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Notations and Abbreviations

All the acronyms that will be used in this thesis are defined:

1PI One-Point-Irreducible
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IR infrared
IS initial-state
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KNT Keshavarzi–Nomura–Teubner
l.h.s. left-hand side
LIPS Lorentz-Invariant Phase Space
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MC Monte Carlo
McMule Monte Carlo for MUons and other LEptons
MCS multiple Coulomb scattering
MESMER Muon-Electron Scattering with Multiple Electromagnetic Radiation
MHO modified harmonic oscillator
MI Master Integral
N3LO Next-to-Next-to-Next-to-Leading Order
NLO Next-to-Leading Order
NMR Nuclear Magnetic Resonance
NNLO Next-to-Next-to-Leading Order
NP New Physics
PhSp Phase Space
PID particle identification
ppm parts per million
pQCD Perturbative Quantum Chromodynamics
PS Parton Shower
QCD Quantum Chromodynamics
QED Quantum Electrodynamics
QED IB Electromagnetic Isospin Breaking
QFT Quantum Field Theory
r.h.s. right-hand side
Ref. Reference
rms root-mean-square
SDR Subtracted Dispersion Relation
Sec. Section
SIB Strong Isospin Breaking
SM Standard Model
Tab. Table
TI Theory Initiative



v

UV ultraviolet
VP Vacuum Polarisation
w.r.t. with respect to
WP White Paper
YFS Yennie–Frautschi–Suura

Furthermore, all the main pieces of notation are once-and-for-all set:

• Natural units are used: c = ℏ = 1
• Three-vectors are written in boldface: p = (p1, p2, p3)
• Four-vectors are written sans serif: p = (p0, p1, p2, p3)
• The norm of a four-vector is always intended as the Minkowski norm,
namely ∥p∥2 = p20 − p21 − p22 − p23
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Introduction

Subatomic particles exhibit a magnetic dipole moment that depends
on their intrinsic properties, such as their electric charge, their mass and
their spin. This quantity is expressed proportionally to the Bohr magneton.
The proportionality constant is the gyromagnetic factor g which is an
adimensional quantity. Studies on the value of the gyromagnetic factor of
leptons started from the first developments of Quantum Electrodynamics
(QED), in the 1920s. A calculation of the electron g was first addressed by
Dirac in his relativistic generalisation of quantum mechanics. In agreement
with previous experimental results he found that g = 2.

In the late 1940s, a measurement of the magnetic moment of the electron
by Kusch and Foley as well as an independent calculation by Schwinger
showed a discrepancy of about 0.12 % between what they found and the
Dirac calculation of g = 2. This discrepancy is called anomalous magnetic
moment and is defined as: a = (g − 2)/2.

The anomalous magnetic moment of the electron and of the muon
have been treated with very high interest since the earliest developments
of the Standard Model of particle physics (SM). This quantity has been
studied both from the theoretical and from the experimental point of view
becoming one of the fundamental quantities that are tested with the highest
precision in particle physics.

From an experimental point of view, the latest measurement of the muon
anomalous magnetic moment has been performed at Fermilab National
Accelerator Laboratory (FNAL) by the E989 experiment in 2023 with
the very high precision of 0.2 parts per million (ppm). The results from
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E989 confirm earlier measurements by the E821 experiment, based at
Brookhaven National Laboratory (BNL). The precision goal of the E989
experiment is of 0.14 ppm. Moreover, a new experiment is expected to
start at J-PARC in the next few years. This experiment will be able to
take new independent data on the same quantity.

From the theoretical point of view, the value of the muon anomalous
magnetic moment is calculated within the framework of the SM. The
contributions to aµ can come from all the sectors of the SM: the QED, the
weak and the strong sector. Since the 1960s, many theoretical contributions
have been calculated with a very high level of precision. The most recent
theoretical predictions for the muon anomalous magnetic moment have a
relative error of about 0.4 ppm which is comparable to the experimental
error by the BNL and FNAL collaborations.

However, the theoretical prediction and the experimental measurement
of the muon anomalous magnetic moment are discrepant at the level of
about 5 standard deviations. This is one of the largest deviations from a SM
prediction seen in an electroweak observable. This is why the determination
of aµ is considered to be one of the most stringent tests for physics beyond
the SM.

The accuracy of the SM predictions is limited by strong interaction
effects, such as the Hadronic Leading Order (HLO) contributions and the
Hadronic Light-by-Light (HLbL) contributions. The error on the HLO
term is the largest. The standard way to calculate aHLO

µ uses dispersive
integrals together with timelike (q2 > 0) experimental data coming from
many different e+e− → hadrons experiments. This approach is complicated
by the many hadronic resonances that are present in the low-energy region.
However, very recently a new measurement of the pion electromagnetic form
factor was performed by the CMD-3 collaboration. This measurement was
performed using the e+e− → π+π− channel, which is the most important
between all the e+e− → hadrons processes. The CMD-3 measurement is
significantly discrepant from the previous measurements by all the other
collaborations, in the direction that reduces the discrepancy with the
experimental value of aµ.

Moreover, in very recent years the aHLO
µ contribution was calculated

in the lattice Quantum Chromodynamics (QCD) framework. The results
of these calculations have an accuracy level that is comparable to the
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timelike calculation. The central value of the lattice QCD calculation, when
merged with the QED, weak and the other strong contributions to the
muon anomaly, is closer to the experimental value that is measured at
BNL and FNAL than the calculation that is performed using the timelike
approach. At present, many research groups are looking at the calculation
of aHLO

µ with higher precision.

An alternative approach has been proposed to calculate the aHLO
µ term

in an independent way, using a spacelike (q2 < 0) process. The main
idea is to extract the hadronic contribution to the running of the fine
structure constant ∆αhad(t) from a scattering experiment. In this respect,
an experimental proposal called MUonE has been made at CERN to
measure ∆αhad(t). The MUonE experiment is a fixed-target muon-electron
scattering experiment with a 160 GeV high-intensity muon beam. The goal
is to achieve a 0.3 % statistical uncertainty on aHLO

µ in about 3 years of
data taking, in order to make the MUonE determination competitive with
the timelike and lattice QCD calculations of the HLO contributions to the
muon g − 2. This means that a precision goal of 10 ppm on the differential
cross section is needed.

Given the very high precision that is required, a muon-electron scatter-
ing Monte Carlo (MC) event generator has to be developed for the analysis
of experimental data as well as their correct interpretation. This MC is
called MESMER and will need to include effects up to the Next-to-next-
to-leading order (NNLO) and a resummation procedure, for example with
a Parton Shower (PS) at leading-logarithm (LL) precision matched to the
NNLO fixed-order calculation. Moreover, the determination of the main
background processes needs to be performed. This will be crucial during
the final data analysis procedure.

The MESMER MC event generator will be used for the template fit
procedure that will be performed after data taking to extrapolate ∆αhad(t)
and also for the full simulation of all the physics contributions in the
MUonE detector.

In this thesis, the latest calculations that were included in the MESMER
MC event generator are described in detail and the numerical impact of
these processes on the most important differential cross sections are shown.
First, the calculation of the NNLO lepton pair contribution will be shown,
along with their numerical impact. Then, the calculation of the µe→ µeπ0
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cross section will be described, with the numerical impact on the differential
observables for typical MUonE running conditions. Then, the calculation
of the real lepton pair production from the scattering of a muon on a
nucleus within the target will be detailed. The impact of this process on
the differential observables will also be shown. The structure of the thesis
follows.

In Chapter 1, an introduction on the muon anomalous magnetic moment
is shown. The state of the art of the measurements and the calculations of
aµ is summarised.

Chapter 2 will be devoted to detailing the calculation of the HLO
contribution, which is the main responsible for the theoretical error of the
muon anomaly. Details on the timelike approach, the lattice QCD approach
and the spacelike approach will be given.

Chapter 3 will be dedicated to the description of the MUonE experimen-
tal setup, how the systematic uncertainties are treated and the procedure
to extract ∆αhad.

In Chapter 4, a review of the main calculations that were performed
for the MUonE experiment will be discussed. First, all the older ones are
summarised. Then, details on the calculations of higher-order corrections
to µe scattering in the MESMER MC event generator will be given. A
higher insight will be devoted to the NNLO lepton pair contributions and
to the single neutral pion production from muon-electron scattering.

In Chapter 5, the main source of background of the MUonE experiment,
namely the pair production from muon-nucleus scattering, will be inves-
tigated. Phenomenological results are shown for typical MUonE running
conditions.

In Appendix A, a brief description of the MESMER MC event genera-
tor will be given, with attention on the input values, outputs and event
generation details.
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of the Standard Model (SM).
Simultaneously, a productive albeit very challenging experimental effort

started in order to measure the anomalous magnetic moments of the electron
and of the muon. Such an effort resulted in an emerging discrepancy between
the theoretical prediction and the experimental measurement of the muon
anomalous magnetic moment.

In this chapter, the muon anomalous magnetic moment aµ will be
defined. Then, a complete overview of the main experimental measurements
of aµ will be shown, with due focus on the latest and most precise results.
After that, the SM calculations of the same quantity will be sketched and,
in the end, compared to the experimental results.

1.1 The anomalous magnetic moment

Subatomic particles of the SM that have electric charge, mass and spin
exhibit a magnetic dipole moment. In classical electrodynamics, a magnetic
dipole moment is generated as a charged particle rotates around an axis,
thus gaining an angular momentum L = mr× v, where m is its mass. Let
Qe be the charge of such particle, the magnetic dipole moment µm is

µm = g
Qe

2m
L, (1.1)

where g is the gyromagnetic factor, and g = 1.
At the beginning of the 1920s, it was discovered that quantum par-

ticles possess intrinsic spin angular momentum and that their spectrum
is quantised (Otto Stern and Walther Gerlach, 1922 [1]) and it was later
postulated without proof that the electron had a spin quantum number
equal to 1/2 (George Uhlenbeck and Samuel Goudsmit, 1925 [2]). These
two results required that the gyromagnetic factor of an electron must be
equal to 2. Similarly as in Eq. 1.1, by considering a particle with a spin
angular momentum S = σ/2 one can define a magnetic dipole moment

µm = g
Qe

2m

σ

2
(1.2)

that for an electron becomes

µm = −gµB
σ

2
. (1.3)
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That is, the gyromagnetic factor g is the proportionality constant between
the electron’s dipole moment and its spin, in units of the Bohr magneton
µB = e/2me.

Dirac, in 1928, proved that indeed for an electron g = 2 [3]: this can
be derived from the non-relativistic limit of the Dirac equation, with a
non-null EM field Aµ(x) = (φ,A) ̸= 0 (Pauli equation):

iℏ
∂φ

∂t
=

[
1

2m
(−i∇+ eA)2 − eΦ+

e

2m
σ ·B

]
φ. (1.4)

This equation is the non-relativistic Schrödinger equation up to the last spin
term which is the potential of a magnetic dipole in an external magnetic
field.

In the realm of the SM, to keep track of the full behaviour of a lepton
in an external magnetic field, one needs to keep into account all the higher-
order contributions. Any non-zero contribution to the lepton’s magnetic
moment will change the value of the gyromagnetic ratio: thus, one can
define the lepton’s anomaly as

aℓ =
gℓ − 2

2
(1.5)

which is the relative discrepancy between the particle’s gyromagnetic ratio
and Dirac’s calculation of gℓ = 2.

For the first time, in 1949 J. S. Schwinger computed an anomaly for the
electron [4], confirming a previous measurement by Kusch and Foley [5]: he
considered the first higher-order term in the expansion in the fine structure
constant α of the electron-photon interaction vertex function in QED. In
the end, the electron anomalous magnetic moment at order α in QED
amounts to

ae =
α

2π
. (1.6)

Such a calculation can be easily generalised to the O(α) contribution to
the muon anomalous magnetic moment aµ, in QED. Throughout the years,
many more higher-order contributions to aµ have been computed. All the
currently known SM contributions to aµ will be described in Sec. 1.3.
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1.2 Measurements of aµ

From now on, the discussion will be reserved to the anomalous magnetic
moment of the muon.

1.2.1 Principle of aµ experiments

This section will be devoted to understanding the working principle
of the most recent muon anomalous magnetic moment experiments: E821
at Brookhaven National Laboratory (BNL) and E989 at Fermi National
Accelerator Laboratory (FNAL). A review of all the muon anomalous
magnetic moment measurements will be shown in the next section, as well
as the idea behind future aµ experiments.

All the most recent experiments that aim to measure the muon anoma-
lous magnetic moment work in a very similar fashion. They exploit the
dynamics of a beam of polarised muons in a magnetic storage ring.

A beam of protons is accelerated and stored in an Alternating-Gra-
dient Synchrotron (AGS). Then, it scatters on a target, producing pions.
These particles are unstable and undergo weak decay into muons with
the production of a muon neutrino: π → µ+ νµ. The muons carry a spin
and, as seen in Sec. 1.1, a magnetic moment that is parallel to the muons’
direction of motion. The polarised muons have a definite velocity v. When
they enter a region with a uniform magnetic field B ⊥ v, their trajectory
becomes circular and they can be stored in a magnetic storage ring. Such
a circular motion has a characteristic frequency, called cyclotron frequency,
that depends on the muon charge, mass and velocity, and on the external
magnetic field:

ωc =
eB

mµγ
, (1.7)

where γ = 1/
√
1− |v|2 is the Lorentz factor of the muons. In addition to

the circular motion of the muon, one must take into account the motion
of the spin angular momentum in a homogeneous magnetic field. This
precession motion has frequency ωs:

ωs =
eB

mµγ
+ aµ

eB

mµ
. (1.8)
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Figure 1.1: Asymmetry-weighted time spectrum for e+ emission (black)
and its fit function (red), obeying Eq. 1.13 [6].

By measuring the quantity

ωa = ωs − ωc = aµ
eB

mµ
(1.9)

and the magnetic field B via Nuclear Magnetic Resonance (NMR), one
can determine the muon anomaly aµ.

Inside the muon storage ring, an electric quadrupole field E is applied to
the muon beam in order to keep it as focused as possible. The dynamics of
the muons is thus changed, and the new measured frequency ωa becomes:

ωa =
e

mµ

[
aµB−

(
aµ − 1

γ2 − 1

)
v×E− aµ

γ

γ + 1
(v ·B)v

]
. (1.10)

This equation is commonly known as the Bargmann–Michel–Telegdi (BMT)
equation.

One can choose to store the muons with a specific Lorentz boost γm,
commonly known as the magic γ. It corresponds to a magic energy of
Em = γmmµ ≃ 3.098 GeV and is specifically defined such that the second
term in Eq. 1.10 equals zero:

aµ − 1

γ2m − 1
= 0. (1.11)
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Moreover, this high energy increases the lifetime of the muons by the
Lorentz factor γm up to about 64 µs.

Muons are unstable particles that decay into electrons µ+ → e++νe+ν̄µ
and µ− → e− + ν̄e + νµ. For positive muons, the differential decay rate in
the muon rest frame is:

dN(Ee) = N(Ee)

(
1 +

1− 2xe
3− 2xe

cos(ϑ)

)
dΩ, (1.12)

where Ee is the positron energy, N(Ee) is the number of positrons with such
energy, xe is Ee in units of mµ/2 and ϑ is the angle between the positron
momentum and the muon spin direction. By considering ϑ = |ωa|t + φ,
one finds the number of decayed muons into positrons with energy greater
than a threshold Ē at a time t:

N(t) = N0(Ē) exp

{
− t

γτµ

}[
1−A(Ē) sin (|ωa|t+ φ)

]
, (1.13)

where the factor A(Ē), named asymmetry factor, is the coefficient of cos(ϑ)
in Eq. 1.12 at energy E > Ē and τµ is the muon lifetime in its rest frame.
The data that comes from Run-3a of E989 and its final fit is shown in Fig.
1.1.

1.2.2 Past, present, and future aµ experiments

Before describing how the theoretical calculations of the possible contri-
butions to the muon anomalous magnetic moment are performed, a short
review of all the experimental results that come from past and present
muon g − 2 experiments is shown. Then, a brief overview of the main
ideas that are behind future aµ measurements will be given. As a matter
of fact, as is more thoroughly detailed in Sec. 1.4, there is an apparent
discrepancy between the SM prediction of aµ and the experimental results.
However, the theoretical prediction seems to have internal inconsistencies,
leading to an unclear theoretical value of the muon anomaly. These internal
puzzles need to be carefully studied for a correct interpretation of the
experimental data. In a parallel effort, on the experimental side, a quest
to higher-precision measurements of aµ is crucial.

In table 1.1 a summary of the experimental values of the muon g− 2 is
shown. The first g − 2 experiments were performed at Conseil Européen
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Experiment Year Polarity aµ × 1011 Precision (ppm) Reference

CERN I 1961 µ+ 114500000(2200000) 4300 [9]
CERN II 1962/1968 µ+ 116616000(31000) 270 [10]
CERN III 1974/1976 µ+ 116591000(1100) 10 [11]
CERN III 1975/1976 µ− 116593600(1200) 10 [11]

BNL 1997 µ+ 116592510(1500) 13 [12]
BNL 1998 µ+ 116591910(590) 5 [13]
BNL 1999 µ+ 116592020(150) 1.3 [14]
BNL 2000 µ+ 116592040(90) 0.73 [15]
BNL 2001 µ− 116592140(90) 0.72 [16]
BNL Average µ± 116592080(63) 0.54 [7]

FNAL 2021 µ+ 116592061(41) 0.35 [8]
FNAL 2023 µ+ 116592055(24) 0.20 [6]

FNAL+BNL Average µ± 116592059(22) 0.19 [6]

Table 1.1: Summary of the aµ measurements.

very different from all the other muon g − 2 experiments. It plans to use
ultra-cold muons, instead of ultra-relativistic muons, as in all previous cases.
A beam of protons will scatter onto a graphite target, producing a muon
beam. The muons are slowed down and then re-accelerated into a storage
ring to about 300 MeV such that they can reach a higher polarisation
and a lower transverse momentum spread. Since no electric fields are used
to focus the muon beam, the precession equation that needs to be used
for the final fit is Eq. 1.9. The experimental data will be fitted using the
same reasoning explained in Sec. 1.2.1. The precision goal for the J-PARC
is of about 0.4 ppm. This experiment will be of utmost importance to
independently cross-check the BNL and FNAL measurements of aµ.

1.3 Standard Model predictions of aµ

In the previous section, the main experimental features that characterise
the most recent aµ experiments were discussed. In this section, a summary
of the main theoretical contributions to the muon anomaly will be shown.
A very complete description of all the contributing terms is detailed in [23].
The most recent collection of all the known contributions can be found
in [24].

The framework that will be considered is the SM: it is a renormalisable
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k ck a
(k)
µ × 1011

1 0.5 116140973.321(23)
2 0.765857420(13) 413217.6258(70)
3 24.05050984(23) 30141.90233(33)
4 130.8782(60) 381.004(17)
5 751.00(87) 5.0783(59)
6 ∼ 5400 ∼ 0.1

aQED
µ 116584718.931(104)

Table 1.2: QED contributions to the muon g − 2. The error
in the final value of aQED

µ mostly comes from the estimate of
the sixth-order QED contributions. The detail on the error
of the total value of aQED

µ can be found in [24].

and relativistic Quantum Field Theory (QFT) that describes the interaction
between particles. It is based on a SU(2)L⊗U(1)Y⊗SU(3)C symmetry group,
broken to a SU(2)L ⊗U(1)em ⊗ SU(3)C by the Higgs mechanism. All the
ultraviolet (UV) divergences are reabsorbed thanks to the renormalisability
of the SM. All the infrared (IR) divergences are exactly cancelled out by
higher order virtual corrections, thanks to the Kinoshita–Lee–Nauenberg
(KLN) theorem.

In principle, the muon anomalous magnetic moment can have contri-
butions that stem from the three sectors of the SM: the EM sector, the
electroweak (EW) sector and the hadronic sector, namely:

aSMµ = aQED
µ + aEWµ + ahadµ . (1.14)

Each of the terms in Eq. 1.14 will be investigated in the following
sections.

1.3.1 QED contributions

The by far largest contribution to the muon anomalous magnetic
moment is due to QED effects. It can be treated perturbatively, i.e. a
Taylor expansion in the fine structure constant α can be performed, namely
the expansion parameter is sufficiently small:
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aQED
µ =

∞∑

k=1

a(k)µ =

∞∑

k=1

ck

(α
π

)k
. (1.15)

For instance, as briefly shown in Eq. 1.6, the one-loop correction to ae
gives α/2π.

In general, the expansion depends on the masses of the leptons that
are involved: there are terms that depend on a single mass and others that
depend on the mass of two leptons. In the latter case, the ratio of the
masses is considered:

aQED
µ = ξ1 + ξ2

(
mℓ

mµ

)
+ ξ3

(
me

mµ
,
mτ

mµ

)
. (1.16)

The term ξ1 represents all the contributions with purely photonic
corrections and with closed lepton loops where the internal lepton is the
same as the one on the external leg (universal contributions). The term ξ2
accounts for diagrams with a single-lepton loop that has a different flavour
w.r.t. the external one. They include the heavy-in-light contributions, with
a τ lepton in the loop, and the light-in-heavy contributions, with a e in
the virtual loop. These terms must be at least two-loop contributions.
The last term in Eq. 1.16 includes contributions with both a light and a
heavy virtual lepton circulating in a virtual loop: it is at least a three-loop
contribution.

Each ξi in Eq. 1.16 can be expanded as a power of α:

ξ1 =
∞∑

i=1

ξ
(2i)
1

(α
π

)i

ξ2 =
∞∑

i=1

ξ
(2i+2)
2

(α
π

)i+1

ξ3 =
∞∑

i=1

ξ
(2i+4)
3

(α
π

)i+2

(1.17)

The coefficients ck of order k that figure in Eq. 1.15, then, must be of
the form:

ck ≡ ck(ξ1, ξ2, ξ3) = ξ
(2k)
1 + ξ

(3k)
2

(
mℓ

mµ

)
+ ξ

(4k)
3

(
me

mµ
,
mτ

mµ

)
. (1.18)
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Contribution Value×1011

a
(1)
µ 194.79(1)

a
(2),b
µ −19.96(1)

a
(2),f
µ −21.27(71)
a≥3
µ 0.00(20)

aEWµ 153.6(1.0)

Table 1.3: EW contributions to the muon g − 2.
The values have been taken from Ref. [24].

Throughout the years, contributions up to five loops have been cal-
culated and the impact of the six-loop terms has been estimated. The
mass-independent terms have been calculated in [4, 25–36]. The mass-
dependent terms have been calculated in [37–50]. All the cross-checks and
details about the specific contributions can be found in [24] and in the
references therein.

The numerical values of ck, up to k = 6 are summarised in Tab. 1.2.
They were obtained using the value of the fine structure constant α:

α−1 = 137.035999046(27),

obtained with a Caesium interferometry experiment [51].

1.3.2 Electroweak corrections

In this section, the set of EW corrections that contribute to the muon
anomaly will be briefly described. They weigh significantly less than the
QED corrections. Therefore, their impact could not be seen until the jump
in precision that came with the BNL experiment. This is mainly due to
the large mass of the W , Z and Higgs bosons compared to the muon
mass, m2

µ/m
2
W ∼ 10−6. Moreover, all the EW corrections are higher-order

contributions.
In general, they can be written in the following form:

aEWµ = a(1)µ + a(2),bµ + a(2),fµ + a≥3
µ , (1.19)

where the first term accounts for the EW one-loop contributions. The
second term describes the two-loop contributions involving a W , Z or
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had

had

Figure 1.3: The HLO diagram (left) and the HLbL diagram
(right).

Higgs boson. The third term includes all the two-loop contributions with a
fermionic loop and the last term accounts for all the contributions beyond
the two-loop level.

The numerical values of each of the contributions that appear in Eq.
1.19 are summarised in Tab. 1.3 [52,53]. Precise details on the calculations
can be found in [23,24,54].

1.3.3 Hadronic corrections

In this section, the terms that contribute to the theoretical prediction
of the muon g − 2 within the strong sector of the SM will be investigated.
These are the terms that include quarks, gluons and hadrons. Unlike the
two previous sets of contributions, i.e. the QED one and the EW one, the
hadronic contributions cannot be calculated in a perturbative way. This is
due to the fact that the coupling constant of Quantum Chromodynamics
(QCD), αs, at low energies is not a small parameter. Thus, it is not a good
expansion parameter for the theory.

The hadronic contributions ahadµ can be split into three separate parts:

ahadµ = aHLO
µ + aHOVP

µ + aHLbL
µ . (1.20)

The first term indicates the Hadronic Leading Order (HLO) contributions,
the second one takes into account the Higher-Order Vacuum Polarisation
(HOVP) terms and the third one includes the Hadronic Light-by-Light
(HLbL) effects. All the three terms will be described in the following section.
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aHLO
µ × 1011 Reference

6871(30) [57]
6940(40) [58]
6881(41) [23]
6928(24) [59]

Table 1.4: Full calculations of aHLO
µ .

1.3.3.1 Data-driven and dispersive approach

One possible way to compute hadronic corrections makes use of experi-
mental data and Dispersion Relation (DR). In this section, a brief review
of all the hadronic contributions that have been calculated, as well as their
numerical impact will be shown.

The HLO contributions are the most sizeable between all the hadronic
effects in Eq. 1.20. In addition to this, they constitute the most important
source of theoretical error between all the contributions to the muon
anomalous magnetic moment. They are a O(α2) order contribution and
they consist of a Hadronic Vacuum Polarisation (HVP) insertion on top
of the one-loop vertex correction, as shown in the left diagram in Fig.
1.3. Such effects can be calculated using DR techniques together with
e+e− → hadrons experimental data, as in the following equation [55,56]:

aHLO
µ =

α2

3π2

∫ ∞

m2
π

ds

s
R(s)K(s). (1.21)

In the last equation, the lower bound of the integral is the rest mass
of the neutral pion, which is the lowest-mass hadronic state. The factors
K(s) and R(s) are respectively the kernel function of the DR and the
e+e− → hadrons annihilation cross section divided by the e+e− → µ+µ−

cross section, which is called the R ratio.

Above a certain threshold energy value, Perturbative Quantum Chro-
modynamics (pQCD) can be used together with experimental data. This
threshold energy corresponds to center of mass (CM) energies of about√
s ≳ 11 GeV, at the bb̄ threshold.

Thus, the calculation of the HLO contribution is performed through
the convolution of the analytical kernel function with data coming from
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aHVP,NLO
µ × 1011 Reference

−99.3(7) [23]
−98.4(7) [64]
−98.7(9) [48]
−98.3(4) [59]

Table 1.5: Evaluations of aHVP,NLO
µ .

e+e− annihilation experiments. Sec. 2.1 will be specifically devoted to how
Eq. 1.21 is derived. Moreover, many details regarding the methods and
the experiments used to gather the very high precision e+e− annihilation
measurements, as well as the merging of their data. In this section, only
the numerical value of aHLO

µ will be given.

In table 1.4, different full evaluations of aHLO
µ are shown. These values

can be merged in order to have a single theoretical prediction for aHLO
µ

[58–63]:

aHLO
µ = 6931(28)(28)(7)× 10−11 = 6931(40)× 10−11. (1.22)

The first error comes from the uncertainties of the experimental data, the
second error comes from the experimental systematic uncertainties and
the third error is the difference of the evaluations of the HLO contribution
based on experimental data and based on pQCD between 1.8 GeV and 2.0
GeV. These three errors are then combined as a quadratic sum [24].

Another possible method to evaluate aHLO
µ makes use of data on semilep-

tonic τ decays, such as τ− → π−π0ντ [65]. Such data-driven method has
consistently been about 2σ away from the experimental value of aµ [66–74].
The Isospin-Breaking (IB) corrections have been lately computed in [75–78].

The second term in Eq. 1.20 keeps into account all the higher-order
insertions of a HVP. At the moment, contributions at Next-to-Leading
Order (NLO) and Next-to-Next-to-Leading Order (NNLO) are known:

aHOVP
µ = aHVP,NLO

µ + aHVP,NNLO
µ . (1.23)

A number of theoretical calculations of aHVP,NLO
µ have been done. They

are summarised in Tab. 1.5 and a merging has been performed between all
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Contribution aHLbL
µ × 1011 Error Reference

π0, η, η′ poles 93.8 4.0
π, K loops & boxes −16.4 0.2
S-wave ππ rescattering −8 1
Scalars and tensors −1 3
Axial vectors 6 6
u, d, s loops and short-distance 15 10
c loop 3 1

Total 92 19 [24]

Total (PdRV09) 105 26 [79]
Total (N/JN09) 116 39 [54,80]
Total (J17) 100.4 28.2 [23]

Table 1.6: Evaluations of aHLbL
µ as in [24]. Below, the same quantity in

older calculations.

the calculations, giving a final result of [24]:

aHVP,NLO
µ = −98.3(7)× 10−11. (1.24)

At NNLO, in Ref. [48] the term aHVP,NNLO
µ was computed. The contri-

bution yields:

aHVP,NNLO
µ = 12.4(1)× 10−11. (1.25)

The last relevant term that figures in Eq. 1.20 consists of HLbL contri-
butions. This term is the second-largest source of uncertainty on the total
prediction of aµ. HLbL contributions are O(α3) corrections: this implies
that a relative theoretical error of about 10% will be sufficient to match
the FNAL expected experimental precision.

Just like for aHLO
µ , the HLbL contribuof discrepancies between the

Standard Model theoretical prediction, thetions cannot be treated pertur-
batively, since the particles that take part in the hadronic loop may have a
very small energy and pQCD cannot therefore be used. Many earlier calcu-
lations were based on hadronic models that work in the non-perturbative
regime. A brief review of those calculations is summarised in [24] and in
all the references therein.
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Collaboration aHLO
µ × 1011 Reference

ETM-18/19 6921(163) [83,84]
FHM-19 6990(150) [85]
BMW-17 7111(75)(175) [86]
HPQCD-16 6670(60)(120) [87]
ETM-13 ‡ 6740(210)(180) [88]
Mainz/CLS-19 7200(124)(99) [89]

PACS-19 7370(90)(+13
−18) [90]

RBC/UKQCD-18 7174(163)(92) [91]

Mainz-17 ‡ 6540(320)(+21
−23) [92]

BMW-20 7075(55) [93]
LM-20 7140(270)(130) [94]

Table 1.7: Summary of calculations of aHLO
µ using lattice QCD tech-

niques. Not all calculations include all the possible effects: the results
that figure with a double-dagger (‡) do not include Strong Isospin
Breaking (SIB) or QED corrections. When two errors are present, the
first one is statistical and the second one is systematic. Wherever there
is only one error bar, the combination of the statistical and systematic
uncertainties is intended. The two results after the black horizontal line
are not included in the WP final prediction of aHLO

µ [24].

More recently, a dispersive approach was proposed to perform the
same calculation [24,81]. The calculation of HLbL contributions using a
dispersive method is way more complicated than the HLO case. For the
HLO calculation, a single cut in the hadronic blob can be performed for all
the intermediate states. This implies, as will be explained in section 2.1, that
the HLO contribution to aµ can be explicitly written as an integral of the
σ(e+e− → hadrons) cross section. On the other hand, HLbL contributions
are more complicated because it is possible to cut the hadronic blob in
different ways, causing the dispersion relation to change with the choice
of the intermediate states. The original proposals can be found in [81,82].
Details on the calculations can be found in the White Paper (WP) and in
the references therein [24]. The latest accepted numerical estimate can be
seen in Tab. 1.6 and are compared to the older HLbL calculations that do
not use the dispersive approach.
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The HLbL contributions at NLO have also been addressed in [95] and
they yield:

aHLbL,NLO
µ = 2(1)× 10−11. (1.26)

The HLbL contribution precision goal of 10% is yet to be reached.
However, work in this direction is ongoing [24,96].

1.3.3.2 Lattice QCD approach

Another possible way to compute hadronic corrections makes use of
lattice QCD. All the details on the lattice QCD computations of aHLO

µ will
be described in Sec. 2.2. In this section, only the numerical results are
shown, to complete the overview on the aµ theory-experiment comparison.

In Tab. 1.7 and in Fig. 1.4, a complete list of all the available evaluations
of aHLO

µ is shown. All the results that are included in the WP have been
combined in a lattice HLO average:

aHLO
µ = 7116(184)× 10−11, (1.27)

with an uncertainty of 2.6%. The first result that has a below-percent
uncertainty level is the BMW-20 one [93], that is shown in Tab. 1.7. This
result alone has an about 2σ tension with the experimental result and with
the data-driven HLO calculation. No newer calculations of the full aHLO

µ

are available, yet. However, multiple calculations on an intermediate time
window have been performed by many collaborations, as will be shown in
Sec. 2.2.

Lattice QCD can be used to compute also the more involved HLbL
contributions to the muon anomaly, in an independent fashion w.r.t. the
dispersive or data-driven approaches described in the previous section. The
first complete calculation was performed by the RBC/UKQCD collabo-
ration in [97], after cross-checks with the Mainz collaboration for heavier
pion masses [98]. In this calculation, the QED term is computed on a finite
volume and then extrapolated to the infinite limit. The result reads:

aHLbL
µ = 78.7(30.6)(17.7)× 10−11 (1.28)

where the first error is the statistical one, and the second is the systematic
one.
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Figure 1.4: Comparison between theoretical predictions of
aµ with the experimental data coming from [7,8], in the
orange band. The blue circles refer to the values of Tab.
1.7, summed to all the other SM contributions. BMW-20
and LM-20 are not included in the WP. Red squares are
the dispersive results of Tab. 1.4, coming from [58,59]. The
black square is the WP result [24]. The purple triangle
result comes from [91]. The figure comes from [96].

An alternative complete calculation was performed by the Mainz col-
laboration, using an infinite-volume method (QED∞) in Ref. [99]:

aHLbL
µ = 106.8(14.7)× 10−11. (1.29)

This alternative method was proposed in [100] and then further devel-
oped in [101–103]. It is expected that, with both approaches, the uncertainty
will decrease under the target 10% by 2025 [96].
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Contribution Value×1011 Error×1011 Section

aQED
µ 116584718.931 0.104 1.3.1
aEWµ 153.6 1.0 1.3.2

aHLO
µ 6931 40 1.3.3

aHOVP
µ −85.9 7 1.3.3

aHLbL
µ 92 18 1.3.3

aSMµ 116591810 43

aexpµ 116592059 22 1.2.2
∣∣aexpµ − aSMµ

∣∣ 249 48

Table 1.8: Summary of all the contributions to aSMµ as in the
WP [24] and of the most precise experimental determination of
aµ from the E821 [7] and E989 [6] experiments.

1.4 Status of data-theory comparison

The theoretical contributions that were presented in the previous sec-
tions can be all summed to give a final theoretical prediction to the muon
g − 2. By inserting all the numerical values that were presented in the pre-
vious sections into Eq. 1.14, one gets a final value for the muon anomalous
magnetic moment aSMµ :

aSMµ = aQED
µ + aEWµ + ahadµ = 116591810(43)× 10−11. (1.30)

The details on the single contributions are summarised in Tab. 1.8.
The numbers presented are the most recent and accepted values for aµ
and come from a joint effort of all the theory community for the muon
anomalous magnetic moment, called the Theory Initiative (TI). This effort
resulted in the publication of a WP, in 2020 [24]. All the numbers in Tab.
1.8 come from the aforementioned WP.

As can be clearly seen from Tab. 1.8 and in Fig. 1.5, there is a clear
discrepancy between the theoretical prediction of aµ in the WP and the
most precise experimental measurement of the same quantity, at the level of
5σ. However, the BMW-20 calculation of the HLO contribution aHLO

µ shows
a tension from the WP prediction, which is based on e+e− annihilation data.
Moreover, a new measurement of the e+e− → π+π− cross section from
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aµ × 109 − 1165900
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BNL ’06

5.0 σ

Time-like (included in WP ’20) Time-like (not in WP ’20) Lattice Experiment

Figure 1.5: In blue, the WP theoretical prediction as of 2020 [24] and
the results from [59] and [58]. In red, from top to bottom there are the
BNL experimental result [7], the latest FNAL experimental result [6] and
their average. In orange, the BMW-20 calculation from [93]. In purple,
the theoretical prediction of aµ if only the CMD-3 data for the π+π−

channel are used to calculate aHLO
µ [104, 105]. In green, the BMW lattice

QCD result [93]. The plot was taken from [106].

the CMD-3 experiment seems to give a different result w.r.t. older data
[104,105]. By inserting only the CMD-3 result into the theoretical prediction
for aHLO,ππ

µ the discrepancy between the SM theoretical prediction of aµ and
the FNAL+BNL experimental result is reduced to about 0.9σ [105]. Many
more details and a more coherent context on the new CMD-3 measurement
will be given in Sec. 2.1, as well as a thorough description of the e+e−

annihilation experiments that enter in the DR that is used to compute
aHLO
µ and figures in the WP.

The current scenario sees the lattice QCD calculations of aHLO
µ giving

different results from the data-driven approach calculations. Moreover,
the latter makes use of data that comes from different collaborations
and e+e− → hadrons experiments. These experiments seem not to give
compatible results, as will be more clearly stated in Sec. 2.1.

As shown in Tab. 1.8, the biggest contribution to the total error of the
theoretical prediction of aSMµ is due to hadronic effects. More specifically,
it is known that the HLO contribution is the crucial term that needs to be
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investigated in order to clearly understand the nature of the discrepancy
on the muon g − 2. With the analysis of the final E989 runs, an important
theoretical effort is needed to decrease the error on aHLO

µ . In the next
chapter, the most important theoretical ways to do so are detailed.
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g − 2 comes from the HLO term which now becomes the main interest of
study. The standard method to compute aHLO

µ requires the use of DRs.
However, the current status of the theoretical predictions is complicated
by an alternative calculation of aHLO

µ that makes use of lattice QCD: this
result has an about 2σ tension with the dispersive calculation. Moreover,
very recently, a new measurement of the e+e− → π+π− cross section,
performed by the CMD-3 collaboration, looks like it significantly differs
from previous measurements of the same quantity.

In this chapter, details on three ways to compute aHLO
µ are given. In

section 2.1, the dispersive approach is described. In section 2.2, the lattice
QCD approach to compute the HLO term is detailed. In section 2.3, a
recent approach to compute the same quantity is introduced: it is based on
the use of experimental data in the spacelike region, namely it uses data of
a scattering process where the transferred momentum squared is negative
(q2 < 0).

2.1 Timelike approach to aHLO
µ

The main difficulty that is encountered when calculating the hadronic
contributions to aµ comes from the impossibility of performing a Taylor
expansion in the strong coupling constant αs in the low-energy regime and
using a perturbative approach. The calculation of loop integrals with the
insertion of HVP in photon propagators can be performed using dispersive
integrals. In this section, details on the use of this technique to calculate
aHLO
µ will be given.

2.1.1 The theoretical framework

The first ingredient that is introduced to calculate HVP effects is
the photon self-energy Π

′ had
γ at one-loop, which can also be referred as

hadronic blob: this term takes into account HVP corrections to the photon
propagator at Leading Order (LO). It is a One-Point-Irreducible (1PI)
function, meaning that it cannot be split into two disconnected diagrams
by cutting a single internal propagator.

One can exploit causality and the analyticity of the photon self-energy
function to write a DR. Since the EM current correlator has logarithmic UV
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singularities, the DR will be written in the form of a Subtracted Dispersion
Relation (SDR):

Π
′ had
γ (q2)−Π

′ had
γ (0) =

q2

π

∫ ∞

0
ds

ImΠ
′ had
γ (s)

s(s− q2 − iε)
. (2.1)

The DR that is needed to write the HLO contribution to the muon
anomalous magnetic moment follows [107,108]:

aHLO
µ =

α

π

∫ ∞

0
ds
K(s)

s
ImΠ

′ had
γ (s), (2.2)

for timelike squared transferred momenta, namely s = q2 > 0. In Eq. 2.2,
K(s) is the kernel function. It is defined as:

K(s) =

∫ 1

0
dx

x2(1− x)

x2 + s(1− x)/m2
µ

. (2.3)

The unitarity of the S matrix implies the validity of the optical the-
orem, which states that the imaginary part of the HVP contribution is
proportional to the total cross section of the e+e− annihilation process
into hadrons. In this respect, one can write:

σ(e+e− → hadrons) =
4πα(s)

s
ImΠ

′ had
γ (s), (2.4)

which is valid in the timelike region, i.e. for positive exchanged momentum
q2 > 0.

Then, one can introduce the hadronic ratio R(s) as:

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
. (2.5)

Eq. 2.2, then, becomes [55,56]:

aHLO
µ =

α2

3π2

∫ ∞

m2
π0

ds

s
R(s)K(s), (2.6)

where the lower limit of the dispersive integral is the square of the neutral
pion mass, π0, since the lowest-mass hadronic state that can be produced
is π0γ.
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Figure 2.1: The R ratio R(s) and the e+e− → hadrons data. At the
bottom the systematic errors are shown for different energy regions [24].

Eq. 2.6 can be separated into two energy domains:

aHLO
µ =

α2

3π2

[∫ ε2

m2
π0

ds

s
Rdata(s)K(s) +

∫ ∞

ε2

ds

s
RpQCD(s)K(s)

]
, (2.7)

where ε is an energy threshold below which a perturbative approach can
no longer be used. Above this threshold, summing all the final-state (FS)
exclusive channels is not possible because many measurements do not
range up to these high energies. Moreover, at such high energies, many
high-multiplicity final states would need to be taken into account. For
these reasons, for energies above about

√
s ≳ 11 GeV, pQCD seems to be

a good method to compute R(s). However, for CM energies between about
2 GeV and 11 GeV, there is not a consensus on the use of inclusive data
or pQCD [24]. It is crucial to keep in mind that in Eq. 2.6 the integrand
goes like ∼ K(s)/s, namely the most important contributions to aHLO

µ

correspond to small s processes. In Fig. 2.1, one can see the plot of the R
ratio R(s) as a function of the CM energy.

2.1.2 The hadronic data

At low energies the total hadronic cross section needs to be calculated
performing a summation of all the possible hadronic final states. The most
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important channel is the ππ channel, accounting for about 70% of aHLO
µ .

Sub-leading contributions consist of the πππ channel, the KK channel and
the ππππ channel. Higher-multiplicity of final states have become relevant
to give the most accurate description of the hadronic production cross
section. To give a final value of aHLO

µ , the experimental data need to be
properly combined and analysed. Not all data sets span the whole energy
range, or come with equally fine binning. On top of this, there might even
be correlations between different sets. For this reason, the most cautious
approach to analyse them would be to firstly combine the data sets, and
in a second step to integrate them, to give the g − 2 prediction.

There are two main experimental approaches that can be used to gather
the needed e+e− → hadrons data for the aHLO

µ contribution at low energies:
the scan method and the Initial State Radiation (ISR) approach.

The scan method makes use of e+e− data that is taken at fixed CM
energy. Different CM energies are then explored in order to get many
data points within the full energy range that is required. To give a precise
determination of the cross section, the integrated e+e− luminosity needs to
be calculated using known QED cross sections (e+e− → e+e−, µ+µ−, γγ).
The main advantages of this method are the fact that the CM energy is
known very precisely and that the energy resolution is very good. This
makes it possible to study narrow resonances, like the ω and the ϕ. However,
since data points can be taken only at discrete CM energy values, an
interpolation procedure between those data points needs to be performed.
Moreover, at low energies the luminosity decreases, making the calculation
of the cross sections more difficult. All these considerations imply that many
experiments that operate at specific energies, run by different collaborations
need to span the full energy range. The scan method was used by CMD-2
for the π+π− channel [109–111], for the KK final states [112, 113] and
for multi-hadronic channels [111, 114–117]. Moreover, SND detectors at
Novosibirsk measured the π+π− channel [118], the π0γ final state [119,120],
the KK final states [121–123], the nn̄ final state [124] and multi-hadronic
channels [125–129]. More recently, the CMD-3 collaboration measured the
π+π− final state [104,105], the KK final states [130], the pp̄ final state [131]
and multi-hadronic channels [132–135]. Inclusive measurements have been
performed at BES-II [136–138] and KEDR [139,140]. A full compilation of
data sources and experiments is present in Refs. [23, 24,141].
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The ISR approach makes use of processes where a hard photon is
emitted, keeping a fixed CM energy

√
s. If the ISR photon has an energy

fraction of x = 2Eγ/
√
s, the e+e− annihilation has an energy of

√
s′ =√

(1− x)s, and the cross section for e+e− → hadrons can be derived from
the e+e− → γISR + hadrons:

dNISR

d
√
s′

=
dLISR

d
√
s′
εXγ(

√
s′)σ0X(γ)(

√
s′). (2.8)

In the previous equation, on the left-hand side (l.h.s.) there is the num-
ber of events of the e+e− → γISR + hadrons process, whereas dLISR/ d

√
s′

is the effective ISR luminosity, εXγ(
√
s′) is the acceptance and σ0X(γ)(

√
s′)

is the cross section for e+e− → hadrons, also including possible Final State
Radiation (FSR) effects. The ISR approach was used by the KLOE collab-
oration at DAΦNE for the π+π− channel [142–145] and by the BABAR ex-
periment for the π+π− channel [146–148], for the K+K− channel [146,147],
for multi-hadronic channels [149–159] and for pp̄ channel [160, 161]. Re-
cently, also BESIII [162] and CLEO-c [163] obtained results using this
method. The main advantage of the ISR method is the fact that the cross
section is measured over a continuous energy range that goes from the
lower-bound threshold and arrives close to the

√
s of the experiment. In the

KLOE experiment, the CM energy is 1.02 GeV. The BABAR experiment
has a higher value of

√
s = 10.58 GeV: this limits the accessible statistics

of the signal. The main disadvantage of the ISR approach is related to the
number of possible background processes and radiative corrections to the
ISR process.

This underlines the extreme importance of having a very accurate
Monte Carlo (MC) code for simulating the radiative corrections and the
luminosity processes. At the moment, the most used MC generators for
the e+e− luminosity are MCGPJ [164], BHWIDE [165], KKMC [166]
and BABAYAGA [167]. The MC generator that is used to compute the
annihilation processes into hadrons is PHOKHARA [168,169].

2.1.2.1 Tensions between data sets

Since the hadronic data comes from different experiments and collab-
orations, it is possible that not all data sets are perfectly statistically
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Figure 2.2: The e+e− → π+π−(γ) contribution to aHLO
µ

between 0.6GeV <
√
s < 0.88GeV, coming from the

CMD-3 data and compared to the results of other previous
experiments [104].

compatible, given the very high precision that is required. Such incompat-
ibilities alter the precision of the combined cross section that is used to
compute aHLO

µ .

The most important tensions that need to be addressed are in the
e+e− → π+π− channel, since this channel accounts for more than 70%
of the HLO contribution to the muon g − 2. In this respect, the KLOE,
the BABAR and the CMD-3 experiments do not agree within their un-
certainties. This can clearly be observed in Fig. 2.2: the CMD-3 result
is clearly higher than the results of all the other e+e− experiments, that
rely either on the energy scan or on the ISR approach. It is also very
interesting to look at the measurements of the pion form factor |Fπ|2, for
0.327GeV <

√
s < 1.2GeV and to compare the results of the different

collaborations. This comparison is shown in Fig. 2.3, taken from [105].
The yellow band represents the systematic error of the CMD-3 experiment.
In the middle plot, the CMD-3 fit is compared to the ISR experiments,
whereas in the bottom plot it is compared to the energy scan experiments.
The disagreements seem to be localised between 0.5GeV <

√
s < 0.85GeV:
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Figure 2.3: The three plots show the relative differences between
the pion form factor and the fit of CMD-3 results. In the top
plot, the fit is compared with the CMD-3 experimental data.
In the middle plot the fit is compared with the most precise
ISR measurements (BABAR, KLOE10 and KLOE12). In the
bottom plot, the fit is compared with the most precise energy
scan experiments (CMD-2, SND and SND2k) [105].

the largest discrepancy is between CMD-3 and the KLOE measurements, at
the level of about 5%, as can be seen in the central plot of Fig. 2.3, whereas
the discrepancy between CMD-3 and the other experiments is at the level
of about 2 to 3%. The most important difference is observed at the l.h.s.
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of the ρ meson peak, namely at about 0.6GeV ≲
√
s ≲ 0.75GeV [105].

Also the determinations of aHLO
µ [ππ] coming from the BABAR and

KLOE experiments do not agree well within their uncertainties. Around the
ρ− ω interference region, the BABAR measurement of the e+e− → π+π−

cross section is higher than the one performed by the KLOE collaboration,
as can be seen in Fig. 2.4 [170]. The determination of aHLO

µ [ππ] by SND,
BESIII and CMD-2 are statistically compatible with either the KLOE or
the BABAR data [24].

Some tensions were present also in the KK channel at the level of
about 20% between BABAR [160] and SND [122], but are resolved by the
latest SND result [123].

2.1.3 Data merging

In order to get a single value of aHLO
µ it is crucial to properly combine

all the e+e− → hadrons experimental data in a consistent way. Therefore,
a merging procedure needs to be performed. This is required not only
to provide a correct prediction of the central value of aHLO

µ , but also to
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keep into account the uncertainty propagation that comes from many
experimental data sets and many different collaborations and experiments.
In general, the biggest issues come from the interpolation of different data
sets into a single form of the function R(s) that enters the DR for the HLO
contribution. Moreover, the inclusion of pQCD prediction in certain energy
intervals is not uniquely defined or straightforward. Different analysis
groups provided their method to compute aHLO

µ , as shown in Tab. 1.4.

The Davier–Hoecker–Malaescu–Zhang (DHMZ) approach [58, 60, 70] is
based on a second-order polynomial combination of data coming from the
same experiment, instead of a trapezoidal, i.e. linear, combination. After
combining each data set, an averaging procedure is employed, keeping into
account the correlations between measurements and experiments, and the
different densities of data or different bin widths. Moreover, the uncertainty
on each contribution is estimated by generating a pseudo-data set for the
given experiment. pQCD is used above 1.8 GeV, except for around the
charmonium region, where inclusive data is used in the dispersive integral.

The Keshavarzi–Nomura–Teubner (KNT) approach [59, 61] is based
on the compilation of the hadronic data with a clustering technique. This
procedure determines the best binning in a algorithmic way: the algorithm
scans all the possible bin widths and then fits the data. The optimal
bin width is determined by the global and local fit quality and the final
uncertainties on the contributions to aHLO

µ . A too wide binning would
lose important information on the behaviour of the R(s) function. A too
narrow binning would place too few data points in each bin, thus leading
to no advantage in the procedure. The fit is performed using an iterative
χ2 procedure that includes all the covariance matrices and thus all the
possible correlations. pQCD is used for energies above the bb̄ threshold, i.e.√
s > 11.199 GeV.

2.2 Lattice determination of aHLO
µ

In Sec. 1.3.3.2, the results of the calculation of ahadµ using lattice QCD
were shown. Then, in Sec. 1.4 they were compared to the dispersive results
that make use of the timelike approach (as in Sec. 2.1) to compute aHLO

µ

and to the experimental measurements of aµ. In this Section, a lattice
QCD-based approach to calculate the HLO contribution to the muon
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anomaly will be shown.

2.2.1 Theoretical framework

Any lattice QCD calculation of the HLO contribution to aµ starts from
the EM current correlator:

Cµν(x) =
〈
jemµ (x), jemν (0)

〉
, (2.9)

where the EM current jemµ (x) is defined as:

jemµ (x) =

Nf∑

i=1

Qiψ̄i(x)γµψi(x). (2.10)

The index i labels the quark flavours, Nf is the number the flavours and
Qi is the quark charge, in units of the elementary electric charge. The
Vacuum Polarisation (VP) tensor is introduced by Fourier transforming
the correlator:

Πµν(q) =

∫
d4xeiq·xCµν(x). (2.11)

The HLO contribution can be determined by convolving the VP tensor
with an appropriate kernel function:

aHLO
µ =

(α
π

)2 ∫ ∞

0
dq2f(q2)Π̂(q2), (2.12)

where the UV-finite VP tensor was introduced:

Π̂(q2) = 4π2
[
Π(0)−Π(q2)

]
(2.13)

and the kernel function is defined as:

f(q2) =
m2

µq
2Z3(1− q2Z)

1 +m2
µq

2Z2
, Z = −

q2 −
√
q4 + 4m2

µq
2

2m2
µq

2
, (2.14)

for spacelike momenta q2 < 0 [171–173].
A key point of any lattice QCD calculation lies in the choice of the most

appropriate VP function Π̂(q2). One possible choice is known as the hybrid
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method [174]: the q2 range can be divided into three parts, by introducing
two cuts q21 and q22, such that q21 < q22. Then, Eq. 2.12 can be rewritten as:

aHLO
µ =

(α
π

)2
[∫ q21

0
dq2f(q2)Π̂(q2)

+

∫ q22

q21

dq2f(q2)Π̂(q2)

+

∫ ∞

q22

dq2f(q2)Π̂pert(q
2)

]
.

(2.15)

In the third integral, perturbation theory is used to compute Π̂(q2). In
the second region, lattice results are very accurate and the integral can be
performed using numerical techniques. The contribution below q21 is the
most important one. Therefore, a reliable description of Π̂(q2) is crucial.
One possible solution that has been proposed is to use Padé approximants
to model the VP in this regime [174,175]. Another possibility is to perform
a change of variables using conformal polynomials [174].

Another possible method to compute aHLO
µ is known as the time mo-

ments method. It is used as a way to compute the VP effects at small
q2 [176]. By considering the four-momentum q with only the time compo-
nent, namely q = (ω, 0, 0, 0), one can write the VP function in terms of
the Fourier transform of the current correlator:

ω2Π(ω2) =

∫
d4xeiq·xCjj(x), (2.16)

where the index j is only spatial. One can average over the three spatial
directions and use that q · x = ωx̄. Eq. 2.16 becomes:

ω2Π(ω2) = −
∫

dx̄eiωx̄C(x̄), (2.17)

where

C(x̄) = −1

3

3∑

j=1

∫
d3xCjj(x). (2.18)

The time moments are given by:
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Figure 2.5: The plot shows the continuum extrapolation of
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G2n =

∫ ∞

−∞
dx̄x̄2nC(x̄). (2.19)

The VP function then can be written as:

Π(q2) = −1

2
G2 +

∞∑

n=1

(−1)n+1

(2n+ 2)!
G2n+2(q

2)n. (2.20)

An alternative possible way to write the UV-finite subtracted VP
function was determined in Ref. [178]:

Π̂(q2) = 4π2
∫ ∞

0
dx̄C(x̄)

[
x̄2 − 4

q2
sin2

(qx̄
2

)]
. (2.21)

Eq. 2.12 then becomes:

aHLO
µ =

(α
π

)2 ∫ ∞

0
dx̄C(x̄)f̃(x̄), (2.22)
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where

f̃(x̄) = 8π2
∫ ∞

0

dω

ω
f(ω2)

[
ω2x̄2 − 4 sin2

(ωx̄
2

)]
. (2.23)

2.2.2 Contributions and uncertainties

At the order O(α2), one can separate the full HLO contribution into
two parts:

aHLO
µ (α2) = aHLO

µ, c + aHLO
µ, d , (2.24)

where the c subscript indicates the quark-connected contractions, whereas
the d subscript stands for the quark-disconnected ones. In general, one
can calculate all the connected contractions that come from the quarks
separately, namely:

aHLO
µ, c = aHLO

µ (ud) + aHLO
µ (s) + aHLO

µ (c) + aHLO
µ (b). (2.25)

In the previous equation on the right-hand side (r.h.s.), the contractions of
up and down, strange, charm and bottom quarks are intended, respectively.
No contributions coming from the electric charge of valence and sea quarks
are included in Eq. 2.24, nor the effects due to the up-down mass difference
(isosymmetric limit).

If one also considers the SIB and the Electromagnetic Isospin Breaking
(QED IB) contributions, it is possible to write:

aHLO
µ = aHLO

µ (α2) + δaHLO
µ , (2.26)

where

δaHLO
µ = δaHLO

µ (ud) + δaHLO
µ (s) + δaHLO

µ (c) + δaHLO
µ, d . (2.27)

In δaHLO
µ (ud) QED IB and SIB corrections are present. In δaHLO

µ (s) and in

δaHLO
µ (c), only QED IB effects are included. It is crucial to understand that

the most important contribution comes from the connected contribution
of light quarks aHLO

µ (ud). This term accounts for about 90% of the whole

aHLO
µ (α2). Contributions from connected strange and charm quarks, namely

aHLO
µ (s) and aHLO

µ (c) respectively account for about 8% and 2% of the

total value of aHLO
µ (α2).
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All the lattice QCD calculations are performed on a discretised space-
time: therefore, the Phase Space (PhSp) integrals are substituted by sums
over finite lattice volumes. To recover the continuum limit, one needs to
perform a limit for infinite lattice volumes V → ∞ as well as a limit
for small lattice spacings a → 0. This procedure is called continuum
extrapolation. An example of how lattice data points are modified in the
continuum extrapolation limit can be seen in Fig. 2.5, relative to the
calculation of the Isospin-Symmetric (IsSy) contributions to aHLO

µ (ud) on
the intermediate window.

This limit is based on different simulations that are run at different
values of the lattice spacings and then a fit is performed, combining also
Chiral Perturbation Theory (ChPT) interpolations around the IsSy point.
ChPT introduces some error but, at the moment, they are acceptably
small, i.e. at the level of few percent. However, in the future, in order to
reach a sub-percent precision, all the lattice calculations should not be
based on the ChPT fit functions, but only on the ensembles at the IsSy
physical point [24].

2.2.3 Windows

The calculation of the whole HLO term using lattice QCD is limited
in precision by the continuum extrapolation. It is possible to split Eq.
2.22 into three parts, that divide the whole time range into three different
time regions. This is done to separately study the short-distance or the
long-distance systematic effects. In this respect, the window method was
proposed by RBC/UKQCD [91]. This method breaks the time integral into
three separate contributions:

aHLO
µ = aSDµ + aWµ + aLDµ

=
(α
π

)2
[∫ ∞

0
dx̄C(x̄)f̃(x̄)[1−Θ(x̄, t0, ∆)]

+

∫ ∞

0
dx̄C(x̄)f̃(x̄)[Θ(x̄, t0, ∆)−Θ(x̄, t1, ∆)]

+

∫ ∞

0
dx̄C(x̄)f̃(x̄)Θ(x̄, t1, ∆)

]
,

(2.28)
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Figure 2.6: Comparison of lattice results for specific quark con-
tributions to aHLO

µ in the intermediate window and at the IS
point. From left to right, the quark-disconnected, the charm, the
strange and the up-down contributions are shown. In the last
panel, the total value for aWµ is shown. From top to bottom, the
results come from [179], [180], [181], [182], [94], [93], [177] and [91].
Consider that more recent results have been published by the
RBC/UKQCD and ETMC collaborations, as shown in Fig. 2.7.
The plot comes from [179].

where the smoothing function is defined as

Θ(t, t′, ∆) =
1 + tanh[(t− t′)/∆]

2
. (2.29)

The parameter ∆ indicates the width of the window, whereas the two
parameters t0 and t1 separate the short-distance and the long-distance
effects. The intermediate window is less sensitive to the error that comes
from the discrete lattice. This implies that the calculation of the muon
anomaly on the window can be a good way to determine if the different
lattice methods give statistically compatible results. Moreover, given the
high precision that is needed for the calculation of aHLO

µ , careful studies
of the systematic effects that derive from the spacetime discretisation are
crucial.

A lot of effort is currently devoted to the determination of the quantity
aWµ . Recent results have been published by the RBC/UKQCD collaboration
[91,184], by the ETMC collaboration [182,183], by the CLS collaboration
[179] and by the BMW collaboration [93]. The CLS and RBC/UKQCD
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Figure 2.7: Comparison of the aWµ contribution. The grey points
are the older lattice QCD calculations. From top to bottom,
they come from [91]and [182]. The green points are the most
recent lattice QCD calculations. From top to bottom, they come
from [93], [179], [183] and [184]. The green points are the dispersive
results, on the window. From top to bottom, they come from [91],
[61, 177], [59, 93] and [185]. The plot comes from [184].

results lie about 3.8σ above the most recent evaluation of the window
contribution using the data-driven method [185]. In Fig. 2.6, a list of lattice
results for various quark sub-contributions in the intermediate window is
shown. A list of results of the complete window observable aWµ coming from
the different collaborations is shown in Fig. 2.7. The most recent results
seem to agree with each other within the errors.

2.3 Spacelike approach to aHLO
µ

In the two previous sections, two independent methods to compute the
HLO contribution to the muon anomalous moment were presented. More-
over, as shown in Sec. 1.4, they seem to give two discrepant predictions of
aHLO
µ , the lattice QCD result being closer to the experimental measurement

performed by BNL and FNAL. In recent years, a novel approach has been
presented to calculate the HLO contribution. It uses data coming from
a process in the spacelike region, namely a process where the transfer of
the total four-momentum squared is negative. The determination of aHLO

µ

derives from the measurement of the running of the fine structure constant
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α [186].
The starting point is Eq. 2.2 [107,108]:

aHLO
µ =

α

π

∫ ∞

0
ds
K(s)

s
ImΠ

′ had
γ (s), (2.30)

where the kernel function is given in Eq. 2.3:

K(s) =

∫ 1

0
dx

x2(1− x)

x2 + s(1− x)/m2
µ

. (2.31)

By exchanging the order of the integration between s and x, one
obtains [171]:

aHLO
µ =

α

π

∫ 1

0
dx(1− x)

∫ ∞

0
ds

1

s

ImΠ′had
γ (s)

π

x2

x2 + s(1− x)/m2
µ

=
α

π

∫ 1

0
dx(x− 1)

∫ ∞

0
ds

1

s

ImΠ′had
γ (s)

π

t(x)

s− t(x)
,

(2.32)

where t(x) < 0 is the squared transferred four-momentum:

t(x) =
x2m2

µ

x− 1
< 0. (2.33)

If one considers t(x) = q2, the second integral in the last member of Eq.
2.32 becomes equal to the r.h.s. of Eq. 2.1. By combining the two results,
one obtains:

aHLO
µ =

α

π

∫ 1

0
dx(x− 1)

{
Π′had

γ [t(x)]−Π′had
γ (0)

}
. (2.34)

By considering that

∆αhad[t(x)] = −Re
{
Π′had

γ [t(x)]−Π′had
γ (0)

}
(2.35)

and Im Π̂(q2) = 0 for negative q2, Eq. 2.34 becomes:

aHLO
µ =

α

π

∫ 1

0
dx(1− x)∆αhad[t(x)]. (2.36)
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Eq. 2.36 is the master equation for determining the HLO contribution
to the muon anomalous magnetic moment, in the spacelike region. In
principle, one can measure the effective EM coupling in the spacelike region
and then insert it in this equation to give a theoretical prediction for aHLO

µ .
By changing the kernel function in Eq. 2.36, it is also possible to calculate
the higher-order terms aHOVP

µ [188].
The total running of the fine structure constant depends on the lep-

tonic contributions and on the hadronic contributions. The former can be
calculated order-by-order in perturbation theory. It is known up to the
three loop accuracy in QED [189] and at four loops [190]. One can write
the running of α as follows:

α(t) =
α(0)

1−∆α(t)
=

α(0)

1−∆αhad(t)−∆αlep(t)
. (2.37)

By inverting this relation and solving for ∆αhad(t), one gets:

∆αhad(t) = 1− α(0)

α(t)
−∆αlep(t), (2.38)

where the leptonic contribution to the running of α can be computed and
the total running of α can be measured in the spacelike region.
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e− e−

µ−µ−

lepton

e− e−

had

µ− µ−

Figure 2.9: The Vacuum Polarisation diagrams that contribute
to the leptonic (left) and hadronic (right) running of the EM
coupling constant α.

In Fig. 2.8 one can see the contributions of the leptonic and hadronic
running of the fine structure constant as a function of the Feynman vari-
able x ∈ [0, 1] or the momentum transfer |t| ∈ [0,∞). The integrand
has its maximum value at xmax ≃ 0.914, or tmax ≃ −0.108 GeV2 and
∆αhad(tmax) ≃ 7.86× 10−4 [186,187]. The main advantage of the spacelike
approach is that the integrand function is smooth, as can be seen in the
right panel of Fig. 2.8. On the other hand, as shown in Section 2.1, the
timelike R(s) ratio relies on the timelike e+e− → hadrons experimental
data in the low energy region, making the integrand function much more
fluctuating due to the uncertainty of the experiments and the narrow reso-
nances. Moreover, the running of α can be measured in principle by a single
experiment in the spacelike region. This implies that the combination of
the experimental data would not require any complicated merging between
different data sets, a crucial procedure that is needed with the timelike
approach.

The most suitable processes to measure ∆αhad(t) are Bhabha scattering
(e+e− → e+e−) and muon-electron scattering (e−µ± → e−µ±). The former
can be a s-channel or a t-channel process at tree level, whereas the latter
is a pure t-channel process. This makes µe scattering the optimal process
to investigate the hadronic running of α [187].

It is estimated that a precision of about 10−5 on ∆αhad(t) is needed
to compete with the latest dispersive and lattice results. Since the LO
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contribution to the µe scattering cross section is quadratic in the coupling
constant α(t), one can estimate the required precision on the cross section
[186]:

1

2

δσ

σ
≃ δα

α
≃ δ∆αhad. (2.39)

Therefore, an experimental accuracy of 10−5 on the differential cross
section is required. This is a very challenging goal that requires a dedicated
experimental effort.

In this respect, the MUonE experiment was proposed to measure
the muon-electron scattering cross section at the level of 10 ppm on the
differential observables, to determine the HLO contribution to the muon
g − 2 in the spacelike region. A description of the experiment will be given
in Sec. 3.1.
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Figure 3.1: A scheme of the MUonE experimental setup [191].

running of the fine structure constant α(t).

In Sec. 3.1, the MUonE experiment will be described. Moreover, the
extraction of ∆αhad(t) from the experimental data and the MC simula-
tions, and the expected statistical accuracy and systematics will be briefly
discussed in Sections 3.2 and 3.3, respectively.

3.1 The MUonE experiment at CERN

MUonE is an experiment that was proposed to measure the cross section
of µe elastic scattering. From this measurement, the hadronic running of
the EM coupling constant ∆αhad(t) can be extracted and used to give a
prediction of aHLO

µ . A muon beam with energy of about Eµ = 160 GeV
and an average rate of about 1.3× 107 muons per second is scattered on a
fixed target. The M2 muon beam at CERN North Area has been identified
as the perfect candidate for the MUonE experiment [191]. The fixed target
of the experiment will be made of beryllium, which is a low Z material
which minimises possible background effects, as will be shown in Chapter
5, as well as multiple Coulomb scattering (MCS) effects.

The experimental setup consists of a sequence of 40 stations each of
which has a 15 mm thick beryllium target and tracking sensors which
are used to measure the scattering angles of the FS particles with high
precision, as shown in Fig. 3.1. The main advantage of having a series
of stations is that the muon beam can be re-used, allowing for a higher
number of µe scattering events. Moreover, the use of forty 15 mm targets
instead of a single 60 cm beryllium piece greatly reduces the systematic
effects of MCS. An electromagnetic calorimeter (ECAL) will be placed
downstream of all the 40 stations. Its purpose is to provide the particle
identification (PID) for the electrons and the muons that have an angle of
about 2 mrad to 3 mrad. As a matter of fact, in this region, the muons and
the electrons that undergo elastic scattering tend to have similar scattering
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Figure 3.2: Distribution of the two measured scattering angles in mrad. In the
l.h.s. plot, the events have been simulated assuming an angular resolution of 20
µrad, which is the experimental goal. In the r.h.s. plot, the events have been
simulated assuming an angular resolution of 100 µrad [191].

angles, as can be seen in Fig. 3.2. Moreover, a muon filter will be placed
downstream of the ECAL, in order to provide an assessment of a possible
pion contamination of the muon beam.

The most important element of the experimental hardware is the
tracking system. It allows for a very precise measurement of the scattering
angles of the FS electron and muon, w.r.t. the direction of the incoming
muon. Since the maximum scattering angle is of about 30 mrad, due to
kinematical constraints, the needed area of the tracking stations is of about
10× 10 cm2, given the 1 m distance between the tracker and the beryllium
target. Considering the geometry of the tracking stations and the spatial
resolution of the tracker planes, which is expected to be of about 20 µm, a
final angular resolution of about 20 µrad is expected.

The ECAL provides crucial information concerning the PID of the
particles. In the kinematic region where ϑe ≃ ϑµ the sole tracking station
cannot distinguish the two FS particles. An ECAL can resolve the elas-
tic scattering kinematics by using the electron angle or electron energy
measurements. Moreover, in the case of multiple EM showers, the ECAL
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clearly recognises the radiative events.
Many more details on the MUonE experimental setup can be found

in [192–194].

3.2 Kinematics and the extraction of ∆αhad(t)

In this section, the kinematics of the MUonE experiment will be de-
scribed. Moreover, the procedure that will be used to extract the hadronic
running of the fine structure constant from the experimental data will be
discussed.

In the muon-electron scattering process, the initial-state (IS) muon
impinges on the beryllium target. The muon can hit an electron, embedded
in the target at rest. The four-momenta of the particles that are involved
in the process are:

p1 =(Eµ, 0, 0, |p|)
p2 =(me, 0, 0, 0)

p3 =(Ef
µ , |p3| sinϑµ, 0, |p3| cosϑµ)

p4 =(Ee,−|p4| sinϑe, 0, |p4| cosϑe),

(3.1)

where Ei =
√

|pi|2 +m2
i . The t Mandelstam variable is:

t = ∥p1 − p3∥2 = ∥p2 − p4∥2 = 2m2
e − 2meEe, (3.2)

and the s Mandelstam variable is:

s = ∥p1 + p2∥2 = ∥p3 + p4∥2 = m2
e +m2

µ + 2meEµ, (3.3)

where the usual Minkowski norm is intended. By defining r as

r ≡

√
E2

µ −m2
µ

Eµ +me
(3.4)

and by imposing the energy-momentum conservation, one can calculate
the FS electron energy Ee and scattering angle ϑe:

Ee = me
1 + r2 cos2 ϑe
1− r2 cos2 ϑe

; ϑe = arccos

(
1

r

√
Ee −me

Ee +me

)
. (3.5)
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Figure 3.3: On the l.h.s., there is the integrand function in Eq. 2.36 for a IS
muon energy of Eµ = 160 GeV. On the r.h.s., there is the fraction of aHLO

µ

covered as a function of the muon energy [192].

The transferred momentum t can go from a minimum value of tmin =
−λ(s,m2

µ,m
2
e)/s to a maximum value of tmax = 0. By inverting Eq. 2.33

for x, one can find the maximum value of x, which is xmax ≃ 0.936. This
implies that a 160 GeV muon beam cannot cover the whole integrand
domain. As a matter of fact, it can allow to compute about 88% of the
total integral that is used to calculate aHLO

µ . This fact is shown in the r.h.s.
panel in Fig. 3.3. The remaining part of the integral which corresponds
to x ∈ [0.936, 1] is not accessible, if one uses the data that come from
the MUonE experiment. An extrapolation of the hadronic running can
be performed, using an appropriate parametrisation for ∆αhad(t) and a
MC template fit procedure. This procedure consists in the generation of
multiple MC samples that have a dependence on a set of parameters which
are fixed by the choice of parametrisation for ∆αhad(t).

One possible parametrisation function that has been identified imitates
the QED LO contribution to the running of the fine structure constant
α(t) for negative transferred momenta t:
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∆αhad(t) = KM


− 5

9
− 4M

3t
+

(
4M2

3t2
+
M

3t
− 1

6

)

× 2√
1− 4M

t

ln

∣∣∣∣∣∣

1−
√
1− 4M

t

1 +
√

1− 4M
t

∣∣∣∣∣∣


. (3.6)

In the previous equation, the two free parameters are K andM . The choice
of this parametrisation is consistent with the fact that for large negative
transferred momenta |t| the hadronic running of α behaves similarly as
ln |t|/M .

The template fit procedure requires that a grid of points is generated in
the parameter space where K and M live. Then, for each pair of generated
parameters, it is possible to fit Eq. 3.6 with a calculation of ∆αhad(t) that
uses a DR in the timelike region [195]:

∆αhad(q
2) = −αq

2

3π
Re

∫ ∞

m2
π0

ds
R(s)

s(s− q2 − iε)
. (3.7)

Subsequently, a MC sample is generated using a dedicated MC event
generator, MESMER. The generation within MESMER can be unweighted
or weighted. In the first case, each event has a constant weight in the
distributions. Moreover, it has to undergo an acceptance-or-rejection proce-
dure which reduces the generation efficiency, depending on the kinematical
constraints that are imposed by the selection criteria. This means that in
order to have the very high number of elastic events that is needed for the
analysis, which is of about O(1012) elastic events, the number of generated
events will be much higher than that, increasing the simulation runtime.
This is the reason that led to the implementation of weighted generation:
in order to increase the generation efficiency, weighted events can be used.
In this case, each event has a specific weight attached to it which needs to
be taken into account when calculating observables and generating samples
for the data analysis.

In addition to the generation of weighted events, MESMER is able
to replace the weights of each generated event with new ones, whenever
different contributions are included in the MESMER calculation, without
re-generating the whole MC sample. This procedure is called reweighting.
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Many more details and technicalities of the MESMER MC code will be
described in Appendix A.

The MC sample is generated and then reweighted to simulate different
contributions to the hadronic running of the EM constant ∆αhad(t), without
changing the initial seed of the generation and thus keeping full correlation
between the generated data sets. This allows for a further reduction of
statistical fluctuations in the final data analysis. The very same procedure
is then performed for different values of the parameters (K,M). Then,
a best fit calculation between the experimental data and the generated
templates is performed, for example by using a χ2 test or a log-likelihood
test. This determines the best-fit values for K = K̄ and M = M̄ that,
when inserted in Eq. 3.6, provide the best extrapolating function outside
the MUonE kinematical boundaries that gives the total value of aHLO

µ .

Very recently, an alternative method to extract aHLO
µ has been proposed

for the MUonE experiment. It allows to extract about 99% of the total
value of aHLO

µ from the data that is gathered by the MUonE experiment,
exploiting some mathematical properties of the kernel function K(s). The
remaining 1% can be computed combining pQCD with data of the timelike
e+e− → hadrons processes [196].

3.3 Experimental precision goal and systematic
uncertainties

The MUonE experiment needs to match the precision of the timelike
and the lattice QCD predictions of aHLO

µ , in order to give a significantly
useful contribution to the muon anomalous magnetic moment puzzle. To
do so, the relative statistical and systematic uncertainties on aHLO

µ need to
reach about 0.3%.

This level of precision can be obtained with a total running time of
about 4 × 107 s, distributed in about 3 years of data taking. The total
luminosity that will be reached is of about 1.5×107 nb−1. This is equivalent
to measuring the elastic muon-electron scattering differential cross section
with a precision of about 10 ppm [187]. Such a high precision goal on the
measurement requires a very high control on the experimental systematic
effects.

The main systematic effects can be determined in the so-called normal-
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Figure 3.4: The red line shows the effect of the hadronic
running of α on the Leading Order muon-electron scattering
process, with its scale to the left. In blue, the theoretical LO
muon-electron scattering cross-section with respect to the
electron scattering angle ϑe is plotted with its scale to the
right [197].

isation region. This is a specific kinematic region where the effects of the
hadronic running of the EM constant ∆αhad(t) are very small and do not
contribute significantly to the total value of aHLO

µ . In this region, as can be
seen in figure 3.4, the elastic µe scattering cross section is larger than in
the signal region. This allows for a very precise determination of the main
systematic effects that need to be taken into account for the measurement
in the signal region.

The determination of the systematic uncertainties will be done by
introducing nuisance parameters in the fit procedure that was described in
Sec. 3.2 using the combine tool [198, 199]. They are employed to keep into
account any possible modification of the fit parameters due to systematic
effects. One nuisance parameter is assigned to each independent systematic
effect. More specifically, two kinds of nuisance parameters are used in the
MUonE data analysis.

The first kind consists in normalisation nuisances, labelled as ν. They
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are included in the analysis in order to include possible shifts in normalisa-
tion between the experimental data and the generated MC samples. They
change the number of events in each bin as

ni → n̄i = ni(1 + ε)ν , (3.8)

where ε indicates the modulus of the relative systematic uncertainty.

Another class of nuisance parameters is composed by the so-called shape
nuisances. They refer to any systematic effect that modifies the shape of
the differential observable. Each insertion of shape nuisance modifies the
number of events in each bin as

ni → n̄i[1 + si(µ)], (3.9)

where si(µ) is a spline function that preserves continuity and differentiability
[198]:

si(µ) =





1

2

[
(δ+i − δ−i )µ+

1

8
(δ+i − δ−i )(3µ2 − 10µ4 + 15µ2)

]
|µ| ≤ 1

δ+i µ µ > 1

−δ−i µ µ < −1,

(3.10)

and

δ±i =
ni(µ = ±1)− ni(µ = 0)

ni(µ = 0)
. (3.11)

The main systematic effect comes from MCS in the beryllium target,
in particular for electrons that have a large scattering angle ϑe which
corresponds to low energy Ee. The smearing that is due to MCS effects is
parametrised as a Gaussian function on the orthogonal plane with respect
to the beam axis and has been studied for electrons with an energy of
Ee ∈ [12, 20] GeV on thin carbon targets in 2017 [200]. The measured
angular distributions agree within ±1% with the predictions from GEANT4
simulations.

Another important systematic effect comes from the degree of knowledge
of the average beam scale. At the accelerator level, it is known at the
level of about 1%. On top of this, the Beam Momentum Station (BMS)
can measure individual muons with a 0.8% precision [201]. However, the
average beam scale needs to be controlled using µe scattering [191] and
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the ultimate precision goal for the final detector is about 3 MeV in a week
of runtime [202].

A further systematic effect which needs to be controlled is the bias in
the angular resolution. As in the MCS smearing, a Gaussian smearing is
applied to the angles of the FS particles. The intrinsic angular resolution
of the MUonE tracking system will be of about 0.02 mrad. An uncertainty
on this quantity of about ±10% is estimated to be a reasonable guess for a
fast simulation analysis.

Many precise details on the template fit procedure in the presence of
systematic effects can be found in [192]. A description of a test run with
muons as well as a first analysis of elastic events in a realistic scenario can
be found in [203].
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Figure 4.1: The µe scattering LO Feynman dia-
gram. The thicker line indicates the muon current,
the lighter one indicates the electron current.

In Sec. 4.1, all the milestones that have been reached towards this goal
will be discussed. The calculation and the inclusion of the corrections at
NLO and NNLO in the MC event generator MESMER will be dealt with
in a much higher detail in sections 4.2 and 4.3, respectively. In Sec. 4.4,
a brief overview of the missing pieces to reach the target precision of 10
ppm will be presented.

4.1 Review of calculations for MUonE

After the initial idea of using a spacelike approach to compute aHLO
µ

[186] and the experimental consensus that muon-electron scattering would
be an ideal process to probe the hadronic running of the EM constant
∆αhad(t) [187], many theoretical milestones have been reached towards the
goal of determining the µe scattering differential cross sections up to the
10 ppm precision.

In order to do so, one can expand the µe scattering cross section in the
perturbative series in the fine structure constant α and consider all the
contributions order by order.

At LO, the only diagram that contributes to the µe cross section is
shown in Fig. 4.1. The cross section can be calculated by performing the
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following integral:

σQED
0 =

∫
dΦ2|M0|2Θ(cuts) , (4.1)

where the Heavyside theta function signals the application of arbitrary
kinematical cuts. The subscript “0” indicates that the calculation is per-
formed at the LO and the term dΦ2 is the two-body Lorentz-Invariant
Phase Space (LIPS).

The differential cross section of the LO muon-electron scattering process
w.r.t. the transferred momentum squared t is given by the following analytic
expression [204]:

dσQED
0

dt
=

1

λ(s,m2
µ,m

2
e)

4πα2

t2

[
t2

2
+ st+ (s−m2

e −m2
µ)

2

]
, (4.2)

where u is the third Mandelstam variable such that:

u = ∥p1 − p4∥2 = ∥p2 − p3∥2 = 2(m2
e +m2

µ)− s− t (4.3)

and λ(x, y, z) is the Källén function:

λ (x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz = (x− y − z)2 − 4yz. (4.4)

The contributions at LO due to the exchange of a Z0 boson are not in
principle excluded. However, they are suppressed because of the large Z0

mass. The interference between the QED LO and the EW LO contributions
is suppressed by a factor of Q2/M2

Z ≃ 10−5. This term needs to be included
in the complete calculation, in order to reach the precision goal of 10
ppm on the differential observables. It was studied and included in the
MESMER MC event generator in [205].

At NLO accuracy, the full set of QED and weak corrections was calcu-
lated without any approximation and retaining all finite mass effects [205].
Such calculations were then included in the MESMER MC generator.
Details on this calculation will be shown in Sec. 4.2. The calculation of
QED NLO effects has also been done in another MC code, McMule [206].
Many checks have been performed between the two codes, showing full
compatibility.
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Many important results were obtained at NNLO in QED. The master
integrals for the two-loop planar and non-planar four-point Feynman
diagrams were computed in Ref. [207] and in Ref. [208]. In these calculations,
the electron mass was set to zero, whereas the muon mass dependence was
kept. A procedure to extract the leading electron mass terms for processes
that involve particles with large masses from the massless amplitudes was
devised in [209] (massification procedure). A subtraction scheme for QED
calculations with massive fermions at NNLO was studied in [210] as well
as its generalisation at all orders.

The NNLO photonic corrections along the electron line have been
implemented into MESMER [211] and McMule [206], including all the
finite mass terms. In the former calculation, also the two-loop diagrams
where at least two virtual photons connect the electron and muon lines have
been computed using the Yennie–Frautschi–Suura (YFS) approach [212]. In
this approach, the IR part is calculated exactly and some non-IR remnants
have been approximated. Details of this calculation will be provided in
Sec. 4.3.1. Moreover, the full set of NNLO leptonic corrections has been
calculated in Refs. [213–215] and included in the MESMER MC event
generator. All the details related to this calculation will be expanded in
Sec. 4.3.2.

The analytic calculation of the two-loop corrections to the amplitude of
four-fermion scattering in QED was performed keeping the full dependence
on the mass of one fermionic current [216]. The calculation of the complete
set of NNLO QED corrections to µe scattering was performed in the
McMule framework, keeping full dependency on the muon mass and using
the massification procedure on the electron mass [217]. The two-loop
hadronic corrections to muon-electron scattering were calculated in Refs.
[218] and [219]. The calculation of the two-loop vertices with the insertion
of a VP using Master Integral (MI) techniques was performed in [220].
Moreover, possible contamination from New Physics (NP) effects has been
studied in [221] and [222]. From these results it is clear that these effects
are below the MUonE goal sensitivity.

Some important steps have been taken towards the study of Next-
to-Next-to-Next-to-Leading Order (N3LO) calculations for µe scattering.
The triple-virtual corrections have been calculated in [223–225], whereas
the massless real-virtual-virtual contribution has been calculated in [226].
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A collaborative effort started to complete the N3LO calculations for µe
scattering [227]

In Ref. [228,229], the calculation of the µe→ µeπ0 cross section was
performed, since it could be a possible source of background for the MUonE
experiment. Sec. 4.3.3 will be devoted to this calculation. Moreover, the
calculation of µX → µXℓ+ℓ− has been performed in [230, 231]. Chapter
5 will be devoted to all the details of the calculation and the numerical
results of this process. An assessment of the corrections that come from
the atomic binding of the electrons of the MUonE target has been done
in [232].

4.2 Muon-electron scattering at NLO

In this section, the details of the calculation of the full QED and
weak NLO corrections to muon-electron scattering will be shown, following
Ref. [205]. First, the idea of the calculation and then the numerical impact
on a selection of differential observables will be shown in Sections 4.2.1
and 4.2.2, respectively.

4.2.1 The calculation

QED corrections are the most dominant contributions at NLO. The
collinear emission of photons from a lepton gives enhanced contributions,
that are proportional to α ln

(
Q2/m2

ℓ

)
for large Q2, where mℓ is the mass

of the lepton and Q2 is the energy scale where the emission occurs. For
this reason, NLO QED corrections are more dominant than the NLO weak
corrections.

The QED NLO contributions include the one-loop virtual corrections
and the single-photon real corrections. One can write the total QED NLO
cross section as:

σQED
1 = σ2→2 + σ2→3, (4.5)

where the first term indicates the virtual contribution. This can be written
explicitly in terms of the LO and NLO virtual amplitudes MLO and Mv

NLO

as in the following relation [205]:

σ2→2 =
1

F

∫
dΦ2

[
|MLO|2 + 2Re

(
M†

LOMv
NLO(λ)

)]
. (4.6)
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In the previous equation, the virtual matrix element depends on the
parameter λ. It is a vanishingly small fictitious mass that is assigned to
the virtual and real photons in order to regularise the IR singularities. On
the other hand, the UV divergences can be treated with the employment
of dimensional regularisation. Moreover, the factor F represents the IS flux
factor:

F = 2
√
(s−m2

e −m2
µ)

2 − 4m2
em

2
µ, (4.7)

and dΦ2 is the usual two-body LIPS.
The real photon contribution is computed using the PhSp slicing

technique together with the photon mass prescription. By imposing an
arbitrary energy cutoff ξ such that λ≪ ξ ≪ √

s on the photon energy Eγ

and by considering separately the two PhSp regions where λ < Eγ < ξ and
Eγ > ξ, one can write the real NLO cross section as [205]:

σ2→3 =
1

F

(∫

λ<Eγ<ξ
dΦ3|Mr

NLO|2 +
∫

Eγ>ξ
dΦ3|Mr

NLO|
)
. (4.8)

In the previous equation, dΦ3 is the three-body LIPS and Mr
NLO is the

real NLO amplitude where the real photon has the fictitious mass λ. By
performing the first integral, Eq. 4.8 becomes:

σ2→3 = ηs(λ, ξ)

∫
dσQED

0 +
1

F

∫

Eγ>ξ
dΦ3|Mr

NLO|, (4.9)

where the factor ηs(λ, ξ), which is called eikonal factor, is a term that
factorises the LO cross section and keeps into account the real emission of
soft photons.

The calculation of the matrix elements has been performed using the
package Form [233–235], and the packages LoopTools [236, 237] and
Collier [238]. The tree-level and one-loop weak matrix elements have
been calculated using Recola [239].

4.2.2 Numerical results

In this section the numerical impact of the NLO EW terms on the
differential cross section will be shown, for specific observables that are
important for the MUonE experiment.
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Cross section Setup 1 Setup 2 Setup 3 Setup 4

σQED
0 (µ±) 1265.060312(7) 245.038910(1) 1265.060312(7) 245.038910(1)

σQED
1 (µ+) 1325.217(3) 255.8437(5) 1162.447(2) 222.7714(3)

σQED
1 (µ−) 1323.478(3) 255.1176(5) 1161.888(1) 222.8545(3)

δQED
1 (µ+) 0.047552(2) 0.044094(2) −0.081114(1) −0.090874(1)

δQED
1 (µ−) 0.046177(2) 0.041130(2) −0.081556(1) −0.090535(1)

Table 4.1: Cross sections in µb for µ±e− → µ±e− scattering at LO, σQED
0 ,

and NLO, σQED
1 , in the four possible Setups and for both µ+ and µ−. In the

last two lines the relative correction w.r.t. the LO δQED
1 is shown, as defined

in Eq. 4.10, for both µ+ and µ−. The error is the 1σ MC error [205].

Before detailing the numerical results, it is crucial to introduce four
different event selections that were considered in Ref. [205]:

• Setup 1: ϑe, ϑµ < 100 mrad, Ee > 0.2 GeV;
• Setup 2: ϑe, ϑµ < 100 mrad, Ee > 1 GeV;
• Setup 3: the same criteria as Setup 1, with the acoplanarity bound:
|π − (φe − φµ)| ≤ 3.5 mrad;

• Setup 4: the same criteria as Setup 2, with the acoplanarity bound:
|π − (φe − φµ)| ≤ 3.5 mrad.

Three gauge-invariant subsets of all the real and virtual NLO contribu-
tions can be determined:

• Corrections on the electron line;
• Corrections on the muon line;
• Box contributions and up-down interference of real photons.

More than 95% of the total contribution to the cross section comes from
the first subset. The corrections on the muon leg and the electron-muon leg
interference weigh about 10−4 to 10−3 [205]. At the level of the integrated
cross sections, Tab. 4.1 summarises the results of the MC generation with
MESMER. One can see that the purely photonic corrections are about 4%
to 5% w.r.t. the LO cross sections when no acoplanarity cuts are applied.
However, if an acoplanarity cut is performed, the relative correction changes
sign and increases in absolute vlaue to about 8% to 9%. The change of
sign is due to the higher importance of the soft photon emission.
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Figure 4.2: In the top plots there are the LO differential cross sections (in black)
of the µ+e → µ+e process, the NLO differential cross section with acceptance
cuts (in red) and the NLO differential cross section with also an acoplanarity
cut (in blue) w.r.t. the outgoing electron angle ϑe (left side) and of the outgoing
muon angle ϑµ (right side). In the bottom plots, there are the relative NLO QED
corrections as a function of ϑe (left side) and ϑµ (right side) [205].

The relative difference is defined as:

δQED
1 =

σQED
1 − σQED

0

σQED
0

. (4.10)

As was already clarified in Chapter 3, for the MUonE experiment the
differential cross sections as functions of angular variables are more relevant
than the integrated cross sections. Thus, a differential study is needed.
From now on in this section, the focus will be on the process with the
positive muon µ+e→ µ+e.

In Fig. 4.2, the impact of the NLO QED corrections on the differential
cross section w.r.t. the FS electron and FS muon angles, namely dσ/dϑe
and dσ/dϑµ, is shown. The effect of the NLO contribution without the
imposition of acoplanarity cuts becomes non-negligible in the region where
ϑe is small. This region, as was shown in Fig. 3.4, is where the signal
of interest will be extracted to estimate ∆αhad(t). Therefore, a precise
control of the radiative corrections is crucial. Another important piece of
information that can be extracted from Fig. 4.2 is that the imposition of an
acoplanarity cut reduces the effect of the NLO radiative corrections down
to about 10 %, for small electron angles. If one looks at the ϑµ distribution,
without the application of an acoplanarity cut the differential distribution
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Figure 4.3: Pure photonic contributions to the QED cross
section for µ+e→ µ+e plotted as a function of the outgoing
electron angle ϑe (top plot) and of the outgoing muon angle
ϑµ (bottom plot). In red, the corrections along the electron
line are plotted with(out) acoplanarity cut with a solid line
(stars). In blue there are the corrections along the muon line
and in black the electron-muon interference terms [205].

has a peak for very small ϑµ at the level of about 10 % and increases
for larger angles up to the 20 % level. If the acoplanarity cut is imposed,
however, the corrections to the cross section increase due to the higher
importance of soft photon radiation [205].

By observing the behaviour of the contributions of the three aforemen-
tioned gauge-invariant subsets of the QED NLO contributions separately,
one can indeed see that the electron line radiation corrections are more
dominant than the muon line and the interference contributions, as can be
seen in Fig. 4.3.

In Fig. 4.4 the LO and NLO EW contributions to the differential cross
section dσ/ dϑe and dσ/ dϑµ are shown. The LO γ − Z0 contributions are
at the 10−5 level for small ϑe and for large ϑµ. The NLO EW contributions,
on the other hand, are below the 10 ppm precision goal on the differential
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Figure 4.4: Contributions to the µ+e→ µ+e cross section
coming from LO EW (red line) and NLO EW (blue line)
effects, plotted as a function of the outgoing electron
angle ϑe (top plot) and of the outgoing muon angle ϑµ
(bottom plot) [205].

observables [205]. The differential ratios that figure in Fig. 4.4 are defined
as follows:

∆LO
EW =

dσEW0 − dσQED
0

dσQED
0

(4.11)

and

∆EW
NLO =

(
dσEW1 − dσEW0

)
−
(
dσQED

1 − dσQED
0

)

dσQED
1

. (4.12)

The results for the µ−e → µ−e process are of the same order of
magnitude. They are shown in Ref. [205], along with many more details
and studies on the NLO EW corrections.
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4.3 Muon-electron scattering at NNLO

The NLO contributions to µe scattering are shown to be much bigger
than the precision goal for the MUonE experiment of 10 ppm on the
differential observables. For this reason, it is crucial to consider also NNLO
corrections to the cross section. Since the NLO weak contributions are
already below 10−5, there is no need to calculate also the NNLO weak
corrections. The focus of study, thus, will be reserved to the NNLO QED
corrections.

The NNLO corrections can be divided into two subsets, as anticipated
in Sec. 4.1: NNLO photonic contributions that will be summarised in 4.3.1
and NNLO leptonic contributions. They will be discussed in 4.3.2 with
detail.

4.3.1 NNLO photonic contributions

In this section, the details of the calculation of the NNLO QED photonic
corrections to µe scattering will be shown, following Ref. [211]. First, the
idea of the calculation and then the numerical impact on a selection
of differential observables will be shown in Sections 4.3.1.1 and 4.3.1.2,
respectively.

4.3.1.1 The calculation

As was in the NLO case, the NNLO photonic contributions include the
contributions where the photons are attached onto the electron leg, those
attached onto the muon leg and those that are due to the electron-muon
leg interference. Each of these subgroups is gauge-invariant. The set of
NNLO photonic corrections to µe scattering along a single fermion line is
divided into three groups:

• The two-loop pure virtual contribution dσvv2 . In this group, there
are the squared modulus of the one-loop virtual diagrams and the
interference between the tree-level µe scattering diagrams with the
two-loop virtual diagrams;

• the contribution with a single real photon emission on top of the
one-loop corrections dσrv2 ;

• the double bremsstrahlung process dσrr2 .
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The “v” and the “r” in the apices stand for virtual and real, respectively.
All of the groups that were defined above diverge in the IR limit, but
can be regularised with the fictitious photon mass prescription, as was
already done in Sec. 4.2.1 in the NLO case. Moreover, by defining the
energy slicing separator ξ, one can separate soft photon emission from hard
photon emission. The pure NNLO contribution to the cross section then
becomes [211]:

dσQED
2, ph = dσ0γ, h(ξ) + dσ1γ, h(ξ) + dσ2γ, h(ξ), (4.13)

where

dσ0γ, h(ξ) = dσvv0γ, h(λ) + dσsv0γ, h(λ, ξ) + dσss0γ, h(λ, ξ)

dσ1γ, h(ξ) = dσv1γ, h(λ, ξ) + dσs1γ, h(λ, ξ)

dσ2γ, h(ξ) = dσ2γ, h(λ, ξ).

(4.14)

The “h” and the “s” in the subscripts and apices stand for hard and soft,
respectively. The “v” apex indicates the usual virtual photon emission. The
subscript #γ, h indicate the number of hard photons that are emitted. Each
term that appears on the r.h.s. of Eq. 4.13 is independent of the fictitious
photon mass λ. The radiation of real soft photons is included with eikonal
factors, as was the case for the NLO calculation.

The calculation of the double bremsstrahlung process was performed
with Form [233–235] and the one-loop tensor coefficients and scalar func-
tions were calculated with Collier [238] and cross-checked with [240]. The
two-loop virtual corrections were calculated in [241]. The diagram with
a VP insertion on the vertex photonic correction was removed from the
photonic corrections since its enhancement is proportional to α2L3 with
L = ln

(
−t/m2

ℓ

)
and is cancelled by the real lepton pair production coun-

terpart. This contribution was not studied in [211] but will be discussed in
4.3.2.

The same reasoning can be applied to the corrections along the muon
line. However, as will be shown in 4.3.1.2, they are numerically less impor-
tant.

One can describe the full two-loop virtual QED contribution using a
YFS-inspired approximation. This can be done to study the IR-divergent
diagrams [212]. This approach was used to approximate those diagrams
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where a virtual photon connects the electron and the muon lines on top of
the one-loop box diagrams. The remaining part of the contributions that
were already described above were calculated exactly [211].

One can start from the exact i-th order matrix element, written in
terms of the IR contributions:

M0 = T
M1 = ηT +MR

1

M2 =
1

2
η2T + ηMR

1 +MR
2

= −1

2
η2T + ηM1 +MR

2 .

(4.15)

The term T represents the tree-level amplitude, Mi are the full i-loop
amplitudes, MR

i indicates the non-IR-divergent amplitudes and η is the
IR YFS factor. The latter can be written as [211]:

η =

i≤j∑

i,j=1,4

ηij = ηe + ηµ + ηeµ (4.16)

where all the terms can be rewritten in terms of the one-loop scalar functions
B0 and C0:

ηij =





α

8π
q2i
[
B0(0,m

2
i ,m

2
i )− 4m2

iC0(m
2
i , 0,m

2
i ,λ

2,m2
i ,m

2
i )
]

for i = j

α

π
qiqjϑiϑj

[
pi · pjC0

(
m2

i , (ϑipi + ϑjpj)
2,m2

j ,λ
2,m2

i ,m
2
j

)

+
1

4
B0

(
(ϑipi + ϑjpj)

2,m2
i ,m

2
j

) ]
for i ̸= j.

(4.17)
The term qi is the charge of the i-th particle and ϑi equals −1 or 1 for an
incoming or an outgoing fermion, respectively. The IR terms ηi factorise
the IR divergence of the diagrams with a virtual photon on the i leg, with
i = e, µ, eµ. If i = eµ, the virtual photon connects the electron and muon
legs.

The complete approximate two-loop virtual amplitude M2 can be
written [211]:

M2 ≈ M̃2 = Mee
2 +Mµµ

2 +Meµ
2

+
1

2
η2eµT + ηeµ(ηe + ηµ)T + (ηe + ηµ)Meµ, R

1 + ηeµMR
1 , (4.18)



68 Chapter 4 ♢ Precision theory for µe scattering

Cross section Setup 2 Setup 4

σQED, e
2, ph 255.5725(5) 224.4796(4)

σQED,µ
2, ph 244.9706(1) 244.4154(1)

σQED, full
2, ph (µ−)‡ 255.205(1) 224.041(1)

σQED, full
2, ph (µ+)‡ 256.092(1) 224.088(1)

Table 4.2: Cross sections in µb for µ±e− → µ±e− scattering at NNLO,
σQED
2, ph , in the two Setups. The apices “e”, “µ” and “full” indicate the cross

sections with corrections along the electron line only, the muon line only
and the full approximate contributions, respectively. The digits in the
parentheses correspond to 1σ MC error. The double daggers ‡ indicate
that the YFS approximation has been used [211].

where Mee
2 , Mµµ

2 and Meµ
2 are the two-loop diagrams where the two virtual

photons are both attached to the electron leg, the muon leg and one leg
each, respectively.

In Eq. 4.18, the approximation consisted in putting the two-loop virtual
non-IR remnants to zero MR

2 = 0 where at least two photons connect the
electron and muon lines. The size of the non-IR contributions that are put to
zero is estimated to be in the range of about (α/π)2 ln2(m2

µ/m
2
e) ≃ 6×10−4

[211]. Since it is larger than the MUonE experiment precision goal of 10
ppm, it will be necessary to include such corrections in MESMER in the
future.

4.3.1.2 Numerical results

In this section, the numerical impact of the NNLO photonic contribu-
tions to the µe scattering cross section will be shown for specific observables
that are important for the MUonE experiment. The following results have
been produced with the MESMER MC event generator.

The event selections that were considered are Setup 2 and Setup 4.
They were introduced in Sec. 4.2.2 [211]. Moreover, as already done in the
NLO case, the only differential observables that will be shown are dσ/ dϑe
and dσ/dϑµ, for the sake of brevity.

In the plots, the percent difference between the NNLO and the NLO
predictions, w.r.t. the LO cross section will be shown, since the 10 ppm
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Figure 4.5: In red, NNLO corrections along the electron line for
µ±e → µ±e as a function of the FS electron angle ϑe. In blue,
the corrections along the muon line multiplied by 10. On the l.h.s.
Setup 2 is considered, on the r.h.s. Setup 4 is considered. In the
insets there are the NLO corrections [211].

are implicitly referred w.r.t. the LO differential cross section:

∆i
NNLO =

dσQED, i
2 − dσQED, i

1

dσQED
0

× 100 (4.19)

where the apices i = e,µ, full refer to corrections where photons are at-
tached only onto the electron line, onto the muon line or to corrections
where the full set of YFS-approximated NNLO contributions are included,
respectively.

In figure 4.5, the NNLO corrections along a single lepton line for dσ/ dϑe
are shown. The corrections on the electron line remain close to zero for
electron scattering angles that are greater ϑe > 5 mrad. As ϑe approaches
zero, they increase up to about 10 %. The correction due to the muon line
radiation remains close to zero on all the phase space. If acoplanarity cuts
are applied, the shape of the distributions does not significantly change,
remaining enhanced for small electron angles.
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Figure 4.6: The same as 4.5 but plotted against the FS muon
angle ϑµ [211].

Fig. 4.6 shows the numerical impact of NNLO corrections for the
dσ/dϑµ differential cross section. If no acoplanarity cuts are applied, the
corrections along the electron line remain at the level of 10−5 for small
angles and decrease to about −0.14% at 4.5 mrad. Then, they increase
to about 1.3 % at the kinematical limit. If acoplanarity cuts are applied,
the corrections along the electron line increase from about 0.4 % to about
2.4 %. A similar behaviour occurs for the corrections along the muon line.
They remain, however, depressed by a factor of about 10 to 30 in certain
kinematical regions.

Now, one can look at some differential observables for the full YFS-
approximated calculation of the NNLO photonic corrections, with also the
interference terms. For the sake of brevity, only the dσ/dϑe distribution
will be presented, in Fig. 4.7. If no acoplanarity cuts are applied, the
YFS-calculated NNLO corrections have a very similar shape w.r.t. the
exact NNLO corrections along the electron leg. However, in Setup 4, the
µ+e− → µ+e− corrections are very similar to the exact NNLO case on the
electron leg above 5 mrad, but they increase to about 6.5 % below this
angle. For the µ−e− → µ−e− process, the corrections remain stable also
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Figure 4.7: In green, the full YFS-approximated NNLO corrections,
as in Eq. 4.18 for µ−e → µ−e as a function of the FS electron
angle ϑe. In purple, the same corrections for µ−e→ µ−e. On the
l.h.s. Setup 2 is considered, on the r.h.s. Setup 4 is considered. In
the insets there are the NLO corrections [211].

for ϑe < 0.5 mrad.

It is clear from the study in Ref. [211] that the size of the NNLO
photonic corrections w.r.t. the LO differential cross sections is at the level
of some 10−4 in certain PhSp regions. This suggests that the next step
regarding the radiative corrections needs to be the matching of the fixed-
order calculation with an all-order resummation procedure. This could be
done with a QED PS technique.

4.3.2 NNLO lepton pair contributions

In this section, the calculation of the complete fixed-order NNLO QED
corrections that include at least one leptonic pair is presented, following Ref.
[213]. The corrections include all the relevant virtual and real contributions,
summing over all contributing lepton flavours. After the calculation of the
photonic contributions, this set of corrections completes the NNLO QED
contributions to µe scattering.
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(a) (b)

Figure 4.8: The LO diagram of µe scattering, (a), and the NLO
diagram, (b), with leptonic corrections. The thicker fermionic line
indicates the muon line, whereas the double line closed loop in-
dicates the virtual leptonic contribution due to a generic lepton
ℓ [213].

As a first step, the classification of the contributions and the methods
used for their calculation are described in Sec. 4.3.2.1. Where it is needed,
the computation of the virtual corrections is performed using DR tech-
niques, as has been done for the hadronic calculations in [218,219], without
neglecting any finite mass effect. The results of the hadronic NNLO correc-
tions has also been computed in [213] and cross-checked with [218,219]. The
size of these contributions is then compared with the leptonic corrections
on all the relevant differential distributions for MUonE.

All these corrections have been included in the MESMER MC code:
with this tool, numerical results under typical running conditions and
event selections of the MUonE experiment can be produced. They will be
discussed in Sections 4.3.2.2 and 4.3.2.3.

4.3.2.1 The calculation

The complete set of NNLO leptonic corrections to µ±e− → µ±e− can
be divided into three main subsets:

dσQED
2, l = dσv2, l + dσγ2, l + dσr2, l (4.20)

where the “l” subscript stands for leptonic, “v” stands for virtual and “r”
stands for real. The apex “γ” indicates that there is a photon emission.
The three terms in the previous equation include different contributions.

The first one, dσv2, l, contains many diagrams:

• The squared modulus of the NLO VP insertion diagram, in 4.8 (b);
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(a) (b)

Figure 4.9: On the l.h.s. the NNLO reducible photon VP contri-
bution. On the r.h.s. the QED NNLO irreducible VP contribu-
tion [213].

(a) (b) (c) (d)

Figure 4.10: NLO virtual photonic corrections [213].

• The interference between the µe scattering LO diagram, in 4.8 (a),
with the two-loop diagram with two VP insertions as well as a
NLO VP insertion, namely the diagrams in Fig. 4.9 (a) and (b),
respectively;

• The interference between the NLO virtual diagram with the VP
insertion (Fig. 4.8 (b)) and any one-loop photonic virtual diagram
(Fig. 4.10).

• The interference between the LO diagram (Fig. 4.8 (a)) with the
two-loop virtual diagrams where the one-loop photonic diagrams
have an additional VP correction in the non-loop photon (Fig. 4.11).

• The interference between the LO diagram (Fig. 4.8 (a)) with the
two-loop virtual diagrams where the one-loop photonic diagrams
have an additional VP correction in the loop photon. The diagrams
in 4.12 are IR safe, whereas the diagrams in 4.13 are IR divergent.
The IR divergence is cancelled by the interplay with real radiation
diagrams that are in the dσγ2, l class, described below.
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(a) (b)

Figure 4.11: Factorisable NNLO contribution with the insertion of
a VP on the non-loop photon propagator of the one-loop photonic
correction diagrams [213].

(a) (b)

Figure 4.12: NNLO irreducible vertex diagrams [213].

The second set, dσγ2, l, includes the diagrams where there are both lep-
tonic VP insertions and real photon emission. In this group of contributions,
the interference between the tree-level µe→ µeγ process and the diagrams
with a leptonic VP insertion on the photon propagator and a real photon
emission (Fig. 4.14) is accounted for.

The third set, dσr2, l, includes the tree-level µe→ µeℓ+ℓ− process, with

ℓ = e,µ. The τ+τ− pair production is kinematically prohibited at the
MUonE experiment, given the small CM energy and the big τ mass. In
this last set, three gauge-invariant subsets can be determined:

• Real lepton pair production from a photon that is emitted from the
electron line (Figs. 4.15 (a) and (b));

• Real lepton pair production from a photon that is emitted from the
muon line (Figs. 4.15 (c) and (d));

• Real lepton pair production from peripheral diagrams, also called
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(a) (b) (c) (d)

Figure 4.13: NNLO Box diagrams [213].

(a) (b) (c) (d)

Figure 4.14: NNLO real photon radiation diagrams [213].

trident diagrams (Figs. 4.15 (e) and (f)). The pair is produced in the
photon propagator.

The last set of contributions dσr2, l is crucial for two main reasons. It
represents a four-body final state. This means that in certain kinematic
regions two FS particles could escape the MUonE experimental acceptance,
thus leaving two seen tracks. This implies that this four-fermion final
state could perfectly mimic a signal event. This makes this contribution a
reducible background for the MUonE experiment and needs to be precisely
studied under MUonE running conditions.

Moreover, the interference between two radiative channels from the
same line, when integrated over the PhSp, gives a contribution that is
proportional to α2 ln3(−t/m2

ℓ). From previous Bhabha scattering studies
[242–249], it is known that this contribution will cancel with a similar term
coming from the virtual counterpart, i.e. the diagrams in Fig. 4.12. All
the other interference terms between the diagrams in Fig. 4.15 cancel out
similar contributions with the fully virtual diagrams with closed fermion
loop.
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(a) (b) (c) (d)

(e) (f)

Figure 4.15: Real NNLO lepton pair production µe→ µeℓ+ℓ−. The diagrams that
exchange the outgoing fermionic lines due to the identity of the FS leptons are
not displayed. However, they have been calculated [213].

Details on the NNLO virtual and real-virtual leptonic corrections
calculation

The calculation of the purely virtual and the real-virtual leptonic
corrections has been performed using DR techniques. The starting point
is the NLO amplitudes that were already computed in [205] and already
inserted in the MESMERMC event generator. It is known that the insertion
of a leptonic VP function on top of a virtual photon in an amplitude
amounts to substituting the normal photon propagator with a DR as in
the following equation [250–254]:

−igµν
q2 + iε

→ −igµδ
q2 + iε

i
(
q2gδλ − qδqλ

)
Π̂ℓ(q

2)
−igλν
q2 + iε

, (4.21)

where Π̂ℓ(q
2) is the renormalised VP function obtained from its imaginary

part, by considering a SDR:

Π̂ℓ(q
2) = −q

2

π

∫ ∞

4m2
ℓ

dz

z

Im Π̂ℓ(z)

q2 − z + iε
. (4.22)

The mass of the circulating lepton is mℓ. Moreover, one can write the
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imaginary part of the leptonic subtracted VP function as:

Im Π̂ℓ(z) = −α
3
Rℓ(z), (4.23)

with

Rℓ(z) =

(
1 +

4m2
ℓ

2z

)√

1− 4m2
ℓ

z
. (4.24)

The term in Eq. 4.21 with qδqλ does not contribute because it is not
gauge-invariant. Thus, the final DR that has to substitute the photon
propagator reads:

−igµν
q2 + iε

→ −igµν
( α
3π

)∫ ∞

4m2
ℓ

dz

z

1

q2 − z + iε

(
1 +

4m2
ℓ

2z

)√
1− 4m2

ℓ

z
. (4.25)

The dispersive integral can be computed using MC techniques in the
variable z. The final form of the two-loop purely virtual and real-virtual
matrix element is [213]:

M2(µe→ µe) =
( α
3π

)∫ ∞

4m2
ℓ

dz

z
Rℓ(z)M1(µe→ µe; z), (4.26)

where M1 is the one-loop amplitude with the mass of the virtual photon
with the VP insertion set to

√
z.

This procedure has been recently used in Refs. [218,219] to compute
the NNLO hadronic corrections to muon-electron scattering.

Details on the NNLO real leptonic corrections calculation

The real lepton pair production from muon-electron scattering µe→
µeℓ+ℓ−, with ℓ = e,µ, is a tree-level 2 → 4 process. However, the com-
plicated matrix element needs to be integrated with proper sampling
techniques. As a matter of fact, the small electron mass and the large PhSp
for this process make the integration of the very peaky matrix elements a
difficult task.

The QED NNLO real pair production matrix elements have been
calculated using FORM [233–235] and their correctness has been cross-
checked with the RECOLA package [238,239].

In the following part of this Section, the momenta are labelled as
follows:
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• p1: IS muon
• p2: IS electron
• p3: FS muon
• p4: FS electron
• p5: FS ℓ

+

• p6: FS ℓ
−

To be sure of the PhSp implementation and integration, two different
parametrisations were chosen and their description follows [213]. The
four-body LIPS is defined as:

dΦ4 =

∫
d3p3

(2π)32E3

d3p4

(2π)32E4

d3p5

(2π)32E5

d3p6

(2π)32E6

× δ4

(
p1 + p2 −

6∑

i=3

pi

)
. (4.27)

Diagrams in Figs. 4.15 (a) and (b) follow the PhSp separation as in
the following equation:

dΦ4 = (2π)3
∫

dQ2 dΦ3(p1 + p2 → p3 + p4 + Q)

× dΦ2(Q → p5 + p6). (4.28)

The first PhSp parametrisation for the diagram with the IS radiative
pair production on the electron line in Fig. 4.15 (a) is defined by the
following 8 independent variables:

Q2, cosϑ4,ϕ4, cosϑ56,ϕ5,E56, cosϑ
∗
5,ϕ

∗
5. (4.29)

The variables cosϑ∗5 and ϕ∗5 are generated in the rest frame of the ℓ+ℓ−

pair, where p5 + p6 = 0. The two variables ϑ56 and ϕ56 are the polar and
azimuthal angles of the pair with momentum p5 + p6 in the CM frame.
The parametrisation of the diagram in Fig. 4.15 (b) is very similar, but
the pair polar and azimuthal angles ϑ56 and ϕ56 are in the CM frame
where the ẑ axis is directed along p4. The diagrams with the pair produced
after the radiative emission along the muon line do not have a dedicated
parametrisation, since these diagrams give rise to logarithms of the type
L = ln s/m2

µ which are not leading, since
√
s ≃ mµ.
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The last important terms that have to be accounted for are the periph-
eral diagrams, as in Fig. 4.15 (e) and (f). They require a different PhSp
parametrisation [255,256]:

dΦ4 = (2π)6
∫

dQ2
356 dQ

2
56 dΦ2(p1 + p2 → p4 + Q356)

× dΦ2(Q356 → p3 + Q56) dΦ2(Q56 → p5 + p6). (4.30)

The independent variables are:

Q2
356,Q

2
56, cosϑ4,ϕ4, cosϑ

∗
3,ϕ

∗
3, cosϑ

∗∗
5 ,ϕ∗∗5 , (4.31)

where Q2
356 and Q2

56 are invariant masses, cosϑ∗3 and ϕ∗3 are generated in
the Q356 rest frame, and cosϑ∗∗5 and ϕ∗∗5 are generated in the Q56 rest
frame. This implementation of the PhSp calculation is symmetrised for
when the FS e+e− particles are considered to be identical [213].

The second PhSp parametrisation makes use of a different set of inde-
pendent generated variables:

Q2
456,Q

2
56, t13,ϕ3, cosϑ

†
56,ϕ

†
56, cosϑ

∗
5,ϕ

∗
5. (4.32)

In this parametrisation, which is the one that is present in MESMER,
Q456 = p4 + p5 + p6, Q56 = p5 + p6, t13 = ∥p1 − p3∥2, ϕ3 is the FS muon

azimuthal angle in the p1 + p2 rest frame, ϑ†56 and ϕ†56 are the polar and
azimuthal angles of the 5+ 6 intermediate-state particle in the p1− p3 + p2
rest frame, and ϑ∗5 and ϕ∗5 are the FS ℓ+ polar and azimuthal angles in the
p5 + p6 rest frame.

The variables in this parametrisation are not generated uniformly but
are sampled according to the shape and peaks of the matrix elements.
Moreover, to closely follow each of the functions peaks, a multi-channel
generation has been employed. For example, if an electronic pair is produced,
ϕ3, ϕ

†
56 and ϕ∗5 are generated with a flat sampling, whereas Q2

456 follows the
fermion propagator peaking behaviour of 1/Q2

456, t13 follows the peaking
behaviour of the photon propagator that connects the electron leg with the
muon leg of 1/t13. The pair invariant mass Q2

56 is sampled as 1/Q2
56. The

cosine of the electron pair cosϑ†56 is generated either with the sampling

function 1/(1− β2 cosϑ
†
56) where β2 is the FS electron speed in the p1 −
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p3 + p2 rest frame, or with the sampling function 1/(1− β13 cosϑ
†
56) where

β13 is the speed of p1 − p3 in the p1 − p3 + p2 rest frame, in two different
channels. The cosine of the FS pair electron cosϑ∗5 is generated either with
the sampling function 1/(1− β′13 cosϑ

∗
5) where β

′
13 is the speed of p1 − p3

in the p5 + p6 rest frame, or with the sampling function 1/(1− β24 cosϑ
∗
5)

where β24 is the speed of p2 − p4 in the p5 + p6 rest frame, in two different
channels.

The identity of the FS particles is kept into account with the inclusion
of other channels where there is an exchange between particles p4 ↔ p6.
To correctly sample the emission of the pair from the muon leg (see Figs.
4.15 (c) and (d)), other channels are implemented where the IS electron
and FS electron that is not coming from the pair are exchanged with the
IS muon and FS muon, namely p1 ↔ p2 and p3 ↔ p4 [213].

4.3.2.2 Inputs, cuts and observables

In this section, all the input parameters and the choice of kinematical
cuts that were used in Ref. [213] are defined. They will be applied to the
calculation described in 4.3.2.1. A selection of the differential cross sections
that were studied in Ref. [213] will be then shown in Sec. 4.3.2.3.

The simulations with MESMER were performed with an input muon
beam energy of 150 GeV. The FS electron and muon angles are generated
with ϑe, ϑµ < 100 mrad and the FS electron is generated with an energy
of Ee > 1 GeV. This choice of generation bounds is based on the MUonE
experimental acceptance.

In the 2 → 2 kinematics, if the IS muon beam has an energy of Eµ = 150

GeV, the FS muon has an angle ϑµ < ϑ̃µ = arccos
(√

1−m2
e/m

2
µ

)
≃ 4.84

mrad and an energy of Eµ > Ẽµ ≃ 10.28 GeV, which corresponds to the
energy in the laboratory frame of a muon that is scattered backwards in
the CM frame. If an additional lepton pair ℓ+ℓ− is produced, there will be
a 2 → 4 kinematics. This implies that more than two particles could be
into acceptance. For this reason, a different event selection criterion needs
to be investigated.

One can define a muon-like track such that it has ϑµ < ϑ̃µ and Eµ > Ẽµ

and an electron-like track such that ϑe < 100 mrad and Ee > 1 GeV [213].
The final selection criterion, which will be called basic acceptance cuts
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(BAC), is to accept exactly two tracks in the detector, one of which has to
be muon-like and the other has to be electron-like.

On top of the BAC, in Ref. [213] a set of additional cut selections
was investigated. As will be clear from the study of the differential cross
sections displayed in 4.3.2.3, the BAC need to be complemented with some
other PhSp restrictions that select elastic events and suppress the reducible
background from the pair production. The aforementioned additional cuts
are:

• A lower bound on the electron-like and on the muon-like angles can
be defined: ϑc = 0.2 mrad, such that ϑe,ϑµ > ϑc. This selection
allows to reduce the effect of the peripheral diagrams (Fig. 4.15 (e)
and (f)) without losing sensitivity to the running of α for large |t|;

• An acoplanarity cut such that ξ = |π − |ϕe − ϕµ|| < ξc = 3.5 mrad,
as was already defined in Setups 3 and 4 for the NLO case in Sec.
4.2.2;

• An elasticity cut where the elasticity distance is considered as δ <
δc = 0.2 mrad. The distance is the minimum distance between the
generated point (ϑe,ϑµ) and the elastic curve, which is univocally
defined from the 2 → 2 kinematics. As was already pointed out in
Ref. [187], the elastic curve can be parametrised as:

ϑµ(ϑe) = arctan

[
2mer cosϑe sinϑe

Eµ − r(rEµ + 2me) cos2 ϑe

]
, (4.33)

where

r =

√
E2

µ −m2
µ

Eµ +me
(4.34)

and the distance is:

δ = min
ϑe

√
(ϑe − ϑ̄e)2 + [ϑµ(ϑe)− ϑ̄µ]2. (4.35)

The differential observables that were studied in Ref. [213] are:

dσ

dtee
,

dσ

dtµµ
,

dσ

dϑe
,

dσ

dϑµ
, (4.36)
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where tee = ∥p2 − p4∥2 and tµµ = ∥p1 − p3∥2. Following what has been
done for the NLO and the NNLO phenomenological reviews in Sections
4.2.2 and 4.3.1.2, only the differential cross sections w.r.t. the FS angles
will be shown here. Moreover, the corrections are presented using the
differential K factor:

KNNLO =
dσQED

2, l

dσQED
0

. (4.37)

This choice makes it possible to compare the NNLO observables directly
with the LO results to which the precision goal of 10 ppm is referred.

4.3.2.3 Numerical results

In this section, the numerical impact of the NNLO leptonic contributions
to the µe scattering cross section, as described in Sec. 4.3.2.1, will be shown
for the observables and the event selection criteria that were shown in Sec.
4.3.2.2. The following results have been produced with the MESMER MC
event generator.

NNLO virtual pair production

As a first step, one can consider the subset of NNLO virtual lepton
pair contributions that come from the diagrams in Figs. 4.8 and 4.9, which
contribute to the running of the EM constant α(t). In Fig. 4.16, the effects

of e, µ and hadrons in the VP at LO, indicated with
(
∆αLO

)2
, and also in

the VP at NLO, indicated with ∆αNLO, are shown. One can see that an
electron circulating in

(
∆αLO

)2
gives positive contributions. They go from

about 2.4× 10−4 for small ϑe to about 0.8× 10−4 at 32 mrad. If also the
∆αNLO contribution is considered, the effect is shifted upwards by about
0.5 × 10−4 across the whole ϑe range. The effects of muons circulating
in the VPs and hadronic blobs is not negligible for about ϑe ≲ 15 mrad,
increasing to about 0.6×10−4 in both cases. The hadronic corrections have
been calculated using the KNT routine [61].

On the r.h.s. of Fig. 4.16, one can see that the effect of
(
∆αLO

)2
and

∆αNLO increases as ϑµ increases. The former, for electronic VPs, goes from
about 0.8× 10−4 for small ϑµ to about 2.4× 10−4 at the kinematical limit
ϑµ = 4.84 mrad. As in the ϑe distribution, the effect of ∆αNLO is stable
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Figure 4.24: Scatter plot of 5 × 105 generated points for the µ−e− →
µ−e−e+e− process. In the top panel, BAC and minimum electron and
muon angle cuts have been imposed. In the second panel, BAC, minimum
electron and muon angle cuts and the acoplanarity cut have been imposed.
In the third panel, BAC, minimum electron and muon angle cuts and the
elasticity cut have been imposed. In the bottom panel, all cuts have been
imposed. The black line is the correlation curve defined in 4.33 [213].

On the r.h.s. of Fig. 4.22, the effects of all the cuts described in 4.3.2.2 on
the realistic e+e− production process are shown w.r.t. the ϑe distribution.
This contribution is reduced to the ppm level over the whole ϑe range.

The same conclusions can be traced from the r.h.s. plot in Fig. 4.23.
The imposition of all the cuts that were described in Sec. 4.3.2.2 reduces
the differential KNNLO to a maximum value of 0.4 ppm, which is lower
than the MUonE sensitivity goal.

A much clearer effect of each of the imposed cuts can be seen in Fig.
4.24, which shows the scatter plot in the (ϑe,ϑµ) plane of the generated
events, in comparison with the correlation curve that was written in Eq.
4.33. In the top panel, if only BAC are imposed, it is clearly visible that
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many of the events (red circles) are very far from the elastic curve, which
defines what an elastic event looks like for the tree-level process. If a
minimum angle threshold is imposed, all the events with a very small muon
angle are rejected (blue crosses). In the second panel from the top, the
effect of the acoplanarity cut is shown. In the third panel from the top, the
effect of the elasticity cut is shown. In this case, it is clear that the only
accepted events are those who stay close to the elastic curve. From this plot,
one can also note that the acoplanarity and elasticity cuts seem to have a
partially complementary behaviour on the events that they reject. In the
fourth panel, the combination of all the cut choices can be seen. As already
seen in the differential distributions, this combination is very effective in
reducing the real electron pair production, mitigating a potentially very
large background. With all the cuts imposed, the rejection efficiency was
calculated to be of about 99.993%, confirming again the effectiveness of
this choice of cuts [213].

4.3.3 π0 production in µe scattering

The NNLO virtual hadronic corrections were studied in Refs. [218,219]
and were included in the MESMER MC event generator in [228]. The
corresponding real-emission contributions are the µ±e→ µ±eπ+π−, µ±e→
µ±eπ0π0 and µ±e→ µ±eπ0 processes. After the studies on the lepton pair
production in µe scattering, it is clear that the charged pion pair production
is a very suppressed channel. As a matter of fact, the available PhSp is very
constrained by the low CM energy at the MUonE experiment. Moreover,
a realistic event selection makes the cross section vanishing. For these
reasons, the only possible channel that is available at MUonE is the single
neutral pion production. This process is enhanced for small electron and
muon scattering angles where the sensitivity to ∆αhad(t) is very high.
Moreover, since the main decay mode for the neutral pion is π0 → γγ, the
two FS photons are not detected in the MUonE experimental setup. This
means that the µ±e → µ±eπ0 process has exactly the same signature in
the detector as the one of µe→ µe scattering.

In Sec. 4.3.3.1, the calculation of the µ±e → µ±eπ0 cross section
is described. In Sec. 4.3.3.2, the impact on some relevant differential
observables will be shown.
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Figure 4.25: The LO Feynman diagram for the process
µe→ µeπ0 [228].

4.3.3.1 The calculation

In this section, the calculation of the single neutral pion production
from muon-electron scattering is presented, following Ref. [228]. From now
on, the momenta are labelled as follows:

• p1: IS muon
• p2: IS electron
• p3: FS muon
• p4: FS electron
• p5: FS π

0

and the corresponding Feynman diagram is represented in Fig. 4.25.
In order to calculate the matrix element, one can start from the π0γγ

interaction Lagrangian density:

LI =
g

2!
εµνκλFµνFκλ

φπ0 , (4.38)

where a form factor Fπ0γ∗γ∗(p2, q2) that depends on the two photon virtu-
alities needs to be inserted [258]. From the Lagrangian, one can compute
the Feynman rule for the π0γγ vertex:

−4igεµνκλp
νqλFπ0γ∗γ∗(p2, q2), (4.39)

where p and q are the four-momenta of the photon propagators.
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In the Feynman rule, a coupling constant g can be seen. In order to
obtain its value, one can exploit a relation that holds between the coupling
g and the neutral pion decay width Γπ0→γγ [258]:

g2 =
4πΓπ0→γγ

m3
π0

, (4.40)

where mmπ0 is the neutral pion mass, taken as mπ0 = 134.9766 MeV [259].
Moreover, the decay width Γπ0→γγ is related to the fπ parameter by the
following relation:

Γπ0→γγ =
α2m3

π0

64π3f2π
. (4.41)

If one takes a value of fπ = 0.092388 GeV [260], all the components to
calculate the matrix element are known.

In Ref. [228], the calculation of the exact tree-level matrix element
for µe → µeπ0 was performed using FORM [233–235], keeping all the
finite mass terms. Moreover, the form factor has been calculated using the
resonance chiral symmetric model with SU(3) breaking in Ref. [260].

The PhSp can be parametrised using the following decomposition [228]:

dΦ3 = (2π)3
∫

dQ2 dΦ2(p1 + p2 → p3 + Q) dΦ2(Q → p4 + p5). (4.42)

The set of independent variables that are generated in order to calculate
the PhSp is:

ϑµ,φµ,Q
2,ϑ∗e,φ

∗
e. (4.43)

The two variables ϑ∗e and φ∗
e are generated in the rest frame of the pair 45,

namely p4 +p5 = 0. This calculation was then inserted into the MESMER
MC event generator.

The results in Ref. [228] are checked in a tuned comparison with the
event generator EKHARA [261,262].

4.3.3.2 Numerical results

In this section, the numerical impact of the single neutral pion produc-
tion from muon-electron scattering µe→ µeπ0 will be shown, for typical
running conditions and event selections of the MUonE experiment.
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Figure 4.26: The configuration space for the µe→ µeπ0 process plotted w.r.t.
the electron scattering angle ϑe and the muon scattering angle ϑµ, with
BAC. The colour gradient represents the doubly differential cross section
d2σ/dϑe dϑµ. In blue, there is the elasticity curve as in Eq. 4.33 [228].

The pion production cross section is expected to be suppressed w.r.t.
the LO µe scattering by a factor of about g2m2

π0 ∼ 10−6. Indeed, the total
cross section for this process, with the incoming muon beam of energy
Eµ = 150 GeV and the IS electron at rest is [228]:

σπ0 = 6.53589(6) pb. (4.44)

On top of this, if one considers the BAC that were designed in [205,
211,213], with a minimum FS electron energy of Ee = 0.2 GeV, the cross
section is [228]:

σ0.2GeV
π0 = 2.69836(4) pb. (4.45)

For Ee > 1 GeV, the cross section is [228]:

σ1GeV
π0 = 1.61597(3) pb. (4.46)

These values have to be compared with a tree-level µe scattering elastic
cross section of about σ0.2GeV

0 ∼ 1265µb and σ1GeV
0 ∼ 245µb. From these

integrated cross sections, it is clear that µe→ µeπ0 is not a numerically
relevant background process at MuonE. However, given the enhancements
of this process at small electron angles shown in Fig. 4.26, a differential
study on the FS muon and electron angles will be shown. As was the case
in Sec. 4.3.2.3, the differential ratio of the π0 production cross section with
the LO µe scattering is plotted:

Kπ0 =
dσπ0

dσQED
0

. (4.47)
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this reason, the missing IR-non-divergent terms of the NNLO photonic
corrections that were approximated in Ref. [211] will need to be calculated.

Moreover, when soft and/or collinear radiation is emitted, large loga-
rithms will be present in the cross section formula. If one performs a NnLO
fixed-order calculation, the cross section contains terms proportional to:

α2

(
α ln

m2

Q2

)n

(4.48)

that might not be small, since the logarithmic term is not necessarily small.
The theoretical error that comes with the MC calculation needs to

include all the missing higher-order terms. In order to reduce this error,
a procedure of resummation of all the large collinear logarithms needs to
be devised and implemented in the MESMER MC event generator, for
example using a QED PS approach. The MUonE required precision goal is
expected to be reached with a full NNLO+PS calculation.
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In this section, the calculation of the lepton pair production in the muon-
nucleus scattering, namely µ±X → µ±Xℓ+ℓ− will be shown, following [230].
In Sec. 5.1, details on the calculation will be provided. In Sec. 5.2, the
input variables and the definition of the event selection cuts that were
used will be shown. In Sec. 5.3, the impact on some relevant differential
observables will be shown.

5.1 The calculation

In the MUonE experiment, as already shown in Chapter 3, the muon
beam impinges on a fixed beryllium or carbon target. The process that
is used to extract the hadronic running of the EM constant ∆αhad(t) is
the scattering of the muons onto electrons. However, the electrons are
bound in the low Z target. For this reason, the main source of background
in the MUonE experiment has been identified as the scattering of the IS
muon with the nucleus [191]. The cross section of the nuclear processes is
proportional to Z2 while µe scattering is proportional only to Z.

When the muon interacts with the nucleus at rest, a real lepton pair
can be produced. It is crucial to carefully study this process because, in
certain kinematic regions, it could mimic an elastic event. As a matter
of fact, when one of the FS leptons is not detected, two possible tracks
can be reconstructed in acceptance. On top of this, it could be a relevant
background process also for possible NP studies at the MUonE experiment
where light mediators decay in a e+e− pair [263–265].

The process µ±X → µ±Xe+e− is included and implemented in the
Geant4 simulation toolkit [266, 267] and is based on Refs. [268, 269]. In
this implementation, the muon scattering angle ϑµ is always neglected.
Since the MUonE experiment needs a very precise measurement on the FS
lepton angles within acceptance, this approximation is not valid. Hence,
a fully differential calculation of the pair production from muon-nucleus
scattering was required [230].

From now on, the momenta are labelled as follows:

• p1: IS muon
• p2: FS muon
• p3: FS ℓ

+

• p4: FS ℓ
−
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Figure 5.1: The four diagrams that contribute for µX → µXℓ+ℓ− [230].

where ℓ = e, µ. Due to the low CM energy at typical MUonE running
conditions and to the high tau lepton mass mτ , the production of a real
τ+τ− pair is negligible w.r.t. the MUonE precision goal of 10 ppm. For
this reason, tau lepton pair production was not considered in Ref. [230].

The muon-nucleus scattering process is described as the scattering of a
muon in an external Coulomb potential that is generated by the nucleus
X at rest in the laboratory rest frame. An approximation has been used
in this calculation as the nucleus is considered to never have a recoil from
the scattered muon. This means that in this process the total energy is
conserved, whereas the total three-momentum is not. Moreover, the nucleus
is considered to have a spatial charge distribution which is closely connected
to the electric form factors that are known from Refs. [270,271].

In Fig. 5.1, there are the four tree-level diagrams that contribute to the
process under consideration. As was the case for the µ±e− → µ±e−ℓ+ℓ−

process, the pair can be emitted from the incident muon via a radiated
photon that creates a lepton pair or via the virtual photon that is exchanged
with the nucleus. The latter diagrams are called peripheral diagrams, or
trident diagrams.

The matrix elements of this process have been calculated using FORM
[233–235] and cross-checked with Package-X [272,273], keeping into account
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all the finite mass effects.
The calculation is performed assuming that the nucleus, which is

considered as point-like and with charge Ze, creates the Coulomb potential
Aµ(x) that interacts with the IS muon. On top of this, to keep into account
that the nucleus has a finite size, a form factor F (|q|) is inserted, where q
is the three-momentum that is transferred from the virtual photon to the
nucleus. The form factor is related to the nuclear spatial charge distribution
in spherical coordinates ρ(r) via a Fourier transformation:

F (|q|) = 4π

Ze

∫ ∞

0
drr2ρ(r)

sin(|q|r)
|q|r . (5.1)

In the previous equation, the charge distribution is normalised such that:

4π

∫ ∞

0
drr2ρ(r) = Ze. (5.2)

In general, the choice of the spatial charge distribution affects the
behaviour of the form factor. In Ref. [230], different models for the same
isotope are used, as was done in [274,275].

Different parametrisations were considered [230]:

• One-point Fermi (1pF) model. The spatial charge distribution is
parametrised as:

ρ(r) =
ρ0

1 + exp r−c
z

, (5.3)

where ρ0 is a constant that is included in the model such that the
distribution is normalised:

ρ0 =
−Ze

8πz3 Li3

(
− exp

c

z

) , (5.4)

z ≃ 0.52 fm is the surface thickness and c is the half-density radius
that depends on the root-mean-square (rms) charge radius;

• modified harmonic oscillator (MHO) model. The spatial charge dis-
tribution is parametrised as:

ρ(r) = ρ′0

(
1 + ω

r2

a2

)
exp

(
−r

2

a2

)
, (5.5)
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where ρ′0 is a constant that keeps into account the normalisation of
the distribution:

ρ′0 =
Ze

4π

8

a3
√
π(2 + 3ω)

, (5.6)

a and ω are input parameters that can be extracted from the fit of
this model with experimental data;

• Fourier–Bessel (FB) expansion. The spatial charge distribution is
parametrised as:

ρ(r) =





n∑

i=1

ai J0

(
kπr

R

)
r ≤ R

0 r > R.

(5.7)

In the previous definition of ρ(r), J0(x) sin(x)/x is the zeroth order
spherical Bessel function, and R is an input parameter. Moreover,
the coefficients ai are defined so that the following relation holds:

n∑

i=1

ai
(−1)i+1

i2
= Ze

π

4R3
. (5.8)

In Ref. [230], the 1pF model for the EM form factor was used both
for µBe → µBe ℓ+ℓ− and for µC → µC ℓ+ℓ−, using the nuclear radii that
were categorised in Ref. [276]. Moreover, an alternative parametrisation
for each nucleus has been implemented in the calculation. For the process
that involves the beryllium nucleus, also the MHO model has been studied.
For the process that involves the carbon nucleus, also the FB expansion
has been included, following [277,278].

The PhSp can be parametrised starting from the usual three-body
PhSp unit volume:

dΦ3 =

4∏

i=2

d3pi

(2π)32Ei
δ


E1 −

4∑

j=2

Ej


 . (5.9)

In the previous equation, Ei is the energy of the i-th particle, with three-
momentum given by pi.

As was already the case for the real lepton pair production from
µe scattering, a multi-channel approach has been implemented in the
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MESMER MC event generator, to improve the convergence of integration.
Four channels corresponding to the four diagrams in Fig. 5.1 were designed.
In the following list, for each sampling channel, the specific form of the
PhSp parametrisation will be shown [230]:

Channel 1: IS radiation:

dΦ3 =
1

4(2π)2
dQ2 dEQ d cosϑQ dϕQ d cosϑ2 dϕ2

× EQ|Q|dΦ2(Q → p3 + p4). (5.10)

In the previous equation, Q2 = ∥p3 + p4∥2 is the squared
invariant mass of the leptonic pair ℓ+ℓ− that is emitted from
the IS muon. The term dΦ2(Q → p3 + p4) is the two-body
LIPS where the pair decays into two leptons. In this channel,
the z axis of the laboratory rest frame is assumed parallel to
the three-momentum of the IS muon. The Q2 term is sampled
as 1/Q2. The FS muon polar angle ϑ2 is sampled as 1/|q|4,
where the momentum exchanged between the muon and the
nucleus was introduced, namely q = p1−p2−p3−p4. The pair
momenta are generated in the ℓ+ℓ− rest frame, namely where
Q = 0. The azimuthal angle of the FS muon is generated
according to an uniform distribution. All the momenta are
generated in the rotated reference frame where ϕ2 = 0 and
then are rotated by ϕ2, since the system has a cylindrical
symmetry around the z axis.

Channel 2: FS radiation:

dΦ3 =
1

4(2π)2
dQ2 dEQ d cosϑQ dϕQ d cosϑ2 dϕ2

× EQ|Q|dΦ2(Q → p3 + p4). (5.11)

In the previous equation, ϑQ is the polar angle of the lepton
pair three-momentum Q, whereas ϕQ is the corresponding
azimuthal angle. In this sampling channel, unlike the previous
one, the z axis is considered such that it is parallel to the
FS muon three-momentum p2. The pair angles are thus
generated with ϕ2 = 0. The generation of the lepton pair
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momenta p3 and p4 follow the same reasoning of Channel
1, as the Q2 term is sampled as 1/Q2 and the FS muon polar
angle ϑ2 is sampled as 1/|q|4. All the other variables are
sampled uniformly.

Channel 3: Peripheral diagram:

dΦ3 =
1

8(2π)9
d|p2| d|p3|dϕ2 dϕ3 dϕ4 d cosϑ2 d cosϑ3

× d cosϑ4
|p2|2
E2

|p3|2
E3

√
(Eµ − E2 − E3)2 −m2

ℓ . (5.12)

In the previous equation, Eµ is the IS muon energy and mℓ

is the mass of the lepton of the pair. Also in this channel, as
was the case for the two radiative ones, all the momenta are
generated in the frame where ϕ2 = 0 and then are rotated by
ϕ2. The FS muon polar angle ϑ2 is sampled as 1/∥p1 − p2∥2,
ϑ3 is sampled as 1/(∥p1 − p2 − p3∥2−m2

ℓ ) and ϑ4 is sampled
as 1/|q|4.

Channel 4: Crossed peripheral diagram:

dΦ3 =
1

8(2π)9
d|p2| d|p4|dϕ2 dϕ3 dϕ4 d cosϑ2 d cosϑ3

× d cosϑ4
|p2|2
E2

|p4|2
E4

√
(E − E2 − E4)2 −m2

ℓ . (5.13)

The same comments as in Channel 3 apply here, but with
the exchange of the pair leptons, namely p3 ↔ p4.

5.2 Inputs, cuts and observables

In this section, all the input parameters and choices of kinematical
cuts that were used in Ref. [230] are defined. They will be applied to
the calculation described in Sec. 5.1. A selection of the differential cross
sections that were studied in Ref. [230] will be then shown in Sec. 5.3.

The energy of the incoming muon beam is fixed at 160 GeV and the
momentum is directed towards the centre of the nucleus. As was already
done for the calculation of the corrections at NLO and NNLO in Sections
4.2, 4.3.1 and 4.3.2, one can define the BAC [230]:
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• 0.2 mrad < ϑµ < 4.84 mrad, Eµ > 10.23 GeV, ϑe < 32 mrad and
Ee > 0.2 GeV.

Since the lepton pair production is very enhanced for small muon scattering
angles, a cut on the muon minimum angle was included in the BAC to
reduce the cross section. This has the effect of selecting the elastic µe
scattering events, rejecting most of the unwanted background.

For the process µX → µXe+e−, the cuts on the electron angle ϑe
and on the electron energy Ee are applied to both the e+ and the e−

of the produced pair. That is because the MUonE experiment does not
distinguish the charge of the FS particles in acceptance. For the process
µX → µXµ+µ−, the assumption that only one FS muon is reconstructed as
a muon and the other particles are reconstructed as electrons is made [230].
This choice is made because in the real experiment the event where two
muons are reconstructed in the final state will be rejected. As a matter
of fact, the signature of the µX → µXµ+µ− process is different from the
elastic µe scattering event. Thus, in order to produce the phenomenological
results that will be discussed in Sec. 5.3 if only one muon satisfies the cuts
on ϑµ and Eµ, it will be considered as the muon track, whereas all the
other FS muons will have to satisfy the cuts on ϑe and Ee. If more than
one muon satisfies the cuts on ϑµ and Eµ, the muon track will be chosen
at random, while the others will be treated as electrons.

All the events of this process can have either two distinct tracks in the
detector or three tracks. Two-track events are those where the reconstructed
particles are exactly one muon and one electron. The muon satisfies the
selection cuts on ϑµ and Eµ, whereas only one of the FS electrons satisfies
the cuts on ϑe and Ee. This case study is very important to address because
these events mimic the signal of interest of the MUonE experiment, which
is the elastic µe scattering signature.

On the other hand, three-track events are those where all the involved
particles (one muon and two reconstructed electrons) satisfy the respective
cuts. In order to keep into account the spatial resolution of the MUonE sil-
icon trackers, if two tracks are sufficiently collinear, they will be considered
as a single track. More specifically, if the angular separation of two tracks
is less than the angular sensitivity δϑ < 20 µrad, the number of tracks will
be reduced by one.

Additional selection cuts have been studied in Ref. [230] and have been
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Process Cross section (nb)

µ+Be → µ+Be e+e− 488.31(25)
µ−Be → µ−Be e+e− 488.38(27)
µ+Be → µ+Beµ+µ− 10.624(28)
µ−Be → µ−Beµ+µ− 10.625(27)

µ+C → µ+C e+e− 1102.58(55)
µ−C → µ−C e+e− 1103.08(63)
µ+C → µ+Cµ+µ− 24.111(55)
µ−C → µ−Cµ+µ− 24.106(61)

Table 5.1: Total cross section for µ±X → µ±Xℓ+ℓ− for
X = Be, C and for ℓ = e, µ [230].

applied to the µX → µXℓ+ℓ− process:

• Maximum transferred momentum: |q|2 < 0.6 GeV2. This threshold
corresponds to the maximum three-momentum that can be exchanged
in the tree-level Mott scattering process, with an IS muon energy of
Eµ = 160 GeV and a FS muon scattering angle of ϑµ = 4.84 mrad.

• Acoplanarity cut : ξ = |π − |ϕe − ϕµ|| < ξc = 400 mrad, as was
similarly defined in Sections 4.2.2, 4.3.1.2 and 4.3.2.2;

• Elasticity cut : δ < δc = 0.2 mrad. The elasticity distance is the
minimum distance between the generated point (ϑe,ϑµ) and the
elastic curve, which is univocally defined from the 2 → 2 kinematics,
as already shown in Sec. 4.3.2.2.

Since the three-track events can be rejected experimentally, the acopla-
narity and elasticity selection cuts have been applied only to the two-track
events.

5.3 Numerical results

In this Section, the numerical impact of the µ±X → µ±Xℓ+ℓ− cross
section as described in Sec. 5.1, will be shown for both differential and inte-
grated observables and for the event selection criteria that were described
in Sec. 5.2. The following results have been produced with the MESMER
MC event generator.



108 Chapter 5 ♢ Lepton pair emission in µX scattering

Ee+e− (GeV) MESMER (µb) Geant4 (µb) Difference

5 47.700(74) 45.986 +3.7 %
10 12.080(20) 12.082 −0.02 %
20 2.737(54) 2.766 −1.0 %
40 0.5213(88) 0.543 −4.0 %

Table 5.2: Comparison between MESMER and Geant4 for µ+ C →
µ+ C e+e− [230].

As a first step, the total cross section for the processes under study
will be shown. They are obtained using the BAC as defined in Sec. 5.2 and
are shown in Tab. 5.1. The reference tree-level Mott scattering integrated
cross section with the same cut selection is 4.064 mb for beryllium and
9.145 mb for carbon.

In order to be sure that the calculation is correct, a number of internal
and external cross-checks have been performed. As said in Sec. 5.1, this
calculation was already implemented in the Geant4 simulation toolkit,
although with some structural differences. It is natural, therefore, to com-
pare the solidity of the results from MESMER with those that come from
Geant4. For this reason, the cross section with a fully inclusive angular
acceptance and with a cut on the minimum energy of the emitted pair
Ee+e− has been computed. The results are summarised in Tab. 5.2 for
various pair energy thresholds. As can be seen, the relative difference
between the two simulations is always below 4 %.

In addition to this, the fully inclusive cross section of the µ+C →
µ+ Cµ+µ− process can be directly compared with the analytical expression
that comes from Ref. [279]. In this case, the result obtained with MESMER
is 196.3(9) nb, compared with the analytical value of 196.74 nb.

In addition to the integrated cross section, it is crucial to investigate
the differential impact of this background process, since the MUonE ex-
perimental precision goal is referred to the differential observables. As was
the case for all the calculations that were discussed in Chapter 4, only the
differential cross sections w.r.t. the FS electron and muon angles dσ/dϑe
and dσ/ dϑµ will be shown, for the sake of brevity. More phenomenological
studies on the lepton pair production from muon-nucleus scattering can be
found in Ref. [230].



Section 5.3 ♢ Numerical results 109

0 5 10 15 20 25 30

θe [mrad]

0

1

2

3

4

5

θ µ
[m

ra
d

]

Elasticity curve

Elasticity band

10−2 10−1 100 101 102

d2σ/dθedθµ [ nb/ mrad2 ]

Figure 5.2: Double differential cross section d2σ/dϑeϑµ when
there are two accepted tracks for the µ+ C → µ+ C e+e− process.
The solid line indicates the elastic curve as defined in Eq. 4.33.
The two dotted lines indicate the region where the distance from
the elastic curve is less than the elasticity cut value of δc = 0.2
mrad [230].

As a first step, it is important to study the process with only the
imposition of the BAC. A good characterisation of the process can be seen
in the double differential cross section, as in Fig. 5.2. The plot shows that
the pair production is very enhanced at small muon scattering angles. This
was expected, as was the case in the real lepton pair production [213].
Moreover, this confirms the soundness of the approximation in the Geant4
calculation where the muon scattering angle is always considered as null,
namely ϑµ = 0. Another important piece of information that can be
extracted from the plot is that in the normalisation region, i.e. for ϑµ ≳ 15
mrad, the contribution is not negligible near the elastic curve. This means
that for a precise determination of the signal in that region, the calculation
of this background process is very important.
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Figure 5.3: Differential cross section or the µ+ C → µ+ C e+e−

process w.r.t. the electron scattering angle ϑe. In this plot, the
BAC have been imposed. The blue histogram represents the two-
tracks case. The orange histogram represents the three-tracks case
plotted w.r.t. the maximum electron angle. The green histogram
represents the three-tracks case plotted w.r.t. the minimum elec-
tron angle [230].

In Fig. 5.3, the shape of the differential cross section of µ+C →
µ+ C e+e− w.r.t. the FS electron angle dσ/ dϑe is shown. In the case where
two tracks are reconstructed in the detector, the cross section decreases as
the electron angle increases. The cross section peaks at about 30 nb/mrad
for ϑe ≃ 2 mrad and slowly decreases, reaching about 10 nb/mrad at
ϑe = 32 mrad. In the case where three tracks are reconstructed in the
detector the cross section plotted w.r.t. the maximum electron angle is
very similar to the two-tracks case, but it is shifted upwards by some
tens of nb/mrad, at most. The differential cross section plotted w.r.t. the
minimum angle is quite different, peaking for small electron angles at about
102 nb/mrad and quickly decreasing as the electron angle increases.

In Fig. 5.4, the shape of the differential cross section of µ+C →
µ+C ℓ+ℓ− w.r.t. the FS muon angle dσ/dϑµ is shown. In the case with
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Figure 5.4: Differential cross section or the µ+ C → µ+ C e+e−

process w.r.t. the muon scattering angle ϑµ. In this plot, the
BAC have been imposed. The blue histogram represents the two-
tracks case where ℓ = e. The orange histogram represents the
three-tracks case where ℓ = e. The green histogram represents
the two-tracks case where ℓ = µ. The red histogram represents
the three-tracks case where ℓ = µ [230].

ℓ = e and with two reconstructed tracks, the cross section peaks at ϑµ = 0.2
mrad and yields about 3× 103 nb/mrad, decreasing rapidly as ϑµ increases.
It reaches about 0.8 nb/mrad at the kinematical limit. The shape of the
e+e− production in the three-tracks case is very similar. The muon pair
production contributions are way less important for all the muon angles.
They weigh at least two orders of magnitude less than the electron pair
contributions. If two tracks are reconstructed, the peak at small ϑµ yields
about 10 nb/mrad and decreases for increasing FS muon angles. The same
behaviour is seen in the three-tracks case.

In Fig. 5.5, the effect of the nuclear form factor is shown for µ+C →
µ+C e+e− and in the case of the dσ/ dϑµ differential distribution. The plot
shows the events where exactly two tracks are reconstructed in acceptance.
As can be seen in the lower panel, the relative effect between the inclusion
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Figure 5.5: In the top plot, the differential cross section or the
µ+ C → µ+ C e+e− process w.r.t. the muon scattering angle
ϑµ is shown, with BAC. In blue, the two-tracks case where the
nuclear form factor is not included. In orange, the two-tracks
case where the nuclear form factor is parametrised by the 1pF
model. In green, the two-tracks case where the nuclear form factor
is parametrised by the FB expansion. In the bottom plot, the
relative difference between the 1pF parametrisation and the case
without form factor is in blue. The relative difference, times a
factor of 100, between the 1pF model parametrisation and the
FB expansion parametrisation is in orange [230].

of the 1pF parametrisation and not using the form factor is monotonically
increasing as ϑµ increases. It goes from about 10 % for ϑµ = 0.2 mrad to
about 55 % for ϑµ = 4.84 mrad. Moreover, the relative difference between
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Figure 5.6: Differential cross section of the µ+ C → µ+ C e+e−

process w.r.t. the muon scattering angle ϑµ. The blue histogram
represents the two-tracks case where the BAC are imposed. The
orange histogram represents the two-tracks case where the BAC
and the acoplanarity cut are imposed. The green histogram repre-
sents the two-tracks case where all the cuts described in Sec. 5.2
are imposed [230].

the use of the 1pF model and the FB expansion parametrisation is lower
than 0.6 % in the ϑµ space.

In Fig. 5.6, the shape of the differential cross section of µ+C →
µ+C e+e− w.r.t. the FS muon angle dσ/dϑµ is shown. In this plot, the
effect of the additional cuts can be seen in the case where two tracks are
reconstructed in the detector. The additional cuts are the acoplanarity
and elasticity selection criteria that were described in Sec. 5.2. In this
plot, the effect of the form factor modelled as the 1pF parametrisation was
included. The application of the acoplanarity cut reduces the contribution
by a factor of about two in the whole ϑµ range. However, if one imposes an
elasticity cut, the impact on the differential distribution is more important,
namely of O(10) for ϑµ ≳ 1 mrad. For small muon angles, the peak of
the distribution weighs about 5× 102 nb/mrad, rapidly decreasing as ϑµ
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Figure 5.7: The differential background-to-signal ratio Rbs as
defined in Eq. 5.14 is plotted w.r.t. the FS muon angle ϑµ. The
blue histogram represents the two-tracks case where the BAC are
imposed. The orange histogram represents the two-tracks case
where all the cuts described in Sec. 5.2 are imposed [230].

increases.

In order to have an estimate of the impact of the µ+C → µ+C e+e−

process on the MUonE differential observables, the background-to-signal
ratio can be studied as a function of the muon scattering angle. It is defined
as:

Rbs =
dσ(µ+X → µ+Xe+e−;ϑµ)
Z × dσ(µ+e− → µ+e−;ϑµ)

, (5.14)

where the µe→ µe process is calculated with MESMER including all the
corrections up to NNLO.

In Fig. 5.7, the differential background-to-signal ratio is shown, for the
e+e− production. If only the BAC are included, the ratio ranges from some
10−4 to about 0.1 %. If one introduces all the cuts that were described
in Sec. 5.2, the ratio is reduced to about 10−4 in all the ϑµ space. If one
considers an uncertainty of about 10 % on the form factor, this means
that a background subtraction procedure with a total uncertainty that is
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below 10 ppm is feasible. However, given the possible enhancements of
radiative corrections in the small angles region, the calculation of the NLO
corrections to the real pair production could be necessary for the final
analysis of the MUonE data.
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Conclusions and outlook

In this thesis, the state of the art of the precision theory for muon-
electron scattering has been presented. This work is framed within the
precision studies of the muon anomalous magnetic moment, as a test of
the Standard Model.

A major source of uncertainty in the theoretical predictions of the
muon anomalous magnetic moment comes from hadronic effects. More
specifically, within all the hadronic corrections, the Hadronic Leading Order
term aHLO

µ has the largest theoretical error. Given the very complex scenario
of discrepancies between the Standard Model theoretical prediction, the
lattice-QCD-based theoretical prediction and the experimentally measured
values of aµ, a novel approach to calculate aHLO

µ based on a spacelike
process has been proposed. This method is based on the measurement
of the hadronic running of the electromagnetic constant ∆αhad(t) in a
muon-electron scattering experiment, called MUonE.

MUonE requires a very high precision, at the level of about 10 parts
per million on the differential cross section, to match the timelike and
lattice QCD relative accuracy of about 0.4 parts per million. To reach
this high level of precision, all the radiative corrections up to at least
Next-to-Next-to-Leading Order have to be calculated. Such corrections
were implemented into the MESMER Monte Carlo event generator, which
is the main simulation tool for phenomenological studies as well as for data
analysis and validation for the MUonE experiment.

The calculation of the NNLO lepton pair corrections has been performed.
The impact of the virtual corrections weigh some 10−4 with respect to
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the LO at the differential level, with enhancements in some kinematic
regions of the Phase Space, especially for small electron scattering angles
ϑe. The real lepton pair production from muon-electron scattering, namely
the µe→ µeℓ+ℓ− process, was studied as a possible source of background
for the MUonE experiment. As a matter of fact, when only two tracks
are reconstructed into acceptance, this process could precisely mimic the
elastic µe scattering signal. However, with the imposition of elasticity and
acoplanarity cuts, the impact of the real lepton pair production becomes
negligible with respect to the 10 ppm precision goal.

Another possible source of background at the MUonE experiment could
be the single neutral pion production, namely µe→ µeπ0. Since the neutral
pion most of the times decays into two photons the reconstructed track
in the detector of this process could be mistaken for the one of elastic
µe scattering. However, it was shown that this contribution is negligible
both at integrated and at differential level, weighing some 10−7 on the
differential observables with respect to the Leading Order.

Finally, the lepton pair production from muon-nucleus scattering µX →
µXℓ+ℓ− was investigated, as a source of background for the MUonE
experiment. This process, as was the case for the real lepton pair production
from µe scattering, could mimic the elastic muon-electron scattering signal
when only two tracks are reconstructed into acceptance. For this reason,
a detailed study was necessary. Moreover, previous calculations with the
Geant4 simulation toolkit hinted that the contribution of this process would
be of about 10−4 with respect to the Leading Order, which is larger than
the 10 ppm precision goal for MUonE. A differential calculation proved
that indeed this process can be important in certain kinematic regions,
especially in the MUonE normalisation region.

The work presented in this thesis does not conclude the list of the
needed calculations for the MUonE experiment. As was shown for the
NNLO contributions, radiative corrections can enhance the cross sections
at very small scattering angles, making them larger than the MC theoretical
error goal of 10 ppm on the differential observables. A very important
missing block is the resummation of the large collinear logarithms that are
due to radiative corrections. They enhance the cross sections in certain
kinematic regions of the phase space, especially for small electron scattering
angles. The resummation procedure could be included in the MC calculation
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with the implementation of a QED parton shower on top of the fixed-order
calculation. The precision goal on the Monte Carlo generator will most
probably be reached with the calculation of NNLO effects matched to a
parton shower that includes all the Leading Logarithms.

Moreover, considering the importance of the tree-level lepton pair pro-
duction from muon-nucleus scattering as a background for the MUonE
experiment, the calculation of the radiative corrections to the tree-level ap-
proximation should be performed. It is expected that these corrections have
non-negligible effects on the shape of the distributions with enhancements
in particular kinematic regions.
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for the MUonE experiment can be calculated.
With the MESMER code, one can calculate the following corrections

to µe scattering and background processes:

• LO QED [205];
• NLO EW corrections, for a single real or virtual photon [205];
• NNLO QED photonic corrections, where a subset of the corrections
are approximated as explained in Sec. 4.3.1.1 [211];

• NNLO lepton pair contributions and µe→ µeℓ+ℓ−, with ℓ = e, µ as
explained in Sec. 4.3.2 [213];

• Single neutral pion production, µe → µeπ0 as explained in Sec.
4.3.3 [228];

• Real pair production from muon-nucleus scattering, namely µX →
µXℓ+ℓ−, with ℓ = e, µ as explained in Chapter 5 [230].

MESMER is a code that is mostly written in Fortran 77. Some exter-
nal libraries are used to calculate one-loop integrals and pseudo-random
number generation, such as LoopTools [236, 237], Collier [238] and
the implementation in C of Ranlux. Moreover, MESMER includes three
different parametrisations for the HVP function, by Jegerlehner2, KNT3

and by Ignatov4.
The code can be built using a Makefile, provided that cmake is installed.

The make command builds the executable mesmer and the needed libraries
in libmesmerfull.a. After the compilation, the MESMER code can run
in two separate modes:

• In standalone mode, with the command ./mesmer < input;
• in embedded mode with wrappers of an external C or C++ code, with
gcc file.c -L- -lmesmerfull -lm -lgfortran -o -executable.exe.

The input data card contains all the possible values that define the
different MESMER run modes. A list of the possible input parameters
that can be specified in the data card can be seen by calling help in the
MESMER interactive prompt. Otherwise, the MESMER README file has a
comprehensive list. On top of the input parameters, it is possible to change

2http://www-com.physik.hu-berlin.de/~fjeger/software.html
3Available upon request from the authors.
4http://cmd.inp.nsk.su/~ignatov/vpl/

http://www-com.physik.hu-berlin.de/~fjeger/software.html
http://cmd.inp.nsk.su/~ignatov/vpl/
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the event selection criteria in the file cuts.F. Moreover, a generic incoming
muon momentum can be fed in input, event by event. This can be done
for more realistic simulations where a beam profile is needed.

The output of the MC generator is stored in the directory that was
indicated in the input data card. MESMER can save a .txt file with
the integrated cross sections, several differential observables and also the
generated events.

The MESMER code can provide events that are both weighted and
unweighted. In the former case, each event comes with a different weight
which has to be carried throughout the whole detector simulation and
analysis. This procedure allows for a very fast generation and better MC
error convergence. Moreover, the reweighting procedure is easier to perform.

On the other hand, in the case of unweighted generation all events
come with the same weight. Thus, they are distributed according to the
cross section. However, this procedure can be slow due to the unweighting
procedure and can be affected by a bias since it can be difficult to guess a
correct maximising value for weights before the generation.

The reweighting procedure allows to calculate in the same MC run
different contributions. This technique allows to compute different reweight-
ing coefficients ri to include or exclude different effects, such as VP or
different HVP parametrisation choices or different perturbative orders.
When calculating a cross section, one can write it as:

σ =

n∑

i=0

wi

n
. (A.1)

By allowing the reweighting procedure, the reweighting coefficients ri
can be calculated, such that the new cross section which includes different
effects can be easily calculated as:

σnew =
n∑

i=0

wiri
n

, (A.2)

where ri = wrew
i /wi.

The main advantage of this procedure is that it is not needed to re-
generate another MC sample to account for the inclusion of different physics
effects. On top of this, since the MC sample is the same, one can exploit
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the statistical correlation on the weights to reduce MC statistical errors.
This procedure is widely used in the template fit procedure as shown in
Sec. 3.2.



Bibliography

[1] W. Gerlach and O. Stern, Experimental proof of the magnetic moment of the
silver atom, Z. Phys., 8 (1922), pp. 110–111.

[2] S. A. Goudsmit and G. H. Uhlenbeck, Spinning electrons and the structure of
spectra, Nature, 117 (1926), pp. 264–265.

[3] P. A. M. Dirac, The quantum theory of the electron, Proc. Roy. Soc. Lond. A,
117 (1928), pp. 610–624.

[4] J. S. Schwinger, On Quantum electrodynamics and the magnetic moment of the
electron, Phys. Rev., 73 (1948), pp. 416–417.

[5] P. Kusch and H. M. Foley, The magnetic moment of the electron, Phys. Rev.,
74 (1948), pp. 250–263.

[6] D. P. Aguillard et al., Measurement of the Positive Muon Anomalous Magnetic
Moment to 0.20 ppm, Phys. Rev. Lett., (2023).

[7] G. W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic
Moment Measurement at BNL, Phys. Rev. D, 73 (2006), p. 072003.

[8] B. Abi et al., Measurement of the Positive Muon Anomalous Magnetic Moment
to 0.46 ppm, Phys. Rev. Lett., 126 (2021), p. 141801.

[9] G. Charpak et al., Measurement of the anomalous magnetic moment of the
muon, Phys. Rev. Lett., 6 (1961), pp. 128–132.

[10] J. Bailey et al., Precise Measurement of the Anomalous Magnetic Moment of
the Muon, Nuovo Cim. A, 9 (1972), pp. 369–432.

[11] J. Bailey et al., Final Report on the CERN Muon Storage Ring Including the
Anomalous Magnetic Moment and the Electric Dipole Moment of the Muon, and
a Direct Test of Relativistic Time Dilation, Nucl. Phys. B, 150 (1979), pp. 1–75.

[12] R. M. Carey et al., New measurement of the anomalous magnetic moment of
the positive muon, Phys. Rev. Lett., 82 (1999), pp. 1632–1635.

[13] H. N. Brown et al., Improved measurement of the positive muon anomalous
magnetic moment, Phys. Rev. D, 62 (2000), p. 091101.



126 ♢ Bibliography

[14] H. N. Brown et al., Precise measurement of the positive muon anomalous
magnetic moment, Phys. Rev. Lett., 86 (2001), pp. 2227–2231.

[15] G. W. Bennett et al., Measurement of the positive muon anomalous mag-
netic moment to 0.7 ppm, Phys. Rev. Lett., 89 (2002), p. 101804. [Erratum:
Phys.Rev.Lett. 89, 129903 (2002)].

[16] G. W. Bennett et al., Measurement of the negative muon anomalous magnetic
moment to 0.7 ppm, Phys. Rev. Lett., 92 (2004), p. 161802.

[17] J. Bailey et al., The Anomalous Magnetic Moment of Positive and Negative
Muons, Phys. Lett. B, 67 (1977), p. 225.

[18] J. Grange et al., Muon g − 2 Technical Design Report, tech. rep., FNAL, 1
2015. arXiv 1501.06858.

[19] D. W. Hertzog, Next Generation Muon g − 2 Experiments, EPJ Web Conf., 118
(2016), p. 01015.

[20] H. Iinuma, New approach to the muon g − 2 and EDM experiment at J-PARC, J.
Phys. Conf. Ser., 295 (2011), p. 012032.

[21] N. Saito, A novel precision measurement of muon g − 2 and EDM at J-PARC,
AIP Conf. Proc., 1467 (2012), pp. 45–56.

[22] T. Mibe, Measurement of muon g − 2 and EDM with an ultra-cold muon beam at
J-PARC, Nucl. Phys. B Proc. Suppl., 218 (2011), pp. 242–246.

[23] F. Jegerlehner, The Anomalous Magnetic Moment of the Muon, vol. 274,
Springer, Cham, 2017.

[24] T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard
Model, Phys. Rept., 887 (2020), pp. 1–166.

[25] A. Petermann, Fourth order magnetic moment of the electron, Helv. Phys. Acta,
30 (1957), pp. 407–408.

[26] C. M. Sommerfield, The magnetic moment of the electron, Annals of Physics, 5
(1958), pp. 26–57.

[27] S. Laporta and E. Remiddi, The Analytical value of the electron g − 2 at order
α3 in QED, Phys. Lett. B, 379 (1996), pp. 283–291.

[28] P. Cvitanovic and T. Kinoshita, Sixth Order Magnetic Moment of the electron,
Phys. Rev. D, 10 (1974), p. 4007.

[29] M. J. Levine and J. Wright, Anomalous magnetic moment of the electron,
Phys. Rev. D, 8 (1973), pp. 3171–3179.

[30] R. Carroll and Y. P. Yao, α3 contributions to the anomalous magnetic moment
of an electron in the mass-operator formalism, Phys. Lett. B, 48 (1974), pp. 125–
127.

[31] T. Kinoshita, New value of the α3 electron anomalous magnetic moment, Phys.
Rev. Lett., 75 (1995), pp. 4728–4731.



127

[32] S. Laporta, High-precision calculation of the 4-loop contribution to the electron
g − 2 in QED, Phys. Lett. B, 772 (2017), pp. 232–238.

[33] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Tenth-Order Electron
Anomalous Magnetic Moment — Contribution of Diagrams without Closed Lepton
Loops, Phys. Rev. D, 91 (2015), p. 033006. [Erratum: Phys.Rev.D 96, 019901
(2017)].

[34] S. Volkov, New method of computing the contributions of graphs without lepton
loops to the electron anomalous magnetic moment in QED, Phys. Rev. D, 96
(2017), p. 096018.

[35] S. Volkov, Numerical calculation of high-order QED contributions to the electron
anomalous magnetic moment, Phys. Rev. D, 98 (2018), p. 076018.

[36] T. Aoyama, T. Kinoshita, and M. Nio, Theory of the Anomalous Magnetic
Moment of the Electron, Atoms, 7 (2019), p. 28.

[37] H. Elend, On the anomalous magnetic moment of the muon, Physics Letters, 20
(1966), pp. 682–684.

[38] G. Li, R. Mendel, and M. A. Samuel, Precise mass ratio dependence of fourth
order lepton anomalous magnetic moments: The Effect of a new measurement of
mτ , Phys. Rev. D, 47 (1993), pp. 1723–1725.

[39] M. Passera, Precise mass-dependent QED contributions to leptonic g− 2 at order
α2 and α3, Phys. Rev. D, 75 (2007), p. 013002.

[40] S. Laporta and E. Remiddi, The Analytical value of the electron light-light graphs
contribution to the muon g − 2 in QED, Phys. Lett. B, 301 (1993), pp. 440–446.

[41] S. Laporta, The Analytical contribution of the sixth order graphs with vacuum
polarization insertions to the muon g − 2 in QED, Nuovo Cim. A, 106 (1993),
pp. 675–683.

[42] A. Czarnecki and M. Skrzypek, The Muon anomalous magnetic moment
in QED: Three loop electron and tau contributions, Phys. Lett. B, 449 (1999),
pp. 354–360.

[43] S. Friot, D. Greynat, and E. De Rafael, Asymptotics of Feynman diagrams
and the Mellin-Barnes representation, Phys. Lett. B, 628 (2005), pp. 73–84.

[44] B. Ananthanarayan, S. Friot, and S. Ghosh, Three-loop QED contributions
to the g − 2 of charged leptons with two internal fermion loops and a class of
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Schübler or J. G. Krügner). . . . . . . . . . . . . . . . . . . 121












	Acknowledgements
	Notations and Abbreviations
	Introduction
	The muon anomalous magnetic moment
	The anomalous magnetic moment
	Measurements of am
	Principle of am experiments
	Past, present, and future am experiments

	Standard Model predictions of am
	QED contributions
	Electroweak corrections
	Hadronic corrections
	Data-driven and dispersive approach
	Lattice QCD approach


	Status of data-theory comparison

	Theoretical approaches to amHLO
	Timelike approach to amHLO
	The theoretical framework
	The hadronic data
	Tensions between data sets

	Data merging

	Lattice determination of amHLO
	Theoretical framework
	Contributions and uncertainties
	Windows

	Spacelike approach to amHLO

	The MUonE experiment
	The MUonE experiment at CERN
	Kinematics and the extraction of Dahad
	Experimental precision goal and systematic uncertainties

	Precision theory for me scattering
	Review of calculations for MUonE
	Muon-electron scattering at NLO
	The calculation
	Numerical results

	Muon-electron scattering at NNLO
	NNLO photonic contributions
	The calculation
	Numerical results

	NNLO lepton pair contributions
	The calculation
	Inputs, cuts and observables
	Numerical results

	p0 production in me scattering
	The calculation
	Numerical results


	What do we need for the 10 ppm?

	Lepton pair emission in mN scattering
	The calculation
	Inputs, cuts and observables
	Numerical results

	Conclusions and Outlook
	The MESMER Monte Carlo event generator
	Bibliography
	Analytical Index
	List of Figures
	List of Tables
	List of Epigraphs

