

PhD IN BIOMEDICAL SCIENCES

DEPARTMENT OF BRAIN AND BEHAVIORAL SCIENCES

UNIT OF NEUROPHYSIOLOGY

Building the cerebellum (and the Brain Scaffold Builder)

PhD Tutor: Claudia Casellato

 PhD dissertation of
 Robin De Schepper

a.y. 2020/2021

Building the cerebellum

(and the Brain Scaffold Builder)

Robin De Schepper

November 29, 2023

Contents

1 Introduction 5
1.1 Background and Motivation . 5
1.2 The Cerebellum . 6

1.2.1 Neuroanatomy . 6
1.2.2 Function . 8
1.2.3 Microcircuit organization 10
1.2.4 History . 13
1.2.5 Contemporary research 16

1.3 Bottom-up modeling . 16
1.3.1 What is bottom-up modelling? 16

1.4 State of the Art . 17
1.4.1 Definition of a Multiscale Brain Modeling Framework . . 17
1.4.2 Existing Frameworks in Multiscale Modeling 18
1.4.3 Limitations of Current Frameworks 19

1.5 Research Problem Statement . 22

2 The Brain Scaffold Builder: Design and Architecture 23
2.1 Requirements and design goals 23
2.2 Overview of the Brain Scaffold Builder Framework 26

2.2.1 Overview of the workflow 26
2.3 The Configuration and Component System 32

2.3.1 Node class decorators . 36
2.3.2 Configuration descriptor factories 38

2.4 The Scaffold . 41
2.5 Core Component Types . 43

2.5.1 Main component assemblies 43
2.5.2 Storage objects . 43
2.5.3 Configuration nodes . 48

2.6 The Topology System . 52
2.6.1 Layout . 52
2.6.2 Partition interface . 53

1

2.6.3 Brain atlas integration . 53
2.7 The Data Generation System . 54

2.7.1 Parallel scheduling . 54
2.7.2 Data dependencies & pipelines 55
2.7.3 Placement . 56
2.7.4 Connectivity . 58
2.7.5 Data storage . 59

2.8 Morphologies . 62
2.8.1 Utility library . 63

2.9 The Plugin System . 63
2.9.1 Plugin categories . 64
2.9.2 Listeners . 66
2.9.3 Framework options . 66
2.9.4 Auditing rules . 67

3 Methodology: Modelling Workflow using the Brain Scaffold
Builder 68
3.1 Project setup . 68
3.2 Data sourcing and preprocessing 69
3.3 Declare network topology . 70
3.4 Determine cell types, placement and connectivity strategies . . . 72

3.4.1 Distribute additional properties 74
3.5 Generate model samples . 74
3.6 Describe cell and connection models 75

3.6.1 Multicompartmental workflow 75
3.6.2 Point neuron workflow . 79

3.7 Run simulations, validate, iterate 79

4 Cerebellar Cortex Microcircuit Model 81
4.1 Abstract . 81
4.2 Introduction . 82
4.3 Methods . 83
4.4 Results . 83

4.4.1 Neuron placement . 83
4.4.2 Neuron connectivity . 85
4.4.3 Cerebellar network simulations 86
4.4.4 Resting state activity of the cerebellar network 86
4.4.5 Impulsive response of the cerebellar network 88
4.4.6 GoC responses . 91
4.4.7 PC and MLI responses . 91
4.4.8 Modification of model parameters to simulate neural cor-

relates of behavior . 93
4.4.9 Long-term plasticity at pf-PC synapses 94

4.5 Discussion . 95
4.5.1 A model-based ground-truth for the cerebellar cortical

network . 96

2

4.5.2 Cerebellar network model validation and predictive capacity 97
4.5.3 Model predictions of neural correlates of behavior 98
4.5.4 Comparison with previous cerebellar models 99
4.5.5 Limitations and future challenges 100

5 Applications of the cerebellar cortex model and BSB frame-
work 102
5.1 Olivocerebellar Microcomplex Circuit 102

5.1.1 IO model reconstruction 103
5.1.2 Deep Cerebellar Nuclei (DCN) 105
5.1.3 Integrative connection types 105
5.1.4 Role of the framework . 105
5.1.5 Future work . 106

5.2 Pathological Cerebellar Cortex Microcircuits 106
5.2.1 Autism spectrum disorders 106
5.2.2 Emotional networks and disorders 108
5.2.3 Role of the framework . 110

5.3 From a Mouse to Human Cerebellar Cortex Model 111
5.3.1 Role of the framework . 112

5.4 Hippocampus . 112
5.4.1 Abstract . 112
5.4.2 Methods . 113
5.4.3 Results . 115
5.4.4 Role of the framework . 115

5.5 Thalamic nuclei . 116
5.5.1 Methods . 116
5.5.2 Role of the framework . 118

5.6 Arbor simulator benchmarks . 118
5.6.1 Abstract . 118
5.6.2 Role of the framework . 119

6 Discussion and Future Work 122
6.1 Critical Analysis of the Brain Scaffold Builder: Advantages, lim-

itations, and future works . 122
6.2 Scientific findings . 123

7 Supplementary Material 125
7.1 Cerebellar cortex model . 127

7.1.1 Mouse configuration file 132
7.1.2 The Role of the Cerebellum in Oculomotor Control 153

3

Acknowledgements

It is nice to have a little personal space to write out my thanks to everyone
that contributed to my years as a PhD student. From all the scientists I’ve met
that inspired hallucination-like mind adventures, also known as “new thoughts”.
To all the friends made along the way. The most important people have been
my loving partners Elide, Maria, and Katha. I love you all. You give me the
warmth, love, space, and security that you will always be there for me, allowing
me to discover and grow into my unconventional self, loved whole. Without
them this PhD project would have ended on a runaway panic-fueled existential
crisis rather quickly.

Professionally, it has been the hard work of Claudia, keeping me somewhat sane
in a system I couldn’t find myself in, and strategically guiding me away from
my self-destructive confrontational habits1. Thanks! Although our relationship
is work-based, I consider you both a good colleague and a good friend.

Finally, special thanks goes out to all the people that gave me a place to feel
home: Lissa and Mattia, for being the best friends. Pier, for giving me family
in Pavia. And all of my queer and kinky friends in Milan, for giving me a safe
space to love myself.

1In my opinion, academia as an institute is flawed, and much work is published not for the
pursuit of quality science, but for the proliferation of an academic’s career and their survival
in a capitalist society. Most published research findings are likely false [1]. Furthermore it is
my opinion that computational neuroscience suffers from a reproducibility crisis where code
is not reviewed or reviewable, making peer review of these works nearly pointless, and with
the perceived worthlessness of replication studies, the publication of false statements is much
likelier than anyone disproving them. I am displeased but will keep further reflections of these
opinions limited to blog posts and bar rants, as I am not in a position to provide scientific
proof for the statements, and they do not belong in this doctoral thesis.

4

Chapter 1

Introduction

1.1 Background and Motivation

In this thesis we present the development of the Brain Scaffold Builder (BSB), a
black-box component framework for multiscale bottom-up brain modeling, and
apply it to build a reusable model of the cerebellum. The development of this
scientific software was guided by software design and engineering principles, and
the needs of other researchers in our field. On top of that, we’d like to present
you the first scientific findings and projects that have already been carried out
while the framework was still in development, by the growing community of
early-adopters of the framework. We want to critically discuss what can be
improved, and what others may learn from our efforts.

Launched in 2013, the Human Brain Project (HBP) aspires to a comprehensive
understanding of the human brain. Aiming to construct multilevel brain models
from all of the available life science’s multiomics datasets, the HBP envisions
integrating data and knowledge about brain structure and function to create
models validated through supercomputer simulations. They set out to drive
supercomputing developments for the life sciences and provide the community
with new tools for informatics, modeling, and simulation of the brain [2].

Embedded in this broader initiative, Egidio D’Angelo’s research group con-
tributes significantly by gathering data and constructing models of the cerebel-
lum, progressively advancing towards the HBP’s overarching goal. The group
has a long standing history of creating, improving, and validating single-cell
models of the cells in the cerebellum [3–7], and has in the last 2 decades scaled
these efforts up to some of the first large-scale network level simulations of the

5

cerebellum [8–12]. This dissertation aligns with this ongoing work, focusing on
the latest developments in network level cerebellar modeling investigated by the
research group.

EBRAINS, created as a part of the HBP project, gathers an extensive range
of tools and imaging data that scientists around the world can then use to run
simulations and digital experiments. It melds the data from individual neurons
with information on brain anatomy, connectivity, and function to help translate
the latest scientific discoveries into innovation for the benefits of patients and
society. Its aim is to dramatically increase the efficiency and productivity of Eu-
ropean research, by making findable, reusable data and state-of-the art digital
research tools available to the scientific community within Europe, and offering
them openly for use and expansion across the planet. In fact, EBRAINS is a
unique infrastructure worldwide, in that it provides access to the most compre-
hensive set of brain data and software tools yet made available [13–20]. The BSB
was selected during its development as an EBRAINS software component and
is available to the neuroscience community in EBRAINS’ Network simulation
category [21].

1.2 The Cerebellum

1.2.1 Neuroanatomy

The cerebellum is the infratentorial part of the brain, separated from the supra-
tentorial cerebrum by the tentorium cerebelli (Fig. 1.1), an invagination of the
dura mater, the outermost layer of connective tissue around the brain (with
more internally the arachnoid and pia), and is situated behind the brain stem
and fourth ventricle, on top of the posterior cranial fossa, the most dorsal region
of the cranial bone which forms the floor of the cranial cavity [22].

The cerebellum consists of 2 hemispheres joined on the midline by the ver-
mis.There are 3 lobes separated by 2 transversal fissures, each lobe consists of
a central part in the vermis and the adjacent parts in the hemispheres, further
divided into 10 lobules, consisting of many transversal folds called folia. The
many folia arise from the self-similar folding pattern of the cerebellar cortex to
maximize cortical surface area while minimizing tract length and cerebellar vol-
ume, leading to a tree-like white matter structure with each branch surrounded
by a fold of cortical gray matter [22]. The transversal folds give it its distinct
outward appearance, constrasted by the tortuous convolutions of the neocortex,
and arise from the organization of the cerebellar cortex in long parallel bundles
of fibre with microcircuit connections organized orthogonally to these parallel
fiber bundles, giving it a constrained transversal symmetry. This rigorous fold-
ing gives the cerebellar cortex 80% the surface area of the cerebrum, while only
being 10% of its volume [24,25].

6

Figure 1.1: Sobottas Anatomy Handbook [23] plate 589, anatomy of the con-
nective tissue in the skull, vasculature, and sinuses.

7

Figure 1.2: Schematic drawing of the monkey cerebellum [26] with the major
evolutionary subdivisions.

The cerebellar cortex can be divided into 3 evolutionary regions, ordered ancient
to modern: the archicerebellum, paleocerebellum, and neocerebellum (see Fig.
1.2). The ancient regions serve the classical role of motor control and coordi-
nation, while the neocerebellum has seen massive expansion in primates and is
associated to control of higher associative functions [26,27].

Nestled at the roots of the white matter tree of the neocerebellum are the 3
pairs of deep cerebellar nuclei (DCN). The most medial nuclei are the fastigial
nuclei, more laterally the globose nuclei, and most laterally the dentate nuclei.
The dentate nuclei are the largest, so named for their resemblance to a row of
teeth. The DCN contain the only efferent fibers of the cerebellum, inhibited by
the Purkinje cell axon, the only efferent fiber of the cerebellar cortex [22].

The cerebellum is connected via 3 pairs (superior, middle, and inferior) of cere-
bellar peduncles in the pons to the cerebrum, medulla oblongata, and spinal
cord. The main cerebral pathway is the cerebello-thamalo-cortical pathway
connecting the cerebellum to the cerebrum via the thalamus [22].

1.2.2 Function

The cerebellum plays a crucial role in controlling movement, maintaining bal-
ance, and facilitating locomotion. Consequently, walking ataxia is seen as a

8

Figure 1.3: Cross-section of the cerebellum, showing the white matter and gray
matter distribution, and the pons. Gray’s Anatomy plate 704 [28]

distinctive maker of cerebellar damage. During tasks like reaching for a mov-
ing target, humans need to predict both motion of the target and movement
of the limb to achieve optimal synchronization. The cerebellum’s fundamental
function involves making predictions and validating them against real sensory
inputs, acting as a sophisticated conductor within the complex symphony of
movement. Its significance extends beyond mere execution: indeed the cerebel-
lum plays a pivotal role in refining and fine-tuning motor functions to achieve
precision, coordination, and balance. Through this continuous calibration pro-
cess, the cerebellum contributes to the seamless execution of everyday actions,
from the intricacies of finger dexterity to the fluidity of walking.

At the core of its functions lies the cerebellum’s capacity to compare intended
movements with actual execution. This real-time feedback loop enables the
cerebellum to detect discrepancies and swiftly adjust motor commands, ensuring
that movements align with the intended goals. Recent computational evidence
suggests that the cerebellum predicts present and future state estimates of the
body and of its environment by integrating an estimate of previous states and
efference copies of motor signals. This suggests that the cerebellum employs an
internal forward model [29]. Given that sensory feedback signals from sensory
organs experience unavoidable delays of tens to hundreds of milliseconds before
reaching the central nervous system,the forward model’s computation aids in
predictive control, especially when dealing with significant sensory feedback
delays [30]. This predictive ability enables the brain to adapt movements in

9

real-time, seamlessly accommodating changes in the environment and ensuring
stability even when confronted with unforeseen obstacles.

The forward model represents a computational framework for voluntary motor
control that emphasizes the critical role of comparing our intended actions with
their actual outcomes. This model assesses the input-output function of bodily
segments involved in movements, relying on two core functions: prediction and
error processing. In the context of optimal feedback control (OFC) models, both
predictive control (internal feedback) and error control (sensory feedback) hold
central importance [31]. According to this theory, an efference copy, which is
a representation of motor intention, is generated during the preparation of the
voluntary movements to predict the sensory outcome of the impending action.
This efference copy is dispatched to brain regions responsible for assessing the
congruence between the copy and the actual sensory feedback elicted by the
movement. Importantly, the gain in sensory feedback is not fixed but rather
adaptable. The process of adjusting feedback gain in response to the task likely
occurs within transcortical feedback loops connecting cortical sensorimotor ar-
eas, particularly the primary motor cortex and spinal motor circuits.

Furthermore, the cerebellum plays an integral role in motor learning. It encodes
the rules of movement, enabling the acquisition of new skills through repetition
and practice. This aspect is particularly evident in tasks that demand rapid ad-
justments, such as learning how to ride a bike or mastering a musical instrument.
The cerebelum fine-tunes motor patterns over time, allowing for smoother and
more efficient execution as proficiency develops.

While historically linked primarily to movement, the cerebellum’s influence ex-
tends beyond pure motor domains. Its intricate connections with various brain
regions hint at its involvement in cognitive processes, including language and
emotional regulation [32]. This interplay underscored the cerebellum’s role as a
multifaceted contributor to overall brain function. The peculiar architecture of
the cerebellum could be at the basis of its involvement in such a diverse range
of functions. The connectivity between the cerebellum and the cerebral cortex
is organized in parallel loops: different regions of the cerebellum and the cere-
bral cortex receive inputs from a large set of cerebral regions, not only primary
sensory areas but also from associative areas, through the pontine nuclei (PN).
In return the deep cerebellar nuclei (DCN) send back projections to the same
cerebral regions through the thalamus, thus forming a cerebro-ponto-cerebello-
dentato-thalamocortical pathway.

1.2.3 Microcircuit organization

The cerebellar cortex is histologically divided into 3 layers, distinct enough in
appearance to be discernible under a microscope, first described by Camillo
Golgi in his book Sulla fina anatomia degli organi centrali del sistema nervoso

10

Figure 1.4: Wiring diagram for a cerebellar corticonuclear microcomplex. BC,
basket cell; CC, cerebellar cortical microzone; CF, climbing fiber; CN, cerebellar
nucleus; GR, granule cell; GL, glomeruli; GO, Golgi cell; IO, inferior olive; LC,
Lugaro cell; MF, mossy fiber; N-C, nucleocortical mossy fiber projection; N-
O, nucleo-olivary inhibitory projection; PC, Purkinje cell; PCN, precerebellar
neuron; PF, parallel fiber; pRN, parvicellular red nucleus; R-O, rubro-olivary
excitatory projection; SC, stellate cell; SR, serotonergic fiber; UB, unipolar
brush cell; VN, vestibular nucleus. Taken from Cerebellar circuitry as a neuronal
machine [33].

Figure 1.5: The dendrites of a single granule cell visualized by the Golgi-Cox
method. Figure 2 panel B of Lackey et al. 2018 [34].

[35] in 1885. The outermost layer is the molecular layer, followed by the Purkinje
layer and finally the innermost granular layer.

The granular layer is notable microscopically for its densely packed arrange-
ment of granule cell bodies, the small but numerous cell type accounts for more
than half of the human brain’s neuron in number, and gives the layer a finely

11

granulated appearance under most staining methods, such as Nissl body stain-
ing [36–38]. The granular layer contains the granule cells, Golgi cells, unipolar
brush cells, and Lugaro cells.

The Purkinje layer is a thin transitional layer between the granular and molec-
ular layer that contains the Purkinje cell bodies. The Purkinje cell bodies are
arranged in straggered lines in order to pack their dendritic trees as close to-
gether as possible along the parallel fiber axis, while maintaining maximal shared
parallel fiber input between adjacent cells, and enough space for the fairly large
cell bodies [39].

Figure 1.6: Drawing of a cat Purkinje cell by Santiago Ramón y Cajal [40]. a.
soma, b. collateral, c/d. dendrites

The molecular layer is the outermost layer and contains the parallel fiber bun-
dles, Purkinje cell dendritic trees, Golgi cell dendritic trees, stellate cells, and
basket cells. Within this layer the parallel fibers all run in the same direction,
and the dendritic trees of all the cell types extend orthogonal to it, with little
extension along the parallel fiber axis.

The granular layer, as part of the cortex, is folded in accordion-like parallel folia
to increase its surface area, and when unravelled forms a continuous sheet. The
granule cells themselves have a T-shaped axon, with the rising ascending axon,
and 2 protruding parallel fibers. The parallel fiber is a particularly long neurite,

12

in humans up to 2 millimeter long, and both the ascending axon and parallel
fiber have a low tortuosity, forming straight thin fiber bundles. All fibers of the
different granule cells run parallel to one another in the same direction; this is
where the parallel fiber gets its name from [40,41].

Each granule cell typically has 4 to 5 dendrites, up to 40 micrometer long, that
end in claw-like structures (Fig. 1.6) and intermingle with glomeruli. Each
dendrite exclusively forms contacts with glomeruli of different mossy fibers.
The glomerulus is composed of a mossy fiber terminal bouton, several granule
cell dendrites, and Golgi cell axons [42], and is surrounded by a glial sheet
of the velate astrocytes [43] to form a bulbous microdomain characterized by
shared synaptic dynamics such as glutamate and GABA spillover [44,45]. These
glomeruli form the main component of the synaptic input to the cerebellar
cortex. Inside of the glomerulus the mossy fiber forms excitatory synapses on
the granule cell dendrites, and the Golgi cells form inhibitory synapses on the
granule cell dendrites as well. Outside of the glomerulus the mossy fibers also
form excitatory synapses on the Golgi cell basal dendrites.

When we convolute the granule cell anatomy and orientation with the shape
of the layer, the granule cells form a tightly packed layer of cell bodies, and
along the normal of the sheet the ascending axons rise up into the Purkinje and
molecular layer above, where the parallel fibers all run in the same direction
and intersect orthogonally with the neurites of the other cell types, remark-
ably, these cells all show extensive branching, but strictly orthogonal to the
parallel fibers. Take the Purkinje cell for example, it forms a massive dendritic
tree extending 250 micrometers in both orthogonal dimensions, but only 3 − 6
micrometers along the parallel fiber dimension [41]. This way, the cytoarchi-
tectonic rules of the cerebellar cortex wire each cell up to as many different,
but spatially adjacent, parallel fibers as possible. Taking into account that the
granule cells are the most numerous, that the parallel fiber is remarkably long,
and that the dendritic tree of the Purkinje cell is among the largest: the num-
ber of parallel-fiber-Purkinje-cell synapses is the highest in the human brain,
forming its largest synaptic reservoir for computing. The reservoir is not en-
tirely uniform: along each 50− 150 micrometer of parallel fiber bundle, distinct
microzones exist. The zones alternative between a positive and negative type
and have different gene expression patterns, and have a much higher degree of
shared inputs and outputs within the microzone than between microzones (i.e.,
they form a network module), and an extensive one-to-one somatotopy exists
between the sensorimotor space and the microzones [46–48].

1.2.4 History

The scientific history of the cerebellum begins with the first mentions of the
brain as an organ in ancient history by Hippocrates and Galen, and later
anatomically described by early anatomists such as Andreas Vesalius’ De Hu-

13

mani Corporis Fabrica [49], Thomas Willis’ Cerebri Anatome [50], Gottfried
Wilhelm Leibniz’s Protogaea [51], and Johann Friedrich Meckel’s Handbuch der
Menschlichen Anatomie [52], during the Renaissance and modernity. These
early descriptions were limited by the techniques available to study them at the
time through dissection, and later microscopy. The first neuroanatomical de-
scriptions of the microcircuitry were provided by Camillo Golgi after developing
his seminal Golgi staining method and created detailed drawings in Sulla fina
anatomia degli organi centrali del sistema nervoso [35]. The staining method
was quickly adopted by Santiago Ramon y Cahal for drawings in Histologie du
Système Nerveux de l’Homme et des Vertébr és [40], who were both awarded
the 1906 Nobel Price of Medicine for their work on the structure of the ner-
vous system. Golgi for the development of the staining method, and Cajal for
his detailed observations of individual neurons which led to his proposition of
the neuronal theory that neurons are non-contiguous entities that communicate
through contact points, which contradicted the prevailing reticular theory that
the brain was a single connected web.

The scientific view on the function of the cerebellum has changed throughout
time as well. During ancient times, due to the smaller size of the cerebellum,
it was considered of lesser importance to the larger cerebrum, while during
medieval times a new view emerged that the cerebellum might be related to
play a role in movement. As anatomical studies of the brain intensified during
the Renaissance, so too did the interest in figuring out the specific functions of
brain regions, but no new strides in understanding were made [50,53–57].

During the 19th century the first works started appearing on different local-
ization theories that tried to identify which brain regions were responsible for
which functions through clinical observations, autopsies, post-mortem studies,
comparative anatomy, and experimental lesions. While many of them carried
out cerebral experiments, they did contribute both directly and indirectly to
establishing a localization theory for the cerebellum as a coordinator of motor
control [58–61].

In the late 19th century and the beginning of the 20th century novel experi-
mental studies focussed on the function of the cerebellum and new technolo-
gies became available to perform detailed brain stimulation and lesion research.
From the combined understanding of the anatomy, microcircuit organization of
the cerebellar cortex, the function, and electrophysiology, several groundbreak-
ing computational theories on the information processing and function of the
cerebellum were developed during the second half of the 20th century [62–64].

The three seminal models of cerebellar functions, proposed by James Albus [63],
Masao Ito [64], and David Marr [62], all share the essential concept that parallel-
fiber-Purkinje-cell synapses undergo plastic changes, guided by climbing-fiber
activities during sensorimotor learning. However, they differ in several impor-

14

tant respects, including the role of the cerebellum in motor control, the com-
putational objective of learning, the type of synaptic plasticity, the role of the
climbing fiber, the coding scheme used by the granule cells, and the use of
internal models.

The Marr model of the cerebellum is a hierarchical model that views the cerebel-
lum as a pattern recognition system. The model proposes that the cerebellum
learns to associate sensory inputs with motor outputs by comparing the actual
output with the desired output. The climbing fiber is thought to signal the error
between the actual and desired outputs, and this error signal is used to modify
the parallel-fiber-Purkinje-cell [62] synapses.

The Ito model of the cerebellum is a feedback control model that views the
cerebellum as a feedback controller. The model proposes that the cerebellum
learns to adjust the gain of a motor control loop by comparing the actual output
with the desired output. Just like the Marr model the error signal used to
modify the parallel-fiber-Purkinje-cell synapses is calculated between the actual
and desired outputs [65].

The Albus model of the cerebellum is a predictive control model that views the
cerebellum as a predictive controller. The model proposes that the cerebellum
learns to predict the future state of the motor system based on its current
state and the sensory inputs. The climbing fiber is thought to signal the error
between the predicted and actual states, and this error signal is used to modify
the parallel-fiber-Purkinje-cell synapses [63].

The three models of Marr, Ito, and Albus share the essential concept that
parallel-fiber-Purkinje-cell synapses undergo plastic changes, guided by climbing-
fiber activities during sensorimotor learning. However, they differ in several
important respects.

The Marr model views the cerebellum as a pattern recognition system, while the
Ito and Albus models view the cerebellum as a feedback or predictive controller,
with the same aim reflected in the computational objective of learning. The
Marr model proposes that long-term potentiation (LTP) is the primary form
of synaptic plasticity, while the Ito and Albus models propose that long-term
depression (LTD) is the primary form of synaptic plasticity. The Marr model
views the climbing fiber as a signal that indicates an error, while the Ito and
Albus models view the climbing fiber as a signal that indicates a prediction
error. The Marr model proposes that the granule cells use a sparse coding
scheme, while the Ito and Albus models propose that the granule cells use a
dense coding scheme. The Marr model does not explicitly use internal models,
while the Ito and Albus models explicitly use internal models [62,63,65].

15

The three models have been successful in explaining some cerebellar functions,
such as oculomotor control and classical conditioning. However, they have been
criticized for being too simplistic and being unable to explain other cerebellar
functions, such as whole body movements or cognitive functions [66].

1.2.5 Contemporary research

One of the most active areas of research remains the role of the cerebellum
in motor control. Different models with different focuses exist, and consensus
agrees on their value in different research contexts, but a truly unified theory of
the function of the cerebellum for all motor control is still lacking and remains
an area of investigation for theorists [67–69].

Another active area of research is the mechanisms of synaptic plasticity in the
cerebellum. The cerebellum serves as an excellent model system for studying
synaptic plasticity due to its well-defined neural circuitry and regular structure
compared to other brain regions. Yet new findings such as new afferent, efferent
and recurrent synaptic sites lead to appreciation of new computational and
plastic capacities of the cerebellum [70,71].

While the cerebellum is commonly perceived as a homogeneous brain region, it
presents a challenging puzzle: how can its seemingly uniform microcircuit or-
ganization contribute to such a wide array of diverse functions? Contemporary
computational neuroscience research into the cerebellum focusses on more accu-
rately modeling reconstructions of the cerebellum, for example, to model disease
states [8–10], or on eludicating how the signal processing properties of the cere-
bellum can lead to, for example, learning, prediction, control, or formation of
internal models of the world [72,73].

1.3 Bottom-up modeling

1.3.1 What is bottom-up modelling?

Bottom-up modeling is a computational and theoretical approach used in neuro-
science to simulate and understand the behavior of neural systems, by starting
from the smallest components and building upward. This approach seeks to elu-
cidate the complex and emergent properties of the brain through the systematic
integration of information from lower levels of organization to higher levels. At
the foundation of bottom-up modeling are the individual neural components,
which include neurons, synapses, ion channels, and receptors. Each of these
components has a specific function and behavior, and they interact with one
another to generate neural activity. Bottom-up models represent the biophysi-
cal and electrical properties of neurons, including action potentials, membrane
potentials, the dynamics of ion flow through channels, and incorporate detailed
descriptions of synapses. The synaptic models simulate the release and reception

16

of neurotransmitters, synaptic plasticity, and the impact of synaptic strength on
neural communication. Bottom-up models can replicate the connectivity pat-
terns of brain microcircuitry, and in this way, at the largest scale, may replicate
the entire brain [74].

In principle, bottom-up models aim for biological realism by incorporating as
much known biological detail as possible. This involves the inclusion of accu-
rate neuronal morphologies, channel kinetics, and synaptic properties. Mathe-
matical equations describe how neurons generate and propagate electrical sig-
nals, how synapses transmit information, and how networks of neurons interact.
Bottom-up modeling often employs a multiscale approach, where information
is integrated across different levels of organization, from the molecular and cel-
lular levels to the network and systems levels. This allows for the exploration
of emergent properties. Models are rigorously validated and calibrated using
experimental data. Parameters within the models are adjusted to match ob-
served physiological responses, aiming for the simulations to be biologically
accurate [74].

Bottom-up modeling helps researchers gain a deeper understanding of how in-
dividual neurons and synapses contribute to overall brain function. It provides
insights into neural computation, signal processing, and information encoding.
These models are instrumental in studying synaptic plasticity, which is crucial
for learning and memory. Bottom-up models can simulate neurological and psy-
chiatric disorders, aiding in the study of their underlying mechanisms and the
development of potential treatments. These models can be used to simulate
cognitive processes and behaviors, allowing researchers to explore the neural
basis of various cognitive functions [74].

1.4 State of the Art

1.4.1 Definition of a Multiscale Brain Modeling Frame-
work

A “framework” is an often used term, with no standardized meaning. Often
attributed key distinctions from software libraries are inversion of control, ex-
tensibility, and some level of opinionation (imposing certain choices on the user
to establish productive idioms) [75]. Where a library fits the needs of user code,
a framework expects user code to fit its architecture, and together with the
user code forms a custom application. The framework runs the operation by
invoking the user code at the right times, fitting the framework architecture.

Applied to the multiscale modeling problem, a framework should provide ab-
stractions for some or all of the problems associated with multiscale modeling,
and should have well defined interfaces where the user can provide encapsu-

17

lated model specific code, which the framework uses at well defined moments to
execute an extensible workflow.

This definition would exclude software that simply provides functions or classes
that perform certain operations that the user calls when they see fit (libraries),
software that executes a single specific task (tools), or any software that strictly
runs a preprogrammed workflow (perhaps even configurable, but not extensible).

The goal of multiscale modeling frameworks should not just be the simulation of
multiscale models, but to cover the entire multiscale modeling workflow, which
begins with the ingestion of multimodal datasets and their transformation into
the many individual parameter sets of each element modeled at the multiple
scales of the model.

This will be referred to as generation, which goes beyond specification: In mul-
tiscale models many parameters aren’t merely constants or distributions from
literature, but may need to be generated from multimodal datasets that are
processed in multiple steps, with algorithms determining the resultant parame-
ters for each individual element specific to that scale (e.g., each synapse in the
model may have its parameters generated from its location on the cell, or each
cell may have its morphology generated from brain atlas information such as
the orientation of the histological layer and the cell’s location within the layer).

1.4.2 Existing Frameworks in Multiscale Modeling

Tools that are not classified as a framework are still listed here when they can
at least offer similar value to the neuroscience community for at least one or
more parts of the multiscale modeling problem.

Brain simulators have been excluded from the list, as that part of the worfklow
has been properly addressed by several competing well-established simulation
frameworks that cover the needs of the community.

The state of the art is reviewed to see whether the multiscale workflow is covered
outside of simulation as well as for simulation, or whether a need for generative
frameworks covering the entire workflow remains. To this end, the source code
and documentation of the existing tools were analyzed for the following criteria:

• Framework: Does the software meet the framework criteria?
• Inversion of control: Does the software invert control over user code?
• Architecture: Does the software have and impose its own architec-
ture?

• Extensible: Is the software open for extension to a point that it can
be closed to modification [76]?

18

• Components: Are all of the above captured by a component-based
system1?

• Worfklow: What parts of the multiscale problem are covered?
• Data: Can multiscale data be handled by the software (declared,
retrieved, processed, used, . . .)?

• Specification: Can general multiscale brain networks be specified?
• Generation: Can parameters be generated from data for individual
elements of a scale?

• Simulation: Can the specified network be instantiated on brain sim-
ulators?

• Analysis: Can the simulation results be analysed or stored in a stan-
dardized format?2

• Visualization: Can the multiscale elements be visualized or stored in
a standardized format?

• Scale: Which scales are covered by the software?
• Microscale: Can microcircuit elements such as cells and synapses be
described?

• Microscale (non-neuronal): Can non-neuronal elements such as glial,
vascular, or non-central elements such as cellular microdomains or
extracellular microstructures be described?

• Mesoscale: Can neuron population dynamics be described?
• Macroscale: Can whole brain dynamics be described?

1.4.3 Limitations of Current Frameworks

Looking at Table 1.1, the available tools for multiscale modeling center strongly
around the specification of neurons and connections, simulation, analysis, and
visualization. With the exception of Snudda, no support was encountered for the
generation of multiscale parameters, beyond stereotyped spatial distributions
and distance dependency. No support was encountered for the incorporation of
data and data processing into a multiscale workflow, except for dedicated tools
like Sumatra [88].

Instead the user is expected to write its own workflows and pipelines, and the
available tools provide only abstractions for the software’s take on nodes and
edges. The available tools take this network specification and instantiate mul-
ticompartmental or point neuron networks in the supported brain simulation
engines. Sometimes, configuration files are allowed to separate some of the
more numerous or bulky parameter specification from the declarations.

Inversion of control is generally weak and did not go beyond what inevitably

1Components here meaning software centered around blocks that define the invariant be-
haviour that can easily be extended to implement model-specific variant behaviour

2Although analysis and visualization of simulation results is an integral part of the multi-
scale modeling workflow, the criterium can also be met if the software supports standardized
formats that are interoperable with analysis and visualization tools.

19

Table 1.1: Assessment of multiscale tools. At the top, the considered soft-
ware in alphabetical order: BMTK [77], mozaik [78], NetPyNE [79], neuro-
Construct [80], Neurodamus [81], NeuroML [82], NineML [83], PyCabnn [84],
PyNN [85], Snudda [86], SONATA [87], Sumatra [88], The Virtual Brain [89].
Label colors indicate software category. Green: framework. Yellow: tool. Or-
ange: worfklow. Blue: library. Pink: specification format. Green checkmarks
indicate the criterium was met, red cross indicate it did not, empty gray boxes
indicate the criterium did not apply to the software. The microscale is split
up in neuronal (N) and non-neuronal (NN). Notes: (*) Extension might be
possible through modification or addition of a new simulation backend which
was considered to be too involved, undocumented, and not granular enough to
qualify as an extension system. (✢) The BMTK includes special support for
the NRRD data format. (✧) Generates scripts the user then has to run in the
target simulator. (✙) The component system targets simulator control, not the
multiscale problem. (◆) Supports spatial distributions and distance dependent
properties.

20

follows from an object oriented and/or declarative paradigm; no special design
efforts went into providing structure or architecture in user code. This does not
exclude diligent users from writing clean and organized code, but the design of
the software never promoted it.

Existing frameworks are also lacking integrations with other tools, although
frameworks as a backbone of a project are in the perfect position to do so. Hav-
ing multiple integrations per problem vastly increases the amount of modeling
needs that can be addressed with a single framework. Even when offered integra-
tions are functionally equivalent, they may address more user preferences. Only
NetPyNE [79] offered several integrations, and the BMTK [77] offered some ad-
ditional support for the NRRD data format, which the developing institute, the
Allen Institute for Brain Science, often uses.

There are some alternatives to using a framework at all: Some standards exist
such as NeuroML [82] and SONATA [87], with enough convergence in the mul-
tiscale modeling world that several tools can create model descriptions in these
standards, or run models described by those standards on a simulator. A mod-
eler can mix and match several tools together to arrive at a working workflow,
but the possibility of reuse with homemade workflows is low since many hidden
pieces or implications may exist: hard to automate steps might have been ran
manually, specific code may have to be run in specific order, the environment
may not be accounted for (software, versions, operating system, . . .). In sum-
mary there’s no guarantee that it is a total description of the workflow that can
be reproduced.

The software landscape focuses on neurons and synapses, but no abstractions
were encountered to deal with either subcellular or extracellular information
(e.g., marking where dendritic spines are located, marking the extent of myeli-
nation, modeling tripartite synapses, glial environments, vascular environments,
. . .) unless it could be integrated into a cell or synapse model, or captured as
a parameter thereof. No network specification format was encountered that
can accomodate such information, except perhaps for some creative use of
SONATA’s [87] node & edge properties, or NineML’s [83] component system.

Except for dedicated tools like Sumatra, no software was encountered that per-
formed data provenance, parameter tracking, or otherwise bundled the exper-
imental environment with the created output, although it is an essential part
of creating reproducible results. Custom logic to retrieve, process and provide
input data has to be written by the user. Generally tools supported importing,
exporting, or saving recorded data to a standardized format, most often through
NeuroML or SONATA [87] for network specification, or Neo [90] for recorded
data storage.

21

When comparing the software landscape of multiscale modeling, to for example
that of web development, or astrophysics, or closely related multiscale simu-
lation; there isn’t a set of competing well-established frameworks that cover
the entire workflow, offer abstractions for each piece of the puzzle and offer
undeniable advantages to the point that their use has become ubiquitous.

1.5 Research Problem Statement

For the cerebellum

Can we develop a base model for the cerebellar cortex, and validate
basic emergent properties so that it can be used for hypothesis-driven
research into the cerebellum?

Specifically, how does physiological input propagate through the
cerebellar cortex? How do mossy fiber afferents activate granule
cells, and how do different populations in the cortex contribute to
the propagation and spatiotemporal processing of activated gran-
ule cells with regards to the vertical organization of the cerebellar
cortex [91]?

For the multiscale modeling framework

Can we capture the multiscale modeling workflow in a framework
that lets users express their needs starting from multimodal datasets
that need to be processed, and the generation of derivated param-
eter sets, with explicit declaration and parametrization of the used
modeling strategies, and promotion of encapsulation, user code or-
ganization, quality, and reusability?

Let that framework generate and store multiscale data, and transfer
it to brain simulator engines, supporting various paradigms without
imposing the restrictions of any paradigm. Let model declaration
and configuration be the central value and leverage accessible exten-
sion mechanisms to address heterogenous modeling needs.

It should be proper to the framework that described models are
a strict sum of components each consisting of their own modeling
strategy, input data, and parameters, to lead to easily understood
and reproducible descriptions. Model descriptions need to include
all information required to deterministically (re)run the workflow to
be reused, built upon, and replicated, or altered for the investigation
of another hypothesis.

22

Chapter 2

The Brain Scaffold Builder:
Design and Architecture

2.1 Requirements and design goals

The state of the art shows that currently the field covers network simulation and
specification, but leaves other areas, most notable data handling, processing,
and derived parameter generation up to the user. User code is not managed
by the software (i.e., inversion of control and encapsulation are only weakly
present), reuse of created user code is low, shared idioms are few, and there
is little attention for the promotion of qualitative, understandable, testable, or
reproducible user code.

To address this, the software should be designed to provide a framework in which
users are helped to write encapsulated code, i.e., code where the code boundaries
(coupling between functions, classes, modules, . . .) overlap with the boundaries
of biological rules, constraints, or modeling choices, so that modelers that face
similar constraints can reuse any part of interest of the model in a plug-and-play
fashion.

The software should be designed so that all parts of the workflow can be ex-
pressed in semantically intuitive abstractions in a declarative paradigm where
the important model component and parameter declarations can be separated
from implementation details, to provide a clear overview of the model.

The software should be designed with the heterogeneity of the modeling chal-

23

lenge in mind: each brain region will have its specific cytoarchitectonic con-
straints that need to be catered to by allowing variant code to be effortlessly
expressed and integrated into the workflow.

Putting the design goals together, a declarative paradigm, and a strategy pat-
tern combined with a strong configuration pattern can address the needs to
write reusable well-parametrized encapsulated components that carry out het-
erogeneous variant biological tasks, that can be summed together to describe
an entire multiscale modeling workflow.

What follows is a list of requirements that should be met by the software:

• Workflow: Parts of the multiscale modeling workflow that should be
covered by the software

• Parallelization: The entire workflow must be parallelizable, to scale
well with problem size.

• Data handling
• Provenance: The models must declare all data sources in a
uniquely identifying manner

• Availability: The software must be able to guarantee that all
data required to recreate model instantiations remains available1

• Abstractions: Abstractions should cater towards commonly re-
quired data formats and data representations2

• Integrations: The software should offer integrations with com-
mon data sources to obviate custom logic to glue pieces of the
workflow together

• Processing: The software must accomodate step-by-step pro-
cessing pipelines from base data sources into prepared input data
for model generation

• Specification: The framework should support model specification across
the following scales and paradigms

• Subcellular
• Neuronal
• Non-neuronal
• Populations
• Connections

• Individual (microscale)
• Probabilistic (mesoscale)
• Population (macroscale)

• Generation: The framework must operate under the assumption that
parameters may need to be generated from data

1Due to large size of datasets, adding an opt-out mechanism may work beneficially towards
feasible model sizes.

2For example manipulation utility libraries for cell morphologies and rasterized 3D brain
images. Considerable advantages should be offered over simply supporting a file format.

24

• Cells: Capable of hosting generated cell information, to arrive at
plausible electrophysiology and morphology.

• Subcellular: Capable of hosting generated subcellular information,
such as microdomains or microstructures on cells.

• Populations: Support reducing information on cells into population
level information.

• Non-neuronal: The software should not restrict to a neuronal dogma,
and allow for example glia cells and vasculature to be described.

• Connections: Capable of hosting generated information on the in-
teractions between multiscale elements, for example chemical, elec-
trical, or tripartite synapses, and neurovascular coupling.

• Simulation:
• Instantiation: Should support instantiating the described model in
a simulator

• Multiparadigm: Should support simulation at multiple scales and
in the common paradigms of each scale

• Multicompartmental
• Point-neuron
• Populations

• Cosimulation: Allow the multiscale model be simulated at multiple
scales at the same time, with different parts of the model represented
at different scales.

• Recording: Record the obtained results into a standardized format
• Function:

• Inversion of control: Manage the workflow, have user code meet
the imposed framework expected structure.

• Generic: Assure the user needn’t break architecture to express their
intentions

• Extensible: Allow extension of framework function. Any function-
ality offered by the framework should use the same extension mech-
anisms a user would.

• Component-based: All functionality should be offered in well-
encapsulated base components that the user can extend with a well-
defined interface.

• Architecture: Promote higher-order non-imperative code organiza-
tion in user code

• Utility: Offer utility libraries to simplify common tasks
• Model description:

• Separated: A model description should exist separate, or separat-
able from the model implementation.

• Composable: Can models be added together by adding their de-
scriptions together?

• Complete: It must always be sufficient to read the model descrip-
tion, to reproduce instances of the model, or to at least establish and

25

collect the missing pieces.3

2.2 Overview of the Brain Scaffold Builder Frame-
work

This overview serves to introduce all major concepts in the framework. More
in-depth explanation and examples will follow in their own sections. “See also”
notes are provided for easier navigation.

The framework is a black-box component framework for large and multi-scale
bottom-up modeling. Black-box component frameworks invert control by en-
capsulating each task into a taxonomy of components and lets users implement
their functional interfaces. By developing against an interface the user provides
strictly the variant part of the task, while the framework can take over control
of the invariant backbone of the task, and stably invokes the variant parts by
operating on the components’ interface.

By far the largest part of the bottom-up modelling code effort is invariant (i.e.,
remains the same for all tasks in the domain, and would need to be repeated
by each individual). Solving the software design for this invariance while pro-
viding a layer of abstraction of semantically intuitive component types is the
quintessential value provided by the framework. By taking over control of these
invariant parts the framework can guarantee well-tested optimal solutions for
common problems, and the modeller is left only with a fraction of the work.

2.2.1 Overview of the workflow

Models are created in the context of directory structures called projects. A
project contains the model configuration and all the model code and data
sources, either as a structured remote reference in the configuration, or as a
relative local file. Projects may contain multiple alternative model configura-
tions. Template projects can be generated through the Command Line Interface
(CLI) and demonstrate idiomatic framework practices.

Models are described in their totality by declaring the model components and
their parameters. Declarations happen in the confines of a structured component
tree and can be made in Python, or a configuration format. The component tree
begins at the root as a named collection of root nodes, that all house components
of a specific type (see Code Snippet S7.1).

Placing a component in a root node declares a new piece of the model and adds a

3If any implicit dependencies or references are not described, the model description is not
complete: For example, all exact versions of the software, and any dependencies of user code;
or references to local files, . . .may be missing, and reconstruction would not be possible

26

Figure 2.1: Diagram of the main framework worfklow. In the blue area: the com-
ponents configured by the user, and used by the framework to understand the
objective; arrows indicate dependencies between component types. In the gray
area: Tasks performed by the framework based on the configuration: datasets
are retrieved, jobs are scheduled to process the data, and passed to their de-
pendent placement and connectivity jobs. The model description, inputs and
the output are all stored in the storage object. The storage object can then
be used to run a managed simulation workflow, by loading the stored data into
simulator specific adapter components, which will instantiate the model on the
simulator backend. Results are recorded by device components and stored into
a result object.

27

new objective to the workflow. E.g., placing a component in the cell types node
defines a new cell type (Code Snippet S7.2 contains some basic declarations).

Each component is polymorphic and can specify its own attributes and subnodes
in the component tree. This helps users to explicitly parametrize their compo-
nents, and to separate the important model parameters and dependencies from
the implementation.

N.B.: This will lead to the final structure of the component tree to depend on
the components a user declares. In the text, when we speak of “components”,
this always implies that a user can also provide their own (see 2.3 for in-depth
explanation on the component system).

The component tree is from here on out also referred to as the “configuration”
of a model, or the “model description” (see Code Snippet S7.5 for Chapter 4’s
cerebellar cortex model description, and corresponding diagram in Fig. S5.2).
The configuration is an instruction manual for multiscale data processing, gen-
erative algorithms, and simulator specific instructions that can be followed to
run predictable workflows for the reconstruction of the model and its simula-
tion. (Groups of) stochastically generated model instances produced by the
model generation workflow will be referred to as “model samples”, or “model
reconstructions”.

Quick note: on top of components, which are bootstrapped from the configura-
tion, the framework can also be extended by plugins. Plugins are automatically
discovered so they do not need to be bootstrapped from the configuration and
can provide components to the user, or extend framework functions (see section
2.9 for more on plugins).

A first example of such a plugin category are the configuration parsers. A
component tree can be programatically declared in Python, or specified in a
configuration format which needs to be parsed. Current parser plugins offered
by the framework can parse JSON and YAML.

The model description in Code Snippet S7.5 is vertically lengthy and spans
multiple pages in this document. In real projects one would navigate them
with a proper IDE with collapsable nodes and use the built in dot diagrams4.
The YAML and JSON parsers are also extended to support matrix expansions,
multi-document layouts, and reusable subdocuments (see Code Snippet S7.3).
Together with the possibility to write short procedures to generate the declar-
ative nodes, this can maintain compactness and hierarchical overview of the
model description even when the total number of lines required to describe the
model grows.

4https://graphviz.org/

28

https://graphviz.org/

It’s a parser’s task to convert the configuration format into a component tree,
or vice-versa. Since the parsing (from format to Python) and reverse parsing
(from Python to format) operations are bijective and stable one can program-
matically generate, modify compose and then serialize, or deserialize model
configurations. This is ideal for programmatic use such as transfer to remote
machines or processes through sockets or pipes (e.g., “pickling” in Python),
batch job submission, or other tooling on top of the framework.

The framework offers the user a scaffold to tie together all the abstract informa-
tion, and concrete data, into a client that is capable of processing all requested
workflow operations on the model. The main operation called “compilation”
generates data from the description (see Fig. 2.1 for a depiction of the 3 stages
of the compilation workflow managed by the parallel job pool schedulers).

Compilation runs the model workflow and writes the generated data into a
storage file. The stored information includes the cells with positions, rotations,
arbitrary generated user properties, and individually grown morphologies, with
specific synapses on precise subcellular targets, again with their own arbitrarily
generated properties, aware of the network topology, space and cells around
themselves.

Compilation happens from a single source of truth: the declarative component
based configuration (see Fig. 2.1, blue area, for the main configuration blocks re-
lated to compilation). From a description representable by a diagram of blocks
with explicit inputs, parameters, and outputs, large and intricate multiscale
brain models with detailed neurons and synapses can be generated and simu-
lated. Scientific readers that have no affinity or interest in decyphering large
amounts of imperative code can still glance and understand the configuration
underlying the model, and choose to inspect any of the well encapsulated single
blocks of interest for any algorithm’s implementation details.

The framework understands complex hierarchical network topologies for the
spatial layout of the network. The volume is described as a set of partition
components (such as layers, meshes, voxelsets, . . .). Partitions can be laid out
using a tree of region components (such as groups, stacks, spacers, . . .). Sev-
eral operations can be performed on the volume definition, such as translation
/rotation to compose them with other models, or scaling/cropping to create
descriptions of smaller test networks5.

The topology is the basis to chop the volume into equal pieces for parallel
processing. Postprocessing steps are supported to deal with any border artifacts

5N.B.: This is at the level of the model description, not the data. Without separating
the topology from the other components, one would have to specify and adjust all the spatial
confines all throughout the configuration.

29

that follow from this approach or global constraints that can not be computed
from a local parallelized context.

A compilation workflow consists of multiple stages, each stage transparently
parallelized by the framework, made possible by careful design of the compo-
nent interfaces, so that the framework can request scoped information from
components amenable to parallel job submission (Fig. 2.1).

As the first stage (Fig. 2.1, dataset & pipeline blocks), the dependency pipelines
are checked. Each pipeline specifies a series of input data sources, operators
and parameters (see section 2.7.2). A caching system checks whether the data
sources need to be retrieved, and a parallel scheduler distributes the opera-
tions across the available workers. For each dependency the used data and a
description of the processing operations are stored so that model reconstruc-
tions contain all data required to rerun, reparametrize, reference, or otherwise
reproduce any aspect of the model reconstruction.

After the data dependencies have been checked and processed, the placement
stage is ready to be run. Each placement component schedules multiple par-
allel placement jobs to fill partitions with certain cell types according to the
algorithm implemented by the component. During the placement the compo-
nents generate positions for the cells, and can be configured with subcomponents
(called distributors, see 2.5.3), for example to generate de novo morphologies,
or other properties. The components have access to all the spatial information
and can generate properties accordingly. e.g., morphologies can be generated on
the fly that are constrained by the histological layer, or grow towards another
layer to innervate their targets.

Arbitrary properties can be stored on each point of the morphology to emulate
subcellular features such as dendritic spines, or properties that depend on the
position of the neurite in the histological context. Individual cells and synapses
support generating arbitrary properties too, and can be labelled to create sub-
populations.

These arbitrary properties are important to escape entrenchment in a presup-
posed modeling context. While specific semantics like “cell position” and “cell
morphology” ease the basic workflow, if a user were restricted to them, they’d
have to break the framework architecture to accomodate their model specific
semantics. This is why the framework allows a user to declare components
for the generation of model-specific information, associated to a name. E.g., a
user’s distributor component (let’s call it the “SpineDistributor”, can gener-
ate a boolean value per point on the morphology indicating whether there’s a
dendritic spine there, and store it on the cell morphologies under the “spine”
name.

30

Although the framework doesn’t know by default what to do with this data, it
can be given meaning during simulations by creating a Parameter component
that processes the data into parameters of existing simulation elements, or rep-
resent the data by creating new elements. Returning to the example of dendritic
spines, one could take the boolean value and change the membrane capacitance
of cell models wherever a spine occurs, or create a new compartment there with
its own dynamics. If a property is only going to be used to (sub)select model
entities, then a specialized system exists to add labels to points of interest across
scales and later select groups based on their labels. E.g., one could label all the
points on a generated morphology that should form synapses only with specific
cell types, or for debugging purposes label all the cells that were placed under
irregular conditions, such as borders, to validate their properties.

After the generation of the cells and their spatial information, the connectivity
stage is ran. The connectivity stage follows the same tiling paradigm, but regions
of interest composed of any number of tiles can be subselected. This allows for
more efficient scaling on very large reconstructions. e.g., an algorithm that
connects cells within 100 micrometer does not need any information of cells
in chunks that are further away than that, and can implement appropriately
restricted regions of interest.

See section 2.7 for a deep dive on multiscale data generation and placement
and connectivity data structures, which explains what inputs a user’s place-
ment and connectivity strategy components are given, the interplay with the
tiling paradigm, what output is expected, and how the framework processes the
information.

Note on modeling paradigms. There are no assumptions or require-
ments made regarding the modeling paradigm used to represent cells or
connectionsa. Minimally, a user declares a component that generates
cells without any information, akin to declaring a population of a certain
size. To the framework, cells are black-boxes that it generates and stores
black-box information and interactions for. Most semantics are merely
implied, and are reified only when the information needs to be transferred
to a simulation backendb.

aA current limitation is that only 2 cells can partake in a connection, although
workarounds exist

be.g., to create a “glia cell“, a user calls their cell type “astrocyte”, generates
astrocyte-like positions and connections using their own black-box astrocyte compo-
nents, and during simulation uses a cell model component that performs astrocyte-like
duties in the simulator. The framework follows the exact same workflow it would for
any other type of cell, by calling the component interfaces.

Connections can be formed on any point of the morphology, and connection
components that wish to perform morphology intersection can rely on optimal
bounding box intersection of the cell types to preselect cell pair candidates,

31

or preselect which pieces of the morphology they regard presynaptically and
postsynaptically, and then continue to implement more use-case specific con-
straints from there. The default creates typical axodendritic connections, but
any morphology label the user generated can be specified

The generated network storage files are random samples of the model descrip-
tion and can be used to run simulations. The storage format is encapsulated
in a component called a storage engine, and currently supports only our home-
made HDF5 engine as no other format seemed to suit our need for multiscale
detail6. The simulation stage is entirely disjoint from the reconstruction stages,
and exists to seemlessly transfer all the generated data to a simulator that
matches the modeling paradigm. Arbor and (Core)NEURON are supported for
multicompartmental simulations, and NEST for point neuron simulations. The
data transfer is also encapsulated by a component called a simulation adapter,
and its interface can be implemented for any simulator. For example, initial
enthusiasm from early-adopters has resulted in a community maintained Brian2
adapter package.

The generated information is used to create the simulator specific representa-
tions. Unlike PyNN, the BSB has no unified simulator interface. It expects of
each simulation adapter that they, as part of their interface, implement 3 base
types of components to represent any cellular information (called a cell model
component), connection information (connection model component), and ex-
perimental protocol information (device component). These components rep-
resent the transfer of generated data, over to the simulator, and from there these
components together with the adapter are responsible for managing the simu-
lator state and executing simulator specific instructions to run the simulation.
This allows for more paradigm specific information to be transferred, and for
more specific components to be provided per adapter, but has as a drawback
that models require multiple simulator-specific simulation configurations if they
want to simulate on multiple simulation backends7. The simulation workflow
ends with the collection of data from the simulator, stored using Neo, which
supports roughly 40 neuroscience information exchange formats.

2.3 The Configuration and Component System

@config.node

class Example:

min = config.attr(type=types.int(min=0), required=True)

mode = config.attr(type=types.in_(["slow", "fast"]), default="fast")

children = config.dict(type=str)

6SONATA is a good next candidate because it would drastically increase the interoper-
ability of the framework, but the standard would need to be extended

7That is, until someone implements a PyNN adapter to piggy-back on.

32

Code Snippet 2.1: Example of a node class and its configuration attributes.
The config module is the bsb.config module, and the types module is the
bsb.config.types module.

min: 50

mode: slow

children:

- A

- B

- C

Code Snippet 2.2: Example of a valid configuration for the node in Code Snippet
2.1 using YAML.

The base elements of the configuration system are lists, dictionaries, and nodes.
Lists contain ordered values, dictionaries contain key-value pairs, and nodes
contain a set of attributes, as defined by the node class. The bsb.config

module contains multiple node class decorators and descriptor factories with
which node classes can define their configuration form (compare the analogy
between Code Snippet 2.1 and Code Snippet 2.2).

List, dictionary, and attributes values are validated using type handling compo-
nents8. Each list, dictionary or attribute specifies their own type handler. Node
classes function as type handlers as well, and recursively convert a piece of the
configuration tree into a component with nested lists, dictionaries, attributes
each again perhaps containing subnodes.

A model configuration is thus determined by starting from the root node class,
checking for configuration descriptors on the class, and passing the configuration
values to the type handlers of the descriptors. Since descriptors can specify type
handlers resolving to nodes, lists of nodes, or dictionaries of nodes, a recursive
process ensues that traverses the entire configuration tree, and converts it into
a component tree (See flowchart Fig. 2.2). After construction of the component
tree, each node is visited to resolve references between nodes that were specified
in the configuration (see 2.3.2 for more on configuration references), replacing
the configuration reference value with a reference to the component object in
the tree that the reference pointed at. E.g., the string reference "celltype_A"

might be resolved to the cell type component named celltype_A.

Using the config.node decorator a class is modified to incorporate this recursive

8Type handlers are callable components, or even functions in simple cases. The provided
type handlers already cover most use cases, including boolean operators such as “type A OR
type B”.

33

Figure 2.2: Flowchart of component tree construction: flow of the recursive
node-constructor based algorithm that converts the user specified tree of con-
figuration values into a tree of components ready to perform their framework
function.

34

algorithm in the class protocol9. Users can integrate their own components into
the configuration by inheriting from a dynamic parent node class (explained
below), and then creating configuration attribute descriptors using the various
descriptor factories to prescribe and access configuration values (see 2.3.2 for
the different descriptor factories).

The component system is further enriched with a strategy pattern [92] that
allows users to bootstrap their own components implementing the parent com-
ponent interface. Using the config.dynamic decorator10, a class can be marked
as a host for a component type with a strategy pattern. The dynamic decorator
will add a configuration attribute to the class that will be resolved to the class
that should be invoked, rather than the parent node class, wherever another
configuration attribute expects a parent-typed node (see 2.3.1 for an example
of a parent and child node, and configuration examples)

The default resolution mechanism (which can be overridden by passing a type
handler to the dynamic decorator) treats a dotted path as a location to an
importable Python module, with the last part of the path being the name of
class variable to retrieve from the module. The config system then imports the
module and fetches the class. Some component types use a classmap, which
maps short recognizable names to the fully qualified class name11. Code is
treated as a dependency of the model description, and should be referenced
through the appropriate data source dependencies (see 2.7.2).

In conclusion, we now have the mechanisms in place for users to define, declare,
encapsulate, and parametrize their custom algorithms for cell placement, con-
nectivity, or instantiation of simulator elements based on that data, or any other
function the framework supports with the component system. The available
component types are described in section 2.5. The structure of the configura-
tion tree is largely unknown, and the framework itself only relies on a couple of
root dictionaries and lists to perform its workflows, while the exact dependencies
or algorithms are specified by the strategies implemented in the components,
and these components may specify whatever configuration attributes, nodes, or
data dependency nodes (see 2.7.2) they may need to perform their function.

In the framework, the component configuration and invocation usually hap-
pens within a scaffold bootstrapping flow, see the scaffold section 2.4 for more
information.

9By modifying the class, metaclass, __new__, __init__, and __init_subclass__ methods
10So named because by using the dynamic decorator, classes can be dynamically loaded
11Just declaring a class somewhere is not enough for it to be picked up by the class map,

but listing it in the components list solves this bootstrapping problem. Components can also
be provided through plugins, which are discovered, but should still be listed in the packages

dependency list

35

2.3.1 Node class decorators

The behaviour of nodes in the configuration is established by modifying class
objects.

bsb.config.node

The node decorator modifies the class to accept either a dictionary of given
configuration values, or a set of keyword arguments of either configuration values
or runtime values. This allows nodes to be in any Python context, be it during
framework workflows, or by advanced users using the framework in their own
workflow scripts.

The algorithm set up by the node constructors is demonstrated in Fig. 2.2.
The configuration attributes are determined by traversing the parent classes
according to Python’s Method Resolution Order12 to respect the entire parent
hierarchy of configuration attributes as well.

bsb.config.root

The root decorator modifies a class to be the starting point of a configuration
tree. This node is responsible for bootstrapping the code dependencies listed
in the components root attribute. Then, it can initiate instantiation of all its
other attributes. After its attribute processing, due to the recursive nature,
component tree construction is complete, and the root class will finalize the
component tree by resolving any configuration references. Configuration nodes
without this modifier can construct a component tree as well, but it will contain
unresolved references which error out when accessed, until the node is inserted
into a configuration tree that does have a root node class at its root.

12https://www.python.org/download/releases/2.3/mro/

36

https://www.python.org/download/releases/2.3/mro/

bsb.config.dynamic

@config.dynamic(

attr_name="strategy",

auto_classmap=True,

required=False,

default="random"

)

class MorphologyDistributor(Distributor):

@abc.abstractmethod

def distribute(self, positions, morphologies, context):

pass

class RandomDistributor(

MorphologyDistributor,

classmap_entry="random"

):

def distribute(self, positions, morphologies, context):

return self.scaffold.random.np.integers(

len(morphologies),

size=len(positions)

)

Code Snippet 2.3: Example of a dynamic parent class,
MorphologyDistributor, implementing a strategy pattern prescribing a
component interface that needs to be implemented (namely the abstract
distribute method), and a child class that implements the interface, and
assumes the "random" label in the parent classmap. Since it is also the default
value, not assigning a distributor, would assign the random distributor.

The dynamic decorator implements the polymorphism of the configuration nodes,
and allows a parent node to be resolved to any of its child node classes by lo-
cating and importing the class as explained in section 2.3.

The decorator adds a configuration attribute to the parent node that can be
customized. The default convention is that if the purpose of the polymorphism
is to implement the strategy pattern (i.e., a variant algorithm to be carried out)
that the name of the attribute is “strategy”, and if it is more generic than that
it will be named “type”.

The dynamic attribute can be customized with the same properties as any other
node attribute (see 2.3.2).

Dynamic classes support a class map as well, where mnemonic devices can be as-
sociated to their importable class name, e.g. "cone" could map to

37

bsb.topology.partitions.Cone. Regular class maps need to be defined on
the parent class, and are not extensible, but class maps may also be automatic,
and can be extended simply by inheriting from the parent class. The automatic
map infers a snake cased name from the class name, or a specific name can
be set with the idiom class MyClass(Parent, classmap_entry="custom"):,
which is processed by the parent’s __init_subclass__ to add it to the class
map.

bsb.config.pluggable

@config.pluggable(key="simulator", plugin_name="simulation backend")

class Simulation:

name: str = config.attr(key=True)

cell_models: cfgdict[CellModel] = config.slot(

type=CellModel,

required=True,

)

connection_models: cfgdict[ConnectionModel] = config.slot(

type=ConnectionModel, required=True

)

devices: cfgdict[DeviceModel] = config.slot(

type=DeviceModel,

required=True,

)

Code Snippet 2.4: Example of the bsb.simulation.Simulation class using the
pluggable decorator to load available simulation nodes based on the installed
simulation backends, and three slots for the cell models, connection models, and
devices, which are required by the framework, but need to be provided by the
simulation backend.

The pluggable decorator (see Code Snippet 2.4) modifies a class so that it will
be dynamically loaded, but not by importing a class, but by loading a plugin
(see 2.9) of a certain category. Pluggable nodes may contain slot attributes
(see 2.3.2) which the plugin should provide13.

2.3.2 Configuration descriptor factories

The configuration system is descriptor based. In Python the descriptor proto-
col14 describes the actions taken when a property of a class instance is accessed.
Using a set of descriptor factories the framework, and the user can create node
classes that convert configuration trees into component trees.

13This decorator, like the others, are part of the public API, so users may leverage the
integration between the configuration and plugin system in their own components as well.

14https://docs.python.org/3/reference/datamodel.html#implementing-descriptors

38

https://docs.python.org/3/reference/datamodel.html#implementing-descriptors

bsb.config.attr

The config.attr is the basis for declaring an attribute on a node. Attributes
have a type handler that validates and transforms the configuration value to
its component value, and the inverse operation to convert them back to con-
figuration values . Attributes can be required (or set conditional requirement
functions), can have a default value (or value factory), and can contain docu-
mentation and hints for automated documentation and validation schemas15

Configuration attributes can raise CastErrors or RequirementErrors, when the
value can not be cast, or a required value is missing, respectively.

The type handler can contain complex types such as
config.types.or_(config.types.dict(

type=config.types.list(type=int)), config.types.list(type=int)) to
describe the expected type of the attribute. Usually for nested types it is bet-
ter to specify a node class as the type handler: config.attr(type=MyNode), so
that the MyNode class can contain additional logic that pertains to the structure.

bsb.config.list and bsb.config.list

The list and dictionary descriptor factories can be used for ordered or keyed
collections of items respectively. They contain additional logic for the runtime
mutation of the component tree, so that when nodes are added and removed
the rest of the tree can be notified.

bsb.config.file

The file descriptor creates an attribute which will be treated as a URI. The
appropriate URI scheme will be used to retrieve, cache and bundle the file de-
pendency in the storage object. This way, any user components with external
dependencies, be it data, code, . . . , can effortlessly bundle their dependen-
cies with model reconstructions, making them self-sufficient distributions of the
model. The descriptor contains a cache attribute which can be set to False

to opt-out of the caching and bundling mechanisms. This is usually not recom-
mended, but some users may prefer not to bloat their model reconstructions.

15The bsb-json package (https://github.com/dbbs-lab/bsb-json) can for example gen-
erate JSON schema’s (https://json-schema.org/specification) from any config object to
validate it, or integrate with IDE autocompletion.

39

https://github.com/dbbs-lab/bsb-json
https://json-schema.org/specification

bsb.config.ref and bsb.config.reflist

@config.dynamic(attr_name="strategy", required=True)

class PlacementStrategy(abc.ABC, SortableByDeps):

cell_types: list["CellType"] = config.reflist(

refs.cell_type_ref, required=True

)

partitions: list["Partition"] = config.reflist(

refs.partition_ref, required=True

)

depends_on: list["PlacementStrategy"] = config.reflist(

refs.placement_ref

)

Code Snippet 2.5: Example of a the placement strategy node containing refer-
ence lists to cell types, partitions, and a self referential list of dependencies on
other placement strategies. refs is the bsb.config.refs module.

Figure 2.3: Flowchart of the reference resolution node visiting algorithm. The
key aspect is the reference handler, which based on the root and/or current node
(i.e., through an absolute or relative location reference) determines the parent
node in which to look up the given reference key.

cell_types:

cell_type_A: ...

placement:

placement_A:

cell_types:

- cell_type_A

Code Snippet 2.6: Example of the cell_types reference list, containing a
reference to cell type A in YAML. At runtime, the generated configura-
tion object placement.placement_A.cell_types will have resolved the string
"cell_type_A" to the cell type object.

40

The reference descriptor factories allow one attribute to point to other locations
in the tree. Using a callable class or lambda, each descriptor can describe where
to look for referenced values in the tree (see Code Snippet 2.5, Code Snippet
2.6, and Code Snippet S7.4 for an example of a reference handler). The reflist
descriptor works the same way, but resolves a list of configuration values instead
of a single value.

bsb.config.slot

Configuration slots work together with the pluggable node classes to establish an
expected configuration interface for plugins. For example, the storage backend
plugins rely on it to provide a storage node, that describes the location of the
storage object. This allows filesystem based engines to expect a node with
a file path, while remote storage objects may specify all the attributes they
require to connect to a remote database. The other example in the framework
are the simulation backends, that are expected to fill in slots for the cell model,
connection model, and device nodes, so that some uniformity between simulation
backends can be established16

Others

There’s also a property attribute that lets users customize the getting and
setting behaviour of the configuration value; provide attributes that use a
getter function to provide the configuration values required by parent nodes;
catch_all attributes that collect surplus/unknown attributes into a data struc-

ture (e.g., collect all unknown given attributes into a “parameters” dictionary);
and unset attributes that strip the declaration of a parent attribute from a
child class.

2.4 The Scaffold

While the model description is the central point for declarations and is embodied
by the configuration object and its component tree, the Scaffold class is the
central client for operations using that model description, and executes any
operation requested by the user. It interacts with the configuration to get
the components whose functions and strategies determine the outcome of the
operation, and with the storage object should any operation be stateful and
needs to read from or write to the state contained within the storage object.

The scaffold forms the most important public API in the framework, you can
view its API reference documentation17 to form a general idea of the operations
the Scaffold client can perform.

16The name of the nodes cell_model and cell_type are probably the only semantic coupling
of the BSB as primarily a microcircuit builder centered around cells.

17https://bsb.readthedocs.io/en/latest/bsb/bsb.html#bsb.core.Scaffold

41

https://bsb.readthedocs.io/en/latest/bsb/bsb.html#bsb.core.Scaffold

Figure 2.4: Bootstrapping process of a scaffold object. The process begins by
determining the config and storage objects to use for the scaffold, and then
visiting and preparing all the components in the component tree, and laying
out the topology (see 2.6.1).

42

To construct a scaffold the user calls the constructor either without arguments,
to initialize an empty scaffold, and adds component declarations during runtime,
and then calls the desired operation methods; or, passes in a path-like Python
object, to load a configuration file; or, passes in a content string, to parse it;
and, may provide a storage object to use. After the config and storage ob-
ject have been established, the scaffold inserts a reference to itself to establish
a bidirectional relationship between the scaffold and every component, boot-
strapping the scaffold. For further initialization of components that requires
this bootstrapped scaffold context, a boot hook is provided that components
may implement. The bootstrapping is finalized by passing through the topology
component tree in order to update the layout. From this point on the scaffold
and all of its components are ready to carry out their functions.

Since the framework strongly inverts control the user will likely only interact
with the scaffold from inside a component context through the component’s
self.scaffold attribute that the scaffold inserted during bootstrapping. How-
ever, should the user, or tool developer, want to, they can use the scaffold’s API
to modify and generate the configuration, interact with the stored data, or run
their own workflows.

2.5 Core Component Types

2.5.1 Main component assemblies

There’s 2 component assemblies in the framework, these assemblies are compo-
nents themelves and manage a structure of subcomponents. The configuration
root assembles the parsed configuration tree into a tree of components. The
storage engine is an example of a plugin component; In the framework plugin
components have both a direct interface with the framework, but also have an
expected set of plugin specific subcomponents they must provide to the frame-
work. The storage engine must provide components for storage APIs. These
APIs offer the user an interface to interact with the generated data in identi-
cal fashion no matter which storage format is used. The tree of components
declared by the user to describe its model, and the storage engine with subcom-
ponents that bridge to the datasets of the model are then assembled into the
main Scaffold object, that can process all of the client’s requested operations
on the model (Fig. 2.5).

2.5.2 Storage objects

The storage object coordinates all manipulations requested by the scaffold on
the data, such as read, write, move, delete, copy, merge, and clear. The storage
root and engine attributes form the sufficient ground to describe a storage: the
engine determines the storage format that will be used, while the root should
uniquely identify and locate the storage. For filesystem based formats these may

43

Figure 2.5: Component class diagram of the main component types of the BSB.
The user (blue) interacts with the Scaffold top-level component assembly (yel-
low), which manages the main component assemblies that the user has config-
ured: the Storage assembly (green) and Configuration assembly (purple).

44

be a path, while for online formats the root may be a URI, database connection
string, or any compound data structure.

Once the storage has been initialized the scaffold may request instances of the
following component type, to manage certain data sets.

Engine

The engine coordinates access to the resources to guarantee atomic concurrent
access is possible, and performs any read/write operations whose responsibility
does not belong to other more specific APIs listed below. The default engine
is the BSB HDF5 engine. We consider it temporary until a standard format
can be adopted. The format is unspecified and adjusted to the needs of the
framework.

A storage engine may provide support for any of the following interfaces. If the
framework attempts to use a feature for which the engine provides no support,
either a warning or error is raised, if the missing feature is essential to the
operation.

FileStore

The least domain specific interface is the generic file store. The file store tracks
files and their metadata, for provenance so that all inputs of the model can be
bundled along with the generated data. In the file store you’ll find the active
configuration of the model, ad-hoc code dependencies, input data (online data
may be retrieved and stored as well), input morphology files, and the results of
any processing pipelines on those inputs.

The ‘FileScheme‘ component implements URI schemes, and some are provided
for file paths (file://), http(s) (http://, https://), NRRD raster data for 3D
brain images (nrrd://), connections to online repositories such as NeuroMorpho
(nm://) or the Allen Brain Atlas (allen://). These schemes are used to customize
the identification, retrieval, storage, encoding, and caching behaviours of the re-
sources in the file store. Any node of the configuration tree can declare a file

attribute (see 2.3.2) and the provided value will be treated as a URI and incor-
porated as a dependency of the model. This means that even user components
can fluently declare their own file dependencies and leverage the full framework
support. Further file support exists in the form of FileDependencyNode com-
ponents, which is a taxonomy of more specialized nodes (e.g., the aptly named
CodeDependencyNode, MorphologyDependencyNode, NrrdDependencyNode, . . .).
More than a single attribute on a node, these nodes have specialized attributes
and/or subnodes that can customize behaviour, and specify how to load the
runtime data structure from the data, as well as data processing pipeline (see
Code Snippet 7.6 for examples).

45

The core API are the all, store, and load functions, to list all available files,
store one, or load one, respectively. There’s also additional functions to support
file metadata (get_meta) and specific cases of metadata such as encoding or the
time it was last modified (get_encoding, and get_mtime).

MorphologyRepository

The morphology repository contains all the morphologies that have been loaded
from data sources or generated de novo during a workflow for the model. The
morphologies are stored in the framework’s own representation as essentially
an (NxM) matrix and a DAG, where N is the number of points, and M is
the number of columns. The number of columns is established by the 3 spatial
columns XYZ, the radius column, the label column, and the additional property
columns defined by the user (see 2.8).

The repository stores metadata alongside the morphologies, and using the
MorphologySelector components suitable morphologies can be searched for
in the repository. One can for example select all the morphologies that fit cer-
tain size constraints, by looking through the metadata without having to load
the morphologies. The selector component type helps to decouple the morphol-
ogy from its technical identifier (filename, data source, . . .), to focus on the
biological reason that makes it a useful morphology to consider.

The core API are the save, load, and all methods to store and retrieve
morphologies, and list available morphologies, respectively. There’s also the
preload function which should return a StoredMorphology wrapper that can
peek into the metadata and when required also load the full morphology data.

PlacementSet

The placement set is one of the main data APIs and contains all placement
information on a type of cells. There is always one placement set per cell
type. To form subpopulations or groups cells can be labelled with one or more
arbitrary labels. The set stores the cell positions, rotations, and morphologies.
These 3 sets have particular meaning associated to them in the framework,
but additional arbitrary datasets can be stored as well, usually by defining
a Distributor (see2.5.3, distributor, and Code Snippet 3.5). The rotation
and morphology sets are optional, for point neurons, and even the positions
themselves are optional; a set of cells can be defined simply by its count, for
research contexts that do away with spatial detail, or for other edge cases. These
counted cell populations can still have extensive user implied representations
during connectivity, or simulation18.

Placement sets can support the tiling paradigm and may choose to support

18Most simulators discard Euclidean space information during simulation either way

46

storing the data in seperated units that correspond to a tile, called a chunk.
This ensures that even when the scale grows beyond the memory capacity of
a single computer, that the framework can operate in a distributed cluster by
assigning chunks to parallel nodes, and processing the data chunk per chunk.
Storage engines can opt-out of chunking by reading/writing all the data to
a single canonical chunk, even when the placement context would stipulate
elsewise.

Placement sets can be scoped to a set of chunks, and/or filtered by specific cell
labels, and/or filter morphologies to certain subregions.

The core API of the PlacementSet to be implemented for child components are
the data read/write functions (append_data, load_positions, load_morphologies,
and load_additional), and the context filtering functions (set_chunk_filter,
set_label_filter, set_morphology_filter), and auxiliary housekeeping func-
tions e.g. to clear those filters, create, copy, clear, ldots the set.

See 2.7.3 for more info on the data model and role of the placement set.

ConnectivitySet

The connectivity set is largely analogous to the placement set but stores infor-
mation on relationships between placed entities, usually chemical or electrical
synapses, but they may be glial or neurovascular interactions as well.

For the following explanation, remember that the reconstructed volume is split
into equal pieces, called chunks.

The data is stored as 2 sparse matrices with 6 fixed columns for the pre- and post
sorted by blocks of connections between 2 specific chunks, for faster querying
of connections between certain regions of interest, and can be duplicated into
2 sparse matrices representing the presynaptic to postsynaptic connectome and
the postsynaptic to presynaptic connectome.

The core API that should be supported are the connection functions (connect
based on a from-PlacementSet and to-PlacementSet, and the chunk_connect

based on a source and target chunk), and some data loading functions:
load_block_connections for the connections between a source and target
chunk, load_local_connections for all the connections either incoming or
outgoing from a chunk, and load_connections to load all the connections as
a ConnectivitySetIterator. Connectivity set iterators support iterating over
the data from a certain perspective (incoming or outgoing), from/to a certain
source/target chunk, or simply loading all of the connections. Storage engines
should override the base load_connections method if they wish to return a

47

different ConnectivitySetIterator, should they not support some of these
features. There are also several housekeeping functions to create, require, move,
clear, . . . the set.

See 2.7.4 for more info on the data model and role of the connectivity set.

2.5.3 Configuration nodes

network, component and package nodes

The network node contains the size hints, used to roughly contain and scale
the topology, the network name, and may contain free metadata about the
reconstructed network.

{

"components": ["my_model.placement", "my_model.connectivity"],

"packages": ["numpy==1.22.0", "bsb-atlas==1.0.0"]

}

Code Snippet 2.7: Example of component and package declarations in JSON.
The component modules will be imported, and their source code will be bundled
with the model reconstructions. The presence of the listed packages will be
asserted when using the model in any workflow.

The component and package nodes contain component module and package
dependencies respectively (Code Snippet 2.7). The package list should contain
all version specifiers of any packages the model depends on. The framework
asserts that the environment the model runs in contains the necesary packages
or raises a warning.

For most simple component use cases the Python packaging system is an added
burden and offers no advantages, and users can instead reference standalone
component modules in the component node, which will be bundled with the
model.

Storage node

{

"storage": {

"engine": "hdf5",

"root": "network.hdf5"

}

}

48

Code Snippet 2.8: Example of a storage node in JSON. The plugin system
will load the "hdf5" storage plugin from the "bsb.storage.engines" plugin
category. The root is used by the plugin to uniquely locate/connect with the
storage object.

The storage node contains the information required to bootstrap the storage
engine (Code Snippet 2.8), it specifies the format and root descriptor. The
root descriptor is a format dependent syntax to uniquely identify each storage
object. For local engines this would likely be a file path, while for remote
engines it could be a connection string, or even multiple pieces of information
like a dialect, connection options and so on.

Morphologies block

{

"morphologies": ["morphologies/my_morpho.swc", "nm://Trh-M-200003"]

}

Code Snippet 2.9: Example of a simple listing of morphologies with several URI
schemes in JSON.

morphologies:

- preprocessed.swc

- sources: ["unprocessed.swc", "nm://Trh-M-200003"]

pipeline:

- center

- func: "pipelines.process_morpho"

User comment: turn on strict processing flag

parameters: [true]

Code Snippet 2.10: Extended example showing how processing pipelines can be
set up for data dependencies, including stepwise function calls, with parameters,
and user comments for clarifications in YAML. For morphology dependency
nodes, the entire bsb.morphologies utility library is exposed as exemplified by
the center shortcut for bsb.morphologies.Morphology.center.

In this block users can specify morphologies and their processing pipelines (Code
Snippet 2.9). They are later associated to cell types using morphology selector
components, that can select morphologies based on either technical or biological
qualifiers (such as filename, or morphology size, respectively). When morpholo-
gies are generated, these input morphologies can still serve as templates, or be
omitted.

The morphologies are loaded during the dependency workflow phase, and con-

49

verted to an internal format that can store all the required multiscale data, and
can utilize the framework’s morphology utility library (see 2.8). The user can set
up different processing pipelines, for example to sanitize or unify morphologies
from different sources to the same reference space, or soma conventions (Code
Snippet 2.10).

Topology block
partitions:

VAL:

- type: allen

- struct_name: VAL

layer1:

- thickness: 100

layer2:

- thickness: 200

regions:

stack:

type: stack

children: [VAL, layer1, layer2]

Figure 2.6: Example of some partitions and a region grouping them together,
and a diagram of the resulting topology. The layout is obtained because the
stack places the elements on top of each other, the VAL partition is retrieved
from the Allen Brain Atlas, and the layers occupy their specified thickness along
one of the axes, bounded in the other dimensions by the outer perimeter of their
parent region, which in this case is determined by the bounding box of the VAL
partition.

The partition and region nodes contain descriptions of geometric shapes that
outline partitions of the volume to fill with cells, and how to assemble them into
larger regions of the brain, respectively. Out-of-the-box the framework supports
geometric primitives like rhomboids, cones, and layers, and irregular shapes with
voxelsets, or meshes. See Fig. 2.6 for a configuration example, and section 2.6
for an explanation of the layout process and component interface.

Cell types, placement, and connectivity blocks

These are straightforward declarations of the cell types, and how to place and
connect them. Cell type blocks contain cascading information: the information
here are mostly hints to help other pieces query information; e.g, you can specify
a radius, but it won’t necessarily be the radius of every particle, it will instead
be passed as a contextual cue for placement algorithms to rely on.

The hard parameters are defined in the placement and connectivity blocks.
Some parameters can be omitted if instead they can be found in the cell type. A
cell type is effectively a label on some information, permitting various paradigms

50

and interpretations of the generated network information. The placement and
connectivity blocks form the core of the description of the model.

Importantly, the placement and connectivity blocks may contain distributor
nodes. Distributors are special jobs that run after each placement or connec-
tivity job to assign additional properties to the block of data that that job has
just generated. Any number of properties can be distributed.

The placement block has 2 special types of distributor: the morphology and
rotation distributors. They accomodate many of the use-cases and workflows
surrounding morphologies. For example, in the simplest case one can disable
them, or randomly distribute existing morphologies, or generate new morpholo-
gies. The rotation distributor makes it so that rotating a morphology does not
require you to create a copy of it, the same morphology can be assigned to
different cells with different rotations, for example to reuse and orient template
morphologies along the orientation of a layer’s surface.

Postprocessing block

Placement and connectivity jobs are scoped and processed independently in
parallel. As a consequence no correct global information is available during
either placement or connectivity. Each of these phases does however have its own
postprocessing phase which is ran when all the information has been generated,
and so the global information is known.

These postprocessing blocks invoke their own strategies for example to prune
connectivity to a desired global distribution. By default they are not paral-
lelized, but placement, connectivity, and postprocessing component jobs are all
scheduled using the same mechanism which can be overridden from the compo-
nent code.

Simulation block

The simulation block contains simulator specific cell model, connection model,
and device configuration. All three types implement a strategy pattern for the
instantiation of their respective representations into the simulator environment.
These components are decoupled from the framework’s cell and connection rep-
resentations, and are bridged together with the Parameter component, which
lets the framework generated cell and connection data be mapped to parametrize
the simulator cell and connection models, respectively. This decoupling ensures
flexibility to support the simulator’s paradigm and user needs, while the frame-
work can generate data without needing any formalisms for what that data is
going to be used as.

The Parameter component type is the final piece in a chain of components that

51

allow the framework not to prescribe anything to the user. The further away
the needs of the user from the framework’s vision, paradigms and opinions, the
more components one will need to implement, but it is highly likely that it will
still fit inside the framework’s architecture and leverage all of its support and
advantages.

The hashing system tells the framework when updates exist for a cached in-
termediary. E.g., some data sources rely on URI’s to locate the resource, and
several URI schemes (such as filesystem paths, http, and https URIs) have their
own mechanisms of telling whether a resource was updated since the last run.
If any of the inputs have changed, or any of the parameters of the pipeline
changed, the pipeline will be rerun, otherwise cached results are used by the
rest of the workflow.

2.6 The Topology System

Understanding the spatial topology of the network helps the framework make
informed decisions on the parallelization of the volume,

2.6.1 Layout

The topology is initialized by a layout process that begins from the root region
(a no-op group is added at the root if there are multiple regions or partitions
without a parent), and the network size hint is passed to the root region. Based
on the size hint and its own behavior, each node proposes a set of operations
on its children (translate, scale, rotate), who in turn propose operations on
their children.

Each node can also reject the operation, the parent can then continue proposing
alternative operations until a suitable layout is found, or ultimately an error is
raised if all options are exhausted.

For example, a voxelset will refuse to rotate if the rotation would not result in
axis aligned voxels (so only multiples of 90° rotations around an axis), but will
accept any scaling or translating proposal.

A spacing element might refuse a translation that would violate the minimum
distance between elements. Each topology component should aim to implement
as many operations as possible, to increase the likelihood of a succesful layout19

19So far, the capacity of the layout system seems to be much greater than the complexity
of actual model descriptions, who usually just import shapes from brain atlases, or create
simplified descriptions such as a cortical stack of layers

52

2.6.2 Partition interface

To support the parallelization of jobs, the volume is divided into chunks, and
each partition component should implement the interface to determine its own
axis-aligned bounding box, and be able to intersect itself with an axis-aligned
rhomboid.

The bounding boxes are combined to establish the outer perimeter of the model.
The default job queueing method for placement strategies will use this boundary
to query all the partitions they should place cells in, and queue a job for every
chunk for which a non-empty intersection is returned20.

Splitting the volume into tiles is mostly a load balancing mechanism, so compu-
tation of exact intersections or approximations are not required, and cells may
be placed at coordinates outside of the chunk, and still be stored in that chunk
in the storage object. The only important part is that everything is approxi-
mately equally divided, otherwise scaling will detoriate as some workers might
be busy much longer than others and stall jobs that depend on it.

Each partition component should also implement as many functions as possible
to support placement indications that both the framework and users may use
to guess or estimate priors for parameters of algorithms. These are optional,
but most notably they are used to estimate cell counts. If the indications are
available, then the framework can estimate cell counts that are relative to the
count of another cell type, without having to make the placement of one depend
on the final result of the other (because the estimation can be used instead).

These indications are generic, so a user can ask for an indication by any name,
and the 2 indications the framework relies on are the "volume" and "surface"

area, intersected with a given rhomboid. Placement indicators may return a
single value or a voxelset with one value per voxel, for more fine grained results
within a larger volume. This is for example used by the brain atlas partitions
to return "density" indications per voxel in the data source rasterized brain
image, which combined with the "volume" indication can then be used to cal-
culate the number of cells that should be placed per voxel in the brain atlas
structure.

2.6.3 Brain atlas integration

Since much multiscale data on the brain is provided to the community in the
form of brain atlas images, the framework provides an integration with the Allen
Brain Atlas, and abstractions to deal with rasterized brain image data.

20This queue method can be overridden on all of the parallelizable component types for
parallelization more suitable to the nature of the algorithm

53

First, let’s understand the data abstraction: A dedicated class called the
bsb.voxels.VoxelSet lets users define 3 types of sets of voxels: a set of voxels
identified by their index coordinates on a regular 3D grid (i.e., “pixel” coordi-
nates in an image, but in 3D), called a regular voxelset, a set of voxels identified
by spatial coordinates and a shared size, called an irregular voxelset, or indi-
vidual sizes. Either set can be cubic or rhomboid, where atlas data is usually
cubic. Each voxelset can also have any number of data columns associated to
it, which can either be a value per voxel, or an object per voxel (using numpy’s
object dtype).

The topology system supports 2 types of irregularly shaped shapes out-of-the-
box: meshes (using pymesh21), or voxelsets (usually loaded from NRRD files,
with pynrrd22). Brain atlases usually provide rasterized images of the brain with
certain resolutions per voxel, usually ranging from 100 micron to 10 micron.

To process the Allen Brain Atlas data into a framework-useful form the
AllenStructure component is provided which turns the brain images into a
voxelset scopes to an Allen Structure that the user specifies by a struct_name

or struct_id. The identifier has to match the name, acronym, or ID of the
structure in the Allen Atlas Ontology, which is a tree of structures. Every
structure may contain child structures, and an ontology image can be down-
loaded specific to each version and resolution of the atlas, where each voxel is
labelled with the ID of the terminal child structure it belongs to. To obtain the
mask of a non-terminal node all voxels labelled with the id of any of its termi-
nal child nodes must be retrieved. Then, the user may associate any number of
source NRRD files to which the mask will be applied, and whose data will be
loaded as a data column of the voxelset (see top snippet of Code Snippet S7.6).

These elements allow a user to effortlessly use shapes defined by the atlas on-
tology, and populate the shape with atlas data, that can then be used as the
basis for placement and connectivity algorithms.

2.7 The Data Generation System

2.7.1 Parallel scheduling

All the generation phases of the framework described below use the same parallel
scheduling mechanism. A JobPool component allows jobs to be submitted, and
executed. Jobs have an id, a function to execute (i.e., the job to do), and may
depend on other jobs, which means they will be scheduled after it, and may
request its return value.

21https://pymesh.readthedocs.io/en/latest/
22https://pynrrd.readthedocs.io/en/stable/

54

https://pymesh.readthedocs.io/en/latest/
https://pynrrd.readthedocs.io/en/stable/

The job pool requires one manager, and can manage many workers. The frame-
work provided job pool uses a pool of MPI processes, and a thread on one of
the worker processes fulfills the manager role (otherwise one worker would be
lost while the manager mostly idles).

The framework initiates job scheduling by opening the pool, and asking all
relevant components to queue their jobs, components may specify that they
would like to depend on the jobs of another component, and when queueing
is complete the framework executes 2 tasks: one, it resolves the component
dependencies to job dependencies (with detection of circular dependency loops),
and two, it creates a description of the planned run, so that job execution may
error out or be interrupted, and later errored, incomplete, or skipped jobs may
be retried/resumed23.

Another important aspect of parallelization is parallel resource access. The
framework provides a locking component to storage engines for multiple read
and single write (MRSW24) access across MPI processes, so that all user code
can transparently call read and write operations without worrying about parallel
access conflicts.

2.7.2 Data dependencies & pipelines

Any node can mark itself with a file descriptor, which will treat the provided
value as a data dependency, retrieve it, cache it, and bundle it with any gener-
ated outputs. Dedicated nodes exist within the framework for most use-cases,
but users are free to define their own component’s data dependencies.

Most dependency nodes support a pipeline attribute, a list of Operations,
which in turn are composed of a reference to an importable function, and a
parameter list. Putting these elements together, users can specify a stepwise
data processing pipeline, which will import the function of each step, and call
it with the input object, the arguments, and pass the output to the next step
(Fig. 2.7, code example in Code Snippet S7.6).

Each dependency component implements a load_objects function which must
parse the data into a list of values (or load_object as a shorthand for a single
value list). The default queue method will schedule 1 parallel job per input
value and apply the processing steps to the input value. Users can override the
queue method to implement better suited parallelization schemes.

The CodeDependencyNode can be used for code dependencies, and will automat-

23It occurred that entire lengthy workflows were lost because of a single edge-case error, so
this is a nifty feature.

24https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock

55

https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock

Figure 2.7: Flowchart of data pipelines

ically include the target module as a Python file in the storage’s FileStore,
and load the module from there, as the module it was initially loaded as. e.g.,
you can load a local file "my_brain/my_conn.py" as the my_brain.my_conn

module, and then relocate the model reconstruction anywhere and the module
will still be loaded from the file store as the my_brain.my_conn module25.

2.7.3 Placement

The placement system generates information for multiscale units in the model.
It begins by collecting the placement strategy components, the most common
purpose of a placement strategy component is to, in some way, fill or associate
a collection of partitions with cell types.

The setup for this phase is relatively simple: Each component places jobs in the
job pool with a queue method, which by default looks for chunks occupied by
any of the given partitions, and schedules a job per occupied chunk.

Then, each job calls the place method of the strategy component and passes it
the chunk, and a context object that can answer questions like: how many cells
should be placed? Which morphologies should be used? To simplify queries
for users that depend on many configurable factors. The placement strategy
is expected to call the self.place_cells function26 with the generated posi-
tions (or counts) of the different cell types. The job continues by calling the

25This mechanism is limited, as any dependencies or relative imports won’t be included, so
treat them as “standalone modules” and list any dependencies they have in the packages list.

26As little as possible, with as much data per call as possible, because it requests a write
lock and writes to storage, which incurs overhead.

56

Figure 2.8: The placement data model. Each inner white square denotes a
dataset object, with in parenthesis the data per record in the set. All datasets
are parallel to each other, e.g., position 1 is associated to rotation 1. (*) A
MorphologySet: A set of morphology names, and a multiset containing the

index of the associated morphology name per cell. The morphologies them-
selves are stored separately by the MorphologyRepository. The rotations
are similarly wrapped by a RotationSet which lets users use the convenient
scipy.Rotation per item in the dataset.

57

distribute method of the configured distributors, and passes them the same
context object, and the generated positions. Each distributor is supposed to
return one value per generated position.

The user returns a dataset with xyz + radius from the placement strategy
component, and /or a MorphologySet (which maps cells to a set of morphologies
by associating each cell to the index of the morphology in the set), and/or a
RotationSet with the 3D Euler rotation in degrees, and/or additional vectors
from the distributors (see Fig. 2.8) which are handed to the storage engine and
contained within a compound dataset called the PlacementSet.

PlacementSets can read/write the stored data, and can apply several scopes:
the data can be restricted to specific chunks, to specifically labelled cells, and
the morphologies can be restricted to specifically labelled points.

2.7.4 Connectivity

Connectivity strategy components consist of 2 main nodes called HemitypeNodes:
one for the presynaptic specification and one for the postsynaptic one (N.B.:
components can be extended). Each hemitype specifies a list of cell types, and
optionally a list of target cell labels, and target morphology labels.

Figure 2.9: Schematic representation of the scoped job submission based on
regions of interest. CT: cell type. PS: PlacementSet, between parenthesis in
order: chunk scope, cell label scope (Lc), morphology label scope (Lm)

The phase begins once more by calling the queue method of the components.

58

The default implementation relies on calling the get_region_of_interestmethod27

for each presynaptic chunk occupied by any of the presynaptic cell types. The
region of interest (RoI) method takes a set of presynaptic chunks as argument,
and must return the set of postsynaptic chunks whose placement information
is relevant to it (Fig. 2.9). For each pair of RoIs a job is submitted. Each
submitted job then calls the connect method of the strategy component with
2 arguments: pre and post28 representing mini-worlds of the placement infor-
mation scoped to the selected RoIs and labels of the job.

Figure 2.10: The connectivity data model. Parallel arrays represent the presy-
naptic site and postsynaptic site, and additional properties. Each site is de-
scribed by 3 coordinates all scoped to the PlacementSet that produced it: the
cell id in the set, the branch id in the filtered morphology, and the point id on
the branch. This information is only valid within the context of the current
job, and is decoded by the storage engine, which also recodes it whenever the
framework or user loads the data in another scope.

The user can then use the scoped PlacementSets to load_positions,
load_morphologies, or load_additional(name) information on the cells, and
generate connections between them by calling self.connect_cells with 2 3xN
datasets with the 3 columns being the cell id, the id of the branch in the mor-
phology, and the id of the point on the branch for both the presynaptic and
postsynaptic site. The same arguments and the generated connections are then
passed to the distributors to generate additional information.

2.7.5 Data storage

The framework chooses to defer the reading, writing, encoding, and decoding
of data to a collection of components, provided by the storage engine, so that
through a rather simple interface of parallel arrays the storage engine can store
and load it in various ways. No standards were found that could support the
wide range of multiscale information we generate, and an in-house format was
developed.

27Whose default implementation is to select everything as the region of interest
28So, only by overriding the queue method, to have it schedule a different type of job, could

a user break away from the bipartite synapse, which is not great user experience. A mixin
class could be provided for the desired behaviour, but it does not exist yet.

59

Figure 2.11: A) Dependency of the connectivity flow on the storage engine: The
connectivity strategy queues parallel jobs by querying the PlacementSet (PS) ,
the job creates the scoped PS1 and PS2 and calls the connect function. The user
code retrieves data from PS1 and PS2 to produce the output result, oblivious
to any scope. The storage engine assembles the ConnectivitySet (CS) based
on the user output and PS1 & PS2 information (CS(PS1, PS2)). In the bottom
part some example data layouts are decoded from the user output. B) Sort-
order examples of possible demultiplexing of user output to either globally sorted
(sorted) or locally sorted (block-sorted) data. C) Example of duplicated storage:
No sort order can sort both paired columns simultaneously, but by duplicating
data, this time sorted by the second column, both the incoming and outgoing
connections can be retrieved from a sorted dataset.

60

To decouple the framework – and more importantly, user code – from storage
assumptions, we opted for a simple user interface of parallel arrays (Fig. 2.8 &
Fig. 2.10): the user code always operates on dataset objects that either directly
are, or facilitate access to, a contiguous vector or matrix, as if the data within
the job context was the entirety of data that exists. The user then creates their
own dataset, referencing the input data by their index in the dataset, and the
storage engine decodes the result.

It’s the task of the storage engine both to encode the datasets that are passed
to the user, and to decode the returned values from the user code. Note in Fig.
2.11A how the entire flow depends on the PlacementSet, and is stored in the
ConnectivitySet, both provided by the storage engine. This double deference
to the storage engine for both the inputs and outputs of user code should allow
the user to operate in a consistent simplified space29, while the storage engine
can arrange more complicated optimized data layouts to store the information
according to the format. Different formats will surely have different performance
and scaling in different situations.

The only coupling between the framework and the storage that could cause
friction are the chunks, since they are a storage feature closely intertwined to
the parallelization scheme. Users that use storage engines that do not support
them, would have to either lose some degree of parallelization (not all: each
declared component will still schedule at least 1 parallel job, or might not use
rely on chunks at all for their parallelization), or need to rethink and override
the parallelization logic in many of the components they use.

For use within our research group we chose for a duplicated block-sorted layout
in the BSB-HDF5 engine (Fig. 2.11A& B), so that during simulator network
setup, we needn’t iterate the entire connectome. Since the connectivity data
is paired, no matter how the cell pairs are sorted either the source or target
cells remain unsorted and need to be iterated through entirely to find all the
incoming or outgoing connections of a cell owned by the current machine (Fig.
2.11B, connections belonging to cell R0 are spread throughout the dataset).
By duplicating they can be sorted both ways, and both the incoming and out-
going connections of a cell can be retrieved from a subset of the connectome
(Fig. 2.11C). By using the duplicated block-sorted layout and storing the block
boundaries in a hashmap keyed by the chunk, all relevant data could be eas-
ily sliced out of the HDF5 datasets. No performance analysis was performed
as the network setup time was negligible compared to network simulation time
either way30, but significant reduction in the peak memory consumption and
time spent in framework code was observed.

29The placement phase does not have this complication: being the first phase, there is no
dependency on stored storage-format dependent information yet.

30The doctoral scholarship has a fixed duration, and getting the framework into a usable
state was a bigger priority.

61

2.8 Morphologies

Cell morphologies are ubiquitous in multicompartmental modeling, yet no stan-
dardized format exists31. There were no existing formats that supported spatial
coordinates, multiple labels, and arbitrary user properties per point. Therefor
we created a data model similar to our others, with parallel arrays that can be
represented by a single data matrix, and a directed acyclic graph (DAG).

Figure 2.12: Left: schematic representation of a morphology, formed by a series
of conical frustrums, described by a series of points with radii. Green lines: line
segments inferred between subsequent points of a branch; green dots: points; red
numbers: branch identifiers; orange: indicators showing the aproximate extent
of the branches in the morphology. Right: Data model of a morphology showing
the parallel arrays of data points, and the branch graph, which associates data
points together into branches with child-parent relationships.

A morphology in the framework is a matrix of data points with the following
columns: 3 spatial coordinates X, Y, and Z, a radius, labels (encoded by a single
integer that refers to a map of lists of labels), and any amount of properties (Fig.
2.12). Additionally, a branch graph keeps track of the beginning and end points
of the series of line segments to be formed between subsequent points, and to
which parent branch it should be (electrically) connected (no line segment is
inferred between the head of the child and tail of the parent, gaps are allowed).
Branches connected to a branch with id -1 have no parent branch and are roots of
the morphology. There is no exception for the soma, which can be approximated
with a bulbous branch. The branches are laid out in the matrix in depth-first
order, so the parent branch always precedes the child branch during iterative
algorithms.

This data model allows the framework to load and operate on a morphology
as a single contiguous array of data, using numpy’s multidimensional arrays.
The bsb.morphologies.Morphology class wraps the data matrix, and creates

31SWC is barely specified, and multiple conflicting conventions exist. NeuroLucida is pro-
prietary

62

a graph of bsb.morphologies.Branch objects. By relying on numpy’s array
interface, we can create memory views into the main matrix, allowing direct
modification of the array while the user can operate on a numpy array that
appears to contain only the branch’s data. Additional methods on the Branch

class facilitate morphology specific operations and metrics. Any operations that
would mutate the structure of the branch graph or would introduce or remove
points require the morphology to be laid out into a new data matrix; this is usu-
ally avoided internally by the Branch class, and only when certain algorithms,
like saving the morphology, require a contiguous memory layout is a new matrix
allocated: several operations were more than a thousand times faster this way.

2.8.1 Utility library

The morphology utility library helps users perform various operations on mor-
phologies, and directed acyclic graphs in general. Several geometrical transfor-
mations are supported32, such a translation, rotation, scaling, centering,
Various selection and masking operations are supported to retrieve operate on
portions of the morphology. Depth- and breadth-first child branch and point
iterator support iterative user algorithms.

Another aspect of the utility library is to provide metrics, such as total branch
length, branch tortuosity, or to find special points like all terminal points/branches,
all roots, the center of mass, and many more33.

Interoperability is provided with Arbor’s [93] morphologies, MorphIO34, and
DAG packages like networkx35.

2.9 The Plugin System

The preferred way for third parties to provide components and framework ex-
tensions to users is through plugins. First of all, providing components through
plugins has several advantages over standalone component modules:

1. Plugins are installed as Python packages so they are (usually semanti-
cally36) versioned, and can install (binary) dependencies.

2. They can perform relative imports for better code organization into mul-
tiple files.

32https://bsb.readthedocs.io/en/latest/morphologies/intro.html#

subtree-transformations
33See most utility functions here: https://bsb.readthedocs.io/en/latest/bsb/bsb.

morphologies.html
34https://morphio.readthedocs.io/en/latest/
35https://networkx.org/
36https://semver.org/

63

https://bsb.readthedocs.io/en/latest/morphologies/intro.html#subtree-transformations
https://bsb.readthedocs.io/en/latest/morphologies/intro.html#subtree-transformations
https://bsb.readthedocs.io/en/latest/bsb/bsb.morphologies.html
https://bsb.readthedocs.io/en/latest/bsb/bsb.morphologies.html
https://morphio.readthedocs.io/en/latest/
https://networkx.org/
https://semver.org/

3. They are automatically discovered

4. They can be lazy-loaded (known to the framework, but only imported
when used)

5. They can lazily extend classmaps

This list is also a summary of the drawbacks of modules the user doesn’t package
and merely lists in the components of the model. Secondly, many framework
functions can be extended in ways that do not belong in the model description.

[project.entry-points."bsb.config.parsers"]

json = "bsb_json.parser"

[project.entry-points."bsb.config.templates"]

json_templates = "bsb_json.templates"

Code Snippet 2.11: Example of entry point metadata in a plugin’s
pyproject.toml configuration file, part of the Python packaging system. The
entry points expose advertised objects to the framework.

The plugin system uses Python entry points (Code Snippet 2.11),which are pack-
age metadata specifiers that can be scraped using Python’s importlib.metadata
API . Each entry point belongs to a group, and the framework categorizes plugins
by using different groups, e.g., the available storage engines are discovered with
importlib.metadata.entry_points.get("bsb.storage.engines"). Entry points
return a list of advertised objects. Each plugin category has different expecta-
tions on what the advertised object should be and each package can specify as
many entry points as it wants.

2.9.1 Plugin categories

Component plugins

[project.entry-points."bsb.components"]

shapes = "my_plugin.shapes"

64

Eagerly loaded registered classmap component

class Icosahedron(Partition, classmap_entry="icosahedron"):

pass

Classmap extension

shapes = {

"bsb.topology.partition.Partition": {

"ellipsoid": "my_plugin.ellipsoid.Ellipsoid"

}

}

Code Snippet 2.12: Example of registration mechanisms for component
plugins. Top: plugin package metadata. Middle: eagerly loaded reg-
istered classmap component. Bottom: Object advertised in package
metadata, extending the Partition’s classmap with "ellipsoid" aliassing
"my_plugin.ellipsoid.Ellipsoid"

Installation of a plugin component suffices for them to be referenced by their
module name in the configuration, but the "bsb.components" category is pro-
vided so that objects can be advertised to extend classmaps. When the package
of Code Snippet 2.12 is installed, any user could use "ellipsoid" to lazy-load
the my_plugin.ellipsoid.Ellipsoid partition.

Storage engines

Storage engine plugins ("bsb.storage.engines") should advertise a module
that contains implementations of the classes in bsb.storage.interfaces; any
variable that inherits from any of the classes there will be considered a supported
feature. The Engine, StorageNode, PlacementSet, and ConnectivitySet are
required features.

Simulation backends

Simulation backend plugins ("bsb.simulation.adapters") should advertise an
object with 2 attributes: a Simulation node, and a SimulatorAdapter. The
simulation node should fulfill three slots: the CellModel, ConnectionModel,
and Device who convert placement data, connectivity data, and the exper-
imental setup into simulator-specific elements, respectively. The framework
provides base abstractions and a generic simulator adapter flow that can be
inherited from and followed for easy adaptation of new simulator backends, but
ultimately the plugin developer is free to manage the transfer entirely by them-
selves, as they are simply passed the configured Simulation node that the user
wishes to simulate, and the reconstructed scaffold network.

65

Configuration parsers

Parsers ("bsb.config.parsers") advertise a class with 2 methods. parse and
generate that need to transform the configuration content or path-like object
to the configuration tree (N.B.: not the component tree, just a structure of
Python lists, dicts and values that the root node constructor then converts into
the component tree), and vice-versa.

They can also contain a class attribute with a list of extensions they preferably
parse.

Configuration templates

Templates ("bsb.config.templates") should advertise a list of paths to di-
rectories that contain configuration templates. The filenames can then be used
with the bsb make-config command to create new configuration files.

URI schemes

URI schemes ("bsb.storage.schemes") should advertise classes that inherit
from the bsb.storage.UriScheme class. Through the find, should_update,
and get_content functions the retrieval, caching, and reading of the data ob-
jects can be controlled; while provide_stream and get_local_path provide
alternatives to get_content to read the object as a buffer, or from a local path
respectively.

Usually most of the interface can be inherited from the base UriScheme class
through a super call, but this should be confirmed explicitly.

Command line commands

Templates ("bsb.commands") should advertise classes that inherit from the
bsb.commands.BsbCommand class. They contain a handle function that exe-
cutes the command, and add_to_parser to add the command to a Python
standard lib argparse argument parser.

2.9.2 Listeners

Listeners ("bsb.listeners") should advertise functions that process events the
framework emits. These can then be used in user’s project settings to configure
where and how they wish to see framework events. Events include event hooks,
logging, progress reporting, warnings, and captured stdout output.

2.9.3 Framework options

Options ("bsb.options") should advertise objects that inherit from the
bsb.option.Option class. Options are a descriptor based system, where each

66

descriptor describes a different source from where the option can be get/set
(e.g., command line arguments, scripts, project settings, environment variables,
. . .). Options are used to change the way the framework (or plugins) behave,
but should not be used in any way that affects a user’s model.

2.9.4 Auditing rules

Auditing rules ("bsb.audits") should advertise functions that take the project
root directory as an argument, and should return a list of lists with the inner
list containing a name for the violation, a severity ("info", "warn", "error"),
the source code file, and finally line number. They will be visited during the
bsb audit command to report on quality/linting problems.

67

Chapter 3

Methodology: Modelling
Workflow using the Brain
Scaffold Builder

3.1 Project setup

Create a new project using the CLI command bsb new and fill out the project
settings.

Take a look at the project settings in pyproject.toml, which for the time being
only includes the default configuration file to use when none are passed to the
CLI.

name: My Model

storage:

engine: hdf5

root: network.hdf5

network: {x: 100, y: 100, z: 100}

Code Snippet 3.1: Example of the pre-workflow settings of a model configuration

After chosing a configuration template, fill out the model’s configuration settings
such as the name, size hint, and the storage node (Code Snippet 3.1).

Place any code or files you need for the remainder of the workflow inside of the

68

project folder.

3.2 Data sourcing and preprocessing

The workflow begins with locating and sourcing the required datasets. Incor-
porate the datasets with a file:// or https:// URI, or set up components for
your own URI schemes:

1. Implement or inherit find, should_update and get_content, get_meta,
provide_stream, get_local_path from bsb.storage.UriScheme: although
they’re all part of the required interface, most can be skipped and inherited
after thoughtful review of the parent code.

2. Register the class under the "bsb.storage.schemes" category, keyed by
the scheme identifier (e.g., to process “nm://some-uri-path”, register it as
“nm”).

Once the plugin is registered, any URI with the specified protocol will be pro-
cessed by it.

@config.node

class MyDataNode(PipelineMixin, bsb.placement.PlacementStrategy):

my_data = config.file()

def load_object(self):

return self.pipe(self.file)

Code Snippet 3.2: Example of a user defined data dependency, with a pipeline
mixed in. The pipeline mixin adds a pipeline attribute and provides the pipe
method to apply it.

You can incorporate your data dependencies wherever you need them by using
the bsb.config.file descriptor factory to create a configuration attribute on
your node class (Code Snippet 3.2).

The framework offers the opportunity not only to explicitly locate, but also
modify your data with a pipeline. Set up small pure functions that modify
the data step by step, and parametrize them well. This will yield a neatly
parametrized processing pipeline that can be repeated whenever the input source
changes, when parameters must be changed, or whenever someone else needs to
rerun your workflow.

You can include the bsb.mixins.PipelineMixin class to add a pipeline at-

69

tribute, and pipe method that processes the pipeline (Code Snippet 3.2). Ref-
erence target pipeline functions (including your own) by their importable name
(module path + variable name, e.g. "my_module.func1").

Morphologies are treated as a data dependency as well: you can use either
files or more specialized morphology URI schemes (like the NeuroMorpho URI
scheme). MorphologyDependencyNodes can access about 50 different opera-
tions you can perform on branches, subtrees or the entire morphology, from the
bsb.morphologies.Morphology class directly by their function name.

3.3 Declare network topology

In this stage of the workflow you can declare a hierarchical tree of simple building
blocks such as rhomboids, cones, axis-aligned layers, or define arbitrary 3D
shapes in the form of either sets of voxels, or meshes (Fig. 2.6). You can also
integrate with brain atlases: partitions can for example be defined by Allen
Brain Atlas structure IDs or names, and can then later on be filled with cells
according to the density of that cell type in each voxel of the atlas (Code Snippet
S7.6).

70

71

3.4 Determine cell types, placement and con-
nectivity strategies

@config.node

class MyPlacement(PlacementStrategy):

extra_label = config.attr(type=str, default="extra")

def place(self, chunk, indicators):

for ct, indicator in zip(self.cell_types, indicators):

self.independent_place(chunk, ct, indicator)

def independent_place(chunk, ct, indicator):

count = indicator.guess("count", chunk)

pos = self.scaffold.random.integers(

high=10, size=(count, 3)

) / 10 * chunk.dimensions + chunk.ldc

extra_data = self.scaffold.random.integers(len(pos))

self.place_cells(

chunk,

pos,

additional={

self.extra_label: extra_data

}

)

@config.node

class MyConns(ConnectionStrategy):

def connect(self, pre, post):

for ps_pre in pre:

for ps_post in post:

self.independent_connect(ps_pre, ps_post)

def independent_connect(self, pre, post):

conns_pre = np.fill(

(

self.scaffold.random.integers(

size=(1,), high=min(len(pre), len(post))

)[0],

3

), -1

)

conns_post = conns_pre.copy()

conns_pre[:, 0] = self.scaffold.random.integers(

high=len(pre), size=(len(conns_pre),)

)

conns_post[:, 0] = self.scaffold.random.integers(

high=len(post), size=(len(conns_pre),)

)

self.connect_cells(pre, post, conns_pre, conns_post)72

Code Snippet 3.3: Example of a custom placement and connectivity component
that form random positions, and random connections. The placement compo-
nent also associates an additional random dataset whose name the user can con-
figure. Both the placement and connectivity component process multiple input
components separate from each other, but components combine the given inputs
any way they see fit, i.e., to unpack the combinations into independent_place

and independent_connect is a component choice.

components: [example.py]

cell_types:

cell_type_A:

spatial: {count: 100, radius: 1}

partitions:

layer_A:

thickness: 100

placement:

place_all:

strategy: example.MyPlacement

cell_types: [cell_type_A]

partitions: [layer_A]

connectivity:

connect_all:

strategy: example.MyConnections

presynaptic:

cell_types: [cell_type_A]

postsynaptic:

cell_types: [cell_type_A]

Code Snippet 3.4: Example of a minimal reconstructive workflow, connecting
100 randomly placed type A cells to themselves randomly. Assuming Code
Snippet 3.3 is available in the root project folder as "example.py".

With a topology in place, all the elements to be considered in the model can be
defined. These can span from regular neuronal elements, to glial, vasculature, or
afferent fibers, and synapses. The cell types can have some indicative properties
inherent to them, such as soma radius and a wide assortment of count estimation
mechanisms (a fixed count, fixed density, count/density relative to another type,
. . .), but most model specific properties are assigned later.

Now define the placement strategies: declare which algorithm should be used to
fill which regions or partitions with which cell types. This is followed by the con-
nection strategies: declare which algorithm should be used to form presynaptic
and postsynaptic location pairs on presynaptic and postsynaptic cells.

73

Code Snippet 3.4 shows a minimal setup, add more declarations to arrive at a
full model description, and add more strategy components based on your needs
(Code Snippet 3.3).

3.4.1 Distribute additional properties

placement:

place_all:

strategy: example.MyPlacement

cell_types: [cell_type_A]

partitions: [layer_A]

distribute:

conductance:

strategy: my_code.SomaConductanceDistributor

depends_on: morphologies

class SomaConductanceDistributor:

factor = config.attr(type=types.float(min=0), required=True)

def distribute(self, positions, context):

m_set = context.morphologies

return [

m.select(["soma"]).radius.average() * self.factor

for m in m_set

]

Code Snippet 3.5: Example of a distributor that calculates a conductance value
from the average radius of all the morphology points tagged with a "soma"

label. It uses a dependency on the implicit "morphologies" distributor, and
uses the dependency to retrieve the morphologies from the context passed to
the distributor.

If you need more than the regular data (positions, morphologies, rotations for
placement; or pre/post-synaptic site for connections) then assign distributors
to the relevant strategies. Placement and connectivity strategies only form the
nodes and edges of the network, by declaring additional distributors per strategy
you can calculate unique properties per edge or node, which you can later use
to modify or create simulator elements (see Code Snippet 3.8).

3.5 Generate model samples

With all of the declarations in place, you should have an entire description of
your model structure. Now any number of samples can be generated with the
CLI command bsb compile. They will be stored in network storage files of
your chosen format.

74

The framework will parallelize using a Message Passing Interface (MPI) imple-
mentation if one is available and set up for the process:

mpirun -n 4 bsb compile

Code Snippet 3.6: Command to run the compilation workflow with 4 parallel
MPI processes.

At this point a lot of interesting data can already have been generated. e.g.,
using a realistic morphology generator that respects the topology, atlas cell
density data for the placement, and a morphology intersection algorithm for
the connectivity, a plausible connectome can be extracted. Most of the time the
bottom-up workflow doesn’t end here though and we continue on with model
simulation.

This stage forms the first iterative checkpoint, where after analysis of the gen-
erated samples, parameters can be tuned, or modelling approaches can be im-
proved/replaced if the obtained output is not satisfactory.

3.6 Describe cell and connection models

We now focus on how to represent this data in a simulator backend. The cell
and connection models form components around the representations of these
concepts in the simulator backend.

When declaring simulation components the workflow diverges depending on
the chosen simulation paradigm. The core supported paradigms are multicom-
partmental and point neurons. There’s no requirements that cells which had
morphologies assigned to them during reconstruction need to be represented as
multicompartmental neurons: if not interested in that level of detail you may
discard it during simulation, but retain perhaps a more detailed connectome
than one could have established without relying on morphologies.

3.6.1 Multicompartmental workflow

The framework enforces an architecture in the form of the cell model, connection
model and device components, and provides a default component which uses
the arborize1 library as the common description format of models for both the
NEURON and Arbor simulator. Code Snippet S7.7 contains an example of an
arborized cell model description.

Using arborize, each model definition consists of a set of rules to assign labels

1https://arborize.readthedocs.io/en/latest/

75

https://arborize.readthedocs.io/en/latest/

to the pieces of the morphology, and a set of mechanisms and parameters that
should be applied to each label. These definitions can then combined with a
morphology schema and constructed in either of the simulator backends, with
automatic integration with the framework.

The definition defines cable types with the cable properties, ionic properties,
density mechanisms, and available synapses for pieces of cable marked with cer-
tain labels. These descriptions can then later be combined with a schema, which
is a blueprint for a specific morphology, painted with labels and point-specific
cable or mechanism parameter changes, and can be built into model specific
instances by a builder . E.g., for an Arbor workflow in the BSB, the user’s def-
inition would be combined with a schema constructed from the generated data
by the BSB for each cell, and built into a model instance by arborize’s Arbor
builder.

Alternatively, should the user want to plug in arbitrary models that don’t fit
the arborize format, they can still write their own cell model component and
instantiate their own models inside of the component.

The connection models are usually less involved; the default component works
with a transceiver paradigm that places a transmitter presynaptically and a
receiver postsynaptically. They rely on an interface function of the cell model to
find the simulator object that corresponds to the pre and postsynaptic pieces of
cable. Both chemical (i.e., event-driven) and electrical (i.e., continuous transfer)
synapses can be created.

76

simulations:

simA:

simulator: arbor

temperature: 32

duration: 1000

resolution: 0.1

cell_models:

cell_type_A:

model: my_models.cellA

connection_models:

cell_type_A_to_cell_type_A:

synapses: [AMPA, NMDA]

devices:

pg:

device: poisson_generator

interval: 0.1

targetting:

strategy: by_sphere

origin: [50, 50, 50]

radius: 5

locations:

strategy: branch_location

label: soma

x: 0.5

spikes:

device: spike_recorder

targetting:

strategy: all

Code Snippet 3.7: Example configuration for an Arbor [93] simulation continued
from Code Snippet 3.4. Thanks to the arborize package the simulation config
and models are compatible with the NEURON simulator as well. The relation-
ship between both the cell model and PlacementSet and the connection model
and the ConnectivitySet are implied by name, but can be specified explicitly
in unconventional cases.

In Code Snippet 3.7, the framework passes the cell’s morphology, and any con-
stant/parameter overrides to arborize’s cell builder, and stores the return value
in the population. The connection model component cooperates with the cell
model component to create the specified synapses (i.e., the used cell model
and connection model should be compatible2) on all locations described by the
ConnectivitySet.

2The arborized component supports a simple interface based on a map of locations (branch
and point id on the BSB morphology), to a descriptor that can retrieve the piece of cable,
mechanisms, and synapses in NEURON

77

This is where previously generated user properties can be mapped onto specific
cable properties, mechanism properties, or synaptic properties on each individ-
ual cell or connection:

cell_models:

cell_type_A:

model: my_models.cellA

parameters:

conductance:

type: ArborizedCellDataParameter

source: conductance

target: soma.mechanisms.Nav1_6.gmax

Code Snippet 3.8: Example application of a ArborizedCellDataParameter

mapping the additional "conductance" dataset to the "gmax" parameter of the
"Nav1_6" mechanism in the "soma" region of the arborized model description.

78

3.6.2 Point neuron workflow

simulations:

simA:

simulator: nest

duration: 1000

resolution: 0.1

cell_models:

cell_type_A:

model: iaf_psc_alpha

constants:

...

connection_models:

cell_type_A_to_cell_type_A:

model: static_synapse

constants:

weight: 1

delay: 0.1

devices:

pg:

model: poisson_generator

rate: 10

targetting:

strategy: by_sphere

origin: [50, 50, 50]

radius: 5

spike_recorder:

device: spike_recorder

targetting:

strategy: all

Code Snippet 3.9: Example simulator configuration for the NEST simulation
adapter. The ellipsis should be replaced with a valid set of parameters expected
by the NEST model.

The point neuron modelling approach is far simpler and the default set of compo-
nents exposes the NEST API quite directly: neuron, synapse, and device models
can be taken directly from the NEST model directory3 and their parameters set
through the constants attribute, or using a Parameter component.

3.7 Run simulations, validate, iterate

In the final stage of the workflow the framework simulates the reconstructed
network according to the configured representations of the data in the sim-

3https://nest-simulator.readthedocs.io/en/stable/models/index.html

79

https://nest-simulator.readthedocs.io/en/stable/models/index.html

ulator, and manages the entire process. The simulated data the devices
create can be stored in any standardized format that Neo supports.

bsb simulate network.hdf5 simA

mpirun -n 4 bsb simulate network.hdf5 simA

Code Snippet 3.10: CLI commands to run a serial simulation (top) and parallel
simulation on 4 nodes (bottom).

The framework opts to end the workflow here as a wide landscape of neuro-
science data analysis tools already exist, and can be combined with Data Version
Control systems to manage handling and analysis of the generated data.

80

Chapter 4

Cerebellar Cortex
Microcircuit Model

The results presented in this chapter come from De Schepper et al. [94]

4.1 Abstract

The cerebellar network is renowned for its regular architecture that has in-
spired foundational computational theories. However, the relationship between
circuit structure, function and dynamics remains elusive. To tackle the issue, we
developed an advanced computational modeling framework that allows us to re-
construct and simulate the structure and function of the mouse cerebellar cortex
using morphologically realistic multi-compartmental neuron models. The cere-
bellar connectome is generated through appropriate connection rules, unifying a
collection of scattered experimental data into a coherent construct and providing
a new model-based ground-truth about circuit organization. Naturalistic back-
ground and sensory-burst stimulation are used for functional validation against
recordings in vivo, monitoring the impact of cellular mechanisms on signal prop-
agation, inhibitory control, and long-term synaptic plasticity. Our simulations
show how mossy fibers entrain the local neuronal microcircuit, boosting the for-
mation of columns of activity travelling from the granular to the molecular layer
providing a new resource for the investigation of local microcircuit computation
and of the neural correlates of behavior.

81

4.2 Introduction

The relationship between structure, function and dynamics in brain circuits is
still poorly understood posing a formidable challenge to neuroscience [95]. The
core of the issue is how to deal with the distribution and causality of neural
processing across multiple spatio-temporal scales. While experimental mea-
surements remain essential, they can now be supported and complemented by
realistic computational models. In principle, such models could take into ac-
count multi-modal datasets representing morphology, connectivity and activity
of different cell populations and make it possible to simulate the propagation of
microscopic phenomena into large-scale network dynamics [96–98]. These mod-
els can incorporate a broad range of biological data becoming highly constrained
and providing the best proxies of the corresponding natural circuits. Eventu-
ally, once properly configured and validated, these models can generate their
own ground-truth by binding the many parameters, provided by independent
measurements and intrinsically prone to experimental error, into a coherent con-
struct, and can be used to test various functional hypotheses [99] using specific
simulations platforms, like NEURON [100] and NEST [101]. There are several
examples of advanced computational models that have been mostly developed
to simulate activities in the cerebral cortex [77,79,102]. Here we have developed
a framework, the Brain Scaffold Builder (BSB), to cope with the organization
of the cerebellar network.

The cerebellar cortical microcircuit has inspired foundational theories on brain
functioning [62] but still challenges realistic computational modeling [103]. Pre-
vious network models using ionic conductance-based neurons have been devel-
oped only for the granular layer [8, 104]. The only model encompassing the
granular and molecular layer altogether made use of single-point neurons with a
simplified representation of membrane excitability [105]. Although those mod-
els showed a remarkable predictive power against specific target parameters,
their main limitation was that connectivity was set independently from neuronal
morphology [8,104,105] preventing a direct link between microcircuit structure,
function and dynamics. In the meanwhile, detailed computational models of
the main cerebellar cortical neurons, which were based on morphological recon-
structions embedding multiple membrane ionic channels and synaptic receptors,
have been developed, tested and validated [7,106–108]. Thus, with the BSB, we
have been able to generate the first computational model of the entire cerebellar
cortical microcircuit including both the granular and molecular layer, in which
multicompartmental neuron models were wired through a connectome defined
by the anisotropy of dendritic and axonal processes through principled rules.
The model allowed then to simulate network dynamics and validate it against
naturalistic inputs [109–111].

This work generates de facto a new model-based ground truth for the cerebel-
lar cortical microcircuit, predicting the weight that some connections should

82

have to balance the internal activity. On the scale used here, we observed
a set of emerging spatio-temporal dynamics. First, background mossy fiber
bombardment induced coherent oscillations throughout the granular layer un-
der gap-junction control. Secondly, collimated mossy fibre bursts mimicking
punctuate sensory stimulation generated dense clusters of granule cell activ-
ity that propagated vertically invading the overlaying molecular layer, where
inhibitory interneurons controlled the emission of burst-pause patterns from
Purkinje cells. Finally, synaptic changes mimicked the long-term plasticity of
neuronal discharge observed during cerebellar learning. Thus, simulations unveil
local microcircuit computations explaining the neural correlates of behaviour,
suggesting that the BSB cerebellar model provides a valid resource for future
experimental and theoretical investigations.

4.3 Methods

The methods published alongside this journal article were omitted from this
chapter because they largely repeat information explained in more details through-
out other parts of this dissertation. The originally published methods are avail-
able at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663576/#Sec19title.

4.4 Results

The BSB was applied to the mouse cerebellar cortical network, which has a
geometrically organized architecture that has been suggested to imply its com-
putational properties [62,103].

The reconstruction and simulation of a network volume of 17.7 · 103mm3 is re-
ported, including the following cell and fiber types: mossy fiber (mf), glomeru-
lus (glom), granule cell (GrC) with ascending axon (aa) and parallel fiber (pf),
Golgi cell (GoC), Purkinje cell (PC), and molecular layer interneurons (MLI)
comprising stellate cells (SC) and basket cells (BC).

4.4.1 Neuron placement

The network elements summed up to 29230 neurons (GrC, GoC, PC, SC, BC)
plus 2453 other elements (mf, glom), which were placed in the network volume
according to anatomical data [10, 103, 112] (Fig. 4.1a). The density values
matched the targets given in the configuration file, the nearest neighbour and
the pairwise distance distribution always exceeded cell diameter, and radial
distribution function demonstrated the homogeneity of cell distribution without
overlapping (Fig. S7.1).

83

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663576/#Sec19title

Figure 4.1: Reconstruction of the microcircuit of cerebellar cortex. a Positioning
of cell bodies in a 3D slab (300×295×200µm3) of mouse cerebellar cortex. Cell
numbers are indicated (the symbols reflect soma size). In this and the following
figures, the xyz reference system is defined by x-y (sagittal plane), x-z (horizon-
tal plane), z-y (coronal plane), as in standard anatomical representation. Thus,
y measures cortex thickness (aa direction), while z identifies the major lamellar
axis (pf direction). b Example of 3D morphologies illustrating GrC-GoC con-
nections through aa and pf. One GrC and two GoCs are shown: the synapse
along aa is identified by touch detection, while synapses along pf are identified
by fiber intersection. c glom -GrC and GoC-GrC connections. A glom contacts
a group of 38 GrCs forming an excitatory synapse on the terminal compartment
of 1 of their 4 dendrites. The glom, in turn, is contacted by a GoC nearby, which
forms an inhibitory synapse on the preterminal dendritic compartment of the
same GrCs. The inset shows a GrC with 1 excitatory synapse and 1 inhibitory
synapse on each dendrite. d The cerebellar cortical connectome generated by
BSB reporting convergence (on the postsynaptic element), divergence (from the
presynaptic element), total number of synapses, and number of synapses for
each connected pair. It should be noted that mf-glom is not a proper synapse
but just a branching.

84

4.4.2 Neuron connectivity

The network connections summed up to 1500000 chemical synapses and 2100
electrical synapses. The cerebellar connectome was modelled combining proba-
bilistic and geometric rules that were chosen depending on available data and
the nature of fiber (axon and dendrites) crossing (Fig. 4.1b–d; see Methods for
details). This flexible management of connection rules is unique and fixes prob-
lems not easy to solve with cerebral cortex simulators, which deal with isotropic
cellular organizations and adopt a limited number of intersection rules for all
neurons and connections [77, 79, 102]. The well-known connectivity of mf and
glom was entirely accounted for by literature data. The BSB generated local
anisotropic glom clusters extending 60µm along the x-axis and 20µm along the
z-axis [113], with 20 gloms per mf [114]. Imposing that each GrC sends its
4 dendrites to gloms belonging to different mfs within about 30µm, the BSB
yielded 49 GrCs per glom on average [42, 115]. Each of the 4 GrC dendrites,
in addition to a single excitatory synapse on the terminal compartment, also
hosted 1 inhibitory synapse on the preterminal compartment, mostly originating
from different GoCs (Fig. 4.1c) [9, 116].

The connectivity of GoCs was faced using either literature data (glom-GoC) or
adopting various intersection rules (aa-GoC, pf-GoC, GoC-GoC). In fair agree-
ment with literature, each GoC received excitation from 56 different gloms and
each glom collected basolateral dendrites from 2 GoCs [117]. There were 320 aa
synapses on basolateral dendrites and 910 pf synapses on apical dendrites per
GoC, all from different GrCs (Fig. 4.1b) [118]. Moreover, each GoC received
inhibition from 16 other GoCs [119] on basolateral dendrites (subsequent func-
tional calibration implied 160 synapses per pair, see below). Finally, there were
8 GoCs that formed gap junctions on other GoCs, with 3.5 gap junctions per
pair [120].

The connectivity of PCs and MLIs was recovered using suitable intersection rules
(aa-PC, pf-PC, and all MLI synapses). The BSB identified 1500 pf synapses per
PC (this figure was limited by the 200µm network size along z-axis but it would
range up by 1 order of magnitude in an unbounded volume [121,122]) and 197 aa
synapses per PC from 82 different GrCs [123]. There were 480 pf synapses per
SC and 740 pf synapses per BC, while MLI reciprocal inhibition [124] involved
14 SCSC and 14 BCBC connections with 100 synapses per pair. The SC axon,
mainly extending on the coronal plane, innervated 2 PCs [125] and each PC
received synapses from 5 SCs (Fig. S7.2). The BC axon, mainly extending on
the sagittal plane, innervated 14 PCs and each PC received synapses from 20
BCs (akin with the figure of 350 baskets around the PC soma and 710 PCs per
BC) [125,126]. These predictions of structural parameters were further assessed
and tuned through functional simulations (see below).

85

4.4.3 Cerebellar network simulations

Network simulations were carried out using detailed neuronal and synaptic mod-
els written in NEURON for GrC [5], GoC [4], PC [3, 7], SC and BC [6]. Local
microcircuit responses to input patterns were tracked back to individual neu-
rons and used to follow signal propagation with unprecedented resolution. All
simulations were carried out in the presence of background noise to improve
comparison with recordings in vivo. The emerging spatio-temporal dynamics
provided functional model validation beyond constructive validity based on in-
ternal connectivity and single neuron responses (Movie S1).

4.4.4 Resting state activity of the cerebellar network

A random input at low frequency (4Hz Poisson) on all mfs [110] was used to
simulate the cerebellar network in resting state in vivo. Since anatomical data
about the connectivity of cerebellar neurons are incomplete, but their resting
discharge frequency is known, we finetuned the number of connections per pair
against target values of basal discharge. The turning point was to calibrate
GoC-GoC inhibition, which influenced resting state activity of the entire net-
work. Since the synaptic conductance (3200 pS) and the number of intercon-
nected GoCs (about 15) are known [119], we tuned the number of GoC-GoC
synapses until basal discharge frequency was achieved. Eventually, the back-
ground frequency of all cerebellar neuron types fell in the ranges reported in
vivo in anaesthetized rodents (mfs: 4.21 ± 2.6Hz; GrCs: 0.81 ± 1.3Hz; GoCs:
19± 15Hz; PCs: 31± 1.6Hz; BCs: 11± 5.1Hz; SCs: 9.4± 12Hz) [GrCs [127],
GoCs [4, 128, 129], PCs [130], SCs and BCs [131–133]]. Granular layer oscilla-
tions and synchrony Background mf activity is known to generate synchronous
low -frequency oscillations in the granular layer [134]. Indeed, in the model, the
FFT of GoC and GrC firing revealed a synchronous oscillatory behaviour in the
theta band, with the first harmonic peaking at 9.7Hz. When GoC-GoC gap
junctions were disabled, the regularity of the oscillation decreased and the first
FFT harmonic moved out of theta band (Fig. 4.2a) [135].

To investigate the sensitivity of Golgi cell synchrony to gap junction density
[136], we compared the cross-correlation of Golgi cell discharge with the degree
of coupling (electrotonic distance, Fig. S7.2) in GoC pairs, when the network
was activated with 4Hz Poisson mossy fibre activity. The cross-correlation of
Golgi cell discharge decreased smoothly with the increase of electrotonic distance
(Fig. 4.3a), tending toward a non -zero level. This non-zero level, that indicates
the vanishing of gap-junction effects, corresponded to that observed by disabling
the gap junctions and unveiled the synchronizing effect of the feedback loops
passing through the granule cell – Golgi cell circuit reported earlier [8,137] (see
below, Fig. 4.3a). This loose synchronization due to shared input from GrCs was
still correlated to spatial proximity. In Golgi cell pairs with direct coupling (n =
384 out of 4830 pairs), increasing the gap-junction density by 2.5 times caused
two discrete peaks (at −1ms and +1ms) in the mean cross-correlogram (Fig.

86

Figure 4.2: Network responses to background noise and mf bursts. a Power
spectra of GrC and GoC activity are computed with Fast Fourier Transform
(FFT) of spike time series (total population spike-counts in 2.5ms time-bins).
The periodicity of peaks in power spectra reveals synchronous low-frequency
oscillations in the granular layer. The grey curves represent the power spectra
when GoC-GoC gap junctions were disabled, showing a marked decrease in
periodicity. The grey bands correspond to mouse theta-band (5 − 10Hz). b
The Peri-Stimulus-Time-Histograms (PSTH) of each neuronal population show
the effect of the localized mf burst (onset indicated by arrowhead) emerging over
background noise. The PSTHs show number of spikes/5ms time-bins normalized
by the number of cells, averaged over 10 simulations. c Example of multiple
linear regression of GrC responses (firing rate) against the number of synaptic
spikes from gloms and GoCs, during 40ms after stimulus onset. The grey surface
is the fitted plane to the points (each point corresponds to a GrC receiving the
mf burst on at least 1 dendrite).

87

4.3b). A spike could either precede or follow the one emitted by a neighbouring
Golgi cell with millisecond precision as observed experimentally [136]. In Golgi
cell pairs with indirect coupling (i.e., 2 or more cells away, n=842 pairs), the
two peaks in the mean cross-correlogram disappeared, as much as when gap
junctions were disabled. The percentage of synchronous spikes across all GoC
pairs located within 100µm reached about 27% with a 5ms time lag window,
again consistent with experimental findings [136] (Fig. 4.3c). Following this
functional validation, the model was used to compute the probability density of
spike coincidence in the granular layer, predicting that the effects of Golgi cell
coupling can extend over an ellipsoidal volume over 100× 200µm.

4.4.5 Impulsive response of the cerebellar network

Short stimulus bursts were delivered to a bundle of 4 mfs connected to 80
gloms to emulate whisker/facial sensory stimulation in vivo [110, 127]. The
burst propagated through the network, temporarily raising neuronal firing (Fig.
4.2b, Movie S1). The relationship between the number of spikes at afferent
synapses and the response frequency to the mf burst was robustly captured by
multiple linear regression (Fig. 4.2 c; Fig. S7.4a; Table S1). GrC responses
Fundamental predictions on how GrCs respond to incoming bursts derive from
current clamp recordings in situ [138] and simulations [4], which revealed the
role of synaptic receptors and ionic channels. In BSB simulations, bursts on
a collimated mf bundle activated a dense cluster of GrCs [105, 109, 139]. The
relationship between the number of input spikes (both at GoC-GrC and glom
-GrC synapses) and GrC response frequency unveiled 4 groups of GrCs with
a corresponding number of synaptically activated dendrites (Fig. 4.2c). The
number of GrC spikes, first spike latency and dendritic [Ca2+] in correlated
with the number of active dendrites (NMI=0.71, 0.86, 0.59, respectively) (Fig.
4.4a, b).

When the inhibitory mechanisms (comprising transient and persistent inhibi-
tion) were disabled to simulate a pharmacological GABAA receptor blockade,
(i) GrC baseline frequency increased, (ii) a tail discharge appeared after the
burst, (iii) responses including more spikes appeared, (iv) the first spike latency
decreased, and (v) response variability decreased (Fig. 4.4a, b). The number of
GrC spikes, first spike latency and dendritic [Ca2+]in still correlated with the
number of active dendrites (NMI=0.79, 0.85, 0.61, respectively) (Fig. 4.4b).
Interestingly, inhibition caused a reduction in the number of active GrCs (i.e.,
those firing¿= 1 spike in the 40ms after the mf burst onset were 3390±431, and
8348 ± 1724 with GABA-A off; n=10 simulations; p¡0.001, unpaired ttest) but
enriched the spike pattern, as predicted theoretically [39,62].

Recordings in vivo disclosed precise integration of quanta and high-fidelity trans-
mission in the granular layer [110,140–143]. In BSB simulations, GrCs receiving
maximum excitation generated one action potential for each spike of the input

88

Figure 4.3: GoC millisecond synchronization by gap junctions. a Maximum
cross -correlation in pairs of Golgi cells as a function of electrotonic distance.
The three curves represent control condition (4-Hz Poisson mossy fibre activity),
with gap-junctions disabled, and with random spike patterns of GoCs. All values
were calculated using a sliding window of ±0.2 electrotonic distance. At large
electronic distances, the z-score in control conditions tends toward the value set
by random input patterns. b The average cross-correlograms (0.5ms bins) is
calculated in control condition for GoC pairs at < 100µm distance with either
direct coupling (n=384), indirect coupling (n=842), all pairs located < 100µm
distance from each other when gap junctions were disabled. The z-score shows
two distinct peaks indicating GoC-GoC correlation with ms spike precision with
on average 7.5 gap-junctions per direct pair. c The percentage of spikes that fall
within distinct time-lag windows across all pairs located < 100µm distance in
control condition, with gap-junctions disabled, and with random spike patterns
of GoCs . Points are mean ± SEM (n=1181). d Probability density of spike
coincidence in the granular layer horizontal plane. This plot indicates that, with
a GoC spike in [0,0], there is a certain probability that GoCs around it will fire
a spike within a ±5ms time-window. The integral of the probability density
function over the whole network corresponds to the average spike coincidence
for the same time window in (c).

89

Figure 4.4: Granular layer activation. a Membrane potential of 4 representa-
tive GrCs with 1 to 4 dendrites activated by the mf burst (20ms@200Hz over
background noise, onset indicated by arrowhead), in control condition and af-
ter GABA-A receptors blockade (“GABA-A off”). The burst response of the
GrC with 4 active dendrites is enlarged on the right to highlight spike-timing
(dashed lines indicate the mf burst spikes). b Number of spikes (measured in
the 40ms from mf burst onset), first spike latency, and dendritic [Ca2+]in (mea-
sured in the 500ms from mf burst onset) in subgroups of GrCs with the same
number of activated dendrites (Ndend). Means ± sd are reported (n=21068
with Ndend=0, n= 2361 with Ndend =1, n=892 with Ndend=2, n=164 with
Ndend=3, n= 6 with Ndend=4). The graphs compare responses in control and
during “GABA-A off ”. c Synapses of a GoC activated by GrCs. Bigger markers
correspond to presynaptic GrCs more activated by the mf burst. The GABAer-
gic synapses from other GoCs are on basolateral dendrites, aa synapses are on
basolateral dendrites, pf synapses are on apical dendrites. In this example, the
GoC receives 30% of its aa synapses and 6% of its pf synapses from GrCs with at
least 2 active dendrites. Traces on the right show the GoC membrane potential
in response to the mf burst (same stimulation as in (a), grey band) in control
and during GABA-A receptors and gap junctions switch-off.

90

burst, with short latency (¡ 2ms), and faithfully followed the input up to 250Hz
(Fig. 4.4a) (Movie S2).

4.4.6 GoC responses

Following punctuate sensory stimulation in vivo, GoCs have been reported to
respond with short bursts of 2–3 spikes at up to 200–300Hz [144]. In BSB simu-
lations, GoCs immersed in the GrC active cluster generated a burst of 25 spikes
with a maximum instantaneous frequency of 213 ± 29Hz (Fig. 4.4c). When
GABA synapses and gap junctions between GoCs were disabled, the response
bursts showed up to 6 spikes, with a higher maximum instantaneous frequency
(308 ± 16Hz) (n=70 GoCs; p¡0.001, paired t-test) (Fig. 4.4c). The burst was
caused by synaptic excitation relayed by gloms and GrCs (through both aas and
pfs), which generated AMPA and NMDA currents in GoC dendrites (Movie S3).
The “silent pause” appearing after the burst was caused both by an intrinsic
phase-reset mechanism [144–146] and by reciprocal inhibition between GoCs,
demonstrating marked dendritic processing capabilities [4].

4.4.7 PC and MLI responses

PCs in vivo are known to respond to punctuate stimulation with burst-pause
patterns [111,147]. In BSB simulations, PC responses depended on cell position
relative to the mf active bundle (Fig. 4.5a). The PCs placed vertically on top of
the GrC active cluster received the largest number of aa and pf synaptic inputs
producing typical burst-pause patterns [7]. The burst coefficient was correlated
with the number of synaptic inputs from pf and aa (multiple regression analysis:
R2=0.91) (Fig. 4.5b). The pause coefficient was correlated with the burst coef-
ficient (NMI=0.79) and with the number of spikes from MLIs (NMI=0.66) (Fig.
4.5b), reflecting the origin of the pause from both intrinsic after -hyperpolarizing
mechanisms and MLI inhibition [148]. Indeed, MLIs are known to narrow the
time window and reduce the intensity of PC responses [131]. In BSB simu-
lations, the PC AMPA current arose soon after the spikes emitted by GrCs,
while the PC GABA current was delayed by 2.6ms (Fig. 4.5c). In summary,
the di-synaptic IPSCs produced by MLIs quickly counteracted the monosynap-
tic EPSCs produced by aas and pfs, providing precise time control over PC
activation [139,149].

BCs in vivo are known to generate lateral inhibition reducing PC discharge
below baseline causing contrast enhancement [39,131]. In BSB simulations, this
pattern emerged during stimulation of a mf bundle (100ms @ 50Hz stimulation
on 24 neighboring mfs). The PCs placed in a band 150-200µm beside the active
cluster along the x-axis were inhibited, bringing their frequency below baseline.
When MLI-PC synapses were disabled, the effect disappeared revealing contrast
enhancement due to lateral inhibition (Fig. 4.5d).

91

92

The response of MLIs in vivo is only partially known [39]. In BSB simulations,
SCs and BCs intersected by active pfs responded to input bursts and their activ-
ity remained higher than baseline for several hundreds of milliseconds, especially
in SCs [6] (Fig. S7.4b).

4.4.8 Modification of model parameters to simulate neural
correlates of behavior

Two conditions modifying PC firing patterns and their modulation were ex-
plored in order to test whether our network model was able to predict neural
correlates of behavior: i) knock-out (KO) of MLI inhibition on PCs, which

Figure 4.5 (preceding page): Purkinje cell activation. a The PC placed on top
of the GrC active cluster and the PC placed at its margin show different synap-
tic inputs. GABAergic synapses from SCs are on medium-thickness dendrites
(those from BCs on PC soma are not shown), aa synapses are located on thin
dendrites and pf synapses on thick dendrites. Bigger markers correspond to
presynaptic GrCs more activated by the mf burst. In this example, the on-
beam PC receives 23% of its aa synapses and 6% of its pf synapses from GrCs
with at least 2 active dendrites, the off -beam PC 0% of its aa synapses and
0.6% of its pf synapses from GrCs with at least 2 active dendrites. The cor-
responding membrane potential traces are shown at the bottom (the 20ms mf
burst is highlighted by grey band). b Analysis of the burst-pause response of
PCs to the mf burst (20ms @200Hz over background noise). The burst coeffi-
cient (i.e. the shortening of the inter-spike interval due to the mf burst, with
respect to baseline) is reported against the number of spikes from aas and from
pfs (multivariate regression analysis: R2 = 0.91). The pause coefficient (i.e.
the elongation of the inter-spike interval after the mf burst response, with re-
spect to baseline) is reported against either the burst coefficient (NMI=0 .79)
or the number of spikes from SCs and BCs (NMI=0.66). c Synaptic currents
recorded from the PC on top of the GrC active cluster (same as in (a)) , in volt-
age -clamp. The traces are the sum of all excitatory (AMPA) and inhibitory
(GABA) dendritic currents during the mf burst. They are rectified, normalized
and cross -correlated (inset) unveiling a GABA current lag of 2 .6ms with re-
spect to AMPA current. d By stimulating a mf bundle (100ms @50Hz Poisson
stimulation on 24 adjacent mfs), the PC response (modulation with respect to
baseline) was quantified by the relative change of Inter-Spike -Interval (ISI),
during the stimulus, where 0 corresponds to baseline. The two series of points
compare PC response modulation when SCs and BCs were either connected
(“control”) or disconnected from PCs (“MLI-PC off”). The curves are regres-
sion fittings to the points (Kernel Ridge Regression using a radial basis pairwise
function, from Python scikit-learn library). The GrC active cluster “(GrC ac-
tivation”) was identified by a threshold on the stimulation-induced activity by
using kernel density estimation.

93

impacts on vestibulo-ocular reflex (VOR) adaptation [150], and ii) long-term
plasticity at pf- PC synapses, which drives learning in associative tasks like
eye-blink classical conditioning (EBCC) [151]. KO of MLI inhibition on PCs
GABAA receptor–mediated synaptic inhibition was selectively disabled in Purk-
inje cells (KO condition), and a single stimulus pulse was delivered to a bundle
of 13 mfs. The burst response of PCs was broader and with a strong tempo-
ral dispersion (jitter) of simple spikes in KO than control condition (control:
0.49ms; KO: 1.01ms; p¡0.01 t-test) (Fig. 4.6). These alterations of PC activity
patterns reproduced the dysregulation of cerebellar signal coding and adapta-
tion observed in PC-δγ 2, a mouse line in which GABAA receptor-mediated
synaptic inhibition was selectively knocked-out in Purkinje cells [150].

Figure 4.6: Molecular layer interneurons modulate PC discharge. Raster plots
of PC spikes following an impulse on a bundle of 13 mfs (time 0) in (a) control
condition and in (b) KO condition, in which GABAA receptors are blocked
from PCs to uncover the neural correlates of dysfunctional VOR adaptation in
the PC-δγ KO mouse line (c) Probability density functions of spike count (time
bins of 0.2 ms) in the 10-ms window following stimulation in the two conditions.
Note the more scattered firing response in KO condition.

4.4.9 Long-term plasticity at pf-PC synapses

Reduced values of the AMPA receptor-mediated synaptic conductance (gsyn)
were used to simulate long-term depression (LTD) at pf-PC synapses. In EBCC,
a level of suppression of about 15% was found to correlate with a stable gener-
ation of associative blink responses at the end of the learning process [151]. In
BSB simulations using a stimulus at 50Hz on a mf-bundle, different LTD levels
caused a corresponding amount of PC simple spike suppression (Fig. 4.7). A
15% PC simple spike suppression emerged with pf-PC LTD of about 35%, pre-
dicting the number of synapses that should undergo LTD in order to explain

94

the experimental observation.

Figure 4.7: pf-PC plasticity modulates PC discharge. The scheme on top shows
the simulation protocol that emulates an EBCC paradigm, in which a condi-
tioned stimulus (CS) is delivered to the mfs. Our simulations reproduce the
final state (“post -learning”) by exploring multiple levels of pf-PC LTD. The
relationship between these LTD levels and PC firing modulation (relative to
“pre-learning” state with 0% LTD) is shown. The points are mean±SEM across
all PCs (n=99). Two representative traces illustrating PC discharge are shown
for 0% LTD and 35% LTD in the insets.

4.5 Discussion

This work shows the first detailed model reconstruction and simulations of the
cerebellar cortical network and predicts neuronal activities involved in the prop-

95

agation of mossy fiber input signals from the granular to the PC and molecular
layer. By means of the BSB model, we have combined heterogenous data using
suitable placement and connectivity rules with accurate multi-compartmental
neuron models. In the optimization process, the model extracted information
from the interdependence of parameters, bound at high-level through ensuing
network dynamics, allowing us to fill gaps in knowledge through constructive
rules. In the validation process, the model demonstrated its compatibility with
a wealth of experimental literature data collected over the last decades and a
parameters sensitivity able to uncover the neural correlates of specific physio-
pathological conditions.

4.5.1 A model-based ground-truth for the cerebellar cor-
tical network

The statistical and geometrical rules derived from anatomical and physiologi-
cal works [103, 114] almost completely anticipated network connectivity at the
cerebellar input stage. In the BSB model, each glom hosted 50 excitatory and
50 inhibitory synapses on as many GrC dendrites, plus 2 excitatory synapse
on basolateral dendrites of as many GoCs, summing up to 102 synapses per
glom, in agreement with the anatomical upper limit of 20030. Each one of
the 4 GrC dendrites received an excitatory and (in most cases) an inhibitory
input from as many different mfs and GoCs, respectively [9, 117]. Each GoC
received 320 aa synapses on basolateral dendrites and 910 pf synapses on api-
cal dendrites, according to the figure of 400 and 120032, and there were 3
electrical synapses per GoC-GoC pair [135]. Functional tuning suggested that
the number of gap-junctions could actually be 2.5 times higher, i.e., 7 − 8
per GoC-GoC pair [135]. Only the number of GoC-GoC GABAergic synapses,
which amounted to a figure of 160 after functional tuning, lacked any exper-
imental counterpart. In the molecular layer, under geometric and functional
constraints, the BSB model placed limits to the debated numbers determining
PC and MLI connectivity. The model predicted that 25% of aas contacted
the distal dendrites of the overlaying PCs (7˙133 out of 28˙615 GrCs), each aa
forming 2.4 synapses on average, supporting the important role predicted for
the aa [149, 152], while pfs formed 1 synapse per PC dendritic intersection. In
summary, each PC received 12% of the whole GrC inputs from aas, matching
the empirical estimate of 724% [153]. The BSB generated 25 SC-PC and BC-
PC synapses altogether, which compares well with the experimental estimate
of 2068. Moreover, there were 17˙600 pf-MLI-PC synapses (2˙600 pf-SC-PC
and 15˙000 pf-BC-PC synapses), compatible with the prediction that the pf -
MLIs-PC input is larger than the pf-PC input on the same PC [154]. In general,
since all dendritic trees in the molecular layer are orthogonal to pfs, the BSB
reconstruction ranked the number of synapses according to dendritic size - PC
(1 ˙500) ¿ GoC (900) ¿ BC (700) ¿ SC (500) – a figure that would increase
proportionately by scaling the model slab to include full-length pfs [155].

96

Accurate single-neuron models with realistic morphology proved also critical to
carry out simulations allowing us to finetune the connectome. In particular,
the number of inhibitory synapses per GoC-GoC pair was increased in order to
make them fire at 19Hz [2 − 30Hz range [127, 144]]. Similarly, the number
of inhibitory synapses per SC-SC and per BC -BC pairs was tuned in order to
make them fire at 10Hz [1−35Hz range [131,132]] and to bring PCs into their
resting state frequency range of 31Hz [36.4 ± 11.5Hz [130, 156]] in vivo. The
number of gap -junctions per GoC-GoC pair was tuned to obtained millisecond
synchrony [136].

Thus, a reconstruction of model connectivity purely based on geometrical rules
was not sufficient and a careful tuning against functional data was needed. This
two-pronged (structural and functional) approach ensured that all parameters
were bound at high-level through the basal neuronal firing frequency at rest
in vivo [95]. Eventually, the network connectome is in fair agreement with a
wealth of disparate anatomical and functional determinations, suggesting that
the emerging picture provides a new model -based ground-truth for the cerebel-
lar cortical network.

4.5.2 Cerebellar network model validation and predictive
capacity

The functional validation of single neuron models was previously reported in
specific studies [4–6, 148], so that these neurons could be directly plugged in
and used to simulate spatio-temporal network dynamics in vivo. The func-
tional validation of the cerebellar network model implied first to analyse re-
sponses to diffused background noise, which is reported to generate coherent
large-scale oscillations [134]. The BSB model showed indeed that GrCs and
GoCs were entrained into low -frequency coherent oscillations in resting state
and, interestingly, this happened under gap junction control as observed ex-
perimentally [135]. Furthermore, the BSB model showed that Golgi cell syn-
chronization through gap junctions occurred with millisecond precision [136].
Thus, gap junctions refined and potentiated the synchronizing effect of massive
shared excitatory inputs from GrCs reported earlier [8, 137]. As a whole, these
simulations predict that the spatial organization of Golgi cell inhibitory control
depends on the distance among GoCs and on their specific morphology and ori-
entation supporting a modular circuit organization: a marked correlation and
synchronicity can be observed within an assembly, while it tends to decrease be-
tween assemblies, indicating Golgi cells coordinate segregation and integration
of activities in the granular layer of cerebellum [157].

The functional validation was extended by simulating responses to naturalistic
mf bursts, which rapidly propagated through the GrC-PC neuronal chain (Fig.
4.8) (Movie S1). GrCs responded in a dense cluster [139] regulated by GoCs and
activated soon thereafter the overlaying PCs and MLIs. In the cluster, 45% of

97

the GrCs fired at least one spike, in agreement with results reported previously
[103,139]. Not unexpectedly, SCs and BCs effectively reduced activation of PCs
placed either along or beside the active pfs, respectively, generating feedforward
and lateral inhibition [62,103].

Figure 4.8: Activation of a vertical neuronal column in the cerebellar cortex. A
whisker air-puff stimulus (the mf burst) is delivered to 4 adjacent mfs, which
branch in 4 glom clusters. GrCs respond rapidly with a burst when at least 2
dendrites are activated. A GrC dense cluster is formed and the signal propagates
up through an aa bundle and transversally along a pf beam. GoCs receive the
signal both on basolateral and apical dendrites. PCs vertically on top of the
active cluster are invested by aa and pf synaptic inputs. On-beam SCs and BCs
receive signals through pf synapses; SC axons inhibit mainly on-beam PCs,
while BC axons inhibit mainly off-beam PCs. The membrane potential traces
(mf burst starts at 500ms) are shown for each neuronal population. Traces
in the three columns correspond to three different release probabilities at the
mf-GrC synapses: u=0.1, u=0.43 (control condition used in the rest of the
paper), u=0.9. The lower and higher u-values are typical of long-term synaptic
depression and potentiation in the granular layer.

4.5.3 Model predictions of neural correlates of behavior

Network simulations with the BSB cerebellar model predicted the neural corre-
lates of behaviour in different physio-pathological conditions. First, PCs showed

98

the typical burst-pause responses that are thought to correlate with cerebellar-
dependent motor control [147]. These responses were seriously altered by chang-
ing mf-GrC neurotransmitter release probability [5], whose effect propagated
from the cerebellar input stage throughout the whole thickness of the cerebellar
cortical network, suggesting a possible substrate for pattern regulation in the
cerebellum [158]. Secondly, selective removal of GABAA receptor -mediated
synaptic inhibition from PCs reproduced the neuronal alterations correlated to
dysfunctional VOR adaptation in the PC-δγ 2 mouse line [150]. Thirdly, plas-
ticity remapping predicted that LTD in 35% of pf-PC synapses could explain
the 15% PC simple spike suppression observed during EBCC [151].

4.5.4 Comparison with previous cerebellar models

Since Marr’s work [62], the cerebellum has been amongst the most intensely
modelled brain microcircuits and has provided a workbench to test biophysical
principles of excitability and connectivity. The incorporation of biologically
realistic features into models has progressed along the last three decades, as
sketched below by considering just some of the many published works.

Spiking models of the granular layer with active membrane mecha-
nisms in neurons

The first one [137] had only the granular layer, neurons were single compartment
and with generic excitable mechanisms, synapses did not have short-term plas-
ticity. A second model used cell-specific membrane mechanisms and synapses
with short-term plasticity [8]. However, neurons did not have realistic multi-
compartment morphology yet. In both cases, connections respected proportions
reported in literature without prescribed connectivity rules.

Spiking models including both the cerebellar cortical network and
deep cerebellar nuclei

The first model [159] used integrate and fire point neurons and a canonical
formulation of neuronal numbers and connectivity. A second set of models used
a cerebellar network scaffold strategy with general rules for cell positioning
and connectivity based on the probability cloud algorithm [10]. An extended
version [160] included deep cerebellar nuclei and the inferior olive. Neurons were
single compartment with non -linear discharge properties and synapses did not
have short-term plasticity.

The current model of the cerebellar cortical network integrates and extended
all the previous realizations by featuring an integrated reconstruction and sim-
ulation strategy, using multi-compartment neurons with cell-specific membrane
mechanisms, using synapses with intrinsic neurotransmitter release dynamics
and short-term plasticity, and adopting multiple connection rules including
morphology-based touch-detection and voxel-intersection. These advancements

99

reflect into the ability of the model to capture a large set of biological properties
of the network under various physio-pathological conditions.

4.5.5 Limitations and future challenges

The most relevant problem of this kind of microcircuit models is to incorporate
variables that remain underconstrained. Here we have 5 cell types, 16 synap-
tic types and as many ranges for synaptic density. Almost all of them were
carefully validated beforehand, except the BC model with its synapses and the
density of reciprocal interneuron inhibitory synapses, which warrants specific
investigation. Thus, although the parameterization of the cerebellar network
model relies on one of the best-defined anatomical and physiological datasets in
the brain [8, 10, 69, 103], it cannot be excluded that other parameter combina-
tions might also be effective. Indeed, some structural data were missing (e.g.,
not measured experimentally) or error-prone and their estimates were provided
by network reconstruction and simulation. The emergent structural parameters
were then confronted with available knowledge for constructive validity. The
scaffold configuration allows to easily host new data and to update the existing
ones when new experimental data become available.

Here we have enforced a connectivity principle largely based on proximity rules
between neurites and tuned the connection algorithms to bring the connectivity
within the anatomo-physiological range (see Methods). Alternative algorithms
for automatic parameter tuning may also be used to predict the cerebellar cor-
tical network connectome [161] and compared to the present results. Finally,
while we have used two most representative functional templates (background
oscillations and response to sensory-burst stimulation in vivo), others could be
envisaged. It should be noted that often functional validation relies on sparse ex-
perimental data quantifying single-neuron responses to sensory stimuli. There-
fore, multi-layer mesoscale recordings would be useful to further validate model
predictions about the mechanisms of microcircuit computation in the cerebel-
lum, e.g., following whisker stimulation or along EBCC training.

Although it is validated on a small network scale (30 k neurons and 1.5M
synapses), the model is about 1000 times smaller than the whole mouse cere-
bellum. This would not be a problem if the model would be a small-scale repre-
sentation of the cerebellar cortex, but this is not the case given the anisotropy
of cerebellar network architecture. The first issue is that signal propagation
along the transverse plane would require longer modules. Here we have ob-
served the formation of vertical columns [149, 153] but it would be important
now to assess [162, 163] the beam hypothesis along with spatial signal filter-
ing and plasticity [4–7, 39, 62]. Moreover, the cerebellar cortex is subdivided
into microzones with different biochemical and functional properties, while the
present model can just be taken as a good proxy of the Z+microzone [164–166].
Therefore, the model should be extended and diversified to explore effects on a

100

larger scale.

Another issue is that, in the model, all neurons of the same type are identical one
to another. However, there is morphological and functional variability among
neurons of the same type. Moreover, there are known variants of granule cells,
Golgi cells and Purkinje cells [3–5,7]. It would therefore be important to explore
the impact of neuronal variability, which can bring about relevant computational
effect [167]. The same also applies to synapses, which now have the same release
probability and gain at homologous connections but are tuned by plasticity
in real life [4, 69, 109, 111, 122, 154, 165] and could therefore change network
dynamics. The future introduction of plasticity, which now is present only in
simplified models [160, 168] and cerebellar subnetworks [8, 10, 62, 103, 105], will
allow to refine the effective functional organization of the connectome and test
hypotheses on network functioning.

Finally, the operations of the cerebellar cortex are tightly bound to those of
the deep cerebellar nuclei and of the inferior olive. However, to date the only
available representations on the mesoscale are reconstructed using simplified
single point neurons [168,169] and a fine grain realistic representation is missing.
Therefore, the model could be extended to the mesoscale to investigate how the
cerebellar cortex operates inside the olivo-cerebellar system.

In aggregate, the BSB model shows that the geometrical organization of neurites
largely determines cerebellar cortical connectivity and microcircuit dynamics,
supporting the original intuition of J.C. Eccles in the late 60’s [39,62]. A similar
conclusion was recently reported for the cortical microcolumn [97]. With appro-
priate extension, the model could allow to simulate cerebellar modules including
differentiated microzones and microcomplexes [164–166] and more complex pat-
terns of stimuli in the sensorimotor and cognitive domain [69]. Given the “scaf-
fold” design, new neurons and mechanisms can be plugged-in to address ontoge-
nesis, species differences (for example in humans) and pathology. For example,
the model may be used to predict the emerging dynamics caused by genetic or
epigenetic alterations in neuron (morphology and function) and synaptic prop-
erties, as it is supposed to happen in ataxia, dystonia and autism [170, 171].
The model may also be used to predict the impact of drugs acting on ionic
channels and synaptic receptors. In conclusion, the model can be regarded as a
new resource for investigating the structure-function-dynamics relationships in
the cerebellar network.

101

Chapter 5

Applications of the
cerebellar cortex model and
BSB framework

5.1 Olivocerebellar Microcomplex Circuit

The cerebellum receives 2 main types of afferent fibers, the mossy fibers, carrying
somatosensory or cognitive information, and the climbing fiber originating from
the inferior olive (IO), carrying error information. The cerebellum uses these 2
sources of information to form predictive models of understanding of the internal
and external worlds, and assists in predictive planning of motor commands and
predictive cognitive control.

So far no integrated multicompartmental models exist comprising a model of the
cerebellar cortex with all main cell types represented, the deep cerebellar nuclei,
and the inferior olive. Such a model could form a closed loop of predictive error
based learning.

Here we integrate the existing cerebellar cortex (CC) model [94], and a full scale
model of the inferior olive (IO) model [172] (unpublished thesis), by adding the
deep cerebellar nuclei (DCN) and the various connections between the newly
joined cell populations.

The integration efforts started after the IO was already modeled, so the IO
workflow was integrated using a data dependency component that during the

102

pipeline phase generates the entire IO model, and uses the public API of the BSB
framework to store the generated data in the model. Although strictly speaking
it clashes with the foreseen architecture, because placement and connectivity
steps are ran outside of the placement and connectivity context, embedding a
small adapter component into an early phase of the workflow proved an effective
strategy to integrate arbitrary existing workflows into a BSB managed workflow,
and may be explored and formalized further as a supported feature.

@config.node

class InfOliveModelTransfer:

def load_object(self):

pos, morphos, conns = generate_io()

io = self.scaffold.cell_types.io_cell

ps = io.get_placement_set()

for i, morpho in enumerate(morphos):

self.scaffold.morphologies.save(

f"io_{i}", my_morpho_to_bsb_morpho(morpho)

)

ps.append_data(

pos,

morphologies=[

f"io_{i}"

for i in range(len(morphos))

]

)

conns = self.scaffold.require_connectivity_set(

"io_cell_to_io_cell", io, io

)

conns.connect(conns[0], conns[1])

Code Snippet 5.1: Integration pseudocode, where the cells and con-
nections generated by generate_io are transferred to their respective
PlacementSet and ConnectivitySet with some data conversion functions like
my_morpho_to_bsb_morpho.

5.1.1 IO model reconstruction

The bounded volume of the IO was extracted from z-stacks of microscope slices
using Neurolucida software to create contours which were then converted to a
wavefront triangle mesh. IO cells form dendrodendritic electrical gap junctions
in microstructures called glomeruli, distributed evenly through space, while the
network of the IO cells forms clusters of more numerously connected IO cells.
To model this, the glomeruli and IO somata where distributed evenly in the
bounded volume using Poisson disk sampling, and clusters of configurable size
created with K-means clustering. The morphologies of the IO cells were created

103

Figure 5.1: A: Bounded volume representation of the inferior olive, generated
from stacked contours from microscopy slides. Highlighted are the left Pri-
mary Olivary nucleus (PO, blue), right Medial accessory olivary nucleus (MAO,
brown) and right Dorsal accessory olivary nucleus (DAO, green). Notice the
folding of the PO. B: Generated network with highlighted clusters with pa-
rameters for the left PO. C: Comparision between experimental distributions
from Vrieler et al.. Straightness is the maximum reach divides by the maximal
path length. D: Single morphological cluster from (B), with individual cells
highlighted. Taken from Landsmeer, LPL 2022 (unpublished).

104

by constrained random walks from the somata to the glomeruli (Fig. 5.1).

5.1.2 Deep Cerebellar Nuclei (DCN)

The cerebellar cortex has only 1 type of efferent fibre, from the Purkinje cell to
the DCN cell. Two populations of DCN cells were added, an interneuron which
projects back to the Purkinje cell, molecular layer interneurons, and to the IO
cells, and outward projecting DCN cells as the output of the model.

The DCN cells were modeled as Leaky Integrate-and-Fire (LIF) models with
parameters taken from Geminiani et. al. 2019 [160].

5.1.3 Integrative connection types

Figure 5.2: Schematic representation of the CC cell populations and connection
types between them before addition of the IO components.

Figure 5.3: Schematic representation of the CC and IO cell populations and
connection types between them after integration.

5.1.4 Role of the framework

The framework was used to create a composite unified description. The frame-
work allowed converging on a shared software stack: even though the IO devel-
opers were using entirely custom data formats, by relying on the BSB’s job pools
their workflow could be integrated into a framework component and their data

105

transferred into it with relative ease. From the model description simulations
will be ran on the unified model relying on the framework’s Arbor adapter.

5.1.5 Future work

The collaboration is ongoing, and within a month we would like to run our first
simulations investigating how the CC-DCN-IO closed loop functions, especially
how the subthreshold oscillations of the clusters of IO cells exert control and
transmit information to the cerebellar cortex, and back.

Another avenue of exploration is the refinement of the DCN cell model and the
connections between the added components with more biophysical restraints, so
that more information can be transferred between the two models in a biologi-
cally realistic manner.

5.2 Pathological Cerebellar Cortex Microcircuits

5.2.1 Autism spectrum disorders

The cerebellar cortex model was used to introduce perturbations associated to
autism spectrum disorders (ASD). The cerebellum projects to multiple regions
in the cerebrum that underlie movement, language, and social processing and
may in this way contribute to social deficits and stereotyped behaviors [173].
The postsynaptic density of synapses contains scaffolding proteins that link
receptors to the cytoskeleton. Mutations in the Shank family of scaffolding
proteins is linked to autism and other neurological disorders. Most of the mu-
tations occur in the IB2 gene which encodes a scaffolding protein that interacts
with the NMDA receptor, which is abundantly present in the mossy fiber to
granule cell synapses, and is the main driver of granule cell plasticity. Research
into the effects of the IB2 knockout mouse model for autism on the cerebel-
lar cortex revealed that this caused, among other things, hyperexcitability and
hyperplasticity at the mossy fiber to granule cell synapse layer due to larger
NMDA currents, and a reduction of the Purkinje cell dendritic arbor [174,175].

To model these changes we alterated the single cell model of the granule cell,
optimizing it to find a suitable change to the NMDA receptor maximum conduc-
tance, and the ambient glomerulus glutamate concentration (which relates pro-
portionally to excitability due to glutamate spillover), and found a best match
at a maximum conductance of 141nS and ambient concentration of 27.8µM .

Future work

In this study, we conducted simulations and created a model to replicate the
autistic alterations observed in the experimental findings of Soda et al 2019
[175] our next step will involve incorporating the IB2-GrC within the cerebellar

106

Figure 5.4: Empirical (dashed) and simulated (solid) I-F curves of the wild type
and IB2KO granule cell. The maximum conductance of the NMDA receptor
and the ambient glutamate concentration were optimized to match the empirical
observation.

107

microcircuit to simulate and analyze its impact at the network level.

5.2.2 Emotional networks and disorders

This section comes from my colleague Dimitri Rodarie’s unpublished collabora-
tion.

Figure 5.5: Mouse declive cell placement workflow: Each image represents a
sagittal slice of the result of the step of our process to reconstruct the mouse
declive. Black arrows show the order of the workflow steps. A. Our corrected
annotation atlas of declive is shown in colors over the Nissl volume in levels
of grey. The granular layer appears in orange, the molecular layer in blue
and Purkinje layer in green. B. To each voxel of the declive, a 3D direction
normalized vector is computed corresponding to the main axis of the axons in
the region. Colors represent the orientation vectors norm on their respective
plane, black arrows their projected vector. C. Distance of each voxel of declive
to the outside border of the molecular layer, following the orientation field,
expressed in micrometers. D. E. Respectively neuron and inhibitory neuron
density in logarithmic scale. F. Soma position of the different neuron types of
the declive, displayed over the annotation atlas. Each cell type appears in a
different color and size corresponding to its radius. The annotation atlas’ colors
correspond to A . G. Projection of the Purkinje cell morphology displayed in
colors over the annotation atlas. Each morphology has been rotated, scaled,
and bended following the orientation and depth fields. The annotation atlas’
colors correspond to A.

We aim to reconstruct and simulate atlas-mapped cerebellar regions of the
mouse. We want to understand the cerebellar contribution to emotional be-
havior, in the healthy and diseased brain. As we are interested in cerebellar

108

regions involved in the process of emotions, we focus on Lobule VI. Numerous
experimental and clinical evidence in both humans and rodents show that this
lobule plays a relevant role in many functions [176–178] including behavioral
and emotional tasks. Lobule VI is made up of a vermis part (declive) and a
hemispheric part (simple lobule).

We present here a pipeline to reconstruct the declive of the mouse, based on the
Blue Brain Cell Atlas model [179] and the Brain Scaffold Builder (BSB). With
this pipeline, we were able to estimate for the first time the specific densities of
each cell type, including granule, golgi, unipolar brush, lugaro, globular, Purk-
inje, candelabrum, basket, and stellate cells. In the BSB we placed, oriented,
and connected the neurons. The output of this pipeline is a circuit that can be
simulated and validated against functional experimental findings.

Methods

We build here a 3D representation of the mouse declive region, embedded into
an anatomically realistic whole mouse brain structure (Fig. 5.5). We based
our model on the Blue Brain Cell Atlas pipeline, which we extended with the
Purkinje layer at the boundary between granular and molecular layers. We also
added Unipolar brush cells and lugaro cells based on regional densities from
Sekerková et al. [180] and Dieudonné and Dumoulin [181], respectively. More-
over, we proposed a new strategy to place Purkinje, candelabrum and globular
cells based on linear density from Osorno et al. [182] (Fig. 5.5A). The remaining
cell types and their numbers were estimated using regional distributions from
the Blue Brain Cell Atlas [179].

To reconstruct local connectivity, we computed the orientations of each mor-
phology (Fig. 5.5BC) using Rodarie et al.’s method [179]. We leveraged this
information to orient neurons including granule cells and their ascending ax-
ons. Also, it will be used to bend the parallel fibers of our model following
the external surface of the region. We applied voxel intersection and point
clouds connection strategies and synaptic in- and out-degree ratios reported in
De Schepper et al. [94]

We assigned point-neuron electrical parameters to each cell type, and synaptic
parameters to each connection type, according to Geminiani et al. [160] The
resulting scaffold model has been simulated using the BSB interfacing with
the NEST simulator [94, 101]. The model will be structurally and functionally
refined as more data becomes available.

Results

The final scaffold model has 3,113,153 neurons, with 2,877,812 Granule cells,
45257 Golgi cells, 10956 Unipolar brush cells, 234 Lugaro cells, 3240 Globular

109

cells, 3512 Purkinje cells, 3875 Candelabrum cells, 80952 Basket cells and 87314
Stellate cells (see Fig. 5.5D).

The connectome defines a precise picture of the local connectivity.

Preliminary simulations in NEST [101] are ongoing, to validate the dynamics of
the declive region in resting state and under proper stimulations. Our goal is to
leverage this circuit to study circuits in cerebellum responsible for emotional ex-
periences. Moreover, our strategy can be extended to reconstruct other cerebel-
lar regions. A full -scale cerebellum network will allow us to analyze subregions
specificities and their interactions. Finally, we will investigate mechanisms to
simulate emotional states [183], fear learning [177, 184] and pathological states
such as anxiety [185], depression [186] and autism [187].

5.2.3 Role of the framework

Both projects are a continuation of the model validated in 4.

Role in the autism disorder project

because of the framework’s separated configuration, a new collaborator was able
to introduce perturbations into a model they had no previous experience with,
by setting new parameter values in the afflicted cell model’s configuration; in
previous iterations of the model that did not use the framework, this param-
eter was only found in the NMODL description of the mechanism, and could
not be set separately without duplicating the NMODL mechanism description,
the model description (both of which would require either refactoring or copy-
pasting the entire cell model directory structure provided by another collabora-
tor), and refactoring the population creation logic (which for simplicity’s sake
would likely result again in copy-pasting and adjusting the code).

This exemplifies how without a supporting framework it is likely that model
code is organically organized along the path of least resistance, becoming less
maintainable with each iteration, to achieve the scientific milestones, which is
not a slight to neuroscientists, but the nature of scientific code.

Role in the emotional network project

Our colleague Dimitri Rodarie had developed a brain atlas pipeline in earlier
works [179]. The pipeline starts from several NRRD images, and results in
per-voxel density estimates of cell types, and classification and orientation of
the cortical layers. Using the framework’s pipeline expressions the previously
established pipeline was integrated into an atlas-based reconstruction of the
cerebellar declive region.

110

Framework provided placement strategies then rely on this per-voxel density
estimate to place the cells. A custom distributor was then developed to gener-
ate the morphologies to grow according to the orientations established by the
pipeline.

Framework provided connection strategies then intersect the generated morholo-
gies to arrive at the connectome.

The connectome will then be simulated by using the framework provided simu-
lation adapter for the NEST simulator.

5.3 From a Mouse to Human Cerebellar Cortex
Model

The results presented in this section are from the currently unpublished work
by my colleague Alessio Marta, and were showcased in a poster in CNS2023.

Figure 5.6: Left: Reconstruction of a patch of the human cerebellar cortex,
showing the somata. Right: Detailed view of the morphologies used per cell
type: constructed morphology for the granule cells, human morphology for the
Golgi and Purkinje cells, and geometrical approximations for the basket and
stellate cells.

The mouse cerebellum cortex model was used as a basis, and the key parame-
ter differences between them are being investigated. A tentative reconstruction
was created according to layer thicknesses taken from Zhen et al. 2022 [188]
resulting in 300 · 900 · 300 = 0.32mm3 of reconstructed cortex with 148000 cells
of the following neuron types: mossy fibers (270), glomeruli (12000), granule
cells (135000) with ascending axon and parallel fiber, Golgi cells (486), Purk-
inje cells (15), basket stells (195), and stellate cells (381) (Fig. 5.6). Missing

111

microstructural parameters have been estimated by proportion with the mouse
cerebellum. Whenever possible the connectome was based on human neuron
morphologies. Otherwise, geometric shapes were used if neurite extensions were
known, or it was scaled up from the mouse model if no information was known.
The reusability of the mouse model and BSB were exploited to transform the
mouse cerebellum into its human variant.

The human model was simulated at point-neuron resolution using the NEST
simulator [101]. These initial simulations allow us to validate and further ex-
plore new hypothesis about the reconstruction, to couple back, and improve
the model. It will allow us to investigate the relationship between the dynam-
ics, function, and structure of the human cerebellum. Special interest goes out
to the signal propagation and dynamics of different mossy fiber organization
patterns.

5.3.1 Role of the framework

This work is a continuation of the work presented in 4. Because of the sepa-
rated configuration, the human variant could be reconstructed by replacing the
configured dimensions of the layers based on literature references, and to swap
out the morphologies used to human morphologies provided by collaborators.

The same workflow could then be reused in its entirety to reconstruct a human
variant. As more data becomes available also the cell model dynamics can
be adjusted to human variants, by creating derived model descriptions, using
arborize’s feature to create one model description based on another template,
offering inheritance for model descriptions.

5.4 Hippocampus

We collaborated with Italian neuroscience research groups from Palermo and
Modena, to add a new geometry based connection strategy to the BSB, and
leveraged it to reconstruct the hippocampal CA1 region [189]. The following is
an abridged version of our paper Gandolfi et al. [189].

5.4.1 Abstract

Here we propose a method to implement a neuronal network at single cell res-
olution by using the geometrical probability volumes associated with pre- and
postsynaptic neurites. This allows us to build a network with plausible con-
nectivity properties without the explicit use of computationally intensive touch
detection algorithms using full 3D neuron reconstructions. The method has
been benchmarked for the mouse hippocampus CA1 area, and the results show
that this approach is able to generate full-scale brain networks at single cell

112

resolution that are in good agreement with experimental findings. This geomet-
ric reconstruction of axonal and dendritic occupancy, by effectively reflecting
morphological and anatomical constraints, could be integrated into structured
simulators generating entire circuits of different brain areas facilitating the sim-
ulation of different brain regions with realistic models.

5.4.2 Methods

Neuronal placement

Cells placement was performed by downloading neuronal coordinates from the
Blue Brain Cell Atlas database [190], which provides 3D coordinates of excita-
tory and inhibitory classes in the Allen reference atlas already annotated for the
four layers of mouse hippocampus: Stratum Oriens (SO), Stratum Pyramidalis
(SP), Stratum Radiatum (SR) and Stratum Lacunosum Moleculare (SLM) (Fig.
5.7). Neuronal populations respect the ratio of 10% between inhibitory (inh)
and excitatory (exc) classes. The neurons (exc/inh) were then divided into 13
classes (2 exc, 11 inh) according to their relative distribution [191, 192] within
layers (see Fig. 5.7). The scaffolding of the neurons in the simulation volume
was performed with the BSB framework [94] (Fig. 5.7).

Figure 5.7

113

Neuronal morphology

In our approach, the rules for the generation of connections between any two
neurons were implemented assuming that every neuronal class is characterized
by an average shape. Morphological analysis has been performed by collecting
the experimentally reconstructed morphologies of CA1 neuron subtypes from
the literature and from public databases such as neuromorpho [193], Allen Brain
Institute [194], and Janelia Research Campus [195]. In this analysis, we have
assumed that each cell class could be represented as a combination of geometrical
shapes (ellipsoids and cones). The parameterization of these shapes (axonal and
dendritic extensions) was generated by creating normal distributions for each
of the parameters with peaks corresponding to the average values derived from
the analysis and half-widths of 10% of the peaks.

In addition to the size of geometrical shapes, neurons were endowed with morpho-
anatomical features derived from the calculation of the minimum Euclidean dis-
tances of neuronal soma from internal (CA1 layers) and external landmarks
(CA3 and Subiculum). An automatic iterative algorithm scanned neuronal po-
sitions and calculated the minimum distances between neuronal coordinates and
CA3, Subiculum meshes and CA1 layers. This allowed the consideration of the
experimentally observed preferential orientation of PC axons along the direc-
tion of the minimum distance between CA3 and Subiculum, thus implementing
the strong directionality in Pyramidal-to-Pyramidal activity propagation along
transversal hippocampal slices that has been observed experimentally [196].
These morpho-anatomical features were used to generate the parametric de-
scription that allowed the orientation of axonal and dendritic probability clouds
along realistic anatomical axes.

Network connectivity

Neuronal connectivity was instantiated by iteratively intersecting a single presy-
naptic axonal hull and the postsynaptic dendritic points of all the neurons
belonging to a particular class. To reduce the computational effort required
to explore all the possible connections, we circumscribed axonal and dendritic
probability clouds within their minimal bounding-boxes.

The final evaluation of the intersection between axonal clouds and dendritic
points was performed only on neurons with overlapping bounding boxes. Con-
nection pairs were computed through an iterative algorithm that calculated if
at least one postsynaptic dendritic point was included in a presynaptic axonal
cloud. All the neuronal pairs that shared at least one point were included in
the pool of potential connection pairs. The final number of connection pairs
was obtained through a pruning procedure that followed the estimation of the
numerosity of connections between two neuronal classes. This number was es-
timated by multiplying the number of neurons composing the two classes and
the synaptic connection probability obtained from hippocampome.org [197,198].

114

In particular, the connection probability was generated by taking into account
synaptic densities and synaptic contacts. For instance, the estimated number of
connections between superficial Pyradmidal Cells and Ivy cells can be obtained
by multiplying the total number of neurons in the two classes (216,435—PCs
and 5074—IVY) per connection probability of the two cell types (0.000933 as
obtained from hippocampome.org). The result is 1,024,612 connections. This
number has been obtained by pruning the connection pairs generated with the
procedure of probability cloud intersection (9,321, 511).

The time required to calculate the intersection between probability clouds, in-
cluding the procedure to generate and orient morphologies, was dependent on
the following parameters: (1) the number of points in each cloud (2) the number
of potential intersections between each neuron and cells belonging to a specific
class and (3) the numerosity of each neuronal class.

5.4.3 Results

The developed “Positional-Morpho-Anatomical” modeling (PMA, Fig. 5.8)
approach can be adapted and applied to different brain regions with proper
morpho-anatomical constraints. We applied the PMA algorithm to the case of
the mouse CA1 network, for which data on cell placement and morphological
features are available. Several models of hippocampus CA1 have been devel-
oped with variable levels of detail ranging from extremely simplified networks,
to realistic full-scale networks. However, a network at single cell resolution using
connectivity rules based on morpho-anatomical constraints, rather than simple
fixed connection probabilities, was not yet available.

5.4.4 Role of the framework

In this project, the hippocampus was reconstructed from an embargoed pipeline,
so the collaborators instead used the framework’s CSV importing component to
import the placement data, and much of the connectome. And then relied on
the NEST adapter to run their simulations1

The PMA algorithm was initially also developed by them in MATLAB and
included in the CSV import, but has now been converted into a component; the
initial data remains imported from CSV, but the component is now added to
the model configuration to generate the new connections according to the PMA
algorithm integrated in the workflow.

1They used a previous major version of the framework, which suffered from high memory
overhead in NEST, but a custom branch was provided to overcome this.

115

Figure 5.8

5.5 Thalamic nuclei

A collaborator and contributor, Francesco Sheiban, led the development of a
pipeline to reconstruct the thalamic nuclei. Here is a report on the ongoing
unpublished efforts using the BSB as main modeling tool, in combination with
a realtime visualization tool developed by Francesco Sheiban to facilitate de-
bugging (Fig. 5.9).

5.5.1 Methods

Placement

For accurate placement, neural densities from the Blue Brain Project’s Mouse
Cell Atlas were queried for VAL and RT. Utilizing Allen Mouse Brain Atlas

116

Figure 5.9: The figure shows the outcome of the data integration process fol-
lowed during the connectivity reconstruction in the thalamic scaffold imple-
mentation. The RT volume (represented by the blue mesh) has been segmented
using data from the Allen Mouse Brain injections dataset (yellow and light blue
voxels, belonging to anterograde injection experiments in the RT and VAL, re-
spectively). It can be seen that the volume identified by such experiments is
consistent with the trajectories of the 3D morphological cells reconstructions,
as the green axons (representing motor-related cells originating in VAL) pass
within the segmented area, while red axons (somatosensory cells originating
from a nucleus just next to VAL) are not contacting the RT in the designated
area.

segmentation data, we distinguished VAL and RT areas, considering variations
in the mouse thalamus akin to humans and primates. The Calb1 gene’s density
served to differentiate VA and VL voxels.

Manual annotation of experiment IDs led to the download of a 32-bit struc-
tural annotation volume at 200µm resolution. After upscaling 200µm density
data to 25µm, a straightforward threshold mechanism classified subvolumes into
primary and secondary subvolumes.

This information facilitated cohesive data integration, with each labeled voxel
filled according to BBP densities atlas predictions, preserving VA/VL distinc-
tions for morphological placement.

Connectivity

During the connectivity phase cells within the designated volume are interlinked
using a voxel-based geometrical approach, identifying cells, who when their
morphology is appromixated by a set of voxels that intersect with one another,
as potential synaptic candidates.

117

The process involves multiple steps: as the VA-VL nuclei only target the RT
neurons in a precise sub-nucleus region, the voxel mask of such region has been
identified using a combination of detailed morphological 3D cell reconstructions,
Allen Mouse Brain’s projection experiments and geometrical extrusion of the
VA-VL volumes, following a general axonal projection direction. Combining
VAL mesh extrusion with projection experiments aligns well with traced data
from a literature study focusing on RT to thalamus connections.

With the RT subregion identified, the connection strategy employs a geomet-
rical approach, projecting thalamo-cortical cells onto the RT with a distance-
dependent Gaussian profile. Adjustments accommodate soma offsets, ensuring
accurate projections onto the desired subvolume. This nuanced approach refines
the BSB scaffold connectome construction.

5.5.2 Role of the framework

This is another example of user’s relying on the data processing pipelines to
formalize and encapsulate the processing of datasets into framework-ready in-
put: with 2 different brain atlases as data source, a reclassification pipeline
establishes a new masked brain image that’s used as the per-voxel density for
framework provided placement strategies. Then, a custom morphology distribu-
tor generates morphologies to project and grow towards targets, and connected
with framework provided morphology intersection components.

5.6 Arbor simulator benchmarks

I include only the abstract of the preprint. The work still needs to be redone
including comparisons to CoreNEURON, and with a better biological match
of the simulation outputs. At the time of the comparison the models could
not be completely detangled or understood from their NEURON implementa-
tion, as NEURON allows for entirely procedural descriptions, with a host of
problems arising when attempted to be described in Arbor in more biologically
revelant domain specific languages (DSLs), which only support a sane subset of
biologically plausible instructions of the entire set of instructions that a Turing-
complete programming environment would allow. This means that questionable
workarounds and tweaks that existed in these long-lived much passed around
models (all of them contained at least one HOC mechanism that had its origin
pre-2000) had to be figured out and elegantly solved. This was not possible in
the given timeframe, and after finding a suitable biological description of the
models, parameter reoptimization will be required.

5.6.1 Abstract

A variety of software simulators exist for neuronal networks, and a subset of
these tools allow the scientist to model neurons in high morphological detail.

118

The scalability of such simulation tools over a wide range in neuronal networks
sizes and cell complexities is predominantly limited by effective allocation of
components of such simulations over computational nodes, and the overhead in
communication between them. In order to have more scalable simulation soft-
ware, it is therefore important to develop a robust benchmarking strategy that
allows insight into specific computational bottlenecks for models of realistic size
and complexity. In this study, we demonstrate the use of the Brain Scaffold
Builder (BSB; De Schepper et al., 2021) as a framework for performing such
benchmarks. We perform a comparison between the well-known neuromorpho-
logical simulator NEURON (Carnevale and Hines, 2006), and Arbor (Abi Akar
et al., 2019), a new simulation library developed within the framework of the
Human Brain Project. The BSB can construct identical neuromorphological
and network setups of highly spatially and biophysically detailed networks for
each simulator. This ensures good coverage of feature support in each simula-
tor, and realistic workloads. After validating the outputs of the BSB generated
models, we execute the simulations on a variety of hardware configurations con-
sisting of two types of nodes (GPU and CPU). We investigate performance of
two different network models, one suited for a single machine, and one for dis-
tributed simulation. We investigate performance across different mechanisms,
mechanism classes, mechanism combinations, and cell types. Our benchmarks
show that, depending on the distribution scheme deployed by Arbor, a speed-up
with respect to NEURON of between 60 and 400 can be achieved. Additionally
Arbor can be up to two orders of magnitude more energy efficient.

Figure 5.10: A catalogue of 33 mechanisms was benchmarked. Left: Histogram
of all combinations of 1 to 4 out of 33 mechanisms inserted in a single com-
partment. Center: Speedup distribution of manually annotated categories of
mechanisms: Unordinary mechanisms, those containing highly complex nonlin-
ear dynamics, and those containing a high number of RANGE vars (an expensive
feature of NEURON’s mechanism language NMODL). Right: Speedup of cere-
bellar single cell models.

5.6.2 Role of the framework

The model in 4 was used to provide extensive feature coverage in both bench-
marked simulators. The framework was extended with an Arbor simulation

119

Figure 5.11: Left: Comparison of timestep duration of single cell models.
Center: Validation of single cell inter spike intervals (ISI). Right: Valida-
tion of membrane voltage.

Figure 5.12: Comparison of time-to-solution (left), timestep duration (center),
and energy consumed (right) of different benchmark hardware configurations on
a single compute node.

Figure 5.13: Comparison of time-to-solution (left), timestep duration (center),
and energy consumed (right) of different benchmark hardware configurations on
multiple compute nodes.

120

adapter, and then leveraged as the only tool able to simulate identical models
in both NEURON and Arbor at that time2. By extending the arborize package
to also produce identical cell models in Arbor 3 our laboratory’s models could
be used for simulation and benchmarking in both Arbor and NEURON.

2Arbor now supports a small part of NeuroML, and jNML/pyNML can run NeuroML in
NEURON

3Arborize started as a package to declaratively describe cell models in NEURON, with a
congruently evolved Arbor-like syntax, for which it was later renamed.

121

Chapter 6

Discussion and Future
Work

6.1 Critical Analysis of the Brain Scaffold Builder:
Advantages, limitations, and future works

The framework is now nearly a mature software, with a growing community of
users and contributors, and is integrated in the EBRAINS Research Infrastruc-
ture. The impact of reusable software can not be understated: if the community
converges on this software, and develops a healthy ecosystem of tools, novel
parts of the multiscale modeling effort would be captured and trivialized, and
large amounts of time and resources can be saved. For the first time, data han-
dling and parameter generation could be included in a reproducible declarative
multiscale model description, which proved a very useful feature for microscale
bottom-up modeling projects.

From the applications and first user stories we can see that the data process-
ing pipelines, brain atlas integration, and offering abstract representations for
common data structures, were widely used features for the generation of mor-
phologies, that the placement and connectivity strategies offered by the frame-
work were sufficient to cover the common use cases, and that users were able to
implement components to implement their own model-specific tasks.

The component and configuration system proved powerful, and many offspring
projects managed to reuse previous models in their entirety, changing only the
central configuration file to obtain useful model perturbations for hypothesis

122

investigation.

Reusing and altering data pipelines, adding/changing cell types, modifying
placement and connectivity between them, and putting it all together in a new
context for another use case would have required extensive source analysis and
modification with imperative code. Thanks to the framework most of the code
complexity was entirely transparent to most users who could oversee and un-
derstand the model at the diagram level, and zoom in only on well-encapsulated
code of interest, and make targetted and well informed code modifications.

Although beneficial, the inversion of control, component code architecture, and
project organization imposed by the framework was unfamiliar to most users
and represented the largest challenge: the key to adoption of the framework will
be a smooth learning curve facilitated by user oriented documentation exposing
and introducing them to framework idioms, and demonstrating the long-term
advantages of code quality.

In conclusion, work remains to be done to refine the software and documentation
to ensure its usability, and the likelihood of adoption. Yet already, the missing
coverage of multiscale modeling software tools seen in the state of the art anal-
ysis have been adressed succesfully by the developed framework: the software
offers a strong framework environment with inversion of control, component
encapsulation, code architecture and organization of user code, observing high
reuse and understandability in the preliminary models that have been devel-
oped. The software facilitates the description of models as a sum of black-box
components with a clear separation between the model description and imple-
mentation, through the configuration and strategy pattern. The parts of the
multiscale workflow not covered by other tools, namely the provenance and in-
corporation of multimodal multiscale datasets and the generation of parameter
values from them (more than their mere specification) is made possible by the
framework and put into use succesfully.

6.2 Scientific findings

Through the application of the BSB, several base models were set up for multiple
brain regions. These base models then were either used for research into fun-
damental computational properties, or perturbations were introduced to model
disease states.

The cerebellar cortex model forms a leap forward in many aspects: it is the first
multicompartmental model that comprises all 3 cortical layers, and all main
cell types from the granular input layer with mossy fiber branching, to the sole
output of the cortex, namely the Purkinje cell axon, with the main inhibitory
interneurons present, forming feedback loops and effecting control over the main

123

granule-Purkinje cell axis, including several rarely modeled synaptic connections
such as the dendrodendritic Golgi cell GABA synapses, electrotonic synapses,
and the molecular layer interneuron (MLI) MLI-to-MLI synapses. Other than
the completeness, the simulations of the models reveal supporting evidence of
the vertical organization of the cerebellar cortex, and demonstrates how sev-
eral mechanisms contibute to the spatiotemporal focusing of dense bundles of
granule cell activation: the mossy fibers contact and activate dense clusters of
granule cells, the Golgi cells synchronize themselves with millisecond precision,
and inhibit a wide area of granule cells in an oblong shape around the activated
cluster, the basket cell inhibits off-bundle Purkinje cells laterally for sharper
bundle boundaries, and both MLI through the delays inherent to their disynap-
tic pathway inhibit the Purkinje cells temporally right after activation for more
temporally focused responses to granule cell activation.

The cerebellar cortex model is now being reused for multiple investigations
by multiple collaborators: through parameter and morphology modifications a
human variant is being reconstructed, which through differential investigation
could highlight human-only properties and their function; through parameter
and membrane mechanism modifications the IB2K mouse model for autism is
being studied; through atlas-alignment and morphology generation the non-
developable surface of the cerebellar cortex is being reconstructed, and the
highly detailed reconstruction will be used to study how the same microcir-
cuit organization can lead to different functions in different regions, specifically,
how the declive’s lobule VI contributes to emotional control; through composi-
tion with a model for the inferior olive the error input to the cerebellum can be
included and cerebellar learning can be investigated in novel ways.

Many of these projects would have been considerably harder without a reusable
and modifiable cerebellar cortex model.

124

Chapter 7

Supplementary Material

name: Skeleton configuration

storage:

engine: hdf5

root: network.hdf5

network:

x: 100

y: 100

z: 100

regions: {}

partitions: {}

cell_types: {}

placement: {}

after_placement: {}

connectivity: {}

after_connectivity: {}

simulations: {}

Code Snippet 7.1: Example of a minimal configuration, containing a hints for
the storage and network size of the model reconstructions, and the root nodes
that host the declarations of a user’s components.

125

name: Starting example

storage:

engine: hdf5

root: network.hdf5

network:

x: 400

y: 400

z: 600

partitions:

base_layer:

type: layer

thickness: 100

cell_types:

base_type:

spatial:

radius: 2.5

density: 0.00039

plotting:

display_name: Template cell

color: "#E62314"

opacity: 0.5

placement:

example_placement:

strategy: bsb.placement.ParticlePlacement

cell_types:

- base_type

partitions:

- base_layer

connectivity: {}

simulations: {}

Code Snippet 7.2: Example of a starting configuration, containing a single layer,
cell type, and placement strategy according to which the cells will be placed into
the layer.

126

{

"cell_types": {

"$import": [

{

"ref": "cortex/cell_types.json#/"

},

{

"ref": "dcn/cell_types.json#/",

"values": ["DCN", "DCN_interneuron"]

},

],

"DCN_modified": {

"$ref": "#./DCN",

"spatial": {

"density": 3e-4

}

}

}

}

Code Snippet 7.3: Example of multi-document organization using the JSON
parser’s extensions. The "$import" key here specifies 2 references that will be
import the root nodes of 2 cell type documents into the cell types node of this
document. The first import imports all the remote nodes, while the second
import specifies 2 specific nodes to import. The "DCN_modified" node then
references the DCN cell type node (which was imported), copying its declaration
and overwriting the density.

class CellTypeReference(Reference):

def __call__(self, root, here):

return root.cell_types

def is_ref(self, value):

from ..cell_types import CellType

return isinstance(value, CellType)

Code Snippet 7.4: Example of a reference handler. Using the root node, and
current here node, the reference handler can point to the location in the compo-
nent tree from where to fetch the reference. The is_ref method differentiates
a config value that needs to be resolved from an already resolved reference.

7.1 Cerebellar cortex model

127

Figure 7.1: Placement metrics. Cell placement is assessed using various metrics
for each population, 7 including (a) Nearest Neighbor distance, (b) Pairwise
Distance, (c) Radial Distribution Function. These 8 metrics show realistic cell
positioning.

128

Figure 7.2: Connecting SC-PC by voxel intersection. A mesh of adjacent voxels
is used to enwrap 13 the axon of a stellate cell (50 cubes with 4.6 µm side)
and the dendritic tree of a PC (50 cubes with 26 14 µm side). The intersecting
voxels are in red. The synapses are located on compartments within the 15
intersecting voxels.

129

Figure 7.3: Coupling graph for GoCs. Each of the 70 blue dots represents a
GoC in the horizontal 20 plane. The grey edges represent connections through
gap junctions.

130

Figure 7.4: MLI responses to mf burst. (a) Multiple linear regression of SCs
and BCs in responses to 25 the mf burst against the number of synaptic spikes
from pfs and from other SCs or BCs. (b) One SC and 26 one BC crossed by an
active pf beam are represented in 3D. The GABAergic synapses from other SCs
27 or BCs are also indicated. Bigger markers correspond to presynaptic GrCs
more activated by the mf 28 burst. In this example, the SC receives 8% and the
BC 7.5% of their pf synapses from GrCs with at 29 least 2 active dendrites.

131

7.1.1 Mouse configuration file

name: DBBS Mouse cerebellar cortex

storage:

engine: hdf5

root: cerebellum.hdf5

network:

chunk_size: [50, 50, 50]

x: 300

y: 200

z: 295

packages:

- cerebellum==0.1.4

morphologies:

- morphologies/GolgiCell.swc

- morphologies/GranuleCell.swc

- morphologies/GolgiCell.asc

- morphologies/BasketCell.swc

- morphologies/PurkinjeCell.swc

- morphologies/StellateCell.swc

partitions:

dcn_layer:

stack_index: 0

thickness: 600

granular_layer:

stack_index: 1

thickness: 322

purkinje_layer:

stack_index: 2

thickness: 15

b_molecular_layer:

stack_index: 3

thickness: 50

t_molecular_layer:

stack_index: 4

thickness: 100

132

regions:

cerebellar_cortex:

type: stack

children:

- granular_layer

- purkinje_layer

- b_molecular_layer

- t_molecular_layer

- dcn_layer

cell_types:

granule_cell:

spatial:

density: 0.0039

geometry:

pf_height: 126

pf_height_sd: 15

morphologies:

- GranuleCell

radius: 2.5

plotting:

display_name: Granule cell

opacity: 0.3

mossy_fibers:

spatial:

count_ratio: 0.05

radius: 1

relative_to: glomerulus

glomerulus:

spatial:

density: 0.0003

radius: 1.5

plotting:

display_name: Glomerulus

purkinje_cell:

spatial:

morphologies:

- PurkinjeCell

planar_density: 0.0017

radius: 7.5

plotting:

display_name: Purkinje cell

133

golgi_cell:

spatial:

density: 0.000009

geometry:

axon_radius: 160

morphologies:

- GolgiCell

radius: 8

plotting:

display_name: Golgi cell

stellate_cell:

spatial:

density: 0.00005

morphologies:

- StellateCell

radius: 4

plotting:

display_name: Stellate cell

basket_cell:

spatial:

density: 0.00005

morphologies:

- BasketCell

radius: 6

plotting:

display_name: Basket cell

dcn_cell:

spatial:

count_ratio: 0.090909

radius: 10

relative_to: purkinje_cell

plotting:

display_name: DCN cell

placement:

granular_layer_innervation:

strategy: bsb.placement.RandomPlacement

partitions:

- granular_layer

cell_types:

- mossy_fibers

134

granular_layer_placement:

strategy: bsb.placement.RandomPlacement

partitions:

- granular_layer

cell_types:

- granule_cell

- golgi_cell

- glomerulus

purkinje_layer_placement:

strategy: bsb.placement.ParallelArrayPlacement

partitions:

- purkinje_layer

cell_types:

- purkinje_cell

spacing_x: 130

angle: 70

basket_layer_placement:

strategy: bsb.placement.RandomPlacement

partitions:

- b_molecular_layer

cell_types:

- basket_cell

stellate_layer_placement:

strategy: bsb.placement.RandomPlacement

partitions:

- t_molecular_layer

cell_types:

- stellate_cell

dcn_layer_placement:

strategy: bsb.placement.ParticlePlacement

partitions:

- dcn_layer

cell_types:

- dcn_cell

connectivity:

mossy_fibers_to_glomerulus:

strategy: cerebellum.connectome.mossy_glomerulus.ConnectomeMossyGlomerulus

presynaptic:

cell_types:

- mossy_fibers

postsynaptic:

cell_types:

- glomerulus

x_length: 60

z_length: 20

135

glomerulus_to_granule:

strategy: cerebellum.connectome.glomerulus_granule.ConnectomeGlomerulusGranule

presynaptic:

cell_types:

- glomerulus

postsynaptic:

cell_types:

- granule_cell

morphology_labels:

- dendrites

prepresynaptic:

cell_types:

- mossy_fibers

x_length: 100

z_length: 100

max_radius: 40

convergence: 4

glomerulus_to_golgi:

strategy: cerebellum.connectome.glomerulus_golgi.ConnectomeGlomerulusGolgi

presynaptic:

cell_types:

- glomerulus

postsynaptic:

cell_types:

- golgi_cell

morphology_labels:

- basal_dendrites

radius: 50

golgi_to_glomerulus:

strategy: >-

cerebellum.connectome.golgi_glomerulus_granule.ConnectomeGolgiGlomerulusGranule

presynaptic:

cell_types:

- golgi_cell

morphology_labels:

- axon

postsynaptic:

cell_types:

- granule_cell

intermediate:

cell_types:

- glomerulus

radius: 50

convergence: 40

136

golgi_to_golgi:

strategy: bsb.connectivity.VoxelIntersection

presynaptic:

cell_types:

- golgi_cell

morphology_labels:

- axon

postsynaptic:

cell_types:

- golgi_cell

morphology_labels:

- basal_dendrites

affinity: 0.5

contacts:

distribution: norm

loc: 160

scale: 5

gap_goc:

strategy: bsb.connectivity.VoxelIntersection

presynaptic:

cell_types:

- golgi_cell

morphology_labels:

- basal_dendrites

postsynaptic:

cell_types:

- golgi_cell

morphology_labels:

- basal_dendrites

affinity: 0.2

contacts:

distribution: norm

loc: 3

scale: 1

ascending_axon_to_golgi:

strategy: bsb.connectivity.VoxelIntersection

presynaptic:

cell_types:

- granule_cell

morphology_labels:

- basal_ascending_axondendrites

postsynaptic:

cell_types:

- golgi_cell

morphology_labels:

- basal_dendrites

137

parallel_fiber_to_golgi:

strategy: bsb.connectivity.VoxelIntersection

presynaptic:

cell_types:

- granule_cell

morphology_labels:

- parallel_fiber

postsynaptic:

cell_types:

- golgi_cell

morphology_labels:

- apical_dendrites

affinity: 0.1

ascending_axon_to_purkinje:

strategy: bsb.connectivity.VoxelIntersection

presynaptic:

cell_types:

- granule_cell

morphology_labels:

- ascending_axon

postsynaptic:

cell_types:

- purkinje_cell

morphology_labels:

- aa_targets

affinity: 0.1

parallel_fiber_to_purkinje:

strategy: bsb.connectivity.VoxelIntersection

presynaptic:

cell_types:

- granule_cell

morphology_labels:

- parallel_fiber

postsynaptic:

cell_types:

- purkinje_cell

morphology_labels:

- pf_targets

affinity: 0.1

138

139

parallel_fiber_to_basket:

strategy: bsb.connectivity.VoxelIntersection

presynaptic:

cell_types:

- granule_cell

morphology_labels:

- parallel_fiber

postsynaptic:

cell_types:

- basket_cell

morphology_labels:

- dendrites

affinity: 0.1

parallel_fiber_to_stellate:

strategy: bsb.connectivity.VoxelIntersection

presynaptic:

cell_types:

- granule_cell

morphology_labels:

- parallel_fiber

postsynaptic:

cell_types:

- stellate_cell

morphology_labels:

- dendrites

affinity: 0.1

stellate_to_purkinje:

strategy: bsb.connectivity.VoxelIntersection

presynaptic:

cell_types:

- stellate_cell

morphology_labels:

- axon

postsynaptic:

cell_types:

- purkinje_cell

morphology_labels:

- sc_targets

affinity: 0.1

basket_to_purkinje:

strategy: bsb.connectivity.VoxelIntersection

presynaptic:

cell_types:

- basket_cell

morphology_labels:

- axon

postsynaptic:

cell_types:

- purkinje_cell

morphology_labels:

- soma

140

stellate_to_stellate:

strategy: bsb.connectivity.VoxelIntersection

presynaptic:

cell_types:

- stellate_cell

morphology_labels:

- axon

postsynaptic:

cell_types:

- stellate_cell

morphology_labels:

- dendrites

affinity: 0.5

contacts:

distribution: norm

loc: 100

scale: 4

basket_to_basket:

strategy: bsb.connectivity.VoxelIntersection

presynaptic:

cell_types:

- basket_cell

morphology_labels:

- axon

postsynaptic:

cell_types:

- basket_cell

morphology_labels:

- dendrites

affinity: 0.5

contacts:

distribution: norm

loc: 100

scale: 4

purkinje_to_dcn:

strategy: bsb.connectivity.AllToAll

presynaptic: { cell_types: [purkinje_cell], morphology_labels: [axon] }

postsynaptic: { cell_types: [dcn_cell] }

mossy_fiber_to_dcn:

strategy: bsb.connectivity.AllToAll

presynaptic: { cell_types: [mossy_fibers] }

postsynaptic: { cell_types: [dcn_cell] }

after_placement:

microzones:

strategy: cerebellum.postprocessing.LabelMicrozones

targets:

- purkinje_cell

aa_lengths:

strategy: cerebellum.postprocessing.AscendingAxonLengths

dcn_rotations:

strategy: cerebellum.postprocessing.DCNRotations

141

Code Snippet 7.5: Configuration in YAML of the cerebellar cortex model. The
configured components come from a mixture of framework provided components
(strategy attributes starting with bsb.), and versioned user code (strategy
attributes starting with cerebellum.)

partitions:

VAL:

type: allen

struct_name: VAL

sources:

- depth:

file: https://some-atlas.org/annotation.nrrd

pipeline:

- func: atlas.orientation

parameters:

Estimation roughness

- 2.4

Corner protocol

- "extrapolate"

- atlas.depth_from_orientation

- inhib:

$ref: pipelines/nissl-to-densities.yaml#/

file: https://some-atlas.org/inh-nissl.nrrd

- exc:

$ref: pipelines/nissl-to-densities.yaml#/

file: https://some-atlas.org/exc-nissl.nrrd
pipelines/nissl-to-densities.yaml

pipeline:

- change_reference_space

- func: atlas.blur

sigma

parameters: [3]

- func: atlas.erode

kernel

parameters: [

[0, 1, 0],

[1, 1, 1],

[0, 1, 0]

]

Code Snippet 7.6: Example of an Allen-atlas-connected voxelset calculat-
ing layer depth, inhibitory and excitatory cell density data values for each
voxel in the selected atlas structure, by fetching data from the fictitious URL
https://some-atlas.org/ (top snippet). The "$ref"s reuse the pipeline steps
defined in pipelines/nissl-to-densities.yaml, the bottom snippet.

142

from arborize import define_model

BasketCellModel = define_model(

{

"synapse_types": {

"AMPA": {

"tau_facil": 54,

"tau_rec": 35.1,

"tau_1": 6,

"gmax": 1200,

"U": 0.4,

},

("NMDA", "stellate"): {

"tau_facil": 5,

"tau_rec": 8,

"tau_1": 1,

"gmax": 5000,

"U": 0.15,

},

"GABA": {

"tau_facil": 0,

"tau_rec": 38.7,

"tau_1": 1,

"gmax": 3200,

"U": 0.42,

"Erev": -65,

},

},

143

"cable_types": {

"soma": {

"cable": {"Ra": 122, "cm": 1},

"ions": {

"na": {"rev_pot": 60},

"k": {"rev_pot": -80},

"ca": {"rev_pot": 137.5},

"h": {"rev_pot": -34},

},

"mechanisms": {

"Leak": {"e": -60, "gmax": 3e-05},

"Nav1_1": {"gbar": 0.10946415489712},

"Cav3_2": {"gcabar": 0.0006295539},

"Cav3_3": {"pcabar": 0.0007543986},

"Kir2_3": {"gkbar": 0.0012770833},

"Kv3_4": {"gkbar": 0.0277114781},

"Kca1_1": {"gbar": 0.0044251081},

"Cav2_1": {"pcabar": 0.000846789},

"HCN1": {"gbar": 0.0006902196},

"cdp5": {"TotalPump": 1e-09},

},

},

"dendrites": {

"cable": {"Ra": 122, "cm": 1},

"ions": {"k": {"rev_pot": -80}},

"mechanisms": {

"Leak": {"e": -60, "gmax": 3e-05},

"Cav2_1": {"pcabar": 0.0004965596},

"Kca1_1": {"gbar": 0.0020575902},

"Kv1_1": {"gbar": 0.0285137286},

"cdp5": {"TotalPump": 1e-09},

},

},

144

"axon": {

"cable": {"Ra": 122, "cm": 1},

"ions": {

"na": {"rev_pot": 60},

"k": {"rev_pot": -80},

"h": {"rev_pot": -34},

},

"mechanisms": {

"Leak": {"e": -60, "gmax": 3e-05},

"Kv1_1": {"gbar": 0.0069654709},

"Nav1_6": {"gbar": 0.0072983226},

"Kv3_4": {"gkbar": 0.0151487764},

"HCN1": {"gbar": 0.0034633208},

"cdp5": {},

},

},

"axon_initial_segment": {

"cable": {"Ra": 122, "cm": 1},

"ions": {

"na": {"rev_pot": 60},

"k": {"rev_pot": -80},

"h": {"rev_pot": -34},

},

"mechanisms": {

"Leak": {"e": -60, "gmax": 3e-05},

"HCN1": {"gbar": 0.0048096086},

"Nav1_6": {"gbar": 0.5724695612},

"Kv1_1": {"gbar": 0.0827297077},

"Kv3_4": {"gkbar": 0.0300388404},

"cdp5": {},

},

},

},

},

use_defaults=True,

)

Code Snippet 7.7: Example of the basket cell description using arborize.

145

Bibliography

[1] John P. A. Ioannidis. Why Most Published Research Findings Are False.
PLOS Medicine, 2(8):e124, August 2005.

[2] Henry Markram, Karlheinz Meier, Thomas Lippert, Sten Grillner,
Richard Frackowiak, Stanislas Dehaene, Alois Knoll, Haim Sompolinsky,
Kris Verstreken, Javier DeFelipe, Seth Grant, Jean-Pierre Changeux, and
Alois Saria. Introducing the Human Brain Project. Procedia Computer
Science, 7:39–42, January 2011.

[3] Stefano Masoli, Sergio Solinas, and Egidio D’Angelo. Action potential
processing in a detailed Purkinje cell model reveals a critical role for axonal
compartmentalization. Frontiers in Cellular Neuroscience, 9:47, 2015.

[4] Stefano Masoli, Alessandra Ottaviani, Stefano Casali, and Egidio
D’Angelo. Cerebellar Golgi cell models predict dendritic processing
and mechanisms of synaptic plasticity. PLOS Computational Biology,
16(12):e1007937, December 2020.

[5] Stefano Masoli, Marialuisa Tognolina, Umberto Laforenza, Francesco
Moccia, and Egidio D’Angelo. Parameter tuning differentiates granule
cell subtypes enriching transmission properties at the cerebellum input
stage. Communications Biology, 3(1):1–12, May 2020.

[6] Martina Francesca Rizza, Francesca Locatelli, Stefano Masoli, Diana
Sánchez-Ponce, Alberto Muñoz, Francesca Prestori, and Egidio D’Angelo.
Stellate cell computational modeling predicts signal filtering in the molec-
ular layer circuit of cerebellum. Scientific Reports, 11(1):3873, February
2021.

[7] Stefano Masoli and Egidio D’Angelo. Synaptic Activation of a Detailed

146

Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause
Responses in Active Dendrites. Frontiers in Cellular Neuroscience, 11,
2017.

[8] Sergio Solinas, Thierry Nieus, and Egidio D’Angelo. A Realistic Large-
Scale Model of the Cerebellum Granular Layer Predicts Circuit Spatio-
Temporal Filtering Properties. Frontiers in Cellular Neuroscience, 4:12,
May 2010.

[9] Lisa Mapelli, Sergio Solinas, and Egidio D’Angelo. Integration and reg-
ulation of glomerular inhibition in the cerebellar granular layer circuit.
Frontiers in Cellular Neuroscience, 8:55, 2014.

[10] Stefano Casali, Elisa Marenzi, Chaitanya Medini, Claudia Casellato, and
Egidio D’Angelo. Reconstruction and Simulation of a Scaffold Model of
the Cerebellar Network. Frontiers in Neuroinformatics, 13:37, 2019.

[11] Egidio D’Angelo, Sergio Solinas, Jonathan Mapelli, Daniela Gandolfi, Lisa
Mapelli, and Francesca Prestori. The cerebellar Golgi cell and spatiotem-
poral organization of granular layer activity. Frontiers in Neural Circuits,
7:93, May 2013.

[12] Petruţ A. Bogdan, Beatrice Marcinnò, Claudia Casellato, Stefano Casali,
Andrew G. D. Rowley, Michael Hopkins, Francesco Leporati, Egidio
D’Angelo, and Oliver Rhodes. Towards a Bio-Inspired Real-Time Neu-
romorphic Cerebellum. Frontiers in Cellular Neuroscience, 15:622870,
2021.

[13] Michael Schirner, Lia Domide, Dionysios Perdikis, Paul Triebkorn, Leon
Stefanovski, Roopa Pai, Paula Prodan, Bogdan Valean, Jessica Palmer,
Chloê Langford, André Blickensdörfer, Michiel van der Vlag, Sandra Diaz-
Pier, Alexander Peyser, Wouter Klijn, Dirk Pleiter, Anne Nahm, Oliver
Schmid, Marmaduke Woodman, Lyuba Zehl, Jan Fousek, Spase Petkoski,
Lionel Kusch, Meysam Hashemi, Daniele Marinazzo, Jean-François Man-
gin, Agnes Flöel, Simisola Akintoye, Bernd Carsten Stahl, Michael Cepic,
Emily Johnson, Gustavo Deco, Anthony R. McIntosh, Claus C. Hilge-
tag, Marc Morgan, Bernd Schuller, Alex Upton, Colin McMurtrie, Timo
Dickscheid, Jan G. Bjaalie, Katrin Amunts, Jochen Mersmann, Viktor
Jirsa, and Petra Ritter. Brain simulation as a cloud service: The Virtual
Brain on EBRAINS. NeuroImage, 251:118973, May 2022.

[14] Sadaf Alam, Javier Bartolome, Sanzio Bassini, Michele Carpene, Mirko
Cestari, Frederic Combeau, Sergi Girona, Stefano Gorini, Giuseppe Fi-
ameni, Björn Hagemeier, Andreas Herten, Nikoleta Kiapidou, Wouter

147

Klijn, Dorian Krause, Jacques-Charles Lafoucriere, Cerlane Leong,
Thomas Leibovici, Thomas Lippert, Colin McMurtrie, Pavel Mezent-
sev, Anne Nahm, Boris Orth, Dirk Pleiter, Thomas Schulthess, Benedikt
von St. Vieth, Debora Testi, and Gilles Wiber. Fenix: Distributed
e-Infrastructure Services for EBRAINS. In Katrin Amunts, Lucio
Grandinetti, Thomas Lippert, and Nicolai Petkov, editors, Brain-Inspired
Computing, Lecture Notes in Computer Science, pages 81–89, Cham, 2021.
Springer International Publishing.

[15] Luca L. Bologna, Roberto Smiriglia, Dario Curreri, and Michele Migliore.
The EBRAINS NeuroFeatureExtract: An Online Resource for the Extrac-
tion of Neural Activity Features From Electrophysiological Data. Frontiers
in Neuroinformatics, 15:713899, August 2021.

[16] Shailesh Appukuttan, Luca L. Bologna, Felix Schürmann, Michele
Migliore, and Andrew P. Davison. EBRAINS Live Papers - Interactive
Resource Sheets for Computational Studies in Neuroscience. Neuroinfor-
matics, 21(1):101–113, January 2023.

[17] Wouter Klijn, Muhammad Fahad, Kim Sontheimer, Cristian Jimenez-
Romero, Rolando Ingles Chavez, Sandra Diaz, Jochen Martin Eppler,
Lena Oden, and Abigail Morrison. Multiscale Brain Co-simulation in
the Human Brain Project: EBRAINS Tools for in-Transit Simulation and
Analysis. 2021.

[18] Sandra Diaz, Claudia Bachmann, and Wouter Klijn. Using EBRAINS for
Your Use Cases. 2021.

[19] Luca Leonardo Bologna, Roberto Smiriglia, Carmen Alina Lupascu,
Shailesh Appukuttan, Andrew P. Davison, Genrich Ivaska, Jean-Denis
Courcol, and Michele Migliore. The EBRAINS Hodgkin-Huxley Neuron
Builder: An online resource for building data-driven neuron models. Fron-
tiers in Neuroinformatics, 16, 2022.

[20] Miryam Naddaf. Europe spent €600 million to recreate the human brain
in a computer. How did it go? Nature, 620(7975):718–720, August 2023.

[21] Brain Scaffold Builder - Tools. https://www.ebrains.eu/tools/bsb.

[22] Tina Roostaei, Arash Nazeri, Mohammad Ali Sahraian, and Alireza Mi-
nagar. The human cerebellum: A review of physiologic neuroanatomy.
Neurologic Clinics, 32(4):859–869, November 2014.

148

[23] Johannes Sobotta. Atlas and Text-Book of Human Anatomy v. 2, 1906.
W.B. Saunders Company, 1909.

[24] Anamaria Sudarov and Alexandra L. Joyner. Cerebellum morphogenesis:
The foliation pattern is orchestrated by multi-cellular anchoring centers.
Neural Development, 2(1):26, December 2007.

[25] Martin I. Sereno, Jörn Diedrichsen, Mohamed Tachrount, Guilherme
Testa-Silva, Helen d’Arceuil, and Chris De Zeeuw. The human cerebellum
has almost 80% of the surface area of the neocortex. Proceedings of the
National Academy of Sciences, 117(32):19538–19543, August 2020.

[26] RB Ivry and JA Fiez. Cerebellar contributions to cognition and imagery.
The new cognitive neurosciences, 2:999–1011, 2000. The cerebellar cortex
is traditionally divided into three subregions - the archicerebellum, the
paleocerebellum, and the neocerebellum.

Especially the neocerebellum seems to be the substrate for influencing
cognition.

Tremendous expansion in primates.

[27] Henrietta C. Leiner, Alan L. Leiner, and Robert S. Dow. Does the cere-
bellum contribute to mental skills? Behavioral Neuroscience, 100(4):443–
454, 1986. Signals from the older part of the dentate nucleus certainly
help the frontal motor cortex to effect the skilled manipulation of mus-
cles, and signals from the newest part of the dentate nucleus may help the
frontal association cortex to effect the skilled manipulation of information
or ideas. How such mental skills could have evolved in higher primates
in the course of phylogenetic and ontogenetic development is shown. The
validity of this new concept of cerebellar function can be tested on humans
by means of tomographic brain scans.

[28] Gray, Henry, and Warren H Lewis. Anatomy of the
Human Body. Philadelphia, Lea & Febiger, 1918.
https://www.biodiversitylibrary.org/bibliography/20311.

[29] Paul R. Davidson and Daniel M. Wolpert. Widespread access to pre-
dictive models in the motor system: A short review. Journal of Neural
Engineering, 2(3):S313–319, September 2005.

[30] M. Desmurget and S. Grafton. Forward modeling allows feedback control
for fast reaching movements. Trends in Cognitive Sciences, 4(11):423–431,

149

November 2000.

[31] Emanuel Todorov and Michael I. Jordan. Optimal feedback control as
a theory of motor coordination. Nature Neuroscience, 5(11):1226–1235,
November 2002.

[32] Peter L. Strick, Richard P. Dum, and Julie A. Fiez. Cerebellum and
Nonmotor Function. Annual Review of Neuroscience, 32(1):413–434, 2009.

[33] Masao Ito. Cerebellar circuitry as a neuronal machine. Progress in Neu-
robiology, 78(3):272–303, February 2006.

[34] Elizabeth P. Lackey, Detlef H. Heck, and Roy V. Sillitoe. Recent advances
in understanding the mechanisms of cerebellar granule cell development
and function and their contribution to behavior. F1000Research, 7:F1000
Faculty Rev–1142, July 2018.

[35] Camillo Golgi. Sulla fina anatomia degli organi centrali del sistema ner-
voso. S. Calderini, 1885.

[36] Duane E. Haines. Neuroanatomy: An Atlas of Structures, Sections, and
Systems. Lippincott Williams & Wilkins, 9 edition, 2017.

[37] Freida L Carson and Christie Hladik. Histotechnology: A Self-
Instructional Text. American Society for Clinical Pathology, 2008.

[38] Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell. Principles
of Neural Science. McGraw-Hill, 5 edition, 2013.

[39] John C. Eccles, Masao Ito, and János Szentágothai. The Cerebellum as a
Neuronal Machine. Springer Berlin Heidelberg, 1967.

[40] Santiago Ramón y Cajal. Histologie Du Système Nerveux de l’Homme et
Des Vertébrés. Maloine, Paris, 1909.

[41] S. L. Palay and V. Chan-Palay. Cerebellar Cortex: Cytology and Organi-
zation. Springer, 1974.

[42] R. L. Jakab and J. Hámori. Quantitative morphology and synaptology of
cerebellar glomeruli in the rat. Anatomy and Embryology, 179(1):81–88,
October 1988.

150

[43] Victoria Chan-Palay and Sanford L. Palay. The form of velate astro-
cytes in the cerebellar cortex of monkey and rat: High voltage electron
microscopy of rapid Golgi preparations. Zeitschrift für Anatomie und En-
twicklungsgeschichte, 138(1):1–19, January 1972.

[44] Cassie S. Mitchell and Robert H. Lee. Synaptic glutamate spillover in-
creases NMDA receptor reliability at the cerebellar glomerulus. Journal
of theoretical biology, 289:217–224, November 2011.

[45] Simon J. Mitchell and R. Angus Silver. GABA Spillover from Single
Inhibitory Axons Suppresses Low-Frequency Excitatory Transmission at
the Cerebellar Glomerulus. Journal of Neuroscience, 20(23):8651–8658,
December 2000.

[46] Roy V. Sillitoe, Seung-Hyuk Chung, Jean-Marc Fritschy, Monica Hoy,
and Richard Hawkes. Golgi Cell Dendrites Are Restricted by Purkinje
Cell Stripe Boundaries in the Adult Mouse Cerebellar Cortex. Journal of
Neuroscience, 28(11):2820–2826, March 2008.

[47] G. Andersson and O. Oscarsson. Climbing fiber microzones in cerebel-
lar vermis and their projection to different groups of cells in the lateral
vestibular nucleus. Experimental Brain Research, 32(4):565–579, August
1978.

[48] W. W. Chambers and J. M. Sprague. Functional localization in the cere-
bellum. I. Organization in longitudinal cortico-nuclear zones and their
contribution to the control of posture, both extrapyramidal and pyra-
midal. The Journal of Comparative Neurology, 103(1):105–129, August
1955.

[49] Andreas Vesalius. De Humani Corporis Fabrica. Johannes Oporinus,
Basel, 1543.

[50] Thomas Willis. Cerebri Anatome. Martyn and Allestry, Oxford, 1664.

[51] Gottfried Wilhelm Leibniz. Protogaea. Nicolai Foersteri, Berlin, 1749.

[52] Johann Friedrich Meckel. Handbuch Der Menschlichen Anatomie. Van-
denhoeck und Ruprecht, Göttingen, 1816.

[53] Larry R. Squire, editor. The History of Neuroscience in Autobiography,
Volume 2. Society for Neuroscience, Washington, DC, 2001.

151

[54] Michael S. Gazzaniga. The Mind’s Past. University of California Press,
Berkeley, CA, 2000.

[55] S. Finger, F. Boller, and K.L. Tyler, editors. The Oxford Handbook of the
History of Neuroscience. Oxford University Press, Oxford, UK, 2008.

[56] A.S. David. The Search for the Mind: A New History of the Brain. Harry
N. Abrams, New York, NY, 2000.

[57] V.S. Ramachandran. The Tell-Tale Brain: A Neuroscientist’s Quest for
What Makes Us Human. W. W. Norton & Company, New York, NY,
2011.

[58] Paul Broca. Remarques sur le siège de la faculté du langage articulé,
suivies d’une observation d’aphémie (perte de la parole). Bulletin de la
Société Anatomique, 6:330–357, 1861.

[59] Carl Wernicke. Der Aphasische Symptomencomplex: Eine Psychologische
Studie Auf Anatomischer Basis. Cohn & Weigert, 1874.

[60] Gustav Fritsch and Eduard Hitzig. Über die elektrische Erregbarkeit
des Grosshirns. Archiv für Anatomie, Physiologie und wissenschaftliche
Medicin, 37(1-2):300–332, 1870.

[61] François Magendie. Sur les fonctions du cerveau. Gazette Médicale de
Paris, 1:141–145, 1822.

[62] David Marr. A theory of cerebellar cortex. The Journal of Physiology,
202(2):437–470, 1969.

[63] James S. Albus. A theory of cerebellar function. Mathematical Bio-
sciences, 10(1):25–61, February 1971.

[64] Masao Ito. Neurophysiological aspects of the cerebellar motor control
system. International journal of neurology, 7:162–176, 1970.

[65] M. Ito. The Cerebellum and Neural Control. Raven Press, 1984.

[66] Mitsuo Kawato, Shogo Ohmae, Huu Hoang, and Terry Sanger. 50 Years
Since the Marr, Ito, and Albus Models of the Cerebellum. Neuroscience,
462:151–174, May 2021.

152

[67] Mario Manto, James M. Bower, Adriana Bastos Conforto, José M.
Delgado-Garćıa, Suzete Nascimento Farias da Guarda, Marcus Gerwig,
Christophe Habas, Nobuhiro Hagura, Richard B. Ivry, Peter Mariën,
Marco Molinari, Eiichi Naito, Dennis A. Nowak, Nordeyn Oulad Ben Taib,
Denis Pelisson, Claudia D. Tesche, Caroline Tilikete, and Dagmar Tim-
mann. Consensus Paper: Roles of the Cerebellum in Motor Control—The
Diversity of Ideas on Cerebellar Involvement in Movement. The Cerebel-
lum, 11(2):457–487, June 2012. clinical deficits exhibited by cerebellar
patients and which are characterized by disturbances in accuracy and co-
ordination: disorders of eye movements, disorders of speech, disorders of
limb movements, impairments of posture/gait as well as cognitive deficits

The cerebellar structures controlling eye movements include the so-called
oculomotor vermis (lobules VI and VII) and fastigius nucleus, crus I–II of
ansiform lobule, flocculus and paraflocculus, uvula, and nodulus. Speech is
controlled by the superior paravermal region, the intermediate cerebellar
cortex, and the dentate nucleus. Limb movements are under the super-
vision of the dentate nucleus, the interpositus nucleus, the intermediate
cerebellar cortex, and the lateral cerebellar cortex. Stance/gait is con-
trolled by the medial and intermediate cerebellum. Cognitive operations
are mainly controlled by the posterior lobe (posterolateral cerebellum)
and cerebellar nuclei (mainly parts of dentate nuclei)

7.1.2 The Role of the Cerebellum in Oculomotor Con-
trol

The vestibulocerebellum (flocculus, paraflocculus, nodulus, uvula, tonsil,
and cerebellar pyramid) is important for steady gaze holding, smooth
pursuit, and the vestibulo-ocular reflex; the oculomotor cerebellum (dorsal
vermis—lobules VI and VII—and the underlying fastigial nucleus, as well
as ansiform lobe—crus I and crus II) is mainly involved in the control of
saccades but also contributes to smooth pursuit and vergence

Eye Stability Control

The control of eye stability corresponds to gaze holding processing, slow
phase (VOR, smooth pursuit) instability control, and inhibition of un-
wanted saccades. The best insight into the role of the cerebellum in eye
stability control is illustrated by the appearance of gaze-evoked nystag-
mus, periodic alternating nystagmus, and square wave saccadic intrusion
(SWSI) following cerebellar dysfunction.

These concepts suggest that the cerebellum contributes to timing and
sensory acquisition and is involved in the prediction of the sensory conse-
quences of action.

153

[68] Jeremy D. Schmahmann. The cerebellum and cognition. Neuroscience
Letters, 688:62–75, January 2019.

[69] Egidio D’Angelo and Stefano Casali. Seeking a unified framework for
cerebellar function and dysfunction: From circuit operations to cognition.
Frontiers in Neural Circuits, 6:116, January 2013.

[70] Henrik Jörntell. Cerebellar Synaptic Plasticity and the Credit Assignment
Problem. Cerebellum (London, England), 15(2):104–111, April 2016.

[71] Chris I. De Zeeuw, Stephen G. Lisberger, and Jennifer L. Raymond. Di-
versity and dynamism in the cerebellum. Nature Neuroscience, 24(2):160–
167, February 2021.

[72] Masao Ito. Control of mental activities by internal models in the cerebel-
lum. Nature Reviews Neuroscience, 9(4):304–313, April 2008.

[73] Zhenyu Gao, Boeke J. van Beugen, and Chris I. De Zeeuw. Distributed
synergistic plasticity and cerebellar learning. Nature Reviews. Neuro-
science, 13(9):619–635, September 2012.

[74] Egidio D’Angelo and Viktor Jirsa. The quest for multiscale brain model-
ing. Trends in Neurosciences, 45(10):777–790, October 2022.

[75] Mohamed Fayad and Douglas Schmidt. Object-Oriented Application
Frameworks. Communications of the ACM, 40, October 1997.

[76] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
1988. Credited for originating the term open-closed principle.

[77] Kael Dai, Sergey L. Gratiy, Yazan N. Billeh, Richard Xu, Binghuang Cai,
Nicholas Cain, Atle E. Rimehaug, Alexander J. Stasik, Gaute T. Einevoll,
Stefan Mihalas, Christof Koch, and Anton Arkhipov. Brain Modeling
ToolKit: An open source software suite for multiscale modeling of brain
circuits. PLoS Computational Biology, 16(11):e1008386, November 2020.

[78] Antolik Jan and Davison Andrew. Mozaik: A framework for model con-
struction, simulation, data analysis and visualization for large-scale spik-
ing neural circuit models. Frontiers in Neuroinformatics, 7, 2013.

[79] Salvador Dura-Bernal, Benjamin A Suter, Padraig Gleeson, Matteo
Cantarelli, Adrian Quintana, Facundo Rodriguez, David J Kedziora,
George L Chadderdon, Cliff C Kerr, Samuel A Neymotin, Robert A Mc-

154

Dougal, Michael Hines, Gordon MG Shepherd, and William W Lytton.
NetPyNE, a tool for data-driven multiscale modeling of brain circuits.
eLife, 8:e44494, April 2019.

[80] Padraig Gleeson, Volker Steuber, and R. Angus Silver. neuroConstruct: A
Tool for Modeling Networks of Neurons in 3D Space. Neuron, 54(2):219–
235, April 2007.

[81] James King, Michael Hines, Sean Hill, Philip Goodman, Henry Markram,
and Felix Schürmann. A component-based extension framework for large-
scale parallel simulations in NEURON. Frontiers in Neuroinformatics, 3,
2009.

[82] Robert C. Cannon, Padraig Gleeson, Sharon Crook, Gautham Ganapathy,
Boris Marin, Eugenio Piasini, and R. Angus Silver. LEMS: A language
for expressing complex biological models in concise and hierarchical form
and its use in underpinning NeuroML 2. Frontiers in Neuroinformatics,
8, 2014.

[83] Ivan Raikov, Robert Cannon, Robert Clewley, Hugo Cornelis, Andrew
Davison, Erik De Schutter, Mikael Djurfeldt, Padraig Gleeson, Anatoli
Gorchetchnikov, Hans Plesser, Sean Hill, Mike Hines, Birgit Kriener, Yann
Le Franc, Chung-Chuan Lo, Abigail Morrison, Eilif Muller, Subhasis Ray,
Lars Schwabe, and Botond Szatmary. NineML: The Network Interchange
for Neuroscience Modeling Language, volume 12. July 2011.

[84] Ines Wichert, Sanghun Jee, Erik De Schutter, and Sungho Hong. Py-
cabnn: Efficient and extensible software to construct an anatomical basis
for a physiologically realistic neural network model. Frontiers in Neuroin-
formatics, 14:31, 2020.

[85] Andrew Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif
Muller, Dejan Pecevski, Laurent Perrinet, and Pierre Yger. PyNN: A
common interface for neuronal network simulators. Frontiers in Neuroin-
formatics, 2, 2009.

[86] J. J. Johannes Hjorth, Jeanette Hellgren Kotaleski, and Alexander Kozlov.
Predicting Synaptic Connectivity for Large-Scale Microcircuit Simulations
Using Snudda. Neuroinformatics, 19(4):685–701, October 2021.

[87] Kael Dai, Juan Hernando, Yazan N. Billeh, Sergey L. Gratiy, Judit Planas,
Andrew P. Davison, Salvador Dura-Bernal, Padraig Gleeson, Adrien De-
vresse, Benjamin K. Dichter, Michael Gevaert, James G. King, Werner
A. H. Van Geit, Arseny V. Povolotsky, Eilif Muller, Jean-Denis Cour-

155

col, and Anton Arkhipov. The SONATA data format for efficient de-
scription of large-scale network models. PLOS Computational Biology,
16(2):e1007696, February 2020.

[88] Andrew Davison. Automated Capture of Experiment Context for Eas-
ier Reproducibility in Computational Research. Computing in Science &
Engineering, 14(4):48–56, July 2012.

[89] Paula Sanz Leon, Stuart Knock, M. Woodman, Lia Domide, Jochen Mers-
mann, Anthony McIntosh, and Viktor Jirsa. The Virtual Brain: A simu-
lator of primate brain network dynamics. Frontiers in Neuroinformatics,
7, 2013.

[90] Samuel Garcia, Domenico Guarino, Florent Jaillet, Todd Jennings, Robert
Pröpper, Philipp L. Rautenberg, Chris C. Rodgers, Andrey Sobolev,
Thomas Wachtler, Pierre Yger, and Andrew P. Davison. Neo: An object
model for handling electrophysiology data in multiple formats. Frontiers
in Neuroinformatics, 8:10, 2014.

[91] J. M. Bower and D. C. Woolston. Congruence of spatial organization of
tactile projections to granule cell and Purkinje cell layers of cerebellar
hemispheres of the albino rat: Vertical organization of cerebellar cortex.
Journal of Neurophysiology, 49(3):745–766, March 1983.

[92] Erich Gamma, editor. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional Computing Series.
Addison-Wesley, Reading, Mass, 1995.

[93] N. Abi Akar, B. Cumming, V. Karakasis, A. Küsters, W. Klijn, A. Peyser,
and S. Yates. Arbor — A morphologically-detailed neural network simula-
tion library for contemporary high-performance computing architectures.
In 2019 27th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pages 274–282, February 2019.

[94] Robin De Schepper, Alice Geminiani, Stefano Masoli, Martina Francesca
Rizza, Alberto Antonietti, Claudia Casellato, and Egidio D’Angelo. Model
simulations unveil the structure-function-dynamics relationship of the
cerebellar cortical microcircuit. Communications Biology, 5(1):1240,
November 2022.

[95] Michael A. Arbib and Péter Érdi. Précis of iNeural organization: Struc-
ture, function, and dynamics/i. The Behavioral and brain sciences,
23(4):513–533, August 2000.

156

[96] Egidio D’Angelo and Claudia Gandini Wheeler-Kingshott. Modelling the
brain: Elementary components to explain ensemble functions. La Rivista
del Nuovo Cimento, 40(7):297–333, July 2017.

[97] Henry Markram, Eilif Muller, Srikanth Ramaswamy, Michael W.
Reimann, Marwan Abdellah, Carlos Aguado Sanchez, Anastasia Aila-
maki, Lidia Alonso-Nanclares, Nicolas Antille, Selim Arsever, Guy An-
toine Atenekeng Kahou, Thomas K. Berger, Ahmet Bilgili, Nenad Bun-
cic, Athanassia Chalimourda, Giuseppe Chindemi, Jean-Denis Courcol,
Fabien Delalondre, Vincent Delattre, Shaul Druckmann, Raphael Du-
musc, James Dynes, Stefan Eilemann, Eyal Gal, Michael Emiel Gevaert,
Jean-Pierre Ghobril, Albert Gidon, Joe W. Graham, Anirudh Gupta,
Valentin Haenel, Etay Hay, Thomas Heinis, Juan B. Hernando, Michael
Hines, Lida Kanari, Daniel Keller, John Kenyon, Georges Khazen, Yihwa
Kim, James G. King, Zoltan Kisvarday, Pramod Kumbhar, Sébastien
Lasserre, Jean-Vincent Le Bé, Bruno R.C. Magalhães, Angel Merchán-
Pérez, Julie Meystre, Benjamin Roy Morrice, Jeffrey Muller, Alberto
Muñoz-Céspedes, Shruti Muralidhar, Keerthan Muthurasa, Daniel Nach-
baur, Taylor H. Newton, Max Nolte, Aleksandr Ovcharenko, Juan Pala-
cios, Luis Pastor, Rodrigo Perin, Rajnish Ranjan, Imad Riachi, José-
Rodrigo Rodŕıguez, Juan Luis Riquelme, Christian Rössert, Konstanti-
nos Sfyrakis, Ying Shi, Julian C. Shillcock, Gilad Silberberg, Ricardo
Silva, Farhan Tauheed, Martin Telefont, Maria Toledo-Rodriguez, Thomas
Tränkler, Werner Van Geit, Jafet Villafranca Dı́az, Richard Walker, Yun
Wang, Stefano M. Zaninetta, Javier DeFelipe, Sean L. Hill, Idan Segev,
and Felix Schürmann. Reconstruction and simulation of neocortical mi-
crocircuitry. Cell, 163(2):456–492, October 2015.

[98] Katrin Amunts, Alois C. Knoll, Thomas Lippert, Cyriel M. A. Pennartz,
Philippe Ryvlin, Alain Destexhe, Viktor K. Jirsa, Egidio D’Angelo, and
Jan G. Bjaalie. The Human Brain Project—Synergy between neuro-
science, computing, informatics, and brain-inspired technologies. PLoS
Biology, 17(7):e3000344, July 2019.

[99] Romain Brette, Michelle Rudolph, Ted Carnevale, Michael Hines, David
Beeman, James M. Bower, Markus Diesmann, Abigail Morrison, Philip H.
Goodman, Frederick C. Harris, Milind Zirpe, Thomas Natschläger, Dejan
Pecevski, Bard Ermentrout, Mikael Djurfeldt, Anders Lansner, Olivier
Rochel, Thierry Vieville, Eilif Muller, Andrew P. Davison, Sami El Bous-
tani, and Alain Destexhe. Simulation of networks of spiking neurons: A
review of tools and strategies. Journal of computational neuroscience,
23(3):349–398, July 2007.

[100] M. L. Hines and N. T. Carnevale. The NEURON simulation environment.
Neural Computation, 9(6):1179–1209, August 1997.

157

[101] Marc-Oliver Gewaltig and Markus Diesmann. NEST (NEural simulation
tool). Scholarpedia, 2(4):1430, 2007.

[102] Sergey L. Gratiy, Yazan N. Billeh, Kael Dai, Catalin Mitelut, David Feng,
Nathan W. Gouwens, Nicholas Cain, Christof Koch, Costas A. Anastas-
siou, and Anton Arkhipov. BioNet: A Python interface to NEURON for
modeling large-scale networks. PLoS ONE, 13(8):e0201630, August 2018.

[103] Egidio D’Angelo, Alberto Antonietti, Stefano Casali, Claudia Casellato,
Jesus A. Garrido, Niceto Rafael Luque, Lisa Mapelli, Stefano Masoli,
Alessandra Pedrocchi, Francesca Prestori, Martina Francesca Rizza, and
Eduardo Ros. Modeling the cerebellar microcircuit: New strategies for a
long-standing issue. Frontiers in Cellular Neuroscience, 10, July 2016.

[104] Stefano Casali, Elisa Marenzi, Chaitanya Medini, Claudia Casellato, and
Egidio DAngelo. Reconstruction and simulation of a scaffold model of the
cerebellar network. 13, May 2019.

[105] Stefano Casali, Marialuisa Tognolina, Daniela Gandolfi, Jonathan
Mapelli, and Egidio D’Angelo. Cellular-resolution mapping uncovers spa-
tial adaptive filtering at the rat cerebellum input stage. Communications
biology, 3(1), October 2020.

[106] Stefano Masoli, Marialuisa Tognolina, Umberto Laforenza, Francesco
Moccia, and Egidio D’Angelo. Parameter tuning differentiates granule
cell subtypes enriching transmission properties at the cerebellum input
stage. Communications biology, 3(1), May 2020.

[107] Martina Francesca Rizza, Francesca Locatelli, Stefano Masoli, Diana
Sánchez-Ponce, Alberto Muñoz, Francesca Prestori, and Egidio D’Angelo.
Stellate cell computational modeling predicts signal filtering in the molec-
ular layer circuit of cerebellum. Scientific reports, 11(1), February 2021.

[108] Stefano Masoli, Sergio Solinas, and Egidio DAngelo. Action potential
processing in a detailed Purkinje cell model reveals a critical role for axonal
compartmentalization. Frontiers in Cellular Neuroscience, 9, February
2015.

[109] L. Roggeri, B. Rivieccio, P. Rossi, and E. DAngelo. Tactile stimulation
evokes long-term synaptic plasticity in the granular layer of cerebellum.
Journal of Neuroscience, 28(25):6354–6359, June 2008.

[110] Ede A. Rancz, Taro Ishikawa, Ian Duguid, Paul Chadderton, Séverine

158

Mahon, and Michael Häusser. High-fidelity transmission of sensory infor-
mation by single cerebellar mossy fibre boutons. Nature, 450(7173):1245–
1248, December 2007.

[111] K. B. Ramakrishnan, Kai Voges, Licia De Propris, Chris I. De Zeeuw,
and Egidio D’Angelo. Tactile stimulation evokes long-lasting potentiation
of purkinje cell discharge in vivo. Frontiers in Cellular Neuroscience, 10,
February 2016.

[112] Fahad Sultan and James M. Bower. Quantitative Golgi study of the rat
cerebellar molecular layer interneurons using principal component analy-
sis. Journal of Comparative Neurology, 393(3):353–373, April 1998.

[113] Fahad Sultan. Distribution of mossy fibre rosettes in the cerebellum of
cat and mice: Evidence for a parasagittal organization at the single fibre
level. European Journal of Neuroscience, 13(11):2123–2130, June 2001.

[114] Guy Billings, Eugenio Piasini, Andrea Lőrincz, Zoltan Nusser, and R. An-
gus Silver. Network structure within the cerebellar input layer enables
lossless sparse encoding. Neuron, 83(4):960–974, August 2014.

[115] Catriona M. Houston, Efthymia Diamanti, Maria Diamantaki, Elena Kut-
sarova, Anna Cook, Fahad Sultan, and Stephen G. Brickley. Exploring
the significance of morphological diversity for cerebellar granule cell ex-
citability. Scientific reports, 7(1), April 2017.

[116] József Hámori, Robert L. Jakab, and József Takács. Morphogenetic plas-
ticity of neuronal elements in cerebellar glomeruli during deafferentation-
induced synaptic reorganization. Journal of Neural Transplantation and
Plasticity, 6(1):11–20, 1997.

[117] Sawako Tabuchi, Jesse I. Gilmer, Karen Purba, and Abigail L. Person.
Pathway-specific drive of cerebellar golgi cells reveals integrative rules of
cortical inhibition. Journal of Neuroscience, 39(7):1169–1181, December
2018.

[118] E. Cesana, K. Pietrajtis, C. Bidoret, P. Isope, E. DAngelo, S. Dieudonne,
and L. Forti. Granule cell ascending axon excitatory synapses onto golgi
cells implement a potent feedback circuit in the cerebellar granular layer.
Journal of Neuroscience, 33(30):12430–12446, July 2013.

[119] Court Hull andWade G. Regehr. Identification of an inhibitory circuit that
regulates cerebellar golgi cell activity. Neuron, 73(1):149–158, January

159

2012.

[120] Miklos Szoboszlay, Andrea Lőrincz, Frederic Lanore, Koen Vervaeke,
R. Angus Silver, and Zoltan Nusser. Functional properties of dendritic
gap junctions in cerebellar golgi cells. Neuron, 90(5):1043–1056, June
2016.

[121] Stefano Masoli and Egidio D’Angelo. Synaptic activation of a detailed
purkinje cell model predicts voltage-dependent control of burst-pause
responses in active dendrites. Frontiers in Cellular Neuroscience, 11,
September 2017.

[122] Eriola Hoxha, Filippo Tempia, Pellegrino Lippiello, and Maria Concetta
Miniaci. Modulation, plasticity and pathophysiology of the parallel fiber-
purkinje cell synapse. Frontiers in Synaptic Neuroscience, 8, November
2016.

[123] Joy T. Walter and Kamran Khodakhah. The linear computational algo-
rithm of cerebellar purkinje cells. Journal of Neuroscience, 26(50):12861–
12872, December 2006.

[124] Satoru Kondo and Alain Marty. Synaptic currents at individual connec-
tions among stellate cells in rat cerebellar slices. The Journal of Physiol-
ogy, 509(1):221–232, May 1998.

[125] Fabrice Ango, Caizhi Wu, Johannes J. Van der Want, Priscilla Wu, Melitta
Schachner, and Z. Josh Huang. Bergmann Glia and the Recognition
Molecule CHL1 Organize GABAergic Axons and Direct Innervation of
Purkinje Cell Dendrites. PLoS Biology, 6(4):e103, April 2008.

[126] Antonin Blot and Boris Barbour. Ultra-rapid axon-axon ephaptic inhi-
bition of cerebellar Purkinje cells by the pinceau. Nature neuroscience,
17(2):289–295, January 2014.

[127] Christian D. Wilms and Michael Häusser. Reading out a spatiotempo-
ral population code by imaging neighbouring parallel fibre axons in vivo.
Nature communications, 6(1), March 2015.

[128] Sergio Solinas. Fast-reset of pacemaking and theta-frequency resonance
patterns in cerebellar golgi cells: Simulations of their impact in vivo.
Frontiers in Cellular Neuroscience, 1, 2007.

[129] Lia Forti Elisabetta Cesana, Jonathan Mapelli, and Egidio DAngelo. Ionic

160

mechanisms of autorhythmic firing in rat cerebellar Golgi cells. The Jour-
nal of Physiology, 574(3):711–729, July 2006.

[130] Marife Arancillo, Joshua J. White, Tao Lin, Trace L. Stay, and Roy V.
Sillitoe. In vivo analysis of Purkinje cell firing properties during postnatal
mouse development. Journal of Neurophysiology, 113(2):578–591, January
2015.

[131] Jinsook Kim and George J. Augustine. Molecular layer interneurons: Key
elements of cerebellar network computation and behavior. Neuroscience,
462:22–35, May 2021.

[132] Dan-Anders Jirenhed, Fredrik Bengtsson, and Henrik Jörntell. Parallel
fiber and climbing fiber responses in rat cerebellar cortical neurons in
vivo. Frontiers in Systems Neuroscience, 7, 2013.

[133] Neal H. Barmack and Vadim Yakhnitsa. Functions of interneurons in
mouse cerebellum. Journal of Neuroscience, 28(5):1140–1152, January
2008.

[134] Mitra J. Hartmann and James M. Bower. Oscillatory activity in the
cerebellar hemispheres of unrestrained rats. Journal of Neurophysiology,
80(3):1598–1604, September 1998.

[135] Guillaume P. Dugué, Nicolas Brunel, Vincent Hakim, Eric Schwartz,
Mireille Chat, Maxime Lévesque, Richard Courtemanche, Clément Léna,
and Stéphane Dieudonné. Electrical coupling mediates tunable low-
frequency oscillations and resonance in the cerebellar golgi cell network.
Neuron, 61(1):126–139, January 2009.

[136] Ingrid van Welie, Arnd Roth, Sara S.N. Ho, Shoji Komai, and Michael
Häusser. Conditional spike transmission mediated by electrical coupling
ensures millisecond precision-correlated activity among interneurons in
vivo. Neuron, 90(4):810–823, May 2016.

[137] R Maex and E De Schutter. An optimal connection radius for long-range
synchronization. In 1999 Ninth International Conference on Artificial
Neural Networks ICANN 99.(Conf. Publ. No. 470), volume 2, pages 557–
562. IET, 1999.

[138] E DAngelo, G De Filippi, P Rossi, and V Taglietti. Synaptic excitation
of individual rat cerebellar granule cells in situ: Evidence for the role of
NMDA receptors. The Journal of Physiology, 484(2):397–413, April 1995.

161

[139] Shyam Diwakar, Paola Lombardo, Sergio Solinas, Giovanni Naldi, and
Egidio D’Angelo. Local Field Potential Modeling Predicts Dense Activa-
tion in Cerebellar Granule Cells Clusters under LTP and LTD Control.
PLoS ONE, 6(7):e21928, July 2011.

[140] Paul Chadderton, Troy W. Margrie, and Michael Häusser. Integration
of quanta in cerebellar granule cells during sensory processing. Nature,
428(6985):856–860, April 2004.

[141] Alexander Arenz, R. Angus Silver, Andreas T. Schaefer, and Troy W.
Margrie. The Contribution of Single Synapses to Sensory Representation
in Vivo. Science (New York, N.Y.), 321(5891):977–980, August 2008.

[142] Kate Powell, Alexandre Mathy, Ian Duguid, and Michael Häusser. Synap-
tic representation of locomotion in single cerebellar granule cells. eLife, 4,
June 2015.

[143] Taro Ishikawa, Misa Shimuta, and Michael Häusser. Multimodal sensory
integration in single cerebellar granule cells in vivo. eLife, 4, December
2015.

[144] B. P. Vos, A. Volny-Luraghi, and E. De Schutter. Cerebellar Golgi cells
in the rat: Receptive fields and timing of responses to facial stimulation.
The European Journal of Neuroscience, 11(8):2621–2634, August 1999.

[145] Sergio M. G. Solinas, Reinoud Maex, and Erik Schutter. Dendritic am-
plification of inhibitory postsynaptic potentials in a model Purkinje cell.
European Journal of Neuroscience, 23(5):1207–1218, March 2006.

[146] Tahl Holtzman, Thimali Rajapaksa, Abteen Mostofi, and Steve A. Ed-
gley. Different responses of rat cerebellar Purkinje cells and Golgi cells
evoked by widespread convergent sensory inputs. The Journal of Physi-
ology, 574(2):491–507, July 2006.

[147] David J. Herzfeld, Yoshiko Kojima, Robijanto Soetedjo, and Reza Shad-
mehr. Encoding of action by the Purkinje cells of the cerebellum. Nature,
526(7573):439–442, October 2015.

[148] Stefano Masoli, Martina F. Rizza, Martina Sgritta, Werner Van Geit, Felix
Schürmann, and Egidio DAngelo. Single neuron optimization as a basis
for accurate biophysical modeling: The case of cerebellar granule cells.
Frontiers in Cellular Neuroscience, 11, March 2017.

162

[149] J. M. Bower and D. C. Woolston. Congruence of spatial organization of
tactile projections to granule cell and Purkinje cell layers of cerebellar
hemispheres of the albino rat: Vertical organization of cerebellar cortex.
Journal of Neurophysiology, 49(3):745–766, March 1983.

[150] Peer Wulff, Martijn Schonewille, Massimiliano Renzi, Laura Viltono,
Marco Sassoè-Pognetto, Aleksandra Badura, Zhenyu Gao, Freek E Hoe-
beek, Stijn van Dorp, William Wisden, Mark Farrant, and Chris I De
Zeeuw. Synaptic inhibition of Purkinje cells mediates consolidation of
vestibulo-cerebellar motor learning. Nature neuroscience, 12(8):1042–
1049, July 2009.

[151] Michiel M. ten Brinke, Henk-Jan Boele, Jochen K. Spanke, Jan-Willem
Potters, Katja Kornysheva, Peer Wulff, Anna C.H.G. IJpelaar, Sebasti-
aan K.E. Koekkoek, and Chris I. De Zeeuw. Evolving models of pavlovian
conditioning: Cerebellar cortical dynamics in awake behaving mice. Cell
Reports, 13(9):1977–1988, December 2015.

[152] Huo Lu, Angelica V. Esquivel, and James M. Bower. 3D electron micro-
scopic reconstruction of segments of rat cerebellar purkinje cell dendrites
receiving ascending and parallel fiber granule cell synaptic inputs. Journal
of Comparative Neurology, 514(6):583–594, June 2009.

[153] Girija Gundappa-Sulur, Erik De Schutter, and James M. Bower. As-
cending granule cell axon: An important component of cerebellar cortical
circuitry. Journal of Comparative Neurology, 408(4):580–596, June 1999.

[154] Henrik Jörntell, Fredrik Bengtsson, Martijn Schonewille, and Chris I. De
Zeeuw. Cerebellar molecular layer interneurons – computational prop-
erties and roles in learning. Trends in Neurosciences, 33(11):524–532,
November 2010.

[155] James M. Soha, Sugene Kim, James E. Crandall, and Michael W. Vogel.
Rapid growth of parallel fibers in the cerebella of normal andStaggerer
mutant mice. Journal of Comparative Neurology, 389(4):642–654, Decem-
ber 1997.

[156] Haibo Zhou, Kai Voges, Zhanmin Lin, Chiheng Ju, and Martijn
Schonewille. Differential Purkinje cell simple spike activity and paus-
ing behavior related to cerebellar modules. Journal of Neurophysiology,
113(7):2524–2536, April 2015.

[157] Marta Bisio, Alessandro Bosca, Valentina Pasquale, Luca Berdondini, and
Michela Chiappalone. Emergence of Bursting Activity in Connected Neu-

163

ronal Sub-Populations. PLoS ONE, 9(9):e107400, September 2014.

[158] Abigail L. Person and Indira M. Raman. Synchrony and neural coding in
cerebellar circuits. Front. Neural Circuits, 6, 2012.

[159] Javier F. Medina and Michael D. Mauk. Computer simulation of cerebellar
information processing. Nature neuroscience, 3(S11):1205–1211, Novem-
ber 2000.

[160] Alice Geminiani, Alessandra Pedrocchi, Egidio D’Angelo, and Claudia
Casellato. Response dynamics in an olivocerebellar spiking neural network
with non-linear neuron properties. 13, October 2019.

[161] Michael W. Reimann, James G. King, Eilif B. Muller, Srikanth Ra-
maswamy, and Henry Markram. An algorithm to predict the connectome
of neural microcircuits. 9, October 2015.

[162] Jonathan Mapelli, Daniela Gandolfi, and Egidio DAngelo. Combinato-
rial responses controlled by synaptic inhibition in the cerebellum granular
layer. Journal of Neurophysiology, 103(1):250–261, January 2010.

[163] Jonathan Mapelli, Daniela Gandolfi, and Egidio D’Angelo. High-Pass Fil-
tering and Dynamic Gain Regulation Enhance Vertical Bursts Transmis-
sion along the Mossy Fiber Pathway of Cerebellum. Frontiers in Cellular
Neuroscience, 4:14, May 2010.

[164] Richard Apps and Richard Hawkes. Cerebellar cortical organization:
A one-map hypothesis. Nature reviews. Neuroscience, 10(9):670–681,
September 2009.

[165] Richard Apps, Richard Hawkes, Sho Aoki, Fredrik Bengtsson, Amanda M.
Brown, Gang Chen, Timothy J. Ebner, Philippe Isope, Henrik Jörntell,
Elizabeth P. Lackey, Charlotte Lawrenson, Bridget Lumb, Martijn
Schonewille, Roy V. Sillitoe, Ludovic Spaeth, Izumi Sugihara, Antoine
Valera, Jan Voogd, Douglas R. Wylie, and Tom J. H. Ruigrok. Cere-
bellar modules and their role as operational cerebellar processing units.
Cerebellum (London, England), 17(5):654–682, June 2018.

[166] Chris I. De Zeeuw. Bidirectional learning in upbound and downbound
microzones of the cerebellum. Nature reviews. Neuroscience, 22(2):92–
110, November 2020.

[167] Krishnan Padmanabhan and Nathaniel N Urban. Intrinsic biophysical

164

diversity decorrelates neuronal firing while increasing information content.
Nature neuroscience, 13(10):1276–1282, August 2010.

[168] Alice Geminiani, Claudia Casellato, Francesca Locatelli, Francesca
Prestori, Alessandra Pedrocchi, and Egidio DAngelo. Complex dynamics
in simplified neuronal models: Reproducing golgi cell electroresponsive-
ness. 12, December 2018.

[169] Alice Geminiani, Claudia Casellato, Egidio D’Angelo, and Alessandra Pe-
drocchi. Complex electroresponsive dynamics in olivocerebellar neurons
represented with extended-generalized leaky integrate and fire models. 13,
June 2019.

[170] Miaozhen Huang, Tom J. de Koning, Marina A.J. Tijssen, and Dineke S.
Verbeek. Cross-disease analysis of depression, ataxia and dystonia high-
lights a role for synaptic plasticity and the cerebellum in the pathophys-
iology of these comorbid diseases. Biochimica et Biophysica Acta (BBA)
- Molecular Basis of Disease, 1867(1):165976, January 2021.

[171] Saša Peter, Michiel M. ten Brinke, Jeffrey Stedehouder, Claudia M.
Reinelt, Bin Wu, Haibo Zhou, Kuikui Zhou, Henk-Jan Boele, Steven A.
Kushner, Min Goo Lee, Michael J. Schmeisser, Tobias M. Boeckers, Mar-
tijn Schonewille, Freek E. Hoebeek, and Chris I. De Zeeuw. Dysfunctional
cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-
deficient mice. Nature Communications, 7:12627, September 2016.

[172] Lennart Paul Liong Landsmeer. Influence of Local Dendritic Organization
on Synchronization in the Inferior Olivary Nucleus. PhD thesis, TU Delft,
September 2022.

[173] Anila M. D’Mello and Catherine J. Stoodley. Cerebro-cerebellar circuits
in autism spectrum disorder. Frontiers in Neuroscience, 9, 2015.

[174] Joanna Giza, Michael J. Urbanski, Francesca Prestori, Bhaswati Bandy-
opadhyay, Annie Yam, Victor Friedrich, Kevin Kelley, Egidio D’Angelo,
and Mitchell Goldfarb. Behavioral and Cerebellar Transmission Deficits
in Mice Lacking the Autism-Linked Gene Islet Brain-2. Journal of Neu-
roscience, 30(44):14805–14816, November 2010.

[175] Teresa Soda, Lisa Mapelli, Francesca Locatelli, Laura Botta, Mitchell
Goldfarb, Francesca Prestori, and Egidio D’Angelo. Hyperexcitability and
Hyperplasticity Disrupt Cerebellar Signal Transfer in the IB2 KO Mouse
Model of Autism. The Journal of Neuroscience: The Official Journal of
the Society for Neuroscience, 39(13):2383–2397, March 2019.

165

[176] Kyoung-Doo Hwang, Sang Jeong Kim, and Yong-Seok Lee. Cerebellar
circuits for classical fear conditioning. Frontiers in Cellular Neuroscience,
16, March 2022.

[177] Mario Manto, Donna Gruol, Jeremy Schmahmann, Noriyuki Koibuchi,
and Roy Sillitoe, editors. Handbook of the Cerebellum and Cerebellar
Disorders. Springer International Publishing, 2020.

[178] Michael Adamaszek, Mario Manto, and Dennis J. L. G. Schutter, editors.
The Emotional Cerebellum. Springer International Publishing, 2022.

[179] Dimitri Rodarie, Csaba Verasztó, Yann Roussel, Michael Reimann, Daniel
Keller, Srikanth Ramaswamy, Henry Markram, and Marc-Oliver Gewaltig.
A method to estimate the cellular composition of the mouse brain from
heterogeneous datasets. PLOS Computational Biology, 18(12):e1010739,
December 2022.

[180] Gabriella Sekerková, Masahiko Watanabe, Marco Martina, and Enrico
Mugnaini. Differential distribution of phospholipase C beta isoforms and
diaglycerol kinase-beta in rodents cerebella corroborates the division of
unipolar brush cells into two major subtypes. Brain Structure and Func-
tion, 219(2):719–749, March 2013.

[181] Stéphane Dieudonné and Andréa Dumoulin. Serotonin-driven long-range
inhibitory connections in the cerebellar cortex. The Journal of Neuro-
science, 20(5):1837–1848, March 2000.

[182] Tomas Osorno, Stephanie Rudolph, Tri Nguyen, Velina Kozareva,
Naeem M. Nadaf, Aliya Norton, Evan Z. Macosko, Wei-Chung Allen Lee,
and Wade G. Regehr. Candelabrum cells are ubiquitous cerebellar cor-
tex interneurons with specialized circuit properties. Nature Neuroscience,
25(6):702–713, May 2022.

[183] Beth M. Turner, Sergio Paradiso, Cherie L. Marvel, Ronald Pierson, Laura
L. Boles Ponto, Richard D. Hichwa, and Robert G. Robinson. The cerebel-
lum and emotional experience. Neuropsychologia, 45(6):1331–1341, Jan-
uary 2007.

[184] Iris Lange, Zuzana Kasanova, Liesbet Goossens, Nicole Leibold, Chris
I. De Zeeuw, Therese van Amelsvoort, and Koen Schruers. The anatomy of
fear learning in the cerebellum: A systematic meta-analysis. Neuroscience
& Biobehavioral Reviews, 59:83–91, December 2015.

166

[185] Pei Wern Chin and George J. Augustine. The cerebellum and anxiety.
Frontiers in Cellular Neuroscience, 17, 2023.

[186] Malte S. Depping, Mike M. Schmitgen, Katharina M. Kubera, and
Robert C. Wolf. Cerebellar Contributions to Major Depression. Fron-
tiers in Psychiatry, 9, 2018.

[187] S. Hossein Fatemi, Kimberly A. Aldinger, Paul Ashwood, Margaret L.
Bauman, Charles D. Blaha, Gene J. Blatt, Abha Chauhan, Ved Chauhan,
Stephen R. Dager, Price E. Dickson, Annette M. Estes, Dan Goldowitz,
Detlef H. Heck, Thomas L. Kemper, Bryan H. King, Loren A. Martin,
Kathleen J. Millen, Guy Mittleman, Matthew W. Mosconi, Antonio M.
Persico, John A. Sweeney, Sara J. Webb, and John P. Welsh. Consensus
paper: Pathological role of the cerebellum in autism. The Cerebellum,
11(3):777–807, February 2012.

[188] Junxiao Zheng, Qinzhu Yang, Nikos Makris, Kaibin Huang, Jianwen
Liang, Chenfei Ye, Xiaxia Yu, Mu Tian, Ting Ma, Tian Mou, Wenlong
Guo, Ron Kikinis, and Yi Gao. Three-Dimensional Digital Reconstruction
of the Cerebellar Cortex: Lobule Thickness, Surface Area Measurements,
and Layer Architecture. The Cerebellum, 22(2):249–260, April 2023.

[189] Daniela Gandolfi, Jonathan Mapelli, Sergio Solinas, Robin De Schep-
per, Alice Geminiani, Claudia Casellato, Egidio D’Angelo, and Michele
Migliore. A realistic morpho-anatomical connection strategy for modelling
full-scale point-neuron microcircuits. Scientific Reports, 12(1):13864, Au-
gust 2022.

[190] Csaba Erö, Marc-Oliver Gewaltig, Daniel Keller, and Henry Markram. A
Cell Atlas for the Mouse Brain. Frontiers in Neuroinformatics, 12, 2018.

[191] Carolina Tecuatl, Diek W. Wheeler, Nate Sutton, and Giorgio A. Ascoli.
Comprehensive Estimates of Potential Synaptic Connections in Local Cir-
cuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap.
Journal of Neuroscience, 41(8):1665–1683, February 2021.

[192] Kenneth A. Pelkey, Ramesh Chittajallu, Michael T. Craig, Ludovic Tri-
coire, Jason C. Wester, and Chris J. McBain. Hippocampal GABAergic
Inhibitory Interneurons. Physiological Reviews, 97(4):1619–1747, October
2017.

[193] Masood A. Akram, Sumit Nanda, Patricia Maraver, Rubén Armañanzas,
and Giorgio A. Ascoli. An open repository for single-cell reconstructions
of the brain forest. Scientific Data, 5(1):180006, February 2018.

167

[194] Linda Madisen, Theresa A. Zwingman, Susan M. Sunkin, Seung Wook
Oh, Hatim A. Zariwala, Hong Gu, Lydia L. Ng, Richard D. Palmiter,
Michael J. Hawrylycz, Allan R. Jones, Ed S. Lein, and Hongkui Zeng.
A robust and high-throughput Cre reporting and characterization system
for the whole mouse brain. Nature Neuroscience, 13(1):133–140, January
2010.

[195] Johan Winnubst, Erhan Bas, Tiago A. Ferreira, Zhuhao Wu, Michael N.
Economo, Patrick Edson, Ben J. Arthur, Christopher Bruns, Konrad Ro-
kicki, David Schauder, Donald J. Olbris, Sean D. Murphy, David G. Ack-
erman, Cameron Arshadi, Perry Baldwin, Regina Blake, Ahmad Elsayed,
Mashtura Hasan, Daniel Ramirez, Bruno Dos Santos, Monet Weldon, Am-
ina Zafar, Joshua T. Dudman, Charles R. Gerfen, Adam W. Hantman,
Wyatt Korff, Scott M. Sternson, Nelson Spruston, Karel Svoboda, and
Jayaram Chandrashekar. Reconstruction of 1,000 Projection Neurons Re-
veals New Cell Types and Organization of Long-Range Connectivity in
the Mouse Brain. Cell, 179(1):268–281.e13, September 2019.

[196] R. Orman, H. Von Gizycki, W.w. Lytton, and M. Stewart. Local axon
collaterals of area CA1 support spread of epileptiform discharges within
CA1, but propagation is unidirectional. Hippocampus, 18(10):1021–1033,
2008.

[197] Vassilis Cutsuridis, Stuart Cobb, and Bruce P. Graham. Encoding and
retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus,
20(3):423–446, 2010.

[198] Calvin J. Schneider, Hermann Cuntz, and Ivan Soltesz. Linking Macro-
scopic with Microscopic Neuroanatomy Using Synthetic Neuronal Popu-
lations. PLOS Computational Biology, 10(10):e1003921, October 2014.

168

	Introduction
	Background and Motivation
	The Cerebellum
	Neuroanatomy
	Function
	Microcircuit organization
	History
	Contemporary research

	Bottom-up modeling
	What is bottom-up modelling?

	State of the Art
	Definition of a Multiscale Brain Modeling Framework
	Existing Frameworks in Multiscale Modeling
	Limitations of Current Frameworks

	Research Problem Statement

	The Brain Scaffold Builder: Design and Architecture
	Requirements and design goals
	Overview of the Brain Scaffold Builder Framework
	Overview of the workflow

	The Configuration and Component System
	Node class decorators
	Configuration descriptor factories

	The Scaffold
	Core Component Types
	Main component assemblies
	Storage objects
	Configuration nodes

	The Topology System
	Layout
	Partition interface
	Brain atlas integration

	The Data Generation System
	Parallel scheduling
	Data dependencies & pipelines
	Placement
	Connectivity
	Data storage

	Morphologies
	Utility library

	The Plugin System
	Plugin categories
	Listeners
	Framework options
	Auditing rules

	Methodology: Modelling Workflow using the Brain Scaffold Builder
	Project setup
	Data sourcing and preprocessing
	Declare network topology
	Determine cell types, placement and connectivity strategies
	Distribute additional properties

	Generate model samples
	Describe cell and connection models
	Multicompartmental workflow
	Point neuron workflow

	Run simulations, validate, iterate

	Cerebellar Cortex Microcircuit Model
	Abstract
	Introduction
	Methods
	Results
	Neuron placement
	Neuron connectivity
	Cerebellar network simulations
	Resting state activity of the cerebellar network
	Impulsive response of the cerebellar network
	GoC responses
	PC and MLI responses
	Modification of model parameters to simulate neural correlates of behavior
	Long-term plasticity at pf-PC synapses

	Discussion
	A model-based ground-truth for the cerebellar cortical network
	Cerebellar network model validation and predictive capacity
	Model predictions of neural correlates of behavior
	Comparison with previous cerebellar models
	Limitations and future challenges

	Applications of the cerebellar cortex model and BSB framework
	Olivocerebellar Microcomplex Circuit
	IO model reconstruction
	Deep Cerebellar Nuclei (DCN)
	Integrative connection types
	Role of the framework
	Future work

	Pathological Cerebellar Cortex Microcircuits
	Autism spectrum disorders
	Emotional networks and disorders
	Role of the framework

	From a Mouse to Human Cerebellar Cortex Model
	Role of the framework

	Hippocampus
	Abstract
	Methods
	Results
	Role of the framework

	Thalamic nuclei
	Methods
	Role of the framework

	Arbor simulator benchmarks
	Abstract
	Role of the framework

	Discussion and Future Work
	Critical Analysis of the Brain Scaffold Builder: Advantages, limitations, and future works
	Scientific findings

	Supplementary Material
	Cerebellar cortex model
	Mouse configuration file
	The Role of the Cerebellum in Oculomotor Control

