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ABSTRACT  

INTRODUCTION: Narrow-sense heritability (h2) measures the proportion of phenotypic variability 

observed in a specific population that is attributable to the sum of additive genetic effects. Heritability 

studies represent an important tool to investigate the main sources of variability for complex diseases, 

whose etiology involves both genetics and environmental factors.  

AIM: The present work aimed to estimate multiple sclerosis (MS) narrow-sense heritability, on a 

liability scale, using 24 extended families ascertained from affected probands sampled in the 

Sardinian province of Nuoro, Italy. The sources of MS liability variability were also investigated 

among shared environmental effects, sex, and categorized year of birth (<1946, ≥1946). The latter 

can be considered a proxy for different early environmental exposures.  

METHODS: A Bayesian liability threshold model (Bayesian-LTMH) was developed to estimate 

heritability for binary phenotypes making use of ascertained family‐based samples, overcoming the 

limitations of the previously suggested EM algorithm. The Bayesian approach allows one to obtain 

the posterior distribution and credibility interval (CI) for heritability adjusted for potential 

confounders, such as shared environmental effects. The performance of Bayesian-LTMH was 

evaluated via simulation experiments and was then implemented to analyze the Sardinian families to 

obtain posterior distributions for the parameters of interest adjusting for ascertainment bias.  

RESULTS: Simulation studies highlighted the accuracy and precision of Bayesian-LTMH, other 

than the dramatic improvement in computational efficiency compared to the approach based on the 

EM algorithm. The analysis of the Sardinian sample highlighted categorized year of birth as the main 

explanatory factor, explaining ~70% of MS liability variability (median value = 0.69, 95% CI: 0.64, 

0.73), while h2 resulted near to 0% (median value = 0.03, 95% CI: 0.00, 0.09). By performing a year 

of birth-stratified analysis, a high h2 was found only in individuals born on/after 1946 (median value 

= 0.82, 95% CI: 0.68, 0.93), meaning that the genetic variability had a high explanatory role only 

when focusing on this subpopulation.  

CONCLUSIONS: Overall, the results obtained highlighted early environmental exposures, in the 

Sardinian population, as a meaningful factor involved in MS to be further investigated. These 

environmental factors are likely linked to the westernization process that occurred in Sardinia after 

World War II. Among these the malaria eradication program has been previously pinpointed, under 

the light of the hygiene hypothesis, as a key factor to explain the dramatic rise in MS incidence in the 

last decades. 
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1.  INTRODUCTION 

1.1  Background on Multiple Sclerosis 
Affecting over 2.8 million people worldwide [1], Multiple Sclerosis (MS) is a multifactorial disease 

with progressive neurodegeneration characterized by chronic inflammation and demyelination in the 

central nervous system (CNS) [2,3]. 

1.1.1 Epidemiology  
MS may onset at all ages of life, even before 18 years old, although initial symptoms typically present 

between 20 and 40 years of age. MS affects women approximately twice as often as men [4], and it’s 

showing increasing incidence and prevalence worldwide over time [1,5]. Moreover, MS represents 

the most common cause of non-traumatic neurological disability in young adults, and life expectancy 

is reduced by 7 to 14 years compared with the general, healthy population.  

The distribution of MS on a global scale exhibits a distinct pattern that correlates with geographical 

latitude. Prevalence rates of MS tend to be highest in regions located further away from the equator 

[6,7]. MS prevalence can vary significantly within specific regions or populations. For example, in 

some isolated communities there may be a lower incidence of MS, while in others, particularly 

indigenous populations, like the Sámi in Scandinavia or in certain areas of Sardinia, high prevalence 

rates are observed [8]. Sardinia, an island in the Mediterranean, exhibits a distinctive pattern of MS 

prevalence. It has a peak prevalence rate of around 300 cases per 100,000 individuals, which is among 

the highest in the world [9]. This differs from the prevalence observed in continental Italy [10]. As 

shown in Figure 1, there seems to be a correlation between MS prevalence and socioeconomic status, 

as, generally, MS tends to be less prevalent in Asian countries and becomes more common in regions 

and populations such as the USA, European countries, and Australia [8]. 

 

 

Figure 1. The geography of Multiple Sclerosis: prevalence per 100,000 population in 2023.  

Source: https://www.atlasofms.org/map/global/epidemiology/number-of-people-with-ms 
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1.1.2 Symptoms and disease course  
The manifestation of MS is highly variable, as a wide range of symptoms can vary among individuals. 

Common symptoms include: fatigue, visual impairment, numbness and tingling, muscle weakness, 

balance and coordination issues, pain, cognitive and emotional changes, bladder and bowel 

dysfunction, tremors, and sexual dysfunction [11,12]. These clinical symptoms are useful to clinicians 

to diagnose MS, in conjunction with other neurological exams and diagnostic tests such as magnetic 

resonance imaging (MRI) of the brain and spinal cord. Moreover, MS doesn’t always progress 

through distinct stages in a linear fashion. However, it is often described in terms of the following 

generalized stages or clinical courses [12,13]:  

- Relapsing-Remitting MS (RRMS): in most individuals with MS, the disease presents itself as 

episodes of neurological dysfunction that spontaneously improve. Between relapses, 

individuals may experience stable periods. 

- Secondary Progressive MS (SPMS): Some individuals with RRMS eventually transition to 

SPMS. In this stage, there is a gradual worsening of symptoms and disability, with or without 

relapses and remissions. The disease becomes more steadily progressive. 

- Primary Progressive MS (PPMS): This form of MS is characterized by a gradual and steady 

progression of disability from the onset, without distinct relapses and remissions. It is less 

common than RRMS. 

Not all individuals with MS will experience the same course or stages. Some may remain in the 

RRMS stage throughout their lives, while others may progress to SPMS or PPMS. 

Currently, there are 15 FDA-approved medications for RRMS, of which 14 are also used against 

SPMS and only one against PPMS [14]. This underscores the need for better therapeutic options for 

progressive forms of the disease [15]. Additionally, existing treatments that target inflammation, 

modulate the immune system, or suppress immune responses tend to show effectiveness in the initial 

phases of the disease. However, their benefits become limited once patients progress into the later 

stages. While the increasing range of treatments aimed at diminishing disability and prolonging the 

lives of individuals with MS, a definitive cure is yet to be discovered, and our understanding of the 

disease's underlying causes and etiology remains incomplete and not fully understood. 

 

1.1.3 MS pathogenesis 
A defining feature of MS pathology is the presence of localized areas known as plaques where 

demyelination occurs. These plaques are closely associated with episodes of MS relapses, during 

which inflammation leads to the removal of myelin in both white and gray matter of the central 

nervous system. This demyelination process involves the infiltration of macrophages, as well as T 

and B lymphocytes [16]. Remyelination serves as the natural restorative mechanism for reversing 

demyelination, and it's hypothesized that axons that have been remyelinated are shielded from 

degeneration. Unfortunately, remyelination varies significantly among MS patients, and, for reasons 

not yet fully understood, it often either fails or remains incomplete [17]. In fact, more than two-thirds 

of patients eventually progress to SPMS. This phase of the disease is thought to be primarily driven 

by neurodegeneration, leading to a slow and irreversible accumulation of disability, particularly 

affecting a person's ability to walk and their cognitive function. As previously mentioned, in a small 

percentage of MS patients, this progressive stage begins right from the onset of the disease, i.e., 
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PPMS. The underlying mechanisms behind primary and secondary progression are not yet fully 

understood [18]; however, various lines of evidence suggest that the symptoms of progressive MS 

can vary depending on the location of neurological lesions. The dysregulation of the blood-brain 

barrier (BBB), and the activation of myelin-reactive T cells in the CNS periphery are among the 

earliest cerebrovascular abnormalities observed in the brains of individuals with MS. These events 

indicates the beginning of the inflammation, leading to infiltration of inflammatory cells through the 

BBB, along with the migration of activated white blood cells through the endothelial cells of blood 

vessels with consequent release of inflammatory cytokines [17]. The observed changes in the 

arrangement of junctional proteins on the BBB, such as cellular adhesion molecules (CAMs), are 

widely recognized to occur during neuroinflammatory and infectious events [19]. Consequently, the 

presumed underlying mechanism of BBB disruption is associated with autoimmune reactions, 

particularly in individuals who have a genetic predisposition to such reactions. In MS, the disruption 

of the BBB is believed to be temporary, and the subsequent evolution and formation of lesions occur 

intermittently. This process includes additional episodes of BBB leakage, immune-mediated 

demyelination, and varying degrees of axonal damage. (Figure 2).  

 

 

Figure 2. Blood-brain-barrier (BBB) comparison in healthy and Multiple Sclerosis brains. (A) BBB is an extremely 

specific endothelial structure, which functions as a protective mediator of the brain, separating the circulating blood 

components from neurons, keeping the homeostasis and functional myelination cells. (B) In pathological conditions, BBB 

dysfunction leads to immune cell infiltration followed by larger inflammatory responses. In the brain, lesions of Multiple 

Sclerosis patients include demyelination, axonal loss, and neurodegenerative process. 
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 The inflammatory process in the CNS primarily affects oligodendrocytes, which are responsible for 

myelinating CNS cells, as well as neurons. Early in the disease progression, this inflammatory state 

then leads to characteristic neuronal death, demyelination and axonal loss and becomes the 

predominant characteristic as the disease advances [17]. The prevailing hypothesis suggests that this 

axonal loss is the primary mechanism responsible for the progressive disability observed in MS [8,20]  

(Figure 3).  

 

 

Figure 3. Basic mechanism in the development of Multiple Sclerosis, which includes a variety of inflammatory responses 

and activation of specific cell types. 

 

Moreover, during the inflammatory response in the CNS, antigen-presenting cells (APCs), which 

include B cells, microglia, macrophages, and dendritic cells, present potential autoantigens like 

myelin basic protein or myelin-oligodendrocyte protein through MHC class II molecules [21]. This 

presentation triggers further release of cytokines and chemokines fuelling continuous inflammation 

[11,22]. This process ultimately results in demyelination, edema, and distinct white matter lesions, 

which are typically found in areas such as the subcortical or periventricular white matter, optic nerve 

sheaths, brainstem, and spinal cord [15,17,23,24]. Hence, MS is thought to arise from a complex 

interaction involving BBB disruption, inflammatory cells such as microglia and astrocytes within the 

CNS, as well as autoreactive T cells from the peripheral immune system that migrate to the CNS [25]. 

This inflammation triggers damage to brain tissue, and this tissue damage subsequently exacerbates 

inflammation creating a harmful cycle. This flow is depicted in Figure 4.  
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Figure 4. Diagram depicting the potential pathogenesis of Multiple Sclerosis. Image credits: Ramya Talanki Manjunatha 

 

The prevailing view is that the inflammatory process, potentially of autoimmune origin, is the primary 

cause of tissue damage in MS [23]. However, the limited comprehension of the mechanisms driving 

disease progression is evident in the limited available treatment choices for MS. Furthermore, 

numerous therapeutic approaches that had demonstrated success in typical experimental models of T 

cell-mediated inflammatory demyelinating diseases had no impact or even exacerbated the condition 

when applied to MS patients [11]. These inconsistencies indicate that MS is a very intricate disease. 

However, in addition to the "outside-in" theory, where T cells are initially activated in the periphery 

and then infiltrate the CNS, some studies propose an alternative perspective. This "inside-out" 

hypothesis suggests that the disease's origin lies within the CNS itself [26]. According to this view, 

MS begins with the primary degeneration of oligodendrocytes and myelin within the CNS, leading 

to the release of antigenic myelin components. These components, in turn, provoke an autoimmune 

response against myelin constituents. Regarding other hypotheses, in 2013, Chaudhuri [27] raised a 

perspective challenging the prevailing view that MS is primarily an inflammatory disease. He argued 

that the belief in MS being an inflammatory condition is largely based on an artificial experimental 

model (EAE) that induced demyelination after sensitization to myelin basic protein. According to 

Chaudhuri, the human disease's pathogenesis centres around blood vessels, particularly post-capillary 

venules, and areas where the BBB formed by vascular endothelial cells and astrocytic foot processes 

is disrupted. The assumption that the inflammatory changes near blood vessels in MS signify an 

autoimmune process remains unproven. Despite extensive efforts, no specific antigen or antibody has 

been definitively identified as a candidate for the cell-mediated or humoral immunopathogenesis of 

MS. Chaudhuri's conclusion is that inflammatory changes are secondary to tissue injury, and the 

disruption of the BBB is likely the key pathogenic event in MS. In individuals at risk of developing 

MS, the process of demyelination and neuroaxonal injury is heavily influenced by the astroglial 

response to oxidative and metabolic stress resulting from a locally disrupted BBB in the CNS. Various 

triggers, including infection, systemic inflammation, stress, physical trauma, or electrical injuries to 

the CNS, could initiate this disruption.  
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In summary, the pathogenesis of MS is highly heterogeneous and much more remains to be 

understood. However, MS is likely characterized by inflammatory processes triggered by a 

combination of genetic factors and environmental factors. This can be summarized in the significant 

theory put forth by Poser in 1986 [28]. According to his view, four elements are required to develop 

MS: i) genetic predisposition, ii) an environmental factor, likely related to viral immune-mediated 

events, iii) disruption of BBB function and iv) the ability to form myelinoclastic plaques within the 

CNS. In the next paragraph, the main MS risk factors highlighted in the scientific literature will be 

described, distinguishing among environmental and genetic factors. 

 

1.1.4 MS risk factors 
In the latter half of the 19th century, the observation of families with MS history provided the initial 

insights into the genetic aspect of the disease. When compared to the lifetime risk of 0.2% in the 

general population, first-degree relatives had a sevenfold increased risk of MS (2.5% excess lifetime 

risk). This risk is even more pronounced in identical twins (monozygotic), with a 30% likelihood of 

developing the disease [29]. In contrast, spouses and adoptees exhibit a risk that is similar to that of 

the general population, or in the case of adoptees, their original nuclear families. This consistency 

suggests that the driving force behind MS family history is genetic sharing [8]. On the other hand, 

the fact that the relative risk does not reach 100% even in identical twins suggests that other factors 

beyond DNA sequence identity must concur to create the conditions that cause or allow the 

dysregulation of the immune response associated with MS [8,24]. In this context, many aetiological 

factors have been identified in having an association with MS including genetic susceptibility, 

smoking, exposure to the Epstein-Barr virus (EBV), low exposure to sunlight (presumed to be 

mediated through vitamin D insufficiency), diet, body mass index (BMI), and microbiome as well as 

epigenetic signatures (e.g., DNA methylation patterns, histone modifications, and non-coding RNAs) 

[8,18,30]. 

 

1.1.4.1 Environmental factors 

Growing evidence suggests that environmental factors play a significant role in the onset and 

progression of MS. Migrant studies, which examine MS risk in individuals who move from one region 

to another, provide further confirmation of the impact of environmental factors. A systematic review 

of these studies revealed two consistent patterns: migrants relocating from regions with a high MS 

risk to areas with a lower risk tended to have a lower prevalence of MS, especially when the migration 

occurred before the age of 15. Conversely, migrants moving from regions with a lower MS risk to 

higher-risk areas tended to maintain the lower MS risk of their home country, with no clear effect 

related to the age at which migration occurred [31]. These findings emphasize the significant 

influence of environmental factors on MS risk and suggest that early-life exposures may be 

particularly important [8]. The potential role of the main environmental risk factors on MS 

pathogenesis is now briefly described. 
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Low sunlight exposure and Vitamin D 

As previously mentioned, there is a noticeable variation in the prevalence of MS based on 

geographical latitude, with higher rates observed at higher latitudes [32,33]. The role of vitamin D in 

explaining this latitude-related gradient was initially proposed. In humans, the primary source of 

vitamin D is exposure to ultraviolet B (UVB) radiation from sunlight, which varies in intensity 

depending on latitude and season. It's worth noticing that during the winter months, the lower intensity 

of UVB radiation may not provide sufficient support for vitamin D synthesis in certain regions, 

assuming equal sun exposure on an equivalent skin area [8]. Furthermore, vitamin D exerts significant 

effects on the immune system, and its immune-modulating properties have been observed in various 

cell-culture experiments [34]. These observations suggest potential biological mechanisms through 

which vitamin D may influence the risk of developing MS [35]. For instance, vitamin D has been 

found to reduce the production of interleukins IL-2 and IL-17, interferon-γ (IFN-γ), and it attenuates 

the cytotoxic activity and proliferation of CD4+ and CD8+ T cells. It also hinders B cell proliferation, 

plasma cell differentiation, and immunoglobulin production [33]. Until recently, the evidence 

supporting the idea that higher levels of vitamin D are associated with favourable effects on MS risk 

and a reduction in MS activity primarily relied on observational studies. However, Mendelian 

Randomization (MR) analyses support the notion that higher vitamin D levels play a causal protective 

role in MS risk, suggesting a direct cause-and-effect relationship between vitamin D and MS risk 

[1,36]. Notably, individuals with genetically lower levels of vitamin D are strongly associated with 

an increased susceptibility to MS. Moreover, maternal vitamin D deficiency is also a predisposing 

risk factor for the development of MS in pregnant women and their offspring[37]. Vitamin D 

supplementation is then advised to prevent the risk of MS in the general population [33,38]. 

Researchers have undertaken clinical trials to assess whether Vitamin D supplementation can 

effectively slow the progression of MS. Nevertheless, a recent meta-analysis of a randomized, double-

blind, placebo-controlled clinical trial, examining the use of vitamin D as an adjunct therapy for MS, 

indicated that vitamin D did not demonstrate any therapeutic benefit in terms of reducing disability 

or the rate of relapses [39]. These findings may suggest that while Vitamin D levels in the norm are 

crucial to prevent the onset of MS, they may not have a curative effect once MS has already 

developed. 

 

Viruses 

Many virus infections have been proposed to play a role in MS pathogenesis. The severity of the viral 

infection depends on many different factors. Possibly, the most important is the interplay between 

virus and host immune mechanisms which are influenced by genetics and may sometimes have an 

impact on the development of symptomatic disease as a response to infectious agents. The clinical 

heterogeneity of MS and the diversity of MS plaques in the CNS suggest that there might be more 

than one infectious agent in the pathogenesis of this disease. The largest body of evidence during the 

last few years has accumulated around Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6). 

Other associated agents include varicella-zoster virus (VZV), and human endogenous retroviruses 

(HERVs) [8,30]. The most consistent findings in relation to past infection is with EBV [40]. Infection 

with this herpes virus is most often asymptomatic in childhood but in adolescence and adulthood it is 

commonly symptomatic, causing infectious mononucleosis, which can be severe [41]. Large-scale 
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population-based studies on EBV antibodies have shown consistently higher seroprevalence in 

patients with MS as compared to controls. In 2022, a significant epidemiological study provided 

compelling evidence regarding the role of the EBV in the development of MS [42]. The study, 

conducted over more than two decades and involving over 10 million individuals in the US Army, 

aimed to identify those diagnosed with MS and analyse their serum samples for anti-EBV antibodies. 

Individuals who became EBV seropositive (showing evidence of EBV infection) had a 32-fold 

increased risk of developing MS compared to those who remained seronegative (lacking evidence of 

EBV infection). Therefore, this study provided strong evidence linking EBV infection as an early and 

essential factor in the development of MS. However, MS prevalence is relatively low compared to 

the widespread presence of the EBV. One potential explanation is that the biological effects of EBV 

may vary depending on its genomic variability, implying the presence of potential gene-environment 

interactions explaining this discrepancy.  

 

Body Mass Index 

Both childhood and adult obesity are potential risk factors for MS explored extensively in research 

[43–45]. A review of MR studies highlighted consistent causal effects between increasing BMI and 

MS onset [1]. The connection between obesity and MS remains unclear, but various theories exist. 

Obesity involves persistent low-grade inflammation, with metabolic and immune cells interacting, 

possibly influencing MS risk. Childhood and adolescent obesity show proinflammatory markers, 

potentially impacting MS development. Adipokines like leptin, adiponectin, and resistin, along with 

gut microbiota and their role in immune responses, are suggested factors. Moreover, higher BMI 

levels could affect vitamin D levels and consequently MS risk, even though a significant causal effect 

was found even when adjusting for Vitamin D levels. Yet, the exact mechanism linking obesity and 

MS, whether through vitamin D or other pathways, is uncertain. 

 

Smoking 

While it is well-established that tobacco, which contains a high proportion of free radicals, can induce 

oxidative stress, and is implicated in numerous neurodegenerative disorders and autoimmune 

diseases, the impact of smoking on the immune system remains uncertain [46]. Cigarette components 

encompass pro-inflammatory effects, direct harm to tissues, and heightened apoptosis. Experiments 

on rats have shown that nicotine directly affects small parenchymal micro-vessels and tight junction 

proteins within the BBB, leading to increased permeable solute influx and alterations in blood flow 

to deep brain structures [47]. Additionally, cigarette smoke contains elevated concentrations of free 

radicals, including hydrogen cyanide, nitric oxide (NO), and carbon monoxide (CO), all of which 

contribute to oxidative damage in neural tissue [48]. Among a large North American cohort, it was 

observed that over 50% of MS patients were either current or former smokers. Furthermore, MS 

patients who smoked tended to be heavier smokers compared to the general population or individuals 

with other chronic conditions, and they often continued smoking after receiving a diagnosis [8]. 

However, while a meta-analysis of 14 case-control studies suggested an increased susceptibility to 

MS among smokers [49], this substantial risk factor did not seem to emerge from MR studies [1]. 

This contrast potentially hints at the presence of unmeasured confounding variables. The initiation of 
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smoking, lifetime smoking, and smoking intensity all resulted in non-significant causal estimates in 

MR analyses, raising questions about the significance of smoking in the onset of MS. 

 

Intestinal microbiota and diet 

Low exposure to pathogens in early life has been suggested as a potential risk factor for the 

development of MS. This relates to the immune system's education, which can be influenced by 

viruses, parasites, and pathogenic bacteria, providing protection against autoimmunity. Likewise, 

dysbiosis of gut microbiota, characterized by specific microbial changes, has been observed in MS 

patients [37,50,51]. Changes in gut microbiota mainly derive from diet (particularly the types of 

fibres, fats, and sugars), infections, age, lifestyle factors like stress, sleep patterns, physical activity, 

and alcohol consumption, and finally genetics. These changes can lead to increased permeability of 

the intestinal and BBB, worsening MS severity. Moreover, short-chain fatty acids, which are 

produced during the fermentation of dietary fibre, have been implicated in MS pathogenesis, as these 

has been found to promote the differentiation of naïve CD4+ T cells into regulatory T cells, offering 

a beneficial effect in controlling MS symptoms. Instead, studies indicate that excessive consumption 

of saturated fats from animal sources may influence the risk of developing MS. Interestingly, regions 

with higher MS prevalence often have diets rich in gluten and milk[52]. 

 

1.1.4.2 Genetic Factors 

The research on genetic factors associated with MS has primarily focused on the analysis of DNA 

sequences and the genetic differences among individuals, which then remain constant throughout 

their lives. However, in the past decade, a significant amount of information has emerged from the 

study of the epigenome, which involves heritable alterations in gene expression through modifications 

to the structure of DNA, without changing the underlying DNA sequence. Contrary to DNA sequence, 

the epigenome can change throughout the lifetime. These two aspects will be discussed separately. 

Genome 

The overall MS risk appears to be the result of the contributions of multiple polymorphic genes with 

risk alleles common in the population, each one determining a moderate portion of the risk [3]. This 

non-Mendelian pattern of transmission is not exclusive to MS but is shared with other autoimmune 

diseases and chronic disorders such as type II diabetes and obesity. These conditions are collectively 

known as complex genetic disorders, which are characterized primarily by polygenic risk and intricate 

GxE interactions. In the early 2000s, the introduction of chip-based technologies with the capacity to 

genotype simultaneously hundreds of thousands of SNPs (Single Nucleotide Polymorphisms) 

allowed the development of a new analytical methodology known as genome-wide association study 

(GWAS), a hypothesis-free method in which SNPs spaced across the entire genome are screened for 

association with a particular trait in case–control datasets composed of genetically unrelated 

individuals [24]. Since 2007, the increasing size of genetic studies has shown that MS risk is 

influenced by hundreds of genetic variants, many of which are common across the population, with 

each variant explaining a small proportion of risk [53].  
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In 2019, the International Multiple Sclerosis Genetics Consortium (IMSGC) reported the results from 

latest GWAS [54], comparing the allele frequencies of several million common SNPs across the 

genome between 47 351 people with MS and a population control group of 68 248 people, mainly 

from European populations. This study resulted in the identification of 233 distinct risk variants, 

including 200 autosomal SNPs, one SNP on the X chromosome, and up to 32 statistically independent 

variants across the broader major histocompatibility complex (MHC) area on chromosome six 

(Figure 5, Figure 6). Among these, one rare and four low-frequency protein-coding alleles were 

associated with small MS risk. 

 

 

Figure 5. Genomic map of multiple sclerosis susceptibility based on the 2019 International Multiple Sclerosis Genetics 

Consortium GWAS, highlighting 233 MS-risk variants in the European population. The circus plot summarizes all the 

Multiple Sclerosis-associated risk loci along with their locus. 
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Figure 6. Genomic map of multiple sclerosis susceptibility based on the 2019 International Multiple Sclerosis Genetics 

Consortium GWAS, highlighting 233 MS-risk variants in the European population based on minor allele frequency and 

Odds Ratio. 

The genetic contribution to the susceptibility of developing MS is then undeniable. However, despite 

years of research, the biological mechanisms underlying these associations, especially within the 

MHC region [53], are not fully understood, as no single variant is necessary or sufficient to cause 

MS; instead, each increases total risk in an additive manner. Moreover, other variants are likely to be 

associated with MS in different populations and yet to be discovered[3]. According to IMSGC study, 

the proportion of MS variability explained by their identified genetic variants (over 8 million) was 

19.2%, implying that around over 4/5 of MS variability was explained by non-identified genetic 

variants, environmental factors, and potential GxE and GxG interactions.  

Regarding the potential functional mechanism of the identified risk SNPs, common risk variants 

outside the MHC tend to be in gene promoters and enhancers active in various immune cell types, 

including natural killer cells, macrophages, microglia, T-cell, and B-cell subsets. These variants are 
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often shared with other autoimmune and inflammatory diseases, suggesting that the disturbances are 

not specific to the CNS and that MS is mainly an immune mediated disease. This localization of 

variants implies that MS risk primarily results from subtle changes in gene regulation, leading to 

alterations in immune cell function that accumulate over time, potentially reaching a pathological 

state. Among these, approximately 20% of MS susceptibility variants identified by GWASs fall either 

within or proximal to NFκB signaling genes, including variants proximal to NFKB1 and within 

TNFRSF1A [55,56]. Previous studies have linked NF-kB activation and JAK-STAT signaling 

pathways to MS onset [57–60]. In another study [61], a gene network candidate approach has 

highlighted the putative role of CAMs in MS pathology, possibly connecting the risk to the regulation 

of BBB crossing by T cells. The challenge in MS genetics is then to translate these discoveries into a 

deeper understanding of the disease's underlying biology. Moreover, whether these genetic effects 

interact with environmental factors remains an area of ongoing research, with some indications that 

specific environmental circumstances might enhance or activate these genotypic effects. To this aim, 

understanding the mechanisms of MS risk requires the development of new disease models that can 

quantify the impact of both genetic and environmental effects, as well as their interactions.  

 

Epigenome 

It is important to highlight the particular importance of epigenetic modifications, as they could 

potentially act as a mechanism by which genetic and environmental factors interact. Epigenetic 

modifications, i.e., heritable changes in gene expression without altering the DNA sequence, can 

occur through processes like DNA methylation, histone modifications, and microRNA regulation 

[62]. These modifications, collectively known as the epigenome, are susceptible to influence by 

environmental factors and are acquired throughout an individual's life, varying among different cell 

types and tissues. Research has shown that these epigenetic modifications can influence various 

processes involved in MS pathophysiology, including the breakdown of the BBB, inflammatory 

responses, demyelination, failure of remyelination, and neurodegeneration [63]. Additionally, 

investigations into the epigenome are rapidly expanding, revealing connections between epigenetic 

mechanisms and environmental risk factors for MS. Many of the primary environmental risk factors 

for MS, such as vitamin D levels, BMI, EBV infection, gut microbiota, diet, and smoking, have been 

associated with epigenetic modifications [64]. This suggests a potential role for epigenetic changes 

in the effects exerted by environmental risk factors on the pathogenesis of MS, also explaining gene 

x environment (GxE) interactions. Although these findings speculate about the involvement of 

epigenetic modifications in MS, the precise mechanisms and their significance are ongoing areas of 

research. Understanding these epigenetic alterations in the context of MS could provide valuable 

insights into disease mechanisms and potential targets for future therapies [65]. Continued research, 

data collection, and comprehensive epigenome-wide studies are essential to further elucidate these 

aspects. 

In Figure 7, a summary for MS risk factors is graphically depicted. 
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Figure 7. A comprehensive map of Multiple Sclerosis risk factors. 

 

Considering these points, the notion of heritability studies will now be introduced. These studies can 

assist in quantifying the proportionate influence of genetic and environmental factors in accounting 

for the variability in MS susceptibility. 

 

1.2  Heritability studies 
The concept of heritability refers to the proportion of variations of a phenotypic trait that can be 

explained by genetic factors [66]. More specifically, according to the additive model [67] the 

phenotype can be considered as the sum of genetic and environmental effects: 

Phenotype (P)  =  Genetics (G) +  Environment (E) 

Where the genetic effects genetic effects (G) variance, con be decomposed in i) additive effects (A), 

i.e., sum of combined effects of genetic alleles at two or more gene loci, ii) dominant effects (D), i.e., 

non-additive effects due to the interaction between alleles at the same gene locus, and iii) epistatic 

effects (V), i.e., non-additive effects due to the interaction between alleles at the different gene loci. 

The variance of the phenotype (σP
2) can be expressed as a sum of unobserved underlying variances: 

σP
2 = σG

2 + σE
2  = σA

2 + σD
2 + σV

2 + σE
2   

Heritability in its broad-sense (H2) is then expressed by the ratio of the genetic effects variance on 

the phenotypic variance, i.e., H2 = 
σG

2

σP
2 .  Instead, the fraction of phenotypic variance owed to genetic 

additive effects variance alone (σA
2 ) represents the so-called narrow-sense heritability (h2) [68], 
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which is always less than or equal to H2. The formula for narrow-sense heritability is then h2 = 
σA

2

σP
2 , 

and, therefore, does not include dominant or epistatic effects. Both measures provide insights into 

the genetic and environmental architecture of human complex traits and potential ability to dissect 

out loci associated with trait variation. Thus, determining a high value of heritability is a powerful 

argument in favour of further research for genetic causes, but it also opens the possibility of 

predicting heritable risk of illness based on the genetic background. Finally, the ratio 
σE

2

σP
2  represents 

the fraction of phenotypic variance owed to environmental effects (e2).  

In the scientific community there are controversies and misconceptions on heritability interpretation 

which have been widely discussed, and different authors provided clarifications on its meaning and 

explanations for its usefulness [66,69–71]. Heritability is a ratio of variances and consequently 

represents a statistical measure, but it is often misinterpreted causally as the level of causal 

influence of the genotype on the phenotype. As illustrated by Pearson [66], it's important to view 

heritability studies as a valuable tool for identifying potential causal factors among the genetic and 

environmental elements that characterize a population. An accurate interpretation of heritability 

studies would then be the following: 

- h2 > e2: modifying individuals' genotypes will likely have a greater effect on changing the 

expression of a trait at the population level compared to controlling environmental factors. 

- h2 < e2: modifying individuals' environmental factors will likely have a greater effect on 

changing the expression of a trait at the population level compared to controlling the 

genotype. 

- h2 ≈ e2: modifying either individuals' genotypes or environmental factors will likely have a 

similar effect on changing the expression of a trait at the population level. 

Therefore, these studies inform us about the primary factor responsible for trait variation within 

the population, which inherently sheds light on the underlying causes of that trait. At the 

individual level, while a heritability estimate greater than zero indicates a causal connection 

between an individual's genotype and a particular trait, it doesn't provide any direct information 

about the magnitude of its effect. However, in case h2 > e2 it is still correct to suggest that an 

individual's genetic variability contributes more significantly than its environmental variability 

to cause the deviation of the trait from the population average (and vice versa) [72]. These 

considerations assume that genetics and environment are statistically independent, and the total 

variance is solely due to distinct genetic and environmental factors. If this assumption is not 

met due to covariance between genetics and environment or alterations in causal influence 

because of GxE interactions, heritability estimates become confounded. It's worth noting that 

heritability is a measure specific to the local population level and cannot be used to definitively 

infer the causal role of genetics in determining a trait since populations exhibit variations in 

genotypes and environmental factors [71]. Nonetheless, the results of heritability analysis can 

be interpreted within the context of the genetic and environmental background of the specific 

population under investigation. This contextualization helps identify which factor, whether 

genetic or environmental variability, plays a more significant role in explaining the expression 

of the trait in that particular population [69,70,72]. 
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1.2.1 MS heritability in different populations 
Quantifying the heritability of complex diseases like MS (OMIM 126200), which is influenced by 

both genetic and environmental factors, presents a significant challenge due to its unclear etiology  

[73,74]. Heritability studies serve as a crucial tool for identifying the predominant source of MS 

variation within a specific population among the potential genetic and environmental causal factors 

[66,69–71,75]. Traditionally, MS heritability estimates have predominantly relied on the design 

involving monozygotic (MZ) and dizygotic (DZ) twin pairs [76], as depicted in Figure 8.  

 

 

Figure 8. Multiple Sclerosis heritability estimates obtained in different populations using twin design. Source: Fagnani 

C et al. Twin studies in multiple sclerosis: A meta-estimation of heritability and environmentality. Multiple Sclerosis 

Journal. 2015;21(11):1404-1413. doi:10.1177/1352458514564492. 

 

These estimates have exhibited some degree of heterogeneity across populations, which was 

expected, given that each population possesses its unique environmental factors. However, 

consistently, heritability estimates have remained greater than 0. In countries like the United 

Kingdom (UK), Denmark, and Sweden, these estimates have been close to 80%, signifying that 

approximately 80% of the variability in MS within the population is attributed to genetic factors. In 

these countries, environmental factors play a relatively smaller role in explaining variations in MS 

expression. Conversely, in France and Finland, the heritability estimate for MS has been around 

20%, indicating that certain environmental factors have a more substantial impact on explaining MS 

variability in these populations. In a hypothetical scenario, this suggests that to reduce MS 

expression in the UK, Denmark, and Sweden, the primary focus should be on investigating the 

genetic diversity within the population. In contrast, to reduce MS expression in France and Finland, 

efforts should concentrate on identifying and mitigating the environmental factors contributing to 
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the disease. Understanding whether genetic or environmental factors predominantly drive MS 

expression in a given population can provide valuable insights into identifying the key causal 

factors, thereby enhancing disease prevention strategies. 

 

1.3  Aim of the research 

1.3.1 MS heritability in the Sardinian population 
Up to this point, there have been no efforts to estimate heritability in the Sardinian population due 

to the relatively low prevalence of multiple sclerosis (MS) and the limited population size of the 

Sardinian Island (1,611,621 inhabitants as of the 2019 census [77,78]). This limitation makes it 

challenging to gather a sufficiently large number of twin pairs to derive an informative and accurate 

heritability estimate [76,79]. One way to partially address this challenge is to include individuals 

with various familial relationships, which increases the sample size and consequently enhances 

statistical power. However, this approach becomes less effective as more distant relatives are 

included, primarily because they share a smaller proportion of their genetics [80]. Importantly, this 

design doesn't necessarily require genotype data, as the genetic relatedness between individuals can 

be estimated based on expected relationships [68]. Additionally, pedigree-based studies offer 

advantages compared to twin studies, as they generate heritability estimates that are less influenced 

by potential shared environmental effects, i.e., environmental influences that make individuals 

raised in the same environment more similar to each other [81,82]. Consequently, heritability 

estimates derived from pedigree-based studies tend to be more robust when there are model 

misspecifications regarding shared environmental effects [83].  

In this study, the main objective was to explore the variability in MS expression within the 

Sardinian population by quantifying the relative contributions of genetic variability (h2) and 

environmental factors. A sample made of 24 Sardinian extended families, identified through MS 

affected probands in the Nuoro province, was then considered to investigate this aim. Additionally, 

due to the historical depth of the available family data, it was possible to explore the role of 

environmental factors over time, including shared environmental effects, individual environmental 

effects, sex, and year of birth. The consideration of year of birth is significant as it can serve as a 

proxy for various early environmental exposures which changed over time, especially after the post-

World War II industrialization, i.e., socioeconomic factors, dietary habits, lifestyle, and sanitary 

conditions (referred to as the "Westernization process")[84–87]. Furthermore, it accounts for the 

potential  impact of the malaria eradication program conducted from 1946 to 1950, which involved 

the use of the insecticide DDT (dichloro-diphenyl-trichloroethane) [88]. Figure 9 illustrates an 

estimate of malaria occurrence in Italy in 1932, as provided by the Istituto Superiore di Sanità. It 

specifically emphasizes the Sardinia region as having a notable presence of malaria. 
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Figure 9. Malaria distribution in Italy as recorded in 1932 by the Istituto Superiore di Sanità. 

 

These aspects could be linked to the constant MS incidence observed since the 1950s in the Nuoro 

province [84] and other Sardinian provinces [89]. Different authors have also underlined how a 

better diagnostic accuracy cannot fully account for this steady increase in MS [84,85,89,90], since 

the magnitude of this trend has not been observed in any other Italian areas during the same period. 

As a comparison, Figure 10 shows the MS incidence rates in the Sardinian region of Nuoro and the 

continental Italian province of Ferrara, located in the Emilia-Romagna region, between 1965 and 

1995.  

 

Figure 10. Multiple Sclerosis incidence over time in the Italian provinces of Nuoro (black) and Ferrara (white). 
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Notably, it demonstrates that MS incidence in the Nuoro province doubled that of the Ferrara 

province within only a decade. This raises inquiries about whether sudden adverse environmental 

changes are responsible for the increase in MS incidence. The previously mentioned malaria 

eradication has been linked in literature to this dramatic increase in MS incidence under the light of 

the hygiene hypothesis. This hypothesis suggests that reduced exposure to infectious agents, due to 

environmental or lifestyle changes, is associated with a higher prevalence of allergic 

hypersensitivity and autoimmune disorders [91]. In this context, the reduced exposure to the 

infectious agent is represented by the eradication of Plasmodium falciparum [92]. Studies have 

linked the presence of the A30-B18-DR3 HLA haplotype (strongly associated with MS in Sardinia) 

to high malaria prevalence areas [93]. However, this hypothesis involves complex interactions 

between the host's immune responses, characteristics of invading microorganisms, environmental 

exposures, and genetic factors. The availability of the 24 extended Sardinian families, along with 

the information on the year of birth, allows to obtain more insights concerning this hypothesis.  

Considering the significant impact of MS on the affected individuals' well-being, as well as its 

broader implications for public health and the economy, there is an urgent and compelling need to 

uncover the fundamental cause of the disease. This involves identifying the factors that have a 

causal connection to MS. Such insights can subsequently inform appropriate treatment strategies, 

guide preventive measures, and lay the foundation for future advancements in precision medicine. 

In summary, given the intricate nature of the disease and the environmental changes within the 

Sardinian population, exploring MS susceptibility variability within these extended families holds 

the potential to make a meaningful contribution to the research on the causal determinants of MS in 

this specific population [66,75]. 

 

1.3.2 The limitations of available methodologies to estimate heritability 
Several methodologies have been proven to give unbiased heritability estimates for binary traits 

when using families that have been randomly selected from the population [94]. When dealing with 

low-prevalence diseases, like MS, family members are included in the study as relatives of an 

already enrolled affected member (proband). This a common type of sampling in genetic studies, 

but unfortunately leads heritability estimates to be affected by ascertainment bias. This bias 

artificially inflates the additive genetic effects due to an overrepresentation of affected cases 

compared to the general population [77,95,96]. To address this issue, Kim, Kwak and Won [96] 

introduced a liability threshold model for binary traits (LTMH), suitable for families ascertained 

from a proband. LTMH helps estimate heritability on a liability scale while correcting for 

ascertainment bias. The authors assessed the performance of this method, which relies on the 

Expectation-Maximization (EM) algorithm, through simulations involving 500 nuclear families 

sampled from affected probands and varying disease prevalence (e.g., 5%, 10%, 20%). In all 

scenarios, LTMH provided accurate heritability estimates on the liability scale, effectively 

correcting for ascertainment bias. However, using the EM algorithm for heritability estimation has 

certain drawbacks, such as lacking a precision measure for statistical inference, i.e., standard error 

and related confidence interval, and computational inefficiency when dealing with extended 

families or more complex statistical models able to correct for shared environment effects. These 

limitations significantly restricted the capacity of the LTMH method to deliver comprehensive 
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results. Additionally, due to its computational inefficiency when applied to large extended families, 

it was unsuitable for use with the Sardinian extended family sample. 

 

1.3.3 Main aspects of this research 
Given the considerations provided in the previous paragraphs, the main objectives of this thesis 

project could be summarized as follows: 

1. To address the limitations of the EM algorithm in LTMH affecting computational 

efficiency, model flexibility and statistical inference. This involved developing a new 

statistical framework, to be empirically evaluated for its accuracy, precision, and 

computational efficiency. Furthermore, the developed framework could be applied in future 

research to analyse other low-prevalence complex traits, aiming to quantify the contributions 

of genetic and environmental factors in specific populations of interest. 

2. To apply the newly developed statistical framework to the dataset of Sardinian extended 

families. My goal was to identify the primary factors contributing to the variability in MS 

susceptibility within this population. These factors comprised genetic variability, 

environmental factors (both individual and shared among relatives), sex, and year of birth. 

The findings may provide insights into which specific factor requires in-depth investigation 

to elucidate the high MS incidence observed in the Sardinian population. 
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2 METHODS 

2.1  Bayesian-LTMH 

2.1.1  Addressing the limitations of EM algorithm for heritability estimation 
As mentioned in the Introduction, to estimate the heritability of MS in the Sardinian population, using 

a sample of 24 Sardinian extended families ascertained from affected probands [97], the LTMH 

method developed by Kim, Kwak, and Won [96] was initially considered. Making use of family-

based samples ascertained from a proband, the method utilizes a liability threshold model designed 

to partition the variability of a binary trait into genetic and environmental effects, adjusting estimates 

from ascertainment bias. To estimate the model’s parameters, the method employs the EM algorithm 

[98]. EM algorithm is an iterative method based on a frequentist approach (opposed to Bayesian 

statistics), as it is primarily used to find (local) maximum likelihood estimates of parameters in 

statistical models, where the model depends on unobserved latent variables. Briefly, in the 

Expectation step (E-step), the algorithm starts with an initial guess for the unobserved model's 

parameters. It computes the expected values of the unobserved or missing data given the observed 

data and the current parameter estimates. In the Maximization step, the algorithm updates the model's 

parameters to maximize the likelihood of the observed data. It uses the expected values computed in 

the E-step as if they were actual data points with known values. The parameters are adjusted to 

improve the fit of the model to the observed data. These two steps are repeated iteratively until the 

algorithm converges to a set of parameter estimates that maximize the likelihood of the observed data. 

In each iteration, the parameter estimates are refined, and the likelihood of the data is improved. In 

summary, the EM algorithm is particularly useful when dealing with complex models with hidden or 

unobservable variables. However, the usage of EM algorithm for parameter estimations in LTMH 

leads to the following limitations:  

 

a) The EM algorithm does not directly provide a precision measure, i.e., standard error, for 

parameter estimates, as it would necessitate complex analytical calculations [99,100]. This 

issue leads to difficulty to conduct statistical inference. 

b) Even if standard errors are calculated, determining how to compute confidence intervals for 

heritability is challenging. Assuming a normal distribution for heritability can be misleading 

as confidence limits could go below 0 and/or above 1, while the parameter is characterized 

within the [0,1] bounds [101]. 

c) The conditional E-step of the EM algorithm involves computationally intensive tasks, such 

as estimating first and second moments of multivariate truncated normal distributions. This 

leads to slow computational efficiency and issues in obtaining algorithm’s convergence, 

especially when i) dealing with extended families beyond nuclear families and ii) 

incorporating additional variance components, e.g., to consider shared environment effects. 

These limitations hold particular significance in the context of family-based and complex disease 

studies, prompting me to consider the EM algorithm as an inefficient method for estimating MS 

heritability in my research. Moreover, when implementing LTMH using the EM algorithm on the 

Sardinian sample, the algorithm encountered difficulties and remained stuck after the first iteration. 

Therefore, my objectives were as follows: 
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i. To provide a precision measure for the parameters estimates, facilitating statistical inference 

and addressing limitation (a). 

ii. To establish an interval range for heritability estimates that naturally reside within the [0,1] 

bounds, addressing limitation (b). 

iii. To retain the extended structure of the Sardinian families enhancing the computational 

efficiency of the LTMH method and overcome limitations (c-i).  

iv. To incorporate adjustments for heritability estimates to account for shared environmental 

effects, thereby implementing a more complex model and addressing limitations (c-ii). 

To overcome these limitations, Bayesian statistics and Markov-Chain Monte Carlo (MCMC) 

techniques were explored as alternative methods for heritability estimation. The rationale behind 

this choice is as follows: 

- Bayesian statistics offers posterior distributions for the parameters of interest, effectively 

addressing limitations (a) and (b). 

- MCMC methods have demonstrated their speed and efficiency, particularly when dealing 

with statistical models containing numerous unobserved variables that result in likelihood 

functions featuring multiple integrals [102]. Using these methods, there's no need to explicitly 

compute the integrals in the likelihood function, and the unobserved variables can be sampled 

alongside the model parameters. This would help to address limitation (c). 

 

In the following paragraphs, Bayesian statistics will be discussed, along with its principles of 

inference and the potential advantages it offers for parameter estimation compared to the EM 

algorithm-based approach. 

 

2.1.2 Bayesian statistics and MCMC methods 

2.1.2.1 Bayes’ theorem 

In contrast to frequentist analyses, Bayesian statistics relies on the application of Bayes theorem 

[103]: 

 

P(A|B) =  
P(B|A) ∗ P(A)

P(B)
 

 

Where A and B are events, and P(A) and P(B) their respective marginal probabilities. P(B|A) 

represents the probability of observing the event B conditional to observing event A. This latter also 

corresponds to likelihood of A given a fixed event B, i.e., L(A|B). Finally, P(A|B) represents the 

probability of observing the event A conditional to observing event B, and it is called the posterior 

probability of A given B. P(A|B) can be interpreted as the degree of belief in A after incorporating 

information from B (see Figure 11). 
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Figure 11. Example of posterior distribution resulting from Bayes’ theorem incorporating prior information in the 

likelihood function. 

 

Bayesian methods offer a framework for incorporating prior information, denoted as P(A), into the 

analysis. This prior information represents the initial level of belief in the event A. As new data is 

observed, the prior belief gets updated, contributing to the quantification of evidence supporting a 

hypothesis. Although some criticize this approach as a potential source of bias or excessive 

subjectivity into results, judiciously incorporating prior information can regularize computations and 

enhance the stability of statistical inferences. There exist various approaches to construct a prior 

distribution, which can stem from historical data like previous experiments or be elicited through the 

subjective judgment of an experienced expert. In cases where no information is available, one may 

opt for weakly informative or non-informative priors, which primarily serve to constrain inferences 

within a reasonable range without introducing specific knowledge about A from prior sources. 

Another important aspect of Bayesian statistics, compared to the frequentist approach, is that 

inferences are made directly about the parameters of interest. Parameters, and functions of them, have 

probability distributions, so it is possible to make statements such as “the probability that the 

parameter is greater than 1 is 0.80.” [104]. 

 

2.1.2.2 Bayesian modeling outline 

The process of fitting a Bayesian model generally involves the following steps [105]:  

 

1) Initially, a model is defined based on the hypothesis the researcher wants to test. This model 

includes a parameter (or in more complex cases, multiple parameters) to estimate, along with 

a specification for the data distribution (e.g., normal distribution). 

2) Subsequently, a prior distribution is established to represent previous beliefs regarding 

plausible values of the parameter. In contrast to frequentist statistics, which treat the parameter 

as fixed, Bayesian methodology treats it as random, reflecting the previous beliefs prior to 

data examination. The prior distribution is characterized by the so-called hyperparameters, 

which are defined by the research to obtain the desired distribution. Alternatively, it is also 

possible to treat hyperparameters as random variables defined by hyperpriors distribution. The 

use of a hyperprior then allows one to express uncertainty in a hyperparameter. 

3) The next step involves combining these prior beliefs with information derived from the 

observed data, resulting in the formation of a posterior distribution. This posterior distribution 
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characterizes the updated beliefs about the probable values of the parameter after observing 

the data.  

4) Finally, the posterior distribution is summarized in a suitable manner, typically by calculating 

position measures, e.g., mean, median, mode, and dispersion measures, e.g., standard 

deviation (SD). Moreover, a credible interval is often calculated so that the parameter is 

included in a particular range with a specified probability, e.g., a 90% credibility interval 

conveys the information that the true parameter is contained within that interval with a 

probability equal to 0.9. Additionally, other informative metrics can be computed from the 

posterior distribution, such as the probability that the parameter is greater/lower than a certain 

value of interest. The posterior distribution then allows to obtain more information compared 

to the frequentist estimates and related confidence intervals. 

 

2.1.2.3 Posterior distribution 

Following Bayes’ theorem, exact posterior distribution can be obtained under certain conditions and 

in specific situations. This typically occurs in relatively straightforward and well-studied statistical 

models. Denoting with x = (x1, . . . , xk) a vector of observations with underlying statistical 

distribution function of parameters θ = (θ1, . . . , θk), the posterior distribution’s density is 

proportional to the product of the likelihood function for the observations, i.e., l(θ|x), and the prior 

distribution, i.e., P(θ): 

 

P(θ|x) ∝  l(θ|x)P(θ) 

 

In cases where the prior distribution and likelihood function belong to the same parametric family 

and have a specific mathematical relationship, known as conjugacy, the posterior distribution is also 

in the same parametric family as the prior. Common examples include the normal distribution with 

known variance, where the posterior for the mean is also normal, or the Beta-Binomial model, where 

the posterior for the success probability is also a Beta distribution. Conjugate priors simplify the 

calculation of the posterior distribution.  

 

2.1.2.4 MCMC methods 

In many cases, computing the exact posterior distribution, which summarizes what we know about 

the parameters after considering both data and prior beliefs, is analytically intractable. This is the case 

when the moments of the posterior distribution require several integral calculations which often 

cannot be solved analytically. In these cases, a solution can be obtained approximating the posterior 

distribution based on asymptotic results. MCMC methods provide a way to approximate the posterior 

distribution by generating a sequence of its samples [102]. These samples are produced through a 

Markov chain, which is a sequence of random variables where each variable depends only on the 

previous one. Practically, an ensemble of chains is generally developed, starting from a set of points 

arbitrarily chosen and sufficiently distant from each other. These chains are stochastic processes of 

"walkers" which move around randomly according to an algorithm that looks for places with a 

reasonably high contribution to the integral to move into next, assigning them higher probabilities. 

These samples can be used to evaluate an integral over that variable, as its expected value or variance 

[106]. 
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2.1.2.5 Metropolis-Hastings algorithm and Gibbs sampling 

To implement MCMC methods, several algorithms have been developed. Metropolis-Hastings 

algorithm, represents the first widely used MCMC method, which uses a proposal distribution to 

generate new samples, and involves the following steps [107]: 

 

1) Initialization: start of a Markov Chain with an initial value for the parameters of interest, i.e., 

θ0. 

2) Proposal: a new set of proposed parameter values θ∗ is sampled using a proposal distribution 

q, i.e., q(θ∗|θ(t−1)). 

3) Acceptance: decide whether to accept the proposed values based on a probability ratio: 

 

R(θ∗| θ(t−1)): 
P(θ∗|x)q(θ(t−1)|θ∗)

P(θt−1|x)q(θ∗|θ(t−1))
 

 

By applying Bayes’ theorem for the posterior probability terms in the formula above we get: 

 

R(θ∗| θ(t−1)): 
P(θ∗)l(θ∗|x)q(θ(t−1)|θ∗)

P(θt−1)l(θt−1|x)q(θ∗|θ(t−1))
 

 

Where R(θ∗| θ(t−1)) is defined as Metropolis-Hastings ratio. This ratio provides a probability 

defined as: 

 

α = min {1, R(θ∗| θ(t−1))} 

 

To establish the acceptance of θ∗, a uniform random number u ∈ [0,1] is generated. 

If α > u then the proposed values θ∗ are accepted, i.e., θt = θ∗. Conversely, θ∗ is rejected, 

and θt = θ(t−1). Depending on the result, the new values θt become the current state of the 

chain. 

4) Repeat: continue the process for a predefined number of iterations. 

5) Results: over time, this process generates a sample from the target posterior distribution. It 

updates one parameter at a time while keeping others fixed, making it particularly effective 

when the posterior distribution can be expressed conditionally. 

6) Burn-in and Thinning: MCMC chains often start with an initial "burn-in" phase to allow the 

chain to reach the target distribution and remove any initial bias. Therefore, a pre-specified 

initial number of sampling iterations is discarded. Moreover, to reduce autocorrelation 

between close iterations, a subsampling of the generated samples is retained; this practice is 

defined as thinning. 

7) Convergence and Mixing: assessing convergence is crucial to ensure that the MCMC chain 

has explored the entire posterior distribution. Diagnostic tools like the Gelman-Rubin statistic 

and visual inspection of trace plots are used to evaluate convergence. 

 

A graphical exemplified depiction of the algorithm is exemplified in Figure 12. 
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Figure 12. Graphical depiction of Metropolis-Hastings algorithm in obtaining samples from the posterior distribution. 

 

Gibbs sampling is another MCMC method which is a special case of Metropolis-Hastings. It is 

particularly suitable when dealing with multivariate distributions, as it iteratively updates one 

parameter at a time while keeping others fixed sampling from the conditional distribution rather than 

to marginalize by integrating over a joint distribution [108]. 

 

2.1.2.6 Hamiltonian Monte Carlo algorithm 

Among the latest developed MCMC algorithms, Hamiltonian Monte Carlo (HMC) represents an 

advanced method for efficient sampling of complex posterior distributions, especially in high-

dimensional spaces [109]. It is inspired by the principles of classical mechanics, particularly 

Hamiltonian dynamics, where particles move through a physical space subject to potential and kinetic 

energy functions [110]. The system evolves over time, simulating the dynamics, or trajectories, of 

particles in a potential energy landscape. HMC exploits these concepts to enhance the exploration of 

the parameters space, i.e., to sample parameters from the posterior distribution in the Bayesian 

inference context [111]. HMC combines random walk exploration with these deterministic 

trajectories to propose new states efficiently. Each state in the Markov Chain is represented by a pair 

of values: the position and their associated auxiliary momenta. The position represents the parameters 

of the target posterior distribution that we are trying to sample from, in other words the model 

parameters in a Bayesian inference problem. The positions represent the current values of these 

parameters in the parameter space. On the other hand, the momenta (plural of momentum) are 

auxiliary variables introduced in HMC and associated with each parameter. The momenta are not 

parameters of the model but rather help simulate the dynamics of the system. Each momentum is 

associated to one parameter and is used to create a joint state with the parameter value. Therefore, the 

combination of parameters and momenta constitutes the state of the trajectory, defining a point in the 

joint space of parameters and momenta. The goal of HMC is then to simulate trajectories in this joint 

space over time, guided by the Hamiltonian dynamics equations, which describe how the positions, 

i.e., parameters, and momenta change. To make these equations computationally tractable, they are 

discretized using a numerical integration scheme, such as the leapfrog method [112]. This method 

represents an approximate solution to the motion of non-interacting classical particles. A step size, 

denoted as ε, determines the size of the discrete time steps taken during the numerical integration of 

the equations. Smaller 𝜀 values result in more accurate but computationally intensive simulations, 

while larger ε values speed up the computation but may lead to less accurate trajectories. The 

numerical integration of these equations generates a proposed state (position and momenta) in the 

joint space, which is then subject to acceptance or rejection based on the Metropolis-Hastings 
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criterion based on the ratio of posterior probabilities. If accepted, the positions (parameters) become 

the new values of the Markov Chain, while the momenta are discarded. Thus, while the momenta are 

auxiliary variables introduced during the simulation, the final output of HMC is a sample from the 

posterior distribution, which includes the parameter values.  

As for other MCMC algorithms, HMC requires the user to operate a tuning of the algorithm’s 

parameters. Other than the specification of number of burn-in and sampling iterations which is 

common with other MCMC methods, HMC requires to set the step size ε and the number of leapfrog 

steps for numerical integration. However, a variant of HMC, the No-U-Turn Sampler (NUTS) [113], 

has the great advantage to automatically tunes the step size ε and the number of leapfrog steps 

required for each trajectory. The step size ε is adaptively adjusted during the trajectory simulation to 

account for the curvature of the target distribution, helping to avoid issues like poor exploration or 

numerical instability.  

 

2.1.2.7 Advantages of using Bayesian inference based on HMC algorithm. 

In summary, the HMC algorithm, along with its variant NUTS sampler, combines principles from 

classical mechanics with Bayesian inference to efficiently navigate complex posterior distributions. 

This makes it an invaluable tool for Bayesian analysis, especially in scenarios with high-dimensional 

parameter spaces. When compared to the Metropolis-Hastings algorithm, the NUTS sampler offers 

several advantages [111]: 

 

1. Enhanced Efficiency: NUTS excels at exploring high-dimensional parameter spaces more 

efficiently. It's particularly suitable at traversing these spaces without the inefficiencies 

associated with random-walk-like behavior, which often necessitates a large number of 

samples to achieve convergence. 

2. Reduced Random Walk: by minimizing the random-walk-like behavior, NUTS helps reduce 

the number of samples required for the Markov chain to reach convergence. This 

improvement in exploration efficiency is especially advantageous when dealing with complex 

models. 

3. Improved Handling of Correlations: NUTS handles correlated parameters more effectively. It 

helps mitigate the challenges posed by parameter dependencies, leading to a more accurate 

and efficient exploration of the joint posterior distribution. 

 

As a result, HMC methods, grounded in Bayesian inference principles, serve as a potent approach 

when analytical solutions are impractical, or frequentist methods struggle to converge or grapple with 

computational limitations [113]. These advantages led me to consider NUTS as a valid alternative to 

the EM algorithm to estimate parameters in the LTMH method. In the next paragraphs it will be 

discussed how Bayesian statistics and NUTS fit in the context of LTMH and heritability estimation. 

 

2.1.3 Notations and LTMH specification 
LTMH methodology will now be described along with further insights on modeling features 

necessary for heritability studies. A sample is considered, made of N individuals, denoted with j, 

clustered in F families denoted with i. The N observed binary phenotypes Yij, which can be considered 

as cases and controls, are determined by unobserved continuous liability scores Lij and a fixed 

threshold c [114]. The threshold c is placed on the liability distribution so that the portion of the 
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distribution equal to the trait prevalence in the population is above the threshold [115]. LTMH can 

include covariates, i.e., fixed effects, which are useful used to adjust for potential confounders effects 

and to improve model fitting leading to higher estimates precision [116]. Moreover, it may also be of 

interest measuring their explained proportion of phenotypic variance on a liability scale. Covariates, 

which are assumed to be standardized so that they are centered to their mean value, are denoted with 

a matrix XNxB, where B denotes the number of covariates, while b represents the respective vector of 

fixed effects parameters β1, … , βB. The liability scores L are assumed to be distributed following a 

multivariate normal distribution, i.e., L ~ MVN(Xb, Σ). The intercept term is constrained to 0, which 

means that L =  0 when covariates are equal to their mean value. The covariance matrix Σ is 

composed of a block diagonal matrix consisting of the covariance matrices Σi calculated within each 

family.  

In the development of the LTMH method under a Bayesian framework, the interpretation of the 

components included in Σ, aiming to obtain an unbiased heritability estimate, will now be discussed. 

Following the standard polygenic additive model [67], assuming null epistatic and GxE effects, Σ is 

defined equal to the sum of genetic and environmental effects variance components:  

 

Σ =  σA
2K + σD

2V + σC
2H + σE

2I  

Where σE
2  represents the individual environmental effects (E) variance and I the respective identity 

matrix, σA
2  represents the additive genetic effects (A) variance and K the respective kinship matrix 

multiplied by two, meaning that components Φjk are defined as the probability, at a given locus, that 

two gene copies chosen at random from two individuals j and k are identity-by-descent (IBD). σD
2  

represents the dominant genetic effects (D) variance and V the respective dominant genetic matrix 

whose components vjk are defined as the probability at a given locus that two individuals j and k 

share two gene copies IBD [117]. If σD
2  is incorrectly assumed to be null then σA

2
 could result in an 

inflated estimate by a term equal to 0.5σD
2

 [81,118]. Shared environment effects (C) variance σC
2

 along 

with the respective H correlation matrix, are also modeled to avoid an inflation of σA
2  estimate due to 

common environmental influences potentially resulting in phenotypic resemblances [82]. It is not an 

easy task to specify to what extent or in what form these environmental effects exert their presence 

through familial correlations and from one generation to another [119]. Reasonably, the main source 

of shared environment effects can be identified in siblings/twins raised in the same household, as 

these likely share the same eating habits, family lifestyle, infectious diseases and sources of pollution 

[120–122]. Therefore, H matrix components hjk can be defined as equal to 1 for groups of siblings. 

It is also important to notice that in this case it results impossible to disentangle dominance genetic 

and shared environment effects, as the former effect σD
2  would be completely masked by the latter σC

2  

[123]. Still, using an ACE model, i.e., a model which jointly consider additive genetic effects (A), 

shared environment effects (C) and individual environment effects (E), σC
2  estimate would adjust for 

σD
2  avoiding σA

2  inflation [81,124], but it is expected to be inflated by a term equal to 0.25σD
2 . Since 

the principal aim is to accurately estimate σA
2 , an ACE model will be considered acknowledging the 

potential inflation of σC
2  due to dominant effects. Nevertheless, it is also worth mentioning that 

dominant effects have been shown to have little impact on complex traits [125]. Additionally, one 

can model the variance of environmental effects shared by siblings which are “transmitted” from the 

parents to the offspring; in fact, it is likely that there is some dependence between parents’ and 

offspring’s environments in which they were raised; for instance, if parents grow up in poverty, their 
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children are more likely to grow up in poverty as well [83]. This similarity in environments is difficult 

to model because parents and offspring do not grow up in the same household in the same way as 

siblings do, and any assumption on the similarity in environment would be speculative unless 

explicitly assessed [83]. Therefore, it is reasonable to assume that only a certain fraction of this shared 

environment is “transmitted” from a parent to the offspring. For a nuclear family, e.g., mother, father 

and two children, shared environmental effects, including a transmitted effect from the mother to the 

offspring,  can be modeled specifying the following covariance matrix: 

 

σC
2H =  

[
 
 
 
 
σC

2 0 tσC
2 tσC

2

0 σC
2 0 0

tσC
2 0 σC

2 σC
2

tσC
2 0 σC

2 σC
2 ]
 
 
 
 

  

 

With t being an unknown parameter bounded between 0 and 1. Instead of treating t as an unknown 

parameter to be estimated, Σ can be formulated as follows [119]: 

 

Σ =  σA
2K + σC

2H1 + tσC
2H2 + (σE

2 −  tσC
2)I  

 

Where H1 and H2 represent, respectively, the correlation matrix with values equal to 1 between 

siblings and between the mother and the offspring. Therefore, the variance of the effects due to shared 

environment between siblings σC
2  and the effects of the correlated environment shared between 

siblings transmitted by a parent tσC
2  can be estimated. The sum of σC

2  and tσC
2  could then be considered 

as an estimate of the total shared environment effects variance. Using extended families has the 

advantage, over trios/nuclear families, to maintain model parameters identifiable in case of several 

different shared environmental components are added to the model, e.g., transmitted shared 

environmental effects from each parent can be modeled separately without losing parameters 

identifiability; this is due to the larger number of degrees of freedom made available by the increased 

variety in genetic relationships [126,127]. Moreover, the variance of shared environment effects 

between spouses can also be considered, as previous literature showed how partners of people with 

specific diseases are at increased risk of the disease themselves, sharing similar lifestyle and behaviors 

being members of the same household [128]. To check for parameters identifiability one can verify 

if the S covariance matrices added in Σ are linearly independent, meaning that the equation x1M1  +

⋯ + xsMs  = 0, where Mi and xi represent the correlation matrix and the respective variance as 

specified in the model, can be solved only for x1 = ⋯ =  xs = 0. Therefore, the choice in modeling 

the shared environmental effects is somewhat arbitrary, as it depends on the pedigree structure other 

than the knowledge about the trait of interest [122]; however, it represents a fundamental feature to 

avoid inflated heritability estimates. Now that all the components in Σ have been defined, the sum of 

the variance components, which is equal to the phenotype liability variance σL
2, is assumed to sum to 

1 to avoid parameters identifiability problems [129]. The individual environment variance σE
2  is then 

derived as the complementary term with respect to all other variance components in the model, e.g.,  

σE
2 = 1 − σA

2 − σE
2 − tσC

2 . It should be noticed that since a fraction of phenotypic variance, on liability 

scale, is explained by the fixed effects b, the obtained parameters posterior distributions should be 

interpreted conditional to the proportion of phenotypic variance explained by the B covariates 
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included in the model, i.e., σβ
2 . As described by Villemereuil et al. [116], σβ

2  should be considered 

part of total phenotypic variance, i.e., 1 + σβ
2 , where σβ

2 = var(Xb), to obtain a correct and marginal 

interpretation for the parameters. Therefore, it is necessary to derive the ratio between σA
2 , σC

2 , σE
2  and 

σβ
2  and 1 + σβ

2 to obtaining the marginal posterior parameters distribution for: 

 

- h2: narrow-sense heritability, i.e., proportion of phenotypic variance, on liability scale, 

explained by additive genetic effects.  

- c2, proportion of phenotypic variance, on liability scale, explained by shared environment 

effects. 

- e2, proportion of phenotypic variance, on liability scale, explained by individual environment 

effects.  

- τβ
2, proportion of phenotypic variance, on liability scale, explained by covariates.   

 

This is only relevant when covariates are included in the model, otherwise σA
2 , σC

2 , and σE
2  parameters 

would automatically be equal to h2, c2, and e2 as the total phenotypic variance is equal to 1 for 

construction.  

 

2.1.4 Modeling GxE interaction effects variance 
LTMH can be expanded to investigate the role of GxE interaction effects, which is particularly 

important when environmental factors are considered. GxE effects imply that genetic variants have 

varying causal effects on outcomes depending on the environmental conditions [130]. Understanding 

GxE effects helps clarify why individuals with the same genetic predisposition may experience 

different outcomes when exposed to different environmental factors. Assessing GxE effects is crucial 

to test the validity of the additive principle, as their presence could confound h2 estimates. GxE 

effects, between genetic variability and an environmental factor, can be studied and modeled using 

the approach described by Almasy and Blangero [131], defining Σ as follows: 

 

Σ =  σA
2K + σc

2H + σGxE
2 K ⊙ ϒ + σE

2I  

 

Where ⊙ is the Hadamard product and σGxE
2  represents the variance of GxE effects. ϒ matrix can be 

structured differently depending on the continuous or categorical nature of the environmental 

variable, i.e., for continuous variables it can be structured as a matrix of scaled similarities among 

individuals and can be modeled using an exponential decay, i.e., pij =  exp(−λ|xi – xj|), while for 

categorical variables the matrix simply defines the individuals within the same environmental group. 

As for the previously described model, the sum of the variance components is constrained to 1, so 

that the proportion of total phenotypic variance, on a liability scale, explained by GxE effects, i.e., 

hGxE
2 , is derived diving σGxE

2
 by 1 + σβ

2 . A posterior distribution for hGxE
2  parameter significantly 

greater than 0 indicates that the differential impact of additive genetic effects across different levels 

of environmental exposure has a statistically significant explanatory role for trait variability on the 

liability scale [132], considering all other explanatory components included in the model. 

Consequently, a null hGxE
2  parameter must not be interpreted as evidence for the absence of causal 

GxE effects. Instead, it suggests a negligible explanatory role for GxE effects in explaining trait 

variability. 
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2.1.5 Description of the Bayesian-LTHM framework 

For the following explanations, an ACE model, i.e., Σ =  σA
2K + σc

2H + σE
2I, including B covariates 

will be considered. Due to the ascertainment scheme from sampled affected probands the sample is 

not representative of the population and most likely present cases with a higher frequency. LTMH 

can deal with this problem constraining each Lij lower and upper bounds (aij, bij) according to the 

individual’s observed phenotype Yij and a fixed threshold c which defines, above its value, the portion 

of the distribution equal to the cases prevalence in the population. The threshold c can be determined 

as the inverse of the cumulative distribution function evaluated at the trait’s prevalence in the 

population [133], i.e., Φ(c)=P(L≥c), where L ~ N(0,1). Therefore, Lij is bounded by (-∞, c) if the 

individual is a control, and, instead, bounded by (c, +∞) if the individual is a case, allowing to 

consider the unobserved liability scores as if they would have been sampled from the population L 

distribution.  The joint probability density function (pdf) of the complete data p(Y,L) can be 

decomposed into the marginal pdf of L and the conditional pdf of Y given that L has the support of 

(a, b): 

 

p(Y, L) = p(Y|L)p(L) = p(L)I(a < L < b)  

 

In this proposed method, a Bayesian framework is used to estimate a set of plausible values for 

parameters θ=(σ2A, σ2C, σ2E, h2, c2, e2, b, σ2β, τ2β), where the conditional sampling distribution, or 

likelihood, for the observed data Y and unobserved liabilities L, is defined by a truncated multivariate 

normal distribution, bounded in the range (a, b) depending on the observed phenotypes Y: 

 

p(Y, L | θ) = L ~ MVN(Xb, Σ)I(a < L < b)  

 

However, due to nonrandom sampling, covariates distribution could not be representative of the target 

population distribution and b parameters require ascertainment bias correction. One method to correct 

ascertainment bias is to condition the likelihood on the proband’s phenotypic information [134]. This 

approach is called “ascertainment-assumption free” (AAF) [134] as there is no need to explicitly 

model how ascertainment depends on phenotypes [135]. The sampling distribution for θ parameters 

adjusted from ascertainment bias is then defined as the following conditional likelihood: 

 

 p(YNP, LNP | YP, LP, θ) =  
p(Y, L | θ)

p(YP, LP | θ)
  

 

Where P denotes probands and NP non-probands. Probands P are assumed to be independent of each 

other. The numerator represents the likelihood function as previously described, while the 

denominator represents the likelihood that the proband is randomly picked from the population: 

 

p(YP, LP | θ) = ∏(exp (Yi
P ∗ log (

μi

1 − μi
)) ∗ 1 − μi)

F

i=1
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Where μi represents the probability that the liability score for a proband is higher than the threshold 

c, i.e.,  μi= P(YiP=1)=P(LiP >c)=1- Φ(c- XiPb). If all the probands are cases (YiP=1, for each family 

i), then the likelihood simply reduces to:  

 

p(YP, LP | θ) = ∏μi

F

i=1

  

 

The posterior distributions p(θ | Y, L) can be then characterized using Bayes’ theorem as: 

 

p(θ | Y, L) ∝  p(YNP, LNP | YP, LP, θ)p(θ)   

 

Where p(θ) represents the prior distribution specified for the parameters in θ.  

 

2.1.6 Stan implementation and prior distributions specification 
The computation of the Bayesian model relied on the program Stan [136] and the respective R 

interface package CmdStanR [137]. Stan makes use of the previously mentioned NUTS sampler 

[113], an extension of HMC methods [138], to draw samples from the parameters’ posterior 

distributions. CmdStanR allows to improve speed efficiency with the support of between and within-

chains multi-threading for parallelization. Between-chains parallelization allows to run MCMC 

chains in parallel on different cores (one for chain), while the within-chains parallelization allows, 

through the “reduce_sum” function, to partition the overall log-likelihood into arbitrary smaller 

partial log-likelihoods calculated in parallel on different cores (one for each partition specified by the 

user) [139]. Specifications for the prior distributions p(θ) will now be discussed. Since σ2A and σ2C 

are defined in the range [0,1], a natural choice is to sample from a Beta distribution with shape 

hyperparameters α and β. Non-informative priors can be implemented fixing α and β hyperparameters 

to 1, e.g., p(σ2A)~ Beta(1,1), which is the equivalent of a uniform distribution bounded by 0 and 1. 

σ2E is specified as a transformed parameter, as for the constriction described above, and therefore 

does not need a prior distribution specification. Prior distribution for b parameters can be defined 

using a distribution with a support based on real values such as a normal distribution with customized 

hyperparameters μ and σ; a reasonably non-informative prior can be formulated as p(b)~N(0,10). 

σ2E and σ2β are specified as transformed parameters, as for the formulas described above, and 

therefore do not need a prior distribution specification. h2, c2, e2, and τβ
2, which represent the 

parameters of interest for the interpretation of the results, can be treated in STAN as generated 

quantities or as transformed parameters using the formula described above. While the first option is 

computationally faster as its aim is simply to generate a sampled posterior distribution, the second 

allows the user to specify a more informative prior distribution, which is useful in case one is 

interested in adding previous knowledge gathered from past research studies. α and β 

hyperparameters can then be set to obtain the desired Beta distribution shape, e.g., p(h2) ~ Beta(α, 

β). Moreover, one can rely on a Beta distribution re-parametrization to obtain α and β based on 

expected value E(θ)=μ and precision parameter φ > 0. Larger φ values lead to smaller variance of 

θ, and φ can be set to obtain the desired variance using the formula 
μ(1−μ)

1+φ
 . Finally, given the chosen 

μ and φ parameters, shape hyperparameters α and β can be derived as α=μφ and β=φ(1-μ). Even 
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though prior distributions are placed for transformed parameters, Jacobian adjustment of log-

likelihood is not required since the transformations are linear, i.e., the sum of log of the absolute 

derivative of the determinant of the Jacobian matrix is a constant [139].  

 

2.1.7 Bayesian-LTMH: STAN code implementation 
Here, the reader can find a description for the STAN code [136] produced to implement Bayesian-

LTMH (when one covariate is included in the model) following the previously illustrated ACE model. 

 

1. The “data” chunk is used to define the data to be used along the code and which must be 

imported using the R interface.  

 

data { 

int<lower=0> N; //Number of subjects 

matrix[N,N] kinship_matrix; //Kinship matrix 

matrix[N,N] sharedenvironment_matrix_sibs; //Shared environment matrix 

matrix[N,N] identity_matrix;  //Identity matrix 

real threshold; //Normal distribution quantile which leaves to the right an area equal to the disease prevalence. 

vector[N] lb; //Normal distribution lower bound based on the subject status (case-control) 

vector[N] ub; //Normal distribution upper bound based on the subject status (case-control) 

vector<lower=0,upper=1>[N] lb_ind; //Indicator of cases. 

vector<lower=0,upper=1>[N] ub_ind; //Indicator of controls. 

int<lower=0> NFAM; //Number of families. 

int ni[NFAM]; //Number of subjects within the families. 

int firstfam[NFAM]; //Placeholder for the first subject in the family. 

int<lower=0> NCOV; //Number of covariates. 

matrix[N,NCOV] X; //Covariate values. 

vector[NCOV] SD; //Covariate’s standard deviations. 

matrix[NFAM,NCOV] XP; //Covariate values for the family’s proband. 

vector[NFAM] YP; //Status (case-control) for the family’s proband. 

int<lower=1> fam[NFAM]; //Sequence for number of families. 

int<lower=1> grainsize; //Granularity of within-chain parallelization (default=1). 

} 

 

2. In the “parameters” chunk the unknown parameters to be drawn are defined.  

 

//Here, initial parameters are defined. 

parameters { 

vector[NCOV] betapam; //Fixed-effect parameter. 

real <lower=0, upper= 1> sharedenvironment_sibs; //Shared environment effect variance. 

real <lower=0, upper= 1-sharedenvironment_sibs> heritability; //Additive genetic effects variance. 

vector<lower=0,upper=1>[N] u; //Latent parameters for the liability scores. 

} 
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3. In the “transformed parameters” chunk the parameters derived from sum constraints are 

defined. 

 

//Individual environment effects variance is derived from sum constraint, so that the sum is equal to 1. 

transformed parameters{ 

real <lower=0, upper= 1> individualenvironment = 1-heritability-sharedenvironment_sibs; 

} 

 

4. The “generated quantities” chunk is useful to obtain a posterior distribution for the 

quantities of interest derived in last place as a derivation of the parameters in the model. 

Defining these quantities in this chunk, instead of “transformed parameters” greatly 

improves the computational efficiency. 

 

generated quantities{ 

//Variance explained by the fixed-effect. 

real sigmaCOV=variance(X*betapam);  

 

//Marginal parameters posterior distributions. 

//Heritability: 

real <lower=0, upper= 1> heritability_marginal = heritability/(1+sigmaCOV);  

//Proportion of variance explained by shared environment effects: 

real <lower=0, upper= 1> sharedenvironment_sibs_marginal = sharedenvironment_sibs/(1+sigmaCOV);  

//Proportion of variance explained by individual environment effects: 

real <lower=0, upper= 1> individualenvironment_marginal = individualenvironment/(1+sigmaCOV); 

//Proportion of variance explained by the fixed-effect: 

real <lower=0, upper= 1> tauCOV_marginal = sigmaCOV/(1+sigmaCOV); 

 

//Unstandardized fixed-effect: 

real beta_COV = betapam[1] / SD[1];  

} 

 

5. The log-likelihood function is defined assuming liabilities to be distributed as truncated 

multivariate normal distribution.  

 

functions { 

//The partial_sum function is necessary to add computational efficiency using parallel cores. 

real partial_sum(int[] fam_slice, int start, int end, matrix X, matrix XP, vector YP, int[] ni, int[] firstfam, vector lb, 

vector ub, vector lb_ind, vector ub_ind, vector u, int NFAM, real heritability, real sharedenvironment_sibs, real 

individualenvironment, matrix kinship_matrix, matrix sharedenvironment_matrix_sibs, matrix identity_matrix, vector 

betapam, int NCOV, real threshold) { 

 

//Likelihood initialization. 

real lik=0; 

 

//Within this loop, each family is selected once at a time to calculate the log-likelihood. 

 for (k in start:end) { 
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//Each element specific to the family is selected. 

int nik =ni[k]; 

int firstfamk =firstfam[k]; 

row_vector[NCOV] XPk =XP[k,]; 

real YPk =YP[k]; 

matrix[nik,NCOV] Xk=block(X, firstfamk ,1,nik,NCOV); 

vector[nik] lbk=segment(lb, firstfamk ,nik); 

vector[nik] ubk=segment(ub, firstfamk ,nik); 

vector[nik] lb_indk=segment(lb_ind, firstfamk ,nik); 

vector[nik] ub_indk=segment(ub_ind, firstfamk ,nik); 

vector[nik] uk=segment(u, firstfamk ,nik); 

vector[nik] mu = Xk*betapam; 

 

//Ascertainment bias adjustment 

real XB = XPk*betapam; 

real alpha=YPk*log((1-normal_cdf(threshold - XB, 0, 1))/(1-(1-normal_cdf(threshold - XB, 0, 1)))) - log(1/(1-

(1-normal_cdf(threshold - XB, 0, 1)))); 

 

//Covariance matrix definition. 

matrix [nik,nik] Sigmakc=cholesky_decompose(block(kinship_matrix, firstfamk, firstfamk, nik, nik)*heritability 

+ block(sharedenvironment_matrix_sibs, firstfamk, firstfamk, nik, nik)*sharedenvironment_sibs          

+ block(identity_matrix, firstfamk, firstfamk, nik, nik)*(individualenvironment)); 

 

//Calculation of the truncated multivariate normal distribution log-likelihood based on the parameters drawn. 

   vector[nik] z; 

     real prob = 0; 

      for ( m in 1:nik ) { 

        if ( lb_indk[m] == 0 && ub_indk[m] == 0 )  z[m] = inv_Phi(uk[m]); 

          else {  

            int km1 = m - 1; 

            real v;  

            real z_star; 

            real logd; 

            row_vector [2] log_ustar = [negative_infinity(), 0];            

            real constrain = mu[m] + ((m > 1) ? Sigmakc[m, 1:km1] * head(z, km1) : 0); 

            if ( lb_indk[m] == 1 ) log_ustar[1] = normal_lcdf( ( lbk[m] - constrain ) / Sigmakc[m, m] | 0.0, 1.0 ); 

            if ( ub_indk[m] == 1 ) log_ustar[2] = normal_lcdf( ( ubk[m] - constrain ) / Sigmakc[m, m] | 0.0,1.0); 

            logd  = log_diff_exp(log_ustar[2], log_ustar[1]); 

            v  = exp( log_sum_exp( log_ustar[1], log(uk[m]) + logd ) );     

            z[m] = inv_Phi(v);                                           

            prob += logd;                                                     

          } 

        } 

          lik += prob-alpha; 

} 

 

   return  lik;  

  } 

} 
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6. The parameters’ prior distributions and the target distribution, as previously defined in the 

function “partial_sum”, are specified in the “model” chunk.  

 

model { 

//For the fixed-effect, a non-informative normal distribution is selected. 

betapam~ normal(0,10);  

//For heritability, a non-informative beta distribution is selected. 

heritability~ beta(1,1); 

//For shared-environment effects variance, a non-informative beta distribution is selected. 

sharedenvironment_sibs~ beta(1,1);  

 

//Target truncated multivariate normal distribution. Reduce_sum function is needed to operate        

parallelization and increase computational efficiency. 

target += reduce_sum(partial_sum,fam , grainsize,X, XP, YP,ni, firstfam, lb, ub, lb_ind, ub_ind, u, 

NFAM,heritability,sharedenvironment_sibs, individualenvironment, 

kinship_matrix,sharedenvironment_matrix_sibs,identity_matrix, betapam,NCOV,threshold); 

    } 

 

2.1.8 Simulation studies  
To assess the ability of the proposed Bayesian-LTMH to recover the true parameters, 

simulations were performed under different scenarios. The aim was to evaluate the accuracy and 

precision of the posterior distribution for the parameters of interest according to the model 

specification, pedigree structure and trait’s prevalence. Therefore, posterior distribution uncertainty 

relative to the prior knowledge, i.e., standard deviation (SD) and lack of bias were evaluated. To 

answer these questions, different scenarios were simulated according to i) the pedigree structure, 

sampling 500 nuclear families or 150 three-generations families from affected probands, ii) trait’s 

prevalence, i.e., 0.05 and 0.005, and iii) the model specification and the effects used to simulate 

liability scores, which include different combinations of additive genetic effects (A), shared 

environment effects (C), dominant genetics effects (D), individual environment effects (E), as well 

as the effect of a single-nucleotide polymorphism (SNP) covariate βSNP. The detailed steps were the 

following: 

1. First, 150,000 nuclear families, with parents having 1, 2, 3, or 4 sons/daughters with 

probabilities 0.2, 0.3, 0.3, 0.2 were randomly simulated. Sex was always assigned with 

probability 0.5, and one of the sons/daughters was randomly chosen to represent the proband. 

In an alternative scenario 40000 extended pedigrees up to the third generation were randomly 

simulated. The first generation was made of a founders’ couple having 2, 3 or 4 sons/daughters 

with probabilities 0.4, 0.4 and 0.2 which themselves had 1, 2, 3 or 4 sons/daughter with the 

probabilities 0.2, 0.3, 0.3 and 0.2. Among the second and the third generation, an individual 

was randomly chosen to represent the proband.  

2. Within each family, liabilities were simulated as random draws from a multivariate normal 

distribution with covariance matrix equal to the sum of the effects specified depending on the 

scenario and mean equal to 0 or equal to XβSNP depending on SNP covariate being included 

in the model. The performance of Bayesian-LTMH was evaluated fitting: 1) AE model, when 

liabilities were simulated fixing h2 = 0.4, null c2, no covariates included;  2) ACE model, 

modeling c2Sibs, when liabilities were simulated fixing h2 = 0.4, c2Sibs = 0.2, no covariates 
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included; 3) ACE model, modeling c2Sibs and c2
Mother-Offspring, when liabilities were simulated 

fixing h2 = 0.4, c2Sibs = 0.2, c2
Mother-Offspring = 0.1, no covariates included. 4) ACE model as in 

2), when liabilities were simulated fixing h2 = 0.4, c2Sibs
 = 0.2, d2=0.2, no covariates included, 

to quantify the potential bias in h2 and c2 parameters posterior distributions when dominant 

genetic effects are present but not accounted in the model. 5) ACE model as in 2) but including 

a SNP as covariate, when liabilities were simulated fixing h2 = 0.4, c2Sibs
 = 0.2, and SNP effect 

βSNP explaining 1% of total phenotypic variance, i.e., h2SNP = 0.01. Founder genotypes for 

each family were generated from a binomial distribution with two trials and the Minor Allele 

Frequency (MAF) as success probability, which was fixed to 0.2. Non-founder genotypes 

were consequently obtained following Mendelian transmission. To obtain h2SNP = 0.01, βSNP 

was fixed to 0.178 following the equation [96]: 

 

h2
SNP  =  

2 ∗ βSNP
2 ∗ MAF ∗ (1 − MAF) 

1 +  2 ∗ βSNP
2 ∗ MAF ∗ (1 − MAF)

  

 

Once liabilities were generated, individuals were considered as cases if their liabilities 

were larger than a threshold c, which was chosen to maintain the desired cases prevalence. 

Depending on the scenario, prevalence was fixed as 0.05 or 0.005. Finally, 500 nuclear 

families and 150 three generations families were randomly sampled between families with an 

affected proband, for an expected sample size of ≈ 2400 individuals. 

3. Once the ascertained family-based sample was obtained, the Bayesian-LTMH specified 

according to the scenario was implemented using NUTS to draw samples from the posterior 

distribution, setting two chains with 1000 warmup iterations and 1000 sampling iterations. 

Prior distributions were fixed as non-informative Beta distribution, i.e., Beta(1,1), for h2, 

c2Sibs and c2Mother-Offspring parameters, and as non-informative normal distribution. i.e., 

N(0,10), for βSNP parameter.  

4. The points 1-3 were repeated 200 times for each scenario. From the obtained parameters’ 

sampled posterior distributions, different descriptive statistics useful to evaluate the 

performance of Bayesian-LTMH were calculated. The median of the posterior distribution 

was considered as a point estimate. To evaluate the accuracy of parameters posterior 

distributions across all 200 simulations, it was calculated 1) the median of all point estimates 

and 2) the bias as the difference from the respective true parameter value. To evaluate the 

precision, it was calculated 3) the SD of all point estimates and 4) the median of all posterior 

distributions’ SDs. Moreover, it was calculated 5) the root mean square error (RMSE) as a 

measure to compare the quality of the posterior distribution, both in terms of accuracy and 

precision, between scenarios. RMSE is defined as the square root of the mean square 

difference between the point estimates and the respective true value, i.e., √E[(θ2̂ − θ2)
2
]. 

Finally, it was calculated 6) the coverage as the number of times the 95% Highest Posterior 

Density Credibility Intervals (HPD CIs) contained the true parameter.  

 

The computational time to fit AE and ACE models using LTHM under the Bayesian framework and 

under the EM-algorithm approach was compared, considering a sample of 150 three-generations 

families ascertained from a proband where trait prevalence was equal to 0.005. 
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2.2  Implementing Bayesian-LTMH on the Sardinian extended families 

2.2.1 Sardinian Families Ascertainment 
The sample used in this work was retrieved from a register of MS cases, diagnosed according to 

Poser’s criteria [28], established in Sardinia’s Nuoro province in 1995. Whenever possible, patients 

were examined by the neurologists at the Neurology Department of the Nuoro Hospital. Otherwise, 

clinical records were obtained and reviewed by the previous neurologists. During the examination, 

the neurologists filled the clinical record of the patient, comprising the MS disease course. From this 

case register, 89 MS-affected probands were sampled, without any selection in favor of MS patients 

with a possible family history. Using the genealogical questionnaires filled in by the affected proband 

and the municipal registries, it was possible to reconstruct their genealogical tree. In some cases, MS 

probands resulted distantly related through a common ancestor, leading to a final sample comprising 

24 extended families [97]. Examples of extended families are reported in Figure 13. In this analysis, 

probands’ parents, siblings, spouses, uncles/aunts, first-degree cousins, nieces/nephews, and 

grandparents were included ,while more distant relatives were excluded to avoid MS 

misclassifications. Non-affected relatives included in the final analysis were at least 20 years old at 

the day of the questionnaire compilation. Thus, a total of 790 subjects were analyzed, comprising 118 

MS cases and 672 healthy controls.  

 

Figure 13. Examples of Sardinian extended families. Multiple Sclerosis cases are reported in black, while the arrow 

denotes a proband. 

 

2.2.2 Model specification  
To estimate MS heritability implementing the Bayesian-LTMH method, making use of the 

Sardinian family-based sample, a liability threshold model was specified. To define the fixed 

threshold (c), which depends on MS prevalence in the population [133], the work by Montomoli et 

al. [140] was used, which estimated MS crude prevalence in Nuoro province as 157 per 100,000 

inhabitants on December 31, 1998 (around the years of questionnaires compilation as reported above). 

To adjust for potential confounding, the following covariates were included in the model,: (i) sex, as 



44 
 

the female-to-male MS prevalence ratio in the Nuoro province was reported to be 2:1 [9]; (ii) 

categorized year of birth (<1946 or ≥1946) as a proxy for the individuals’ different early 

environmental exposures (comprising the beginning of malaria eradication program). L was assumed 

to be distributed following a multivariate normal distribution, i.e., L~MVN(Xb, Σ), where X denotes 

a matrix for standardized covariates, i.e., sex and categorized year of birth (YR), b represents the 

respective vector of fixed effects parameters, i.e., βSEX and βYR, and Σ denotes a covariance matrix. 

The AAF approach was applied to correct fixed effects’ ascertainment bias. Since multiple distant 

related probands could be present within a single family i, it was considered, for simplicity, a single 

fictitious proband with covariates values equal to the mean of the actual probands’ sex and 

categorized year of birth within the family i, i.e., Xij
P= 

1

M
∑ Xijm

PM
m=1 , where m = 1, . . . , M were the 

respective probands in family i and j=1,2 were the respective covariates. Liability scores for the 

family members were then assumed to be normally distributed and correlated as follows: 
 

Li ~ MVN(X1βSex + X2βYR, Σ) 

 

The standard polygenic additive model [67,114] was applied, assuming null epistatic and gene–

environment (G×E) effects, defining Σ as follows (ACE model): 

 

Σ = h2K + cSibs
2 H1  +  cMother−Offspring

2 H2 + cFather−Offspring
2 H3 + cSpouses

2 H4 + e2I, ( 

 

where parameters were defined as the proportion of MS liability variability explained by: 

 

- h2, additive genetic effects, with K being the kinship matrix multiplied by two,  

- cSibs
2 , effects due the environment shared between siblings (which also allow to adjust for 

dominant genetic effects), with H1 being the correlation matrix with values equal to 1 between 

siblings,  

- cMother−Offspring
2 , effects of environment shared between the mother and the offspring, which 

may include maternal effects as highlighted in [141,142], with H2 being the correlation matrix 

with values equal to 1 between mother and offspring,  

- cFather−Offspring
2 , effects of environment shared by the father and the offspring, with H3 being 

the correlation matrix with values equal to 1 between father and offspring,  

- cSpouses
2 , effects of environment shared between spouses, with H4 being the correlation matrix 

with values equal to 1 between spouses,  

- e2, individual environmental effects, with I being the respective identity matrix. To avoid 

identifiability problems [129], e2 was derived as the complementary to 1 considering the sum 

of the other parameters.  

 

The proportion of MS liability variance explained by total shared environment effects, i.e., c2
Total, was 

then defined as the sum of cSibs
2 , cMother−Offspring

2 , cFather−Offspring
2 , and cSpouses

2  components. Modeling 

cTotal
2  allows avoiding an inflation in h2 due to common environmental influences [82,119,143]. βSEX 

and βYR allow quantifying the liability increase/decrease and the proportion of MS liability variability 
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jointly explained by both covariates, i.e., τ2βSEX,YR = var(Xb) [116]. This latter term can be 

decomposed, following [144], into 

 

τβSEX,YR
2 = τβSEX

2 + τβYR
2 + 2covβSEX,YR

, 

 

from which was derived the proportion of MS variability marginally explained by (i) sex, τ2βSEX, 

(ii) categorized year of birth, τ2βYR, and (iii) their covariance component, 2covβSEX,YR. As described 

in [116], τ2βSEX,YR was considered as part of the total phenotypic variance to obtain marginal posterior 

distributions. Posterior distributions for βSEX and βYR parameters were unstandardized dividing the 

values by the variables’ SD. Using the above-specified model, two separate analyses were conducted. 

In the first, the whole sample was considered, aiming to quantify the overall contribution of genetic 

and environmental variability in explaining MS susceptibility variability considering individuals born 

before and after World War II and malaria eradication. The explanatory role of G×E effects, between 

additive genetics and categorized year of birth, was also assessed in a separate model [131,132]. In 

the second, the sample was stratified based on the categorized year of birth; the rationale was to 

evaluate the explanatory influence of genetic and environmental factors on subgroups of individuals 

with more similar early environmental exposures linked to the year of birth. To better reflect the MS 

prevalence in these two groups, the work of Montomoli et al. [140] was used to set MS prevalence as 

103 per 100,000 inhabitants for the individuals born before 1946, and as 176 per 100,000 inhabitants 

for the individuals born on/after 1946. Only for the analysis on individuals born on/after 1946 it was 

possible to include the exact year of birth as a continuous covariate in the model to investigate the 

temporal change in MS liability. Given the lack of previous results for h2 estimation in the Sardinian 

population, non-informative prior distributions were selected for all parameters, i.e., Beta(1,1) for 

variance components, and N(0,10) for βSEX and βYR parameters. Following the suggestions of STAN 

developers, to obtain the sampled parameters’ posterior distributions four chains with 5000 warmup 

iterations and 5000 sampling iterations were run, for a total of 20,000 sampling iterations, and 

convergence of the four chains to the same posterior distribution was assessed visually using trace 

plots and inspecting diagnostic summaries as provided by STAN software. All analyses were 

performed using RStudio and Stan softwares [136–138]. 
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3 RESULTS AND DISCUSSION 

3.1  Simulations studies 
Posterior distributions for each parameter were obtained by sampling via the NUTS sampler 

implemented in the program STAN [136]. The performance was evaluated in terms of accuracy, 

precision, and coverage; Table 1 reports the descriptive statistics for the parameters posterior 

distributions obtained within each simulated scenario, while Figure 14 reports the corresponding box 

plots with a red line indicating the true parameter value. No divergences or other diagnostic problems 

were encountered during NUTS sampling. Considering all the scenarios, point estimates for all 

parameters were generally close to the true value. Therefore, accurate h2 were obtained in presence 

of confounders such as shared environmental effects. It can be observed that the RMSE and posterior 

distribution SD of the estimator across different scenarios showed an increase with i) a lower trait 

prevalence, or/and ii) increasing the number of variance components in the model, or/and iii) using 

three-generations families. The latter result can be explained due to decreasing genetic relatedness 

among distant relatives within a family, such as grandparents-grandchildren or nephews/nieces-

uncles/aunts, which led to a lower statistical power compared to the scenario with nuclear families 

and same sample size. Ascertainment bias was correctly adjusted for βSNP when a SNP covariate was 

included in the ACE model. A slight downward bias for h2 parameter was observed when an 

additional shared environment effect variance component, i.e., c2Mother-Offspring, was included in the 

ACE model; this bias was higher when the prevalence of the trait was equal to 0.005 and using three-

generations families. When dominance genetic effects variance d2=0.2 was included in liabilities 

simulation but not accounted for in the ACE model, the medians of c2
Sibs posterior distributions 

obtained were, as expected, inflated by a factor corresponding to 0.25d2=0.05. However, this 

adjustment allowed to obtain accurate h2 posterior distributions, avoiding the inflation from both c2
Sibs 

and d2 confounding. Finally, HPD CIs coverage was generally near to 95% in each scenario. 

Regarding computational efficiency, STAN employed 358.7 seconds to fit an AE model running one 

chain with 1000 warmup iterations and 1000 sampling iterations, without requiring multi-threading 

within-chain parallelization, on a sample of 150 three-generations families. Considering the same 

sample and number of fixed iterations, STAN employed 401.8 seconds to fit an ACE model including 

a parameter for c2. The computational time dropped, respectively, to 124.8 and 140.1 seconds when 

10 threads were set for within-chain parallelization. Instead, considering the same sample and the 

same models, the EM-based approach took more than one hour to proceed with a second iteration 

even after setting 100 threads for parallelization, therefore highlighting the dramatic improvement in 

speed using the Bayesian framework.  
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Table 1. Descriptive statistics for the sampled posterior distributions obtained fitting Bayesian liability 

threshold model on the 200 simulated datasets within each different scenario. 

Pedigree* 
Trait 

Prevalence 
Parameter 

Point 

Estimate 

Median 

(SD)** 

Bias SD° RMSE^ 
Coverage 

(95% CI) 

AE model, true h2 = 0.4 

Nuclear 
0.05 

h2 

0.393 (0.046) -0.007 0.045 0.047 0.94 

Three-generations 0.399 (0.061) -0.001 0.063 0.061 0.95 

Nuclear 
0.005 

0.398 (0.056) -0.002 0.055 0.057 0.94 

Three-generations 0.385 (0.084) -0.015 0.082 0.087 0.94 

ACE model true h2 = 0.4, true c2
Sibs = 0.2 

Nuclear 

0.05 

h2 0.400 (0.054) 0.000 0.054 0.054 0.93 

c2
Sibs 0.199 (0.036) -0.002 0.038 0.036 0.96 

Three-generations 
h2 0.399 (0.074) -0.001 0.073 0.074 0.96 

c2
Sibs 0.197 (0.050) -0.003 0.051 0.050 0.95 

Nuclear 

0.005 

h2 0.387 (0.071) -0.013 0.069 0.072 0.95 

c2
Sibs 0.208 (0.045) 0.008 0.044 0.046 0.97 

Three-generations 
h2 0.379 (0.096) -0.021 0.099 0.098 0.92 

c2
Sibs 0.206 (0.059) 0.006 0.067 0.060 0.97 

ACE model, true h2 = 0.4, true c2
Sibs = 0.2, true βSNP=0.178, true h2

SNP = 0.01 

Nuclear 

0.05 

h2 0.396 (0.052) -0.004 0.053 0.052 0.95 

c2
Sibs 0.200 (0.040) 0.000 0.038 0.040 0.95 

βSNP 0.180 (0.062) 0.002 0.067 0.062 0.98 

h2
SNP 0.012 (0.008) 0.002 0.009 0.008 0.98 

Three-generations 

h2 0.388 (0.079) -0.012 0.069 0.080 0.92 

c2
Sibs 0.209 (0.047) 0.009 0.044 0.047 0.94 

βSNP 0.188 (0.091) 0.010 0.096 0.090 0.96 

h2
SNP 0.013 (0.012) 0.003 0.014 0.013 1.00 

Nuclear 

0.005 

h2 0.393 (0.071) -0.007 0.073 0.072 0.96 

c2
Sibs 0.202 (0.050) 0.002 0.051 0.050 0.97 

βSNP 0.167 (0.074) -0.011 0.071 0.074 0.93 

h2
SNP 0.009 (0.009) -0.001 0.008 0.009 0.93 

Three-generations 

h2 0.378 (0.108) -0.022 0.096 0.110 0.90 

c2
Sibs 0.195 (0.066) -0.005 0.064 0.066 0.92 

βSNP 0.163 (0.131) -0.015 0.119 0.130 0.93 

h2
SNP 0.010 (0.017) 0.000 0.014 0.018 0.97 

ACE model, true h2 = 0.4, true c2
Sibs = 0.2, true c2

Mother-Offspring = 0.1 

Nuclear 

0.05 

h2 0.382 (0.073) -0.018 0.073 0.075 0.94 

c2
Sibs 0.202 (0.046) 0.002 0.044 0.047 0.94 

c2
Mother-Offspring 0.102 (0.045) 0.002 0.048 0.046 0.95 

Three-generations 

h2 0.385 (0.085) -0.015 0.087 0.087 0.93 

c2
Sibs 0.214 (0.052) 0.014 0.054 0.054 0.96 

c2
Mother-Offspring 0.102 (0.046) 0.002 0.054 0.046 0.96 
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Nuclear 

0.005 

h2 0.370 (0.091) -0.030 0.091 0.098 0.93 

c2
Sibs 0.218 (0.053) 0.018 0.053 0.056 0.93 

c2
Mother-Offspring 0.103 (0.052) 0.003 0.056 0.053 0.95 

Three-generations 

h2 0.353 (0.107) -0.047 0.112 0.116 0.93 

c2
Sibs 0.218 (0.061) 0.018 0.069 0.065 0.97 

c2
Mother-Offspring 0.104 (0.045) 0.004 0.069 0.046 0.99 

ACE model, true h2 = 0.4, true c2
Sibs = 0.2 and true d2 = 0.2 

Nuclear 

0.05 

h2 0.399 (0.056) 0.001 0.054 0.056 0.94 

c2
Sibs+0.25d2 0.256 (0.038) 0.006 0.037 0.038 0.97 

Three-generations 
h2 0.404 (0.075) 0.004 0.073 0.075 0.96 

c2
Sibs+0.25d2 0.256 (0.052) 0.006 0.051 0.052 0.96 

Nuclear 

0.005 

h2 0.392 (0.074) -0.008 0.069 0.074 0.91 

c2
Sibs+0.25d2 0.253 (0.048) 0.003 0.044 0.048 0.92 

Three-generations 
h2 0.376 (0.104) -0.024 0.099 0.107 0.94 

c2
Sibs+0.25d2 0.255 (0.067) 0.005 0.065 0.067 0.93 

* 500 nuclear families or 150 three-generations families were obtained sampling affected probands 

** The point estimate is represented by the median of the posterior distribution 

° Median of all posterior distributions' standard deviations 

^ Root mean square error 

 

 
Figure 14. Box plots for the sampled posterior distributions obtained fitting Bayesian liability threshold model on the 

200 simulated datasets within each different scenario. 

 

1) AE model, true h2 = 0.4 

 

 

 



49 
 

2) ACE model, true h2 = 0.4, true c2
Sibs = 0.2 
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3) ACE model, true h2 = 0.4, true c2
sibs = 0.2, true βSNP=0.178, true h2

SNP = 0.01 
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4) ACE model, true h2 = 0.4, true c2
Sibs = 0.2, true c2

Mother-Offspring = 0.1 
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5) ACE model, true h2 = 0.4, true c2
Sibs = 0.2 and true d2 = 0.2 
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3.2  Bayesian-LTMH application on the Sardinian extended families 
The Bayesian-LTMH was implemented on the sample of 24 extended families from Sardinia's 

Nuoro province ascertained from MS affected probands, aiming to investigate the sources of MS 

susceptibility variability, among environmental and additive genetic effects, in the Sardinian 

individuals born across the 20th century. 

3.2.1 Sample Description 
The analyzed 24 Sardinian families each comprised 7 to 93 subjects (median = 26 subjects) and 1 to 

16 MS cases (median = 3 MS cases), for a total of 790 subjects of which 118 were MS cases (15%) 

and 672 healthy related controls (85%). A total of 302 individuals (38%) were born on/after 1946. 

Among the 118 MS cases, 76 were females (64%) and 42 males (36%), which gave a female/male 

ratio equal to 1.81. Descriptive statistics are reported in Table 2. 

Table 2. Descriptive statistics for the 24 Sardinian extended families. 

Family 
Individuals 

N (%) 1 

Probands* 

N 

Females 

N (%) 2 

MS Cases 

N (%) 2 

1 65 (8%) 6 37 (57%) 6 (9%) 

2 35 (4%) 4 20 (57%) 5 (14%) 

3 70 (9%) 7 45 (64%) 9 (13%) 

4 66 (8%) 8 37 (56%) 10 (15%) 

5 12 (2%) 2 6 (50%) 3 (25%) 

6 16 (2%) 2 7 (44%) 2 (13%) 

7 43 (5%) 5 24 (56%) 5 (12%) 

8 33 (4%) 5 16 (48%) 6 (18%) 

9 17 (2%) 2 10 (59%) 2 (12%) 

10 20 (3%) 2 13 (65%) 3 (15%) 

11 15 (2%) 1 8 (53%) 3 (20%) 

12 33 (4%) 5 17 (52%) 6 (18%) 

13 17 (2%) 2 11 (65%) 3 (18%) 

14 51 (6%) 6 24 (47%) 12 (24%) 

15 25 (3%) 3 16 (64%) 3 (12%) 

16 44 (6%) 5 24 (55%) 8 (18%) 

17 19 (2%) 2 12 (63%) 2 (11%) 

18 16 (2%) 2 8 (50%) 2 (13%) 

19 22 (3%) 3 13 (59%) 3 (14%) 

20 27 (3%) 2 16 (59%) 2 (7%) 

21 28 (4%) 1 13 (46%) 2 (7%) 

22 16 (2%) 2 7 (44%) 4 (25%) 

23 7 (1%) 1 3 (43%) 1 (14%) 

24 93 (12%) 11 48 (52%) 16 (17%) 

Total 790 89  435 (55%) 118 (15%) 
1 Percentages refer to the total number of individuals.  
2 Percentages refer to the number of individuals within the family. 
* See Figure 13 for example of probands. 
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In Table 3, further details regarding MS cases were reported, including MS course, sex, and age/year 

of MS onset. The relapse–remitting course (RRMS) was the most represented (49%). 

Table 3. Descriptive statistics for the 118 Multiple Sclerosis cases in the Sardinian families. 

MS Course ° N (%) Females (%) 
Age MS Onset 

Mean (SD) 

Year MS Onset 

Mean (SD) 

RRMS 58 (49%) 41 (71%) 28.45 (9.49) 1990 (10.09) 

SPMS 27 (23%) 14 (52%) 28.89 (8.87) 1983 (9.64) 

PPMS 1 (1%) 1 (100%)  45.00 1995 

Unknown 32 (27%) 20 (63%) N/A N/A 

Total 118 76 (64%) 28.64 (9.06) * 1988 (10.88) * 
° RRMS = relapse–remitting MS, SPMS = secondary-progressive MS, PPMS = primary-progressive MS, N/A = not 
available. * A total of 24 subjects had a missing age of MS onset. 

In Table 4, kinship relationships between the MS-related cases within the families were reported; 

among all these 238 kinship relationships, the distant relationships over the fourth degree were the 

most represented, i.e., 176 times (74%), while the other kinship relationships (from the first to the 

fourth) were found in similar proportions. 

Table 4. Kinship relationships between the 118 multiple sclerosis cases. 

Kinship Relationship N (%) * 

First degree 20 (8%) 

Parent–offspring 9  

Mother 6 

Father 3 

Sibling 13 

Second degree 9 (4%) 

Uncle/aunt–nephew/niece 8  

Grandparent–grandchild 1  

Third degree 16 (7%) 

Cousins 15 

Grand-grandparent–grand-grandchild 1 

Fourth degree 17 (7%) 

Over the fourth degree 176 (74%) 

Total 238 
* Percentages refer to the total number of kinship relationships. 

 

3.2.2 Bayesian-LTMH results 

3.2.2.1 Primary analysis 

The Bayesian-LTMH was implemented including sex and categorized year of birth as covariates, 

considering all 790 individuals in the Sardinian families. No diagnostic problems were encountered: 

Gelman-Rubin Statistic (R-hat) was always equal to 1.00 for all parameters, effective sample size 

was greater than 1000 for each parameter, and  traceplots show the convergence of the four chains to 

the same posterior distribution for each parameter (see Figure 15).  
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Figure 15. Traceplots showing sampling iterations from the four chains for h2, c2
Total, βSEX and βYR parameters. 

 

Table 5 reports the results from the first analysis on the whole sample, including the median 

posterior distributions of the parameters, their standard deviation (SD), and the 95% highest posterior 

density credibility intervals (HPD CIs). The posterior distributions for the parameters are graphically 

displayed in Figure 16, along with median value (in red) and 95% HPD CIs (in blue). 

Table 5. Posterior distributions summary statistics for parameters included in the Bayesian-LTMH applied to the 
Sardinian families. 

Parameter Median SD 1 HPD 95% CI 1 

h2 0.033 0.028 0.000, 0.094 

c2Sibs 0.033 0.016 0.007, 0.067 

c2Father–Sibs 0.012 0.012 0.000, 0.039 

c2Mother–Sibs 0.013 0.013 0.000, 0.040 

c2Spouses 0.014 0.017 0.000, 0.051 

c2Total 0.080 0.037 0.021, 0.158 

e2 0.168 0.036 0.094, 0.233 

τ2βSEX,YR 0.712 0.020 0.673, 0.749 

τ2βSEX 0.009 0.008 0.000, 0.027 

τ2βYR 0.686 0.024 0.637, 0.731 

2cov°βSEX,YR 0.015 0.007 0.003, 0.028 

βSEX(Females vs. Males) 0.355 0.157 0.057, 0.679 

βYR(≥1946 vs. <1946) 3.173 0.155 2.869, 3.477 
1 SD = standard deviation, HPD 95% CI = highest posterior density 95% credibility interval. Proportion of MS liability 
variability explained by (i) h2 = additive genetic effects, (ii) c2

Sibs = siblings’ shared environment effects, (iii) c2
Father-Sibs = 

shared environment effects between the father and the offspring, (iv) c2
Mother-Sibs = shared environment effects between 

mother and the offspring, (v) c2
Spouses = shared environment effects between spouses, (vi) c2

Total = total shared environment 
effects, (vii) e2 = individual environmental effects, (viii) τ2

βSEX,YR = sex and year of birth, (ix) τ2
βSEX = sex, (x) τ2

βYR = year 
of birth, and (xi) 2cov°βSEX,YR = covariance between sex and year of birth. βSEX = increase in liability for females compared 
to males; βYR = increase in liability year of birth on/after 1946 compared to before 1946. 
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Figure 16. Posterior distributions for parameters included in the Bayesian-LTMH applied to the Sardinian families. 

Categorized year of birth resulted as the strongest explanatory factor for MS liability variability, 

i.e., τ2βYR = 0.69 [95% CI: 0.64, 0.73], meaning that being born before or on/after 1946 explained 

~70% of MS liability variability in the Sardinian population. Moreover, compared to individuals born 

before 1946, individuals born on/after 1946 resulted in a high MS liability increase, i.e., βYR (reference 

group ≤ 1946) = 3.17 [95% CI: 2.87, 3.48]. This result highlighted year of birth as the major 

contributor for MS liability variability at the population level, suggesting a crucial role for early 

environmental exposures. These could be related to the so-called “westernization process”, among 

which different pollution levels, sanitary conditions, and dietary habits other than the malaria 

eradication program using the insecticide DDT (1946-1950). Early environmental exposures are 

important to the development and programming of the immune system. Therefore, early immune 

system interactions can have long-lasting effects on immune responses later in life and potentially 

contribute to autoimmune diseases like MS. This could be associated with the sudden lack of 

Plasmodium falciparum immune trigger in the environment. Notably, the latter has been hypothesized 

to be associated with the increasing Sardinian MS incidence and prevalence observed in the last 50 

years, following the logic of the hygiene hypothesis [84,88,92,145]. According to this hypothesis, 

cells of the innate immune system, selected over the centuries to contrast Plasmodium falciparum 

malaria, have kept the tendency to produce abnormal immune responses to new environmental factors 

triggers, linked to the “westernization process”, even after the disappearance of malaria, consequently 

leading to an increased autoimmune risk. 

Individual and shared environmental factors, not linked to the year of birth, explained ~17% (e2 

= 0.17 [95% CI: 0.09, 0.23]) and ~8% (c2Total = 0.08 [95% CI: 0.02, 0.16]) of MS liability variability, 

respectively. These could depend on MS risk factors shared between individuals in the same 

household or specific to the individual, such as past viral infections (e.g., EBV), smoking habits, 

exposures to pollutants, low vitamin D levels, dietary habits, and childhood/adolescence obesity 

[41,146–150]. 

Genetic variability resulted as a poor explanatory factor, i.e., h2 = 0.03 [95% CI: 0.00, 0.09]. This 

result implies that genetic variability’s contribution in explaining MS liability variability in this 

specific population is extremely low compared to the other environmental factors. Lastly, sex resulted 
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in a statistically significant increase in MS liability for the “females vs. males” comparison, i.e., βSEX 

= 0.36 [95% CI: 0.06, 0.68]; however, its explanatory role for MS liability variability was very low 

compared to the other parameters, i.e., τ2βSEX median value = 0.01 [95% CI: 0.00, 0.03]. 

In a separate model, G×E effects variance, i.e., h2G×E, due to interaction between additive genetics 

effects and categorized year of birth was also included. The estimated h2G×E resulted equal to 0.03 

[95% CI: 0.00, 0.10], while categorized year of birth remained the main explanatory factor, i.e., τ2βYR 

= 0.69 [95% CI: 0.64, 0.73]. This result implies that the GxE interaction between early environmental 

exposures and genetic variants has a low explanatory role for MS susceptibility variability at a 

population level.  

Therefore, additive genetic effects, as well as their interaction with the environments linked to 

the categorized year of birth, did not result as explanatory factors for MS variability. It’s important 

to understand that this result does not imply that genetic variability does not have a causal effect on 

MS, nor that these additive genetic effects did not significantly change between the two categorized 

year of birth groups (as highlighted in the following analysis), nor that genetics, in a broader sense, 

is not involved in determining the disease. Rather, the results imply that genetic variability 

contribution in explaining MS variability, compared to the other environmental factors, was 

extremely low [66]. A straightforward consequence is that to have the greatest benefit in preventing 

MS cases at the population level one should primarily “intervene” on all the factors linked to the year 

of birth, while “intervening” on the genetic variability would have an extremely lower impact.  

From these results, as for all heritability studies, it is not possible to establish causal pathways 

for the disease onset but, entering in the realm of speculations, it is still possible to provide interesting 

suggestions for future research. As previously mentioned, the factors linked to the year of birth < or 

≥ 1946 are unfortunately unknown based on this analysis but could be potentially linked to the 

“westernization process”. Since these environmental factors represent the primary source for MS 

variability, the result may provide support for the previously described hygiene hypothesis. Moreover, 

given the poor explanatory role for GxE effects, there is the indication that the environmental 

moderation on additive genetic effects had a lower impact on MS variability at population level 

compared to the direct effects of year of birth (which could have implied other biological pathways). 

 

 In summary, we can propose the following hypothesis to elucidate why early environmental 

exposures play a substantial explanatory role: 

 

1. Malaria is caused by Plasmodium parasites and is known to stimulate the immune system 

[151,152]. Exposure to these parasites in Sardinian individuals had led, over the centuries, to 

immune-genetic selection and development of immune responses that may have influenced 

the maturation and regulation of the immune system. The immune system requires balanced 

exposure to various antigens and challenges during development to establish immune 

tolerance and prevent autoimmune responses.  

2. The hygiene hypothesis suggests that exposures to infections and microbes in early life helps 

educate the immune system and promote immune tolerance [153]. For example, infections 

encountered during childhood can "train" the immune system and influence its 

responsiveness.  

3. With the eradication of malaria, a once-prevalent infectious disease that had coexisted with 

the Sardinian population for centuries, subsequent generations have been deprived of these 
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immune challenges. The impact of malaria eradication would have then affected those born 

after the campaign as well as the subsequent generations.  

4. In the absence of certain infections or immune challenges, there is a theoretical risk that the 

immune system may become more prone to autoimmune reactions. These reactions could be 

triggered by environmental exposures such as viral infections, diet, air quality, pollution, and 

exposure to allergens. The consequent abnormal immune responses may have led to an 

increased risk of autoimmune conditions such as MS [92]. 

While these considerations suggest that malaria eradication could have had implications for immune 

system development and autoimmune disease risk, it's essential to emphasize that this is a complex 

area of study, and causative links are challenging to establish definitively. Research into the long-

term immunological consequences of the Sardinian environmental changes may provide further 

insights into the increasing MS risk in this population. 

3.2.2.2 Secondary analysis 

A secondary analysis was conducted stratifying the sample based on the categorized year of birth, 

thus focusing on individuals with more similar early environmental exposures. Therefore, the main 

explanatory role year of birth has been ruled out. 

 The first group, i.e., “<1946”, was composed of 488 subjects: 238 males (49%) and 250 females 

(51%); 16 MS cases (3%) and 472 healthy controls (97%). The second group, i.e., “≥1946”, was 

instead composed of 302 subjects: 117 males (39%) and 185 females (61%); 102 MS cases (34%) 

and 200 healthy controls (66%). Table 6 reports the results from the Bayesian-LTMH model on both 

groups. The marginal posterior distributions for the parameters are graphically displayed in Figure 

17 for both groups, along with median values (in red) and 95% HPD CIs (in blue). 

Table 6. Posterior distributions summary statistics for parameters included in the Bayesian-LTMH applied to the 

Sardinian families stratified by year of birth on different environment conditions. 

 Year of Birth < 1946 Year of Birth ≥ 1946 

Parameter Median SD 1 95% HPD CI 1 Median SD 1 95% HPD CI 1 

h2 0.090 0.100 0.000, 0.312 0.818 0.068 0.679, 0.937 

c2Sibs 0.223 0.100 0.055, 0.433 0.045 0.030 0.004, 0.109 

c2Father–Sibs 0.061 0.058 0.000, 0.185 0.013 0.016 0.000, 0.050 

c2Mother–Sibs 0.049 0.051 0.000, 0.163 0.014 0.017 0.000, 0.054 

c2Spouses 0.085 0.083 0.000, 0.297 0.019 0.026 0.000, 0.078 

c2Total 0.477 0.142 0.199, 0.750 0.105 0.056 0.019, 0.222 

e2 0.086 0.083 0.000, 0.265 0.021 0.025 0.000, 0.078 

τ2βSEX,YR N/A 1 N/A 1 N/A 1 0.042 0.032 0.000, 0.109 

τ2βSEX 0.304 0.112 0.079, 0.506 0.005 0.013 0.000, 0.035 

τ2βYR N/A 1 N/A 1 N/A 1 0.032 0.030 0.001, 0.095 

2cov°βSEX,YR N/A 1 N/A 1 N/A 1 0.000 0.001 −0.001, 0.001 

βSEX(Females vs. Males) 1.322 0.368 0.586, 2.023 0.104 0.177 −0.246, 0.448 

βYR(10 years increase) N/A 1 N/A 1 N/A 1 0.186 0.089 0.012, 0.362 
1 SD = standard deviation, HPD = highest posterior density credibility interval, N/A = not available. Proportion of MS 
liability variability explained by (i) h2 = additive genetic effects, (ii) c2

Sibs = siblings’ shared environment effects, (iii) 
c2

Father–Sibs = shared environment effects between the father and the offspring, (iv) c2
Mother–Sibs = shared environment effects 

between mother and the offspring, (v) c2
Spouses = shared environment effects between spouses, (vi) c2

Total = total shared 
environment effects, (vii) e2 = individual environmental effects, (viii) τ2

βSEX,YR = sex and year of birth, (ix) τ2
βSEX = sex, 

(x) τ2
βYR = year of birth, and (xi) 2cov°βSEX,YR = covariance between sex and year of birth. βSEX = increase in liability for 

females compared to males; βYR = increase in liability for 10 years increase in year of birth. 
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Figure 17. Posterior distributions for parameters included in the Bayesian-LTMH applied to the Sardinian families 
stratified by year of birth. 

 

The h2 posterior distribution greatly differed between the two groups, i.e., 0.09 [95% CI: 0.00, 

0.31] for the “<1946” group and 0.82 [95% CI: 0.68, 0.93] for the “≥1946” group, indicating that 

genetic variability acquired a high explanatory role for MS liability variability only considering 

individuals born on/after 1946. It is worth mentioning that this result does not implicate that MS 

onset, for an individual born on/after 1946, is caused at 80% by its genetic component, but that 

observed variability in MS susceptibility in this group is mostly explained by the cumulative effect 

of an unknown number of risk alleles. For an MS-affected individual born on/after 1946, the high h2 

value provides a strong likelihood that the genetic variability made a greater contribution compared 

to environmental factors (specific to “year of birth ≥1946” group) in producing a deviation from the 

population MS liability mean [72]. Potential hypotheses to explain the higher value of h2 in the second 

group compared to the first, i.e., (~82% vs. ~9%), could be the following: (i) a decrease in the 

influence of environmental factors, implying that the genetic variability acquired a higher explanatory 

role only because the relative explanatory importance was reversed; (ii) an increase in additive genetic 

effects, implying that the change in environmental factors caused genetic variants to operate 

differently; (iii) both cases together. The former hypothesis could imply that the effect of certain 

environmental factors was diminished or were even removed for individuals born after 1946; among 

these factors, a different medical attention and diagnostic accuracy could provide a potential 

explanation. Instead, the latter hypothesis may be again aligned with the hygiene hypothesis, as the 

consequences of malaria eradication could have led genetic variability to gain a higher explanatory 

role due to its influence on pathways, such as gene expression, related to immune responses and 

consequently on MS risk [92]. A potential biological mechanism by which early environmental 

changes influenced additive genetic effects could be found in epigenetics modifications, as these 

modifications have been shown to have a key role in regulating the expression of immune system 

genes and have also correlated to autoimmune disorders such as MS [154–156]. 



60 
 

Shared environmental effects and sex resulted as the main explanatory components for the 

“<1946” group, i.e., c2Total = 0.48 [95% CI: 0.21, 0.75] (with the greatest contribution coming from 

effects due to environmental factors shared by siblings, c2Sibs median value = 0.22 [95 CI% = 0.06, 

0.43]), and τ2βSEX = 0.31 [95% CI: 0.08, 0.51]; sex resulted in a statistically significant increase in MS 

liability for “females vs. males” comparison, i.e., βSEX = 1.33 [95% CI: 0.61, 2.03]. Therefore, in this 

group, specific shared environmental factors (as suggested above), as well as being female, were 

linked to a higher MS expression at the population level compared to the genetic variability. 
Lastly, for the “≥1946” group, it was also possible to include the exact year of birth as a covariate, 

finding a significantly increasing trend in MS liability, i.e., 0.19 [95% CI: 0.01, 0.36] for an increase 

of 10 years; however, year of birth explained only ~3% of MS liability variability, i.e., τ2βYR = 0.03 

[95% CI: 0.00, 0.10]. 

In conclusion, the explanatory sources of MS variability largely differed within the two groups, 

i.e., shared environmental factors in the “year of birth <1946” group and genetic variability in the 

“year of birth ≥1946” group, given their different early environmental background.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 
 

4 CONCLUSIONS 
This work successfully extended the LTMH method, described by Kim, Kwak and Won [96], 

using a Bayesian framework to estimate MS narrow-sense heritability, on liability scale, making use 

of Sardinian ascertained family-based samples. LTMH allows adjustment of parameters estimates 

from ascertainment bias, which occurs when family members are included in the study as relatives of 

sampled probands. Using Bayesian statistics and MCMC methods, instead of the frequentist EM 

algorithm-based approach, dramatically improved the computational efficiency of the method, 

allowing to analyze extended families and improving model flexibility, e.g., including a variance 

component for shared environment effects. Moreover, considering the lack of a precision measure for 

the parameters estimates when using EM algorithm, the Bayesian approach allowed to obtain 

parameters posterior distributions, providing informative and comprehensive results to conduct the 

statistical inference. To assess the accuracy and the precision of Bayesian-LTMH model, simulation 

studies were conducted evaluating the obtained posterior distributions for the parameters of interest 

in different scenarios, comprising pedigree structure, trait’s prevalence, and model specifications. 

Even with non-informative prior distributions, the Bayesian-LTMH provided accurate and reasonably 

precise posterior distributions, with performance slightly worsening, in terms of bias and precision, 

for decreasing trait’s prevalence.  

We then applied Bayesian-LTMH model on a sample of 24 extended pedigrees, ascertained from 

89 MS affected probands from the Nuoro province in the Sardinia region. We showed the 

convergence of the chains to the same posterior distribution and did not encounter any diagnostic 

problems. We obtained posterior distributions for the proportion of MS susceptibility variability 

explained by additive genetic effects, shared environment effects, individual environment effects, 

sex, and year of birth (before or on/after 1946). In line with the latest literature [157], the results 

pinpoint environmental factors linked to having been born before or on/after 1946 as the leading 

factors in explaining ~70% of MS liability variability across the 20th century in the Sardinian 

population. The remaining variability in MS liability (~30%) resulted mainly explained by 

environmental factors shared among individuals in the same household or specific to the individual 

(e.g., low vitamin D levels, obesity, past EBV virus infection, diet, and exposure to pollutants). An 

almost null explanatory role was found for additive genetic effects (i.e., narrow-sense heritability) 

and GxE effects, suggesting that the genetic variability has low relevance in explaining the sudden 

increasing MS incidence in the past decades.  

Therefore, further investigations would be crucial to identify the specific early environmental 

factors involved in the increased MS liability in the Sardinian population, as their explanatory role 

outweighs the role of the other factors. These factors could be researched in the so-called 

“Westernization process” that took place after World War II, such as different pollution levels, 

lifestyle, healthcare, and socioeconomic conditions. Another significant and abrupt environmental 

change occurred with the eradication of malaria in Sardinia between 1946 and 1950 [92]. The 

Sardinian population has unquestionably experienced selective pressures to develop resistance to 

malaria, despite carrying a substantial genetic burden. For instance, conditions like thalassemia and 

glucose-6-phosphate dehydrogenase deficiency have been advantageous genetic adaptations 

providing protection against Plasmodium falciparum, and these genetic variations have become more 

prevalent in the island due to their effectiveness against the malaria parasite. Interestingly, genetic 

traits that were favored for their ability to confer protection against Plasmodium falciparum infection 

were also found associated with alleles that predispose individuals to the development of MS. This 
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suggests that in the absence of the influential competitive immune trigger like Plasmodium, the 

generation of individuals born after malaria eradication may have experienced unusually intensified 

and self-directed responses. These autoimmune responses could have contributed to the notable 

increase in the incidence of MS observed in Sardinia over the past decades, explaining the main 

explanatory role of year of birth (before or on/after 1946) in MS susceptibility variability. 

 Despite the almost null narrow-sense heritability obtained analyzing the whole sample, genetic 

variability remains a highly relevant matter. In fact, when performing the stratified analysis based on 

year of birth, genetic variability acquired the main explanatory role for MS liability variability (~82%) 

in the individuals born on/after 1946. This finding suggests that changes in early environmental 

exposures after 1946 have led to an increased impact of genetic variability on MS at the population 

level. This could also be linked to the deleterious effect of genetic variants selected to contrast 

Plasmodium after the disappearance of malaria. Moreover, as highlighted in different studies 

conducted on Sardinian individuals, genetic variants risk’s role has been linked to gene and protein 

expression, as well as to different peptides structures, which could be involved in causal pathways 

for MS onset [57,145,158–161]. Therefore, further studies on the Sardinian genetic background could 

highlight causal biological pathways useful for MS prevention in the current population and for a 

better understanding of MS etiology. 

 Comparing heritability estimates between populations, in Sardinian individuals born on or after 

1946, it resulted higher (~80%) compared to that obtained using twins from mainland Italy (~50%), 

Canada (~55%), and the United States (~40%), as well as Finland and France (~25%), while it 

resulted more similar to h2 estimates obtained using twins from the United Kingdom (~75%), as well 

as Denmark and Sweden (~65%) [76]. These results imply that the genetic variability in the Sardinian 

population, born on or after 1946, has a better explanatory role for MS liability compared to other 

populations. This could be due to greater additive genetic effects (e.g., specific genetic variants have 

a higher risk in the Sardinian environmental background), lower environmental effects (e.g., some of 

the environmental risk factors present in other population may not be part of the Sardinian 

environmental background), or both. It would be also of interest to integrate year of birth when 

investigating MS narrow-sense heritability in these different populations, to verify if similar 

explanatory roles were found for year of birth and genetic variability in absence of a malaria 

eradication program. 

It is worth mentioning that this analysis suffered from some limitations. Firstly, available data 

did not include other potential confounders, such as smoking habits and previous EBV infection,  

even if their effect could have been partially captured in the shared environmental effects. Because 

of the previous limitation, it was not possible to test the explanatory role of other GxE effects which 

could have confounded heritability estimates.  Moreover, the assumed MVN distribution for the 

underlying liabilities could not be easily checked and, if not respected, could lead to biased estimates 

[129], therefore further developments are needed to assess the robustness of the results when thi 

assumption is violated. Nevertheless, the developed Bayesian-LTMH allowed a great advantage to 

obtain a reasonably precise posterior distribution for MS narrow-sense heritability in the Sardinian 

population using extended families ascertained from a proband, a result which would have not been 

achievable with a twin design data due to lack of an adequate sample size [77]. A further strength of 

this work was represented by the possibility provided by the characteristics of the population under 

study, i.e., a founder homogenous population, the presence of  important environmental risk factors 

affecting the population such as endemic malaria and its eradication, which allowed to widely 
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investigate the effect of genetic variability, environmental factors, and their interaction MS 

variability. In conclusion, by discussing pros and cons of heritability studies usefulness and their 

correct interpretation, a framework was provided to investigate the explanatory role of genetic and 

environmental factors for other low-prevalence complex traits in specific populations of interest. 
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