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Introduction

The Virtual Element Method (VEM), introduced in 2013 [8], represents an advanced evo-
lution of the classical Finite Element Method (FEM) to solve Partial Differential Equations
(PDE). One of its most attractive features is its ability to manage complex polygonal/polyhe-
dral meshes, allowing each element to adopt arbitrary shapes. This flexibility is particularly
advantageous in addressing mechanical problems involving intricate geometries; see for instance
[4] and [12] and the references therein. The VEM has found applications in numerous fields,
including structural mechanics, fluid dynamics, and geophysics, owing to its ability to handle
complex domain geometries and its robustness in numerical simulations. The term virtual in
VEM highlights that it does not necessitate explicit knowledge of the basis functions; instead,
only certain information is needed to construct the stiffness matrix.

Let us now mention other polygonal methods that have been adopted to solve PDEs, without
claiming to be exhaustive:

• the Extend Finite Element Method (E-FEM) [44],

• the Hybrid High-Order method (HHO) [40, 38],

• the Mimetic Finite Differences method (MFD) [29],

• the Polygonal Discontinuous Galerkin Method (polyDG) [3],

• the Polygonal Finite Element Method (P-FEM) [56],

• the weak Galerkin method (wG) [58],

• the Recovered FEM (R-FEM) [42], in particular this method has some contact point with
our analysis in the definition of an Oswald interpolant.

The core concept of the VEM is that each local discrete space includes polynomials up
to a specified degree k. Additionally, the local spaces contain functions defined implicitly as
solutions to a PDE related to the one being solved. When constructing the stiffness matrix,
special attention is given to cases where one of the two entries is a polynomial of degree up to
k. For the remaining part of the stiffness matrix, it suffices to approximate it with a second
bilinear form that scales similarly to the original bilinear form. This approximation term is
known as the stabilization term.

This thesis introduces a family of VEM specifically designed for advection-dominated prob-
lems, which are well-documented in the literature for producing unsatisfactory numerical so-
lutions when the Péclet number is not sufficiently small. There is extensive research in the
context of FEM that addresses this issue, offering various stabilized methods that are quasi-
robust in the hyperbolic limit. Theoretically, a method is considered quasi-robust if, given a
sufficiently regular solution and data, it provides error estimates that are uniform with respect
to the diffusion parameter in a norm that also directly controls the convective term. Some of
the well-known approaches in this area include:

• upwind Discontinuous Galerkin schemes [41, 54, 30],

• Streamline Upwind Petrov-Galerkin (SUPG) and variants [31],
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• Continuous Interior Penalty (CIP) [43, 35, 33],

• Local Projection Stabilization (LPS) [47, 50].

The Virtual Element Method is particularly suitable for advection-dominated problems due
to its flexible mesh construction and handling. VEM allows for more localized refinement
procedures and the seamless integration of fine meshes with coarser ones, which is especially
useful in the presence of layers. However, the presence of projection operators in VEM can alter
the structure of the convective term, making it challenging to devise and analyze quasi-robust
VEM schemes. Notable exceptions include the SUPG and LPS approaches detailed in [21, 23,
14] and [48], respectively. Since three of the most popular stabilization techniques, namely
SUPG, LPS and CIP, have their own strongly defined set of assets/drawbacks, broadening the
available approaches with CIP schemes is important for the VEM technology. Specifically, the
thesis focuses on a family of VEM based on the CIP stabilized technique for two key equations
on a domain Ω ¢ R

2: the advection-diffusion-reaction equation and the Oseen equations. These
equations are often used as model problems for more complex equations, such as the Navier-
Stokes equations. In this context, our current contribution can be seen as a first step toward
the design of quasi-robust methods for incompressible fluid problems.

For the advection-diffusion equation, we begin by presenting a conforming VEM as detailed
in [17], which incorporates a CIP-like term into the weak formulation. Specifically, we include
a bilinear form that measures the jumps in the gradients of the projection of the virtual func-
tions. In [32], it was proved that it is a “minimal stabilization” as it adds the minimal positive
term guaranteeing control on piecewise polynomial convection, Assuming, as is common in most
publications on the subject, the presence of a uniformly positive reaction term, we are able to
develop quasi-robust error estimates for our method with respect to a norm that effectively
controls the convective term when quasi-uniform mesh families are employed. In the absence of
a reaction term, we demonstrate improved error estimates compared to a non-stabilized scheme,
but these improvements are shown only under the assumption of piecewise polynomial convec-
tion data. In particular, the well-posedness of the discrete problem is established by proving
the inf-sup condition with respect to a norm that includes both “symmetric terms” related
to the diffusion bilinear form, the reaction bilinear form, and the jumps, as well as a “skew-
symmetric term” arising from the convection term. To control this part of the norm, we devise
an Oswald-like interpolant that maps piecewise polynomial functions into the virtual element
space by leveraging the DoFs from each element. Due to the definition of this interpolant, we
require the quasi-uniformity of the mesh rather than just local quasi-uniformity. Finally, to
achieve the quasi-robustness of the method, we impose the boundary condition weakly using a
Nitsche-type technique. This approach ensures the stability and accuracy of the method, even
in challenging advection-dominated regimes.

For the same equation, we also present a non-conforming VEM as described in [49]. Our
interest in the non-conforming setting stems from the fact that the design, implementation,
and analysis of non-conforming VEMs are independent of the spatial dimension, making the
analysis straightforwardly extendable to the 3D case. Additionally, non-conforming methods
are often employed to avoid locking phenomena in the simulation of incompressible fluids, such
as using the Crouzeix-Raviart element in FEM. The analysis for the non-conforming VEM is
very similar to the conforming method; we need to account some modifications due to the
nonconformity of the discrete space. The main differences between [49] and [17] are:

• we discretize the variational formulation of the problem without skew-symmetrizing the
discrete advection form,

• we use Nitsche method to impose Dirichlet boundary conditions as in [17], but we propose
a symmetric version of it, which is robust in the vanishing advection limit.

Indeed, in situations where the advection term vanishes, only the symmetric version of the
Nitsche method, which leads to an adjoint-consistent discrete scheme, can maintain optimal
L2-error estimates for regular problems. A preliminary comparison between conforming and
non-conforming VEMs for the advection-diffusion-reaction equation was conducted in [36]. This
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paper focuses solely on the elliptic case, without considering the hyperbolic limit. The authors
show that the two methods are equivalent in a diffusion-dominated regime. However, in a
reaction-dominated regime, the non-conforming method provides a better approximation of the
solution near the corners of the domain. The authors do not introduce any stabilization to
address the hyperbolic limit. At the end of the presentation of our two methods, we compare
their performance in the advection-dominated case. We show that two methods are equivalent
by comparing the numerical results.

The Nitsche method [52, 46] is a popular technique for weakly imposing boundary conditions
in finite element methods. It allows for the implementation of boundary conditions in a weak
sense without requiring a Lagrange multiplier. A conforming VEM version of the Nitsche
term was already devised in [25] in a more general setting. For the best of our knowledge the
Nitsche method for the nonconforming VEM has never been discussed before [49]. Since both of
the previous cited methods require the imposition of boundary conditions using a Nitsche-type
technique, we will first discuss how to devise a VEM version (conforming and nonconforming) of
the Nitsche method before presenting the specific details of the conforming and non-conforming
VEMs for advection-diffusion-reaction. The development of the Nitsche method within the
VEM follows the standard approach used in VEM implementations. Taking the usual Nitsche
bilinear form, some polynomial projections are introduced where the direct computation of
virtual functions is not possible. Specifically, in the nonconforming version, because the trace
of a virtual function on an edge is unknown, a polynomial projection orthogonal to the L2-
norm of each boundary edge must be used. Other polynomial projections are inserted in the
normal derivative of the virtual function in both of the methods. We will prove that both of the
versions are well-posed and they produce numerical solutions that converge with the optimal
rate of convergence.

Finally, we introduce a VEM with a CIP stabilization for the Oseen equations. This problem
is the linearized version of the Navier-Stokes equations and represents a step towards developing
stable VEMs for problems in fluid dynamics. A first FEM with CIP stabilization was presented
in [34]. However, this method has the disadvantage of not being pressure-robust, meaning
that the error estimate for the velocity depends on the pressure. To address this issue, a
pressure-robust FEM with a three-level CIP stabilization is introduced in [7]. Inspired by [7],
our objective is to develop a pressure robust VEM that achieves stability solely through jump
operators applied to the interior edges of the mesh. We recall that, in [18], a VEM for the Stokes
problem was proposed that achieves divergence-free conditions by ensuring that the divergence
of a virtual velocity is included in the space of the pressures. However, this requirement does
not entirely eliminate the dependence on pressure in the error analysis of the velocity. A slight
dependence on the pressure still exists due to the approximation of the right-hand side. As
a result, the discrete scheme does not fully remove the pressure dependence but significantly
reduces it. The method that we propose controls the jumps of (∇u)´ through a three-level
CIP-form. Specifically, it controls the polynomial part of the jumps of (∇u)´, the jump of the
curl and the jump of the gradient of the curl. Unfortunately, the theoretical analysis of this
method is not yet fully developed and will be the focus of our future research. Currently, we
can demonstrate the well-posedness of the discrete method by proving coercivity and presenting
the numerical results. Although an error analysis has not been formulated, we have some ideas
on how to approach it.

The thesis is organized as follows: the first introductory chapter presents both the con-
forming and nonconforming VEMs for the Poisson problem. In the second chapter, we dis-
cuss the implementation of the Nitsche method in both the conforming and nonconforming
settings. The third chapter introduces the conforming CIP-stabilized VEM for the advection-
diffusion-reaction equation, while the fourth chapter focuses on the nonconforming VEM. The
fifth chapter discusses the VEM for the Oseen equations. Finally, the last chapter provides
implementation notes on the methods presented.



Chapter 1

The Virtual Element Method

In this chapter, we introduce the basic concepts of the VEM. Specifically, we will focus our
attention on two different VEMs: the conforming method, originally presented in [8], and the
nonconforming method devised in [5]. Both methods are introduced for the Poisson equation.
The difference between the conforming VEM and the nonconforming VEM lies in the boundary
conditions of the local virtual element spaces. In the conforming VEM, the virtual functions
solve a Poisson problem with Dirichlet boundary conditions. In contrast, the nonconforming
virtual functions solve a Poisson problem with Neumann boundary conditions. Additionally,
the conforming VEM requires the continuity of virtual functions across element boundaries,
whereas in the nonconforming VEM, the virtual functions are allowed to have discontinuities.
However, the jumps of these functions are controlled when tested against certain polynomials.

This chapter is structured as follows: in the first section, we introduce the model problem,
in the second section, we discuss the domain tessellation and some notation. The conforming
method is presented in the third section, while the nonconforming method is introduced in the
fourth section.

1.1 The Poisson Equation

As a model problem, we present the Poisson problem, the easiest elliptic PDE to consider.
Given a domain Ω ¢ R

2 with polygonal boundary Γ, the strong form of the Poisson problem
with homogeneous Dirichlet boundary conditions reads as:

{
−∆u = f in Ω ,

u = 0 on Γ .
(1.1)

A possible variational formulation of (1.1) reads as:
{

find u ∈ H1
0 (Ω) such that:

a(u, v) = F(v) ∀v ∈ H1
0 (Ω) ,

(1.2)

where the bilinear form a(·, ·) : H1
0 (Ω) × H1

0 (Ω) → R and the linear form F : H1
0 (Ω) → R are

defined as

a(u, v) :=

∫

Ω

∇u · ∇v dΩ , and F(v) :=

∫

Ω

f v dΩ , (1.3)

and the load term satisfies f ∈ L2(Ω). The problem (1.2) is obtained by multiplying the first
equation in (1.1) by a sufficiently smooth function v, integrating over the domain Ω, using
integration by parts on the left-hand side, and noting that v is zero on the boundary

−
∫

Ω

∆u v dΩ =

∫

Ω

∇u · ∇v dΩ −
∫

Γ

(∇u · n) v ds =

∫

Ω

∇u · ∇v dΩ =

∫

Ω

f v dΩ ,

8
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where n is the outward unit normal vector to the boundary. Thanks to the Poincarè inequality,
we recall that the space H1

0 (Ω) equipped with the norm

∥v∥ := |v|1,Ω ,

is an Hilbert space. On H1
0 (Ω), the following estimates hold

|a(u, v)| f ∥u∥ ∥v∥ ∀u, v ∈ H1
0 (Ω) ,

a(u, u) g ∥u∥2 ∀u ∈ H1
0 (Ω) .

The existence and uniqueness of a solution u ∈ H1
0 (Ω) for problem (1.2) is guaranteed by the

Lax-Milgram lemma. Here, we present the Lax-Milgram lemma in a very general setting.

Lemma 1.1 (Lax-Milgram). Let H be an Hilbert space equipped with the norm ∥ · ∥H and let
b(·, ·) : H × H → R be a bilinear form on H that satisfies

|b(u, v)| f c∗∥u∥H ∥v∥H ∀u, v ∈ H ,

b(u, u) g c∗∥u∥2
H ∀u ∈ H ,

for two positive constants c∗, c∗ ∈ R. Given a continuous linear form FH : H → R, the problem

{
find u ∈ H such that:

b(u, v) = FH(v) ∀v ∈ H ,

admits a unique solution.

1.2 Tesselation of the domain

We consider a sequence { Ωh }h of decompositions of the domain Ω. We assume that these
tessellations are composed of non-overlapping (open) polygons E ∈ Ωh. Here, h denotes the
maximum of the diameters of the elements in Ωh

h := max
E∈Ωh

hE ,

where hE is the diameter of the element E ∈ Ωh. The key assumption in any VEM is that every
element E ∈ Ωh is star-shaped with respect to a disk. This assumption allows us to extend the
approximation results to polygonal elements. In Figure 1.1, an element that is not star-shaped
with respect to any disk is depicted alongside an element that satisfies this condition. We
suppose that { Ωh }h satisfies the following assumption:
(A1) Mesh assumption. There exists a positive constant Ä such that for any E ∈ { Ωh }h:

• E is star-shaped with respect to a ball BE of radius grater or equal than Ä hE ,

• any edge e of E has length grater or equal than Ä hE .

Remark 1.2. In the original VEM work [8], the assumptions differ from those described. In
that paper, the second condition concerns to the distances between vertices, specifically requiring
that the distance di,j between the i-th and j-th vertices satisfies

di,j g phE .

This condition is more stringent than the one described in (A1), which allows for the existence
of elements such as highly elongated rectangles. The assumption in (A1) first appears in [1].

Remark 1.3. It is possible to relax the conditions in (A1) further. In addition to maintaining
the first condition in (A1), a weaker version of the second condition is considered in [16]
and [28]. This relaxed assumption requires that there exists a positive integer N such that the
number of edges of every polygon E ∈ Ωh is bounded by N . Importantly, the integer N does
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(a)

B

B′

(b)

Figure 1.1: The element depicted in (a) is not star shaped with respect any ball, while the
element in (b) is star shaped with respect to the ball B but not with respect to ball B′.

not depend on the mesh size h. An even weaker assumption is utilized in [19], allowing for
the existence of meshes that are formed by agglomerating, gluing, or cracking existing meshes.
However, since our focus is not on minimizing mesh assumptions, we work with the conditions
(A1). Interested readers can find further details on these aspects in [4]. For completeness, it is
worth noting that similar relaxation of conditions can also apply to the nonconforming method.
Specifically, one can require that the ratio between the lengths of two adjacent edges is bounded,
as discussed in [4] and [24].

From now on, we denote by |E| and nE the area and the unit outward normal of the polygon
E, respectively. The restriction of the unit normal to an edge e ¢ ∂E is denoted with ne. The
intersection between the boundary of a polygon and the boundary of the domain is denoted
with ΓE = Γ ∩ ∂E. The set of edges of a tessellation Ωh is denoted by Eh. This set is divide
into internal edges and boundary edges

Eh = Eo
h ∪ E∂

h .

Let’s introduce some basic spaces that will be useful later on. Given two positive integers n
and m, and p ∈ [0, +∞], for any E ∈ Ωh we define

• Pn(E): the set of polynomials on E of degree lesser or equal than n (with P−1(E) = {0}),

• Pn(e): the set of polynomials on e of degree lesser or equal than n (with P−1(e) = {0}),

• Pn(Ωh) := {q ∈ L2(Ω) such that q|E ∈ Pn(E) for all E ∈ Ωh},

• W m
p (Ωh) := {v ∈ L2(Ω) such that v|E ∈ W m

p (E) for all E ∈ Ωh} equipped with the bro-
ken norm and seminorm

∥v∥p
W m

p (Ωh) :=
∑

E∈Ωh

∥v∥p
W m

p (E) , |v|pW m
p (Ωh) :=

∑

E∈Ωh

|v|pW m
p (E) , if 1 f p < ∞ ,

∥v∥W m
p (Ωh) := max

E∈Ωh

∥v∥W m
p (E) , |v|W m

p (Ωh) := max
E∈Ωh

|v|W m
p (E) , if p = ∞ ,

In the case p = 2, we set

∥v∥2
m,Ωh

:= ∥v∥2
W m

p (Ωh) , |v|2m,Ωh
:= |v|2W m

p (Ωh) .

We also introduce the following polynomial projections, which are essential in any VEM imple-
mentation:

• the L2-projection Π0,E
n : L2(E) → Pn(E), given by

∫

E

qn(v − Π0,E
n v) dE = 0 for all v ∈ L2(E) and qn ∈ Pn(E) ,

with obvious extensions for functions defined on an edge Π0,e
n : L2(e) → Pn(e), and for

vector-valued functions Π
0,E
n : [L2(E)]2 → [Pn(E)]2 and Π

0,e
n : [L2(e)]2 → [Pn(e)]2,



CHAPTER 1. THE VIRTUAL ELEMENT METHOD 11

• the H1-seminorm projection Π∇,E
n : H1(E) → Pn(E), defined by





∫

E

∇ qn · ∇(v − Π∇,E
n v) dE = 0 for all v ∈ H1(E) and qn ∈ Pn(E),

P0(v − Π∇,E
n v) = 0 ,

here P0 : H1(E) → R is any projection operator onto constants. More details on the
choice of P0 will be discussed later.

The global piecewise counterparts of these operators are defined as Π0
n : L2(Ωh) → Pn(Ωh),

Π∇
n : H1(Ωh) → Pn(Ωh), and Π

0
n : [L2(Ωh)]2 → [Pn(Ωh)]2 defined by

(Π0
nv)|E = Π0,E

n v , (Π∇
n v)|E = Π∇,E

n v , (Π0
nv)|E = Π

0,E
n v , for all E ∈ Ωh .

We recall a classical result for polynomials on star-shaped domains (see, for instance, [27]).

Lemma 1.4 (Polynomial approximation). Under assumption (A1), for any E ∈ Ωh and for
any sufficiently smooth function ϕ defined on E, we have that

∥ϕ − Π0,E
n ϕ∥W m

p (E) ≲ hs−m
E |ϕ|W s

p (E) s, m ∈ N, m f s f n + 1, p = 1, . . . , ∞ ,

∥ϕ − Π∇,E
n ϕ∥m,E ≲ hs−m

E |ϕ|s,E s, m ∈ N, m f s f n + 1, s g 1 ,

∥∇ϕ − Π
0,E
n ∇ϕ∥m,E ≲ hs−1−m

E |ϕ|s,E s, m ∈ N, m + 1 f s f n + 2 .

We also have a counterpart of this result for projections defined on an edge.

Lemma 1.5 (Polynomial approximation on edges). Let e ∈ Eo
h be an internal edge and let

E, K ∈ Ωh be such that e ¢ ∂E ∩ ∂K. Then, for every sufficiently smooth function φ defined
on E ∪ K, we have that

∥φ − Π0,e
n φ∥0,e ≲ h

m− 1
2

e (|φ|m,E + |φ|m,K) m, n ∈ N, 1 f m f n + 1 .

Proof. Considering the element E, for m, n ∈ N, with 1 f m f n + 1, we have

∥φ − Π0,e
n φ∥0,e f ∥φ − Π0,E

n φ∥0,e ≲
(
h

−1/2
E ∥φ − Π0,E

n φ∥0,E + h
1/2
E |φ − Π0,E

n φ|1,E

)

≲ h
m− 1

2

E |φ|m,E .

Since the same estimate applies also to the element K, the thesis follows.

1.3 The conforming VEM

In this section, we present the conforming VEM, following the approach outlined in [8].
Therefore, we avoid introducing the enhanced virtual element space, which will be discussed in
the following chapters.

1.3.1 The virtual element spaces

Given a positive integer k and an element E ∈ Ωh with nE edges, we define

V k
h (E) :=

{
vh ∈ H1(E) such that ∆vh ∈ Pk−2(E), vh|∂E ∈ Bk(∂E)

}
, (1.4)

where
Bk(∂E) :=

{
vh ∈ C0(∂E) such that ∀e ¢ ∂E, vh|e ∈ Pk(e)

}
.

This is the space originally introduced in [8]. In details, we can note that:

• for k = 1, the space V 1
h (E) contains harmonic functions whose trace is a piecewise linear

polynomial. Therefore, a function vh ∈ V 1
h (E) is uniquely determined only by its values

at the vertices of the polygon,
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k = 1 k = 2 k = 3

Figure 1.2: Degrees of freedom on a pentagon for k = 1, 2, 3. In red the DoFs associated to
VE,k

c , in blue the ones associated to EE,k
c and in green the ones associated to PE,k

c .

• for k = 2, the trace of a function vh ∈ V 2
h (E) is a quadratic polynomial. The trace

is uniquely determined by the values at the vertices and at a midpoint of each edge.
Moreover, the laplacian of vh is constant. Consequently, the dimension of the space
V 2

h (E) is 2nE + 1.

A very important property is that the space of polynomials up to degree k is contained in the
virtual element space V k

h (E). In general, the following set of linear operators constitutes a set
of degrees of freedom (DoFs) for the space V k

h (E) :

• VE,k
c : the pointwise values of vh at the vertexes of the polygon E,

• EE,k
c : the values of vh at k − 1 internal points of a Gauss-Lobatto quadrature formula for

every edge e ¢ ∂E,

• PE,k
c : the moments up to the order k − 2 on E:

µ³
E(vh) :=

1

|E|

∫

E

vh

(
x − xE

hE

)³

dE |³| f k − 2 , (1.5)

where ³ = (³1, ³2)T is a multi-index and xE denotes the centroid of the polygon E.

In fact, we have the following unisolvence result:

Proposition 1.6 (Unisolvence). Let E ∈ Ωh, the linear operators VE,k
c plus EE,k

c plus PE,k
c

are unisolvent for the space V k
h (E).

Proof. We want to show that if a function vh ∈ V k
h (E) satisfies all operators in VE,k

c , EE,k
c and

PE,k
c being equal to zero, then vh ≡ 0. By integrating by parts, we observe

|vh|21,E =

∫

E

∇vh · ∇vh dE = −
∫

E

vh ∆vh dE +

∫

∂E

(∇vh · nE) vh ds = 0 .

The first integral is zero because ∆vh ∈ Pk−2(E) and the operators in PE,k
c are zero. The

second integral is zero since the trace of vh is zero on ∂E. Therefore, we conclude that ∇vh ≡ 0
in E, hence vh is a constant function. Since the trace of vh is zero, this constant must be 0.
Thus vh ≡ 0.

Remark 1.7. It is not necessary for the points in EE,k
c to come from a Gauss-Lobatto quadrature

formula. We can select k − 1 uniformly distributed points. However, the assumption that these
points belong to a Gauss-Lobatto quadrature formula is useful in the implementation of the code
because it speeds up execution.

The DoFs are depicted in Figure 1.2. The dimension NE of the local virtual element space
V k

h (E) is given by

NE := k nE +
(k − 1)(k − 2)

2
.
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Thanks to the definition of the DoFs, we are able to compute the projection operator Π∇,E
k :

V k
h (E) → Pk(E) introduced in the previous section. Given vh ∈ V k

h (E) and pk ∈ Pk(E),
integrating by parts, we obtain

∫

E

∇vh · ∇pk dE = −
∫

E

vh ∆pk dE +

∫

∂E

(∇pk · nE) vh ds

The first integral is computable thanks to the DoFs in PE,k
c , while the second is computable

since we know the trace on the boundary of a virtual function (see VE,k
c and EE,k

c ).

Remark 1.8. This projector operator is defined up to a projection onto constants P0 : V k
h (E) →

R. A reasonable choice for this operator is

P0(vh − Π∇,E
k vh) =

∫

∂E

vh − Π∇,E
k vh ds = 0 if k = 1 ,

P0(vh − Π∇,E
k vh) =

∫

E

vh − Π∇,E
k vh dE = 0 if k g 2 .

(1.6)

In [10], it was proved that this choice guarantees that Π∇,E
k = Π0,E

k if k = 1, 2.

If k g 2, we can compute the projection operator Π0,E
k−2 : V k

h (E) → Pk−2(E) that is orthog-
onal with respect to the L2(E)-inner product. Exploiting the degrees of freedom in PE,k

c , we
impose ∫

E

(
vh − Π0,E

k−2vh

)
pk dE = 0 ∀pk ∈ Pk−2 .

We have developed the virtual element space corresponding to an element E ∈ Ωh. Next,
we aim to define the virtual element space associated with the entire domain Ω. Considering a
tessellation Ωh composed of np polygons and a positive integer k, we define the space

V k
h (Ωh) :=

{
vh ∈ H1

0 (Ω) such that vh|E ∈ V k
h (E) , for all E ∈ Ωh

}
. (1.7)

The space is thus constructed by assembling the local spaces with continuity across the element
boundaries. The following set of linear operators is a set of DoFs for the global space V k

h (Ωh) :

• Vk
c : the values of vh at the interior vertices,

• Ek
c : the values of vh at k − 1 points on each interior edge e,

• Pk
c : the moments up to order k − 2 for each element E ∈ Ωh.

Following the same procedure in Proposition 1.6, we can prove that these linear operators are
unisolvent for the space V k

h (Ωh). Therefore, the dimension NΩh
of the space V k

h (Ωh) is given
by

NΩh
= no

v + (k − 1)|Eo
h| + np

(k − 2)(k − 1)

2
,

where no
v represents the number of internal vertices in the decomposition Ωh, |Eo

h| is the cardi-
nality of Eo

h which is the number of internal edges. We conclude the presentation of the virtual
element space by recalling an optimal approximation result for V k

h (Ωh). More details can be
found in [27].

Lemma 1.9 (Approximation with conforming virtual element functions). Under assumption
(A1), for any v ∈ H1

0 (Ω) ∩ Hs+1(Ωh), there exists vI ∈ V k
h (Ωh), such that for all E ∈ Ωh,

∥v − vI∥0,E + hE∥∇(v − vI)∥0,E ≲ hs+1
E |v|s+1,E ,

where 0 < s f k.
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1.3.2 The virtual element forms and the discrete problem

We observe that the forms introduced in (1.3) can be decomposed in local contributions

a(u, v) =:
∑

E∈Ωh

aE(u, v) , and F(v) =:
∑

E∈Ωh

FE(v) ,

by restricting the integral over an element E. Given an element E ∈ Ωh, we observe that, for
two virtual functions uh, vh ∈ V k

h (E), it is not possible to compute the quantity

aE(uh, vh) =

∫

E

∇uh · ∇vh dE .

To discretize the problem (1.2), we have to devise a computable counterpart aE
h (·, ·) : V k

h (E) ×
V k

h (E) → R for the bilinear form aE(·, ·). Using the Π∇,E
k projection, we can decompose a

virtual function vh ∈ V k
h (E) as follows

vh = Π∇,E
k vh + (I − Π∇,E

k )vh .

Inserting this into aE(·, ·) and using the linearity of the form, we obtain:

aE(uh, vh) = aE
(
Π∇,E

k uh, Π∇,E
k vh

)
+ aE

(
(I − Π∇,E

k )uh, (I − Π∇,E
k )vh

)

+ aE
(
Π∇,E

k uh, (I − Π∇,E
k )vh

)
+ aE

(
(I − Π∇,E

k )uh, Π∇,E
k vh

)
.

Thanks to the orthogonality of the projection Π∇,E
k , the last two terms are equal to zero. The

first term involves two polynomials and is therefore computable. This term is usually called
consistency term. What remains is the second term, which is not computable. The idea is
to replace this term with a second computable bilinear form SE : V k

h (E) × V k
h (E) → R that

satisfies
³∗|vh|21,E f SE(vh, vh) f ³∗|vh|21,E for all vh ∈ V k

h (E) , (1.8)

for two positive uniform constants ³∗ and ³∗. A typical example in VEM approach is the the
dofi-dofi stabilization (cf. [8, 16], for instance). It is defined as

SE(uh, vh) :=

NE∑

i=1

dofi(uh) dofi(vh) .

Remark 1.10. It is possible to relax (1.8) such that it holds only for vh ∈ Ker(Π∇,E
k ). To

simplify some steps, we kept the form (1.8).

We define the (local) bilinear form aE
h (·, ·) : V k

h (E) × V k
h (E) → R as

aE
h (uh, vh) := aE(Π∇,E

k uh, Π∇,Evh) + SE
(
(I − Π∇,E

k )uh, (I − Π∇,E
k )vh

)
. (1.9)

Remark 1.11. Another possible choice in devising the bilinear form aE
h (·, ·) is defining the

consistency term as ∫

E

Π
0,E
k−1∇uh · Π

0,E
k−1∇vh dE .

Similarly to the projection Π∇,E
k , it is straightforward to show that the projection operator

Π
0,E
k−1 is computable for a virtual function vh ∈ V k

h (E). In [11], it was shown that this choice
guarantees optimal convergence rates when a non-constant coefficient appears in front of the
diffusive term in the PDE. Since we are considering the classical laplacian problem, we keep
following the original approach presented in [8].

We introduce the (global) virtual element form ah(·, ·) : V k
h (Ωh) × V k

h (Ωh) → R as

ah(uh, vh) :=
∑

E∈Ωh

aE
h (uh, vh) .

This discrete bilinear form satisfies the following properties:
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• k-Consistency: for all the virtual functions vh ∈ V k
h (Ωh) and all the polynomials pk ∈

Pk(Ωh), it holds
a(vh, pk) = ah(vh, pk) ,

• Stability: there exist two uniform constants ³∗ and ³∗ such that

³∗a(vh, vh) f ah(vh, vh) f ³∗a(vh, vh) ∀vh ∈ V k
h (Ωh) . (1.10)

It remains to discretize the right-hand side of (1.2). We distinguish two different cases:

• if k = 1, we approximate f by a piecewise constant Π0
0f and then we define

Fh(vh) :=
∑

E∈Ωh

∫

E

Π0,E
0 f v̄h dE =

∑

E∈Ωh

|E| Π0,E
0 f v̄h =:

∑

E∈Ωh

FE
h (vh),

where

v̄h :=
1

nE

nE∑

i=1

vh(Vi) , Vi = vertices of E .

We obtain

F(vh) − Fh(vh) =
∑

E∈Ωh

∫

E

(f − Π0,E
0 f) v̄h + f (vh − v̄h) dE

≲
∑

E∈Ωh

hE

(
|f |1,E ∥vh∥0,E + ∥f∥0,E |vh|1,E

)

≲
∑

E∈Ωh

hE ∥f∥1,E |vh|1,Ωh
.

(1.11)

• if k g 2, we define Fh(vh) on each polygon E as the L2(E)-orthogonal projection of f
into Pk−2(E)

Fh(vh) :=
∑

E∈Ωh

∫

E

(Π0,E
k−2f) vh dE =

∑

E∈Ωh

∫

E

f (Π0,E
k−2vh) dE =:

∑

E∈Ωh

FE
h (vh) .

Thanks to the orthogonality of the Π0,E
k−2 and Lemma 1.4, it holds

F(vh) − Fh(vh) =
∑

E∈Ωh

∫

E

(f − Π0,E
k−2f) (vh − Π0,E

0 vh) dE

≲
∑

E∈Ωh

hk
E |f |k−1,E |vh|1,Ωh

.
(1.12)

The discrete problems reads as
{

find uh ∈ V k
h (Ωh) such that:

ah(uh, vh) = Fh(vh) ∀vh ∈ V k
h (Ωh) .

(1.13)

Problem (1.13) is well-posed thanks to Lax-Milgram Lemma 1.1. In fact, exploiting (1.10), we
have that the bilinear form ah(vh, vh) is coercive

ah(vh, vh) g ³̃∗a(vh, vh) g ³̃∗|vh|21,Ωh
∀vh ∈ V k

h (Ωh) ,

where ³̃∗ := min{1, ³∗}.
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1.3.3 Error analysis

This section aims to estimate the rate of convergence of the discrete solution to the analytic
solution. Let u be the solution of (1.2) and uh the virtual function that solves (1.13). We
introduce the following quantities

eI = u − uI , eÃ = u − Π∇
k u , eh = uh − uI .

To properly estimate the optimal rate of convergence, we make the following assumptions on
the regularity of u and f . The solution u and the load term f in (1.2) satisfy:

u ∈ Hk+1(Ωh) , f ∈ Hk(Ωh) .

Theorem 1.12 (Error estimate for the conforming method). Let u be the solution of (1.2) and
uh be the solution of (1.13). Under assumptions (A1), it holds

|u − uh|1,Ωh
≲
∑

E∈Ωh

ΘE hk
E ,

where the constant ΘE depends on ∥u∥k+1,E and ∥f∥k,E.

Proof. Adding and subtracting uI , we obtain

|u − uh|1,Ωh
f |u − uI |1,Ωh

+ |uI − uh|1,Ωh
= |eI |1,Ωh

+ |eh|1,Ωh
.

The first term is controlled thanks to Lemma 1.9. We obtain

|eI |1,Ωh
= |u − uI |1,Ωh

f
∑

E∈Ωh

hk
E |u|k+1,E .

To bound the second term, we exploit the coercivity of the bilinear form ah(·, ·) and the fact
that u and uh solve (1.2) and (1.13), respectively. We have

|eh|21,Ωh
= |uI − uh|21,Ωh

≲ ah(uI − uh, eh) = ah(uI , eh) − Fh(eh)

= ah(uI , eh) − a(u, eh) + F(eh) − Fh(eh)

= Ta + TF .

(1.14)

Estimate for Ta : We exploit the orthogonality of the Π∇,E
k projection, Cauchy-Schwarz in-

equality, the stability property (1.10), triangular inequality, Lemma 1.9 and Lemma 1.4. We
obtain

ah(uI , eh) − a(u, eh) =
∑

E∈Ωh

aE
h (uI , eh) − aE(u, eh)

=
∑

E∈Ωh

aE
h (uI − Π∇,E

k u, eh) − aE(u − Π∇,E
k u, eh)

≲
∑

E∈Ωh

(
|uI − Π∇,E

k u|1,E + |u − Π∇,E
k u|1,E

)
|eh|1,E

≲
∑

E∈Ωh

(
|eI |1,E + 2|eÃ|1,E

)
|eh|1,E

≲
∑

E∈Ωh

hk
E |u|k+1,E |eh|1,Ωh

.

Estimate for TF : Depending on the choice of k, we use (1.11) or (1.12).
By combining the estimates of Ta and TF in (1.14), and dividing by |eh|1,Ωh

, we conclude.

This theorem demonstrates the optimal rate of convergence in the (broken) H1−seminorm.
To derive an error estimate for the L2-norm, a more accurate approximation of FE for k = 1, 2
is necessary. By employing an Aubin-Nitsche duality argument, we can then obtain the desired
estimate, see [9].
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k = 1 k = 2 k = 3

Figure 1.3: Degrees of freedom for a pentagon.

1.4 The nonconforming VEM

In this section, we introduce the non-conforming VEM as originally presented in [5]. Unlike
the prevuois case, the nonconforming functions are not continuous across element boundaries;
instead, only the jump, when tested against certain polynomials, is preserved. This necessitates
the consideration of a term in the error analysis that measures the nonconformity of the method.

1.4.1 The non conforming virtual element spaces

Given a positive integer k and an element E ∈ Ωh with nE edges, we define the noncon-
forming virtual element space as

V k,nc
h (E) :=

{
vh ∈ H1(E) such that ∆vh ∈ Pk−2(E), ∇vh · nE ∈ Pk−1(e) for all e ¢ ∂E

}
.

(1.15)
We note that the functions in V k,nc

h (E) solves a Poisson problem with a Neumann boundary
condition. Unlike functions in (1.4), nonconforming functions remain unknown even on the
boundaries of elements. Due to the absence of function traces, we cannot employ the same
DoFs as in the conforming case. For the nonconforming space V k,nc

h (E), the following set of
linear operators constitutes a set of DoFs:

• EE,k
nc : the moments up to the order k − 1 on each edge e ¢ ∂E:

µl
E,e(vh) :=

1

|e|

∫

e

vh

(
s − se

he

)l

ds , l = 0, . . . , k − 1 , (1.16)

where s denotes a local coordinate on e, and se is the coordinate value corresponding to
the edge midpoint,

• PE,k
nc : the moments up to the order k − 2 on E:

µ³
E(vh) :=

1

|E|

∫

E

vh

(
x − xE

hE

)³

dE , |³| f k − 2 , (1.17)

where ³ = (³1, ³2)T is a multi-index.

The DoFs are illustred in Figure 1.3. It can be demonstrated that these linear operators
constitute a complete set of degrees of freedom for the space V k,nc

h (E) following a procedure
similar to Proposition 1.6. The dimension Nnc

E of the space V k,nc
h (E) is identical to the one of

V k
h (E), thus

Nnc
E := k nE +

(k − 1)(k − 2)

2
.

Similarly to the conforming case, for the nonconforming space, it holds that Pk(E) ¦ V k,nc
h (E).

The preliminary global space is obtained by

Ṽ k,nc
h (Ωh) :=

{
vh ∈ L2(Ω) such that vh|E ∈ V k,nc

h (E) ∀E ∈ Ωh ,
∫

e

[[vh]] · ne q = 0 ∀q ∈ Pk−1(e) ∀e ∈ Eo
h

}
.

(1.18)
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where
[[v]] := vEnE + vKnK , (1.19)

and e is such that e ¦ E ∩ K. We emphasize that full continuity across the element boundaries
is not imposed. On each interior edge, we only require preservation of moments up to order
k − 1. Therefore, V k,nc

h (Ωh) ̸¢ H1(Ω). The global nonconforming virtual element space is
defined as

V k,nc
h (Ωh) :=

{
vh ∈ Ṽ k,nc

h (Ωh) such that
∫

e

vh

(
s − se

he

)l

= 0 , ∀e ∈ E∂
h , l = 0, . . . , k − 1

}
.

(1.20)
The space V k,nc

h (Ωh) is obtained by imposing a boundary condition in the preliminary space
Ṽ k,nc

h (Ωh). Specifically, we enforce that the DoFs associated with the boundary edges are set
to zero. The DoFs for the space V k,nc

h (Ωh) are defined as follows:

• Ek
nc: the moments up to the order k − 1 on each internal edge e ∈ Eo

h :

µl
e(vh) :=

1

|e|

∫

e

vh

(
s − se

he

)l

ds l = 0, . . . , k − 1 ,

• Pk
nc: the moments up to the order k − 2 on each E ∈ Ωh :

µ³
E(vh) :=

1

|E|

∫

E

vh

(
x − xE

hE

)³

dE |³| f k − 2 ,

where ³ = (³1, ³2)T is a multi-index.

The dimension Nnc
Ωh

of the space V k,nc
h (Ωh) is given by

Nnc
Ωh

= k |Eo
h| +

(k − 1)(k − 2)

2
np .

We can note that given a tessellation Ωh, it holds NΩh
̸= Nnc

Ωh
. The analogous of Lemma 1.9

holds for nonconforming functions

Lemma 1.13 (Approximation with nonconforming virtual element functions). Under assump-

tion (A1), for any v ∈ H1
0 (Ω) ∩ Hs+1(Ωh), there exists vI ∈ V k,nc

h (Ωh), such that for all
E ∈ Ωh,

∥v − vI∥0,E + hE∥∇(v − vI)∥0,E ≲ hs+1
E |v|s+1,E ,

where 0 < s f k.

1.4.2 The nonconforming discrete problem

Similarly to the conforming method, our goal is to discretize the problem (1.2). Since the
procedure is quite analogous, we skip over certain details. The discretization of the bilinear
form a(·, ·) is constructed in a manner similar to that presented in Section 1.3.2. We define a
bilinear form ah(·, ·) : V k,nc

h (Ωh) × V k,nc
h (Ωh) → R such that

ah(uh, vh) :=
∑

E∈Ωh

aE
h (uh, vh) ,

and the local forms are defined as

aE
h (uh, vh) = aE(Π∇,E

k uh, Π∇,Evh) + SE
(
(I − Π∇,E

k )uh, (I − Π∇,E
k )vh

)
,

where SE(·, ·) : V k,nc
h (E) × V k,nc

h (E) → R is a stabilization term as in (1.8). For k g 2, the
discretization of the right-hand side follows the same procedure of the conforming method. If
k = 1, given an element E ∈ Ωh, we set

v̄h|E :=
1

nE

∑

e¢∂E

1

|e|

∫

e

vh ds ,
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and then we define

Fh(vh) :=
∑

E∈Ωh

∫

E

Π0,E
0 f v̄h dE =

∑

E∈Ωh

|E| Π0,E
0 f v̄h =:

∑

E∈Ωh

FE
h (vh) .

In the same way of (1.11), it can be proved that

F(vh) − Fh(vh) =
∑

E∈Ωh

∫

E

(f − Π0,E
0 f) v̄h + f (vh − v̄h) dE

≲
∑

E∈Ωh

hE

(
|f |1,E ∥vh∥0,E + ∥f∥0,E |vh|1,E

)

≲
∑

E∈Ωh

hE ∥f∥1,E |vh|1,Ωh
.

(1.21)

The discrete problem reads as
{

find uh ∈ V k,nc
h (Ωh) such that:

ah(uh, vh) = Fh(vh) ∀vh ∈ V k,nc
h (Ωh) .

(1.22)

1.4.3 Error Analysis

The error analysis for the nonconforming problem follows a procedure similar to the con-
forming method, with a key difference arising from the nonconformity of the method. We
assume that the solution u and the load term f in (1.2) satisfy:

u ∈ Hk+1(Ωh) , f ∈ Hk(Ωh) ,

Because V k,nc
h (Ωh) ̸¢ H1(Ω), we have to consider in the analysis a consistency error. Let u be

the solution of (1.2). Through integration by parts, we obtain

a(u, vh) = −
∑

E∈Ωh

∫

E

∆u vh dE +
∑

E∈Ωh

∫

∂E

(∇u · nE) vh ds

=: F(vh) + Bh(u, vh) ∀vh ∈ V k,nc
h (Ωh) .

We can rewrite the form Bh(u, vh) as

Bh(u, vh) =
∑

e∈Eo
h

∫

e

∇u · [[vh]] ds . (1.23)

This version shows that the form Bh(u, vh) quantifies how much the analytical solution u devi-
ates from fitting within the virtual element space V k,nc

h (Ωh). An estimate of this consistency
error is provided in the following Proposition.

Proposition 1.14 (Consistency error). Under assumption (A1), let u ∈ H2(Ω) be the solution
of (1.2). It holds

|B(u, vh)| ≲
∑

E∈Ωh

hk
E |u|k+1,E |vh|1,Ωh

.

Proof. Given an edge e ∈ Eo
h, we introduce the projection operator Π0,e

k−1 as the orthogonal
projection with respect to the L2(e)-inner product. Using the orthogonality of this projection
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and Lemma 1.5, it holds

|B(u, vh)| =

∣∣∣∣∣∣

∑

e∈Eo
h

∫

e

(∇u − Π
0,e
k−1∇u) · [[vh]] ds

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

e∈Eo
h

∫

e

(∇u − Π
0,e
k−1∇u) · ([[vh]] − Π0,e

0 [[vh]]) ds

∣∣∣∣∣∣

≲
∑

e∈Eo
h

∥∇u − Π
0,e
k−1∇u∥0,e ∥[[vh]] − Π0,e

0 [[vh]]∥0,e

≲
∑

E∈Ωh

hk
E |u|k+1,E |vh|1,Ωh

.

The final step relies on assumption (A1), which guarantees that each polygon is encountered
a finite number of times and he f hE f Ä he.

Remark 1.15. We note that we are requiring more regularity compared to the conforming
method, as previously observed in [5]. In Proposition 1.14, it is necessary to estimate the
gradient of u restricted to an edge. If u ∈ H1(Ω), the restriction of the gradient to the boundary
is not defined.

Thanks to this estimate, we can conclude this section with the following result.

Theorem 1.16 (Error estimate for the nonconforming method). Under assumption (A1), let
u ∈ H2(Ω) be the solution of (1.2) and uh be the solution of (1.13). It holds

|u − uh|1,Ωh
≲
∑

E∈Ωh

ΘE hk
E ,

where the constant ΘE depends on ∥u∥k+1,E and ∥f∥k,E.

Proof. It’s sufficient to combine the proof of Theorem 1.12 with Proposition 1.14. The error is
divided as

|u − uh|1,Ωh
f |eI |1,Ωh

+ |eh|1,Ωh
.

Using Lemma 1.13, it holds
|eI |1,Ωh

f
∑

E∈Ωh

hk
E |u|k+1,E .

The difference with Theorem 1.12 is

|eh|21,Ωh
= |uI − uh|21,Ωh

≲ ah(uI − uh, eh) = ah(uI , eh) − Fh(eh)

= ah(uI , eh) − a(u, eh) + F(eh) − Fh(eh) + Bh(u, eh).

The term ah(uI , eh) − a(u, eh) is estimated exactly as in Theorem 1.12. The error on the right-
hand side is controlled using (1.21) or (1.12), depending on k = 1 or k g 2. The nonconformity
error is estimated in Proposition 1.14.

.



Chapter 2

Nitsche method for VEM

In this chapter, we discuss the implementation of the Nitsche method in a virtual element
context. This technique was first introduced in [52]. The Nitsche method allows for the im-
plementation of boundary conditions in a weak sense without requiring a Lagrange multiplier.
This is achieved by incorporating certain terms into the formulation of the problem to enforce
the boundary conditions. The first term arises from integrating the Laplacian by parts. The
second term, a symmetric version of the first, is added to restore the symmetry of the problem.
The final symmetric term is included to ensure coercivity and requires tuning a parameter ¶
that depends on the geometry of the mesh.

A conforming VEM version of the Nitsche term was already devised in [25] in a more general
setting. For the best of our knowledge the Nitsche method for the nonconforming VEM has
never been discussed.

This chapter is essential for the following two chapters, as the methods we will present require
the imposition of the boundary condition in a weak sense for their analysis. The chapter is
organized as follows: the first section presents the Nitsche method in a very general setting.
The second section discusses how to implement the Nitsche method for the conforming VEM,
and the last section covers its implementation for the nonconforming VEM.

2.1 Introduction to the Nitsche method

In this section, we discuss how to implement the boundary condition in a weak sense using
a Nitsche type technique [52, 46] in a very general setting. As model problem, we consider
again the Poisson equation already introduced in Section 1.1 with non-homogeneous boundary
condition {

−∆u = f in Ω ,

u = g on Γ ,
(2.1)

where g ∈ H
1
2 (Γ). The general idea of the Nitsche method is to choose a discrete space Vh

associated to a mesh Ωh and consider a problem with the following form
{

find uh ∈ Vh such that:

a(uh, vh) + N (uh, vh) = FN (vh) ∀vh ∈ Vh ,
(2.2)

where the bilinear form a(·, ·) is the same that appears in (1.3) and the bilinear form N (·, ·) :
Vh × Vh → R is defined as

N (uh, vh) := −
∑

e∈E∂
h

ï∇uh · ne, vhðe −
∑

e∈E∂
h

ïuh, ∇vh · neðe +
∑

e∈E∂
h

1

¶he
ïuh, vhðe , (2.3)

here ï·, ·ðe denotes the L2(e)-inner product. The right-hand side is defined as

FN (vh) :=

∫

Ω

f vh dΩ −
∑

e∈E∂
h

ïg, ∇vh · neðe +
∑

e∈E∂
h

1

¶he
ïg, vhðe . (2.4)

21
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Here, ¶ is a parameter that will be set to ensure coercivity and ï·, ·ðe denotes L2(e)-inner
product. The first term in (2.3) comes from the integration by part of the laplacian operator
and the fact that vh is not zero on the boundary. The second term is coupled with the second
term in (2.4) and is included to restore the symmetry of the problem. The last terms in
(2.3) and (2.4) ensure the coercivity of the problem. Unlike in (1.13), where the virtual space
inherently satisfies the boundary condition by definition, problem (2.2) imposes the boundary
condition within the formulation of the forms and the right-hand side. The next two sections
will discuss how to extend this technique to the conforming and nonconforming virtual element
spaces introduced in the previous chapter.

Remark 2.1. Depending on the context and the method, the definitions (2.3) and (2.4) may
vary. Similar to the previous chapter, within a VEM context, it will be necessary to incorporate
some polynomial projections into the definitions of (2.3) and (2.4).

2.2 Nitsche method for conforming VEM

In this section, we extend the Nitsche technique to the conforming virtual element method.
This approach was initially explored in [25] within a broader context. In that study, the authors
introduced a Lagrange multiplier method inspired by the work in [6], from which they derived
the Nitsche method as a specific case. Given a positive integer k and a decomposition Ωh of
the domain Ω, we consider the (global) virtual element space

V k
h (Ωh) :=

{
vh ∈ H1(Ω) such that vh|E ∈ V k

h (E) for all E ∈ Ωh

}
. (2.5)

Here, V k
h (E) are the same local spaces already introduced in (1.4). Contrary to the definition

(1.7), the global space (2.5) does not impose any boundary condition to the virtual functions
vh. Due to this difference, the set of DoFs for the space (2.5) is slightly different:

• Vk
c : the values of vh at the vertices,

• Ek
c : the values of vh at k − 1 points on each edge e ∈ Eh,

• Pk
c : the moments up to order k − 2 for each element E ∈ Ωh.

The dimension of the space V k
h (Ωh) is

NΩh
= nv + (k − 1)|Eh| + np

(k − 2)(k − 1)

2
,

where nv is the number of vertices in the decomposition Ωh.

2.2.1 Conforming Nitsche virtual element forms

The form a(·, ·) is discretized in the same manner as in Section 1.3.2. To discretize the form
(2.3) and the right-hand side, we adopt the same principles as the standard virtual element
implementation. We define the local bilinear form N E

h : V k
h (E) × V k

h (E) → R as follows:

N E
h (uh, vh) := −ï∇Π∇,E

k uh · ne, vhðΓE
− ïuh, ∇Π∇,E

k vh · neðΓE
+

1

¶hE
ïuh, vhðΓE

. (2.6)

Since we know the virtual functions on the boundary, there is no need to insert additional
projections in the terms of (2.6) except for the projection on the normal derivative. Then, we
define the global bilinear form Nh(·, ·) : V k

h (Ωh) × V k
h (Ωh) → R as

Nh(uh, vh) :=
∑

E∈Ωh

N E
h (uh, vh) .

After that, the right-hand side FN
h : V k

h (Ωh) → R is constucted in a very similar way and it is
defined as

FN
h (vh) :=

∑

E∈Ωh

FN ,E
h (vh) , (2.7)
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and
FN ,E

h (vh) := FE
h (vh) − ïg, ∇Π∇,E

k vh · neðΓE
+

1

¶hE
ïg, vhðΓE

,

where FE
h is the linear form introduced in Section 1.3.2.

Remark 2.2. As suggested in Remark 1.11, another possibility is to define the bilinear form
N E

h (·, ·) as

N E
h (uh, vh) := −ïΠ0,E

k−1∇uh · ne, vhðΓE
− ïuh, Π

0,E
k−1∇vh · neðΓE

+
1

¶hE
ïuh, vhðΓE

.

Therefore, the local right-hand side should be defined as

FN ,E
h (vh) := FE

h (vh) − ïg, Π
0,E
k−1∇vh · neðΓE

+
1

¶hE
ïg, vhðΓE

.

To avoid confusion, we prefer to keep the same projection that appears in the definition of the
bilinear form aE

h (·, ·).

We introduce the bilinear form

A(uh, vh) :=
∑

E∈Ωh

AE(uh, vh) , and AE(uh, vh) := aE
h (uh, vh) + N E

h (uh, vh) .

Finally, the discrete linear problem reads as
{

find uh ∈ V k
h (Ωh) such that:

A(uh, vh) = FN
h (vh) ∀vh ∈ V k

h (Ωh) .
(2.8)

2.2.2 Consistency of the method

Due to the polynomials projections entering in (2.8), the analytic solution u of (2.1) does
not satisfy the discrete scheme (2.8). This is a typical situation in VEM. Despite that, assuming
that u ∈ H2(Ω) ∩ H1

g (Ω), it satisfies the problem

Ã(u, vh) = F̃N
h (vh) for all vh ∈ V k

h (Ωh) . (2.9)

where
Ã(u, vh) :=

∑

E∈Ωh

ÃE(u, vh) , F̃N
h (vh) :=

∑

E∈Ωh

F̃N ,E
h (vh) .

The local forms are defined as

ÃE(u, vh) := aE(u, vh) + Ñ E
h (u, vh) ,

with
Ñ E

h (u, vh) := −ï∇u · nE , vhðΓE
− ïu, ∇Π∇,E

k vh · nEðΓE
+

1

¶hE
ïu, vhðΓE

,

and

F̃N ,E
h (vh) :=

∫

E

f vh dE − ïg, ∇Π∇,E
k vh · nEðΓE

+
1

¶hE
ïg, vhðΓE

.

We also set
Ñh(u, vh) :=

∑

E∈Ωh

Ñ E
h (u, vh) .

We emphasize that, since u = g on the boundary, it is assured that

ïu − g, ∇Π∇,E
k vh · nEðΓE

= 0 ∀E ∈ Ωh ,

despite the presence of the projection Π∇,E
k in the normal derivative of vh.
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2.2.3 Coercivity of the bilinear form

Given a virtual function vh ∈ V k
h (Ωh), we introduce the local norm

∥vh∥2
N ,E := |vh|21,E +

1

¶hE
∥vh∥2

0,ΓE
, (2.10)

with global counterpart

∥vh∥N :=

(
∑

E∈Ωh

∥vh∥2
N ,E

) 1
2

. (2.11)

The following coercivity result guarantees the well posedness of problem (2.8).

Proposition 2.3 (Coercivity). Under assumptions (A1), the bilinear form A(uh, vh) is coer-
cive with respect to ∥ · ∥N . It holds

A(vh, vh) ≳ ∥vh∥2
N ∀vh ∈ V k

h (Ωh) ,

for a suitable choice of the parameter ¶.

Proof. For each element E ∈ Ωh, we have

AE(vh, vh) = aE
h (vh, vh) + N E

h (vh, vh) .

Thanks to the property (1.8) and the orthogonality of the projection Π∇,E
k , it holds

aE
h (vh, vh) g |Π∇,E

k vh|21,E + ³∗ |(I − Π∇,E
k )vh|21,E g ³̃∗ |vh|21,E ,

with ³̃∗ = min{1, ³∗}. For the Nitsche term, it holds

N E
h (vh, vh) = −2ï∇Π∇,E

k vh · ne, vhðΓE
+

1

¶hE
∥vh∥2

0,ΓE
.

We must control the first term in this equality. Using Cauchy-Schwarz inequality, Young in-
equality and the polynomial trace inequality, we obtain

2ï∇Π∇,E
k vh · nE , vhðΓE

f 2¶hE∥∇Π∇,E
k vh · nE∥2

0,e +
1

2¶hE
∥vh∥2

0,ΓE

f 2¶Ctr∥∇Π∇,E
k vh∥2

0,E +
1

2¶hE
∥vh∥2

0,ΓE

f 2¶Ctr∥∇vh∥2
0,E +

1

2¶hE
∥vh∥2

0,ΓE
,

where Ctr is the inverse trace inequality constant for polynomials. Choosing ¶ = ³̃∗/(4Ctr), we
obtain

AE(vh, vh) g ³̃∗

2
|vh|21,E +

1

2¶hE
∥vh∥2

0,ΓE
≳ ∥vh∥2

N ,E .

The proof is completed by summing over all the elements E ∈ Ωh.

2.2.4 Error analysis

In this section we prove that the conforming VEM with the Nitsche bilinear form converges
to the analytic solution with optimal rate of convergence. We recall the definitions given in
Section 1.3.3

eI = u − uI , eh = uh − uI .

Again, we assume that the solution u and the load term f in (1.2) satisfy:

u ∈ H2(Ω) ∩ Hk+1(Ωh) , f ∈ Hk(Ωh) .
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Theorem 2.4 (Error estimate). Let u be the solution of (1.2) and uh be the solution of (2.8).
Under assumption (A1), it holds

∥u − uh∥N ≲
∑

E∈Ωh

ΘE hk
E ,

where the constant ΘE depends on ∥u∥k+1,E and ∥f∥k,E.

Proof. Since the proof is very similar to the one of theorem 1.12, we skip some steps. Using
triangular inequality, we have

∥u − uh∥N f ∥u − uI∥N + ∥uI − uh∥N = ∥eI∥N + ∥eh∥N .

Again, the interpolation error is controlled using Lemma 1.9 and a trace inequality

∥eI∥2
N = |eI |21,Ωh

+
∑

E∈Ωh

1

¶hE
∥eI∥2

0,ΓE

≲ |eI |21,Ωh
+
∑

E∈Ωh

h−2
E ∥eI∥2

0,E

≲
∑

E∈Ωh

h2k
E |u|2k+1,E .

Exploiting the coercivity of the bilinear form and the observations in Section 2.2.2

∥eh∥2
N = ∥uI − uh∥2

N ≲ A(uI − uh, eh) = A(uI , eh) − Fh(eh)

= A(uI , eh) − Ã(u, eh) + F̃N
h (eh) − FN

h (eh)

= T1 + T2 .

(2.12)

The term T2 was already estimated in (1.11) and (1.12). We point out that, since u = g on the
boundary, the boundary terms do not appear in the estimate. The term in T1 is split into two
parts. We have

T1 = ah(uI , eh) − a(u, eh) + Nh(uI , eh) − Ñh(u, eh) =: Ta + TN .

Following the same steps in Theorem 1.12, we obtain for Ta that

Ta ≲
∑

E∈Ωh

hk
E |u|k+1,E |eh|1,Ωh

.

It remains to bound TN . This term is split as

TN = N E
h (uI , eh) − Ñ E

h (u, eh)

=
∑

E∈Ωh

−ï∇Π∇,E
k uI · ne, ehðΓE

+ ï∇u · ne, ehðΓE

+
∑

E∈Ωh

−ïuI , ∇Π∇,E
k eh · neðΓE

+ ïu, ∇Π∇,E
k eh · neðΓE

+
∑

E∈Ωh

1

¶hE
ïuI , ehðΓE

− 1

¶hE
ïu, ehðΓE

=:
∑

E∈Ωh

T E
N ,1 + T E

N ,2 + T E
N ,3 .

On the first one, we use Cauchy-Schwarz inequality and trace inequality, to derive

T E
N ,1 = ï∇u · ne, ehðΓE

− ï∇Π∇,E
k uI · ne, ehðΓE

= ï∇(u − ∇Π∇,E
k uI) · ne, ehðΓE

≲ (h
− 1

2

E ∥∇u − ∇Π∇,E
k uI∥0,E + h

1
2

E |∇u − ∇Π∇,E
k uI |1,E)∥eh∥0,ΓE

≲ (∥∇u − ∇Π∇,E
k uI∥0,E + hE |∇u − ∇Π∇,E

k uI |1,E)∥eh∥N ,E .
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Adding and subtracting Π∇,E
k u, using triangular inequality and Lemma 1.4, we obtain

T E
N ,1 ≲ hk

E |u|k+1,E∥vh∥N .

The second term is treated in a very similar way. The main difference is that we have to use a
polynomial trace inequality on the normal derivative of vh

T E
N ,2 = ïu, ∇Π∇,E

k eh · nEðΓE
− ïuI , ∇Π∇,E

k eh · nEðΓE

= ïu − uI , ∇Π∇,E
k eh · nEðΓE

≲ ∥u − uI∥0,ΓE
∥∇Π∇,E

k eh · nE∥0,ΓE

≲ (h
− 1

2

E ∥u − uI∥0,E + h
− 1

2

E |u − uI |1,E)h
1
2

E∥∇eh∥0,E

≲ hk
E |u|k+1,E∥eh∥N .

Finally, using again the trace inequality, we bound the last term as

T E
N ,3 = ïu, ehðΓE

− ïuI , ehðΓE
= ïu − uI , ehðΓE

≲ ∥u − uI∥0,ΓE
∥eh∥0,ΓE

≲ (∥u − uI∥0,E + hE |u − uI |1,E) h
− 1

2

E ∥eh∥0,ΓE

≲ hk
E |u|k+1,E∥eh∥N .

Combining the last three estimates with the one for Ta and then dividing by ∥eh∥N , we conclude.

2.3 Nitsche method for nonconforming VEM

2.3.1 Virtual element spaces and forms

We introduce the nonconforming virtual element space as

V k,nc
h (Ωh) :=

{
vh ∈ L2(Ω) such that vh|E ∈ V k,nc

h (E) ∀E ∈ Ωh ,
∫

e

[[vh]] · ne q = 0 ∀q ∈ Pk−1(e) , ∀e ∈ Eo
h

}
.

(2.13)

This space is equivalent to the space (1.18). Similarly to the conforming space, we take the
spaces defined in the first chapter without imposing any boundary condition. Hence, the set of
DoFs is bigger with respect to the one presented in Section 1.4 because the set Ek contains also
the moments of the boundary edges. The dimension of the space is

Nnc
Ωh

= k |Eh| +
(k − 1)(k − 2)

2
|Ωh| .

Contrary to the conforming case, the trace of a nonconforming virtual function is unknown.
Hence, when we consider the consider the term

ïuh, vhðΓE
,

we have to insert a projection operator. Hence we consider the bilinear form

N E
nc,h(uh, vh) := −ï∇Π∇,E

k uh · ne, vhðΓE
− ïuh, ∇Π∇,E

k vh · neðΓE

+
∑

e¢ΓE

1

¶hE
ïΠ0,e

k−1uh, Π0,e
k−1vhðe ,

(2.14)

where the projection Π0,e
k−1 : V k,nc

h (E) → Pk−1(e) is the L2(e)-orthogonal projection into the
space of polynomial on the boundary edge e. Consequentially, we have to change also the
definition of the load term

FN ,E
nc,h (vh) := FE

h (vh) − ïg, ∇Π∇,E
k vh · neðΓE

+
∑

e¢ΓE

1

¶hE
ïg, Π0,e

k−1vhðe .
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After introducing the local bilinear form

AE
nc(uh, vh) := aE

h (uh, vh) + N E,nc
h (uh, vh) ,

we define the local forms

Anc(uh, vh) =:
∑

E∈Ωh

AE
nc(uh, vh) , Nnc,h(uh, vh) =:

∑

E∈Ωh

NE
nc,h(uh, vh) ,

FN
nc,h(vh) =:

∑

E∈Ωh

FN ,E
nc,h (vh) .

The discrete problem reads as
{

find u ∈ V k,nc
h (Ωh) such that:

Anc(uh, vh) = FN
nc,h(vh) ∀vh ∈ V k,nc

h (Ωh) .
(2.15)

2.3.2 Theoretical analysis

In this section, we extend Section 2.2.2, Section 2.2.3 and Section 2.2.4 to the nonconforming
method. Since the steps are almost completely identical, we will omit some details. In addition
to nonconformity, the main difference is the presence of the projection operator Π0,e

k−1 in the
Nitsche term. As stated in Section 2.2.2, the solution u of (1.1) does not fit into the discrete
scheme. Despite this, it solves a problem analogous to the one presented in Section 2.2.2 except
for the presence of the Π0,e

k−1 projection in the last term of the Nitsche bilinear form. It solves

Ãnc(u, vh) = F̃N
nc,h(vh) for all vh ∈ V k,nc

h (Ωh) ,

where

Ãnc(u, vh) :=
∑

E∈Ωh

ÃE
nc(u, vh) :=

∑

E∈Ωh

aE(u, vh) + Ñ E
nc,h(u, vh) , F̃N

nc,h(vh) :=
∑

E∈Ωh

F̃N ,E
nc,h (vh) .

The local Nitsche term is defined as

Ñ E
h (u, vh) := −ï∇u · nE , vhðΓE

− ïu, ∇Π∇,E
k vh · nEðΓE

+
∑

e¢ΓE

1

¶hE
ïΠ0,e

k−1u, Π0,e
k−1vhðe .

The right-hand side is defined as

F̃N ,E
h (vh) :=

∫

E

f vh dE − ïg, ∇Π∇,E
k vh · nEðΓE

+
∑

e¢ΓE

1

¶hE
ïΠ0,e

k−1g, Π0,e
k−1vhðe .

We also set
Ñnc,h(u, vh) :=

∑

E∈Ωh

Ñ E
nc,h(u, vh) .

Also the definition of the norm (2.10) is changed. Here, we define the local norm as

∥vh∥2
N ,nc,E := |vh|21,E +

∑

e¢ΓE

1

¶hE
∥Π0,e

k−1vh∥2
0,e .

Obviously, the global norm is obtained by summing all the local norms

∥vh∥N ,nc :=

(
∑

E∈Ωh

∥vh∥2
N ,nc,E

)
.

We can prove the following coercivity result.
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Proposition 2.5 (Coercivity). Under assumptions (A1), the bilinear form Anc(·, ·) is coercive
with respect to ∥ · ∥N ,nc. It holds

Anc(vh, vh) ≳ ∥vh∥2
N ,nc , ∀vh ∈ V k,nc

h (Ωh) ,

for a suitable choice of the parameter ¶.

Proof. Thanks to the orthogonality of the projection operator Π0,e
k−1, we have

ï∇Π∇,E
k uh · ne, vhðΓE

= ï∇Π∇,E
k uh · ne, Π0,e

k−1vhðΓE

and
ïuh, ∇Π∇,E

k vh · neðΓE
= ïΠ0,e

k−1uh, ∇Π∇,E
k vh · neðΓE

The proof is completed by mimic the same procedure of Proposition 2.3.

Finally, we can prove the following error estimate under the assumption

u ∈ H2(Ω) ∩ Hk+1(Ωh) , f ∈ Hk(Ωh) .

Theorem 2.6 (Error estimate). Let u be the solution of (1.2) and uh be the solution of (1.22).
Under assumption (A1), it holds

∥u − uh∥N ,nc ≲
∑

E∈Ωh

ΘE hk
E ,

where the constant ΘE depends on ∥u∥k+1,E and ∥f∥k,E.

Proof. We repeat some steps of Theorem 1.16 and Theorem 2.4. Adding and subtracting uI ,
we obtain

∥u − uh∥N ,nc f ∥u − uI∥N ,nc + ∥uI − uh∥N ,nc = ∥eI∥N ,nc + ∥eh∥N ,nc .

Following the steps in Theorem 2.4, and using the fact that ∥Π0,e
k−1vh∥0,e f ∥vh∥0,e for every

boundary edge e ∈ E∂
h and every virtual function vh ∈ V k,nc

h (Ωh), it holds that

∥eI∥N ,nc f
∑

E∈Ωh

hk
E |u|k+1,E .

To bound the second term, we exploit the coercivity of the bilinear form Anc(·, ·)

∥eh∥2
N ,nc ≲ Anc(uI − uh, eh) = Anc(uI , eh) − FN

nc,h(eh)

= Anc(uI , eh) − Ãnc(uI , eh) + F̃N
nc,h(eh) − FN

nc,h(eh) + B(u, vh) .

Here, B(u, vh) is the same bilinear form that appears in (1.23) and it can be estimated as in
Proposition 1.14

|B(u, vh)| ≲
∑

E∈Ωh

hk
E |u|k+1,E |vh|1,Ωh

≲
∑

E∈Ωh

hk
E |u|k+1,E ∥vh∥N ,nc .

Depending on whether k = 1 or k g 2, the term F̃N
nc,h(eh) − FN

nc,h(eh) is estimated as (1.21) or
(1.12) respectively. We remark that, since u = g on the boundary, the terms containing g do
not appear in the estimate. It remains

Anc(uI , eh) − Ãnc(uI , eh) = ah(uI , eh) − a(u, eh) + Nnc,h(uI , eh) − Ñnc,h(u, eh) =: Ta + TN ,

where
Ta ≲

∑

E∈Ωh

hk
E |u|k+1,E∥eh∥N ,nc .
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Following the proof of Theorem 2.4, we have

TN = N E
nc,h(uI , eh) − Ñ E

nc,h(u, eh)

=
∑

E∈Ωh

−ï∇Π∇,E
k uI · ne, ehðΓE

+ ï∇u · ne, ehðΓE

+
∑

E∈Ωh

−ïuI , ∇Π∇,E
k eh · neðΓE

+ ïu, ∇Π∇,E
k eh · neðΓE

+
∑

E∈Ωh

∑

e¢ΓE

1

¶hE
ïΠ0,e

k−1uI , Π0,e
k−1ehðe − ïΠ0,e

k−1u, Π0,e
k−1ehðe

=:
∑

E∈Ωh

T E
N ,1 + T E

N ,2 + T E
N ,3 .

The term T E
N ,2 can be estimated as in Theorem 2.4 and we have

T E
N ,2 ≲ hk

E |u|k+1,E∥eh∥N ,nc,E .

To estimate T E
N ,1, we use the trace inequality, Lemma 1.9, the orthogonality of the projection

Π0,e
0 and the fact that the norm of Π0,e

k−1 is bigger than the norm of Π0,e
0

T E
N ,1 = ï∇u · ne, ehðΓE

− ï∇Π∇,E
k uI · ne, ehðΓE

= ï∇(u − ∇Π∇,E
k uI) · ne, ehðΓE

≲
(
h

− 1
2

E ∥∇u − ∇Π∇,E
k uI∥0,E + h

1
2

E |∇u − ∇Π∇,E
k uI |1,E

)
∥eh∥0,ΓE

≲ hk
E |u|k+1,Eh

− 1
2

E ∥eh∥0,e

≲ hk
E |u|k+1,E

∑

e¢ΓE

h
− 1

2

E

(
∥eh − Π0,e

0 vh∥0,e + ∥Π0,e
0 eh∥0,e

)

≲ hk
E |u|k+1,E

(
|eh|1,E +

∑

e¢ΓE

h
− 1

2

E ∥Π0,e
k−1eh∥0,e

)
≲ hk

E |u|k+1,E ∥eh∥N ,nc,E .

It remains
T E

N ,3 =
∑

e¢ΓE

ïΠ0,e
k−1u, Π0,e

k−1ehðe − ïΠ0,e
k−1uI , Π0,e

k−1ehðe

=
∑

e¢ΓE

ïu − uI , Π0,e
k−1ehðe

≲
∑

e¢ΓE

∥u − uI∥0,e∥eh∥0,e

≲ (∥u − uI∥0,E + hE |u − uI |1,E)
∑

e¢ΓE

h
− 1

2

E ∥Π0,e
k−1eh∥0,e

≲ hk
E |u|k+1,E∥eh∥N ,nc .



Chapter 3

CIP-stabilized Virtual Elements
for diffusion-convection-reaction
problems

In this chapter, we consider the classical diffusion-reaction-advection scalar problem. Under
appropriate assumptions on the data, this is a standard “textbook” elliptic problem without
significant difficulties. However, it is well known that when the advective term becomes domi-
nant, especially over the diffusive term, a classical FEM approach results in substantial errors
and oscillations in the discrete solution unless an extremely fine mesh is used. It is important
to note that the diffusion-reaction-advection problem also serves as a model for more complex
problems in fluid mechanics, such as the Navier-Stokes equations or the Oseen equations.

The Virtual Element Method is particularly suitable for advection-dominated problems due
to its flexible mesh construction and handling. VEM allows for more localized refinement
procedures and the seamless integration of fine meshes with coarser ones, which is especially
useful in the presence of layers. Additionally, VEM offers efficient discretization of complex
domains, which is invaluable in applications such as reservoir [2] and fracture-network simu-
lations [22, 20], where diffusion-reaction-advection equations are critical. As mentioned in the
introduction, the SUPG and LPS approaches were already extended to VEM in [21, 23, 14]
and [48], respectively. The purpose of the present contribution is exactly to fill this gap and
develop CIP stabilized VEM method, providing also a theoretical error analysis. Of course,
our method combines VEM stabilization terms (to deal with polygonal meshes) and CIP-like
terms (to deal with the advection-dominated regime). Furthermore, it is worth noticing that
the backstage complex nature of CIP, which is a “minimal stabilization” as it adds the minimal
positive term guaranteeing control on piecewise polynomial convection, makes the analysis in
the VEM setting particularly interesting and challenging. We are able to develop quasi-robust
error estimates for our method, when quasi-uniform mesh families are employed and a uniform
reactive term is included. In the absence of reaction, we are able to show some improved error
estimates if the convective term is a piecewise polynomial.

The chapter is organized as follows. After presenting the continuous and discrete problems
in Section 3.1, we develop the stability and convergence analysis in Section 3.2. The chapter
ends with a set of numerical tests showing the actual robustness of the method and comparing
it with the non-stabilized approach.

30
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3.1 The continuous and the discrete problems

3.1.1 Model problem

Instead of considering the Poisson problem (1.1), we consider the steady advection-diffusion-
reaction equation with homogeneous boundary conditions:





find u : Ω → R such that:

− ϵ ∆u + ´ · ∇u + Ã u = f in Ω ,

u = 0 on Γ ,

(3.1)

where Ω ¢ R
2 is a polygonal domain of boundary Γ. Here, ϵ > 0 is the diffusion coefficient,

assumed to be constant. The advection field ´ ∈ [W 1
∞(Ω)]2 is such that ∇·´ = 0. Additionally,

Ã > 0 is the reaction constant. It is worth noting that we assume Ã to be a positive constant,
although the extension to the case where 0 < Ã ∈ L∞(Ω) with Ã−1 ∈ L∞(Ω) is straightforward.
Finally, f ∈ L2(Ω) represents the source term. The domain boundary will be divided into two
non-overlapping regions:

Γin := {x ∈ Γ | (´(x) · n) < 0} ,

and
Γout := {x ∈ Γ | (´(x) · n) g 0} .

A variational formulation of problem (3.1) reads as follows:




find u ∈ V (Ω) := H1
0 (Ω) such that:

ϵ a(u, v) + bskew(u, v) + Ã c(u, v) =

∫

Ω

f v dΩ ∀v ∈ V (Ω) .
(3.2)

The bilinear forms a(·, ·) : V (Ω) × V (Ω) → R , bskew(·, ·) : V (Ω) × V (Ω) → R and c(·, ·) : V (Ω) ×
V (Ω) → R are defined as

a(u, v) :=

∫

Ω

∇u · ∇v dΩ ∀u, v ∈ V (Ω) ,

bskew(u, v) :=
1

2

(
b(u, v) − b(v, u)

)
with b(u, v) :=

∫

Ω

(´ · ∇u) v dΩ ∀u, v ∈ V (Ω) ,

c(u, v) :=

∫

Ω

u v dΩ ∀u, v ∈ V (Ω) .

It is well known that when ϵ is small compared to ´ and/or Ã, standard discretizations of
equation (3.2) often produce unsatisfactory numerical solutions with spurious oscillations. To
address these issues, several strategies have been proposed in the literature. In this chapter,
we employ the Continuous Interior Penalty (CIP) method, as introduced in [35] within a Finite
Element framework. Given our primary interest in the advection-dominated case, we will
assume from this point onward that the material parameters are scaled as follows:

∥´∥[L∞(Ω)]2 = 1 , (3.3)

and we may consider that ϵ j 1.

3.1.2 Mesh assumptions

In this section, we revisit the mesh assumptions presented in Section 1.2. The key change
compared to Section 1.2 is the requirement for quasi-uniformity of the mesh. We consider the
following mesh assumptions:
(A-C) Mesh assumption. There exists a positive constant Ä such that for any E ∈ { Ωh }h:

• E is star-shaped with respect to a ball BE of radius greater or equal than Ä hE ,

• any edge e of E has length greater or equal than Ä hE ,

• the mesh is quasi-uniform, any polygon has diameter hE g Ä h.

The reason for requiring quasi-uniformity of the mesh is due to the Oswald interpolant con-
struction (3.19) and the definition (3.34). We will provide more details later in this chapter.
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3.1.3 Virtual Element spaces

Given a polygon E ∈ Ωh and a positive integer k, we define the local “enhanced” virtual
element space as

V k
h (E) =

{
vh ∈H1(E) ∩ C0(∂E) such that vh|∂E ∈ Bk(∂E),

∆vh ∈ Pk(E) , (vh − Π∇,E
k vh, p̂k)0,E = 0 for all p̂k ∈ Pk(E)/Pk−2(E)

}
.

(3.4)
The definition of this virtual element space differs from the one presented in (1.4). The distinc-
tion lies in the Laplacian of the virtual functions. In (1.4), the Laplacian is required to be a
polynomial of degree k − 2. Here, however, we require the Laplacian to be a polynomial of de-
gree k. To manage the larger resulting space, we introduce a constraint on the Π∇,E

k projection
of the virtual functions. This new definition allows the construction of the projection operator
Π0,E

k : V k
h (E) → Pk(E). Despite the change in the definition of the local virtual element space,

we can prove that the same set of DoFs of the space (1.4) also serves as a set of DoFs for (3.4).
Here, we recall the definition of the DoFs as it will be instrumental in the future:

• VE,k
c : the pointwise values of vh at the vertexes of the polygon E,

• EE,k
c : the values of vh at k − 1 internal points of a Gauss-Lobatto quadrature for every

edge e ¢ ∂E,

• PE,k
c : the moments up to the order k − 2 on E:

µ³
E(vh) :=

1

|E|

∫

E

vh

(
x − xE

hE

)³

dE |³| f k − 2, (3.5)

where ³ = (³1, ³2)T is a multi-index.

By gluing together the local spaces, we define the global virtual element space as

V k
h (Ωh) = {vh ∈ H1(Ω) such that vh|E ∈ V k

h (E) for all E ∈ Ωh} ,

with the associated set of degrees of freedom:

• Vk
c : the values of vh at the vertices,

• Ek
c : the values of vh at k − 1 points on each edge e ∈ Eh,

• Pk
c : the moments up to order k − 2 for each element E ∈ Ωh.

Similarly to the space presented in Section 1.3.1, the following interpolation estimate holds:

Lemma 3.1 (Approximation with enhanced conforming virtual element functions). Under
assumption (A1), for any v ∈ H1

0 (Ω) ∩ Hs+1(Ωh), there exists vI ∈ V k
h (Ωh), such that for all

E ∈ Ωh,
∥v − vI∥0,E + hE∥∇(v − vI)∥0,E ≲ hs+1

E |v|s+1,E ,

where 0 < s f k.

3.1.4 Virtual Element Forms and the Discrete Problem

We begin by noting that the bilinear forms a(·, ·), bskew(·, ·) and c(·, ·) can clearly be decom-
posed into local contributions

a(u, v) =:
∑

E∈Ωh

aE(u, v) , bskew(u, v) =:
∑

E∈Ωh

bskew,E(u, v) , c(u, v) =:
∑

E∈Ωh

cE(u, v) . (3.6)

As in the previous chapters, we need to devise some computable counterparts for these bilinear
forms. The diffusion term is replace by the bilinear form aE

h (·, ·) : V k
h (E) × V k

h (E) → R defined
as

aE
h (uh, vh) :=

∫

E

Π
0,E
k−1∇uh · Π

0,E
k−1∇vh dE + SE

(
(I − Π∇,E

k )uh, (I − Π∇,E
k )vh

)
. (3.7)

Here, the term SE : V k
h (E) × V k

h (E) → R is a stabilization term introduced in (1.8). In our
numerical example we have always adopt the dofi-dofi stabilization term.
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Remark 3.2. Since in this chapter we are considering a coefficient in front of the Laplacian,
we choose to discretize the bilinear form a(·, ·) in this way. Although we are currently dealing
with a constant coefficient, this approach is more convenient if we intend to address the case
with a variable diffusive coefficient in the future.

The convective form is replaced by bE
h (·, ·) : V k

h (E) × V k
h (E) → R defined as

bE
h (uh, vh) :=

∫

E

´ · ∇Π0,E
k uh Π0,E

k vh dE +

∫

∂E

(´ · nE)(I − Π0,E
k )uh Π0,E

k vh ds . (3.8)

In the numerical scheme, we will employ the skew-symmetrized form:

bskew,E
h (uh, vh) =

1

2

(
bE

h (uh, vh) − bE
h (vh, uh)

)
.

Remark 3.3. At the continuous level, there is no distinction between b(·, ·) and bskew(·, ·).
However, when we instert the projections Π0,E

k into the discretization of b(·, ·), we lose the
skew-symmetry property.

Finally, the reaction form is locally replaced by cE
h (·, ·) : V k

h (E) × V k
h (E) → R, defined as

cE
h (uh, vh) :=

∫

E

Π0,E
k uh Π0,E

k vh dE + |E| SE
(
(I − Π0,E

k )uh, (I − Π0,E
k )vh

)
.

Based on [35, 33], we now present a VEM version of the local CIP-stabilization form, defined
as

JE
h (uh, vh) :=

∑

e¢∂E

µe

2

∫

e

h2
e [[∇Π0

kuh]] · [[∇Π0
kvh]] ds + µE hE SE

(
(I − Π∇,E

k )uh, (I − Π∇,E
k )vh

)
,

(3.9)
where [[∇·]] denotes the gradient jump in the normal direction across e defined in (1.19). If e is
a boundary edge we set [[∇·]] = 0. The parameters µe and µE are defined as

µe := »e∥´∥[L∞(e)]2 , µE := »E∥´∥[L∞(∂E)]2 , (3.10)

where »e and »E are positive constants to be chosen. Specifically, within an element E where
´ = 0, both µe and µE vanish, resulting in the absence of CIP stabilization.

Remark 3.4. The presence of two different parameters, µe and µE, is for implementation
reasons. The first part is computed using a for loop over the internal edges, while the second
part is computed using a for loop over the elements. Moreover, the first part requires knowledge
of the Π0

k projection. Therefore, a loop over the elements must have already been completed.

Remark 3.5. In [35], the authors set µe = µE = 0.025 in their numerical results. In [33],
they prove that the correct scaling for µe and µE is k− 7

2 . Although this result applies to FEM,
it underscores that as the discrete local space increases, the need for a CIP-stabilization term
decreases.

Moreover, we impose the Dirichlet boundary conditions using a Nitsche-type technique (see
Chapter 2). To this end, we define the local forms

N E
h (uh, vh) := −ϵ ïuh, Π

0,E
k−1∇vh · nEðΓE

− ϵ ïΠ0,E
k−1∇uh · nE , vhðΓE

+
ϵ

¶hE
ïuh, vhðΓE

+
1

2
ï|´ · nE |uh, vhðΓE

,

where ¶ is a parameter to be chosen according to Proposition 2.3.

Remark 3.6. The bilinear form we are discussing here differs from the one presented in [17].
Here, we also consider the term

−ϵ ïuh, Π
0,E
k−1∇vh · nEðΓE

.

Additionally, we have modified the projection operator in the normal derivative to make it
consistent with the one used in the definition of ah(·, ·).
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Remark 3.7. The last term arises due to the presence of the convection form. Typically, it is
locally defined as

−ï(´ · nE)uh, vhðΓE,in
,

with ΓE,in := ∂E∩Γin. By integration by parts, in the definition of bskew(·, ·), we should consider
also

1

2
ï(´ · nE)uh, vhðΓE

.

Summing the last two terms, we recover our definition of N E
h (·, ·).

Summing all of these contributions, we construct the discrete bilinear form AE
cip : V k

h (E) ×
V k

h (E) → R as

AE
cip(uh, vh) = ϵ aE

h (uh, vh) + bskew,E
h (uh, vh) + Ã cE

h (uh, vh) + N E
h (uh, vh) + JE

h (uh, vh) , (3.11)

and summing over all the polygons, we obtain the global versions of the bilinear forms

ah(uh, vh) :=
∑

E∈Ωh

aE
h (uh, vh) , bskew

h (uh, vh) :=
∑

E∈Ωh

bskew,E
h (uh, vh) ,

ch(uh, vh) :=
∑

E∈Ωh

cE
h (uh, vh) , Jh(uh, vh) :=

∑

E∈Ωh

JE
h (uh, vh) ,

Nh(uh, vh) :=
∑

E∈Ωh

N E
h (uh, vh) ,

and
Acip(uh, vh) :=

∑

E∈Ωh

AE
cip(uh, vh) . (3.12)

The discrete local and global right-hand side FE
h : V k

h (E) → R and Fh : V k
h (Ωh) → R are defined

as

FE
h (vh) :=

∫

E

f Π0,E
k vh dE , Fh(vh) :=

∑

E∈Ωh

FE
h (vh) . (3.13)

Unlike the discretizations of the right-hand side presented in the previous chapter, the
enhanced virtual element space allows for the construction of the Π0

k projection. Consequently,
we can achieve a more accurate discretization of the load term. The discrete virtual element
problem reads as: {

find uh ∈ V k
h (Ωh) such that

Acip(uh, vh) = Fh(vh) ∀vh ∈ V k
h (Ωh) .

(3.14)

3.1.5 Consistency of the method

Due to the polynomial projections involved in (3.14), it is evident that, as usual for VEMs,
the solution u of the continuous problem (3.2) does not satisfy the discrete scheme (3.14) (thus,
strong consistency does not hold). However, if u is more regular, say u ∈ H2(Ω) ∩ H1

0 (Ω), then
it holds:

Ãcip(u, vh) = F̃(vh) ∀vh ∈ V k
h (Ωh) . (3.15)

where
Ãcip(u, vh) :=

∑

E∈Ωh

ÃE
cip(u, vh) , F̃(vh) :=

∑

E∈Ωh

F̃E(vh) , (3.16)

and the local forms are defined as follows:

• ÃE
cip(u, vh) := ϵ aE(u, vh) + bskew,E(u, vh) + Ã cE(u, vh) + Ñ E

h (u, vh) + J̃E
h (u, vh) ,

(3.17)
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with
Ñ E

h (u, vh) := −ϵï∇u · nE , vhðΓE
− ϵïu, Π

0,E
k−1∇vh · nEðΓE

+
ϵ

¶hE
ïu, vhðΓE

+
1

2
ï|´ · nE |u, vhðΓE

,

and

J̃E
h (u, vh) :=

1

2

∑

e¢∂E

µe

∫

e

h2
e [[∇u]] · [[∇vh]] ds .

Note that since u ∈ H2(Ω), the jump of the gradient in the normal derivative is zero. Hence
we have J̃E

h (u, vh) = 0.

• F̃E(vh) :=

∫

E

f vh dE . (3.18)

3.2 Stability and convergence analysis

3.2.1 Preliminary results

Before proving the stability of the discrete problem, we will discuss some preliminary results
that are useful for our purposes. The first result is a standard inverse estimate for the virtual
element functions. This result can be found in [57].

Lemma 3.8 (Inverse estimate). Under the assumption (A1), for any E ∈ Ωh, there exists a
uniform positive constant such that

|vh|1,E ≲ h−1
E ∥vh∥0,E ∀vh ∈ V k

h (Ωh) .

We also recall, see [16, 26], the following inverse trace inequality.

Lemma 3.9 (Inverse trace inequality). Under the assumption (A1), for any E ∈ Ωh and for

every vh ∈ V k
h (E) such that Π0,E

k−2vh ≡ 0, it holds that

∥vh∥0,E ≲ h
1
2

E∥vh∥0,∂E .

We now construct a VEM version of the Oswald interpolation operator, similar to what is
discussed in [35, 33] for the FEM framework.. Consider a point ¿ associated with a degree of
freedom in Ek

c or Vk
c . We define E¿ :=

⋃{E ∈ Ωh such that ¿ ∈ ∂E}, which is the union of all
elements containing the point ¿. The quasi-interpolation operator Ã for a sufficiently regular
function v is defined as follows:

Ãv =
∑

¿∈Vk
c ∪Ek

c

¼¿(v)φ¿ +
∑

E∈Ωh

∑

|³|fk−2

µ³
E(v)φ³

E , (3.19)

where {φ¿}¿∈Vk
c ∪Ek

c
are the canonical basis functions associated to the degree of freedom pointed

at {¿}¿∈Vk
c ∪Ek

c
and the coefficients {¼¿(v)} are defined as

¼¿(v) :=
1

|E¿ |
∑

E¦Eν

vE(¿) |E| . (3.20)

Above, and from now on in this section, a superscript E for a function denotes the restriction
of that function to the element E. Similarly, above {φ³

E} denote the basis functions associated
to the degrees of freedom PE,k

c , and {µ³
E(v)} are the associated coefficients corresponding to v,

defined as (cf. (3.5)):

µ³
E(v) :=

1

|E|

∫

E

v

(
x − xE

hE

)³

dE |³| f k − 2 . (3.21)
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Remark 3.10. In simple terms, the Oswald interpolant works by averaging the DoFs from each
polygon E ∈ Ωh. The DoFs in PE,k

c belong to just one element, so the Oswald interpolant keeps
them unchanged. For a DoF on the interior of an edge, which belongs to two elements, the
interpolant takes the average of the values from both elements. Similarly, for a vertex DoF that
belongs to more than two elements, the interpolant averages the values from all the connected
elements.

We are ready to prove the following estimate concerning the interpolation error for piecewise
polynomial functions. A FEM version of this result can be found in [35, 33].

Proposition 3.11 (Error of the Oswald interpolant). Under assumption (A-C), for every
E ∈ Ωh it holds

∥(I − Ã) p∥0,E ≲ h
1
2

∑

e∈FE

∥[[p]]∥0,e ∀p ∈ Pk(Ωh) ,

where FE := {e ∈ Eh such that e ∩ ∂E ̸= ∅} is the set of the edges with at least one endpoint
which is a vertex of E.

Proof. We introduce the difference
d := (I − Ã) p .

We restrict our attention to an element E ∈ Ωh, and consider dE . Since the DoFs in PE,k
c belong

to only one element, we observe that for dE only the DoFs arising from VE,k
c and EE,k

c (i.e. the
ones on the mesh skeleton), are involved. Hence, noting that dE ∈ V k

h (E) and Π0,E
k−2dE = 0 we

can apply Lemma 3.9:
∥dE∥0,E ≲ h

1
2 ∥dE∥0,∂E ≲ h∥dE∥∞,∂E . (3.22)

Since the basis function associated to Vk
c and Ek

c are scaled in a way that their L∞−norm is
equal to 1, we have that

h∥dE∥∞,∂E ≲ h max
¿∈EE,k

c ∪VE,k
c

|dE(¿)| . (3.23)

Exploiting the definition of the Oswald interpolant, we observe that if ¿ ∈ EE,k
c is not on the

boundary, we have that

dE(¿) = pE(¿) − (Ãp)E(¿) =
1

|E ∪ K|
(
|E ∪ K| pE(¿) − |E| pE(¿) − |K| pK(¿)

)

= c (pE(¿) − pK(¿)) = c ([[p]] · nE)(¿) ,

where K is the second element that shares the node ¿. Thanks to the mesh assumptions (A1),
all the values

c =
|E ∪ K| − |E|

|E ∪ K| =
|K|

|E ∪ K| ≈ 1

2
> 0 .

are uniformly bounded from below and they do not depend on h; hence it holds

max
¿∈EE,k

c

|dE(¿)| ≲ max
¿∈EE,k

c

|([[p]] · nE)(¿)| . (3.24)

If ¿ ∈ VE,k
c , a similar computation allows to bound |dE(¿)| by means of the jumps of p at the

nodes on the edges containing ¿ (this set is denoted by N¿ here below):

|dE(¿)| ≲ max
¿′∈Nν

|([[p]] · nE)(¿′)| . (3.25)

Combining (3.24) and (3.25), we get

h max
¿∈EE,k

c ∪VE,k
c

|dE(¿)| ≲ h max
¿∈e ,e∈FE

|([[p]] · nE)(¿)| ≲ h ∥[[p]] · nE∥∞,E(E) ≲ h ∥[[p]]∥∞,E(E) , (3.26)

where E(E) :=
⋃

e∈FE
e. Since an inverse estimate gives

h ∥[[p]]∥∞,E(E) ≲ h
1
2 ∥[[p]]∥0,E(E) ≲ h

1
2

∑

e∈FE

∥[[p]]∥0,e , (3.27)
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from (3.22), (3.23), (3.26) and (3.27) we obtain

∥(I − Ã) p∥0,E = ∥dE∥0,E ≲ h
1
2

∑

e∈FE

∥[[p]]∥0,e .

Remark 3.12. In this proof, it was sufficient to require the local quasi uniformity of the mesh.

We can control the norm of the Oswald interpolant using the norm of the original function
in the neighborhood of the element E, as demonstrated in the following result.

Lemma 3.13 (Stability of the Oswald interpolant). Under assumption (A-C), for every E ∈
Ωh it holds

∥Ã p∥0,E ≲ ∥p∥0,D(E) ∀p ∈ Pk(Ωh) ,

where D(E) :=
⋃{K ∈ Ωh such that Ē ∩ K̄ ̸= ∅}.

Proof. Using triangular inequality, we obtain

∥Ã p∥0,E f ∥p∥0,E + ∥(I − Ã) p∥0,E .

Thanks to Proposition 3.11, we control the second term with the jumps

∥(I − Ã) p∥0,E ≲ h
1
2

∑

e∈FE

∥[[p]]∥0,e .

Thanks to the polynomial trace inequality, we conclude

∥(I − Ã) p∥0,E ≲ ∥p∥0,D(E) ,

hence
∥Ã p∥0,E f ∥p∥0,E + ∥(I − Ã) p∥0,E ≲ ∥p∥0,D(E) .

3.2.2 Stability of the discrete problem

We start the theoretical analysis for the proposed method by introducing the local VEM-CIP
norm

∥vh∥2
cip,E := ϵ ∥∇vh∥2

0,E + h ∥´ · ∇Π0,E
k vh∥2

0,E + Ã ∥vh∥2
0,E

+ ∥À(ϵ, ´)vh∥2
0,E + JE

h (vh, vh) ,
(3.28)

where

À(ϵ, ´) :=

(
ϵ

¶h
+

1

2
|´ · n|

) 1
2

, (3.29)

with global counterpart
∥vh∥2

cip :=
∑

E∈Ωh

∥vh∥2
cip,E . (3.30)

Contrary to the previous two chapters, we now include the term

h ∥´ · ∇Π0,E
k vh∥2

0,E

in the definition of the local norm. This term arises from a skew-symmetric term in the bilinear
form Acip. Consequently, we cannot expect to prove a coercivity result as was done previously.
To demonstrate the stability of the method, instead of proving the coercivity of the bilinear
form, we establish that the inf-sup condition holds. The next two lemmas will be instrumental
in proving the stability of the method.
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Lemma 3.14. Under assumptions (A1), given vh ∈ V k
h (Ωh), it holds

Acip(vh, vh) ≳ ϵ ∥∇vh∥2
0,Ωh

+ Jh(vh, vh) + Ã ∥vh∥2
0,Ωh

+
∑

e∈E∂
h

∥À(ϵ, ´)vh∥2
0,e . (3.31)

Proof. We begin by fixing an element E ∈ Ωh. Due to the skew-symmetry property of
bskew,E

h (·, ·), testing the quadratic form AE
cip(·, ·) with vh in both entries yields

AE
cip(vh, vh) ≳ ϵ ∥∇vh∥2

0,E − 2ϵ ïΠ0,E
k−1∇vh · nE , vhðΓE

+ ∥À(ϵ, ´)vh∥2
0,ΓE

+ JE
h (vh, vh) + Ã∥vh∥2

0,E .
(3.32)

We now handle the non-symmetric term in (3.32). The procedure is the same that appears in
Proposition 2.3. It holds

2ϵïΠ0,E
k−1∇vh · nE , vhðΓE

f 2ϵ¶hE ∥Π
0,E
k−1∇vh · nE∥2

0,ΓE
+

ϵ

2¶hE
∥vh∥2

0,ΓE

f 2ϵ¶Ctr ∥Π
0,E
k−1∇vh∥2

0,E +
ϵ

2¶hE
∥vh∥2

0,ΓE

f 2ϵ¶Ctr ∥∇vh∥2
0,E +

ϵ

2¶hE
∥vh∥2

0,ΓE
,

where Ctr is the inverse trace inequality constant for polynomials. Therefore, with the choice,
e.g., ¶ = ³̃∗/(4Ctr), inserting this in (3.32), we obtain

ϵ∥∇vh∥2
0,E + JE

h (vh, vh) + Ã∥vh∥2
0,E + ∥À(ϵ, ´)vh∥2

0,ΓE
≲ AE

cip(vh, vh) .

Summing over all to elements E ∈ Ωh, we get the control of the symmetric terms in ∥ · ∥cip:

ϵ∥∇vh∥2
0,Ωh

+ Jh(vh, vh) + Ã∥vh∥2
0,Ωh

+
∑

e∈E∂
h

∥À(ϵ, ´)vh∥2
0,e ≲ Acip(vh, vh) . (3.33)

Lemma 3.15. Given vh ∈ V k
h (Ωh), let us set

wh := hÃ(´h · ∇Π0
kvh) , (3.34)

where ´h is the L2-projection of ´ onto the space of piecewise linear functions [P1(Ωh)]2. Then,
under assumptions (A-C), if ϵ < h it holds

Acip(vh, wh) g C1 h∥´ · ∇Π0
kvh∥2

0,Ωh
− C2 Acip(vh, vh) . (3.35)

Proof. Thanks to Lemma 3.13, we first notice that

∥Ã(´h · ∇Π0
kvh)∥0,E ≲ ∥´h · ∇Π0

kvh∥0,D(E) , (3.36)

an estimate which will be frequently used in the sequel.
Recalling (3.34), we locally have

AE
cip(vh, wh) = ϵ aE

h

(
vh, hÃ(´h · ∇Π0

kvh)
)

+ JE
h

(
vh, hÃ(´h · ∇Π0

kvh)
)

+ Ã cE
h

(
vh, hÃ(´h · ∇Π0

kvh)
)

+ N E
h

(
vh, hÃ(´h · ∇Π0

kvh)
)

+ bskew,E
h

(
vh, hÃ(´h · ∇Π0

kvh)
)

= T1 + T2 + T3 + T4 + T5 .

(3.37)

We consider each of the five terms in this equation.
Estimate for (T1). Using Cauchy-Schwarz inequality, Lemma 3.8, estimate (3.36) and recalling
that ϵ < h, we get

ϵ aE
h

(
vh, hÃ(´h · ∇Π0

kvh)
)

g −ϵ aE
h (vh, vh)

1
2 aE

h

(
hÃ(´h · ∇Π0

kvh), hÃ(´h · ∇Π0
kvh)

) 1
2

≳ −ϵ
1
2 ∥∇vh∥0,E ϵ

1
2 |hÃ(´h · ∇Π0

kvh)|1,E

≳ −ϵ
1
2 ∥∇vh∥0,E ϵ

1
2 h−1∥hÃ(´h · ∇Π0

kvh)∥0,E

≳ −ϵ
1
2 ∥∇vh∥0,E h

1
2 ∥´h · ∇Π0

kvh∥0,D(E) .

(3.38)
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Estimate for (T2). For the jump operator JE
h (·, ·), we use again Cauchy-Schwarz inequality

JE
h

(
vh, hÃ(´h · ∇Π0

kvh)
)

g −JE
h (vh, vh)

1
2 JE

h

(
hÃ(´h · ∇Π0

kvh), hÃ(´h · ∇Π0
kvh)

) 1
2 .

Thanks to the trace inequality for polynomials, Lemma 3.8 and estimate (3.36), we obtain
(wh = hÃ(´h · ∇Π0

kvh)):

JE
h (wh, wh) =

1

2

∑

e¢∂E

µe

∫

e

h2
e [[∇Π0

kwh]]2 ds + µE hE SE
J

(
(I − Π∇,E

k )wh, (I − Π∇,E
k )wh

)

≲ h ∥∇Π0
kwh∥2

0,D(E) + hE |hÃ(´h · ∇Π0
kvh)|21,E

≲ h−1 ∥Π0
kwh∥2

0,D(E) + h−1∥hÃ(´h · ∇Π0
kvh)∥2

0,E

≲ h−1∥hÃ(´h · ∇Π0
kvh)∥2

0,D(E)

≲ h∥´h · ∇Π0
kvh∥2

0,D(D(E)) ,

(3.39)
where D(D(E)) := ∪E′¦D(E)D(E′). Therefore, it holds

JE
h

(
vh, hÃ(´h · ∇Π0

kvh)
)
≳ −JE

h (vh, vh)
1
2 h

1
2 ∥´h · ∇Π0

kvh∥0,D(D(E)) . (3.40)

Estimate for (T3). Using a similar procedure, we control the bilinear form ch(·, ·) in this way

Ã cE
h

(
vh, hÃ(´h · ∇Π0

kvh)
)
≳ −Ã ∥vh∥0,E ∥hÃ(´h · ∇Π0

kvh)∥0,E

≳ −∥vh∥0,E h
1
2 ∥´h · ∇Π0

kvh∥0,D(E) .
(3.41)

where we used h
1
2 ≲ 1 to simplify later developments.

Estimate for (T4). For the Nitsche term, we have to control four different terms:

T4 = N E
h (vh, wh) = −ϵ ïΠ0,E

k−1∇vh · nE , whðΓE
− ϵ ïvh, Π

0,E
k−1∇wh · nEðΓE

+
ϵ

¶hE
ïvh, whðΓE

+
1

2
ï|´ · nE |vh, whðΓE

=: ¸N1
+ ¸N2

+ ¸N3
+ ¸N4

.

We consider each of the four terms above. Using Cauchy-Schwarz inequality, trace inequality,
ϵ < h and inverse estimate, the first term is estimated by

¸N1
≳ −ϵ ∥Π

0,E
k−1∇vh∥0,ΓE

∥wh∥0,ΓE

≳ −ϵ h−1∥Π
0,E
k−1∇vh∥0,E∥wh∥0,E

≳ −ϵ
1
2 ∥∇vh∥0,E h

1
2 ∥´h · ∇Π0

kvh∥0,D(E) .

(3.42)

For ¸N2
, we use the Cauchy-Schwarz inequality, inverse trace and inverse inequalities, and ϵ < h,

to obtain
¸N2

= −ϵ ïvh, Π
0,E
k−1∇wh · nEðΓE

≳ −ϵ ∥vh∥0,ΓE
∥Π

0,E
k−1∇wh∥0,ΓE

≳ −ϵ h− 1
2 ∥vh∥0,ΓE

∥Π
0,E
k−1∇wh∥0,E

≳ −ϵ h− 3
2 ∥vh∥0,ΓE

∥wh∥0,E

≳ −
( ϵ

¶h

) 1
2 ∥vh∥0,ΓE

h
1
2 ∥´h · ∇Π0

kvh∥0,D(E) .

(3.43)

For ¸N3
, we proceed similarly to the previous cases:

¸N3 ≳ − ϵ

¶h
∥vh∥0,ΓE

∥wh∥0,ΓE

≳ −h−1
( ϵ

¶h

) 1
2 ∥vh∥0,ΓE

∥wh∥0,E

≳ −
( ϵ

¶h

) 1
2 ∥vh∥0,ΓE

h
1
2 ∥´h · ∇Π0

kvh∥0,D(E) .

(3.44)
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For the last one, using the same estimates, we get

¸N4 ≳ −∥À(ϵ, ´)vh∥0,ΓE
h

1
2 ∥´h · ∇Π0

kvh∥0,D(E) . (3.45)

Hence it holds

N E
h (vh, wh) ≳ −

(
ϵ

1
2 ∥∇vh∥0,E + ∥À(ϵ, ´)vh∥0,ΓE

)
h

1
2 ∥´h · ∇Π0

kvh∥0,D(E) . (3.46)

Estimate for (T5). It is the most involved term. The skew term bskew,E
h (vh, wh) is composed by

two parts

bskew,E
h (vh, wh) =

1

2

(
bE

h (vh, wh) − bE
h (wh, vh)

)
, (3.47)

and we consider each of these two terms separately. The first term is defined as

bE
h (vh, wh) =

(
´ · ∇Π0,E

k vh, Π0,E
k wh

)
0,E

+ ï(´ · nE)(I − Π0,E
k )vh, Π0,E

k whð∂E . (3.48)

We split the first term of (3.48) as
(
´ · ∇Π0,E

k vh, Π0,E
k wh

)
0,E

=
(
´ · ∇Π0,E

k vh, wh

)
0,E

+
(
´ · ∇Π0,E

k vh, (Π0,E
k − I)wh

)
0,E

=
(
´ · ∇Π0,E

k vh, h´h · ∇Π0,E
k vh

)
0,E

+
(
´ · ∇Π0,E

k vh, wh − h´h · ∇Π0,E
k vh

)
0,E

+
(
´ · ∇Π0,E

k vh, (Π0,E
k − I)wh

)
0,E

=: ¸´1
+ ¸´2

+ ¸´3
.

(3.49)

We estimate each of these three quantities. For the first term we have

¸´1
= (´ · ∇Π0,E

k vh, h´h · ∇Π0
kvh)0,E

= h ∥´ · ∇Π0,E
k vh∥2

0,E + (´ · ∇Π0,E
k vh, h(´h − ´) · ∇Π0,E

k vh)0,E

g h ∥´ · ∇Π0,E
k vh∥2

0,E − C h
1
2 ∥´ · ∇Π0,E

k vh∥0,E h
1
2 |´|[W 1

∞
(E)]2h∥∇Π0,E

k vh∥0,E

g h ∥´ · ∇Π0,E
k vh∥2

0,E − C h
1
2 ∥´ · ∇Π0,E

k vh∥0,E h
1
2 |´|[W 1

∞
(E)]2∥vh∥0,E .

(3.50)

Recalling (3.34) and by Young’s inequality we get:

¸´2 = h
(
´ · ∇Π0,E

k vh, (Ã − I)(´h · ∇Π0,E
k vh)

)
0,E

g −h

2
∥´ · ∇Π0,E

k vh∥2
0,E − h

2
∥(Ã − I)(´h · ∇Π0

kvh)∥2
0,E .

(3.51)

Since ´h is piecewise linear, for the second term we can use Proposition 3.11 and obtain

h∥(Ã − I)(´h · ∇Π0
kvh)∥2

0,E ≲ h2
∑

e¢FE

∥[[´h · ∇Π0
kvh]]∥2

0,e

≲ h2
∑

e¢FE

∥[[(´h − ´) · ∇Π0
kvh]]∥2

0,e + h2
∑

e¢FE

∥[[´ · ∇Π0
kvh]]∥2

0,e

≲ h2
∑

e¢FE

∥[[(´h − ´) · ∇Π0
kvh]]∥2

0,e + h2
∑

e¢FE

µ2
e ∥[[∇Π0

kvh]]∥2
0,e

≲ h2
∑

e¢FE

∥[[(´h − ´) · ∇Π0
kvh]]∥2

0,e + J
D(E)
h (vh, vh) ,

(3.52)
where in the last inequality we used (3.9) and (3.10), together with µ2

e f µe (since µe f 1, see
(3.3)). On each e, we control the first term in the previous inequality as

h2∥[[(´h − ´) · ∇Π0
kvh]]∥2

0,e ≲ h4 |´|2[W 1
∞

(E∪K)]2 h−1∥∇Π0
kvh∥2

0,E∪K

≲ h |´|2[W 1
∞

(E∪K)]2 ∥Π0
kvh∥2

0,E∪K

≲ h |´|2[W 1
∞

(E∪K)]2 ∥vh∥2
0,E∪K ,

(3.53)



CHAPTER 3. CONFORMING CIP 41

where E and K are the two elements sharing the edge e. Combining (3.51) with (3.52) and
(3.53), we obtain

¸´2
g −h

2
∥´ · ∇Π0,E

k vh∥2
0,E − C

(
h |´|2[W 1

∞
(D(E))]2∥vh∥2

0,D(E) + J
D(E)
h (vh, vh)

)
. (3.54)

It remains to control ¸´3
. Since ´h ∈ P1(E), it holds

(
´h · ∇Π0,E

k vh, (Π0,E
k − I)wh

)
0,E

= 0.
Hence we have

¸´3
=
(
(´ − ´h) · ∇Π0,E

k vh, (Π0,E
k − I)wh

)
0,E

≳ −∥(´ − ´h) · ∇Π0,E
k vh∥0,E ∥hÃ(´h · ∇Π0

kvh)∥0,E

≳ −|´|[W 1
∞

(E)]2h∥∇Π0,E
k vh∥0,E h∥´h · ∇Π0

kvh∥0,D(E)

≳ −|´|[W 1
∞

(E)]2∥vh∥2
0,D(E) .

(3.55)

Collecting (3.50), (3.54) and (3.55), from (3.49) we get

(
´ · ∇Π0,E

k vh, Π0,E
k wh

)
0,E

g h

2
∥´ · ∇Π0,E

k uh∥2
0,E − C

(
J

D(E)
h (vh, vh)

+ h
1
2 ∥´ · ∇Π0,E

k vh∥0,E h
1
2 |´|[W 1

∞
(D(E))]2∥vh∥0,E

+ h|´|2[W 1
∞

(D(E))]2∥vh∥2
0,D(E) + |´|[W 1

∞
(D(E))]2∥vh∥2

0,D(E)

)
.

(3.56)
Returning to (3.48), we have to control the boundary term. We first notice that, due to Agmon
inequality and Poincaré inequality, it holds

∥(I − Π0,E
k )vh∥0,∂E ≲ h

1
2 |(I − Π0,E

k )vh|1,E .

Together with an inverse inequality for the polynomial Π0,E
k wh, the definition of wh (cf. (3.34)),

Lemma 3.13 and recalling (3.10), we thus get:
〈
(´ · nE)(I − Π0,E

k )vh, Π0,E
k wh

〉
∂E

≳ −µE∥(I − Π0,E
k )vh∥0,∂E ∥Π0,E

k wh∥0,∂E

≳ −h
1
2 µE |(I − Π0,E

k )vh|1,E h− 1
2 ∥Π0,E

k wh∥0,E

≳ −µE |(I − Π0,E
k )vh|1,E ∥wh∥0,E

≳ −µ
1
2

E |(I − Π0,E
k )vh|1,E ∥wh∥0,E

≳ − JE
h (vh, vh)

1
2 h

1
2 ∥´h · ∇Π0

kvh∥0,D(E) .

(3.57)

Above, we have used µE f µ
1
2

E (since µE f 1, see (3.3) and (3.10)), together with the estimate,
see (3.9):

µE h |(I − Π0,E
k )vh|21,E ≲ JE

h (vh, vh) .

From (3.48), (3.56) and (3.57) we get

bE
h (vh, wh) g h

2
∥´ · ∇Π0,E

k uh∥2
0,E − C

(
J

D(E)
h (vh, vh)

+ h
1
2 ∥´ · ∇Π0,E

k vh∥0,E h
1
2 |´|[W 1

∞
(E)]2∥vh∥0,E

+ h|´|2[W 1
∞

(D(E))]2∥vh∥2
0,D(E) + |´|[W 1

∞
(D(E))]2∥vh∥2

0,D(E)

+ JE
h (vh, vh)

1
2 h

1
2 ∥´h · ∇Π0

kvh∥0,D(E)

)
.

(3.58)

Finally, we need to control −bE
h (wh, vh), see (3.47). Integrating by parts, we obtain

−bE
h (wh, vh) = −

(
´ · ∇Π0,E

k wh, Π0,E
k vh

)
0,E

− ï(´ · nE)(I − Π0,E
k )wh, Π0,E

k vhð∂E

=
(
´ · ∇Π0,E

k vh, Π0,E
k wh

)
0,E

− ï(´ · nE)wh, Π0,E
k vhð∂E

=
(
´ · ∇Π0,E

k vh, Π0,E
k wh

)
0,E

− ï(´ · nE)wh, (Π0,E
k − I)vhð∂E

− ï(´ · nE)wh, vhð∂E .

(3.59)
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The first two terms are similar to the case bh(vh, wh). The last one vanishes on the interior
edges when we sum over all E ∈ Ωh. Hence, we need to consider the elements E sharing with
∂Ω at least an edge. Using Cauchy-Schwarz inequality, trace inequality, inverse estimates and
the continuity of Ã, we obtain on these boundary edges

−ï(´ · nE)wh, vhð∂E g −∥À(ϵ, ´)vh∥0,ΓE
∥À(ϵ, ´)wh∥0,ΓE

≳ −∥À(ϵ, ´)vh∥0,ΓE
h− 1

2 ∥wh∥0,E

≳ −∥À(ϵ, ´)vh∥0,ΓE
h

1
2 ∥´h · ∇Π0

kvh∥0,D(E) .

(3.60)

Therefore, from (3.47), (3.58), (3.59) and (3.60) we get

bskew,E
h (vh, wh) g h

2
∥´ · ∇Π0,E

k uh∥2
0,E − C

(
J

D(E)
h (vh, vh)

+ h
1
2 ∥´ · ∇Π0,E

k vh∥0,E h
1
2 |´|[W 1

∞
(E)]2∥vh∥0,E

+ h|´|2[W 1
∞

(E)]2∥vh∥2
0,D(E) + |´|[W 1

∞
(E)]2∥vh∥2

0,D(E)

+
(

JE
h (vh, vh)

1
2 + ∥À(ϵ, ´)vh∥0,ΓE

)
h

1
2 ∥´h · ∇Π0

kvh∥0,D(E)

)
.

(3.61)

We now consider the five local estimates (3.38), (3.40), (3.41), (3.46) and (3.61). From
(3.37), summing over all the elements E ∈ Ωh, we obtain

Acip(vh, wh) g h

2
∥´ · ∇Π0

kvh∥2
0,Ωh

− C
( ∑

E∈Ωh

(
ϵ

1
2 ∥∇vh∥0,E

+ JE
h (vh, vh)

1
2 + ∥vh∥0,E + ∥À(ϵ, ´)vh∥0,ΓE

)
h

1
2 ∥´h · ∇Π0,E

k vh∥0,E

+ Jh(vh, vh) +
∑

E∈Ωh

(
h|´|2[W 1

∞
(E)]2 + |´|[W 1

∞
(E)]2

)
∥vh∥2

0,E

+
∑

E∈Ωh

h
1
2 ∥´h · ∇Π0,E

k vh∥0,E h
1
2 |´|[W 1

∞
(E)]2∥vh∥0,E

)
.

(3.62)

Above, we have also used the property that, due to assumption (A-C), summing over the
elements each polygon is counted only a uniformly bounded number of times, even when the
terms involve norms on D(E) or D(D(E)).

We now notice that the triangular inequality, standard approximation results and an inverse
estimate give

h
1
2 ∥´h · ∇Π0,E

k vh∥0,E ≲ h
1
2

(
∥´ · ∇Π0,E

k vh∥0,E + |´|[W 1
∞

(E)]2∥vh∥0,E

)
. (3.63)

Hence, from (3.62), using also Young’s inequality (with suitable constants) for the first and the
last summations in the right-hand side, we get

Acip(vh, wh) g C1 h∥´ · ∇Π0
kvh∥2

0,Ωh
− C2

(
ϵ ∥∇vh∥2

0,Ωh
+ Jh(vh, vh)

+ ∥vh∥2
0,Ωh

+
∑

e∈E∂
h

∥À(ϵ, ´)vh∥2
0,e

)
.

From Lemma 3.14, we now obtain

Acip(vh, wh) g C1 h∥´ · ∇Π0
kvh∥2

0,Ωh
− C2 Acip(vh, vh) .

Remark 3.16. Equation (3.51) motivates the imposition of boundary conditions in a weak
sense. If we were to impose the boundary conditions strongly, by requiring that the functions
V k

h (Ωh) be zero on the boundary, then the function Ã´h · ∇Π0
kvh would have a zero trace. In

contrast, the function ´h·∇Π0
kvh is not necessarily zero on the boundary. Due to this discrepancy

between the two functions at the boundary, we cannot expect the estimate in Proposition 3.11,
which involves only internal edges, to hold.
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Remark 3.17. Equation (3.52) motivates why we need the quasi uniformity of the mesh Ωh.
If we define (3.34) as

wh = Ã
(
h̃ ´h · ∇Π0

kvh

)
,

where tildeh is such that h̃|E = hE, we can not take h̃ outside the brackets by linearity since
in general hE ̸= hK . This implies that when we use Proposition 3.11, the diameter hE of each
element appears inside the jump. Since the diameter h̃ is inside the jump, we are not able to
recover the optimal rate of converge.

With Lemmas 3.14 and 3.15 at our disposal, the inf-sup condition easily follows.

Proposition 3.18. Under assumptions (A-C), it holds:

∥vh∥cip ≲ sup
zh∈V k

h
(Ωh)

Acip(vh, zh)

∥zh∥cip
∀vh ∈ V k

h (Ωh).

Proof. We split the proof into two cases.
First case. We first consider ε < h. Given vh ∈ V k

h (Ωh), we take zh = wh + »vh, where wh is
defined as in Lemma 3.15. From Lemmas 3.14 and 3.15, for » sufficiently large we have

Acip(vh, zh) = Acip(vh, wh + »vh) ≳ ∥vh∥2
cip .

In order to conclude the proof of the inf-sup condition, we have to prove the estimate

∥wh∥cip ≲ ∥vh∥cip ,

which obviously implies ∥zh∥cip ≲ ∥vh∥cip. Recalling the norm definition (3.28)-(3.30) and that
wh := hÃ(´h ·∇Π0

kvh), the above continuity estimate follows from Lemma 3.13, estimate (3.39)
and observing that

h∥´ · ∇Π0,E
k wh∥2

0,E ≲ h−1∥Π0,E
k wh∥2

0,E ≲ h∥´h · ∇Π0,E
k vh∥2

0,D(E) , (3.64)

and

∥wh∥2
0,ΓE

= ∥hÃ(´h · ∇Π0
kvh)∥2

0,ΓE
≲ h ∥Ã(´h · ∇Π0

kvh)∥2
0,E + h3 |Ã(´h · ∇Π0

kvh)|21,E

≲ h ∥Ã(´h · ∇Π0
kvh)∥2

0,E ≲ h ∥´h · ∇Π0
kvh∥2

0,D(E) .
(3.65)

The above bounds (3.64) and (3.65) are to be combined with (3.63).
Second case. We now consider the case ε g h. In such case the proof simply follows from
Lemma 3.14 and the observation that

h∥´ · ∇Π0,E
k vh∥2

0,E ≲ ε∥∇Π0,E
k vh∥2

0,E ≲ ε∥∇vh∥2
0,E ,

which allows to control also convection with Acip(vh, vh).

h∥´ · ∇Π0,E
k vh∥2

0,E ≲ ε∥∇Π0,E
k vh∥2

0,E ≲ ε∥∇vh∥2
0,E ,

which allows to control also convection with Acip(vh, vh).

3.2.3 Error estimates

In this section we use the assumption that the solution of the continuous problem u, the
right-hand side f , and the advective field ´ in (3.2) satisfy

u ∈ H2(Ω) ∩ H1
0 (Ω) ∩ Hk+1(Ωh) , f ∈ Hk+ 1

2 (Ωh) , ´ ∈ [W k+1
∞ (Ωh)]2 .

We begin our error analysis, which follows the steps of [14], with the following result.
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Proposition 3.19. Let u and uh be the solutions of problem (3.15) and problem (3.14), re-
spectively. Furthermore, let us define

eI := u − uI ,

is the interpolant function of u defined in Lemma 3.1. Then under assumption (A-C), it holds
that

∥u − uh∥cip ≲ ∥eI∥cip + ¸F + ¸a + ¸b + ¸c + ¸N + ¸J , (3.66)

where we have defined

¸F := ∥F̃ − Fh∥cip∗ , ¸a := ϵ ∥a(u, ·) − ah(uI , ·)∥cip∗ ,

¸b := ∥b(u, ·) − bh(uI , ·)∥cip∗ , ¸c := Ã∥c(u, ·) − ch(uI , ·)∥cip∗ ,

¸N := ∥Ñh(u, ·) − Nh(uI , ·)∥cip∗ , ¸J := ∥J̃h(u, ·) − Jh(uI , ·)∥cip∗ ,

where ∥ · ∥cip∗ denotes the dual norm of the norm ∥ · ∥cip.

Proof. Setting eh := uh − uI , thanks to the triangular inequality, we have

∥u − uh∥cip f ∥eI∥cip + ∥eh∥cip .

Therefore, we only need to bound the second term on the right-hand side. Using the inf-sup
condition, (3.14) and (3.15), we have that

∥eh∥cip = sup
vh∈V k

h
(Ωh)

Acip(uh − uI , vh)

∥vh∥cip
= sup

vh∈V k
h

(Ωh)

Fh(vh) − Acip(uI , vh)

∥vh∥cip

= sup
vh∈V k

h
(Ωh)

Fh(vh) − F̃(vh) + Ãcip(u, vh) − Acip(uI , vh)

∥vh∥cip
.

(3.67)

Estimate (3.66) now follows from considering the definitions of Acip(·, ·) and Ãcip(·, ·) given in
(3.12) and (3.16)-(3.17), respectively.

Lemma 3.20 (Estimate of ∥eI∥cip). Under assumptions (A-C), the term ∥eI∥2
cip can be

bounded as follows

∥eI∥cip ≲ ϵ
1
2 hk

(
∑

E∈Ωh

|u|2k+1,E

) 1
2

+ hk+ 1
2

(
∑

E∈Ωh

|u|2k+1,E

) 1
2

.

Proof. We start by fixing an element E ∈ Ωh. By definition of ∥ · ∥cip,E , we have that

∥eI∥2
cip,E = ϵ ∥∇eI∥2

0,E + h ∥´ · ∇Π0,E
k eI∥2

0,E + Ã ∥eI∥2
0,E + ∥À(ϵ, ´)eI∥2

ΓE
+ JE

h (eI , eI) .

Using Lemma 3.1, we have that

ϵ ∥∇eI∥2
0,E + h ∥´ · ∇Π0,E

k eI∥2
0,E ≲ (ϵ + h) ∥∇eI∥2

0,E ≲ (ϵ + h) h2k |u|2k+1,E ,

and
∥eI∥2

0,E ≲ h2k+2 |u|2k+1,E .

For the boundary term we have that

∥À(ϵ, ´)eI∥2
0,ΓE

=
ϵ

¶h
ïeI , eIðΓE

+ ï|´ · n|eI , eIðΓE
.

Using trace inequality and interpolation estimate, we obtain

ϵ

¶h
ïeI , eIðΓE

≲
ϵ

¶h2
∥eI∥2

0,E + |eI |21,E ≲ ϵ h2k |u|2k+1,E ,

and
ï|´ · nE |eI , eIðΓE

≲ h−1 ∥eI∥2
0,E ≲ h2k+1 |u|2k+1,E .
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It remains to control the jump operator. We have

JE
h (eI , eI) =

1

2

∑

e¢∂E

µe

∫

e

h2
e [[∇Π0

keI ]] · [[∇Π0
keI ]] ds + µE hE SE

(
(I − Π∇,E

k )eI , (I − Π∇,E
k )eI

)

≲ h2 (h−1∥∇Π0
keI∥2

0,D(E) + h |∇Π0
keI |21,D(E)) + h |(I − Π∇,E

k )eI |21,E

≲ h2 (h−1∥∇Π0
keI∥2

0,D(E)) + h |(I − Π∇,E
k )eI |21,E

≲ h |eI |21,D(E) ≲ h2k+1 |u|2k+1,D(E) .

Lemma 3.21 (Estimate of ¸F ). Under the assumptions (A-C), the term ¸F can be bounded
as follows

¸F ≲ hk+1

(
∑

E∈Ωh

|f |2k+1,E

) 1
2

.

Proof. Using the orthogonality of Π0,E
k , Cauchy-Schwarz inequality, Poincaré inequality and

Lemma 1.4, we obtain

¸E
F = F̃E(vh) − FE

h (vh)

=
(
f, vh − Π0,E

k vh

)
0,E

=
(
(I − Π0,E

k )f, (I − Π0,E
k )vh

)
0,E

f ∥(I − Π0,E
k )f∥0,E ∥(I − Π0,E

k )vh∥0,E

≲ ∥(I − Π0,E
k )f∥0,E ∥vh∥0,E

≲ hk+1 |f |k+1,E ∥vh∥cip,E .

Lemma 3.22 (Estimate of ¸a). Under the assumptions (A-C), the term ¸a can be bounded as
follows

¸a ≲ ϵ
1
2 hk

(
∑

E∈Ωh

|u|2k+1,D(E)

) 1
2

.

Proof. We fix an element E ∈ Ωh. Adding and subtracting Π∇,E
k u, using Cauchy-Schwarz

inequality, we obtain

ϵ aE(u, vh) − ϵ aE
h (uI , vh) = ϵ aE(u − Π∇,E

k u, vh) + ϵ aE
h (Π∇,E

k u − uI , vh)

f ϵ (∥∇eÃ∥0,E + (1 + ³∗)∥∇(Π∇,E
k u − uI)∥0,E) ∥∇vh∥0,E

≲ ϵ (∥∇eÃ∥0,E + ∥∇eI∥0,E) ∥∇vh∥0,E

≲ ϵ
1
2 hk |u|k+1,E ∥vh∥cip,E ,

where eÃ := u − Π∇,E
k u.

Lemma 3.23 (Estimate of ¸b). Under the assumptions (A-C), the term ¸b can be bounded as
follows

¸b ≲ hk+ 1
2

(
∑

E∈Ωh

∥u∥2
k+1,E

) 1
2

+ hk+1

(
∑

E∈Ωh

∥´∥2
[W k

∞
(E)]2∥u∥2

k+1,E

) 1
2

+

∫

∂E

(´ · nE) eI vh ds .

Proof. Recalling the definition, we need to estimate on each element E ∈ Ωh

¸E
b,A :=

(
´ · ∇u, vh

)
0,E

−
(
´ · ∇Π0,E

k uI , Π0,E
k vh

)
0,E

−
∫

∂E

(´ · nE) (I − Π0,E
k ) uI Π0,E

k vh ds ,

¸E
b,B :=

(
Π0,E

k uI , ´ · ∇Π0,E
k vh

)
0,E

−
(
u, ´ · ∇vh

)
0,E

+

∫

∂E

(´ · nE) (I − Π0,E
k ) vh Π0,E

k uI ds .
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By integration by parts, we have

¸E
b,A =

(
´ · ∇u, (I − Π0,E

k ) vh

)
0,E

+
(
´ · ∇(u − Π0,E

k uI), Π0,E
k vh

)
0,E

−
∫

∂E

(´ · nE)(I − Π0,E
k ) uI Π0,E

k vh ds

=
(
´ · ∇u, (I − Π0,E

k )vh

)
0,E

−
(
u − Π0,E

k uI , ´ · ∇Π0,E
k vh

)
0,E

+

∫

∂E

(´ · nE)(u − uI) Π0,E
k vh ds

=
(
(I − Π0,E

k )´ · ∇u, (I − Π0,E
k )vh

)
0,E

+
(
Π0,E

k uI − u, ´ · ∇Π0,E
k vh

)
0,E

+

∫

∂E

(´ · nE) eI Π0,E
k vh ds

=: ¸E
b,1 + ¸E

b,2 + ¸E
b,3 ,

and
¸E

b,B =
(
Π0,E

k uI − u, ´ · ∇Π0,E
k vh

)
0,E

−
(
u, ´ · ∇(I − Π0,E

k )vh

)
0,E

+

∫

∂E

(´ · nE) (I − Π0,E
k ) vh Π0,E

k uI ds

=
(
Π0,E

k uI − u, ´ · ∇Π0,E
k vh

)
0,E

+
(
´ · ∇u, (I − Π0,E

k )vh

)
0,E

+

∫

∂E

(´ · nE) (I − Π0,E
k ) vh (Π0,E

k uI − u) ds

=
(
Π0,E

k uI − u, ´ · ∇Π0,E
k vh

)
0,E

+
(
(I − Π0,E

k )´ · ∇u, (I − Π0,E
k )vh

)
0,E

+

∫

∂E

(´ · nE) (I − Π0,E
k ) vh (Π0,E

k uI − u) ds

=: ¸E
b,2 + ¸E

b,1 + ¸E
b,4 .

yielding the following expression for ¸E
b

2¸E
b = 2¸E

b,1 + 2¸E
b,2 + ¸E

b,3 + ¸E
b,4 . (3.68)

We now analyze each term in the sum above.
• ¸E

b,1: using Cauchy-Schwarz, the continuity in Π0,E
k in L2 and standard estimates, we obtain

¸E
b,1 =

(
(I − Π0,E

k )´ · ∇u, (I − Π0,E
k )vh

)
0,E

f ∥(I − Π0,E
k )´ · ∇u∥0,E ∥vh∥0,E

f ∥(I − Π0,E
k )´ · ∇u∥0,E ∥vh∥cip,E

≲ hk|´ · ∇u|k,E∥vh∥cip,E

≲ hk ∥u∥k+1,E ∥´∥[W k
∞

(E)]2 ∥vh∥cip,E .

• ¸E
b,2: we have that

¸E
b,2 =

(
Π0,E

k uI − u, ´ · ∇Π0,E
k vh

)
0,E

f ∥Π0,E
k uI − u∥0,E ∥´ · ∇Π0,E

k vh∥0,E

f
(
∥(I − Π0,E

k )u∥0,E + ∥eI∥0,E

)
∥´ · ∇Π0,E

k vh∥0,E

≲ hk+ 1
2 ∥u∥k+1,E∥vh∥cip,E .

• ¸E
b,3 + ¸E

b,4: we use a scaled trace inequality making use of the scaled norm

∀v ∈ H1(E), |||v|||21,E := ∥v∥2
L2(E) + h2

E |v|2H1(E) .
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We obtain

¸E
b,3 + ¸E

b,4 =

∫

∂E

(´ · nE) eI Π0,E
k vh ds +

∫

∂E

(´ · nE) (I − Π0,E
k ) vh (Π0,E

k uI − u) ds

=

∫

∂E

(´ · nE) (Π0,E
k − I) vh (eI + u − Π0,E

k uI) ds +

∫

∂E

(´ · nE) eI vh ds

≲ µ
1
2

E (∥eI∥L2(∂E) + ∥u − Π0,E
k uI∥L2(∂E)) µ

1
2

E∥(I − Π0,E
k )vh∥L2(∂E)

+

∫

∂E

(´ · nE) eI vh ds

≲ h−1
E (|||eI |||1,E + |||u − Π0,E

k uI |||1,E)µ
1
2

E ∥(I − Π0,E
k )vh∥0,E

+

∫

∂E

(´ · nE) eI vhds

≲ h− 1
2 (|||eI |||1,E + |||u − Π0,E

k uI |||1,E)µ
1
2

E h
1
2 ∥∇(I − Π∇,E

k )vh∥0,E

+

∫

∂E

(´ · nE) eI vhds

≲ hk+ 1
2 |u|k+1,E∥vh∥cip,E +

∫

∂E

(´ · nE) eI vh ds ,

where in the last step we used the Jh(vh, vh) term in the definition of ∥vh∥cip,E .
The thesis now follows gathering the last three inequalities in (3.68).

Lemma 3.24 (Estimate of ¸c). Under the assumptions (A-C), the term ¸c can be bounded as
follows

¸c ≲ hk+1

(
∑

E∈Ωh

|u|2k+1,E

) 1
2

.

Proof. Similarly to Lemma 3.22, we have that

cE(u, vh) − cE
h (uI , vh) = cE(u − Π0,E

k u, vh) + cE
h (Π0,E

k u − uI , vh)

f (∥eÃ∥0,E + (1 + ³∗)∥Π0,E
k u − uI∥0,E) ∥vh∥0,E

≲ (∥eÃ∥0,E + ∥eI∥0,E) ∥vh∥0,E

≲ hk+1 |u|k+1,E ∥vh∥cip,E .

Lemma 3.25 (Estimate of ¸N ). Under the assumptions (A-C), the term ¸N can be bounded
as follows

¸N ≲ (ϵ
1
2 hk + hk+ 1

2 )

(
∑

E∈Ωh

|u|2k+1,E

) 1
2

.

Proof. We consider an element E ∈ Ωh. By definition of the two bilinear forms, we have that

ϵ ïΠ0,E
k−1∇uI · n − ∇u · n, vhðΓE

+ ϵ ïuI − u, Π
0,E
k−1∇vh · nðΓE

+
ϵ

¶hE
ïu − uI , vhðΓE

+
1

2
ï|´ · n|(u − uI), vhðΓE

= ¸E
N ,a + ¸E

N ,b + ¸E
N ,c + ¸E

N ,d .

(3.69)

Now, we estimate each of the four terms. Using trace inequality, the first returns

¸E
N ,a = ϵ ïΠ0,E

k−1∇uI · n − ∇u · nE , vhðΓE

≲ ϵ (h− 1
2 ∥∇u − Π

0,E
k−1∇uI∥0,E + h

1
2 |∇u − Π

0,E
k−1∇uI |1,E)∥vh∥0,ΓE

≲ ϵ
1
2 (∥∇u − Π

0,E
k−1∇uIuI∥0,E + h|∇u − Π

0,E
k−1∇uI |1,E)∥vh∥cip,E .
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Adding and subtracting Π∇,E
k u, using triangular inequality and Lemma 1.4, we obtain

¸E
N ,a ≲ ϵ

1
2 hk|u|k+1,E∥vh∥cip,E .

On the second one we have

¸E
N ,c = ϵ ïuI − u, Π

0,E
k−1∇vh · nð0,ΓE

≲ ϵ ∥u − uI∥0,ΓE
∥Π

0,E
k−1∇vh∥0,ΓE

≲ ϵ ∥u − uI∥0,ΓE
h− 1

2 ∥Π
0,E
k−1∇vh∥0,E

≲ ϵ h− 1
2 ∥u − uI∥0,ΓE

|vh|1,E

≲ ϵ
1
2

(
|u − uI |1,E + h−1∥u − uI∥0,E

)
∥vh∥cip,E

≲ ϵ
1
2 hk|u|k+1,E∥vh∥cip,E .

(3.70)

For the third term, using trace inequality and interpolation estimate, we have that

¸E
N ,c =

ϵ

¶hE
ïu, vhðΓE

− ϵ

¶hE
ïuI , vhðΓE

≲
ϵ

¶h
∥u − uI∥0,ΓE

∥vh∥0,ΓE

≲
( ϵ

¶h

) 1
2 ∥u − uI∥0,ΓE

∥vh∥cip,E

≲ ϵ
1
2 hk|u|k+1,E∥vh∥cip,E .

Finally, the last one is treated in a very similar way with respect to the previous one, it gives

¸E
N ,d = −1

2
ï|´ · nE |u, vhðΓE

+
1

2
ï|´ · nE |uI , vhðΓE

≲ h− 1
2 ∥u − uI∥0,E∥vh∥cip,E

≲ hk+ 1
2 |u|k+1,E∥vh∥cip,E .

(3.71)

Lemma 3.26 (Estimate of ¸J). Under the assumptions (A-C), the term ¸J can be bounded
as follows

¸J ≲ hk+ 1
2

(
∑

E∈Ωh

|u|2k+1,E

) 1
2

.

Proof. Using Cauchy-Schwarz inequality, we have that

JE
h (uI , vh) f JE

h (uI , uI)
1
2 JE

h (vh, vh)
1
2

f JE
h (uI , uI)

1
2 ∥vh∥cip,E .

(3.72)

Since the solution u is sufficiently smooth, we have that

JE
h (uI , uI) =

∑

e¢∂E

∫

e

µe

2
h2

e [[∇Π0
kuI ]] · [[∇Π0

kuI ]] ds + hE µE SE
j ((I − Π∇,E

k )uI , (I − Π∇,E
k )uI)

=
∑

e¢∂E

∫

e

µe

2
h2

e [[∇(Π0
kuI − u)]]2 ds + hE µE SE

j ((I − Π∇,E
k )uI , (I − Π∇,E

k )vh)

≲
∑

K∈D(E)

h2 ∥∇(Π0
kuI − u)∥2

0,∂K + h |(I − Π∇,E
k )uI |21,E .

Using trace inequality, we obtain for the first term

∥∇Π0
kuI − ∇u∥0,∂K ≲

(
h−1 ∥∇Π0

kuI − ∇u∥2
0,K + h |∇Π0

kuI − ∇u|21,K

) 1
2 .
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Adding and subtracting ∇Π0,E
k u, using lemma 1.4 and interpolation estimate, we obtain

h− 1
2 ∥∇Π0,E

k uI − ∇u∥0,K ≲ h− 1
2 ∥∇Π0,E

k u − ∇u∥0,K + h− 1
2 ∥∇Π0,E

k uI − ∇Π0,E
k u∥0,K

≲ hk− 1
2 |u|k+1,K ,

and similarly, we have that

h
1
2 |∇Π0,E

k uI − ∇u|1,K ≲ hk− 1
2 |u|k+1,K .

Using Lemma 1.4, we have that

h
1
2 |(I − Π∇,E

k )uI |1,E ≲ h
1
2 (∥∇eI∥0,E + ∥∇eÃ∥0,E) ≲ hk+ 1

2 |u|k+1,E .

We conclude
JE

h (uI , vh) ≲ hk+ 1
2 |u|k+1,D(E) ∥vh∥cip,D(E) .

We thus have the following proposition.

Theorem 3.27 (Error estimate). Under the assumptions (A-C), let u be the solution of equa-
tion (3.2) and uh ∈ V k

h (Ωh) be the solution of equation (3.14). Then it holds that

∥u − uh∥2
cip ≲

∑

E∈Ωh

ΘE
(
ϵ h2k + h2k+1

)
,

where the constant ΘE depends on ∥u∥k+1,E, ∥f∥k+1,E, ∥´∥[W k+1
∞ (E)]2 .

Proof. It it sufficient to use Proposition 3.19 combined with Lemmas 3.20, 3.21, 3.22, 3.23, 3.24,
3.25 3.26, noting that ∑

E∈Ωh

∫

∂E\∂Ω

(´ · nE) eI vhds = 0 ,

and the contributions stemming from ∂Ω are controlled as in (3.71).

3.2.4 A special case: advection-diffusion problem with ´ ∈ [P1(Ω)]2

We consider problem (3.1) in a particular situation: we assume an advection term ´ ∈
[P1(Ω)]2, i.e. globally linear, and we allow the reaction coefficient Ã = 0. We do not make
further assumptions on the diffusion coefficient ϵ and on the load term f . Thus, the advection-
diffusion problem reads as (cf. (3.1))

{
find u ∈ V (Ω) such that:

ϵ a(u, v) + bskew(u, v) = F(v) ∀v ∈ V (Ω).
(3.73)

In this case, even without the reaction term, we are able to prove robust estimates for the
approximation of problem (3.73). Using the same approach as before, the discrete version of
problem (3.73) reads as

{
find uh ∈ V k

h (Ωh) such that:

Aad
cip(uh, vh) = Fh(vh) ∀vh ∈ V k

h (Ωh),
(3.74)

where
Aad

cip(uh, vh) :=
∑

E∈Ωh

Aad,E
cip (uh, vh) ,

and
Aad,E

cip (uh, vh) := ϵ aE
h (uh, vh) + bskew,E

h (uh, vh) + Nh(uh, vh) + JE
h (uh, vh) .

The key observation is that a suitable inf-sup condition still holds true without the help of
the L2-type norm stemming from the reaction term. In fact, introducing the local norm
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∥vh∥2
cip,ad,E := ϵ ∥∇vh∥2

0,E + h ∥´ · ∇Π0,E
k vh∥2

0,E +
∑

e¢ΓE

∥À(ϵ, ´)vh∥2
0,e + JE

h (vh, vh) ,

and its global counterpart
∥vh∥2

cip,ad :=
∑

E∈Ωh

∥vh∥2
cip,ad,E ,

similarly to Proposition 3.18, we have the following result.

Proposition 3.28. Under assumptions (A-C), it holds that

∥vh∥cip,ad ≲ sup
zh∈Vh(Ωh)

Aad
cip(vh, zh)

∥zh∥cip,ad
∀vh ∈ V k

h (Ωh), (3.75)

for a constant that does not depend on h and ϵ.

Proof. The proof of (3.75) is analogous to the one of proposition 3.18, with the simplification
that in Lemma 3.15 it holds ´h = ´. The main difference stands in the treatment of ¸´1

, ¸´2

and ¸´3
in (T5), see (3.49). These terms are the only ones requiring the help of the L2 norm

in the general case (apart, of course, the reaction term itself). Regarding the term ¸´1 , in our
present case we immediately have the advective norm:

¸´1
= h ∥´ · ∇Π0,E

k vh∥2
0,E (3.76)

Since ´ ∈ P1(Ω), it follows that ´ · ∇Π0,E
k vh ∈ Pk(E), so that we can directly bound ¸´2

using
Young’s inequality and proposition 3.11:

¸´2
= h

(
´ · ∇Π0,E

k vh, (Ã − I)(´ · ∇Π0,E
k vh)

)
0,E

g −h

2
∥´ · ∇Π0,E

k vh∥2
0,E − h

2
∥(Ã − I)(´ · ∇Π0,E

k vh)∥2
0,E

g −h

2
∥´ · ∇Π0,E

k vh∥2
0,E − C h2

(
∑

e∈FE

∥[[´ · ∇Π0,E
k vh]]∥0,e

)2

g −h

2
∥´ · ∇Π0,E

k vh∥2
0,E − C h2

∑

e∈FE

µ2
e ∥[[∇Π0,E

k vh]]∥2
0,e

g −h

2
∥´ · ∇Π0,E

k vh∥2
0,E − C h2

∑

e∈FE

µe∥[[∇Π0,E
k vh]]∥2

0,e

g −h

2
∥´ · ∇Π0,E

k vh∥2
0,E − C J

D(E)
h (vw, vh) ,

(3.77)

which is the counterpart of (3.54). Furthermore, again since ´ · ∇Π0,E
k vh ∈ Pk(E), it follows

that
¸´3

:=
(
´ · ∇Π0,E

k vh, (Π0,E
k − I)wh

)
0,E

= 0 .

Once the above stability result has been established, the next error estimate can be proved
using the same arguments of theorem 3.27. The only difference is handling the terms ¸E

F and
¸E

b,1 which now must be bounded using diffusion (since reaction is not available) and therefore
paying a price in terms of ε but with a better rate in terms of h. For the sake of conciseness
we here omit the simple alternative derivations for such terms.

Theorem 3.29. Under the assumptions (A-C), let u be the solution of equation (3.73) and
uh ∈ V k

h (Ωh) be the solution of equation (3.74). Then it holds that

∥u − uh∥2
cip,ad ≲

∑

E∈Ωh

ΘE

(
ϵ h2k + h2k+1 +

h2(k+2)

ϵ

)
,

where the constant ΘE depends on ∥u∥k+1,E, ∥f∥k+1,E, ∥´∥[W k+1
∞ (E)]2 .



CHAPTER 3. CONFORMING CIP 51

3.3 Numerical Experiment

In this section, we investigate the actual computational behavior of the proposed method.

Model problem. We consider a family of problems in the unit square Ω = (0, 1) × (0, 1).
We choose the boundary conditions and the source term (which turns out to depend on ϵ, Ã
and ´) in such a way that the analytical solution is always the function

u(x, y) := sin(Ã x) sin(Ã y) .

Different choices of the parameters Ã, ϵ and of the advective term ´(x, y) will be selected. Since
the pointwise values of the numerical solution uh are unknown, the following error quantities
will be considered:

• H1−seminorm error

eH1 :=

√ ∑

E∈Ωh

∥∥∥∇(u − Π∇,E
k uh)

∥∥∥
2

0,E
;

• L2−norm error

eL2 :=

√ ∑

E∈Ωh

∥∥∥(u − Π0,E
k uh)

∥∥∥
2

0,E
.

We will consider two different mesh families :

• octag: a mesh composed by convex and non-convex quadrilaterals obtained perturbing a
mesh composed of structured squares. After displacing randomly the vertexes, each edge
in the mesh is split into two parts making the elements octagons with aligned edges;

• voro: a centroidal Voronoi tessellation of the unit square.

These two families are represented in Figure 3.1. In all the following numerical experiments,
accordingly with [35], we select »e = »E = 0.025, see (3.10).

octag poly

Figure 3.1: Example of meshes used for the present test cases.

Effects of the CIP stabilization. The first aspect we investigate is the benefits of inserting
the CIP term in the variational formulation of the problem. We thus consider an advection-
dominated regime and choose the parameters ϵ = 10−5, Ã = 0, along with a constant advection
term

´(x, y) :=

[
1

0.5

]
.
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We consider a centroidal Voronoi tesselation of the domain Ω into 256 polygons. The order of
the method is set to k = 1.

In Figure 3.2 we observe that by inserting the bilinear form Jh(·, ·) in the variational formu-
lation, we are able to accurately approximate the analytic solution u(x, y) of the model problem.
If we omit the CIP term, we obtain (as expected) a definitely unsatisfactory numerical solution,
which exhibits non-physical oscillations all over the computational domain.

As a second example, we consider a solution with an internal layer. The parameters are set
to ϵ = 10−5, Ã = 1, along with a non-constant advection term defined as:

´(x, y) :=

[
−2 Ã sin(Ã (x + 2 y))

Ã sin(Ã (x + 2 y))

]
.

The order of the method is again k = 1. As expected, in Figure 3.3 we note nonphysical oscilla-
tions concentrated in particular near the layer. Inserting the CIP stabilization, the oscillations
are highly reduced.

No CIP CIP

Figure 3.2: Effects of the CIP Stabilizing Term. On the left, a numerical solution without the
CIP stabilization term is depicted, while on the right, a solution with the CIP stabilization
term is shown.

No CIP CIP

Figure 3.3: Effects of the CIP stabilizing term on a solution with an internal layer. On the
left, a numerical solution without the CIP stabilization term is depicted, while on the right, a
solution with the CIP stabilization term is shown.

Convergence analysis. We now investigate the convergence of the numerical method by
means of the norms introduced above, and choosing a different consistency order, that is,



CHAPTER 3. CONFORMING CIP 53

k = 1, 2, 3. We choose the constant advective field

´(x, y) :=

[
1

0.5

]
.

We consider a diffusion-dominated case (ϵ = 1), and two advection-dominated cases correspond-
ing to ϵ = 10−5 and ϵ = 10−9. Thus, we are in the framework of section 3.2.4. Accordingly, we
neglect the reaction term (hence, Ã = 0) and the theoretical error bound of Theorem 3.29 holds.
We compare the method with and without the jump term Jh(·, ·). The results are obtained
using the Voronoi mesh family.

In Figure 3.4, we observe that in the case ϵ = 1 the two methods behave in the same way,
with the lines corresponding to the two cases overlapping completely. Instead, in the advection-
dominated regime we observe that the optimal convergences are attained when inserting the
stabilising jump term; without it, as expected, the method displays unsatisfactory results,
especially for the low-order case. The advantages of the CIP stabilization term become more
apparent as the diffusion coefficient decreases.

Effect of the reaction term. We now consider an advection-dominated problem with a
variable advection term not in P1(Ω). In particular, we select

´(x, y) :=

[
−2 Ã sin(Ã (x + 2 y))

Ã sin(Ã (x + 2 y))

]
.

We recall that for this case we are able to prove robust error bounds only with the aid of the
reaction term, see Theorem 3.27. The diffusive coefficient is set to ϵ = 10−5. We consider
both mesh families (voro and octag). We selected two different values for the reaction term:
Ã = 1 and Ã = 0. Figure 3.5 shows that there is no significant difference between the cases
Ã = 1 and Ã = 0. As already mentioned, for this latter case Theorem 3.27 does not apply, and
no satisfactory theoretical analysis is available, yet. However, the numerical outcomes seem to
suggest that it could be possible to drop the reaction term even if the advection term is not
globally linear. We note also that we achieve a good convergence also in the case that the mesh
is composed of unstructured quadrilaterals.

Strong boundary conditions. While the method’s theoretical analysis necessitates applying
boundary conditions using a Nitsche-type technique, we have experimented with enforcing
strong boundary conditions. Our numerical tests show that the solutions converge to the
analytical solution with the same convergence rate (specific results not shown here). The
primary difference is visual, particularly noticeable when dealing with a solution featuring a
boundary layer. We select the function

u(x, y) :=

(
x − exp( x−1

ϵ ) − exp( −1
ϵ )

1 − exp( −1
ϵ )

)
(y − y2) .

as the analytical solution of (3.1). The parameters are set as follows: ϵ = 10−5, ´ = (1, 2)T ,
Ã = 1, »e = »E = 0.025 and ¶ = 0.1. The equation is solved with k = 1 on a Voronoi mesh
consisting in 256 polygons. In Figure 3.6, we observe that while the boundary conditions on
the right are correctly imposed, some oscillations persist near the boundary layer. In contrast,
using the Nitsche method, no oscillations are present, but the boundary conditions at x = 1
are not accurately enforced.

Other options for the CIP term. To simplify the notation, in this paragraph we denote
with [q] the jump of a function q across an interior edge e ∈ Eo

h. Contrary to the definition
(1.19), we are not multiplying by the normal. At the continuous level, given two sufficiently
smooth functions u and v, and an interior edge e ∈ Eo

h, it holds that
∫

e

h2
e [∇u] · [∇v] ds =

∫

e

h2
e [∇u · ne][∇u · ne] ds
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ϵ = 1

ϵ = 10−5

ϵ = 10−9

Figure 3.4: Convergences in the cases ϵ = 1, ϵ = 10−5 and ϵ = 10−9. The red lines correspond
to the case k = 1, the blue lines to the case k = 2, and the green lines to the case k = 3. The
circles represent the cases without CIP stabilization, while the stars indicate the cases with CIP
stabilization. The left column correspond to the L2−norm of the error and the right column
correspond to the H1-seminorm of the error.

In our method, we choose to discretize the jump with the normal derivative but it is possible
to consider a discretization of the form

KE
h (uh, vh) :=

∑

e¢∂E

µe

2

∫

e

h2
e [∇Π0

kuh] · [∇Π0
kvh] ds + µE hE SE

(
(I − Π∇,E

k )uh, (I − Π∇,E
k )vh

)
,

in which we discretize the jump of the full gradient. Another possibility is to decompose the
gradient as

∇u = (∇u · ´)´ + (∇u · ´§)´§ ,
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Ã = 1

Ã = 0

Figure 3.5: Convergences in the case Ã = 0 and Ã = 1. The red lines correspond to the case
k = 1, the blue lines to the case k = 2, and the green lines to the case k = 3. The stars refer to
the Voronoi mesh family and the squares correspond to octagonal mesh family. The left column
correspond to the L2−norm of the error and the right column correspond to the H1-seminorm
of the error.
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Figure 3.6: On the left, it represented the solution obtained with the strong boundary condi-
tions, while on the right the one obtained with the weakly imposed boundary conditions.

where ´§ is the orthogonal direction with respect to ´, and consider the following discretization

LE
h (uh, vh) :=

∑

e¢∂E

µe

2

∫

e

h2
e [´ · ∇Π0

kuh] · [´ · ∇Π0
kvh] ds

+
∑

e¢∂E

µ§
e

2

∫

e

h2
e [´§ · ∇Π0

kuh] · [´§ · ∇Π0
kvh] ds

+ µE hE SE
(
(I − Π∇,E

k )uh, (I − Π∇,E
k )vh

)
,

(3.78)

where µ§
e is a parameter that controls the gradient in the direction ´§. If we choose µe = µ§

e ,
we have that KE

h (uh, vh) = LE
h (uh, vh). Now, we consider the situation of the second numerical

test with ϵ = 10−5, k = 1 on Voronoi meshes, and we verify that the three discretizations
Jh(·, ·), Kh(·, ·) and Lh(·, ·) are equivalent by comparing the error in the H1−seminorm. In
Lh(·, ·), we set µ§

e = 0.01. The results are depicted in Table 3.1 and it is easy to note the
equivalences of the three discretization. We have also tested different polynomial projections
like ∇Π∇

h or Π
0
k−1∇ and we do not see any substantial difference (results not reported here).

nP Jh Kh Lh

4 1.3590 1.3598 1.3268
16 0.7491 0.7361 0.7453
64 0.3631 0.3632 0.3629
256 0.1795 0.1797 0.1795
1024 0.0895 0.0895 0.0895
4096 0.0443 0.0443 0.0443
16384 0.0222 0.0222 0.0222

Table 3.1: Results for the three different choices of the stabilization term. We denote with nP

the number of elements in the mesh Ωh.

Simulation of a fluid inside a channel with two pipes. In this test, we aim to consider
a more realistic scenario. We assume that a pollutant, such as oil, is moving through a water-
filled channel. This channel contains two cylindrical obstacles, modeled as pipes positioned
at different points along its length. The channel is represented by the domain Ω = [0, 5] ×
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[−0.5, 0.5], while the pipes are modeled as two circles with centers at (1.5, 0) and (3.5, 0),
respectively, and each with a radius of 0.3. For simplicity, we assume that the flow velocity in
the channel is uniform and directed along the horizontal axis, given by ´ = (1, 0)T . We consider
a scenario with low diffusion, setting the diffusion coefficient ϵ to 10−5, while neglecting the
reaction term. We choose as CIP parameter »e = »E = 0.025, while the Nitsche parameter is
set to ¶ = 0.1. The order of the method is k = 1. Homogeneous Dirichlet boundary conditions
are imposed along the top and bottom boundaries of the channel, as well as on the surfaces
of the pipes. On the left boundary, we prescribe an inflow condition with a parabolic velocity
profile of the form

−10 (y − 0.5) (y + 0.5) .

Finally, on the right boundary, we impose homogeneous Neumann boundary conditions to allow
the fluid to exit the domain without further interaction. In Figure 3.7, we observe that the
pollutant moves in a straight path until it encounters the first pipe. After this point, only the
pollutant concentrated near the top and bottom boundaries continues to move toward the right
boundary, while the central portion is blocked beneath the pipe.

Figure 3.7: Numerical representation of a pollutant moves inside a channel with two pipes. The
color represent the concentration of the pollutant.



Chapter 4

A Nonconforming Virtual
Element Method for
Advection-Diffusion-Reaction
Problems with CIP Stabilization

In this chapter we present a nonconforming method for the advection-diffusion-equation
with a CIP stabilization term. This work has been developed in [49]. As mentioned in the
introduction, the main reason for our interest in the nonconforming setting is that the design,
implementation and analysis of nonconforming VEMs are independent of the spatial dimension.

Our nonconforming methods exhibit the following distinctive features compared to the orig-
inal work [17], which also entail deviations within the stability and error analysis guidelines
developed there.

• the convective term is not skew-symmetrized,

• we use a symmetric version of the Nitsche’s method to impose Dirichlet boundary condi-
tions.

The chapter is organized as follows. The continuous and discrete problems are presented in the
first section. The stability and convergence analysis are developed in the second section. The
last section contains a set of numerical tests showing the actual robustness of the method and
comparing it with the conforming method described in the previous chapter.

4.1 The continuous and the discrete problems

4.1.1 Model problem

This chapter aims to extend the results present in the previous chapter to the nonconforming
method. We consider a polytopal domain Ω ¢ R

d, d = 2, 3, with boundary Γ. In this chapter
we consider again the advection-diffusion-reaction equation with non-homogeneous boundary
conditions {

−ϵ∆u + ´ · ∇u + Ãu = f in Ω ,

u = g on Γ .
(4.1)

where f ∈ L2(Ω) and g ∈ H
1
2 (Γ). As before, we assume that the diffusion and the reaction

coefficient ϵ and Ã, respectively, are two positive constants, while the advection coefficient
´ ∈ [W 1

∞(Ω)]d is such that div(´) = 0. The variational formulation is the same that appears
in (3.2) with the difference that the trial space is the sobolev space

H1
g (Ω) := {v ∈ H1(Ω) such that v|Γ = g} .

58
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The variational problem reads as
{

find u ∈ Vg(Ω) := H1
g (Ω) such that:

ϵ a(u, v) + b(u, v) + Ã c(u, v) = F(v) ∀v ∈ V (Ω) := H1
0 (Ω) .

(4.2)

The forms a(·, ·) : Vg(Ω)×V (Ω) → R , b(·, ·) : Vg(Ω)×V (Ω) → R and c(·, ·) : Vg(Ω)×V (Ω) → R

are the same that appears in Section 3.1.1. We note that, since the trial space is H1
g (Ω), these

forms cannot be called “bilinear”.

4.1.2 Mesh assumptions

The mesh assumptions for the nonconforming method are the same as those presented in
the previous chapter. However, we must exercise caution because this chapter also addresses
the case where d = 3, necessitating additional considerations.

(A-NC) Mesh assumption. There exists a positive constant Ä such that, for any element
E ∈ { Ωh }h,

• E is star-shaped with respect to a ball BE of radius g Ä hE ,

• any facet e of E has diameter he g Ä hE ,

• for d = 3, every face e is star-shaped with respect to a ball Be of radius g Ä he,

• the mesh is quasi-uniform, i.e., any element has diameter hE g Äh.

Given an interior edge e ∈ Eo
h, we also introduce the scalar-valued average {v} for sufficiently

smooth functions v as

{v} :=
vE + vK

2
, (4.3)

where E, K ∈ Ωh are such that e ¢ ∂E ∩ ∂K.

4.1.3 Virtual Element Spaces

Given an element E ∈ Ωh with nE facets, and a positive integer k, we define the space

V k,nc
h (E) :=

{
vh ∈H1(E) such that ∇vh · nE ∈ Pk−1(e) for all e ¢ ∂E,

∆vh ∈ Pk(E) , (vh − Π∇,E
k vh, p̂k)0,E = 0 for all p̂k ∈ Pk(E)/Pk−2(E)

}
.

(4.4)
Similarly to (3.4), this space represents the enhanced version of the virtual element space
presented in (1.15). It allows the construction of the projection operator Π0,E

k : V k,nc
h (E) →

Pk(E). We present a set of DoFs for the space (4.4):

• EE,k
nc : the moments up to the order k − 1 on each facet e ¢ ∂E:

µℓ
E,e(vh) :=

1

|e|

∫

e

vh

(
s − se

he

)ℓ

ds |ℓ| f k − 1, (4.5)

where s is expressed in the local d − 1 coordinates on e, se is the barycenter of e, and ℓ ∈
N

d−1 is a multi-index with d − 1 components,

• PE,k
nc : the moments up to the order k − 2 on E:

µ³
E(vh) :=

1

|E|

∫

E

vh

(
x − xE

hE

)³

dE |³| f k − 2, (4.6)

where xE is the barycenter of E, and ³ ∈ N
d is a multi-index with d components.
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Moving from 2D to 3D in the nonconforming setting is straightforward. In R
3, the DoFs

are defined in the same way as in 2D. The key difference is that the interior DoFs involve 3D
integrals, while the boundary DoFs involve 2D integrals. In the conforming method this step
is more involved.

The dimension Nnc
E of the space V k,nc

h (E) is

Nnc
E =





k nE +
(k − 1)(k − 2)

2
if d = 2 ,

(k + 1)k

2
nE +

(k + 1)k(k − 1)

6
if d = 3 .

For every mesh Ωh, we introduce the global virtual element space as

V k,nc
h (Ωh) :=

{
vh ∈ W 1

2 (Ωh) such that vh|E ∈ V k,nc
h (E) ∀E ∈ Ωh ,

∫

e

[[vh]] · ne q ds = 0 ∀q ∈ Pk−1(e) ∀e ∈ Eo
h

}
.

(4.7)
We remark that we do not impose full continuity across the element boundaries. On each
interior facet, we only require that the moments up to order k − 1 are preserved. Therefore,
V k,nc

h (Ωh) ̸¢ H1(Ω). The global DoFs are as follows:

• Ek
nc: the moments up to the order k − 1 on each e ∈ Eh :

µℓ
e(vh) :=

1

|e|

∫

e

vh

(
s − se

he

)ℓ

ds |ℓ| f k − 1,

where ℓ ∈ N
d−1 is a multi-index with d − 1 components,

• Pk
nc: the moments up to the order k − 2 on each E ∈ Ωh :

µ³
E(vh) :=

1

|E|

∫

E

vh

(
x − xE

hE

)³

dE |³| f k − 2,

where ³ ∈ N
d is a multi-index with d components.

The dimension of V k,nc
h (Ωh) is

Nnc
Ωh

=





k |Eh| +
(k − 1)(k − 2)

2
np if d = 2 ,

(k + 1)k

2
|Eh| +

(k + 1)k(k − 1)

6
np if d = 3 .

If d = 2, the dimensions of the global and local spaces are the same that the one presented
in Section 2.3.1. Similarly to the conforming enhanced virtual element space, the following
interpolation result holds

Lemma 4.1 (Approximation with nonconforming virtual element functions). Under assump-
tion (A1), for any v ∈ H1(Ω) ∩ Hs+1(Ωh), there exists vI ∈ Vh(Ωh), such that for all E ∈ Ωh,

∥v − vI∥0,E + hE∥∇(v − vI)∥0,E ≲ hs+1
E |v|s+1,E ,

where 0 < s f k.

4.1.4 Virtual Element Forms and the Discrete Problem

In this section, we discretize the problem and the forms presented in Section 4.1.1. Some of
the bilinear forms that will be included in the discrete problem are identical to those appearing
in Section 3.1.4. Here, we simply recall their definitions.

aE
h (uh, vh) :=

∫

E

Π
0,E
k−1∇uh · Π

0,E
k−1∇vh dE + SE

(
(I − Π∇,E

k )uh, (I − Π∇,E
k )vh

)
, (4.8)



CHAPTER 4. NONCONFORMING CIP 61

cE
h (uh, vh) :=

∫

E

Π0,E
k uh Π0,E

k vhdE + |E| SE
(
(I − Π0,E

k )uh, (I − Π0,E
k )vh

)
. (4.9)

We recall that SE(·, ·) is a stabilization form, see (1.8). The discretization of the convective
term is different. We recall the definition that appears in (3.8)

bE
h (uh, vh) =

∫

E

´ · ∇Π0,E
k uh Π0,E

k vh dE +

∫

∂E

(´ · nE)(I − Π0,E
k )uh Π0,E

k vh ds .

Since the trace of a virtual function is unknown, it is clear that the boundary integral is not
computable if uh ∈ V k,nc

h (E). Hence, we define

bE
h (uh, vh) :=

∫

E

(´ · ∇Π0,E
k uh)Π0,E

k vhdE . (4.10)

Another important difference is that we do not skew-symmetrize the bilinear form bE
h (·, ·).

Since the method is nonconforming, skew-symmetrizing the bilinear form b(·, ·) would require
including the boundary integral

1

2

∫

∂E

(´ · nE) uh vh ds ,

because this term does not cancel when summed over all elements. If we opt for this choice, we
should insert in the discrete problem

1

2

∫

∂E

(´ · nE) Π0,E
k uh Π0,E

k vh ds .

At this point, it is clear that

bE
h (uh, vh) =

1

2

(
bE

h (uh, vh) − bE
h (vh, uh)

)
+

1

2

∫

∂E

(´ · nE) Π0,E
k uh Π0,E

k vh ds .

In order to ensure stability, we also need to introduce an extra terms. We introduce the bilinear
form dE

h (·, ·) : V k,nc
h (E) × V k,nc

h (E) → R

dE
h (uh, vh) := −1

2

∫

∂E\Γ

´ · [[Π0
kuh]]{Π0

kvh}ds . (4.11)

The reasons behind this bilinear form will become clear in Lemma 4.8 below and are related to
the nonconformity of the method. We recall the definition of the CIP term which is equivalent
to the conforming method. It is defined as

JE
h (uh, vh) :=

∑

e¢∂E\Γ

µe

2

∫

e

h2
e [[∇Π0

kuh]] [[∇Π0
kvh]] ds + µE hE SE

(
(I − Π0,E

k )uh, (I − Π0,E
k )vh

)
.

(4.12)
where the parameters µe and µE are defined as

µe := »e∥´∥[L∞(e)]2 , µE := »E∥´∥[L∞(∂E)]2 , (4.13)

see Remarks 3.4 and 3.5.

Remark 4.2. Despite the fact that the normal derivative of nonconforming virtual functions
is a polynomial, we still need to insert a polynomial projection operator in the CIP term. This
is necessary because the normal derivative of the virtual function is not explicitly known.

In order to complete the definition of our method, we need to impose the boundary condi-
tions. We do this using a Nitsche-type technique, which locally consists of adding the form

N E
h (uh, vh) := − ϵïΠ0,E

k−1∇uh · nE , vhðΓE
− ϵïuh, Π

0,E
k−1∇vh · nEðΓE

+
ϵ

¶hE

∑

e¢ΓE

ïΠ0,e
k−1uh, Π0,e

k−1vhðe + ï|´ · nE | Π0,E
k uh, Π0,E

k vhðΓE,in
; (4.14)
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see [52, 46] for more details. By adding these terms together, we define the complete local
bilinear form AE

cip : V k,nc
h (E) × V k,nc

h (E) → R as

AE
cip(uh, vh) = ϵaE

h (uh, vh) + bE
h (uh, vh) + ÃcE

h (uh, vh) + dE
h (uh, vh) + N E

h (uh, vh) + JE
h (uh, vh) .

(4.15)
By summing over all the mesh elements, we obtain the global versions of the bilinear forms

ah(uh, vh) :=
∑

E∈Ωh

aE
h (uh, vh) , bh(uh, vh) :=

∑

E∈Ωh

bE
h (uh, vh) ,

ch(uh, vh) :=
∑

E∈Ωh

cE
h (uh, vh) , dh(uh, vh) :=

∑

E∈Ωh

dE
h (uh, vh) ,

Jh(uh, vh) :=
∑

E∈Ωh

JE
h (uh, vh) , Nh(uh, vh) :=

∑

E∈Ωh

N E
h (uh, vh) ,

and
Acip(uh, vh) :=

∑

E∈Ωh

AE
cip(uh, vh) . (4.16)

The local load term is defined as

FE
h (vh) :=

∫

E

f Π0,E
k vhdE − ϵ ïg, Π

0,E
k−1∇vh · nEðΓE

+
ϵ

¶hE

∑

e¢ΓE

ïg, Π0,e
k−1vhðe + ï|´ · nE | g, Π0,E

k vhðΓE,in
,

(4.17)

and the global one as
Fh(vh) :=

∑

E∈Ωh

FE
h (vh) .

Eventually, the discrete problem reads as follows:
{

find uh ∈ V k,nc
h (Ωh) such that

Acip(uh, vh) = Fh(vh) ∀vh ∈ V k,nc
h (Ωh) .

(4.18)

4.2 Theoretical Analysis

Similarly to Section 3.1.5, due to the nonconformity of the virtual element space and due to
the projections entering formulation (4.18), the solution u of the continuous problem (4.2) does
not solve the discrete problem (4.18). However, if u ∈ H2(Ω) ∩ H1

g (Ω), it solves the following
problem, which is strictly connected to (4.18):

Ãcip(u, vh) = F̃(vh) + B̃(u, vh) for all vh ∈ V k,nc
h (Ωh) . (4.19)

The form on the left-hand side of (4.19) is defined as

Ãcip(u, vh) := ϵ a(u, vh) + b(u, vh) + Ã c(u, vh) + Ñh(u, vh) + J̃h(u, vh) , (4.20)

where Ñh(u, vh) and J̃h(u, vh) are sums over all mesh elements E of the local contributions

Ñ E
h (u, vh) := − ϵï∇u · nE , vhðΓE

− ϵïu, Π
0,E
k−1∇vh · nEðΓE

+
ϵ

¶hE

∑

e¢ΓE

ïu, Π0,e
k−1vhðe + ï|´ · nE |u, Π0,E

k vhðΓE,in
, (4.21)

and

J̃E
h (u, vh) :=

1

2

∑

e¢∂E\Γ

µe

∫

e

h2
e [[∇u]] [[∇Π0

kvh]] ds , (4.22)
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respectively. On the right-hand side of (4.19), the load term F̃(vh) is defined as the sum over
all mesh elements E of the local contributions

F̃E
h (vh) :=

∫

E

f vhdE − ϵ ïg, Π
0,E
k−1∇vh · nEðΓE

+
ϵ

¶hE

∑

e¢ΓE

ïg, Π0,e
k−1vhðe + ï|´ · nE |g, Π0,E

k vhðΓE,in
,

(4.23)

and form B̃(u, vh), which arises from the nonconformity of the method, is defined as

B̃(u, vh) :=
∑

e∈Eo
h

ϵ

∫

e

∇u · [[vh]]ds .

4.2.1 Preliminary results

In this section, we present some results that are useful in the following analysis. Some of
them are already known for conforming virtual element spaces. The first one is an inverse
inequality for functions in V k,nc

h (E).

Proposition 4.3 (Inverse inequality). Under assumption (A1), for any E ∈ Ωh we have

|vh|1,E ≲ h−1
E ∥vh∥0,E ∀vh ∈ V k,nc

h (E).

Proof. An integration by parts gives

|vh|21,E =

∫

E

∇vh · ∇vh dE = −
∫

E

vh ∆vhdE +

∫

∂E

vh (∇vh · nE) ds. (4.24)

Since ∆vh is polynomial we have (see for instance [16]1)

∥ ∆vh∥0,E f C∆h−1
E |vh|1,E , (4.25)

for a constant C∆ > 0 independent of hE . Therefore, for the first term on the right-hand side
of (4.24), we get

−
∫

E

vh ∆vh dE f ∥vh∥0,E∥ ∆vh∥0,E f C∆h−1
E ∥vh∥0,E |vh|1,E . (4.26)

For the second term, using the Cauchy-Schwarz inequality and the multiplicative trace inequal-
ity, we obtain

∫

∂E

vh (∇vh · nE) ds f ∥vh∥0,∂E

∥∥∇vh · nE
∥∥

0,∂E

f Ct1
∥vh∥

1
2

0,E

(
h−1

E ∥vh∥0,E + |vh|1,E

) 1
2
∥∥∇vh · nE

∥∥
0,∂E

,

(4.27)

for a positive constant Ct1
> 0 independent of hE . The multiplicative trace inequality and (4.25)

give

∥∥∇vh · nE
∥∥

0,∂E
f Ct2

|vh|
1
2

1,E

(
h−1

E |vh|1,E + ∥∆vh∥0,E

) 1
2

f Ct2 |vh|
1
2

1,E

(
h−1

E |vh|1,E + C∆h−1
E |vh|1,E

) 1
2

f Ct2

√
1 + C∆h

− 1
2

E |vh|1,E ,

(4.28)

for Ct2
> 0 independent of hE . Hence, with Ct := max{Ct1

, Ct2
}, we obtain

∫

∂E

vh ∇vh · nE ds f C2
t

√
1 + C∆ h

− 1
2

E ∥vh∥
1
2

0,E

(
h−1

E ∥vh∥0,E + |vh|1,E

) 1
2 |vh|1,E . (4.29)

1Several of the results we quote have been proven in the references for d = 2. Nevertheless, these results can

be extended to d = 3 in a straightforward manner.
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From (4.24), (4.26), and (4.29), using the Young inequality ab f 1
2¸ a2 + ¸

2 b2 for any ¸ > 0, we
get

|vh|1,E f C∆h−1
E ∥vh∥0,E + C2

t

√
1 + C∆ h

− 1
2

E ∥vh∥
1
2

0,E

(
h−1

E ∥vh∥0,E + |vh|1,E

) 1
2

f C∆h−1
E ∥vh∥0,E + C2

t

√
1 + C∆

(
1

2¸
h−1

E ∥vh∥0,E +
¸

2
h−1

E ∥vh∥0,E +
¸

2
|vh|1,E

)
.

Choosing ¸ = 1/(C2
t

√
1 + C∆), we conclude

|vh|1,E f
(
2C∆ + C4

t (1 + C∆) + 1
)

h−1
E ∥vh∥0,E ,

and the proof is complete.

Similarly to Lemma 3.9, the second result is an inverse trace inequality for functions in
V k,nc

h (E) with internal DoFs equal to zero.

Lemma 4.4 (Inverse trace inequality). Under assumption (A1), for any E ∈ Ωh we have

∥vh∥0,E ≲

(
hE

∑

e¢∂E

∥Π0,e
k−1vh∥2

0,e

) 1
2

∀vh ∈ V k,nc
h (E) such that Π0,E

k−2vh ≡ 0.

Proof. Thanks to the orthogonality of the Π0,E
k projection in L2(E), we have

∥vh∥2
0,E = ∥(I − Π0,E

k )vh∥2
0,E + ∥Π0,E

k vh∥2
0,E . (4.30)

We now remark that the techniques leading to [28, Lemma 2.18] also apply to the nonconforming
space V k,nc

h (E). Therefore, using Π0,E
k−2vh = 0, we have

∥Π0,E
k vh∥2

0,E ≲ hE

∑

e¢∂E

∥Π0,e
k−1vh∥2

0,e . (4.31)

In addition, Lemma 1.4 gives

∥(I − Π0,E
k )vh∥2

0,E ≲ h2
E |vh|21,E . (4.32)

Using integration by parts, recalling that ∆vh ∈ Pk(E) and (∇vh · nE)|e
∈ Pk−1(e), exploiting

estimates (4.25), (4.31) and (4.28) we obtain

|vh|21,E = −
∫

E

vh ∆vhdE +

∫

∂E

vh (∇vh · nE) ds

= −
∫

E

Π0,E
k vh ∆vhdE +

∑

e¢∂E

∫

e

Π0,e
k−1vh (∇vh · nE) ds

f ∥Π0,E
k vh∥0,E∥∆vh∥0,E +

∑

e¢∂E

∥Π0,e
k−1vh∥0,e

∥∥∇vh · nE
∥∥

0,e

≲

(
h−1

E

∑

e¢∂E

∥Π0,e
k−1vh∥2

0,e

) 1
2

|vh|1,E .

(4.33)

It follows that
|vh|21,E ≲ h−1

E

∑

e¢∂E

∥Π0,e
k−1vh∥2

0,e. (4.34)

Hence, from (4.32) and (4.34), we get

∥(I − Π0,E
k )vh∥2

0,E ≲ hE

∑

e¢∂E

∥Π0,e
k−1vh∥2

0,e . (4.35)

Collecting (4.30), (4.31), and (4.35) concludes the proof.
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We now construct an Oswald-type interpolation operator Ã that maps piecewise (sufficiently)
smooth functions into the nonconforming space V k,nc

h (Ωh). Recall the definitions (4.6) and (4.5)
of the local DoFs. To define the global DoFs, we thus average the local DoFs at inter-element
boundaries. More precisely, the

Ãv =
∑

e∈Eh

∑

|ℓ|fk−1

µℓ
e(v)φℓ

e +
∑

E∈Ωh

∑

|³|fk−2

µ³
E(v)φ³

E , (4.36)

where {φℓ
e} is the set of basis functions associated to the DoFs at the mesh skeleton Eh, and

{φ³
E} is the set of basis functions associated to the interior DoFs. For an interior facet e ∈ Eo

h,
e ¢ ∂E ∩ ∂K, the coefficient µℓ

e(v) is defined as

µℓ
e(v) :=

1

2

(
µℓ

E,e(v) + µℓ
K,e(v)

)
, (4.37)

while for a boundary edge e ∈ E∂
h , it is simply defined as

µℓ
e(v) := µℓ

E,e(v). (4.38)

Therefore, considering (4.3) and (4.5), on any edge e we get

Π0,e
k−1(Ãv) = {Π0,e

k−1v} = Π0,e
k−1({v}). (4.39)

The main result of this section is the following proposition, that is the analogous of Proposition
3.11.

Proposition 4.5. Let p ∈ Pk(Ωh) be a (discontinuous) piecewise polynomial, and let Ã :

Pk(Ωh) → V k,nc
h (Ωh) denotes the Oswald’s interpolant. Under assumption (A-NC), we have

that
∥(I − Ã) p∥2

0,E ≲ hE

∑

e¢∂E\Γ

∥[[p]]∥2
0,e ∀E ∈ Ωh , ∀p ∈ Pk(Ωh) .

Proof. We introduce the difference
d := (I − Ã)p .

We restrict our attention to an element E ∈ Ωh, and consider dE := d|E . From (4.39) we get

Π0,e
k−1dE =





1

2
Π0,e

k−1([[p]] · nE) if e ̸¢ Γ,

0 if e ¢ Γ.
(4.40)

We now observe that the interior DoFs of dE are equal to zero, so that Π0,E
k−2dE = 0, see (4.6).

Hence, from Lemma 4.4 and (4.40), we obtain

∥dE∥0,E ≲


hE

∑

e¢∂E\Γ

∥Π0,e
k−1dE∥2

0,e




1
2

≲


hE

∑

e¢∂E\Γ

∥Π0,e
k−1([[p]] · ne)∥2

0,e




1
2

≲


hE

∑

e¢∂E\Γ

∥[[p]] · ne∥2
0,e




1
2

=


hE

∑

e¢∂E\Γ

∥[[p]]∥2
0,e




1
2

.

(4.41)

Lemma 4.6. Under assumption (A1), for every E ∈ Ωh, we have

∥Ãp∥0,E ≲ ∥p∥0,D(E) for all p ∈ Pk(Ωh) ,

where D(E) :=
⋃{K ∈ Ωh s.t. |∂E ∩ ∂K| > 0}.

Proof. As in Lemma 3.13, the proof easily follows from the triangle inequality ∥Ãp∥0,E f
∥Ãp − p∥0,E + ∥p∥0,E , together with Proposition 4.5 and a polynomial trace inequality.

Remark 4.7. We remark that Proposition 4.5 and Lemma 4.6 are actually valid also for
v ∈ L2(Ω) such that v|E ∈ V k,nc

h (E) for every E ∈ Ωh. In particular, in this case, the proof of
Lemma 4.6 requires the application of the Agmon inequality and Proposition 4.3, instead of the
polynomial trace inequality.
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4.2.2 Inf-Sup condition

The goal of this section is to prove the following inf-sup condition for the discrete prob-
lem (4.18), namely

∥vh∥cip ≲ sup
zh∈V k,nc

h
(Ωh)

Acip(vh, zh)

∥zh∥cip
∀vh ∈ V k,nc

h (Ωh) , (4.42)

where the norm ∥ · ∥cip in V k,nc
h (Ωh) is defined by

∥vh∥2
cip :=

∑

E∈Ωh

∥vh∥2
cip,E , (4.43)

with

∥vh∥2
cip,E :=ϵ ∥∇vh∥2

0,E + h ∥´ · ∇Π0,E
k vh∥2

0,E + Ã ∥vh∥2
0,E

+
ϵ

¶h

∑

e¢ΓE

∥Π0,e
k−1vh∥2

0,e + ∥|´ · nE | 1
2 Π0,E

k vh∥2
0,ΓE,in

+ JE
h (vh, vh) . (4.44)

Similarly to the previous chapter, we divide the proof of (4.42) in two parts. In the first part
(Lemma 4.8), we estimate the diffusion, reaction, and inflow boundary terms in ∥vh∥2

cip with
Acip(vh, vh). In the second part (Lemma 4.9), we estimate the convective term in ∥vh∥2

cip. In
order to do so, we would like to take w̃h locally defined by

w̃h|E := h´ · ∇Π0,E
k vh

as the second argument in Acip(·, ·). This is not possible, since w̃h ̸∈ V k,nc
h (Ωh), and we take

its Oswald interpolant Ãw̃h instead. Then, the difference between w̃h and Ãw̃h is controlled
thanks to the jump term. We combine these two results and conclude the proof of the inf-sup
condition (4.42) in Theorem 4.11.

Lemma 4.8. Under assumptions (A1), given vh ∈ V k,nc
h (Ωh), we have

Acip(vh, vh) ≳ϵ ∥∇vh∥2
0,Ωh

+ Ã ∥vh∥2
0,Ωh

+
∑

E∈Ωh

ϵ

¶h

∑

e¢ΓE

∥Π0,e
k−1vh∥2

0,e

+
∑

E∈Ωh

∥|´ · nE | 1
2 Π0,E

k vh∥2
0,ΓE,in

+ Jh(vh, vh) .

Proof. We take the same vh in both arguments of Acip(·, ·) and obtain

Acip(vh, vh) = ϵ ah(vh, vh) + bh(vh, vh) + Ã ch(vh, vh) + dh(vh, vh) + Nh(vh, vh) + Jh(vh, vh) .

The diffusion term is easily estimated using the orthogonality of the projectors and prop-
erty (1.8) of the stabilization form:

ϵah(vh, vh) g ³̃∗ϵ ∥∇vh∥2
0,Ωh

,

where ³̃∗ = min{1, ³∗}. For the reaction term, using (1.8) and the Poincaré inequality for
(I − Π0,E

k )vh, we have
Ãch(vh, vh) g C0³̃∗Ã∥vh∥2

0,Ωh
.

for a positive constant C0 independent of Ã and h. Therefore, we get

ϵah(vh, vh) + Ãch(vh, vh) g ³̃∗ϵ ∥∇vh∥2
0,,Ωh

+ C0³̃∗Ã∥vh∥2
0,Ωh

. (4.45)

For the convective term, by integrating by parts, we obtain

bh(vh, vh) =
1

2

∫

Ω

(´ · ∇Π0
kvh)Π0

kvhdE − 1

2

∫

Ω

Π0
kvh(´ · ∇Π0

kvh)dE

+
1

2

∑

E∈Ωh

∫

∂E

(´ · nE)Π0,E
k vhΠ0,E

k vhds

=
1

2

∑

E∈Ωh

∫

ΓE

(´ · nE)Π0,E
k vhΠ0,E

k vhds − dh(vh, vh),
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where the last step follows from simple algebraic manipulations and from the definition of
dh(·, ·). Combining the terms on Γin in the expression above with those in Nh(·, ·) gives

bh(vh, vh) + dh(vh, vh) + Nh(vh, vh) =
1

2

∑

E∈Ωh

∥|´ · nE | 1
2 Π0,E

k vh∥2
0,ΓE

+
∑

E∈Ωh

ϵ

¶hE

∑

e¢ΓE

∥Π0,e
k−1vh∥2

0,e − 2ϵ
∑

E∈Ωh

ïΠ0,E
k−1∇vh · nE , vhðΓE

.

For the last term on the right-hand side, we use the estimate

2ϵïΠ0,E
k−1∇vh · nE , vhðΓE

= 2ϵ
∑

e¢ΓE

ïΠ0,E
k−1∇vh · nE , Π0,e

k−1vhðe

f 2ϵ¶hE∥Π
0,E
k−1∇vh · nE∥2

ΓE
+

ϵ

2¶hE

∑

e¢ΓE

∥Π0,e
k−1vh∥2

0,e

f 2ϵ¶Ctr∥Π
0,E
k−1∇vh∥2

0,E +
ϵ

2¶hE

∑

e¢ΓE

∥Π0,e
k−1vh∥2

0,e

f 2ϵ¶Ctr∥∇vh∥2
0,E +

ϵ

2¶hE

∑

e¢ΓE

∥Π0,e
k−1vh∥2

0,e ,

where Ctr is the inverse trace inequality constant for polynomials. Therefore, with the choice,
e.g., ¶ = ³̃∗/(4Ctr), we obtain

bh(vh, vh) + dh(vh, vh) + Nh(vh, vh) g1

2

∑

E∈Ωh

∥|´ · nE | 1
2 Π0,E

k vh∥2
0,ΓE

+
1

2

∑

E∈Ωh

ϵ

¶hE

∑

e¢ΓE

∥Π0,e
k−1vh∥2

0,e − ³̃∗

2
ϵ∥∇vh∥2

0,Ωh
.

This, together with (4.45), and noting that

∑

E∈Ωh

∥|´ · nE | 1
2 Π0,E

k vh∥2
0,ΓE

g
∑

E∈Ωh

∥|´ · nE | 1
2 Π0,E

k vh∥2
0,ΓE,in

,

gives the result.

Lemma 4.9. Given vh ∈ V k,nc
h (Ωh), let us define the function

wh := hÃ(´h · ∇Π0
kvh) , (4.46)

where ´h is the L2-projection of ´ in the space of piecewise linear functions [P1(Ωh)]d. Then,
under assumptions (A-NC), if the mesh size satisfies h > ε, we have

Acip(vh, wh) g C1 h∥´ · ∇Π0
kvh∥2

0,Ωh
− C2 Acip(vh, vh) , (4.47)

for C1, C2 > 0 independent of ϵ and h.

Proof. From Lemma 4.6, wh defined in (4.46) satisfies the following estimate, which will be
used throughout the rest of the proof:

∥wh∥0,E ≲ h∥´h · ∇Π0
kvh∥0,D(E) . (4.48)

We proceed element by element. By definition of the local bilinear form AE
cip(·, ·), we have that

AE
cip(vh, wh) = ϵ aE

h (vh, wh) + JE
h (vh, wh) + Ã cE

h (vh, wh)

+ N E
h (vh, wh) + bE

h (vh, wh) + dE
h (vh, wh)

=: T1 + T2 + T3 + T4 + T5 + T6 .

(4.49)
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We estimate each of these six terms separately.
Estimate of (T1). Using the Cauchy-Schwarz inequality, the properties of ah(·, ·), the inverse
inequality for virtual functions, estimate (4.48), and recalling that ϵ < h, we get

T1 = ϵ aE
h (vh, wh) g −ϵ aE

h (vh, vh)
1
2 aE

h (wh, wh)
1
2

≳ −ϵ
1
2 ∥∇vh∥0,E ϵ

1
2 ∥∇wh∥0,E

≳ −ϵ
1
2 ∥∇vh∥0,E ϵ

1
2 h−1∥wh∥0,E

≳ −ϵ
1
2 ∥∇vh∥0,E h

1
2 ∥´h · ∇Π0

kvh∥0,D(E) .

(4.50)

Estimate of (T2). We first split JE
h (·, ·) using the Cauchy-Schwarz inequality

T2 = JE
h (vh, wh) g −JE

h (vh, vh)
1
2 JE

h (wh, wh)
1
2 .

Using inverse and inverse trace inequalities for polynomials, the inverse inequality for virtual
functions, the properties of the L2 projection, and (4.48), we get

JE
h (wh, wh) =

1

2

∑

e¢∂E\Γ

µe

∫

e

h2
e |[[∇Π0

kwh]]|2 ds + µE hE SE
J

(
(I − Π∇,E

k )wh, (I − Π∇,E
k )wh

)

≲ h ∥∇Π0
kwh∥2

0,D(E) + h ∥∇wh∥2
0,E

≲ h−1 ∥Π0
kwh∥2

0,D(E) + h−1∥wh∥2
0,E

≲ h−1∥wh∥2
0,D(E) ≲ h∥´h · ∇Π0

kvh∥2
0,D(D(E)) ,

from which we conclude

T2 ≳ −JE
h (vh, vh)

1
2 h

1
2 ∥´h · ∇Π0

kvh∥0,D(D(E)) . (4.51)

Estimate of (T3). From the properties of cE
h (·, ·) and (4.48), we get

T3 = ÃcE
h (vh, wh) ≳ −Ã∥vh∥0,E ∥wh∥0,E

≳ −∥vh∥0,E h
1
2 ∥´h · ∇Π0

kvh∥0,D(E) .
(4.52)

where we used h
1
2 ≲ 1 to simplify later developments.

Estimate of (T4). For the Nitsche term, we have to control four different terms:

T4 = N E
h (vh, wh) = −ϵ ïΠ0,E

k−1∇vh · nE , whðΓE
− ϵ ïvh, Π

0,E
k−1∇wh · nEðΓE

+
ϵ

¶hE

∑

e¢ΓE

ïΠ0,e
k−1vh, Π0,e

k−1whðe + ï|´ · nE |Π0,E
k vh, Π0,E

k whðΓE,in

=: ¸N1 + ¸N2 + ¸N3 + ¸N4 .

We remark that N E
h (·, ·) is different from zero only if E has at least one facet on Γ.

For ¸N1
, we use Chauchy-Schwarz inequality, the inverse trace inequality for polynomials and

for virtual functions, esitmate (4.48), and the assumption ϵ < h, and derive

¸N1
≳ −ϵ∥Π

0,E
k−1∇vh∥0,ΓE

∥wh∥0,ΓE

≳ −ϵ h−1∥Π
0,E
k−1∇vh∥0,E∥wh∥0,E

≳ −ϵ
1
2 ∥∇vh∥0,E h

1
2 ∥´h · ∇Π0

kvh∥0,D(E) .

(4.53)

For ¸N2
, we use the orthogonality of Π0,e

k−1, the Cauchy-Schwarz inequality, inverse trace and
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inverse inequalities, and ϵ < h, to obtain

¸N2
= −ϵ

∑

e¢ΓE

ïΠ0,e
k−1vh, Π

0,E
k−1∇wh · nEðe

≳ −ϵ
∑

e¢ΓE

∥Π0,e
k−1vh∥0,e∥Π

0,E
k−1∇wh∥0,ΓE

≳ −ϵ h− 1
2

∑

e¢ΓE

∥Π0,e
k−1vh∥0,e∥Π

0,E
k−1∇wh∥0,E

≳ −ϵ h− 3
2

∑

e¢ΓE

∥Π0,e
k−1vh∥0,e∥wh∥0,E

≳ −
( ϵ

¶h

) 1
2
∑

e¢ΓE

∥Π0,e
k−1vh∥0,e h

1
2 ∥´h · ∇Π0

kvh∥0,D(E) .

(4.54)

For ¸N3 , thanks to orthogonality, we remove the Π0,e
k−1 projection on the second term and we

proceed similarly to the previous cases:

¸N3
=

ϵ

¶h

∑

e¢ΓE

ïΠ0,e
k−1vh, whðe ≳ − ϵ

¶h

∑

e¢ΓE

∥Π0,e
k−1vh∥0,e∥wh∥0,ΓE

≳ −h−1
( ϵ

¶h

) 1
2
∑

e¢ΓE

∥Π0,e
k−1vh∥0,e∥wh∥0,E

≳ −
( ϵ

¶h

) 1
2
∑

e¢ΓE

∥Π0,e
k−1vh∥0,e h

1
2 ∥´h · ∇Π0

kvh∥0,D(E) ,

(4.55)

where we have used again h ≲ 1.
For ¸N4

, using |´ · nE | f 1, we have that

¸N4
≳ −∥|´ · nE | 1

2 Π0,E
k vh∥0,ΓE,in

∥Π0,E
k wh∥0,ΓE,in

≳ −h− 1
2 ∥|´ · nE | 1

2 Π0,E
k vh∥0,ΓE,in

∥Π0,E
k wh∥0,E

≳ −∥|´ · nE | 1
2 Π0,E

k vh∥0,ΓE,in
h

1
2 ∥´h · ∇Π0

kvh∥0,D(E) .

(4.56)

Gathering (4.53)–(4.56) gives

T4 ≳ −
(

ϵ
1
2 ∥∇vh∥0,E +

( ϵ

¶h

) 1
2
∑

e¢ΓE

∥Π0,e
k−1vh∥0,e + ∥|´ · nE | 1

2 Π0,E
k vh∥0,ΓE,in

)

· h
1
2 ∥´h · ∇Π0

kvh∥0,D(E) .

(4.57)

Estimate of (T5). The definition of the bilinear form bh(·, ·) implies that

T5 = bE
h (vh, wh) =

(
´ · ∇Π0,E

k vh, Π0,E
k wh

)
0,E

=
(
´ · ∇Π0,E

k vh, wh

)
0,E

+
(
´ · ∇Π0,E

k vh, (Π0,E
k − I)wh

)
0,E

=
(
´ · ∇Π0,E

k vh, h´h · ∇Π0,E
k vh

)
0,E

+
(
´ · ∇Π0,E

k vh, wh − h´h · ∇Π0,E
k vh

)
0,E

+
(
´ · ∇Π0,E

k vh, (Π0,E
k − I)wh

)
0,E

=: ¸´1 + ¸´2 + ¸´3 .

(4.58)

For ¸´1
, we add and subtract (´ · ∇Π0,E

k vh, h´ · ∇Π0,E
k vh)0,E and we use the Cauchy-Schwarz

inequality to obtain

¸´1 = (´ · ∇Π0,E
k vh, h´h · ∇Π0

kvh)0,E

= h ∥´ · ∇Π0,E
k vh∥2

0,E + (´ · ∇Π0,E
k vh, h(´h − ´) · ∇Π0,E

k vh)0,E

g h ∥´ · ∇Π0,E
k vh∥2

0,E − C h
1
2 ∥´ · ∇Π0,E

k vh∥0,E h
1
2 |´|[W 1

∞
(E)]dh∥∇Π0,E

k vh∥0,E

g h ∥´ · ∇Π0,E
k vh∥2

0,E − C h
1
2 ∥´ · ∇Π0,E

k vh∥0,E h
1
2 |´|[W 1

∞
(E)]d∥vh∥0,E ,

(4.59)
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where in the third step we have used ∥´h − ´∥[L∞(E)]d ≲ h|´|[W 1
∞

(E)]d .
For ¸´2

, recalling the definition of wh and using the Young inequality to split the two terms,
we get

¸´2
= h

(
´ · ∇Π0,E

k vh, (Ã − I)(´h · ∇Π0,E
k vh)

)
0,E

g −h

2
∥´ · ∇Π0,E

k vh∥2
0,E − h

2
∥(Ã − I)(´h · ∇Π0,E

k vh)∥2
0,E .

(4.60)

For the second term on the right-hand side, we use the fact that ´h · ∇Π0
kvh ∈ Pk(Ωh). Propo-

sition 4.5 gives

h∥(Ã − I)(´h · ∇Π0
kvh)∥2

0,E ≲ h2
∑

e¢∂E\Γ

∥[[´h · ∇Π0
kvh]]∥2

0,e .

The triangular inequality and the definition of the jump bilinear form give

h2
∑

e¢∂E\Γ

∥[[´h · ∇Π0
kvh]]∥2

0,e ≲ h2
∑

e¢∂E\Γ

∥[[(´h − ´) · ∇Π0
kvh]]∥2

0,e + h2
∑

e¢∂E\Γ

∥[[´ · ∇Π0
kvh]]∥2

0,e

≲ h2
∑

e¢∂E\Γ

∥[[(´h − ´) · ∇Π0
kvh]]∥2

0,e + h2
∑

e¢∂E\Γ

µ2
e ∥[[∇Π0

kvh]]∥2
0,e

≲ h2
∑

e¢∂E\Γ

∥[[(´h − ´) · ∇Π0
kvh]]∥2

0,e +
∑

E′¢D(E)

JE′

h (vh, vh) ,

where we used that µ2
e f µe (since µe f 1, see (3.3)). On each e, the argument in the first sum

on the right-hand side of the previous inequality is controlled using the trace inequality and
standard estimates on ´ ∈ [W 1

∞(Ω)]d:

h2∥[[(´h − ´) · ∇Π0
kvh]]∥2

0,e ≲ h4|´|2[W 1
∞

(E∪K)]dh−1∥∇Π0
kvh∥2

0,E∪E′

≲ h|´|2[W 1
∞

(E∪K)]d∥Π0
kvh∥2

0,E∪E′

≲ h|´|2[W 1
∞

(E∪K)]d∥vh∥2
0,E∪E′ ,

(4.61)

where E and E′ are the two elements sharing the edge e. Combining (4.60) with (4.61), we
obtain for ¸´2

¸´2
g − h

2
∥´ · ∇Π0,E

k vh∥2
0,E

− C
(

h|´|2[W 1
∞

(D(E))]d∥vh∥2
0,D(E) +

∑

K¢D(E)

JK
h (vh, vh)

)
.

(4.62)

It remains to control ¸´3 . Since ´h ∈ [P1(E)]d, it holds
(
´h · ∇Π0,E

k vh, (Π0,E
k − I)wh

)
0,E

= 0.
Hence we have

¸´3
=
(
(´ − ´h) · ∇Π0,E

k vh, (Π0,E
k − I)wh

)
0,E

≳ −∥(´ − ´h) · ∇Π0,E
k vh∥0,E ∥hÃ(´h · ∇Π0,E

k vh)∥0,E

≳ −|´|[W 1
∞

(E)]dh∥∇Π0,E
k vh∥0,E h∥´h · ∇Π0

kvh∥0,D(E)

≳ −|´|[W 1
∞

(E)]d∥vh∥2
0.D(E) .

(4.63)

Collecting (4.59), (4.62) and (4.63), from (4.58) we get

T5 g h

2
∥´ · ∇Π0,E

k vh∥2
0,E − C

( ∑

E′¢D(E)

JE′

h (vh, vh)

+ h
1
2 ∥´ · ∇Π0,E

k vh∥0,E h
1
2 |´|[W 1

∞
(E)]d∥vh∥0,E

+ h|´|2[W 1
∞

(D(E))]d∥vh∥2
0,D(E) + |´|[W 1

∞
(E)]d∥vh∥2

0,D(E)

)
.

(4.64)
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Estimate of (T6). The last term that we have to estimate is related to dh(·, ·). We use the
Cauchy-Schwarz and the trace inequality for polynomials:

T6 = dE
h (vh, wh) = −1

2

∑

e¢∂E\Γ

∫

e

´ · [[Π0
kvh]]{Π0

kwh}ds

≳ −
∑

e¢∂E\Γ

∥´ · [[Π0
kvh]]∥0,e∥{Π0

kwh}∥0,e

≳ −
∑

e¢∂E\Γ

(
∥|´ · nE | 1

2 Π0,E
k vh∥0,e + ∥|´ · nK | 1

2 Π0,K
k vh∥0,e

)
h− 1

2 ∥wh∥0,E∪K

≳ −
∑

e¢∂E\Γ

(
∥|´ · nE | 1

2 Π0,E
k vh∥0,e + ∥|´ · nK | 1

2 Π0,K
k vh∥0,e

)
h

1
2 ∥´h · ∇Π0

kvh∥0,D(E∪K) .

By collecting the estimates of all six terms and adding over all elements, we obtain

Acip(vh, wh) g h

2
∥´ · ∇Π0

kvh∥2
0,Ωh

− C
( ∑

E∈Ωh

(
ϵ

1
2 ∥∇vh∥0,E + JE

h (vh, vh)
1
2 + ∥vh∥0,E

+
( ϵ

¶h

) 1
2
∑

e¢ΓE

∥Π0,e
k−1vh∥0,e + ∥|´ · nE | 1

2 Π0,E
k vh∥0,ΓE,in

)
h

1
2 ∥´h · ∇Π0,E

k vh∥0,E

+ Jh(vh, vh) +
∑

E∈Ωh

(
h|´|2[W 1

∞
(E)]d + |´|[W 1

∞
(E)]d

)
∥vh∥2

0,E

+
∑

E∈Ωh

h
1
2 ∥´h · ∇Π0,E

k vh∥0,E h
1
2 |´|[W 1

∞
(E)]d∥vh∥0,E

)
.

(4.65)

Above, we have also used the property that, due to assumption (A1), summing over the
elements, each element is counted only a uniformly bounded number of times, even when the
terms involve norms on D(E) or D(D(E)).

We now notice that the triangular inequality, standard approximation results, and an inverse
estimate give

h
1
2 ∥´h · ∇Π0,E

k vh∥0,E ≲ h
1
2

(
∥´ · ∇Π0,E

k vh∥0,E + |´|[W 1
∞

(E)]d∥vh∥0,E

)
. (4.66)

Hence, from (4.65), using (4.66) and the Young inequality (with suitable constants) for the first
and the last summations on the right-hand side, we get

Acip(vh, wh) gC1h∥´ · ∇Π0
kvh∥2

0,Ωh
− C2

(
ϵ∥∇vh∥2

0,Ωh
+
∑

E∈Ωh

ϵ

¶hE

∑

e¢ΓE

∥Π0,e
k−1vh∥2

0,e

+ Ã∥vh∥2
0,Ωh

+
∑

E∈Ωh

∥|´ · nE | 1
2 Π0,E

k vh∥2
0,ΓE,in

+ Jh(vh, vh)
)

.

From Lemma 4.8, we now obtain

Acip(vh, wh) g C1 h∥´ · ∇Π0
kvh∥2

0,Ωh
− C2 Acip(vh, vh) .

Whenever h > ε, we also need the following estimate.

Lemma 4.10. Under assumptions (A-NC), assume that h > ε. For any vh ∈ V k,nc
h (Ωh), let

wh be defined as in (4.46). Then,

∥wh∥cip ≲ ∥vh∥cip ,

with hidden constant independent of ϵ, h, and vh.
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Proof. From the definition of wh and h > ε, for the gradient term in the ∥ · ∥cip norm, we have

ϵ∥∇wh∥2
0,E ≲ ϵh−2∥wh∥2

0,E ≲ ϵ∥Ã(´h · ∇Π0,E
k vh)∥2

0,E ≲ h∥´h · ∇Π0
kvh∥2

0,D(E) . (4.67)

For the L2 term, we have that

Ã∥wh∥2
0,E ≲ Ã∥hÃ(´h · ∇Π0,E

k vh)∥2
0,E ≲ Ã∥vh∥2

0,D(E) . (4.68)

The convective term in the norm is estimated by

h∥´ · ∇Π0,E
k wh∥2

0,E ≲ h−1∥Π0,E
k wh∥2

0,E ≲ h∥´h · ∇Π0
kvh∥2

0,D(E) . (4.69)

The boundary terms are estimated by

∑

e¢ΓE

ϵ

¶h
∥Π0,e

k−1wh∥2
0,e f ϵ

¶h
∥wh∥2

0,ΓE
≲ ϵ∥Ã(´h · ∇Π0,E

k vh)∥2
0,E ≲ h∥´h · ∇Π0

kvh∥2
0,D(E) , (4.70)

and
∥|´ · nE | 1

2 Π0,E
k wh∥2

0,ΓE,in
≲ h−1∥Π0,E

k wh∥2
0,E ≲ h∥´h · ∇Π0

kvh∥2
0,D(E) . (4.71)

We gather estimates (4.67), (4.68), (4.69), (4.70), (4.71), together with estimate (4.51) for the
term JE

h (wh, wh), add over all elements, and obtain

∥wh∥2
cip ≲ Ã∥vh∥2

0,Ωh
+
∑

E∈Ωh

h∥´h · ∇Π0
kvh∥2

0,E ,

and the result follows from estimate (4.66).

We are now able to prove the inf-sup condition (4.42).

Theorem 4.11 (Inf-sup condition). Under assumptions (A-NC),

∥vh∥cip ≲ sup
zh∈V k,nc

h
(Ωh)

Acip(vh, zh)

∥zh∥cip
for all vh ∈ V k,nc

h (Ωh). (4.72)

Proof. We distinguish two cases: h > ϵ and h f ϵ.
If h > ϵ, given vh ∈ V k,nc(Ωh), we define the function zh := wh + »vh, where wh is given

by (4.46), and » is a sufficiently large constant. Combining Lemma 4.8 with Lemma 4.9 gives

Acip(vh, zh) = Acip(vh, wh + »vh) ≳ ∥vh∥2
cip .

This, together with Lemma 4.10, gives the inf-sup condition in the case h > ϵ. If h f ϵ, from
Lemma 4.8, the definition of the norm ∥ · ∥cip, and the estimate

h∥´ · ∇Π0,E
k vh∥2

0,E ≲ ε∥∇Π0,E
k vh∥2

0,E ≲ ε∥∇vh∥2
0,E ,

we obtain Acip(vh, vh) ≳ ∥vh∥2
cip and the proof is complete.

4.2.3 Error Estimates

In this section, we derive error estimates under the following smoothness assumption on the
terms appearing in (4.1). The solution of the continuous problem u, the right-hand side f , and
the advective field ´ in (4.2) satisfy

u ∈ H2(Ω) ∩ H1
g (Ω) ∩ Hk+1(Ωh) , f ∈ Hk+ 1

2 (Ωh) , ´ ∈ [W k+1
∞ (Ωh)]d .

Let uh be the discrete solution of (4.18). Then, thanks to the inf-sup condition (4.72), for
the error u − uh, we prove the following result.
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Proposition 4.12. Under assumptions (A1), we have

∥u − uh∥cip ≲ ∥eI∥cip + ¸F + ¸B̃ + ¸a + ¸b + ¸c + ¸d + ¸N + ¸J , (4.73)

where eI := u − uI and uI ∈ V k,nc
h (Ωh) is the interpolant function of u defined in Lemma 4.1.

Moreover, in the right-hand side of (4.73) we have defined

¸F := ∥F̃ − Fh∥cip∗ ,

¸B̃ := ∥B̃(u, ·)∥cip∗ ,

¸a := ϵ ∥a(u, ·) − ah(uI , ·)∥cip∗ ,

¸b := ∥b(u, ·) − bh(uI , ·)∥cip∗ ,

¸c := Ã∥c(u, ·) − ch(uI , ·)∥cip∗ ,

¸d := ∥dh(uI , ·)∥cip∗ ,

¸N := ∥Ñh(u, ·) − Nh(uI , ·)∥cip∗ ,

¸J := ∥J̃h(u, ·) − Jh(uI , ·)∥cip∗ = ∥Jh(uI , ·)∥cip∗ ,

(4.74)

where ∥ · ∥cip∗ denotes the dual norm of the norm ∥ · ∥cip.

Proof. Setting eh := uh − uI , thanks to the triangular inequality, we have

∥u − uh∥cip f ∥eI∥cip + ∥eh∥cip .

Hence, we only have to bound the second term of the right-hand side. Using the inf-sup
condition, (4.18) and (4.19), we have that

∥eh∥cip = sup
vh∈V k,nc

h
(Ωh)

Acip(uh − uI , vh)

∥vh∥cip
= sup

vh∈V k,nc

h
(Ωh)

Fh(vh) − Acip(uI , vh)

∥vh∥cip

= sup
vh∈V k,nc

h
(Ωh)

Fh(vh) − F̃(vh) − B̃(u, vh) + Ãcip(u, vh) − Acip(uI , vh)

∥vh∥cip
.

Estimate (4.73) now follows from considering the definitions of Acip(·, ·) and Ãcip(·, ·) given in
(4.16) and (4.20), respectively.

We proceed by estimating each of the terms on the right-hand side of (4.73). We start with
the interpolation error in the CIP norm.

Lemma 4.13. Under assumptions (A-NC), we have the following estimate:

∥eI∥2
cip ≲

∑

E∈Ωh

ϵ h2k |u|2k+1,E +
∑

E∈Ωh

h2k+1 |u|2k+1,E .

Proof. The proof can be developed along the lines of [17]. The only slight differences lie in
the treatment of the following Nitsche terms, for which we use a trace inequality and the
interpolation estimate in Lemma 4.1 to obtain
∑

e¢ΓE

ϵ

¶hE
ïΠ0,e

k−1eI , Π0,e
k−1eIðe ≲

∑

e¢ΓE

ϵ

¶h
∥eI∥2

0,e ≲
ϵ

¶h2
∥eI∥2

0,E +
ϵ

¶
|eI |21,E ≲ ϵ h2k |u|2k+1,E ,

and
∑

e¢ΓE,in

ï|´ · nE |Π0,E
k eI , Π0,E

k eIðe ≲ h−1 ∥Π0,E
k eI∥2

0,E f h−1 ∥eI∥2
0,E ≲ h2k+1 |u|2k+1,E .

Now, we estimate the term ¸B̃ defined in (4.74), which enters into play because of the
nonconformity of our method.



CHAPTER 4. NONCONFORMING CIP 74

Lemma 4.14 (Estimate of ¸B̃). Under assumptions (A-NC), we have the following estimate:

¸B̃ ≲ ϵ
1
2 hk
( ∑

E∈Ωh

|u|2k+1,E

)1/2

. (4.75)

Proof. Thanks to the definition of the space V k,nc
h (Ωh) and Lemma 1.5, we get

B̃(u, vh) =
∑

e∈E0
h

ϵ

∫

e

∇u · [[vh]]ds =
∑

e∈E0
h

ϵ

∫

e

(I − Π
0,e
k−1)∇u · [[vh]]ds

=
∑

e∈E0
h

ϵ

∫

e

(I − Π
0,e
k−1)∇u · ([[vh]] − [[Π0,e

0 vh]])ds

f
∑

e∈E0
h

ϵ
1
2 ∥(I − Π

0,e
k−1)∇u∥0,e ϵ

1
2 ∥ [[vh]] − [[Π0,e

0 vh]] ∥0,e

f
∑

E∈Ωh

ϵ
1
2 hk− 1

2 |u|k+1,E ϵ
1
2 h

1
2 |vh|1,E

≲ ϵ
1
2 hk

∑

E∈Ωh

|u|k+1,E∥vh∥cip,E

≲ ϵ
1
2 hk
( ∑

E∈Ωh

|u|2k+1,E

)1/2

∥vh∥cip ,

(4.76)

where we have used that each element is counted a finite number of times. Estimate (4.75)
follows from (4.76).

Some of the other quantities in (4.74) can be estimated exactly as in the previous chapter.
We group them in the following lemma.

Lemma 4.15 (Estimates of ¸a, ¸c, ¸J and ¸F ). Under assumptions (A-NC), we have the
following estimates:

¸a ≲ ϵ
1
2 hk

( ∑

E∈Ωh

|u|2k+1,D(E)

)1/2

,

¸c ≲ hk+1
( ∑

E∈Ωh

|u|2k+1,E

)1/2

,

¸J ≲ hk+ 1
2

( ∑

E∈Ωh

|u|2k+1,E

)1/2

,

¸F ≲ hk+ 1
2

( ∑

E∈Ωh

|f |2k+ 1
2 ,E

)1/2

.

Proof. We refer to Lemma 3.22, Lemma 3.24, Lemma 3.26 and Lemma 3.21. We observe that,
for ¸F , the terms containing g cancel with each other (cf. (4.17) and (4.23)), therefore the
estimate contains only f .

In the following three lemmas, we detail the proofs of the estimates for the remaining terms
in (4.74).

Lemma 4.16 (Estimate of ¸b). Under assumptions (A-NC), the term ¸b satisfies

¸b ≲ hk
( ∑

E∈Ωh

∥´∥2
[W k

∞
(E)]2 |u|2k+1,E

)1/2

. (4.77)

Proof. We have

¸b = sup
vh∈V k,nc

h
(Ωh)

∑
E∈Ωh

(´ · ∇u, vh)0,E − (´ · ∇Π0,E
k uI , Π0,E

k vh)0,E

∥vh∥cip
.
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We proceed locally element by element. For any fixed element E ∈ Ωh, we have

(´ · ∇u,vh)0,E − (´ · ∇Π0,E
k uI , Π0,E

k vh)0,E

= (´ · ∇(u − uI), vh)0,E + ((I − Π0,E
k )(´ · ∇uI), (I − Π0,E

k )vh)0,E

+ (´ · ∇(I − Π0,E
k )uI , Π0,E

k vh)0,E

=: T E
b,1 + T E

b,2 + T E
b,3 .

We consider each of the three terms. On the first one, we use the Cauchy-Schwarz inequality,
the interpolation estimate, and the definition of ∥ · ∥cip,E , and obtain

T E
b,1 = (´ · ∇(u − uI), vh) ≲ ∥´∥[L∞(E)]d |u − uI |1,E∥vh∥0,E ≲ hk∥´∥[L∞(E)]d |u|k+1,E∥vh∥cip,E .

For the second one, we have

T E
b,2 = ((I − Π0,E

k )(´ · ∇uI), (I − Π0,E
k )vh)0,E

= ((I − Π0,E
k )(´ · ∇u), (I − Π0,E

k )vh)0,E + ((I − Π0,E
k )(´ · ∇(uI − u)), (I − Π0,E

k )vh)0,E

≲
(
∥(I − Π0,E

k )(´ · ∇u)∥0,E + ∥(I − Π0,E
k )(´ · ∇(uI − u))∥0,E

)
∥(I − Π0,E

k )vh∥0,E

≲
(
hk|´ · ∇u|k,E + ∥´∥[L∞(E)]d |u − uI |1,E

)
∥vh∥cip,E

≲ hk∥´∥[W k
∞(E)

]d∥u∥k+1,E∥vh∥cip,E .

The third term can be estimated as

T E
b,3 = (´ · ∇(I − Π0,E

k )uI , Π0,E
k vh)0,E

≲ ∥´∥[L∞(E)]d |(I − Π0,E
k )uI |1,E∥Π0,E

k vh∥0,E

≲ ∥´∥[L∞(E)]d

(
|(I − Π0,E

k )u|1,E + |(I − Π0,E
k )(u − uI)|1,E

)
∥Π0,E

k vh∥0,E

≲ hk∥´∥[L∞(E)]d |u|k+1,E∥vh∥cip,E .

Estimate (4.77) follows from the above three bounds, and from summing over all the elements
E ∈ Ωh.

Lemma 4.17 (Estimate of ¸d). Under assumptions (A1) and (A2), the term ¸d can be
estimated as follows:

¸d ≲ hk
( ∑

E∈Ωh

|u|2k+1,D(E)

)1/2

. (4.78)

Proof. We have

¸d = sup
vh∈V k,nc

h
(Ωh)

− 1
2

∑
E∈Ωh

∑
e¢∂E/Γ

∫
e

´ · [[Π0
kuI ]]{Π0

kvh}ds

∥vh∥cip
.

Again, we proceed element by element. Using also a trace inequality for polynomials, we
estimate the numerator of the quotient above as follows:

−
∑

e¢∂E\Γ

1

2

∫

e

´ · [[Π0
kuI ]]{Π0

kvh}ds =
∑

e¢∂E\Γ

1

2

∫

e

´ · [[u − Π0
kuI ]]{Π0

kvh}ds

=
∑

e¢∂E\Γ

1

2

∫

e

´ · [[u − Π0
ku]]{Π0

kvh}ds +
∑

e¢∂E\Γ

1

2

∫

e

´ · [[Π0
k(u − uI)]]{Π0

kvh}ds

≲ ∥´∥[L∞(D(E))]d

∑

K¢D(E)

(
h

1
2 |u − Π0

ku|1,K + h− 1
2 ∥u − Π0

ku∥0,K

+ h− 1
2 ∥Π0

k(u − uI)∥0,K

)
h− 1

2 ∥vh∥0,D(E)

≲ hk|u|k+1,D(E)∥vh∥cip,D(E) .

Estimate (4.78) follows from the bound above, by summing over the elements and taking into
account, as already noticed for (4.65), that each element is counted only a uniformly bounded
number of times.
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Lemma 4.18 (Estimate of ¸N ). Under assumptions (A-NC), the term ¸N can be estimated
as follows:

¸N ≲ (ϵ
1
2 hk + hk+ 1

2 )
( ∑

E∈Ωh

|u|2k+1,E

)1/2

. (4.79)

Proof. We have

¸N = sup
vh∈V k,nc

h
(Ωh)

[ 1

∥vh∥cip

∑

E∈Ωh

( ∑

e¢ΓE

ϵïΠ0,E
k−1∇uI · nE − ∇u · nE , vhðe

+
∑

e¢ΓE

ϵïuI − u, Π
0,E
k−1∇vh · nEðe

+
ϵ

¶hE

∑

e¢ΓE

ïu − uI , Π0,e
k−1vhðe +

∑

e¢ΓE,in

ï|´ · nE |(u − Π0,E
k uI), Π0,E

k vhðe

)]
.

We consider an element E ∈ Ωh. Thus, we need to estimate four different terms:

ϵïΠ0,E
k−1∇uI · nE − ∇u · nE , vhðΓE

+ ϵïuI − u, Π
0,E
k−1∇vh · nEðΓE

+
ϵ

¶hE

∑

e¢ΓE

ïu − uI , Π0,e
k−1vhðe + ï|´ · nE |(u − Π0,E

k uI), Π0,E
k vhðΓE,in

= T E
N,1 + T E

N,2 + T E
N,3 + T E

N,4 .

For T E
N,1, we have

T E
N,1 = ϵïΠ0,E

k−1∇uI · nE − ∇u · nE , vhðΓE

f ϵ∥∇u − Π
0,E
k−1∇uI∥0,e∥vh∥0,ΓE

≲ ϵh− 1
2

(
∥∇u − Π

0,E
k−1∇uI∥0,E + h |∇u − Π

0,E
k−1∇uI |1,E

)
∥vh∥0,ΓE

.

Since it holds (cf. Lemma 1.4 and Lemma 4.1):

∥∇u − Π
0,E
k−1∇uI∥0,E f ∥∇u − Π

0,E
k−1∇u∥0,E + ∥Π

0,E
k−1(∇u − ∇uI)∥0,E

≲ hk|u|k+1,E ,

and
|∇u − Π

0,E
k−1∇uI |1,E f |∇u − Π

0,E
k−1∇u|1,E + |Π0,E

k−1(∇u − ∇uI)|1,E

≲ |∇u − Π
0,E
k−1∇u|1,E + h−1∥Π

0,E
k−1(∇u − ∇uI)∥0,E

≲ hk−1|u|k+1,E ,

we get
T E

N,1 ≲ ϵhk|u|k+1,E h− 1
2

∑

e¢ΓE

∥vh∥0,e

≲ ϵhk|u|k+1,E h− 1
2

∑

e¢ΓE

(
∥vh − Π0,e

0 vh∥0,e + ∥Π0,e
0 vh∥0,e

)

≲ ϵhk|u|k+1,E

(
|vh|1,E +

∑

e¢ΓE

h− 1
2 ∥Π0,e

k−1vh∥0,e

)

≲ ϵ
1
2 hk|u|k+1,E∥vh∥cip,E ,

(4.80)

where, in the penultimate step, we have used Lemma 1.5.
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For T E
N,2, we get

T E
N,2 = ϵïuI − u, Π

0,E
k−1∇vh · nEðΓE

f ϵ∥u − uI∥0,ΓE
∥Π

0,E
k−1∇vh∥0,ΓE

≲ ϵ∥u − uI∥0,ΓE
h− 1

2 ∥Π
0,E
k−1∇vh∥0,E

≲ ϵh− 1
2 ∥u − uI∥0,ΓE

|vh|1,E

≲ ϵ
1
2

(
|u − uI |1,E + h−1∥u − uI∥0,E

)
∥vh∥cip,E

≲ ϵ
1
2 hk|u|k+1,E∥vh∥cip,E .

(4.81)

For T E
N,3, we have

T E
N,3 =

ϵ

¶hE

∑

e¢ΓE

ïu − uI , Π0,e
k−1vhðe

f
(

ϵ

¶hE

∑

e¢ΓE

∥u − uI∥2
0,e

) 1
2
(

ϵ

¶hE

∑

e¢ΓE

∥Π0,e
k−1vh∥2

0,e

) 1
2

≲

(
ϵ

¶hE

∑

e¢ΓE

∥u − uI∥2
0,e

) 1
2

∥vh∥cip,E

≲
ϵ

1
2

¶
1
2

(
(|u − uI |21,E + h−2∥u − uI∥2

0,E)
) 1

2 ∥vh∥cip,E

≲ ϵ
1
2 hk|u|k+1,E∥vh∥cip,E .

(4.82)

Finally, for T E
N,4, we get

T E
N,4 = ï|´ · nE |(u − Π0,E

k uI), Π0,E
k vhðΓE,in

≲ ∥u − Π0,E
k uI∥0,ΓE,in

∥|´ · nE | 1
2 Π0,E

k vh∥0,ΓE,in

≲
(
∥u − Π0,E

k u∥0,ΓE,in
+ ∥Π0,E

k (u − uI)∥0,ΓE,in

)
∥vh∥cip,E

≲
(

h− 1
2 ∥u − Π0,E

k u∥0,E + h
1
2 |u − Π0,E

k u|1,E + h− 1
2 ∥Π0,E

k (u − uI)∥0,E

)
∥vh∥cip,E

≲
(

h− 1
2 ∥u − Π0,E

k u∥0,E + h
1
2 |u − Π0,E

k u|1,E + h− 1
2 ∥u − uI∥0,E

)
∥vh∥cip,E

≲ hk+ 1
2 |u|k+1,E ∥vh∥cip,E .

(4.83)

Estimate (4.79) now follows by considering estimates (4.80)-(4.83) and summing all the local
contributions.

Combining Lemmas 4.13–4.18 with Proposition 4.12, we obtain the following result.

Theorem 4.19. Let u be the solution of problem (4.2) and uh ∈ V k,nc
h (Ωh) be the solution of

the discrete problem (4.18). Under assumptions (A-NC), it holds true that

∥u − uh∥cip ≲
(

ϵ
1
2 hk + hk+ 1

2

) ( ∑

E∈Ωh

Θ2
E

)1/2

, (4.84)

with constants ΘE depending on |u|k+1,E, |f |k+ 1
2 ,E, and ∥´∥[W k+1,∞(E)]2 , but independent

of h and ε.

4.3 Numerical results

In this section, we numerically test our method in two space dimensions, by considering two
model problems in the domain Ω = (0, 1) × (0, 1). We use two different families of meshes:
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• octag: meshes obtained by perturbing structured triangular meshes: each hypotenuse is
split into two edges, then all nodes are perturbed, finally one extra node (the midpoint)
is introduced on each edge; the elements of the obtained meshes are octagons;

• voro: Voronoi meshes.

The meshes are the same used in the previous chapter and are depicted in Figure 3.1 The
analytic expression of the VEM solution uh is unknown and we cannot compute the difference
u − uh in closed form. Therefore, we consider the following quantities:

• H1−seminorm error

eH1 :=

√ ∑

E∈Ωh

∥∥∥∇(u − Π∇,E
k uh)

∥∥∥
2

0,E
;

• L2−norm error

eL2 :=

√ ∑

E∈Ωh

∥∥∥(u − Π0,E
k uh)

∥∥∥
2

0,E
.

We also consider the error in the CIP-norm defined in (4.43):

∥u − uh∥2
cip ≈

∑

E∈Ωh

ϵ
∥∥∥∇(u − Π∇,E

k uh)
∥∥∥

2

0,E
+ h

∑

E∈Ωh

∥∥∥´ · ∇Π0,E
k (u − uh)

∥∥∥
2

0,E

+
∑

E∈Ωh

Ã
∥∥∥(u − Π0,E

k uh)
∥∥∥

2

0,E
+

ϵ

¶h

∑

e∈E∂
h

∥∥∥Π0,e
k−1(u − uh)

∥∥∥
2

0,e

+
∑

e∈E∂
h

, e¢Γin

∥∥∥|´ · nE | 1
2 Π0,E

k (u − uh)
∥∥∥

2

0,e
+ J(u − uh, u − uh).

We assume that the analytic solutions of problem (4.1) are the functions

u1(x, y) =
1

2

(
1 − tanh

(
x − 0.5

0.05

))
(first test) ,

u2(x, y) = (y − y2)

(
x − e

x−1
0.05 − e

−1
0.05

1 − e
−1

0.05

)
(second test) ,

u3(x, y) = sin(Ãx) sin(Ãy) (third test) .

The first solution exhibit an internal layer in the middle of the domain. The second solution
vanishes along the whole boundary and has a boundary layer at x = 1. The last one is a smooth
solution. For all the tests, the parameter Ã is set to 1, while the convective coefficient is

´(x, y) :=

[
−2 Ã sin(Ã (x + 2 y))

Ã sin(Ã (x + 2 y))

]
.

The Nitsche parameter is selected as ¶ = 0.1, while for the parameters µe and µE , see (4.13),
we set »e = »E = 0.025.

Convergence rates of the schemes. We investigate the convergence rates of the approxi-
mation error, choosing ϵ = 10−5 (hence the problem is in the advection-dominated regime). We
consider both the mesh families described above. In Figure 4.1, we observe the results for u1

and u2, when the method orders are k = 1, 2, 3. Optimal rates of convergence in the L2−norm
and H1−seminorm can be appreciated. For the CIP-norm and k = 1, we observe a super-linear
convergence rate. This behavior can be explained by considering the error estimate of Theorem
4.19: most likely, for such errors and small ϵ, the dominating part is the second one in the
right-hand side of (4.84), which correspond to a convergence rate of order 3

2 .
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Figure 4.1: Convergences for u1 (left column) and u2 (right column). The red lines correspond
to the case k = 1, the blue lines to the case k = 2, and the green lines to the case k = 3.
The stars refer to the Voronoi mesh family and the circle correspond to the octagonal mesh
family. We show the results for the error measured in the L2-norm, the H1−seminorm, and
the CIP-norm.
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Figure 4.2: Numerical results for various choice of ϵ. The red lines correspond to the case k = 1,
the blue lines to the case k = 2, and the green lines to the case k = 3. The error is measured
in the H1-seminorm.

Robustness with respect to the parameter ϵ. We now numerically assess the robustness
of the method with respect to the diffusion parameter ϵ. For this purpose, we test the method
on a Voronoi tessellation with 1024 polygons. As expected, in Figure 4.2, we observe that the
CIP norm of the error is almost constant. Left column is related to u1, right column is related
to u2. Similar result not reported here have been obtained using other meshes and other test
cases. It is important to note that, by varying the parameter ϵ, we are modifying the load
term fϵ. This variation is negligible when ϵ is very small, and we can assume it to be almost
constant. The variations observed in the graph as ϵ approaches 1 can be explained by the fact
that f is changing.

Conforming vs Nonconforming 1. We aim to compare the errors obtained using both the
conforming and nonconforming methods, assessing their performance on different types of solu-
tions. We employ Voronoi and we set the order of the methods to k = 1, 2, 3. Initially, we select
the function u3(x, y) as the solution of equation (4.1). This function represents a smooth, con-
tinuous solution, allowing us to focus on the accuracy and stability of each method under ideal
conditions. Figure 4.3 presents a visual comparison, with results from the conforming method
shown on the left and those from the nonconforming method on the right. As observed, the
graphs for the conforming and nonconforming methods are quite similar, showing no substan-
tial differences in their error distributions. This similarity suggests that for highly regular
solutions, both methods perform comparably well, providing consistent and reliable results. To
further investigate, we then select a solution with an internal layer, represented by the func-
tion u2(x, y). The internal layer is intended to simulate conditions where the solution changes
rapidly within a small area, a scenario commonly encountered in practical applications. The
results for this test are presented in Figure 4.4. Here again, the conforming and nonconforming
methods show comparable performance, with no major discrepancies in the error distribution
observed between them.

Conforming vs Nonconforming 2. In this paragraph, we examine the sensitivity of the
conforming and nonconforming methods with respect to the parameters µe and µE . We aim
to understand how variations in these parameters affect the accuracy and robustness of the
methods. For our analysis, we set the function u(x, y) = u3(x, y) as the target solution. To
investigate a broad range of parameter values, we define »e = »E = 10p, where p spans a set of
100 evenly distributed values in the interval (0, 6). We solve the equation on a Voronoi mesh
composed of 256 polygons. The errors are measured in the H1-seminorm, which emphasizes
the gradient of the error. The results are presented in Figure 4.5, where we plot the error
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Figure 4.3: Convergences for the conforming method (left column) and the non conforming
method (right column). The red lines correspond to the case k = 1, the blue lines to the case
k = 2, and the green lines to the case k = 3. The dashed lines represent hk+1 for the L2-error
and hk for the H1-seminorm.

values as functions of p for both methods. As shown in the figure, both the conforming and
nonconforming methods yield similar error patterns across the entire range of » values. This
similarity suggests that both methods are comparably stable and accurate with respect to
variations in »e and »E , at least within the parameter range tested.

Simulation of a fluid inside a channel with two pipes. We consider the same situation
presented in the previous chapter: a water-filled channel containing a pollutant, with two pipes
blocking the flow in the middle of the channel. The parameters are identical to those used in
Chapter 3; see Section 3.3 for further details. In Figure 4.6, we observe that the results are
very similar to those obtained with the conforming methods, confirming both the accuracy and
comparability of our approach.
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Figure 4.4: Convergences for the conforming method (left column) and the non conforming
method (right column). The red lines correspond to the case k = 1, the blue lines to the case
k = 2, and the green lines to the case k = 3. The dashed lines represent hk+1 for the L2-error
and hk for the H1-seminorm.
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Figure 4.5: Results for the conforming method (left column) and the non conforming method
(right column) for various values of »e and »E . The red lines correspond to the case k = 1, the
blue lines to the case k = 2, the green lines to the case k = 3, and the magenta line to the case
k = 4.

Figure 4.6: Numerical representation of a pollutant moves inside a channel with two pipes. The
color represent the concentration of the pollutant.



Chapter 5

Three level CIP for Oseen
equation

In recent years, there has been significant interest in developing pressure-robust numerical
schemes [45, 37, 18]. These methods enable accurate approximations of velocity, particularly
when dealing with non-smooth pressure, by eliminating the dependence on pressure in the error
analysis of the method. This advancement is crucial to ensure the reliability and robustness of
simulations in various fluid dynamics applications. This chapter aims to introduce a pressure-
robust Virtual Element Method for the Oseen problem (the linearized version of the Navier-
Stokes equations), which remains stable even in advection-dominated regimes. In [18, 13], the
authors propose a VEM for Stokes that achieves divergence-free conditions by ensuring that
the divergence of a virtual velocity is included in the space of the pressures in the definition
of the local spaces. As mentioned in the Introduction, we recall that this requirement is not
sufficient to eliminate the dependence on pressure in the error analysis of the velocity, since a
slight dependence on the pressure still exists due to the approximation of load term.

This chapter concentrates on advection-dominated case, as the application of VEM to the
Navier-Stokes equation in a diffusion-dominated regime has been covered in [14]. There exists
a VEM for the Oseen problem that remains stable in the hyperbolic limit, as introduced in
[15]. To achieve stabilization, this method incorporates local SUPG-like terms for the vorticity
equation and a jump term similar to those discussed in previous chapters. Following the FEM
method [7], we try to develop a VEM that achieves stability solely through jump operators
applied to the skeleton of the mesh. The method controls the polynomial parts of the jumps of
(∇u)´ through a three-level CIP-form. Specifically, we control the jumps of (∇u)´, the jump
of the curl, and the jump of the gradient of the curl. Here, we are considering the scalar curl
applied to vector-valued functions defined as

curl(v) :=
v2

∂x
− v1

∂y
.

where v1 and v2 denotes the two components of the vector-valued function v. Currently, we can
demonstrate the well-posedness of the discrete method by proving coercivity and presenting the
numerical results. Although an error analysis has not been formulated, we have some ideas on
how to approach it.

This chapter is organized as follows: the first section introduces the Oseen problem and
the spaces used in the analysis. The second section describes the method. The third section
presents the theoretical analysis. Finally, we conclude with some numerical results.

84
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5.1 Model problem

Given a polygonal and simple connected domain Ω ¢ R
2 with boundary Γ, we consider the

steady Oseen equation with homogeneous Dirichlet boundary conditions.




find (u, p) such that:

− ¿ div(ε(u)) + (∇u)´ + Ã u − ∇p = f in Ω ,

div(u) = 0 in Ω ,

u = 0 on Γ .

(5.1)

As usual in this type of problems, u denotes the velocity of the fluid while p is the pressure.
Furthermore, div (div), ∇, ∇, denote the vector (scalar) divergence operator, the gradient op-
erator for vector fields and the gradient operator for scalar function while ε(u) is the symmetric
gradient operator defined as

ε(u) :=
∇u + ∇

T
u

2
.

The parameters ¿, Ã ∈ R
+ represent the diffusive and reaction coefficients, respectively. The

transport advective field ´ is a sufficiently smooth vector-valued function that satisfies div ´ =
0. Finally, the load term f is assumed to be f ∈ [L2(Ω)]2. We introduce the spaces

V(Ω) := [H1
0 (Ω)]2 and Q(Ω) := L2

0(Ω) .

A possible variational formulation for the problem (5.1) reads as




find (u, p) ∈ V(Ω) × Q(Ω) such that:

A(u, v) + c(u, v) + b(v, p) = F(v) ∀v ∈ V(Ω) ,

b(u, q) = 0 ∀q ∈ Q(Ω) ,

(5.2)

where the bilinear forms are defined as

A(·, ·) : V(Ω) × V(Ω) → R , A(u, v) := ¿

∫

Ω

ε(u) : ε(v) dΩ + Ã

∫

Ω

u · v dΩ ,

b(·, ·) : V(Ω) × Q(Ω) → R , b(v, q) :=

∫

Ω

q div(v) dΩ ,

c(·, ·) : V(Ω) × V(Ω) → R , c(u, v) :=

∫

Ω

[(∇u)´] · v dΩ ,

and as usual F : V(Ω) → R is the [L2(Ω)]2 inner product against the function f

F(v) :=

∫

Ω

f · v dΩ .

Introducing the space

Z(Ω) :=
{

v ∈ V(Ω) such that div v = 0
}

,

we can reformulate problem (5.1) in a pressure independent form
{

find u ∈ Z(Ω) such that:

A(u, v) + c(u, v) = (f , v) ∀v ∈ Z(Ω) .
(5.3)

This new formulation is useful for the theoretical analysis but is impractical for implementation
due to the difficulty in identifying divergence-free functions. Since Ω is a smooth domain with
Lipschitz boundary, we can associate a potential φ with a divergence-free function v ∈ Z(Ω)
such that

curl(φ) :=

(
∂φ

∂y
, −∂φ

∂x

)T

= v .
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Therefore, we introduce a useful space for the analysis of the method. We define the space of
the stream functions as

Φ(Ω) := {φ ∈ H2(Ω) such that φ|Γ = ∇φ|Γ · n = 0} .

Thanks to this space, the following sequence is exact on simple connected domains

0
i−−−−−→ Φ(Ω)

curl−−−−−→ V(Ω)
div−−−−−→ Q(Ω)

0−−−−−→ 0 , (5.4)

where i is the operator that associates to each real number the corresponding constant function.
The term exact means that the range of each operator is equal to the kernel of the following
operator. In particular the following equivalence holds

curl(Φ(Ω)) = Z(Ω) .

Problem (5.2) is another example of problem in which the discretization needs a stabilization
when the advective field becomes dominant with respect to the diffusive coefficient. Similarly
to the previous chapters, we work under the assumption that the parameters are scaled such
that

∥´∥[L∞(Ω)]2 = 1 .

In the following sections, we describe how devise a VEM that is stable in the hyperbolic limit
of Oseen equation.

5.2 The method

5.2.1 Mesh assumptions

We keep the same notations used for the previous chapters. We consider a sequence of
meshes {Ωh}h composed by non overlapping polygons E that fulfills the following assumptions:
(AO) Mesh assumption. There exists a positive constant Ä such that for any E ∈ { Ωh }h:

• E is star-shaped with respect to a ball BE of radius grater or equal than Ä hE ,

• any edge e of E has length grater or equal than Ä hE .

Unlike in the previous two chapters, we do not impose the quasi-uniformity of the mesh. This is
because the analysis of the method is still incomplete, and it is unclear whether this assumption
is required. We expect that, at some stage of the analysis, we may need to use an Oswald
interpolant similar to those discussed in the previous chapters, and quasi-uniformity might be
necessary.

In this chapter we use this definition of the jump operator: given an interior edge e ¢
∂E ∩ ∂K, we define for a sufficiently smooth function w

[[w]] = lim
s→0

w(x − snE) + w(x − snK) .

If e is a boundary edge, we set [[w]] = 0. Another important distinction from the previous two
chapters is that we were dealing with scalar functions. This involved using scalar polynomial
projectors on scalar functions or vector projectors on their gradients. To differentiate between
scalar and vector projectors, we used the symbols Π and Π respectively. Now, since we are
working with vector-valued functions, the symbol Π denotes a projection applied to a vector-
valued function, while the bold symbol Π represents a projection operator applied to a 2 ×
2 tensor. For completeness, we remind the reader that Lemma 1.4 holds for vector-valued
functions without any additional assumptions.
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5.2.2 Virtual element spaces

Given an integer k g 2 and an element E ∈ Ωh, we introduce the enhanced virtual element
space

V
k
h(E) :=

{
vh ∈ [C0(Ē)]2 s.t. (i) ∆vh + ∇s ∈ x

§
Pk−1(E), for some s ∈ L2

0(E) ,

(ii) div(vh) ∈ Pk−1(E) ,

(iii) vh|e ∈ [Pk(e)]2 , ∀e ∈ ∂E ,

(iv) (vh − Π∇,E
k vh, x

§p̂k−1)0,E = 0 , ∀p̂k−1 ∈ P̂k−1/k−3(E)
}

,

(5.5)
where the vector x

§ is defined as x
§ := [x2; −x1]T . we consider the following set of linear

operator as set of DoFs for the space V
k
h(E):

• the pointwise values of vh at the vertices of the polygon E,

• the values of vh at k − 1 internal points of a Gauss-Lobatto quadrature for every edge
e ¢ ∂E,

• the moments of vh

1

|E|

∫

E

vh · m
§

(
x − xE

hE

)³

dE |³| f k − 3 ,

where m
§ := 1

hE
(x2 − x2,E , −x1 + x1,E),

• the moments of div vh

hE

|E|

∫

E

div vh

(
x − xE

hE

)³

dE 0 < |³| f k − 1 .

The global space for the velocities is obtained as in the scalar case by gluing together the local
spaces

V
k
h(Ωh) :=

{
vh ∈ V such that vh|E ∈ V

k
h(E) ∀E ∈ Ωh

}
.

The space of pressures, is discretized by the standard piecewise polynomials space

Qk
h(Ωh) :=

{
qh ∈ L2(Ω) such that qh|E ∈ Pk−1(E) ∀E ∈ Ωh

}
.

In [18], it was proved that the couple [Vk
h(Ωh), Qk

h(Ωh)] is inf-sup stable. It holds that

sup
vh∈Vk

h
(Ωh)

b(vh, qh)

∥∇vh∥0,Ωh

g »̂∥qh∥0,Ωh
∀qh ∈ Qk

h(Ωh) ,

where »̂ denotes the inf-sup constant that does not depend on the mesh size h. We now
introduce the discrete kernel as

Zh(Ωh) := {vh ∈ V
k
h(Ωh) such that b(vh, qh) = 0 ∀q ∈ Qk

h(Ωh)}.

Thanks to property (ii) in (5.5), the following inclusion holds

Zh(Ωh) ¦ Z(Ω) .

This means that the virtual functions in the discrete kernel are divergence-free. Now we con-
struct the space of the discrete stream-functions. We define

Φk
h(E) :=

{
φ ∈ [C1(Ē)]2 such that (i) ∆2φ ∈ Pk−1(E) ,

(ii) φ|e ∈ Pk+1(e) , ∀e ∈ ∂E ,

(iii) ∇φ|e ∈ [Pk(e)]2 , ∀e ∈ ∂E ,

(iv) (curlφ − Π∇,E
k curlφ, x

§p̂k−1)0,E = 0 ∀p̂k−1 ∈ P̂k−1/k−3(E)
}

,
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and the corresponding global space

Φk
h(Ωh) := {φ ∈ Φ(Ω) such that φ|E ∈ Φk

h(E) ∀E ∈ Ωh} .

We have constructed an exact subcomplex of (5.4)

0
i−−−−−→ Φk

h(Ωh)
curl−−−−−→ V

k
h(Ωh)

div−−−−−→ Qk
h(Ωh)

0−−−−−→ 0 .

Finally, we recall from [15] two approximation results for the space V
k
h(Ωh) and the space

Φk
h(Ωh) respectively.

Lemma 5.1 (Approximation with divergence-free virtual element functions). Under assump-

tion (AO), for any v ∈ V(Ω) ∩ [Hs+1(Ωh)]2, there exists vI ∈ V
k,nc
h (Ωh), such that for all

E ∈ Ωh,
∥v − vI∥0,E + hE∥∇(v − vI)∥0,E ≲ hs+1

E |v|s+1,E ,

where 0 < s f k.

Lemma 5.2 (Approximation property of Φk
h(Ωh)). Under assumption (AO), for any ϕ ∈

Φ(Ω) ∩ Hs+2(Ωh) there exists φI ∈ Φk
h(Ωh) such that for all E ∈ Ωh it holds

∥φ − φI∥0,E + hE |φ − φI |1,E + h2
E |φ − φI |0,E ≲ hs+2

E |φ|s+2,E ,

where 0 < s f k.

5.2.3 Virtual element forms and the discrete problem

This section aims to construct a computable counterpart of the forms introduced in Section
5.1. The approach is similar to the methods used in the previous chapters, but in this case,
we need to take into account projections applied to 2 × 2 tensors or vector-valued functions.
As always, we recall that the forms introduced in Section 5.1 can be decomposed into local
contributions by restricting the integral to an element E ∈ Ωh

A(u, v) =:
∑

E∈Ωh

AE(u, v) , cskew(u, v) =:
∑

E∈Ωh

cskew,E(u, v) ,

b(v, q) =:
∑

E∈Ωh

bE(v, q) , F(v) =:
∑

E∈Ωh

FE(v) .

The bilinear form AE(·, ·) is discretized by AE
h (·, ·) : V

k
h(E) × V

k
h(E) → R defined as

AE
h (uh, vh) := ¿

∫

E

Π
0,E
k−1ε(uh) : Π

0,E
k−1ε(vh) dE + Ã

∫

E

Π0,E
k uh · Π0,E

k vh dE

+
(
¿ + Ã h2

E

)
SE
(
(I − Π0,E

k )uh, (I − Π0,E
k )vh)

)
,

where SE(·, ·) : V
k
h(E) × V

k
h(E) → R is a VEM stabilization term that satisfies

³∗∥∇vh∥0,E f SE
h (vh, vh) f ³∗∥∇vh∥0,E ∀vh ∈ V

k
h(E) ∩ ker(Π0,E

k ) ,

where ³∗ and ³∗ are two uniform constants. The convective term is replaced by cE
h (·, ·) :

V
k
h(E) × V

k
h(E) → R defined as

cE
h (uh, vh) :=

∫

E

[(
Π

0,E
k ∇uh

)
´
]

· Π0,E
k vh dE .

We consider the skew-part of this bilinear form

cskew,E
h (uh, vh) :=

1

2

(
cE

h (uh, vh) − cE
h (vh, uh)

)
.
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In order to stabilize the method, we introduce in the formulation of the method a three level
CIP term. First, we introduce the operator

(Bv)|E :=
(
curl (∇v) ´

)
∀E ∈ Ωh ,

defined as

JE
h (uh, vh) :=

3∑

i=1

¶i JE,i
h (uh, vh) + (¶1 + ¶2 + ¶3) hE SE

(
(I − Π0,E

k )uh, (I − Π0,E
k )vh)

)

where

JE,1
h (uh, vh) :=

1

2

∫

∂E

h2
E

[[(
Π

0,E
k ∇uh

)
´ × n

]][[(
Π

0,E
k ∇vh

)
´ × n

]]
ds ,

JE,2
h (uh, vh) :=

1

2

∫

∂E

h4
E

[[
BΠ

0,E
k uh

]][[
BΠ

0,E
k vh

]]
ds ,

JE,3
h (uh, vh) :=

1

2

∫

∂E

h6
E

[[
∇BΠ

0,E
k uh

]][[
∇BΠ

0,E
k vh

]]
ds .

Thanks to the DoFs of V
k
h(Ωh), it is not necessary to introduce a discretization of b(·, ·). Now

we introduce the local bilinear form

KE
h (uh, vh) := AE

h (uh, vh) + cskew,E
h (uh, vh) + JE

h (uh, vh) .

The right-hand side is discretized by

FE
h (vh) :=

∫

E

f · Π0,E
k vh dE .

Similarly to the previous chpaters, we introduce the global versions of the bilenar forms by
summing over all the polygons E ∈ Ωh

Ah(uh, vh) :=
∑

E∈Ωh

AE
h (uh, vh) , cskew

h (uh, vh) :=
∑

E∈Ωh

cskew,E
h (uh, vh) ,

Jh(uh, vh) :=
∑

E∈Ωh

JE
h (uh, vh) , Fh(vh) :=

∑

E∈Ωh

FE
h (vh) ,

and
Kh(uh, vh) :=

∑

E∈Ωh

KE
h (uh, vh) .

The discrete problem reads as




find (uh, ph) ∈ [Vk
h(Ωh), Qk

h(Ωh)] such that:

Kh(uh, vh) + b(vh, ph) = Fh(vh) ∀vh ∈ V
k
h(Ωh),

b(uh, qh) = 0 ∀qh ∈ Qk
h(Ωh),

(5.6)

or, in a divergence-free formula
{

find uh ∈ Zh(Ωh) such that:

Kh(uh, vh) = Fh(vh) ∀vh ∈ Zh(Ωh).

5.3 Theoretical analysis

We introduce the norm

∥vh∥2
K,E := ¿∥∇vh∥2

0,E + Ã∥vh∥2
0,E + JE

h (vh, vh) ,

with global counterpart

∥vh∥2
K :=

(
∑

E∈Ωh

∥vh∥2
K,E

) 1
2

.

The well-posedness of (5.6) is guaranteed by this coercivity result.
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Proposition 5.3. Under assumption (AO), it holds that

∥vh∥2
K ≲ Kh(vh, vh) ∀vh ∈ V

k
h(Ωh) .

Proof. We restrict our attention to an element E ∈ Ωh. First, we note that since the bilinear
form cskew,E

h is skew-symmetric, it holds that

cskew,E
h (vh, vh) = 0 .

Thanks to to property of the VEM-stabilization term, we have

AE
h (vh, vh) ≳ ¿ ∥∇vh∥2

0,E + Ã ∥vh∥2
0,E .

By definition of the bilinear form KE
h (·, ·), it is clear that

KE
h (vh, vh) ≳ ∥vh∥2

K,E .

The proof is completed by summing over all the elements E ∈ Ωh.

The error analysis for this method has not yet been developed and will be the subject
of future research. We expect that the error analysis for the velocity can be conducted by
leveraging the coercivity of the bilinear problem and following a procedure similar to the ones
used in the previous two methods. Specifically, the norm of the error e = u − uh can be
decomposed as follows

∥u − uh∥K f ∥u − uI∥K + ∥uI − uh∥K .

We expect that the interpolation error will be controlled similarly to Lemma 3.20 and Lemma
4.13, considering each component in the definition of the norm ∥ · ∥K. To control the second
term, we will exploit the coercivity of the bilinear form K(·, ·) and estimate each term in its
definition. The approximation error between A(·, ·) and Ah(·, ·) can be handled by extending the
procedures of Lemma 3.22 and Lemma 3.24 to vector valued functions. Under the assumption
(∇uh)´ ∈ H

5
2 +ϵ for some ϵ > 0, the error estimate for Jh(·, ·) follows from trace inequalities

and approximation results. We foresee that the term cskew(·, ·) will present the most challenges.
In the analysis, it may be necessary to introduce an Oswald interpolant of the function

(∇Π0
kuh)´h

into the space Φk
h(Ωh) where ´h is an appropriate approximation of ´. Then, we control the

difference between (∇Π0
kuh)´h and its interpolation by considering the jumps contained in

the definition of Jh(·, ·). With respect to pressure, we expect that the error analysis can be
performed in a way similar to other problems involving this type of equation.

5.4 Numerical results

Although we do not have an accurate error analysis for this method, we present some
numerical results because the method has already been implemented in MATLAB. We consider
a family of problems in the unit square Ω = (0, 1) × (0, 1) and the following error quantities for
the velocity will be considered:

• H1−seminorm error

eH1 :=

√ ∑

E∈Ωh

∥∥∇(u − Π∇
k uh)

∥∥2

0,E
,

• L2−norm error

eL2 :=

√ ∑

E∈Ωh

∥u − Π0
kuh∥2

0,E
.

For the pressures, we consider the quantity

ep :=

√ ∑

E∈Ωh

∥p − ph∥2
0,E .

We consider a family of Voronoi meshes such as the one depicted in Figure 3.1.
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Figure 5.1: Convergences results for the velocity u in the L2 norm (left column) and in the
H1-seminorm (right column). The red lines correspond to the case k = 1, the blue lines to the
case k = 2, and the green lines to the case k = 3.

Convergence analysis. We consider as solution of (5.1) the couple (u, p) defined as

u(x, y) :=




−1

2
sin(Ãx)2 cos(Ãy) sin(Ãy)

1

2
sin(Ãy)2 cos(Ãx) sin(Ãx)


 ,

and
p(x, y) := 3 sin(x) − 3 sin(y) .

We choose as parameters of the method the values ¿ = 10−5, Ã = 1 and the advective field
defined as

´(x, y) :=

[
sin(2Ãx) sin(2Ãy)

cos(2Ãx) cos(2Ãy)

]
.

The CIP-parameters are set equal to ¶1 = 0.1 and ¶2 = ¶3 = 0.01. We solve the equation using
virtual element of order k = 2, 3, 4. The results are depicted in Figure 5.1 and Figure 5.2. We
can note that we have reached the optimal rate of convergence for the H1−seminorm of the
velocity and the L2−norm of the pressure. Actually, the method converges with a rate of hk+1

in the L2-norm of the velocity, which is a better result than the theoretical estimate for these
types of problems that is hk+ 1

2 . This might be due to the solution being very smooth.

Solution with a boundary layer We consider a solution with a boundary layer. We select
as solution of the problem (5.1) the velocity u = (u1, u2)T defined as

u1(x, y) = 0 , u2(x, y) = x − exp( x−1
¿ ) − exp( −1

¿ )

1 − exp( −1
¿ )

,

and the pressure

p(x, y) =
1

2
− y .

We choose ¿ = 10−9, Ã = 1 and the advective field

´(x, y) :=

[
y2

x2

]
.
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Figure 5.2: Convergences for the pressure p in the L2-norm. The red lines correspond to the
case k = 1, the blue lines to the case k = 2, and the green lines to the case k = 3.

To demonstrate the advantages of the CIP term, we consider different values for ¶1, ¶2 and ¶3.
The problem is solved with k = 2 on a mesh consisting of 1024 unit squares. A square mesh
was chosen to better visualize the numerical solutions. The results are shown in Figure 5.3.
We observe that without any CIP term, the numerical solution does not match the analytical
solution. By adding the first level of CIP, we obtain a numerical solution that includes a
boundary layer and some spurious oscillations near the layer. These oscillations are reduced
with the addition of the second level of CIP. No further improvement is observed when the final
level of CIP is added.

Figure 5.3: Numerical solutions obtained with different choices of the triple (¶1, ¶2, ¶3).Top-left
(¶1, ¶2, ¶3) = (0, 0, 0), top-right (¶1, ¶2, ¶3) = (0.1, 0, 0), bottom-left (¶1, ¶2, ¶3) = (0.1, 0.01, 0),
bottom-right (¶1, ¶2, ¶3) = (0.1, 0.01, 0.001) .
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Pressure robustness. We want to verify if the method is pressure-robust in the VEM sense.
We consider the solution (u, p) of (5.1) defined as

u(x, y) = 0 , p(x, y) = 3 cos(x) − 3 cos(y) .

The parameters are set as in the first test case and select the order of the method k = 2, 3, 4.
Since velocity u belongs to the discrete space, if the method is pressure robust, we expect to
obtain an error of the order of the precision of the machine. The VEM introduces in the error
analysis of the velocity a little dependence on the pressure due to the approximation of the
right-hand side. This is a typical situation in VEM for this type of problems. In Figure 5.4,
we note that the errors are not of the order of the machine precision but they are quite low if
compared to the previous cases.

Figure 5.4: Result for the L2−norm of the error (left column) and the H1−seminorm of the
error (right column). The red lines correspond to the case k = 1, the blue lines to the case
k = 2, and the green lines to the case k = 3.

Simulation of a fluid inside a channel with two pipes. In this test, we assume that a
fluid, like water, is moving from left to right inside a channel, driven by an imposed flow velocity.
This channel contains two cylindrical obstacles, modeled as pipes positioned at different loca-
tions along the channel’s length. The domain is the same used in Section 3.3. For simplicity, we
assume that the flow velocity in the channel is uniform and directed along the horizontal axis,
given by ´ = (1, 0)T . We consider a scenario with low diffusion, setting the diffusion coefficient
¿ to 10−5, while neglecting the reaction term. To ensure stability in the numerical solution, we
apply the CIP stabilization method with parameters set to (¶1, ¶2, ¶3) = (0.1, 0.01, 0). No-slip
boundary conditions are imposed along the top and bottom boundaries of the channel, as well
as on the surfaces of the pipes. On the left boundary, we prescribe an inflow condition with a
parabolic velocity profile of the form

−10 (y − 0.5) (y + 0.5) .

Finally, on the right boundary, we impose homogeneous Neumann boundary conditions to allow
the fluid to exit the domain without further interaction. The numerical solution in Figure 5.5
shows that the fluid retains its shape as it moves towards the first pipe. Upon reaching the first
obstacle, the fluid divides and flows both above and below the pipe, maintaining a symmetric
shape. This behavior is repeated at the second pipe, with the fluid continuing its trajectory in a
similar pattern until it reaches the right boundary. We also tested the setup with square-based
pipes to examine whether the corners would produce singularities, but we did not observe any
significant differences. We note that the following test cases do not fit within our theoretical
analysis, as the domain contains two holes. Despite this, we attempt to assess the accuracy of
our method. This test case is inspired by the one that appears in [53].



CHAPTER 5. THREE LEVEL CIP FOR OSEEN EQUATION 94

Figure 5.5: Numerical representation of a fluid that moves inside a channel with two pipes. The
color represent the norm of the velocity.



Chapter 6

Implementation of the code

This chapter focuses on describing the implementation of the codes. We will primarily con-
centrate on the method presented in Chapter 3, as the implementations for the other methods
are quite similar. The codes were fully implemented in MATLAB by the authors, except for
the function read_mesh(), which was sourced from the VEMLAB library1. We chose to use
their meshes and its associated reader instead of developing our own, allowing us to focus on
other aspects of the implementation.

This chapter discusses the implementation of the main file and several auxiliary functions. It
is organized as follows: the first section describes the preprocessing steps, the second explains
the assembly of the global matrix, while the third focuses on the construction of the local
matrices. The final two sections cover the solution of the linear system and the computation of
the error, respectively.

6.1 Preprocessing

We begin by clearing the memory, closing any open figures, and clearing the command
window. Next, we capture the start time using the tic function. We then use the fixpath()

function to add the paths of all folders containing the necessary functions. The fixpath()

function does not require any input parameters and internally calls addpath() for each of the
folders needed in the implementation.

1 %% INITIALIZATION

2 clear; close; clc; tic;

3
4 fixpath ();

Following the initialization, we construct a structure options. The fields within this struc-
ture contain information about the PDE and its discretization. In details:

• epsilon and sigma: contain the values of the diffusive coefficient and the reaction coef-
ficient, respectively,

• beta{1} and beta{2}: contain the value of the two components of the advective field,

• gamma and gamma_p: contain the values of »e = »E , see (3.10). The field gamma_p is
needed if we implement the jump term as in (3.78),

• delta: contains the value of the Nitsche parameter,

• stiffness: describes in which way we want to discretize the bilinear form aE(·, ·). If the
value of this field is "PiNabla", we are using (1.9); if it is "PiBar", we are using (3.7),

• stabilization: describes which VEM stabilization term we are considering,
1https://camlab.cl/vemlab/
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• advection: describes how we discretize the bilinear form bE(·, ·). If its value is equal to
"Boundary", we are using the discretization that appears in Chapter 3. If it is equal to
"Zero", we are using

bE
h (uh, vh) =

∫

E

´ · Π
0,E
k uh Π0,E

k vh dE ,

• jump: describe which jump term term we are considering. The choice is between JE
h (·, ·),

KE
h (·, ·) and LE

h (·, ·),

• boundary: indicate how we impose the boundary condition (strongly or weakly).

6 %% OPTIONS & PARAMETERS

7 options . problem = "ADR ";

8
9 % Parameters of the PDE

10 options . epsilon = 10^( -5);

11 options .sigma = 1;

12 options .beta {1} = @(x,y) 1 + 0.*x + 0.*y;

13 options .beta {2} = @(x,y) 2 + 0.*x + 0.*y;

14 options .gamma = 0.025; options . gamma_p = 0.01;

15 options .delta = 0.1;

16
17 % Options for the discretization

18 options . stiffness = "PiBar ";

19 options . stabilization = " DofiDofi ";

20 options . advection = " Boundary ";

21 options .jump = " Normal ";

22 options . boundary = " Nitsche ";

After that, we call the function problem_test(n, options). This function has two input
parameters:

• n: this parameter indicates the number of the problem that we are solving. Each number
corresponds to a specific solution u with its corresponding f ,

• options: this parameter is a structure containing the values of the parameters in the
PDE.

It returns as output parameters the solution u, the gradient of the solution, the load term f
and the boundary data g.

24 %% CONSTRUCTION OF THE PDE

25 [f, g, u, grad_u ] = test_problems (1, options );

The initialization of the method continues by specifying the order k of the VEM and creating
a structure polynomial. This structure contains information about the polynomials that we
will frequently use in the implementation. It is designed to speed up the code by avoiding
repeated computations of frequently requested quantities. This task is handled by the function
get_polynomial_info(k), which takes the order of the method k as its input parameter. Some
of the fields of the structure polynomial are

• dim: an array containing the dimensions of Pn(E) for n = k − 2, k − 1, k,

• lobatto: the positions of k points in the interval [0, 1] for a Gauss-Lobatto quadrature
rule,

• gauss: the positions of k points in the interval [0, 1] for a Gauss quadrature rule,

• lweights: the weights for the Gauss-Lobatto quadrature rule,
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• gweights: the weights for the Gauss quadrature rule,

• val: the values of the basis functions at the Gauss quadrature points in the interval [0, 1].
These basis functions are polynomial of order k equal to 1 at a Gauss-Lobatto quadrature
point and zero at the others.

27 %% CONSTRUCT THE INFORMATION ON THE POLYNOMIALS

28 k = 1;

29 polynomial = get_polynomial_info (k);

We conclude this section of the code by defining the mesh Ωh. The name of the mesh is stored
in the variable mesh. We then call the function read_mesh(mesh), which creates a structure
Mesh containing information about the mesh we are using. This is the only function sourced
from the VEMLAB library. We did not develop this function ourselves because we are still
using their mesher and chose not to focus on implementing our own mesher and its associated
reader.

The function add_points(Mesh, n) allows for the addition of n equidistributed points along
each edge of the mesh. This function is used to construct the octag meshes described in Section
3.3 from a quadrilateral mesh. If n = 0, the function does not perform any action.

The function add_edges(Mesh, k) inserts fields into the structure Mesh related to the edges
of the mesh Ωh and their connectivity. It also includes the coordinates of the points associated
with the degrees of freedom in Ek

c . This function provides information on the endpoints of each
edge, which pairs of vertices are connected by edges, and the elements that contain each edge.

Next, we obtain the indices of the edges located on the boundary using the function
get_boundary_edges(Mesh). The indices of the internal edges are then determined by sub-
tracting the array of boundary edge indices from the array of all edge indices.

Finally, we conclude this section by computing the indices of the DoFs located on the
boundary. This step is essential if we choose to impose the boundary conditions strongly.

31 %% READ THE MESH

32 mesh = 'polygon_256 .txt ';

33 Mesh = read_mesh (mesh);

34
35 %% OBTAIN INFORMATION ON THE MESH

36 fprintf ('[%.2f] Obtaining information on the mesh ... \n',toc);

37
38 Mesh = add_points (Mesh ,0);

39 Mesh = add_edges (Mesh , k);

40
41 Mesh. boundary_edges = get_boundary_edges (Mesh);

42 Mesh. internal_edges = setdiff (1: Mesh.nedges ,Mesh. boundary_edges );

43
44 boundary_vertex = Mesh. boundary_nodes .all;

45 [ boundary_dofs , boundary_intdofs ] = get_boundary_dofs (Mesh ,

boundary_vertex , k);

6.2 Assembly of the linear system

After the preprocessing part, we construct the linear system associated to the problem
(3.14). We need to assemble the matrix A associated with the bilinear form

Acip(uh, vh) = ϵ ah(uh, vh) + bskew
h (uh, vh) + Ã ch(uh, vh) + Nh(uh, vh) + Jh(uh, vh), ,
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as well as the right-hand side vector F associated with the form Fh(·). We then solve the linear
system

AU = F ,

where U is the vector containing the DoFs of the numerical solution uh. The volume terms

ϵ ah(uh, vh) + bskew
h (uh, vh) + Ã ch(uh, vh) + Nh(uh, vh)

are assembled in the function ADR_assembly, while the jump term is assembled in the function
CIP_assembly. We will provide a detailed description of these two functions.

47 %% ASSEMBLYING GLOBAL MATRIX

48 fprintf ('[%.2f] Assemblying element matrices ...\n',toc);

49 [A_global , f_global , Mesh] = ADR_assembly (Mesh , options ,

polynomial , f, g);

50
51 %% ASSEMBLYING CIP MATRIX

52 fprintf ('[%.2f] Assemblying CIP matrix ...\n',toc);

53 [ J_global ] = cip_assembly (Mesh , polynomial , options );

6.2.1 Assembly of a sparse matrix

Before describing the function ADR_assembly, it is necessary to describe an efficient way
to assembly a sparse matrix in MATLAB. It is well known that the matrices obtained with
the Galerkin method are often sparse matrices. Hence, to save memory, it is appropriate to
initialize the matrix A as a sparse matrix and not with the command zeros(dim). Recall that
in MATLAB, a sparse matrix is stored using a three-column vector format. The columns of
this vector represent:

1. the row indices of the nonzero elements,

2. the column indices of the nonzero elements,

3. the values of the nonzero elements.

This format is efficient for storing and manipulating sparse matrices, as it only records the
positions and values of the nonzero entries. It is important to note that the conventional
method for assembling a global matrix

A(index,index) = A(index,index) + A_loc ,

where A_loc is a local matrix from an element E ∈ Ωh and index denotes the positions in the
global matrix where A_loc is inserted, can be very slow if A is sparse. This inefficiency arises
because at each iteration, MATLAB needs to sort the indices of the nonzero elements in A,
which can become slow for large matrices. A more efficient procedure is described in [39]. The
idea is to construct three arrays: I, J, and X. The array I stores the row indices, the array J

stores the column indices, and the array X stores the values of nonzero entries. When updating
the global matrix by adding the local matrix A_loc, we simply append the corresponding I_loc,
J_loc, and X_loc (which represent the row indices, column indices, and values of A_loc in the
global matrix, respectively) to the arrays I, J, and X. This approach efficiently manages matrix
updates without needing to repeatedly sort indices. Then, the matrix A is constructed with the
command

A = sparse(I,J,X).

6.2.2 The function ADR_assembly

The function ADR_assembly takes as input parameters the structures Mesh, options and
polynomial and the functions f and g. It returns three output parameters:
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• the global matrix A_global. This is a sparse matrix and is stored as a structure with
three fields: I, J, and X, as described in the previous section,

• the vector f_global corresponding to the right-hand side of the linear system that we
want to solve,

• the structure Mesh that will be updated by this function.

First, we need to allocate the memory for all the elements that we need in the discretization of
the problem. We compute the dimension of the linear system

NΩh
= nv + (k − 1)|Eh| + np

(k − 2)(k − 1)

2
,

and store the result in the variable size. After that, we allocate the memory for the vector F

with the command
f_global = zeros(size, 1).

In the structure Mesh, we initialize the field diameter which represents the diameter h of the
mesh Ωh. Initially, this field is set to 0. We also initialize the field polygon. This field is a cell
array with a dimension equal to the number of polygons, where each cell contains a structure
of type polygon. The details of the polygon structure will be described later.

A variable init gives an upper bound of the elements contained in I, J and X. These three
vectors are initialized with the command zeros(init,1). A variable count counts how many
elements we have inserted in each of the three vectors.

1 %% MEMORY ALLOCATION

2 size = Mesh. nvertex + ( polynomial .k - 1) * Mesh. nedges +

polynomial .dim (1) * Mesh. npolygon ;

3
4 f_global = zeros(size , 1);

5
6 Mesh. polygon = {1: Mesh. npolygon };

7 Mesh. diameter = 0;

8
9 init = 2* Mesh. npolygon * (8* polynomial .k + polynomial .dim (1));

10
11 A_global .I = zeros(init ,1);

12 A_global .J = zeros(init ,1);

13 A_global .X = zeros(init ,1);

14
15 count = 0;

After allocating memory for the matrix and the right-hand side, we begin a loop over the
elements E ∈ Ωh. The variable i is the variable of the for loop and represents the element
under consideration. At each iteration, we obtain the DoF indices in the element E.

This task is handled by the function get_local_dofs. This function takes the following in-
put parameters: the structures Mesh and polynomial, and the index i. It returns the indices of
the DoFs, the coordinates of the vertices of the polygon, and a boolean array boundary_edges.
If the element in position j of boundary_edges is true, it indicates that the j-th edge is a
boundary edge.

The next step is constructing the local matrix associated to the bilinear form

ϵ aE
h (uh, vh) + bskew,E

h (uh, vh) + Ã cE
h (uh, vh) + N E

h (uh, vh) ,

and the associated right-hand side. This task is handled by the function ADR_element. For
now, it is sufficient to mention that it returns the local matrix A_loc, the right-hand side f_loc,
and the structure polygon, which contains the information on the i-th polygon. We add the
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field local_dofs to this structure and save it in the i-th cell of Mesh.polygon. We store the
information of the polygons because many quantities will be required in the computation of the
CIP bilinear form and the computation of the error.

We check if the diameter of the i-th polygon is larger than the previous diameters. If so, we
update the diameter of the mesh accordingly.

The next task is to update the fields of the global matrix A_global. We start by creating
a square matrix ld by repeating the column vector of the local DoFs

local_dofs =




1
2
3
4


 ⇒ ld =




1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4


 .

The field A_global.I is updated with the command reshape(ld’,[],1). The function
reshape(B,[],1) takes a matrix B and returns a vector in the following manner:

B =

[
1 2
3 4

]
⇒ ans =




1
3
2
4


 .

In this example, the matrix B is reshaped into a column vector by stacking its columns on
top of each other. Similarly, we update A_global.J and A_global.X. This implementation
for updating A avoids the use of a for loop or similar and completes the task using MATLAB
functions. Once we have updated the matrix A, we increment the counter count by the size of
A_loc. Finally, we update the right-hand side by adding the local vector f_loc into the global
vector f_global in the positions indicated by the local DoFs.

After completion of the loop over all the elements, the last task of the function is to trim
the fields in A_global by taking the number of elements indicated by count.

17 %% CONSTRUCT THE LINEAR SYTEM

18 for i=1: Mesh. npolygon

19
20 [local_dofs , vertex , boundary_edges ] = get_local_dofs (Mesh ,

polynomial , i);

21 [A_loc , f_loc , polygon ] = ADR_element (vertex , polynomial , f,

g, boundary_edges , options );

22
23 polygon . local_dofs = local_dofs ;

24 Mesh. polygon {i} = polygon ;

25
26 if (Mesh. polygon {i}. diameter > Mesh. diameter )

27
28 Mesh. diameter = Mesh. polygon {i}. diameter ;

29
30 end

31
32 ld = repmat (local_dofs ,1, numel( local_dofs ));

33
34 A_global .I(count + (1: numel(A_loc))) = reshape (ld ' ,[],1);

35 A_global .J(count + (1: numel(A_loc))) = reshape (ld ,[],1);

36 A_global .X(count + (1: numel(A_loc))) = reshape (A_loc ' ,[] ,1);

37
38 count = count + numel(K_loc);

39
40 f_global ( local_dofs ) = f_global ( local_dofs ) + f_loc;
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41 end

42
43 A_global .I = A_global .I(1: count);

44 A_global .J = A_global .J(1: count);

45 A_global .X = A_global .X(1: count);

6.2.3 The function CIP_assembly

This function is very similar to the previous ones so we will omit some details. It takes as
input parameters the structures Mesh, polynomial, and options. It returns the sparse matrix
J_global corresponding to the bilinear form Jh(uh, vh). We remark that the VEM stabilization
term of this bilinear form is computed in another part of the code by the function ADR_element.
The first task of this function is to allocate the memory as in ADR_assembly.

1 %% MEMORY ALLOCATION

2 init = 2* Mesh. npolygon * (8* polynomial .k + polynomial .dim (1));

3
4 J_global .I = zeros(init ,1);

5 J_global .J = zeros(init ,1);

6 J_global .X = zeros(init ,1);

7
8 count = 0;

We start a loop over the internal edges of Ωh. We begin by obtaining the indices of the two
elements that share the edge index. We store in the variable coords, which is a 2 × 2 matrix,
the coordinates of the two endpoints of the edge. We then compute the edge length and one of
the two outward normal vectors. Finally, we compute the Gauss quadrature points and store
them in the variable points.

Now, we call the function cip_dofs(dofs1, dofs2). It takes as input the arrays of indices
of the local DoFs of the elements that share the edge index and merges them. It returns three
vectors:

• totalindex: a merged vector of the two arrays of local DoFs without repetitions,

• loc1: indicates the positions of the local DoFs of the first element in the array totalindex,

• loc2: indicates the positions of the local DoFs of the second element in the array
totalindex.

There is a switch on the variable options.jump. Depending on its value, we choose between
the possible discretizations: Jh(·, ·) corresponding to the value "Normal", Kh(·, ·) corresponding
to the value "Gradient", and Lh(·, ·) corresponding to the value "CrossWind". We will focus
only on the case "Normal" since it is the one that appears in the theoretical analysis. With this
choice, we call the function cip_element_normal, which computes the local matrix associated
with a single interior edge. Its implementation will be discussed later.

The function cip_assembly terminates similarly to cip_assembly and we omit the details.

8 %% J_GLOBAL ASSEMBLY

9 for index = Mesh. internal_edges

10
11 elem1 = Mesh.adj(index ,1);

12 elem2 = Mesh.adj(index ,2);

13
14 coords = [Mesh. coords (Mesh.map(index ,1) ,:);

15 Mesh. coords (Mesh.map(index ,2) ,:)];

16
17 edge = Mesh. length (index);
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18
19 vnormal = [ coords (2 ,2) - coords (1 ,2) , -coords (2 ,1) + coords

(1 ,1) ];

20 vnormal = vnormal ./ norm(vnormal ,2);

21
22 points = coords (1 ,:) ' + [0, polynomial .gauss , 1].* ( coords

(2 ,:) ' - coords (1 ,:) ');

23
24 [loc1 , loc2 , totalindex ] = cip_dofs (Mesh. polygon {elem1 }.

local_dofs , Mesh. polygon {elem2 }. local_dofs );

25
26 % Local Switch

27 switch ( options .jump)

28
29 case " Gradient "

30
31 [J_loc] = cip_element_gradient (polynomial , points ,

edge , options , loc1 , loc2 , Mesh. polygon {elem1},

Mesh. polygon {elem2 });

32
33 case " Normal "

34
35 [J_loc] = cip_element_normal (polynomial , points , edge

, vnormal , options , loc1 , loc2 , Mesh. polygon {elem1

}, Mesh. polygon {elem2 });

36
37 case " CrossWind "

38
39 [J_loc] = cip_element_crosswind (polynomial , points ,

edge , options , loc1 , loc2 , Mesh. polygon {elem1},

Mesh. polygon {elem2 });

40
41 otherwise

42
43 error (" Invalid field jump in options !");

44
45 end

46 %

47 ld = repmat (totalindex ,1, numel( totalindex ));

48
49 J_global .I(count + (1: numel(J_loc))) = reshape (ld ' ,[],1);

50 J_global .J(count + (1: numel(J_loc))) = reshape (ld ,[],1);

51 J_global .X(count + (1: numel(J_loc))) = reshape (J_loc ' ,[] ,1);

52
53 count = count + numel(J_loc);

54
55 end

56
57 J_global .I = J_global .I(1: count);

58 J_global .J = J_global .J(1: count);

59 J_global .X = J_global .X(1: count);

60
61 end

We conclude this section by noting that, in the nonconforming method described in Chapter
4, this function also constructs the matrix associated with the bilinear form dh(·, ·) by calling
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the function dh_element on each interior edge.

6.3 Assembly of the local elements

This section aims to describe how we assemble the local matrices. Specifically, the focus is
on two functions: ADR_element and cip_element_normal. The first function, ADR_element,
assembles the matrix related to the bilinear forms aE

h (·, ·), bskew,E
h (·, ·), cE

h (·, ·), N E
h (·, ·), and

their VEM stabilization terms. It also includes the VEM stabilization of the bilinear form
JE

h (·, ·). The second function, cip_element_normal, constructs the CIP term restricted to an
interior edge.

6.3.1 The function ADR_element

This function takes as input parameters: the structures polynomial and options, the
coordinates of the vertices, the functions g and f , and the array boundary_edges. It return the
local matrix A_loc, the local righ-hand side f_loc and the structure polygon. The first step
is to compute the information related to the polygon with the function get_polygon_info.
It takes the vertices of the polygon as input and returns a structure of type polygon. This
structure is designed to contain all the quantities related to the polygon that we need for the
computations. Specifically, we compute:

• the area of the polygon |E|,

• the diameter of the polygon hE ,

• the centroid of the polygon xE ,

• the length of each edge |e|,

• the number of edges nE ,

• the perimeter of the polygon |∂E|,

• the outward unit normal of each edge ne.

Next, we compute the dimension NE of the space V k
h (E) and store it in the polygon structure.

We conclude this part by defining the polynomial bases that will be used for the computations.

1 %% GET THE INFORMATION OF THE POLYGON

2 polygon = get_polygon_info ( vertex );

3
4 polygon .size = polygon . nedges + polygon . nedges *( polynomial .k -

1) + polynomial .dim (1);

5
6 %% DEFINITION OF THE BASE FUNCTIONS AND THEIR GRADIENTS

7 base = @(x,y,k) ((x - polygon . centroid (1)) ./ polygon . diameter ).^

k(: ,1) .* ((y - polygon . centroid (2)) ./ polygon . diameter ).^k

(: ,2);

We construct a quadrature formula on the polygon E. To avoid triangulating the polygon, we
define a quadrature formula over the entire domain. We follow the procedure described in [55].
It is possible to reduce the number of quadrature points to the optimal number by following
[51], though we have not implemented this technique yet. The quadrature in the domain is
computed in the function polygon_quadrature(polygon, m) which takes as input parameter
the polygon and the order m, ensuring that the quadrature is exact up to order 2m − 1. The
output is stored in the structure p_quad that contains the quadrature points and the associated
weights. The fields in p_quad are multidimensional arrays with three dimension to match the
construction of [55]. We also compute a quadrature rule on the boundary with the function
boundary_quadrature and save the result in the variable b_quad.
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We evaluate the polynomial basis functions and their gradients at the quadrature points.
This approach allows us to compute the basis functions only once, thereby saving time. It is
important to note that base_val_int and similarly grad_val_int are multidimensional arrays
with four dimensions. In these arrays, the first three dimensions correspond to the quadrature
points, while the last dimension indicates the basis function.

9 %% GET QUADRATURE NODES AND WEIGHTS

10 p_quad = polygon_quadrature (polygon , polynomial .k+1);

11 b_quad = boundary_quadrature (polygon , polynomial .k+1);

12
13 %% POINTWISE VALUES OF THE BASIS FUNCTION

14 base_val_int = base_evaluation_interior (p_quad , polynomial ,

polygon );

15 grad_val_int = grad_evaluation_interior (p_quad , polynomial ,

polygon );

16
17 base_val_bound = base_evaluation_boundary (b_quad , polynomial ,

polygon );

18 grad_val_bound = grad_evaluation_boundary (b_quad , polynomial ,

polygon );

Now, we explain how to compute the matrix representation of the polynomial projection
Π∇,E

k : V k
h (E) → Pk(E). A more detailed description can be found in [10]. We denote by

{m³}Np

³=1 a basis of the space Pk(E), where Np is the dimension of Pk(E). Given a virtual
function vh, we seek coefficients {s³}Np

³=1 such that

Π∇,E
k vh =

Np∑

³=1

s³m³ .

The coefficients {s³}Np

³=1 can be determined by solving the linear system



P0m1 P0m2 . . . P0mnp

0 (∇m2, ∇m2)0,E . . . (∇m2, ∇mNp
)0,E

...
...

. . .
...

0 (∇mNp
, ∇m2)0,E . . . (∇mNp

, ∇mNp
)0,E







s1

s2

...
sNp


 =




P0vh

(∇vh, ∇m2)0,E

...
(∇vh, ∇mNp

)0,E


 ,

where P0 is the projection onto constants and it is chosen as in (1.6). We define the square
matrix G ∈ R

Np×Np as

G :=




P0m1 P0m2 . . . P0mNp

0 (∇m2, ∇m2)0,E . . . (∇m2, ∇mNp
)0,E

...
...

. . .
...

0 (∇mNp
, ∇m2)0,E . . . (∇mNp

, ∇mNp
)0,E


 ,

and the matrix B ∈ R
Np×NE as

B :=




P0φ1 . . . P0φNE

(∇φ1, ∇m2)0,E . . . (∇φNE
, ∇m2)0,E

...
. . .

...
(∇φ1, ∇mNp

)0,E . . . (∇φNE
, ∇mNp

)0,E


 ,

where {φi}NE

i=1 is the nodal basis function of V k
h (E). The matrix of the coefficients Π∇

∗ ∈ R
Np×NE

can be determined by solving the linear system

G Π∇
∗ = B .

Each column of Π∇
∗ contains the coefficient of Π∇,E

k φi with respect to the basis {m³}Np

³=1.
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To construct the matrix corresponding to the stabilization term dofi-dofi, we have to
express each {Π∇,E

k φi}NE

i=1 with respect to the VEM basis function {φj}NE

i=1

Π∇,E
k φi =

NE∑

j=1

Ãj
i φj .

We want to determine the coefficients {Ãj
i }NE

j=1 for each i = 1, . . . , NE . We observe that

Π∇,E
k φi =

Np∑

³=1

s³
i m³ =

Np∑

³=1

s³
i

NE∑

j=1

dofj(m³)φj ,

which implies

Ãj
i =

Np∑

³=1

s³
i dofj(m³) .

We define the matrix D ∈ R
NE×Np as

D :=




dof1(m1) dof1(m2) . . . dof1(mNp
)

dof2(m1) dof2(m2) . . . dof2(mNp
)

...
...

. . .
...

dofNE
(m1) dofNE

(m2) . . . dofNE
(mNp

)


 .

Hence, the previous equation can be written in a matrix form as

Ãj
i =

Np∑

³=1

(G−1B)³i Dj³ = (DG−1B)ji .

The matrix representation of the operator Π∇,E
k : V k

h (E) → V k
h (E) in the canonical basis

{φj}NE

j=1 is
Π∇ = DΠ∇

∗ = DG−1B .

As demonstrated in [10], the following equivalence holds

G = BD .

Consequently, computing matrix G is redundant, leading to potential computational savings.
The matrix representation of the dofi-dofi stabilization term

NE∑

i=1

dofi(I − Π∇,E
k )uh dofi(I − Π∇,E

k )vh

is given by
(I − Π∇)T (I − Π∇) .

The matrix representations of the projections Π0,E
k and Π

0,E
k (Π0 and Π̄0

k, respectively) are
constructed in a very similar manner, so we will omit the details. In these constructions, the
role of G is taken by the matrices H and S, respectively, while the role of B is taken by C and E.
In details, the matrices H ∈ R

NP ×Np and C ∈ R
NP ×NE are defined as

(H)ij := (mj , mi)0,E , and (C)ij := (mj , φi)0,E ,

while S ∈ R
2NP ×2Np and E ∈ R

2NP ×NE are defined as

(S)ij := (mj , mi)0,E , and (E)ij := (mj , ∇φi)0,E

where {mj}2NP

j=1 is a polynomial basis function of [Pk(E)]2.
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These projections are computed by the following lines of code. We remark that in order to
compute the matrices C and E, we have to calculate the quantity

∫

E

vh p̂k dE =

∫

E

Π∇,E
k vh p̂k dE ∀p̂k ∈ Pk/k−2(E) .

The function Pi_evaluate computes the values of each Π∇,E
k φi at each quadrature point. It

does so by taking as input parameters the coefficients of the projection and the evaluations of
the basis functions at the quadrature points.

20 %% CONSTRUCT MATRIX D

21 D = create_matrix_D (base , polynomial , polygon , p_quad ,

base_val_int );

22
23 %% CONSTRUCT THE PINABLA (K) PROJECTION

24 % CONSTRUCT THE MATRIX B

25 B = create_matrix_B ( grad_val_bound , polynomial , polygon );

26
27 % CONSTRUCT THE MATRIX G AND GTILDE

28 G = B*D;

29
30 % PINABLA (K) PROJECTION

31 PiNabla_k = G \ B;

32
33 %% CONSTRUCT THE PI0(K) PROJECTION

34 % EVALUATE THE PINABLA_K PROJECTION

35 PiNabla_val_int = Pi_evaluate (PiNabla_k , base_val_int );

36
37 % CONSTRUCT THE MATRIX C

38 C = create_matrix_C ( base_val_int , PiNabla_val_int , p_quad ,

polynomial , polygon );

39
40 % CONSTRUCT THE MATRIX H

41 H = C*D;

42
43 % CONSTRUCT THE MATRIX PI0(K)

44 Pi0_k = H \ C;

45
46 % Evaluate the Pi0 projection

47 Pi0_val_int = Pi_evaluate (Pi0_k , base_val_int );

48
49 %% CONSTRUCT THE PIBAR(K) PROJECTION

50 % CONSTRUCT THE MATRIX S

51 S = [H zeros( polynomial .dim (3)); zeros( polynomial .dim (3)) H];

52
53 % CONSTRUCT THE MATRIX P

54 E = create_matrix_E ( base_val_bound ,polynomial ,polygon ,C);

55
56 % CONSTRUCT THE MATRIX PIBAR

57 PiBar_k = S \ E;

58
59 %% CONSTRUCT THE PIBAR(K -1) PROJECTION

60 n_rows = polynomial .dim (2);

61 index = 1: n_rows ;

62
63 % CONSTRUCT THE MATRIX S

64 S_minus = [H(index ,index) zeros( n_rows ); zeros( n_rows ) H(index ,

index)];
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65
66 % CONSTRUCT THE MATRIX P

67 E_minus = E([1: n_rows , polynomial .dim (2) +1: polynomial .dim (2)+

n_rows ],:);

68
69 % CONSTRUCT THE MATRIX PIBAR

70 PiBar_kminus = S_minus \ E_minus ;

Now, we add each form to the local matrix A_loc. We check the values of the fields
option.stiffness, option.stabilization, and option.advection, and compute the cor-
responding discretizations. Depending on option.stiffness, the matrix representation of the
bilinear form aE

h (·, ·) without the VEM stabilization is either

(Π∇
∗ )T G̃ Π∇

∗ or (Π̄0
k−1)T Sk−1 Π̄0

k−1 .

where Sk−1 is the restriction of S to a basis of [Pk−1(E)]2, and G̃ is equal to G except that its
first row is zero. The reaction bilinear form is represented by:

(Π0)T H Π0 .

Finally, depending on the field options.advection, the bilinear form bh(·, ·) is either

(Π0)T BetaH Π̄0
k , with (BetaH)ij := (´ · mj , mi)0,E ,

or
(Π0)T BetaG Π0 + (Π0)T BetaGb (I − D ∗ Π0) ,

with

(BetaG)ij := (´ · ∇mj , mi)0,E , and (BetaGb)ij := ï´ · nEmj , mið0,E . .

76 %% CONSTRUCT THE DIFFUSION MATRIX

77 if ( options . stiffness == " PiNabla ")

78
79 Gtilde = G;

80 Gtilde (1 ,:) = zeros (1, polynomial .dim (3));

81
82 A_loc = options . epsilon .* PiNabla_k ' * Gtilde * PiNabla_k ;

83
84 elseif ( options . stiffness == "PiBar ")

85
86 A_loc = options . epsilon .* PiBar_kminus ' * S_minus *

PiBar_kminus ;

87
88 else

89
90 error (" Invalid field stiffness in opt!")

91
92 end

93
94 %% CONSTRUCT THE CONVECTION TERM

95 b_val1_int = f_evaluation_interior ( options .beta {1}, p_quad );

96 b_val2_int = f_evaluation_interior ( options .beta {2}, p_quad );

97
98 if ( options . advection == "Zero ")

99
100 BetaH = create_matrix_betaH_1D (b_val1_int , b_val2_int ,

base_val_int , p_quad , polynomial );
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101
102 T = Pi0_k '* BetaH* PiBar_k ;

103
104 elseif ( options . convection == " Boundary ")

105
106 b_val1_bound = f_evaluation_boundary ( options .beta {1}, b_quad );

107 b_val2_bound = f_evaluation_boundary ( options .beta {2}, b_quad );

108
109 BetaG = create_matrix_betaG (b_val1_int , b_val2_int ,

base_val_int , grad_val_int , ...

110 p_quad , polynomial );

111
112 BetaGb = create_matrix_betaGb ( b_val1_bound , b_val2_bound ,

base_val_bound , polynomial , polygon );

113
114 T = Pi0_k '* BetaG*Pi0_k + Pi0_k '* BetaGb *(I-D*Pi0_k);

115
116 else

117
118 error (" Invalid field stabilization in opt!")

119
120 end

121
122 % ADD CONVECTION MATRIX

123 A_loc = K_local + 0.5 * (T - T');

124
125 %% CONSTRUCT THE REACTION MATRIX

126 A_loc = A_loc + options .sigma .* Pi0_k ' * H * Pi0_k;

127
128 %% ADD THE STABILIZATION TERM

129 I = eye( polygon .size);

130 Iminus = I - Pi;

131 A_loc = A_loc + ( options . epsilon + options .gamma* polygon .

diameter + options .sigma* polygon .area)*( Iminus ' * Iminus );

Finally, we construct the right-hand side. We compute the values of f and each Π0,E
k φi at

the quadrature point and evaluate each integral.

133 %% CONSTRUCT f_loc

134 f_loc = zeros( polygon .size ,1);

135 f_val_int = f_evaluation_interior (f, p_quad );

136
137 for i=1: polygon .size

138
139 integrand = Pi0_val_int (:,:,:,i) .* f_val_int ;

140 f_loc(i) = quadrature_2D (p_quad , integrand ," Evaluated ");

141
142 end

If we have chosen to use the Nitsche method, it remains to impose the boundary conditions.
The task is performed by the function create_matrix_N that computes the Nitsche matrix and
the corresponding right-hand side.

143 if ( options . boundary == " Nitsche ")

144
145 [N_loc , fN_loc ] = create_matrix_N ( boundary_edges ,

grad_val_bound , options , polygon , polynomial );
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146
147 A_loc = A_loc + N_loc;

148 f_loc = f_loc + fN_loc ;

149
150 end

Finally, we need to store some quantities that will be required later for the computation of
the errors and for the CIP term.

152 polygon .PiN = PiNabla_k ;

153 polygon .Pi0 = Pi0_k;

6.3.2 The function cip_element_normal

The first task of this function is to evaluate the function

[[Π0
kφi]]

at each quadrature point and for each virtual basis function. The results are stored in the matrix
N_Diff_val, where each column corresponds to the evaluation of a basis function. The number
of columns of this matrix equals the number of unique DoFs in the elements E and K that
contain the internal edge e. After that, it is possible to compute the CIP matrix corresponding
to the edge e with a for loop.

1 for i = 1: total

2
3 J_loc(i,i) = polynomial . gweights * ( N_diff_val (i ,:) ').^2;

4
5 for j = 1:i-1

6
7 J_loc(i,j) = polynomial . gweights * ( N_diff_val (i ,:) ' .*

N_diff_val (j ,:) ');

8 J_loc(j,i) = J_loc(i,j);

9
10
11 end

12
13 end

14
15 J_loc = gamma * edge ^3 .* J_loc;

6.4 Solving the linear system

Returning to the main file, we need to solve the linear system. We assemble the global
matrix A_global using the MATLAB function sparse(I,J,X). If we choose to solve the PDE
with the weakly imposed boundary condition, we only need to solve the linear system using the
backslash operator \. If we impose the boundary conditions in the classical manner, we split
the matrix A and the load vector as

A =

[
AII AIB

ABI ABB

]
, and F =

[
FI

FB

]
,

where I represents the indices of the interior DoFs, and B represents the indices of the boundary
DoFs. The linear system reads as

[
AII AIB

ABI ABB

] [
UI

UB

]
=

[
FI

FB

]
.
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The component UB is known thanks to the boundary conditions. To compute the values of uh

in the interior DoFs we solve the linear

AI ∗ UI = fI − AIB ∗ UB .

55 %% CONVERTING SYSTEM MATRIX TO A SPARSE MATRIX

56 siz = size(f_global ,1);

57
58 A = sparse ([ A_global .I; J_global .I], [ A_global .J; J_global .J], [

A_global .X; J_global .X], siz , siz);

59
60 %% CALCULATE BOUNDARY DATAS

61
62 if ( options . boundary == " Classic ")

63
64 fprintf ('[%.2f] Enforcing Dirichlet boundary conditions ...\n'

,toc);

65 f_global ( boundary_vertex ) = g(Mesh. coords ( boundary_vertex ,1)

, Mesh. coords ( boundary_vertex ,2));

66 f_global ( boundary_intdofs ) = g(Mesh. intcoords (

boundary_intdofs -Mesh.nvertex ,1) , Mesh. intcoords (

boundary_intdofs -Mesh.nvertex ,2));

67
68 end

69
70 %% SOLVE THE SYSTEM

71 fprintf ('[%.2f] Solving system of linear equations ...\n',toc);

72
73 if ( options . boundary == " Classic ")

74
75 internal_dofs = setdiff (1: size(f_global ,1) , boundary_dofs );

76
77 AII = A( internal_dofs , internal_dofs );

78 AIB = A( internal_dofs , boundary_dofs );

79 fI = f_global ( internal_dofs );

80 UB = f_global ( boundary_dofs );

81 UI = AII \ (fI - AIB * UB);

82
83 U = zeros(size(A ,1) ,1);

84 U( internal_dofs ) = UI;

85 U( boundary_dofs ) = UB;

86
87 end

88
89
90 if ( options . boundary == " Nitsche ")

91
92 U = A \ f_global ;

93
94 end

It is possible to visualize the numerical solution using the following lines of code. The
function fill3 allows you to draw a function on a polygon by specifying the values of the
function at its vertices. The first two input parameters are the x-coordinates and y-coordinates
of the vertices, respectively. The third parameter is a value that determines the color of the
polygon.
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96 figure (1)

97
98 for i = 1: Mesh. npolygon

99 hold on

100 fill3( Mesh. coords (Mesh. connect {i},1), Mesh. coords (Mesh.

connect {i},2), U( connect {i}), mean(U(Mesh. connect {i}))

101 end

6.5 Computation of the errors

The final step is to compute the errors in the L2-norm and H1-seminorm. This task
is handled by the function compute_errors, which takes as input the structures Mesh and
polynomial, the vector of DoFs of the numerical solution U, the analytic solution u, and its
gradient.

103 fprintf ('[%.2f] Computing errors ...\n',toc);

104 [errL2 , errH1] = compute_errors (Mesh ,polynomial ,U,u, grad_u );

105
106 fprintf ("[%.2f] Errors computed : ",toc)

107 fprintf ("\ nL2 norm : %f", errL2)

108 fprintf ("\ nH1 seminorm : %f", errH1)

6.5.1 The function compute_errors

We begin by initializing the errors to 0 and then consider each element of the decomposition
Ωh. For each polygon, we construct a quadrature rule that is more accurate than the one used
for constructing the linear system. Next, we evaluate the polynomial basis functions, their
gradients, the analytic solution u, and its gradient at the quadrature points. We then compute
the coefficients of Π∇,E

k uh and Π0,E
k uh with respect to the polynomial basis functions and

calculate their values at the quadrature points using the function Pi_evaluate, as described in
previous sections. square root to obtain the final error values. With the values of the analytic
solution and the numerical solution at the quadrature points, we compute their difference. The
error is then calculated using the quadrature formula. After summing all the contributions from
each polygon, we take the square root to obtain the final error values.

1 errL2 = 0;

2 errH1 = 0;

3
4 for i=1: Mesh. npolygon

5
6 %% COMPUTE THE QUADRATURE

7 polygon = Mesh. polygon {i};

8
9 [ p_quad ] = polygon_quadrature ( polygon {i}, polynomial .k+2);

10
11 base_val = base_evaluation_interior (p_quad , polynomial ,

polygon {i});

12
13 grad_val = grad_evaluation_interior (p_quad , polynomial ,

polygon {i});

14
15 %% U EVALUATION

16 u_val = f_evaluation_interior (u, p_quad );

17 deru_x_val = f_evaluation_interior ( grad_u .x, p_quad );
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18 deru_y_val = f_evaluation_interior ( grad_u .y, p_quad );

19
20 %% COMPUTE PI_NABLA U_h & EVALUATION

21 Pistar = polygon .G \ ( polygon .B * U( polygon . local_dofs ));

22
23 derPistar_val_x = Pi_evaluate (Pistar , grad_val (: ,: ,: ,1:

polynomial .dim (3)));

24 derPistar_val_y = Pi_evaluate (Pistar , grad_val (:,:,:,

polynomial .dim (3) +1: end));

25
26 %% COMPUTE PI_0 U_h & EVALUATION

27 P0 = polygon .H \ ( polygon .C * U( polygon . local_dofs ));

28
29 P0_val = Pi_evaluate (P0 , base_val );

30
31 %% COMPUTE THE DIFFERENCES

32 diff_sq = (u_val - P0_val ).^2;

% Integrands

33 diff_sq_grad = ( deru_x_val - derPistar_val_x ).^2 + (

deru_y_val - derPistar_val_y ).^2;

34
35 errL2 = errL2 + quadrature_2D (p_quad ,diff_sq , " Evaluated ");

36
37 errH1 = errH1 + quadrature_2D (p_quad , diff_sq_grad , " Evaluated

");

38
39 end

40
41 errL2 = sqrt(errL2);

42 errH1 = sqrt(errH1);

43
44 end
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