from the local to the global reference system and vice versa is
reported in equation (5.24), where K and u represent the local elastic stiffness matrix and
displacement vector, whereas K¢ and ug the global counterparts.

K, =T'KT K =TK,T"
(5.24)
u;=T'u u=Tug
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5.5 NONLINEAR SOLVING ALGORITHMS

The nonlinear system of equations that governs the response of the proposed three-
dimensional macroelement, whose matrix form is reported in equation (5.3), was presented
and thoroughly discussed in the previous parts of this document.

This section aims at solving the aforementioned system of equations through an iterative
algorithm. More specifically, the initial-stiffness Newton-Raphson method currently
implemented in the software TREMURI (Lagomarsino ez a/, 2013) is replaced with its full
version. In this context, the next trial iteration is performed by benefitting from the tangent
stiffness matrix, rather than relying on the elastic stiffness matrix only. Consequently, the
convergence rate of the algorithm is strongly increased.

5.5.1 Implementation of the full Newton-Raphson method

Due to its simplicity and second-order convergence rate, the full Newton-Raphson method
is one of the most used iterative algorithms for solving numerical root-finding problems.
As a matter of fact, it relies on the concept of linear approximation and utilizes the first
derivative of the function to refine the estimation of the solution after each iteration. In
this context, the residual form of the nonlinear system is reported:

R(uiyq) = F&* — F™ (u;,4) (5.25)

where F¢* and F™(u;,,) represent the external and internal generalized force vectors,
whereas the subscripts i and i + 1 are used to differentiate current and next iteration
quantities, respectively.

By expanding equation (5.25) in a Taylor series and by truncating the expansion at the first
order, the following lineatized version of the problem is obtained:

R(uiyy) = R(w;) + VR(w;)(uiyq —u;) = 0 (5-26)
Remodeling the aforementioned equation leads to:
R(u;) = —VR(u)(u;yq —uy) (3:27)
and finally to:

U = u; — [VR(w)]'R(w) = u; + [Kr(u)]'R(u;) (5.28)
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where Kr(u;) = =VR(u;) represents the tangent stiffness matrix, as reported in equation
(5.29), being K the elastic stiffness matrix, whereas VF*(u;) and VF** (u;) ate the gradients
of the nonlinear corrections accounting for cracking and toe-crushing phenomena,
respectively. Furthermore, in the case of Ky (u;) = K, the initial-elastic Newton-Raphson
algorithm is recovered.

K:(u;) = K+ VF*(u;) + VF**(u;) (5.29)

The terms composing the nonlinear gradients are obtained by deriving the corresponding
analytical inelastic corrections with respect to the degrees of freedom of the macroelement.
Additional details are reported in Appendix E and Appendix F for tensile and compressive
nonlinearities, respectively.

5.5.1.1 Numerical validation

The correct implementation of the iterative algorithm is validated by subjecting a three-
dimensional macroelement to a simultaneous cyclic in-plane and out-of-plane shear force
at the top. Cantilever boundary conditions are chosen, whereas a sectional length-to-
thickness ratio L/t =5 and a height h = 2 m are assigned to the geometrical properties.
Additionally, a Young’s modulus of E = 2310 MPa, and a compressive and tensile strength
equal to f,, = 3.6 MPa and f; = 0 MPa, respectively, are assumed for the mechanical
properties.

The load history is chosen to address biaxial cracking and toe-crushing conditions.
Furthermore, the results obtained through a fiber formulation are assumed as a reference,
as the corresponding tangent stiffness matrix can be easily computed referring to the
uniaxial response of each fiber. Additional details are reported in Appendix D.

Figure 5.21 compares the number of iterations per step between the initial-elastic Newton-
Raphson method (labeled “mNR”) and the full Newton-Raphson method (labeled “NR”),
showing a massive reduction in the latter with a consequent saving in computational time.

Similarly, Figure 5.22 highlights the residual trends due to the investigated algorithms at
peak force (whose number of iterations is also identified by the red circle in Figure 5.21),
confirming a second-order convergence rate for the full Newton-Raphson method.
Morteover, fiber and stripe formulations proved equivalent results.
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Figure 5.21: Comparison between initial-elastic (mNR) and full Newton-Raphson (NR) in terms of
number of iterations per step.
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Figure 5.22: Comparison between initial-elastic (mNR) and full Newton-Raphson (NR) methods in
terms of convergence rate at peak force.
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5.5.2 Implementation of an adaptive Newton-Raphson method

Despite the noticeable advantages of the full Newton-Raphson method, it might lack
numerical robustness. In fact, when dealing with constitutive laws characterized by
significant discontinuities (e.g., brittle materials with moderate to high strength) or when
the tangent stiffness matrix is close to being singular, the full Newton-Raphson method
might fail to converge, and a more robust algorithm might be more suitable.

For this reason, an adaptive iterative algorithm capable of achieving both a high
convergence rate and numerical robustness is proposed. In particular, the new method
relies on a modified matrix K* for inverting the system of equations and calculating the
next iteration:

VR(w;) = —K* = —[fK;(u) + (1 — B)K] = —[K + B(VF*(w) + VF* ()]  (5.30)

The solving stiffness matrix K* is thus obtained as a linear combination between the
tangent Ky (u;) and the elastic K stiffness matrices through a scalar coefficient 8. In this
context, 8 is set equal to a unit value at the beginning of each load step, which results in
the full Newton-Raphson method. Thereafter, if convergence problems are experienced,
this coefficient is progressively decreased until reaching a zero value, which consists of
relying only on the elastic stiffness matrix and thus on the initial-elastic Newton-Raphson
method.

The goodness of the convergence is assessed by checking the residual vector trend. In
particular, as long as residual values keep decreasing, there is no need to adjust the method.
On the other hand, when convergence issues arise (i.c., fluctuating or diverging residual
trends), the § parameter is decreased, the problematic-load-step information reset, and the
new attempt with a more tolerant stiffness matrix performed.

It is worth noticing that there is no need to perform the maximum number of iterations
before changing the value of B, since the residual vector trend is monitored as the iterating
algorithm proceeds. Additionally, the switch through the methods is performed only during
a problematic load step, restoring then f = 1 at the end.

5.5.2.1 Numetrical validation

To highlight the effectiveness of the adaptive algorithm, a moderate tensile strength of
ft = 0.23 MPa is assigned to the previously described macroelement. The member is
subjected to an in-plane cyclic shear load-history, and the response after exceeding its elastic
tensile threshold is reported in Figure 5.23 and Figure 5.24.
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It can be seen that the full Newton-Raphson (labelled “NR”) often could not find any
reasonable solution (points not reported in Figure 5.23 and marked with a cross symbol in
Figure 5.24) since the exceeding of the tensile strength leads to a significant discontinuity
in the tangent stiffness matrix in the neighborhood of two consecutive load steps, causing
instability of the algorithm. On the other hand, the adaptive Newton-Raphson (labeled
“aNR”) always achieve the convergence, keeping the number of iterations reasonable,
especially compared to the initial-elastic Newton-Raphson (labeled “mNR?”).
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Figure 5.23: Cyclic response comparison between full (NR) and adaptive Newton-Raphson (aNR).

1E+04
mNR
—aNR
1E+03 3
oo
S0y
Wy
g 1E+02
8 15+
E B=09
3 3 = 0.98
& juny
1E+01
1E+00 - 1
0 250 500 750 1000 1250

Steps [-]

Figure 5.24: Comparison among Newton-Raphson variants in terms of number of iterations per step.
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5.6 CONCLUSIONS

In this section, the macroelement of Penna ez a/. (2014) has been comprehensively reviewed
to highlight limitations and possible improvements aimed at enhancing its capabilities in
capturing the seismic response of a masonry panel. The axial-flexural formulation of the
end-interfaces has been mainly addressed, even though some insights have also been given
into the shear response of the central body. The end-interfaces resort to an analytical
integration to recover the nonlinear behavior starting from the linear elastic response. In
this scenario, analytical nonlinear corrections need to be provided, as each nonlinear
correction is associated with a particular nonlinear stress profile over the cross-section.

Given the high level of nonlinearity that characterizes the resulting stress profile even for
simple constitutive laws, some approximations reported in the original version of the
macroelement were unavoidable. However, an additional nonlinear correction has been
introduced to enrich the capabilities of capturing toe-crushing phenomena. In this context,
the proposed nonlinear corrections proved increased fidelity in the results. Indeed, they
effectively reproduced the stress profile obtained with a fiber-discretized cross-section,
assumed as a reference.

The original no-tension constitutive law has then been replaced with an elasto-fragile
relationship, analytically integrated over the length of the macroelement cross-section. All
the possible stress profile conditions have been explained and visually reported, ensuring a
straightforward computation of the associated nonlinear corrections. Comparisons with a
fiber-discretized cross-section proved not only in-line results, but also higher fidelity in the
stress profile. Indeed, the analytical integration of an elasto-fragile constitutive law proved
numerical exact results, unlike for the fiber formulation, which needs a dense discretization
to replicate the actual stress profile.

Building upon the improved two-dimensional macroelement, the formulation has been
extended to the three-dimensional space. More specifically, the out-of-plane and torsional
degrees of freedom have been added to the formulation, and a stripe discretization has
been introduced along the out-of-plane direction of the macroelement end-interfaces. In
this context, the in-plane nonlinear response of each stripe is computed by adopting the
analytical integration presented for the two-dimensional macroelement. In contrast, the
biaxial sectional response is obtained by integrating the nonlinear corrections of the
individual stripes over the thickness of the end-interfaces. Adopting the stripe formulation
yielded equivalent results to a fiber-discretized cross-section and a third-party software, but
with significant improved computational efficiency due to discretization in the out-of-plane
direction only.
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Numerical iterative methods to solve the system of equations governing the nonlinear
response of the three-dimensional macroelement have then been discussed. In particular,
an adaptive Newton-Raphson algorithm has been formulated to combine the numerical
robustness of the initial-elastic Newton-Raphson with the quadratic convergence rate of
the full Newton-Raphson. Numerical comparisons shown a massive reduction in the
number of iterations when the initial-elastic Newton-Raphson method is replaced with its
full version. Additionally, the adaptive algorithm proved a promising behavior by
consistently achieving convergence in a reasonable number of iterations, offering
significant computational advantages.
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6. IMPLEMENTATION OF STRENGTHENING OR
REINFORCEMENT

6.1 INTRODUCTION

Most historical centers worldwide are constituted by unreinforced masonry (URM)
buildings, often made of natural stones with irregular textures. These constructions are
characterized by a high vulnerability when subjected to seismic events, since some intrinsic
properties of masonty, such as strong heterogeneity and poor tensile strength, play a
predominant role. Furthermore, they have usually been conceived basing on simple
proportioning criteria, without an adequate design to withstand vertical or horizontal loads.

Despite the greatest source of vulnerability of this type of constructions is attributable to
local mechanisms not adequately restrained, insufficient performance might be exhibited
even providing details to ensure a global three-dimensional collaboration between vertical
walls and horizontal diaphragms. Consequently, several retrofitting and design techniques
are available in the literature and building codes, and are being employed by practitioners
to improve the seismic performance of masonty constructions.

This section discusses two improvements on the three-dimensional interface previously
described: the first is related to a design approach involving reinforced masonry, where
vertical steel rebars are coupled with masonry (Figure 6.1a), whereas the second regards
post-applied strengthening surface layers (Figure 6.1b).

It is worth pointing out that the formulations reported in this chapter can be adapted to
simulate a broader range of strengthening or reinforcement layouts. However, the
treatment is oriented to specific elements or materials for better clarity.

3a 3 a

L : L
@ )

Figure 6.1: (a) Steel rebars and (b) surface layers arrangement on a macroelement interface.
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6.2 STEEL REBARS

Steel rebars are implemented following the J2-plasticity theory, which also provide an
optional isotropic and kinematic hardening, causing the yielding surface to expand or shift,
respectively. Figure 6.2 and Figure 6.3 report the influence of the two types of hardening
within the cyclic uniaxial response of a steel rebar with a Young’s modulus Eg = 200 GPa

and a yielding stress o, = 450 MPa.

o, [MPa]

Figure 6.2: Influence of the isotropic hardening parameter Hjon a cyclic response of a steel rebar.

o, [MPaj

Figure 6.3: Influence of the kinematic hardening parameter Hgon a cyclic response of a steel rebar.
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6.2.1 ]J2-plasticity theory

A brief resume of the J2-plasticity formulation is hereafter described, where equation (6.1)
highlights its crucial point, that is, the additive decomposition of the elastic (&) and plastic
(eP) components of the total strain (g,):

0y = Esel = E5(e;— €7) g = &8 +&F (6.1)

being o the uniaxial stress into the rebar, and Ej its Young’s modulus.

When hardening occurs, the value of the yield stress may change. For this reason, plasticity
models use a yield function F for mathematically identifying when yielding happens (6.2),
together with internal damage variables (& and &P for kinematic and isotropic hardening,
respectively) to describe its evolution:

F =%| - 0,(&") t=o0,—«a 6.2)

with o, indicating the uniaxial yielding stress. Equations (6.3) desctibe how the damage
variables are defined; in particular, the kinematic variable a is assumed proportional to the
plastic deformation, whereas the isotropic hardening is considered linear:

54 <P

@ = Hy & &P =y sgn(2) 0,(&P) =0y, + H, & & = |s (6.3)

S S |

where Hy and H; represent the corresponding kinematic and isotropic parameters,
respectively.

Since a positive value of the yield function F is not allowed, calculating the amount of
plastic flow, and how the hardening level evolves such that F =0, is needed. This is
accomplished by solving for a consistency parameter y. However, the whole process of
clastic or elasto-plastic loading and unloading requires a meticulous mathematical
description, which has led researchers to use the Kuhn-Tucker conditions (6.4):

y=0 F<0 yF=0 YE=0 6.4

In order to numerically solve the governing set of equations, the transition from the
continuous to the discrete form is needed, and it is reported in equations (6.5), being A the
corresponding consistency parameter in the discrete framework, and indicating with the
subscript n the quantities related to the previous load step.
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a=Hgel e =€, + Asgn(z) =g +2 (6.5)

S

At the beginning of each load step, it is not known a priori whether the new level of stress
causes yielding or not. For this reason, a predictor-corrector algorithm is employed. In
particular, each new load step is assumed linear elastic (i.e., A =0), the trial stress
(differentiated by the superscript TR) is substituted into the yield condition (6.2), and the
method for the nonlinear corrector is followed if the stress is not admissible (i.e., F > 0).
In the latter case, the A parameter is expressed as:

TR TR
|Z | - O-y

A= —0o ¥
E,+ H, + Hy

(6.6)

In the framework of an iterative algorithm, calculating the consistent tangent stiffness
operator is necessary. In this context, the derivative of the algorithmic stress with respect
to the total strain variable is reported in equation (6.7), being n the tangent hardening
parameter.

6as_< H, + Hg

Cr=——=0———7—
T 9e;, \E;+H, + Hg

)ES —nE, ©7)

6.2.2 Rebars implementation

Rebars are defined as lumped elements along the end-interfaces of the three-dimensional
macroelement, and are available in both fiber and stripe formulations. Moreover, only the
coupled axial-flexural behavior is influenced, without affecting the shear response.

Kinematic compatibility equations grant proper collaboration between the lumped
clements and the end-interfaces, assuming a linear profile for the deformations. In this
context, the axial displacement d,, of the bt lumped element is expressed in terms of the
end-interface degrees of freedom and of its in-plane (e,;) and out-of-plane (e3)
eccentricities with respect to the centroid of the section (Figure 6.1a):

dy =w+ @, e3p— @3 € 6.8)

Given the axial displacement of the individual element, the corresponding stress and strains
are computed, and the predictor-corrector algorithm applied. The strain can be easily
recovered from the axial displacement by dividing by half of the height of the
macroelement. This equivalence is indeed necessary to preserve the correct axial stiffness
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of the element (Penna ¢ al., 2014; Bracchi e a/., 2021), as the formulation concentrates the
axial-flexural response at the end-interfaces of the macroelement.

The three-dimensional contribution of the lumped elements to the end-interfaces is then
derived from equation (6.9) and (6.10), where K7?, K;-’b , F}’b and F}’b represent the local
elastic axial-flexural stiffness matrix and the corresponding nonlinear vector related to the
i and j* end-interfaces, respectively:

ky Ap ky Ap €3 —ky Ap €25
K* =K"= ky Ap ez ky Ap €3 —ky Ap €3 €3 6.9)
b =k, Ape, —kypApeypesp ky Ap €3,
kp Ay dy ), —ky Ap dp
Fb = Z ky Ap dyp €3 Fi* = z kp Ap dpp €3 (6.10)
b \—ky Ay dp,b €2.p b \—ky Ap dp,b €2.p

with k, = 2E;/h and A, indicating the equivalent axial stiffness and the area of the b*"
rebar, e, , and ez, its local coordinates with respect to the centroid of the section (Figure
6.1a), whereas d,,, denotes the plastic displacement corresponding to the plastic strain
reached. The consistent interface-level tangent stiffness matrix is simply obtained by
multiplying the local elastic stiffness matrix by the tangent hardening parameter 1, as
described in equation (6.7). No contribution is given by the nonlinear vectors.

After assembling the interface-level contributions and corresponding nonlinear vectors, the
macroelement-level matrices are obtained by propetly arranging the individual terms, as

described in Appendix D.

6.2.3 Numerical validation

In-plane (Figure 6.4) and out-of-plane (Figure 6.5) cyclic rotations are applied to a section
with a length-to-thickness ratio L/t =5, a Young’s modulus of E = 2310 MPa, a
compressive strength f,, = 3.60 MPa, a constant axial load ¢ = 0.30f,,, and a no-tension
behavior. The responses with and without lumped reinforcement are compared. In
particular, the latter is characterized by four 8-mm-diameter steel rebars with Young’s
modulus E5 = 200 GPa, yielding stress g, = 450 MPa, and no hardening, arranged at the
corners of the section.

The results prove an increase in the lateral strength, whereas the initial stiffness remains
almost unaffected, as expected. Furthermore, as previously discussed, the in-plane
approximations on the masonry response that characterize the stripe formulation play a
role only during the unloading phase of the load history. Consequently, the amount of
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energy dissipation, as well as residual displacements, are slightly influenced (Figure 6.4).
However, it is worth noticing that since in Figure 6.5 a pure out-of-plane loading is applied,
no influence by the approximations of the analytical in-plane integration is experienced.
For this reason, the stripe and the fiber section give the same results.

Additionally, the in-plane and out-of-plane ultimate bending moments are computed using
the software VCA SLU (Gelfi, 2006), showing a satisfactory agreement with the presented

results.
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Figure 6.4: In-plane response of an interface with and without lumped reinforcement.
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Figure 6.5: Out-of-plane response of an interface with and without lumped reinforcement.
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6.3 SURFACE LAYERS

Surface layers are implemented following both an analytical and a fiber formulation,
regardless of the macroelement cross-section discretization. In particular, in the first case,
the stripe discretization previously described is employed. In fact, the assembling algorithm
proposed proved particulatly suitable for adding analytical stripes with different material
properties or behaviors. Consequently, an analytical no-compression brittle-tensile
relationship is adopted (Figure 6.6a). However, the constitutive law developed in the
previous chapters can also be used (Figure 6.6b).

Double-sided, as well as single-sided, applications are available. In the latter case, the static
moment along the 2-axis should also be computed to account for the asymmetry of the
behavior. In fact, the original location of the interface degrees of freedom is no longer
barycentric. Additional information on the complete elastic stiffness matrix of the surface
layers can be found in Appendix C.

It is worth noticing that the shear-strengthening contribution of the additional surface

layers is currently not accounted for, if not in terms of elastic response, but it will be added
to the formulation in the future.

dy

A
A

£ i f

@) ()

Figure 6.6: Surface layers constitutive laws implemented.
6.3.1 Numerical validation

Numerical in-plane and out-of-plane cyclic tests are performed on a section with a length-
to-thickness ratio L/t = 5, a Young’s modulus of E = 2310 MPa, a compressive strength
fm = 3.24 MPa, and a constant axial load o = 0.25f;,,. A double-sided strengthening
configuration is adopted, assuming a 0.06 - mm -thick mesh with Young’s modulus
E; = 200 GPa and tensile strength f; = 1600 MPa, compatible with a FRCM jacketing
intervention. In this context, a no-compression constitutive law is employed. On the
contrary, a no-tension response is assigned to the masonry material.
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The in-plane response shows a stiffness and strength decay as the tensile damage
accumulates, in line with the brittle nature of the constitutive law (Figure 6.7). In fact, as
the tensile strength is progressively exceeded, the results tend to match the unstrengthened
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Figure 6.7: In-plane response of an interface with and without FRCM strengthening.
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Figure 6.8: Out-of-plane response of an interface with and without FRCM strengthening.

configuration curve.

Differently, since the absence of a continuous strengthening along the out-of-plane axis,
after reaching the tensile strength of the most external layer, a significant discontinuity
arises, leading to a sudden drop in strength and stiffness (Figure 6.8). Moreover, as already
highlighted, no influence by the approximations of the analytical in-plane integration is

experienced, since a pure out-of-plane loading is applied.



Degree of Doctor of Philosophy in Design, Modeling, and Simulation in Engineering 139

Ly
Em Nfm = nfm
..... - .- tf p— . S .'.'T.'.'II.'..E R
N ¥n C« ¥n C«
""""" By St e Byt
L | d t
! >
r
........ - & e
; £ fe L & fe
totof L

@) ()

Figure 6.9: Assumptions on the stress profile for an (a) in-plane and an (b) out-of-plane response.

The Italian guidelines (CNR, 2018) provide design provisions to evaluate the ultimate
bending moment (M,,) of a masonty panel strengthened with FRCM jacketing applications.
More specifically, they provide different analytical formulations basing upon the
constitutive law assumed for the masonry material. In this context, the common equivalent
rectangular stress-block can be replaced with a more refines relationships accounting for
an initial elastic branch. Conversely, a no-compression elasto-fragile behavior in tension is
assumed for the FRCM mesh, thus ignoring the any mortar contribution.

In the following, the formulae consistent with the stress-block hypothesis are reported, the
ultimate in-plane and out-of-plane bending moments are computed, and the results are
compared with the previous numerical outcomes. Figure 6.9 reports the assumptions on
the stress profile for an in-plane (Figure 6.9a) and an out-of-plane (Figure 6.9b) loading.

The CNR (2018) provide different relationships depending upon which material attains its
ultimate deformation first. The neutral axis should be computed following both the
formulations. Then, an a posteriori check on the admissible deformations needs to be
performed to ensure the correct assumption.

i, In case the ultimate deformation of masonty in compression &y, is attained before
reaching the ultimate deformation of the FRCM mesh in tension &g, the neutral
axis ¥, and the corresponding ultimate in-plane bending moment M, are
computed according to equations (6.11) and (6.12):

Znﬁfmt_Efthgmu

P (6.11)

n
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Similatly, equations (6.13) and (6.14) refer to an out-of-plane loading:
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where dp is the distance between the compressed edge of the masonry section and
the fiber of the FRCM mesh furthest from it, L; is the length of the layers, N is
the axial load applied, whereas 7 and 8 are the rectangular stress-block factors for
masonty in compression. Eventually, t,; = 2tf, with t; the thickness of the
individual layer, as double-sided application.

ii.  In case the ultimate deformation of the FRCM mesh in tension &, is attained
before reaching the ultimate deformation of masonty in compression &y,, the
neutral axis y, and the ultimate bending moment M, are computed following
equations (6.15) and (6.16) for an in-plane loading condition:

=3 NP fmt+Estyyep, ©.15)

mip = 12 m b f’" Y LBy + (4 y )sfu E; ty; (4dy — 3L + 2y,,) (6.16)
and following equations (6.17) and (6.18) for an out-of-plane loading:

yoor = ¢, + t’;f]fmgf u by ©17)

ugor =TI (o atprty gy ]+ T ) 6

Since the constitutive laws implemented in the proposed macroelement rely on a perfectly
plastic response in compression without any ductility limitation for the masonry material,
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the maximum values of the in-plane and out-of-plane bending moment reported in Figure
6.7 and Figure 6.8 should be compared with the result provided through equation (6.16)
and (6.18). However, an a posteriori check is performed to individuate the bending moment
associated with the attainment of the ultimate admissible deformation of the masonry
material, assumed &, = 0.35%, and the results are compared to equations (6.12) and

(6.14).
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Figure 6.10: In-plane response: comparison between stripe formulation and CNR (2018) limit state
predictions.
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Figure 6.11: Out-of-plane response: comparison between stripe formulation and CNR (2018) limit state
predictions.
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In this context, Figure 6.10 and Figure 6.11 depict the results obtained by adopting the
stripe formulation, and highlight the limit states associated with the crushing of the
masonry and the fracture of the strengthening mesh. The comparison with the CNR (2018)
predictions is also reported. In particular, a value f = 0.8 is assumed for the depth of the
stress-block idealization, whereas the ) coefficient is chosen equal to a unit value to be
consistent with the compressive strength assigned to the numerical model. Eventually,
dr = Ly = L, as the FRCM strengthening is applied on the entire length of the section.

The numerical outcomes satisfactory match with the CNR (2018) predictions. In fact, the
stress profiles assumed by the Italian guidelines closely reflect the constitutive laws assigned
to the numerical model.

6.4 BUILDING-PHASE SEQUENCE

As well-known and already discussed, there are several reasons why a masonry building
may need to be retrofitted, being the improvement of the seismic performance the most
common. However, when assessing a retrofitted construction, accounting for the building
phase sequence might be a discriminant in predicting the lateral response and consequent
damage pattern. As a matter of fact, some retrofitting systems need to be applied to the
already-statically loaded structure (e.g., jacketing or near-surface-mounted bars
applications). For this reason, surface layers are endowed with an additional variable acting
as a triggering point.

The selective activation is hence accomplished by calculating the strengthening
contribution using a corrected global displacement vector. The latter is obtained by
subtracting the global displacement vector resulting from the step prior to the surface layer
activation Uy, from the current global displacement vector u. Eventually, the governing
nonlinear system of equations can be summarized as reported in equation (6.19):

Fint(w) = Fitu) + Fi ) + Fi3t (u,uy) 19

being Fitt(u), F'(uw), and F&'(u,u, ) the internal force vectors related to masonry,
rebars, and surface layers contributions, respectively reported in equation (6.20), where K.,
and F,,(w) indicate the elastic stiffness matrix and the corresponding nonlinear plastic
vector related to the rebars, whereas K, Fiy(u, ubf), and F3j(u, ubf) represent the elastic
stiffness matrix and the nonlinear correction vectors accounting for the analytical tensile
and compressive behaviors of the surface layers. A similar procedure could be applied to
lumped elements, but it is not discussed in this thesis.
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I{Fﬁ:{‘(u) = Ku+ F*(u) + F*(u)

{ Fo'(uw) =K, u+ Fpp(u) (6.20)
|

kF?z"(u, uyp) = Ko (u—wyp) + Fyy(w,uyp) + Fi(w,uyp)

6.5 CONCLUSIONS

Building upon the three-dimensional end-interface formulation established in Chapter 5,
this section presented further enhancements to include lumped and distributed
reinforcements. The out-of-plane discretization effectively facilitated the introduction of
additional stripes with different material properties, thereby explicitly simulating surface
strengthening applications. Lumped elements have also been included to enhance versatility
and potentially address reinforced masonry design approaches. A detailed description of
the uniaxial J2-plasticity theory has been provided at the beginning, as it served as the
foundation for the constitutive law governing these elements. On the other hand, an on-
purpose eclasto-fragile no-compression constitutive law, analytically integrated over the
length of the additional stripes, has been formulated. In fact, strengthening applications
usually resort to material with significant tensile strength to overcome the corresponding
significant deficiency of unreinforced masonry.

Numerical comparison with third-patty software and analytical formulae proposed by the
Italian guidelines promoted the features developed in this section as a feasible approach to
simulate strengthened and reinforced masonry elements. Furthermore, numerical results
have shown no tangible difference when adopting a fiber discretization of the additional
layers, highlighting the attractiveness of the computationally efficient stripe discretization.

Finally, insights have been given into staged construction modeling. This technique enables
the definition of a sequence of construction or application phases, which is crucial to
effectively simulate the stress flow into the elements. Indeed, strengthening layers are
typically applied to existing structures, thus to already-statically loaded or even damaged
structures, and this has been numerically accomplished by introducing a triggering variable
and by computing the strengthening contribution through a corrected displacement vector.
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ABSTRACT

The poor performance often exhibited by historical masonry buildings in seismic events
has prompted the development of strengthening interventions to improve the response of
existing structures on one hand, and the adoption of reinforced and confined masonty
systems for new buildings on the other hand. Several retrofit solutions consist of adding
materials with significant tensile strength to the masonry walls, for example by jacketing
with fabric- or composite-reinforced mortars, by inserting near-surface-mounted bars, or
by connecting steel or timber exoskeletons. Similatly, reinforced and confined masonty
elements incorporate steel or composite bars directly within the masonry or into reinforced
concrete ties cast against it.

This paper discusses a new three-dimensional macroelement, developed to explicitly model
the effects of tensile reinforcement on both in-plane and out-of-plane axial-flexural
responses; this will enhance the accuracy of nonlinear global seis-mic analyses compared
to modeling the in-plane response only and to adopting empirical correction coefficients
for masonry mechanical properties. The formulaton encompasses surface layers and
lumped fibers, which enables representing various strengthening and reinforcing layouts.
Adopting an axial-flexural behavior integrated over stripes can reduce the computational
effort compared to a complete cross-section fiber discretization. The nonlinear shear
response of the retrofit material can be also incorporated in the macroelement but is not
discussed in this paper.

Keywords: nonlinear macroelement, strengthening interventions, quasi-static cyclic shear-
compression tests, stone masonry, CRM jacketing.
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7.1 INTRODUCTION

Unreinforced masonry (URM) buildings are one of the prevailing construction typologies
populating historical centers worldwide. However, the well-known seismic vulnerability
that characterizes these structures has prompted the development of effective, efficient,
and sustainable strengthening solutions to enhance their seismic performance in terms of
lateral strength and displacement capacity.

Several in-plane and out-of-plane retrofit systems were investigated over the last few
decades. A pioneering strengthening intervention involved jacketing with the so-called
reinforced plaster, in which welded-wire steel meshes were embedded in concrete layers
directly applied to one or both sides of the masonry wall. However, drawbacks related to
steel corrosion and concrete chemical compatibility with historical materials encouraged
the exploration of alternative solutions.

Technological advancements resulted in jacketing with Fiber-Reinforced Polymer (FRP)
stripes or sheets. The reduced thicknesses of these materials allowed also to overcome the
significant increase in weight and stiffness associated with reinforced plaster. However,
their direct application to the masonry substrate is now discouraged, as the epoxy matrix

might compromise the preservation and durability of historical structures (Papanicolaou ez
al., 2008; Valluzzi et al., 2014).

More recent developments involve jacketing with Composite-Reinforced Mortars (CRM)
or Fabric-Reinforced Cementitious Matrices (FRCM), in which an FRP mesh or a flexible
fabric is embedded in appropriate inorganic matrices to ensure chemical compatibility with
the existing masonty substrate (Prota ¢ al., (20006); Gattesco ef al., 2015; Del Zoppo e al.,
(2019); Guerrini e al, 2021a). Another retrofit solution, initially developed for
strengthening reinforced concrete elements and then extended to URM walls, consists of
Near-Surface-Mounted (NSM) reinforcement (Kashani e¢f al, 2023), where FRP bars are
embedded in grooves or slots cut into the masonry surface.

Despite these advancements, national and international building codes lack standardized
prescriptions for modeling and evaluating the effectiveness of most of these strengthening
intervention on existing masonty structures, merely providing empirical correction
coefficients for the masonry mechanical properties. For this reason, this paper discusses a
novel three-dimensional macroelement formulation developed to explicitly capture the in-
plane and out-of-plane axial-flexural influence of a strengthening intervention, and the
response of newly built reinforced or confined masonry.

The formulation consists of an improved version of the macroelement proposed by
Brencich e al. (1998), Penna ef al. (2014), and Bracchi e¢f a/. (2021), laying the basis for an
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effective and efficient modeling of a strengthened masonry panel. In fact, the original in-
plane axial-flexural formulation is first extended to the three-dimensional space, and then
further enhanced to incorporate additional reinforcement. Furthermore, the formulation
provides both a stripe and a fiber discretization of the cross-section: the first approach
favors computational efficiency, as each stripe is analytically integrated along its length,
while the second one allows the adoption of more refined constitutive laws.

Eventually, the capabilities of the proposed formulation are proved through the simulation
of an experimental quasi-static cyclic shear-compression test involving a stone masonty
pier retrofitted with a CRM system (Guerrini e# al., 2023). The shear strengthening effect
of CRM is still modeled through an improved masonty tensile strength, as the specimen
did not experience this type of failure; however, its contribution will be explicitly
incorporated within the shear formulation in the future.

7.2 THREE-DIMENSIONAL MACROELEMENT FORMULATION

Among other numerical formulations (Magenes and Della Fontana, 1998; Raka ez a/, 2015;
Panto ez al., 2017; Panto et al., 2018), the macroelement proposed by Penna ¢z a/. (2014) has
been widely adopted and validated in the equivalent-frame modeling of URM structures
over the years. In fact, its efficient formulation allows to reproduce the main in-plane failure
mechanisms of a masonry panel with a limited number of degrees of freedom.
Consequently, it significantly reduces the computational effort, making it suitable for
nonlinear static and dynamic analyses of URM buildings.

The macroelement by Penna ez a/. (2014) comprises three parts (Figure 7.1a): a central body,
susceptible to shear deformations only, and two end-interfaces, where the coupled axial-
flexural response is concentrated (Figure 7.1b,c,d). In particular, the nonlinear axial-flexural
behavior is retrieved through an analytical integration, allowing to capture two-dimensional
phenomena without needing to numerically integrate a fiber section. Additionally, shear
deformations are not allowed in the interfaces, making shear and flexural failure
mechanisms kinematically uncoupled. The original macroelement formulation is limited to
the in-plane response, suppressing the torsional degree of freedom ¢, and the out-of-plane
degrees of freedom ¢, and vs.

This macroelement has been widely investigated over the past, overcoming some of its
limitations and enhancing its capabilities (Bracchi e a/, 2021; Bracchi and Penna, 2021).
However, the formulation has always been restricted to the in-plane response of
homogeneous material elements. For this reason, a novel three-dimensional version of the
Penna ef al. (2014) macroelement was developed, adding the torsional and out-of-plane
degrees of freedom (Figure 7.1a,b).
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Figure 7.1: Three-dimensional macroelement: (a) node and central-body degrees of freedom, (b) end-
interface degrees of freedom, (c) stripe discretization, and (d) fiber discretization of the
cross-section.

To account for the biaxial flexural response, the end-interfaces of the macroelement are
discretized in a series of homogeneous stripes (Figure 7.1¢), starting from the work carried
out by Vanin e# a/. (2020). Furthermore, assigning different mechanical properties to each
individual stripes allows for the explicit incorporation of different material layers through
the thickness of the macroelement.

The analytically integrated formulation is still adopted for the in-plane response of each
stripe (Penna e al., 2014). Instead, the combined sectional in-plane and out-of-plane
behavior is computed by numerically integrating all stripe contributions over the thickness
of the macroelement, accounting for their out-of-plane eccentricity e; with respect to the
centroid of the cross-section. As a result, a computationally efficient formulation is
preserved, as cross-section discretization and numerical integration involve the out-of-
plane direction only.



Degree of Doctor of Philosophy in Design, Modeling, and Simulation in Engineering 149

Kinematic compatibility equations enforce collaboration of the individual stripes, assuming
a linear profile for the deformations. In this context, the vertical displacement w,, and the
in-plane rotation @3, of the n*"* stripe are defined according to equation (7.1):

Wp =W+ @y e3n P3n = @3 ()

where the interface degrees of freedom w, ¢,, and @3 are reported in Figure 7.1b,
representing the relative generalized displacements between the node and the central body.

Despite the potentialities of the stripe formulation, the analytical integration restricts the
use to simple constitutive laws to represent the axial-flexural response of a masonty
member, such as the one proposed by Penna ez a/. (2014). A no-tension response captures
the low cracking resistance of the cross-section, whereas an elastic-perfectly plastic
behavior in compression addresses crushing phenomena. The progressive stiffness decay
of the material due to cyclic loadings is simulated through a recentering unloading branch
(Figure 7.2a), which might not adequately capture the residual displacements,
underestimating damage accumulation and hysteretic energy dissipation.

To overcome this limitation, the interfaces of the macroelement also implement a full-fiber
discretization (Figure 7.1d), granting more flexibility. Moreover, Bracchi et al (2021)
proposed an unloading branch parallel to the initial-elastic one (Figure 7.2b), which is
currently available only with the fiber formulation but will be incorporated in the stripe
formulation in the future.

Similatly to the original Penna e# al. (2014), the shear and torsional response of the
macroelement are embedded in the central body. In this context, the first is governed by
the constitutive law obtained from the macroscopic integration of the Gambarotta and
Lagomarsino (1997a,b) continuum model for masonty, considered completely uncoupled
along the two main horizontal directions, whereas the second relies on a linear elastic
response.

A
j=57'Y

Figure 7.2: Constitutive laws for masonry at the end interfaces of the macroelement: (a) Penna et al.
(2014) and (b) Bracchi et al. (2021).
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7.3 IMPLEMENTATION OF STRENGTHENING OR REINFORCEMENT

The stripe formulation allows a straightforward implementation of additional layers with
different mechanical properties and constitutive relationships, suitable to explicitly model
surface strengthening interventions, such as jacketing (Figure 7.3a). Additionally, it can be
easily coupled with lumped fibers, representing NSM applications or embedded rebars, also
enabling the explicit simulation of reinforced and confined masonry (Figure 7.3b).

3a 3a

L : L
@ )

Figure 7.3: Additional strengthening/reinforcement at the end interfaces: (a) sutface layers and (b)
lumped elements.

7.3.1 Surface layers

As previously discussed, jacketing applications consist of additional layers with significant
tensile strength (and sometimes stiffness) applied to one side or to both sides of the
masonry surface. Similatly, the numerical axial-flexural contribution is accounted for by
defining additional stripes at the macroelement interfaces, whose vertical displacements
and in-plane rotations are obtained following compatibility equations (7.1). The shear
contribution of the additional layers is currently not included, but will be added in the future
to the central-body response.

Surface layers are available with both an analytically integrated and a discretized fiber
formulation, regardless of the masonry cross-section discretization (Figure 7.3a). In the first
case, a no-compression elasto-fragile tensile constitutive law is analytically integrated over
the length of the additional stripes (Figure 7.4a). Moreover, their compressive response can
also be incorporated with the original elastic-perfectly plastic recentering model (Penna ef
al., 2014), leading to the relationship reported in Figure 7.4b.



Degree of Doctor of Philosophy in Design, Modeling, and Simulation in Engineering 151

I ;
d: de |/s
iR d i de
t 1
4 i 1
ov oY

@) (b)

Figure 7.4: Elasto-fragile tensile constitutive laws for strengthening/reinforcement at the end
interfaces: (a) no-compression and (b) elastic-perfectly plastic recentering in
compression.

On the other side, as for the cross-section of the masonry, a full-fiber discretization of the
additional layers grants more flexibility in choosing the stress-strain relationship. The same
constitutive laws reported in Figure 7.4 can be adopted for a direct comparison between
fiber and stripe formulations.

7.3.2 Lumped reinforcement

Flexural strengthening with NSM bars or reinforcement with steel rebars embedded into
the masonry can be simulated through additional lumped elements with a uniaxial stress-
strain relationship.

Kinematic compatibility equations grant proper collaboration of the lumped reinforcement
with the interfaces, imposing their axial displacement d;, as a function of the interface
degrees of freedom and of the reinforcement in-plane (e,) and out-of-plane (e3)
eccentricities with respect to the centroid of the section (equation (7.2), Figure 7.1b and
Figure 7.3b):

dy =w+ @, e3p— @3 € (72)

For steel rebars an elastic-plastic behavior is implemented. In this context, the constitutive
law is formulated following the J2-plasticity theory, which provides an optional isotropic
and kinematic hardening, causing the yielding domain to expand (Figure 7.5a) or shift
(Figure 7.5b), respectively.

For brittle composite reinforcing or NSM bars, the constitutive law shown in Figure 7.4a
may be more suitable, neglecting their contribution in compression.
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Figure 7.5: Elasto-plastic constitutive laws for strengthening/reinforcement at the end interfaces: (a)
isotropic and (b) kinematic hardening.

7.4 VALIDATION AGAINST EXPERIMENTAL RESULTS

The macroelement proposed in this paper is used to simulate a strengthened masonry pier
subjected to a quasi-static cyclic shear-compression test, which experienced a rocking
failure mechanism. The experimental program was conducted at the Department of Civil
Engineering and Architecture of the University of Pavia and at the EUCENTRE
Foundation facilities in Pavia, Italy (Guerrini e al., 2023).

7.4.1 Specimen and testing protocol

The specimen consisted in a masonry pier bounded by two windows (Figure 7.6). As a
result, portions of spandrels above and below the openings were also included in the
specimen. Timber lintels supported the upper spandrels and were fastened to the top
reinforced concrete (RC) spreader beam. On the other hand, the bottom spandrels were
clamped to the RC foundation. The pier had cross-section of 1.2 X 0.3 m and a clear height
of 1.5 m, whereas spandrels had cross-section of 0.5 x 0.3 m and extended 0.85 m on each
side of the pier.

The pier was strengthened on both sides with CRM consisting of GFRP meshes within a
M15-class hydraulic lime mortar. Vertical GFRP bars (weft) were spaced at 120 mm and
hotizontal bars (warp) at 80 mm, for a total mesh weight of 400 g/m?. The nominal
thickness of 30 mm could not remain constant throughout the wall, to obtain a flat finish
over the stone masonry irregular surface. The CRM layers were mechanically connected to
the wall by a total of 18 helicoidal steel bars passing through both masonry leaves, 8 of
which were located within the pier.
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Figure 7.6: Front and lateral view of the experimental specimen. Units of cm.

The masonry mechanical properties were characterized through an extensive experimental
campaign involving vertical and diagonal compression tests on masonry wallettes (Guerrini
et al., 2021b). Consequently, compressive and tensile strengths of 1.52 MPa and 0.14 MPa
were obtained, whereas values of 3.45 GPa and 1.32 GPa were derived for the Young’s and
shear moduli. Finally, an average mass per unit volume of 1880 kg/m?* was assumed.

The mechanical properties of the GFRP meshes were provided by the manufacturer,
resulting in a Young’s modulus of 61 GPa and in a tensile strength of 74 kN/m and
86 kN /m in the weft (vertical) and warp (horizontal) direction, respectively. The M15-class
mortar was characterized by compressive and tensile strengths of 18.4 MPa and 4.2 MPa,
respectively (Guertini ez al., 2021b).

The specimen was subjected to a horizontal quasi-static shear history with increasing target
displacements through a horizontal actuator, while two actuators above the specimen
maintained the axial load constant and prevented the in-plane rotation of the spreader
beam, resulting in double-fix boundary conditions for the pier. In this context, an axial
force equal to 25% of the unconfined compressive strength was set at the base of the pier,
whereas three cycles were imposed at each target displacement to investigate stiffness and
strength degradation.

7.4.2 Numerical model and assumptions

Only the pier is modeled with its actual dimensions, in double-fix boundary conditions.
The longitudinal bars of the GFRP mesh are modeled explicitly in the axial-flexural
interface, while the shear strength enhancement is implicitly considered by increasing the
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masonry tensile strength. The CRM mortar contribution is neglected, assuming that the
effect of the retrofit is governed by the GFRP mesh. The properties assigned to the material
models reflect the values obtained after the characterization campaign or those provided
by the manufacturer, with some modifications.

For instance, the masonry compressive strength is first amplified by 1.33, to simulate the
confining effect of the CRM steel connectors and obtain the experimental lateral strength
through analytical formulations (CNR, 2018), adapted from FRCM to CRM strengthening.
Then, it is multiplied by 0.85, consistently with the stress-block approach of the same
formulation: in fact, an elastic-perfectly plastic relationship cannot reproduce the post-peak
degradation of the actual stress-strain behavior. Therefore, the masonry compressive
strength in the model is 1.7 MPa.

Taking advantage of the fiber discretization, a no-tension elastic- perfectly plastic behavior
in compression with parallel-elastic unloading (Figure 7.2b), currently unavailable within
the stripe formulation, is assigned to the masonry material to propetly account for energy
dissipation and residual displacements duting cyclic loadings. On the other hand, the
surface layers implement a no-compression elasto-fragile response (Figure 7.4a).

Instead, the masonry tensile strength to be used with the Turnsek-Sheppard (1980) shear
criterion is magnified by 2.75, conforming to the results of diagonal compression tests on
retrofitted wallettes (Guerrini e a/, 2021b). Parameters Gc¢, = 2 and f = 0.4 are assigned
to the Gambarotta-Lagomarsino (1997a,b) shear model.

7.4.3 Numerical results and comparison

The axial load level and horizontal displacement history ate applied to the numerical model
to reproduce the testing protocol, in both amplitude and number of cycles. The
displacement applied at the pier top, net of any setup sliding or rotation, was recorded
during the test and is taken as input for the numerical analyses. Consequently, the
numerical-to-experimental comparison can be directly performed in terms of hysteretic
response.

Results are presented in terms of drift ratio, namely the ratio between the lateral
displacement evaluated at the top of the pier and its clear height, and base shear coefficient
(BSC), computed as the shear restoring force divided by the axial load applied. Figure 7.7
depicts the numerical response, showing a good agreement with the experimental behavior
not only in terms of lateral stiffness and strength (average error of about 5.25%), but also
looking at strength decay, energy dissipation, and failure mode with crushing of the
masonty followed by GFRP mesh fracture around 1.12% drift ratio.
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Figure 7.7: Numerical hysteretic response considering three cycles per target displacement increment.
Masonry material with parallel unloading in compression (Figure 7.2b).
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Figure 7.8: Numerical hysteretic response considering one cycle per target displacement increment.
Masonry material with parallel unloading in compression (Figure 7.2b).

Figure 7.8 reports the outcomes of the same numerical model when subjected to a single
cycle, rather than three cycles, per lateral displacement increment. Reducing the number of
cycles results in less compressive damage accumulated by the model, as expected.
Consequently, a higher lateral strength is predicted (average error of about 12.57%),
associated with tensile failure of the strengthening layers under a smaller drift ratio of
0.65%, before experiencing strength degradation. However, the residual strength at
maximum displacement shows a good agreement with the experimental results.
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A similar response is obtained using a constitutive law unable to propetly account for
damage accumulation (Figure 7.9). In this case, a no-tension, elastic-perfectly plastic model
in compression with recentering unloading is assigned to the masonry material (Figure
7.2a),leading again to an overestimation of the lateral strength of the specimen and allowing
the GFRP mesh to reach its full capacity, before undergoing a strength decay and
approaching the experimental residual strength. It is worth noticing that no appreciable
influence is observed with the number of cycles per displacement increment, as damage is
only minimally accumulated on the compressed masonry.
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Figure 7.9: Numerical hysteretic responses considering three cycles per target displacement
increment and different sectional formulations. Masonry material with recentering
unloading in compression (Figure 7.2a).
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The strength overestimation can also be found in the case of a monotonic analysis (Figure
7.10). In this figure, the points corresponding to the ultimate GFRP strain on the extreme
tensile fiber, and to 0.35% compressive strain on the most compressed fiber (usually taken
as the ultimate strain for masonry) are shown, confirming that the actual lateral strength
was governed by masonry crushing. However, the elasto-plastic stress-strain relationship
for masonry is unlimited. Consequently, it cannot capture this behavior and results in failure
of the GFRP mesh.

Figure 7.9 also compares the cyclic responses with stripe and fiber formulations for the
end-interfaces. In the first case, the masonry portion of the cross-section is not discretized,
as no out-of-plane behavior needs to be captured. Further stripes are instead added to
account for the CRM application. On the other hand, the fiber formulation provides a full-
fiber discretization of the whole end-interface, involving both masonry and additional
layers. Figure 7.9 shows a satisfactory agreement between the two numerical formulations.
Small discrepancies arise only in the masonry contribution when the load is reversed. In
fact, as widely investigated by Penna ef a/ (2014), the analytical integration is based on an
approximated linearization of the stress profile on the axial-flexural interface, while the
fiber discretization reproduces the actual stress profile.

7.5 CONCLUSIONS

This paper discusses a novel three-dimensional macroelement formulation developed to
explicitly account for the in-plane and out-of-plane responses of masonry walls and for the
influence of strengthening or reinforcing materials.

The formulation builds upon a well-established macroelement for the in-plane simulation
of masonry elements, and is advanced to include the out-of-plane flexural contribution
through a stripe discretization of the end-interfaces. In this context, the in-plane response
of the individual stripes is modeled by analytically integrating the stress distribution to
retrieve their nonlinear axial-flexural behavior. Subsequently, the combined sectional in-
plane and out-of-plane response is computed by numerically integrating the single stripe
contributions over the thickness of the cross-section.

The proposed formulation significantly reduces the computational effort of the analysis
compared to a complete fiber discretization of the end-interfaces, as the discretization is
required along the out-of-plane direction only. However, analytical integration is limited to
simple constitutive laws (with minimal approximations). For this reason, the novel
macroelement also provides a fiber option, enabling the implementation of more refined
stress-strain relationships.
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The three-dimensional formulation is well suited for the explicit modeling of flexural
strengthening and reinforcement solutions. In fact, additional surface layers or lumped bars
can be easily incorporated into the end-interfaces. Kinematic relationships expressed in
terms of the macroelement degrees of freedom are enforced on the additional elements to
grant proper collaboration with the masonty stripes or fibers end-interfaces.

The proposed macroelement is validated against the experimental results from a quasi-
static cyclic shear-compression test on a masonry pier strengthened with CRM. The
numerical response shows a good agreement with the experimental hysteresis cycles when
the masonry material is given an elasto-plastic constitutive law in compression with
unloading parallel to the elastic branch (currently available only with the fiber
discretization), provided the pier is subjected to three cycles per lateral displacement
increment as in the experiment.

Moreover, the model correctly overestimates the lateral strength when subjected to a single
cycle per increment, because less damage is accumulated on the compressed masonry. A
similar strength overestimation is experienced when a constitutive relationship with
recentering unloading is assigned to the masonry material, closely reflecting the response
after a monotonic analysis, because in these cases damage cannot be adequately
accumulated in compression.

It can be noted that stripe and fiber discretizations of the axial-flexural interfaces lead to
very similar cyclic responses, promoting the stripe formulation as a computationally
efficient and effective strategy to numerically model strengthened and reinforced masonry
elements. For this reason, an analytically integrated formulation will be added in the future,
based on the parallel-unloading elasto-plastic masonry model in compression. Additionally,
a more explicit approach to incorporate shear strengthening or reinforcement will be added
to the shear formulation of the macroelement.
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8. CONCLUSIONS AND FUTURE DEVELOPMENTS

8.1 SUMMARY AND CONCLUSIONS

In this thesis, the equivalent frame modeling (EFM) of masonry structures was thoroughly
investigated as an approach that ensures a reasonable compromise between accuracy of
results and computational effort. The EFM builds upon the identification of piers and
spandrels and their idealization through macroelements; consequently, it addresses the
smeared response of the masonry panels rather than focusing on the local behavior of the
masonry material. This leads to a simplified analysis, with reduced computational effort and
easier mechanical property calibration compared to refined approaches such as the finite
element method (FEM) or the discrete element method (DEM). As a consequence, this
strategy is viable for the static and dynamic analysis of masonry buildings in the ordinary
engineering practice.

This dissertation aimed at extending the modeling capabilities of the EFM while
maintaining its computational efficiency and ease of use. First, the out-of-plane response
of walls was incorporated into the equivalent frame modeling strategy already implemented
in the software TREMURI. Then, the possibility of accounting for flexural strengthening
of existing masonry structures or longitudinal reinforcement in new construction was also
investigated. In both cases, a material with significant tensile strength (and sometimes
stiffness) applied to or embedded into the structural members, to overcome one of the
main deficiencies of the masonry material, needs to be propetly represented in the EFM
elements.

The main findings of this work are summarized in the following paragraphs.

- In Chapter 3, the effectiveness of different retrofit solutions for stone masonty
buildings with flexible diaphragms was investigated by means of shake-table tests.
Nonlinear static analyses were performed on the two retrofitted prototypes by
adopting the equivalent frame modeling strategy with nonlinear macroelements
implemented in the software TREMURI. Numerical results in terms of capacity
curves and damage patterns showed a satisfactory agreement with the experimental
outcomes of the two investigated buildings. Additionally, parametric analyses were
carried out to investigate the effect of masonry strengthening interventions,
simulated by improving the mechanical properties of the masonry material through
correction coefficients. Overall, the experimental and numerical study confirmed
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the significant benefit achieved by improving the wall-to-diaphragm connections,
as out-of-plane overturning mechanisms were prevented. Also, the masonry
strengthening interventions induced positive effects, with an increase in the lateral
strength associated with a change of failure mechanism from shear- to flexure-
dominated.

In Chapter 4, the experimental response of a stone masonry building aggregate
with flexible diaphragms subjected to shake-table tests was investigated. The
numerical simulation was carried out through nonlinear static analyses on an
equivalent frame model with nonlinear macroelements implemented in the
software TREMURI. An unconventional strategy was adopted to account for the
out-of-plane behavior of the walls arranged orthogonally to the shaking direction.
The work demonstrated the validity of the common modeling assumption for the
seismic analysis of masonry structures, as neglecting the out-of-plane wall response
did not significantly influence the reliability of the results, as long as local collapse
mechanisms were not activated. Additionally, single-wall models showed
reasonable results, aligning with those extracted from the conventional three-
dimensional model.

In Chapter 5 the two-dimensional formulation of the macroelement employed in
Chapter 3 and Chapter 4 was improved. Additional nonlinear corrections and
analytically integrated elasto-fragile tensile response under flexure yielded
satisfactory results, aligning with those provided by a fiber discretization of the
end-interfaces. Out-of-plane and torsional degrees of freedom were introduced in
the macroelement to allow a full three-dimensional formulation. Particular
attention was paid to biaxial bending, through a partial discretization of the end-
interfaces in longitudinal stripes with integral axial-flexural formulations.
Numerical comparisons between analytically integrated and fiber-discretized
sectional responses showed negligible differences under bending and axial load.
Furthermore, comparisons with an independent software proved the reliability of
the results obtained with the three-dimensional macroelement. Finally, an adaptive
iterative algorithm, proposed to achieve a high convergence rate and numerical
robustness, showed promising results.

In Chapter 6, the versatility of the proposed end-interface stripe formulation, and
the analytical tensile strength introduced, allowed and proved suitable for modeling
flexural strengthening or reinforcement solutions. Lumped rebars and surface
layers were simulated, ensuring proper collaboration with the end-interfaces by
enforcing kinematic constraints in terms of end-interface degrees of freedom. An
analytical no-compression, elasto-fragile tensile relationship was assigned to the
surface layers, whereas the lumped elements were endowed with an elasto-plastic
response, deduced from the J2 plasticity theory. Comparisons with a third-party
software and with analytical equations resulted in satisfactory results in terms of
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uniaxial flexural strength. Additionally, surface layers were simulated with both
analytical and fiber formulations, showing negligible differences in the response.

- In Chapter 7, the macroelement proposed in Chapter 5 and Chapter 6 was
employed to simulate an experimental quasi-static cyclic shear-compression test
on a masonty pier strengthened on both sides with composite-reinforced mortar
(CRM) application. The numerical response showed a good agreement with the
experimental hysteresis cycles when the masonry material is assigned an elasto-
plastic constitutive law in compression with unloading parallel to the elastic
branch, currently requiring a fiber discretization. On the other hand, a recentering
unloading branch did not allow for proper damage accumulation, thus
overestimating the lateral strength; in this context, stripe and fiber discretization
showed equivalent results. Overall, the macroelement was satisfactorily able to
capture elastic stiffness, lateral strength, strength decay, and energy dissipation,
promoting the proposed formulation as a computationally efficient and effective
strategy to numerically model strengthened and reinforced masonry elements.

8.2 FUTURE DEVELOPMENTS

The proposed macroelement opens a wide range of future developments. An elasto-plastic
response with unloading parallel to the elastic branch will be added to the end-interface
formulation for masonry in compression, again resorting to an analytical integration over
the length of each stripe for computational efficiency. This stress-strain relationship has
been demonstrated to better account for energy dissipation and residual displacements.
Additionally, taking advantage of the versatility of the fiber formulation, more complex
constitutive laws could be associated with the end-interfaces, as well as with the additional
lumped elements.

The shear behavior of the macroelement will also be addressed. Currently, the central body
adopts the nonlinear shear formulation proposed in the original two-dimensional
macroelement, without coupling in the two orthogonal directions. However, three-
dimensional shear strength domains can be provided. Additionally, the nonlinear shear
response of the strengthening and reinforcement solutions can also be accounted for. In
particular, the contribution of shear reinforcement could be introduced through an
additional cohesion, however preserved in the damage configuration. Therefore, the
proposed macroelement may become suitable for accurately modeling other structural
typologies, such as reinforced concrete members.

The ability of the three-dimensional macroelement to capture the cyclic biaxial flexural and
shear responses will be validated against more refined modeling strategies involving solid
finite or discrete elements, previously calibrated against material characterization and
component tests. Additionally, the macroelement could be employed to simulate elements
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more susceptible to biaxial conditions, such as arches and bridges, and validated against
experimental outcomes available in the literature.

Finally, the three-dimensional macroelement will be further validated against the
experimental responses of the shake-table tests mentioned in Chapter 3 and Chapter 4,
possibly in combination with nonlinear membrane or shell models of the floor diaphragms,
zero-length elements simulating wall-to-diaphragm and wall-to-wall intersections, and
second-order effects, to capture the out-of-plane response also in terms of local
mechanisms. Eventually, the results will be compared to those obtained with the original
two-dimensional macroelement and with the more simplified EFM strategies proposed in
building codes and guidelines.



Appendix A

ELASTIC STIFFNESS MATRIX OF THE TWO-DIMENSIONAL MACROELEMENT

In this section, the elastic stiffness matrix of the two-dimensional macroelement (Penna ez
al., 2014) within a new reference system is accurately computed and presented. More
specifically, the original left-handed local reference system is turned into a right-handed
one to match the global reference system without tedious or error-prone mattix
transformations (Figure A.1). Consequently, both the elastic stiffness matrix and the
nonlinear corrections need to be properly reviewed. In particular, equation (A.1) reports
the matrix form of the linear-clastic governing equations in the new reference system,
whereas Figure A.2 visually explains the terms populating the elastic stiffness matrix.
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For completeness, A =Lt represents the cross-section area, being L and t the
corresponding length and thickness, I = tL3/12 indicates the in-plane moment of inertia,
h is the height of the macroelement, E and G are the Young’s and shear modulus of
masonty, whereas y is the appropriate shear factor depending upon the section shape.
Furthermore, k = 2E /h indicates the equivalent axial stiffness of the end-interfaces.
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Figure A.1: From left-handed to right-handed local reference system.
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Appendix B

ELASTIC STIFFNESS MATRIX OF THE THREE-DIMENSIONAL MACROELEMENT

In this section, the elastic stiffness matrix of the three-dimensional macroelement proposed
in this thesis is computed and presented. In particular, the macroelement is endowed with
fifteen degrees of freedom, directly oriented along the global reference system when
vertically arranged, hence adopting a right-handed rule.

The elastic system of equations is reported in equation (B.2), whereas Figure B.1 and Figure
B.2 visually explain the terms populating the elastic stiffness matrix. The following notation
is used: A = Lt represents the transversal cross-section area, whereas I, I,, and I3 indicate
the moment of inertia about the local 1- (torsional inertia), 2- (out-of-plane inertia), and 3-
axis (in-plane inertia), respectively obtained as follows:

16 3.36b b* Lt3 tL?
3 a

’1=“”3[_‘ T Ta =1 k=1 @D

being a and b the long and the short side half-length, respectively. It is worth noticing that
the first expression approximates the actual torsional constant of a rectangular cross-
section. As a matter of fact, there are no exact analytical equations for non-circular cross-
sections, as warping deformations can only be accounted for by resorting to numerical
methods. However, the adopted equation proved sufficiently accurate.

For the sake of completeness, k = 2E/h is the stiffness per surface unit, E and G indicate
the Young’s and shear modulus of masonry, y is the appropriate shear factor functions of
the section shape, whereas h, L, and t represent the height, length, and thickness of the
macroelement, respectively.
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Appendix C

ELASTIC STIFFNESS MATRIX OF STRENGTHENING LAYERS

As reported in Chapter 6, one of the main advantages of the stripe formulation is the
versatility to introduce additional stripes along the thickness of the end-interfaces, while
maintaining the computational effort reasonable. Consequently, surface layers can be
explicitly modeled, and a different constitutive law can be assigned to the corresponding
stripes.

The elastic stiffness matrix that governs the response of the st surface layer (K$!) is
obtained as the sum of the flexural and shear contributions, respectively reported in
equations (C.4) and (C.5). In fact, the peculiar arrangement of the degrees of freedom of
the macroelement allows to easily decouple the kinematics associated with flexural and
shear mechanisms. It is worth noticing that, in contrast to the elastic stiffness matrix of the
three-dimensional macroelement (reported in Appendix B), the one of the surface layer
explicitly incorporates the static moment about the out-of-plane 2-axis, as the layer
arrangement may not be symmetric. The last quantity is computed as reported in equation
(C.1) together with the moment of inertias about the minor and major sectional axes:

1
Ls = Lg tg 632.,5 52,5 =Lt ess I3, = Ets Lg ()

where Lg and t; represent the length and the thickness of the individual layer, whereas e;
its out-of-plane coordinate with respect to the centroid of the macroelement section. The
latter is reported in (C.2), where the sign is automatically defined once selecting the
application side of the layer, being t the thickness of the macroelement section.

t tg
e3s =t (5 + E) (C2)

It is worth noticing that the moment of inertia about the longitudinal axis (I; ;) is not taken
into account, as it is considered negligible with respect to the torsional inertia of the section.
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The elastic stiffness matrix of the additional layers (Ky,) is then computed by summing the
flexural and shear contribution of the individual elements:

Ky = Z(Kil’p +K3") (C3)

N

For the sake of completeness, ks = 2E;/h is the equivalent axial stiffness per surface unit,
E; and G indicate the Young’s and shear modulus of the s sutface layer, y is the
appropriate shear factor functions of the section shape, whereas h represents the height of
the macroelement.
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Appendix D

IMPLEMENTATION OF A FIBER FORMULATION OF THE END-INTERFACES

Despite the potentialities of the stripe formulation, in case of a particularly demanding load
history, a full-fiber discretization might be more suitable, leading to more accurate results.
Moreover, because of its straightforward implementation, it can be helpful in validating the
correctness of the analytical integration.

A full-fiber formulation consists of discretizing the end-interfaces of the macroelement in
both the in-plane and out-of-plane directions. In this context, a uniaxial constitutive law is
assigned to each fiber, and the global response is computed by post-integrating the
individual fiber contributions. Consequently, a full-fiber discretization is generally
computationally demanding, especially compared to the stripe discretization proposed in
this thesis. However, as the integration is numerically performed after deriving the uniaxial
response of each fiber, complex constitutive laws can be adopted, overcoming the
limitation of the stripe formulation.

Kinematic compatibility equations grant proper collaboration of the fibers with the end-
interfaces, imposing their axial displacement according to a linear profile of the
deformation of the cross-section. Consequently, the axial displacement is a function of the
end-interface degrees of freedom (Figure D.1a) and of the fiber in-plane and out-of-plane
coordinates with respect to the centroid of the section (Figure D.1b):

1;1/43 3a

ﬂ‘ @3 ZJZ/%
t »2 %/A% » 2

0 ¥ w

o
R

(@) (b)

Figure D.1: (a) end-interface degrees of freedom, and (b) fiber discretization of the cross-section.
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dy=w+@ye3,— @36, ®.1)

The n*" fiber in-plane (e, ,) and out-of-plane (e5,) coordinates can be easily derived from
equation (D.2), assuming the local reference system as barycentric:

1\ L 1\ t
eyn = AL (nz - —) -3 e3n = At <n3 - 5) -3 (D.2)

where AL and At refer to the length and the thickness of the single fiber, function of the
discretization along the local 2- and 3- axes, respectively; L and t indicate the in-plane and
out-of-plane cross-section dimensions; whereas n, and n; represent the fiber counters
along the corresponding directions.

Since the fiber discretization involves the behavior of the end-interfaces only, without
hence affecting the central body of the macroelement, the shear and the axial-flexural
contributions can be computed separately and then summed. This operation is possible
because of the kinematics inherent to the macroelement, which allows a complete
decoupling between flexural and shear mechanisms.

In particular, the matrix K5 (D.5) is constant as it represents the elastic contribution of the
central body, whose terms reflect the equations reported in Appendix B, whereas equation
(D.6) shows the assembling algorithm to obtain the flexural contribution K¥ starting from
the interface-level nonlinear stiffness matrices. More specifically, equations (D.3) and (D.4)
depict the interface-level matrices related to the i* and j** interfaces, respectively. In this
context, f;, and ; , indicate the ductility demand in the n™" fiber of the corresponding
interfaces.

[ 1 e —e ]
3n 2,n
k AL At ;
Kl 'u €3n €3n —€3n €3 (D.3)
iLn 2
n |—€2n  —€2n €39 €n |
[ 1 e —e ]
3n 2,n
k AL At ;
K # €3n €3n —€2n €30 D.4)
jn _ _ 2
n L eZ,n ez,n eS,n ez,n

It is worth noticing that equations (D.3) and (D.4) refer to the constitutive law reported in
Figure D.2. However, equatons (D.5) and (D.6) holds for any stress-displacement
relationships. This procedure thus applies also in the case of additional lumped elements,
as described in Chapter 6.



Degree of Doctor of Philosophy in Design, Modeling, and Simulation in Engineering 181

fm

=t

gV

Figure D.2: Nonlinear constitutive law assigned to the individual fibers.

Similatly, the tangent stiffness matrix of the macroelement with a fiber discretization of the
end-interfaces is computed as the sum between the central-body (equation (D.5)) and the
end-interface contributions. As regards the constitutive law reported in Figure D.2, the
end-interface contribution is obtained by simply zeroing the matrices corresponding to the
fibers experiencing an increasing value of the ductility damage variable u or exceeding the
elastic tensile threshold. On the contrary, the nonlinear matrices reported in equations
(D.3) and (D.4) are directly adopted. Finally, the element-level axial-flexural contribution
to the tangent stiffness matrix is obtained by arranging the interface-level matrix terms, as
reported in equation (D.06).
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Appendix E

THREE-DIMENSIONAL NONLINEAR CORRECTIONS: TENSION

The stripe formulation of the presented macroelement consists of discretizing the end-
interfaces in a series of stripes, whose nonlinear in-plane response is retrieved by applying
analytical inelastic corrections to the elastic contributions. In this context, the governing
system of equations of the three-dimensional macroelement can be summarized as follows:

F™(u) = Ku + F*(uw) + F*(u) E.D)

where K is the elastic stiffness matrix, u and F™(u) are the generalized displacement and
internal force vectors, whereas F*(u) and F**(u) represent the analytical inelastic
correction vectors accounting for the nonlinear response in tension and in compression,
respectively.

In this section, the three-dimensional nonlinear corrections accounting for the tensile
behavior of the end-interface are presented (E.2). The elasto-fragile response is mostly
addressed, as the no-tension behavior consists of a particular case of the latter, where the
elastic tensile displacement threshold d, is set to a zero value.

T
Frw)={N; 0 0 0 M3, Mj; N/ 0 0 0 M3, M;;, N; M, Mj,} (E.2)

The total nodal correction is obtained by summing the contributions of the individual
stripes, as reported in the equation (E.3), with e, representing the centroid out-of-plane
coordinate of the n'" stripe with respect to the centroid of the end-interface.

No= DN My= ) Mi= ) (Niew,)  Mi= ) My, @3
n n n

n

Furthermore, the following notation will be used for the i*" interface:
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{Wn = (We - Wi) + (‘Pz,e - ‘Pz,i) €3n (E.4)
Pn = §03,e - §03,i
and for the jt" one:

Wp = (Wj - We) + (‘Pz,j - ‘Pz,e) €3n (E.5)

Pn = P3j — P3e

The corresponding sectional edge displacements of the n'" stripe are obtained by assuming
small displacements and rotations:

L
dLT,n =Wp + @y E
2 E6)

dRT,n =Wn — ¢n E

It is worth noticing that, for a no-tension behavior, a single correction accounting for the
response of both the edges suffices. On the contrary, since a brittle-tensile strength deals
with damage variables, each edge needs to be analyzed independently, providing thus
corrections separately.

In this context, the quantities and the corresponding expressions governing the constitutive
law are reported in equation (E.7), where Ly, and L., indicate the length in tension and in
compression, whereas Lip 7, and L pr o, represent the current cracking length at the left
and right sides of the considered end-interface. It is worth reminding that, in a no-tension
framework, the length in tension coincides with the current cracking length. On the other
hand, a net distinction arises for an elasto-fragile constitutive law. Moreover, as already
discussed, the maximum-reached values of the cracking length at each edge (L¢g 11, and
Lcg rrn) are stored as state variables to account for damage accumulation.

(1 _Wa L di
R "0, "2 @y P L Lo —L—1 ©7)
L’ _ ﬂ E ﬁ Tn I(Pnl 2 cn Tn
k CR.RTn ot

Additionally, the total cracking length L¢g, is also checked step-by-step, computed as the
sum of the cracking lengths at the two opposite corners of the nt" stripe. In particular,
when cracking involves the whole length of a stripe, the formulation on that stripe
degenerates to a no-tension behavior.
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Since the cotrections are individually computed for each edge of the n*" stripe, the whole
stripe contributions are obtained by summing the left (N;7) and (Nzy) right counterparts,
as reported in the following:

i*h interface jt* interface
* * * * * *
Ni,n — VLT,in + NRT,i,n Nj,n — VLT,jn + NRT,j,n (ES)
* — * * * — * *
2,in — M2LT,in + Mz,RT,i,n 2,jn — MZ,LT,j,n + MZ,RT,j.n
* — * * * —_— * *
3in = M311in + M3grin 3jmn = M3 irjn + M3grjn

As already described, the central body is also responsible for coupling the response of the
end-interfaces and ensure equilibrium. For this reason, compatibility relationships are to be
extended to the nonlinear corrections:

(N;,n = _(Niy:n + N]*n)
M;,e,n = N;,n €3n (E-9)
kM;,e,n = _(Mg,i,n + M;,j.n)

It is worth noticing that the two-dimensional corrections can be easily derived by imposing
the out-of-plane rotation terms (¢,) in equations (E.4) and (E.5) equal to zero, and a
number of stripes (n) equal to a unit value.

In the following, the analytical corrections for the nonlinear response in tension of the
three-dimensional macroelement are thoroughly presented. In particular, each case is
associated to a set of inelastic equations that corresponds to a particular kinematic
condition.
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Case 1

Figure E.1 depicts a situation in which the current cracking length on the considered edge
(Lerirn Of Leg rrn) exceeds the stored one (Leg prn Of Leg rrn) and involves a portion of
the section, provided that the stripe investigated has not been completely cracked in the
previous load steps (0 > Lgg, > L). Furthermore, in order for the corrections to be
consistent with the stress profile, the current length in tension needs to exceed the stored
crackinglength (Ly, = Legprn Of Ly = Leg rrn), and the rotation of the section ¢, needs
to be clockwise and counterclockwise for the left and right corners, respectively, while
keeping the displacement on the considered edge positive (d,r,, > 0 and ¢, = 0 or dpr,, >
0 and ¢, < 0).

Ly Le

Legr

oLt |
Y P
i f
N, = i

i OrT

L

Figure E.1: Conditions addressed within cracking phenomena with limited tensile strength: case 1.
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Case 2

Figure E.2 depicts a situation in which the current cracking length on the considered edge
(Ler,irn Of Leg gy ) involves a portion of the section, provided that the stripe investigated
has not been completely cracked in the previous load steps (0 > L¢g , > L). Furthermore,
in order for the corrections to be consistent with the stress profile, the current length in
tension must not exceed the stored cracking length (L, < Leg rn OF Ly < Leg pran), and
the rotation of the section ¢,, needs to be clockwise and counterclockwise for the left and
right corners, respectively, while keeping the displacement on the considered edge positive
(dyrn > 0and @, =0 or dgr, > 0and @, < 0).

L

Figure E.2: Conditions addressed within cracking phenomena with limited tensile strength: case 2.

h interface — Left edge i*" interface — Right edge
( Lyin k At L (. Lpin kAt L
| NLTLTL # (Wn + ¢ E) | NRT,i,n = % <Wn — $n E (E.14)
{ M3 irin = Nitin €3n { M3 rrin = Nerin €30
| L Ly, | L Ly
kMs trin = Nirin (E - %) kM3,RT,i,n = —=Ngrin <§ - 3Ln)
j™ interface — Left edge j** interface — Right edge
(. Lrin kAt L (.. Ly jn kAt L
| NLT,j,n = _+ (Wn + @n E) | NRT,j,n = _T<Wn — ¥n E (E.15)
M3 7jn = Nirjn €3n M krjn = Nerjn €3n

L L ]-‘n)

| L Ly
* ¥ Jn
kM 3,LT,jn — NLT,j,n (E - 3 )

|
kM;RT,j,n = _NR*T,j,n (E - 3



192 Christian Salvatori

Case 3

Figure E.3 depicts a situation in which the stored cracking length on the considered edge
(Lerirn Of Leg prn) involves a portion of the section, provided that the stripe investigated
has not been completely cracked in the previous load steps (0 > L¢g , > L). Furthermore,
in order for the corrections to be consistent with the stress profile, the rotation of the
section ¢, needs to be counterclockwise and clockwise for the left and right corners,
respectively, while keeping the displacement on the considered edge positive (d;r, = 0 and
¢, <0ordgr, =0and ¢, >0).

Ly 5
Lc:I:,LT / ORT
oL = NT
..__NQ

Figure E.3: Conditions addressed within cracking phenomena with limited tensile strength: case 3.
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Case 4

Figure E.4 depicts a situation in which the stored cracking length on the considered edge
(Lerirn Of Leg prp) involves a portion of the section, provided that the stripe investigated
has not been completely cracked in the previous load steps (0 > L¢g , > L). Furthermore,
in order for the corrections to be consistent with the stress profile, the rotation of the
section ¢, needs to be counterclockwise and clockwise for the left and right corners,
respectively, while keeping the displacement on the considered edge negative (dr, <0
and @, <0 or dgr, <0 and ¢, > 0). Under the aforementioned conditions, the stored
cracking length must exceed the compressive length on the considered edge (Leg 1rn > Len

of Leg prn > L)

i Lot OrT

our

L

Figure E.4: Conditions addressed within cracking phenomena with limited tensile strength: case 4.
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Case 5

Figure E.5 depicts a situation in which the cracking phenomenon involves the whole length
of the n*" stripe, and the length in tension is equal to the total length (L¢g, = Ly, = L).
Consequently, the nonlinear corrections consist of removing the entire elastic
contributions, as no more load can be withstood. Moreover, since this case represents a
degeneration in a no-tension framework, there is no need to express the edge corrections
separately.

ORT

oLr

L

Figure E.5: Conditions addressed within cracking phenomena with limited tensile strength: case 5.

it" interface

I{N{fn =k At Lw,

. . (E.22)
{ MZ,i,n = Ni,n €3n

[, kAt 13

kMS,i,n = T Pn
jt* interface

N, = —k At Lw,

(E.23)

(
{ M;,j,n = N}*n e3,n
|

. k At L?
M3,j,TL = - 12 q)n
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Case 6

Figure E.6 depicts a situation in which the current cracking length involves the whole n**
stripe; however, the length in tension does not exceed the total length (Ly, < L¢g, = L).
Since this case is in common with a no-tension behavior, a unique correction suffices to
describe the response of both sides of the section.

ORrT

L

Figure E.6: Conditions addressed within cracking phenomena with limited tensile strength: case 6.

it" interface

(s k At 2

Ny ==— (2 L

| Nin 8|(pn|( wy + L1, ) (E.24)
{ Main = Nin €3n
| e = kAL — LlgaD@wy + Lign D?
k Bn 24"/’11'(/’11
j™ interface

k At
N =———(2 L 2
in = ~glp,] P T LoD €25)

_ kAt (Wn - L|</’n|)(2Wn + L|<Pn|)2
241p, 1oy

(
I
{ M;tn = Niq:n e3,n
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NONLINEAR CORRECTION GRADIENT: TENSION

To implement the Newton-Raphson method described in Chapter 5.5, the tangent stiffness
matrix needs to be calculated. In this context, this section outlines the tensile response by
reporting the terms populating the corresponding gradient VF* (E.27). Furthermore, unlike
for a no-tension behavior, since the elasto-fragile constitutive law deals with damage
variables to account for damage accumulation, the corresponding gradient matrix might
not be symmetric.

For the sake of simplicity, as the derivatives with respect to the degrees of freedom of the
two end-interfaces are mutually identical, the following notation hereafter applies:

OF.; OF; OF
— =71 .26
— (E.26)

i

being F~ ; and u;_; the generalized internal correction force and displacement quantities,
respectively, whereas with the subsctipt i and j the reference to the i*" and j** interfaces is
indicated.

It is worth noticing that all the equations reported in this section hold as long as the
notations defined in (E.4) and (E.5) are satisfied, depending on the interface considered. If
this is not the case, equation (E.26) might not apply.
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To propetly compute the terms of the correction gradient VF*, the current state of the
damage variables must be considered. In particular, the following subcases need to be
addressed for each edge of the nt" stripe:

i The damage variable accounting for the cracking length is exceeded at the current
load step (Lgg 7 = Lerirm OF Leg rrn = Lerrron)
if. The damage variable accounting for the cracking length is not exceeded at the

! !
current load step (Lgg rn < Lerirn OF Lerrrn < Lergrrn)

To lighten the description, the terms shared among the conditions represented by Figure
E.1 through Figure E.G are hereafter reported. More specifically, equations (E.28) and
(E.29) represent the derivatives of the axial force and in-plane bending moment with
respect to the out-of-plane rotations:

Ny _ N ONijm _ Z (aN’ L > (E.28)
a(02,1'—}' - a‘Pz,:—; aWt—] 3 '
aM;,i—j _ aM;,i—j,n _ Z (aM;,i—j,n e ) (E.29)
00,,; - 0P, ; - ow;_; 3 '

equations from (E.30) to (E.32) denote the out-of-plane bending terms:

= (E.30)
ow;_;  0¢y;j
aM;,i_]. _ 6M;,i_j,n _ Z (aNz* im ) ©
00i—j - 0P, — 0Ps;_j n ’
aM;,i—j — aM;,i—j,n — Z ( l jn ) (E 32)
a%,i—j - a‘/’s,i—j - 093, —j ’

whereas equations from (E.33) to (E.35) indicate the derivates with respect to the internal
degrees of freedom:

ow, aWi—j 09, a‘Pz,i—j 03, a4’3,1'—1'
GM;,i_j _ aM;,i—j a1‘/I>2«,i—j - _ aM;,i—j aM;.l'—]' - _ aM;‘i—j (E.34)

ow, B aWi—j a‘Pz,e a‘Pz,i—j 003, a‘P3,i—j
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oMz OMs,; oMz, OM;;_;  OM;,_ ©.35
aVve an—] 64’2,1—] a(pS,e a(p?),l—]

Finally, the terms related to the compatibility equations ate reported in the following:

dN, BNi*_]-
aWi_j N aWi_]'
dN, _ BN{‘_]-
6<Pz,i—j afpz,i—j
dN, _ aNi*_j
a(ps,i—j a<P3,i—j
oM;, _ 6M;l _j
aWi_j an_]
oM;, _ 6M;,i_j
a(pz,i—j a(pz,i—j
oM;, _ 6M;,i_j
a(p3,i—j a(p3,i—j
OMs. _ OMs,
aWi_j an'_j
M3, _ OMs,
a(pz,i—j 6‘Pz,i—j
oM3, _ 6M§,,-_j
6903,1'—1' a‘/’s,i—j

oN; ON; 0N}
=— +

ow, dw, dw,

aN; <6N* oN; )

a‘l’z e a‘l’z e a‘l’z e

6N* ON/ BN* )

a(p3 e a(p3 e a(p3 e

aMZe B (a u oM; )
6We

aMZE _ <6le 6M2]>

a‘l’z e a‘l’z e a‘l’z e

aMZE _ <6le 6M2]>

6(03 e 6(03 e 6(03 e

6M3e _ <6M3l 6M3])
ow,

6M3e _ <6M3l 6M3])

a‘l’z e a‘l’z e a‘Pz e

6M3e _ <6M3l 6M3])

a(ﬂ3 e 6(03 e a(P3 e

(E.36)

(E.37)

(E.38)

(E.39)

(E.40)

(E.41)

(E.42)

(E.43)

(E.44)
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Appendix F

THREE-DIMENSIONAL NONLINEAR CORRECTIONS: COMPRESSION

The stripe formulation of the presented macroelement consists of discretizing the end-
interfaces in a series of stripes, whose nonlinear in-plane response is retrieved by applying
analytical inelastic corrections to the elastic contributions. In this context, the governing
system of equations of the three-dimensional macroelement can be summarized as follows:

Fint(u) = Ku + F*(w) + F*(u) (F.1)

where K is the elastic stiffness matrix, u and F™ (u) are the generalized displacement and
internal force vectors, whereas F*(u) and F**(u) represent the analytical inelastic
correction vectors accounting for the nonlinear response in tension and in compression,
respectively.

In this section, the three-dimensional nonlinear corrections accounting for the compressive
behavior of the end-interface are presented (F.2). More specifically, the first part deals with
the toe-crushing phenomenon, which limits the compressive strength of masonry and
causes a stiffness degradation (Figure 5.3). On the other hand, the second part focuses on
a no-compression behavior, suitable for several strengthening materials composed of
meshes embedded in poor-performance binding.

T
F ) ={N;" 00 0 M3 Mi; Nj* 000 Mj; M3 N M3, M.} — (F2)
The total nodal correction is obtained by summing the contributions of the individual

stripes, as reported in the equation (F.3), with e, representing the centroid out-of-plane
coordinate of the n'" stripe with respect to the centroid of the end-interface.

N =D N M5 =D My = ) (Vi ea) M=) MG
n n n

n



216 Christian Salvatori

Furthermore, the following notation will be used for the i** interface:

{Wn = (We - Wi) + (‘Pz,e - ‘Pz,i) €3n (F.4)
On = P3e — P3,;
and for the jt" one:
{Wn = (Wj - We) + (‘Pz,j - ‘Pz,e) €3n (E.5)
Pn = P3; — P3e

The corresponding sectional edge displacements of the n” stripe are obtained by assuming
small displacements and rotations:

L
dLT,n =w, + @y E

L
dRT,n =Wn — ¢n E

(F.6)

State variables are needed to adequately capture toe-crushing phenomena. In fact, they
allow to account for residual displacements and damage accumulation. Consequently, each
edge needs to be analyzed independently, providing thus cotrections separately. In
particular, the current and maximum values of the displacement ductility demand (4" and
1), as well as of the dimensionless crushing length (¢’ and §) are reported for the left edge:

dirn (/-‘i'rn - 1) dy
iy, = B Elpn = T (E.7)
LTn dy LTn ©n L
and for the right one:
/ dgr, , (Uprn—1)d
i = —dy" Ehrn = ——Z)n - Y (F.8)

of each interface, being d;, = f,,,/k the yielding displacement in compression of the end-
interfaces.

If the dimensionless crushing length on one side or if the sum of the crushing lengths at
the relative section corners is greater than the total length of the macroelement, both the
damage variables &7, and &gr, are set equal to a unit value for consistency reasons, and
the same corrections apply. It is worth noticing that this assumption involves a severe
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approximation of the stress path along the section, leading to possible unsound results. For
this reason, if this situation is experienced, a full-fiber discretization might be more suitable.

Conversely, an analytical no-compression constitutive law does not rely on any state
variable. As a consequence, the cyclic response does not involve any energy dissipation.
Moreover, a single correction accounting for the behavior of both edges suffices. In this
context, the length in compression (L), which corresponds to the crushing length, can
be expressed as reported in the following:

L _L wy, F.9
C,n_2 |(pn| ()

When the corrections are individually computed for each edge of the n*" stripe, the whole
stripe contributions are obtained by summing the left (N;7) and (Nzr) right counterparts,
as reported in the following:

h interface jt* interface
*k
NiT* NLTlTL +NRTlTL N'.n - LT}n +NRT]n (F.lO)
MZLn_MZLTln+M2RTtn MZ.]n_MZLT]n+M2RT]n
M3Ln M3LTln+M3RTtn M3.]n_M3LT]n+M3RT]n

As already described, the central body is also responsible for coupling the response of the
end-interfaces and ensure equilibrium. For this reason, compatibility relationships are to be
extended to the nonlinear corrections:

(Neh = —(Nin +Nj7)
MZen = N;?l €3n (E.11)
kMSen - (M31n + M31n

It is worth noticing that the two-dimensional corrections can be easily derived by imposing
the out-of-plane rotation terms (¢,) in equations (F.4) and (F.5) equal to zero, and a
number of stipes (n) equal to a unit value.

In the following, the analytical corrections for the nonlinear response in compression of
the three-dimensional macroelement are thoroughly presented. In particular, each case is
associated to a set of inelastic equations that corresponds to a particular kinematic
condition.
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Toe-crushing: case 1

As long as there is no ovetlap between crushing length and length in tension of opposite
corners, one condition suffices to describe both the loading and unloading phases (Figure
F.1). In particular, the following corrections are to be applied when p;r, > 1 (yielding
displacement exceeded) and d; 7, < 0 (current displacement in compression) for the left
edge, or tgr, > 1 and dgr, < 0 for the right one.

gyl

i fm 3

rm ‘ R

| Wy fm

L

Figure F.1: Conditions addressed within toe-crushing phenomena: case 1.
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Toe-crushing: case 2

Unlike the previous case, Figure F.2 depicts a condition with an overlap between the length
in tension and the crushing length of the two opposite edges, i.c., Ly, + L&, > L or
Lyyn + L&, > L, for the left and right corners, respectively. In this case, cracking and toe-
crushing are no longer uncoupled, regardless of the uniaxial recentering behavior of the
constitutive law. As a result, the crushing lengths in equations (F.12) and (F.13) are replaced
with the compressive counterpart L¢ ,, defined in equation (F.9). Furthermore, as for the
previous case, the following corrections are to be applied when p;r, >1 (yielding
displacement exceeded) and d; 7, < 0 (current displacement in compression) for the left
edge, or tgr, > 1 and dgp, < 0 for the right one.

Ly | Iy
ERT L‘

o7 \

L

Figure F.2: Conditions addressed within toe-crushing phenomena: case 2.
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No-compression: case 1

Figure F.3 depicts a situation in which the portion of the section undergoing compression
involves the whole length of the n" stripe (L¢,, = L). In this case, the nonlinear cotrections
consist of removing the entire elastic contributions, as no more load can be withstood.
Moreover, because of the absence of damage variables, there is no need to express the edge

corrections separately.

oyt

ORT

L

Figure F.3: Conditions addressed within a no-compression behavior: case 1.

it" interface

I{N{fn =kAtLw,
{ M;,i,n = iTn e3,n
[ kAt L3
k 3in — 12 Pn

(F.16)
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No-compression: case 2

Figure F.4 depicts a situation in which the portion of the section undergoing compression
involves a part of the n*” stripe (L¢, < L). As for the previous case, a unique cortection
suffices to describe the response of both sides of the section.

OLr

Figure F.4: Conditions addressed within a no-compression behavior: case 2.

it" interface

(N1 = — 28 2wy — Llgal)?
| Vin = 8|(Pn| Wn Pn (F.18)
{ M3in = Nin €3n
Ly kAt + LlgnD@w — Lig,D)?
k 3n 24"/’11'(/’11
j™ interface
k At
N.* = — 2 —L 2
in = Blp] 2wy, — Llg, D (F.19)

_ k At (Wn + L|<Pn|)(2Wn - L|<Pn|)2
241g, 1oy

(
I
{ M;tn = Ni’:n €3n
I
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NONLINEAR CORRECTION GRADIENT: COMPRESSION

To implement the Newton-Raphson method described in Chapter 5.5, the analytical
tangent stiffness matrix needs to be calculated. In this context, this section outlines the
compressive response by reporting the terms populating the corresponding gradient VF**
(F.21). Furthermore, apart from a no-compression behavior, state variables accounting for
damage accumulation are required. Consequently, the corresponding gradient matrix might
not be symmetric.

For the sake of simplicity, as the derivatives with respect to the degrees of freedom of the
two interfaces are mutually identical, the following notation hereafter applies:

= = F.20
Ju du, ou; (F.20)

i

being Fi”; and u;_; the generalized internal correction force and displacement quantities,
respectively, whereas with the subscript i and j the reference to the i*" and j** interfaces is
indicated.

It is worth noticing that all the equations reported in this section hold as long as the
notations defined in (F.4) and (F.5) are satisfied, depending on the interface considered. If
this is not the case, equation (F.20) might not apply.
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To propetly compute the terms of the correction gradient VF™, the current state of the
damage variable, when required, must be considered. In particular, for a toe-crushing
phenomenon, the following subcases need to be addressed for each edge of the n* stripe:

A. The length of the n'" stripe is not totally crushed (€., + &grn < 1):
i. Both the damage variables are exceeded at the current load step
(Uit = Horm and $rn = Sirn OF Uprn = Hern a0d $grn = Errn)-
ii. Only the damage variable accounting for the ductility demand is exceeded
at the current load step (Uprpn = Uprn and &7 < Eprp OF Pty = Hrrm

and $grpn < Srrp)-

iii. Only the damage variable accounting for the crushing length is exceeded
at the current load step (Uirn < Hirn a0d $irn = $irn OF Hrrn < Hrrn
and $grn = Srrn)-

iv. None of the damage variables are exceeded in the current load step
(it < Hprp and Eirn < Sprn OF Urrn < Mrrn and Sgrn < Sgrn)-

B. The length of the n*" stripe is totally crushed (&7, + &grn = 1):
i.  The damage variable accounting for the ductility demand is exceeded at
the current load step (U1 = Hirn OFf Urrn = Hrrn)-
ii. The damage vatiable accounting for the ductility demand is not exceeded
at the current load step (Uprn < Hirn OF Hrrn < HRTn)-

Since the second case of a toe-crushing condition only involves the ductility demand as a
damage vatiable, only the situations listed in group B apply.

To lighten the description, the terms shared among the conditions represented by Figure
F.1 through Figure F.4 are hereafter reported. More specifically, equations (F.22) and (F.23)
represent the derivatives of the axial force and in-plane bending moment with respect to
the out-of-plane rotations:

ONE) N ONejn (aN:*]n ) (F.22)
aq’z,i—j a‘/’z,i -Jj an Jj '
OMzij N OMsijn Z(aM?} jn ) 23
0p2i-j 4= 09z, —\ Ow;_; " '

equations from (F.24) to (F.26) denote the out-of-plane bending terms:

oMz, 0N

awl—] aQDZ,i—j

(F.24)
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aM;*l j M;*l -jn _ Nl**]n
- 3n (F.25)
64)2,1 -j aq)Zl -j a§021 j
aM;*z ] 21 jn Nl**]n
- 3n (F.26)
a(p3,1 -j a(p3l -j 64)31 j

whereas equations from (F.27) to (F.29) indicate the derivates with respect to the internal
degrees of freedom:

ow, aWi—j 09, a‘l’z,i—j 093, a‘l’s,i—j

M3, oMy, oMy, _ OMg, oMy OM3i,
aWe awl—] afpz,e a(pZ,l—] a(p3,e a(p3,l—]

OM3i, oMy, Mg, _ OMg; oMz OM3,
aWe awl—] a‘l’z,e a(pZ,l—] a(»03,6 a(p3,L—]

(F.27)

(F.28)

(F.29)

Finally, the terms related to the compatibility equations are reported in the following:

aN;* _ _aNi*_*j

aWi_j an'_j

aN;* _ 6Ni*_*j
a(pz,i—j 6‘Pz,i—j
aN;* _ 6Ni*_*j
a(p3,i—j 6‘P3,i—j
oMy, _ 6M§*, =j
ow;_;j ow;_;

oMz, _ OMy
aq’z,i—j 6902,1—1
oMz, OMy
aQDS,i—j 6903,1—1
oMz, _ 6M§*l =j
ow;_;j ow;_;

aM;*l

aM;*,

aNg* oON;* ON;*
— 4
awe dw,  Odw,
ONg® _ (azv** azv;*)
a‘Pz e a‘Pz e a‘Pz,e
ONg® _ (azv** azv;*)
a(p3 e a(pS e a(pS,e
_ aM;*l 6M§*]
awe
_ <6M§*l aM;*,)
a‘Pz e a‘Pz e a‘Pz e
_ <6M§*l azw;*,)
a(p3 e a<p3 e a(p3 e

8We

(F.30)

(F.31)

(F.32)

(F.33)

(F.34)

(F.35)

(F.36)
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oMz, _ oM3%_; oMy, __ <8M§fi N OM;*J-) ®37)
aQ"z,i—j aQ"z,i—j 0P, 0020 09y,
oMz, _ oM3%_; oMy, __ <6M§fi N 8M§3> ®38)
03;_; 03, ; 03 0p3, 03,
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