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Chapter 1

Introduction

The first axiomatization of quantum mechanics by means of Hilbert spaces
is due to Hilbert, von Neumann, and Norheim in ref. [HNN28], along with
the monumental work of Neumann [Neu32]. The works first laid the foun-
dation for a rigorous mathematical description of quantum phenomena
and prepared the ground for the subsequent development of quantum
theory (QT). However, these axioms gave neither some physical insights
into the theory nor reasons why the world must be quantum.

Our comprehension about quantum mechanics has profoundly changed
since the debut of quantum information. The studies on quantum algo-
rithms and communication along with the striking results of cryptography
[BB84; Eke91], teleportation [Ben+93], and dense coding [BW92] to name
but a few, radically upended the old consensus. Quantum mechanics is
no longer considered a contrived version of its classical counterpart, but it
is rather a modern and powerful theory to describe physical phenomena.
Some reasons for preferring a quantum world over a classical one have been
accurately collected and laboriously translated into new axioms, which in
turn are now able to shed light on the key features of the theory.

A crucial role in the investigation of the structure and fundamentals
of quantum physics has indeed been played by information theory. Many
aspects of physical phenomena can be formulated in terms of information.
For instance, if we consider information as a measure of the different con-
figurations in which a system can be, we can interpret the entropy of the
system as a quantification of our ignorance of its microscopic description.
The well-known thermodynamic quantity has then been reinterpreted as
information content of the system state by Shannon in refs. [Sha48; SW49],
where he introduced the concept of bit as elementary information carri-
ers. Many decades later, Schumacher proved an analogous to the noiseless
coding theorem for quantum theory in ref. [Sch95], where the term qubit

1



CHAPTER 1. INTRODUCTION 2

has been coined as the elementary information carrier of quantum systems.
This is the birth of the theory of information of quantum systems, i.e. quan-
tum information, whose privileged subjects are the quantification of the
information content of physical systems, and a suitable description of how
this is processed by physical transformations.

The informational paradigm is based on the idea that information plays,
at a fundamental level, a crucial role in the description of natural phe-
nomena. Accordingly, since the 2000s a wide community embarked upon
the enterprise of deriving the quantum mechanics principles from ax-
ioms based on the recent results of quantum information and providing
a clear operational interpretation, see refs. [Fuc01; Har01; Fuc02; DAr06;
CDP11]. Following the same intuitions, many concepts that were previ-
ously equivocal and convoluted have been clarified, such as e.g. the notion
of entanglement, complementarity, purification, holism and non-locality.

Many technical problems have been overcome in the quantum infor-
mation by focusing only on finite dimensional systems. Such a restric-
tion might seem too restrictive, but allowed the introduction of robust
models for describing quantum computation [Chi93; MW19], quantum
algorithms [DJ92; Sho94; Gro96; Cle+98], and error correction [Per85;
Sho95]. For an extensive dissertation, see ref. [NC10]. However, from a
theoretical point of view, we may be interested in defining rigorously the
concept of computation on infinitely many systems, as well as to intro-
duce some notion of locality for this kind of transformations. From the
quantum information viewpoint, it very clear how to define the possible
operations on some quantum systems and how to describe the protocol
through quantum circuits. Nonetheless, the same models do not apply
for a transformation that acts on a lattice of quantum systems: both the
definitions of quantum states and quantum operations do not behave as
expected if applied straight to an infinite number of systems.

The task of characterization of transformations onto countably-infinitely
many systems is also motivated by the desideratum to simulate and de-
scribe quantum fields. Indeed, the quantum field theory (QFT) is the most
detailed description of the dynamics of physical systems available nowa-
days. Despite its impressive predictive power, the QFT still lacks a satis-
factory interpretation and the conceptual aspects behind its mathematical
structure are discussed topics both in physics and in philosophy of sci-
ence [Kuh20]. Among the interpretative issues of QFT we can mention
the ultraviolet divergences, the causality violation due to the Hamiltonian
description leading to the wave-function superluminal tails [Tha92] and
the localization problem [RS61; Kuh20].

In this context, the class of quantum cellular automata (QCAs) naturally
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emerges as a theoretical tool for simulating and describing quantum fields.
Indeed, QCAs are the quantum analogues of classical cellular automaton
(CA), namely an algorithm that defines the local evolution of a grid, which
is a finitely-generated group and whose sites can have a state out of finitely
many. A CA is actually the evolution rule of the grid and its accurate
definitions for locality, homogeneity—or translation invariance,—isotropy,
reversibility, and universality make it an excellent candidate model for
describing physical phenomena. However, its classical nature forbids every
application to fundamental physics. For this reason, the quantum cellular
automata have been introduced by replacing the sites of a classical CA
with quantum systems. The framework have been rigorously defined in
ref. [SW04] and a QCA on an accordingly defined grid is a function that
maps observables into observables in the customary Heisenberg picture.
In so doing, quantum cellular automata are models for parallel quantum
computation over infinite many systems. They are in fact dual to the
quantum Turing machine, and so to quantum circuit by equivalence, where
information is processed sequentially.

The same procedure for defining QCAs can be applied for other theories
of physical relevance, in particular to the Fermionic quantum theory (FQT).
In this case, qubits are replaced with local Fermionic modes,1 and the
automaton must preserve valid Fermionic observables. Thereby, we expect
to rigorously derive features so that we can describe and simulate Fermionic
quantum fields with a safe and sound toolset.

The study of quantum cellular automata in other theories than the quan-
tum one is clearly motivated by the fact that the fundamental quantum
fields are indeed Fermionic or Bosonic. However, cellular automata are the
test field for comparing different theories with their respective features, in
particular the notion of locality. The concept of CA and QCA have been gen-
eralized in the works of refs. [Per20; Per21], where a meticulous definition
has been provided in the more general framework of operation probabilis-
tic theories. Thereby, one may generalize cellular automata for theories
such as the quantum theory, Fermionic quantum theory, the real quantum
theory, the classical theory, and classical theories with entanglement refs.
[DEP20a; DEP20b].

Aside from the theoretical interest, physical realizations of quantum
cellular automata have been considered as quantum simulators of physical
systems with the aim to harness the computational speedup provided by
quantum algorithms. The interest of the scientific community is devolved

1The elementary information carrier for the Fermionic information theory is however
the febit, see refs. [PTV21; PTV22].
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to the development of technological platform capable of implementing
QCAs. However, their strongly interacting evolution over the field operators
have prohibited any such control so far. Efforts then moved to implement
linear QCAs, also known as quantum walks (QWs). Several platforms rang-
ing from cold atoms [Kar+09], trapped ions [Sch+09; Zäh+10], to photonics
systems [Owe+11; San+12; Kit+12; Car+15; Bou+16], have been employed
to implement QWs. Although limited by the non-interacting regime, such
setups allows us to simulate phenomena otherwise out of reach. Indeed, in
the recent paper,2 we simulated the evolution of a particle according to the
Dirac equation onto a photonic platform. In particular, we observed the
Zitterbewegung effect of states in superposition of particle and antiparti-
cles, namely the trembling motion of the expectation value of the position
operator.

Outline of the thesis

The work presented in this thesis is threefold:

• We introduce new quantum cellular automaton definition in terms
of supermaps and the so called T -operator, i.e. a local operator that
incorporates all the necessary information for defining a QCA.

• We classificate all nearest-neighbor Fermionic quantum cellular au-
tomaton (FQCA) over the one-dimensional lattice consisting of one
local Fermionic mode per site.

• We report the experimental realization of a photonic platform to
simulate the evolution of a one-dimensional QW, specifically to ob-
serve the Zitterbewegung of a particle satisfying the Dirac dispersion
relation.

In the present chapter, both the quantum theory and Fermionic quan-
tum theory are introduced. Their definition is given in the canonical fashion
and fixes the notation for the whole work. However, for what pertains the
quantum theory, in § 1.1.2 a brief introduction to the higher-order quantum
theory is given. Namely, the notion of supermap is provided as transfor-
mation from quantum operations to quantum operations. On the other
hand, the Fermionic quantum theory is introduced along with two repre-
sentations of the canonical anticommutation relations (CAR): through the

2Under review: Alessia Suprano, Danilo Zia, Emanuele Polino, Davide Poderini, Gon-
zalo Carvacho, Fabio Sciarrino, Matteo Lugli, Alessandro Bisio, and Paolo Perinotti “Quan-
tum Simulation of Zitterbewegung via a Photonic Dirac Cellular Automaton.”
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creation and annihilation operators in § 1.2.1 and through the self-adjoint
representation in § 1.2.4.

In chapter 2, a dissertation over the well established theory of quantum
cellular automata is presented. In particular, we first review some underly-
ing notions of classical cellular automata. We then move to the definition of
quasi-local observable algebra and that of QCA as homomorphism between
them. Among others, the relevant result of the structure theorem and the
index theorem are presented.

Once all prerequisites have been given, in chapter 3 we introduce a new
notion of QCA as a supermap between transformations onto the grid, such
that it preserves their locality. This new definition is then proved to be
equivalent to the well-known one of literature. Thereby, the T -operator is
described and characterized as a local object that completely describes the
rule of the automaton. Indeed, some necessary and sufficient properties of
the T -operator are given for it to represent a valid QCA.

In the next chapter 4, the classification of FQCA is reported in the
particular case of nearest-neighbors, one-dimensional lattice, and one local
Fermionic mode per site. We briefly describe the differences between the
index theorem introduced in chapter 2 for QCA and FQCA. The dissertation
then continues with the analysis of two relevant cases: the first one strongly
resembles a particular subclass of quantum cellular automata, whilst the
second case is a unicum of FQCA. Indeed, due to a different notion of
locality in the Fermionic quantum theory, a new class of FQCA has been
found to have no quantum counterparts.

We present in chapter 5 an experimental implementation through a
photonic platform of a quantum walk. In a collaboration between the
theoretical group of the University of Pavia and the experimental one
of the University of Rome “La Sapienza,” we devised an experiment to
simulate the Zitterbewegung of a particle through the implementation of a
quantum walk. The positional state of the particle is encoded in the orbital
angular momentum (OAM) of light whereas the internal degree of freedom,
also known as coin, is represented by the polarization of the photon. We
describe the theoretical background of quantum walks along with that of
the Zitterbewegung effect. The result of the experiment are then concisely
presented.

Finally, in chapter 6 we draw the conclusions of the work and present
some future prospetives of the field.
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1.1 Quantum theory

We firstly introduce the quantum theory of information. The fundamental
axioms of the theory are defined according to von Neumann on finite-
dimensional Hilbert spaces and illustrated along with the mathematical
notation to describe quantum systems and operations. We build up the
theory starting from three postulates, as presented in ref. [DCP16]:

1. To each system A we associate a complex Hilbert space HA. To the
composition AB of systems A and B we associate the tensor product
HAB≔HA ⊗HB.

2. To each state of system A corresponds a positive operator ρ ∈ St(HA)
on HA with Tr[ρ] ≤ 1.

3. Any map that satisfies all mathematical requirements for representing
a transformation within the theory will actually be an admissible
quantum transformations of the theory.

From all three assumptions we derive the well-know properties of the
theory and the structure of state, effect and transformation sets, which we
introduce hereafter.

Any state ρ ∈ St(HA), also known as a preparation of the system, is a
positive operator ρ ≥ 0 on the Hilbert space HA such that Tr[ρ] ≤ 1. The
set St(HA) boasts both a conic and convex structure. The states satisfying
Tr[ρ] = 1 are called deterministic and belongs to St1(HA). We define a
preparation test as a collection of preparations {ρi : ρi ∈ St(HA)} such that
the coarse graining, i.e.

ρ =
∑︂
i

ρi ,

is deterministic. Moreover, the conic structure emerges as soon as we
consider a collection of sub-deterministic preparations {ρi : Tr[ρi] < 1} and
conically combine them to attain

σ =
∑︂
i

piρi for pi ≥ 0,

where σ is a new preparation and must fulfill Tr[σ ] ≤ 1. On the other hand,
we define the pure states as those featuring rank equal to one, namely the
projectors onto a one-dimensional subspace of HA. In the Dirac notation,
we denote the pure preparations as ρ = |ψ⟩⟨ψ|, for |ψ⟩ ∈ HA. Mixed states,
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on the contrary, have rank larger than one and are inherently linked to the
convex combination of preparations

τ =
∑︂
i

piρi for 0 ≤ pi ≤ 1,
∑︂
i

pi = 1

where ρi are some states and τ ∈ St(HA).
Linear functionals on states are called effects and labeled as E ∈ Eff(HA).

They are represented by positive operators dominated by the identity, that
is 0 ≤ E ≤ I ; the identity, in turn, represents the deterministic effect. We
denote the pairing between the state ρ and effect E on the same system
through the Born rule as

Pr = (E|ρ) = Tr[Eρ],

that represents the probability of measuring E given the preparation ρ.
Effects may be labeled as atomic when their rank is equal to one. We define
as positive-operator valued measure (POVM) or effect test the collection of
effects {Ei : 0 ≤ Ei ≤ I} such that the coarse graining is the deterministic
effect, namely I =

∑︁
i Ei .

1.1.1 Quantum Transformations

We conclude our introduction to the quantum theory with the definition
of quantum transformation C ∈ Transf(A→ B) as the linear, completely-
positive and trace-non-increasing map C : St(HA)→ St(HB). Both states
and effects may be seen as transformations from and to the trivial system,
respectively. Transformations that are trace-preserving, i.e. Tr[C(ρ)] = Tr[ρ],
are called deterministic transformations or quantum channels and belongs
to Transf1(A→ B), whereas those that are only trace-non-increasing are
usually named quantum operations. Thanks to Kraus’ theorem, see ref.
[Sti55], we describe any transformation C through the set of operators
{Ki :HA→HB|

∑︁
iKiK

†
i ≤ I}, also known as the Kraus operators, such that

C can be described both in the Schrödinger picture and in the Heisenberg
picture, namely

C(ρ) =
∑︂
i

KiρK
†
i , C†(E) =

∑︂
i

K†i EKi ,

respectively, where ρ ∈ St(A) and E ∈ Eff(B). We denote by Lin(HA→HB)
the space of linear operators from HA to HB. The maps featuring only
one Kraus operator are called atomic. A collection of transformations {Ti}
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for which C =
∑︁
i Ci is trace preserving is called a quantum instrument

or transformation test. Quantum theory features the relevant property
that any deterministic and atomic transformation C ∈ Transf(A → A) is
reversible, i.e. its only Kraus operator belongs to the set of unitary matrices
SU(HA). On the other hand, any Kraus operator of Transf(A→ A) live in
the full-matrix algebra M(HA), that is the C*-algebra of endomorphisms
End(HA) over HA.

For every set St(A), Transf(A → B), Eff(A) of states, quantum opera-
tions, and effects, respectively, on system A, B we denote with the sub-
script R the real span thereof. In particular, EffR(A) ≔ SpanR(Eff(A)) is
the C*-algebra of observables over system A, whereas TransfR(A→ B)≔
SpanR(Transf(A→ B)) is the algebra of quantum operations from system A
to system B.

Remark. Theories whose transformation are defined by Kraus operators
belonging to some algebra are generally called quantum theories. Some
notable examples are the quantum theory itself, the Fermionic quantum
theory, cf. § 1.2, and the real quantum theory.

Kraus isomorphism Every linear operator C : HA → HB onto Hilbert
spaces HA, HB describes the action of an atomic transformation C : ρ ↦→
CρC† if we relax the trace-non-increasing condition. However, the reverse
is not true as atomic quantum operations are mapped to their Kraus op-
erators modulo a phase. Let A, B be two quantum systems, we define the
Kraus map K : Transfa(A → B) −→ Lin(HA → HB)/U(1) from the atomic
transformations to their Kraus operators modulo a phase. Please note that
such a transformation is not linear since the combination of two quantum
operations is not equivalent to combination of their Kraus operators, unless
they are linearly dependent. In the particular case of A = B, we have that
the Kraus isomorphism

K : Transfa(A→ A) −→ Lin(HA)/U(1), (1.1)

is a monoidal isomorphism between the atomic quantum operations and
their Kraus operators modulo a phase, namely it preserves both the identity
and the product. Indeed, the composition of atomic transformations is
represented by the product of their Kraus operators, whereas the identity
transformation I is represented by the identity operator I .

Choi-Jamiołkowski isomorphism The conic structure of quantum oper-
ations can be probed through the Choi-Jamiołkowski isomorphism C, cf.
refs. [Jam72; Cho75]. Let us first introduce the double-ket notation: given
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a bounded linear operator A : H→ V between Hilbert spaces we denote
with

|A⟩⟩≔
∑︂
ij

Aij |i⟩ ⊗ |j
⟩︁

the vector ofH⊗V , where {|i⟩}, {|j
⟩︁
} are bases forH, V , respectively, and Aij

are matrix entries of operator A in that bases. For any two bounded linear
operators A :H→H′, B :K→K′ and a vector |C⟩⟩ ∈ H⊗K it holds

A⊗B|C⟩⟩ = |ACB⊥⟩⟩ ∈ H′ ⊗K′, ⟨⟨A|B⟩⟩ = Tr[A†B].

Thereby, we represent with ease the maximally entangled state

|I⟩⟩⟨⟨I | =
∑︂
i

|i⟩⟨i| ⊗ |i⟩⟨i| ,

for any system Q and {|i⟩} a basis of HQ. The Choi-Jamiołkowski trans-
formation C is an isomorphism of cones and maps every transformation
C ∈ Transf(A → B) to a state ρC ∈ St(AB), which is known as the Choi
operator of A. The Choi-Jamiołkowski isomorphism then reads

C : Transf(A→ B)→ St(AB)
C ↦→ ρC ≔ (C ⊗I ) |I⟩⟩⟨⟨I |,

the isomorphism is in fact linear and preserves atomic maps. Indeed, if
C is atomic then C is its only Kraus operator and the Choi operator of the
transformation is

C(C) = (C ⊗I ) |I⟩⟩⟨⟨I | = (C ⊗ I) |I⟩⟩⟨⟨I | (C† ⊗ I) = |C⟩⟩⟨⟨C|.

On the other hand, any quantum operation C of Kraus operators {Ci} is
mapped to C(C) =

∑︁
i |Ci⟩⟩⟨⟨Ci |.

1.1.2 Higher-order Quantum Theory

We briefly introduce the reader to the higher-order quantum theory, cf.
refs. [CDP09; BP19]. One may wonder how one can define functions that
map admissible quantum operation to admissible quantum operations. In
particular, we would like to describe the whole class of such maps and
gather some criteria to detect whether a given one respects the axioms of
the quantum theory.

We observe that dealing with quantum operations Transf(A→ B), where
A, B are some quantum systems, is the same as dealing with states St(AB),
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thanks to the Choi-Jamiołkowski isomorphism C. Hence, let A, B, C, and
D be some quantum systems, the supermap

A : Transf(A→ B) −→ Transf(C→D)

can be expressed as a quantum operation

A : St(AB)→ St(CD) (1.2)

by conjugating the supermap with the Choi-Jamiołkowski isomorphism,
i.e.

A = CA C−1. (1.3)

This procedure allows us to relate supermaps A and quantum operations
A by preserving their cone structure. Indeed, the positivity of ρ ∈ St(AB)
is a necessary and sufficient condition for C−1(ρ) ∈ Transf(A→ B) being a
completely positive map (CP-map). In so doing, the necessary condition
so that A maps CP-maps to CP-map is that A maps positive states into
positive states. However, this is granted by the fact that A is a quantum
operation. The relation between the supermap A and the transformation
A can be seen through the following commutative diagram:

T T ′

T T ′

A

CC−1

A

where T ∈ St(AB), T ∈ Transf(A→ B), T ′ ∈ St(CD), T ′ ∈ Transf(C→D).
The Choi-Jamiołkowski is linear, thus A = C−1AC is linear as well.

We still need to prove that the transformed operations are still trace-non-
increasing. Let I ∈ Eff(CD) be the deterministic effect for system CD, we
readily notice that 0 ≤ (T ′)†(I) = Tr0[ρT ′ ] ≤ I . We are then ready to give a
definition of supermap.

Definition (Supermap). Let A, B, C, and D be quantum systems, the map

A : Transf(A→ B) −→ Transf(C→D)

is an admissible supermap if it is linear and preserves positivity, even when
applied locally on a bipartite map Transf(AC→ BC) for some system C.

It is then possible to reduce every higher-order transformation such as
A→ ((B→ C)→D) recursively to a map onto states St(ABCD). This tells
us that the cone generated by probabilistic higher-order operations is the
whole cone of positive operators. Essentially, the above result implies that
the only relevant cone in quantum mechanics is that of positive operators.
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Theorem 1. Let A, B, C, and D be quantum systems and

A : Transf(A→ B) −→ Transf(C→D)

be a supermap that preserves the conic structure of quantum operations, i.e. it
preserves the atomicity of transformations, then the action of A onto the Kraus
operators

α : Lin(HA→HB)→ Lin(HC →HD)

is linear.

Proof. In the following, we combine the Kraus map K and the Choi-Jamioł-
kowski isomorphism C of § 1.1.1 to describe the action of the supermap A
through the quantum operation A : St(AB)→ St(CD) of eqs. (1.2) and (1.3)
over the Choi operators. Indeed, a Kraus operator C ∈ Lin(HA → HB)
represents an atomic quantum operation C ∈ Transfa(A→ B) whose Choi
operator is |C⟩⟩⟨⟨C| ∈ St(AB). The action of the transformationA is atomic as
the supermap A preserves atomicity by assumption, therefore Amaps ev-
ery Choi operator |C⟩⟩⟨⟨C| toA|C⟩⟩⟨⟨C|A† whereA ∈ Lin(HA⊗HB→HC⊗HD)
is the only Kraus operator of A. We readily observe that the action of A
onto the Kraus C is linear as A is linear onto the Kraus vector |C⟩⟩. The
construction hitherto provided is hereafter depicted as the diagram

C C |C⟩⟩⟨⟨C| |C⟩⟩

C′ C′ |C′⟩⟩⟨⟨C′ | |C′⟩⟩

α

K−1

A

C

A

P

A

K C−1 P

where P is the map from a rank one operator |C⟩⟩⟨⟨C| to the vector |C⟩⟩ of
its one-dimensional support space. Please note that P is a map along rays
of the state cone and A is a Kraus operator of A defined modulo a phase.

Finally, we define α≔ KA K−1 and show that the image of every opera-
tor in Lin(HA→HB) is unique. Indeed, the Kraus map K links an atomic
quantum operation to its Kraus operator modulo a phase. We now prove
that such degree of freedom is immaterial and that we can define a map
α between linear operators as a bijection. Let α, β be two maps of Kraus
operators such that

β(C) = α(C)eiφ(C)

for C ∈ Lin(HA → HB) and phase φ. We then consider some quantum
operations P , M ∈ Transf(A → B) with Kraus operators L + R, L − R ∈
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Lin(HA→HB), respectively, and evaluate the image of the transformation
C = P −M under the supermap A . Let ρ ∈ St(A), we have

C(ρ) = (L+R)ρ(L+R)† − (L−R)ρ(L−R)† = 2(LρR† +RρL†),

so that if we apply the maps α, β thereto we attain

A (C)(σ ) = 2(α(L) σ α(R)† +α(R) σ α(L)†),

= 2(α(L) σ α(R)†ei(φ(L)−φ(R)) +α(R) σ α(L)†ei(φ(R)−φ(L))).

The last two equations must equal for every σ ∈ St(C). We readily see that
for L ̸∝ R there always exists some vector |ψ⟩ ∈ HC such that α(L) |ψ⟩ ̸∝
α(R) |ψ⟩. Thus for σ = |ψ⟩⟨ψ|,

α(L) |ψ⟩⟨ψ|α(R)†ei(φ(L)−φ(R)) +α(R) |ψ⟩⟨ψ|α(L)†ei(φ(R)−φ(L)) =

α(L) |ψ⟩⟨ψ|α(R)† +α(R) |ψ⟩⟨ψ|α(L)†

only iff φ(L) = φ(R). On the other hand, for L ∝ R we have that L has the
same phase as every other non-proportional operator R′, which in turn
must have the same phase as R.

1.2 Fermionic quantum theory

In the 1980s, R. Feynman wondered whether it is possible to simulate the
behavior of Fermionic systems through quantum qubits [Fey82]. Since
then, the properties of Fermions have been thoroughly investigated both
in terms of computational capabilities and operational features. On the
one hand, the former aspect sheds light on the underlying informational
structure of the theory, with the striking result that the Fermionic theory
and quantum theory of qubits are computationally equivalent, as proved by
ref. [BK02]. On the other hand, the latter leads to a deeper understanding
of the physical traits of the Fermionic theory, especially to the notions of
locality and entanglement.

Fermions are half-integer spin particles that undergo the Pauli exclusion
principle, i.e. two Fermionic particles cannot occupy the same state at the
same time. We present the theory in the second quantization formalism
as a superselection of the quantum one. In particular, FQT treats local
Fermionic modes as elementary systems, which represents the counterpart
of qubits in quantum theory. From the computational point of view, a local
Fermionic mode is a system which can be either empty or occupied by a
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single “excitation.” Within this framework, the Fermionic parity superse-
lection rule as been derived as a consistency constraint of the Fermionic
probabilistic theory, see ref. [DAr+14]. We then describe some correspon-
dences to the quantum theory through the Jordan-Wigner transformation.
Eventually, we show an alternative representation of the Fermionic algebra
due to ref. [Der06], which comes in handy for the classification of Fermionic
Quantum Cellular Automata in chapter 4.

As we shall further see in the following, the differences between the
quantum theory and the Fermionic quantum theory are profound, and as
such the two should not be mistaken. In particular, in § 1.2.3 it is clear that
the two theories have distinct notions of locality. This has consequences
in many features of the theory such as discrimination [LPT20; LPT21],
Violation of local tomography and entanglement monogamy [DAr+14].

1.2.1 The Fermionic algebra

The notion of locality in the FQT is rigorously defined through the Fermionic
algebra F . For n local Fermionic modes, we consider the annihilation and
creation operators ϕi , ϕ

†
i as those satisfying the CAR

{ϕi ,ϕ†j } = δijI and {ϕi ,ϕj} = 0, (1.4)

where i, j = 1 . . .n. We further inspect the properties of the underlying
Hilbert space if we introduce the number operators as Ni = ϕ†i ϕi . From the
anticommutation relations of eq. (1.4), we conclude that their spectrum is

σ (Ni) = {0, |0⟩i ;1, |1⟩i},

i.e. ϕ†i ϕi |0⟩i = 0 and ϕ†i ϕi |1⟩i = |1⟩i . Moreover, the annihilation and cre-
ation operators ϕi , ϕ

†
i satisfy the relevant properties of

ϕi |1⟩i = |0⟩i , (1.5)

ϕ†i |0⟩i = |1⟩i , (1.6)

due to eq. (1.4).
The Fermionic operators ϕi , ϕ

†
i are the generator of the Fermionic

algebra F (n) for n local Fermionic modes while eqs. (1.5) and (1.6) allow
us to interpret them as lowering and raising operators, respectively, for
the number operator ϕ†i ϕi . Furthermore, the operators ϕ†i ϕi mutually
commute and are simultaneously diagonalizable. We define the vacuum
state |Ω⟩ as the unique shared eigenvector whose eigenvalue is equal to
zero, namely

ϕ†i ϕi |Ω⟩ = 0 ∀i = 1 . . .n.
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Starting from the vacuum vector |Ω⟩ and accordingly applying the creation
operators ϕ†i , we introduce the Fock basis of elements

|s1s2 . . . sn⟩≔ (ϕ†1)s1(ϕ†2)s2 · · · (ϕ†n)sn |Ω⟩ , si = 0,1 (1.7)

which span the antisymmetric Fock space

F n≔ SpanR{|s1s2 . . . sn⟩ : si = 0,1}

of dimension equal to 2n. The term si is the occupation number of the i-th
mode and corresponds to the eigenvalue of the number operator ϕ†i ϕi . Fi-
nally, we point out that a vector of eq. (1.7) represents a Slater determinant
in the first quantization formalism.

1.2.2 The parity superselection rule

One of the most distinctive traits of the Fermionic quantum theory is
the parity superselection rule. In ref. [WWW52], the authors extensively
describe the notion of superselection rule, namely a restriction of all the
admissibile measurements of a theory, and derive the parity superselection
rule as a consequence of the time inversion symmetry.

In the present section we introduce an axiomatization of FQT, see ref.
[DAr+14]. In such a framework, the parity superselection rule can be
derived from first principles. The theory deals with systems made of
finitely many local Fermionic modes and is derived starting from the
superselected states of the quantum theory of qubits. We then require
the atomic and local transformations to act on their systems through the
Fermionic operators of the algebra F we introduced above. This defines the
notion of locality for Fermionic quantum operations. As a consequence, the
FQT manifests new and distinctive traits ranging from a different structure
of state and effect sets, an alternative notion of entanglement to the parity
superselection rule. We begin by assuming the following postulates:

1. The Fermionic quantum theory is causal.

2. The states of n local Fermionic modes are represented by density
matrices on the antisymmetric Fock space F n.

3. The transformations on n local Fermionic modes are represented by
linear Hermitian-preserving maps.

4. For a composite system Q = AB of n modes, the local transformations
on the subsystem A of the first 1 . . .m < n modes have Kraus operators
generated by the Fermionic operators ϕj ,ϕ

†
j ∈ F (m) for j = 1 . . .m.
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5. Local transformations on a system retain the same Kraus representa-
tion when other systems are added or discarded.

6. The transformation of Kraus operators Xi = ϕi + ϕ†i ∀i = 1 . . .n is
physical, namely it is an admissible map of the theory.

7. The paring between states and effects is given by the Born rule

Pr = (a|ρ) = Tr[aρ].

8. On a single mode the pairing between the deterministic effect e and
the state ρ is (e|ρ) = Tr[ρ].

The Fermionic algebra takes here the crucial role of defining the locality
of transformations. Indeed, in assumption 4 we require the Kraus operator
of an atomic and local transformation to belong to the algebra of the
Fermionic modes the map is acting upon. Moreover, assumptions 4 and
6 let us derive a relevant property of any transformation between n local
Fermionic modes, namely that each Kraus operator is a combination of
either an even or odd number of field operators.

The previous results lead to the following two fundamental features
of the Fermionic theory, see ref. [DAr+14], which allow us to characterize
both the sets of preparations and effects.

Theorem (Parity superselection). States of FQT satisfy the parity superselection
rule, i.e. their density matrices commute with the parity operator

P ≔
1
2

⎡⎢⎢⎢⎢⎢⎣I +
n∏︂
i=0

(︂
ϕiϕ

†
i −ϕ

†
i ϕi

)︂⎤⎥⎥⎥⎥⎥⎦ .
Theorem (Fermionic effects). Effects of the FQT are positive operators made of
products of an even number of fields operators.

The former theorem restricts the set of possible pure states for Fermionic
systems only to those having a well-defined parity. The antisymmetric Fock
space of n modes decomposes into the direct sum

F n = F n0 ⊕F
n

1 ,

the subscript indicating the eigenvalue of the parity operator, and the set
of states also decomposes as well in

St(F n) = St(F n0 )⊕ St(F n1 ).
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If we consider vectors in the form of eq. (1.7), the parity is the sum of the
excitations modulo two

s≔
n∑︂
i=0

si mod 2

or, equivalently, whether the total occupation number s =
∑︁
i si is even or

odd.
We point out that the set structure of Fermionic states is strongly shaped

by the parity superselection rule and irreversibly altered from the original
quantum one. Since convex-only combinations between vectors of different
parity are allowed, the particular case of a single isolated mode surprisingly
reduces to the classical bit

St(F 1) = {p |0⟩⟨0|+ (1− p) |1⟩⟨1| : p ∈ [0,1]}.

Beside, the whole set of states St(F n) is spanned by the convex combinations
of the even and odd preparations as depicted in fig. 1.1, where the case of
two local Fermionic modes is considered. For two modes, the even and odd
states separately have the supports lying on a bidimensional space, shown
as two Bloch spheres in the figure. The states represented on the spheres are
pure, whereas those inside the balls and the convex combination between
them are the Fermionic mixed states.

Generally, the vector space of parity-defined vectors is isomorph to that
of n− 1 qubits, where n is the number of local Fermionic modes. On the
other hand, the linear span of states and effects corresponds to the space of
2n × 2n hermitian matrices

StR(F n) = EffR(F n) = Herm((C2)⊗n),

whose dimension is 22n. Once we reordered the Fock basis so that the even
vectors precede the odd ones, we obtain ∀ρ ∈ St(n) and ∀a ∈ Eff(n) that

ρ =
(︄
ρ0

ρ1

)︄
, ρ0,ρ1 ≥ 0 and Tr[ρ0 + ρ1],≤ 1

a =
(︄
a0

a1

)︄
, 0 ≤ a0 ≤ I0 and 0 ≤ a1 ≤ I1,

namely, the preparations and effects are represented as block matrices on
the even and odd subspaces F0, F1.
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Figure 1.1: A pictorial representation of the state set for two local Fermionic
modes is shown. The shaded surface depicts the set of deterministic states,
whereas the underlying area delimited by the dotted lines converging to the
zero state refers to the conic structure of sub-deterministic preparations.
The represented states satisfy Suppρs ⊆ F 2

s for s = 0,1, while ρ = pρ0 + (1−
p)ρ1, p ∈ [0,1] is any convex combination of the previous two.

1.2.3 The Jordan-Wigner transformation

We further understand the locality and entanglement features of the FQT
only once we introduce the Jordan-Wigner transformation between local
Fermionic modes and quantum qubits, firstly proposed in ref. [JW28]. The
antisymmetric Fock space F n is isometric to the complex Hilbert space of
n qubits, as we promptly realize by looking at the Fock basis of eq. (1.7).
Thus, we define the unitary map

U : F n→ C2n

|s1s2 . . . sn⟩F ↦→ |s1s2 . . . sn⟩Q .

between the space of quantum and Fermionic states. Given the Pauli
matrices

σx ≔

(︄
0 1
1 0

)︄
, σ y ≔

(︄
0 −i
i 0

)︄
, σ z ≔

(︄
1 0
0 −1

)︄
, (1.8)

we could then promote the operators

σ±i ≔
σxi ± iσ

y
i

2
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to the quantum equivalents of the creation and annihilation Fermionic
operators. On the one hand, we have the correct same-site anticommu-
tation relations {σ+

i ,σ
−
i } = I for i = 1 . . .n. On the other hand, spins on

different sides do commute, i.e. [σ+
i ,σ

−
j ] = 0 for i ≠ j, unlike Fermions

which anticommute. We accordingly adjust our operators by adding a
phase factor, which is able to keep track of the other excited modes, to
attain the Jordan-Wigner transformation

J (ϕi) = e−iπ
∑︁i−1
j=1 σ

+
j σ
−
j · σ−i (1.9a)

J (ϕ†i ) = e+iπ
∑︁i−1
j=1 σ

+
j σ
−
j · σ+

i (1.9b)

J (ϕ†i ϕi) = σ+
i σ
−
i . (1.9c)

Remark. The phase term can be rewritten for i > 0 as

Si ≔ e±iπ
∑︁i−1
j=1 σ

+
j σ
−
j =

i−1∏︂
j=1

e±iπσ
+
j σ
−
j =

i−1∏︂
j=1

(1− 2σ+
j σ
−
j ) =

i−1∏︂
j=1

(−σ zj ), (1.10)

where we observe that it depends on the chosen order of the systems. This
trait greatly limits its applicability to cases where the systems are mapped
to sites on manifolds with dimension higher than one.

The transformation J is actually a ∗-algebra isomorphism and let us
build a Fermionic algebra F (n) on the top of a n qubit system. We may be
tempted to translate all Fermionic expressions into quantum ones through
the Jordan-Wigner transformation, however many notion of QT will not
apply once they are transformed back. For instance, as we can see from
eqs. (1.9a) and (1.9b), local Fermionic operators are generally mapped to a
many qubits operator. Therefore, the locality properties are preserved only
if the expression involves an even number of Fermionic operators for each
site, in order to cancel the phase factor as in eq. (1.9c). For an extensive
addendum on the Jordan-Wigner transformation see ref. [Nie05].

1.2.4 Self-adjoint Representation of the Canonical Anti-
commutation Relations

Instead of describing the behavior of transformations in FQT in terms of the
creation and annihilation operators, we introduce another representation
of the CAR in terms of self-adjoint operators. The framework is developed
in ref. [Der06], where the scalar product of real vectors is implemented
through the anticommutation of self-adjoint operators. We may recover the
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Fermionic algebra only if we group pairs of orthonormal vectors together.
The representation will be of use in chapter 4 where the action of a FQCA
over observables is handled thereby. We label with Bh(H) the set of bounded
self-adjoint operators on Hilbert space H.

Definition. Let V be a real vector space with a positive scalar product π.
The linear map s : V → Bh(H) is a representation of the CAR over V in H if
it satisfies

{s(v),s(w)} = 2π(v,w), ∀v,w ∈ V .

We say that s is an irreducible representation of the CAR if the only
closed sub-spaces of H preserved by all K ∈ s(V ) are {0} and H. Let the
scalar product π induce the norm ∥·∥, the representation s further respects
the following properties for v ∈ V :

• spectrums(v) = {−∥v∥,∥v∥}.

• ei s(v) = cos∥v∥I + i sin∥v∥
∥v∥ s(v).

• Let V be the completion of V in the norm ∥·∥. Then there exists a
unique extension of s to a continuous function which is a representa-
tion of the CAR.

Thanks to last item, we henceforth assume V being a real Hilbert space.
Given an orthonormal basis {vi} for V , we say that the self-adjoint

operators {si} are a representation of the CAR if si = s(vi). Most notably,
the images {si} do respect {si ,sj} = 2δij . If we group the operators in pairs
{(s2i ,s2i+1)}, then we can recombine them to obtain the usual creation and
annihilation operators

ϕi ≔
s2i −i s2i+1

2
,

which satisfy eq. (1.4). As a consequence only even-dimensional real spaces
V = R2n can represent physical systems, specifically they describe n local
Fermionic modes. On the other hand, we may say that the single operator
si is associated to a i-th Majorana mode.

The Jordan-Wigner transformation is an effective way to define a partic-
ular self-adjoint representation. Indeed, we introduce the Jordan-Wigner
bases

(σx1 ,σ
y
1 ,S2σ

x
2 ,S2σ

y
2 , . . . ,S2nσ

x
2n,S2nσ

y
2n) for V = R2n

and

(σx1 ,σ
y
1 ,S2σ

x
2 ,S2σ

y
2 , . . . ,S2nσ

x
2n,S2nσ

y
2n,S2n+1) for V = R2n+1,
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where Si is the sign operator of eq. (1.10). In particular, the operator S2n+1
applies the matrix σ z to all qubits.

Let us see the most basic examples of the self-adjoint representation:
Example. For s : R2 → Bh(C2) and s(v) = vxσ

x + vyσ y , v ∈ R2, we have a
single local Fermionic mode.
Example. For s : R3→ Bh(C2) and s(v) = vxσx+vyσ y +vzσ z, v ∈ R3, we have
a non-physical representation of the CAR.

Fermionic Bogoliubov–Valatin transformations

The definition of the self-adjoint representation s relies on the scalar prod-
uct π of the real Hilbert space V . We are then interested in how the
operators s(v) transform if we apply a linear transformation that preserves
the scalar product π to the vectors v ∈ V , i.e. an orthogonal transforma-
tion R ∈ O(V ). The answer is that there exists a unitary transformation
U ∈ U(H) such that if we conjugate s(v) with U , the result still satisfies
the CAR. In the physics literature the fact that orthogonal transformations
can be unitarily implemented is associated with the name of Bogolubov
transformation.

Theorem 2 (Fermionic Bogoliubov–Valatin). Let V = R2n, for every R ∈O(V )
there exists a unique pair of unitary matrices {UR,−UR} ⊂ U(H) such that

s(Rv) =UR s(r) U†R,

and we have the following group homomorphism

φ : O(V )→ U(H)/{1,−1}
R ↦→ ±UR.

The homomorphism φ is the Pin representation of O(V ).

Fermionic Stone-von Neumann theorem

We now show that every other representation is unitarily equivalent to the
Jordan-Wigner one. The following theorems can be viewed as a Fermionic
analog of the Stone-von Neumann one.

Theorem 3. Let {si} be a representation of the CAR over V = R2n in the Hilbert
spaceH. There exists a Hilbert spaceK and a unitary operatorU :

(︂
C2

)︂⊗n
⊗K→

H such that for i = 1 . . .n we have

U
(︂
Siσ

x
i ⊗ IK

)︂
U† = s2i−1, U

(︂
Siσ

y
i ⊗ IK

)︂
U† = s2i .

The representation is irreducible iff K = C.
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Theorem 4. Let {si} be a representation of the CAR over V = R2n+1 in the
Hilbert space H. There exists Hilbert spaces K+, K− and a unitary operator
U :

(︂
C2

)︂⊗n
⊗ (K+⊕K−)→H such that for i = 1 . . .n it holds

U
(︂
Siσ

x
i ⊗ IK+⊕K−

)︂
U† = s2i−1,

U
(︂
Siσ

y
i ⊗ IK+⊕K−

)︂
U† = s2i ,

U
(︂
Sn+1 ⊗ (IK+

⊕ IK−)
)︂
U† = s2n+1,

where Sn+1 = σ z0 ⊗ · · · ⊗ σ zn.

Theorem (Fermionic Stone-von Neumann). Let V be an even-dimensional
real Hilbert space, and s, s′ be two irreducible representation of the CAR. They
are unitarily equivalent.

Theorems 3 and 4 are extensively employed for the classification of FQCA
as they allow us to trace back every Fermionic algebra to an irreducible
representation of the CAR conjugated by a unitary operator. Moreover, all
irreducible representation are unitarily equivalent to the Jordan-Wigner’s,
thus the dimension of every algebra representing the CAR over Rn for n
Majorana modes is 2n/2. The mathematical structure that best fits the
representations of the CAR is the Z2-graded algebra, which is presented in
the next section.

1.2.5 Z2-graded algebras

In § 1.2.1, we claimed that the Kraus operator of Fermionic transformation
over n local Fermionic modes belong to the Fermionic algebra F n. Here we
develop the notion of Z2-graded algebra, also known as superalgebra, of
which the Fermionic algebra is a particular case. Most notably, we state
that a Z2-graded algebra is a sequence

A = (A0,A1),

where A0, A1 are the complex spaces of even and odd operators, respec-
tively. The sum of any two elements is defined if they feature the same
parity, i.e. Fp +Gp ∈ Ap for Fp, Gp ∈ Ap and p = 0,1. On the other hand,
the algebra product is defined between any two operators Fp ∈Ap, Gq ∈Aq
such that FpGq ∈Ap⊕q. We presented a definition that is a slight revision of
the graded algebra according to ref. [MB99]. That differs from the usual
one by means of the direct sum A = A0 ⊕A1 in that it forbids the sum of
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operators with different parity. For two graded algebras, the most impor-
tant construction is their graded tensor product: given any two Z2-graded
algebra A, B, we denote their graded tensor product as A⊠B. It is indeed
a Z2-graded algebra whose n-th term is defined as

(A⊠B)n≔
⨁︂
p⊕q=n

(Ap ⊗Bq),

that is

(A⊠B)0≔ (A0 ⊗B0)⊕ (A1 ⊗B1),
(A⊠B)1≔ (A0 ⊗B1)⊕ (A1 ⊗B0).

Let F ∈ Ap, G ∈ Bq be two operators of parities p, q, their graded tensor
product is F ⊠G ∈Ap ⊗Bq and by extension F ⊠G ∈ (A⊠B)p⊕q. The map
Ap ×Bq → (A ⊠ B)p⊕q is bilinear for every p, q and the family of such
bilinear products is universal, see ref. [MB99].

In so doing, the parity superselection rule excludes both sums of vectors
such as |0⟩ + |1⟩, but also that of operators. For instance, in our setup
ϕ +ϕ†ϕ does not belong to F . Such a description is especially effective
when dealing with ∗-homomorphisms, as they preserve both the parity and
the adjointness and all operators are thus granted to be of definite parity.

In chapter 4 we are interested in describing the commutation and
anticommutation relation of operators belonging to the Fermionic algebra
F . The natural definition of graded commutator then arises for a Z2-graded
algebra A that reads

{[Fp,Gq]}≔ FpGq + (−1)pqGqFp (1.11)

for two operators Fp ∈Ap, Gq ∈Aq. In particular, the graded commutator
reduces to the anti-commutator if both operators are odd, and to the usual
commutator otherwise. Please note that the graded-, anti-, and usual
commutator are all well-defined within a Z2-graded algebra A as they all
respect the property of {[Fp,Gq]} ∈Ap⊕q for every Fp ∈Ap, Gq ∈Aq.

Finally, we denote by Mn the Z2-graded full matrix algebra, namely the
algebra of endomorphisms End(F n) over the Fock space F n.



Chapter 2

Quantum Cellular Automata

With the term cellular automaton (CA) we refer to a class of algorithms
that are able to process information distributed on a regular grid in a local
fashion. The original definition consists of a set of discrete sites properly
arranged on a lattice, each of them being in a state belonging to a finite set.
The CA is then the rule of evolution of the cells’ configuration, it occurs in
discrete time steps, and respects some notion of locality. Locality is indeed
the cornerstone of cellular automata and is implemented by introducing
the cell neighborhood, namely a finite set of cells whose state influences
that of the cell at next time step. Thereby, the evolution of a given cell at
time t + 1 depends only on the state at time t of those cells actually being
its neighbors, see fig. 2.1.

Stanisław M. Ulam and John von Neumann first introduced the notion
of cellular automaton in the early 1950s as a theoretical tool for analyzing
and describing natural phenomena. Both of them were working at the
Los Alamos National Laboratory, where S. M. Ulam was studying models
of crystal growth while J. von Neumanm was working on the problem
self-replicating systems, i.e. mechanisms by which a system can produces
a copy of itself. Von Neumann, on suggestion of S. Ulam, proved that
a cellular automaton is computationally universal and could be used to
construct a Turing machine [VB66]. Moreover, its instructions could be
the duplication of its own structure, and even of its instructions, thereby
functioning as a self-reproducing device.

Cellular automata proved to be valuable models for describing physi-
cal phenomena, such as fluid dynamics, molecular interactions, bacteria
colonies, traffic jams, and many other, thanks to their full control and
clear definition of interaction locality. The subject has been further popu-
larized as the British mathematician John Horton Conway published the
“Game of Life” in Martin Gardner’s October 1970 column in Scientific

23
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American [Gar70]. Conway’s Game of Life is a particular CA describing the
evolution of an infinite two-dimensional grid of square cells—each being
either alive or dead—that interacts with its eight neighbors, see fig. 2.1. Al-
though the rule of evolution is rather naive, the model is able to exhibits an
astonishing variety of behaviors depending on the initial state of the grid.
Most notably, from the definition of simple local rules, which in principle
say nothing whatsoever about the global behavior, the Game of Life let
grid configurations evolve that may stay still, oscillate, or move at constant
speeds indefinitely.

Cellular automata rose to the status of full-fledged scientific discipline
only a decade after, when in the early 1980s the physicist Stephen Wolfram
initiated the first serious formalization program, see ref. [Wol83] and later
extension of ref. [CY88]. Some CAs have been proven to be computationally
universal, see refs. [Tof77; MH89; Wol02], namely they are able to simulate
any Turing machine. This last model describes an abstract machine that
manipulates symbols on a strip of tape according to a table of rules in a
sequatial manner. In spite of it, cellular automata represent a model for
massive parallel computation, as their evaluation implies the evolution of
the whole grid.

The CA features may allow to describe the physical evolution of systems,
but their classical nature prevented their diffusion as a models of theoretical
physics. The natural way to overtake this limitation is the extension of the
automaton notion to the quantum realm as suggested by Feynman in ref.
[Fey82]. This resulted in the so called quantum cellular automaton (QCA)
where the classical systems are superseded by quantum systems in local
unitary interaction. The rigorous framework has been developed in two
distinct formulations: the finite configurations of Hilbert space where the
QCA is evaluated in the customary Schrödinger picture onto states, or in
terms of the quasi-local algebra of observables. The latter case is here
introduced and first presented in ref. [SW04].

In the present chapter we shortly review the common notation and
concepts of classical CAs, as they laid the foundation for the subsequent
development of QCA. We then thoroughly cover the main result of the
theory of quantum cellular automata. Namely, we deal with the definition
of quasi-local algebra of observables and homomorphism thereof. Some
valuable results required for the next chapters 3 and 4 are presented, among
which the structure theorem [ANW11] and the index theorem [Gro+12].
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t = 0

t = 1

Figure 2.1: Pictorial representation of a CA over a two-dimensional array of
cells. The cellular automaton is the rule of evolution of the configuration
from time t to time t + 1, the state of a given cell is computed from that of
their neighboring ones. In particular, the example depicts the evolution of
Conway’s Game of Life. Each cell—to be considered as a living cell—may
be either dead or alive and interacts with its eight neighbors according to
the following evolutionary rule: i) any live cell with fewer than two live
neighbors dies, as if caused by under-population; ii) any live cell with two
or three live neighbors lives on to the next generation; iii) live cell with
more than three live neighbors dies, as if by overcrowding; iv) any dead cell
with exactly three live neighbors becomes a live cell, as if by reproduction.
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2.1 Classical Cellular Automata

The present work mostly covers topics pertaining to QCAs and FQCAs.
Nonetheless, both frameworks have solid foundations build upon clas-
sical cellular automata. For this reason, we hereafter list the principal
notions required for dealing with CA, along with some notable results of
the field.

Grid Let a grid be a finitely generated group X, namely a group with a
finite set of generators G ⊆ X such that ∀x ∈ X, x = g1 · · ·gn for some
gi ∈ G∪G−1. Each element x ∈ X of the grid is called a site.

Cayley graph Given a grid X and its generators G, we can associate a
graph Γ (X,G) where the vertices are the elements of the group X and
the edges are {(n,ng) | n ∈ X,g ∈ G}. A color may be assigned to each
generator g ∈ G.

Example. The following grids are all Abelian and regular:

• X = Z, G = {g} where g : Z→ Z, z ↦→ z+ 1

• X = Zd for G = {g1, · · · , gd} where gi increments the i-th coordi-
nate by one.

Neighborhood We state that any finite subset N0 ⊆ X is a neighborhood
of the identity element e ∈ X. Given a site x ∈ X, Nx ≔ xN0 is the
neighborhood of x.

Example. Some well-known neighborhood schemes are:

Von Neumann’s Nx ≔ {y ∈ Zd | ∥x − y∥1 ≤ 1}, cf. fig. 2.2a.

Moore’s Nx ≔ {y ∈ Zd | ∥x − y∥∞ ≤ 1}, cf. fig. 2.2b.

Configuration space Let a finite set A accommodate all possible states of
a single site x ∈ X, the set A is also known as alphabet. A state or
configuration is a function c : X→ A,x ↦→ c(n) ∈ A. We identify with
AX = {c : X→ A} the configuration space.

Shift The left-action of X on the configuration space AX , also known as
X-shift, is defined as

σ : X ×AX → AX

(x,c) ↦→ c′ = xc

such that xc(y)≔ c(x−1y).
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(a) Von Neumann’s neighborhood. (b) Moore’s neighborhood.

Figure 2.2: Graphical representation of two neighborhood schemes in the
2D lattice Z2. Each box represents a site on the grid, the site x is painted in
black whereas the neighborhood Nx in gray.

Local and global rules A local rule is defined over a grid (X,G), a neigh-
borhood N0, and an alphabet A as the function

τ0 : AN0 → A.

On the other hand, given a local rule τ0 we can always evaluate a
global rule

τ : AX → AX

such that for every c ∈ AX , x ∈ X

τ(c)(x)≔ τ0

(︃
x−1c

⃓⃓⃓
N0

)︃
.

Namely, the global rule is computed by firstly shifting the configu-
ration so that x is in the origin e and the neighborhood Nx ↦→ N0 =
x−1Nx, then by restricting the configuration to the neihborhood only,
where we can safely evaluate the local rule τ0.

Cellular automaton A CA is a tuple (X,N0,A,τ0), where X is a finitely
generated group, N0 is a finite subset of X, A is a finite set of local
states, and τ0 : AN0 → A a local function

A defining property of CAs is the concept of locality, which cannot be
rigorously stated without the notion of shift. Indeed, it can be shown that
the property of commuting with the shifts is structural for CAs.

Theorem (X-equivariance). Let (X,N0,A,τ0) be a cellular automaton and τ
its global function. Then τ commutes with all shifts.

Furthermore, the same property is defining.
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Theorem. Let (X,N0,A,τ0) be a cellular automaton. The map τ : AX → AX is
the global rule of (X,N0,A,τ0) iff τ commutes with all X-shifts and τ(c)(e) =
τ0(c|N0

).

We report here a milestone of the theory of classical cellular automata,
i.e. the structure theorem or Curtis–Hedlund–Lyndon theorem, that allows
to classify all CA in terms of their global rule. For this purpose, we intro-
duce the topological space (A,T ) where we equip the alphabet A with the
discrete topology. We can then extend it to the pro-discrete topology for
the configuration space by considering (AX , T̃ ) where

T̃ ≔ {U =
∏︁
x∈XUx|Ux ⊂ T ,Ux = A for all but a finite number of indices}.

Moreover, by defining the Cantor metric on AX as d(c1, c2) ≔ 1
k+1 if k is

finite and 0 otherwise, where k ≔ inf{r : c1|Br ≠ c2|Br } and Br denotes the
ball of radius r around e, one may introduce the Cantor topology on AX as
that induced by the Cantor metric d.

Theorem (Curtis–Hedlund–Lyndon theorem). Consider a finitely generated
group X, a finite alphabet A, and an endomorphism τ : AX → AX , where AX is
equipped with the pro-discrete topology. The map τ is the global rule of a CA
iff τ is continuous with respect to the Cantor topology and commutes with the
shift operators, i.e. it is X-equivariant.

2.2 Quantum Cellular Automata

Formalizing cellular automata that evolves grids made of quantum systems
is not an easy task. We introduce here the definition of QCA as in ref.
[SW04], where the action of the automaton is described as the evolution of
the observable algebra in the Heisenberg picture.

Let X be a grid of systems, we indicate with P (X) the set of all subsets
of X and with PF(X) the set of all finite subsets of X. For every site x ∈ X
there is a d-dimensional quantum system, whose observables belong to
the full-matrix algebra Ax ≔Md(C). Given Λ ∈ PF(X) a finite collection of
sites, the observable algebra of the corresponding quantum systems is

A(Λ)≔
⨂︂
x∈Λ

Ax =
⨂︂
x∈Λ

Md(C). (2.1)

Indeed, A(Λ) is a well-defined C*-algebra generated by all observables
acting only on the sites x ∈Λ and trivially elsewhere. The fact that Λ is a
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finite subset of X is here crucial, as it grants the product C*-algebra having
a non-divergent operator norm.1

The construction of eq. (2.1) provides us with a net of local algebras,
which respects the following properties:

• Let Λ1,Λ2 ∈ PF(X) be two finite subsets of sites such that Λ1 ⊆Λ2, the
algebra A(Λ1) ⊆ A(Λ2) is a C*-subalgebra. Most notably, we claim
that A(Λ1)⊗ IΛ2−Λ1

≅A(Λ2).

• For every A ∈A(Λ1) and B ∈A(Λ2), the product AB ∈A(Λ1 ∪Λ2) is
well-defined by extending the operators toA⊗IΛ2

, IΛ1
⊗B, respectively.

• We say that the assigment Λ ↦→ A(Λ) is local, namely for every
Λ1,Λ2 ∈ PF(X) where Λ1 ∩Λ2 = ∅ it holds

[A(Λ1),A(Λ2)] = 0.

If we collect the algebras A(Λ) altogether, we come to the local or strictly
local observables

Alocal≔
⋃︂

Λ∈PF(X)

A(Λ).

This is a C*-algebra and its norm is induced by that of each A(Λ). In terms
of this norm we now consider the completion of the local observables.

Definition (Quasi-local algebra). We define the quasi-local algebra of ob-
servables as the completion

A≔Alocal,

with respect to the norm induced by A(Λ), ∀Λ ∈ PF(X).

The most natural interpretation of the quasi-local algebra A is the collec-
tion containing all possible observables that can be arbitrary approximated
by local observables Alocal, namely observables defined in finite regions
of the grid X. Indeed, if A ∈ A(Λ) for some Λ ∈ PF(X), we say that A is
localized in Λ. Coherently, the smallest Λ ∈ X such that A ∈ A(Λ) is the
support of A and designated as Supp(A).

1In general the tensor product of C*-algebras is a C*-algebra, but the norm is not
univocally defined. Nevertheless, for finite dimensional quantum systems the norm is
unique, as in case of eq. (2.1). Most notably, for every C*-algebras B(H1), B(H2) on spaces
H1 ≔ Cd1 , H2 ≔ Cd2 , respectively, we have that B(H1)⊗B(H2) ≅B(H1 ⊗H2).
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To rigorously define a quantum cellular automaton, we need to known
what kind of maps between observables do not break the algebra struc-
ture. Most notably, we say that a function α : A → B is a homomor-
phism between C*-algebras if it is (i) linear, (ii) an algebra homomorphism,
i.e. α(AB) = α(A)α(B), ∀A,B ∈ A, and (iii) a ∗-homomorphism, namely
α(A†) = α(A)†, ∀A ∈ A. Whenever the inverse α−1 exists and is a homo-
morphism, we denote α as an isomorphism; in the same case, if A = B

then α is an automorphism of A. If A and B are unital, we call α a unital
homomorphism if α(IA) = IB.

The quasi-local algebra plays here the role of the configuration space for
classical automata. Indeed, we define the quantum shift of displacement
x ∈ X as the automorphism σx : Ay → Axy , ∀y ∈ X, and its extension to
whole quasi-local algebra as σx : A(Λ) → A(xΛ), ∀Λ ⊂ X. Within the
current framework, see ref. [SW04], we introduce the axiomatic definition
of a quantum cellular automaton.

Definition 1 (Quantum cellular automaton). Given a finitely generated
group X, the quasi-local algebra of observables A(X), where the single
site algebra correspond to the full-matrix one Md(C) for some d, and a
finite neighborhood N0 ⊆ X, a quantum cellular automaton is a tuple
(X,N0,A,α), such that α : A(X)→A(X) is (i) a unital ∗-homomorphism of
the quasi-local algebra A(X), (ii) local, namely α(A(Λ)) ⊆A(NΛ), ∀Λ ⊆ X,
and (iii) homogeneus, i.e. α commutes with all shifts σx, ∀x ∈ X.

We state that α is the global rule of the automaton. On the other hand,
the local rule α0 is the restriction of the global rule to the site e, namely
α0 ≔ α|A0

: A0 → A(N0), see fig. 2.3. As such, the image α(A0) is a C*-
algebra isomorphic to A0 however embedded in A(N0). By shifting, we
obtain the local rule αx ≔ σx ◦α0 ◦ σ−1

x at any site.
Some authors may define a quantum cellular automaton without re-

quiring the homogeneity condition (iii) of definition 1. In that case, the
QCA is a local and unital ∗-homomorphism over the quasi-local algebra of
observables. Such a condition is even more general then it looks, as one may
also drop the constraint of all sites representing the same quantum system,
and have the dimension d(x) of the local algebra in eq. (2.1) depending
on site x ∈ X. For instance, in § 2.2.2 we will address the index theorem,
which has been introduced for inhomogeneous QCAs in ref. [Gro+12].

Unlike classical cellular automata, where we first define the local rule
τ0 and from it compute the global one τ , their quantum counterparts start
from the definition of the QCA on the whole grid as a global rule α and then
derives the local one α0 as a restriction. However, there are some criteria to
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. . . . . . t = 0

. . . . . . t = 1

α

Ax

Ax−1 Ax Ax+1

Figure 2.3: Schematic representation of a nearest-neighbors quantum cel-
lular automaton on the one-dimensional lattice Z. The lowest layer of
dots represents the sites at t = 0. The local rule α0 then propagates the
observable algebra Ax of site x to that of its neighbors Nx = {x − 1,x,x+ 1}
at t = 1, represented through the upper layer of dots. The constituent traits
of a QCA are homogeneity and locality.

distinguish whether a local rule is really so and represents an admissible
automaton.

Theorem 5. A unital homomorphism α0 : A0→ A(N0) is the local rule of a
QCA iff

[α(A0),αx(Ax)] = 0, ∀x ∈ X,x ≠ e, (2.2)

and with αx ≔ σx ◦α0◦σ−1
x . Moreover, the global rule α is uniquely determined

by the local one α0.

Theorem 5 allows us to check whether an homomorphism is a QCA
through checking only a finite number of conditions, i.e. eq. (2.2). A par-
ticularly interesting subclass of QCAs on qubits are those that map tensor
products of Pauli matrices into tensor products of Pauli matrices. Such
automata are called the Clifford QCAs, see refs. [SVW08; Güt+10], whereas
in field theory these transformations are also known as quasi-free or Bo-
golyubov automorphisms, and in phase space quantum mechanics meta-
plectic transformations. They are an especially simple type of quantum
cellular automata that does not allow a quantum computational speedup.
Nonetheless, they show complex asymptotics and are basic ingredient for
universal quantum computation.

Thanks to theorem 5, we come to the most notable result of QCA theory
and its distinct discrepancy to the classical theory of CA, namely that the
most relevant QCA are reversible. Before seeing that, we claim that given
a QCA (X,N0,A,α) such that α is an automorphism, then (X,N−1

0 ,A,α−1)
is a QCA as well. Moreover, we know that any unital ∗-homomorphism
α : A→A is an automorphism if the algebra A is finite dimensional and
has a trivial center. Hence, we need to find those criteria that let us discern
whether a local rule describes a QCA over a finite grid X. We say that
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a normal subgroup Γ ◁ X of the grid X defines a regular quotient group
T = X/Γ with respect to the neighbor N0 if

N0 ∩Nx ≠ ∅⇒N0 ∩Nxt = ∅ ∀x ∈ X,t ∈ T .

Namely, if a subgroup T of the grid X is large enough to check the con-
ditions eq. (2.2) without letting them overlap each other, and thus dis-
torting them, we can say that a local rule A0 represents a QCAs on T as
well. However, in case of finite cardinality T we claim that the QCA is an
automorphism.

Theorem 6 (Wrapped QCA). Given a quantum cellular automaton (X,N0,A,
α) such that there exists a finite, regular quotient group T of the grid X. Then
we can define a QCA on T having the same local rule.

For an extensive proof see refs. [SW04; Per20]. As a corollary of theo-
rem 6, any QCA defined on a grid X respecting the conditions of theorem 6
is an automorphism. Most notably, QCAs defined on X = Zn are automor-
phisms.

2.2.1 Structure theorem

As for CA, the quantum cellular automata represents a paradigm for mas-
sive parallel information processing. We may then wonder whether it is
possible to conciliate such a description with the more customary one of
quantum computation through quantum circuits. It is indeed feasable to
implement a QCA through quantum gates, but we need first to introduce
the appropriate definition of what is called a finite-depth quantum cellular
automaton.

Definition 2. (Finite-depth QCA) A quantum cellular automaton α : A→A

is a finite-depth QCA if there exists a finite depth quantum circuit that
implements it. More specifically, there exists a unitary operator U such
that α : χ ↦→U†χU , and U =Ud · · ·U1 for some Ui . The subscripts denote
the quantum circuit depth, and for each them Ui =

∏︁
Λ∈Pi V

i
Λ

such that Pi
are some disjoint partitions of X and V i

Λ
are unitaries with support on AΛ.

Please note that the products of each Ui =
∏︁

Λ∈Pi V
i
Λ

is well-defined,
since the operators V i

Λ
commute for every depth i as their supports are dis-

joint. In the particular case of X = Zn, we say that a QCA is partitioned if it
is implementable through a finite-depth quantum circuit as of definition 2
where the maximum depth d = 2. In such a case, we have U =U2U1, where
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U1 =
⨂︁

2Zn V , U2 = σ−1U1σ for a unitary matrix V on 2n cells and the
diagonal shift σ ≔ σ1 · · ·σn. The matrix V is also known as the scattering
matrix of the partitioned QCA.

In the following, we prove the structure theorem for quantum cellular
automata, see ref. [ANW11]. The result tells us that every QCA can be
implemented through a localized finite-depth quantum circuit as long as
we take advantage of ancillary systems.

Definition. (Ancilla implementation) A finite-depth quantum circuit U
implements a unitary operator V through the ancillary system M if there
exists a unitary matrix W acting only on ancillas such that U = V ⊠W .
Consequently, a unitary operator U implements a QCA using ancillas if
α ⊠ β : A ↦→U†AU for some β acting only onto the ancillary system.

In ref. [ANW11], the authors proved that for arbitrary unitary and
causal evolution the automaton can be described through local and finite-
depth circuits, even in the absence of the requirement of shift-invariance
as in item (iii) of definition 1. To prove the claim we make extensive use of
ancillas, namely we introduce a whole ancillary grid X so that the QCA is
defined on X̃ ≔ X ⊔X = X × {o,a}. We denote by the subscript o the sites of
the original grid whilst by a that of the ancillary one. Let s be the generator
of X̃ that maps the sites between grids, namely s : Xo→ Xa, we then have
that the neighborhood scheme Ñ 0 for the grid X̃ is Nx itself for x ∈ Xo and
sNs−1x for x ∈ Xa. We promptly see that Ñ 0 commutes with s.

Theorem 7 (Structure theorem). Let α be a reversible QCA on A(X) and denote
by Sx the swap operator on system Ã(x)≔A(x)⊗A(x), then there exists some
operators

Ux ≔ (IA(x) ⊗α)(Sx)

that are unitary, commuting, and localized on Nx ⊔ {x}. Their product then
define the QCA (X̃, Ñ 0,Ã, α̃) where

α̃ : Ã→ Ã

χ ↦→
⎛⎜⎜⎜⎜⎝∏︂
x

U†x

⎞⎟⎟⎟⎟⎠χ
⎛⎜⎜⎜⎜⎜⎜⎝∏︂
y

Uy

⎞⎟⎟⎟⎟⎟⎟⎠
such that for every χ ∈A

α̃(χ⊗ I) = I ⊗α(χ), α̃(I ⊗χ) = α−1(χ)⊗ I.

One may wonder what is the maximum depth of the circuit that im-
plements a given QCA. The answer lays in a well result of graph theory,
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since the problem is that of “tiling” the grid the partitions so as to wholly
cover it, also known as the L(1,1)-labeling problem for graphs. Hence, the
maximum depth is deg2 Γ + 1, where the graph Γ is that of vertices X and
edges {(x,y)|x ∈ X,y ∈Nx}, whereas the additional layer is due to the swap
gates.

Theorem 7 is a specialized version of the general result presented in
ref. [ANW11] for QCAs. Quantum cellular automata are ibidem a special
case of unitary and causal operators defined in grids whose element are
vertices of an arbitrary graph. More specifically, the grid is a directed graph
Γ (X,E) where the countable set X contains the nodes of the graph whereas
the edges—i.e. a subset of X × X—define the neighborhood scheme as
Nx ≔ {y|(x,y) ∈ E}.

Finally, for the sake of completeness we shortly present the problem
of universality in the framework of QCA. To truly assert that quantum
cellular automata are algorithms for quantum computation we show that
any circuit of quantum gates can be implemented through a QCA. Indeed,
it has been shown that quantum Turing machines and quantum circuits are
polynomially equivalent computational models, see refs. [Chi93; MW19],
and that quantum Turing machines are equivalent to QCA with a constant
slowdown ref. [Wat95]. A particulary exemplificative model has been
introduce in ref. [Rau05a], where were a specific scattering matrix V can
be programmed through an ancillary grid to execute any gate belonging
to the universal set {H,T ,CNOT} of ref. [Boy+00], where H = 1/

√
2(X +Z)

is the Hadamard gate, T = 4
√
Z, and CNOT is two qubit controlled-NOT.

For additional reading see refs. [SFW06; Rau05a; Rau05b]. An analogous
problem is that of intrinsic universality, namely the ability of an automaton
to implement any other QCAs, see ref. [AG10].

2.2.2 Index theory

Three main perspectives are of particular interest in the task of classifica-
tion of quantum cellular automata: the group structure, the local circuit
structure, and the topological structure of QCAs. Indeed, any two automata
defined over a given grid X with the same cell structure can be composed to
produce a new QCA, moreover every automaton has an inverse for sufficient
hypothesis on the grid X. Surprisingly enough, the group structure is more
tricky to define in finite grids. Here, multiple application of a QCA lead to a
neighborhood scheme comparable in size to the whole grid, thus rendering
the very idea of locality moot. Furthermore, thanks to theorem 7 we showed
that every QCA can be implemented through a finite-depth quantum circuit.
We may then wonder if it is possible to quantify the minimum amount
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of ancillas required to describe the action of the automaton in terms of
finite-depth circuits. Lastly, one can define a path equivalence between
two QCAs such that they can be continually and locally deformed into each
other. That is a classification up to homotopy.

In the simpler case of X = Z and for an inhomogeneus quantum cellular
automaton α without shift invariance, all three structures can be described
in term the quantity indα known as index of α, see ref. [Gro+12]. The
index is a positive rational number Q+ that can be computed locally, and
it is constant on the whole lattice Z even if the QCAs is not shift invariant.
A property is said to be locally computable for an automaton α having
neighborhood N if it can be computed by restricting α to any interval
region I ⊂ Z such that |I | > |N |. The set of locally computable invariants is
an Abelian group.

The index estimates the amount of ancillary system required by a QCA
to be implementable through a finite-depth quantum circuit. Indeed, for
indα = 1 we do not require any ancillary system at all and the automaton
α can be continually and locally deformed to the trivial one.

The index and the index theorem describe the action of quantum cel-
lular automata in terms of their support algebras, which we introduce
hereafter.

Definition 3 (Support algebra). Let B1 and B2 be two finite-dimensional
C*-algebras and A ⊆ B1 ⊗B2 a subalgebra. The support algebra C =
S(A on B1) is the smallest subalgebra C ⊆B1 such that A ⊆C⊗B2.

Theorem 8. Let B1, B2, B3, and A1 ⊆B1⊗B2, A2 ⊆B2⊗B3 be C*-algebras.
If A1 and A2 commute in B1 ⊗B2 ⊗B3, then so commute S(A1 on B2) and
S(A2 on B2) in B2.

Proof. For some bases {Ei}, {Fj} of B1, B3, respectively, and let A ∈A1 and
A′ ∈A2. The two operators A, A′ can be expanded uniquely as

A =
∑︂
i

Ei ⊗Ai , A′ =
∑︂
j

A′j ⊗Fj .

Then by hypothesis

[A⊗ I, I ⊗A′] =
∑︂
ij

Ei ⊗ [Ai ,A
′
j] ⊗Fj .

Since the terms Ei ⊗Fj are a basis of B1 ⊗B3 the expansion is unique and
[Ai ,A′j] = 0 for every i, j. The same applies to the algebras generated by Ai ,
A′j , that are the support algebras S(A1 on B2) and S(A2 on B2), respectively.
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Intuitively, the index measures the mean information flux to the left or
to the right as a ratio between the dimensions of two support algebras. We
now define them as

L2x ≔ S(α(A({2x,2x+ 1}) on A({2x − 1,2x})), (2.3)
R2x ≔ S(α(A({2x,2x+ 1}) on A({2x+ 1,2x+ 2}), (2.4)

that disassemble the image of A({2x,2x+ 1}) = A2x ⊗A2x+1, see fig. 2.4.

Theorem 9 (Index theorem). For every QCA on X = Z and Ax ≔Md(x), the
support algebras satisfy L2x ≅Ml(2x), R2x ≅Mr(2x). Furthermore, the index of
the automaton α is defined as

indα≔
r(2x − 1)
d(2x − 1)

=
d(2x)
l(2x)

=
r(2x+ 1)
d(2x+ 1)

= . . . . (2.5)

The quantity is locally computable and everywhere constant, i.e. it is indepen-
dent of site x.

Proof. We need to prove that

α(A2x ⊗A2x+1) ≅ L2x ⊗R2x. (2.6)

and

R2x ⊗L2(x+1) ≅A2x+1 ⊗A2(x+1) (2.7)

Starting from the former, we have by definition that α(A2x ⊗A2x+1) ⊆
L2x ⊗R2x. To show that also the inverse is true we observe that the center
of L2x ⊗R2x is trivial. Indeed, by contradiction, let W ∈ Z(L2x ⊗R2x) be
an element of the center non-proportional to the identity I , i.e. [W,A] = 0
for every element A ∈ L2x ⊗ R2x. Nonetheless, W must then commute
with α(A2x ⊗A2x+1) and α(A2x+1 ⊗A2(x+1)) as well, the latter thanks to
theorem 8. By the very same argument, W must commute with all images
α(A2y ⊗A2y+1) and α(A2y+1 ⊗A2(y+1)) for every y ∈ Z, that altogether sum
to the quasi-local algebra α(A). Thus, we come to a contradiction since the
quasi-local algebra has a trivial center. Thanks to eq. (2.6), we know that

d(2x)d(2x+ 1) = l(2x)r(2x). (2.8)

On the other hand, one can prove eq. (2.7) in a similar fashion. As a
matter of fact, R2x and L2(x+1) do have to commute in A2x+1⊗A2(x+1), as so
do the image under automaton of A2x ⊗A2x+1 and A2(x+1) ⊗A2(x+1)+1 and
theorem 8 holds. However, R2x and L2(x+1) are the only support algebras of
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Figure 2.4: The one-dimensional grid Z is represented in the picture as
a layer of dots, the lower one being that at time t whereas the upper one
at time t + 1 after applying the automaton α. For discussing the index
theorem, see theorem 9, the automaton acts on the obsevables of site pairs
(2x,2x+ 1). The images are then split into the support algebras L2x ⊗R2x.

the image of α localized in A2x+1 ⊗A2(x+1), and the last must be included
in the image α since the automaton is an automorphism. As a consequence,
we have here as well that

r(2x)l(2(x+ 1) = d(2x+ 1)d(2(x+ 1)). (2.9)

Combining eqs. (2.8) and (2.9) toghether we have the thesis eq. (2.5).

Example. The d-shift σd has d(x) = d, r(2x) = d2 and l(2x) = 1, ∀x ∈ Z, thus
index indσp = d2/d = d.

The index allows us to classify quantum cellular automata modulo
translations. It is indeed an group homomorphism between QCAs {α,◦}with
composition and the positive rational number {Q+, ·} with multiplication.
At the same time, the index of the tensor product of two QCAs α ⊗ β, which
is still a quantum cellular automaton on the joint grid, is the product
of the two indices, i.e. ind(α ⊗ β) = indα indβ. The most striking result
notwithstanding, is that QCAs featuring ind = 1 are implementable through
finite-depth quantum circuits without ancillary systems. This can be seen
from eqs. (2.6) and (2.7), which allows for some automorphisms to be
defined in case of equipartite dimensions. Such automorphisms are unitary
matrices for the two layer block decomposition.

Many attempts to generalize the result of theorem 9 in ref. [Gro+12] to
other grids have been proposed, see refs. [FH20; Haa21; FHH22; HFH22].



Chapter 3

The T -process

Quantum cellular automata are rigorous and effective theoretical tools for
describing massive parallel quantum information processing. Indeed, the
model is able to give meaning to statements such as computation over
a possibly infinite number of systems concurrently, and homogeneous—
i.e. translation invariant—interactions. Such results are in fact essential
for simulating and describing physical phenomena that evolve under those
circumstances. Nevertheless, the treatment of such models is not always as
straightforward as it gets. Due to its constitutional delocalization on the
grid, QCAs are usually handled through the description of their local rule
or the block decomposition when available. In the following, we present
the T -operator—whose name is due to its domain being T-shaped—which
represents the equivalent of the Choi operator for a QCA, cf. § 1.1.1. The
operator bears all valuable information of the QCA evolution in a local
fashion. Moreover, all T -operators are in one-to-one relationship with the
quantum cellular automata, namely we provide the necessary and sufficient
condition for a given T -operator to represent a valid QCA.

The T -operator and the T -process have been introduced in refs. [Per20;
Per21] as mean for probing the causal influence of a given automaton. The
result extends the construction of theorem 7, see ref. [ANW11], where
we proved that for every automaton α the automorphism α ⊗ α−1 is im-
plementable through a finite-depth quantum circuit. Such a result is
corroborated in the simpler case of X = Z by the index theorem 9 of ref.
[Gro+12], which confirms us the same thesis since ind(α ⊗α−1) = 1. The re-
sults of the following chapter do not require the QCAs being homogeneous,
as assumed in definition 1 instead.

38
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3.1 A new definition of QCA

The dissertation of quantum cellular automata in chapter 2 rests on the rig-
orous notions of quasi-local algebra and its homomorphisms. A QCA is then
required to preserve observables from one step to the next one. Neverthe-
less, the main property of an algebra homomorphism, i.e. α(AB) = α(A)α(B),
has no operational interpretation in terms of effects, as neither a product
nor a composition thereof is somehow meaningful.1 The same does not
apply for quantum operations, which are thoroughly defined through the
Kraus theorem. Indeed, the composition of quantum operations leads
to the multiplication of their Kraus operators. In turn, the Kraus op-
erators of transformations live in an appropriate C*-algebra. A unital
∗-automorphism α then naturally induces a supermap A that preserves
both the composition and conic structure of transformations over a grid X,
by mapping the Kraus operators {Ci} of any transformation C to C′i = α(Ci)
of a new map C′ ≔ A (C). Such a definition of QCA is rigorously given in
the present section.

Henceforth, we assume the automaton being an automorphism α of the
quasi-local algebra, i.e. there exists an inverse homomorphism α−1. We
may then implement the supermap A by conjugating every transformation
C with the automorphism α. Indeed, one can extend the definition of
every automaton α to describe a quantum operation through its action
onto effects in the Heisenberg picture, namely α : Eff(Λ)→ Eff(NΛ). Then
the meaning of conjugating C by α is easily understood if we evaluate the
probability of the closed circuit

(E|α−1Cα|ρ) = Tr[ρ α(C† α−1(E) C)] = Tr[ρ α(C)† E α(C)] = (E|A (C)|ρ)

for some state ρ, effect E, and transformation C with Kraus operator C.
We have here defined with the same symbol α the automorphism and the
quantum operation. The nature of the map is however clear from context.

An introductory example is the (right) shift σ . Most notably, let x ∈ X
and Λ ⊆ X, the shift σx is an automorphism of the quasi-local algebra as
defined in chapter 2 such that σx : A(Λ)→A(Λx). The shift supermap Σx
instead conjugates any given transformation with the shift operation σx,
i.e.

Σx : Transf(Λ→Λ) −→ Transf(Λx→Λx)

B ↦→ σ−1
x Bσx.

1There is no product of effects E, E′ such that Pr(α(EE′)|ρ) = Tr[α(EE′)ρ] =
Tr[α(E)α(E′)ρ] has sense for some density matrix ρ.
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It is worth noting that both the transformation σx and the supermap Σx are
well-defined in case of extension. Namely, let C be a quantum system, we
can define the shift σx ∈ Transf(ΛC→ (Λx)C) by applying the automaton
σx ⊗ I to Eff(ΛC). Equivalently, the supermap Σx : Transf(ΛC → ΛC) −→
Transf((Λx)C→ (Λx)C) then conjugates any given transformation with the
extended channel σx. We are now ready to provide an extensive and general
definition of QCA in terms of supermap, which also includes the shift Σx.

Definition 4 (Quantum cellular automaton). A QCA is a tuple (X,N0,A,
A ), where X is a finitely generated group, N0 ⊆ X a finite subset of the grid
defining the neighborhood scheme, A the quasi-local algebra over X, and
the local rule A is a supermap that satisfies for Λ ⊂ X:

1. Locality: A is local and maps local transformation to local transfor-
mations according to the neighborhood scheme N of the grid, i.e.

AΛ : Transf(Λ→Λ) −→ Transf(NΛ→NΛ). (3.1)

Moreover, for C ∈ Transf(Λ→Λ) and Λ′ ⊂ X it satisfies

AΛ∪Λ′ (C ⊗IΛ′−Λ) =AΛ(C)⊗IN (Λ′−Λ). (3.2)

2. Homomorphism: A is a homomorphism of quantum operations, i.e. it
preserves both its conic and multiplicative monoid structure. In
particular, A is (a) linear, (b) maps atomic transformation to atomic
transformation, and (c) for B,C ∈ Transf(Λ→Λ)

A (B ◦C) =A (B) ◦A (C). (3.3)

3. (Optional) Homogeneity: A is homogeneous, i.e. it commutes with all
left shifts

Sx : Transf(Λ→Λ) −→ Transf(xΛ→ xΛ) ∀x ∈ X.

All aforementioned properties must hold for any external quantum system
C as well, namely AΛ satisfies AΛ : Transf(ΛC→ ΛC) −→ Transf(NΛC→
NΛC) and eqs. (3.2) and (3.3).

Remark. The definition of A onto only Transf(Λ → Λ) is no particular
restriction. Actually, any transformation between a different number of
sites can always be viewed as an operations on more sites such that the
site number at input equals that at output, where some of them are left
untouched. Moreover, in the special case of effects Eff(Λ) = Transf(Λ→ I)
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the action of the automaton according to the two definitions is manifestly
the same. Let E ∈ Eff(Λ) and the transformation E ∈ Transf(Λ→ Λ) with
Kraus operators {Ei} such that E =

∑︁
i E
†
i Ei , then (E|α = (I |Eα = (I |αα−1Eα =

(I |A (E).

We now show that the definitions 1 and 4 describe the very same class of
QCA and are thus equivalent. However, we first need the following lemma
that applies a well-known result of abstract algebra to our case.

Theorem 10. Let A, B be two quantum systems, A be a homomorphism of
quantum operations, i.e. it is a quantum supermap

A : Transf(A→ A) −→ Transf(B→ B)

such that it preserves atomicity and the composition of quantum operations

A (BC) =A (B)A (C)

for B, C ∈ Transf(A→ A). Then there exists a unique unital ∗-isomorphism

α : AA→AB

between the C*-algebras of Kraus operators on systems A, B, specifically AA≔
EffR(A) and AB ≔ EffR(B). Moreover, such isomorphism is spatial, namely
there exits a unitary matrix U :HB→HA such that

α : A→U†AU.

Proof. The action α of a supermap onto the Kraus operators that pre-
serves atomicity is linear as stated in theorem 1. Moreover, the Kraus
map K of § 1.1.1 is here a monoidal isomorphism since transformations
Transf(A→ A), Transf(B→ B) act from a system onto itself. We infer that
α≔ KA K−1 is an algebra homomorphism over the Kraus operators. How-
ever, every homomorphism over the full matrix algebra is an isomorphism.
Furthermore, all isomorphisms between standard operator algebras on
normed spaces are spatial. This is a well established result of abstract
algebra, see refs. [Che73; Šem95].

Remark. Since the isomorphism α is spatial as a consequence of theorem 10,
every quantum cellular automaton A preserves the group structure of
reversible quantum operations.

Theorem. The two definitions 1 and 4 are equivalent.
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Proof. Let (X,N0,A,α) be a QCA according to definition 1 and (X,N0,A,
A ) one as of definition 4. We then have that α is an automorphism of
the quasi-local algebra of observables whereas A is a supermap between
quantum transformations onto the grid X.

(⇒) Given an automorphism α we build our supermap as follows. For
every transformation C ∈ Transf(AΛ → AΛ) we consider its minimal de-
composition2 in Kraus operators {Ci} such that C : ρ ↦→

∑︁
iCiρC

†
i . The

image of the automaton is then the transformation C′ ≔A (C) having Kraus
operators C′i ≔ α(Ci), namely

A :

⎛⎜⎜⎜⎜⎜⎝ρ ↦→∑︂
i

CiρC
†
i

⎞⎟⎟⎟⎟⎟⎠ ↦−→
⎛⎜⎜⎜⎜⎜⎝ρ ↦→∑︂

i

α(Ci) ρ α(C†i )

⎞⎟⎟⎟⎟⎟⎠ .
Thereby, the image transformation C′ is in fact linear and completely-
positive thanks to the Kraus theorem. Moreover, the quantum operation
C′ preserves the trace of states the same way C does. Indeed, let D be an
atomic and deterministic quantum operation and D its only Kraus operator,
then for D′ ≔A (D) we have that

(D′)†(I) = α(D†)Iα(D) = α(D†D) = α(I) = I,

since the automaton is unital, and thus Tr[D′(ρ)] = Tr[D(ρ)] = Tr[ρ] for
every density matrix ρ. Namely D′ is trace-preserving too. If D is atomic
but trace-non-increasing, only Tr[D′(ρ)] = Tr[D(ρ)] holds. The set of trans-
formation is a cone and every quantum operation C can be decomposed into
a conical combination of atomic transformations Di such that C =

∑︁
iDi .

This way we observe that Tr[A (C)(ρ)] =
∑︁
i Tr[A (Di)(ρ)] =

∑︁
i Tr[Di(ρ)] =

Tr[C(ρ)] for every transformation C.
The supermap A is indeed linear and granted to preserve the atom-

icity of transformations and adjointess. Thanks to the map α being an
automorphism, the composition of transformations is preserved as well:
given any two quantum operations C, D ∈ Transf(AΛ → AΛ) with Kraus
decompositions {Ci}, {Dj}, respectively, we have

A (C ◦D)(ρ) =
∑︂
ij

α(CiDj) ρ α(D†j C
†
i )

=
∑︂
ij

α(Ci)α(Dj) ρ α(Dj)
†α(Ci)

† = (A (C) ◦A (D))(ρ)

2The Kraus decomposition is said to be minimal if all {Ci} are linearly independent. In
such a case, given any two Kraus sets {Ci}, {Cj } of the same transformation C, there always
exists an isometry V such that V †V = I and Ci =

∑︁
j VijCj . The action of the supermap A

is thus well-defined as the automorphism α is linear.
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for every preparation ρ ∈ St(Λ). This concludes the proof of item 2 of defi-
nition 4, viz. the supermap A is a automorphism of quantum operations.

Thanks to the locality of the automaton α, the image transformation
C′ only acts on sites in the neighborhood of the original transformation C.
Namely, C′ ∈ Transf(AN (Λ)→AN (Λ)) since Ci ∈AΛ and thus α(Ci) ∈AN (Λ).
On the other hand, the automorphism α commutes with all shifts σx by
definition, thus the same does A .

(⇐) To univocally derive an automorphism of the observable algebra
from the automaton A we focus on its action upon atomic transformations
TransfA(x → x) on single sites. The quantum operations TransfA(x → x)
span altogether the entire set of transformations on the whole grid X
through conic combinations, and at the same time their Kraus operators
make up the quasi-local algebra of observables according to construction of
§ 2.2. We take here advantage of theorem 10. Let Λ ⊂ X be a finite subset
of sites,

QΛ≔ SpanR(Transf(Λ→Λ))

the algebra of quantum operations upon sites Λ and A : QΛ→A (QΛ) the
restriction of A onto QΛ, where A (QΛ) ⊂QN (Λ). We then have a bijection
between A and the isomorphism αΛ : AΛ → AN (Λ) for all Λ. Since the
isomorphism αx is spatial, we have that αx(Ix) = IN (x) and

[αxy(Ax),αxy(Ay)] = 0 ∀x ≠ y.

The two last expressions imply that αx is the local rule of the automaton α
thanks to theorem 5. The locality and homogeneity properties of α directly
derive from properties 1, 3 of definition 4, respectively.

3.2 The T -operator

The automaton A according to definition 4 must handle any system exten-
sion C to the grid X. In particular, if we consider an ancillary grid X as
extension C = X, see fig. 3.1a, we can evaluate the action of the automaton
onto transformations between the two grids. Such a property is of vital
relevance for the definition of the T -operator.

We define the swap operator S ∈ Transf(AA→ AA) for every quantum
systemA through its action onto atomic and factorized states ρ⊗σ as simply
S : ρ⊗ σ ↦→ σ ⊗ ρ, then the definition can be extended to any state St(AA)
by linearity. Henceforth we denote by S the swap between the original and
ancillary grid, whereas we say that Sx swaps the site x ∈ X between the
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two grids, see fig. 3.1b. We have then the two following straightforward
identities:

S =
∏︂
x∈X
Sx, α ⊗α−1 = S(α−1 ⊗I )S(α ⊗I ).

We are then ready to give a more suitable definition for the protocol of ref.
[ANW11]. Namely, we introduce a procedure for locally implementing a
QCA in terms of definition 4.

Definition 5 (T -operator). Let A be a quantum cellular automaton, we
define the T -operator as

Tx ≔A (Sx) = (α−1 ⊗I )Sx(α ⊗I ), (3.4)

for x ∈ X, and α being the automaton automorphism of the quasi-local
algebra.

The T -operator of the QCA is the conjugation of the swap operator on
a given site x with the automaton, cf. fig. 3.1c. The result is an atomic
transformation due to atomicity of composition. For the sake of clarity,
we shall denote the transformation with the symbol Tx in calligraphy font
whereas its only Kraus operator with the capital letter Tx.

By definition of neighborhood, the transformation Tx acts only on sites
Nx ⊔ x, namely on the neighborhood Nx on the original grid and on x on
the ancillary one, and is thus localized. Since A is a homomorphism of
quantum operations and the swap transformation satisfies both S2

x = I and
[Sx,Sy] = 0 for every x, y, we obtain

T 2
x = I (3.5)

[Tx,Ty] = 0, (3.6)

for all x, y. Equations (3.5) and (3.6) are distinctive features of the T -
operators and, as we shall see later, embed the commutation relations of
the automaton local rule. In general, thanks to eq. (3.6) the product

TΛ≔
∏︂
x∈Λ
Tx

is well-defined for Λ ⊆ X, and TX = S(α−1 ⊗α).
There are then two more characteristic properties of the T -operator that

allows us to uniquely define its class among other transformations. Namely,
for every transformation C ∈ Transf(x→ x) for x ∈ X we have

Tx(I ⊗C)Tx = (α−1 ⊗I )Sx(α ⊗I )(I ⊗C)(α−1 ⊗I )Sx(α ⊗I )

= (α−1 ⊗I )Sx(I ⊗C)Sx(α ⊗I ) = (α−1 ⊗I )(C ⊗I )(α ⊗I ) =A (C)⊗I , (3.7)
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x − 2

α

(a) The automorphism α of the observ-
able quasi-local algebra over the grid
X = Z describes a quantum operation.
In particular, the transformation can
be extended to neglect any other quan-
tum system C, here C = Z is an ancil-
lary grid, which has been depicted as
a one-dimensional lattice at the lower
level.

x+ 2

x+ 1

x

x − 1

x − 2

(b) The operator Sx swaps two sites at
position x in the main grid X = Z and
in the ancillary one.
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α−1 = x+ 2

x+ 1

x

x − 1
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Tx

(c) The T -operator Tx = A (Sx) is defined as the image of the swap Sx under the
action of the automaton A of definition 4. The automaton conjugates the swap
with the automorphism α. The domain and image of the transformation is then
the neighborhood Nx in the original grid and the input site x in the ancillary one.
In picture, for simplicity the neighborhood of α is Nx = x − 1,x,x+ 1.

Figure 3.1: The automorphism α of the observable quasi-local algebra de-
picted in fig. (a) naturally defines a quantum transformation α† : Eff(Λ)→
Eff(NΛ),E ↦→ α(E) in the Heisenberg picture for Λ ⊆ X, and N0 the neigh-
borhood. Thereby, we conjugate the swap operator Sx at site x ∈ X of fig. (b)
to obtain the T -operator in fig. (c).
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and

TN (x)(C ⊗I )TN (x) = (α−1 ⊗I )SN (x)(α ⊗I )(C ⊗I )(α−1 ⊗I )SN (x)(α ⊗I )

(α−1 ⊗I )SN (x)(A
−1(C)⊗I )SN (x)(α ⊗I )

= (α−1 ⊗I )(I ⊗A −1(C))(α ⊗I ) = (I ⊗A −1(C)). (3.8)

By accordingly conjugating any transformation C with the T -operators Tx
we obtain the image of the automaton A on the other grid. Therefore,
the T -operator accommodates all the required information to describe the
QCA.

Theorem 11. Let the transformations Tx act onto sitesNx⊔x, then the quantum
operation Tx is the T -operator of a QCA A according to definition 5 iff Tx
satisfies:

1. T 2
x = I .

2. [Tx,Ty] = 0 ∀x, y.

3. Given any transformation C ∈ Transf(Λ→Λ) for Λ ⊆ X, the conjugation
with the operator Tx is

TΛ(I ⊗C)TΛ = C′ ⊗I , (3.9)

such that C′ ∈ Transf(NΛ→NΛ).

Proof. Given an automaton A , we introduce the operator Tx as in defini-
tion 5, then it satisfies properties 1, 2, and 2 as shown in eqs. (3.5), (3.6),
and (3.7), respectively.

To prove the opposite we show that the map from C to C′ in eq. (3.9)
is indeed an automaton as of definition 4. We define for every Λ ⊆ X the
following supermaps

E : Transf(Λ→Λ) −→ Transf(XΛ→ XΛ)
C ↦→ I ⊗C,

and
Dρ : Transf(NΛX→NΛX) −→ Transf(NΛ→NΛ)

G ↦→ (eX |G|ρX),
(3.10)

as encoder and decoder, respectively, where eX ∈ Eff1(X) represents the
deterministic effect and ρ ∈ St1(X) a deterministic state of the the ancillary
grid. Please note thatDρ represents an effect in the higher-order quantum
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theory that discards the ancillary grid, namely (eX |G|ρX)|τN (Λ)) = TrX[G(ρX⊗
τ)] ∈ St(NΛ) for every τ ∈ St(NΛ). We now want to prove that

A ≔Dρ T E (3.11)

is a QCA according to definition 4 and generates the Tx operator, where
ρ ∈ St(X) and T is the supermap that conjugates with the operator Tx
everywhere on the grid, i.e.

T :D ↦→ TXDTX .

The map A is indeed linear and maps atomic transformations to atomic
transformations thanks to atomicity of composition. The supermap A
preserves the composition of quantum operation. Indeed, we know that
Tx is the inverse of itself thanks to item 1. Hence, for Λ ⊂ X and any two
transformations B,C ∈ Transf(Λ→Λ) we have

T (B ◦C) = TX B C TX = TX B TXTX C TX = T (B) ◦T (C).

Please note that the product TX =
∏︁
x∈X Tx is well-defined thanks to prop-

erty 2 of definition 5. Moreover, the supermap A of eq. (3.11) is local
according to the neighborhood scheme thanks to property 3 of definition 5
since transformation on sites Λ ⊂ X are mapped to transformation over
NΛ. The homogeneity of the automaton α is provided if Tx = Ty for all
x, y. Finally, we observe that thanks to the right hand side of eq. (3.9)
being factorized, the choice of ρ in eq. (3.10) is irrelevant as long as it is
deterministic, i.e. (e|ρ) = Tr[ρ] = 1.

In the particular case of a homogeneous automaton A , i.e. it satisfies
property 3 of definition 5, we may drop the x subscript of Tx altogether,
as we have Tx = Ty for every x, y. In such case, the automaton is uniquely
defined by the operator T and condition 2 of theorem 11 must only be
checked for [T ,Tx] = 0 where Tx = σx ◦T ◦σ−1

x and ∀x such that N0∩Nx ≠ ∅.

3.3 Decomposition

In the previous section we analyzed thoroughly the properties that define
the T -operator. Here we observe that the choice of the swap transformation
Sx in definition 5 of Tx is due to its particular role in the higher-order quan-
tum theory. In this framework, we have that quantum operations represent
system states instead, and supermaps are the true transformations. Among
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Tx =
. . .

x − 2 x − 1 x x+ 1 x+ 2

. . .
=

1
√
q

q∑︂
i=0

. . .

x − 2 x − 1 x x+ 1 x+ 2

. . .
α(χi)

χi

Figure 3.2: A pictorial representation of the T -operator decomposition.
The grid on which acts the automaton is a one-dimensional lattice X = Z
depicted as the upper layer, wheras the lower one is the ancillary grid. The
T -operator bears both the input and the output of the quantum cellular
automaton.

others, the swap S between two systems stands here for the maximally
entangled state, being a transformation in the usual quantum theory.

Indeed, given a system A and its Hilbert space HA, we may define the
swap operator S ∈ Transf(AA→ AA) between two copies of A through its
Kraus operator over AA ⊗AA as

S =
1
√
q

q∑︂
i=0

χi ⊗χi ,

where {χi} is an orthonormal basis of the C*-algebra AA and q≔ dim(AA).
Thus, computing the action of the automaton on Sx is straightforward and
its Kraus operator reads

Tx =
1
√
q

q∑︂
i=0

α(χi)⊗χi , (3.12)

acting over AN (x) ⊗Ax. The T -operator is defined over Nx ⊔ x and can then
be decomposed into the basis of the input algebra over site x in the ancillary
grid, and the output of the QCA on Nx in the original grid. Thereby, the
operator Tx accommodates both the input and the output of the quantum
cellular automaton, see fig. 3.2. Following the same construction, we can
extend the decomposition of eq. (3.12) for TΛ and any subset Λ ⊆ X.

A clear analogy can be drawn by comparing the T -operator to the
Choi operator of quantum theory defined in § 1.1.1. Indeed, the swap
transformation plays here the role of the maximally entangled state |I⟩⟩⟨⟨I |
in the Choi-Jamiołkowski isomorphism. Please note that in the higher-
order quantum theory inputs are quantum operations and transformations
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Quantum operation C Quantum cellular automaton A

Probe Max. entangled state |I⟩⟩⟨⟨I | Swap operator Sx
|I⟩⟩ =

∑︁
i |i⟩ ⊗ |i⟩ Sx =

∑︁
i χi ⊗χi

Choi
ρC = (C ⊗I )(|I⟩⟩⟨⟨I |)

= |C⟩⟩⟨⟨C|
Tx = (A ⊗I )(Sx)

Tx(ρ) = TxρT
†
x

|C⟩⟩ =
∑︁
ij |i⟩ ⊗ (Cij |j

⟩︁
) Tx =

∑︁
i α(χi)⊗χi

Table 3.1: Comparison between the Choi operator of a transformation
C ∈ Transf(A→ A) and the T -operator Tx of a QCA A . For simplicity of
exposition, the transformation C is assumed to be atomic and C is its
only Kraus operator. The operators {χi} are a valid basis of the single-site
observable algebra. It should be noted that the T -operator is the Choi
operator of the QCA local rule A0.

thereof are a supermaps. Hence, the maximally entangled state |I⟩⟩⟨⟨I |
becomes the swap transformation Sx, the quantum operation C turns into
the supermap A , which applied to |I⟩⟩⟨⟨I | and Sx return the Choi operator
ρC and the T -operator Tx, respectively. The former is a state whereas the
latter is a quantum channel, i.e. the input of a supermap. A side-by-side
comparison is provided in table 3.1.
Remark. It is worth noting that the T -operator represents the Choi of the
local rule A0 of the automaton. To be precise, the Choi of the whole QCA A
is

T ≔A (S) =
∏︂
x∈X
A (Sx) =

∏︂
x∈X
Tx.

3.4 No classification through T -operators

Thanks to theorem 11 we can rigorously define the class of T -operators. It
actually provides the necessary and sufficient conditions for an operator
Tx to faithfully represent a quantum cellular automaton. One may then
try to classify all possible T -operators so as to describe the set of QCAs.
However, such a procedure does not provides any valuable insight for
checking the commutation relations of local rules, i.e. through theorem 5.
As we will show, the requirements of theorem 11 directly translate to that
of theorem 5, thus denying us any real advantage in the classification task.

The T -operator must satisfy the condition 2 of theorem 11, i.e. [Tx,Ty] =
0 for every x, y ∈ X, which in turn is inherited from the automaton being a
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homomorphism. We can solve the equation through the decomposition of
eq. (3.12) for x ≠ y to attain

[Tx,Ty] =
∑︂
ij

[α(χi),α(χj)] ⊗χi ⊗χj = 0 (3.13)

where for χi ∈ Ax, χj ∈ Ay , α(χi) ∈ AN (x), and α(χj) ∈ AN (y). Equa-
tion (3.13) is then satisfied only for

[α(χi),α(χj)] = 0, ∀i, j.

The condition is clearly equivalent to that of theorem 5, we are then directly
checking the commutation relations of the QCA local rule.

3.5 Estimating the index

The T -operator allows us to easily compute the index of a QCA. Indeed, we
show hereafter that such task is a linear problem, once we are given the
operator Tx. We henceforth assume the grid be the one-dimensional lattice,
i.e. X = Z, and the automaton be homogeneous. The site on which the T
operator acts are labeled with the numbers 0 to 3 starting from the site
e on the ancillary lattice and carry on on the original grid as depicted in
fig. 3.3, such that T :H0 ⊗H1 ⊗H2 ⊗H3→H0 ⊗H1 ⊗H2 ⊗H3. To estimate
the index of α, we need to calculate the dimension of the algebra

R2x = S(α(A(2x,2x+ 1)) on A(2x+ 1,2(x+ 1))). (2.4)

From the construction of fig. 2.4 we promptly observe that R2x commutes
with both α(A2(x+1)) and α(A2(x+1)+1). These are all the commutation rela-
tions required to define the algebra and its basis. Thanks to decomposition
of eq. (3.12), we know that the image of the automaton completely resides
in the T -operator. We are then able to obtain the bases

Fi,j ≔ Tr0,3[T (Xi ⊗ I1,2 ⊗Xj)],
Gk,l,m≔ Tr0,2,3[T (Xk ⊗ I1 ⊗Xl ⊗Xm)]⊗ I2,

for S(T on A1,2) and S(T on A1)⊗ I2, respectively. The algebra R2x is the
commutant

R2x = [S(T on A1,2)∪ S(T on A1)⊗ I2]′,

so by defining

Φi,j ≔ (Fi,j ⊗ I − I ⊗FTi,j),

Γi,j,k ≔ (Gk,l,m ⊗ I − I ⊗GTk,l,m),
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1 2 3

0

Figure 3.3: Domain labeling for the T -operator T of a homogeneous au-
tomaton.

the operator Y ∈A12 then satisfies

[Y ,S(T on A1,2)] = 0 ⇔ Φi,j |Y ⟩⟩ = 0 ∀i, j

and

[Y ,S(T on A1)⊗ I2] = 0 ⇔ Γi,j,k |Y ⟩⟩ = 0 ∀k, l,m.

Finally, one can find all solutions Y of both the above equations by evaluat-
ing the kernel of

Ξ≔
∑︂
i,j

Φ†i,jΦi,j +
∑︂
k,l,m

Γ †k,l,mΓk,l,m.

Indeed, one has

RL = KerΞ. (3.14)



Chapter 4

Fermionic Quantum Cellular
Automata

One may be be tempted to transpose the result of QCAs to automata dealing
with local Fermionic modes instead of qubits, hoping that they all apply
unaffected. Indeed, Fermions have been proved to be computationally
equivalent to qubits [BK02] and the Jordan-Wigner lets us directly map
quantum operators to Fermionic ones through a ∗-isomorphism. How-
ever, we prove here that FQCAs are substantially different from their quan-
tum counterparts as they presents a class of automata that are genuinely
Fermionic.

In particular, in the present chapter we classify all nearest-neighbors
Fermionic quantum cellular automata over the one-dimensional lattice
X = Z where at each site we find a single local Fermionic mode. In such
class we firstly separate the shifts from the locally implementable ones, and
then further divide the rest into two subsets depending on the properties
of image support algebra over the nearest sites. In particular, there we find
some FQCAs that are equivalent to the quantum ones and some that are
unique to the Fermionic realm.

The definition of Fermionic quantum cellular automaton requires equiv-
alent notions to those of QCAs. Indeed, let X = Z be the grid and Fx the
Z2-graded algebra of abservables for a single local Fermionic mode at site
x ∈ X. We define the quasi-local algebra F of observables and the homo-
morphism α thereof. For every pair of self-adjoint, odd, local operators ξ,
υ ∈ Fx such that {ξ,υ} = 0, then the homomorphism must preserve the CAR,
i.e. {α(ξ),α(υ)} = 0, and be local α(Fx) ⊂ Fx−1,x,x+1. Moreover, we require the
automaton α to be homogeneous and thus commute with all shifts σx.

52
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Fermionic Pauli matrices For sake of simplicity we denote the Pauli
matrices In terms of the annihilation and creation operators ϕk, ϕ

†
k :

Xk = ϕk +ϕ†k , Yk = iϕk − iϕ†k , Zk = ϕ†jϕk −ϕk .

Thereby, we represent the CAR of Fermionic modes on the lattice Z by
assigning to each site x the pair (Xx,Yx). All operators Xx, Yx must then
anticommute ∀x. However, the same does not apply if we consider the
local self-adjoint operators ξx ∈ {Xx,Yx,Zx}, υy ∈ {Xy ,Yy ,Zy}: in fact, they
anticommute {ξx,υy} = 2δξυ if x = y whereas graded-commute {[ξx,υy]} = 0
otherwise.

4.1 Index theory for Fermionic quantum cellular
automata

Before proceeding to the classification we first briefly summarize the result
of the index theory for Fermionic quantum cellular automata. In refs.
[Fid+19; Far20], the subject has been thoroughly covered and it has been
shown that the index of a Fermionic automaton can have irrational values
as well, whereas the index spectrum for QCAs belongs to Q+ only. We define
the Z2-graded support algebra as the equivalent of definition 3 for the
Fermionic quantum theory, namely

Definition (Z2-graded support algebra). Let B1 and B2 be two finite-
dimensional Z2-graded algebras and A ⊆ B1 ⊠B2 a subalgebra. The Z2-
graded support algebra C≔ S(A on B1) is the smallest subalgebra C ⊆B1
such that A ⊆C⊠B2.

By means of the definition of support algebra for the Fermionic algebra,
we can now prove the equivalent of theorem 8 in the Fermionic case as
well.

Theorem 12. Let B1, B2, B3, and A ⊆B1 ⊠B2, A′ ⊆B2 ⊠B3 be Z2-graded
algebras. If A and A′ graded-commute in B1⊠B2⊠B3, then so graded-commute
S(A on B2) and S(A′ on B2) in B2.

Proof. We directly check that

{[E ⊠A⊠ I, I ⊠A′ ⊠F]} = E ⊠ {[A,A′]}⊠F (4.1)

for elements of definite parity. Indeed, thanks to our definition of Z2-
graded algebra of § 1.2.5, the linear combinations of elements with different
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parity are forbidden. If we pick the bases {Ei} for B1 and {Fj} for B3 with
elements of definite parity, we can expand every operator of A, A′ as

A =
∑︂
i

Ei ⊠Ai , A′ =
∑︂
j

A′j ⊠Fj (4.2)

respectively, for some Ai ∈ S(A on B2) and A′j ∈ S(A′ on B2). By hypothesis,
and thanks to eq. (4.1), we have that in B1 ⊠B2 ⊠B3

{[A,A′]} =
∑︂
ij

Ei ⊠ {[Ai ,A′j]}⊠Fj = 0. (4.3)

The linear independency of bases {Ei}, {Fj} leads us to {[Ai ,A′j]} in B2, ∀ij.
The thesis then follows.

The above result is the starting point for proving the validity of theo-
rem 9 in the Fermionic realm as well. Indeed, an index can be accordingly
defined for FQCAs with the same properties, see refs. [Fid+19; Far20]. In
particular, the observables of two sites belongs to a Z2-graded full matrix
algebra M that features a trivial center as well. Therefore, the setting of
fig. 2.4 and eqs. (2.6) and (2.7) also hold in the Fermionic case.

The index is the square root of dim(A2x)/ dim(L2x) of eqs. (2.3) and (2.4),
see fig. 2.4. However, the proof of ref. [SW04] does not hold for the
Fermionic case and L2x, R2x must not be Z2-graded full matrix algebras.
Thus, the quantum and Fermionic indexes do differ by the spectrum of
values they can assume: instead of rational numbers, the index of a FQCA
belongs to the multiplicative group of 2n/2 for n ∈ Z. Indeed, on the one
hand the elementary system that can be moved by a QCA shift is the qu-
dit, i.e. the support algebras L2x, R2x are full matrix. On the other, a
Fermionic automaton is free to move around Majorana modes, that are
odd self-adjoint operators representing a single vector in the real space
Rn. Since all irreducible representation of the CAR are unitarly equivalent
to the Jordan-Wigner thanks to theorems 3 and 4, we can compute the
algebra dimension from that generated by either (X0,Y0,X1,Y1, . . . ,Xn,Yn),
that is 22n, or (X0,Y0,X1,Y1, . . . ,Xn,Yn,Z1Z2 · · ·Zn), namely 22n+1. The index
is then the square root of ratios between such values. In fact, the generator
of the shift group for the one-dimensional FQCAs is the Majorana shift:

σM : Xn ↦→ Yn,

Yn ↦→ Xn+1.
(4.4)

It is straightforward to see that the shift automaton σ = σ2
M , see fig. 4.1,

hence ind(σM) =
√

2.
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σM :
X Y
A0

X Y

X Y
A1

X Y

X Y
A2

X Y

· · ·

· · ·

· · ·

· · ·
σ :

X Y
A0

X Y

X Y
A1

X Y

X Y
A2

X Y

· · ·

· · ·

· · ·

· · ·

Figure 4.1: Graphical representation of the Majorana automaton σM , which
features an irrational index equal to ind(σM) =

√
2, and of the shift automa-

ton σ of index one.

4.2 Classification of one-dimensional, nearest-
neighbors Fermionic Quantum Cellular Au-
tomata

The defining trait of a FQCA is being a homomorphism of the Kraus algebra,
here in particular the Fermionic one. We begin by requiring the graded-
commutation of the image of the two farthest algebras, namely {[α(A1),
α(A3)]} ∈ A0 ⊠A1 ⊠A2 ⊠A3 ⊠A4, where in general α(A1) ∈ A0 ⊠A1 ⊠A2
and α(A3) ∈A1 ⊠A2 ⊠A3. Let

EL≔ S(α(A3) on A2) and ER≔ S(α(A1) on A2), (4.5)

thanks to theorem 12 we know that {[EL,ER]} = 0. So we proceed by scru-
tinizing all available cases of subalgebras EL,ER ⊆ A2, in particular we
have:

1. One support algebra is the Z2-graded full matrix algebra, whereas the
other cannot but be the trivial one consisting of the identity element
I only.

2. Both support algebras are generated by a single operator each, which
graded-commute. In particular, we have: (a) both support algebras
are generated by the even operator Z and are therefore Abelian, (b)
each support algebra is generated by an odd operator, say GL for EL
and GR for ER, such that the two anti-commute, i.e. {GL,GR} = 0.

3. One support algebra is trivial, while the other is either the full Z2-
graded matrix one as in case 1, (a) generated by a single operator, or
(b) trivial as well.

It is straightforward to see that case 3b reduces to a local automaton im-
plementable as a unitary transformation, namely an automorphism of the
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Fermionic algebra for a single local Fermionic mode. On the other hand, we
now prove that cases 1 and 3a belong to the class of shift and Majorana au-
tomata, respectively, whereas cases 2a and 2b are the locally-implementable
ones.

Remark. The self-adjoint representation of the CAR introduced in § 1.2.4
proves to be a valuable theoretical tool for describing support algebras
for cellular automata in FQT. In particular, that allowed us to verify the
graded-commutation of two algebras A1, A2 by checking only one con-
dition. Indeed, had we instead considered the creation operators φ ∈A1,
ψ ∈ A2, such that {φ,φ†} = {ψ,ψ†} = 2I , we would have had to check
both the anti-commutation of the operators themselves, namely {φ,ψ} = 0,
and that of their adjoints as well, i.e. {φ,ψ†} = 0. Thereby, we check two
condition instead of the single one for the self-adjoint representation.

Cases 1 and 3a Assume without loss of generality that EL = M, i.e. the Z2-
graded full matrix algebra for a single local Fermionic mode, and ER = {I}.
In such a case, the image α(A1) ∈ A0 ⊠ A1 lays on two sites only. We
can then apply theorem 12 as before and evaluate {[α(A1),α(A2)]} ∈A0 ⊠

A1 ⊠A2, which is zero iff {[EC ,EL]} = 0 for EC = S(α(A1) on A1) and EL =
S(α(A2) on A1). However, since EL is the Z2-graded full matrix algebra, EC
cannot but be the trivial one. Thus, every automaton of case 1 must be a
automorphism between the algebra of a site and that of its previous, namely
a backward shift. For case 3a, we instead assume EL being generated by a
single operator E. We follow the same steps as before and attain that EC is
generated by a single operator F as well, where {[E,F]} = 0. For every two
self-adjoint, odd operators ξ, υ ∈ A1 such that {ξ,υ} = 0, the automaton
maps them to

(ξ,υ) ↦→ (E ⊠ I, I ⊠F) ∈A01.

One can prove with ease that such a homomorphism is indeed the local rule
of an automaton, and that it can be implemented through a combination of
the Majorana shift σM and local automorphisms U , see fig. 4.2b.

4.2.1 Commuting support algebras

In case 2a, both algebras EL, ER are generated by the even operator Z and
thus commute, namely [EL,ER] = 0. We may decompose the image of any
odd operator ξ ∈A2 over the basis {|0⟩⟨0| , |1⟩⟨1|}, or I ±Z, in A0, A2 as

α(ξ) =
∑︂
ij

|i⟩⟨i|⊠Aij(ξ) ⊠ |j
⟩︁⟨︁
j | , (4.6)
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where i, j ∈ {0,1} and for some Aij(ξ) ∈A1. The above condition strongly
resemble that of the QCA of ref. [SW04], indeed we obtain the same result
of Aij being themselves automata ∀i, j. In particular, for every pair of odd
operators ξ,υ ∈A1 such that {ξ,υ} = 0 we have

{α(ξ),α(υ)} =
∑︂
ij

|i⟩⟨i|⊠ {Aij(ξ),Aij(υ)} ⊠ |j
⟩︁⟨︁
j | = 0, (4.7)

which is equivalent to

{Aij(ξ),Aij(υ)} = 0, ∀i, j. (4.8)

Equation (4.8) let us define Aij as automorphisms thanks to theorems 3
and 4, and write Aij(ξ) =UijξU

†
ij for some unitary matrices Uij ∈U (2).

Remark. Due to the automaton α being parity preserving, the set of uni-
tary matrices is constrained to those of definite parity, namely the two
multiplicative subgroups

SU0(2)≔ {exp(iθZ)} , SU1(2)≔
{︃
exp

(︃
i
π
2

(cos(η)X + sin(η)Y )
)︃}︃
, (4.9)

for some angles θ, η.

Finally, we require the graded-commutation of the images of nearest-
site algebras, namely {[α(A1),α(A2)]} = 0. Given some odd operators ξ ∈A1,
υ ∈A2, let us consider

{α(ξ) ⊠ I, I ⊠α(υ)} = 0. (4.10)

We can substitute the decomposition of the automaton of eq. (4.6) in
eq. (4.10) and attain∑︂

ijkl

{︂
|i⟩⟨i|⊠Aij(ξ) ⊠ |j

⟩︁⟨︁
j |⊠ I, I ⊠ |k⟩⟨k|⊠Akl(υ) ⊠ |l⟩⟨l|

}︂
= 0, (4.11)

which is equivalent to∑︂
jk

{︂
Aij(ξ) ⊠ |j

⟩︁⟨︁
j | , |k⟩⟨k|⊠Akl(υ)

}︂
= 0, (4.12)

for all i, l. To complete the classification we need to derive some fur-
ther properties of the four matrices Uij describing the operators Aij(ξ)
of the center algebra EC = S(α(A1) on A1). For this reason, we prove the
Fermionic variant to the lemma 9 of ref. [SW04] by accordingly taking into
account the parity of the operators under analysis.
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Theorem 13. Let µ,ν ∈ {0,1}, and Uµ, Vν be 2× 2 unitary matrices such that∑︂
µ,ν

{︂
UµξU

†
µ ⊠ |µ⟩⟨µ| , |ν⟩⟨ν|⊠VνυV †ν

}︂
= 0 (4.13)

for all ξ, υ odd operators. Then the operators UαU†β and VγV †δ are all diagonal
to the computational basis ∀α,β,γ,δ ∈ {0,1}.

Proof. Let Eµ =UµξU†µ , Fν = VνυV †ν , and observe that eq. (4.13) is in fact a
difference of the exchanged terms, i.e.∑︂

νµ

(︂
Eµ |ν⟩⟨ν|⊠ |µ⟩⟨µ|Fν − |ν⟩⟨ν|Eµ ⊠Fν |µ⟩⟨µ|

)︂
= 0 (4.14)

due to the operators Eµ, Fν being odd. To simplify the sum, we multiply
both sides of eq. (4.14) by |α⟩⟨α| ⊠ |γ⟩⟨γ | on the left and by |β⟩⟨β| ⊠ |δ⟩⟨δ|
on the right. It is worth noting that the operators are even and thus freely
commute. The anti-commutator then reads

|α⟩⟨α|Eγ |β⟩⟨β|⊠ |γ⟩⟨γ |Fβ |δ⟩⟨δ| = |α⟩⟨α|Eδ |β⟩⟨β|⊠ |γ⟩⟨γ |Fα |δ⟩⟨δ| . (4.15)

We are then free to choose υ such that ⟨γ |Fα |δ⟩ = 0, as a result of which the
right hand side of eq. (4.15) vanishes. For this purpuse, let υ = V †α |γ ′⟩⟨δ′ |Vα
for some γ ′,δ′ ∈ {0,1}, δ′ ≠ δ, so that

|α⟩⟨α|Eµ |β⟩⟨β|⊠ |γ⟩⟨γ |VβV †α |γ ′⟩⟨δ′ |VαV †β |δ⟩⟨δ| = 0. (4.16)

Both factors ⟨α|Eµ|β⟩ and ⟨γ |VβV †α |γ ′⟩ of eq. (4.16) can be made non-zero by
an appropriate choice of values ξ, γ ′, respectively. Hence, ⟨δ′ |VαV †β |δ⟩ = 0

and VαV
†
β must be diagonal to the computational basis ∀α,β. The whole

procedure can be repeated by choosing an appropriate value for ξ, and
obtain that UαU

†
β are also diagonal ∀α,β to the same basis.

Theorem 13 tells us that we can diagonalize all Uij of the Aij operators.
To do so, we properly choose a local automaton U (ξ)≔ UξU†, where U
is any of the matrices Uij , and prepend it the automaton under analysis,
i.e. α ↦→ αU . All Uij of the new automaton are then even and simultane-
ously diagonalizable to the computational basis of the Fock space F1. Since
we are interested in classifying all automata modulo local ones, we are still
free to apply a second local automaton V (ξ)≔ V ξV † such that VU00 = I .

We summarize the steps taken so far: the operatorsUij of the automaton
VαU are all even and diagonal to the computational basis, plus U00 = I . Let
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us refer with the symbol ⊕ the sum modulo two and say ξ = |a⟩⟨a⊕ 1|, υ =
|b⟩⟨b⊕ 1| for some a,b ∈ {0,1}. Furthermore, let Uij = eiφij |0⟩⟨0|+ e−iφij |1⟩⟨1|,
so that we have

Aij(ξ) =UijξU
†
ij = e2i(−1)aφij |a⟩⟨a⊕ 1| , (4.17)

and so by substituting eq. (4.17) for both ξ and υ in eq. (4.12)—which has
been further developed in eq. (4.14)—we obtain

(−1)a
(︁
φi,b −φi,b⊕1

)︁
= (−1)b

(︁
φa,l −φa⊕1,l

)︁
mod 2π, (4.18)

for all i, l,a,b ∈ {0,1}. Since we have φ00 = 0 thanks to our choice of pre-
multiplying the automaton by V , we evaluate eq. (4.18) for i = l = 0 and
for i = l ⊕ 1 to observe that φ10 = φ01, and φ11 = 2φ01 = 2φ10, respec-
tively. Therefore, let φ ∈ [0,2π) be the only parameter left, we can write
Uij =QiφQ

j
φ where

Qφ =
(︄
eiφ 0
0 e−iφ

)︄
.

With such a definition of Uij , we observe from eq. (4.6) that the action of
the automaton can be described through a two-mode dephasing operator
Dφ defined in U (4) as

Dφ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4.19)

such that

α(ξ) = (Dφ ⊠ I)(I ⊠Dφ)(I ⊠ ξ ⊠ I)(I ⊠Dφ)†(Dφ ⊠ I)†.

The Fermionic automata of case 2a are then the composition of the group of
dephasing automata of fig. 4.2a, namely a partitioned FQCA with scattering
matrix Dφ, and completely automorphisms fig. 4.2b. The action of the
automaton can be evalueted from the image of the two orthogonal operators
X, Y as well. Indeed, we have

α(X) =
cosφ+ 1

2
I ⊠ (cos(φ)X − sin(φ)Y ) ⊠ I

+
sinφ

2
I ⊠ (sin(φ)X + cos(φ)Y ) ⊠Z

+
sinφ

2
Z ⊠ (sin(φ)X + cos(φ)Y ) ⊠ I

+
cosφ− 1

2
F ⊠ (cos(φ)σx − sin(φ)Y ) ⊠Z

α(Z) = I ⊠Z ⊠ I
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. . .
Dφ Dφ

Dφ Dφ
. . .

(a) Dephasing automaton Dφ.

. . . U U U U U . . .

(b) Local automaton U .

Figure 4.2: Caption

In summary, this class of Fermionic quantum cellular automata is
equivalent to the quantum case of QCAs with Abelian support algebras
EL = S(α(A1) on A0), ER = S(α(A1) on A2) generated by the operator Z, see
section IV.G of ref. [SW04]. However, the major difference is here that the
algebras EL, ER can only be generated by the even operator Z, whereas in
QCAs any vector v̂ ·σ is allowed.

4.2.2 Anti-commuting support algebras

In case 2b, we have that EL, ER are generated by two odd operators GL,
GR, respectively, such that they anti-commute, i.e. {GL,GR} = 0. In spite
of case 2b, where we can derive some notable properties of the central
support algebra EC , here we can not draw the same conclusions from the
CAR of two operators belonging to the same site. In particular, the results
derived in § 4.2.1 for FQCA and in section IV.E of ref. [SW04] for QCA are
not applicable here. The reason is that we may not decompose the members
of algebras EL, ER in terms of projectors onto the generator eigenspaces,
as they have non-definite parity and are therefore forbidden by the parity
superselection rule.

Remark. We are interested in classifying FQCA modulo local ones. We
are then free to select some U (ξ) = UξU† such that U (GL) = X, U (GR) =
Y . Henceforth, we will focus on α ↦→ Uα where the algebras EL, ER are
generated by the operators X, Y , respectively.

We begin by decomposing the image of a self-adjoint, odd operator
ξ ∈A1 over the sites A0 ⊠A1 ⊠A2. Most notably,

α(ξ) = X ⊠Aξ ⊠Y +X ⊠Bξ ⊠ I + I ⊠Cξ ⊠Y + I ⊠Dξ ⊠ I, (4.20)

for some operators Aξ , Bξ , Cξ , and Dξ . Thanks to the automaton being
parity preserving, we know that Bξ , Cξ are even operators, whereas Aξ and
Dξ are odd. Moreover, the automaton is a ∗-homomorphism and preserves
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adjunction as well. Hence, we observe that Aξ is anti-Hermitian whilst Bξ ,
Cξ , and Dξ are all Hermitean.

We proceed by evaluating the anti-commutation of nearest-site al-
grabras, namely {[α(A1),α(A2)]} = 0. Hence, let us consider two self-adjoint,
odd operators ξ, υ, such that they anti-commute, i.e. {ξ,υ} = 0. Their image
under the action of the automaton then reads

{[α(ξ) ⊠ I, I ⊠α(υ)]} = X ⊠E ⊠Y +X ⊠F ⊠ I + I ⊠ P ⊠Y + I ⊠Q ⊠ I = 0 (4.21)

where

E = [Aξ ⊠Y ,X ⊠Aυ] +Aξ ⊠ [Y ,Cυ] + [Bξ ,X] ⊠Aυ, (4.22a)
F = [Aξ ⊠Y ,X ⊠Bυ] +Aξ ⊠ {Y ,Dυ} + [Bξ ,X] ⊠Bυ, (4.22b)
P = [Cξ ⊠Y ,X ⊠Aυ] +Cξ ⊠ [Y ,Cυ] + {Dξ ,X} ⊠Aυ, (4.22c)
Q = {Cξ ⊠Y ,X ⊠Bυ} + {Dξ ,X} ⊠Bυ +Cξ ⊠ {Y ,Dυ} . (4.22d)

The operators of eqs. (4.22a) to (4.22d) act on two local Fermionic modes
and must vanish altogether. We use here a notable property of the algebra
F 2 of two local Fermionic modes, namely that the even operators F 2

0 =
(F0 ⊠ F0)⊕ (F1 ⊠ F1) are the direct sum of operators either even or odd in both
sites. Equivalently, the odd operators F 2

1 = (F0 ⊠ F1)⊕ (F1 ⊠ F0) are the direct
sum of operators with alternate parity in the two sites. Therefore, we may
write eq. (4.22a) as E = E00 +E11, where

E00≔ [Aξ ⊠Y ,X ⊠Aυ] , E11≔ Aξ ⊠ [Y ,Cυ] + [Bξ ,X] ⊠Aυ, (4.23)

and they must be null separately. Particularly, for ξ = υ = p ·σ , p ∈ R3, and
p⊥ ẑ, we have

E00 = 2px(p× ŷ)z I ⊠Z + 2py(x̂×p)z Z ⊠ I = 0, (4.24)

which is true iff p = 0. Namely, for every ξ we have that

Aξ = 0, (4.25)

and most of the terms in eqs. (4.22a) to (4.22d) vanish as well. Equa-
tions (4.22b) and (4.22c) reduce to

F = [Bξ ,X] ⊠Bυ = 0, P = Cξ ⊠ [Y ,Cυ] = 0,

respectively, and deal with operators Bξ , Cξ that must be even, i.e. a linear
combination of I and Z. Thus, for ξ = υ the operators F, P are null iff

Bξ ,Cξ ∝ I. (4.26)
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As a consequence of eqs. (4.25) and (4.26), all terms of eqs. (4.22a) to (4.22d)
are zero but Q00.

Thus far, we checked the anticommutation relations of algebras that
are one or two sites apart. We are then left with the requirement that the
images of two anticommuting operators ξ, υ ∈ A1 must anticommute in
A0⊠A1⊠A2, i.e. {α(ξ),α(υ)} = 0. By substituting therein the decomposition
of eq. (4.20) we obtain

{α(ξ),α(υ)} = I⊠MII⊠I+X⊠MXI⊠I+I⊠MIY ⊠Y −X⊠MXY ⊠Y = 2δξυ, (4.27)

where the operators

MII = −{Aξ ,Aυ} + {Bξ ,Bυ} + {Cξ ,Cυ} + {Dξ ,Dυ} ,
MXI = {Aξ ,Cυ} + {Cξ ,Aυ} + [Bξ ,Dυ] − [Dξ ,Bυ] ,
MIY = {Aξ ,Bυ} + {Bξ ,Aυ} + [Dξ ,Cυ] − [Cξ ,Dυ] ,

and

MXY = {Aξ ,Dυ} + {Dξ ,Aυ} + [Bξ ,Cυ] + [Cξ ,Bυ]

are all null due to eqs. (4.25) and (4.26) but MII .
We have left to check both eqs. (4.21) and (4.27), which eventually read

({Bξ ,Bυ} + {Cξ ,Cυ} + {Dξ ,Dυ} ) = δξυI, (4.28)
({Dξ ,X} ⊠Bυ +Cξ ⊠ {Y ,Dυ} ) = 0, (4.29)

respectively. To solve eq. (4.29) we introduce the following parametrization

Bξ ≔ bξI, Cξ ≔ cξI, Dξ ≔ vξ · (X,Y ), (4.30)

for some bξ , cξ ∈ R, vξ ∈ R2, that allows us to compute the term Q00 and
reduce eq. (4.29) to a scalar one, i.e.

(vξ)xbυ + cξ(vυ)y = 0. (4.31)

Please note that the termQ00 is not symmetric for the exchange of operators
ξ, υ. For ξ = υ, we find that

Q00 = (bξ , cξ) · vξ = 0,

that can be easily satisfied by defining the following polar coordinates

bξ ≔ ρξ cosθξ , cξ ≔ ρξ sinθξ , vξ = κξ(−sinθξ ,cosθξ), (4.32)
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for some ρξ ≥ 0, κξ ∈ R, and some angle θξ . Thereby, eq. (4.28) is the
Euclidean norm of the vector (ρξ cosθξ ,ρξ sinθξ ,−κυ sinθυ,κυ cosθυ) ∈ R4,
and for ξ = υ reads ρ2

ξ + κ2
ξ = 1. The equation can once more be satisfied

through introducing some polar coordinates

ρξ ≔ cosηξ , κξ ≔ sinηξ , (4.33)

for some angle ηξ . Hence, the image of every self-adjoint, odd operator ξ is
embedded in a torus (ηξ ,θξ). In particular, as a consequence of eqs. (4.30),
(4.32) and (4.33) every such operator is is mapped by the FQCA to

ξ ↦→ cos(ηξ)
(︂
cos(θξ) X ⊠ I ⊠ I + sin(θξ) I ⊠ I ⊠Y

)︂
+ sin(ηξ)

(︂
−sin(θξ) I ⊠X ⊠ I + cos(θξ) I ⊠Y ⊠ I

)︂
.

Finally, we have to require both eqs. (4.28) and (4.31) when ξ ≠ υ. To
do so, we introduce the vectors

êξ ≔ (cosηξ ,sinηξ), t̂ξ ≔ (cosθξ ,sinθξ) (4.34)

of unit norm, and do the same for êυ, t̂υ. In this manner, the operators Q
for {[α(ξ) ⊠ I, I ⊠α(υ)]} and {[α(υ) ⊠ I, I ⊠α(ξ)]} read

(êυ × êξ)z(t̂ξ)y(t̂υ)x = 0, (4.35)

whereas eq. (4.28) becomes

(êξ · êυ)(t̂ξ · t̂υ) = 0. (4.36)

We distinguish two cases that satisfy eqs. (4.35) and (4.36):

(i) êξ ̸ ∥ êυ, hence t̂ξ , t̂υ are parallel to either x̂ or ŷ and êξ ⊥ êυ. In terms
of angles (ηξ ,θξ) we have ηξ = ηυ +π/2 +πZ and either θξ = θυ = πZ
or θξ = θυ = π/2 +πZ.

(ii) êξ ∥ êυ, and thus t̂ξ ⊥ t̂υ. The polar coordinates then read ηξ =
ηυ + 2πZ and θξ = θυ +π/2 +πZ.

From the above classification we observe that case (i) reduces to the Majo-
rana shift σM . Indeed, the operators ξ, υ are mapped to either

(ξ,υ) ↦→ (X ⊠ I ⊠ I, I ⊠Y ⊠ I) or (ξ,υ) ↦→ (I ⊠ I ⊠Y ,I ⊠X ⊠ I)

that are the same bases of case 3a.
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Figure 4.3: Graphical representation of the forking automaton that shifts
one Majorana mode to left and the other to the right.

The novel result of this classification is represented by case (ii). In fact,
this class describes a linear combination tuned by η = ηξ = ηυ between a
completely-local automaton, which simply rotates the basis (ξ,υ) locally,
and the forking automaton that maps the basis

(ξ,υ) ↦→ (X ⊠ I ⊠ I, I ⊠ I ⊠Y ),

see fig. 4.3. The latter FQCA has no quantum analogue as it would visibly
violate the commutation rules of the quasi-bosonic algebra.



Chapter 5

Quantum Simulation of
Zitterbewegung effect

Quantum cellular automata are a valuable theoretical tool for describing a
vast plethora of physical phenomena. Indeed, in addition to being powerful
tools for quantum information protocols ranging from computation to
simulations, a QCA is especially suitable to reproduce genuine phenomena
of quantum field theory and relativistic quantum mechanics. For this
reason, we are interested in devising and developing hardware platform
able to simulate the evolution of a QCA.

Although local, the non-linear interactions of a quantum cellular au-
tomaton are challenging to reproduce in a controlled fashion. The same
does not apply to quantum walks (QWs), a the particular case of QCAs whose
action is linear in the field operators. First introduced in ref. [ADZ93], the
quantum version of a random walk was modeled through measurements
along the Z-component of a spin-½ particle over a one-dimensional lattice,
which decide whether the particle moves to the right or to the left. The
measurement was then replaced by a unitary operator on the spin-½ quan-
tum system, also denoted internal degree of freedom or coin system, with
the QW representing a discrete unitary evolution of a particle state with the
internal degree of freedom given by the spin. The formal definition of QW
can be found in refs. [Amb+01; NV00] for the one-dimensional case, and
in ref. [Aha+01] for graphs of any dimension. See also ref. [Kem03] for a
complete review.

A direct relation between the time evolution produced by the one-
dimensional Dirac Hamiltonian and the QW dynamics can be obtained
[Str06], introducing the so-called Dirac Cellular Automaton. We focus on
the experimental realization of a QW simulating the Zitterbewegung effect
in a photonic platform based on the scheme proposed in ref. [BDT13]. We
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use the OAM of light to encode the walker system that is directly linked to the
position of the Dirac particle, while the coin is codified in the polarization
degree of freedom. The structured wavefront characterizing OAM states and
their high-dimensionality motivate the wide applications that these states
have found both in the classical regime, regarding microscopy [Für+05;
Tam+06], optical trapping [Zha04] and communication [Wil+15; Boz+13;
Wan16], and in quantum information processing for the development
of protocols in quantum communication [Wan+15; Coz+19a; Coz+19b],
computation [Lan+08; RRG07], metrology [Fic+12; DAm+13; Cim+21] and
cryptography [Mir+15; Bou+18b]. Moreover, OAM-based platforms offer
the possibility to produce a QW dynamics on a line without an exponential
increase of the number of optical elements with respect to the length of the
walk [Car+15; Gio+18].

Here, we move beyond the present status of experimental OAM-based
quantum walk platforms, implementing 8 steps of a QW with a controllable
initial state and an arbitrary projective measurement stage at the output.
Employing this platform we reproduced the one-dimensional Dirac QW and
we were able to efficiently simulate the Zitterbewegung effect. Our work
demonstrates the capability of photonic platforms of simulating relativistic
behaviour difficult to observe in real case scenarios, paving the way for
further experimental implementations of QCA.

5.1 Linear Quantum Cellular Automaton: the
Quantum Walk

As we introduced in § 2.2, quantum cellular automata describe the unitary
evolution of a lattice of cells, each representing a quantum system. The
evolution occurs in discrete steps and it is local, namely the state of a
cell after a certain step t + 1 depends only on the state of finitely many
neighboring cells after the preceding step t, see fig. 2.3. Let us consider the
one-dimensional nearest-neighbor lattice Z and a local Bosonic (Fermionic)
mode per cell. We associate every site x ∈ Z with an algebra of field
operators ψx,a where the index a ∈ S belongs to a finite set S and denotes
some internal degree of freedom (e.g. polarization, spin, helicity, etc). The
field operators fulfill either the canonical commutation relations (CCR)

[ψx,a,ψ
†
y,b] = δx,yδa,b [ψx,a,ψy,b] = [ψ†x,a,ψ

†
y,b] = 0,

or the CAR as in eq. (1.4) and § 1.2.1

{ψx,a,ψ†y,b} = δx,yδa,b {ψx,a,ψy,b} = {ψ†x,a,ψ†y,b} = 0,
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for x,y ∈ Z and a,b ∈ S. A quantum cellular automaton α is then a local and
translation invariant automorphism in the representation of the CCR (CAR)
algebra which is a one-step evolution of the lattice. We give a Fock space
representation of the CCR (CAR) algebra by introducing the N -excitations
(particles) states

|(x1, a1), . . . , (xN , aN )⟩≔ ψ†x1,a1
· · ·ψ†xN ,aN |Ω⟩

where |Ω⟩ is the vacuum state. If we consider the particular case of a
free, i.e. non-interacting, evolution, the QCA action is linear in the field
operators, namely

α(ψx,a) =
∑︂
y∈Z

∑︂
b∈S

U ∗y,b;x,aψy,b,

where the coefficients Uy,b;x,a turn out to be matrix elements of a unitary
operator on the subspace spanned by single-particle states.

Thus, the dynamics is completely determined by the quantum walk
(QW) U on the single-particle Hilbert space CS ⊗ l2(Z), namely

|ψ(t + 1)⟩ =U |ψ(t)⟩ , (5.1)

U |a⟩ |x⟩ =
∑︂
y∈Z

∑︂
b∈S

Uy,b;x,a |b⟩
⃓⃓⃓
y
⟩︁
, (5.2)

|a⟩ |x⟩≔ |(x,a)⟩ . (5.3)

We will now focus on the case where S is associated to a two-dimensional
space, in particular the polarization of the system described by the circular
basis, i.e. S = {L,R}. Because the evolution is translation invariant it is con-
venient to represent the unitary operator U in eqs. (5.1) and (5.2) through
the momentum representation:

U =
∫︂ π

−π
dkU (k)⊗ |k⟩⟨k| , U (k) |±⟩k = e∓iω(k) |±⟩k (5.4)

where we introduced the plane waves

|k⟩≔
∑︂
x

eikx
√

2π
|x⟩ ,

and U (k) ∈ SU(2) is a unitary matrix with eigenvectors |+⟩k and |−⟩k. In
general, U (k) can have determinant which depends on k. However, one
can prove that every QW can be decomposed in terms of left or right shifts
on the lattice and QW such that U (k) ∈ SU(2) for all k, thanks to the index
theorem for QW [Gro+12].
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For instance, the QW corresponding to the one particle sector of the
Dirac Cellular Automaton [BDT13; BDT15] reads as follows:

U (k) =
(︄
ne−ik −im
−im neik

)︄
, ω(k) = arccos(ncos(k)) (5.5)

for some real numbers n, m such that n2 +m2 = 1.
For a given quantum walk U , it is useful to introduce an effective Hamil-

tonianH which obeys U = e−iH . The HamiltonianH generates a continuous
time evolution which interpolates the evolution of the quantum walk. We
refer to the support H+, resp. H−, of the projector

P±≔

∫︂ π

−π
dk |±k⟩⟨±k | ⊗ |k⟩⟨k|

as the subspace of positive, resp. negative, energy states.
In particular, for the QW of eq. (5.5) we have

H =
∫︂ π

−π
dkH(k)⊗ |k⟩⟨k| , (5.6)

H(k) =
ω(k)

sinω(k)

(︄
nsin(k) m
m −nsin(k)

)︄
(5.7)

and one can easily verify that for small k and m the one dimensional Dirac
equation

i∂tψ(k, t) = (kσz +mσx)ψ(k, t)

is recovered. The above considerations show that the QW in eq. (5.5) pro-
vides a quantum simulation of the one dimensional Dirac free field and
can be used to observe relativistic quantum effects pertaining regimes that
are difficult to access experimentally.

5.2 Zitterbewegung

One of the main predictions of the Dirac equation is the existence of an-
tiparticles. As first noticed by Schrödinger [Sch30], interference of a Dirac
particle with its antiparticle is responsible for the so-called Zitterbewegung
effect, namely the oscillation of the expected value of the position opera-
tor X [Tha92]. Direct observation of this phenomenon in particle physics
would be prohibitive since it requires preparing a coherent superposition
of particle and antiparticle states for which the oscillation amplitude is of
the order of the Compton wavelength (10−12 m for an electron).
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Since this phenomenon ultimately depends only on the presence of
positive and negative energy states, it can be observed also in QW [BDT13].
For the case of a quantum walk on a one-dimensional lattice—see eq. (5.4)—
the position operator is X ≔

∑︁
x∈Zx I ⊗ |x⟩⟨x| and its time evolution X(t) =

U−tXU t can be computed by integrating the differential equation

d2

dt2
X(t) = −[H, [H,X]],

where H is the effective Hamiltonian. We obtain

X(t) = X(0) +V t +
1

2iH

(︂
e2iHt − I

)︂
F,

for

V ≔

∫︂ π

−π
dk
ω′(k)
ω(k)

H(k)⊗ |k⟩⟨k| , F ≔ [H,X]−V ,

where V is the velocity operator and F is responsible for the oscillating
motion. Since FP± = P∓F, we have that the Zitterbewegung occurs only for
states which are a superposition of positive energy (particle) and negative
energy (antiparticle) states. Indeed by taking the expectation value of X(t)
with respect to a state |ψ⟩ = |ψ+⟩+ |ψ−⟩, where |ψ±⟩ ∈ H±, we have

⟨X(t)⟩ = x+(t) + x−(t) + x0 + z(t)

where

x±(t)≔ ⟨ψ±|X(0) +V t|ψ±⟩
x0≔ 2Re ⟨ψ+|X(0)− (2iH)−1F|ψ−⟩
z(t)≔ 2Re ⟨ψ+|(2iH)−1e2iHtF|ψ−⟩ .

We see that interference between positive and negative energy states causes
a shift x0 of the mean value of the position plus an oscillating term z(t).
Let us now consider states whose particle and antiparticle components are
both smoothly peaked around some momentum eigenstate, i.e.

c+ |ψ+⟩+ c− |ψ−⟩ for |ψ±⟩ =
∫︂

dk
√

2π
g(k) |±⟩k |k⟩ ,

where |c+|2 + |c−|2 = 1 and |g(k)|2 is peaked around k0. Therefore, for small
value of t, the oscillating terms can be approximated as follows:

z(t) = |c+||c−||f (k0)|cos(2ω(k0)t +φ0) (5.8)

where we defined f (k)≔ ⟨+k |F |−k⟩ /(2iω(k)) and φ0 is some suitable phase.
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5.3 Simulation and results

To experimentally realize the Dirac cellular automaton, we employ the
two components of photons angular momentum, the spin and the orbital
angular momentum, to encode coin and walker states of a quantum walk,
respectively. The position states {|x⟩ ,x ∈ Z} are represented by eingenstates
of the OAM, in particular henceforth we consider its expression in the
eigenstates basis of Laguerre-Gaussian modes, see ref. [All+92]. While,
as internal degree of freedom we chose the orthonormal basis {|R⟩ , |L⟩}
corresponding to right and left circularly polarization, respectively.

In our platform, the polarization can be controlled by a set of waveplates.
In the circularly polarized basis, the action of a quarter-waveplate (QWP)
followed by a half-waveplate (HWP) can be described by the following
unitary matrix:

C =
1
√

2

(︄
e2i(α−β) ie2iα

ie−2iα e−2i(α−β)

)︄
where α, β are the angles of the fast-axes with respect to the horizontal
axis.

A conditional shift in OAM degree of freedom is implemented using a
device called q-plate, see ref. [MMP06], which is a thin plate made of a
birefringent material with a direction for the optical axis that is not uniform
over the device. The angle between the optical axis and the horizontal axis
of the device follows the relation γ = α0 + qφ, where α0 is the initial angle,
q is the topological charge of the device and φ is the azimuthal angle
on the device plane. The delay introduced on the propagation by such
arrangement of the optical axis produces a modulation of the wavefront,
the q-plate action, in the momentum representation, can be described by
the following unitary operator:

Q(k) =
(︄

cos δ2 iei2α0 sin δ
2 e

ik

ie−i2α0 sin δ
2 e
−ik cos δ2

)︄
,

where k = 2qφ and δ ∈ [0,π] is the q-plate tuning. The latter is directly
linked to the effect of the device in the manipulation of the angular mo-
mentum of light. This parameter can be electrically tuned between the
switch-on value (δ = π) and the switch-off one (δ = 0), corresponding to
no change at all. We realize a 8-steps QW on a line, where each step is
composed of a q-plate and a set of quarter-waveplate and half-waveplate.
Then, the single step is given by the composition:

U (k) =Q(k)C. (5.9)
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To control both input OAM modes and the projective measurement appara-
tus used to reconstruct the output distribution, the entire setup is enclosed
between two spatial light modulators (SLMs) as shown in fig. 5.1. This
configuration has been already proved suitable for the implementation of
the QW dynamics in prior experiments, where shorter dynamics or fixed
initial states were employed [Gio+18; Car+15]. The inputs of the setup are
triggered single-photon states produced via spontaneous parametric down
conversion in a periodically poled potassium titanyl phosphate (ppKTP)
nonlinear crystal. These are coupled to a single-mode fiber (SMF) and then
sent to the first SLM. The latter is used to modulate the spatial profile of
photons in order to obtain the desired initial state at the entrance of the
quantum walk. Therefore the input states of the setup are of the following
factorised form:

|ψ⟩in≔
1
√

2
(|R⟩+ |L⟩)⊗

∑︂
x∈Z

g(x) |x⟩ ,

where g : Z→ R and
∑︁
x |g(x)|2 = 1.

A second SLM instead is employed in the measurement stage along with
a SMF to project the output state onto the computational basis and extract
the occupation probability of each OAM mode [Mai+01; Bol+13; Qas+14;
Bou+18a; Sup+21]. Before doing that, the polarization degree of freedom is
traced out using a series composed of a QWP, a HWP and a PBS. In this way,
we are able to measure only the OAM components of the walker state at the
end of the QW. The discrete size of SLM pixels determines the modulation
efficiency of the device especially for high OAM values [Bol+13; Qas+14],
while the divergence of the OAM modes [Sup+21; Car+15] needs to be
engineered and accounted depending on the number of steps. In particular,
our setup gives us full control over OAM states |x⟩ such that |x| ≤ 5, and we
choose a wavepacket which stays confined therin for the whole evolution.
Moreover, since the platform performs up to eight evolution steps, it is
convinient that the Zitterbewegung period T = 2π/2ω0, see eq. (5.8), be of
the order of four, so as to observe two complete oscillations.

Let us consider the quantum walk step

U (k) =
1
√

2

(︄
eik eik

−e−ik e−ik

)︄
, (5.10)

that can be experimentally implemented by choosing the following param-
eters δ = π, α0 = π/4, α = −π/4 and β = π/4 in eq. (5.9). One can show
that the dispersion relation ω(k) of U (k) is that of the walk of eq. (5.5)
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Figure 5.1: The Dirac Cellular Automaton evolution is implemented
through an eight-steps discrete-time quantum walk (QW) in the OAM of
light. First of all, single photon states are generated through spontaneous
parametric down-conversion in a periodically poled potassium titanyl phos-
phate (ppKTP) nonlinear crystal. After projecting the polarization of single-
photons on the horizontal one through a polarizing beam splitter (PBS),
the desired input state is produced via a spatial light modulator (SLM) and,
after a spatial filtering performed with an iris diaphragm, is sent to the
QW. Each step of the latter consist in a coin operator, implemented by a
quarter-waveplate (QWP) and a half-waveplate (HWP), and a shift operator
performed using a q-plate. Then, the polarization is traced out using a
series of QWP, HWP and PBS. The output state probability distribution is
measured with a projective measurement executed via a further SLM fol-
lowed by a single-mode fiber (SMF), the resulting coupled signal is detected
by an avalanche photodiode detector.
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for m = n =
√

2/2. We are then interested in those states that are superpo-
sition of positive and negative energy eigenstates, and at the peak angu-
lar wavenumber k0 features: (i) zero group velocity ω′(k0) = ∂kω(k0) = 0,
(ii) angular frequency equal to π/4, and (iii) appreciable Zitterbewegung
amplitude given by |c+| = |c−| = 1/

√
2 and |f (k0)| = 1, see eq. (5.8). We

selected the initial state

|ψ⟩in≔
1
√

2
(|R⟩+ |L⟩)⊗

∑︂
x∈Z

Gx0,σ (x) |x⟩ ,

where Gx0,σ (x) is the truncated normal distribution between −5 and 5,
centered in x0 = 0, and with standard deviation σ = 3.0. For such a spatial
distribution, the wavefunction in momentum representation resembles a
normal distribution peaked at k0 = 0 and with standard deviation 1/σ =
1/3.

This setup allows us to have a precise control having direct access to the
different evolution parameters and, thus, reproduce the Dirac evolution
step-by-step simply turning on the right number of q-plates.

Exploiting the QW dynamics implemented with the setup, we experi-
mentally study the Zitterbewegung effect of the Dirac relativistic evolution
in the space of single-photon OAM. To this aim, we use q-plates with topo-
logical charge q = 1/2 and select the angles of the waveplates in order
to reproduce the evolution operator reported in eq. (5.10). Notably, we
realized a state-of-the-art platform able to reach 8 steps of the Dirac QW
evolution for arbitrary initial states in dimension 11.

We simulated the oscillatory behavior of the position of a one dimen-
sional relativistic particle encoding this degree of freedom in the OAM of
photons. Making thus the relation |x⟩ = |m⟩, where x is the position ad
m is the value of the OAM. This encoding is explicitly reported in fig. 5.2.
We considered as input a Gaussian state localized around the position
|0⟩, generated using the first SLM in fig. 5.1, and observed its evolution
step by step. In particular, for each step we turned on the relative q-plate
setting δ = π, traced out the information stored in the polarization and
measured via the second SLM and the SMF the walker state distribution
over the computational basis {|i⟩}5i=−5, opportunely taking into account for
the efficiencies of the measurement holograms [Bol+13; Qas+14]. From
the measurements, we extracted the occupation probabilities of each site
and derived the evolution of the mean position. Most notably, from a
theoretical prospective, we expect a Gaussian distribution that oscillates
around the position x = 0 during the evolution. The oscillation of the
Gaussian peak follows the sinusoidal expression in eq. (5.8) with frequency
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Figure 5.2: Mapping between the OAM space and the position space. In
particular, each position of the Dirac particle is identified with a different
OAM eingenstate. For the latter, we report both the intensity and the phase
of the wave function as expressed in the Laguerre-Gaussian modes basis.

ω = 2ω(k0) = π/2 and amplitude A = |c+||c−||f (k0)| = 0.5. Since in the exper-
iment we only have access to the portion of the distribution between x = −5
and x = 5, the reference values for ω and A are different. Therefore, at each
step, we performed a fit over the distributions in a truncated interval of
the position space spanned by x ∈ [−5,5] with Gaussian functions whose
mean values oscillate along the evolution direction

f (t,y) =
1

σ
√

2π
exp

(︄
−

(y −µ0 −Acos(ωt +φ))2

2σ2

)︄
, (5.11)

where t represents the step of the QW, y the values of probability distribu-
tions over the OAM basis, µ0 the mean of the Gaussian distribution and σ its
standard deviation. This fitting procedure is used to derive the oscillation
parameters for both theoretical and experimental distributions. The results
in the experimental case are shown in fig. 5.3a, where the 3d plot reports
the time evolution of the fitted Gaussian envelopes. Moreover, in panel b
of § 5.3 we reported the comparison between the experimental distribution
and the fitted one obtained following eq. (5.11) for three different steps
of the evolution t = 0,5,8. A slight discrepancy which increases with the
number of steps can be observed mainly due to experimental imperfections.
Indeed comparing step-by-step the experimental distribution with the one
simulated by taking into account such imperfections, we reached a mean
fidelity of F = 0.990± 0.004.
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(a) Representation of the Gaus-
sian fit performed on experimen-
tal data. The 3d function shown
is obtained by fitting the exper-
imental data with the function
in eq. (5.11), where the assumed
theoretical model is character-
ized by a Gaussian distribution
that oscillates around the initial
position during the evolution.

(b) Comparison between the experimental
distribution and the fitted function for three
different steps of the evolution. Here 0 repre-
sents the input state.

Figure 5.3: Data fit and analysis. Although satisfactory similarities can be
observed, the difference between histograms and plotted curves increases
with the step evolution and this is mainly due to experimental imperfec-
tions. The reported errors on experimental data are due to the Poissonian
statistics of the measured counts.
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(a) Ideal distribution: we report the
evolution obtained following the ideal
noiseless model of the quantum walk.

0
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(b) Experimental distribution: experi-
mental data is shown.

Figure 5.4: The plots show the output state distribution over the OAM
computational basis for each time step considered, we indicate with 0
the initial input state. Yellow points represent the behavior of the mean
position during the steps of the evolution.

Discussion

The main result of the experiment consists in the successful simulation of
the Zitterbewegung oscillations through a photonic platform. The data is
reported in § 5.3 together with the theoretical ideal noiseless distribution.
The yellow dashed lines represent the oscillations of the mean values of the
fitted Gaussian functions. For the theoretical distribution the sinusoidal
curve in fig. 5.4a is characterized by values equal to ω = 1.714± 0.017 and
A = 0.695± 0.032. Experimentally, we obtained an oscillation very similar
to the expected one with values that correspond to ω = 1.655± 0.009 and
A = 0.615 ± 0.017, the measured behavior is reported in fig. 5.4b. From
both the numerical results and the plots shown in § 5.3 it can be seen
how the implemented platform is capable of simulating the dynamics of a
free relativistic particle, reproducing its typical Zitterbewegung trembling
motion.



Chapter 6

Conclusions and Future
Perspectives

The main subject of the thesis is cellular automata in quantum and Fermionic
theories. In particular, its aim is to contribute to the long-term goal of
developing a rich and well-grounded framework of CA in different theories.
Such an effort is motivated by the belief that physical phenomena can be
described through rules of information processing. Moreover, the informa-
tional approach to physics provides for a replacement of the mechanical
laws to purely informational first principles, from which the mechanics
would be an emergent phenomenon.

Quantum cellular automata are promising models for describing fun-
damental quantum fields, as they allow for the evolution of infinitely
many systems. This is possible thanks to its defining notion of locality. In
chapter 3, we introduced a new definition of QCA as a super-map between
transformations onto the grid instead of the canonical homomorphism
of the observable algebra. The two definitions have been proved to be
equivalent. The reason for this lies in the peculiar property of quantum
theory where the C*-algebra defines both the effects and the transforma-
tions. Notwithstanding, QCAs defined in terms of super-maps allows for
some revisions to the key principles behind it. Indeed, the real innovation
lies here in the new concept of locality. Transformations onto the grid have
to be interpreted as interactions of the field with external systems, e.g.,
another field, and the automaton can then be applied thereto. We conjugate
the QCA with the transformation C to obtain

C′ = α−1Cα,

that is well-defined if we require α to be an automorphism. We may then
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...

...

C α

...

...

=

...

...

α

...

C′

...

Figure 6.1: Circuit describing the action of the automaton α onto a local
transformation C. The quantum operation can be interpreted as local
perturbation to the grid, such a perturbation may be scattered by the
automaton at most onto the neighborhood.

rewrite it as
Cα = αC′, (6.1)

see fig. 6.1. Namely, we apply a perturbation to the grid and then evolve
it through the automaton. We then may obtain the same result as first
evolving the grid by means of the QCA, and only then apply an accordingly
revisited transformation C′ onto the neighborhood. The automaton is so
required to “spread” the perturbation at most onto the neighborhood.
On the contrary, if the transformed operation would need to act onto
larger areas, or even the whole grid, that would have meant that the QCA
manipulates the grid non-locally. The fact that both notions of locality,
namely in terms of effects and transformations, define the same class of
QCAs is a very special property of quantum theory, see ref. [Per21].

Furthermore, through the definition of QCAs in terms of automorphism
of quantum operation, instead of observables, we may give a clear inter-
pretation to the property of homomorphism of the C*-algebra. On the one
hand, no operational interpretation can be given to the product of two
observables. On the other hand, the product of two Kraus operators is
straightaway related to the composition of two quantum operations. If we
consider the setup of eq. (6.1), the transformation C may then be whatever
complex quantum circuit acting on the grid, the automaton must then
preserve the structure of the circuit. In particular, all quantum operations
making up the circuit must then transform accordingly, but their causal
structure must be left invariant since

A (BC) =A (B)A (C).

More formally, a QCA is required to preserve the algebra and conic struc-
tures of quantum operations.



CHAPTER 6. CONCLUSIONS AND FUTURE PERSPECTIVES 79

By means of this new definition, we introduced the T -operator Tx as a
local operator onto sites Nx ⊔ {x}, where Nx denotes the neighborhood of x,
that contains all the information to uniquely define a QCA. The T -operator
plays here the role of the Choi operator for quantum operations, indeed
the T -operator is the Choi of the QCA local rule. Indeed, by decomposing
the operator Tx we observed that it contains both the input and the output
of the local rule α0. Consistently, the T perfectly encodes all information
about the QCA, and therefore the index can be computed from it. Moreover,
some properties have been derived in theorem 11 that are necessary and
sufficient for defining a QCA. One may then be tempted to classify all
T -operators so as to classify the QCAs. However, the decomposition of
§ 3.3 directly translates conditions 2 of theorem 11, i.e. [Tx,Ty] = 0 for
all x, y, into the commutation relation of the local rule, thus vanishing
any kind of theoretical advantage. If we continue our analogy to the Choi
operator, in the case of quantum operations every operator ρC represents
an admissible transformation iff 0 ≤ Tr0[ρC] ≤ I . Here, the condition for
the T -operator to describe a valid QCA are indeed more complex to resolve.
However, the T -operators preserve the conic structure of QCAs and are then
valid candidates for studying irreversible QCAs. Indeed, the uncoherent
combination of QCAs reduces to the linear combination of its T-operators,
since

(A +B )(Sx) = Tx + T ′x .

We then proceeded into classifying all nearest-neighbor Fermionic
quantum cellular automata on the one-dimensional lattice with one lo-
cal Fermionic mode per site. We briefly introduced the index theory for
FQCA, where we observed that the index can assume irrational values as
well, more specifically indα = 2n/s. On the contrary, the spectrum of quan-
tum cellular automata is the set of rational index values only. This feature
of FQCAs becomes more clear as soon as we describe their action in terms
of the self-adjoint representation of the CAR. Under this hypothesis, the
creation, and annihilation operator are defined starting from a pair of
Majorana modes. The Fermionic automaton is then free to move around
single Majorana modes within the neighborhood. The particular case of a
shift of index

√
2 is that of the Majorana shift, which shifts forwards only

one Majorana mode and switches the other in-place. Such a behavior is in
stark contrast with QCAs, where the minimum system that can be freely
placed around is the qudit.

By requiring the anti-commuation relation of the local rule, we suc-
cessfully classified all such Fermionic cellular automata. In particular,
the set can be divided into two classes, based on the kind of support alge-
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bras of the image on the nearest neighbors. Since these support algebras
must graded-commute, they can either commute or anti-commute. On the
one hand, those FQCA having an Abelian support algebra onto the nearest
neighbors are in one to one correspondence with a particular class of QCA.
On the other hand, the other class has anticommuting support algebras.
This is a novel class of automata that strictly pertains to the Fermionic case
with no quantum counterparts. In the latter class, a generator of non-local
interaction actually forks the Majorana modes, shifting one to the left and
the other to the right, see fig. 4.3. From what we have seen so far, the
self-adjoint representation of the CAR is more suitable for describing FQCA.
In particular, they might be elevated as the fundamental system on which
the Fermionic quantum cellular automaton acts. As a future perspective,
one may evaluate if it is appropriate to define FQCAs over Majorana modes.
In particular, this would require the assessment of whether a well-defined
and full-fledged theory can ever exist thereof. Since all representations
of the CAR are unitarily equivalent to the Jordan-Wigner’s one, any theory
describing Majorana modes would inevitably be non-quantum. Namely,
states and transformations cannot be represented onto Hilbert spaces. On
the other hand, a further development of FQCAs may proceed with classi-
fying automata over higher dimensional lattices and with more than one
local Fermionic mode per site.

Finally, in chapter 5 we reported the results of a collaboration for an
experiment where we successfully simulated a relativistic phenomenon
over a photonic platform. In particular, we observed the Zitterbewegung of
a particle, i.e. trembling motion, that is a well-known effect of relativistic
quantum mechanics experienced by a wave-function in a coherent super-
position of particle and antiparticle states. We contributed by providing
the theoretical background, evaluating preparatory numerical simulations
and optimizing the parameter space for attaining the best visibility. The
next experiment in this line of research may try to introduce some inhomo-
geneity in the quantum walk evolution, so as to represent potentials. In
so doing, we could simulate phenomena such as scattering from potential
and observing bound states. Of course, the long-term goal of this kind of
experiments are the ability of implementing interacting evolution in order
to simulate full-fledged quantum cellular automata, both for simulating
physical phenomena and for harnessing its computational advantage.
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