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Abstract

In the last years, following the principles of Industry 4.0, companies have
adapted to the evolution of the market in order to stay competitive. The
innovation of the design processes is one of the milestones of the Industry 4.0
and mathematical models of the machines have a key role in the improve-
ment of this process. Similarly, the biomedical őeld has undergone to an
evolution due to the availability of smart devices able to improve the daily
life of the patients. Combining data availability and improved hardware ca-
pability, neural network techniques had a fast growth and have spread to
different őelds and also in the system identiőcation and control one.
In this thesis, a particular neural network architecture, the Long Short-Term
Memory (LSTM) is employed for system identiőcation. It has being proved
that the LSTM is able to take into account the data temporal dependen-
cies and that has good performances in terms of prediction, giving also the
possibility to ensure stability properties. The reasons for the choice of this
network are presented, together with a comparison with other architectures
and the conditions to ensure stability properties.
Four different applications are then presented and analyzed: three cases be-
long to the industrial őeld, the latter to the biomedical one. The industrial
applications regard the modeling of an industrial autoclave, an industrial
plant for coffee roasting and a wastewater treatment plant. The LSTM net-
works are used to model the processes, comparing the black-box models to
more traditional white-box ones, highlighting from case to case pros and
cons of the two different approaches. The obtained results have been eval-
uated in terms of FIT, having very good performances with values ranging
between 60% and 86% in the different case studies. The biomedical applica-
tion instead is related to the research on the artiőcial pancreas. The LSTM
networks are used to predict future glucose values in type 1 diabetes pa-
tients, employing then the predictions in an alarm system for hypoglycemia
and hyperglycemia prevention, obtaining in silico between 80% and 86% of
sensitivity and precision in the two cases.
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Sommario

Negli ultimi anni, in seguito all’avvento dell’Industria 4.0, le aziende si
sono dovute adattare all’evoluzione del mercato per restare competitive.
L’innovazione dei processi produttivi è uno degli obiettivi primari dell’In-
dustria 4.0 e i modelli matematici delle macchine hanno un ruolo chiave
nel miglioramento di questi processi. Allo stesso modo si sta assistendo ad
un’evoluzione nel campo biomedico, grazie alla disponibilità di dispositivi
smart che permettono di aiutare la vita quotidiana dei pazienti. Combinan-
do una maggiore disponibilità di dati e una migliorata capacità hardware,
nuove tecniche che utilizzano reti neurali si sono diffuse in molti ambiti, tra
cui anche l’identiőcazione di sistemi dinamici e il controllo.
In questa tesi, una particolare architettura di reti neurali, la Long Short-
Term Memory (LSTM), viene usata per l’identiőcazione di sistemi dinamici,
poiché è stato dimostrato che queste reti riescono a tener conto delle di-
pendenze temporali dei dati e che hanno buone prestazioni in termini di
predizione, dando anche la possibilità di garantire proprietà di stabilità.
Quattro diverse applicazioni vengono presentate e analizzate: le prime tre
appartengono all’ambito industriale, la quarta a quello biomedico. Le appli-
cazioni industriali riguardano la modellizzazione di un’autoclave industriale,
di un impianto industriale per la tostatura del caffè e di un impianto per
la depurazioni di acque reŕue. Delle reti LSTM vengono utilizzate per mo-
dellizzare questi processi, confrontando questi modelli a scatola nera con
modelli a scatola bianca, ottenuti con metodi più tradizionali, evidenziando
di caso in caso i vantaggi e gli svantaggi dei due diversi approcci. I risulta-
ti ottenuti sono stati valutati utilizzando l’indice di FIT, mostrando ottime
prestazioni, con valori che variano tra il 60& e l’86% nei diversi casi studio.
L’applicazione biomedica invece è relativa alla ricerca sul pancreas artiőciale.
Delle reti LSTM vengono usate per predire futuri valori di glucosio in pazien-
ti diabetici di tipo 1, utilizzando poi le predizioni all’interno di un sistema di
allarme per la prevenzione di eventi ipoglicemici e iperglicemici, ottenendo
per i dati in silico valori di sensitività e precisione tra l’80% e l’86%.
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Chapter 1

Introduction

In the last years the growth and diffusion of new Machine Learning (ML)
techniques has inŕuenced both the industrial and the biomedical őelds.
The industrial őeld has been impacted by the start of the so-called Industry
4.0 [1, 2], the 4th industrial revolution, started less than ten years ago. The
novelties brought in the industrial őeld can be synthesized in the so-called
"Nine pillars of Industry 4.0" [3, 4], reported in Figure 1.1 and here listed:

1. Internet of Things : networks of connected objects via a common pro-
tocol, involving immediate response and location information;

2. Simulation: virtual models of plants operations, machines and setup,
to help in decision making, reduce failures, analyze energy consumption
and production time;

3. Big Data and Analytics: collection of large datasets, derived from sev-
eral sources, directly from the production plant, and their analysis;

4. Cyber Security : particular attention to the protection of the commu-
nication, since everything is connected;

5. Cloud : backbone of the connections and acquisitions of the data, to
store, access and share data easily;

6. Additive Manufacturing : new production methods based on the pro-
duction of small quantities, for customization to satisfy particular cos-
tumer needs;

7. Augmented Reality : interface technology between real and virtual world,
to help for human-machine interaction, remote control, visual inspec-
tion;

8. Horizontal and Vertical System Integration: creation of smart factories,
for optimization and automation of the entire manufacturing processes,

1



2 1. Introduction

Figure 1.1: The nine pillars of Industry 4.0.

both horizontally (integration between the different part of the produc-
tion process) and vertically (integration of the production process with
the higher-levels businesses);

9. Autonomous Robots : robots executing tasks autonomously, with pre-
cision and safety, cooperating with humans or with other robots as
well.

Analyzing what the pillars have in common, it is clear that data, interconnec-
tions and virtualization are essential parts of Industry 4.0: thanks to these
innovations, a great amount of industrial data is now available. In general,
an increased availability of data, also thanks to the diffusion of internet,
together with an improved hardware capability that allows an efficient par-
allel computing, have brought to the improvement of ML techniques. ML
receives data from the industrial world, on the other way the industrial world
receives several useful tools to implement simulations and cyber-physical sys-
tems. ML can be applied in industry in a variety of tasks [5]: computer vision
[6], fault detection [7], predictive maintenance [8], production planning and
control [9], hybrid modeling [10] and so on. To summarize, it is clear that
the industrial and the ML őelds are strictly connected to each other and are
growing and evolving together.
Another őeld into which ML techniques are spreading more and more is the
biomedical one. The main advantages of ML in this area is the capability to
analyze complex data, collected from intelligent sensors, such as the biomed-
ical ones. For example, in the last years, several special issues of scientiőc
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journals featured ML applications in the biomedical őelds [11ś13], presenting
works such as classiőcation of diseases, classiőcation of images from different
diagnostic equipment (magnetic resonance, endoscopic, ultrasound), early
detection of illnesses, epidemic predictions, human-machine interfaces for
people with disabilities, etc. Thanks to the employment of ML techniques,
it is possible to help patients dealing with their diseases during daily life
and also to improve the scientiőc research through the results obtained with
these new smart techniques.

1.1 Thesis contribution

Starting from these considerations, the aim of this thesis is to use ML tech-
niques and in particular Neural Networks (NNs), for the identiőcation of
dynamical systems, exploiting the advantages brought by ML in the indus-
trial and biomedical őelds.
Four practical applications are presented, three of them belonging to the in-
dustrial world, while the latter to the biomedical one, where the considered
systems are identiőed also by mean of NNs. In the industrial applications
the models obtained using NNs are compared with white-box models identi-
őed using more traditional techniques, highlighting the advantages and the
limitations of the two different techniques, analyzing when it is better to use
one or another. Then in the biomedical application, the identiőed NN model
is used as reference signal for the design of an alarm system.
A particular NN architecture called Long Short Term-Memory (LSTM) net-
work is employed, that belongs to the family of Recurrent Neural Networks
(RNNs) and it is well known for its ability to learn long-term dependencies
when dealing with temporal data. For this reason, the LSTM is partic-
ularly suitable to represent and model dynamical systems. Moreover, the
LSTM is clearly deőned by mathematical equations that explain its working
mechanism: it works well and it is known why. These equations can also
be written in a state-space form, giving the possibility to analyze the net-
work using tools of the system identiőcation őeld, in addition to the classical
ML ones. For control-oriented applications, LSTMs are attractive and the
architecture more similar to state-space models.

1.2 Thesis structure

This thesis is structured as follows:

• In Chapter 2 an introduction to the NN topic is presented. First, the
NNs background is described, focusing on the RNNs architectures in
general and the LSTMs in particular. Then, the link between the NNs
and the system identiőcation and control őelds is depicted, with a brief
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historical overview up to nowadays, where LSTMs are the state-of-the-
art for this application. A study on the stability analysis of RNNs and
LSTMs is reported and lastly these networks are compared with other
architectures that can be used to identify dynamical systems.

• In Chapter 3 the őrst industrial application is presented, that is the
modeling of the sterilization process of an industrial autoclave. Two
models are proposed: a physical model based on the equations that
describe the temperature and pressure behaviors of the machine, to be
used for simulation purposes; a LSTM based model, to be used for the
design of a control system. Both models are evaluated on real data
collected on an industrial autoclave.
This chapter is based on the results published in łF. Iacono, J. L.
Presti, I. Schimperna, S. Ferretti, A. Mezzadra, L. Magni, and C. Tof-
fanin, łImprovement of manufacturing technologies through a mod-
elling approach: an air-steam sterilization case-study”, Procedia Com-
puter Science, vol. 180, pp. 162ś171, 2021”.

• In Chapter 4 the modeling of an industrial coffee roaster is carried out.
The goal is to deőne a scalable model to be identiőed on small machines
and then applied also to bigger ones, for economical and environmental
sustainability. Firstly, a physical scalable model is presented, based on
the state-of-the-art and modiőed linking some parameters to the ma-
chine geometry. Then, the same idea is proposed designing a model
based on a LSTM network, trying to enforce the portability. Both so-
lutions have been identiőed and evaluated on real data of two different
machines with different dimensions.
The formulation and the results of the physical model have been pub-
lished in łF. Di Palma, F. Iacono, C. Toffanin, A. Ziccardi, and L.
Magni, łScalable model for industrial coffee roasting chamber”, Proce-
dia Computer Science, vol. 180, pp. 122ś131, 2021”.

• In Chapter 5 the modeling of the biological reactor of a wastewater
treatment plant is described. Also in this case a white-box model and
a LSTM based one are proposed. The őrst one is formulated tak-
ing into account both the chemical and biological reactions that occur
inside the reactor and the involved ŕows. However, with this model
some dynamics are not correctly described, so the LSTM network is
designed, leveraging the availability of a great amount of input/output
data, to overcome the problems met with the őrst model.
The results of this chapter are presented in łC. Toffanin, F. Di Palma,
F. Iacono, and L. Magni, łLSTM network for the oxygen concentra-
tion modeling of a wastewater treatment plant”, in Applied Sciences,
Submitted”.
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• In Chapter 6 the biomedical application is presented. The LSTM net-
work is used to model the glucose dynamic in type 1 diabetes patients,
with the goal to design an alarm system for hypoglycemia and hy-
perglycemia prevention. Firstly, Personalized LSTMs (P-LSTMs) are
proposed to predict the glucose level of 100 different in silico patients
with a Prediction Horizon (PH) of 40 minutes, considering in input
insulin, carbohydrate intake and past glucose values. Then, an im-
provement of this model is proposed, called Enhanced Personalized
LSTMs (EP-LSTMs), to meet some performance requirements so that
the EP-LSTMs are used as reference signals in an alarm system. Lastly,
this technique is also tested on real data of the OhioT1DM Dataset.
This chapter is based on the results published in:

ś łF. Iacono, L. Magni, and C. Toffanin, łPatient-tailored LSTM
model for hypoglycemia prevention: an in-silico case study”, in
Mathematical Modelling and Control for Healthcare and Biomed-
ical Systems (MCHBS 2021), Virtual Online Conference, 2021”;

ś łF. Iacono, L. Magni, and C. Toffanin, łPersonalized LSTM mod-
els for glucose prediction in Type 1 diabetes subjects”, in 2022
30th Mediterranean Conference on Control and Automation (MED),
2022, pp. 324ś329”;

ś łC. Toffanin, F. Iacono, and L. Magni, łPersonalized LSTM-
Based Alarm Systems for Hypoglycemia Prevention”, in 2023 31th
Mediterranean Conference on Control and Automation (MED),
Accepted”;

ś łF. Iacono, L. Magni, and C. Toffanin, łPersonalized LSTM-based
alarm systems for hypoglycemia and hyperglycemia prevention”,
in Biomedical Signal Processing and Control, Submitted”.

• Lastly in Chapter 7 the concluding remarks are gathered, to summa-
rize the results obtained in this thesis, proposing some possible future
developments.
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2.1.1 Neural networks classiőcation

The NNs can be divided in different classes, depending on how the neurons
are connected and how the information ŕows through the layers. In this sec-
tion, only few classes will be presented, in order to give a general overview of
the different NN architectures, considering the most relevant ones nowadays.

Feed-Forward Neural Networks

The Feed-Forward Neural Networks (FFNNs) are the simpler existing NN
architectures and the őrst that have been deőned. The FFNNs are also called
Multi Layer Perceptron (MLP), since they are composed by multiple layers
of interconnected units: the general scheme shown in Figure 2.2 represents
a FFNN. The main characteristic of this architecture is that in a FFNN the
information ŕows directly from the input to the output and the neurons of a
layer are connected only to the neurons of the next layer, without feedback
connections.

Recurrent Neural Networks

The Recurrent Neural Networks (RNNs) [23] are a class of NNs derived
from the FFNNs, where, unlike the latter, a feedback connection is present
between the neurons in the same layer. These networks are characterized
by the presence of an internal state, making possible to take into account
temporal dependencies. Consequently, this architecture is mainly used to
process sequential data and in application like time series prediction, natural
language processing, translation, handwriting recognition, and so on.
This thesis is mainly focused on the use of a particular RNN architecture,
so this class will be explained more in detail in the following in Section 2.2.

Convolutional Neural Networks

The Convolutional Neural Networks (CNNs) [24, 25] are derived from the
FFNNs too and are the most diffused and important architectures used for
images classiőcation.
The CNNs are inspired by the works of two neurophysiologists, Hubel and
Wiesel, about the neurons connections of the animal visual cortex, where
each neuron responds only to a small portion of the visual őeld, called re-
ceptive őeld. Similarly, in the CNNs, each neuron receives input only from
a restricted area of the previous layer, called receptive őeld too. These net-
works take their name from the mathematical operation of the convolution,
since they use convolution instead of matrix multiplication in at least one
layer [26]. The input features of a CNN, typically images, are transformed
through convolution, providing a feature map i.e. an abstraction of the input
image, that is then passed in input to the subsequent CNN layer, where each
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Figure 2.3: CNN architecture.

neuron receives an input only from its receptive őeld. After several CNN lay-
ers and transformations, the last layer of a CNN is a Fully-Connected layer
(FC layer), like in regular FFNNs, where the őnal classiőcation is performed.
In Figure 2.3 an example of a CNN with 3 convolutional layers is shown.

Transformers

Transformers [27] are one of the most promising and recent NN architec-
ture, developed by a Google Brain team in 2017. They are designed to
process sequential data, so are mostly used in natural language processing
and computer vision, where are fast replacing RNNs in time series tasks [28].
Transformers are based on an encoder-decoder structure, where the input is
received as a sequence, converted in an encoded vector that is then decoded
back in another sequence. Moreover, they are entirely based on self-attention
mechanisms. The attention mechanism [29] has already been implemented
in RNNs to improve their performances, especially in translation tasks, en-
abling the network to focus on certain part of the sequence input, deciding
for the encoding of a given word how much important are the other words
of the input sequence.
The Transformer architecture is similarly based on an encoder-decoder struc-
ture but without recurrence or convolution to produce an output. The self-
attention mechanism of the Transformers instead computes a representation
of the inputs sequence, with respect to the other elements of the same se-
quence. The attention is composed by a query and a key-value pair for each
word in the sequence, the output is then a weighted sum of the values com-
puted as a scaled-dot product. For each attention unit there are three weight
matrices (query weights, key weights, value weights), called attention head,
that are multiple for each layer.
The main advantage of the Transformers with respect to the RNNs is their
capability to process the input sequence all together, so it is possible to par-
allelize the job and reduce the training time. Moreover, the short and long
term dependencies are clearly modeled.
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components can grow exponentially or can go exponentially to 0, leading
in a severe worsening of the optimization. In particular, with a vanishing
gradient it is difficult to understand in which direction the parameters have
to move to reduce the cost function, while with an exploding gradient the
training phase may be unstable.
To avoid the vanishing gradient problem, some techniques can be applied
during the training of a network, like a proper weight initialization, gradi-
ent clipping, using a linear activation function, and so on. Moreover, some
particular variations of the RNNs have been designed to solve this problem,
called gated RNNs. The successful idea behind the gated RNNs is the sub-
stitution of the RNN internal state with an internal self-loop, regulated by a
gating system that manages the information ŕow, deciding also when an in-
formation is no more necessary and can be forgotten. The Long Short-Term
Memory (LSTM) networks belong to this group.

2.2.1 LSTM network

The LSTMs, őrstly introduced in [34, 35], are a particular type of RNNs,
that thanks to their speciőc units architecture, called memory cells, are able
to learn the information dependencies better than the simple RNNs. The
LSTM memory cell presents an internal self-loop, in addition to the outer
feedback present in all the RNNs, and a gating system that regulates the
ŕow of information. In this way, the gradient ŕows during time, even for
long periods, and its derivative do not explode nor vanish.
The mathematical formulation of a single memory cell, represented in Figure
2.5, is expressed as follows:

c(k) = f(k)× c(k − 1) + i(k)× c̃(k) (2.4a)

h(k) = o(k)× tanh (c(k)) (2.4b)

where c(k) ∈ R
n is the internal cell state at time k, x(k) ∈ R

m is the input
at time k and h(k) ∈ R

n is the hidden state at time k, with n the cell state
dimension, that corresponds to the number of LSTM neurons, m the number
of features, × is the Hadamard product and tanh is the hyperbolic tangent,
used as activation function.
Four structures, called gates, regulates the internal loop of the cell adding
or removing information to modify the value of the cell state at each time
instant. The őrst gate is the forget gate, f(k), that decides which information
is removed from the cell state c(k), multiplying it by its past value c(k− 1),
as can be seen in the őrst part of (2.4a). Then the input gate, i(k), chooses
which value of the cell state is updated, while the input activation gate, c̃(k),
creates a new candidate value of the cell state. The last gate is the output
gate, o(k), that determines which information contained in the cell state is
going in output. The hidden state is then deőned in (2.4b), where the output
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Figure 2.6: Scheme of a GRU cell.

following equation:
y(k) =Wyh(k) + by (2.7)

where Wy ∈ R
p×n is the matrix of the output weights, with p the number of

outputs of the network, and by ∈ R
p×1 the bias. Wy and by are determined

during the training of the network as well.
Thanks to this structure, LSTMs show their strength especially when dealing
with temporal data and when temporal lags must be taken into account [33,
35ś38].

2.2.2 Other relevant RNNs

Gated Recurrent Unit

Gated Recurrent Units (GRUs) [39], are RNNs with a gating architecture,
similarly to the LSTMs. A single GRU memory cell, represented in Figure
2.6, is described by the following mathematical equations:

z(k) = σ(Wzx(k) + Uzh(k − 1) + bz) (2.8a)

r(k) = σ(Wrx(k) + Urh(k − 1) + br) (2.8b)

h̃(k) = tanh(Whx(k) + Uh (r(k)× h(k − 1)) + bh) (2.8c)

h(k) = z(k)× h(k − 1) + (1− z(k))× h̃(k) (2.8d)

where z(k) is the update gate, r(k) is the reset gate, h̃(k) is the candidate
activation, h(k) is the output, x(k) is the input. The matrices W and U and
the biases b are the weights to be tuned.
Unlike the LSTM case, the cell state and the output gate are not present in
a GRU memory cell; there are only an update and a reset gate, that decide
the information to pass to the output. Since it lacks of an output gate, there
are less parameters to tune with respect to the LSTM, so the training can be
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to represent this function. However, we are not guaranteed that the
training algorithm will be able to learn that function.”

In [43] the theorem was proved in particular for a sigmoid activation function,
then during years the result was extended also to other classes of activation
functions and recently also to RNNs [44].
In the early 90s, in [21, 22] NNs were used for the őrst time for identiőcation
and control of dynamical systems. The main idea was to use FFNNs as one
step-ahead predictors, like in [45], in order to predict future outputs, given
past inputs and outputs. Since the FFNNs are static and memoryless, they
were not particularly suitable for this goal and the results were not accurate,
especially in learning long-term dependencies. RNNs instead seemed to be
more appropriate for these applications. Thanks to their speciőc structure,
the RNNs are able to take into account the temporal dependencies of the
data, being in that way particularly able to describe dynamical systems [46].
Moreover, they are also able to represent non linear behaviours, very useful
when more classical linear identiőcation methods cannot be used [45].
The use of NNs in identiőcation and control őelds was then extended more
speciőcally to RNNs: for example in [47] a RNN was used to identify a non
linear plant, then controlled with a standard PID, in 1995. In the same
years, to őnd a solution to the vanishing and exploding gradient problem,
some new architectures were proposed, like the LSTMs [34] in 1997. The
LSTMs rapidly increased their popularity in several őelds of application, be-
coming soon the state-of-the-art for recurrent models, thanks to their very
powerful learning ability, especially when working with time-series data and
it is important to consider long-term dependencies [37]. In [48] a detailed re-
view about LSTMs is presented, outlining the most diffused and interesting
applications of these networks, analyzing more than 400 peer-reviewed pa-
pers. As result, the most relevant applications regard time series prediction,
natural language processing, sentiment analysis, image and video captioning,
computer vision, text recognition, but also traffic analyses, healthcare appli-
cations, computer science, sound recognition. Even if this is a recent review,
the application of LSTMs in system identiőcation and control problems is
never mentioned, conőrming how in this őeld their popularity is still very
marginal.
One of the őrst works in which LSTMs are used for dynamic system identi-
őcation is [49], in 2017. Some previous works probably exist, but this one is
particularly relevant: the identiőcation process is designed minimizing the
error between the LSTM model and the real plant model, relying on the
Universal Approximation Theorem. The resulting performances are highly
better than classical RNNs. In 2020, links between deep learning and system
identiőcation are shown in [50]. The goal of both topics is łto infer models
from observed data”. On one hand, a key decision in system identiőcation is
the choice of the model structure, estimating the parameters and then val-
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idating the model: if this decision needs to be changed, the procedure may
become a loop. Moreover, the parameters estimation is essentially carried
out minimizing the error between real and estimated outputs. This proce-
dure seems not so different from the training of a NN. On the other hand,
the LSTM equations can be seen as a general NonLinear State-Space model:

x(t+ 1) = f(x(t), y(t), u(t), θ) (2.9a)

ŷ(t|θ) = h(x(t), θ) (2.9b)

where x is the state, y the output, u the input and θ the parameters of the
model. Considering this duality, the conclusion of [49] is that

łDeep learning is a task that őts very well into the system identiőcation
framework. What is special is that the choice of model structure M is
done within the family of deep networks. But it is still an (statistical)
estimation problem”.

Starting from őrst few works in 2012, the presence of LSTMs in this őeld has
considerably grown and this can be easily demonstrated: searching on the
Web of Science the terms łLSTM AND system AND identiőcation”, the ob-
tained result is shown in Figure 2.8 (citation report graphic is derived from
Clarivate Web of Science, Copyright Clarivate 2023. All rights reserved.
Visited on 06/01/2023). A clear growing trend can be observed and it will
probably further increase in the next future. Moreover, considering the most
cited works in this list, many different topics are present, highlighting how
this approach can be applied in different őelds: fault detection [51ś54], non-
linear system identiőcation [55], diagnostic algorithms in nuclear plants [56,
57], parameters identiőcation for robot manipulators [58], state-of-charge
estimation of Li-ion batteries [59], nonlinear structural seismic response pre-
diction [60], and so on.
In a recent survey [61], the potentiality of RNNs in the control őeld are
shown, classifying the different approaches in the use of NNs for control in
six groups:

1. NN as model of a plant : the NN is trained on plant data as a black-
box model of the considered system. Then this model can be used as
reference for control purposes in model-based control, like in Model
Predictive Control (MPC).

2. NN as a part of a grey-box model : the NN is used to model unknown
or complex terms present in physical models based on őrst-principle
equations. This approach includes the so-called physics-based models,
that seek to include physical knowledge of the system in the network,
directly in the structure of the RNN or in the loss function. An inter-
esting survey about this kind of networks can be found in [62].
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Figure 2.8: Number of publications in Web of Science of łLSTM AND system
AND identiőcation” from 2012.

3. NN as model of the uncertainty : the NN is trained to model the un-
certainty of an existent known model, in order to improve its accuracy.
The modelled uncertainty can be used to design the control algorithm.

4. NN as approximator of computationally-intensive control laws : given
an existent trustworthy model with a control law that has a high com-
putational cost, the NN can be used to approximate it offline, thanks
to its approximation properties and low computational load.

5. NN as controller directly synthesized from data: the NN is not used to
obtain a model but to obtain instead the control law directly from the
plant data.

6. NN for Reinforcement Learning : the NN learns the control law of a sys-
tem with reinforcement learning techniques, exploiting several closed-
loop simulations, ideal when a simulator of the real system exists.

The őrst approach, in which the NNs are used as models of dynamical sys-
tems with the goal of control design, is probably the most common nowadays
and also the one more emphasized in [61]. Moreover, this approach is also
the main concept that drives this thesis.
Lastly, in [61] a discussion of some unresolved problems on this topic is
carried out, highlighting the open issues that make difficult the diffusion of
RNNs in the control őeld, with respect to their fast diffusion in other őelds of
study: robustness of the identiőed model, safety veriőcation, interpretability
and consistency of the model with respect to the physical laws characterizing
the system. These issues are mainly related to the generalization capabilities
of the network and to its connection to the real plant. If these problems may
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be solved, it will be possible in the future to test the models and their control
schemes on the real plants, comparing NN models with more traditional ones
in order to assess and better understand advantages and disadvantages.

2.3.1 RNN stability analysis

In order to be successfully employed in system identiőcation and control,
RNNs need to satisfy some stability requirements. In [61] stability results for
the main RNNs families are shown: Neural Nonlinear AutoRegressive eXoge-
nous (NNARX), Echo State Networks (ESN), LSTM and Gated Recurrent
Units (GRU). In particular, sufficient conditions to guarantee the Input-to-
State Stability (ISS) and Incremental Input-to-State Stability (δISS) of the
networks are provided. These properties are used to design an observer, then
used in a MPC scheme, guaranteeing the asymptotic stability of the closed-
loop system.
To better understand the stability properties, őrstly some useful deőnitions
are recalled in the following.

Deőnition 1 (K-function). A continuous function γ : R≥0 → R≥0 is a class
K function if γ(s) > 0 for all s > 0, it is strictly increasing and γ(0) = 0.

Deőnition 2 (K∞-function). A continuous function γ : R≥0 → R≥0 is a
class K∞ function if it is a K function and γ(s) → ∞ for s→ ∞.

Deőnition 3 (KL-function). A continuous function β : R≥0 × Z≥0 → R≥0

is a class KL function if β(s, k) is a K function with respect to s for all k,
it is strictly decreasing in k for all s ≥ 0, and β(s, k) → 0 as k → ∞ for all
s > 0.

Deőnition 4 (ISS [63]). The dynamical system x(k + 1) = f(x(k), u(k)) is
Input-to-State Stable (ISS) if there exist functions β ∈ KL and γu ∈ K∞

such that for any k ≥ 0, any initial condition x̄ and any input sequence
{u(0), u(1), ..., u(τ)}, it holds that:

∥x(k)∥ ≤ β(∥x̄∥, k) + γu(max
h≥0

∥u(h)∥). (2.10)

Deőnition 5 (δISS [64]). The dynamical system x(k + 1) = f(x(k), u(k))
is Incrementally Input-to-State Stable (δISS) if there exist functions β ∈
KL and γu ∈ K∞ such that for any k ≥ 0, any pair of initial condi-
tions x̄a and x̄b, any pair of input sequences {ua(0), ua(1), ..., ua(τ)} and
{ub(0), ub(1), ..., ub(τ)}, it holds that:

∥xa(k)− xb(k)∥ ≤ β(∥x̄a − x̄b∥, k) + γu(max
h≥0

∥ua(h)− ub(h)∥). (2.11)

The ISS of a system guarantees the boundedness of the state, given a bounded
input. The δISS of a system guarantees that the smaller is the distance be-
tween two inputs, the smaller is the distance between the corresponding state
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trajectories, asymptotically, independently on the initial states. In this way
the modeling is independent from the initialization, particularly useful with
NNs. Moreover, δISS imply ISS, since it is a stronger condition.
Given these deőnitions, in [61] the following Proposition is enunciated:

Proposition 1 ([61]). Under suitable conditions on their weights Φ, NNARXs
[65], ESNs [66], LSTMs [67], and GRUs [68] are guaranteed to be ISS and
δISS. These conditions can be generally regarded as nonlinear inequalities on
the weights of the network, denoted by

ν(Φ) < 0 (2.12)

If the condition on the weights of the network in (2.12) holds, then the RNN
is ISS and/or δISS. This condition can be easily implemented during the
training phase of the network as a penalization of the loss function.

2.3.2 LSTM stability analysis

In this thesis, the aim is mainly focused on LSTMs so in the following their
stability property is more deeply described. A őrst condition is deőned in
[69], then extended in [67].

Remark. In order to be more consistent with the typical system identiőcation
notation, in this section the input is referred as u and the state as χ =[
cT hT

]T
∈ R

2n.

First of all, Equation (2.4) is rewritten in state space form, considering in this
way the network as a discrete-time, invariant, non linear dynamical system.
The output transformation of the system is instead deőned by Equation
(2.7). In particular:

c(k + 1) = f(k)× c(k) + i(k)× c̃(k) (2.13a)

h(k + 1) = o(k)× tanh(c(k + 1)) (2.13b)

y(k) =Wyh(k) + by (2.13c)

In the same way Equation (2.5) can be rewritten as:

f(k) = σ(Wfu(k) + Ufh(k) + bf ) (2.14a)

i(k) = σ(Wiu(k) + Uih(k) + bi) (2.14b)

c̃(k) = tanh(Wc̃u(k) + Uc̃h(k) + bc̃) (2.14c)

o(k) = σ(Wou(k) + Uoh(k) + bo) (2.14d)

In [69], the inputs are assumed bounded, with

u ∈ U = [−umax, umax]
m (2.15)

and this holds considering for example a physical saturation of the input or
can be obtained through normalization techniques of the data. Consequently,
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considering the activation functions bounds, also the output state is bounded,
so

h ∈ [−1, 1]n (2.16)

Considering the Deőnitions 1, 2, 3 and 4, the following Deőnitions and The-
orems are valid.

Deőnition 6 (ISS Lyapunov function [70]). A continuous function V : Rn →
R+ is called an ISS-Lyapunov function if there exist functions ψ1, ψ2, ψ ∈ K∞

and σu, σb ∈ K such that for all χ(k) ∈ R
2n, for all bc ∈ R

n and u(k) ∈ R
m,

it holds that:

ψ1(|χ(k)|2) ≤ V (χ(k)) ≤ ψ2(|χ(k)|2) (2.17a)

V
(
χ(k + 1)

)
− V

(
χ(k)

)
≤ −ψ2(|χ(k)|2) + σu(|u(k)|2) + σb(|bc|2) (2.17b)

Theorem 1 ([70]). If the system admits a time invariant ISS Lyapunov func-
tion such that (2.17) hold, then it is ISS in the sense speciőed in Deőnition
4.

Based on these results, the Theorem regarding the LSTM stability is formu-
lated in [69] as follows:

Theorem 2 ([69]). Given the LSTM network (2.13), if

(1 + σg (|[Wo Uo bo]|∞)) σg (|[Wf Uf bf ]|∞) < 1
(1 + σg(|[Wo Uo bo]|∞))σg(|[Wi Ui bi]|∞) |Uc̃|1 < 1

(2.18)

then (2.13) is Input-to-State stable with respect to u ∈ U and to bc.

Since δISS is a stronger condition than ISS, in a more recent work [67] some
more stability conditions for LSTMs are presented. Starting from the same
assumptions regarding the boundedness of the inputs and the states of the
network expressed in Equations (2.15) and (2.16), the following theorems are
valid:

Theorem 3 ([67]). The LSTM network (2.13) is ISS with respect to the
input u and bias bc if ρ(A) < 1, where

A =

[
σ̄f σ̄i∥Uc∥
σ̄oσ̄f σ̄oσ̄i∥Uc∥

]
. (2.19)

denoting

σ̄f = σ(∥[Wfumax Uf bf ]∥∞) (2.20)

σ̄i = σ(∥[Wiumax Ui bi]∥∞) (2.21)

σ̄o = σ(∥[Woumax Uo bo]∥∞) (2.22)

where σ̄f , σ̄i and σ̄o are upper bounds of the gate vectors (2.14a), (2.14b)
and (2.14d) respectively.
Applying the Jury criterion, this condition on the eigenvalues of the matrix A
can be transformed into a condition on the weights of the LSTM, as follows:
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Proposition 2 ([67]). The Schur stability of the matrix A deőned in (2.19)
is ensured if the following inequality holds:

σ̄f + σ̄oσ̄i∥Uc∥ < 1. (2.23)

In a similar way, this approach can be used also to establish a sufficient
condition for δISS.

Theorem 4 ([67]). The LSTM network (2.13) is δISS if ρ(Aδ) < 1, where

Aδ =

[
σ̄f α
σ̄oσ̄f ασ̄o + 1

4 σ̄
x∥Uo∥

]
. (2.24)

denoting

α =
1

4
∥Uf∥

σ̄iσ̄c

1− σ̄f
+ σ̄i∥Uc∥+

1

4
∥Uc∥σ̄

c (2.25)

σ̄c = tanh(∥[Wcumax Uc bc]∥∞) (2.26)

σ̄x = tanh

(
σ̄iσ̄c

1− σ̄f

)
(2.27)

where σ̄c is an upper bound for the gate (2.14c) and σ̄x is an upper bound
for the term tanh(c(k + 1)) in the state equation (2.13b).
Also in this case, using the Jury criterion, it is possible to obtain a condition
on the weights of the network:

Proposition 3 ([67]). The Schur stability of matrix Aδ is ensured if the
following inequality holds:

−1 + σ̄f + ασ̄o +
1

4
σ̄x∥Uo∥ <

1

4
σ̄f σ̄x∥Uo∥ < 1. (2.28)

Moreover, in [67] is observed that the satisfaction of the sufficient condition
for δISS (2.28) implies the satisfaction of the sufficient condition for ISS
(2.23).
The conditions presented in Theorem 2, Propositions 2 and 3 are sufficient
conditions, explicitly dependent from the LSTM weights and can be imposed
as constraints during the training of the network or used to check a posteriori
its stability properties.

2.4 Comparison with other NNs in system identiő-

cation

Besides the advantages of using RNNs and in particular LSTMs depicted in
the previous sections, other type of NN architectures have been employed re-
cently in the system identiőcation and control őelds. In [71] the relationship
between CNNs and system identiőcation model structures is shown, proving
that CNNs are as able as RNNs in applications that employ temporal data,
in particular considering a CNN architecture called Temporal Convolution
Network (TCN) [72].
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2.4.1 Temporal Convolutional Network

Considering the structure of a CNN, as described in Section 2.1.1, it is pos-
sible to formalize the mathematical operation of the convolution also when
dealing with time series data. Formally for a sequence input x = x0, . . . , xT
and a őlter f : {0, ..., k− 1} → R, the convolution F on the element s of the
sequence is:

F (s) = (x ∗ f)(s) =
k−1∑

i=0

f(i) · xs·i (2.29)

where x is the input, f is a őlter (also called kernel) that represents the
learnable parameters of the layer, k is the size of the őlter, s · i the direction
of the past. The asterisk ∗ denotes the convolution operation.
The TCNs are able to consider long-term dependencies through temporal
convolutional őlters, according to two principles [73]:

1. the input sequence can be of any length and transformed to an output
of the same length; this is done using a fully convolutional layer where
the hidden layer have the same dimensions of the input layer, through
zero padding;

2. the convolutions are causal so there are no leaks of information between
future and past.

Given an input sequence x0, . . . , xT , the goal of the sequence modeling task
is to őnd the corresponding outputs y0, . . . , yT , and to fulőll the causality
only the previous inputs already observed are considered. To do this in
practice, the TCN employs causal convolutions where, at time t, the output
is convolved with elements of the lower layers only at time t or before. The
disadvantage of this technique is that the network can consider only temporal
dependencies with size equal to the network’s depth and for longer task the
required depth of the network would be too big.
To overcome this problem, two solutions are employed in TCNs from an
architectural point of view: dilated convolutions and residual blocks. With
a dilated convolution the őlter is applied to a larger region with respect to the
standard one, using a őxed step to skip input values, like in [74]. Considering
the convolution equation in (2.29), the dilated convolution Fd on the element
s of the input sequence is:

Fd(s) = (x ∗d f)(s) =
k−1∑

i=0

f(i) · xs−d·i (2.30)

where d is the dilation factor and ∗d denotes the dilated convolution. In
this case the direction of the past is s − d · i. Notice that with d = 1 the
dilated convolution becomes a standard convolution and Equation (2.30)
is equivalent to Equation (2.29). In Figure 2.9 an example of a dilated
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Figure 2.9: Dilated causal convolution example.

convolution with dilation factors d = 1, 2, 4 and őlter size k = 3 is shown.
The second solution is the usage of a residual block [75] that replaces in TCNs
the standard convolutional layer. A residual block is a block that learns the
residual functions with respect to the input layer. In practice, the residual
block output is calculated adding the residual of a transformation F(x) to
the input itself x, as shown in Figure 2.10. As can be seen in the left branch
of Figure 2.10, the transformation F(x) is resulting from different layers and
one or more activation functions. In the case of the TCN, the block Weight
Layer is a dilated causal convolutional layer, with usually a ReLU activation
function and eventual weight normalization and dropout layers. Unlike the
standard residual mechanism, where the input x is summed directly to the
output of F(x), in the TCN an additional 1D convolutional layer can be
added if the two quantities (input and output of the residual function) have
different lengths, as can be seen in the right branch in Figure 2.10. Lastly,
in Figure 2.11 it is shown how in a TCN these two architectural elements are
combined, in a case with k = 3 and d = 1, where in blue the additional 1D
convolution of the residual block is added to the output, as in Figure 2.10.
Figures 2.9, 2.10 and 2.11 are adapted and redrawn from [73] and [75].

2.4.2 TCNs and LSTMs comparison

Thanks to their structure, it is possible to employ TCNs for sequence mod-
eling. In [73], the advantages and disadvantages for the use of TCNs, with
respect to RNNs, are listed. The most relevant advantages concern paral-
lelism, since different convolutions can be executed in parallel because the
layers use the same őlter; the presence of a stable gradient that avoids the
vanishing or exploding gradient problem; low memory requirements for train-
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Figure 2.11: Residual connection in TCN, with k=3 and d=1.
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ing and the possibility to have variable length inputs. On the other hand,
TCNs need more data storage during evaluation and are subject to potential
parameters change for a transfer of domain, i.e. when a model is transferred
to a domain that needs a longer memory. Moreover, in [73] the TCN is
compared to canonical recurrent architectures like RNN, LSTM and GRU,
on classical sequencing benchmarks (synthetic stress tests, polyphonic music
modeling, character-level language modeling, word-level language modeling)
showing outperforming results.
Some studies have also been conducted considering TCNs for system identiő-
cation. In [71], TCNs are applied on three system identiőcation problems: a
nonlinear toy problem, a Silverbox benchmark and a F-16 ground vibration
test; the obtained results are compared with the ones obtained with a LSTM
network. The results of the two networks are very similar, showing good per-
formances; the long memory offered by the dilation factor of the TCN does
not give any advantages, probably for the relatively short memory of these
dynamical systems. The authors’ conclusion is that both architecture can
work well for system identiőcation when long-term memory is needed, with
interesting applications in a MPC.
Anyway, the application of both the LSTMs and the TCNs is still very lim-
ited in this őeld, even if they look promising. In [76] further disadvantages
of the use of CNNs for system identiőcation and control are listed: the need
of large-scale datasets and high computational power, given their deeper and
deeper structures; the need of skills and experience for the choice of the hy-
perparameters; őnally, the lack of a solid theory. In fact, they reach good
performance but it is still not completely clear the cause of that, which is
one of the most important point for our analysis.

2.5 Neural networks recap

In these years, the interest of the system identiőcation community in NNs
has continuously grown. At the same time, the desire to understand their
working principles, to better suit the system identiőcation task, is leading to
a new branch of literature, as shown in the previous sections, trying to apply
system identiőcation tools to NNs in order to better exploit them for the
desired task. However, the interest of the entire scientiőc community in ML
is leading to a continuous growth of this őeld, where NNs are being studied
from several different point of views and for many different applications.
For example, considering that the Transformers are fast replacing RNNs
and LSTMs for processing sequential data, it would not be surprising if in
the next years the Transformers will be able to outclass LSTMs also in the
system identiőcation task.
In this chapter, an overview of the most diffused architectures has been
presented, showing their characteristics, their main őeld of applications and
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their key strengths. Moreover, it has been shown how these networks can
be employed in the system identiőcation and control őelds. Even if other
architectures can achieve interesting results too, as things stand at present,
LSTMs represents a very promising NN solution for system identiőcation,
also thanks to their clear composition from a mathematical point of view.
The possibility to rewrite the equations of the LSTM in a state-space form
gives the possibility to analyze the network’s properties using also system
identiőcation tools and not only the ML ones. This thesis aims to highlight
the link between these two őelds, presenting practical applications in which
LSTMs have been successfully employed for the identiőcation of dynamical
systems.
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Chapter 3

Modeling of an industrial
autoclave

In this chapter a physical model and a LSTM network are used to model
the sterilization process of an industrial autoclave. The two models are
built with different goals: the physical model is a novelty of the state of
the art, designed ad-hoc on the speciőc process, to build a simulator; the
LSTM is trained considering the ISS properties enunciated in Theorem 2
(Section 2.3.2), with control purposes. Pros and cons of both approaches
are presented and analyzed, discussing the results obtained in this speciőc
application.

3.1 Motivation and state of the art

In order to meet the principles of Industry 4.0, the modeling of complex pro-
cesses is required and now achievable, thanks to the availability of a large
amount of data. The continuous evolution of the market, due to a growing
technological innovation, has led companies to adapt their design processes
and leverage their capabilities to remain competitive.
An interesting case study is represented by the autoclaves, machines consti-
tuted by pressurized chambers used for the sterilization through the control
of temperature and pressure, when it is required they assume values higher
than the environment ones. The presence of multiple outputs and control
variables, interacting with each other, complicates the process making its
modeling not trivial. Moreover, the use of these machines in different őelds
of applications leads to a large variety of autoclaves available on the market
with different size, toolkits, and components, requiring a variety of different
models. However, even if each machine requires a speciőc physical model,
starting from a common basic model representing the main processes occur-
ring in an autoclave, the new model can be obtained adapting the basic one
to the speciőc case. In this chapter an industrial air-steam autoclave is con-
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sidered, where the sterilization is performed using a mix of air and steam: in
order to balance the pressure inside the machine air injection is used, while
to reach the sterilization temperature target through steam injection is ap-
plied. This machine is called FHA (Fedegari Horizontal Autoclave) and is
produced by Fedegari Group (Albuzzano, Pavia), a company specialized in
the production of autoclaves [77], that provided the data.
Previously, few works in the literature faced this modeling problem: in each
case, the proposed model was speciőc of the analyzed process and could not
be easily adapted to others. For example, in [78] an autoclave for curing of
composites, and in [79] one for chemical leaching process were proposed; the
heat transfer between the autoclave and the product was analyzed in [80],
[81]. A purely physical approach to a similar autoclave used for sterilization
was proposed in [82], showing a not optimal results for this kind of pro-
cesses. Despite the affinities with some of these works, where temperature
and pressure inside the autoclaves are modeled, the differences in the model
characteristics and the considered processes require a new model for each
particular application.
In the following, two models of an industrial air-steam sterilizer are pro-
posed. The őrst one is a physical model, to be used for simulation, ob-
tained extending a previous model of a lab equipment sterilizer proposed in
[83], considering the new components of the industrial machine. The second
model exploits a LSTM network to obtain a model for control applications,
investigating also the stability properties of the system.
The physical model is the result of an hybrid approach, similar to the one
proposed in [83], that involves a physical structure with data-driven adap-
tation of the parameters. In this way, the parameters take into account
the model uncertainties derived by the physical modeling, while the main
structure is based on the physical laws that affect the temperature and pres-
sure behaviors. This model allows to simulate the effect of possible design
changes before applying them. The second solution is a black-box approach,
where a LSTM is used to identify the system. This approach requires a
greater amount of data but provides in short time a good model of the ma-
chine on which the data were acquired. Moreover, the stability property of
this network can be ensured applying a constrained training process, so the
model can be used inside model-based controllers. These results have been
published in [14].

3.2 Autoclave description

An autoclave is a pressurized chamber used in industrial applications to
sterilize different products, exploiting pressurized steam, when high temper-
atures and pressures other than ambient air pressure are required. It is often
used for sterilization, for example in pharmaceutical, food or chemicals in-
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Figure 3.1: FHA autoclave.

dustries, in hospitals and research centers, microbiology and analytical labs
and so on.
The particular autoclave studied in the following is named FHA and is shown
in Figure 3.1). The FHA is an industrial autoclave, composed by a single
chamber for the sterilization, made by stainless steel as well as pneumatic
valves and hydraulic components, with internal heat exchangers (plates) and
a jacket surrounding the chamber, to preheat and cool down the chamber
through steam and cold water. Inside the chamber a fan to distribute ho-
mogeneously air and steam is also present.

3.2.1 Air-steam cycle

The machine considered in this thesis can perform sterilization cycles using a
mixture of air and steam, typical for the sterilization of liquid in sealed con-
tainers. Under these conditions, when the product is heated up, the liquid
expands, exerting pressure. Consequently the pressure inside the chamber
has to balance the liquid one, through the regulation of air and steam as de-
scribed in [84]. The cycle is composed by four different phases, during which
the temperature (Figure 3.2a) and pressure (Figure 3.2b) proőles undergo
several variations. The cycle starts with the preparation of the autoclave
(Ph1) during which the initial conditions are set and checked. Then, the
chamber is heated (Ph2) through steam injection with the possibility to ac-
tivate the auxiliary elements (plates and jacket) to speed up the process.
This phase lasts until the target temperature and pressure are reached and
maintained throughout the sterilization phase (Ph3). At the end of the ster-
ilization, the cooling phase starts. Firstly, there is a pressurization using
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(a) Temperature

(b) Pressure

Figure 3.2: Temperature and pressure proőles during the air-steam cycle.

only compressed air (Ph4) and then a controlled rate cooling (Ph5) during
which the auxiliary elements can be activated to cool down the chamber.

3.3 Physical model

In this Section the physical model (PhM) is explained in detail. The ster-
ilization process can be described through the deőnition of őve different
processes:

1. chamber őlling and emptying;

2. chamber pressure regulation;

3. chamber heating and cooling;

4. plates heating and cooling;

5. jacket heating and cooling.

Processes 1-3 were already present in [83] and are integrated in this model
adding the effects of plates and jacket that were not present in the lab steril-
izer. The outputs of the system are the pressure and the temperature of the
chamber. The temperature of the jacket is also measured and can be a vari-
able of interest, so an additional output has been introduced in the model.
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A discrete state is added to take into account different conditions of the
chamber, that imply different physical laws for temperature and pressure.

3.3.1 Description

The dynamic of the system is described by 7 states, 14 inputs and 3 outputs,
that are described in the following.
Among the seven states of the system, the őrst one is a discrete state, while
the remaining are continuous ones. In details, the states of the system are:

• x1(k) = CC(k): chamber conditions;

• x2(t) = Qa(t): air quantity in the chamber;

• x3(t) = Qs(t): steam quantity in the chamber;

• x4(t) = Pc(t): chamber pressure;

• x5(t) = Tc(t): chamber temperature;

• x6(t) = Tp(t): plates temperature;

• x7(t) = Tj(t): jacket temperature.

The inputs of the system may be divided in three different groups, depending
on the part of the system that they inŕuence, i.e. the chamber, the plates
and the jacket. The chamber inputs are:

• u1(t) = Qca(t): ingoing compressed air ŕow;

• u2(t) = Qst(t): ingoing steam ŕow;

• u3(t) = af (t): fan activation state (0,1);

• u4(t) = d1(t): contact surface of drain 1;

• u5(t) = d2(t): contact surface of drain 2;

• u6(t) = d3(t): drain 3 activation state.

The plates inputs are:

• u7(t) = Qst,p(t): ingoing steam ŕow in the plates;

• u8(t) = QH2O,p(t): ingoing water ŕow in the plates;

• u9(t) = d4(t): drain 4 activation state.
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The jacket inputs are:

• u10(t) = Qst,c(t): ingoing steam ŕow in the jacket;

• u11(t) = QH2O,c(t): ingoing water ŕow in the jacket;

• u12(t) = d5(t): drain 5 activation state;

• u13(t) = d6(t): drain 6 activation state

• u14(t) = d7(t): drain 7 activation state.

Lastly, the outputs of the system are:

• y1(t) = Pc(t): chamber pressure;

• y2(t) = Tc(t): chamber temperature;

• y3(t) = Tj(t): jacket temperature.

In this machine, some valves can work both as on/off and as modulated
valves. In particular, their working mode is regulated by the activation, av
and aw, of the analogue signals v and w, respectively. These signals modulate
the opening of the valves: when the signals is active (av = 1, aw = 1) the
valves are modulated, otherwise they are in the on/off mode and their state
is determined by the activation state an of the speciőc valve n. Inputs u1(t),
u2(t), u4(t), u5(t) and u11(t) depend on the signal v, input u8(t) depends on
the signal w, following a non linear relation that can be approximated with
sigmoid functions, expressed in Equations (3.1) and (3.2):

un(t) =

(
L

1 +Ae c (v−8)
Qn av +Qn(1− av)

)
an(t) (3.1)

with n = 1, 2, 4, 5, 11 and

u8(t) =

(
L

1 +Be c (w−8)
Q8 aw +Q8(1− aw)

)
a8(t) (3.2)

where L = 1, c = −3, A = 0.2, B = 200, Qn is the ingoing or outgoing
quantity modulated by the valve n, an is its activation state and av, aw are
the activation states of the analogue signals. Both the signals work in a
range of [4−20] mA. When they control an input ŕow (steam, air or cooling
water), the valve is completely open when the signal is high. Vice versa,
when they control a drain, the valve is completely open when the signal is
low. In this way it is possible to control two opposite effects with a unique
signal. In the following, when a valve n is modulated, its input is indicated as
un, while when it functions as on/off, its input is indicated as an, referring
to the activation of the valve. If different valves are used to control the
ingoing/outgoing ŕows, it is possible to adapt the model studying the new
component and changing the expression of un(t).
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Figure 3.3: Finite state machine of the chamber conditions

3.3.2 Equations

Chamber conditions

The őrst state that needs to be explained is the discrete state x1(k) that
describes the chamber conditions. Since temperature and pressure follow
different physical laws based on the quantities of air, x2(t), and steam, x3(t),
inside the chamber, the value of x1(k) determines the values of the other
continuous states. For this reason, the őnite state machine (Figure 3.3)
proposed in [83] is still valid and it is used to determine the different chamber
condition between:

• Vacuum (V): no gas in the chamber (x1(k) = 0);

• Mixed (M): both air and steam in the chamber (x1(k) = 1);

• Saturated steam (S): only steam in the chamber (x1(k) = 2);

• Air (A): only air in the chamber (x1(k) = 3).

So the state x1(k) can be expressed by the following equations:

x1(k) =





0 if x2(t) = x3(t) = 0

1 if x2(t), x3(t) > 0

2 if x2(t) = 0, x3(t) > 0

3 if x2(t) > 0, x3(t) = 0

(3.3)
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It can be observed that since the state x1(k) is function of the continuous
states x2(t) and x3(t), the overall state system described in the following is
in a non-minimal state space representation. However, it has been chosen to
represent it in this way in order to better understand the working mechanism
of the above explained őnite state machine and how the other states depend
on the values assumed by x1(k) during the different phases of the process.
Lastly, since in the air-steam cycle performed by the FHA there is always
air inside the chamber, it always holds that x2(t) > 0 and so only the cases
with x1(k) = 1 and x1(k) = 3 are considered in the following.

Gas quantities

The second and third continuous states represent the quantities of the gases
present in the chamber:

ẋ2(t) = u1(t)

− kd1u4(t)(x4(t)− Pa)Pot ·

(
1−

x3(t)

x2(t) + x3(t)
u3(t)

)
qa

− kd2u5(t)(x4(t)− Pa)Pot ·

(
1−

x3(t)

x2(t) + x3(t)
u3(t)

)
qa

(3.4)

ẋ3(t) = u2(t)

− kd1u4(t)(x4(t)− Pa)
x3(t)

x2(t) + x3(t)
Pot ·

(
1− qa(1− u3(t))

)
qs

− kd2u5(t)(x4(t)− Pa)
x3(t)

x2(t) + x3(t)
Pot ·

(
1− qa(1− u3(t))

)
qs

− k1(x5(t)− Ta)qsTot

(3.5)

where Pot is an auxiliary logic variable active if the pressure x4(t) is above
the threshold Pa, similarly Tot is active if the temperature x5(t) is above
the threshold Ta, while qa and qs detect the presence of air (x2(t) > 0) and
steam (x3(t) > 0), respectively.
The quantities x2(t) and x3(t) depend on the ingoing ŕow of compressed air,
u1(t), or steam, u2(t), and on the outgoing ŕow through the chamber drains,
u4(t) and u5(t). The outgoing ŕow is proportional to the difference between
the pressure inside the chamber and the atmospheric one, Pa, if the pressure
inside is greater than it. The machine is equipped with a fan, u3(t), in order
to have an homogeneous distribution of gases inside the chamber. If the fan
is active, the two gases will be expelled proportionally to their quantities in
the chamber, otherwise the air will be expelled őrstly because the drains are
located on the bottom. A term to take into account the condensation effect
of the steam is also added in Equation (3.5).
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Chamber pressure

The fourth state describes the pressure evolution and depends on the cham-
ber condition. In the Mixed case (x1(k) = 1) the pressure equation is:

ẋ4(t) = + kp,u1mu1(t)
(
x4(t)− Pa

)

+ kp1u1(t)
(
x5(t)− Ta

)

− kp,d2mu5(t)
(
x4(t)− Pa

)

− kpm

(
x4(t)− Pst

(
x5(t)

))
(3.6)

It increases due to the injection of compressed air and decreases because
of the opening of the drains. A condensation effect is present due to the
injection of air with a lower temperature (atmospheric one, Ta) with re-
spect to the temperature of the gas inside the chamber. The fourth term of
Eq. (3.6) represents the one-to-one correspondence between temperature in
Kelvin (T k

c ) and pressure (Pst) inside the chamber:

Pst

(
T k
c (t)

)
= f

(
T k
c (t)

)
= Pwv

(
T k
c (t)

)
+ Pas

(
T k
c (t)

)
(3.7)

where Pwv is given by water vapour pressure law [85]

Pwv

(
T k
c (t)

)
=
e
73.649− 7258.2

Tk
c (t)

+4.1653·10−6·Tk
c (t)

2

e7.3037 · T k
c (t)

(3.8)

and Pas is proportional to the temperature T k
c following the law related to

the overpressure inside sealed container with aqueous solution [84]. Note
that a similar relation stands in the saturated steam case so that Equation
(3.6) can be easily adapted to that new case. In the Air case (x1(k) = 3) we
obtain:

ẋ4(t) = + kp,u1u1(t)
(
x4(t)− Pa

)

− kp,d1u4(t)
(
x4(t)− Pa

)

− kp,d2u5(t)
(
x4(t)− Pa

)
(3.9)

− kp,coolpla8(t)
(
x4(t)− Pa

)

− kp,coolja11(t)
(
x4(t)− Pa

)

The pressure of the chamber is increased by the injection of compressed air
and is decreased by the activation of drain 1, u4(t), or drain 2, u5(t). There
is a further decreasing when jacket and/or plates are őlled with cooling ŕuid.

Chamber temperature

The őfth state represents the temperature inside the chamber, and as the
pressure, it depends on the chamber conditions.
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In the Mixed case (x1(k) = 1) the temperature is:

ẋ5(t) = + kc,u2m(Tot0)u2(t) (Tstmax − x5(t))

− kc,d2mu5(t)(x5(t)− Ta)

− kc,d3a6(t)(x5(t)− Ta) (3.10)

+ kc,plma7(t)
(
x6(t)− x5(t)

)

It increases due to the injection of steam until Tstmax is reached, that is
the maximum temperature that can be reached through steam injection. It
is decreased by the opening of drains 1 and 3. An heat exchange between
chamber and plates increases or decreases the temperature, proportionally
to the temperature difference of the two elements. Note that, the parameter
kc,u2m depends on the initial temperature of the chamber x5(0); in particular,
Tot0 is an auxiliary logic variable active if the initial temperature is above
the threshold Tth = 30◦. In the Air case (x1(k) = 3) we obtain:

ẋ5(t) =− kc,d1u4(t)(x5(t)− Ta)

− kc,d2u5(t)(x5(t)− Ta)

− kc,u1u1(t)(x5(t)− Ta)

− kc,d1pl
(
a4(t) + a8(t)

)
(x5(t)− Ta) (3.11)

− kc,d2pl
(
a5(t) + a8(t)

)
(x5(t)− Ta)

− kc,pla8(t)(x5(t)− Tp)

− kc,ja11(t)(x5(t)− Ta)

The temperature is decreased by drain 1 or 2, the injection of compressed
air and the cooling effect of the jacket. The cooling effect of the plates is
also present and described by the following relationships:

kc,d1pl =

{
k̄c,d1pl t̄p < t < t̄p + τ1

0 otherwise

kc,d2pl =

{
k̄c,d2pl t̄p < t < t̄p + τ1

0 otherwise

kc,pl =

{
0 t̄p < t < t̄p + τ1

k̄c,pl otherwise

At the beginning, it depends on kc,d1pl or kc,d2pl , after τ1 it depends on kc,pl
and tends to the plates temperature, Tp, with t̄p the time of the activation of
the cooling ŕuid in the plates. This happens because after this time interval
the cooling ŕuid of the plates has reached a thermal equilibrium with the
chamber, so its cooling effect is slightly reduced.
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Plates temperature

The sixth state is the plates temperature:

ẋ6(t) = + kpl,u7a7(t) (Tstmax − x6(t))

− kpl,d4a9(t)(x6(t)− Ta) (3.12)

− kpl,ca7(t) (x6(t)− x5(t))

It is increased by the injection of steam in the plates through u7(t), until
the sterilization temperature is reached, and decreased through the drain 4,
u9(t), proportionally to the atmospheric temperature. The temperature of
the plates also depends on the heat exchange with the chamber, proportion-
ally to the temperature difference of the two elements.

Jacket temperature

The seventh state represents the jacket temperature.

ẋ7(t) = + kj,c
(
x5(t)− x7(t)

)

+ kj,u2u2(t)
(
Tsteam − x7(t)

)

+ kj,u10a10(t− τ2)
(
Tstmax − x7(t)

)

− kj,d5a12(t)(x7(t)− Ta)

− kj,d6a13(t)(x7(t)− Ta)

− kj,d7a14(t)(x7(t)− Ta)

− kj,pla8(t− τ1)(x7(t)− Ta)

− kj,coola11(t− τ2)(x7(t)− Ta)

+ kj,fla11(t)
(
Tsteam − x7(t)

)

− kj,dispa12(t)
(
x7(t)− Tsteam

)

(3.13)

Since the chamber is completely surrounded by the jacket, there is always an
heat exchange between them. The temperature of the jacket increases when
steam is injected inside the chamber through u2(t) and when steam is di-
rectly injected through u10(t), until the sterilization temperature is reached,
considering a delay τ2 due to the waiting time for the complete őlling of the
jacket. It decreases through the drains (u12(t), u13(t), u14(t)) and when the
cooling ŕuid is present in the plates, u8(t), and in the jacket, u11(t), consid-
ering the delay τ1 due to the waiting time for the cooling of the plates. The
parameter kj,fl takes into account the delayed effect of the injection of cool-
ing ŕuid in the jacket when the jacket is used for cooling. On the contrary,
kj,disp considers the delayed effect of the drain 5 when the jacket is used for
heating. These relationships are described by the following equations:

kj,fl =

{
k̄j,fl t̄c + ϵ < t < t̄c + τ2

0 otherwise
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kj,disp =

{
k̄j,disp t̄d < t < t̄d + τ3

0 otherwise

with t̄c the time of the activation of the cooling ŕuid in the jacket delayed by
a constant ϵ and t̄d the time of the activation of the drain 5. All the delays
reported in this section have been experimentally estimated.

Output transformation

Finally, the output transformation is given by:

y1(t) = x4(t)

y2(t) = x5(t)

y3(t) = x7(t)

(3.14)

3.4 LSTM model

The current FHA system is equipped with simple controllers, like PID, that
do not require a model. Considering in particular the modulated valves
described in Section 3.3.1, their behaviour can be further improved applying
a more complex control approach such as model-based solutions. In this case,
models with a lower complexity with respect to the one used in simulation
are required to perform predictions. A possible solution to this problem is
constituted by a LSTM model.

3.4.1 Description

A single layer LSTM network with 23 inputs, 300 neurons and 2 outputs is
considered in this thesis. The outputs are chamber temperature and pressure,
the jacket temperature is not considered in this model since it is not a variable
of interest for the controller.
The training has been performed using the Matlab environment, exploiting
the DeepLearning Toolbox that provides a framework to design and train
NNs. Moreover, thanks to the Parallel Computing Toolbox it is possible
to use a GPU NVIDIA to fasten the computational time. In practice, a
computer equipped with GPU NVIDIA GeForce GTX 1050 was used to
train the LSTM network for 600 epochs, considering a mini-batch size of 2.
The Adam optimizer is used with initial learning rate α = 0.001 (with 0.8
drop factor after 70 epochs), decay rate β1 = 0.9 and squared decay rate
β2 = 0.99.
The ISS property of the LSTM is enforced during the training of the network
considering Theorem 2. In particular, Condition (2.18) is included as soft
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constraints in the loss function JLSTM , modiőed as follows:

JLSTM =
1

2L

L∑

i=1

(Ŷ (i)− Y (i))2 + µ(ρ1A1 + ρ2A2) (3.15)

considering {
A1 = 0 if ψ1 < 1

A1 = (1 + ϵ− ψ1)
2 if ψ1 ≥ 1

(3.16)

and {
A2 = 0 if ψ2 < 1

A2 = (1 + ϵ− ψ2)
2 if ψ2 ≥ 1

(3.17)

having őxed

ψ1 = (1 + σg(|[Wo Uo bo]|∞))σg(|[Wf Uf bf ]|∞)
ψ2 = (1 + σg(|[Wo Uo bo]|∞))σg(|[Wi Ui bi]|∞) |Uc|1

(3.18)

where L is the mini-batch size considered at each iteration, Ŷ is the predic-
tion, Y the real data, µ, ρ1, ρ2 and ϵ are the parameters to be tuned.
The training sequences are 2000 samples long, with initial state set to 0. The
values of the hyperparameters are initially obtained through a trial and error
procedure. The value of µ is set equal to 1000, in this way a violation of the
constraints is heavily weighted. Note that without regularization, so with
µ = 0, it would be possible anyway to have a network that satisőes Condi-
tion (2.18), but not having any guarantee; instead, with the considered loss
function this condition is forced.

3.5 Datasets description

The data used for the two models have been ad-hoc acquired by the company
on the FHA. The high complexity of this machine and the optional use
of the auxiliary components for the heating and cooling processes lead to
several possible conőgurations of the sterilization cycle. In particular, they
are discriminated by:

1. the initial temperature (high, low);

2. the auxiliary heating method (none, plates, jacket, both plates and
jacket);

3. the cooling method (plates, both plates and jacket);

4. the drain (1 or 2) used during the cooling phase.
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Run Init. Temperature Aux Heating Aux Cooling Drain

1 Low None Plates & Jacket 1
2 Low None Plates 1
3 Low Plates Plates & Jacket 1
4 Low Plates Plates 1
5 Low Jacket Plates 2
6 High Plates Plates & Jacket 1
7 High Plates Plates 1
8 High Jacket Plates 2
9 High Jacket Plates & Jacket 2
10 High Plates & Jacket Plates 1

Table 3.1: Datasets description.

To cover most of the possible combinations over the total 32 possible, 10
runs were collected on the FHA, as shown in Table 3.1. In particular, the
data collection was focused on obtaining at least all the possible combina-
tions of the heating and cooling methods, in accordance with the company
possibilities. The cycles using jacket and plates both in heating and cool-
ing presented some problems during data collection and have to be excluded
from this analysis.
In order to assess the performances of the two models described in the previ-
ous sections, the 10 runs listed in Table 3.1 are equally split in two different
datasets, each one containing 5 runs, one for training and one for testing.
Considering Ck

n, the k-combination of a set with n elements, expressed as:

Ck
n =

n!

k!(n− k)!
(3.19)

then, the combination of the 10 available runs, taken 5 at a time without
repetition, is C10

5 = 252. To discriminate between the 252 possible combina-
tions, in order to have balanced characteristics of the runs between the two
datasets, the following criteria are formalized. In each dataset there should
be:

• half runs with low initial temperature, half with high initial tempera-
ture;

• one without auxiliary heating;

• at least two runs with plates as auxiliary heating;

• at least one run with jacket as auxiliary heating;

• at least one run with plates and jacket as auxiliary cooling, with low
initial temperature;
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• at least one run with plates and jacket as auxiliary cooling, with high
initial temperature;

• at least one run with plates as auxiliary cooling, with low initial tem-
perature;

• at least one run with plates as auxiliary cooling, with high initial tem-
perature;

Out of the 252 possible combinations, 8 satisfy the above criteria and the
following one is chosen:

1. Training dataset : runs 2, 3, 5, 6, 8;

2. Testing dataset : runs 1, 4, 7, 9, 10.

3.6 Discussion

3.6.1 Physical model results

The optimization procedure proposed in [83], for the modeling of the lab
sterilizer, required a collection of repeated runs for each conőguration of the
considered air-steam cycle, that are not currently available for the FHA.
So the parameters tuning for this model is performed via a trial and error
procedure and the complete parameters optimization presented in [83] is
demanded to a future work when further data collection of repeated tests
will be acquired. In particular, a preliminary case-study is introduced here
to validate the contributions of auxiliary heating and cooling components
added to the previous state-space model.
The tuning of the parameters is performed on the Training dataset and then
the validation on the Testing dataset. The parameters speciőcally connected
to the physical valves of the FHA have been set under the supervision of
the technical staff of Fedegari company. The values of the parameters are
reported in Table 3.2, together with the constants used in the physical model.
The goodness of the model is computed for temperature and pressure in the
chamber and for the temperature in the jacket. The plates temperature is
excluded from this validation study since no direct measure is possible for
this quantity. Two performance indexes are considered:

• Index of őtting (FIT ): normalized index that indicates how much the
prediction matches the real data. For a perfect prediction it is equal
to 100% and it can also be negative. It is expressed as:

FIT = 100

(
1−

∑S
i=1∥ŷi − yi∥∑S
i=1∥yi − yi∥

)
(3.20)
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Parameter Value

A
ir

/s
t kd1 0.01

kd2 0.001
k1 0.1

C
ha

m
be

r
pr

es
su

re

kp,u1m 0.3
kp1 0.01
kp,d2m 15 · 10−4

kpm 0.022
kp,u1 0.05
kp,d1 5 · 10−4

kp,d2 2 · 10−4

kp,coolpl 8 · 10−4

kp,coolj 2 · 10−4

C
ha

m
be

r
te

m
pe

ra
tu

re

kc,u2m

0.55 if Tot0 = 0
0.65 if Tot0 = 1

kc,d2m 1 · 10−6

kc,d3 2 · 10−4

kc,plm 5 · 10−4

kc,d1 0.002
kc,d2 0.001
kc,u1 0.001
k̄c,d1pl 15 · 10−4

k̄c,d2pl 25 · 10−4

k̄c,pl 0.001
kc,j 0.001

Parameter Value

P
la

te
s kpl,u7 0.02

kpl,d4 3 · 10−7

kpl,c 35 · 10−4

Ja
ck

et
te

m
pe

ra
tu

re

kj,c 48 · 10−5

kj,u2 0.024
kj,u10 0.01
kj,d5 3 · 10−5

kj,d6 5 · 10−5

kj,d7 3 · 10−5

kj,pl 5 · 10−5

kj,cool 0.005
k̄j,fl 0.05
k̄j,disp 0.02

C
on

st
an

ts
Tp 45 [◦C]
Ta 20 [◦C]
Pa 1.01325 [bar]
Tstmax 130 [◦C]
Tsteam 100 [◦C]
τ1 180 [s]
τ2 120 [s]
τ3 180 [s]
ϵ 60 [s]

Table 3.2: Parameters of the physical model of the FHA.

• Pearson correlation coefficient (ρ): measures the linear correlation be-
tween two variables and has a value between -1 (total negative corre-
lation) and +1 (total positive correlation).

ρ =

∑S
i=1(yi − y)(ŷi − ŷ)

∥yi − y∥ · ∥ŷi − ŷ∥
(3.21)

where y is the vector of the real data, ŷ of the predicted ones, containing
S elements each, and y, ŷ are their respective mean values. The results of
the index calculation are shown in Table 3.3. The mean of the performance
indexes is reported in the last row of the table; these mean values are referred
as FIT and ρ.
The overall performance is satisfactory, with FIT = 94.26% and ρ = 0.998
for the temperature and FIT = 91.55% and ρ = 0.998 for the pressure.
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Temperature Pressure Jacket

Run FIT ρ FIT ρ FIT ρ

1 95.08 0.999 91.92 0.997 86.54 0.992
4 93.51 0.998 90.60 0.998 73.52 0.897
7 93.00 0.998 89.25 0.999 98.23 0.997
9 95.34 0.999 93.05 0.998 96.42 0.998
10 94.34 0.998 92.93 0.998 97.53 0.996

Av 94.26 0.998 91.55 0.998 90.45 0.976

Table 3.3: Physical model performances.

Temperature Pressure

Run FIT ρ FIT ρ

1 81.90 0.984 73.88 0.966
4 87.44 0.992 82.72 0.989
7 84.42 0.988 78.34 0.985
9 34.38 0.836 16.72 0.830
10 51.88 0.898 54.50 0.936

Table 3.4: LSTM model performances.

Contrarily to the results obtained in [83], no particular difference has been
noticed with respect to the initial temperature, only the parameter kc,u2m

required to be differentiated. The validation results of the temperature in the
jacket, reported in the same table, obtained great results with FIT = 90.45%
and ρ = 0.976.
A graphical example of two different runs is reported: in Figure 3.4a and 3.4c
temperature and pressure of run 7 are reported, respectively, in Figure 3.4b
and 3.4d the same signals for run 9. Tc and Tj are the real temperatures in the
chamber and in the jacket, Pc (bottom) is the real pressure in the chamber,
while T̂c, T̂j and P̂c are the correspondent predictions. In particular, it is
interesting to notice how the jacket temperature is well represented both
when it is used for heating and cooling (Figure 3.4b) or not (Figure 3.4a).

3.6.2 LSTM model results

The training of the LSTM network is performed on the Training dataset
and then evaluated on the Testing dataset, as done before for the physical
model, in order to have also comparable results. The results are shown in
Table 3.4, considering FIT and ρ also in this case. Looking at the results, it
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(a) Temperature run 7 (b) Temperature run 9

(c) Pressure run 7 (d) Pressure run 9

Figure 3.4: Temperature and pressure proőles with the physical model.

can be observed that good performances are obtained for the őrst three runs
while the results are not satisfactory for runs 9 and 10. From an analysis of
the characteristics reported in Table 3.1, it can be noticed that these runs
have some singular characteristics: run 9 uses both plates and jacket for
auxiliary cooling with drain 2 and run 10 uses both plates and jacket for
auxiliary heating. These particular combinations are present only in these
two runs, so the network is not able to recognize them during testing. For
the moment, in őrst analysis, these two runs are not considered. Hence,
looking at the performances of runs 1, 4 and 7, reported in Table 3.4, the
overall performance is satisfactory with FIT = 84.59% and ρ = 0.99 for
the temperature and FIT = 78.31% and ρ = 0.98 for the pressure. If the
controller would have to manage cycles with features similar to the ones that
generated runs 9 and 10, an update of the model will be required.

3.7 Models comparison

Two models for an industrial autoclave have been developed following two
different approaches: a white-box model based on the physical knowledge of
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Figure 3.5: Temperature proőle comparing the physical model and the LSTM
one.

the process for simulation and a black-box one based on a LSTM network to
obtain predictions necessary for the application of advanced control systems.
Both the models obtain satisfactory results, considering their own speciőc
target, highlighting at the same time their limitations.
In Figure 3.5 a comparison between the two models is shown, in particular
plotting the temperature proőle of run 7. As already seen from the perfor-
mances indexes the physical model shows a better accuracy, anyway both
the models have satisfying performances especially during the sterilization
plateau that is the most important phase, where pressure and temperature
must be kept constant.
The physical model gives excellent results but, requiring an accurate study of
the physical transformations involved in the process, it is not trivial and re-
quires a lot of time. Even if several physical aspects of the process have been
neglected in the modeling procedure, the main behavior of temperatures and
pressure are satisfactorily represented as proved by high FIT values. With
additional data coming from different machines, a portability study of this
model could be carried out. In principle, the model is generic enough to
be easily adapted modifying the ingoing/outgoing ŕow and the time delays
typical of the considered machine. Of course, the deőnition of the physical
equation and the identiőcation of the parameters are not trivial tasks but
the quality reached is high enough to use this model as a reliable simulator.
It is a powerful tool to be used for simulation but does not őt well control
requirements.
On the other hand, considering the mathematical complexity of the physical
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model and the high number of involved parameters that need to be tuned,
the LSTM model is a good alternative to reduce modeling time and effort.
This model does not require a deep knowledge of the physical processes and
of the functioning of the machine, provides satisfactory predictions and also
ensures ISS properties. A limitation of this approach is that the network is
not able to deduce an unseen behavior such as the physical model, so all the
possible combination have to be present in the Training dataset. In order to
improve the network performances more data are needed, in this way it is
possible to cover all the possible machine conőgurations and to enforce the
generalization capability of the model. Unfortunately, the possibility of a
further data collection is currently limited. Moreover, since this is a black-
box approach, the effect of each component of the machine is not visible and,
depending on the speciőc application that requires the usage of a model, this
can be a limitation.
In summary, the physical model can be used to perform simulation and
analyze the effect of components change even before the machine building,
requiring time and effort to acquire the speciőc knowledge of the physical
behavior of the machine. The LSTM model can be used for control appli-
cations, however since it does not reŕect the physical composition of the
machine, if a component is changed, a new data acquisition and a new train-
ing phase are required.



Chapter 4

Modeling of an industrial
coffee roaster

In this chapter an industrial plant for coffee roasting is taken into consid-
eration comparing the LSTM model with a scalable physical model. The
modeling of this process is a well-known case study in the scientiőc liter-
ature and several physical models have been proposed with very satisfying
results. It will be discussed if it is convenient to use a NN model under these
conditions.

4.1 Motivation and state of the art

The roasting of the coffee beans is the industrial process mainly responsible
for forming the ŕavor and aroma of a cup of coffee [86]. This process is suit-
able to be object of different research projects, so that the growing interest
in it is not surprising: energy consumption [87], roasting temperature control
[88], taste prediction [89] and even smart design with connected devices [90]
are some examples of the current research applications. Several studies were
conducted to model the behavior of an industrial roasting chamber since
all these applications require a model for their design and testing. A solid
physical model of the whole roasting plant was provided in [91]. Some phys-
ical parameters of this model, like speciőc heats or transfer coefficients, are
closely related to the particular coffee bean quality (like Robusto or Arabica)
and the particular size of the plant (e.g. 120 kg, 360 kg or 600 kg) used to
identify the model. Further studies investigated with a greater detail the cof-
fee bean reaction in the chamber providing a better description of the coffee
beans parameters [92], [93]. Nevertheless, the strong connection between the
coffee beans quality, the size of the plant and the whole model still stands.
Such connections strongly limited the application of the model to different
plants, requiring de facto a new parameter identiőcation phase each time.
This is particularly relevant in food industry processes where data collection

49
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requires the consumption of a considerable amount of resources (e.g. several
kg of coffee). In order to avoid food waste, several strategies have been in-
vestigated, considering also advanced process control techniques [94].
In this chapter, the modeling of an industrial coffee roaster is described:
őrstly, a scalable model, based of on the physics of the system is proposed.
This model has the peculiarity of being used on plants of different size: start-
ing from the model proposed in [91] and exploiting some considerations from
[95], a őrst group of parameters is deőned as function of the chamber geom-
etry, while the others are identiőed through non linear identiőcation. In this
way the model identiőed with data collected on one plant can be used on
plants of different sizes simply scaling the őrst group of parameters, with-
out requiring a new identiőcation phase, saving time and resources. The
methodology is validated identifying the model with data collected on a 120
kg plant and simulating the behavior on a 360 kg one, obtaining satisfactory
results. These results have been published in [15].
The second contribution consists in a LSTM network, trained considering
the same inputs and output of the scalable model. The usage of machine
learning techniques is not a novelty in the food industry, even if they are
often used for classiőcation purposes to improve the process performances.
In the coffee industry in particular, as said before, the quality of the bever-
age mainly depends on the temperature reached during the roasting process,
that in practice, can be associated to the coffee beans color during roasting.
NNs can be successfully employed for classiőcation of the coffee roasting
degree [96, 97], or before the roasting to assess the quality of the green cof-
fee beans [98]. Computer vision can also be employed to better understand
some difficult process dynamics, like in [99], where two NN models are used
to predict brightness and bean surface areas during coffee roasting, helping
to understand heat and mass transfers, that are the critical elements in phys-
ical models. A usage of NNs for modeling purposes in this őeld is presented
in [100] where an hybrid model is built, considering regression trees and a
FFNN. In that work the physical model proposed in the following could not
be used since the drum rotation speed can not be taken into account and it
is the variable of interest for the desired controller. This is a perfect example
of the advantages brought by NN models when well-known white-box models
are present in literature but are not suitable for the desired application.
The two models have been developed in this thesis based on data provided
by Brambati SpA (Codevilla, Pavia), a company specialized in plants de-
signing, building and installation for food, coffee and plastic industries [101].
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Tgi

Tgo

Z - Direction of gas flow

Figure 4.1: Rotating-drum roaster with solid wall: 1 furnace, 2 roaster drum,
3 cyclone, 4 gas recycle line, 5 gas discharge stack, 6 catalytic afterburner, 7
green bean bin, 8 cooler, 9 fresh air. Figure from [91].

4.2 Roasting process description

The roasting of green coffee beans is a complex process that involves several
chemical reactions fundamental to determinate the coffee color, favor and
aroma. In particular, these characteristics are determined by the tempera-
ture proőle of the coffee beans during the roasting.
The roasting process is composed by three major phases: drying, roasting
and cooling. During these phases the coffee bean is subjected to heat and
mass transfers. The heat transfer occurs both by convection and conduction,
and increases the bean temperature with consequent physical and chemical
changes, such as a mass transfer due to the evaporation of water inside the
bean and exothermic reactions.
Several roaster architectures are available on the market, this thesis consid-
ers a batch roaster: a plant that treats only a őxed amount of coffee, called
batch, throughout a single operating cycle, shown in Figure 4.1. Each cycle
is characterized by an initial phase where no coffee is loaded in the machine
and both the air stream and the drum walls are heated up to the desired
temperature. The process starts with a batch of green coffee beans at the
environmental temperature loaded to the roaster drum through a conical
funnel (7 in Fig. 4.1). Then, the drying phase starts when the air ŕow (9
in Fig. 4.1) heated by the furnace (1 in Fig. 4.1) is aspirated in the drum
chamber (2 in Fig. 4.1) via a fan. The drum rotates at a uniform speed to
ensure a uniform effect and to avoid the beans to adhere to the drum walls.
The chamber is equipped with spiral blades in the internal surface to mix
the beans in the axial direction. During this phase, the hot air ŕow dries
the beans, then the beans are heated up until exothermic reactions near the
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end of roasting cause a rapid increase in the bean temperature rise (roasting
phase). The gases leave the chamber through a cyclone (3 in Fig. 4.1) that
removes the chaff released by the beans during the roasting process. These
gases can be either collected in a stack after be passed in a afterburner (6 in
Fig. 4.1) to be discharged (5 in Fig. 4.1) or in part sent back to the roaster
furnace (4 in Fig. 4.1). Once the end-of-roast temperature is reached, the
gas supply is turned off and the roasting process is stopped by spraying cool
water on the beans to cool them thanks to the evaporation of the water (8
in Fig. 4.1). The cooling phase proceeds in the cooling tank, where the
beans are transferred to be stirred and further cooled through cold air in-
put. Finally, the beans are unloaded and the system is prepared for the next
roasting cycle. It is worth to be noted that the machine warming up phase
particularly inŕuences the roasting of the őrst batch [93].

4.3 Physical model

In recent years, several models have been proposed to investigate the roasting
process of the green coffee beans. In the following, the one proposed by [91]
is considered and extended using considerations published in [95]. The model
is adapted for a batch roaster and some of the model parameters are deőned
on the base of the chamber geometry in order to create a new scalable model.
Starting from the machine where the data were collected on, this model will
be able to describe the behavior of new different unseen machines.

4.3.1 Equations

Hot gas heat transfer

During the roasting process hot gas is introduced in the roasting chamber.
Considering a uniform ŕow in a single direction and a convective heat transfer
between gas and beans, a temperature balance in the Z-direction (see Figure
4.1) can be expressed as:

−Gg(t)cg(t)
dTg(t)

dZ
= he(t)

dAgb

dZ

(
Tg(t)− Tb(t)

)
(4.1)

where Gg(t) is the gas mass-ŕow rate, cg(t) is the speciőc heat capacity of
drying air, he(t) is the gas to beans heat transfer coefficient, Agb is the gas
to beans heat transfer area, Tg(t) and Tb(t) are known gas and beans tem-
peratures.
In particular, cg(t) is deőned in [102] considering the thermophysical prop-
erties of drying air obtained from [103] as:

cg(t) =
6∑

i=0

αi

(
Tgi(t) + 273.15

)i (4.2)
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where α0 = 1.0839 · 103, α1 = −7.2075 · 10−1, α2 = +2.1034 · 10−3, α3 =
−2.3267 ·10−6, α4 = 1.3621 ·10−9, α5 = −4.1550 ·10−13, α6 = 5.3091 ·10−17.
In [91], he is considered a őxed parameter, on the contrary in this work it is
time variant and depends on the moisture quantity X(t), as deőned in [95]:

he(t) = 0.49− 0.443exp−0.206X(t) (4.3)

Integrating Equation (4.1) between the gas inlet and outlet temperatures,
Tgi(t) and Tgo(t), and rearranging, Equation (4.4) is obtained:

Tgi(t)− Tgo(t) =
(
Tgi(t)− Tb(t)

)
(
1− exp

−
he(t)Agb
Gg(t)cg(t)

)
(4.4)

where the effects due to the heat transfer from gas to the metal part of the
chamber are not considered. So an average value of the metal temperature,
Tm(t), is introduced and Equation (4.4) is reőned taking this heat transfer
into account as follows:

Tgi(t)− Tgo(t) =

(
Tgi(t)−

Tb(t) + F (t)Tm(t)

1 + F (t)

)(
1− exp

−
he(t)Agb
Gg(t)cg(t)

)
(4.5)

The őrst contribution of this work is the deőnition of the new parameter F (t),
that is the ratio between the gas-metal and gas-beans thermal resistances:

F (t) =
hgmAgm

he(t)Agb

(4.6)

It depends on the gas to metal and gas to beans heat transfer coefficients,
hgm and he(t), and the respective contact areas, Agm and Agb. In [91]
the term F (t) is negligible since for the mentioned roasters (rotating-bowl,
scoop-wheel, spouted-bed, swirling bed roasters) this term is small. On the
contrary in this application the term F (t) is signiőcant and so it has to be
considered. Moreover, it is one of the parameters related to the chamber
geometry so it is an important term in order to make the model scalable. Of
course it requires the knowledge of both chamber and coffee beans dimensions
in order to reach our purpose.
The contact area between gas and metal, Agm, is then deőned as the sum of
the inner surface of the chamber and the total surface of the ŕaps inside it:

Agm = πDch(Lch + (HflapLch)/Sflap +Dch/2) (4.7)

where Dch and Lch are the diameter and the length of the chamber respec-
tively, Sflap and Hflap are the step and the height of the ŕap.
The gas to beans heat transfer area, Agb, depends on the dimensions of
the beans, assumed having an average dimension determined experimen-
tally in [102]. The total surface area of the beans is assumed to be Ab =
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(Mb/mb)πD
2
b , where Mb is the total weight of the beans loaded in the cham-

ber, mb is the weight of a single bean and Db is the bean diameter. Since the
model considers a rotating drum, it is necessary to deőne new parameters
to determine the contact area between beans-metal and beans-gas. At each
time instant a portion of the beans is in contact with the metal on the bot-
tom of the drum, while the remaining part is in contact with the gas, pushed
by the rotatory movement of the drum. So, calling Pbm the percentage of
contact area of a single bean to the metal, the contact area between metal
and beans Abm is deőned as Abm = AbPbm and consequently the contact
area between gas and beans as Agb = Ab(1− Pbm).

Bean temperature

According to [91] the bean temperature variation is given by the following
energy balance:

Ṫb(t) =
Qgb(t)−Qgm(t) +Qbm(t) +Mbd(t)

(
Qr(t) + λẊ(t)

)

Mbd(t)
(
1 +X(t)

)
cb(t)

(4.8)

Brieŕy, the heat is mainly transferred from the gas to the beans by convec-
tion, Qgb(t), while a small part is transferred from the gas to the metal of
the chamber Qgm(t), which in turn transfers heat to the beans by conduc-
tion, Qbm(t). The őnal term of (4.8) represents the heat produced due to
exothermic reactions inside the beans: part of energy is lost, representing
the latent heat of vaporization of the moisture inside the bean.
In the following, each element in Equation (4.8) is further described. The
heat transfer rate between gas and beans is deőned as:

Qgb(t) = Gg(t)cg(t)
(
Tgi(t)− Tgo(t)

)
(4.9)

the heat transfer rate between gas and metal is:

Qgm(t) =
F (t)

(
he(t)Agb

(
Tb(t)− Tm(t)

)
+Qgb(t)

)

1 + F (t)
(4.10)

and the heat transfer rate between metal and beans is:

Qbm(t) = hbmAbm

(
Tm(t)− Tb(t)

)
(4.11)

where hbm is the metal to beans heat transfer coefficient. Moreover, Mbd(t)
is the mass of dry beans in the chamber, Qr(t) is the exothermic heat pro-
duction, λ is the latent heat of vaporization of beans moisture and

cb(t) =
cs(t) + cwX

1 +X(t)
(4.12)

is the speciőc heat capacity of coffee beans, as expressed in [91], where cs(t) =
1.099+0.007Tb(t) is the partial heat capacity of bean solids, cw is the partial
heat capacity of water and X(t) is the beans moisture content.
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Metal temperature

The metal temperature variation is deőned as [91]:

Ṫm(t) =
Qgm(t)−Qbm(t) +Qe(t)

Mmcm
(4.13)

Basically, Tm(t) increases thanks to the heat transfer from the gas while it
decreases transferring heat to the beans. The heat transfer from sources
external to the chamber, Qe(t), in this case is negligible since the model
assumes that there is no leak in the roasting chamber. Mm and cm are the
mass and speciőc heat capacity of the metal, respectively.

Moisture loss

A semi-empirical relation between X(t) and Tb(t) is deőned to model water
evaporation during the roasting process, through an Arrhenius-type equation
[91], where k1 and k2 are semi-empirical parameters:

Ẋ(t) = −
k1
D2

b

exp
−

k2
Tb(t)+273.15 (4.14)

Exothermic roasting reactions

After the evaporation, heat is generated by exothermic reactions as reported
in [104]. This effect is modelled as follows [91]:

Qr(t) = A
Het −He(t)

Het
exp

−
Ha

R(Tb(t)+273.15) (4.15)

where Het is the total reaction heat, He(t) is the reaction heat produced thus
far, Ha is the reaction activation energy and R is the gas costant. Reactants
are consumed during the process and the concentration of the remaining ones
is proportional to H̄(t) =

(
Het − He(t)

)
/Het. The rate of the reactions is

proportional to H̄(t) and to the coefficient of the Arrhenius equation, called
A.

Final model equations

Starting from these considerations, the model dynamic is represented by four
states, two inputs and one output, as listed below:

• x1(t) = Tb(t): temperature of the coffee bean inside the roasting cham-
ber in Celsius;

• x2(t) = Tm(t): temperature of the metal chamber;

• x3(t) = X(t): moisture content of the coffee bean;
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• x4(t) = He(t): amount of heat produced per kilogram of dry coffee
thus far;

• u1(t) = Gg(t): mass ŕow rate of the gas at the inlet of the roasting
chamber;

• u2(t) = Tgi(t): temperature of the gas at the inlet of the roasting
chamber;

• y(t) = Tb(t): temperature of the coffee bean inside the roasting cham-
ber in Celsius;

The differential equations representing the model are:

ẋ1(t) =
Qgb(t)−Qgm(t) +Qbm(t) +Mbd(t)

(
ẋ4(t) + λẋ3(t)

)

Mbd(t)
(
1 + x3(t)

)
cb(t)

(4.16a)

ẋ2(t) =
Qgm(t)−Qbm(t) +Qe(t)

Mmcm
(4.16b)

ẋ3(t) =
k1
D2

b

exp
−

k2
x1(t)+273.15 (4.16c)

ẋ4(t) = A
Het − x4(t)

Het
exp

−
Ha

R(x1(t)+273.15) (4.16d)

y(t) = x1(t) (4.16e)

It is important to notice that Mbd(t) has been deőned is this work by
Mb/

(
1 + x3(t)

)
, where Mb is the weight of the green beans coffee batch,

so that also this parameter contributes to the scalability of the model.
Lastly, in Table 4.1 a comprehensive list of the parameters used in the phys-
ical model is reported for clarity.

4.3.2 Experimental setup

The standard equipment of an industrial roasting plant can provide only one
of the signals described by the proposed model: the inlet gas temperature
Tgi(t) ≡ u2(t). In order to collect the data required for the model identiőca-
tion, the inlet gas mass ŕow rate Gg(t) ≡ u1(t) has to be measured.
The bean temperature is the main measure of the whole process, so every
plant is equipped with a temperature sensor that tries to measure the bean
temperature. Of course this should be modeled to consider delays due to the
sensor. So a well known sensor model proposed in [91] is included in order
to allow an input-output identiőcation.

Flow sensor

The measure of Gg(t) was originally not available so that a Pitot tube and
a thermocouple were placed in the center of the inlet pipe of the roasting
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Acronym Parameter

A Arrhenius equation pre-factor
Agb gas to beans heat transfer area
Agm gas to metal heat transfer area
Abm metal to beans heat transfer area
cb speciőc heat capacity of coffee beans
cg speciőc heat capacity of drying air
cm speciőc heat capacity of the metal
Db bean diameter
Dch chamber diameter
Gg gas mass-ŕow rate
he gas to beans heat transfer coefficient
hgm gas to metal heat transfer coefficient
hbm metal to beans heat transfer coefficient
Ha activation energy
He reaction heat produced thus far
Het total reaction heat
Hflap ŕap height
k1, k2 Schwartzberg’s semi-empirical parameters
Kt bean temperature sensor time constant
Lch chamber length
mb bean mass
Mb green beans coffee batch mass
Mbd dry beans coffee batch mass
Mm metal mass
Pbm percentage of bean metal contact area
Qe external sources heat transfer rate
Qgb gas to beans heat transfer rate
Qgm gas to metal heat transfer rate
Qbm metal to beans heat transfer rate
Qr exothermic heat production
R gas constant
Sflap ŕap step
Tb beans temperature
Tg gas temperature
Tgi gas inlet temperature
Tgo gas outlet temperature
X beans moisture content
λ latent heat of vaporization of beans moisture

Table 4.1: List of the parameters of the physical model.
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chamber to obtain the needed measure. Further detail of the placement of
the sensor can be found in [105] and [106]. As described in [107], the required
measure is given by:

Gg(t) = S

√
2ρ0∆p

273.15

T (t) + 273.15
(4.17)

where S is the section of the pipe, ρ0 is the air density (assumed 1.275
kg/m3), ∆p is the pressure difference measured by the Pitot tube and T (t)
is the thermocouple measurement expressed in Celsius degrees.

Measured bean temperature

The bean temperature is usually measured through thermocouples. Since
coffee beans are not good conductors, there is a difference between the effec-
tive bean temperature Tb(t) and the measured one Ta(t).In [91] this difference
is modeled as:

Ṫa(t) = Kt

(
Tb(t)− Ta(t)

)
(4.18)

In the following, Ta(t) will be considered the output of the physical model.

4.4 LSTM model

Considering the process complexity and the great amount of parameters that
need to be tuned, a NN model can be an interesting approach for the mod-
eling task of the roasting process.
The proposed NN model is trained using the same inputs and output of the
physical model: Gg(t) and Tgi(t), the mass ŕow rate and the temperature of
the gas at the inlet of the roasting chamber in input, and Ta(t), the measured
bean temperature obtained through thermocouples, in output. Both input
and output data are scaled using mean normalization.
The implemented architecture consists in a single layer LSTM. Since the
input sequences have different lengths (the length of each sequence, n, is
listed in Table 4.2), the data needs to be preprocessed. Firstly, the data
are padded, adding at the end of the vectors NaN values, to have vectors
of uniform length. Then, a Keras masking layer is employed. This layer
receives in input the input shape and a masking value: at each time step,
the values of the input vector that are equal to the masking value are masked
and skipped in all the subsequent layers. In this particular case, when the
LSTM layer receives a mask, ignores the padded values. Moreover, since the
masking layer is not able to mask NaN values, NaN were őrst converted to
a value outside the data range, in this case 10.
The training is performed considering Adam optimizer to perform the back-
propagation algorithm, considering the Mean Squared Error (MSE) as loss



4.5. Datasets description 59

Batch Roaster Size n Batch Roaster Size n

Batch 1 120 kg 26 Batch 6 360 kg 28
Batch 2 120 kg 26 Batch 7 360 kg 28
Batch 3 120 kg 26
Batch 4 120 kg 26
Batch 5 120 kg 33

Table 4.2: Datasets description

function, deőned as:

MSE =
1

S

S∑

i=1

(ŷi − yi)
2 (4.19)

where ŷi is the predicted value, yi is the real value and S is the number of
samples. The LSTM is trained for 200 epochs on a computer Intel i9-10920X
CPU with 3.50 GHz, equipped with graphics processing unit GPU NVIDIA
GeForce RTX 2080Ti. The training has been written in Python 3.9, using
TensorFlow [108] and Keras API [109].
The hyperparameters of the network, i.e. the number of neurons nc and
the learning rate α, have been optimized using KerasTuner [110] with the
RandomSearch algorithm, minimizing the MSE loss calculated on the val-
idation dataset. The chosen exploration ranges for the hyperparameters
optimization are:

32 < nc < 512 and 0.001 < α < 0.01

The optimal values obtained from this optimization are then presented in
the following in Section 4.6.2, together with the results obtained from the
LSTM training. Moreover, a detailed description of TensorFlow, Keras and
KerasTuner is reported in Appendix A.

4.5 Datasets description

A data collection is necessary to realize the two models: to validate the
physical model and optimize its parameters, and to train and test the LSTM
one.
Through the setup described in Section 4.3.2, two datasets are collected from
two plants of different sizes. The őrst dataset is collected on a 120 kg roaster
and composed of 5 batches; the second one is collected on a 360 kg roaster
and composed of 2 batches. Notice that the term łBatch” refers in this case
to the coffee roasting industry, where it represents the coffee quantity roasted
in a cycle, considering that the modeled machine is a batch roaster, and not
to the meaning assumed in the machine learning applications. In Table 4.2
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a description of the datasets is presented: each batch is listed with the name
that will be referred to in the following, the size of the roaster where it is
collected and its length n.
Several signals are present in the datasets but not all of them are considered
in the models or mentioned in this chapter so their description is neglected.
The signals of interest are the inlet gas mass ŕow rate, Gg(t), and the inlet gas
temperature, Tgi(t), used as input signals for both the models; the measured
bean temperature obtained through thermocouples, Ta(t), used as the output
signal.
It is important to highlight that this data collection is ad hoc performed for
research and modeling purposes, so to avoid coffee waste, only few datasets
are available, especially those of the 360 kg machine. It can be a limitation
of this work but some solutions are currently under study to overcome this
limit.

4.6 Discussion

4.6.1 Physical model results

Parameters estimation

Most of the model parameters described in Section 4.3 are speciőc of the
roasting plant and directly measurable on it or can be obtained from well
known physical expressions. On the contrary, three parameters, hgm, hbm
and Pbm, are not measurable and have to be identiőed from the data so in the
following an automatic identiőcation procedure to deőne the optimal values
of these parameters, h∗gm, h∗bm and P ∗

bm, is proposed.
The extended model (4.16a)-(4.16d), (4.18) is used to generate the bean tem-
perature prediction T̂a(t) in all the batches of the two datasets. In particular,
all the simulations share the same initialization: x1(0) = 30 since the beans
are at environmental temperature, x2(0) = 121 as deőned in [91], x3(0) = 0.1
by hypothesis, x4(0) = 0 since at the beginning there is no evaporation heat
and T̂a(0) = Ta(0).
An optimization procedure is performed to őnd the optimal parameters to
match as much as possible the real measure of the coffee bean temperature
with the simulated one. In order to do this, the cost function is deőned
as the Sum of Square Residuals (SSR) between the simulated data vector
(Ŷ = T̂a) and the real one (Y = Ta). SSR is a function of the vector
θ = [hgm hbm Pbm]′ used to generate the predictions:

SSRj(θ) =
nj∑

i=1

(Ŷ j
i (θ)− Y j

i )
2 (4.20)



4.6. Discussion 61

Parameter Unit θLB θUB Optimized value

hgm [W/m2K] 0.01 0.35 0.0100
hbm [W/m2K] 0.01 0.35 0.0254
Pbm [%] 0.5 0.8 0.5793

Table 4.3: Parameters identiőed on Dataset-I with the boundary conditions
used in the optimization.

where Ŷ j
i (θ) and Y j

i are the ith samples of the predicted data obtained with
a speciőc θ and of the real measurements respectively, and nj is the length
of the j-th batch of the Dataset-I.
The optimization problem is then deőned as:

θ∗ = argminθ
∑N

j=1 SSR
j(θ)

subject to θLB ≤ θ ≤ θUB

(4.21)

with θ∗, θ ∈ R
1×3, where N = 5 is the number of datasets used in identiőca-

tion, θLB, θUB ∈ R
1×3 are the boundary conditions (see Table 4.3) deőned

by practical experience interviewing company experts.
During the optimization, the SSR is minimized through an optimization
algorithm solved in MATLAB using the GlobalSearch function initialized
with θ0 = [0.01 0.01 0.5]′.

Results

The optimization is carried out on the 120 kg dataset, called in the following
Dataset-I. The validation is then performed simulating the model and com-
paring the obtained results with the real data of the 360 kg dataset, called
in the following Dataset-V. The optimized parameters are reported in Table
4.3 along their boundaries. The quality of the model is evaluated through
FIT and ρ indexes (Equations 3.20 and 3.21, in Section 3.6.1) and the ob-
tained results are reported in Table 4.4. For each batch in Dataset-I on the
left and Dataset-V on the right, the length of the batch n, SSR (Equation
4.21), FIT and ρ are reported. The last column Av. of each dataset reports
the average values of the performance indexes. The model obtained very
good results in validation, with an average FIT of 75.49% and comparing
them with the identiőcation ones it can be seen that the two sets showed
similar performances. A graphical representation of the identiőcation results
can be observed in Figure 4.2a and 4.2b, where the best and worst cases are
shown, respectively. Similarly, in Figure 4.2c and 4.2d the validation results
are shown. In all the plots the simulated values T̂a(t) in dotted purple are
compared with the real ones Ta(t) in green.
The predictions are able to correctly reproduce the real data, a result that



62 4. Modeling of an industrial coffee roaster

Dataset-I Dataset-V

# 1 2 3 4 5 Av. 6 7 Av.
n 26 26 26 26 33 / 28 28 /
SSR 53.48 60.62 70.06 89.22 98.57 74.39 74.97 57.63 66.30
FIT 85.82 81.34 77.01 69.18 70.95 76.86 70.25 80.73 75.49
ρ 0.991 0.986 0.987 0.982 0.990 0.987 0.990 0.991 0.991

Table 4.4: Physical model performances on Dataset-I and on Dataset-V

is particularly interesting in validation since it proves that the model can
be successfully applied to a machine with a different capacity than the one
used in identiőcation. To further investigate the portability of the proposed
model, the absolute prediction error (ε) observed in the two datasets can
be considered. Figure 4.3 reports its distribution along the batches in hand.
Even if the variability of the identiőcation set seems bigger (as expected tak-
ing in hand the different number of batches) the average values look deőnitely
close. A possible way to address this empirical consideration is to compare
the overall error distribution occurred over the Dataset-V (εV ) with the one
over Dataset-I (εI). The őrst sample moments are really close (εI = 7.4
and εV = 7.2) while the second ones show some distance (s2(εI) = 31 and
s2(εV ) = 17) that can be likely due to the different number of batches.
Although the limited number of batches used in validation, it can be rea-
sonably assumed that the proposed model, identiőed on the 120 kg plant,
produced satisfying results once scaled on a 360 kg plant via the parameters
reported in Table 4.5.

4.6.2 LSTM model results

A őrst LSTM model, called Model A, is obtained with the goal to reproduce
the portability of the physical model using a NN approach, trying to stress
the robustness of the network. For this reason Dataset-I is employed to
train (Batch 1 - Batch 4 ) and validate (Batch 5 ) the model, while the per-
formances of the network are then tested on Dataset-V (Batch 6 and Batch
7 ). The hyperparameters of the model are obtained through an optimization
via KerasTuner [110], minimizing the validation loss. The resulting values
are a number of neurons nc = 352 and a learning rate α = 0.009. Also in this
case the performances are evaluated in terms of FIT and ρ, so the results
can be compared with the ones of the physical model.
The results obtained from the training of Model A are not satisfactory: eval-
uating the LSTM network on data completely different from those used in
training bring to very poor performances, as can be seen in Table 4.6 on the
left. In the őrst two rows the testing results are reported, with a FIT of
12.98% for Batch 6 and 20.73% for Batch 7, while in the latter the validation
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(a) Batch 1 (b) Batch 4

(c) Batch 7 (d) Batch 6

Figure 4.2: Physical model results.

results on Batch 5 are reported for completeness. It can be observed that
evaluating the network on data coming from the same machine of those used
to train the network gives good results with a FIT of 60.31%, as can be seen
in Figure 4.4a, where the real data in green are compared with the predicted
ones in dashed purple on Batch 5. On the other hand, the network is not
able to understand well the behavior of a bigger machine: even if the inputs
are higher in the 360 kg machine, this is not sufficient to correctly determine
the output, as can be seen in Figure 4.4b where the prediction is way lower
than the real data. However, an interesting result can be observed looking
at the ρ values on the testing batches in Table 4.6. The obtained values are
very high, with 0.990 for Batch 6 and 0.993 for Batch 7, meaning that real
data and predicted ones are correlated, the results are simply not correctly
calibrated on the machine dimensions.
However, this result is not unexpected: considering the currently available
data, it is not possible to have a valid scalable LSTM model, able to model a
new machine whose data are unseen during the training phase. So a second
one, called Model B, is built as a global model valid for both the machines,
adding Batch 7 to the training dataset. In this way the network is trained
considering data of both the 120 kg and the 360 kg coffee roasters. Batch
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Figure 4.3: Absolute error distribution over identiőcation and validation
datasets.

Fixed
Value Unit

Scalable
Value Unit

param param

A 116200 [kJ/kg] Mb 120 360 [kg]
cm 0.418 [kJ/(kg °C)] Dch 1.24 1.90 [m]
cw 5 [kJ/(kg °C)] Hflap 0.3 0.3 [m]
Db 7.65 · 10−3 [m] Lch 1.335 2.04 [m]

Ha/R 5500 [K] Mm 2000 7000 [kg]
Het 232 [kJ/kg] Stpflap 0.1 0.1 [m]
k1 4.32 · 10−9

k2 9889
Kt 0.01 [1/s]
mb 1.5 · 10−4 [kg]
λ 2790 [kJ/kg]

Table 4.5: Parameters of the model. On the left, őxed parameters depending
on the process. On the right, scalable parameters depending on the machine
geometry.
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Batch
Model A Model B

FIT ρ FIT ρ

Batch 6 12.98 0.990 87.94 0.994
Batch 7 20.73 0.993 ś ś

Batch 5 60.31 0.979 70.99 0.981

Table 4.6: LSTM models results.

(a) Batch 5 (b) Batch 6

Figure 4.4: Model A results.

5 is still used as validation dataset and Batch 6 as testing dataset. Also in
this case the hyperparameters are obtained through KerasTuner, resulting
in number of neurons nc = 352 and learning rate α = 0.007.
The obtained results are presented in the last two columns of Table 4.6. It
is clear that in this case the performances have a considerable improvement,
with a FIT of 87.94% on the testing dataset, shown in Figure 4.5b, and
70.99% on the validation one, shown in Figure 4.5a. The addition of Batch 7
in the training dataset has improved not only the result obtained on the 360
kg machine, since it gave the lacking information that were missing in Model
A, but also the result on the 120 kg one, that can be seen in the validation
dataset. For sure having more data helps in the learning phase of a NN.

4.7 Models comparison

In this chapter the modeling of an industrial coffee roaster is investigated,
comparing the results obtained with a physical scalable model and with a
model based on a LSTM network.
The physical model proves to be usable on plants of different size by scal-
ing only geometrical parameters directly measurable on the roasting plant.
The proposed model was obtained merging two detailed models into a well-
known physical framework and deőning new parameters in order to correlate
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(a) Batch 5 (b) Batch 6

Figure 4.5: Model B results.

the model to geometrical characteristics of the plant, making it scalable. The
model parameters are identiőed from a 5-batches dataset collected on a 120
kg plant with reasonable performance. The portability is addressed by pre-
dicting the behavior of a different size plant. In particular, the scaled model
is able to predict a 2-batches dataset collected on a 360 kg plant with a good
performance (FIT = 75%).
On the other hand, the model based on the LSTM network is not able to
guarantee the portability properties of the model on plants of different sizes.
By their nature, NNs are capable to reproduce only what was learned during
the training phase and so a model trained on the 120 kg plant data gives
poor performances once tested on the 360 kg ones. This problem is not ir-
relevant considering the importance assumed by the temperature during the
coffee roasting process [111]. As found in [112], the coffee-like aroma can be
obtained between 180 °C and 190 °C, it becomes stronger around 220 °C and
230 °C, while the coffee is over-roasted beyond this temperature. Having a
drop in the accuracy of the temperature modeling involves in this application
also a drop in the quality of the obtained product.
Under these conditions, it is only possible to train a global model with data
of both the 120 kg and 360 kg machines. The results are satisfying with
FIT of 88% for the 360 kg machine and FIT of 71% for the 120 kg one.
To have a scalable LSTM model, an idea for a future development is to use
a physics-based LSTM, linking the structure of the network to the physical
knowledge of the plant and in particular to its size.
In this particular application the data collection is not a trivial aspect due
to the huge dimension of the plant that requires not negligible time and re-
sources, in this case coffee, that do not have to go to waste. If the data are ad
hoc collected only for modeling purposes, it is simpler and more convenient
to collect data from smaller machines and to build models that are still valid
also for larger plants, not only from an economical point of view but also in a
sustainability perspective, to avoid food waste. Recently, thanks to more ad-
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vanced machines that are equipped with intelligent sensors, it is possible to
easily collect a great amount of data directly during the production phase. In
this way it is not necessary to perform experiments only for data collection,
minimizing wastes, and it is also possible to collect data from machines of
various sizes. Anyway, not all the signals are available from these sensors, es-
pecially those obtained through the special setup described in Section 4.3.2,
that is the main reason for which only few datasets were used in this work.
This approach is for sure ideal for the LSTM model, that thanks to a bigger
data availability can have better performances, but anyway it is necessary
to rethink the model, probably considering different inputs or outputs, that
can also be useful to develop the őnal model of the machine. In fact, future
developments currently under study include the modeling of the other com-
ponents of the plant that inŕuence the chamber process. Once the whole
plant is modeled in detail, new intelligent control approaches (e.g. hybrid
control) could be explored in order to optimize the roasting process both in
terms of efficiency (ecological and productive), predictive maintenance and
analytic. The őnal goal is to build a simulator in order to synthesize and
test new complex control approaches [113].
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Chapter 5

Modeling of a wastewater
treatment plant

In this chapter, a third industrial case study is presented, comparing a white-
box model and a LSTM one of a wastewater treatment plant. In this case, a
well-known model is present in literature but it can not be applied for lack of
data. So starting from it, a model is built exploiting the company’s expertise.
Along with this model also a LSTM one is presented, taking advantage of
the availability of a vast amount of data.

5.1 Motivation and state of the art

A WasteWater Treatment Plant (WWTP) is a plant where the wastewater
is treated to remove pollutants, exploiting biological and chemical reactions
before being released back in the environment. The modeling and control of
this process is not an easy task, since the treatment depends on the nature
and the characteristics of the wastewater. Wastewater usually őrstly under-
goes to chemical-physical treatments, in order to remove the solid part of
the wastes, and then to biological treatments for the organic components.
One of the most common biological treatment used in WWTPs is the Con-
ventional Activated Sludge (CAS) process, where bacteria are used to nitrify
and denitrify wastewater.
Considering the complexity of the process, controlling a WWTP can be a
challenging task: several ŕows may be involved, among with a huge vari-
ety of different biological and chemical reactions; it is necessary to provide
a sufficient oxygen quantity but without an excess of aeration, reaching a
trade-off between energy consumption and process demand, with a growing
attention to the environmental related problems. To design an optimal con-
trol strategy it is necessary to have an accurate model of the process [114]. In
[115] a review on the current state of the art regarding modeling of activated
sludge WWTPs is presented, considering both white-box models and black-
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box ones. The model of the entire WWTP is usually composed by two main
components: the hydraulic model that takes into account the different ŕows
in input and output in the reactor, and the Activated Sludge Model (ASM)
that models the biological and chemical reactions inside the tank due to the
activated sludge process. The control and design of the ASM is a further
control problem in literature [116], strictly linked to environmental issues
and new severe regulations. In 1983 the International Association on Water
Quality (IAWQ) organized a task group to develop a mathematical model
of the activated sludge problem with low complexity but accurate from a
biological point of view. The őrst model created by the task group was the
so called Activated Sludge Model No. 1 (ASM1) [117], also known as IAWQ
model, extended in the years to consider the phosphorus dynamics in ASM2
[118] and including storage of organic substrates as a new process with an
easier calibration in ASM3 [119]. Anyway, ASM1 is still the most used model
and it can be considered the state of the art since several successive works
are based on it. For example, in [120] the ASM1 is used in order to derive
the steady-state behavior of the system and őnd the values of some model’s
parameters; then in a successive work [121] the authors use the ASM1 not
őxing the value of the dissolved oxygen concentrations like in many other
works, including also the recycle ŕow of the settling unit.
In [122], one of the authors of the ASMs recalls the developments of these
models during the years, highlighting the high number of contributions in
this őeld. Anyway, his feeling is that the models are more and more com-
plex and specialized, requiring the identiőcation of parameters always more
speciőc and subject to high sensitivity, with expensive and time consuming
procedures, far from practical applications. As said also in [123], these spe-
cialized models are not the best for process design and practical applications,
so the authors propose to leverage these modeling tasks to a next step, com-
bining process knowledge with new artiőcial intelligence techniques. Also
in [115], in addition to the most diffused WWTP white-box modeling, some
black-box methodologies based on NN techniques were already presented. In
view of all these considerations and regarding the complexity of the process
and its high non-linearity, a NN approach is interesting, especially when the
available input-output data are not describing the biological and chemical
reactions, but only ŕows and concentrations.
In this chapter, the modeling of a WWTP located in Mortara (Pavia), man-
aged by the company ASMortara S.p.A. [124], is presented. The main goal
is the development of a model for the biological reactor of the plant to im-
prove several critical aspects of the process such as the oxygen concentration
regulation. The data used in this chapter, in fact, have been collected with
a simple switching controller that enables/disables the input ŕow if the oxy-
gen concentration inside the reactor is below/above a certain threshold. The
effect of this control strategy is an on/off oxygen ŕow rate, that generates
important oscillations in the oxygen concentration evolution, making the
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Figure 5.1: Flow diagram of the WWTP.

modeling of this process a tricky task. Even if sub-optimal, the oxygen oscil-
lating dynamic was considered useful by the company to have an estimation
of the health of the biomass. In fact, biomass and oxygen quantities in-
side the reactor are strictly linked since the biomass is composed by aerobic
bacteria, i.e. bacteria that need oxygen to grow and can use it to oxidize
substrates. In this kind of treatments the aerobic bacteria can be stimulated
by increasing the oxygen quantity in the reactor to keep them alive. Anyway,
it is not needed to do it constantly, considering also that this procedure can
not guarantee good process performances: the plant can be better controlled,
leaving the biomass check only to periodic laboratory analysis that can be
done when needed.
In the following, two different modeling approaches are proposed for this
plant. The őrst one is a white-box model, composed by two contributions:
the biological component, developed starting from the ASM1 and employing
the available input/output data, and the hydraulic component that models
the ŕows ingoing and outgoing the reactor. The second one is a LSTM based
model, developed exploiting the availability of a large amount of data.
The results of this chapter are part of the work presented in [16].

5.2 Plant description

The considered WWTP is an industrial plant used to treat both municipal
and industrial wastewater. The plant is composed by two different units, as
shown in Figure 5.1. The treatment is usually divided in two stages, called
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primary and secondary treatment, that corresponds to the two units of the
plant.
The industrial wastewater needs to be pre-treated because of its characteris-
tics before being accepted in municipal WWTP. So the industrial wastewater
is pre-treated in Unit I to remove the solid part of the waste, exploiting chem-
ical reactions. Firstly, the ŕow goes into a storage-equalization tank, with the
goal to transform a variable ŕow into a steady-state one that goes in input
to the treatment plant, optimizing in this way the process. The ŕow is then
divided in two chemical-physical treatment lines: one dedicated to the light
strength aqueous wastes and the second for the high strength ones. The light
strength wastes are subjected to a chemical-physical treatment with clas-
sic procedures like ŕocculation, coagulation and sedimentation. The wastes
are put in sedimentation tanks where the solid part is separated by grav-
ity; chemicals can be added to help coagulation, while with ŕocculation the
small colloidal particles are separated from the wastes and settle in form of
ŕocks. The high strength aqueous waste instead are fed into a Thermophilic
Aerobic Membrane Reactor (TAMR). The plant has been recently equipped
with this innovative reactor, built ad-hoc to treat high strength wastes. The
advantages of the TAMR technology is the exploiting of biological reactions
even during the pre-treating phase, considering that biological solutions are
more affordable and sustainable of chemical ones. In practice, the waste
undergoes to aerobic reactions in thermophilic conditions, exploiting oxygen
with temperatures greater than 45 °C [125, 126].
After this phase, the pre-treated industrial wastewater is mixed with the mu-
nicipal wastewater and ŕow into the biological reactor (Unit II), where the
CAS comprehends denitriőcation (DEN), oxidation and nitriőcation (OX-
NIT) stages: this is the part of the plant of interest and that will be mod-
eled in the following. The biological reactor is őlled with oxygen, where
aerobic microorganisms are introduced to react with wastewater and reduce
its organic compounds. The overall ŕow goes to a settling tank (Final set-
tler) where the activated sludge settles, since the micro-organisms create a
biological ŕock, producing a liquid mostly free from suspended solid. The
sludge is separated from the clariőed water: the majority of the sludge is
reintroduced in the CAS to treat the new wastewater, the remaining part
is removed, while the cleared water is released in the environment. In the
biological reactor the wastewater is subjected also to the denitriőcation and
nitriőcation processes to remove the nitrogen components from the wastew-
ater. This is done before releasing back the water in the environment since
these components are dangerous for aquatic organisms and plants. The ni-
triőcation occurs in aerobic conditions and is the oxidation of ammonia into
nitrite and nitrate by nitrifying autotrophic bacteria; the denitriőcation in-
stead happens in anaerobic conditions to reduce nitrite to nitrogen [127]. For
this reason nitrate recirculates from OX-NIT to DEN in Figure 5.1.
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5.3 Physical model

The current state-of-the-art for the modeling of the biological reactor is the
ASM1. The dynamic of this model is composed by 13 state variables, that
describe the concentrations of different materials inside the reactor:

• SI , inert soluble organic material;

• SS , readily biodegradable soluble substrate;

• XI , particulate inert organic matter;

• XS , slowly biodegradable particulate substrate;

• XB,H , active heterotrophic particulate biomass;

• XB,A, active autotrophic particulate biomass;

• XP , inert particulate products arising from biomass decay;

• SO, soluble oxygen;

• SNO, soluble nitrate and nitrite nitrogen;

• SNH , soluble ammonium nitrogen;

• SND, soluble biodegradable organic nitrogen;

• XND, particulate biodegradable organic nitrogen;

• SALK , alkalinity.

These quantities can be grouped as: the carbonaceous components, divided
in biodegradable (soluble SS and particulate XS), non-biodegradable (sol-
uble SI and particulate XI , XP ) and active biomass (heterotrophs XB,H

and autotrophs XB,A); the nitrogenous components, divided in ammonia
(SNH), biodegradable (soluble SND and particulate XND), nitrate and ni-
trite (SNO); oxygen concentration (SO) and alkalinity (SALK). The inert
components SI and XI are considered not affected by the biological reac-
tions and are usually removed from the system when excessive sludge is
removed [128].
These state variables are considered to model the different processes that are
included in the ASM:

1. aerobic growth of heterotrophs;

2. anoxic growth of heterotrophs;

3. aerobic growth of autotrophs;

4. decay of heterotrophs;
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5. decay of autotrophs;

6. ammoniőcation of soluble organic nitrogen;

7. hydrolisis of entrapped organics;

8. hydrolisis of entrapped organic nitrogen.

Given the complexity of this model, a reduced version of the ASM1 described
in [120] is investigated, where out of the 13 differential equations that com-
pose the model, only 9 are taken into consideration, removing SI , XI , XP

and SALK , since these quantities are uncoupled from the others and so do not
affect the system dynamics. However, even considering these simpliőcations,
the application of the reduced ASM1 is not easy because of the lack of the
required data. In order to use this model, further assumptions are needed
but in this way too many dynamics of the model are neglected and the re-
sults would not be satisfying. For example, it is not known the percentage
of the nitrogenous components or the division between biodegradable and
non-biodegradable ones. Considering the data provided by the company, it
is not possible to apply neither the ASM1 nor the reduced one, since there
are not information about the chemical reactions occurring inside the reac-
tor.
To overcome these difficulties, a lumped-parameter model is deőned, where
only the principal processes are modeled (1-5), neglecting the remaining
ones, being aware that the resulting model will be suboptimal but sufficient
to achieve the company’s goals. Consequently, only the quantities affecting
the oxygen consumption, O, are considered. Starting from the ASM1 state
variables, two new ones are deőned:

• an overall biomass component:

X = XB,H +XB,A

• an overall substrate component:

S = XS + SS +XND + SND

Lastly, in addition to the biological dynamic, also the hydraulic one is mod-
eled, through the state variable h, the level inside the reactor, dependent
on the input and output ŕow rates speciőc for this plant. So this lumped-
parameter model is characterized by four state variables, that are deeply
described in the following.
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5.3.1 Equations

Biomass concentration

The őrst state of the model is the biomass concentration inside the reactor,
X(t), that is given by

Ẋ(t) = Xs(t)−Xd(t)− X̃m(t) (5.1)

where Xs(t) is the biomass growth rate with respect to the substrate, S(t);
Xd(t) is the natural biomass decay rate; X̃m(t) is a biomass quantity daily
removed from the reactor. Xs(t) is expressed as:

Xs(t) = µ̂
X(t)S(t)

Ks + S(t)
(5.2)

InXs(t) the presence of the dissolved oxygen, O(t), that inŕuences the kinetic
in aerobic processes is considered, as represented in the Monod equation
[129], since µ̂ is the maximum speciőc growth rate and contains the oxygen
dependence:

µ̂ = µ̂1
O(t)

Kc +O(t)
(5.3)

The coefficient Ks is the half-velocity constant i.e. the substrate concen-
tration where the maximum speciőc growth rate is half of the maximum
velocity, while the coefficient Kc is similarly the half-velocity constant re-
ferred to the oxygen.
The second component of the equation, Xd(t) is expressed as:

Xd(t) = bX(t) (5.4)

where b is the endogenous decay coefficient.
The third component of the equation, X̃m(t), is empirically deőned with
company’s experts as:

X̃m(t) =
X(t)

Ah(t)
qom(t) (5.5)

Each day a quantity of biomass and substrate, qom(t), is manually removed
from the reactor because the natural decay rate of the biomass is not fast
enough to keep the process under control and it could saturate the process.
Since A is the tank surface and h(t) the level, the concentration of biomass
manually removed is considered proportional to the concentration of the
biomass contained in the volume (Ah(t)) of the reactor at that moment.
Finally, making explicit all the components, the biomass concentration is
deőned as:

Ẋ(t) = µ̂1
O(t)

Kc +O(t)

X(t)S(t)

Ks + S(t)
− bX(t)−

X(t)

Ah(t)
qom(t) (5.6)
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Substrate concentration

The second state is the substrate concentration inside the reactor, S(t), that
is modeled by

Ṡ(t) = −Ss(t)− S̃m + Sin(t)− Sout(t) (5.7)

where Ss(t) is the substrate removal rate; S̃m(t) is a substrate quantity daily
removed from the reactor; Sin(t) is the quantity of substrate in input to the
reactor; Sout(t) is the quantity of substrate in output from the reactor. Ss(t)
is deőned as:

Ss(t) =
1

Y
Xs(t) (5.8)

that is directly proportional to the biomass growth rate in Equation (5.2),
Xs(t), according to a constant of proportionality 1/Y .
The second component, S̃m(t), is equivalent to X̃m(t) in Equation (5.5),
considering in this case the quantity of substrate that is manually removed
and is deőned as:

S̃m(t) =
S(t)

Ah(t)
qom(t) (5.9)

The third component, Sin(t), is deőned as:

Sin(t) =
CODin(t)

Ah(t)
qi(t) (5.10)

It is computed in terms of Chemical Oxygen Demand (COD) that the input
substrate ŕow rate, qi(t), requires. Equivalently, Sout(t) is expressed as:

Sout(t) =
CODout(t)

Ah(t)
qol(t) (5.11)

Also this term is computed as the COD that the output liquid substrate ŕow
rate, qol(t), requires. Since qol(t) is the outgoing quantity from the reactor,
resulting from the őltering process, its oxygen demand is lower than the one
required by qi(t). For this reason two different quantities are deőned, called
CODin(t) and CODout(t) respectively. These quantities are divided by the
volume of the tank (Ah(t)), in order to represent the concentration variation.
Also these components have been deőned according with company’s experts.
Considering all the mentioned contributions, the substrate concentration is
deőned by:

Ṡ(t) =−
µ̂1
Y

O(t)

Kc +O(t)

X(t)S(t)

Ks + S(t)
−

S(t)

Ah(t)
qom(t)

+
CODin(t)

Ah(t)
qi(t)−

CODout(t)

Ah(t)
qol(t)

(5.12)
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Oxygen concentration

The third state is the oxygen concentration inside the reactor, O(t), and is
modeled by

Ȯ(t) = −Os(t)−Od(t) +Oin(t)− cossO(t) (5.13)

where Os(t) represents the oxygen consumption due to the substrate removal
rate, Ss(t); Od(t) represents the oxygen consumption due to the biomass
decay rate, Xd(t); Oin(t) represents the concentration of the oxygen ŕow
rate in input in the reactor; the last component models an oxygen leak from
the reactor, that have been empirically noticed, proportional to a coefficient
coss. Os(t) is deőned as:

Os(t) = αSs(t) (5.14)

indeed it is proportional to Ss(t), deőned in Equation (5.8), according to a
constant of proportionality α.
The second component, Od(t), is expressed as:

Od(t) = βXd(t) (5.15)

being so proportional to Xd(t), deőned in Equation (5.4), according to a
constant of proportionality β.
The third component, Oin(t), is deőned as:

Oin(t) = cmolg

qoss(t)

Ah(t)
(5.16)

It depends on the oxygen ŕow rate in input to the reactor, qoss(t), divided by
the volume of the reactor (Ah(t)), and on a conversion factor, cmolg, needed
to convert the volumetric ŕow rate into a mass ŕow rate. In particular, cmolg

is deőned as
cmolg =

M · Po

R · To
(5.17)

where M is the molar mass of the oxygen, Po is the oxygen pressure, R is
the universal gas constant and To the oxygen temperature.
To conclude, the oxygen concentration is explicitly modeled by:

Ȯ(t) =− α

(
µ̂1
Y

O(t)

Kc +O(t)

X(t)S(t)

Ks + S(t)

)
− β (bX(t))

− cossO(t) + cmolg

qoss(t)

Ah(t)

(5.18)

Level

The fourth state is the level inside the reactor, h(t), that depends on the
hydraulic component of the model and is deőned as:

ḣ(t) =
qi(t)− qol(t)− qom(t)

A
(5.19)
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The level variation depends on the inŕuent ŕow rate qi(t) and the effluent
ones qol(t) and qom(t), divided by the reactor surface, A.

Final model equations

Considering the above considerations about the system dynamic, the lumped-
parameter model with 4 states, 6 inputs and 2 outputs can be deőned. The
states of the system are:

• x1(t) = X(t): biomass concentration;

• x2(t) = S(t): substrate concentration;

• x3(t) = O(t): oxygen concentration;

• x4(t) = h(t): level inside the reactor.

The inputs of the system are:

• u1(t) = qoss(t): ingoing oxygen ŕow rate;

• u2(t) = qin(t): ingoing substrate ŕow rate;

• u3(t) = qol(t): outgoing liquid substrate ŕow rate;

• u4(t) = qom(t): quantity of biomass and substrate manually removed
from the reactor;

• u5(t) = CODin(t): Chemical Oxygen Demand of the inŕuent;

• u6(t) = CODout(t): Chemical Oxygen Demand of the effluent.

Lastly, the outputs of the system are:

• y1(t) = O(t): oxygen concentration;

• y2(t) = h(t): level inside the reactor.

5.4 LSTM model

The WWTP’s dynamic is a complex process, where several contributions
need to be taken into account and it is hard to obtain the data needed to
model the chemical and biological reactions. Instead, it is possible to eas-
ily collect a great amount of input/output data, that can be employed in a
black-box model.
In view of these considerations, a NN model based on a LSTM network is de-
veloped considering 3 inputs: the ingoing oxygen ŕow rate qoss(t), the ingoing
substrate ŕow rate qin(t) and the outgoing liquid substrate ŕow rate qol(t),
and one output, the oxygen concentration O(t). In this case the other inputs
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Dataset name Start date End date

Dataset 1 06/12/2021 11/12/2021
Dataset 2 15/12/2021 20/12/2021
Dataset 3 21/12/2021 26/12/2021
Dataset 4 27/12/2021 01/01/2022
Dataset 5 01/03/2022 06/03/2022
Dataset 6 01/05/2022 06/05/2022

Table 5.1: Datasets description.

In this way, the signals of interest can be downloaded. The value of qin(t)
is obtained from the chemical-physical reactor, from which it goes in input
into the biological reactor, after the preprocessing of the wastewater. In the
reactor are then present sensors that measure the ingoing oxygen ŕow rate,
qoss(t), the oxygen concentration, O(t), measured at a height of 4 meters,
and the total level, h(t), obtained through two sensors located on the top of
the reactor. Then, the measure of qol(t) is obtained from MBR1 and MBR2,
as the sum of the two components that from the biological reactor ŕow into
the two membrane bioreactors.
Lastly, CODin and CODout are obtained through laboratory analysis, while
qom(t) is acquired daily by the operators that remove this quantity from the
reactor. These quantities are not considered in the LSTM model, not only
for their constant values, but also for the difficulty in their acquisition, since
to train the NN several datasets are needed.
Six different datasets are collected, each one containing six days of data, as
in Table 5.1. All the datasets contain the three inputs and the two out-
puts previously described; Dataset 1 contains also CODin(t), CODout(t)
and qom(t), since it was the őrst dataset provided directly by the company.
Unluckily, these values are not obtainable from the SCADA interface and so
they are not available for the remaining datasets. For these reasons, Dataset
1 is used to assess the lumped-parameter model performances and as testing
dataset in the LSTM model, while the remaining 5 datasets are used to train
and validate the LSTM model.

5.6 Discussion

5.6.1 Physical model results

The lumped-parameter model, described by Equations (5.1), (5.7), (5.13)
and (5.19), is used to predict the oxygen concentration and the level inside
the biological reactor on Dataset 1. The values of the parameters are listed
in Table 5.2. Some of these values, like Ks, Kc, Y are taken from literature
[117, 120, 121], the others are obtained from company’s know-how.
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Parameter Value Unit

µ̂1 1.3 · 10−4 [h−1]
Ks 20 [mg/l]
Kc 0.4 [mg/l]
b 1.06 · 10−5 [h−1]
A 113 [m2]
Y 0.11
α 6.12
β 1.22
coss 185 [h−1]
M 32 [g/mol]
Po 8 · 105 [Pa]
R 8.31 [J/mol K]
To 292.65 [K]

Table 5.2: Parameters of the lumped-parameter model.

In Figure 5.3, the real data collected for Dataset 1 and the prediction of
the physical model are presented. The oxygen concentration is presented in
Figure 5.3a, where the real data in green are compared with the prediction
in blue. The obtained result is poor; it is clear that the modeling phase did
not lead to a good model formulation and a good choice of the parameters
values. The behavior of the prediction is sometimes even opposite to the
real one, and the tricky oscillating dynamic is hard to catch. On the other
hand, the prediction of the level inside the reactor is pretty good, with a
FIT of 59%. In Figure 5.3b, the real data, in yellow, are compared with the
prediction, in red, emphasizing the model’s ability to understand the level
variation. Between 20 and 60 [h] the level variation is less accurate, but the
error is about 10 cm, that is considered acceptable by the company for their
goals.
As said before, the lumped-parameter model consists of two components:
the biological component, from which the oxygen concentration is derived
and the hydraulic one, from which instead the level is determined. The
hydraulic component is way simpler, deőned by the input/output ŕows in
the reactor; these signals can be easily acquired and their measurements
are accurate. The biological component instead depends on a big variety of
elements and a specialized knowledge in the őeld is needed to correct apply
it, and probably this knowledge was lacking in the modeling phase. Better
results can be achieved with a deeper understanding of the process: it is
necessary to know the biological and chemical components of both biomass
and substrate, how they interact and how to collect these kind of data. In
such a way it will be possible to apply both the ASM1 or its reduced version.
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(a) Oxygen concentration

(b) Level

Figure 5.3: Results of the lumped-parameter model.
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5.6.2 LSTM model results

A model based on a LSTM network is deőned in order to predict the oxygen
concentration inside the reactor. Since it was difficult to model this quan-
tity with a white-box approach and a big amount of input/output data is
available, the use of a NN model looks promising. The modeling task using
the LSTM model is focused only on the oxygen concentration since it was
the trickiest output to model with the white-box approach, while the level
performances were already good enough for the company’s goals.
The training and validation of the network are performed on őve datasets
(Dataset 2 - Dataset 6 ) for a total amount of thirty days, while it is tested
on Dataset 1, so that the model can be comparable with the physical one.
The results are shown in Figure 5.4, with a global overview in Figure 5.4a
and a closer detail of the őrst 12 hours in Figure 5.4b, to better emphasize
the accuracy of the result. It can be observed that both the global dynamic
of the signal and the oscillations are correctly reproduced, with an overall
satisfying outcome. Calculating the performance indexes (FIT and ρ, de-
scribed in Equations (3.20) and (3.21) in Section 3.6.1) on the signals, the
results are quite satisfying, with FIT = 60.56% and ρ = 0.921. It is clear
that a straightforward improvement is obtained with respect to the result of
the lumped-parameter model.

5.7 Models comparison

The modeling task of a WWTP is described in this chapter with both a
white-box model and a black-box one.
The overall WWTP modeling and the ASM, regarding the reactions inside
the biological reactor of the plant, are well-known case studies in literature.
However, the ASM could not be applied to this plant because of the lack
of both data and knowledge of the chemical and biological reactions. So a
lumped-parameter model is presented in this thesis, built starting from the
state-of-the-art and exploiting the company’s expertise and the available in-
put/output data, in order to model the oxygen concentration and the level
inside the reactor. The results are not outstanding: the simulated level is
quite good, with a FIT of 59%, being able to reproduce the behavior of
the original signal; on the other hand, the simulated oxygen concentration
is totally wrong and the model is not able to recreate the model’s dynamic.
The considered process is not easy to model, it requires a deep knowledge
of the biological and chemical reactions that are involved, there exists a rich
literature about it and the adaptation of an existent working model can
not be done easily. In order to propose and use a white-box model of this
process, a deeper study is required, together with more speciőc data and
possibly involving experts of the related őelds. Moreover, the considered
process has some control issues, since the actual control system produces an
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(a) Oxygen concentration

(b) First 12 h zoom

Figure 5.4: Results of the LSTM model.
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undesired oscillating dynamic in the oxygen input ŕow that is propagated
also to the oxygen concentration. The company is currently working on the
use of a proportional valve to replace the current switching one. In this way,
the input of the system will have a smoother proőle and so also the oxygen
concentration. A data collection after this substantial change in the machine
can be useful in order to analyze and improve the existing model.
Currently, considering the difficulties experienced trying to use a white-box
model and the availability of input/output data that can be easily acquired,
a NN model seems instead the most promising approach. A LSTM model is
trained on thirty days of data in order to reproduce the oxygen concentra-
tion inside the reactor. The result is promising, with a FIT of around 61%,
being able to represent even the switching behavior of the output variable.
For sure also in this case a better control of the process can help during the
training phase of the network. A pros of the NN approach with respect to the
white-box one is that a new model can be easily trained again if a new data
collection is required, at most a new search of the optimal hyperparameters
should be needed.
On the other hand, a limitation of the LSTM model is the inability to have
a clear view of the interaction between the physical quantities involved in
the process. As seen in Section 5.3, the oxygen concentration plays an es-
sential role in this process, considering that the other quantities depend on
it. So it is important that the network is able to correctly reproduce how
the oxygen concentration inŕuences the other quantities, but currently, this
is not known. To deeper investigate this correlation, a future development
of this work is the implementation of a physics-based LSTM that takes into
account the physical dependencies of the different involved quantities.
To conclude, this application represents a perfect example of when is prefer-
able to use a NN approach: difficulty to model a process considering only
physical equations; availability of input/output data that well represents the
characteristics that is needed to model, that can be easily collected and in big
quantity; need of a simple model for future control purposes in model-based
controllers.
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Chapter 6

LSTM networks for glucose
prediction

In this chapter, an application of the LSTM networks related to the artiőcial
pancreas is presented. The modeling of the glucose-insulin and glucose-meal
dynamics is a challenging task, due to the non-linearity and complexity of
the process. So, a NN approach can be appropriate for this kind of problems.
The LSTM networks are used in this thesis to predict the glucose values in
diabetes patients, in order to create an alarm system for hypoglycemia and
hyperglycemia prevention.

6.1 Motivation and state of the art

Diabetes refers to a group of common metabolic conditions that share the
phenotype of hyperglycemia, i.e. when Blood Glucose (BG) reaches high
values (BG>180 mg/dl). Type 1 Diabetes (T1D) is the result of complete
or near-total insulin deőciency due to an autoimmune process against the
β-pancreatic cells, cells that produce the insulin. Indeed, T1D is deőned as
an insulin-dependent disease, i.e. it can only be treated with exogenous in-
sulin injections to decrease the BG levels, that involve risks of hypoglycemia
(BG<70 mg/dl) if excessive. In the next years T1D incidence in the popula-
tion is supposed to largely increase. The International Diabetes Federation
reports approximately 537 million adults with diabetes and an expected in-
crease to 643 million of people living with diabetes by 2030 [130]. Then, the
T1D optimal treatment is a challenging and interesting control problem.
The T1D standard treatment is the basal-bolus therapy constituted of a
piecewise constant amount of insulin delivered all along the day during fast-
ing periods, called basal, and some meal boluses. A meal bolus is an impulse-
like amount of insulin delivered to compensate the glucose rise due to a meal
intake, computed using the estimation of the carbohydrate intake of the
meal [131]. Along with the conventional therapy, in the past years the use
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Figure 6.1: Constitutive elements of the artiőcial pancreas.

of Continuous Glucose Monitoring (CGM) sensors and insulin pumps spread
around in the so-called Sensor-Augmented Pump (SAP) system. The use
of SAP systems brought an improvement in the glucose control, reducing
the incidence of adverse episodes and improving at the same time treat-
ment satisfaction and diabetes related distress [132ś134]. Moreover, at the
same time systems called Artiőcial Pancreas (APs) have been developed to
correctly administrate insulin, in order to prevent both hypoglycemia and
hyperglycemia phenomena in T1D patients. An AP is a closed-loop system
that computes and directly delivers the optimal insulin quantity through an
insulin pump, exploiting CGM measurements and other additional informa-
tion provided by the patient to estimate this optimal quantity. In Figure
6.1 the constitutive elements of the AP are shown: the glucose CGM sensor
on the left and the insulin pump on the right. The core of the AP is the
control algorithm devoted to the estimation of the optimal insulin therapy.
One of the most promising algorithm, widely used in this kind of application,
is the MPC [135ś141]. This algorithm forecasts future BG levels exploiting
a patient model in order to estimate the optimal quantity of insulin that
keeps BG within the safe range ([70-180] mg/dl). Thanks to the creation of
the UVA/Padova simulator [142], a metabolic simulator approved by Food
and Drug Administration (FDA) as a substitute to animal experiments, the
AP’s development had a notable acceleration.
Since hypoglycemia and hyperglycemia prevention is one of the key point
of an effective diabetes management, to preserve the patients safety, CGM
devices, SAP systems and AP can be equipped with Alarm Systems (ASs)
that alert the patient of an upcoming critical event. Depending on the
method that generates the alert, the ASs can be categorized into two types:
threshold detection and prediction-based. Threshold detection alarms are
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activated when particular thresholds are crossed, in this case when critical
BG levels are reached [143], meaning in this particular application when
critical BG levels are reached (70 [mg/dl] for hypoglycemia, 180 [mg/dl]
for hyperglycemia); while prediction-based alarms attempt to evaluate the
risk beforehand, relying on patient models, which goodness determines the
AS performance, since the quality of the predictions plays a key role in the
performance of the entire AS [144, 145].

6.1.1 Neural network models for glucose prediction

In recent years, thanks to a growing availability of both in silico and in vivo
data [146], different neural network techniques have been used for glucose
prediction. For example multilayer perceptron [147], reinforcement learning
techniques [148] and above all the deep learning models [149], were object
of recent study. Also in this őeld, the LSTM is one of the most employed
deep learning architecture and some interesting results can be found in liter-
ature [150ś155]. In [150], a population model is developed for both in silico
and in vivo patients, to predict future CGM values at different PHs, given
only past CGM in input and leaving the use of additional features as future
developments. In [151] an LSTM model is trained on CGM signals of dif-
ferent patients and then used to predict future BG values of an unseen new
patient. LSTM obtained very good results both with short and long PHs,
overcoming other previous methods like feed-forward neural networks [156],
autoregressive models [147] and RNN [157].
A model using only past CGM information in input is easier to obtain, since
the patients have to simply wear a sensor to collect these data, with respect
to models that require other quantities like assumed meals and injected in-
sulin, that have to be recorded manually or acquired automatically by the
devices. However, as stated in [158], adding meals and insulin information
as inputs helps BG prediction when PH>30 [min]. In [158] the authors also
found that meals information is more signiőcant than insulin. According to
this result, in [159] a őrst LSTM network is trained using CGM as unique
feature and then, adding the insulin in input, the obtained improvement
was only of 1%. Other works present more complex LSTM architectures
with multiple inputs. In [154] a Memory-Augmented LSTM with a neural
attention module is trained on both in silico and in vivo data, comparing
the results obtained from different datasets and with different inputs: only
BG; adding meals and insulin; adding time of the day. A stacked LSTM is
presented in [152], having two different input channels: one with past CGM
values, meals and insulin quantities and the second one with estimated fu-
ture meals and expected insulin therapy. Different PHs, number of layers
and hidden units in each layer were analysed and the population models
were trained on in silico patients and then tested on a real patient. A similar
analysis is performed in [153], where meal, insulin and past CGM values



90 6. LSTM networks for glucose prediction

are used for CGM forecasting, with a particularly interesting analysis on
different PHs and their clinical implications. In [155] a two layers stacked
LSTM is proposed, having in input past CGM, meal, insulin and step count
information. Real data are considered and so CGM is preprocessed using
Kalman őltering to correct inaccurate readings due to sensor fault.

6.1.2 Contribution

All these considerations suggest that NNs can be a good approach to the
BG prediction problem. However, taking into account the inter-patient and
intra-patient variability that characterize this system, i.e. that each patient
is different from another and that their behavior changes over the time, pop-
ulation and time-invariant models can result less effective: personalized and
time-variant models represent a more promising choice for this type of ap-
plications.
At őrst, a case study on one single in silico patient is carried out, giving
very good results and presented in [17]. In view of this, Personalized LSTM
models (P-LSTMs) are developed in this thesis and will be presented in Sec-
tion 6.3. One LSTM for each of the 100 in silico adult patients of the UVA/
Padova simulator [142] is trained, using current meals and insulin quantities
together with past CGM values to predict current CGM values with a PH
of 40 minutes, exploiting a single layer LSTM. A different network is trained
for each patient, using the same set of hyperparameters for the entire popu-
lation, and very satisfying results have been achieved, also comparing them
with the state of the art. These results have been published in [18]. A pre-
liminary analysis where the P-LSTMs are employed to design personalized
ASs for hypoglycemia and hyperglycemia detection is presented in [19].
The P-LSTMs are then improved to achieve better performance and meet
some accuracy requirements. The so obtained Enhanced Personalized LSTM
models (EP-LSTMs) are proposed in Section 6.4, together with the person-
alized ASs for hypoglycemia and hyperglycemia detection, showing good
predictive performances. These results are presented in [20].
Lastly, the work is extended to the in vivo data of the OhioT1DM Dataset
[160], to prove the robustness of the methodology. The choice of this par-
ticular dataset is made because it was created for ML applications in the
diabetes őeld, making it one of the most employed dataset for this purpose.
A őrst analysis on the in vivo data is introduced in Section 6.5 for the use
of the predictions in an hyperglycemia AS.

6.2 Data

In order to carry out the development of a LSTM model for glucose predic-
tion, both in silico and in vivo data have been used.
In silico datasets have been generated through the UVA/Padova simulator
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Dataset Meals CHO (g) Time

Breakfast 59 ± 22 7:08 ± 81
tr-dataset Lunch 63 ± 11 12:45 ± 60
(8 days of data) Dinner 60 ± 17 20:26 ± 56

Snacks 25 ± 7

Breakfast 50 [50-52.5] 7:30 ± 24
v-dataset Lunch 66 ± 9 13:22 ± 29
(4 days of data) Dinner 72 ± 6 20:15 ± 52

Snacks 23 ± 7

Breakfast 57 ± 6 7:22 ± 75
ts-dataset Lunch 65 ± 4 13:15 ± 39
(4 days of data) Dinner 86 ± 12 19:52 ± 29

Snacks 19 ± 4

Table 6.1: In silico datasets descriptions.

[142], a simulator approved by the FDA and used to test insulin therapies
in silico, as an alternative to animal experiments, being demonstrated that
its simulations reŕect the glucose patterns observed in human studies on
T1D patients [161]. A detailed description of the simulator is reported in
Appendix B, together with an in-depth analysis of some settings that have
been employed for data generation.
The in vivo dataset is the OhioT1DM Dataset [160], publicly released for
research purposes by the Ohio University, being one of the most employed
for glucose prediction models. Both datasets are deeply described in the
following.

6.2.1 In silico datasets

In this work, the 100 adult subjects of the most advanced version of the
UVA/Padova simulator are considered for data generation.
The datasets include CGM, insulin and meals; the insulin quantity is com-
puted by the MPC described in [162]. Since the őnal goal is the correct
detection of hypoglycemia and hyperglycemia events, in order to have a sig-
niőcant amount of critical episodes in all the datasets, the MPC is tuned to
be sub-optimal, as described in Appendix B. In this way the glucose dynamic
of patients with regulation problems that will mainly beneőt of a personal-
ized model can be reproduced.
Three scenarios are employed to generate three different datasets: a train-
ing dataset (tr-dataset), used to train the network; a validation dataset (v-
dataset) for the hyperparameters tuning; a testing dataset (ts-dataset), used
to assess the network’s performance. All the datasets include three meals
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Figure 6.2: Blood glucose proőles of 100 in silico patients with tr-dataset
(blue), v-dataset (magenta) and ts-dataset (orange).

per day and up to two additional snacks, in different quantities and times
of the day. The number of meals per day and the time distribution are in-
spired by the ones observed on the real patients of the Padova center [163].
To ensure that the datasets are uncorrelated, there are no repetitions in the
days that compose them. A complete description of the meal distribution
is presented in Table 6.1: times and quantities of the meals in each dataset
are reported in terms of mean (± SD) or median [25th - 75th] percentiles, if
the data are normally or not normally distributed, respectively. Note that,
since the snacks can be assumed throughout the day, only their quantities
are reported, seen their time distribution is not signiőcant.
In view of this meal variability, the tr-dataset, v-dataset and ts-dataset
present signiőcant differences both from one day to another and between
the datasets as shown in Figure 6.2. In the őgure the median [25th - 75th]
percentiles of the glucose proőles of the entire population are reported for
all the 3 datasets, since they are not normally distributed. To provide more
realistic settings during the data generation phase, the meal announcement
presents inaccuracies in terms of amount (CHO) and time of the carbohy-
drate intake. In Figure 6.3 the distributions of the bolus delays and the
CHO counting errors introduced in all the datasets are reported for each
type of meal. Note that these inaccuracies in the meal management, as well
as making the scenario more realistic, also increment the number of critical
episodes due to a not optimal insulin therapy.
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Figure 6.3: Histograms representing the time delay and the CHO counting
error of the insulin boluses delivered to compensate different type of meals.
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Time CHO (g) Insulin Bolus

Day 1
09:00 40 Bolus on time
12:30 70 Bolus on time for 60 g
19:30 60 Bolus at 19:00

Day 2

08:00 50 Bolus at 7:30
13:00 80 Bolus on time
17:00 30 Bolus on time for 40 g
20:30 60 Bolus on time

Day 3

07:00 45 Bolus at 7:30
12:00 60 Bolus on time for 70 g
18:00 25 No bolus
22:00 55 Bolus on time

Day 4
10:00 20 Bolus on time
12:00 65 Bolus on time for 60 g
19:00 90 Bolus at 19:30

Day 5
07:00 40 Bolus on time for 60 g
12:30 65 Bolus on time
20:00 70 Bolus at 19:30

Day 6

01:00 25 Bolus on time
08:00 60 Bolus on time for 40 g
13:00 60 Bolus on time
20:30 55 Bolus at 21:00

Day 7

01:00 15 Bolus on time for 20 g
06:00 100 Bolus on time for 80 g
15:00 60 Bolus on time
21:00 30 Bolus on time

Day 8

05:00 75 Bolus on time
12:00 40 Bolus on time
17:00 35 No bolus
21:00 60 Bolus at 20:00

Table 6.2: Training Scenario.
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Time CHO (g) Insulin Bolus

Day 1

07:30 55 Bolus on time
11:00 25 No bolus
13:00 65 Bolus on time
19:30 75 Bolus on time for 70 g
22:30 15 Bolus on time

Day 2

08:00 50 Bolus on time
13:00 80 Bolus on time
16:00 30 No bolus
19:30 70 Bolus at 19:00 for 60 g
22:00 15 No bolus

Day 3

07:00 50 Bolus on time
09:30 25 No bolus
13:30 60 Bolus on time
16:00 25 Bolus on time
21:00 80 Bolus at 20:30 for 70 g
23:30 15 No bolus

Day 4

07:30 50 Bolus on time
14:00 60 Bolus on time
18:00 30 Bolus on time
21:00 65 Bolus on time

Table 6.3: Validation Scenario.

Scenarios

The scenarios used to generate the tr-dataset, v-dataset and ts-dataset are
presented in detail in Tables 6.2-6.4. The number of meals per day and the
time distribution are inspired by real data distribution [163] and to provide
more realistic settings during the data generation phase, the meal announce-
ment presents inaccuracies in terms of amount (CHO) and time of the carbo-
hydrate intake. For each dataset, time and quantities of meals are reported
in the tables for each day in the őrst columns, then the last one reports if
the insulin bolus is delivered at the same time of the meal and if the meal
quantity used for its computation is correct or not.

Data preprocessing

The glucose concentration measured by CGM sensors can be affected by
sensor measurement noise and calibration errors typical of the devices used
to measure the glucose subcutaneously. In order to minimize the effect
of these problems, the data used to train the LSTM network are prepro-
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Time CHO (g) Insulin Bolus

Day 1

06:00 60 Bolus on time
09:30 25 No bolus
12:30 65 Bolus on time
15:30 15 Bolus on time
20:00 100 Bolus at 19:30 for 80 g

Day 2

07:30 50 Bolus on time
13:00 70 Bolus on time
16:00 20 No bolus
19:30 70 Bolus on time

Day 3

09:00 65 Bolus on time
11:00 20 Bolus on time
14:00 65 Bolus at 13:00 for 50 g
19:30 90 Bolus on time
23:30 20 No bolus

Day 4

07:00 55 Bolus on time
10:00 20 Bolus on time
13:30 60 Bolus at 12:30 for 50 g
20:30 85 Bolus on time

Table 6.4: Testing Scenario.

cessed. To have a more accurate signal, a preprocessing algorithm, called
łretroőtting” [164], is used. This algorithm reconstructs the BG proőle
starting from CGM measurements and using sporadic BG values, if avail-
able, and Self-Monitoring Blood Glucose (SMBG) measurements, obtained
by the patients from őnger-stick. In the following, CGM will refer to the
CGM after retroőtting. Furthermore, because the involved quantities have
different ranges, CGM, meals and insulin quantities are all rescaled using
mean normalization. This is a typical approach to improve neural network
training performance since unscaled data can cause a slow learning phase,
non-convergence, or exploding gradient problems, particularly when work-
ing with RNNs. Lastly, the output of the network is őltered through robust
quadratic regression to eliminate the prediction’s noise.

6.2.2 In vivo dataset

The OhioT1DM dataset [160], made publicly available by the Ohio Univer-
sity to support the research in the őeld of BG prediction, is the őrst dataset
containing CGM, insulin, physiological sensor, and self-reported life-event
data, to be publicly and freely accessible. It is one of the most employed
datasets in this őeld, especially for ML applications, making the comparison



6.2. Data 97

ID Gender Age Pump Model Sensor Band Cohort

540 Male 20-40 630G Empatica 2020
544 Male 40-60 530G Empatica 2020
552 Male 20-40 630G Empatica 2020
567 Female 20-40 630G Empatica 2020
584 Male 40-60 530G Empatica 2020
596 Male 60-80 530G Empatica 2020

559 Female 40-60 530G Basis 2018
563 Male 40-60 530G Basis 2018
570 Male 40-60 530G Basis 2018
575 Female 40-60 530G Basis 2018
588 Female 40-60 530G Basis 2018
591 Female 40-60 530G Basis 2018

Table 6.5: OhioT1DM Dataset description.

with the state of the art easy and reliable. It can be obtained only for re-
search purposes through a data use agreement between the Ohio University
and researcher institution.
To collect data, the Ohio University run őve clinical trials, involving more
than 50 patients affected by T1D, subject to the same insulin therapy. The
dataset contains eight weeks data of 12 different patients using insulin pump
and CGM sensors, released in two different moments. The data of the őrst
6 patients were released after the őrst Blood Glucose Level Prediction Chal-
lenge (BGLP Challenge) held during the 3rd International Workshop on
Knowledge Discovery in Healthcare Data, at IJCAI-ECAI 2018, in Stock-
holm. The participants of the challenge had to develop an algorithm for
glucose prediction, based on the őrst cohort of real patient data. A second
edition of the BGLP Challenge was held at the 5th International Workshop
on Knowledge Discovery in Healthcare Data, at ECAI 2020, in Spain, lead-
ing to the release of the second cohort of 6 patients.
The dataset contains CGM, SMBG, insulin (bolus and basal), meals with car-
bohydrates quantity, exercise, sleep data and various life-event data collected
from a őtness band, like heart rate, skin conductance, skin temperature, air
temperature, step count and others. The patients wore Medtronic 530G or
630G insulin pump, Medtronic Enlite CGM sensor, Basis Peak őtness band
for the 2018 cohort and Empatica Embrace őtness band for the 2020 one.
Moreover, in order to ensure privacy of the participants in the clinical trials,
the data have been de-identiőed: a random ID number is assigned to each
patient and the data are randomly shifted in the future. Some information
about the different contributors are listed in Table 6.5: each patient in the
dataset is described with its ID, gender, age range, pump model, sensor band
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Figure 6.4: CGM Kalman őltering and smoothing for a patient of the
OhioT1DM dataset.

and the cohort to which it belongs. The dataset contains for each patient a
XML őle for training and one for testing; in the 2020 cohort the őrst hour
of the test dataset is not considered to be unbiased and more distant from
the training dataset. In this work, the training dataset is further divided in
training and validation dataset, considering 30 days of the original training
dataset to train the network and the remaining for validation.

Data preprocessing

It was not possible to use the retroőtting algorithm described in Section
6.2.1 to preprocess the OhioT1DM Dataset because, in addition to the sen-
sor measurement noises present in the in silico CGM signal, the in vivo data
present some missing CGM data. So in this case the Kalman őltering and
smoothing technique proposed in [165] is used to őlter and smooth the CGM
data, removing noise and interpolating in case of missing data, exploiting
also SMBG data. The MATLAB implementation of the technique is pub-
licly available [166].
This algorithm őrstly employs Kalman őltering at each time step to compute
a state estimation and a state covariance matrix, and uses a dynamic model
to predict the state of the subsequent time steps. In this way an a priori esti-
mate of the state is generated. Then it is updated considering measurement
noises, obtaining an a posteriori estimate. If a measure is not available in a
certain time step, the a posteriori estimate is set equal to the a priori one.
The estimates can be further improved through Kalman smoothing: a back-
ward pass computes the smoothed estimates, having in input the a priori and
a posteriori estimates from the Kalman őltering. The Rauch-Tung-Striebel
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algorithm [167] is used to do this. The mathematical implementation of this
algorithm is described in Appendix C.
To obtain the state predictions, a dynamical model is exploited. In the avail-
able MATLAB implementation, it is possible to choose among two different
models and in this thesis the second one is chosen: a central-remote rate
model, where the glucose dynamic is represented through a compartmental
model. The two models are further described in Appendix C.3.
It is also possible to choose the outlier suppression and removal methods since
the outlier detection can be based on the őlter estimate or on the smoother
estimate. Considering that the process noise is high, the őrst method is able
to detect only major outlier and so it is chosen in this work because it is
more conservative of the original data. The second method removes several
hypoglycemia or hyperglycemia peaks that were considered outliers, while it
is important to keep them in order to build the AS.
Considering these settings, the CGM signals of all the 12 patients are pre-
treated. In Figure 6.4 the original signal, in yellow, is compared with the
őltered and smoothed one, in blue, representing the testing dataset of patient
563. It is interesting to notice how the used technique imputes missing data,
like it can be observed in day 3. However, this technique presents also some
disadvantages because sometimes the outlier suppression is too aggressive,
like for example during the őrst day where too many data are removed. In
a further development of this work an analysis of this undesired behavior is
needed, together with an improvement of the technique.

6.3 P-LSTMs training procedure

A őrst model, called Personalized LSTM (P-LSTM) is trained, using the in
silico datasets described in Section 6.2.1. One different P-LSTM is trained
for each of the 100 adult patients of the UVA/Padova simulator.
The considered network architecture is a single layer LSTM with 96 neurons
(nc = 96), three inputs (nx=3) and one output. The inputs are the injected
insulin through a subcutaneous insulin pump, I(t), the carbohydrate intake
provided by the patient, M(t), and the past CGM values of PH minutes
ago, CGM(t − PH). The output is the glucose value obtained through
CGM at the current time, CGM(t). The training is performed considering
Adam optimizer to perform the backpropagation algorithm, with learning
rate α = 0.01, number of epochs őxed at 500 and MSE (Equation 4.19 in
Section 4.4) chosen as loss function to be minimized. The training procedure
has been implemented using TensorFlow [108] and Keras API [109]. The hy-
perparameters of the network, such as nc and α, have been optimized using
KerasTuner [110], where the optimization criterion is the minimization of
the loss computed using the v-dataset. The optimization was performed on
a subset of the patients and then the results have been extended to the entire
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population. The description of these software is presented in Appendix A.
In order to deőne the PH, the results presented in [153] are considered, where
several LSTM networks have been trained to predict future glucose values,
considering the same inputs and output used in this work. The authors
compared the results obtained varying nc, number of LSTM layers, input
dimension and PHs. In particular, the authors found that the networks with
small PH obtain better performances, but an anticipation of at least 30 min-
utes are needed in a clinical scenario to allow the patients to react and avoid
hypoglycemia. The best trade-off between performances and clinical needs
is obtained with a PH of 30 [min], even if a PH of 45 [min] has performances
still acceptable. Considering that models with these PHs were good enough
to be used in clinical practice, in the following PH is set equal to 40 [min].

6.3.1 Results

The 100 P-LSTM models are evaluated through several performance indexes,
in order to facilitate the comparison with the literature.
In addition to the FIT , already deőned in Equation 3.20 in Section 3.6.1, also
the Root Mean Squared Error (RMSE) and two additional indexes speciőc
of this application, Downward Delay (DD) and Upward Delay (UD), are
considered. Being y the real data, ŷ the predicted data and S the number
of samples, they are calculated as:

RMSE =

√√√√ 1

S

S∑

i=1

(yi − ŷi)2 (6.1)

DD = argmin
j∈[0,PH]

[
1

S
(ŷ(t|t− PH + j)− y(t))2

]

∀t ∈ [tP , tN75 ]

(6.2)

UD = argmin
j∈[0,PH]

[
1

S
(ŷ(t|t− PH + j)− y(t))2

]

∀t ∈ [tN , tP75 ]

(6.3)

The RMSE quantiőes the variance of the prediction error; the smaller it is,
the better is the prediction. DD and UD estimate the delay of the predic-
tion with respect to the real data [168, 169]. In the above equations DD
and UD are computed as the time shifts that minimize the mean squared
error between real and predicted data [168]. As observed in [169], including
Peaks (P ) and Nadirs (N) in the computation would give a too pessimistic
result, since in these particular cases the delays are bigger. So the delays
are calculated only on positive and negative trends, identifying the time in-
stant at which certain thresholds are crossed (tN , tP , tN75 , tP75). For positive
trends the threshold (P75) is placed at the 75% of the nadir-to-peak distance,
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Figure 6.5: Example of glucose proőle where nadirs, peaks and the respective
thresholds are highlighted.
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Figure 6.6: Glucose proőle of an in silico subject with P-LSTM model.

for negative ones the threshold (N75) is placed at the 75% of the peak-to-
nadir distance. For clarity, an example is shown in Figure 6.5, where peaks
are pointed with red circles, nadirs with purple diamonds and the above-
mentioned thresholds are shown. Red dashed lines show the hypoglycemia
and hyperglycemia thresholds. DD is considered on negative trends and
UD on positive ones, calculated as the average delays of the total thresholds
crossings.
All the performance indexes are computed for each patient independently,
then the mean (± SD) or the median [25th− 75th percentiles] is reported for
the entire population if the results are normally or not normally distributed,
respectively. The 100 P-LSTM models, evaluated on the ts-dataset, obtained
a RMSE of 7.67 [6.44-9.07] and a FIT of 75.86 [70.52-79.57]. These results
are satisfying considering the particularly challenging application. The glu-
cose proőles are predicted with a DD of 9 [8-12] and a UD of 9 (±3) minutes,
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Model RMSE FIT PH # subj Data

P-LSTM 7.67 75.86 40 100 Silico

Sun [150] 30.21 42.56 45 20
Silico/
Vivo

Aiello [152]
11.68 58.84

[5, ..., 60]
100 Silico

31.01 41.41 1 Vivo

Carrillo [153] 20.76 - 45 8 Vivo

Mirshekarian [154]
2.93 -

30
30 Silico

18.07 - 6 Vivo

Aliberti [151] 7.18 88.79 45 451 Vivo

Rabby [155]
5.89 -

30 6 Vivo
18.96 -

Model LSTM Architecture Inputs

P-LSTM Single Layer LSTM CGM, M, I

Sun [150] LSTM + Bi-directional LSTM CGM

Aiello [152] 2 branches of stacked LSTMs CGM, M, I

Carrillo [153] Stacked LSTMs CGM, M, I

Mirshekarian [154] Memory-Augmented LSTM CGM, M, I

Aliberti [151] Single Layer LSTM CGM

Rabby [155]
Stacked LSTMs w/ őltered CGM CGM, M, I,
Single Layer LSTM steps

Table 6.6: P-LSTM results and comparison with the state-of-the-art.

that make the models useful for applications like alarms or model-based AP
that require to predict speciőc critical events in advance.
A graphical example of the glucose proőle of one patient is reported in Fig-
ure 6.6, where it can be noticed that the trend is followed by the P-LSTM
simulation and the peaks are well tracked: in few cases the peaks are over-
estimated, but the hypoglycemia and hyperglycemia events are present also
in the real case.

6.3.2 Comparison with the state-of-the-art

In order to evaluate the goodness of the P-LSTMs results, a comparison with
the most relevant works in the literature is reported in Table 6.6. These
works present different characteristics but they are the most similar results
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found in literature to have an estimation of the goodness of the proposed
models. In Table 6.6, the performance indexes, the considered PH, number
of subjects, the nature of the data (silico or vivo), a brief description of the
LSTM architecture and the used inputs are reported.
The P-LSTMs outperform [150, 152, 153], where population models were
tested on in vivo data. It is interesting to notice how a simpler architec-
ture is capable to understand better the glucose dynamics. It is also shown
how personalized models are more effective then population ones. A better
result is obtained in [154], on in silico data using a previous version of the
UVA/Padova simulator [170]. In this version of the simulator the intra-day
variability was not modeled and in [154] fewer patients are considered with a
smaller PH and a more complex architecture. Our limited loss in the perfor-
mance is a good trade-off considering the simpler architecture and the more
challenging population. However, an interesting result obtained in this work
is the robustness of the LSTM to noise and sensors data loss, also thanks
to the implementation of an attention mechanism. Apart [151] and [152] all
the other works considered less patients. Lastly, the result is comparable
with [151], where a very large dataset with 451 real patients is used and
[155], where single and stacked LSTMs with Kalman őltering or without are
used on the OhioT1DM Dataset [160]. In this latter, considering the result
with only single layer LSTM, similarly to this work, the obtained results
were worsened, while with a more complex architecture the improvement is
negligible.

6.4 EP-LSTM based Alarm System

6.4.1 EP-LSTM description

Since the P-LSTM models obtained satisfying results for glucose prediction,
these models can be successfully employed to design personalized ASs. How-
ever, for this kind of application the models must meet some performance
requirements. In particular, the delay with respect to the original signal has
to be limited in order to catch the glucose dynamic. In this prospective,
a criterion to improve the P-LSTM quality is proposed. Each P-LSTM is
őrstly evaluated on the v-dataset, if DD ≥ 10 [min] or UD ≥ 10 [min], the
prediction could not be good enough to be used in the alarm system and an
ad-hoc hyperparameters tuning is performed via KerasTuner on the speciőc
patient. These new models are called Enhanced Personalized LSTM models
(EP-LSTMs).

6.4.2 Alarm system description

ASs are powerful tools that can be used to avoid harmful situations like
hypoglycemia and hyperglycemia for subjects with T1D. The ASs described
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Dataset Meals CHO (g) Time

Breakfast 55 [50-60] 7:30 [7:00-7:45]
AS-dataset Lunch 65 [60-65] 13:00 [12:30-13:45]
(28 days of data) Dinner 68 ± 12 19:30 [19:30-20:00]

Snacks 20 [15-30]

Table 6.7: AS-dataset description.

in the following are prediction-based alarms.
The AS considers the EP-LSTM predictions at time k∗ over a Prediction
Window (PW ) from k∗ + 1 to k∗ + PW : if the predicted BG levels exceeds
the threshold Ghypo (or Ghyper) for at least S minutes, an hypoglycemia
(or hyperglycemia) alarm is raised. In this way the patient is alerted of
an incoming critical event and can take some action to avoid it. Note that
PW ≤ PH since the EP-LSTMs require CGM in the previous PH minutes
to predict future CGM, so it is chosen to exploit the longest PH which the
EP-LSTM was trained for.

6.4.3 Data generation for AS evaluation

In order to test the AS performances in silico, a new dataset is generated,
called AS-dataset. AS-dataset contains three meals per day with the pos-
sibility to have snacks, uncertainties in the meal announcement are present
accordingly to the other datasets. There are not repetitions of the days that
are uncorrelated with the scenarios of tr-dataset, v-dataset and ts-dataset
too. AS-dataset is described in detail in Table 6.7. Since a relevant amount
of hypoglycemia and hyperglycemia events distributed over this time period
is needed to effectively test the AS performances, AS-dataset is much longer
than the other datasets used so far and the MPC used in the UVA/Padova
simulator is tuned accordingly to the training dataset, as described in Ap-
pendix B.

6.4.4 Performance metrics for alarm systems

A preliminary deőnition of the events that can occur during event predic-
tion is needed to describe the performance metrics for the evaluation of the
alarm goodness. Firstly, kh is deőned as the time instant at which a generic
hypoglycemia or hyperglycemia event occurs; DW is the Detection Window
determined by the event, starting DWs (Detection Window start) and end-
ing DWe (Detection Window end) minutes before the considered time, with
DWs > DWe > 0 to guarantee the alarm diagnostic, where DWe is the
minimum interval to detect the event; k∗ the time instant at which a generic
hypoglycemia or hyperglycemia alarm is raised.
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Figure 6.7: Example of TP, FP, FN and TN events.

These events are shown in Figure 6.7 where the real data are in green, pre-
diction through EP-LSTM in dotted purple, red triangle points the start of
an hypoglycemia event and its detection window. The alarm activation is
represented by the light-red region in the hypoglycemia case and by light-
blue region in the hyperglycemia case.
The following events are valid both for hypoglycemia and hyperglycemia
detection:

• True Positive (TP): at time kh an event occurs and an alarm is raised
in the Detection Window, DW = [kh −DWs, kh −DWe], as shown in
Figure 6.7a for hypoglycemia. In practice, the alarm must be activated
at least DWe minutes before the event to allow the patient to prevent
it and also not too distant in time, at most DWs, to be considered
related to the current event.

• False Positive (FP): at time k∗ an alarm is raised but there is no event
in [k∗, k∗ + DWs], as shown in Figure 6.7b for hyperglycemia. It is
important to notice that if an alarm is raised too late, after DWe, it is
not considered a FP event even if it is not a TP. In fact, it is a correct
detection of the event (TP) that is not raised enough in advance to
take an action to avoid hyper/hypoglycemia. In this prospect, those
events are not taken into account in the results.
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• False Negative (FN ): at time kh there is an event but the alarm is not
activated in the DW, as in Figure 6.7c for hypoglycemia.

• True Negative (TN ): at time k∗ the alarm is not activated and there
is no event in the interval [k∗, k∗ + (DWs −DWe)], as in Figure 6.7d.

Considering these events, the following metrics to evaluate the AS perfor-
mances are deőned:

• True Positive Rate (TPR), also called recall or sensitivity, measures
how many positive events are properly detected over the total amount
of events:

TPR =
TP

TP + FN
(6.4)

• Positive Predicted Value (PPV ), or precision, measures how many
alarms are correctly activated over the total amount of alarms rising:

PPV =
TP

TP + FP
(6.5)

• F1 score (F1 ), the harmonic mean of TPR and PPV:

F1 =
2 ∗ TPR ∗ PPV

TPR+ PPV
(6.6)

It should be noted that only the metrics related to the positive events are here
considered because the dataset is very unbalanced, having few hypoglycemia
and hyperglycemia events with respect to the overall amount of data in
the safe range. In fact in this case the number of TN events is deőnitely
higher than the others and all the metrics including it would be saturated
and misleading. This is proven in [171], showing that for unbalanced sets
precision and recall are more informative than ROC plots, where TPR is
compared with its counterpart, False Positive Rate (FPR = FP/(FP +
TN)).

6.4.5 Results

EP-LSTM results

A computer equipped with graphics processing unit (GPU) was used to carry
out the training processes: an Intel i7-7700HQ CPU with 2.80 GHz, 32.0 GB
memory with GPU NVIDIA GeForce GTX 1050 was used in the experiments.
The program was written in Python 3.6, using CUDA 9.0.
Among the 100 patients of the UVA/Padova simulator, in 28 cases the P-
LSTMs do not satisőed the conditions related to DD or UD on the v-dataset.
So, a speciőc hyperparameters tuning is performed for these problematic pa-
tients via KerasTuner. The total distributions of the hyperparameters are
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Figure 6.8: Hyperparameters distributions in the 100 in silico patients.

presented in Figure 6.8, where three bar plots show the occurrences of the
values for each hyperparameter, where the lighter colors represent the 72
unvaried cases and the darker colors represent the retuned hyperparameters:
nc in Figure 6.8a, α in Figure 6.8b and ne in Figure 6.8c. It can be noticed
that nc is the hyperparameter with less impact, 20 patients out of 28 have
nc = 96, that is the original value used in the P-LSTM, then only the other
8 needed an higher number of neurons. For what concern the learning rate,
15 patients out of 28 need a smaller α = 0.005, then 8 keep α = 0.01 and the
other 5 have different values. The distribution of ne is even diverse, only 3
patients have ne ≤ 500, while the others need an higher number of epochs,
with a peak of 20 patients that need 1000 epochs.
After the retuning of the hyperparameters, evaluating the delays on this sub-
set of the patients, signiőcant improvements can be noticed: on the v-dataset
DD improved from 11 [min] to 8.84 [min] (p < 0.01) and UD from 13.03
[min] to 9.78 [min] (p < 0.001); on the ts-dataset DD improved from 11.54
[min] to 10.17 [min] (p < 0.05) and UD from 12.85 [min] to 10.37 [min]
(p < 0.001). The p-values are computed with the appropriate statistical
test based on the data distribution characteristics. The gaussianity and ho-
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Index EP-LSTM P-LSTM

RMSE 7.47 [6.02 - 8.69] 7.67 [6.44 - 9.07]

FIT 76.47 [71.16 - 80.47] 75.86 [70.52 - 79.57]

DD 9.02 [7.27 - 11.53] 9.49 [7.81 - 12.12]

UD 8.74 (±3.04) 9.65 (±4.15)

Table 6.8: Results of the prediction on the ts-dataset, comparing EP-LSTM
and P-LSTM.

Figure 6.9: Glucose proőle of an in silico subject, comparing P-LSTM and
EP-LSTM predictions.

moscedasticity of the data distributions are assessed by the Lilliefors test and
two-sample F-test, respectively. If at least one distribution is non-Gaussian,
the Wilcoxon rank sum test is used to test the signiőcance of the differences;
if both distributions are Gaussian and homoscedastic, a two-sample t-test is
performed; otherwise, the two-sample t-test with Satterthwaites approxima-
tion is used.
The 100 EP-LSTMs are then evaluated on all the patients of the UVA/
Padova simulator through RMSE, FIT , DD and UD on the ts-dataset.
The results are shown in Table 6.8, compared with the P-LSTM ones [18].
Mean (± SD) or median [25th - 75th percentiles] are reported for the entire
population, if the results are normally or not normally distributed, respec-
tively. The EP-LSTMs obtain an overall improvement with respect to the
previous results, especially the two delays are reduced, guaranteeing more re-
liability of the models for their employment in the alarm system. A graphical
example is reported in Figure 6.9 for a patient that required the model hyper-
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Index Hypo Alarm Hyper Alarm

TPR 80.00 [57.42 - 92.98] 85.71 [66.67 - 97.28]
PPV 85.79 [66.67 - 100] 80.43 [66.67 - 89.61]
F1 75.00 [66.67 - 87.61] 80.00 [66.33 - 90.68]

# episodes 12 ± 9 39 ± 26
# alarms 12 ± 9 40 ± 27

Table 6.9: Hypoglycemia and hyperglycemia alarm systems performances on
the in silico dataset.

parameters retuning: P-LSTM and EP-LSTM models are compared on the
ts-dataset. The real data are represented in green, the P-LSTM prediction
in purple dashed, the EP-LSTM prediction in blue dotted. The red dashed
lines are hyperglycemia and hypoglycemia thresholds. It can be noticed that
the EP-LSTM prediction is more accurate, especially in the hypoglycemia
and hyperglycemia regions, and the delays are reduced: for this patient, DD
goes from 18.57 [min] to 6.27 [min] and UD from 22.60 [min] to 14.73 [min].

AS results

The AS performances are evaluated on the AS-dataset for all the 100 patients
of the UVA/Padova simulator. In this work DWs = 45 [min] and DWe = 10
[min], in accordance with previous literature [144, 145], and PW=40 [min],
Ghypo = 70 [mg/dl], Ghyper = 180 [mg/dl], S=10 [min]. Among the 100 pa-
tients, 3 subjects did not present hyperglycemia events in the AS-dataset so
for the hyperglycemia alarm the results are calculated on 97 patients. The
median [25th − 75th percentiles] is then calculated on the entire population
since the results are not normally distributed.
The performances of the AS are shown in Table 6.9: the EP-LSTM AS ob-
tained satisfactory performances with the 80% of hypoglycemia events cor-
rectly detected (TPR = 80%) over an average number of episodes equal to 12
and with the 86% of hyperglycemia events correctly detected (TPR = 86%)
over an average number of episodes equal to 39. The precision of the alarm
is also adequate with an 86% of the hypoglycemia alarms raised correctly
(PPV = 86%) over an average number of alarms of 12 and an 80% of the
hyperglycemia alarms raised correctly (PPV = 80%) over an average num-
ber of alarms of 39.
A graphical example of the AS performances is shown in Figure 6.10, where
the őrst four days of the AS-dataset on a speciőc patient are shown. In the
middle panel the real data in green and the predictions in dashed purple are
represented, together with hypoglycemia and hyperglycemia events indicated
by a red triangle and a blue diamond, respectively. The activation of the
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Figure 6.10: Personalized alarm system example. In the middle panel the
glucose proőle in the őrst 4 days. In the top panels a FP and a TP case for
hyperglycemia; in the bottom panels a TP and a FN case for hypoglycemia.
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alarms is represented by the light-red regions for hypoglycemia and by the
light-blue ones for hyperglycemia. During the four days, three hypoglycemia
and two hyperglycemia episodes are present: four of them are correctly de-
tected, while around 14:00 of Day 4 a FN event for hypoglycemia can be
noticed and around 19:00 of Day 2 a FP event for hyperglycemia is present.
In the bottom panel two zooms in of two hypoglycemia episodes are shown,
highlighting how the alarm is correctly raised in the DW on the left (TP)
while the event is not detected on the right (FN ). In the top panel a wrong
hyperglycemia detection is presented on the left (FP) while a corrected one
is represented on the right (TP). From two of the zoomed panels, it can be
observed that these false events are not severe or harmful for the patient.
In fact, the hypoglycemia event that is not detected is not a severe event
(BG>60 [mg/dl]), while the hyperglycemia alarm is wrongly raised when
the glucose was closer to the hyperglycemia threshold (BG>170 [mg/dl]) as
shown in Figure 6.7. In general the results obtained from the proposed AS
are really satisfying.

6.5 Ohio EP-LSTM

Given the very good results obtained by the EP-LSTM AS on in silico pa-
tients, the methodology is extended to in vivo data. Data directly collected
from diabetes patients are more challenging and tricky, subject to noise and
possibility of missing data, they need to be analyzed and pretreated, but let
to test the effectiveness of the proposed methodology, representing a signiő-
cant step towards new therapies.
A different network is trained for each of the 12 patients of the OhioT1DM
Dataset [160]. The network architecture is kept equal to the one used in
the in silico case, as described in Section 6.3: a single layer LSTM having
in input I(t), M(t), CGM(t− PH) and CGM(t) in output, with PH of 40
minutes. Then, the goal is to design also in this case an AS for hypoglycemia
and hyperglycemia prevention based on the EP-LSTM predictions, keeping
the same structure used in the in silico case and described in Section 6.4.2.

6.5.1 Results

EP-LSTM results

The 12 personalized LSTM networks are trained on 30 days for each pa-
tient of the OhioT1DM Dataset and then evaluated on around 10 days of
testing data. The performance indexes used to evaluate performances of the
the networks are also in this case FIT (Equation (3.20) in Section 3.6.1),
RMSE, DD and UD (Equations (6.1), (6.2) and (6.3) in Section 6.4.5).
The results are reported in Table 6.10, where the above mentioned indexes
are calculated for each patient. In the Table, the őrst six patients belong to
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ID RMSE FIT DD UD

540 6.77 87.25 25.75 22.07
544 4.46 89.08 16.16 8.89
552 4.87 91.03 17.79 14.95
567 7.15 83.93 18.74 22.54
584 10.31 85.41 29.49 25.20
596 5.60 87.16 20.72 16.95

559 11.17 75.17 33.05 32.51
563 4.16 87.07 15.40 14.77
570 8.12 85.47 26.53 22.97
575 5.47 90.27 15.36 17.79
588 10.73 89.28 16.46 12.85
591 10.19 76.96 34.97 29.64

Av. 7.41 ± 2.61 85.67 ± 4.96 22.23 ± 7.06 20.40 ± 7.16

Table 6.10: Results on the testing data of the OhioT1DM.

the 2020 cohort, the other half the 2018 cohort. In the last row mean ± SD
of all the patients is calculated, since the results are normally distributed.
The obtained average values of RMSE = 7.41 and FIT = 85.67% are very
satisfying and, comparing them with the in silico results in Table 6.8, it can
be observed that the RMSE is almost equal while the FIT is even higher
in the real case. Another interesting comparison can be made also with
some works mentioned in Section 6.3.2 and reported in Table 6.6, in partic-
ular [154] and [155], that are based on the 2018 cohort of the OhioT1DM
dataset. The result of this thesis outperforms [154], where however the data
are not pretreated and missing data are simply not considered. In [155]
the same pretreating algorithm used in this thesis is applied, training a two
layered stacked LSTM with a prediction horizon of 30 and 60 minutes and
having in input also the step count. Considering the results with PH=30,
in [155] a mean RMSE of 5.89 is obtained. In this thesis, where a simpler
architecture, a longer PH and less inputs are employed, the mean RMSE
for the 2018 cohort is 8.31, so even if slightly worse the result is still very
satisfying. On the other hand, the DD and UD indexes are for certain high,
with average values of 22 and 20 minutes respectively, exceeding the criteria
stated in Section 6.4.1 to use the predictions for the design of the AS.
Moreover, a graphical result is reported in Figure 6.11 where the őrst 4 days
of the testing dataset of two patients are shown, with the real data in blue
and the prediction in black dashed. In particular patient 552 is shown in
Figure 6.11a and patient 559 in Figure 6.11b, being respectively the best
and the worst result. It can be observed that the predictions are accurate,
presenting a trend similar to the real data. The main difference between the



6.5. Ohio EP-LSTM 113

ID TPR PPV F1 hyper alarms

540 20.00 25.00 22.22 5 6
544 77.78 100.00 87.50 9 9
552 50.00 66.67 57.14 4 4
567 33.33 30.77 32.00 12 14
584 0 0 NaN 6 6
596 76.92 76.92 76.92 13 13

559 0 0 NaN 11 11
563 100.00 73.08 84.44 19 20
570 80.00 80.00 80.00 10 10
575 33.33 50.00 40.00 6 7
588 100.00 80.00 88.89 8 9
591 9.09 8.33 8.70 11 11

Av.
48.37 ± 49.23 ± 48.15 ± 9.50 ± 10.00 ±
37.53 35.11 35.22 4.17 4.33

Table 6.11: Hyperglycemia alarm systems performances on the OhioT1DM
Dataset.

best and the worst case is represented by the prediction delay that can be
observed in Figure 6.11b and that is deduced even more by the analysis of
the performance indexes in Table 6.10.

AS results

Despite the high values of the delays of the Ohio EP-LSTMs, an attempt
to design an AS is made. It is important to notice that the data of the
OhioT1DM Dataset are collected from patients subject to a well balanced
insulin therapy, while the main target of the in silico models are patients
with regulation problems, obtained by tuning accordingly the MPC in the
simulator. For this reason, both in the training and the testing data of the
OhioT1DM Dataset, few hypoglycemia events are present and so the LSTM
model is not able to correctly detect them. Consequently, only an AS for
hyperglycemia prevention is presented in the following and evaluated with
the performance indexes listed in Section 6.4.4.
The obtained results are very different among the various patients, as can be
deduced by the very high values of the standard deviations in all the indexes:
TPR of 48±37, PPV of 49±35, F1 of 48±35. Comparing the alarm results
in Table 6.11 with the prediction results in Table 6.10, it can be observed
that the worst alarm performances are those of the patients (584, 559 and
591) that have UD and DD of around 30 minutes. With such delays it is
not possible to raise correctly alarms inside the DW , resulting in TPR and
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Figure 6.11: LSTM predictions of two patients of the OhioT1DM Dataset.
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PPV below 10%, having even 0% in two cases for both indexes. Another
group of patients (540, 552, 567, 575) has intermediate results, with values
of TPR and PPV between 20% and below 70%. The remaining 5 patients
instead (544, 596, 563, 570 and 588) have very good results, with values of
TPR and PPV between 70% and 100%. Moreover, it can be noticed that
for each patient the number of alarms raised and effective hyperglycemia
events is almost equal and that the bad performances depend on the delays
of the prediction.
Considering this model as a preliminary study, carried out to test the de-
őned methodology also on real data, it can be affirmed that the results are
promising. For sure a deep analysis, in order to understand the common
characteristics between the different patients and the group of patients is
necessary and to have better AS results, an improvement in the predictions
is needed.

6.6 Discussion

In this chapter, LSTM networks are successfully employed to predict glucose
levels in T1D patients and used as models in personalized ASs for hypo-
glycemia and hyperglycemia prevention. The methodology is őrstly applied
on in silico patients of the UVA/Padova simulator and then on in vivo ones
of the OhioT1DM Dataset. The LSTM networks are trained individually
for each patient, in order to predict CGM values, with a PH of 40 minutes,
considering carbohydrate intakes, insulin quantities and past CGM values in
input.
The study considers the entire population of the UVA/Padova simulator. A
őrst in silico result is reported, where a personalized LSTM, called P-LSTM,
with population hyperparameters is proposed for each different patient. The
results, compared with the state-of-the-art, are promising with a FIT of
76%, DD and UD of around 9 minutes.
Considering the already satisfying results, the P-LSTMs are improved in or-
der to meet some performance requirements to be successfully employed in an
AS. The predictions of each patient are analyzed on the validation dataset:
if the prediction delay is excessive, the speciőc patient hyperparameters are
ad-hoc optimized, leading to a new model, called EP-LSTM. The obtained
results show an improvement with respect to the previous models and so
the EP-LSTMs are used in an AS for both hypoglycemia and hyperglycemia
prevention. The performances of the AS are satisfying, with TPR of 80%
and PPV of 86% for hypoglycemia detection and TPR of 86% and PPV of
80% for hyperglycemia detection.
In order to prove the goodness of the methodology, this has been extended
on the in vivo data of the OhioT1DM Dataset, containing data of 12 differ-
ent patients. First of all, a different EP-LSTM is trained for each patient,
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keeping the same network architecture employed in the in silico case. The
results are satisfying, with a medium FIT of around 86%, even if the pre-
diction delays are pretty high, with a medium DD of 22 minutes and UD of
20 minutes. Moreover, since the patients are treated with a correct insulin
therapy, few hypoglycemia events are present in this dataset and so the AS
is designed only for hyperglycemia prevention. The results are very different
from patient to patient, with TPR of 48±37 and PPV of 49±35; some pa-
tients have very high performances, while with others the AS is not able to
detect the critical hyperglycemia events in time.
The results are promising but obviously an improvement of the predictions
is necessary in order to reduce the delay and consequently have better AS
performances. A őrst idea is to consider the effect of other inputs in addition
to insulin, carbohydrate intake and glucose levels, thanks to the presence of
several clinical and physiological data in the OhioT1DM Dataset. In this
way it is possible to study how other factors, that can not be obtained from
the in silico simulators, can inŕuence the glucose dynamic. In the works
cited in Section 6.3.2, that employ the OhioT1DM Dataset, some analysis
are already presented: in [155] step count is considered, while in [154] heart
rate, skin temperature, skin conductance and time of the day are analyzed.
So, in a future development of this work, exercise and step count can be
considered along with the current inputs, considering that the duration and
the intensity of physical activity can cause a glucose consumption [172]. The
presence of a great variety of quantities in the OhioT1DM Dataset is a big
advantage of this dataset, however the lack of a sufficient number of hypo-
glycemia events makes it unsuitable for the design of an hypoglycemia AS.
Probably it is better for this purpose to look for a more adequate dataset.
A cluster analysis of the patients can be performed both on in silico and in
vivo data, in order to deőne groups of patients that share the same clinical
parameters and could share also the same control and the network hyper-
parameters. This can be a demanding application but, if successful, it can
facilitate the customization of this kind of models and ASs.
Lastly, a further future development can be the implementation of LSTM
networks with attention mechanisms, considering the results obtained in
[154], since it could help when dealing with sensors data loss. Even if this
problem has been solved in this work with an ad-hoc data preprocessing
(using retroőtting for in silico data and Kalman smoothing and őltering for
in vivo ones), this other approach can be useful to reduce the preprocessing
workload.
Anyway it is important to also highlight the limitation shown by a NN ap-
proach when applied to this biomedical process. Considering its high com-
plexity, even if some dynamics have already been implemented in the model,
like the inter-day and intra-day variability, it is difficult to take into account
all the possible events that can occur. If an unexpected event not present in
the training dataset happens, it is not known how the black-box model will
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respond and the őrst goal is to avoid everything that can hurt the patients.
Since this is a biomedical application, it is necessary to be very careful, even
more than what has been already observed in the industrial applications.
In this chapter, it has been proved that LSTM networks can be success-
fully used to describe the glucose dynamic of T1D patients. Considering the
complexity of the process and, consequently, that also the dynamic models
that are present in the UVA/Padova simulator [142] are very complicated,
a further development is to employ a LSTM network as reference model di-
rectly inside the simulator. A slightly different LSTM is currently under
study for this purpose, having in input only the carbohydrate intakes and
the insulin quantities. Some accurate preliminary analysis are necessary and
this project is still in its early stages.
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Chapter 7

Concluding remarks

This thesis aims to present modeling strategies of dynamical systems based
on ML techniques, showing in particular results obtained adopting a speciőc
NN architecture, the LSTM. The use of ML based techniques in disparate
areas has notably increased in recent years thanks to the outstanding per-
formances that can be achieved with this approach. The industrial and the
biomedical worlds have been notably impacted by the innovation brought
by ML, beneőting of new smart tools, in particular for collection, man-
agement and analysis of data, that are now the core of their technological
improvements. In the system identiőcation and control őelds, the use of ML
techniques is still not so diffused, nonetheless thanks to particular architec-
tures that can deal with temporal data, it is possible to use NNs to model
dynamical systems.
Four different applications are considered in this thesis. The őrst three are
industrial applications, where the process is modeled both with white-box
models and with LSTM based ones. The latter is a biomedical application,
where the LSTM network is used for glucose prediction.

Industrial applications

In the őrst application, the modeling problem is the sterilization process
performed by an industrial autoclave. The white-box model is a novelty in
the literature; it is built starting from the model of a smaller machine pro-
duced by the same company, where the additional components present in the
industrial one are considered. The goal is to use this model to build a simu-
lator, given the modular design of the machine that can be easily reproduced
with a physics-based model. The LSTM model is instead deőned for control
purposes, since the physical model is characterized by a high complexity and
involves a lot of parameters. Moreover, stability properties are enforced dur-
ing the training the network. In this őrst case, both the solutions gave very
good results and the choice of one model over the other depends mainly on
the speciőc purpose. The main limitation of the LSTM approach in this ap-
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plication is the lack of generality noticed for certain machine conőgurations
due to a dataset not rich enough.

The second application is related to the modeling of an industrial coffee
roaster. The goal of the project is to create a scalable model to be identiőed
on a small machine, that can be used also on bigger ones. This problem is
common in the food industry, where the data collection causes the waste of
resources, that companies want to avoid for economical and environmental
reasons. A scalable white-box model is proposed, starting from two mod-
els present in literature, that have been modiőed linking some parameters
to the machine geometry, to be portable on machines with different dimen-
sions. This model is validated on data collected from two coffee roasters of
different size. Similarly, a LSTM model is trained on the data of the smaller
machine to be tested on the data of the bigger one. In this case, the white-
box model gives excellent results on both machines while the LSTM model
presents criticalities since it is not able to reproduce a trend is not present
in the training dataset.

The third application refers to the modeling of the biological reactor of a
WWTP. The modeling problem is a well-known case study in literature and
also in this case the existent models are not exploitable because of lacking of
the required data. So a lumped-parameter model is created, starting from the
models present in literature to describe the biological and chemical reactions
inside the reactor, considering only the available quantities and exploiting
the company’s knowledge to add the hydraulic dynamic of the speciőc plant.
The LSTM model is deőned similarly, using the same datasets. In this case,
the white-box model is not able to correctly reproduce the biological and
chemical reactions, probably for a lack of knowledge in the modeling phase,
while the hydraulic component of the model is instead quite satisfying. On
the other hand the LSTM model gives very good results, leveraging the avail-
ability of a good amount of input/output data.

These industrial applications have in common the key role of the data: the
goodness of the ML models depends mostly on the quality and the quantity
of the used data. The improvements brought in the industrial őeld by the
advent of the Industry 4.0 are trying to make things better in this direction.
Analyzing the three applications also from a temporal point of view, the
technological innovation can be observed. The modeling of the WWTP is
the most recent project, in this case data were easily collected and not only
their quantity is adequate for the desired application, but also their quality,
considering that they are input/output data able to correctly describe the
process; consequently the LSTM model is satisfying. Considering instead the
coffee roaster modeling, where the LSTM model is not able to accomplish
the goal of the project, the available data are not good enough. Few datasets
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were provided and their collection was performed ad-hoc for research pur-
poses, implying so the use of 1240 kg of coffee. The quantity of the data can
be enough to identify the physical model but for a ML application it is not
sufficient. Anyway, in this application it can be observed how the Industry
4.0 revolution is actually changing industrial world, since the new machines
produced by the company are equipped with intelligent sensors, connected to
a cloud, where data can be acquired directly during the production phase. In
this way a great amount of data can be used to obtain a valid LSTM model.
For the modeling of the industrial autoclave, the data collection was ad-hoc
performed as well and considering the variety of conőgurations that can be
assumed by the machine and the absence of repeated runs, the results can
be further improved with a richer dataset. Also in this case, a big effort was
required to the company that must invest time, employees and resources, to
carry out a data collection only for research purposes. Another advantage
of the Industry 4.0 is the reduction of this investment, considering that the
data collection and the consequent data analysis can be performed directly
during the production, being also more realistic. However, the availability of
lot of data brings new problems and challenges: dealing with real data is not
easy, but this subject is now well-known in the ML őeld, where specialized
őgures and tools are developed.

Biomedical application

The latter application of this thesis, unlike the previous ones, belongs to
the biomedical őeld. In this case the LSTM networks are used for glucose
prediction in T1D patients, with the goal to design a prediction-based AS
for hypoglycemia and hyperglycemia prevention.
The methodology is at őrst deőned on the in silico patients of the UVA/
Padova simulator, predicting glucose values with a PH of 40 minutes, con-
sidering in input meals, insulin and past glucose values. A different network
is trained for each patient, őrstly keeping the same hyperparameters for the
entire population, then optimizing them for the patients that have a too
high prediction delay. The LSTM predictions are so used in an AS obtaining
promising results. Moreover, the same methodology is applied to the real
data of the OhioT1DM Dataset. The predictions gave very good results and
are employed to design an hyperglycemia AS with mixed results, very good
for some patients, unsuccessful for others.

The usage of ML techniques in this second őeld has the purpose to improve
the lives of the patients and to help the scientiőc research. The complexity
of the mathematical models in the biomedical őeld can be reduced thanks
to the application of ML, together with a better handling of the challeng-
ing biomedical data. In the case study reported in this thesis this goal is
achieved, even if there is still a long way to go because a practical appli-
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cation of these techniques is obviously more difficult in the biomedical őeld
with respect to the industrial one. For sure, the development of simulators,
database, sensors and medical devices is already a big step ahead and can
help to better understand the processes that regulate the human body.

In conclusion, the goal of this thesis to analyze the connection between the
ML and the system identiőcation őelds has been deeply reached. The usage
of ML in diverse areas is widely justiőed by the excellent results that can
be obtained, sometimes also with less effort with respect to more traditional
instruments. However, this can also have a drawback because ML can be
wrongly applied, having anyway a good outcome. With proper attention,
study and understanding, ML is a very powerful tool that can simplify dif-
ferent tasks, as in this case for the identiőcation of dynamical systems.
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TensorFlow and Keras

A.1 TensorFlow

TensorFlow [108] is an open-source library developed by Google for ML.
The TensorFlow framework includes several machine learning algorithms and
architectures, that can be used in the most common programming languages
(Python, Javascript, Java, C++ and so on). It works on data ŕow graphs
with nodes and edges, where the nodes are mathematical operations and
the edges are multidimensional data arrays, called tensors: this working
mechanism gives the name TensorFlow. The graph structure also allows
to optimize the code execution on GPU; anyway the applications can be
executed also on common CPU or even on TPU, Tensor Processing Units,
that are custom devices created by Google itself, that can be used on their
cloud to further accelerate TensorFlow jobs.
In this thesis, TensorFlow has been implemented in Python, thanks also
to the availability of several Python libraries that are very useful in ML
implementations, like Numpy, Scipy, Pandas and Matplotlib.

A.2 Keras

Keras [109] is an open-source deep learning library that can be used in differ-
ent ML libraries like TensorFlow, Theano and PyTorch. In the actual version
of TensorFlow, Keras is directly integrated as the high-level API of Tensor-
Flow, implemented as user interface, being more user-friendly and ŕexible,
referred as łtf.keras”. It provides the most common ML blocks: őrst of all
layers and models, to build the ML architecture, but also optimizers, acti-
vation functions, loss functions, to train the model. It allows to preprocess
data before the training, and to evaluate and test the model once trained.
Keras simpliőes and fastens the building process of a neural network model,
in őve easy steps:

1. Model: this command builds the model, deőnes the model architecture,

123



124 A. TensorFlow and Keras

choosing between predeőned models, layers, or creating a new custom
one. The Sequential model is the most used one, deőned as a sequence
of layers, and the one used in this thesis;

2. model.compile: it compiles the code, choosing the loss function, the
optimizer and the metrics that deőne the model accuracy;

3. model.fit: it trains the model to őt the training data for a őxed
number of epochs. Training and validation data are here passed to the
model, choosing the number of epochs, eventual callbacks and several
training options, like batchsize, validation.split and shuffle;

4. model.evaluate: it evaluates the model error after training, returning
the values of the loss and of the chosen metrics on the training data,
to have an idea of how well the training data have been modeled;

5. model.predict: it generates the output predictions of the input data
passed to the function. It is usually used on new data to make predic-
tions and test the model performances.

Keras contains also sample datasets and pre-trained models that can be
freely employed by the users for learning or research purposes.

A.2.1 KerasTuner

A Keras toolbox that was used and helped in the development of the projects
presented in this thesis is KerasTuner [110], an hyperparameters optimiza-
tion framework that exploits search algorithms to automatically őnd the
best hyperparameter values for each model. It can be used to optimize the
conőguration of a NN model, őnding the optimal values of the architecture
choices, layer sizes, number of neurons and so on.
The model is wrapped in a build_model function, with a hp input argument,
that calls inside the function each hyperparameter that must be tuned, to-
gether with its relative search space. This function returns a compiled model
that is called by the tuner.
KerasTuner has three classes of built-in algorithms: BayesianOptimization,
Hyperband and RandomSearch, but it can also be used with custom algo-
rithms. The tuner object is called deőning the search algorithm, the hyper-
parameters (called by the build_model function), the objective to optimize,
the number of trials to run the tuner, path and name of the project. The
tuning starts with the search method, that requires the same arguments as
model.fit: the model-building function is run during the search with new
hyperparameter values in each trial, the model is őt and evaluated, the tuner
gradually analyzes the search space until it identiőes a suitable set of hyper-
parameters values. At the end, the function returns the best model with its
relative hyperparameters.
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In this work, KerasTuner was employed with RandomSearch algorithm, min-
imizing the validation loss as objective function, to tune the number of neu-
rons of the LSTM layer and the learning rate of the Adam optimizer.
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Appendix B

The UVA/Padova simulator

The availability of glucose-insulin models that simulate the glucose response
to insulin and meal intake is a key point for the design and evaluation of
glucose sensors, control algorithms, alarms and decision support systems. In
fact, computer simulations allow to perform several in silico tests with rel-
evant time- and cost- savings, and they also allow to simulate experiments
potentially dangerous for patient safety.
In the last decades, several simulation tools have been developed (see [173]
for a review), each one based on a comprehensive mathematical model and
equipped with an in silico population. In 2008 the US Food and Drug Ad-
ministration (FDA) accepted the UVA/Padova simulator, a T1D simula-
tor developed by Universities of Virginia (UVA) and Padova, as a substi-
tute for preclinical trials for closed-loop algorithms tests. This simulator is
equipped with 300 in silico subjects generated from a joint distribution of
model parameters, obtained by identifying a complex model [174] from a
unique multiple-tracer dataset. This simulator is able to span the variability
observed in the real T1D population representing the inter-individual vari-
ability that characterizes this population. Moreover, the new version of the
simulator [142] incorporates a nonlinear model to describe the glucose re-
sponse to hypoglycemia and the counter-regulation [170], and a model with
time-varying parameters to describe the intra-day variability of the Insulin
Sensitivity (SI) and the meal intestinal absorption rate, taking into account
the circadian variability of SI and the dawn phenomena [175]. The complete
model equations can be found in [142].
This simulator has been used by more than 30 sites in academia and com-
panies involved in T1D research, more than 70 articles were published in
peer-reviewed journals [142]. The Epsilon Group (TEG) offers a commercial
version of this simulator, the TEG’s Diabetes Mellitus Metabolic Simula-
tor for Research (DMMS.R). It provides a unique in silico environment for
testing diabetes treatment and monitoring interventions, and it is ideal for
modeling new devices or examining treatment protocols and dosing algo-
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rithms. For this reason, the data generated by the simulator can not be
made publicity available.

B.1 CGM noise model

The measurement error model used in this work to simulate the CGM mea-
surements on the UVA/Padova simulator is the autoregressive model pro-
posed in [162], which was identiőed exploiting 141 datasets relative to the
47 patients enrolled in the CAT AP@home trial [176]. This model describes
the total measurement error, including wearing issues in addition to noise
and drift usually considered. It can be described by the formula:

εPV (k) = a1 · εPV (k − 1) + a2 · εPV (k − 2) + v(k)

where the error v(k) is a Gaussian White Noise with mean µv and variance
σ2v ; the parameters a1, a2 are coefficients of the AR model and the distribu-
tion of the initial states of the process is normal with mean µis and variance
σ2is. The parameters used in this work are: a1 = 1.5458, a2 = −0.5708,
µv = 0.0017 [mmol/L], σ2v = 0.0283 [mmol2/L2], µis = [−0.1766 − 0.1566]
[mmol/L] and

σ2is =

[
0.7759 0.7895
0.7895 0.8603

]
[mmol2/L2].

B.2 Pavia MPC controller

The insulin therapy in all datasets is computed by the MPC developed in
[162] tuned in a sub-optimal way in order to have a signiőcant amount of crit-
ical episodes. In fact, the goal of this work is the detection of hypoglycemia
and hyperglycemia events, so we need patients with regulation problems.
The MPC algorithm [162] is a Linear-Model-Predictive-Control (LMPC) that
uses an approximate linear model of the insulin-glucose dynamics in order
to predict the future glucose proőle given the carbohydrates and insulin in-
takes. This model is obtained by the linearization around a suitable working
point of the more complex nonlinear Dalla Man model [177] of the average
in silico patients of the UVA/Padova simulator. This linearized model can
be written as:

{
x (k + 1) = Ax (k) +Bu (k) +Md (k)

y (k) = Cx (k)
(B.1)

where

• x(k) ∈ R13, is the 13-state vector;

• y(k) = CGM(k) − Gb [mg/dl] is the difference between the subcuta-
neous glucose CGM and the basal value (Gb);
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• u(k) = i(k) − ub(k) [pmol/kg] is the difference between the injected
insulin i and its reference basal value ub, normalized by the patient
weight;

• d(k) [mg], represents the meal.

The triplet (A, B, C) is assumed both stabilizable and detectable. The MPC
cost function is a quadratic penalty function J deőned as follows:

J (x (k) , u (·) , k) =
N−1∑

i=0

(
q (y (k + i)− yo (k + i))2 + (u (k + i)− uo (k + i))2

)

+ ∥x(k +N)∥2P (B.2)

where q is the positive scalar weight and N is the prediction horizon. More-
over, || x(k+N) ||P= x(k+N)′Px(k+N), where P is the unique nonnegative
solution of the discrete time Riccati equation

P = A′PA+ qC ′C −A′PB(1 +B′PB)B′PA

The reference signals are deőned as:

• yo(k) = ỹ(k)−Gb [mg/dl], is the difference between the reference value
(ỹ) of the subcutaneous glucose and the glucose basal value;

• uo(t) = ũ(k)− ub(k) [pmol/kg], is the difference between the reference
value (ũ) of the insulin proőle and the insulin basal value, normalized
by the patient weight.

The proposed algorithm does not include explicit constraints, so it is possible
to calculate the closed form solution as follows

uMPC(k) =
[
1 0 · · · 0

]
(−Kxx(k)−KdD(k) +KYoYo(k) +KUoUo(k))

where Kx ∈ RNx13, Kd ∈ RNxN , KYo ∈ RNxN , KUo ∈ RNxN are derived
as described in [178] and

D(k) =
[
d(k) . . . d(k +N − 2) d(k +N − 1)

]′

is the vector of future meals and

Yo(k) = [yo(k + 1) · · · yo(k +N − 1) 0]′

Uo(k) = [uo(k) · · · uo(k +N − 2) uo(k +N − 1)]′

Since the state x(k) of the model is not accessible, a Kalman Filter is used
to estimate it. The linear system B.1 can be written considering the noises
as: {

x(k + 1) = Ax(k) +Bu(k) +Md(k) + vx(k)
y(k) = Cx(k) + vy(k)
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where v = [vx vy] is a multivariate zero-mean white Gaussian noise with
covariance matrix:

V =

[
QKF 0
0 RKF

]
, QKF > 0, RKF > 0

and the initial state x0 = x(0) is assumed to be a zero mean Gaussian
random variable independent of v.
The control weight q in Equation B.2 is individualized using body weight,
BW , and CR ratio following the formula:

q = Qm e(−0.0366∗BW −0.2149∗CR+ 2.5444)

This algorithm with Qm = 1 was successfully used in 3 outpatient trials
lasted 1-2 months [179ś181], while in this work the parameter Qm is set equal
to 10 to make sub-optimal the control action, in order to have a signiőcant
amount of critical episodes (hypo/hyperglycemia events) in all the datasets.
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Kalman őltering and
smoothing for glucose
preprocessing

In [166] a method for glucose preprocessing is presented, based on a Kalman
őltering and smoothing technique, exploiting both CGM and SMBG data.

C.1 Kalman őltering

The Kalman őlter technique is used to estimate the optimal value of the
state in a linear dynamic system.
Considering a system expressed as:

xk = Φxk−1 + wk−1

yk = Cxk + vk
(C.1)

where x is the state of the system, u the input, y the output, Φ = eA∆t is the
matrix of the dynamics of the system, discretized with sample time ∆t. The
process noise w and the measurement noise v are assumed white Gaussian
noises, with covariance deőned my matrices Q and R:

wk ∼ N (0, Q) vk ∼ N (0, R)

Firstly, an a priori estimate of the state x̄ and of its covariance matrix P̄ is
calculated, using the model (C.1):

x̄k = Φx̂k−1

P̄k = ΦP̂k−1Φ
T +Q

Then, an a posteriori estimate of x̂ and P̂ is calculated by updating the a
priori estimate with a measurement, considering a gain K. If the measure-
ment is not available in a certain time step, the a posteriori estimate is set
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equal to the a priori one (x̂k = x̄k, P̂k = P̄k).

Kk = P̄kC
T (R+ CP̄kC

T )−1)

x̂k = Kk(yk − Cx̄k) + x̄k

P̂k = (I −KkC)P̄k

C.2 Kalman smoothing

The Kalman smoothing technique is used improve the result obtained with
the Kalman őlter.
The algorithm is őrstly initialized considering the last state and covariance
matrix estimations of the Kalman őlter, x̂Sk+1 = x̂k+1 and P̂S

k+1 = P̂k+1. The
gain F is updated and a backward pass is performed to update the state such
that the next estimation is as close as possible to the real value. In this way,
in case of missing data the backward pass can consider the contribution of
the measurements of the subsequent time steps to reconstruct the signal.

Fk = P̂kΦ
T P̄−1

k+1

x̂sk = x̂k + Fk(x̂
s
k+1 − x̄k+1)

P̂ s
k = P̂k + Fk(P̂

s
k+1 − P̄k+1)F

T
k

C.3 Dynamic models

The Kalman őlter requires a dynamic model to obtain the state predictions
and in [166] two different dynamic models are proposed.
In order to be used for this technique, a model must be observable, to com-
pute the internal state from the measurements, and without external inputs,
to avoid having necessarily the measures of insulin and meals. So since meals
and insulin injections are not considered inputs of the model but as unknown
disturbances, the variance of the process noise must be set large enough to
include their effects. The two proposed models satisfy the requirements.

C.3.1 Model 1: Rate-Only Model

Model 1 is described by two states representing the plasma glucose and its

rate, x =
[
Gp Ġp

]T
, with ẋ = Ax, where:

A =

[
0 1
0 −a

]

The parameter a is the decay of an observed rate of change rate. The process
noise is set to:

Q =

[
0 0
0 qm1

]
∆t
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The system is discretized, with ∆t = 10 [s]; the values of the parameters are
a = 0.05 and qm1 = 0.005 [mmol2/L2].

C.3.2 Model 2: Central-Remote Rate Model

Model 2 is inspired by [182] and further simpliőed. The glucose rate Gp of
Model 1, is divided in two states in Model 2: Cc, that represents a central
compartment, and Cr, a remote compartment. The inputs affect the central
compartment, from which are diffused to the remote one, considering a cer-
tain delay, and from which are then diffused to the glucose.
The model is described by three states, x = [Gp Cc Cr]

T :

Ġp = Cr

Ċc = −
1

Td
Cc

Ċr =
1

Td
(Cc − Cr)

Td is a time constant that represents the ŕow rate between the compartments,
set equal to 600 [s]. The process noise is:

Q =



0 0 0
0 qm2 0
0 0 0


 ∆t

where qm2 = 0.02 [mmol2/L2].
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