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ABSTRACT 

The doctoral research project explores the complex soil hydrological dynamics along 

the irrigation cascade in Lombardy's Ticino Valley, aiming to model hydrological processes 

within an agricultural landscape. This PhD thesis is part of the CE4WE project (Circular 

Economy for Water and Energy), funded by the Lombardy Region, dedicated to advancing 

sustainable water cycle management through the development of technologies, knowledge, 

and specific skills. 

The application of SWAT (Soil Water Assessment Tool), a basin-scale, physically 

based model that simulates water dynamics in the soil, is a central focus of this project. SWAT 

was chosen because it allows to incorporate agricultural management practices such as 

irrigation, essential for the intensively used agricultural study area. SWAT's water balance 

calculations are based on various input data, including topography, land use, soil types, and 

climate data. The topographic analysis are based on a "hybrid" Digital Elevation Model 

(DEM). Moreover, land use and soil information from DUSAF 2018 and ERSAF pedologic 

maps have been used respectively, as well as meteorological data from ARPA Lombardia 

stations. Subsequently, sub-basins were defined for the SWAT model in the study area that are 

characterized by artificial drainage channels. The flat terrain emphasizes vertical connectivity, 

while the absence of natural watercourses and the dense network of irrigation channels pose 

unique challenges. Once the SWAT model was set-up, simulations were conducted from 2004 

to 2022, on a monthly scale. SWAT was calibrated using satellite actual evapotranspiration 

data (MOD16) through SWAT-CUP software.  

The model performance was assessed using Kling-Gupta Efficiency (KGE). A general 

KGE of 0.59 was obtained, implying its adeptness in simulating the intricate dynamics of the 

study area. However, for some HRUs we reach a KGE of more than 0.85. Besides the general 

good simulation results there it's important to note that both the uncalibrated and calibrated 

representations of actual evapotranspiration have a tendency to underestimation during winter 

periods. This discrepancy may be attributed to the resolution differences between 

Hydrological Response Units (HRUs) and MOD16 data, revealing a potential limitation in 

accurately representing seasonal variations.  

After the validation phase, my analyses focused on climatic changes, over the past 18 

years. I observed a significant increase in rainless days. Furthermore, the study explored 

variations in temperature (T) and actual evapotranspiration (AET) highlighting an increase, 
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and a consequential decrease in soil water content (SWC), impacting water resource 

availability and crop productivity. This also caused an increased water stress for crops and the 

ecosystem, highlighting the direct impact of adverse climate conditions on soil hydrology and 

agriculture. These results contribute significantly to the understanding of regional 

hydrological processes, as it specifically addresses recent droughts in the Lombardy lowlands, 

ensuring that the system's stability is maintained. 

Furthermore, the project conducted an assessment of potential future scenarios 

involving climate change and sustainable agricultural management.  
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1 INTRODUCTION AND MOTIVATION 

This thesis was conducted as part of the CE4WE project - Circular economy for Water and 

Energy, funded by Hub Research and Innovation of the Lombardy Region. The main purpose 

of the project is to develop innovative technologies, knowledge, and skills specifically 

addressing the sustainable management of the water cycle, identifying new analytical 

procedures, and creating new models for a capillary mapping of pollutants by applying the 

concept of circular economy to the entire water cycle. This PhD thesis contributes to the aims 

and objectives of CE4WE Project by providing a numeric assessment approach to quantify 

the hydrological dynamics of the soil-water-atmosphere interface considering the specific 

landuse pattern with intensive irrigation agriculture.  

 

1.1 State of the art 
The intricate relationship between soil and water forms the foundation of our ecosystems, 

influencing from agricultural productivity to the health of our natural landscapes. It is crucial 

to understand this relationship, particularly in regions where irrigation plays a significant role 

in maintaining the balance of these ecosystems. However, the increasing pressure on local, 

national, and regional water resources is observed, which are essential for irrigation, energy 

production, industrial, domestic, and environmental applications. In Europe, both the quality 

and quantity of water are degrading, with a reduction in the available water level, leading to 

adverse impacts on the environment. Additionally, climate changes introduce a new layer of 

uncertainty regarding water availability (Abbaspour et al., 2015). In particular, water is a 

prerequisite for agriculture, which is increasingly affected by climate change, a global 

phenomenon that affects the Earth system in various ways, including altering hydrological and 

hydraulic processes (Bian et al., 2021). Moreover, water resources are under increasing 

pressure, not only for climate change but are also by factors such as population growth (Maja 

and Ayano, 2021), industrialization, the need for increased food production (Pereira, 2017) 

and, as a consequence, land use changes (Cheng et al., 2022).  

These challenges underscore the extreme need to have a conscious management of the water 

resource, that is analysing the impact of different land use, agriculture practices and climate 

change on the hydrological cycle (Nkwasa et al., 2022). The first step in this direction is the 

development of tools to understand and assess water dynamics. Hydrological models address 

this need by simulating various scenarios, past and future, becoming a crucial support in water 
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resource management. Indeed, to understand and predict the effects of climate change on the 

water cycle, hydrological models has been developed globally in recent years, playing a 

central role in studying hydrological processes simulating the quantity and the quality of the 

water resources and assessing the impact of climate change (Devi et al., 2015; Kour et al., 

2016). Numerical hydrogeological models are now an indispensable tool in hydrogeological 

studies. Through modelling, it is possible to parameterize water circulation, as well as make 

predictions about the system's behaviour in response to natural and anthropogenic stresses. 

These models provide a quantitative understanding of the repercussions of climate change on 

hydrological regimes, addressing adverse consequences like water scarcity and drought (Kour 

et al., 2016). Among these models, SWAT (Soil and Water Assessment Tool) is the most widely 

used hydrological model in the world (Gassman et al., 2014), being applied for different 

purposes such as: i) the quantification of water resources or their appropriate management 

(Abbaspour et al., 2015; Karim C. Abbaspour et al., 2007; Cuceloglu et al., 2017; Jayakrishnan 

et al., 2005; Schuol et al., 2008), ii) the assessment of water quality (Abbaspour et al., 2015; 

Karim C. Abbaspour et al., 2007), or iii) analysis of impacts of landuse and climate change on 

the hydrology (Abbaszadeh et al., 2023; Krysanova and Srinivasan, 2015; Narsimlu et al., 

2013).  

SWAT needs specific parameters such as topography, soil and landuse maps and climate data 

and subdivides the basin into sub-basins, which in turn are split up into Hydrological Response 

Units (HRUs), representing areas with homogenous topography, soil and landuse. The 

advancement in the field of hydrology was significantly marked by the conceptualization and 

implementation of Hydrological Response Units. This approach has provided a more 

understanding of soil characteristics and their three-dimensional spatial distribution. This has 

augmented ability to model and predict hydrological processes with increased accuracy and 

reliability (Flugel, 1995). 

However, applying hydrological models, including SWAT, in lowland areas presents some 

challenges (Sun et al., 2020), such as availability and data quality and the complexity of urban 

landforms. Indeed, lowland areas cover a large part of the most densely populated regions in 

the world and, therefore, the appropriate hydrological dynamics in these areas are of great 

social and economic value (Brauer et al., 2013). The general characteristics of lowland areas 

are related to a flat topography and low hydraulic gradients (Lam et al., 2010). Moreover, 

these areas are often heavily modified in terms of the drainage systems due to human activity. 
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Therefore, it is quite difficult to derive first order watersheds (Donmez et al., 2020) and to 

assess their hydrological dynamics. Moreover, as stated by Becker et al. (2019) the calibration 

of a hydrological model in a flat, complex agricultural environment is a quite difficult task 

too.  

Therefore, instead of the classical calibration using discharges, alternative procedures must be 

evaluated. Remote sensing technologies provide large-scale spatially distributed observations, 

giving new possibilities in calibrating and validating hydrologic models (Odusanya et al., 

2019). As shown by (Parajuli et al., 2018) satellite based products were successful used to 

calibrate spatially distributed hydrological models, in particular, if human activities such as 

irrigation interfere with the natural system or if we have a general lack of observed information 

in terms of their spatio-temporal scales (Odusanya et al., 2019). This is the case of the unique 

region of the Ticino Lowland area in Lombardy. This area is a world-unique region 

characterized by springs (risorgive and fontanili) and a dense network of irrigation channel 

for agriculture. This cascade system has a profound impact on the region’s hydrology, that it 

has been relatively understudied in terms of water dynamics. This area, indeed, with the Ticino 

River that is the only natural drainage, is characterized by a unique agricultural context with 

a tradition getting back to the 11th century and being an example of sustainable water use 

(Ticino Irrigation Cascade), has never been assessed in a quantitative way using a physically 

based hydrological model.  

In this context, the conscious management of water resources and the efficient use of water in 

agriculture are key to addressing the challenges posed by climate change. Hydrological 

models, such as SWAT, play a significant role in the study of hydrological processes and in 

the analysis of the impact of climate change on the water cycle. Therefore, we need to develop 

innovative solutions to overcome these challenges and improve our ability to predict and 

manage the effects of climate change on water resources. 

 

1.2 Aims and objectives 

Considering the aforementioned factors, the focus of this doctoral thesis is to develop a 

hydrological model that accurately represents the soil hydrological dynamics of a micro-scale 

basin lowland area, in the Ticino Valley, within the Lombardy region of Italy. Subsequently 

the model is applied to assess the effects of climate change over the last decades.  
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In particular, the Ticino Valley, with its unique irrigation cascade, presents a complex and 

interesting case study for this research. Understanding the impacts of climate change requires 

before an in-depth study of the physical properties of the soil, the mechanics of the irrigation 

system, and the climatic conditions that influence both.  

To achieve the thesis objectives, the Soil & Water Assessment Tool (SWAT) model software 

(J.G. Arnold et al., 1998), a physical hydrological model operating at basin scale (Neitsch et 

al., 2011), was applied.  

Nevertheless, deriving the first-order watershed in a lowland area, which is intensively 

cultivated having an anthropogenic drainage system can be particularly challenging, as 

described above. Therefore, the initial project goal was to set up SWAT, primarily completed 

in the first year.  

The second year focused on model calibration. The missing information on water resources 

used for irrigation and the general characteristic of the lowland area makes it difficult to 

calibrate and validate the model in a traditional way using discharge as calibration parameter.  

In the third year of my PhD, the focus shifted to validating the model, employing actual 

evapotranspiration data (MOD16) as in the calibration process. Once calibrated and validate, 

analyses were conducted on both the model’s input climate data (precipitation and 

temperature) and some of its outputs (actual evapotranspiration and soil water content). This 

analysis aimed to examine how climate changes are influencing the hydrological properties of 

the study area.  

This investigation aims to assess innovative approaches to manage water resources in future. 

The final goal, indeed, is to provide a tool that can help to establish sustainable irrigation 

practices in the Ticino Valley and similar regions around the world. 

 

In the following chapters, the specifics of the research methodology, the findings, and 

discussion of their implications for the future of hydrology and irrigation management in 

Lombardy lowlands are presented.  
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2 STUDY AREA 

The study area (Figure 1) covers approximately 50 km² and is located about 15 km southwest 

of the city of Milan in Lombardy region, close to the boarder with the Piedmont region. The 

area covers parts of the left side the Ticino River Valley with elevation ranging between 76 m 

a.s.l. in the south-western part of the Ticino River to 127 m a.s.l. around the town of 

Abbiategrasso (Figure 2).  

The Ticino River, a tributary of the Po River, holds significant importance, acknowledged 

through its designation as a regional park in Italy and protected status by UNESCO. The lower 

floodplain is marked by intense agricultural practices and considerable anthropogenic 

influence. Despite this, numerous semi-natural areas persist in the region (Sconfietti et al., 

2018).  

The region is characterized by a humid subtropical climate (Cfa), following the Köppen 

climate classification (Kottek et al., 2006) with warm summers and cold winters and a mean 

temperature of 13°/year. The mean annual rainfall amount to 814 mm/year, measured at 

Vigevano SS494 Arpa Lombardia station (Figure 2), which is located close to Ticino River, in 

the middle part of the study area at an elevation of 94 m a.s.l.  

In particular, the study area is a sub-basin delimited by the “Naviglio di Bereguardo” to the 

east, “Fosso Morto” to the southeast, and the “Canale Scolmatore di Nord Ovest” to the 

northwest. 
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Figure 1: right site: location of the study area in Italy. Left: overview of study area, with its 

dominant land-use classes. 
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Figure 2: elevation of the study area and spatial distribution of the meteorological stations 

 

2.1 Geological and geomorphological setting  
The Ticino River is the only natural drainage of the area flowing towards the southeast. The 

area, in fact, is characterized by an artificial agricultural landscape, shaped by human activity, 

and constantly evolving.  

From a geomorphological point of view the study area is mainly flat, except for the river 

terraces, because of the erosive activity of the Ticino River. The area is defined as “low 

irrigated plain,” characterized by abundant surface water and springs (fontanili), widely 

utilized for agricultural purposes. 

Particularly, the area can be subdivided into three main terrace levels oriented in a parallel 

way to the Ticino River in the orographic left, while on the orographic right the terraces are 

less developed, and we find only one order.  

The Ticino River, which flows through the Po Valley, has over time created these series of 

river terraces, which consist of a flat surface and a terrace slope. These fluvial terraces are due 
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to phases of erosion and deposition that have alternated, leading to the genesis of alluvial 

terraces. The terrace escarpments are characterized by springs at their base.  

The study area falls within three CARG 1:100,000 maps, specifically in “Foglio 44 Novara”, 

“Foglio 45 Milano” and “Foglio 58 Mortara”. Generally, the area lies in an upper level, the 

“Livello fondamentale della Pianura” characterized by Pleistocene (würm) fluvioglacial 

deposits with sandy gravels. These deposits, with coarse grain sizes enable water to infiltrate 

and constitute a significant recharge zone for the aquifer. An intermediate level, characterized 

by terraced Holocene deposits, predominantly sandy-gravelly with a slight silty component. 

Finally, the recent and current fluvial deposits represent the youngest layer (Upper Holocene) 

in the Ticino valley, featuring predominantly sandy-gravelly composition with a minor silty 

content and modest thickness.  

Above these fluvial and fluvioglacial deposits soil developed with different depth according 

to the age of the terrace level, ranging from regosols in the lower part to luvisol and umbrisols 

in the upper part, according to World reference base for soil resources (1998), with 

predominantly sandy-loam texture. 

 

2.2 Hydrological setting 

From the hydrogeological point of view the area is dominated by a groundwater flow directed 

towards the Ticino River (Figure 3).  

This area represents the groundwater recharge zone corresponding to Holocene floodplains 

and Pleistocene fluvioglacial sediments, where the aquifer is uninterrupted by less permeable 

layers. These are the areas where infiltration from rainfall, snowmelt, and irrigation allows for 

the recharge of the shallow aquifer, which can then reach the deeper aquifers. 

As already mentioned, this part of the Ticino Valley is characterized by the presence of springs, 

classified as “risorgive” and “fontanili.” “Risorgive” are forming by groundwater naturally 

emerging due to changes in topography and permeability of sediments at the base of the terrace 

escarpments. Instead “fontanili”, refers to springs of lowland areas modified by human 

intervention (Baker et al., 2022; De Luca et al., 2013).   
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Figure 3: schematic representation of the geohydrological settings of the study area. The 

figure represents the different orders of terraces with the respective springs at their basis, and 

the drainage action of the Ticino River. 

 

Fontanili and risorgive are fed by groundwater: much of the rainwater, in fact, infiltrates into 

the permeable soils, while the rest of the precipitation is removed from system by 

evapotranspiration or superficial runoff. However, since the study area  is manly flat the 

contribution of the surface runoff is almost nil (Baker et al., 2022). In fact, the variation of the 

springs discharge is mainly due to the infiltration of water after periods of rain or irrigation 

(Balestrini et al., 2021).  

During the spring-summer period, actually, large quantities of water are distributed through a 

complex channel network to irrigate fields. So, water distributed for irrigation use is not only 

important for agriculture, but also contributes decisively to the recharge of the water table, 

which in turn helps to feed the springs of the different terrace base levels (see Figure 3). 

Moreover, the region is characterized by particular landuse and land management practices 

dating back to eleventh century with the construction of irrigation channels (De Luca et al., 

2013) and the reuse of water along the fluvial terrace cascade of the Ticino River. Thus, 

representing for centuries, a sustainable and effective reuse of irrigation water. 

Nowadays, the main crops, based on the DUSAF 6.0 land use map (Regione Lombardia, 2019) 

are maize and rice. Maize (with other simple agriculture fields such as wheat, sorghum, and 

barley) covers about 32% of the area, while rice makes up to 21% of the area. Moreover, about 
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the 18% of the study area is cover by woodland mainly concentrating on the lowermost terrace 

level. 

Both maize and rice require a high amount of irrigation water (Balestrini et al., 2021; Perego 

et al., 2014). The irrigation season of maize is from June to September (Lasagna et al., 2020), 

and is conducted typically as flow irrigation, while the rice fields, in general, are flooded from 

mid-April to early May and remain flooded until the end of August or September (Baker et 

al., 2022; Balestrini et al., 2021; Lasagna et al., 2020). In 2022 one of the hottest years of the 

century in the study area, the rice fields were flooded in late May until late August, with 

intermittent flooding. The large quantities of water used for rice cropping are affecting the 

recharge of the water table (Bove, 2021). In rice paddy areas, indeed, it was observed by 

Lasagna et al. (2020) that the main factor in changing the water level is the agricultural 

technique of rice cultivation.  

 

However, in recent years, climate change is strongly affecting water availability increasingly, 

in the study area. It is therefore necessary to progressively adopt specific plans for water 

scarcity situations, to prevent and mitigate the effects of any severe reduction in water resource 

availability and to protect agricultural production as much as possible. 
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3 MATERIAL AND METHODS 

 

3.1 SWAT model characteristics  

In this study the Soil and Water Assessment tool (SWAT) model software, developed by 

Arnold et al., 1998 was applied. This decision was made after conducting a comprehensive 

bibliographic review on various hydrological models. The SWAT model was chosen due to its 

ability to incorporate various management practice (e.g., irrigation and crop rotation) into its 

simulation, crucial for intensively used agricultural and irrigated areas.  

SWAT is an open-source hydrological model developed for the USDA Agricultural Research 

Services. SWAT model is a physically based, semi-distributed, and continuous-time 

hydrological model (Neitsch et al., 2011). It has been widely utilized in various hydrologic 

and environmental conditions worldwide (Donmez et al., 2020). The model operates at basin 

scale and was developed to assess and predict the impacts of land use/cover changes, climate 

variability and land management practices on watershed hydrology, sediment and chemical 

yields in a complex basin with variations of soil landuse and management conditions over a 

long period of time (Jeffrey G. Arnold et al., 1998; Neitsch et al., 2011). One of the advantages 

of the SWAT model is its ability to simulate human activity and agriculture practices, making 

it adaptable to new situations (Janjić and Tadić, 2023). Catchment areas lacking adequate soil 

data, rainfall, temperature, and runoff information pose challenges for the utilization of the 

SWAT model. Nevertheless, the model can estimate the relative effects of different 

management scenarios on water quality, sediment, and agricultural characteristics in the 

ungauged catchments (Janjić and Tadić, 2023).  

In the context of the intensively used agricultural and irrigated study area, the SWAT model 

proves to be particularly helpful.  

Specific input is required for the application of the SWAT model and the water balance 

calculous: i) the DEM for the delineation of the hydrographic network and sub-basins; ii) the 

land use map and soil map for delineating Hydrological Response Units (HRU); and finally, 

iii) daily climatic data (precipitation, maximum and minimum temperatures, average solar 

radiation, average wind speed, and average relative humidity) required for model creation and 

water balance (Douglas-Mankin et al., 2010).  

The hydrological cycle delineates the continuous exchange of water within the hydrosphere, 

involving the atmosphere, soil, surface waters, deep waters, and living organisms (Figure 4).  
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Figure 4: water balance, as working in SWAT (figure obtained from Neitsch et al., 2011). 

 

The hydrologic cycle simulated by SWAT is based on water balance equation (1), calculated 

for each HRU: 

 𝑆𝑊𝑡 =  𝑆𝑊0 +  ∑(𝑅𝑑𝑎𝑦 –  𝑄𝑠𝑢𝑟𝑓 –  𝐸𝑎 −  W𝑠𝑒𝑒𝑝 –  𝑄𝑔𝑤 

Equation 1: Water balance used in SWAT 

 

where SWt is the final soil water content (mm H2O), SW0 is the initial soil water content on 

day i (mm H2O), t is the time (days), Rday is the amount of precipitation on day i (mm H2O), 

Qsurf is the amount of surface runoff on day i (mm H2O), Ea is the amount of evapotranspiration 

on day i (mm H2O), wseep is the amount of water entering the vadose zone from the soil 
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profile on day i (mm H2O), and Qgw is the amount of return flow on day i (mm H2O) (Neitsch 

et al., 2011). 

In this way, SWAT simulated hydrological process include surface runoff, infiltration, and 

canopy storage. Soil process include lateral flow from soil, return flow from shallow aquifer 

and tile drainage, capillary rise from the surface aquifer to the root zone, redistribution of 

moisture in the soil profile and evapotranspiration and finally, deep aquifer recharge that 

removes water from the system (Abbaspour et al., 2015).  

In this study, in particular, was chosen to use the SWAT model as it is able to include detailed 

management strategies (e.g. plan the irrigation) and to take into account spatially distributed 

land use and management changes and their effects on individual components of the water 

balance, such as actual evapotranspiration (AET) (Becker et al., 2019), which is used as a 

variable in the calibration procedure. In SWAT, evapotranspiration plays a crucial role. 

Following the calculation of potential evapotranspiration (PET), the model proceeds to 

calculate the actual evapotranspiration. (Ferreira et al., 2021; Ritchie, 1972). To calculate the 

actual evapotranspiration, SWAT first evaporates any rain intercepted by plant canopy. Next, 

SWAT calculates the maximum amount of transpiration and the maximum amount of 

sublimation/ evaporation of the soil using an approach similar to that of (Ritchie, 1972). The 

actual amount of sublimation and evaporation from the soil is then calculated (Neitsch et al., 

2011). SWAT utilize Potential Evapotranspiration (PET), coupled with soil properties and land 

use characteristics, to estimate actual evapotranspiration and it provides the possibility to 

utilize various methods for calculation potential evapotranspiration, including: Penman-

Montheith, Hargreaves, and Priestly-Taylor.  

In this study, the Penman-Monteith method was used for the calculation of evapotranspiration 

with the SWAT model. The Penman-Monteith method requires solar radiation, air temperature, 

relative humidity and wind speed. The Penman-Monteith equation combines components that 

represent the energy needed to sustain evaporation, the strength of the mechanism required to 

remove water vapor, and the terms of aerodynamic and surface resistance (Neitsch et al., 

2011). The Penman-Monteith equation is:  

 𝜆𝐸 = (∆ ∗ (𝐻_(𝑛𝑒𝑡  ) − 𝐺) +  𝜌_𝑎𝑖𝑟 ∗ С_𝑝 ∗ [𝑒_𝑧^𝑜 −  𝑒_𝑧 ]/𝑟_𝑎 )/(∆ +  𝛾 ∗ (1+  𝑟_𝑐/𝑟_𝑎 ) ) 

Equation 2: Penman.Monteith equation 
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where λE is the latent heat flux density (MJ m-2 d-1), E is the depth rate evaporation (mm d-

1), Δ is the gradient of the vapor saturation pressure-temperature curve, de/dT (kPa °C-1), 

Hnet is the net radiation (MJ m-2 d-1), G is the heat flux ground density (MJ m-2 d-1), ρair is 

the density of air (kg m-3), cp is the specific constant pressure heat (MJ kg-1 °C-1), ezo is the 

air saturation vapor pressure at height z (kPa), ez is the water vapour pressure of the air at 

height z (kPa), γ is the psychrometric constant (kPa °C-1), rc is the plant canopy resistance (s 

m-1), and ra is the diffusion resistance of the air layer (aerodynamic resistance) (s m-1). 

In a flat and intensively irrigated area the tradition method to subdivide watershed in subbasin 

based on the stream network is not enough to represent the reality, for this reason, the 

subbasins were delineated in GIS environment to create a more realistic representation, based 

on geomorphological units (river terrace levels). These non-traditional boundaries of the sub-

basin were made because only vertical connectivity of the area was considered, assuming 

negligible horizontal surface and underground flows, considering the completely flat nature 

of our study area with limited surface runoff. 

In this study, the SWAT model was performed on a monthly basis in order to have the same 

time resolution as the observed data and then a monthly AET time series was generated for 

each HRU. 

 

3.2 Input Data  
 

The first and crucial step in the research process was to collect and processed the SWAT input 

data, ensuring respective data quality. The goodness of input data is not only fundamental for 

the reliability of the SWAT model, but also for the exploration of hydrological dynamics within 

the study area. 

Sources, temporal, and spatial resolution for each data set used in this study are documented 

in Table 1. 
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Table 1: sources and description of input data utilized to setup SWAT model. 

DATA TYPE SOURCES RESOLUTION and 

DESCRIPTION 

TOPOGRAPHY Deutsches Zentrum 

für Luftund 

Raumfahrt (DLR) 

and Ministero 

dell’Ambiente: 

Geoportale 

Nazionale, 2019 

10 m “Hybrid” Digital Elevation 

Model 

SOIL Geoportale della 

Lombardia 

1:50.000, Soil information bases 

LANDUSE Geoportale della 

Lombardia 

1:10.000, Land Use and Land 

Cover 2018 (DUSAF 6.0) 

WEATHER Arpa Lombardia Daily, ARPA Lombardia hydro-

nivo-meteorological data.  

 

3. 2.1. Digital Elevation Model 
 
Topography is a key element in the SWAT hydrological model and contibuets significantly 

to its ability to accurately simulate hydrological process, even if the area is flat like the one 

analyzed.  

In this study, the 12 m resolution Digital Elevation Model (DEM) sourced from TanDEM-X, 

provided by Deutsches Zentrum für Luft- und Raumfahrt (DLR) was used. To improve his 

accuracy, the DEM was corrected throught the creation of a mask incorporating vegetation 

and urbanization, effectively minimizing noise. To do this, to urban and forest vegetation land 

uses were coded with “no data” value. This is followed by the conversion of land use data 

from shape format to grid format. The last step involves the use of a grid calculator to multiply 

the Digital Elevation Model (DEM) with the reclassified land use data. This process ensures 

the effective removal of vegetated and urban areas.  

Subsequently, this refined DEM was integrated in SAGA GIS with 1 m resolution Digital 

Terrain Model (DTM) derived from Lidar measurements conducted along the Ticino River, 
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derived from PCN-PST. The 1 m resolution DTM was imported in SAGA GIS as ASCII file 

using the ESRI/INFO grid format. The values were exported as points, using the grid to XYZ 

export format and then importing a point shape from the XYZ data. Finally, we used a thin 

plate spline method for spatial data smoothing and interpolation.  

The process of interpolating the DEM at 12 m resolution with the DTM was referred to as 

"mosaicking" and the interpolation with the nearest neighbor algorithm (Voronoi) was 

conducted to close the sinks of the new DEM combined with the DTM. 

The final DEM was reprojected with a resolution of 10 meters and the projection system used 

for the digital elevation model is the WGS 84/ UTM ZONE 32 N, then adopted for all other 

data utilized. This “hybrid” DEM was utilized in this study to conduct a comprehensive 

characterization fo the study area, emplying SAGA GIS version 7.8.0 for detailed terrain 

analysis.  

 

3.2.2 Soil  

The relationship between soil and water is complex and multifaceted, influencing everything 

from the health of ecosystems to agricultural productivity. Indeed, SWAT requires various soil 

characteristics. These characteristics, such as soil texture, structure, depth, and organic matter 

content, play a crucial role in determining how water moves through the soil. They affect the 

rate of infiltration, percolation, runoff, and evapotranspiration, all of which are key processes 

modelled in SWAT. By accurately representing these soil characteristics, SWAT can provide 

more reliable predictions of water flow and nutrient transport, which are essential for effective 

water resource management and sustainable agricultural practices. Understanding and 

accurately interpreting the intricate relationship between soil and water is a crucial aspect of 

environmental and agricultural research. 

Initially, soil data was extracted from a FAO-UNESCO soil map at a scale of 1: 5,000,000 

sourced from FAO (https://data.apps.fao.org/?lang=en), to facilitate the initial model runs. 

Subsequently, for a more deep analysis, the shapefile of 1:50,000 scale ERSAF soil map was 

downloaded from (‘Regione Lombardia, 2013. Basi informative dei suoli. Geoportale della 

Lombardia.’, https://www.geoportale.regione.lombardia.it/) moreover ERSAF provided 37 

soil profiles in the study area. 
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The pedological map of ERSAF, at a scale of 1:50,000, categorizes soils according to the 

USDA Soil Taxonomy classification. In the study area, seven types of soil are identified, which 

are subsequently incorporated into the SWAT model: 

• UDORTHENTS: soils with a significant horizon of accumulation of silica, and "Ud" indicates 

that the soil has a udic moisture regime, meaning it has sufficient moisture throughout the 

year. 

• HAPLUSTALFS: belongs to the Alfisols soil order according to the USDA Soil Taxonomy. 

soils with a horizon of accumulation of clay and "Hap" suggests that they have a horizon of 

illuviation (accumulation of material leached from above). Haplustalfs are commonly in areas 

of relatively recent erosional surfaces or deposits, most of them late Pleistocene in age. 

• HAPLUDALFS: the term "Hapludalfs" originates from "Hapl," signifying minimal horizon, 

and "udalfs," denoting the suborder of Alfisols, similar to Haplustalfs but have a udic moisture 

regime. These soils formed principally in late-Pleistocene deposits or on a surface of 

comparable age. 

• DYSTRUDEPTS: "Dystr" indicates a lack of specific soil features associated with other 

orders, and "udepts," representing the suborder of Inceptisols characterized by a udic moisture 

regime. Soils with a horizon of illuviation. They developed mostly in late-Pleistocene or 

Holocene deposits. Most of the Dystrudepts that formed in alluvium are now cultivated, and 

many of the other Dystrudepts are used as pasture. 

• EUTRUDEPTS: the term "Eutrudepts" originates from "Eut" suggests they are well-drained, 

and "udepts," representing the suborder of Inceptisols characterized by a udic moisture regime 

soil with a horizon of illuviation Many developed in Holocene or late-Pleistocene deposits. 

The vegetation was mostly deciduous hardwoods, but the gently sloping soils are now 

cultivated and many of the steeply sloping soils are used as pasture. 

• USTIPSAMMENTS: the term "Ustipsamments" is formed from "Usti," denoting an ustic 

moisture regime, and "psamments," representing the suborder of Entisols primarily composed 

of unconsolidated sand deposits. 

• USTORTHENTS soils with a horizon of accumulation of silica and have an ustic moisture 

regime. The “orthents” are primarily Entisols on recent erosional surface. 

However, both ERSAF map and soil profiles lacked the specific soil characteristics outlined 

in Table 2, essential for SWAT modelling. The ERSAF profiles, indeed, describe only specific 
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soil properties such as soil pH in water, soil organic carbon (SOC%), texture (sand, silt, clay 

content in %) and topsoil depth (cm), and the soil input file (.sol) specifies the physical 

properties for every layer within the soil. The physical properties of the soil play a key role in 

regulating the movement of water and air throughout the soil profile, significantly influencing 

the water cycling within HRU.  

To address this gap, the compilation of the “usersoil” table in the SWAT database was 

conducted. The usersoil table in SWAT serves as a user-defined soil database. This table is 

provided in the project database, allowing users to adapt their soil properties. This flexibility 

becomes valuable when default soil databases are not accurate in representing the soils within 

the area of interest. Creating a usersoil table involves preparing a CSV file with specific 

columns, each representing different soil properties. The file should be comma-separated, with 

essential columns such as SNAM, NLAYERS, SOL_Z, CLAY, SILT, SAND, SOL_CBN for 

each available soil layer (with a minimum of 1 layer). 

  



24 

Table 2: soil characteristics required by SWAT.  

Variable name Definition Measurement unit 

HYDGRP Soil hydrologic group (A, B, C, or D). 

Required only for the SWAT ArcView 

interface. The U.S. Natural Resource 

Conservation Service (NRCS) 

classifies soils into four hydrologic 

groups based on infiltration 

characteristics of the soils. 

 

SOL_ZMX Maximum rooting depth of soil profile mm 

ANION_EXCL Fraction of porosity from which 

anions are excluded. 

 

 

SOL_CRK Potential or maximum crack volume 

of the soil profile expressed as a 

fraction of the total soil volume. 

 

 

SOL_Z Depth from soil surface to bottom of 

layer 

mm 

SOL_BD Moist Bulk Density Mg/m3 or g/cm3 

SOL_AWC Available water capacity of the soil 

layer 

mm H2O/mm soil 

SOL_K Saturated hydraulic conductivity mm/hr 

SOL_CBN Organic carbon content % Soil weight 

SOL_CLAY Clay content % Soil weight 

SOL_SILT Silt content % Soil weight 
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SOL_SAND Sand content % Soil weight 

SOL_ROCK Rock fragment content % Total weight 

SOL_ALB (top layer) Moist soil albedo  

USLE_K (top layer) USLE equation soil erodibility (K) 

factor 

0.013 (ton m2 h)/ (m3 ton 

cm) 

 

This table was filled with soil properties using SPAW software (Saxton, n.d.), which utilizes 

pedotransfer functions. The SPAW (Soil-Plant-Atmosphere-Water) model incorporates a 

program known as "Soil Water Characteristics," designed for calculating soil water 

characteristics. This program emulates available water, saturated hydraulic conductivity, and 

Bulk density, utilizing soil texture as a basis. Additionally, it adjusts factors such as gravel 

content, compaction, salinity, and organic matter. 

For each soil type identified on the pedological map, a specific ERSAF profile was chosen to 

input accurate information into the SPAW software, and the calculations of soil properties 

were systematically performed. For what concern soil hydrologic groups were determined 

according to Arnold et al. (2012) and following the directives of USDA Soil Survey (National 

Resources Conservation Service, 2007). The fraction of anions exclusion was set to 0.5 

according to the SWAT Input Data (J. G. Arnold et al., 2012). The potential or maximum crack 

volume of the soil profile expressed as a fraction of the total soil volume was set to zero as 

there was no information available to evaluate this parameter, nevertheless considering the 

soil texture in the study area, is plausible that this value is 0. 

These calculated values were subsequently validated through on-site fieldwork, where soil 

analysis covered different terrace levels (identified using SAGA GIS) and included different 

land-use and soil types (Figure 5). Based on the already available data, using soil profiles 

previously dug and provided by ERSAF, sampling areas were identified along a south section 

of the study area designated for hydrological model development, because the profiles 

supplied by ERSAF were found to be lower in the southern part compared to the northern part. 

The purpose of the investigations was to define the characteristics of the soil substrates in the 

study area, aiming to provide a general characterization of the soils and it was possible to 

validate the input data for the SWAT hydrological model.  
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Figure 5: location of soil profiles 

 

The field work involved the digging of five soil profiles, with subsequent measurement of 

saturated hydraulic conductivity utilizing a constant head permeameter (Amoozemeter).  

Pedological profiles typically exhibit a series of layers parallel to the surface, referred to as 

horizons. These horizons can be distinguished by unique characteristics resulting from 

pedogenetic processes. Describing the pedological profile essentially involves detailing its 

horizons to derive information about the manifesting processes and the soil properties 

observable or measurable in situ (Certini and Ugolini, 2021; Cremaschi and Rodolfi, 1991). 

The information collected during field surveys includes data related to specific soil features 

(depth, colour, texture, reaction to hydrochloric acid, pH, % gravel, concretions, presence of 

roots, etc.) as well as station data (location, elevation, brief description of the landscape or 

vegetation surrounding the survey point). Soil characteristics were, of course, recorded 

separately for each horizon within the same profile. All pedological observations were 

georeferenced using a GPS tool (Garmin GPSMap 65Ss).  

Additionally, soil samples were collected for each of the horizons affected by pedogenesis and 

subjected to comprehensive laboratory analysis.  
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Laboratory analyses characterize the soil from both chemical and physical perspectives. 

Various analyses were conducted on the sampled soils, across different soil horizons, to 

determine their characteristics. The following analyses were performed: 

• Particle size (sand, silt, clay): following the regulations (D.M. 13/09/1999 SO n° 185 GU n° 

248 21/10/1999 - Met II.6), soil particle size was determined through wet sieving using a 

hydrometer. The principle is based on using the hydrometer to measure the mass density of 

the soil-water suspension after a predetermined sedimentation time, subsequently deducing 

the distribution of elementary particles of different sizes. 

• pH: following the regulations (D.M. 13/09/1999 SO n° 185 GU n° 248 21/10/1999 - Met III.1), 

pH was determined potentiometrically on a soil-water suspension. 

• Active limestone: following the regulations (D.M. 13/09/1999 SO n° 185 GU n° 248 

21/10/1999 - Met V.2), the active limestone content is determined by reacting a fine soil 

sample with an excess of ammonium oxalate solution under cold conditions. 

• Cation exchange capacity (C.E.C): following the regulations (D.M. 13/09/1999 SO n° 185 GU 

n° 248 21/10/1999 - Met XIII.2), the exchange between the cations present on the soil 

exchange sites and the ammonium ion in the ammonium acetate exchange solution is first 

carried out by shaking and then by leaching. The excess ammonium acetate solution is 

removed through repeated washes with ethanol. Subsequently, the adsorbed ammonium is 

determined by distillation according to Kjeldahl, either directly on the sample or on an aliquot 

of the solution obtained by leaching the NH4+-soil with a sodium chloride solution. 

• Exchangeable potassium, calcium, magnesium, and sodium: Following the regulations (D.M. 

13/09/1999 SO n° 185 GU n° 248 21/10/1999 - Met XIII.5), the content of calcium, 

magnesium, potassium, and sodium ions, removed from exchange sites with a pH 8.2-buffered 

barium chloride solution, is determined by flame atomic absorption spectrophotometry 

(FAAS). 

As already mentions, Ksat was measured in the filed in two different depth 10 and 30 cm using 

a constant-head permeameter (Amoozegar, 1989) (Figure 6). Ksat was calculated in mm/h 

following the glover solution proposed by Zangar (1953) and adopted by Amoozegar (1989). 

Ksat is used as a proxy for infiltration. 
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Figure 6: amoozemeter during fieldwork 
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3.2.3 Land use 

Land-use is a fundamental element in the SWAT model, or in hydrological models in general, 

because it can greatly affect hydrological process (Lin et al., 2007). For example, in an 

urbanized area infiltration will be low relative to a wooded area, or the various agricultural 

crops may vary evapotranspiration and soil water content.  

For this input data, the shapefile of a land-use map (DUSAF 2018) at a scale of 1:10,000 from 

the Geoportale della Lombardia (ERSAF “Ente Regionale per i Servizi alla Agricoltura e alle 

Foreste - Regione Lombardia, 2019) was used. The DUSAF’s legend is structured in five 

hierarchical levels of which the first three are the classes of the project Corine Land Cover. 

The first level includes five general classes that cover the main types of coverage (anthropized 

areas, agricultural areas, wooded territories and semi-natural environments, wetlands water 

bodies), which are increasingly differentiated in the following levels. However, SWAT 

requires specific codes for different landuse. It was therefore necessary to associate the 

different classes of the DUSAF map with the corresponding codes found in the tables “crop” 

and “urban” in the SWAT reference database (see Table 3).  

Additionally, analysis of land-use maps from 2007, 2012, 2015 and 2018 provided insights 

into the land-use changes across the past 19 years. Land use changes were calculated with 

percentages of area occupied by polygons on the DUSAF maps. Initially, the 1999 map was 

also considered, but was later excluded as it lacked detail compared to the others. Furthermore, 

the selected years align better with the run of SWAT model.  

 

Table 3: land use classes of DUSAF and SWAT code required.  

DUSAF LANDUSE SWAT CODE 

1112 - Continuous, moderately dense residential fabric URMD 

1121 - Discontinuous residential fabric URBN 

1122 - Sparse residential fabric URLD 

1123 - Scattered residential fabric URLD 

11231 Farmhouses URBN 

12111 - Industrial, artisanal, commercial settlements UIDU 

12112 - Agricultural productive settlements UIDU 

12122 - Public and private service facilities UIDU 
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12123 - Technological facilities UIDU 

12124 - Cemeteries URBN 

122 – Road and railway networks UTRN 

1221 - Road networks and accessory spaces UTRN 

133 Construction sites UIDU 

134 - Degraded, unused, and non-vegetated areas UIDU 

1411 - Parks and gardens URBN 

1412 - Uncultivated green areas URBN 

1421 - Sports facilities URBN 

2111 – Simple agricultural fields AGRL 

2112 - Tree-covered arable land AGRL 

21131 - Open-field horticultural crops ORCD 

21141 - Open-field floriculture crops ORCD 

2115 - Family gardens ORCD 

213 - Rice fields RICE 

2241 - Poplar groves POPL 

2242 - Other agrarian woody plants AGRL 

2311 - Permanent meadows without tree and shrub species RNGE 

2312 - Permanent meadows with scattered tree and shrub species MIGS 

31111 - Broad-leaved forests of medium and high density managed by 
coppicing 

FRSD 

31121 - Low-density broad-leaved forests managed by coppicing FRSD 

3113 - Riparian formations FRSD 

3222 - Riparian vegetation FRSD 

3241 - Thickets with significant presence of tall shrub and tree species RNGB 

3242 - Thickets in abandoned agricultural areas RNGB 

411 - Vegetation of internal wetlands and peat bogs WETF 

511 - Riverbeds and artificial watercourses WATR 

5121 - Natural water basins WATR 

5122 - Artificial water basins WATR 
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The shapefiles of soil and land use maps were converted in raster format in a GIS environment 

to be read by SWAT. The conversion of shapefiles into raster format is a crucial step in the 

SWAT modelling process because SWAT uses a raster-based approach for its spatial analysis. 

Moreover, the Lookup Table for both soil and land use was created. This table should classify 

each of the raster values with one of SWAT’s soil and land cover/land use types.  
 

3.2.4 Climate Data 

SWAT's water cycle simulation is based on climate conditions, requiring precise daily-scale 

input data. This data, inclusive of daily cumulative precipitation (mm), maximum and 

minimum daily temperature (°C), daily average relative humidity (fraction), global solar 

radiation (Mj/m2), and daily average wind speed (m/s), can be incorporated if climate stations 

are available. Alternatively, the WHEATHER GENERATOR in SWAT can generate data or 

simulate missing days in time series from existing climate stations. In particular, the 

WGEN_CFSR_World, a weather database, was utilized to simulate the missing values of 

weather data. This database, which is an input into SWAT, contains long-term monthly weather 

statistics that cover the entire globe. It was developed using the Climate Forecast System 

Reanalysis (CFSR) global dataset from the National Centres for Environmental Prediction 

(NCEP). 

Climate data covering 19 years (2004 to 2022) from 10 ARPA Lombardia climate stations 

(Table 4) were downloaded from the ARPA Lombardia website (‘FORM RICHIESTA DATI’,  

https://www.arpalombardia.it/temi-ambientali/meteo-e-clima/form-richiesta-dati/).  

 

Table 4: Climate stations used in the SWAT model. 

NAME COORDINATES ELEVATION 

Arconate 45.32, 8.5 182 

Castello d’Agogna 45.13, 8.4 106 

Corsico 45.26, 9.5 119 

Lacchiarella 45.19, 9.8 97 

Motta Visconti 45.16, 8.59 100 

Via Folperti (PV) 45.11, 9.9 77 

SS35 (PV) 45.1, 9.8 71 

https://www.youtube.com/watch?v=cxmWz4F-i4w
https://www.youtube.com/watch?v=cxmWz4F-i4w
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Vigevano (SS4949) 45.2, 8.52 94 

Vigevano (Via Petrarca) 45.19, 8.51 107 

 

The meteorological data downloaded from ARPA Lombardia from 2004 to 2022 reveal 

various gaps attributable to data absence. To identify the gaps in the measured weather data, a 

Gantt diagram was created in Excel. 

Following this analysis, the climate data was converted into text files, facilitating readability 

by SWAT. SWAT requires the weather data in a specific format. Each weather parameter is 

stored in a separate file with a specific extension (e.g. “pcp” for precipitation and “tmp” for 

temperature etc.). The data in these files should be arranged in a column format with each row 

representing a day. The first day should be the initial day of the year from which the simulation 

originates. If weather records contain missing data, they are indicated with “-99”.  

The precision of weather data can markedly influence the accuracy of SWAT model outputs. 

Therefore, it is crucial to verify that weather data is both accurate and as complete as possible. 

 

3.2.5 Management  
A bibliographical analysis was conducted (e.g. Azar et al., 2016; Bux et al., 2022) to establish 

crop rotation models and defining specific sowing and harvesting schedules for each main 

crop type, moreover on-site inspections were carried out and some farmers in the area were 

interviewed. 

It was discovered that corn and rice are the most common summer crops. Maize is sown 

between mid-April and early May, develops in mid-June and is harvested in late September. 

Rice is sown later than corn, between mid-April and late May and develops from early June 

to September / mid-October when it is harvested. Double cultivation often takes place: maize 

and sorghum are sown as a second crop in May after the harvesting of fodder crops (e.g., 

ryegrass) or winter cereals (e.g., barley or wheat). Other crops grown in the area consist mainly 

of herbaceous legumes (e.g., alfalfa and clover), which are mowed and harvested three to four 

times, almost monthly, during the period May-August (Table 5). 
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Table 5: typical calendar of the main crops in the study area. Green represents the sowing of crops, 

yellow the emergency/development, orange the harvest and blue the resting. 

Ryegrass                     

Maize                     

Barley                      

Wheat                     

Rice                     

Sorghum                     

 

Due to the difficulty in locating precise information on each field and for each year, it was 

considered the most common crop rotation (ryegrass-corn rotation) in the study area and 

defining the sowing, irrigation, and harvesting times. 

As regards irrigation, farmers were interviewed and field investigations were conducted, but 

no detailed information was obtained. Irrigation of each field, in fact, depends on the actual 

crop, the water availability of that moment and the management of the field. In addition, we 

would like to remember that the area is characterized by a dense network of irrigation channels 

that are managed by different consortia.  

For irrigation scheduling, SWAT provides flexibility with both manual and automatic 

approaches. In manual scheduling, irrigation follows a predetermined scheme, while in 

automatic scheduling, the model autonomously decides the timing and quantity of irrigation 

based on the specific water needs of the crops (Maier and Dietrich, 2016). Due to the problem 

that there is not a clear picture of the irrigation schemes it was decided to apply the auto-

irrigation module in SWAT. Hence, whenever the actual growth of plants falls below a 

threshold fraction due to water stress, the model automatically applies water. If enough water 

is available from the irrigation source, the model will add water to the soil until it is at field 

capacity (J. G. Arnold et al., 2012). 

 

3.3 Soil water content sensors  
Three soil moisture sensors TEROS12 were installed in different areas. TEROS 12 are high-

quality soil moisture sensors designed for research purposes. It is designed to provide precise 

measurements, incorporating the assessment of soil water content, temperature, and electrical 

conductivity. The three areas where the sensors are installed are located in the same sites as 
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the soil profiles, indicating arable land (corn-ryegrass field), a wooded (forest) area and a rice 

field. Sensors were installed at depths of 10 cm and 35 cm; (ii) rice cultivation, with sensor 

depths of 10 cm and 30 cm; (iii) a forested area in which sensors were placed at depths of 10 

cm, 30 cm, and 65 cm.  

These in-situ measurements of soil water content will contribute to understanding the moment 

where irrigation occurs and can be compared with the SWAT output to comprehend the 

dynamic of the area.  

 
3.4 Model Set-Up 

 

To set-up and calibrate and validate SWAT, the subsequent steps were followed (Figure 7).  
 

 
Figure 7: SWAT flowchart with calibration and validation procedure 

 
In this study, the QSWAT (QSWAT3 version: 1.5.2) model in QGIS was utilized. QSWAT is 

the SWAT model plugin for QGIS (Quantum GIS) platform. QSWAT enabled the integration 

of the Soil and Water Assessment Tool into the QGIS environment, supporting seamless 

geospatial analysis and modelling of watershed processes.  
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After the collection of the input data, QSWAT was configured and parameterized, to perform 

hydrological modelling of the study area.  

The primary objective was to explore alternative approaches for utilizing the model in a 

lowland area without a natural channel network. In delineating sub-basins within the SWAT, 

three distinct approaches were considered at the begging of this project. i) the first approach 

implicated configuring the model conventionally, assuming natural drainage conditions and 

establishing stream and watershed delineation base on the topography, but this conventional 

delineation of sub-basins and, notably, watercourses was found to diverge significantly from 

the actual landscape, proved to be less representative of the true hydrological features of the 

study area; ii) the second method utilized a shapefile of artificial channels; however, it was 

observed that this dataset lacked crucial information for SWAT, particularly the flow rates. 

Since these channels are man-made and managed by humans, the absence of key parameters 

such as flow rates limited the completeness of the dataset; iii) the third and most fitting 

approach utilized a delineated sub-basin based on geomorphological units (river terrace levels) 

using QGIS (version 3.16) proving to be the most appropriate method for this study. This 

manual delineation allowed for a refined and accurate representation of the sub-basins, 

ensuring that the hydrological modelling process in SWAT depicted the complexities of the 

study area with greater reliability. 

These units were individually defined and subsequently integrated into the SWAT model, 

which subdivided them into 167 HRUs.  

Their extension in the study area varies from approximately 100 m2 to 4,7 km2, with an 

average extension of approximately 0.308 km2. The size of HRUs depends on soil 

homogeneity and land use characteristics, with larger sizes for homogeneous areas and smaller 

for heterogeneous areas(Becker et al., 2019). The different dimensions of the HRUs allowed 

for a more accurate representation of the landscape, capturing the heterogeneity of land 

characteristics, and facilitating a more precise simulation of hydrological processes across the 

study area. This approach ensured a comprehensive and detailed analysis, considering the 

intricacies of the hydrological response at a finer spatial scale.  

During the model set-up initial testing was conducted also on input data to ensure the 

robustness and reliability of the modelling process. These preliminary assessments included 

the input datasets to identify any deficiencies, inaccuracies, or potential challenges.  
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Initially, the modelling process used generalized data, incorporating the FAO soil map (with 

just one soil type covering the study area) and data from a single climate station. This approach 

facilitated an easier identification of critical points within the model, laying the foundation for 

subsequent refinement and optimization. After that, the model was parameterized using more 

detailed input data such as spatially distributed soil and climate data as well as a more 

complete landuse / landcover information.  

Moreover, the initial area was bigger, but after different run, was decided to apply the model 

excluding the area adjacent to the Ticino River (current riverbed) to focus only on the region 

characterized by artificial drainage network, ensuring a more homogeneous area for realistic 

results. 

Finally, in order to represent the hydrological process more accurately, several key 

modifications were made in the last run the model. As previously mentioned, one of those 

modifications was the incorporation of an auto-irrigation editing the “sub-basin input” in the 

model. This system was designed to automatically adjust the water supply based on the needs 

of the crops; in that way it ensures optimal irrigation. In addition to this, a more typical crops 

rotation was introduced. This rotation, which includes corn and ryegrass, was chosen due to 

its prevalence in region being modelled. The use of this rotation allowed for a more realistic 

representation of the agricultural practices in the area, and thus a more accurate prediction of 

the hydrological process.  

The SWAT model was run for a period of 19 years, from 2004 to 2022. However, it is important 

to note that the first three years of this period were used as a warm-up. This warm-up period 

is crucial in hydrological modelling as it allows the model to stabilize and reach a state that is 

representative of the real-world conditions.  

 

3.5 Calibration and Validation of SWAT Model  
The term “calibration” refers to a procedure where the difference between model simulation 

and observation are minimized. Through this procedure, it is hoped that the model correctly 

simulates true processes in the physical system (Abbaspour et al., 2017). 

Building the model using QSWAT a comparison between the model results and observational 

data was made. It is essential that the model's performance correspond with observed data to 

ensure the efficacy of the calibration process; significant disparities could render the 

calibration less effective. Subsequently, the model was calibrated. However, the conventional 
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runoff discharge could not be used for calibration due to the difficult nature of the area and 

substantial anthropogenic alterations to the natural drainage system. 

In this study, actual evapotranspiration (AET) was considered as variable for the calibration 

procedure. The monthly evapotranspiration data was used, provided by Moderate Resolution 

Imaging Spectroradiometer (MODIS), downloaded (with resolution of 1 km) from 2007 to 

2013, focused on 149 HRUs, as is possible learn in the next chapter.  

In the initial stages of this study, the period from 2007 to 2013 was used entirely for calibration 

of the SWAT model. However, during the subsequent validation procedures various problems 

challenges was encountered.  

Validation is the process of confirming that the calibrated model can accurately predict the 

response of the system under different conditions. In particular, it involves comparing the 

model’s predictions with observed data that was not used during the calibration process. Given 

the issues encountered during validation, it was decided to subdivide the original calibration 

and validation periods. The new calibration period was from 2007 to 2010, while the 

validation period was from 2011 to 2013.  

The model has been calibrated and validated with SWAT-CUP module (Calibration and 

Uncertainty Procedures) version 5.1.6.2. (Abbaspour et al., 2015; K. C. Abbaspour et al., 

2007), a standalone program developed for SWAT calibration. Following the protocol 

established by (Abbaspour et al., 2017), the calibration process involved pre-calibration of 

input data, improvement of the model structure, identification of parameters to be optimized, 

identification of other sensitive parameters, model runs, post-processing and modifying new 

parameters.  

The SWAT-CUP program contains five different calibration procedures: the Generalized 

Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992), Sequential Uncertainty 

Fitting (SUFI2) (Abbaspour et al., 2004; Abbaspour et al., 2007), Parameter Solution (parasol) 

(Van Griensven and Meixner, 2006), Markov chain Monte Carlo (MCMC) (e.g., Kuczera and 

Parent, 1998; Marshall et al., 2004; Vrugt et al., 2003), and Particle Swarm Optimization 

(PSO) (Kennedy and Eberhart, 1995). 

SWAT-CUP enables sensitivity analysis, validation, and uncertainty analysis of SWAT model 

(Abbaspour et al., 2015).  

In the current work the Sequential Uncertainty Fitting (SUFI-2) program (K. C. Abbaspour et 

al., 2007) was utilized for model calibration and uncertainty analysis. The SUFI-2 algorithm, 
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used for model calibration and sensitivity analysis, is a "stochastic" calibration, also 

performing an analysis of modelling uncertainty. This algorithm, in fact, maps all the 

uncertainties, which can be relative to the parameters used, the conceptual model, the input 

data etc. SWAT-CUP tries to capture most of the measured data within the 95% prediction 

uncertainty (95PPU) of the model in an iterative process (Abbaspour et al., 2015). 95PPU is 

calculated at the levels of 2.5% and 97.5% of the cumulative distribution of an output variable, 

generated by the propagation of the uncertainty of a parameter through the Latin Hypercube 

sampling technique (Abbaspour, 2019). In this way there is not a simple signal that represents 

the output but an envelope of acceptable solutions, expressed by 95PPU. What is wanted is 

that the 9PPU envelopes most of the observed data. To quantify the goodness of adaptation 

between simulated results, expressed with a band (the 95PPU) and the measured data (plus 

any errors in the measurement) expressed with a single signal, the algorithm SUFI-2 provides 

two indices called "P-factor " and " R-factor " (Abbaspour et al., 2004; Karim C. Abbaspour 

et al., 2007). P factor are the observed data within the 95th percentile. It is considered perfect 

(ideally) when this value approaches 1. R factor is the ratio between the average distance 

within the 95th percentile and the standard deviation of the measured data. The goal is for it 

to approach 0. 

As said, the SUFI-2 algorithm was utilized for model calibration and uncertainty analysis in 

this study. SUFI-2's capability to accommodate ten distinct objective functions. An objective 

function is a mathematical formulation assessing the disparity between observed and 

simulated data, which play a crucial role in guiding the optimization process during model 

calibration, supporting in the identification of the parameter set that best represents the system 

under consideration. 

By offering the option to use ten different objective functions, SUFI-2 enables to the 

calibration process to fit the unique requirements of the study, thereby enhancing the accuracy 

and reliability of model predictions. This flexibility stands as a notable advantage of SUFI-2, 

contributing to its widespread adoption in hydrological modelling. 

In this study, the Kling-Gupta efficiency (KGE) was selected as the objective function to 

assess model performance. The Kling-Gupta Efficiency is a widely used goodness of fit 

indicator in hydrological sciences for comparing simulations to observations. The KGE index 

ranges from -infinity to 1, where a value closer to 1 indicates a better match between the model 
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and the observed data. Anyway, the goal is not just to maximize KGE but to build a model 

that accurately represents the system of interest.  

Twenty calibration parameters (Table 6) were made selected on the most commonly chosen 

SWAT calibration parameters used in previous SWAT calibration studies (Abbaspour et al., 

2015; Becker et al., 2019; Lam et al., 2010), as well as parameters, which were found to be 

more sensitive than changes in AET. Parameter ranges have been defined based on the 

minimum and maximum values suggested by SWAT. After parameterizing the model and 

assigning the ranges, the program was run 500 times. After that, we moved on to post-

processing and SWAT-CUP calculates the objective function and the 95PPU for all observed 

variables. New parameter ranges are suggested by the program for another iteration, which 

modifies the previous ranges focusing on the best parameter set of the current iteration.  

To understand the more sensitive parameter, in the SWAT-CUP, the “P-Value” and “t-Stat” are 

particularly important: t-Stat represents the sensitivity of the parameter. A larger absolute 

value indicates that the parameter is more sensitive in a certain area; the P-Value represents 

the confidence level of the parameter sensitivity. The closer the value of p is to zero, the more 

significant and sensitive the parameter is. A model parameter is identified as sensitive when 

the value of P-Values is less than or equal to 0.05. 

These two values are fundamental to determine which parameters most influence the model 

results. 

After the calibration, model validation was conducted using SWAT-CUP, as well. As already 

stated, validation is used to enhance the accuracy of the calibrated parameters. These are 

indeed the same parameters that were calibrated, after the best run, without any further 

changes and the iteration must be with the same number of simulations used for calibration.  

  

Table 6: 20 parameters selected for the calibration and range of the corrections .  

Parameter Name in SWAT-

CUP 
Min_value Max_value Description 

1:R__HRU_SLP.hru 0 0.2 
Average slope steepness for 

overland flow 

2:V__ESCO.hru 0.6 1 
Soil evaporation compensation 

factor 

3:R__CN2.mgt -0.2 0.2 
SCS runoff curve number for 

moisture conditions 

4:V__ALPHA_BF.gw 0.07076 0.109757 Baseflow recession coefficient 

https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf
https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf
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5:V__GW_DELAY.gw 0 20.28156 Groundwater delay 

6:V__GWQMN.gw 0 500 
Threshold depth of water in the 

shallow aquifer required for return 
flow to occur 

7:V__GW_REVAP.gw 0.1 0.2 Groundwater ‘revap’ coefficient 

8:V__REVAPMN.gw 143.0484 342.7209 
Threshold depth for water in the 

shallow aquifer for revap or 
percolation to occur 

9:V__EPCO.hru 0 1 
Plant evaporation compensation 

factor 

10:V__RCHRG_DP.gw 0.009108 0.336392 Deep aquifer percolation fraction 

11:V__CANMX.hru 9.93414 29.80586 Maximum canopy storage 

12:R__SOL_BD(..).sol 0.190512 1.571738 Moist bulk density 

13:R__SOL_AWC(..).sol -0.5 0.95 
Available water capacity of the 

soil layer 

14:R__SOL_K(..).sol -0.8 0.8 Saturated hydraulic conductivity 

15:R__SOL_ALB(..).sol -0.03 0.2 Moist soil albedo 

16:R__SOL_ZMX.sol 24.9602 141.6598 
Maximum rooting depth of soil 

profile 

17:V__SLSOIL.hru 0 150 
Slope length for lateral subsurface 

flow 

18:R__SOL_Z(..).sol -0.03 0.2 
Depth from the soil surface to the 

bottom of the layer 

19:R__SOL_CBN(..).sol 0.041925 0.185805 Organic carbon content 

20:V__FFCB.bsn 0 1 Initial soil water storage 

 

3.5.1 MOD16 Data 

In this study, the monthly evapotranspiration data provided by Moderate Resolution Imaging 

Spectroradiometer (MODIS) was used, in particular, MOD16’s AET was utilized for SWAT 

calibration (2007-2010) and validation (2011-2013).  

MOD16 global evapotranspiration data is based on a 1 km2 grid of AET surface that was 

developed with an energy balance model using satellite data as input (Mu et al., 2011). 

Before using MOD16 data, other databases were also considered. One of the datasets 

analayzed is the Global Land Evaporation Amsterdam Model (GLEAM) data. (GLEAM; 

http://www.gleam.eu, last access: 27 December 2023). GLEAM supplies daily data for actual 

evapotranspiration (ET), root zone soil moisture, and surface soil moisture. Nevertheless, the 
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spatial resolution of GLEAM data, approximately 25 km², proves to be excessively coarse for 

the the study area of limited size. 

To achieve a finer spatial resolution, the SMAP/Sentinel data (SMAP, 

https://nsidc.org/data/spl2smap_s/versions/1, last accessed on December 27, 2023) was also 

explored. This dataset offers soil moisture estimates at a more detailed 3 km grid.  

Given the various evapotranspiration databases available, the MOD16 data was chosen for its 

1 km resolution, considering the limited size of the study area. This higher resolution data can 

provide more detailed information, especially useful in heterogeneous landscapes.  

Specifically, “MOD16” refers to the MODIS Evapotranspiration project, which is part of 

NASA’s Earth Observing System (EOS). This project estimates global terrestrial 

evapotranspiration from earth land surface using satellite remote sensing data (Nasa, n.d.). 

The MOD16 global evapotranspiration product can be used to calculate regional water and 

energy balance, soil water status, and provides key information for water resource 

management. 

The MOD16 algorithm (Mu et al., 2011, 2007) calculates evapotraspuration based on the the 

Penman–Monteith equation. This equation, to estimates evapotranspiration, includes a  variety 

of inputs, these include for Moderate Resolution Images Spectroradiomete (MODIS) remotely 

sensed data such as soil cover, albedo, LAI, an improved vegetation index (EVI) and a daily 

meteorological analysis data set from NASA’s Global Modelling and Assimilation Office 

(GMAO) (Mu et al., 2011; Odusanya et al., 2019). This algorithm operates, calculating the 

daily evapotranspiration as the combined total of ET during the daytime and nighttime. 

ET vertically is sum of the water vapor fluxes arising from soil evaporation, wet canopy 

evaporation, and plant transpiration on the dry canopy surface. Terrestrial ET incorporates 

evaporation from both wet and moist soil, rainwater intercepted by the canopy, and 

transpiration through stomata on plant leaves and stems. To calculate canopy conductance for 

plant transpiration, the algorithm employs the Leaf Area Index (LAI) to scale stomatal 

conductance up to the canopy level. During growing seasons, many plant species exhibit 

stomatal conductance control influenced by vapor pressure deficit (VPD) and daily minimum 

air temperature (Tmin). Elevated temperatures often coincide with high VPDs, resulting in the 

partial or complete closure of stomata. 

https://nsidc.org/data/spl2smap_s/versions/1
https://modis.gsfc.nasa.gov/data/dataprod/mod16.php
https://modis.gsfc.nasa.gov/data/dataprod/mod16.php
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For a specific biome type, the Biome-Property-Look-Up-Table (BPLUT) contains two 

threshold values for Tmin and VPD, for stomatal conductance control (Running, S.W. et al., 

2019). 

The MOD16 products cover a range of temporal resolutions, providing 8-day, monthly, and 

annual data on key parameters: evapotranspiration (ET); latent heat flux (LE); potential ET 

(PET); potential latent heat flux (PLE); and 8-day and annual quality control (ET_QC). 

The MOD16 AET dataset is a raster in Geotiff format. Since the primary objective was to 

compare the value of the AET pixels with the monthly AET values simulated by SWAT for 

each HRU, the average evapotranspiration of each HRUs was extrapolated in R programming 

lenguage (Figure 8). This methos allowed for a detailed comparison between observed AET 

from MOD16 dataset and the simulated AET from the SWAT model on a monthly basis.  

The SWAT model was calibrated and validated for 149 HRUs. These HRUs were selected out 

of a total of 167, with those falling in urbanized areas exluded from the calibration. The 

exlusion of urban areas was done because MOD16 does not calculates AET for these areas, 

moreover, the anthropogenic factors can influence the evapotranspiration process.  

 

 

Figure 8: AET of MODIS over the study area subdivide in 167 HRU 

 
3.6 Trend analysis  
Following the calibration and validation of the model, a trend analysis of both input climate 

data, as well as output data, was conducted, using the Mann-Kendall test (Henry, 1945; 

Kendall, 1955). This nonparametric statistical method is frequently used in environmental 

studies to detect trends in time series data (Aboelnour et al., 2020). The test specifically 

evaluates the presence of an increasing or decreasing trend over time by examining the rank 
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correlation of data points. The Mann-Kendall test was applied to climate data, including 

temperature, no-rain days, as well as for hydrological process, with actual evapotranspiration 

and soil water content. For each data set, the Kendall coefficient (tau) was calculated to 

quantify the strength and direction of observed trend, concurrently, the p-values was 

determined to have statistical significance of the identified trends, a p-value below a 

predetermined significance level (e.g., 0.05) indicates a statistically significant trend, the 

Mann-Kendall test was performed using ”MannKendall” function in the “Kendall” package 

in R (McLeod, 2005). 
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4 RESULTS 

In the following paragraphs, I will explain the results derived from the analysis conducted 

during this doctoral research. Specifically, I will describe the results obtained through the 

utilization of input data. Subsequently, I will detail the findings arising from the calibration 

and validation processes. Finally, I will present and analyse the output data.  

It is important to highlight that a substantial portion of the findings presented here has been 

previously documented in the article (Bernini et al., 2023). 

 

4.1 Input analysis  
As outlined in the preceding sections, the input data for the Soil and Water Assessment Tool 

comprehend elements such as topography, soil, land use, and climatic data. Beyond their 

fundamental role for running the model, these datasets have been subjected to in-depth 

analyses. This doctoral study recognizes the significance of not only employing these inputs 

for the model's execution, but also investigating and examining them independently. The 

subsequent paragraphs will elaborate on the detailed analyses performed on these key input 

parameters. These analyses contribute to a comprehensive understanding of the study area. By 

examining the individual characteristics of the topography, soil, land use, and climatic 

conditions, I identified the complex interplay of factors influencing the hydrological processes 

within the designated area. 

4.1.1 Topography  
One of first results of my doctoral thesis, was the mosaicking of TanDemX and Lidar to create 

a "hybrid" Digital Elevation Model (with 10 m resolution), allowing an evaluation of the 

landscape. The most important thing of this results revealed a distinctive feature that defines 

the area—the presence of fluvial terraces. Particularly, this is evident in the Vertical Distance 

to Channel Network (Figure 9), showing three distinct orders of terraces originating from the 

river Ticino. These results permit to understand the topography, contributing to understand the 

unique landscape of the study area.  
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Figure 9: vertical distance to channel network representing the river terraces of the Ticino River. 

 

4.1.2 Soil 

Regarding field analysis, the soil profiles examined in laboratory predominantly exhibit a 

sand/sandy loam texture (Figure 10), with an increasing sand-gravel fraction towards the 

proximity to the Ticino River. The sampling areas (Figure 5), as described in the 3.2.2 chapter, 

are located on various levels of the terraces of the Ticino River. The terrace level also 

determines the age of the soils, with the younger ones situated near the riverbed, while the 

more developed one is evolved on higher terraces. 
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Figure 10: average texture of the soil samples analysed. 

 

The fieldwork and general analysis showed that above the fluvial-fluvioglacial deposits in the 

study area, soil developed with different depths according to the age of the terrace level. The 

soil cover of the study area consists of Regosols on the lower terrace of the Ticino River and 

Luvisol and Umbrisols on the upper terraces, following the Word Reference Base for soils 

(WRB) (IUSS Working Group WRB, 2015). Luvisol and Umbrisols are well-developed soils 

with a considerable thickness (more than 1 m), whereas Regosols represent younger and less 

evolved soils. The soil texture is sandy-loam (average values are 69% of sand, 15% of clay 

and a 6% of silt) following the ASTM Standards, with an increase in the gravel fraction in the 

areas closest to the Ticino River. This coarse texture is related to a good drainage, but even in 

hydraulic conductivity are observed differences varying between the soils near the Ticino 

River and those in the upper terrace level. Hydraulic conductivity is notably high 
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(approximately 87 mm/h) in the lower areas, consistent with the gravelly-sandy texture of the 

soils. In contrast, in the higher terraces, it is lower (ranging around 10 mm/h) due to the loamy-

sandy texture and because of significant soil compaction caused from continuous agricultural 

activities. 

In detail, the profiles dug near Cascina Coronate (Coronate 1 and Coronate 2) are situated on 

the level of the highest and oldest fluvial terraces and on the intermediate one, approximately 

5 km away from the Ticino River at elevations of ~20 m and ~10 m, respect to the river, 

respectively. This area is characterized by Würmian fluvioglacial and fluvial deposits, 

predominantly consisting of sandy sediments. The higher fluvial terraces exhibit a flat 

topography and are primarily used for agricultural purposes. Coronate 1 and 2 are 

characterized by predominantly sandy loam textures, with percentages exceeding 50%. The 

pH values range between 6.3 and 7.4. The cation exchange capacity exhibits medium to low 

values, below 15 meq/100g. In terms of fertility, these values indicate low soil fertility. The 

C/N ratio is also in the medium to low range, ranging from 2.5 to 9.8. The organic matter 

content is <6%, indicating average values. The soil thickness is considerable, exceeding 1 m, 

and is characterized by A/Ap/Bw/B/Bt and A/Ap/C/A2/Gr, horizons, indicating well-

developed soils. 

Notably, Coronate 1 the top material exhibits altered pebbles and reveals a more compacts 

soil, probably representing a fragipan layer, in the top 40 cm. A fragipan is characterized by a 

compacted layer with reduced pore volume and consequently lower hydraulic conductivity, in 

contrast with respective texture. The measured saturated hydraulic conductivity in these points 

(Table 7) is notably low, deviating from the sandy clay loam / sandy loam texture. Thid 

discrepancy provides a key factor to consider in the SWAT model, potentially influencing 

water dynamics within the soil.  

The profile dug near Cascina Cerina is located approximately 2.5 km away from the Ticino 

River and the vertical distance is around 10 m. The site is characterized by sandy-silty deposits 

with on an intermediate fluvial terrace of the Ticino River. The terrain is mostly flat, and the 

profile was excavated in an area covered by woodland. The soils at the Cerina 1 site are well-

developed with thicknesses exceeding 80 cm. The soils exhibit a sandy loam texture, and there 

is noticeable leaching of clay towards the lower part of the profile (>15cm). The profile is 

characterized by horizons A/B/Bw/Cw. The soil has formed on alluvial sandy-silty deposits. 

Due to the texture, the conductivity of the topsoil is relatively high (46.56 mm/h); however, 
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considering the leaching processes of clays, the hydraulic conductivity in the Bw horizon is 

lower (21.33 mm/h) compared to the topsoil. These soils have a gravel content of less than 

15%. The pH is around 5.4. The organic matter content is relatively high, as the area is 

wooded. 

The profiles near Cascina Lasso are located in close proximity (<1000 m) to the Ticino River, 

on the lowest terrace, with a flat topography of alluvial deposits. The sites exhibit an elevation 

above the Ticino of less than 3 m. The area is characterized by sandy-gravelly deposits from 

the Ticino River with spatial heterogeneity. Both excavations reveal A/C profiles, indicating 

rudimentary and young soils. These soils are characterized by high infiltration and hydraulic 

conductivity, leading to rapid drainage. Given the parent material, they exhibit a significant 

gravel content. The soil pH is around 7, indicating neutral soil conditions. 

Overall, there is a trend of increasing saturated hydraulic conductivity closer the Ticino River 

(Table 7), aligning with the observed texture variations. Moreover, the values are generally 

higher in the topsoil compared to the subsoil.  

 

Table 7: Ksat calculated with Amoozemeter. 
 

Coronate 1 Coronate 2 Cerina 1 Lasso 1 Lasso 2 

Ksat (mm/h) 

topsoil 

1.26 10.13 46.56 360.23 91.05 

Ksat (mm/h) 
subsoil 

1.14 10.29 21.33 165.28 83.16 

 

These measurements were cross-referenced with the "usersoil" table generated from ERSAF 

profiles and SPAW software. Preliminary analysis reveals some disparities, particularly in the 

often-smaller measured Ksat values compared to the calculated ones. Particularly at the 

Coronate 1 site, there appears to be a slightly more clayey texture, coupled with a lower Ksat, 

as previously noted, due to the presence of a fragipan. These variations are probably since spot 

analyses that have been conducted in distinct land use and management practices that can 

significantly alter soil properties, especially in heavily cultivated areas. Therefore, with 
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laboratory results, a more precise refinement of soil input data became feasible, enabling the 

subsequent execution and calibration of the SWAT model. 

 

4.1.3 Landuse change. 
Another finding of this study was the changes in land use patterns from 2007 to 2018 (Figure 

11). Notably, a remarkable transformation is observed in the agricultural landscape, with a 

substantial increase in rice cultivation, expanding from 13% to 20% of the total area. 

Simultaneously, stable meadows experienced an expansion, increasing from 1% to 5%. In contrast, 

there is a decline in the areas designated for simple agricultural fields, diminishing from 46% 

to 38%, and permanent crops, decreasing from 3% to 1%. These fluctuations underscore the 

intricate interplay between human activities and the environment, highlighting the evolving 

dynamics of agricultural practices over the studied period. The urbanized area, instead, is 

constant in the years. Therefore, it is needed to comprehend these changes for a comprehensive 

understanding of the region's sustainability and resilience. Moreover, these understandings 

into land use changes are instrumental in considerate the evolving landscape and can be useful 

for future scenarios made with the SWAT model. 
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Figure 11: landuse changes from the DUSAF land use maps 

 

4.1.4 Weather data and climate change  
Concerning climate data, an in-depth analysis was conducted using GANTT diagrams (Figure 

12) for each climate parameter to carefully comprehend the structure and quality of the data.  

The Gantt diagram is constructed with the time arc along the horizontal axis and the various 

ARPA stations depicted on the vertical axis. Horizontal blue bars, illustrate the sequences, 

duration, and period of each activity undertaken by the stations. The white areas denote 

periods without recorded data. From the GANTT diagram, it becomes evident that there are 

notable data gaps throughout the data. However, incorporating data from multiple 

meteorological stations, it is plausible to effectively fill these gaps.  
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Figure 12: Gannt diagram of precipitation data. 

 

Following the calibration and validation process (the results are presented in 4.5 paragraphs), 

an analysis of climate and hydrological data was performed. The temperature and precipitation 

trends were estimated throughout the entire period of SWAT simulation (2004-2022). Over 

this period of 19 years, a notable rise in the mean temperature was observed (Figure 13). 

Starting at around 13.8°C in 2004, it peaked at 14.7°C in 2022. Notably, 2005 marked the 

coldest year, while 2022 emerged as the warmest.  
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Figure 14: Mean temperature from 2004 to 2022, with the trend represented by the red line. 

 

The analysis of precipitation patterns revealed a notable overall decrease, as illustrated in 

Figure 14, with the year 2022 prominently occurring as the driest in the observed period. 

Furthermore, a noteworthy increase was observed in the frequency of rain-free days, as 

represented in Figure 15, with both 2017 and 2022 documenting the highest occurrences of 

such meteorological events. This exploration of climatic trends contributes to our 

understanding of changing weather dynamics, particularly in terms of decreasing precipitation 

and the rising of rain-free days. 
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Figure 14: annual precipitation. 

 

 

Figure 15: rain-free days over the past 19 years, with the trend reflected by the red line. 
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4.2 Soil water content sensors  
The in-situ soil moisture measurements enabled, first, a correlation between soil water content 

and precipitation. This not only facilitated the identification of irrigation activities (as 

illustrated in Figure 16) but also enabled a comparative analysis of water content across 

different land uses.  

As showed in Figure 16, the use of soil moisture sensors across various land-use conditions 

proved instrumental in recognizing distinct irrigation schedule. Within the forested area, the 

sensors reflected natural conditions where soil water content was predominantly influenced 

by precipitation. The peaks observed in soil water content in the forested region linked to 

rainfall events, also confirmed the peaks in both rice and corn fields. Conversely, in the corn 

and rice fields, the sensors revealed clear indications of irrigation practices. In the case of corn 

cultivation, additional peaks in soil water content were notable during irrigation periods, 

adding a layer of complexity to the moisture dynamics. Meanwhile, for rice fields, the timing 

of the initial irrigation flood was distinctly visible, indicating a significant increase in soil 

water content. This detailed analysis not only showed the influence of land-use practices on 

soil moisture but also emphasizes the importance of considering specific crop characteristics 

and irrigation schedules in understanding the dynamics of water availability in different 

agricultural settings. 
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Figure 16: the correlation between soil water content and precipitation in the study area. 

 

Analysing the modelled soil moisture content using SWAT in comparison with field 

measurements obtained through Soil moisture sensors (TEROS 12), a consistent 

underestimation in the model emerges. This discrepancy in probably due to the differences in 

measurement scales, with the sensors providing local water content data, while the SWAT 

simulations operate at the HRU scale. The incorporation of auto-irrigation in the SWAT further 

introduces a layer of complexity to the dynamics of soil moisture. The assumption was made 

that actual irrigation events might impact soil moisture levels differently than the model's 

HRUs, owing to their distinctive representative scales. 

This evaluation underscores the crucial role of considering both spatial scale and local 

agricultural practices in comprehending and interpreting the intricate dynamics of soil 

moisture within the model system. These findings do not only contribute to the modelling 

techniques, but also emphasize the need to align simulations with in-situ realities to enhance 

the accuracy and applicability of such hydrological models. 
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4.3 SWAT model  
As previously mentioned in the 3.4 paragraph, the initial SWAT run utilized the FAO-

UNESCO soil map, which, however, represents only one type of texture in the area—

specifically, a clayey composition that differs from the textures analysed. Despite this 

limitation, these preliminary test runs proved valuable in detecting and identifying both data 

and simulation issues.  

The initial approach, employing "traditional topography driven drainages," revealed its 

inadequacy in accurately delineating streams and watersheds in an area with the described 

characteristics. Channels delineated by this method did not align with the actual artificial 

drainage system, resulting in dynamics that deviate from the real study area situation.  

In the second approach, utilizing existing streams and watersheds, a challenge occurred with 

the use of channels sourced from Geoportale della Lombardia. Indeed, in the shapefile of 

watercourses (Streams) used in SWAT, LINKNO and DSLINKNO are important fields, which 

must be filled in necessarily. “LINKNO” is the field that must contain unique and non-negative 

values. Each value represents a stretch of watercourse. “DSLINKNO” is the field represents 

the downstream link. Each value must correspond to another value LINKNO or -1, where -1 

indicates an exit point of the river basin. These two fields provide the connection between the 

sub-basins and the stretches of water streams, it is therefore impossible to conduct in the study 

area where the water streams are all irrigation channels managed by human. 

Despite these challenges, the outputs of the initial SWAT model runs are considered 

acceptable, considering the use of only one type of soil, which is more clayey than the 

observed ones, and reliance on a single climate station. Consequently, the outputs exhibit 

excessive runoff compared to the expected values.  

Subsequently, setting-up the model with more detailed input data, including a soil map 

delineating field-analysed characteristics, various climatic stations, manually delineated sub-

basins following the fluvial terraces, and the incorporation of crop rotation and auto-irrigation, 

marked improvements in the results of the uncalibrated model were determined. The 

uncalibrated model, when subjected to this refined input dataset, exhibited markedly improved 

accuracy and reliability in capturing the intricate dynamics of the studied system. This 

improvement underscores the efficacy of the augmented model configuration and provides a 

solid foundation for advancing to the subsequent phase of model calibration.  
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4.5 Calibration and validation  
First preliminary results of monthly SWAT calibration (during the period 2007-2013) using 

satellite actual evapotranspiration data showed that the model is able to simulate the general 

hydrological dynamics of the area. In the initial stages of approaching QSWAT and its 

calibration, the uncalibrated model achieved a KGE of 0.37 but overestimating it during the 

summer months and underestimating it during the winter months. While the calibrated model 

reached 0.56 and after calibration, the summer months appear to be quite consistent with the 

observed data, in the winter months this problem remains. Subsequent, including the crop 

rotation and auto-irrigation, coupled with model calibration from 2007 to 2010, led to an 

improvement in KGE values. Specifically, the uncalibrated model increased to 0.4, and the 

calibrated model demonstrated a higher performance at 0.59. These adjustments indicate a 

positive trajectory in the model's accuracy and effectiveness. The KGE efficiency, calculated 

as the mean of individual HRUs in SWAT-CUP, shows notable improvement when assessing 

the entire basin. Specifically, the KGE for the uncalibrated model rose from 0.41 to 0.83 for 

the calibrated AET (Figure 17).  

From the graph, it is possible also analyse other method of evaluating the performance of the 

model. In particular, the Root Mean Square Error (RMSE), with a value of 14.52, and a 

Coefficient of Determination (R²) with a value of 0.83. The RMSE quantifies the average 

difference between the observed and modelled values (Piñeiro et al., 2008) and, a lower RMSE 

indicates better model performance in capturing the variability. While the R² represents the 

proportion of variance in the observed data that can be explained by the model (Brown et al., 

1999). An R² close to 1 indicates a strong relationship between the model and observed data. 

A closer examination of the calibration process revels variations among the individual HRUs. 

The top performing HRU achieved an KGE value of 0.8 post-calibration, while some area 

exhibited values lower than -1, indicating a significant discrepancy between observed and 

simulated data. These underperforming HRUs, even though limited in area (less than 0.7 km2) 

contribute to the overall assessment. If we not considered these limited areas, after the 

calibration there is a satisfactory correlation between SWAT and MOD16 AET values, 

reflected in improved KGE values. In Figures 18 and 19, the calibrated SWAT model show 

the results of calibration in a field with rotation cycle of corn, and ryegrass, and a paddy rice. 

The observable improvement underscores the ability of the model to simulate the hydrological 
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dynamics of the study area. Here the results show a good KGE of 0.75 and 0.70 respectively, 

the R2 is 0.79 and 0.77, while the RMSE 15.23 and 17.39, respectively for corn and rice.  

However, despite the similarity in seasonal trends for both AET SWAT-simulated and MOD16, 

the AET SWAT-simulation exhibits more fluctuations, especially during winter months. 

Notably, both uncalibrated and calibrated SWAT values remain lower than MOD16.  

 

Figure 17: the time series of AET MOD16 (black) and SWAT (blue) after calibration for the study 

area. 
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Figure 18: time series of AET MOD16 (black) and SWAT (blue) after calibration, in a corn-ryegrass 

field. 
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Figure 19: time series of AET MOD16 (black) and SWAT (blue) after calibration, in a rice field. 

 

The validation results reveal an average KGE of 0.48, showing variability across HRUs, with 

some achieving high KGE values of up to 0.85 (Table 8). Notably, HRUs with limited areas 

tend to exhibit lower KGE. Conversely, regions of significance characterized by larger 

surfaces, often with an agricultural land-use, demonstrate good KGE values.  

Despite the presence of lower KGE in select HRUs, this calibration and validation results are 

already estimated satisfactory, considering the intricate hydrological dynamics inherent to the 

study area, demonstrating the possibility of calibrating SWAT in an ungauged area using 

satellite-based actual evapotranspiration data.  

 

 

 



61 

Table 8: KGE calibration and validation results. 

 
Mean (all HRUs) 5th 

percentile 
95th 

percentile 

Calibration 0.59 0.22 0.85 

Validation 0.49 -0.17 0.79 

 

4.5.1 Sensitivity analysis 

The 20 parameters were considered to be sensitive, six result to be more sensitive (Table 9). 

The results of the global sensitivity analysis identified that the AWC (Available Water 

Capacity) and EPCO (Plant Uptake Compensation Factor) stand out as the most influential 

parameters in shaping the accuracy of SWAT-simulated actual evapotranspiration. AWC, 

which represents the soil’s ability to retain water available to plants., this parameter determines 

how much water is taken from the lower layers of the soil when the water in the upper layers 

is insufficient. Higher values of EPCO indicate that more water is taken from the lower layers. 

Moreover, the other sensitive parameters are: ESCO (Soil Evaporation Compensation Factor), 

this parameter controls the ability of soil to "compensate" evaporation when water in the upper 

layers of soil is poor. Higher ESCO values indicate that more water is taken from the lower 

layers to compensate for evaporation. sol_z (Soil Depth): This parameter represents the 

maximum depth of the soil layer. SLSOIL (Slope Length for Lateral Subsurface Flow): This 

parameter represents the length of the slope for the lateral underground flow and CANMX 

(Maximum Canopy Storage): This parameter represents the maximum amount of water that 

can be retained by the foliage of the plants. During rain, water is trapped in the canopy, 

reducing the erosive energy of raindrops, and affecting infiltration, evapotranspiration, and 

erosion. 

These parameters are sensitive in the model, which means that small variations in these 

parameters can have a significant impact on the model results. 
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Table 9: Calibrated sensitivity parameters  

Parameter name t-Stat    P-value 

13:R__SOL_AWC.sol       52.385311864  0.000000000 

9:V__EPCO.hru         25.728184428 0.000000000 

6:V__ESCO.hru         14.966163373 0.000000000 

18:R__SOL_Z(..).sol   12.986449854 0.000000000 

17:R__SLSOIL.hru 9.934724489 0.000000000 

11:V__CANMX.hru       5.944062659 0.000000005 

 

4.6 Output analysis 

The SWAT model results indicate that there is a marginal increase in actual evapotranspiration 

over the past 15 years in the study area. In contrast, the ratio of evapotranspiration to 

precipitation exhibits variability, providing valuable insight into the water balance dynamics 

within the study region.  

The findings from the SWAT model output indicate, indeed, an evapotranspiration trend in the 

study area, revealing a relatively stable scenario with a marginal increase of only 4%, as 

illustrated in Figure 20. This apparent constancy in evapotranspiration, however, can be 

juxtaposed to the ration between actual evapotranspiration and precipitation. Figure 21 show 

the variability in the ratio of evapotranspiration to precipitation and notable spikes in the ratio 

are observed in 2015, 2017 and 2022, where actual evapotranspiration surpassed precipitation.  

The fluctuations in this ratio encourage a deeper exploration into the factors influencing the 

water balance dynamics within the study area. 
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Figure 20: SWAT actual evapotranspiration trend in the study area. 
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Figure 21: percentage ratio of evapotranspiration to precipitation in the study area. 

 

This investigation also examined the Soil Water Content (SWC), particularly focusing on 

Hydrological Response Units (HRUs) characterized by agricultural land-use. The graphical 

representation in Figure 22 shows a declining trend in soil water content over the last 15 years. 

This substantial decrease, amounting to -7%, highlights a concerning shift in the moisture 

dynamics. This decline underscores the urgency of understanding the intricate factors 

contributing to this trend, prompting a deeper exploration into the potential implications for 

agricultural practices, ecosystem health, and overall water resource management.  
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Figure 22: SWAT SWC trend in the last 15 years in the study area. 

 

4.7 Trend analysis 

Retaining the Mann-Kendall test, trends in temperature and rain-free days were examined. 

The Kendall coefficient for temperature indicates an upward trend, although the p-value lacks 

statistical significance. Conversely, the trend for rainless days is more pronounced, with a 

significant low p-value, pointing to a noteworthy increase in the number of rain-free days.  

The Mann-Kendall test was employed to assess the trends in actual evapotranspiration, the 

AET/precipitation ratio, and SWC too. AET values suggest that there is an upward trend, 

although p-value is not statistically significant. The AET/precipitation ratio exhibits a positive 

correlation with tau value, indicating a potential increase in evapotranspiration relative to 

precipitation over time; however, the p-value exceed the significance level. Regarding SWC, 

tau values suggest a weak negative correlation, implying a small decrease in soil water content 

over time.  
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5 DISCUSSION 

 

Hydrological models, are valuable tools and fundamental for the understanding of the 

consequences of climate change in recent years (Liu et al., 2021). Hydrological models can 

be used to simulate rainfall-runoff regimes, groundwater-surface water interactions, water 

balance, and other hydrological phenomena in several types of basins. It is, however, difficult 

to apply these models in lowland areas (Waseem et al., 2020). Lowland areas, in fact, are often 

characterized by complex drainage systems, high infiltration rates and variable soil properties 

and are often subject to changes in land use and climate change. The application of a 

hydrological model in a lowland area requires careful analysis of the territory. Moreover, 

typically, hydrological models in the calibration and validation procedures use discharge data, 

but acquiring such data in lowland areas poses challenges. The flat topography prevalent in 

lowlands promotes vertical water dynamics, resulting in surface runoff often being negligible 

(Baker et al., 2022; Balestrini et al., 2021).  

In particular, the study area presents a unique challenge, characterized by its intense 

cultivation, artificial irrigation channels, and the absence of a conventional "natural" channel 

network. Nevertheless, despite the crucial significance of the hydrological cycle for 

agriculture and water management in the region, the existing research is somewhat limited. 

From this study, in a particular and complex, but unique area, the importance of analysing 

input data is evident. 

First of all, the ‘hybrid’ Digital Elevation Model (DEM) with a resolution of 10 meters, 

facilitated a comprehensive evaluation of the landscape, revealing distinctive features that 

define the area. Notably, the presence of fluvial terraces emerged as a defining characteristic 

of the region. These findings not only improve the understanding of the topography but also 

contribute significantly to highlight the unique landscape of the study area. It is precisely this 

feature of the terraces that generate the springs at the base of their escarpments and thus, 

creates a unique water reuse system, that in terms of sustainability is an exceptional example 

worldwide. 

Additionally, while conducting fieldwork to assess hydraulic conductivity, the identification 

of densely compacted soils in elevated areas, influenced by ongoing agricultural practices, 

underscores the existence of local variations in soil characteristics. These compacted soils, 

often result from the use of heavy machinery, can induce alterations in soil structure, impeding 
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water and air penetration and limiting root development in the soil (Nawaz et al., 2013). Such 

soil compaction can significantly impact the physical condition of the soil, manifested in the 

diminishing hydraulic properties like infiltration rate and hydraulic conductivities. Therefore, 

it is evident that human activities, particularly those associated with agriculture, apply a 

substantial influence on the environment (Shaheb et al., 2021). 

Furthermore, another aspect in continuous modification is the land use. Between 2007 and 

2018, the study area experienced significant changes in land use and the impact of different 

land uses on soil properties can alter the components of the hydrological cycle, in particular, 

as regards agricultural areas, which are also those requiring a greater supply of water.  

In the examined period, there was a decline in the simple arable land (such as maize, wheat, 

and sorghum), following in an increase. In contrast, for rice cultivation there was a substantial 

rise until 2015, succeeded by a decline from 2015 to 2018. This fluctuation is influenced by 

choices made by producers, often in response to drought conditions (Ente Risi, 2022). It is 

important to note that these changes in rice production can be influenced by numerous factors, 

such as climatic conditions, changes in agricultural practices and changes in market demand. 

For example, Coldiretti reported that national rice production in Italy has decreased by almost 

30% due to increased costs and adverse weather conditions (Coldiretti, 2022). The Italian rice 

sector is facing a potential challenge due to climate change, which is causing a significant 

impact on rice cultivation, particularly in Northern Italy. Over 26,000 hectares of rice fields 

have been destroyed due to elevated temperatures and drought conditions. This has caused an 

extraordinary loss in production (Moraca, 2022). The decrease in rice production can explain 

the increase in simple arable crops, which require less irrigation water. However, the 

oscillation in rice cultivation carries significant hydrological and socioeconomic implications. 

A decrease in rice cultivation can alter water management, due to the substantial influence of 

traditional paddy rice fields on water flow and retention, particularly in the study area. Rice 

fields often function as natural reservoirs, contributing to flood control and groundwater 

recharge. A decline in rice cultivation has the potential to disturb this “delicate” water balance 

(Baker et al., 2022; Bove, 2021; Giuliana et al., 2022). Conversely, a growth in rice cultivation 

could accelerate water demand, resulting in elevated irrigation needs (Tsuchiya et al., 2018; 

Wu et al., 2019). This increased demand has the potential to strain local water resources. 

Therefore, preserving a sustainable equilibrium in rice cultivation practices is essential to save 

the hydrological balance in the study area. 
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The shifts in land use involve substantial implications for agricultural practices, biodiversity, 

and overall sustainability. Furthermore, alterations in land use can have a substantial impact 

on evapotranspiration (Crespi et al., 2021), thereby influencing water cycles and balances. 

Therefore, comprehending these dynamics is essential in formulating efficacious land 

management strategies and policies.  

As evident, in this dynamic landscape, setting-up the Soil and Water Assessment Tool model 

poses a complex challenge. Several factors contribute to these complexities. First, the spatial 

variability of soil properties and land use. In addition, a flat topography and fertile soils 

promote intensive agriculture, particularly in areas such as the Ticino and Po Plains in northern 

Italy. This type of agriculture frequently involves irrigation. However, in numerous cases, 

comprehensive information regarding irrigation schemes and water supply is unavailable 

(Masseroni et al., 2017). Irrigation practices and precise information on irrigation, with the 

presence of artificial irrigation channels is a challenging task. Finally, the crop characteristics, 

as every crop exhibits distinct water requirements and varied responses to water stress, 

introducing an additional layer of complexity to the modelling process.  

It is therefore essential to have high quality and detailed input data in order to calibrate and 

validate the model in an appropriate way. 

After conducting an analysis of the study area and run SWAT simulations from 2004 to 2022, 

the model was calibrated by AET MODIS data. The calibrated SWAT model, applied to 

agricultural HRUs with a rotation of corn-ryegrass and paddy rice, demonstrated significant 

improvement, showing its capability to accurately simulate the hydrological dynamics of the 

study area. Therefore, results from SWAT calibration using MOD16 data are generally positive 

and indicate a good match between model simulations and observed data, for the KGE, used 

for evaluating the model performance, but also for other measure, such as RMSE and R2. 

Overall, the results suggest that the SWAT model, calibrated using MOD16 data, can 

adequately represent the hydrological dynamics of the study area. In particular, the R² results 

suggests that the model explains a large part of the variability in the data and the RMSE results 

are acceptable.  

Validation results further confirmed the model's efficiency, with satisfactory results. Notably, 

regions of significance characterized by extensive surfaces and agricultural land-use exhibited 

good KGE values, indicating the model's excellence in areas of considerable size and specific 

land-use types, particularly in agricultural zones crucial for this study. 
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Despite encountering lower KGE values in selected HRUs, both calibration and validation 

results remained satisfactory, a crucial achievement considering the intricate hydrological 

dynamics of the study area. These findings highlight the possibility of calibrating the SWAT 

model in an ungauged area using satellite-based actual evapotranspiration data. The overall 

results underscore the SWAT model's potential as a valuable tool for simulating complex 

hydrological dynamics. 

In particular if we consider all three methods to evaluate performance of the single HRUs, 

values of R2 equal to 0.79 and 0.77 indicates that about 79% and 77% of the variability in the 

observed data can be explained by model simulations. While this is a positive result, it is 

important to note that there may be some variability components in the model. Moreover, the 

RMSE results can be considered acceptable. Finally, the KGE, R2 and RMSE values may 

indicate that there may be a range for additional improvements in concordance and variability 

between model simulations and observed data.  

However, the calibration results demonstrate that the seasonal patterns observed in both 

SWAT-simulated evapotranspiration and MODIS data exhibit similarities, yet the SWAT 

simulations exhibit more pronounced fluctuations. Initially, the uncalibrated SWAT-simulated 

evapotranspiration tends to overestimate ET in summer and underestimate it in winter. With 

the addition of crop rotation and auto-irrigation, KGE values have increased. In particular, 

through calibration, a notable correlation is achieved during the summer months between 

observed and simulated data, although challenges persist in accurately representing winter 

months. These differences could be due to utilizing satellite data for model calibration that 

yields slightly different output compared to calibrating with streamflow data, as highlighted 

by (Rajib et al., 2018). The hypothesis for these discrepancies is that SWAT's simulation of 

higher actual evapotranspiration in summer and lower AET in winter, relative to MODIS, 

arises from the utilization of satellite data and distinct input factor: SWAT's incorporate both 

weather data (precipitation, temperature, humidity, wind speed, and solar radiation) and 

surface conditions (soil, landuse, and slope) for evapotranspiration estimation. SWAT being a 

physical hydrological model designed to simulate the water cycle within a specific area at a 

heightened spatial resolution. This requires precise data on soil and land-use, unique for each 

HRU (Abiodun et al., 2018; Qiao et al., 2022). In contrast, MODIS includes only climate and 

vegetation data (Parajuli et al., 2022). Moreover, there are different resolutions compared to 

HRUs s for AET calculation respect to MOD16 pixel size. Additionally, as highlighted by 
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Abiodun et al.(Abiodun et al., 2018), a potential factor contributing to this variation could be 

the differences in land cover. During winter months, vegetation typically undergoes dormancy 

or sheds foliage. If the land cover data utilized in SWAT significantly diverges from MOD16, 

it may lead to disparities in their respective simulations of evapotranspiration. In our study, 

the dissimilarities in land cover between SWAT and MOD16 were compounded by their data 

originating from different years. Additionally, as observed by (Parajuli et al., 2022), SWAT 

tends to project higher evapotranspiration during the crop growth season and lower during the 

inactive season, whereas MOD16-derived Actual Evapotranspiration (AET) remains 

relatively constant. Consequently, the discrepancies in simulated AET between SWAT and 

MOD16 were more pronounced during the less active winter months, attributed to SWAT's 

incorporation of climatic conditions, land-use, and soil characteristics. In conclusion, MOD16 

data can have some limitations even if it provides valuable data for hydrological modelling 

and water resource management. Moreover, other studies have highlighted a significant 

uncertainty of evapotranspiration estimates using MOD16 data. These uncertainties are 

attributed, for example, to the lack of spatial heterogeneity due to the coarse MODIS imprint, 

the absence of local vegetation and microclimatic variability in the overall land cover 

classification and coarse spatial resolution of GMAO meteorological data used as input for 

evapotranspiration calculus (He et al., 2019; Velpuri et al., 2013). 

However, despite these discrepancies, the calibration results are promising, particularly 

considering the complex hydrological dynamics of the study area. They emphasize the SWAT 

model's potential as a valuable tool for simulating hydrological processes. Nevertheless, 

vigilance is reasonable towards underperforming areas to ensure a comprehensive and precise 

representation of the entire basin. 

An analysis of the recent drought was conducted (2004-2022). As outlined in the Annual 

Global Climate Report released by the National Center for Environmental Information 

(National Center for Environmental Information, 2022), the ten warmest years within the past 

143 years occurred after 2010. The analysis of temperature trends indeed over the 19-year 

period reveals a significant increase in mean temperature, which rose from approximately 

13.8°C in 2004 to a peak of 14.7°C in 2022, indicating a warming trend. The coldest year 

during this period was 2005, while the warmest was 2022. Italy faced challenges caused by 

heightened temperatures and drought in recent years, particularly in 2017 and 2022, resulting 

in substantial difficulties in water management (SNPA, 2023, 2018). The SNPA report 
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underscored that 2022 marked Italy's warmest and driest year on record, leading in various 

repercussions, particularly in the agricultural territory. The agricultural sector attested 

drought-induced damages and diminished crop yields, notably in corn cultivation, as reported 

by (Coldiretti, 2023). The warming trend observed aligns also with global temperature trends. 

According to NOAA, Earth's temperature has increased at an average rate of 0.08°C per 

decade since 1880 (Lindsey and Dahlman, 2023). The Intergovernmental Panel on Climate 

Change (IPCC) also notes that human-induced greenhouse gas emissions have contributed to 

an increased frequency and/or intensity of certain weather and climate extremes since pre-

industrial times, particularly in temperature extremes (Seneviratne et al., 2021).  

As for the examination of precipitation across the observed period, there is a significant 

decline in overall precipitation, reaching its lowest values in 2022. This discovery aligns with 

the trends in global climate change, forecasting a rise in the frequency and intensity of 

droughts (Seneviratne et al., 2021). Additionally, there is a conspicuous increase in the 

frequency of rain-free days, which may signify prolonged drought periods. Although the 

overall decline in precipitation over the past 19 years is marginal, the rise in rain-free days 

suggest heightened intensity in individual rainfall events and an increase in frequency of 

extreme precipitation events (SNPA, 2019). These findings contribute into evolving weather 

dynamics, particularly concerning the reduction in precipitation and the increase in rain-free 

days.  

The effect of these trends, both temperature and precipitation, is significant. The rise in global 

average surface temperature caused the diminishing snow cover and sea ice and intensifying 

heavy rainfall (National Center for Environmental Information, 2022). Diminished 

precipitation and a rise in rain-free days can result in water scarcity, adversely affecting crop 

yields and the availability of water for irrigation, just as it occurred in the year 2022. The 

effects of these trends can impact various sectors, including agriculture and water resources 

management. In the agriculture sector, indeed, these shifts may result in alterations to growing 

seasons and diminished yields (Agricolture and Agrifood Canada, 2020). Therefore, it is 

essential to comprehend these trends and formulate adaptive strategies to ensure sustainable 

agriculture and innovative solutions to ensure in the evolving climate conditions. 

In the specific context of my research, the observed warming trend holds profound 

implications for water resources management. Elevated temperatures can increase 

evapotranspiration rates, potentially impacting water availability for irrigation. This 
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underscores the critical need to incorporate climate change projections into water resources 

planning and management efforts.  

The SWAT model output indicate a slight increase in actual evapotranspiration over the past 

15 years in the study area. This trend is coupled with the variability in the ratio of 

evapotranspiration to precipitation. The relationship between calculated SWAT actual 

evapotranspiration and precipitation is a key indicator of water deficits in the area, leading to 

drought conditions and affecting water availability for plants and other purposes (Glenn et al., 

2015; Milly, 1994). In particular, the ratio between actual evapotranspiration and precipitation 

shows fluctuations with distinct peaks occurred in 2015, 2017, and 2022, where actual 

evapotranspiration exceeded precipitation, indicating that the soil loses more water than it 

receives from the atmosphere, indicating periods of heightened water demand by plants due 

to drought conditions. The prolonged absence of precipitation over time, indeed, coupled with 

increasing temperatures, drove heightened water evaporation from both soils and plants 

(Faranda et al., 2023), concluding in a reduction in available water resources. 

These oscillations induce a more in-depth exploration of the factors influencing the water 

balance dynamics within the study area. These findings underscore the potential of the SWAT 

model as a valuable tool for simulating hydrological dynamics, even in ungauged areas. 

Finally, the investigation on SWC showed a trajectory in SWC over the last 15 years. One of 

the most significant factors affecting SWC is the amount of precipitation and its distribution 

over the years (Horel et al., 2022), that as previously reported, are undergoing changes and 

this could lead to this trend of decrease. Notably, a 7% reduction in soil water content over a 

15-year was noted, a notable discovery considering the potential consequences for crop 

productivity and yield (Datta et al., 2017). The decrease in soil water content can be attributed 

to alterations in precipitation, increasing temperatures, and shifts in land management 

practices (Gao et al., 2014; Mimeau et al., 2021; Zhou et al., 2021). The diminishing SWC 

carries profound implications for agricultural practices, with impact on soil characteristics, 

like reduced water absorption capacity. This deterioration in soil quality, moreover, disrupts 

natural ecosystem cycles, affecting land, air, and sea, thereby influencing human health and 

lifestyles (Gomiero, 2016). Therefore, the decreasing trend in SWC poses a significant 

challenge for agricultural practices, ecosystem health, and water resource management. It 

emphasizes the need to comprehend the contributing factors to this trend and explore potential 

solutions urgently. 
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The results of trend analyses, using the Mann-Kendall test, a non-parametric method for 

identifying trends in time series data, underscore the presence of trends in the environmental 

parameters analysed. The results revealed a significant upward trend particularly in the 

increase of rain-free days. This observed trend holds significant implications for agriculture 

and water management. As already highlight, the rise in rain-free days indicate period of 

droughts that may contribute to a decrease in SWC (Chen et al., 2023), a critical factor for 

crop growth. Consequently, this could lead to lower crop yields, alterations in growing 

seasons, and exacerbation of water scarcity issues, especially in regions already vulnerable to 

drought.  

Despite its utility, it is important to recognize the limitations of the Mann-Kendall test. It 

requires a substantial amount of data for increased accuracy. Hence, although the Mann-

Kendall test provides valuable insights into rain-free day trends, additional research over an 

extended period is crucial for a more comprehensive analysis. Further examinations are judged 

necessary, particularly considering the potential impacts on local water resources. Anyway, 

the trends already observable with such a short historical series and the significant rain-free 

days definitely indicate a trend of climate change. These results, indeed, align with global 

concerns regarding climate change (Lindsey and Dahlman, 2023) and emphasize the necessary 

for additional explorations into the original factors. 

In this context, on-site soil moisture measurements have provided valuable insights into the 

interaction among soil water content, precipitation, and the influence of different land uses on 

this relationship. Within forested areas, soil water content primarily reflected the influence of 

precipitation, with peaks in soil water content corresponding to rainfall events. These natural 

peaks were similarly observed in both rice and corn fields, underscoring the impact of 

precipitation on soil moisture across various land uses. However, in the corn and rice fields, 

additional peaks in soil water content are present, indicating the presence of irrigation 

practices. The timing of the initial irrigation flooding in the rice fields was evident, indicating 

a substantial increase in soil water content. These findings emphasize the significance of 

considering distinct crop characteristics and irrigation schemes when delving into the 

dynamics of water availability across diverse agricultural settings. Additionally, they 

underscore the potential of soil moisture sensors as a valuable tool for monitoring and 

managing water resources within agricultural landscapes. Regarding the comparison of SWC 

simulated by SWAT and the SWC of the soil moisture sensors, we observed that the measured 
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and modelled quantities of irrigation water and the timing of irrigation differ significantly, in 

line with other studies e.g., (Qi et al., 2018). However, due to the calibration we obtained a 

high reliability of the simulated SWAT output revealing, that farmers might use more irrigation 

water than needed compared to the SWAT's auto-irrigation procedure values. This suggests 

possibilities for optimizing irrigation practices and contributing to sustainable water resource 

management. 

In conclusion, the application of the SWAT model in this study allowed for a more 

comprehensive and accurate analysis of the hydrological dynamics in intensively used 

agricultural and irrigated areas, considering crucial factors such as irrigation and crop rotation. 

This underscores the importance and versatility of the SWAT model in hydrological research 

and management. 
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6 CONCLUSION AND OUTLOOK  
 

In conclusion, this PhD study has provided essential information giving valuable insights into 

the hydrological dynamics of an intensively used agricultural and irrigated region in northern 

Lombardy over the last 15 years, using a SWAT model application.  

The findings highlight the intricate interplay of numerous factors, from unique landscape 

features to the impact of land use and climatic changes, on the water cycle. 

Using the MOD16 data for the calibration was fundamental for precisely interpreting the 

impacts of climate change, especially in regions dominated by crops like rice and corn. These 

crops demand substantial irrigation, particularly crucial in times of drought.  

The calibration and validation results were satisfactory, and the study revealed trends in 

temperature, precipitation, and rain-free days underscoring the influence of climate change on 

the region's hydrology. This warming and precipitation variation trends could have profound 

implications for various sectors, particularly agriculture and water security. The decrease in 

soil water content and shifts in land use patterns pose significant challenges for agricultural 

practices, soil erosion and sustainability. It is crucial to further investigate these trends and 

their potential impacts, as well as to develop adaptive strategies to mitigate the adverse effects 

of this warming trend. 

However, it is important to note that the study area is a lowland area with complex hydrology 

and a lack of natural water courses. These characteristics introduced limitations in the 

conventional use of SWAT, depend on discharge for model calibration and validation. 

Nevertheless, the absence of irrigation data and only use of the auto-irrigation function within 

SWAT could affect the accuracy of the results. Therefore, the model offers optimal information 

that can assist farmers in refining their irrigation strategies, but the inclusion of actual 

irrigation data could improve the study's accuracy regarding water consumption in irrigation, 

groundwater recharge, and soil water dynamics. 

Additionally, the study encourages the exploration of innovative solutions for sustainable 

agriculture and water resource management in the challenge of changing climate conditions.  

In summary, this study is as a fundamental step towards a more comprehensive understanding 

of the Ticino irrigation cascade's hydrological dynamics, for decision-making and sustainable 

practices in agriculture and water resource management. 
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In recent years, the management of water resources has encountered formidable challenges, 

ranging from the limited availability of resources and pollution to the escalating demands of 

a growing population, and, notably, the impacts of climate change. Future studies could 

examine deeper into the causes of observed trends, considering the complex interactions 

between climate, land use, and human activities. Long-term monitoring and modelling could 

provide a more precise understanding of the evolving hydrological dynamics, thereby 

facilitating the development of adaptive strategies. The calibrated model would be able to 

explore potential solutions for the management of water resources. One could observe, for 

instance, how different types and periods of irrigation can affect groundwater. In fact, some 

studies have examined how, flooding the rice fields even in winter, when water is available, it 

can help the recharge of the aquifer for the summer irrigation periods, when water is frequently 

scarce. Moreover, with the calibrated and validated model there is the possibility of 

formulating future scenarios following the Shared Socioeconomic Pathways (SSPs). This 

approach could offer a valuable perspective for exploring the various directions that the 

context studied could take, based on different socio-economic development scenarios. In 

particular, it is contemplating to utilize an intermediate approach, the SSP2 where emissions 

continue to increase through the end of the century, with a resulting warming of 3.8-4.2C. 

Furthermore, past land use variations (from 2007 to 2018) have been analysed as an initial 

indication of the dynamics of anticipated future changes. Various land use and agricultural 

management scenarios, involving different irrigation techniques and field 

processing/preparation methods while maintaining a constant climate, have been explored. 

With climate change and water scarcity, land use is set to change. With the current situation, 

it is possible that maize cultivation will increase, compared to rice, as it requires less water, 

but also may change techniques. There may be the implementation of innovative technologies 

for water saving, such as precision irrigation and rainwater collection techniques. These 

technologies could help reduce water consumption and improve water use efficiency and 

could be analysed with SWAT model.  

Finally, in the context of the research of the CE4WE project, a comparison between the SWAT 

model and HEC-HMS for the same area of study is currently being conducted. This study aims 

to understand the specific limitations of each model, thus allowing a more complete analysis 

of the hydrological dynamics of the area of interest. The ultimate goal is to synergistically 
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integrate the strengths of both models, thus optimizing the overall predictive capability and 

allowing a more accurate assessment of hydrological impacts. 
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Abstract: This study examines the hydrological dynamics of the Ticino irrigation cascade in northern

Italy from 2004 to 2022. The region, which is shaped by human activity, is characterized by its flat to-

pography and complex management of water resources, featuring a unique historic irrigation cascade.

Utilizing the Soil and Water Assessment Tool (SWAT), we investigated the water availability during

recent severe droughts in this complex agricultural environment, which lacks natural drainage. This

area faces risks due to increasing temperatures and increased rainless days. Therefore, understanding

the soil water dynamics is essential for maintaining the system’s sustainability. Calibrating and

validating the SWAT model with runoff data was challenging due to the absence of natural drainage.

Thus, we utilized MOD16 evapotranspiration (AET) data for calibration. Generally, the calibration

and validation of the SWAT model yielded satisfactory results in terms of the Kling–Gupta efficiency

(KGE). Despite some discrepancies, which were mainly related to the data sources and resolution,

the calibrated model’s outputs showed increased actual evapotranspiration that was influenced by

climate and irrigation, leading to water deficits and droughts. The soil water content (SWC) decreased

by 7% over 15 years, impacting crop productivity and environmental sustainability. This also resulted

in rising water stress for crops and the ecosystem in general, highlighting the direct impact of adverse

climate conditions on soil hydrology and agriculture. Our research contributes to the understanding

of soil–water dynamics, as it specifically addresses recent droughts in the Lombardy lowlands.

Keywords: agricultural water; drought management; hydrological modeling; water shortage;

evapotranspiration; climate change adaption

1. Introduction

It is widely accepted that global climate change can cause significant changes in hy-
drological processes due to the higher temperatures, more frequent and intense heatwaves,
and changes in precipitation regimes [1–3]. In particular, droughts have been recognized
as natural phenomena that can significantly impact ecosystems, agriculture, and water
resources, posing substantial challenges to societies worldwide [4–6].

Italy has experienced several droughts in recent years, with drought episodes that
have become stronger in frequency and length since 2001. In Northern Italy, 2022 was the
warmest year since 1800 according to the Institute of Atmospheric and Climate Sciences
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(ISAC) of the National Research Council (CNR) [7]. Anomalies were found in February
and March with 88% and 55% less precipitation, respectively, and in the summer of 2022—
especially in July—with 65% less precipitation. Indeed, a significant lack of rain was
observed across most of the European continent during 2022 [8]. This led to significant
water shortages, affecting agricultural production and, thus, impacting the local and
regional economies [9]. In this context, irrigation plays a crucial role in supporting local
agricultural production, as it ensures that crops have adequate water supply in periods
of droughts. Without irrigation, crops may experience water stress, resulting in reduced
growth, adverse impacts on plant health [10], and lower yields in terms of both quantity and
quality. Furthermore, in our study area, irrigation is fundamental for groundwater recharge.
Particularly, the flooding of rice fields during winter alleviates water scarcity in spring and
early summer by recharging aquifers. Essentially, irrigation serves as a fundamental tool
for managing agricultural production during periods of drought. It helps to mitigate the
effects of water scarcity, promotes crop productivity, and keeps the whole system balanced.
The region of Lombardy in Northern Italy, which is renowned for its ancient lowland
irrigation areas characterized by the presence of springs [11,12], has historically been a vital
agricultural region due to its rich soils and favorable water supply. The area covers the
main terraces and escarpments of the Ticino River. In the past, irrigation water was diverted
from the Ticino River through irrigation channels and infiltrated as irrigation water on
the uppermost terrace level, re-emerging in the form of springs at the base of the fluvial
terrace escarpments [13]. Over centuries, this represented a sustainable water-use cycle
that was quite unique in the world and allowed for intensive rice cultivation. However,
this traditional irrigation system is now facing new challenges due to changing climate
patterns. The region experienced significant droughts in the last few years that affected
the water cycle and groundwater levels, e.g., through variations in recharge rates [14].
Therefore, traditional irrigation schemes based on water reuse, which have operated in the
region since the eleventh century [15], might be seriously affected. Specific measures and
strategies for water scarcity situations should be developed to prevent and mitigate the
effects of any severe reductions in water resource availability and to protect agricultural
production as much as possible.

In this context, our study aims to examine the complex hydrological dynamics of the
area using the Soil and Water Assessment Tool (SWAT), a physically based and complex
hydrological model designed to operate at the basin scale [16,17]. The SWAT is widely used
to model runoff, non-point source pollution, and other intricate hydrological, ecological,
and environmental processes under changing land uses and climate conditions [18–24].
We used the SWAT to investigate the occurrence and severity of last year’s droughts in
Lombardy’s ancient lowland irrigation area. Despite the existence of several hydrological
models that were used to study droughts in recent years, such as the DTVGM, GWAVA,
SWAT, and HEC-HMS [25], their application in lowland areas is still challenging [26].
Lowlands are characterized by a flat topography and low hydraulic gradients [27]. Fur-
thermore, these areas are often heavily modified in terms of drainage systems due to
human activity, such as intensive agriculture. These characteristics make it challenging to
delineate first-order watersheds [28] and to assess their hydrological dynamics. Moreover,
it is difficult to obtain adequate information about the quantity and quality of irrigation
water. Irrigation schemes are highly variable, as they depend on the actual crop water
availability and the agricultural management strategies. The dense network of irrigation
channels is managed at different administrative levels, ranging from the local field scale
to large consortia (consorzio di bonifica Est Ticino Villoresi) that manage general water
resources. Thus, a detailed assessment of the irrigation schemes is challenging due to
the various levels of administrative competences, as well as missing monitoring and/or
documentation activity.

However, in this intensely used agricultural lowland area, calibrating and validating
a hydrological model in a traditional way using discharge data is difficult or impossible
due to the lack of natural drainage and information on the water resources used for
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irrigation [29]. Therefore, we propose alternative procedures for calibrating and validating
the model. As shown by Becker et al., Odusanya et al., and Shah et al. [29–31], model
calibration can also be conducted using evapotranspiration data. Various products that
provide evapotranspiration information based on remotely sensed data are freely available.
Satellite-based products, such as the Global Evaporation data (MOD16), which are based
on measurements from the Moderate-Resolution Imaging Spectroradiometer (MODIS),
were successfully used to calibrate spatially distributed hydrological models [30,32–34].
However, as stated by Becker et al. [29], the calibration of a hydrological model in a flat,
complex agricultural environment is quite challenging, particularly when human activities
such as irrigation interfere with the natural system or there is a general lack of observed
information in terms of their spatiotemporal scales [30].

In this study, we aim to contribute to the understanding of the conditions and dynamics
of local water resources in this intensively used agricultural region, with a particular
emphasis on the impacts of droughts, especially in the last few years. By addressing the
challenges of hydrological modeling in an anthropic landscape, our research represents
an innovative approach to understanding the complexities of hydrological dynamics in
response to changing climatic conditions.

2. Materials and Methods

2.1. Study Area

The study area (Figure 1) covers approximately 50 km2 and was located about 20 km
southwest of the city of Milan in the intensively used agricultural lowlands of Lombardy,
close to the border with the region of Piedmont.

Figure 1. Right: Location of the study area in Italy. Left: Overview of the study area with its dominant

land-use classes based on the “Atlante descrittivo—Uso del Suolo Regione Lombardia” [35]. Simple

agricultural fields includ herbaceous crops that aresubjected to rotation or monoculture (excluding

permanent grasslands and pastures), fallow land, and land belonging to special horticultural crops,

special flowers, and gardens (excluding those in private residences), while the permanent crops

included vineyards, orchards and minor fruits, olive groves, and wood arboriculture.
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The area covered parts of the Ticino River Valley, with elevations ranging between
76 m.a.s.l. in the southwestern part of the Ticino River to 127 m.a.s.l. around the town of
Abbiategrasso (Figure 2). The region is characterized by a humid subtropical climate (Cfa)
according to the Köppen climate classification [36], with warm summers, cold winters, and
a mean annual temperature of 14 ◦C. The mean annual rainfall amounts to 782 mm/year—
measured at Vigevano SS494 Arpa Lombardia station (Figure 2), which is located close to
the Ticino River in the central part of the study area at an elevation of 94 m.a.s.l.

Figure 2. Elevation of the study area and geographical locations of the meteorological stations.

The Ticino River is the only natural drainage system in the area flowing towards the
southeast. This area is characterized by artificial drainage and irrigation channels that
completely modify the natural drainage system. The study area is flat, except for the river
terraces that were formed as a result of the erosive activity of the Ticino River. The area can
be divided into three main terrace levels that stretch parallel to the Ticino River. On the left
side, these terraces are more developed, while on the right side, there is only one order of
terraces. The terrace escarpments have a slope of approximately 20◦ and are characterized
by springs at their base. The oldest terrace, with higher topographic altitudes, is known as
the “Ripiano Generale della Pianura,” and it dates back to the upper Pleistocene. It consists
of gravelly–sandy fluvioglacial deposits [12] of the last Wurmian glaciation [37]. These
coarse deposits allow water to infiltrate and serve as a significant source of aquifer recharge.
The intermediate level, which was formed during a subsequent phase of erosive action of
the Ticino River, is characterized by terraced fluvial deposits of the Middle Holocene, and
it consists of sandy–gravelly and silty textures. The most recent fluvial deposits represent
the youngest level of the Ticino valley, attributed to the Upper Holocene, and they are
composed of sandy–gravelly and slightly silty textures. Soil has developed above these
fluvial and fluvioglacial deposits, with varying depths based on the age of the terrace level.
According to the World Reference Base for Soil Resources [38], the soil types range from
regosols in the lower part to luvisols and umbrisols on the upper terrace level, which is
characterized by a sandy–loamy texture.

From the hydrogeological point of view, groundwater primarily flows towards the
Ticino River (Figure 3).
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runoff is negligible [15]. The variation in spring discharge is mainly attributable to water 
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charging the water table, subsequently sustaining the springs at different terrace base lev-
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cino River (risorgive). This has represented a sustainable and effective method of reusing 
irrigation water for centuries.

Presently, based on the DUSAF 6.0 land-use map (Regione Lombardia, 2019) [40], the 
main crops in the area are corn and rice. Corn—including maize, along with other simple 
arable crops, such as wheat, sorghum, and barley—for both grain or silage covers approx-
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study area is covered by woodlands, which are predominantly concentrated on the low-
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[11,41]. As indicated in Figure 4, the irrigation seasons for corn typically run from June to 
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surface (Fontanili, Risorgive) (after the CE4WE report, Pilla 2020).

As mentioned previously, this part of the Ticino Valley is characterized by the presence
of springs, which are classified as “risorgive” and “fontanili.” “Risorgive” are formed by
groundwater that naturally emerges due to changes in topography and the permeability of
sediments at the base of the terrace escarpments. On the other hand, “fontanili” refers to
springs in lowland areas that have been modified by human intervention [15,39].

The fontanili and risorgive are primarily fed by groundwater. The phreatic aquifer is
supplied by local infiltration, streams, and irrigation channels [32]. However, due to the
flat nature of the study area (except for the terrace’s slope), the contribution of the surface
runoff is negligible [15]. The variation in spring discharge is mainly attributable to water
infiltration after periods of rain or irrigation [11].

During the spring–summer period, substantial quantities of water are distributed
through a complex channel network for field irrigation. Thus, the water allocated for
irrigation serves a dual purpose: It supports agriculture and significantly contributes to
recharging the water table, subsequently sustaining the springs at different terrace base
levels (see Figure 3). The region has a long history of distinctive land-use and land man-
agement practices dating back to the eleventh century, and these involve the construction
of irrigation channels [39] and the reuse of water along the fluvial terrace cascade of the
Ticino River (risorgive). This has represented a sustainable and effective method of reusing
irrigation water for centuries.

Presently, based on the DUSAF 6.0 land-use map (Regione Lombardia, 2019) [40],
the main crops in the area are corn and rice. Corn—including maize, along with other
simple arable crops, such as wheat, sorghum, and barley—for both grain or silage covers
approximately 32% of the area. However, rice covers up to 21%. Furthermore, about 18%
of the study area is covered by woodlands, which are predominantly concentrated on
the lowermost terrace level. Both corn and rice require substantial amounts of irrigation
water [11,41]. As indicated in Figure 4, the irrigation seasons for corn typically run from
June to September [14], and furrow irrigation is usually performed. In contrast, the rice
fields are generally flooded from mid-April to early May and remain submerged until the
end of August or September [11,14,15]. In 2022, one of the hottest years of the century in
the study area, the rice fields were flooded from late May to late August, with intermittent
flooding. The substantial water usage in rice paddies significantly affects the recharging of
the water table [42]. In these rice paddy areas, the primary factor influencing water levels
is the agricultural technique for rice cultivation, as described by Lasagna et al. [14].

Crop rotation patterns, sowing and harvesting times, and irrigation practices were
obtained through a comprehensive study that included a detailed literature analysis
(e.g., [43,44]), on-site inspections, and interviews with local farmers (Figure 4).

Our findings revealed that the most cultivated summer crops were corn and rice, with
corn being sown between mid-April and early May, reaching maturity by mid-June, and
being harvested in late September. Rice, on the other hand, was typically sown later than
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corn—between mid-April and late May. It grew from early June to mid-October and was
harvested in the middle and end of October. Double cultivation with crops such as corn
and sorghum after the harvesting of fodder crops such as ryegrass or winter cereals (such
as barley or wheat) is common. Additionally, herbaceous legumes such as alfalfa and
clover were prevalent and were usually mowed and harvested multiple times from May
to August.

For our study area, the most common crop rotation (ryegrass–corn rotation) was
considered by defining the sowing, irrigation, and harvesting times, as shown in Figure 4.

Figure 4. Crop calendar of the main crops in the study area. Green represents the sowing of crops,

yellow represents their development/growth, orange represents harvesting, and blue represents

residues.

2.2. Application of the SWAT

The approach used to study the hydrological dynamics of the study area over the last
decade is depicted in Figure 5.

Figure 5. Flowchart of the methodology and results: The red color indicates the software used, blue

indicates the input data, orange indicates the outputs, gray indicates the actions conducted, and

yellow indicates the steps performed for the calibration and validation.

To assess the effects of droughts on the hydrological dynamics of a Lombardy lowland
system, the Soil and Water Assessment Tool (SWAT) model [17] was applied. The SWAT is
a physically based model that operates at the basin scale, and it was developed to predict
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the impacts of climate and land management practices on water, sediment, and chemical
yields [16]. It requires specific input data, such as an elevation model, soil and land-use
maps, and climate data (precipitation, temperature, solar radiation, relative humidity, and
wind speed) [45]. The sources and the temporal and spatial resolutions of the datasets used
are documented in Table 1.

Table 1. Sources and descriptions of the input data utilized to set up the SWAT model.

Data Type Sources Resolution and Description

Topography

Deutsches Zentrum für Luft und
Raumfahrt (DLR) and Ministero

dell’Ambiente: Geoportale
Nazionale, 2019 [46]

10 m “Hybrid” Digital Elevation Model

Soil Geoportale della Lombardia [47] 1:50,000, Soil information bases

Land-Use Geoportale della Lombardia [40]
1:10,000, Land Use and Land Cover 2018

(DUSAF 6.0)

Climate Arpa Lombardia [48]
Daily, ARPA Lombardia

hydro-nivo-meteorological data archive.

The SWAT divides a watershed into sub-basins, which are further split into hydro-
logical response units (HRUs) that represent areas with homogenous topographies, soils,
and land uses. The SWAT also considers spatially distributed changes in land use and
management (e.g., irrigation schemes) and their effects on individual components of the
water balance, such as the actual evapotranspiration (AET) [29], which was used as a
variable in the calibration procedure.

In this study, the Penman–Monteith method was applied to calculate the evapo-
transpiration for the SWAT. Sub-basins were delineated in a GIS environment based on
geomorphological units (river terrace levels), since traditional watershed subdivision meth-
ods were not feasible in this flat, intensively irrigated area. The 5 sub-basins obtained were
further divided into 167 HRUs, with varying surface areas ranging from approximately
100 m2 to 4.7 km2 and an average extension of approximately 0.308 km2. We ran the SWAT
model on a monthly basis to match the temporal resolution of the observed AET data. A
monthly AET time series was generated for each HRU, and these AET values were used in
the calibration phase from 2007 to 2010 and in the validation phase from 2011 to 2013.

Due to a lack of information on irrigation schemes and practices (see above), the SWAT
auto-irrigation module was applied. Auto-irrigation can be triggered within HRUs by
soil water deficiency or plant water stress [49,50]. If sufficient water is available from the
irrigation source, the model adds water to the soil until it reaches field capacity [51].

2.3. Calibration and Validation of the Model

The SWAT model was calibrated and validated using the SWAT-CUP software (Cali-
bration and Uncertainty Procedures) version 5.1.6.2. [52,53] and applying the “Sequential
Uncertainty Fitting” (SUFI-2) algorithm [54]. This algorithm performs a “stochastic” cali-
bration, considers uncertainties related to parameters, the conceptual model, or input data,
and reflects these uncertainties in the model’s output [55]. The Kling–Gupta efficiency
(KGE) was used as the objective function [56] to assess the model’s performance. The KGE
index ranges from negative infinity to 1, and a value closer to 1 indicates a better match
between the model and the observed data.

In this study, monthly evapotranspiration data provided by Moderate-Resolution
Imaging Spectroradiometer (MODIS) were used as the observed data for the calibration
period from 2007 to 2010 and the validation period from 2011 to 2013. Runoff data were not
considered because the study area lacks natural streams. The latter was the main reason for
why AET data derived from satellite products were selected. Consequently, MOD16 data
with a resolution of 1 km were used for the calibration.

In order to compare the monthly SWAT-AET values of each HRU with the respective
MOD16 AET pixel, the mean monthly evapotranspiration of each HRU was extracted. The
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model was calibrated for 149 HRUs out of a total of 167—excluding urbanized areas—from
2007 to 2010.

A set of 20 calibration parameters (Table 2) were selected based on previous SWAT
calibration studies [27,29,52], and the parameters’ sensitivity to changes in AET was deter-
mined. These parameters were adjusted to optimize the KGE criteria between the SWAT
and MODI16 AET values.

Table 2. Parameters selected for the calibration and the range of the corrections.

Parameter Name Min_Value Max_Value Description

1:R__HRU_SLP.hru 0 0.2 Average slope steepness for overland flow

2:V__ESCO.hru 0.6 1 Soil evaporation compensation factor

3:R__CN2.mgt −0.2 0.2 SCS runoff curve number for moisture conditions

4:V__ALPHA_BF.gw −0.07076 0.109 Baseflow recession coefficient

5:V__GW_DELAY.gw 0 20.281 Groundwater delay

6:V__GWQMN.gw 0 500
Threshold depth of water in the shallow aquifer

required for return flow to occur

7:V__GW_REVAP.gw 0.1 0.2 Groundwater ‘revap’ coefficient

8:V__REVAPMN.gw 143.0484 342.720
Threshold depth for water in the shallow aquifer for

revap or percolation to occur

9:V__EPCO.hru 0 1 Plant evaporation compensation factor

10:V__RCHRG_DP.gw 0.009108 0.336 Deep aquifer percolation fraction

11:V__CANMX.hru 9.93414 29.805 Maximum canopy storage

12:R__SOL_BD(..).sol 0.190512 1.571 Moist bulk density

13:R__SOL_AWC(..).sol −0.5 0.95 Available water capacity of the soil layer

14:R__SOL_K(..).sol −0.8 0.8 Saturated hydraulic conductivity

15:R__SOL_ALB(..).sol −0.03 0.2 Moist soil albedo

16:R__SOL_ZMX.sol 24.9602 141.659 Maximum rooting depth of soil profile

17:V__SLSOIL.hru 0 150 Slope length for lateral subsurface flow

18:R__SOL_Z(..).sol −0.03 0.2 Depth from the soil surface to the bottom of the layer

19:R__SOL_CBN(..).sol 0.041925 0.1855 Organic carbon content

20:V__FFCB.bsn 0 1 Initial soil water storage

2.4. Trend Analysis

In our study, we also conducted a trend analysis using the Mann–Kendall test [57,58]
to discern patterns and directional trends in the climate and hydrological data. The Mann–
Kendall test is a non-parametric statistical method that is commonly used in environmental
studies to detect monotonic trends in time-series data [59–61]. Specifically, the test assesses
the presence of an increasing or decreasing trend over time by evaluating the rank corre-
lation of data points. In this study, climate data graphs, including those of temperature
and rainless days, were subjected to the Mann–Kendall test. For each dataset, the Kendall
coefficient (tau) was calculated to quantify the strength and direction of the observed trend.
Simultaneously, p-values were determined to ascertain the statistical significance of the
identified trends. A p-value below a predetermined significance level (e.g., 0.05) indicated
a statistically significant trend. The test was performed using the “MannKendall” function
in the “Kendall” package [61] in R [62].

2.5. Soil Moisture Sensors

In 2022, three TEROS 12 soil moisture sensors were installed at various depths, facilitat-
ing a preliminary correlation between the soil moisture and precipitation patterns allowing
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the identification of irrigation activities. The sensors were deployed in three distinct areas
characterized by different land uses as follows: (i) simple arable land with a rotation of
ryegrass and corn—sensors were installed at depths of 10 cm and 35 cm; (ii) rice cultivation,
with sensor depths of 10 cm and 30 cm; (iii) a forested area in which sensors were placed at
depths of 10 cm, 30 cm, and 65 cm. This configuration enabled a comparative analysis of
the soil moisture across the three distinct land uses.

3. Results

3.1. Input Data Analysis

Figure 6 presents the trend of temperature in the study area from 2004 to 2022 according
to measurements at the Vigevano SS494 station. There was a noticeable increase in the mean
temperature over the 19-year period. Starting at around 13.8 ◦C in 2004, the temperature
peaked at 14.7 ◦C in 2022. The coldest year was registered in 2005, while 2022 was the
hottest. Though there were notable fluctuations, the overall trend showed an increase
in temperature.

Figure 6. Mean temperature from 2004 to 2022, with the trend represented by the red line.

Figure 7 illustrates the amount of precipitation over the same 19-year period. There
was an overall decrease of 0.86%. The rainiest year was observed in 2014, while the driest
year was 2022. Moreover, a notable increase in rain-free days was observed (Figure 8). The
two years with the most precipitation-free days were 2017 and 2022. Generally, precipitation
only marginally decreased over the last 19 years, but the number of rain-free days increased.
This suggested that, on average, single precipitation events were more intensive, and
the number of extreme precipitation events increased [63]. Examining the data from the
Vigevano station revealed that in 2022, the year with the least rainfall and the fewest rainless
days, 11 extreme weather events occurred. While this aligned with the mean for the other
years, the prolonged drought periods have significant consequences.
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Figure 7. Mean annual precipitation.

Figure 8. Rain-free days over the last 19 years, with the trend represented by the red line.

The Mann–Kendall test [57,58] was conducted to analyze the climate data trends, with
a focus on temperature (Figure 6) and rainless days (Figure 8). For temperature, a positive
Kendall coefficient (tau) of 0.287 implied that there was an increasing trend, but the non-
statistically significant p-value of 0.10294 at the 5% confidence level suggested caution in
interpreting this trend. The proximity of the p-value to 5% signaled the potential for further
investigation or analysis. On the other hand, the rainless days exhibit a more pronounced
trend, with a tau value of 0.567 and a significantly low p-value of 0.00078332 (<0.05). This
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indicated a noteworthy and statistically significant increase in rain-free days. The results
highlight the complexity of the climate dynamics, urging a nuanced interpretation that
considers statistical significance and the need for additional scrutiny, especially in the
context of potential impacts on the local environment and water resources.

3.2. Calibration and Validation of the Model

The uncalibrated SWAT model’s output demonstrated a tendency to underestimate
the AET when compared to the AET data derived from the MOD16 satellite observations.
This underestimation was particularly pronounced during the winter months. However,
from the uncalibrated model to the calibrated model, there was a remarkable improvement
in the Kling–Gupta efficiency values, which were calculated by averaging the individual
KGEs of all 149 HRUs in the SWAT-CUP. Initially, the uncalibrated SWAT model exhibited
a KGE value of 0.4. Through the calibration of the SWAT model using the SUFI-2 algorithm,
an increase in the KGE from 0.4 to 0.59 was achieved. The KGE of 0.59 was derived from
the mean of the individual HRUs. Notably, a KGE value that changed from 0.41 to 0.83
for the entire basin (Figure 9) was observed. Furthermore, a more in-depth analysis of
the results of this calibration process revealed that the calibration results clearly differed
between the individual HRUs. The best HRU reached KGE values of up to 0.8 after the
calibration, while some areas showed values lower than –1, indicating a poor fit between
the observed and simulated data. These HRUs with low values had very limited areal
dimensions (less than 0.7 km2) (Table 3).

Figure 9. Time series of AET for the study area from MOD16 (black) and the SWAT (blue) after calibration.
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Figures 10 and 11 present the calibrated SWAT model in a field with a rotation of corn-
ryegrass and rice paddies. Here, a clear improvement in the model’s performance was
observed during the calibration process.

Calibration increased the AET found with the SWAT model, particularly during the
summer months. While during most of the year, there was a good match between the
values from the SWAT and MOD16, during the winter months, the SWAT values (both
calibrated and uncalibrated) were much lower than those of MOD16.

Figure 10. Time series of AET in a corn–ryegrass field from MOD16 (black) and the SWAT (blue) after

calibration.

The validation results showed a mean KGE of 0.48, with the highest KGE values
reaching up to 0.85 for some HRUs (Table 3). Even in this case, the HRUs in extremely
limited areas had low KGE values, while areas of our interest with larger surface areas and
agricultural land use had satisfactory KGE values.

Table 3. KGE results for the calibration and validation.

Mean (All HRUs) 5th Percentile 95th Percentile

Calibration 0.59 0.22 0.85
Validation 0.49 −0.17 0.79



Sustainability 2023, 15, 16771 13 of 22

Figure 11. Time series of AET in a rice field from MOD16 (black) and the SWAT (blue) after calibration.

3.3. Model Results

The SWAT output results showed that there was no significant increase in evapotran-
spiration over the last 15 years (+4%) in the study area (Figure 12). However, it turned out
that the ratio of evapotranspiration and precipitation varied (Figure 13). The graphical
representation of the evapotranspiration-to-precipitation ratio provides valuable insights
into the water balance dynamics in the study area. Peaks in the ratio, such as in 2015,
2017, and 2022, where the precipitation was less than the actual evapotranspiration, are
indicative of periods with increased water demand by plants due to drought conditions.

Additionally, we analyzed the soil water content (SWC), which showed a declining
trend for HRUs with agricultural land use. The graph in Figure 14 illustrates that there was
a significant decrease (−7%) in soil water content over the last 15 years.
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Figure 12. Actual evapotranspiration trend in the study area according to the SWAT, with the trend

represented by the red line.

Figure 13. The ratio of evapotranspiration to precipitation (as a percentage) in the study area, with

the trend represented by the red line.
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Figure 14. SWC trend over the last 15 years in the study area according to the SWAT, with the trend

represented by the red line.

The Mann–Kendall test was also applied to assess trends in the AET (Figure 12),
AET/PCP ratio (Figure 13), and SWC (Figure 14). For the AET, a tau value of 0.142
indicated an increasing trend, but the non-significant p-value of 0.47085 warrants caution in
interpreting the trend’s statistical significance. The AET/PCP ratio demonstrated a positive
correlation with a tau value of 0.259, suggesting a tendency to increase evapotranspiration
relative to precipitation over time. Despite the p-value of 0.1763 being higher than the
significance level, this underscores the need for careful consideration. Regarding the SWC,
the tau value of −0.0522 implied a weak negative correlation, indicating a slight tendency
toward a decrease in soil water content over time. However, the p-value of 0.2867 is not
statistically significant, emphasizing the absence of evidence for a significant decreasing
trend for the SWC.

3.4. Soil Moisture Sensor Results

Comparing the soil moisture content modeled with the SWAT with field measurements
taken with soil moisture sensors (TEROS 12), we observed a consistent underestimation
in the model. This discrepancy can be attributed to the differences in measurement scales,
as the sensors measured the water content locally [64], while the SWAT simulated it at
the HRU scale. Furthermore, the inclusion of auto-irrigation in the SWAT added a certain
degree of complexity to the soil moisture dynamics. It was assumed that actual irrigation
events may have impacted the soil moisture levels differently from the model’s HRUs
due to their representative scale. These findings highlight the importance of considering
both the spatial scale and local practices in understanding and interpreting soil moisture
dynamics within the model system.

As shown in Figure 15, the soil moisture sensors in different land-use conditions
helped to identify irrigation patterns. The sensors in the forest area reflected natural
conditions in which the soil water content depended solely on precipitation. In contrast,
the sensors in the corn and rice fields indicated irrigation. Notably, the peaks in the soil
water content in the forest area were related to rainfall, and this trend was also observed
in rice and corn. In the case of corn, additional peaks occurred during irrigation periods,
while for rice, the timing of the first irrigation flood was clearly visible.
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Figure 15. Correlation between soil water content and precipitation in the study area.

4. Discussion

The process-based modeling of hydrological dynamics is a valuable tool for gaining
insights into the general water cycle and for assessing future conditions through scenario
analysis. However, it has been noted by various authors that applying physically based
hydrological models such as the SWAT in lowland areas presents unique challenges. In
general, hydrological models are calibrated and validated with discharge data, but in
lowland areas, obtaining discharge data can be difficult. Additionally, the flat topography
of lowlands promotes vertical water dynamics; thus, the surface runoff is often negligi-
ble [11,15]. Furthermore, flat topographies and fertile soils favor intensive agriculture,
particularly in areas such as the Ticino and Po Plains in northern Italy. This type of agricul-
ture often involves irrigation, but in many cases, information about irrigation schemes and
water supplies is lacking [65]. Irrigation can also lead to significant alterations in drainage
patterns due to the construction of irrigation and drainage channels, as seen in the ancient
Ticino irrigation cascade system dating back to the 11th century.

To assess the hydrological dynamics of the Ticino Plain between Abbiategrasso and
Pavia, the SWAT was applied for the period of 2004–2022. Since there were no reliable
discharge data available and there were no clear drainage patterns, the SWAT model was
calibrated using AET observations derived from MOD16 data. Generally, the calibration
and validation of the model yielded satisfactory KGE values of 0.59 HRUs; these were
derived from the mean of the individual HRUs. This result served as a valuable indicator
of the model’s ability to capture and simulate the hydrological processes within HRUs,
but there was a substantial improvement in the model’s performance when considering
the basin as a whole (0.83). This result is particularly encouraging due to the accuracy in
representing the hydrological dynamics of the entire study area. However, notably lower
KGE values were found in HRUs classified as having a “WATER” land use. These areas
primarily consisted of irrigation channels and small artificial lakes, and their representation
within the HRU framework was problematic. Excluding these “WATER” areas led to an
increase in the overall average KGE value to 0.64 (not considering WATER HRUs), as seen
in Table 3. Referring individual HRUs, instead, as seen in Figures 10 and 11, the model was
able to simulate the AET in an area with different crops and land-use practices, highlighting
the success of the calibration process. However, differences between the model’s output
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and the observed data were noted. These differences could be attributed to the fact that the
MOD16 data relied on remote satellite measurements with a 1 km resolution, which covered
areas with heterogeneous land uses. MOD16 also used parameters such as Earth’s surface
temperature, the NDVI, and other indicators to calculate evapotranspiration. In contrast,
the SWAT is a physical hydrological model that simulates the water cycle in a specific area
with a higher spatial resolution, necessitating detailed data on soil and land uses that are
unique for each HRU (e.g., [66,67]). Consequently, examining the differences between the
SWAT and MOD16, we noticed that HRUs with a low KGE were characterized by a smaller
area than the resolution provided by MOD16. This meant that the MOD16 data always
yielded a mean of the land use in the 1 km pixel covering the area, whereas the HRUs were
specifically related to a single land use and, thus, represented the hydrological processes
within the HRUs in a much more detailed way. The differences between the SWAT and
MOD16 were mainly observed during winter months. As mentioned by Abiodun et al. [66],
one potential reason could be the variance in land cover. Winter months are typically
characterized by vegetation entering a dormant phase or losing foliage. If the land cover
information used in the SWAT differs significantly from that in MOD16, this could result in
discrepancies in the respective simulations of evapotranspiration. In our study, the land
cover differences between the SWAT and MOD16 were compounded by their data coming
from different years. Additionally, as noted in [68], the simulated evapotranspiration from
the SWAT tends to be higher during the crop growth season and lower during the inactive
season, while the MOD16-derived AET remains relatively constant. Consequently, the
differences in the simulated AET between the SWAT and MOD16 were more significant
during the less active winter months due to the SWAT’s consideration of climatic conditions,
land uses, and soil characteristics.

Analysis of meteorological input data revealed significant climate changes over recent
decades. Notably, there has been an alarming upward trend in the mean temperature
with a pronounced increase in the number of rain-free days, despite the modest 0.86%
decrease in overall precipitation. The results of the Mann–Kendall test confirmed that the
temperature showed an increasing trend, but this trend was not statistically significant.
However, the number of days without rain significantly increased, and these trends could
have important implications for agriculture, water supply, and other climate-related aspects,
and further research may be needed to better understand these trends and their potential
consequences. These findings align with global concerns about climate change [69] and
highlight the need for further investigations of the underlying factors. The impacts of
changes in temperature and precipitation patterns on water availability, especially in
intensely cultivated environments, are of major concern. The data indicate a trajectory
toward increasing temperatures and related drought conditions, consistently with global
and national patterns. As delineated in the Annual Global Climate Report issued by the
National Centre for Environmental Information [70], the ten warmest years within the past
143 years occurred after 2010. Notably, Italy faced challenges due to elevated temperatures
and droughts in recent years, particularly in 2017 and 2022, causing significant issues in
water management [71,72]. The report from the SNPA emphasized that 2022 was Italy’s
warmest and driest year on record, leading to multifaceted consequences, especially in the
agricultural sector, where drought-induced damages and reduced crop yields, particularly
in corn cultivation, were reported [73]. These repercussions have had strong implications
for the national economy. The growing complexity and unpredictability of climate change
and its repercussions underscore the need to understand its impacts on various components
of the hydrological cycle.

Analysis of the calibrated model’s output data confirmed these general changes. The
actual evapotranspiration, under the influence of various climatic factors, such as tempera-
ture, wind, relative humidity, and irrigation practices, increased. The relationship between
the SWAT’s calculated actual evapotranspiration and precipitation is a key indicator of
water deficits in an area, leading to drought conditions and affecting water availability
for plants and other purposes [74,75]. The persistent lack of precipitation over time and
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the rising temperatures led to increased evaporation of water from soils and plants [76],
resulting in a decrease in the available water resources.

These changes were also reflected in the dynamics of the soil water content. The
reduction in soil water content (Figure 14) could be attributed to changes in precipitation
patterns, rising temperatures, and modifications in land management practices [77–79].
Notably, we observed a 7% decrease in soil water content over a 15-year period, which is a
notable finding due to the potential impact of soil water content on crop productivity and
yield [80].

The results of the Mann–Kendall test suggested that there were trends in the data
too, such as an increase in the AET and a decrease in SWC, but none of these trends were
statistically significant at the 0.05 level. This means that while there were trends in the data,
we cannot conclusively say that these were not due to random variations. However, given
the limited number of years, these trends can be considered significant in this context. In
future research, it will be necessary to extend the analyzed data.

Understanding this long-term trend may have significant implications for water re-
source management and environmental sustainability in the study area. In this context,
considering the differences between the SWAT and soil moisture sensors, the measured
and modeled quantities of irrigation water and the timing of irrigation differed signifi-
cantly, in line with other studies (e.g., [81]). Given the model’s accurate calibration and
the reliability of the simulated results, it can be assumed that farmers may be applying
more irrigation water than predicted by the SWAT’s auto-irrigation, opening avenues for
optimizing irrigation practices and contributing to sustainable water resource management.

Land-use changes—especially variations in rice cultivation—significantly impact
water use and the hydrological balance. While the SWAT model used a static land use, it
is important to note that land use changes over time. For example, from 2007 to 2018, the
land area used for rice cultivation significantly increased (41%), but from 2015 to 2018, it
decreased (−11%). This fluctuation was influenced by choices made by producers, often
in response to drought conditions [82]. This fluctuation in rice cultivation has substantial
consequences both hydrologically and socioeconomically. A reduction in rice cultivation
can modify water-use patterns, as traditional paddy rice fields significantly influence water
flow and retention, particularly in the study area. Rice fields often serve as a natural
reservoir that aids in flood control and groundwater recharge. A decline in rice cultivation
can disrupt this balance [15,42,83]. Conversely, an increase in rice cultivation could intensify
water demand, leading to higher irrigation requirements [84,85]. This can strain local water
resources. Therefore, maintaining a sustainable equilibrium in rice cultivation practices is,
thus, crucial for maintaining the hydrological balance in the study area. Moreover, land-use
changes can significantly impact evapotranspiration [38], affecting the water cycle and
balances. An analysis of the land-use history shows an expansion of the agricultural areas
and a decrease in woodlands, thus influencing the amount of water absorbed and released
through plant transpiration.

5. Conclusions

This study provides a comprehensive overview of the hydrological dynamics within
the Ticino irrigation cascade in northern Lombardy over the last 15 years. The integration
of the SWAT calibrated with MOD16 data is a crucial step in accurately interpreting
the effects of climate change, especially in areas characterized by crops such as rice and
corn, which require a large quantity of irrigation water, particularly during periods of
drought. However, it is important to note that the study area represents a lowland area with
complex hydrology and a lack of natural water courses. These features led to limitations
in terms of the traditional application of the SWAT using discharge for the calibration
and validation of the model. In particular, the lack of irrigation data and the use of the
auto-irrigation function in the SWAT may affect the results obtained. On the one hand,
the model yields optimal irrigation patterns that might help farmers optimize their own
irrigation schemes. However, real irrigation data might further improve the work in
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terms of the actual water consumption in irrigation, groundwater recharge, and soil water
dynamics. Nevertheless, the calibration and validation results were satisfactory, and the
study revealed a significant increase in temperatures in recent years, even though the
decrease in rainfall was relatively small. However, there was a substantial increase in the
number of rain-free days. These factors collectively led to reduced water availability. The
increased actual evapotranspiration and the decreased soil water content are indicative
of the growing water stress for crops and the surrounding ecosystem. These findings
highlight the need for resilient and sustainable water management strategies that consider
the increasing frequency of climate challenges.

Our research explored the peculiarities of a unique area, shedding light on its mor-
phological and hydrological characteristics that, up till now, have been little studied. This
region, although complex, poses a challenge because of the limited data available, partic-
ularly for hydrological modeling. Therefore, we applied a hydrological model that was
adapted to the complex study area and was calibrated and validated with MOD16 evapo-
transpiration data, and this yielded valuable insights into the impacts of climate change
on the water resources of the unique landscape setting of the Ticino irrigation cascade.
Emphasizing the importance of adapting water management strategies and suggesting
possible future developments will help refine further research, such as through a better
understanding of the hydrological dynamics in the study area and the development of
innovative solutions for mitigating the impacts of droughts. In particular, the application of
advanced water management technologies and the development of more climate-resilient
agricultural strategies should be tackled. Furthermore, given the increasing frequency of
climate challenges, integrated approaches involving both hydrological management and
agricultural practices should be further explored.
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