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Abstract

Biological and therapeutic uses for network-based approaches to human illness treat-
ment are numerous. A deeper understanding of the role of cellular interconnection
in disease progression may lead to the identification of disease genes and disease
pathways, which in turn could lead to the development of better therapeutic targets.
Scalable statistical solutions for modeling complex biological systems have become
critically important with the introduction of high-throughput sequencing (HTS) in
molecular biology and medicine. In order to test new hypotheses and deepen our
understanding of physiological processes and diseases, we need to incorporate vast
amounts of newly collected heterogeneous data and current knowledge. This diffi-
culty was brought on by the growing number of platforms and potential experimen-
tal scenarios. Despite the fact that network theory gave us a framework to explore
the hidden features of biological systems and to describe them, diverse algorithms
still have low reproducibility and robustness, depend on user-defined configura-
tion, and are difficult to understand. This thesis is divided into seven chapters,
including an introduction, a conclusion, and five independent sections that report
the related studies. The R package SEMgraph, which combines network analysis
and causal inference within the context of Structural Equation Modeling (SEM), is
proposed in Chapter 1. It offers a completely automated framework for managing
complex biological systems as multivariate networks, ensuring adaptability and ac-
curacy through data-driven model construction and perturbation evaluation, and
making it simple to understand in terms of causal relationships between system
components. For the analysis of high-dimensional networks, SEMgraph provides a
number of algorithms. In particular, Chapter 2 introduces SEMgsa(), a topology-based
algorithm created within the SEM framework. It uses statistics of route perturba-
tions and topological information to disclose biological information. Compared to
some other approaches, SEMgsa() outperforms current software tools and is very
sensitive to the disease-specific pathways. SEMtree(), a tree-based structure learning
approach with SEM, is introduced in Chapter 3. Starting with the data on the inter-
actome and gene expression, it recovers the tree-based structure. SEMtree(), com-
pared to other methods, is able to capture biologically significant sub-networks with
straightforward directed route visualization, effective perturbation extraction, and
good classifier performance. SEMbap(), a two-stage deconfounding method included
into the SEM framework and based on the Bow-free Acyclic Paths (BAP) search,
is covered in Chapter 4 of the thesis. It deals with unobserved confounding fac-
tors to correctly quantify interesting biological signals. When compared to previous
approaches, the BAP search algorithm is able to accurately find hidden confound-
ing while limiting the false positive rate, attaining acceptable fitting and perturba-
tion metrics, and other desirable characteristics. In the end, Chapter 5 presents the
SEMdag() algorithm, a two-stage order-based search with prior knowledge-based or
data-driven approach, under the assumption of a linear SEM with equal variance er-
ror terms. Our methodology has been compared to existing literature, showing low
computational burden and high classification performance in out-of-sample disease
predictions.
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Introduction

The main goal of biomedical research is to identify and comprehend the mechanisms
behind complex phenotypic features (Barabási and Loscalzo, 2011). The majority
of cellular components in humans, like those in other species, carry out their jobs
through interactions with other cellular components; the sum of these interactions
is known as the human interactome. The number of distinct proteins and functional
RNA molecules that make up the nodes of the interactome easily exceeds 100.000,
and there are an estimated 25.000 protein-encoding genes, 1.000 metabolites, and an
undetermined number of metabolites and different proteins in this network. This
network’s components act as the linkages of the interactome, and it is believed that
there are many more functionally significant interactions between them. This sub-
cellular interconnectedness suggests that the effects of a particular genetic anomaly
do not just affect the activity of the gene product that it is present in, but can also
propagate down the connections of the network and affect the activity of genes prod-
ucts that are otherwise healthy. Consequently, the phenotypic impact of a defect is
not exclusively defined by the known function of the mutant gene, but also by the
functions of the components with which the gene and its products interact as well
as of the partners with whom they connect, i.e., by its network context. The pheno-
type of a disease reflects numerous pathobiological mechanisms that collaborate in
a complicated network. This theory’s consequence is that the interdependencies be-
tween the molecular constituents of a cell result in profound functional, molecular,
and structural changes and causal connections between seemingly unrelated traits.

Understanding biological network structure. Networks of molecules, including genes,
proteins, and metabolites, are crucial in molecular biology (Oates, 2012). A bio-
logical network can be represented as a graph, G = (V, E), where V stands for
molecular components, and E represents the regulatory connections between those
components. The nodes in a gene regulatory network (Babu MM, 2004; Davidson,
2001) represent genes, and the edges represent transcriptional regulation, while the
nodes in a protein signaling network (Yarden and Sliwkowski, 2001) represent pro-
teins, and the edges could represent the parent’s enzymatic influence on the child’s
biochemical state, such as via phosphorylation. The edge structure of the network
may be ambiguous in various biological circumstances, including illness states (for
instance, as a result of genetic or epigenetic changes). Then, a crucial biological ob-
jective is to describe the edge structure (commonly referred to as the "topology" of
the network) in a context-specific way, that is, utilizing data collected in the biologi-
cal context of interest (for example, a form of cancer, or a developmental state). Such
data-driven characterisation of biological networks has attracted a lot of interest as a
result of developments in high-throughput data capture. Statistical methods are be-
coming more and more crucial in these "network inference" projects. The objective
can be understood statistically as drawing conclusions about the edge structure, E
in light of the biochemical data, Y.
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Identifying disease genes and pathways. Network-based methods for treating hu-
man disease offer a variety of biological and therapeutic applications. Uncovering
disease genes and disease pathways, which in turn could provide better targets for
drug development, could result from a greater knowledge of the effects of cellular
inter-connectivity on disease progression. The development of improved and more
precise biomarkers for monitoring the functional integrity of the network disrupted
by diseases, as well as improvements in disease classification, could also transform
clinical practice and pave the path for individualized medicines and treatments.

Evaluating knowledge-based models. The High Throughput Sequencing (HTS) era
brought to a deeper understanding of the true complexity underlying diseased (and
generally phenotypical) features, ushering in the big data age in molecular biology
and medicine (Shendure and Aiden, 2012). The availability of curated biological
models is no longer a restriction given the enormous number of publicly accessi-
ble bio-medical datasets. The availability of organized biochemical and biomedical
data, which can easily be transformed into networks and statistical models and is
what we typically refer to as knowledge-based models (KBMs), is the essential char-
acteristic of these databases. KBMs serve as a foundation and the industry standard
for enhancing exploratory techniques, but they have some serious flaws (Ritchie et
al., 2015). In order to evaluate particular biological hypotheses and mechanisms,
it is essential to define a set of criteria for converting a KBM into a causal model.
However, this is not always straightforward due to missing data or varying levels
of evidence (such as experimental evidence versus inference from similarity or elec-
tronic annotation). Second, a KBM reflects the state of the art, which is continually
being tested by fresh experimental evidence that could disclose brand-new interac-
tions and pathways. The original causal model must also be evaluated using explicit
statistical criteria that reflect the biological characteristics of the system and enhance
the model’s descriptive and prediction abilities (Liu et al., 2020; Ritchie et al., 2015).

Providing powerful statistical techniques. Investigations of complex functional net-
works involving DNA, RNA, proteins, and other biological constituents in a living
cell often adhere to a standard methodology. A cDNA microarray is used to assess
the mRNA level following the completion of a DNA sequence in order to disclose the
gene expression profiles under diverse circumstances. With this knowledge, strong
statistical techniques are needed for extensive quantitative comparisons of popu-
lations/conditions as a result of the ongoing development of high-throughput se-
quencing technologies. For instance, one of the most important tasks in the analysis
of gene expression data is to select genes from a long gene list that express differently
under various contexts, such as various disease statuses. See Robinson, McCarthy,
and Smyth, 2009 and Love, Huber, and Anders, 2014, and the references therein for
a variety of ways that have been suggested for this purpose and that offer crucial
insights into the molecular basis of many complex human features and disorders.

Exploiting the SEM modelling approach. The Structural Equation Modelling (SEM)
approach is one option. SEM has been used effectively to clarify causal linkages in
diverse domains like sociology, psychology, and econometrics. It has been approxi-
mately 80 years since Wright, 1921, and Wright, 1934 first proposed the idea of SEM.
He established a method of decomposing the observed correlations into a system of
equations that mathematically reflected his theories regarding causal links while fo-
cusing on patterns of covariation between different features. His approach became
known as "path analysis" and these connections between the variables were shown
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in a "path diagram" (Wright, 1921; Wright, 1934). Later, economists and sociologists
separately rediscovered and developed this method. The most notable examples
are Jöreskog, 1973; Jöreskog and Sörbom, 1982. By combining factor analysis and
path analysis, they created a new technique called "structural equation modeling,"
which can evaluate causal claims rather than just describe them (Shipley, 1999). This
method replaced Wright’s original "path analysis" technique. SEM analyzes causal
linkages in observational data under the assumption of linear relationships, while
non-linear correlations can also be modeled. These methodologies aid in the se-
lection of pertinent hypotheses by eliminating those that lack supporting empirical
data, even though they do not actually establish causality. Although a correlation
between two variables does not always imply a causal connection between them, a
causal connection between two variables does suggest the presence of a correlation
between them. The SEM strategy’s fundamental premise is as follows. In order to
create a theoretical covariance structure between a vector of random variables, SEM
presupposes the existence of an underlying mechanism. The goal is to put out and
evaluate a model that adequately expresses the fundamental nature of this under-
lying mechanism (Malaeb, Summers, and Pugesek, 2000). A number of constraints
on the variance/covariance matrix are implied by the causal links defined in a start-
ing hypothesis. If the variance/covariance matrix derived from observational data
complies with the restrictions given by the hypothesis, the model is not discarded.
The various kinds of causal interactions that can cause two variables to covariate
must be recognized in order to comprehend the SEM process. Basically, four main
categories can be identified:

• the direct effect of one variable on another;

• indirect effects: one variable affects another variable through a direct path of
intermediate variables;

• common causes: X affects both Y and Z (this is spurious association);

• correlated causes: X is a cause of Z and X is correlated with Y;

• reciprocal causation: each variable is a cause and effect of the other.

A SEM is a multivariate regression model that goes beyond conventional regres-
sion by allowing numerous outcomes, often known as "endogenous" variables and
"latent" variables that are not observed in the data. There is a corresponding regres-
sion equation for each endogenous variable, and these equations might depend on
both exogenous and other endogenous factors. The predictor variables (covariates)
that are not influenced by any other variable in the model are referred to as "exoge-
nous" variables in this context.

Implementing an efficient and user-friendly R toolkit. The challenge is to update
and test network models using a straightforward and transparent workflow, starting
from current knowledge. From a computational standpoint, the difficulty is to free
the user from initial setup selection by immediately determining the algorithm and
model parameters from quantitative data using effective and parallelizable methods.

Chapter 1 exposes the main contribution of this thesis to the existing literature,
i.e. the development of the R package SEMgraph (Grassi, Palluzzi, and Tarantino,
2022), based on SEM (Bollen, 1989), enabling causal inference on complex biological
networks. The use of SEM is now currently common in the fields of causal inference
and causal discovery (Pearl, 2009). Model learning, data-driven model refinement,



4

causal inference, and discovery are all supported by path diagrams, which are fre-
quently represented as acyclic mixed graphs. HTS data is frequently organized into
networks or pathways, allowing for the confirmatory or exploratory examination of
key biological characteristics.

In SEMgraph, this is achieved effectively through algorithm-assisted search for
the best trade-off between the best model fitting (i.e., the optimal context) and per-
turbation (i.e., external influence) given data, in which knowledge is employed as
supplemental confirmatory information. As a collection of interdependent variables
connected by causal links, the input network and the underlying statistical model
in SEMgraph are interchangeable representations of the same framework. Through
a series of intermediate steps, including causal backbone estimation, adjustment of
hidden confounding variables, graph extension, and model refinement to improve
fitting, with scalable solutions for large graphs, this dual representation is effectively
modified to produce the final causal model.

The other chapters report a more detailed analysis of some of the most relevant
SEMgraph algorithms: SEMgsa() (Chapter 2), SEMtree() (Chapter 3), SEMbap() (Chap-
ter 4) and SEMdag() (Chapter 5). These chapters aim to present novel algorithms and
provide a meaningful comparison of the state-of-the-art methods on real and syn-
thetic data. Applications involve RNA-seq and gene expression data about cases
and control subjects. In detail, the contributions are presented in four self-contained
chapters:

• Chapter 2: identifying disease-specific biological functions. By allowing extensive
monitoring of a biological system, techniques like high-throughput sequenc-
ing and gene/protein profiling have revolutionized biological research. The
examination of high-throughput data often results in a list of differentially ex-
pressed genes or proteins, regardless of the technique employed. This list is
quite helpful for locating genes that could be involved in a specific phenom-
ena or phenotype. For many researchers, however, this list frequently falls
short of offering mechanistic insights into the underlying biology of the illness
under study. One way to tackle this problem is to make analysis simpler by
breaking up long lists of individual genes into smaller groups of similar genes
or proteins, lowering the complexity of the analysis. For two main reasons,
functional level analysis of high-throughput molecular data is particularly in-
teresting. First, simplifying hundreds of genes, proteins, and/or other biologi-
cal molecules into groups according to the routes they participate in simplifies
the complexity to just a few hundred pathways for the experiment. Second,
finding active pathways that are different between two conditions may have
a stronger explanatory impact than simply compiling a list of various genes
or proteins. We suggest SEMgsa(), a topology-based algorithm built inside the
structural equation models framework. After statistically fitting for the biolog-
ical relationships between the genes inside pathways, SEMgsa() combines the
SEM p-values for node-specific group effect estimates in terms of activation
or inhibition. In order to find biologically significant results in a frontotem-
poral dementia (FTD) DNA methylation dataset (GEO accession: GSE53740)
and a COVID-19 RNA-seq dataset (GEO accession: GSE172114), we employed
SEMgsa() and evaluated its performance against various other approaches.

• Chapter 3: discovering regulatory and signaling mechanism. The complex inter-
actions between the various biological components of a cell give rise to the
biological function at the molecular level (Emmert-Streib, 2007; Emmert-Streib
and Glazko, 2011). Specifically, depending on an organism’s tissue type and
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environment, many molecules, such as proteins, metabolites, miRNA, and
tiRNA, can interact with one another in a wide variety of ways. Three different
types of networksÐmetabolic, transcriptional regulatory, and protein interac-
tion networksÐcan be used to broadly classify the connections between bio-
logical entities (Förster et al., 2003; Vidal, Cusick, and Barabasi, 2011). These
networks must be inferred from experimental data produced by various high-
throughput platforms, like as microarrays, proteomics, and next-generation se-
quencing (NGS). Nowadays, it is well acknowledged that biological networks
do not connect at random but rather follow specific structural patterns that re-
sult in (I) a scale-free topology, (II) a hierarchical structure, and (III) a modular
structure (Han et al., 2004; Regan, 2009). The functional activity of modules
in various illness situations has also been identified using a number of ap-
proaches that have been developed to detect and integrate protein networks
with gene expression or other datasets like disease-gene association (Dittrich
et al., 2008; Taylor et al., 2009). Trees and arborescences are useful models as a
preliminary step towards understanding the overall dependence structure of
high-dimensional data. These are unrealistically simple models for biological
systems, but can nevertheless provide useful insights. We can use trees with
different objectives: (i) to search for distinct connected components, which can
be analysed separately (dimension reduction); (i) to identify neighbourhoods
for more detailed analyses, or (ii) to identify other interesting features, such
as hub (i.e., nodes of high degree) that may play a special role in the true net-
work. The primary contribution is the creation of a self-contained tree-based
structure learning method that was integrated into the SEM framework with
the SEMtree() function. As well as simulated datasets with varied differential
expression patterns, we used SEMtree() to analyze the RNA-seq data from the
COVID-19 virus disease (GEO accession: GSE172114).

• Chapter 4: obtaining unbiased causal estimates. The SEM’s structure can be repre-
sented as a directed graph, with the vertices being variables and the edges de-
noting direct causal connections. The directed acyclic graph (DAG) is created
when the structure is thought to be recursive (acyclic). Many structure learning
methods use DAGs as models of conditional independence to locate all DAGs
that are consistent with the observed conditional independencies (Spirtes, Gly-
mour, and Scheines, 2000). But frequently, not all important variables are
noted. Although some conditional independencies may still be satisfied by the
resulting marginal distribution over the observed variables, generally speak-
ing, these will not have a DAG representation (Richardson and Spirtes, 2002).
We take a look at a class of models that can contain some hidden variables. To
be more precise, we assume that the graph over the measured variables is a
bow-free acyclic path diagram (BAP). This indicates that it can have both di-
rected and bidirected edges (the bidirected component being acyclic), with the
bidirected edges denoting hidden confounders and the directed edges denot-
ing direct causal effects. Due to the bow-freeness constraint, an edge between
two variables cannot be both directed and bidirected. The main contribution is
the development of a two-stage deconfounding method based on BAP search
that was integrated into the SEM framework with the SEMbap() function. For
the simulations, we replicate different structures for the hidden covariance ma-
trix and, for real data, we make use of the (pre-processed) breast cancer (BRCA)
RNA-seq dataset from TCGA project, also analyzed in Jablonski et al., 2021.

• Chapter 5: discovering the optimal causal structure. A formal representation of the
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interactions between the observable variables, such as a casual graph, is crucial
for causal inference, or the process of quantifying the influence of a cause on
its consequence. A DAG offers an elegant way to describe directional or causal
structures among collected nodes. Learning the DAG structures from observ-
able data has received a lot of attention recently. Structure learning is well
known to be computationally challenging, and various methods have been
developed to solve it, using one of three alternative approaches: score-based
algorithms (Chickering, 2003; Yuan et al., 2018), constraint-based algorithms
(Spirtes, Glymour, and Scheines, 2000) and hybrid algorithms. The major-
ity of the methods listed above, however, can only recover a DAG’s Markov
equivalence class. There has recently been a lot of interest on exact DAG re-
covery. Various DAGs in the same equivalence class can be distinguished by
additional assumptions about the data distribution than just conditional in-
dependence relations. The main contribution is the development of a two-
step algorithm for learning high-dimensional sub-Gaussian linear SEMs with
the same error variances (Peters and Bühlmann, 2014), implemented in the
SEMdag() function. The extracted DAG is estimated using the two-step order
search approach. First a vertex (node) or level (layer) order of p nodes is deter-
mined, and from this sort, the DAG can be learned using in step 2) penalized
(L1) regressions (Shojaie and Michailidis, 2010). To investigate the utility of our
approach, we conducted a series of experiments using RNA-seq data, taking
into account a pair of training and testing datasets for four distinct diseases:
Amyotrophic Lateral Sclerosis (ALS), BRCA, COVID-19 and ST-elevation my-
ocardial infarction (STEMI). Comparisons in terms of disease predictive per-
formance have been made with: (i) state-of-art structure discovery methods
and (ii) a traditional supervised learning algorithms (Random Forest (RF)).

In the end, the ultimate goal of our research is to infer complex biological net-
works from gene expression data, enhancing the understanding of gene networks
and discovering novel biological relationships in order to characterize and prevent
specific diseases.
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Chapter 1

SEMgraph

1.1 Structural equation models (SEM) framework

1.1.1 SEM basics

SEM is a statistical framework for causal inference based on multivariate linear re-
gression equations, where the response variable in one regression equation may ap-
pear as a predictor in another equation (Bollen, 1989; Shipley, 2016). SEM may be
formulated to explicity include latent unobserved variables, but here we consider a
setup in which the latent variable have been marginalized out and represented in
the model only implicitly through possible correlations among unobserved latent
confounders (Pearl, 1998).
A SEM, is based on a system of structural (i.e., linear regression) equations definig
a path diagram, represented as a graph G = (V, E), where V is the set of nodes (i.e.,
variables) and E is the set of edges (i.e., connections). The set E may include both
directed edges k→ j if k ∈ pa(j) and bidirected edges k↔ j if k ∈ sib(j), where the
parent set pa(j), and the siblings set sib(j), determine the system of linear equations,
as follows:

Yj = ∑
k∈pa(j)

β jkYk + Uj j ∈ V (1.1)

cov(Uj; Uk) =

{

ψjk if j = k or k ∈ sib(j)

0 otherwise
(1.2)

where Yj and Uj are an observed variable and an unobserved error term, respec-
tively; β jk is a regression (path) coefficient, and a covariance ψjk indicates that errors
are dependent, which is assumed when there exists an unobserved (i.e.latent) con-
founder between k and j.
A path diagram is also a formal tool to evaluate the hierarchical structure of a system,
where we can identify exogenous variables as system elements with empty parents set,
and endogenous variables, having at least one parent variable in at least one structural
equation of the SEM. In graph theory, exogenous variables are source nodes, with
incoming connectivity equal to 0, whilst endogenous variables are nodes with non-
zero incoming connectivity. Endogenous variables can be further divided into con-
nectors, with non-zero outgoing connectivity, and sinks, having no outgoing connec-
tions. Given these notions, we consider three types of fundamental path diagrams
to describe high-throughput data structure:

• Directed Acyclic Graphs (DAGs), composed by directed edges (k → j) only,
whose magnitude is quantified through path coefficients β jk, and all covari-
ances are null (i.e., ψjk = 0). In addition, loops are not allowed in a DAG.
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• Bow-free Acyclic Paths (BAPs), having acyclic directed edges (k → j), and
bidirected connections (k ↔ j) only if the k-th and j-th variable do not share
any directed link (i.e., they are bow-free). As a consequence, in a BAP, if β jk ̸= 0
then ψjk = 0.

• Covariance models, as a special case of BAP in which all β jk = 0. Therefore,
only covariances ψjk may have non-zero values.

These three models are simple graphs; i.e., they have at most one edge between any
pair of nodes, and are all identifiable, such that the parameter matrices B and Ψ

can be uniquely estimated from the population covariance matrix of the observed
variables for nearly every parameter choice (Brito and Pearl, 2002; Drton, Foygel,
and Sullivant, 2011).

1.1.2 SEM fitting

From the computational point of view, it is convenient to write Equations 1.1 and
1.2 in matrix form as: Y = BY + U and cov(U) = Ψ. Assuming random variables
with zero mean vector (µ(θ) = 0), the covariance matrix of the joint distribution of
p variables Y is given by:

Σ(θ) = (I − B)−1Ψ(I − B)−T (1.3)

where the set of free parameters θ = (β; ψ) has dimension t. B is the path co-
efficient matrix, Ψ is the covariance matrix, and I is the identity matrix, all of them
having dimension p× p. Generally, in the SEM framework, free (i.e., unknown) pa-
rameters θ are computed by Maximum Likelihood Estimation (MLE). Assuming all
model variables as jointly gaussian, a covariance-based procedure is performed, so
that the estimated covariance matrix Σ(θ̂) is close to the observed sample covariance
matrix S. This is obtained by maximizing (up to an additive constant) the model log-
likelihood function logL(θ) given data (Bollen, 1989, p. 135).

arg max
θ∈(B;Ψ)

logL(θ) = −n

2
(log det Σ(θ) + tr[Σ(θ)−1S]) (1.4)

To maximize the objective function in (1.4) an optimization method is needed.
Popular choices include Newton±Raphson, Fisher scoring, and various quasi-Newton
methods. The lavaan package (Rosseel, 2012) uses by default a quasi-Newton method
implemented in the nlminb() function. Standard Errors (SEs) are extracted from the
diagonal of the expected (or observed) Fisher's information matrix of the likelihood
function. MLEs, θ̂’s of the parameters, θ’s has been shown asymptotically N(0, 1)
and efficient (minimum variance):

(

θ̂jk − θjk

)

SE(θ̂jk)
→ N(0, 1) (1.5)

P-values for testing the null hypothesis, H0 : θjk are computed through the test
statistic, z = θ̂/SE(θ̂), and 95% confidence intervals are: θ̂ ± 1.96 SE(θ̂). An advan-
tage of MLE is that its estimates are in general scale invariant and scale free (Bollen,
1989, p. 109). Therefore, the values of the fit function do not depend on whether cor-
relation or covariance matrices are analyzed, and whether original or transformed
data are used.
For large graphs with the node size, (|V| > 100), SEs computation will be skipped,
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and parameter estimates will be computed through residual iterative conditional fit-
ting (RICF) via the ggm R package (Marchetti, Drton, and Sadeghi, 2020). The RICF
solver is an efficient iterative algorithm, that can be implemented using only least
squares computations, has clear convergence properties and yields exact MLE after
the first iteration whenever the MLE is available in closed form (Drton, Eichler, and
Richardson, 2009). A large number of bootstrap samples, b = 1, ..., B are indepen-
dently drawn , and the SEs are computed as the Standard Deviations (SDs) of the
parameter estimates evaluated for each bootstrap sample (Bollen and Stine, 1992).

If the graph is a DAG, an alternative to NLMINB or RICF covariance-based al-
gorithms for large graphs (V > 100), consists into determining the MLE param-
eters via nodewise-based regression, i.e. by least-square (LS) procedure repeatedly
with a single response variable (a mediator or sink node) each time. In the regime
V >> n, a LASSO regression (Tibshirani, 1996) procedure and de-biasing asymp-
totic inference can be implemented. Assuming a sparsity assumption, and the non-
zero edges is not too large relative to sample size, i.e., the maximum node degree
of the graph satisfies, s = o(

√
n/log(p)), the de-sparsified (or de-biased) P-values

can be find asymptotically from the N(0, 1)-distribution via constrained Gaussian
Graphical Model (CGGM), as outline in Jankova and Van De Geer, 2019.

SEM fitting can be applied to any graph with the SEMrun() function (see help
documentation: ?SEMrun). By default algo=lavaan"), the input graph is converted to
a "lavaan" model, the data is used to compute the covariance matrix and then SEM
parameters is fitted via covariance-based procedure with Newton±Raphson algo-
rithm and N(0, 1) P-values. If algo="ricf", covariance-based procedure with RICF
algorithm and bootstrap P-values is performed. If algo="cggm", nodewise-based pro-
cedure with LS or LASSO and N(0, 1) or de-biased N(0, 1) P-values is activated.

1.1.3 Global model evaluation

The assessment of the model involves the Likelihood Ratio test (LRT) converted to
a Chi-square test of the fitted model. Specifically, let Σ = S the observed covariance
matrix, and Σ(θ̂). the model-implied covariance matrix, the null hypothesis to be
tested is: H0 : Σ(θ̂) = S. The chi-square test, also known as model deviance, is then:

χ2 = −2 log LRT = −2 [ logL(θ̂)− logL(θmax) ] (1.6)

where logL(θ̂) is the log-likelihood Equation (1.4) evaluated to model-implied
covariance matrix, Σ(θ̂) and logL(θmax) is the log-likelihood for an exact fit; i.e.,
Σ(θ̂) = S. P-values are derived either from the χ2(df) distribution with df = p(p +
1)/2− t degrees of freedom, or from a resampling bootstrap distribution (Bollen and
Stine, 1992). Non-significant P-values (P > 0.05) indicate that the model provides a
good fit to data (i.e., the elements of S−Σ(θ̂), should be close to zero). Alternatively
to the chi-square test, the Akaike's information criterion (AIC) (Akaike, 1974) can be
used to compare fitted to saturated model, defined in SEM as (Bentler, 2016):

AIC = −2 logL(θ̂) + 2t ≈ χ2 − 2df (1.7)

where the rightmost member in Equation (1.7) is equal to the left member minus
the constant term p(p + 1)/2. The model with the minimum AIC value is regarded
as the best fitting model. In the chi-square (or deviance) metric it has been suggested
that a ratio between the magnitude of χ2 and the expected value of the sample dis-
tribution E(χ2) = df less than 2 and between 2 and 3 is indicative of a good and
acceptable data-model fit, respectively (Schermelleh-Engel and Moosbrugger, 2003).
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While, for high-dimensional model with large d f (large sparsity), χ2/df<1 is indica-
tive of over-fitting. The relationship between AIC and χ2/df thresholds become
more evident by comparing Equation (1.6) and Equation (1.7). For the saturated
model AIC = 0, and the fitted model should be selected if AIC < 0, which is equiv-
alent to the condition χ2/df < 2.
Another approximate SEM fit index comparing two models (fitted vs. saturated) as
the chi-square test (or the chi-square ratio), is the Standardized Root Mean-squared
Residual (SRMR), an overall descriptive statistic based on all pairwise differences
between observed sample covariances (s) and implied model covariances (σ̂):

SRMR =

√

√

√

√

∑
p−1
j=1 ∑

p
k=j+1(sjk − σ̂jk)2/sjjskk

p(p + 1)/2
(1.8)

SRMR values range from 0 to 1, where 0 is equivalent to a perfect fit. The accept-
able range for the SRMR index is between 0 and 0.08 (Hu and Bentler, 1999).
If the model is a DAG, a global fitting statistic, based on the directed separation
(d-separation) concept, can be applied (Shipley, 2000). In a DAG, missing edges be-
tween nodes imply a series of independence relationships between variables (either
direct or indirect). These independences are implied by the topology of the DAG
and are determined through d-separation: two nodes, Yj and Yk, are d-separated by
a set of nodes S if conditioning on all members in S blocks all confounding (or back-
door) paths between Yj and Yk (Pearl, 1998; Verma and Pearl, 1990a). In a DAG, with
Yj having a higher causal order than Yk, it is possible to find a minimal set of con-
ditional independencies BU implying all the other possible independencies, defined
by: BU =

{

Yj ⊥ Yk |pa(j) ∪ pa(k), j > k
}

. The number of conditional independence
constraints in the basis set BU equals the number of missing edges, corresponding
to the number of degrees of freedom (df) of the model. If the graph is not very large
or very sparse, it is possible to perform local testing of all missing edges separately,
using the Fisher's z-transform of the partial correlation. An edge (k; j) is absent in
the graph when the null hypothesis H0: cor(Yj; Yk |pa(j)∪pa(k)) = 0 is not rejected.
These individual tests implied by the basis set BU are mutually independent, thus
their P-values pr can be combined in an overall test of the fitted model (i.e., the DAG)
using Fisher's statistic:

C = −2
R

∑
r=1

log(pr) (1.9)

This statistic follows a chi-squared distribution with df = 2× (number of missing
edges). A non-significant P-value (P > 0.05) of C indicates that the model provides a
good fit to data.
SEMrun() function (see help documentation: ?SEMrun) print on the console deviance/df,
and SRMR statistics with all algo= c("lavaan, "ricf", "cggm"). While, the C-statistic
is implementated in Shipley.test() function (see help documentation: ?Shipley.test)

1.1.4 Evaluating system perturbation

In several applications, the concept of perturbation arises when a system is altered
(i.e., changed) by one or more external influences affecting its behaviour respect to a
reference state (often described as physiological or healthy). However, in most cases,
the mechanisms and extent of the alterations are unknown and data-driven discov-
ery based on the comparison between experimental (i.e., altered) and healthy sam-
ples is the best possible option.
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A possible approach to the evaluation of system perturbation is multigroup SEM
(Bollen, 1989, p. 355). We consider a two-group SEM procedure either using an ex-
ogenous group variable acting over a common model, or building a separate model
for each group and comparing them. In the former, the experimental condition is
compared to a control one through the use of an exogenous binary group variable
X = {0, 1} acting on every node of the network. This model is converted to a sys-
tem of linear equations that is common to both conditions, with µ(θ) = 0 and Σ(θ)
being the implied mean vector and covariance matrix of the common model:

Yj = β jX + Uj j ∈ V(x) (1.10)

Yj = ∑
k∈pa(j)

β jkYk + β jX + Uj j ∈ V(y) (1.11)

where V(x) and V(y) are the sets of exogenous (i.e., sources) and endogenous
(i.e., connectors and sinks) variables, respectively. Coefficients β j (adjusted by the
parents of the j-th node) determine the effect of the group on the j-th node, while
the common path coefficients β jk represent regression coefficients, adjusted by group
effect. This type of SEM enables the identification of differentially regulated nodes
(DRNs); i.e., variables showing a statistically significant variation in their activity
(e.g., gene expression) in the experimental group respect to the control one.
Alternatively, the two groups of samples are kept separated, with two different sys-
tems of linear equations, that is the two-group model:

Y
(1)
j = ∑

k∈pa(j)

β
(1)
jk Y

(1)
k + U

(1)
j j ∈ V(y) (1.12)

Y
(0)
j = ∑

k∈pa(j)

β
(0)
jk Y

(0)
k + U

(0)
j j ∈ V(y) (1.13)

This enables the identification of differentially regulated edges (DREs). We de-
fine µ1(θ) = 0 and Σ1(θ) as the model-implied mean vector and covariance matrix
for the experimental group (group 1), and µ0(θ) = 0 and Σ0(θ) the corresponding
moments for the control group (group 0), respectively.
Perturbation tests in the common-model and two-models approaches are based on
the definition of two different test statistics:

• zj = β̂ j/SE(β̂ j), tests the null value for path coefficient, H0 : β j = 0 of the
group variable X and z-sign evaluates node activation or inhibition for j ∈ V;

• zjk = (β̂
(1)
jk − β̂

(0)
jk )/SE(β̂

(1)
jk − β̂

(0)
jk ), tests the null value for path coefficients

difference, H0 : β
(1)
jk − β

(0)
jk = 0 between groups and z-sign evaluates edge

activation or inhibition for (j; k) ∈ E.

In both approaches, parameters are estimated through MLEs and the Standard Er-
rors (SEs) are derived from the usual lavaan output. Then, for the two-group model
the group-specific SEs are combined as (Hudson and Shojaie, 2022, p. 355):

SE(β̂
(1)
jk − β̂

(0)
jk ) =

√

SE(β̂
(1)
jk )2 + SE(β̂

(0)
jk )2 (1.14)

P-values for these z statistics are derived asymptotically from the N(0, 1) - distri-
bution under the H0 for sample sizes, n or n1 and n0 sufficiently large, respectively.
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In the common model an additional node (group) and |V| edges are added in the in-
put graph. For reduce computational time, in some cases, edge weights in B matrix
are set to discrete values indicating gene activity derived from biological database
(e.g. KEGG). Usually they are: -1 for repressed or inactive, 0 for neutral, and +1 for
enhanced or activated. These values can be scaled so that they can be used for model
fitting. As a rule of thumb, when fixed weights are in the set [-1, 0, 1], B = 0.1 should
perform well on any network. Using fixed weights (when this makes sense) reduces
significantly computational demand, avoiding regression parameter estimation.
For large graphs (|V| > 100) the standard error (SE) computation can be disabled
and model parameters will be estimated through residual iterative conditional fit-
ting (RICF). Group effect P-values can be computed by randomization of group la-
bels comparing the estimated parameters by RICF with their random resampling
distribution after a sufficiently high number of case/control labels permutations us-
ing the R package flip (Finos et al., 2018). Accurate small P-value estimations are
possible with no need for a large number of permutations (SEMrun() makes default
= 1000 permutations), using the moment based approximation proposed by Lar-
son and Owen, 2015. Once the empirical distribution of the permuted statistic T is
obtained, the two-sided P-values are computed from the normal distribution with
mean and standard deviation estimated by the empirical distribution.

In high dimensionality (|V| > 100) two-group model, if the graph is a DAG, pa-
rameters can be estimated through constrained gaussian graphical model (CGGM)
solver, and P-values are obtained from N(0, 1)-distribution combining the group-
specific z-tests, using equation 1.14.

Finally, the descriptive overall group perturbation on either nodes or edges can
be computed, for both node and edge differences, based on the Brown's method for
combining non independent, one-sided significance tests (Brown, 1975). The method
computes the sum of one-sided pvalues: X2 = −2 ∑j log(pj), where the direction is
chosen according to the alternative hypothesis (H1), and the overall P-value is ob-
tained from the chi-square distribution with new degrees of freedom f and a correc-
tion factor c to take into consideration the correlation among P-values (Brown, 1975).
The conversion of two-sided pvalues in one-sided pvalues is performed according
to the sign of the z-test:

H1: with at least one β j > 0 =⇒ p
(+)
j =

{

pj/2 if zj > 0

1− pj/2 if zj < 0
(1.15)

H1: with at least one β j < 0 =⇒ p
(−)
j =

{

pj/2 if zj < 0

1− pj/2 if zj > 0
(1.16)

If the overall P-value < α (i.e., the significance level), we define node (or edge)
perturbation as activated when the direction of the alternative hypothesis is positive.
Conversely, the status is inhibited if the direction is negative.
SEM with exogenous two-group influence can be applied to any graph with the
SEMrun() function (see help documentation: ?SEMrun) with the argument fit=1 or
fit=2 for common model or two-group model, respectively. Both global fitting statis-
tics, and combined overall P-values are always printed on the console.
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1.1.5 Decomposition of effects

In observational studies, as in network biology and medicine, there is the need for
assessing causality over paths (i.e., chains of direct effects X → · · · → Y) having
biological relevance. One important feature of SEM is the decomposition of effects
between variables. We may define three types of causal effects: direct effect (DE),
indirect effect (IE), and total effect (TE). A DE is the causal effect X → Y of the j-
th variable (X) on the k-th variable (Y) of the model, when all other variables are
kept constant (i.e., the effect quantified by path coefficients β jk). Keeping the other
variables constant will exclude all causal paths between X and Y, with the exception
of the direct connection X → Y (Pearl, 1998); therefore the DE does not consider
mediators effect. In a graph, a path between two nodes X and Y can be viewed as
a sequence of edges that may have either the same or different direction respect to
neighbouring connections. A directed path between two nodes is a sequence of edges
with the same direction, where node X is an ancestor of Y, and Y is a descendant of X.
The TE includes the contribution of all directed paths connecting X and Y, whereas
the IE can be defined as the difference TE−DE.
Let us consider an acyclic mixed graph G (either a DAG or a BAP) and a directed
path π ∈ G, traveling from node X to node Y, having length (i.e., number of edges)
equal to r. Every j-th directed edge in π correspond to a DE quantified by a path
coefficient β j;j+1. The causal effect of X on Y through all the intermediate edges is
given by the product of the underlying beta coefficients along a directed path from
X to Y. In other words, we may consider π as the path through which information
is propagated from the source node X to the target node Y. If there is more than
one directed path πs(s = 1, ..., r(s)) from X to Y in G, the TE will be the sum of the
contribution of each alternative path π through which information propagates from
X to Y:

TE = ∑
s

πs = ∑
s

r(s)

∏
j=0

β j;j+1 (1.17)

The nodes of an acyclic mixed graph can be ordered topologically, such that we
observe a directed edge j → k only if j < k. All possible paths from j to k are given
by [∑

∞
r=0 Br ]jk. Under node topological ordering, the path coefficents matrix B is

strictly lower-triangular, it is invertible, and (I − B)−1 = I + B + B2 + ..., implying
(Drton, Foygel, and Sullivant, 2011):

TEjk = (I − B)−1
jk (1.18)

DEjk = Bjk (1.19)

IEjk = (I − B)−1
jk − Bjk (1.20)

Generally, in observational studies and genomics, the interaction between pairs
of variables is estimated as the direct effect of the source variable X on the target
variable Y, when all other predictors are kept constant. However, this interpretation
is incomplete for systems in which mediators effects is not negligible, as in case of
perturbation propagation though nodes of a community or a signaling pathway. In
these cases, the TE is a more appropriate estimation, considering the simultaneous
variation of all mediators. A formal definition of TE, as average causal effect (ACE),
is provided by the post-intervention do-calculus, defined in Pearl, 2009:

ACE = E[Y |do(X = x + 1)]− E[Y |do(X = x)] (1.21)
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where E[Y |do(X = x)] denotes the expected value of Y when X is fixed to a ref-
erence value x by external intervention, as in a randomized experiment. In nonlinear
models, the ACE will depend on the reference point. However, in a linear Gaussian
SEM, x can assume every arbitrary value and the intervention effect (or causal effect)
will be a real-valued parameter, given by Pearl, 2009:

ACE =
∂

∂x
E[Y |do(X = x)] (1.22)

In acyclic mixed graphs, this constant parameter is given by the TE computed
with the path method as ACEjk = (I − B)−1

jk . Alternatively, when the causal model
is a DAG, a simple way to compute the ACE is by applying Pearl's backdoor criterion
(Pearl, 1998), allowing ACE estimation through regression. The parent set pa(X) of
X blocks all backdoor (i.e., confounding) paths from X to Y, and the ACE is equal to
the θYX|Z coefficient in a multiple regression of Y on X + pa(X) (Pearl, 2009). How-
ever, adjusting for pa(X) is typically inefficient with respect to its asymptotic vari-
ance, and an optimal adjustament set (O-set) with smallest asymptotic variance is
obtained using the parent set of Y, pa(Y |DXY), in a suitable latent projection graph
DXY, called the forbidden projection (Witte et al., 2020). The ACE is then computed
as the θYX|Z coefficient in a multiple regression of Y on X + pa(Y |DXY).
ACE estimation can be applied to any graph with the SEMace() function (see help
documentation: ?SEMace). SEMpath() function (see help documentation: ?SEMpath),
search and fit all directed or shortest paths between two source-sink nodes of a
graph. In addition, pathFinder() function (see help documentation: ?pathFinder)
uses SEMace to find significant causal effects between source-sink pairs and SEMpath

to fit them and test their edge perturbation.

1.1.6 Graph-weighting methods

The input interactome, G(V,E) can be converted into a weighted ºperturbedº net-
work, G(VW,EW) endowed with nodes and edges weight reflecting their perturba-
tion status. Genes (nodes) can be weighted by bivariate P-values testing the group
(1= experimental, 0=control) effect on each gene with t-test o similar tests for two-
group differences (via limma, SAM, etc. in R/Bioconductor packages), or a binary
ºseedº attribute (1=seed, 0=non-seed) can be associated on each node, if P-value <
alpha. As per node weights, gene-gene interactions (edges) can be weighted based
on the group difference of pairwise correlation measures.
In SEMgraph with the weightGraph() function, four trivariate procedures can be per-
formed based on: (i) SEM (regression) model, (ii) Covariance model, (iii) Confirma-
tory Factor Analysis (CFA) model, and (iv) Fisher’s transformation z-to-r correlation
method, as follow.

SEM (regression) model. The SEM (regression) model implies testing the group
effects on the source-sink link. A common group effect model of C = {0: control; 1:
case} is fitted (see Figure A.1) on the source node k, and the sink j:

Yk = βk0 + βkCC + Uk

β j0 + β jCC + β jkYk + β jkCYjC + Uj

or splitting the groups:

Yk|C=0 = βk0 + Uj
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Yk|C=1 = βk0 + βkCC + Uk

Yj|C=0 = β j0 + β jkYk + Uj

Yj|C=1 = (β j0 + β jC) + (β jk + β jkC)Yk + Uj

FIGURE 1.1: SEM model.

the coefficient, βkC represents the intercept (mean) difference between groups
in C for source k, while the coefficients, βjC and βjkC represent intercept and slope
differences between group C = 1, equal to (β j0 + βjC) and (βjk + βjkC), and group C
= 0, equal to β j0 and βjk, respectively.

Through causal inference framework, we define two group effect indices (a1 and
a2), measuring node perturbance (or disease relevance), i.e., the causal total effect
(TE) of C on sink j:

a1j = (β jC + β jkC · βk0) + βkC · (β jk + β jkC)

the causal TE, equal to direct effect (DE), of group, C on source k:

a2k = βkC

and a weighted sum defines the new parameter, w combining the TEs of group,
C on source and sink nodes:

wjk = abs(aij)/dj + abs(a2k)/dk

where dk and dj are the outgoing degrees (i.e., the number of all direct outgoing
connections in the input graph, for each node) of the k-th sources and j-th sinks,
respectively. The P-values are computed through the z-test = w/SE(w) of the com-
bined TE of the group effect on the source node j and the sink node k. Of note, the
SE(w) is obtained by lavaan syntax specifying w with the ª:=º operator.

Covariance model. The covariance model implies testing the group effects at
the same time on the source j, the sink k and their interaction (j, k). Two-group
covariance model with an intercept parameter is fitted:

Y
(0)
j = αj + U

(0)
j ; Y

(0)
k = αk + U

(0)
k ; cov

(

Y
(0)
j ; Y

(0)
k

)

= φjk

Y
(1)
j = αj + U

(1)
j ; Y

(1)
k = αk + U

(1)
k ; cov

(

Y
(1)
j ; Y

(1)
k

)

= ψjk
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A weighted sum defines the new parameter, w combining the group effect on
source node (mean difference, βk − αk), sink node (mean difference, β j − αj), and
source-sink link (correlation difference, φjk − ψjk):

wjk = abs
(

β j − αj

)

/dj + abs (βk − αk) /dj + abs
(

φjk − ψjk

)

where dk and dj are the degree (number of all direct connections in the input
interactome, G) of the source k and sink j nodes. P-values are yielded by the t-
test=w/SE(w) on the combined difference of the group over the source node j, the
sink k, and their connection j→k. Of note, the SE(w) is obtained by lavaan syntax
specifying w with the ª:=º operator.

Confirmatory Factor Analysis (CFA) model. The CFA model assumes that the
pairwise connected genes j and k are related with a latent variable (LV or factor, F) of
unknown common(s) cause(s), and this LV is associated to the disease class (C=0,1),
see Figure A.2:

FIGURE 1.2: CFA model.

For model identification the ºcommonº gene-factor-coefficients, λ’s and the vari-
ances of U terms (measurement error variables), are fixed values equal to:

λ =

√

cor
(

Y
(0)
j ; (Y(0)

k

)

& var (Uk) = var
(

Uj

)

= 1− λ2

For square root computing, if cor(Yk; Yj) < 0 a negative scaling of Yj (or Yk) in
−Yj (or −Yk) is performed. The fitted model with one factor (F), two indicators
(Yj and Yk) and an exogenous variable (C) has two free parameters, the error vari-
ance of the latent variable, ψ, and the regression coefficient, β. Therefore, the CFA
model has df=((3x2)/2)±2=1, and can be fitted with lavaan. The P-values by the
z-test=β/SE(β) of factor mean differences quantify the group perturbance on the
unknown common(s) cause(s) of the covariance of (Yk; Yj).

Fisher’s transformation z-to-r correlation method. The correlation method ap-
plies the Fisher’s r-to z transformation for testing the pairwise difference between
the correlation coefficients of linked genes in the input (directed or undirected) in-
teractome, G. The transformation is done in each group, C= (1,0):

r
(0)
jk = cor

(

Y
(0)
j ; (Y(0)

k

)

& r
(1)
jk = cor

(

Y
(1)
j ; (Y(1)

k

)
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z
(0)
jk = log





1 + r
(0)
jk

1− r
(0)
jk



 & z
(1)
jk = log





1 + r
(1)
jk

1− r
(1)
jk





The group differences are computed by the classical test, t proposed by Fisher,
1915:

tjk =
z
(1)
jk − z

(0)
jk

√

1
n1 − 3

+
1

n0 − 3

The P-values of t’s from N(0,1) distribution measure the group perturbance on
the gene-gene correlations.

After P-value computing, the edge weights are defined as inverse of negative
logarithm of the P-value, i.e., w= 1/[-log10(P-value)]. In this way, edges with lower
P-values (0 to 1) have lower weights (w >0) on a positive continuous range. In-
tuitively, this weight can be assumed as the perturbance acting on the relationship
between two connected genes in the interactome, due to the genotype difference be-
tween groups. The lower the P-value (or the w-value), the higher the perturbance.
Using the definition of perturbance, we refer to a set of adjacent perturbed edges as
a perturbation route, originating from a source, passing through a number of connec-
tors, and terminating in a sink node.

1.1.7 Network clustering and scoring

SEMgraph offers the possibility to define topological communities of an input graph,
generating scores for each statistical unit (i.e., subject) by using data from nodes be-
longing to communities. Clusters can be defined using the algorithms implemented
in the R package igraph (Csardi and Nepusz, 2006) and then they can be fitted as in-
dependent models. Among the available clustering methods, we suggest either the
walktrap community detection algorithm (WTC), based on random walks and de-
velobed by Pons and Latapy, 2005, or the edge betweenness clustering (EBC), devel-
oped by Newman and Girvan, 2004. The former tends to generate as many clusters
as needed to cover the whole input network. The latter generally produces one large
subnetwork and other much smaller communities or singletons. In case of trees, our
implementation of the tree agglomerative hierarchical clustering (TAHC), proposed
by Yu et al., 2015, is the suggested solution. Our aim here is to provide a tool yielding
different (orthogonal) local models when dealing with large networks (|V| > 100).
Beside network size, we generally recommend clustering when there are evidences
of possible functional modules (i.e., subnetworks whose members are involved in a
specific process).
For sample scoring in the SEM framework, we consider the general SEM with es-
plicitly latent variables (i.e., latent factor) defined as (Bollen, 1989, p. 395):

Y = Λ Y + E and F = B F + U (1.23)

with the general model-implied covariance matrix:

Σ(θ) = Λ(I − B)−1Ψ(I − B)−TΛT + D (1.24)

where F is the vector of q < p latent factors, E the vector error terms, Λ is the
matrix (p × q) of factor loadings, and D is the diagonal covariance matrix of error
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terms; while, B and Ψ of dimension (q× q) are the usual path coefficient matrix and
covariance matrix of the latent factors and unobserved variables of a SEM.
Setting Λ = I and D = 0 the general SEM is reduced to usual SEM on the observed
variables Y; while, setting B = 0 and Ψ = 0, the general SEM is the special case of
the Confirmatory Factor Model (CFA)(Bollen, 1989, p. 226).
In system biology was proposed eigengene networks to describe the relationship
between co-expression gene modules (clusters), where the eigengene is the first prin-
cipal component of a given module (Langfelder and Horvath, 2007). It can be con-
sidered a rappresentative summary of the gene expression profile of a module, since
in pratice, explains typically more than 50 percent of the variance of the module ex-
pressions. If we set q = 1 in the CFA model, sample scoring can be generated by
three different hidden models: the latent variable model (1LV), the composite vari-
able model (1CV), and the unobserved variable model (1UV).
The 1LV model consists in a confirmatory factor analysis (CFA) with one factor and
specific error variances (Bai and Li, 2012):

Yj = λjF + Ej with var(F) = 1 and var(Ej) = ψj (1.25)

The 1CV model consists in a CFA with one factor and equal (common) error
variances, equivalent to a principal component analysis (PCA) (Bai and Li, 2012):

Yj = λjC + Ej with var(C) = 1 and var(Ej) = ψ (1.26)

The 1UV model corresponds to a fixed factor analysis (FFA) model with one
factor projected on the exogenous observed X set, with zero residual variance, and
equal (common) error variances fixed to 1. This is equivalent to a reduced-rank
regression analysis (RRA) (Davies and Tso, 1982):

Yj = λjU + Ej with var(U) = 1 and var(Ej) = 1 (1.27)

U = ∑ γkXk (1.28)

In every hidden model, Yj are the random endogenous observed variables of
each module, and Ej the residual errors, with j = (1, . . . , q). In the UV model, Xk

represent the exogenous observed variables, with k = (1, . . . , r). Variables F, C, and
U correspond to the scores assigned to each subject for each cluster, representing the
latent factor, the principal component, and the unmeasured variable of the hidden
model, respectively. In the UV model, the factor scores U of the endogenous vari-
ables (i.e. sink and connectors nodes of each module) are found in the space spanned
by the exogenous variables X (i.e., they are projected on source nodes of each mod-
ule). Factor scores U are also called unmeasured variables, rather than latent variables
or factors, because they can be expressed as a function of the exogenous observed
X. Although the underlying variables are not actually measured, the scores U are
measurable (Bentler and Weeks, 1980).
To note, only 1LV, 1CV, or 1UV modules for which cluster scores represent 50 percent
or more of the total variance are considered as raspresentative of the gene profile.
Cluster algorithms and cluster scoring can be applied with the clustertGraph() func-
tion (see help documentation: ?clusterGraph), and the clustertScore() function to
any graph (see help documentation: ?scoreCluster), respectively. Scores are gener-
ated using the factor.analysis() function of the R package cate (Wang and Zhao,
2019), an efficient package for high-dimensional factor analysis models
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1.2 Knowledge-based model improvement in Amyotrophic

Lateral Sclerosis (ALS)

The R package SEMgraph offers the possibility to import, build, and fitting causal
models directly leveraging on knowledge (i.e., the input graph), quantitative data,
and a possible exogenous perturbation source (e.g., a phenotypical trait or a disease),
see for computational details Section A.0.1 of the Supplementary Material.
In this section, we will use example data in the package to build a SEM from an
available graph. Our example come from an ALS RNA-seq expression data (Cooper-
Knock et al., 2015) stored in the alsData, a list of three objects: alsData$graph a sub-
graph with 32 nodes and 47 edges of the "Amyotrophic lateral sclerosis" pathway
from KEGG database; alsData$exprs, a matrix of 160 subjects × 303 genes (with 139
ALS cases and 21 healthy controls), and alsData$group, a binary group vector of 139
ALS subjects (1) and 21 healthy controls (0).

1.2.1 SEM fitting functions

The three objects of alsData are the basic SEMgraph arguments: graph, data, and
group. Regarding quantitative data, we always suggest to apply some kind of cor-
rection method to relax the normality assumption required by SEM. While log2 or
ln transform are frequently used for count data (e.g., sequencing), we generally sug-
gest the nonparanormal transform implemented in the huge.npn() function of the R

package huge (Zhao et al., 2012).

R> library(SEMgraph)

R> # ALS example

R> summary(alsData$graph) # ALS input graph

R> dim(alsData$exprs) # ALS RNA -seq expression data

R> table(alsData$group) # {case = 1, control = 0} vector

R> # Nonparanormal transform

R> library(huge)

R> data.npn <- huge.npn(alsData$exprs)

In SEMgraph, the basic function for model assessment is SEMrun():

R> sem0 <- SEMrun(graph = alsData$graph , data = data.npn)

@NLMINB solver ended normally after 8 iterations

deviance/df: 10.92479 srmr: 0.2858233

This function maps data onto the input graph (removing possible identifiers incon-
sistencies), converts the input graph into a SEM, and fits the model using lavaan

syntax. For high-dimensional data, the shrinkage covariance proposed by Schäfer
and Strimmer, 2005 is applied to estimate the sample covariance S, as implemented
in the cor.shrink() function of the corpcor R package (Schäfer et al., 2017). Model
fitting results and the output graph are saved inside the sem object. If the group argu-
ment is omitted, SEMrun() will only generate estimates for direct effects, as specified
by the input graph. Object sem0$fit is a fitted model of class lavaan, from which we
can simply extract direct effect estimations with summary or parameterEstimates, as
follows:

R> est0 <- parameterEstimates(sem0$fit)

R> head(est0)
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@ lhs op rhs est se z pvalue ci.lower ci.upper

1 z10452 ~ z6647 0.037 0.079 0.466 0.641 -0.118 0.192

2 z1432 ~ z5606 0.397 0.069 5.741 0.000 0.261 0.532

3 z1432 ~ z5608 0.578 0.069 8.361 0.000 0.442 0.713

4 z1616 ~ z7132 0.245 0.110 2.236 0.025 0.030 0.461

5 z1616 ~ z7133 -0.036 0.110 -0.324 0.746 -0.251 0.180

6 z4217 ~ z1616 -0.074 0.079 -0.943 0.346 -0.229 0.080

For gene networks, we always recommend using Entrez gene IDs, to avoid possible
special characters or naming ambiguities. If the argument group is given, group
influence is modeled as an exogenous variable acting on every node, perturbing
their activity.

R> sem1 <- SEMrun(alsData$graph , data.npn , alsData$group)

@NLMINB solver ended normally after 23 iterations

deviance/df: 11.02558 srmr: 0.2747457

Brown’s combined P-value of node activation: 7.104523e-08

Brown’s combined P-value of node inhibition: 0.01068782

Also in this case, direct node-node effects, as well as group effects on nodes, can be
inspected using parameterEstimates():

R> est1 <- parameterEstimates(sem1$fit)

R> head(est1)

@ lhs op rhs est se z pvalue ci.lower ci.upper

1 z10452 ~ group -0.150 0.078 -1.913 0.056 -0.303 0.004

2 z1432 ~ group -0.042 0.073 -0.578 0.563 -0.186 0.101

3 z1616 ~ group 0.025 0.079 0.315 0.753 -0.131 0.181

4 z317 ~ group 0.218 0.077 2.832 0.005 0.067 0.370

5 z4217 ~ group 0.176 0.078 2.273 0.023 0.024 0.328

6 z4741 ~ group 0.343 0.076 4.530 0.000 0.195 0.490

Significant perturbed nodes can be viewed calling gplot() on the output graph, as
shown below. The resulting plot is shown in Figure 1.3.

R> # Convert Entrez identifiers to gene symbols

R> library(org.Hs.eg.db)

R> V(sem1$graph)$ label <- mapIds(org.Hs.eg.db, V(sem1$graph )$name ,

+ column = ’SYMBOL ’,

+ keytype = ’ENTREZID ’)

R> # Graph plot

R> gplot(sem1$graph)

High dimensionality can be troublesome not only due to a reduced sample size.
Network size (i.e., the number of its nodes, |V|) may dramatically increase the com-
putational demand, mainly during model parameters estimation. For large graphs
(|V| > 100), standard error (SE) computation will be disabled and parameter es-
timates will be computed through residual iterative conditional fitting (RICF) and
permutation based P-values by randomization of group labels. The RICF mode is
either automatically enabled when |V| > 100 (this limit can be changed using the
limit argument in SEMrun(), to enforce standard SE estimation) or manually called
using the algo = "ricf" argument:

R> ricf1 <- SEMrun(alsData$graph , data.npn , alsData$group ,

algo = "ricf")
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FIGURE 1.3: Estimated group effects on nodes and direct effects. The
graph shows differentially regulated nodes (DRNs) as ALS-activated
(pink-shaded) or ALS-inhibited (blue-shaded) variables. White nodes
do not show significant variation in ALS, respect to healthy controls.
"Common" to both groups significant direct effects are shown in ei-
ther red (activated) or blue (inhibited), while gray direct effects are

not significant.

RICF solver ended normally after 2 iterations

deviance/df: 11.02558 srmr: 0.2747457

Brown’s combined P-value of node activation: 7.074471e-08

Brown’s combined P-value of node inhibition: 0.009522031

As for the basic (i.e., lavaan-based) algorithm, the command gplot(ricf1$graph) can
be used with the gplot() function to plot node perturbation. Both lavaan-based
and RICF-based fitting show two important results. Firstly, the randomization ap-
proach leads to a perturbation estimation that is not significantly different from the
asymptotic one (model fitting and overall perturbation is left unaltered by both RICF
and the randomization procedure). Secondly, both functions detect significant net-
work perturbation (mainly activation), but no acceptable fitting (see Section 1.2.3 for
model refinement).
In addition, to node perturbation, SEMgraph enables edge perturbation estima-
tion via the two-groups SEM implemented in SEMrun, setting the fit argument to
2 groups (see Section 1.1.4 for details):

R> sem2 <- SEMrun(alsData$graph , data.npn , alsData$group , fit = 2)

Estimating optimal shrinkage intensity lambda (correlation matrix ):

0.4313

NLMINB solver ended normally after 30 iterations

deviance/df: 5.295486 srmr: 0.2785664

Brown’s combined P-value of edge activation: 9.085395e-06

Brown’s combined P-value of edge inhibition: 0.2748447

In accordance with node perturbation, we observe a predominant global edge
activation. As for node-level testing, edge perturbation can be plotted through the
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command gplot(sem2$graph). The list of DRNs and DREs can be extracted from the
objects sem1$gest and sem2$dest, respectively:

R> DRN <- sem1$gest[sem1$gest$pvalue < 0.05 ,]

R> nrow(DRN)

@[1] 16

> head(DRN)

lhs op rhs est se z pvalue ci.lower ci.upper

4 317 ~ group 0.218 0.077 2.832 0.005 0.067 0.370

5 4217 ~ group 0.176 0.078 2.273 0.023 0.024 0.328

6 4741 ~ group 0.343 0.076 4.530 0.000 0.194 0.491

8 4747 ~ group 0.223 0.062 3.611 0.000 0.102 0.344

9 54205 ~ group 0.188 0.067 2.789 0.005 0.056 0.319

10 5530 ~ group 0.160 0.072 2.224 0.026 0.019 0.301

R> DRE <- sem2$dest[sem2$dest$pvalue < 0.05 ,]

R> nrow(DRE)

[1] 3

> head(DRE)

lhs op rhs d_est d_se d_z pvalue d_lower d_upper

28 5532 ~ 6647 0.449 0.227 1.983 0.047 0.005 0.893

30 5534 ~ 6647 0.584 0.229 2.547 0.011 0.135 1.034

34 5603 ~ 5606 0.496 0.239 2.073 0.038 0.027 0.965

The current model yields 16 DRNs and 3 DREs. With increasing |V|, also the edge
perturbation estimation could be computationally intensive. For large graphs (by
default, |V| > 100), edge perturbation is estimated using a constrained gaussian
graphical model (GGM), as implemented in the GGMncv package (Williams, 2020),
or manually called using algo = "cggm" argument:

R> cggm2 <- SEMrun(alsData$graph , data.npn , alsData$group , fit = 2,

+ algo = "cggm")

@GGM (constrained) solver ended normally after 0 iterations

deviance/df: 5.32122 srmr: 0.2860305

Brown’s combined P-value of edge activation: 0.0004052721

Brown’s combined P-value of edge inhibition: 0.0152556

Also in this case, with large graph (|V| > 100) the canonical (i.e., lavaan-based)
perturbation estimation can be enforced by increasing the limit argument.

1.2.2 Total effect estimation

As anticipated in Section 1.1.5, total effect (TE) estimation could be a key tool to
search for perturbed routes conveying information inside a complex network. Bi-
ological signaling pathways provide a paradigmatic example of this propagation
inside the cell regulatory network. A ligand interacts with a cell surface receptor
(source), starting the information flow that is propagated and modulated by second
messengers, enzymes and chaperones (connectors) through the cytoplasm to the cell
nucelous, where specific factors (sinks) are either activated or inhibited, regulating
transcription, replication, cell development, and fate. This directional information
flow can be computationally represented by a DAG, where the TE can be evaluated
with a single comprehensive estimation as an average causal effect (ACE). Function
SEMace() converts the input graph into a DAG and computes ACEs between every
possible source-sink node pair, using the optimal adjustement set (O-set) procedure
described in Section 1.1.5:



1.2. Knowledge-based model improvement in Amyotrophic Lateral Sclerosis (ALS)23

R> ace <- SEMace(graph = alsData$graph , data = data.npn ,

+ type = "optimal", effect = "source2sink",

+ method = "BH", alpha = 0.05)

R> ace <- ace[order(abs(ace$z), decreasing = TRUE),]

R> nrow(ace)

[1] 10

R> head(ace)

sink op source est se z pvalue ci.lower ci.upper

4 4747 <- 6647 0.514 0.063 8.113 0 0.390 0.639

14 836 <- 317 0.472 0.061 7.737 0 0.352 0.592

5 79139 <- 6647 0.522 0.068 7.723 0 0.390 0.655

7 5532 <- 6647 0.521 0.068 7.700 0 0.389 0.654

10 5535 <- 6647 -0.462 0.070 -6.565 0 -0.600 -0.324

3 836 <- 6647 0.430 0.067 6.433 0 0.299 0.561

In this example, there are 10 significant ACEs, ordered by decreasing z scores. Func-
tion SEMpath() allow us to evaluate any of them as an independent model. The fol-
lowing code shows fitting and node perturbation estimation for the sixth directed
path in the example above, connecting SOD1 (Entrez ID: 6647) and CASP3 (Entrez
ID: 836):

R> source <- as.character(ace$source[6])

R> sink <- as.character(ace$sink[6])

R> path <- SEMpath(alsData$graph , data.npn , alsData$group ,

+ from = source , to = sink ,

+ path = "directed",

+ verbose = TRUE)

@Path: 6647 -> 836 size - 5 4 --

NLMINB solver ended normally after 6 iterations

deviance/df: 24.52598 srmr: 0.2067487

Brown’s combined P-value of node activation: 3.724367e-06

Brown’s combined P-value of node inhibition: 0.9286749 @

Argument path = "directed" considers every directed path connecting the source-
sink pair. This argument can be also set to "shortest", to consider shortest paths
only. Argument verbose = TRUE shows the position of the selected path within the
input network. Function pathFinder() can be used to extract all the directed paths
whose source-sink pairs share a significant ACE and evaluate each of them as an
independent SEM:

R> paths <- pathFinder(alsData$graph , data.npn ,

+ group = alsData$group , ace = ace)

R> print(paths$dfp)

Argument ace allows the user to specify an existing data.frame of ACEs, while group

can be skipped if one is just interested in path fitting (i.e., no node perturbation test
is performed).

1.2.3 Model estimation strategies

In biological systems, curated networks rarely provide a complete explanation of
data variability, often leading to a poor SEM fitting. This is exactly what happened
when we fitted RNA-seq ALS data onto the ALS pathway provided by KEGG. In
this case, the known ALS model is able to detect significantly perturbed nodes and
edges, but a significant proportion of data variability is still unexplained, as shown
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by the global fitting statistics (deviance/df and SRMR).
One of goal of SEMgraph is to learn the causal structure from data, applying the
best tradeoff between model fitting and perturbation, improving the initial model by
leveraging on both knowledge-based and data-driven procedures. The other goal, is
to provide a set of causal interence tools also for users with minimal statistical exper-
tise. To this end, we propose four preset strategies, combining SEMdag(), SEMbap(),
and resizeGraph() functions (see help documentation: ?SEMdag(), ?SEMbap() and
?resizeGraph() and Chapter 4-5 for statistical details). All strategies estimate a DAG
according to the following steps:

0. Input: an initial suitable DAG = G(0) and an initial raw (or pre-processed) data
Y = Z(0);

1. Given (G(0) and Z(0) update Z(1) = Z(0)Ψ−
1
2 by fitting the constrained matrix

Ψ−1 after d-separation testing of cor(Zj; Zk |pa(j) ∪ pa(k)) = 0 at a given alpha

significance level, using the SEMbap(G(0), Z(0)) function;

2. Given (G(0) and Z(1)), update G(1) estimating the DAG via topological order of
G(0) and edges penalty weighted LASSO screening at a given beta threshold,
using the SEMdag(G(0), Z(1)) function;

3. (optional) Remove edges/add nodes to DAG G(1) at a given geodesic distance
d in the reference interactome G using the resizeGraph(G(1), G) function;

4. Output: Goodness-of-fit statistics (C-test, SRMR) of the DAG G(1) or the re-
sized graph G(2) of step 3.

This procedure is implemented in the modelSearch() function (see help documen-
tation: ?modelSearch). DAG estimation can be controlled through the argument
alpha (i.e., the significance level for the FDR correction), where 0 corresponds to no
data de-correlation, and beta (i.e., the LASSO coefficient threshold), where 0 main-
tains all the edges of the input graph, and d the geodesic distance for the connec-
tion check in the reference network. We suggest to start with beta = 0.1 to have a
good balance between model adjustment and graph sparsity. Then beta could be
gradually decreased (0.1 to 0) to obtain more complex models. Similarly, argument
alpha can be decreased up to 5e-09. A lower alpha level includes less hidden co-
variances, thus considering less sources of confounding, resulting in a lower data
de-correlation. We also suggest to start with search = "basic" procedure, without
DAG resize (genet = NULL and geodesic distance d =0).
Considering the ALS example, the model search of a DAG using the search = "basic"

procedure has the following code:

R> # Model search

R> model <- modelSearch(alsData$graph , data.npn , gnet = NULL ,

+ d = 0, search = "basic", beta = 0.1,

+ alpha = 0.05, verbose = FALSE)

@Step1: BAP deconfounding ...

Step2: DAG estimation ...

Step3: DAG resize (remove edges/add nodes )...

None DAG resize for basic search !

Done.
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d-separation test (basis set) of 267 edges ...

C_test df pvalue

1 543.7724 534 0.375395

RICF solver ended normally after 2 iterations

deviance/df: 1.755445 srmr: 0.0839307 @

The resulting graph is shown in Figure 1.4A. We may then evaluate model perturba-
tion using the SEMrun() function, as shown in Figure 1.4B. In addition, with SEMace()

and SEMpath() we can evaluate ACE, path perturbation, and fitting of specific di-
rected paths between a souce-sink pair. As an example, Figure 1.4C shows in yel-
low all directed paths between genes SOD1 (Entrez ID: 6647) and NEFM (Entrez ID:
4741).

R> pert <- SEMrun(model$graph , model$data , alsData$group)

R> ace <- SEMace(model$graph , model$data , alsData$group ,

+ method = "BH")

R> path <- SEMpath(model$graph , model$data , alsData$group ,

+ from = "6647", to = "4741", path = "directed")

All the steps done by modelSearch() are shown to standard output, and the re-
sulting graphs are visualized in Figure 1.4 A-B-C. Following the example above, the
extracted DAG model has a good fitting (deviance/df < 2, srmr near 0.08, and C-test
with P-value > 0.05). The output model object contains model fitting as a lavaan ob-
ject (model$fit), the output graph coloured according to node and edge relevance
during the estimation steps (model$graph), and the adjusted dataset (model$data).
With search = "basic", we enabled a data-driven model search strategy, where model
structure is based only on data and no validation against a reference network is done
(i.e., the optional resizeGraph() function does not run). In the example above, we
set beta to 0.1 to reduce graph density. As a result, input edges could be removed
and new ones could be added, partially reshaping model architecture. The aim is to
generate an improved model, achieving a good overall fitting (for DAGs, the main
fitting index is the Shipley's global test P-value > 0.05), showing the best possible
balance among model complexity, fitting, and perturbation.
In this example, the output model shows how the SOD1 gene deregulation is causally
connected to the deregulated gene NEFM, implied in the maintainance of a physi-
ological neuronal caliber. This indirect connection (the yellow path in Figure 1.4C),
absent in the input model (Figure 1.3), is now possible thanks to the new connections
BCL2-DAXX, CYCS-MAPK13, and TOMML40-MAP2K6 (red links in Figure 1.4A),
showing a tight association between apoptosis and neuronal caliber regulation, both
dysregulated in neurodegenerative disorders.
Conversely, we could take advantage of known interactions, importing them in our
model to resize it (i.e., gnet = kegg and d > 0 in resizeGraph()). We define them as
knowledge-based strategies. The outer (search = "outer") strategy relies on an external
reference network , to assess the presence of possible hidden mediators (d > 1), in-
cluding them in the output model. If one is not interested in adding new mediators
from the reference, but still wants to evaluate the presence of internal hidden indi-
rect (i.e., mediated) paths, the search argument can be set to "inner": the reference
network is still used, but only to validate the new direct and indirect paths added
to the model. Both inner and outer search strategies rely on the initial estimation of
a DAG, working as a causal model backbone. Finally, we can use a direct strategy
(search = "direct"), where the input graph structure is improved only through di-
rect (i.e., adjacent) link search, followed by interaction validation and import from
the reference network, with no mediators (i.e., d = 1).
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A)  ALS model structure

SOD1

TOMM40

TOMM40L CYCS

BAXBAD

BCL2

BCL2L1

CASP9

TNFRSF1B

DAXX

MAP3K5 MAP2K3

MAP2K6

MAPK14MAPK11

MAPK13

MAPK12 NEFL

NEFM NEFH

DERL1

PPP3CB

PPP3CC PPP3R2

B)  ALS model perturbation
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C)  SOD1−NEFM path
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FIGURE 1.4: ALS improved model. Panel A shows the output model
structure, as generated by modelSearch(). Added edges are high-
lighted in green, while gray edges are maintained from the input
ALS graph. Panel B shows node-level perturbation, estimated by
SEMrun(): pink nodes are activared, while lightblue nodes are inhib-
ited. Edges are coloured according to their significance: significant
direct effects (P-value < 0.05) are either red (estimate > 0) or blue (esti-
mate < 0), while non-significant ones are gray-shaded. Panel C high-
lights in yellow all directed paths between genes SOD1 and NEFH,
showing how SEMpath() may help us to clarify and evaluate causal
effects between perturbed source-target pairs, within an entangled

cluster.
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1.2.4 Communities and factor scores

SEMgraph generates communities using igraph(), and cluster scores via the func-
tion factor.analysis() of the R package cate (Wang and Zhao, 2019), an efficient
package for high-dimensional factor analysis models. Only modules for which clus-
ter scores represent 50% or more of the total variance are considered. Topological
clustering sintax of the model$graph, extracted with the modelSearch function, is the
following:

R> LV <- clusterScore(model$graph , model$data , alsData$group ,

+ HM = "LV", type = "ebc", size = 5)

@modularity = 0.4816345

Community sizes

1 3 2

6 9 10

Model converged: TRUE

SRMR: 2.618078e-09

Arguments type and size set the clustering algorithm and the minimum group of
nodes to generate a cluster (groups smaller than size are considered as singletons).
The suggested type is the edge betweeness ("ebc") community detection algorithm
(see help documentation: ?clusterScore for the other cluster algorithms) resulting
in the largest number of nodes included in clusters, with a minimum cluster size of
5. Argument HM determines the type of hidden model used to generate cluster scores:
latent variable model (HM = "LV"), composite variable model (HM = "CV"), and unob-
served variable model (HM = "UV") (see Section 1.1.7 for details).
Here the clusters have size 6, 9, 10. The global effect of the group on every cluster
scores, defined by LV model, can be viewed using parameterEstimates():

head(parameterEstimates(LV$fit))

@ lhs op rhs est se z pvalue ci.lower ci.upper

1 LV1 ~ group -0.471 0.238 -1.976 0.048 -0.938 -0.004

2 LV2 ~ group 0.042 0.249 0.167 0.867 -0.447 0.531

3 LV3 ~ group 0.744 0.287 2.588 0.010 0.180 1.307

4 LV1 ~~ LV1 1.037 0.116 8.944 0.000 0.809 1.264

5 LV2 ~~ LV2 1.135 0.127 8.944 0.000 0.886 1.384

6 LV3 ~~ LV3 1.507 0.168 8.944 0.000 1.176 1.837

Every cluster is represented by a LV and each estimate measures the global effect of
the group over it. Together with the fitted hidden model LV$fit, clusterScore() re-
turns the data.frame containing cluster scores (LV$dataHM) and a vector indicating the
cluster membership for every node (LV$membership). Topological cluster networks
(without subject scoring) can be produced independently from clusterScore(), us-
ing the clusterGraph() utility:

R> C <- clusterGraph(model$graph , type = "ebc", size = 5,

+ verbose = FALSE)

The clusterGraph() arguments are equivalent to those used in clusterScore(). In
addition, function cplot() generates and plots separate graphs for each cluster:

R> cg <- cplot(graph = model$graph , membership = LV$membership ,

+ verbose = TRUE)
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FIGURE 1.5: Colored clustering of the ALS model using
clusterScore with the edge betweeness algorithm (type = "ebc").
Each cluster has its specific functional characterization: SOD1 and
phosphatases module (lightsalmon), BCL2 and caspases module

(lightyellow), MAPK module (lightgreen).

Arguments graph and membership correspond to the input graph and node mem-
bership, respectively. If the map argument is set to TRUE, the input graph is colored
according to cluster membership (object cg$graph), as shown in Figure 1.5.

If we consider clusters as local models, we can extract and fit them through the
function extractClusters():

R> cls <- extractClusters(model$graph , model$data , alsData$group ,

+ membership = LV$membership)

R> print(cls$dfc)

cluster N.nodes N.edges dev_df srmr pv.act pv.inh

1 HM1 6 5 1.894 0.056 0.922706 0.043883

2 HM2 10 13 2.282 0.068 0.000000 0.011690

3 HM3 9 10 1.919 0.077 0.118250 0.108623

The object cls contains the list of clusters as separated igraph objects (cls$clusters)
and a list of fitting results (cls$fit). The summary statistics shown above are stored
in the object cls$dfc. From Figure 1.5, we observe that each cluster has its specific
functional characterization: HM1: SOD1 and phosphatases module (lightsalmon),
HM2: BCL2 and caspases module (lightyellow), HM3: MAPK module (lightgreen).
All modules have good fit (srmr< 0.08), BCL2 module has down/up perturbation,
and SOD1 module a down perturbation. Similar perturbations was observed on the
cluster scores, LV1-LV3. In short, our analysis on the ALS data provides useful tools
for model improvement in knowledge-based biological networks.
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1.3 Network interrogation in Frontotemporal Dementia (FTD)

The aim of a standard SEMgraph analysis, illustrated in the previous Section, was
to evaluate relevance and perturbation of every biological variable in the context of
their shared interactions, extending its connectivity on the base of empirical data
and possible exogenous influences, highlighting sources, effectors, causal paths con-
necting them, and their possible aggregation into modules in knowledge-based bio-
logical networks.
In this section, we describe three network (pathways) interrogation methods with
SEMgraph for investigating specific type of biological questions applied in the Fron-
totemporal Dementia, a neurodegenerative disorder characterized by cognitive and
behavioural impairments (Palluzzi et al., 2017). For this example, we will use DNA
methylation data from Li et al., 2015 (GEO accession: GSE53740), stored in the SEM-

data package as ftdDNAme, a list of two objects: ftdDNAme$pc1, a data matrix of 256
rows (subjects) and 16560 columns (genes) containing the value of the first principal
component of DNA methylation levels, obtained applying a principal component
analysis to methylated CpG sites within the promoter region, for each gene (genes
with unmethylated CpGs in both conditions were discarded); and ftdDNAme$group, a
binary group vector of 105 FTD patients (1) and 150 healthy controls (0).

1.3.1 Gene set analysis

Once differential expression of individual gene or genes that work together are iden-
tified, the next step in traditional genetic analysis is to infer their biological struc-
ture by pathways interrogation (or enrichment analysis) of literature-curated, gene-
centric biological databases that connect genes to functional categories (terms) of
Gene Ontology (Ashburner et al., 2000), or pathways of KEGG or others. A plethora
of tools are available, such as overrepresentation analysis (ORA) or gene set en-
richment analysis (GSEA) (Reimand et al., 2019). While older generations of ap-
proaches are still commonly used, topology-based methods (Nguyen, Mitrea, and
Draghici, 2018), which incorporate the pathway structure, show superior perfor-
mance in terms of improved sensitivity and specificity. Following the latter stream
of literature, we propose a Gene Set Analysis (GSA) with a SEM-based procedure.
The core of the methodology is implemented in the RICF algorithm of SEMrun() re-
covering from RICF output node-specific group effect p-values, and Brown’s com-
bined p-values of node activation and inhibition (see Section 1.1.4 for details). Node-
specific pvalues corrected for multiple comparisons < α, with one of several adjust-
ment methods, including Bonferroni or Benjamini- Hochberg procedure for control-
ling false discovery rate, i.e. FDR. (see p.adjust() function), are used for Differential
Espression Genes (DEGs) identification. While, a single pvalue of the two Brown’s
pvalues (P(+): P-activation, and P(−): P-inhibition) combined with a Bonferroni pro-
cedure, i.e. 2×min(P(+); P(−)), indicates the specific-pathway perturbation.
Function SEMgsa() uses the RICF fitting SEMrun(..., fit = 1, algo = "ricf") to it-
eratively apply the GSA on a list of gene networks (in our example, KEGG signaling
pathways). We refer the reader to the help documentation: ?SEMgsa() and Chapter 2
for statistical details.

For computational efficiency purposes, pathways with less than 5 and more than
500 of nodes have been excluded from the analysis.

R> # load libraries

R> library(SEMgraph)
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R> library(SEMdata)

R> library(huge)

R> # Nonparanormal transform of DNAme PC1 data

R> pc1.npn <- huge.npn(ftdDNAme$pc1); dim(pc1.npn)

R> # Set binary group classification

R> group <- ftdDNAme$group; table(group)

R> # Black list n < 5 | n > 500

R> n <- unlist(lapply(1:length(kegg.pathways),

function(x) vcount(kegg.pathways [[x]])))

R> blacklist <- which(n < 5 | n > 500)

R> length(blacklist)

[1] 1

R> # SEM -based Gene Set Analysis (GSA)

R> pathways <- kegg.pathways[-blacklist]

R> GSA <- SEMgsa(pathways , pc1.npn , group , method = "BH",

+ alpha = 0.05)

R> # TOP 10 pathways

R> GSA$gsa[1:10, c(1:3,7)]

No.nodes No.DEGs pert ADJP

Salmonella infection 249 25 up act 6.755414e-10

MicroRNAs in cancer 310 14 down inh 5.603214e-08

Alzheimer disease 384 29 down inh 1.139624e-07

Non -alcoholic fatty

liver disease 155 16 up act 1.244577e-07

Diabetic

cardiomyopathy 203 14 up act 1.542071e-07

Prion disease 273 20 up act 2.097764e-07

Apoptosis 136 19 up act 2.187588e-07

Amyotrophic lateral

sclerosis 364 14 down inh 2.995745e-07

Necroptosis 159 9 up act 3.590629e-07

Every pathway is listed in the GSA$gsa data.frame, reporting size (No.nodes), DEG
number (No.DEGs), pathway perturbation column (pert), p-value for node activa-
tion (pNa), p-value for node inhibition (pNi) and the Bonferroni combination of
them (PVAL). ADJP refer to the pathway combined p-value adjusted for multi-
ple tests with Bonferroni correction, i.e., ADJP = min(No.pathways× PVAL; 1). In
addition, the list GSA$DEG contains a vector of DEG IDs for each pathway, selected
with p-value < alpha after Benjamini-Hochberg correction (method = "BH"). In this
example, we used the kegg.pathways list, though any list of igraph network objects
can be passed.

Gene set analysis methods can be evaluated in terms of their ability to rank to the
top the pathways that are indeed relevant to a given condition (prioritization) and
generate low p-values for the relevant pathways (sensitivity). The term Frontotem-
poral lobar degeneration can be associated to several pathways related to neurode-
generative disorders like Alzheimer disease, Parkinson disease and Amyotrophic
lateral sclerosis. These three pathways are included in the top 20 pathways ranked
according to the significance of their combined p-value. Alzheimer disease is ranked
in third position with an highly Bonferroni significant p-value (1.14e-07) and over-
all pathway perturbation column indicates an overall reduction of node inhibition
in cases with respect to control group. To summarise, results show high ability of
SEMgsa both in terms of prioritization and sensitivity.
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1.3.2 Fitting active disease modules

In the following, we want to build and fitting a SEM-based subgraph of the DNA
methylation (DNAme) alterations caused by FTD, without an initial disease model.
A common problem in network biology and medicine is to filter large models. Re-
ducing large complex graphs by either extracting critical relationships or perturbed
disease modules is key to focus relevant information into simpler subgraphs. Usu-
ally, the disease-specific subpathways (or modules) extraction process starts from a
large interactome weighted with P-values, computed with some statistical methods.
Then, a combinatorial, diffusion or gready algorithm is performed to search the "ac-
tive" disease module (Liu et al., 2020; Ritchie et al., 2015).
Although not necessary, having a collection of known disease-associated networks
is an advantageous starting point. For instance, the KEGG BRITE database allows to
search for terms, including human disorders, that could be associated to one or more
pathways. The term Frontotemporal lobar degeneration (an alias for FTD; KEGG
ID: H00078) is associated to 6 KEGG pathways: MAPK signaling pathway (hsa04010),
Protein processing in endoplasmic reticulum (hsa04141), Endocytosis (hsa4144), Wnt sig-
naling pathway (hsa04310), Notch signaling pathway (hsa04330), and Neurotrophin sig-
naling pathway (hsa04722). We can use the SEMgsa() utility to apply gene set analysis
(GSA) on a collection of networks. Here, we explore the 6 selected FTD pathways.

R> # FTD -related pathway selection

R> ftd.pathways <- c("MAPK signaling pathway",

+ "Protein processing in endoplasmic reticulum",

+ "Endocytosis",

+ "Wnt signaling pathway",

+ "Notch signaling pathway",

+ "Neurotrophin signaling pathway")

R> j <- which(names(kegg.pathways) %in% ftd.pathways)

R>

R> # Gene set analysis (GSA) with 5000 permutations

R> ftd.gsa <- SEMgsa(kegg.pathways[j], pc1.npn , group ,

+ n_rep = 5000)

From the list ftd.gsa$DEG of DEG IDs for each pathway, we extract a seed list of 60
DEGs to map on the KEGG interactome (?kegg), union of all KEGG pathways with
4242 nodes and 34975 edges, after graph weighting with the weightGraph() function
(see help documentation: ?weightGraph):

R> # Seed extraction

R> seed <- unique(unlist(ftd.gsa$DEG))

R> length(seed)

R> # KEGG interactome weighting

R> R> W <- weightGraph(kegg , pc1.npn , group , method = "r2z")

R> summary(W)

Here, method="r2z" argument set the perturbation edge information (i.e., the case-
control edge difference). This method uses the r-to-z transform for testing the group
difference between the correlation coefficients r

(1)
jk and r

(0)
jk of connected nodes j and

k, by applying the Fisher's r-to-z transform: z = 0.5 log[(1 + r)/(1− r)], with t =
(z(1) − z(0))/

√

1/(n1 − 3) + 1/(n0 − 3) (Fisher, 1915).
We may then use the function SEMtree() to map on the reference graph W: (i)

the user seed list (seed = seed), re-coded internally as binary variable, taking value
1 for a seed and 0 for a non-seed, (ii) the P-values from r-to-z Fisher's transform
(eweight = "pvalue"), re-coded internally as inverse of negative log(pvalue).
In this way, edge weights in a positive continuous range [0, ∞) and binary node
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weights, are used to generate our reduced (or graph filtering) perturbed model via
the type = "ST" method, the Steiner Tree algorithm suggested by (Kou, Markowsky,
and Berman, 1981) (see help documentation: ?SEMtree for other methods and Chap-
ter 3 for statistical details):

R> # Steiner tree extraction

R> ST <- SEMtree(W, data= pc1.npn , seed=seed , type="ST",

+ eweight="pvalue")

R> summary(ST)

The Kou’s algorithm is a very fast and efficient solution to find a connected sub-
graph of the input graph such that the additional nodes (called the Steiner or connec-
tor nodes) connecting seed nodes (called the terminal nodes) minimize the sum of the
weight of every edge in the subgraph (i.e., maximizing edge perturbation between
disease nodes).
The kou method yielded a Steiner tree ST of 92 nodes (44 terminal nodes on 60 input
seeds and 48 Steiner nodes) and 90 directed edges and 1 bi-directed edge. We fit
the filtered active (perturbated disease) module withSEMrun(). In addition, the SEM
fitting can be improved using the deconfounding data extracted with the SEMbap()

function, applying a grid of significance levels to select alpha = 5E-06, a trade-off
which reduce the badness-of-fit measures and conserve the largest perturbation sig-
nal present in the original data (see Chapter 4).

R> # Perturbation evaluation with raw data

R> sem1 <- SEMrun(ST, pc1.npn , group)

NLMINB solver ended normally after 7 iterations

deviance/df: 5.894403 srmr: 0.4099542

Brown’s combined P-value of node activation: 0.000430902

Brown’s combined P-value of node inhibition: 3.476108e-13

R> # Perturbation evaluation with deconfounding data

R> adj.pc1 <- SEMbap(ST, pc1.npn , method= "bonferroni",

+ alpha = 5E-06)$data

R> adj.sem1 <- SEMrun(ST, adj.pc1, group)

d-separation test (basis set) of 4096 edges ...

Number of significant local tests: 1208 / 4096

NLMINB solver ended normally after 10 iterations

deviance/df: 1.614046 srmr: 0.07365701

Brown’s combined P-value of node activation: 0.03450855

Brown’s combined P-value of node inhibition: 0.00997967

The most dense subgraph extracted with the tree agglomerative hierarchical cluster-
ing (TAHC) method (C=clusterGraph(ST, type="tahc")) of inferred FTD perturbed
backbone is shown in Figure 1.6 (gplot(C$HM3, l="neato")). The latter shows node
MAPK13, connecting through Steiner nodes to others DEGs, being an hub in FTD
network, showing the central role of MAPK signaling pathway in neurodegenera-
tive diseases. MAPK13 is corroborated also after data de-correlation as key-gene
(node-wise P = 0.005). This is not surprising given that MAPK signaling has been
linked to a variety of neurodegenerative disorders, including FTD (Chen-Plotkin
et al., 2008; Santiago, Bottero, and Potashkin, 2020). Tau, a microtubule-associated
protein, is the main component of intracellular filamentous inclusions implicated
in tauopathies such as Alzheimer’s disease (AD), Frontotemporal Dementia with
Parkinsonism-17 (FTDP-17), Pick disease (PiD), Progressive Supranuclear Palsy (PSP),
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FIGURE 1.6: FTD perturbed backbone estimated from DNA methy-
lation data. This perturbed backbone is extracted from the weighted
input graph, maximizing both edge perturbation (i.e., minimizing the
total weight of the tree) while traversing all the seeds (i.e., the Steiner
connectors), defined as the nodes that are significantly perturbed by
the diseased phenotype. The Steiner tree has 92 nodes (44 terminal
nodes on 60 input seeds and 48 Steiner nodes) and 90 directed edges
and 1 bi-directed edge oriented using edge directions of the KEGG
interactome. For graph readability purposes, the most dense clus-
ter derived from tree agglomerative hierarchical clustering (TAHC)
method, in terms of both nodes and connections has been shown.
This procedure results in a network with 32 nodes and 31 edges. Ter-
minal nodes are coloured in green, and node sizes are proportional to

node degrees.

and Corticobasal Degeneration (CBD). Tau is phosphorylated by a variety of kinases
that fall into four categories. GSK3, MAPK13, and AMP-activated protein kinase
have recently been discovered to have a role in in vivo Tau phosphorylation utiliz-
ing several cell lines (Gao et al., 2018). These results suggest that the hub nodes
identified by SEM fitting a Steiner tree are important signatures of neurodegenera-
tive disease.

1.3.3 Locating differentially connected genes

With the recent advances in high-throughput sequencing under different contexts
and cell types, there is an increasing demand for approaches that learn changes in
causal (regulatory) relationships between two related gene regulatory networks cor-
responding to different conditions. Inferring changes in gene regulatory networks
might show, for example, that a single gene regulates various groups of target genes
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under different disease states. In this section, we present a difference causal infer-
ence (DCI) procedure based on two-group constrained Gaussian Graphical Model-
ing (CGGM) algorithm of SEMrun(). The aim is to provide direct estimation of the
difference regolatory graph integrating know genetic pathways into a DCI of obser-
vational data from two conditions. We focus on detecting changes in network edges.
This is crucial in the study of biological systems, which investigates how the network
of connected genes changes from one condition to another, to provide a deeper and
more comprehensive understanding of complex disease (Ideker and Krogan, 2012).
Here, we consider the new graph obtained from the union of FTD KEGG pathways
in Section 1.3.2 of 586 nodes and 3572 edges.

R> # Input graph as the union of FTD KEGG pathways

R> gU <- graph.union(kegg.pathways[j])

R> gU <- properties(gU)[[1]]

R> summary(gU)

Function SEMdci() (see help documentation: ?SEMdci) allows to create a network with
perturbed edges obtained from the output of SEMrun(..., fit = 2, algo = "cggm").
To increase the efficiency of computations for large graphs, users can select to break
the network structure into clusters (see ?clusterGraph). The function SEMrun() is
applied iteratively on each cluster to obtain the graph with the full list of perturbed
edges, defined by P-value < α, after multiple test correction. This procedure via short
random walks (type="wtc") algorithm with default False Discovery Rate (method="BH",
alpha=0.05) and minimum cluster size=10 leads to a graph of 111 nodes and 103
edges with four components with size > 5. For descriptive purposes, the third com-
ponent (19 nodes and 18 edges) of the latter graph has been retained for confirma-
tory SEM fit since it shows the largest proportion of edge perturbation, although the
analysis can be applied to the other network components. Group influence is first
modeled as an exogeneous variable acting on every node. Then, the output graph
obtained from node perturbation has been evaluated via the two-group model, with
the aim of obtaining a subgraph where the nodes and edges are statistically signifi-
cant in difference between the two groups of cases and controls.

R> gD<-SEMdci(gU , pc1.npn , group , type="wtc", method="BH",

+ alpha=0.05)

modularity = 0.6870652

Community sizes

13 16 12 8 11 14 7 3 9 4 15 6 1 2 10 5

2 2 6 7 7 8 9 10 13 20 26 47 97 101 114 117

# Perturbation evaluation of the 3th component of gD

R> gC<- properties(gD)

R> gC3 <- gC[[3]]

R> sem1 <- SEMrun(gC3, pc1.npn , group , fit=1, algo="cggm")

GGM (constrained) solver ended normally after 0 iterations

deviance/df: 13.61558 srmr: 0.2878324

Brown’s combined P-value of node activation: 1.268641e-11

Brown’s combined P-value of node inhibition: 6.987595e-05

R> sem2 <- SEMrun(sem1$graph , pc1.npn , group , fit=2, algo="cggm")

GGM (constrained) solver ended normally after 0 iterations

deviance/df: 7.496005 srmr: 0.3115255
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FIGURE 1.7: FTD perturbed backbone estimated from DNA
methylation data via difference causal inference (DCI) procedure.
Constrained Gaussian Graphical Modeling (CGGM) algorithm of
SEMrun() outputs the difference regulatory graph between the two
conditions, i.e., the edges in gene regulatory networks that appeared,
disappeared or changed weight between the two conditions. Node
and edge color coding follow the same rules applied in figure 1.4B.

Brown’s combined P-value of edge activation: 1.58793e-07

Brown’s combined P-value of edge inhibition: 5.573764e-10

The global statistics suggest a poor fitting, and de-correlation could be performed,
but an extreme significant group perturbation is observed. Thus, for illustrative pur-
pose, we display in Figure 1.7 the inferred FTD perturbed backbone obtained from
DCI. As in Figure 1.6, MAPK genes represent most of the nodes in the perturbed
network with MAPK3 being the receptor and emitter of perturbed edges from a
large proportion of network nodes. Alzheimer’s Disease (AD), Prion, Major Depres-
sive Disorders (MDD), and Frontotemporal lobar degeneration (FTLD) all contain
the MAPK3 gene, suggesting that these disorders may share a mechanism (Ge and
Jakobsson, 2018). MAPK3 is a key component of the MAP signaling pathway, which
transports signals from the cell surface to the nucleus. MAPK3 is one of a small
handful of genes reported to exhibit different promoter use and splicing in normal
versus AD brain tissue (Twine et al., 2011). These results confirm that SEM-based
DCI can identify biomarkers and their interactions in terms of changes of a gene
network.
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Chapter 2

SEMgsa( )

2.1 Background

Biomedical research has been transformed by recent advances in high-throughput
technologies, enabling extensive monitoring of complex biological systems. As a
result, new methodological developments have emerged, most notably the adapta-
tion of systems perspectives to analyze biological systems. Pathway enrichment has
become a key tool in the analytic pipeline for Omics data and has been effectively
used to generate novel biological hypotheses and determine if specific pathways are
linked to specific phenotypes. In the literature, dozens of strategies have been de-
veloped, varying in model complexity and effectiveness.

Earlier methodologies, such as over-representation analysis (ORA) (Al-Shahrour,
Díaz-Uriarte, and Dopazo, 2005) and gene set analysis (GSA) (Efron and Tibshirani,
2007; Subramanian et al., 2005), treat each pathway as a collection of biomolecules,
as Khatri, Sirota, and Butte, 2012 point out in their review paper. The ORA approach
used a list of differentially expressed (DE) genes as input to determine which sets
of DE genes are over-represented or under-represented, being strongly reliant on
the criteria used to choose the DE genes, such as the statistical tests and thresholds
utilized.

A second generation of approaches was created to reduce this reliance on gene
selection criteria by taking into account all gene expression values. The hypothesis
behind these approaches is that small yet coordinated changes in groups of func-
tionally related genes may be crucial in biological processes. These methods are
named Functional Class Scoring Methodologies (FCS) (Ackermann and Strimmer,
2008). Such methods include Gene Set Enrichment Analysis (GSEA) (Efron and Tib-
shirani, 2007), Gene Set Analysis (GSA) (Jacob, Neuvial, and Dudoit, 2012) and Cor-
relation Adjusted Mean Rank gene set test (CAMERA) (Mitrea et al., 2013) among
others.

ORA and FCS methods can be referred to as the first two generations of path-
way enrichment analysis approaches. However, when pathways are seen as a basic
unstructured and unordered collection of genes, all the genetic connections and in-
teractions that are supposed to capture and characterize the actual processes at hand
are simply neglected.

With the aim of including all of this additional information into the analysis,
topology-based (TB) approaches have been created. These methods account for
interactions between biomolecules and provide better performance than standard
second-generation methods (Efron and Tibshirani, 2007; Subramanian et al., 2005).
A variety of tools have been implemented, such as DEGraph (Jacob, Neuvial, and
Dudoit, 2012), topologyGSA (Massa, Chiogna, and Romualdi, 2010), NetGSA (Sho-
jaie and Michailidis, 2009; Ma, Shojaie, and Michailidis, 2019; Hellstern et al., 2021),
Pathway-Express (Draghici et al., 2007; Khatri et al., 2007), SPIA (AL et al., 2009)
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among others. The common feature of approaches in this category is that they use
prior knowledge of pathway topology information to obtain some gene-level statis-
tic, which is then used to produce a pathway-level statistic, which is then used to
rank the pathways.

The goal of pathway enrichment approaches is to compare the ’activity’ of inter-
est pathways across two or more biological situations or groups of specimens (pa-
tients, cell lines, etc.). Another technical feature that distinguished pathway enrich-
ment methods is the type of the statistical null hypothesis being tested. The majority
of approaches may be divided into two categories: those that test (I) self-contained
null hypotheses and (II) competitive null hypotheses (Goeman and Bühlmann, 2007).
A self-contained null hypothesis examines the activity of each pathway across bio-
logical situations (for example, normal vs. illness samples) without comparing it to
the activity of other biomolecules/pathways. On the other hand, the activity of each
pathway is compared to that of other biomolecules/pathways in a competitive null
hypothesis. Even if the competitive null hypothesis has an interesting interpretation,
assessing the significance of the competitive null is challenging, since tests based on
it take into account a framework for gene sampling that treats genes as independent.

The main contribution of this chapter is the development of a self-contained
topology-based algorithm developed into the framework of Structural Equation Mod-
els (SEM), called SEMgsa() (Palluzzi and Grassi, 2021; Pepe and Grassi, 2014). Evalu-
ation of system perturbation is incorporated in SEM (Bollen, 1989), where the ex-
perimental condition is compared to a control one through the use of an exoge-
neous group variable acting on every node of the network. Statistical significance of
specific-pathway score is obtained combining node activation and node inhibition
statistics extracted from SEM model fitting. In addition, unlike existing methods, an
overall status of pathway perturbation of genes between case and control group has
been computed considering both node perturbation and up- or down- regulation of
genes for gaining more biological insights into the functional roles of predetermined
gene subsets.

A second objective of this study is to provide a consistent optimum solution
of any given biological situation. Many topology-based methods that investigate
distinct null hypothesis have been proposed in literature. We compare five popu-
lar pathway analysis approaches to SEMgsa(), starting from the most similar ones
in terms of multivariate test and self-contained hypothesis type (DEGraph, Net-
GSA and topologyGSA) together with one approach of competitive hypothesis type
(PathwayExpress) and the older approach of over-representation analysis (ORA).
All the methods in this chapter offer a nice use interface in R.

The aforementioned methods have been applied on observed and simulated ex-
pression data. The ultimate goal of expression data application is to provide a mean-
ingful comparison of gene set analysis methods in terms of (i) sensitivity and (ii)
prioritization for observed data and (i) type I error and (ii) power within each simu-
lation run.

The remainder of the chapter is organized as follows. Firstly, we describe SEMgsa()

features with regard to gene expression data both in terms of inference procedure
and user interface. Then, we outline the experimental setup constructed to evalu-
ate pathway enrichment methods, including real data application and simulation
design. In the end, we provide the results together with overall discussion.
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2.2 Method and implementation

2.2.1 SEM framework

A Structural Equation Model (SEM) (Bollen, 1989; Shipley, 2016) is a statistical frame-
work for causal inference based on a system of structural equations defining a path
diagram, represented as a graph G = (V, E), where V is the set of nodes (i.e., vari-
ables) and E is the set of edges (i.e., connections). The set E may include both di-
rected edges k → j if k ∈ pa(j) and bidirected edges k ↔ j if k ∈ sib(j). Although
in the general setting of SEM latent variables and non-linear functions can be in-
cluded (Bollen, 1989), we focus on the special case where the parent set pa(j), and
the siblings set sib(j), determine a system of linear equations, as follows:

Yj = ∑
k∈pa(j)

β jkYk + Uj j ∈ V (2.1)

cov(Uj; Uk) =

{

ψjk if j = k or k ∈ sib(j)

0 otherwise
(2.2)

where Yj and Uj are an observed variable and an unobserved error term, respec-
tively; β jk is a regression (path) coefficient, and a covariance ψjk indicates that errors
are dependent, which is assumed when there exists an unobserved (i.e.latent) con-
founder between k and j.
Under such a model, the dependence structure among genes provided by pathways
in biological database with directed and/or bi-directed edges (i.e., KEGG, Reactome,
and many others) (Kanehisa and Goto, 2000; Jassal et al., 2020), interacting with each
other to generate a single biological effect, can be included explicitly though the
graph, G = (V, E) and evaluated using local and global statistics.
SEMgsa() procedure adds a binary group (treatment or disease class) node labeled X
to V, and suppose that X = {0, 1} directly affects the set of genes in the pathway.
As bonus, adding group node and group-genes edges, the pathway with several
components (clusters) and singleton genes induces a connected graph (see Figure
2.1).

Thus we consider a directed graph G = (V ∪X, E∪ EX) with the linear structural
equations:

Yj = β jX + Uj j ∈ V(x) (2.3)

Yj = ∑
k∈pa(j)

β jkYk + β jX + Uj j ∈ V(y) (2.4)

where V(x) and V(y) are the sets of exogenous (i.e., source and singleton genes)
and endogenous (i.e., connectors and sinks) genes, respectively. The covariances,
cov(Uj; Uk) are assumed to be equal to Equation (2.2).
Comparing Equation (2.1) with Equation (2.3)-(2.4), we note that the added node X
may affect the mean gene expression values, but not their regression paths or covari-
ances. In the R package SEMgraph these coefficients can vary by experimental or
disease group via two-group SEM (Palluzzi and Grassi, 2021; Pepe and Grassi, 2014),
but in the following we assume additive group effects. Coefficients β j (adjusted by
the parents of the j-th node) determine the effect of the group on the j-th node, while
the common path coefficients β jk represent regression coefficients, adjusted by par-
ent set and group effect.
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FIGURE 2.1: Visualisation of SEMgsa() procedure starting from
Asthma KEGG pathway. The first graph summarise Asthma network
properties, showing a pathway consisting of 31 nodes, 4 edges and
25 singletons. To maximise pathway information, SEMgsa procedure
adds a binary group node (G = {0,1}) that directly affects the set of
genes in the pathway. In this way, the pathway with numerous sin-
gleton genes is edged with a group node and group-genes, resulting

in a linked graph.

This type of SEM enables the identification of differentially expressed genes (DEGs)
if genes show a statistically significant variation in their activity (e.g., gene expres-
sion) in the experimental group respect to the control one. In other terms, a test for
the null value of the path, X → Y is a test of:
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H0 : Yj ⊥ {X} vs. H1 : Yj ̸⊥ {X} , j ∈ V(x) (2.5)

H0 : Yj ⊥
{

pa(Yj), X
}

vs. H1 : Yj ̸⊥
{

pa(Yj), X
}

, j ∈ V(y) (2.6)

From Equation (2.5)-(2.6) we note two different tests. Marginal tests of con-
ventional DEGs analysis (Ackermann and Strimmer, 2008) for source and single-
ton genes, and conditional tests, given the parents, for connectors and sink genes.
Conditioning increases power when there is a direct group effect, and reduces gene
variability. So, pathway topological structure makes the inference more precise (Ed-
wards, Wang, and Sùrensen, 2012).
Maximum Likelihood Estimates (MLEs) of the paths (X → Y) can be easily obtained
with one of the three algorithms of SEMgraph. Specifically, the core of model fitting
in SEMgsa() function relies on the Residual Iterative Conditional Fitting (RICF), an
efficient iterative algorithm that can be implemented through least squares, with the
advantage of clear convergence properties (Drton, Eichler, and Richardson, 2009),
and permutation-based p-values for testing null hypothesis in Equation (2.5)-(2.6).
P-values of group effect (X → Y) are computed by randomization of group labels
comparing the estimated parameters by RICF with their random resampling distri-
bution after a sufficiently high number of case/control labels permutations. Accu-
rate small p-value estimations are possible with no need for a large number of per-
mutations (SEMgsa() makes default = 1000 permutations), using the moment based
approximation proposed by Larson and Owen, 2015. Once the empirical distribution
of the permuted path coefficients is obtained, the two-sided p-values are extracted
from the normal distribution with mean and standard deviation estimated from the
empirical distribution.
From node-wise p-values, overall group perturbation on pathway genes can be com-
puted based on the Brown's method for combining non-independent, one-sided sig-
nificance tests (Brown, 1975). The method computes the sum of one-sided p-values:
X2 = −2 ∑j log(pj), where the direction is chosen according to the alternative hy-
pothesis (H1), and the overall p-value is obtained from the chi-square distribution
with new degrees of freedom f and a correction factor c to take into consideration
the correlation among p-values, resulting in X2

c ∼ χ2( f ).
The conversion of two-sided p-values in one-sided p-values is performed according
to the sign of the path (X → Y) coefficient, β j. We refer the reader to Section 1.1.4 of
Chapter 1 for detailed equation reference.
Node-wise p-values < α (after correcting for multiple comparisons with one of sev-
eral adjustment methods, including Bonferroni or Benjamini- Hochberg procedure),
are used for DEGs identification. While, a single p-value of the two Brown’s p-values
(p(+): p-activation, and p(−): p-inhibition) combined with a Bonferroni procedure
(Vovk and Wang, 2020), i.e. 2× min(p(+); p(−)), indicates the global pathway per-
turbation.
In some cases, edge weights are defined in signalling pathways with discrete val-
ues [-1, 0, 1], indicating gene-gene activity derived from biological database (e.g.
KEGG). Usually they are: -1 for repressed or inactive, 0 for neutral, and +1 for en-
hanced or activated. For gaining more biological insights into the functional roles
of prior subset of genes, the sign of the minimum p-value between node activation
and inhibition has been retained to assess, in combination with pathway weights,
an overall status of pathway perturbation of genes between case and control group.
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In detail, node perturbation obtained from RICF fitting has been combined with up-
or down-regulation of genes to obtain overall pathway perturbation classification as
displayed in Table 2.1.

TABLE 2.1: Overall pathway perturbation.

Up/down regulation Node perturbation Overall perturbation
+1 P- (inh) down act
-1 P- (inh) up inh
+1 P+ (act) up act
-1 P+ (act) down inh

• The weighted adjacency matrix of each pathway was used to determine the up-
or down-regulation of genes (taken from the KEGG database) as the column
sum of weights across each source node. The pathway is marked as down-
regulated if the total sum of the node weights is less than 1, and otherwise as
up-regulated.

• The minimum among the p-values determines whether the node perturbation
is activated or inhibited; if positive, the node perturbation is described as acti-
vated, and otherwise as inhibited.

• It is possible to determine the direction (up or down) of gene perturbation by
combining these two quantities. In cases compared to the control group, an up-
or down-regulated gene status that is associated with node inhibition shows a
decrease in activation (or an increase in inhibition). In contrast, up- or down-
regulated gene status, associated with node activation, leads to an increase in
activation (or decrease in inhibition) in cases relative to control group.

2.2.2 User interface

The example code of the function SEMgsa() is as follows.

SEMgsa(g = list(), data , group , method = "BH",

alpha = 0.05, n_rep = 1000, ...)

The inputs are: a list of pathways to be examined (g); gene expression data where
rows represent subjects, and columns graph nodes (data); a binary vector with 1 for
cases and 0 for control subjects (group). Optional inputs are the multiple testing cor-
rection method (method), and the significance level (alpha) for DEGs selection, and
the number of randomization replicates for RICF algorithm (n_rep, default = 1000).
The first step in SEMgsa() workflow is to compute the weighted adjacency matrix of
each pathway, obtain the sum of node weights and flag the pathway as up- or down-
regulated. This is crucial to obtain the overall pathway perturbation status at the
end. Then RICF algorithm of R package SEMgraph, i.e. SEMrun(graph, data, group,

fit = 1, algo = "ricf"), is applied on data, considering the group binary vector
and the number of specified randomization replicates. More specifically, SEMrun()
takes as input a single graph as an igraph object and has several additional inputs,
including: a numeric value f it indicating the SEM fitting mode, where f it = 1 spec-
ifies a "common" model to evaluate group effects on graph nodes; the MLE method
algo is used for model fitting, in this case fitting is done via RICF(algo = ºric f º).
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The covariance matrix could not be semi-definite positive in the situation of
large dimensionality (n.variables > n.subjects), making it impossible to estimate the
parameters. When this occurs, regularization of the covariance matrix is enabled.
SEMrun() uses internally two functions of the corpcor R package:
the is.positive.definite() tests if the observed covariance matrix is positive, and
if the response is equal to FALSE, the function pcor.shrink() implements the James-
Stein-type shrinkage estimator (Schäfer and Strimmer, 2005) to regularized the co-
variance matrix.

Node-wise group effect p-values are extracted from model fitting object together
with the number of DEGs obtained adjusting p-values with the chosen correction
method while testing the specified level of alpha. Then, a data frame of combined
SEM results is obtained putting together node-wise p-values with Brown’s method
and Bonferroni’s correction.

The output of SEMgsa() is represented by a list containing two objects with the
following information for each pathway in the input list:

• gsa, a dataframe reporting size (No.nodes), DEGs number (No.DEGs), path-
way perturbation status (pert), Brown’s combined p-value of pathway node ac-
tivation (pNA), Brown’s combined p-value of pathway node inhibition (pNI)
and the Bonferroni combination of them (PVAL). ADJP refer to the pathway
combined p-value adjusted for multiple tests with Bonferroni correction, i.e.,
ADJP = min(K× PVAL; 1), where K is the number of the input pathways.

• DEG, a list with DEGs names for each pathway, selected with p-value < alpha
after the multiple correction procedure with one of the method available in R
function p.adjust(). By default, method is set to "BH" (i.e., Benjamini-Hochberg
correction) and the significance level alpha to 0.05.

To read more about SEMgsa() function, in terms of description, usage, function
arguments and value, refer to https://rdrr.io/cran/SEMgraph/man/SEMgsa.

2.3 Experimental design

2.3.1 Benchmark data

Coronavirus disease (COVID-19) RNA-seq expression data from Carapito et al., 2021
(GEO accession: GSE172114) together with Frontotemporal Dementia (FTD) DNA
methylation data (DNAme) from Li et al., 2015 (GEO accession: GSE53740) have
been used as benchmark data. Network information has been retrieved from the ob-
ject kegg.pathways of the SEMgraph package as a list of 225 edge weighted igraph ob-
jects corresponding to the KEGG pathways extracted using the ROntoTools R pack-
age (Ansari et al., 2017). Edge weights are defined with discrete values [-1, 0, 1]: -1
for inactive gene-gene activity, 0 for neutral, and +1 for activated.

Coronavirus disease (COVID-19)

Coronavirus disease of 2019 (COVID-19) is a highly contagious respiratory infec-
tion that is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Multiple probes for each Entrez gene ID were first eliminated. The empir-
ical Bayes technique, as implemented in the limma R package (Smyth, 2005), was
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used to fit linear models for differential expression analysis, and p-values were ad-
justed for multiple testing using the method of Benjamini-Hochberg (Benjamini and
Hochberg, 1995). This procedure results in a matrix of 69 subjects × 14000 genes.
Subjects include patients in the intensive care unit with Acute Respiratory Distress
Syndrome ("critical group", N=46) defined as cases, and those in a non-critical care
ward under supplemental oxygen ("non-critical group", N=23) defined as controls.
The expression matrix was finally matched with the corresponding Coronavirus dis-
ease - COVID-19 (hsa05171) KEGG pathway according to its name. The latter is a
graph with 232 nodes and 208 edges, including five components and 109 sigleton
(i.e. node degree = 0). The maximum subgraph consists of 54 nodes and 83 edges.
This pathway was subsequently labeled as target pathway and its p-value and rank
were further investigated for assessing the sensitivity and prioritization ability of
the methods (Tarca, Bhatti, and Romero, 2013; Tarca et al., 2012).

Frontotemporal Dementia (FTD)

Frontotemporal Dementia, a neurodegenerative disorder characterized by cognitive
and behavioural impairments (Palluzzi et al., 2017). We will use DNAme data stored
in the SEMdata package as ftdDNAme, a list of two objects: a data matrix of 256
rows (subjects) and 16560 columns (genes) containing the value of the first princi-
pal component of DNAme levels, obtained applying a principal component analy-
sis to methylated CpG sites within the promoter region, for each gene (genes with
unmethylated CpGs in both conditions were discarded); and a binary group vector
of 105 FTD patients (1) and 150 healthy controls (0). Unlike COVID-19 data, FTD
has not a unique KEGG pathway associated to its name. According to KEGG BRITE
database, the term Frontotemporal lobar degeneration (FTD; KEGG ID:H00078) is
associated to 6 KEGG pathways: MAPK signaling pathway (hsa04010), Protein pro-
cessing in endoplasmic reticulum (hsa04141), Endocytosis (hsa4144), Wnt signaling
pathway (hsa04310), Notch signaling pathway (hsa04330), and Neurotrophin signal-
ing pathway (hsa04722). We can use the SEMgsa() function to apply gene set analysis
(GSA) on a collection of networks, exploring the 6 selected FTD pathways as target
ones. Thus, the ability of GSA methods will be investigated on 6 target pathways,
combining results in terms of median p-values and ranks for readability purposes.

2.3.2 Data simulations

Synthetic data, based on realistic expression data (COVID-19), was used to carry out
simulations following the practice in Ma, Shojaie, and Michailidis, 2019. A subset
of pathways q1 < K out of total K pathways has been chosen to be dis-regulated.
Next, a pre-specified number (s) of genes within each dis-regulated pathway was
chosen to be altered (up or down) according to a topological measure (betweenness,
community, neighbourhood) and different mean signals (±0.5,±0.6,±0.7). Another
subset of q0 < (K − q1) pathways with no dis-regulated genes has been chosen to
evaluate statistical metrics. Finally, the COVID-19 benchmark data matrix is first
normalized, with mean zero and unit variance for each gene within each group
(cases and controls). Then, nine data generation procedures are executed, accord-
ing to topological measures and adding mean signal to the pre-specified genes in
the selected dis-regulated pathways. In summary, the simulation design (3× 3) with
100 randomization per design levels is reported in Table 2.2.
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TABLE 2.2: Summary of simulation design (3× 3) with 100 random-
ization per design levels.

Mean signal
Topology design Gene regulation +/- 0.5 +/- 0.6 +/- 0.7
betweenness up/down 100 100 100
community up/down 100 100 100
neighbourhood up/down 100 100 100

Pathway deregulation

Each data generation procedure starts with the definition of a list of pathways to be
tested. After recalling the list of kegg.pathways including N = 225 signaling path-
ways from the KEGG database, for efficiency purposes pathways with a minimum
and a maximum number of nodes equal respectively to 30 and 300 have been filtered
out for the analysis. Then, to speed up computations, the maximum component of
each igraph (Csardi and Nepusz, 2006) object corresponding to each selected path-
way has been selected. Given this choice, igraph objects with maximum component
smaller than the 60% of the total graph size have not been considered. This filtering
procedure results into a list of K = 117 igraph objects.
We have to alter q1 = 10 pathway’s genes in order to deregulate it within a simula-
tion. Specifically, we consider the 9 KEGG pathways associated to Coronavirus dis-
ease - COVID-19 (hsa05171): Vascular smooth muscle contraction (hsa04270), Platelet
activation (hsa04611), Toll-like receptor signaling pathway (hsa04620), NOD-like re-
ceptor signaling pathway (hsa04621), RIG-I-like receptor signaling pathway (hsa04622),
JAK-STAT signaling pathway (hsa04630), Natural killer cell mediated cytotoxicity
(hsa04650), Fc gamma R-mediated phagocytosis (hsa04666) and Leukocyte transendothe-
lial migration (hsa04670).
We looked at three different methods for reflecting pathway topology in order to as-
sign impacted genes to the deregulated pathways: betweenness, community and
neighborhood, following the practice in Bayerlová et al., 2015; Ma, Shojaie, and
Michailidis, 2019.
The number of all shortest paths in a directed graph that pass through a given node
is known as its betweenness. The top 10 highest scoring betweenness nodes were
used to choose affected genes in the betweenness deregulation design. According to the
community deregulation design, we located modules with dense connections between
module nodes and spare connections between module nodes. Given the division of
vertices in each community, the 10 affected genes are then randomly sampled from
the community with the highest proportion of members. In the neighbourhood deregu-
lation procedure, the vertices not farther than a given limit from another fixed vertex
are called the neighborhood of the vertex. After computing the neighbourhood of
order 2, we sampled the 10 vertices from the neighbourhood with the biggest size.
Within each of the associated pathways plus the target pathway of interest, an equal
number of genes s has been selected as ‘dysregulated’. We decided to fix the num-
ber of affected genes to s = 10 for each pathway, with the aim of obtaining equal
contribution from each associated disease (due to the presence of smaller pathway
sizes). However, given that overlapping genes between pathways may occur, the
unique genes out of the total S ≤ s × q1 = 10 × 10 have been retained as DEGs
for pathway dysregulation. Thus, the number of total dysregulated genes S is not
fixed, but changes according to the chosen topology design. As a note, given the
random sampling within the community deregulation design, the sampled genes
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change according to the specified seed. In the end, a weight representing the up-
or down-regulation of genes was kept along with the Entrez gene ID of the affected
genes. The weighted adjacency matrix of each pathway comprises a column regard-
ing the sum of weights over each source node, which can be used to determine up- or
down-regulation (taken from the KEGG database). The pathway is marked as down-
regulated or up-regulated depending on whether the total sum of node weights is
less than 1. Each gene’s weight has been extracted in order to obtain an up or down
mean signal, which better reflects variations in the expression of the impacted genes
between the control and treatment groups.
After identifying the subset of DEGs according to the chosen topology design, path-
ways with a number of dysregulated genes ≤ 1 have been selected as true negatives
(q0) to evaluate type I error from simulations. Unlike the q1 number that is fixed to
10 COVID-19 related pathways, the number of q0 pathways changes according to
the chosen subset of DEGs.
To summarise, for all topology design, the total altered genes S inside the q1 = 10
pathways are differentially expressed with a mean difference varying from (±0.5,
±0.6, ±0.7). Note that the magnitude of the mean signal is expressed relative to the
unit variance of each gene (see Ma, Shojaie, and Michailidis, 2019).
The simulated expression matrices were directly supplied to SEMgsa() and DEGraph,
topologyGSA, NetGSA, PathwayExpress and ORA algorithms together with the list
of igraph objects corresponding to the chosen KEGG pathways.

Pathway enrichment methods

Table 2.3 provides an overview of the tested pathway enrichment methods in terms
of null hypothesis, input requirements, pathway information and availability on R
together with main papers for reference. These methods differ in two main aspects:
(i) the type of null hypothesis, self-contained or competitive; (ii) input data, expres-
sion data or thresholded gene p-values. ORA and PathwayExpress test the competi-
tive null hypothesis of whether the genes in the set of interest are at most as often DE
as the genes not in the set, instead SEMgsa(), DEGraph, topologyGSA and NetGSA
test the self-contained null hypothesis of no genes in the set of interest are DE. An-
other major difference among these methods regards the input requirements. There
is a high sensitivity to the p-value cutoff because all techniques based on testing the
competitive null hypothesis must identify DE genes based on a pre-specified thresh-
old of corrected p-values. Without making any arbitrary decisions on the list of DE
genes, all self-contained tests directly employ expression data.

For computational purposes, two main aspects have been addressed within the
main analysis, mostly regarding DEGraph, topologyGSA and NetGSA:

• Common covariance matrix: DEGraph, TopologyGSA and NetGSA are multi-
variate hypothesis testing-based approaches. The vectors of gene expression
levels in each (sub)pathway are assumed to be random vectors with multi-
variate normal distributions, Np(µ1, Σ1) and Np(µ0, Σ0) where the covariance
matrix stores the network topology information. If the two distributions of the
gene expression vectors corresponding to the two phenotypes differ signifi-
cantly from one another, the network is thought to be strongly altered when
comparing the two phenotypes. A multivariate hypothesis test is used to de-
termine significance. The key distinctions between these three analytic ap-
proaches are the specification of the null hypothesis for statistical tests and the
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procedures for calculating the parameters of distributions.
DEGraph was developed to perform a two-sample test of means while tak-
ing the topology of the genes into account. It considers a special case where
both covariance matrices are expected to be equal, Σ1 = Σ0 and tests the null
µ1 = µ0. DEGraph uses a modified multivariate Hotelling T2-test hypothesis
to identify significant (sub)pathways. Two groups are compared in terms of
the first k components of the graph-Fourier basis (or in the original space after
filtering out k high-frequency components). In our analysis, the largest com-
ponent is used as a representation of the whole pathway.
TopologyGSA begins by transforming the pathway network graph into a di-
reted acyclic graph (DAG) and then to its "moral" graph by connecting all par-
ent nodes of a vertex and removing the edge directionality. The moral graph is
then decomposed into cliques (i.e. subsets of nodes in the graph for which each
pair is connected by an edge). A set of two hypothesis tests is applied to com-
pute the statistical significance of the impact on a given graph. The first test
determines if the inverses of the covariance matrices are equal. The second hy-
pothesis test examines the equality of the distributions’ means. To reduce the
computational burden of this method, we consider a special case like DEGraph
by assuming that the covariance matrices are expected to be equal and we em-
ployed the hypothesis test only for the mean of the distributions. When the
covariance matrices are equal, the test of differential expression for the means
is performed through a multivariate analysis of variance (MANOVA), equiva-
lent to Hotelling’s T2-test.
With NetGSA, the K networks may differ, and K take into account a linear
mixed effects model for each condition. The underlying biological network is
encoded in the 0-1 adjacency matrix, Ak which determines the influence matrix
Λk under each condition. The latter matrix describes the impact of each gene
on all the other genes in the network and is calculated from the adjacency ma-
trix, Λk = (I − Ak)

−1. Here we defined k = 2 and, to speed up computations,
we assumed that the network is shared between the two conditions, allowing
the computation of only one common adjacency matrix for case and controls.

• Hotelling’s T2-test: this test represent a a natural generalisation of the t-test for
testing the difference between multivariate means of two populations. T2 is
equivalent to Mahalanobis distance: D2 = ( Åy1 − Åy0)TΣ̂−1( Åy1 − Åy0), where Σ̂ is
an estimation of the common covariance matrix. It is known to be consistently
most effective against global mean-shift alternatives for multivariate normal
distributions, but it may exhibit poor behavior in high dimensions. The T2

test has very poor performance when the number of genes, p is close to num-
ber of samples, n; and is ill-defined when p equals or exceeds n. This is be-
cause the test statistic relies on the inverse of the estimated covariance matrix,
which does not exist when p ≥ n and has large variation when p is close to n
. We proposed to regularize the sample covariance matrix in order to to stabi-
lize its inverse and we used the decorrelated mean difference, as test statistic:
D = ( Åy1 − Åy0)TΣ̂−

1
2 u/
√

p, where u = (1, 1, ..., 1). D are very close to D2 (Ack-
ermann and Strimmer, 2008), but the former is computationally more efficient,
especially if randomization procedure of the null distribution is used. In this
way, we solved issues regarding the computation of T2 test for both topol-
ogyGSA and DEGraph. In addition, permutation-based p-values for testing
null hypothesis are computed by randomization of group labels, as performed
in SEMgsa() function, allowing more accurate p-value estimation with no need
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of a large number of permutations.

TABLE 2.3: Overview of tested pathway enrichment methods.

Method
Null
hypothesis

Gene p-value
tresholding

Expression
data

R/Bioconductor

SEMgsa
Self-
contained

No Yes
SEMgraph
1.1.1

DEGraph
Self-
contained

No Yes
DEGraph
1.46.0

topologyGSA
Self-
contained

No Yes
topologyGSA
1.4.7

NetGSA
Self-
contained

No Yes
netgsa
4.0.3

PathwayExpress Competitive Optional No
ROntoTools
2.23.0

ORA Competitive Yes No
EnrichmentBrowser
2.25.3

Evaluation measures

In the benchmark data analysis, all methods were evaluated according to (i) sensi-
tivity and (ii) prioritization. The sensitivity refers to the ability of producing small
p-values for the target pathway and prioritization refers to the ability of ranking
close to the top the gene sets that are indeed relevant to a given condition.
Performance of GSA methods within each simulation run has been evaluated look-
ing at (i) type I error and (ii) power. When a true null hypothesis is rejected, a type I
error, also known as a false positive, occurs, whereas the power assesses the proba-
bility of a test successfully rejecting the null when the alternative hypothesis is true.
Power comparisons are only useful if the tests have appropriate type I error con-
trol. Pathways associated with COVID-19 disease (q1) were used to evaluate power,
whereas those with a number of dysregulated genes ≤ 1 (q0) were utilized to evalu-
ate type-I error (Hellstern et al., 2021).

The type I errors and powers were estimated as the fraction of null hypotheses
rejected across 100 simulated replications.

2.4 Results

2.4.1 Benchmark results

Significance of target pathway was detected if the adjusted p-value (after Bonferroni
correction for multiple tests) didn’t exceed the level of 0.05. COVID-19 pathway
was identified only by SEMgsa() together with topologyGSA and NetGSA. The low-
est p-value was reported by SEMgsa() together with topologyGSA (see Table 2.4).
DEGraph, ORA and PathwayExpress seems not to be sensitive to mean changes be-
tween conditions in Coronavirus data. Looking at the results for Frontotemporal
Dementia, the only significant p-value (in terms of median p-values of related path-
ways) is reported by SEMgsa(), confirming the high sensitivity of our method.

Table 2.4 presents also the relative ranking of target pathway reported by the
different methods. Gene sets having the same p-value receive the same rank. The
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TABLE 2.4: Benchmark results on Coronavirus disease (COVID-19)
and Frontotemporal Dementia (FTD).

Disease

Metrics Method
Coronavirus disease

(COVID-19)
Frontotemporal

Dementia (FTD)*
Sensitivity SEMgsa() < 0.001 < 0.001

DEGraph 0.771 0.653
NetGSA 0.011 0.563

ORA 0.709 0.375
PathwayExpress 0.444 0.981

topologyGSA < 0.001 0.740

Prioritization SEMgsa() 10 39

DEGraph 90 39
NetGSA 63 44

ORA 83 56
PathwayExpress 32 100

topologyGSA 13 58
*Note: Since the term Frontotemporal lobar degeneration (an alias for FTD;
KEGG ID: H00078) is associated to 6 KEGG pathways, sensitivity and
prioritisation metrics have been aggregated by taking the median.

gene sets with the lowest p-value are ranked first, and so forth. Relative rankings are
computed by dividing the absolute rank by the number of unique p-value categories
and multiplied by 100 (i.e., percentile rank). Among all methods, SEMgsa() perform
the best with a 10th position for the COVID-19 pathway and a median ranking of 39
for FTD. Same ranking for FTD is reported by DEGraph but with a p-value larger
than threshold (0.05). Similar performance is reported by topologyGSA for Coron-
avirus data, with a ranking of 13 but with poor ranking for FTD (58). Despite the
good sensitivity, NETgsa shows poor prioritization results.

ORA method has poorer performance in terms of both sensitivity and prioritiza-
tion because this type of approach only works when the magnitude of mean changes
between conditions is large.

2.4.2 Simulation results

We summarize the relative performance of all methods based on false positive rate
and power results on the subset of pathways associated to the target disease (see
Data simulations). We focused on those metrics under the betweenness, community
and neighborhood dysregulation design. Metrics were evaluated on 100 simulation
replications and were summarized grouping results by mean signal and dysregu-
lation design with the aim of grasping differences in the behavior of GSA methods
under different experimental conditions. Error plots (Figure 2.2-2.5) show the mean
of those aforementioned metrics grouped by either mean signal or topology design
together with their standard deviations across simulations. SEMgsa() is highlighted
as red, compared to the others colored blue.
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FIGURE 2.2: Average type I error on the 10 KEGG pathways grouped
by method and mean signal on simulated data. Average type I error
together with standard deviation across simulations is displayed for
each method. Lower type I error indicates better performance. At the
0.05 significance level, all methods control the type I error rate across

the 10 pathways under different level of mean signal.

Figure 2.2 shows that, at the 0.05 significance level, all methods control the type
I error rate across the q0 pathways, selected among the K − q1 pathways with ≤ 1
dysregulated genes under different level of mean signal. This procedure results for
betweenness topology design in q0 = 16, for community in 10 ≤ q0 ≤ 30 (note that
we have a range of numbers given the random sampling of genes from the commu-
nity with the highest proportion of members) and neighbourhood in q0 = 14. Type
I error is defined as the average proportion of simulations where the method falsely
rejects the null hypothesis of no enrichment. It’s worth noticing that PathwayEx-
press’ type I error rates show a wider distribution, followed by SEMgsa() which en-
larges its error bands in correspondence of the highest mean signal. However, the
error rates of the latter methods are near 0 and below the nominal threshold of 0.05.
All other techniques appear to have conservative type I error rates. Type I error
results have been further investigated for SEMgsa(), showing the ability of the pro-
posed method to capture the signal also at lower values (smaller than 0.5). As a
result, given the high sensitivity of SEMgsa(), the higher the value of the mean sig-
nal, the higher the rate of false positives. Same results seems not to be shared by the
other methods, showing the need of higher differential expression (higher than 0.5)
to achieve acceptable performance.
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FIGURE 2.3: Average statistical power on the 10 KEGG pathways
grouped by method and mean signal on simulated data. Average
power together with standard deviation across simulations is dis-
played for each method. Higher power indicates better performance.
SEMgsa stands out among all with 90%-100% power across simula-
tion. NetGSA and topologyGSA get close to SEMgsa with about 75%

statistical power only with differential mean level of 0.7.

Statistical power of different methods has been investigated in terms of average
proportion of simulations where the method correctly rejects the null hypothesis of
no enrichment. The higher the power, the better. Figure 2.3 shows that SEMgsa()

stands out among all with 90%-100% power across simulations. PathwayExpress
reaches a position around 50% statistical power for all the level of mean signal. The
same could be stated summarizing the results by dysregulation design, with about
75% statistical power only under the betweenness design (Figure 2.5). As stated pre-
viously, the higher the mean signal, the higher the ability of the methods to correctly
reject the null. NetGSA and topologyGSA get close to SEMgsa() with about 75% sta-
tistical power only with differential mean level of 0.7 (Figure 2.3). Slightly better
results are reported from both methods with respect to the betweenness design (see
Figure 2.5). DEGraph instead, is placed at the bottom of the graph for most of the
comparisons (statistical power near 0).
Among the methods compared, SEMgsa() has the best overall performance.



52 Chapter 2. SEMgsa( )

FIGURE 2.4: Average type I error on the 10 KEGG pathways grouped
by method and topology dysregulation design on simulated data. Av-
erage type I error together with standard deviation across simulations
is displayed for each method. Lower type I error indicates better per-
formance. At the 0.05 significance level, all methods control the type
I error rate across the 10 pathways under different topology dysregu-

lation designs.

FIGURE 2.5: Average statistical power on the 10 KEGG pathways
grouped by method and topology dysregulation design on simulated
data. Average power together with standard deviation across simu-
lations is displayed for each method. Higher power indicates better
performance. SEMgsa stands out among all with 90%-100% power
across simulation. PathwayExpress, NetGSA and topologyGSA per-
form slightly better under the betweenneess dysregulation design,

reaching about 60%-70% statistical power.

2.5 Discussion

Topology-based approaches exhibit greater statistical power in finding pathway en-
richment, according to earlier studies (Varadan et al., 2012; Jaakkola and Elo, 2015).
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However, several limitations may affect user experience in terms of computational
efficiency.

SEMgsa() represent a topological based and self-contained hypotesis method, in
line with NetGSA, DEGraph and topologyGSA. Three main points make SEMgsa()

more valuable for users than existing GSA methods:

• Exploiting pathway information. Existing methods have specific input require-
ments about pathway topology. TopologyGSA, for instance, only works for
pathways whose topology is a DAG and whose size is less than the required
number of samples in the two conditions/groups. If a pathway has multiple
connected components, DEGraph will check to see if the means vary for each
connected subgraph. Without taking into account singletons, NetGSA fits a
linear mixed model for each condition. Overcoming this limitations, SEMgsa()
accepts as input directed and/or undirected networks that define pathway in-
terconnectedness. Inside SEMgsa() workflow, the function SEMrun() maps the
expression data onto the input graph corresponding to each pathway and con-
verts it into a SEM. Node-level perturbation is evaluated according to the spec-
ified binary group variable (i.e. case/control) by fitting a ªcommonº model to
evaluate group effects on graph nodes. In this way, adding group-nodes and
group-genes edges (see Figure 2.1), the pathway with several components and
singleton genes becomes a connected graph, allowing to exploit all available
pathway information.

• Higher sensitivity to pathway perturbation: Existing methods, like ORA, save
as output of GSA a list of DEGs for each pathway, recovered from the in-
put named vector containing log2 fold-changes of the differentially expressed
genes. The latter is obtained from the differential expression analysis done on
the gene expression data, where the genes with an adjusted (for multiple com-
parisons) p-value smaller than a pre-specified cutoff are considered as DEGs.
The adjustment process is highly dependent on the number of tests performed,
for example Bonferroni adjusted p-values are calculated by multiplying the
original p-values by the number of tests performed. SEMgsa() fits a SEM model
for each tested pathway. For source and singleton genes, marginal tests of
traditional DEGs analysis are applied while for connections and sink genes
conditional testing, given the parents are used. When there is a direct group
effect, conditioning increases power and reduces gene variability. As a result,
the topological structure of the pathway improves the precision of the infer-
ence. Furthermore, the significance of node-level perturbation is computed
within each pathway and the adjustment procedure for p-values is less strin-
gent given the smaller number of tests. This choice allows to obtain higher
sensitivity to pathway perturbation. Thus, from the output of SEMgsa() we
can extract a seed list of DEGS for each pathway that can be useful to dis-
cover novel disease-associated interactions. A further step could be to extract
a Steiner tree, mapping the DEGs on the union of the KEGG pathways and
finding a connected subgraph such that the additional nodes (Steiner or con-
nector nodes) connecting seed nodes (terminal nodes) minimize the sum of
the weight of every edge in the subgraph (i.e., maximizing edge perturbation
between disease nodes). Then, fitting the filtered active (perturbated disease)
module with SEMrun(), we can obtain a perturbed backbone regarding the dis-
ease of interest, where important connectors or clusters of genes can be identi-
fied (Palluzzi and Grassi, 2021; Pepe and Grassi, 2014).
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TABLE 2.5: Overall pathway perturbation of KEGG pathways related
to Coronavirus disease (COVID-19) and Frontotemporal Dementia

(FTD).

Disease KEGG pathway pert
Coronavirus disease
- COVID-19

Coronavirus disease
- COVID-19

up act

Frontotemporal
Dementia (FTD)

Protein processing
in endoplasmic reticulum

up act

Endocytosis NA
Neurotrophin signaling
pathway

up act

Wnt signaling pathway NA
MAPK signaling pathway up act
Notch signaling pathway down act

• Index for overall pathway perturbation: Among the existing methods, only SPIA
reports the direction in which the pathway is perturbed (activated or inhib-
ited), exploiting a posteriori pathway information obtained from hypothesis
testing. Like SPIA, SEMgsa() outputs a column summarising overall pathway
perturbation, but combining also a priori information obtained from biologi-
cal databases (up- or down- regulation of genes derived from KEGG) to a pos-
teriori information obtained from the analysis of gene expression data (node
perturbation obtained from SEMgsa()). The combination between these flow
of information allows to better define the direction of gene perturbation. Ta-
ble 2.5 provides the results for perturbation index with respect to benchmark
data. COVID-19 pathway is associated to an increase in activation in cases
with respect to control group (ªup actº); same result can be stated for two
out of six pathways (Neurotrophin signaling pathway and MAPK signaling
pathway) regarding Frontotemporal dementia. Notch signaling pathway is
associated to a decrease in aactivation in cases with respect to control group
(ªdown actº). Note that the NA are reported for the networks without +1 or
-1 edge weights in the adjacency matrix, resulting into no calculation for the
combinatorial measure.

2.6 Conclusions

We have shown that SEMgsa() is easily accessible to common users and provides
robust results under several experimental conditions. It obtains external pathway
information solving the problem common to many topology-based methods but of-
fering better statistical power and prioritization results, while also controlling for
type I error.

We believe that SEMgsa() can be a valuable tool for practitioners, also when un-
dertaking complex pathway enrichment analysis.
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Chapter 3

SEMtree( )

3.1 Background

The biological function on the molecular level emerges from the complex interac-
tion of biological entities of a cell. Specifically, different types of Omics-data can
interact in many various ways with each other in dependence on the tissue type
and the environmental condition of an organism. The interactions among biological
molecules can be broadly categorized into three types of networks: metabolic net-
works, transcriptional regulatory networks and protein interaction networks (Vidal,
Cusick, and Barabasi, 2011). These networks need to be inferred from the exper-
imental observations generated by different high-throughput platforms, including
Next-Generation Sequencing (NGS), proteomics and microarrays.
The goal is to identify active modules, i.e., subnetworks enriched in interactions
and in nodes of interest (showing condition-specific changes). Then, these active
modules facilitate the investigation of the perturbed cellular responses, as func-
tional modules are the building blocks of the cellular processes and pathways (Mitra
K, 2013). To identify these subnetworks, numerous methods have been suggested.
These methods can typically be divided into two categories: responsive subnetwork
identification and subnetwork extraction started by seed genes (or nodes).
For the first category, a number of algorithms and tools are created by combining
genome-wide measurements of signals with pre-established networks (Ideker et al.,
2002; Ma et al., 2011; Beisser et al., 2010). These techniques often include a score
function quantifying the alternation of a given sub-network between different con-
ditions as well as a search strategy that aims to identify the sub-networks in the
reference network that have the highest scores. Different scoring functions have im-
posed scores on network nodes or edges or both. Besides, high-scoring nodes were
prioritized as ‘disease genes’ useful for generating new hypothesis (Gu et al., 2010;
Zheng and Zhao, 2012).
In the second category, algorithms typically start with a set of genes as seeds to
expand and extract a subnetwork from the reference network. The resultant sub-
networks, which reflect the paths in which the seeds are involved, suggest the func-
tional relationships of the seed genes and further predict additional genes that may
play important roles in functional cooperation (Kleinberg and Tardos, 2006).
This class of methods has two main components: a scoring function quantifying the
alternation of a given sub-network between different conditions, and a search algo-
rithm to extract the highest scoring sub-networks. Different scoring functions have
imposed scores on network nodes or edges or both. Besides, high-scoring nodes
were prioritized as ‘seed genes’ for searching (Gu et al., 2010; Zheng and Zhao, 2012).
Due to the non-deterministic polynomial-time hard (NP-hard) nature of the problem
of finding the maximal-scoring connected subgraph, it can only be approached by
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heuristic or approximate methods. Most approaches rely on greedy searches, simu-
lated annealing, and genetic algorithms (see Mitra K, 2013 and Nguyen et al., 2019
for general surveys of the active module identification methods). Because of the
diversity of scoring functions and searching algorithms, it is impossible to obtain
identical or similar subnetworks given the same input expression profiles and PPI
network.
The main contribution of this chapter is the development of a self-contained tree-
based structure learning algorithm developed into the framework of Structural Equa-
tion Models (SEM), called SEMtree() and included in the R package SEMgraph (Grassi,
Palluzzi, and Tarantino, 2022). To investigate the utility of our approach, we per-
formed two sets of experiments on both observed and simulated expression data us-
ing Human Protein Reference Database (HRPD) interaction network, including 5007
proteins and 42704 interactions from KEGG database (Kanehisa and Goto, 2000). We
tested the ability of our framework to evaluate plausible regulatory subnetworks
of five popular subnetwork detection methods, i.e. BioNet (Beisser et al., 2010),
COSINE (Ma et al., 2011), pathfindeR (Ulgen, Ozisik, and Sezerman, 2019), Walk-
trapGM (Petrochilos et al., 2013) and our fast Steiner Tree function to provide a
meaningful comparison in terms of performance.
Regarding real data analysis, the highest-scoring subnetwork from each method has
been recovered as undirected network and supplied to Causal Additive Trees (CAT)
(Jakobsen et al., 2022) algorithm of SEMtree() to be converted in a directed tree. The
latter conversion allows to compare the methods in terms of directed active subnet-
works.
The remainder of this chapter is organized as follows. Firstly, we describe the SEMtree()

features both in terms of inference procedure and user interface. Then, we outline
the experimental setup constructed to evaluate subnetwork detection methods, in-
cluding the real data application and simulation design. In the end, we provide the
results together with the overall discussion.

3.2 Method and implementation

SEMtree() function includes both graph and data-driven algorithms to recover trees,
T = (V, E) with p nodes (V) and p − 1 edges (E). A tree is an undirected (or di-
rected) graph without cycles with a unique path between any two nodes, where a
path between two nodes (j, k) ∈ V can be viewed as a sequence of edges that may
have either the same or different direction with respect to neighbouring connec-
tions. The graph method refers to the Steiner Tree (ST), a tree from an undirected
graph that connects "seed" (e.g., disease) with additional nodes in the "most com-
pact" way possible based on a very fast solution provided by the Kou’s algorithm
(Kou, Markowsky, and Berman, 1981). The data-driven methods propose fast and
scalable procedures based on the Chu-Liu±Edmonds’ algorithm (CLE) (Chow and
Liu, 1968) to recover a tree from a full graph. The first method, called Causal Ad-
ditive Trees (CAT) (Jakobsen et al., 2022), uses pairwise mutual weights as input for
the CLE algorithm to recover a directed tree (arborescence). The second one (Lou,
Hu, and Li, 2021) applies the CLE algorithm for skeleton recovery and extends the
skeleton to a polytree represented by a Completed Partially Directed Acyclic Graph
(CPDAG). Finally, applying the Prim’s algorithm (Prim, 1957), the Minimum Span-
ning Tree (MST) of a connected undirected graph (or a data-driven undirected full
graph) can be identified. Here, we review the novel CAT method used for the con-
version of undirected graphs in directed ones.
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3.2.1 Causal tree recovery

A fundamental problem is learning the causal structure of a random vector Y =
(Y1, Y2, ..., Yp) without the graph knowledge. Generally, a Directed Acyclic Graph
(DAG), G = (V, E) is used to understand whether Yk causes Yj (or vice versa), where
V is the set of nodes (i.e., variables) and E is the set of edges (i.e., connections), and
loops are not allowed. Causality is evaluated over directed paths between two nodes
having causal relevance, i.e., a sequence of edges with the same direction, where
node Yk is an ancestor of Yj, and Yj is a descendant of Yk. If Yk and Yj have a direct
link (Yk → Yj), Yk is the parent of the child Yj. A DAG can also be represented as
a Structural Equation Model (SEM), with no confounding unobserved variables, as
follows:

Yj = ∑
k∈pa(j)

β jkYk + Uj, for all j ∈ V (3.1)

where Yj and Uj are an observed variable and an unobserved error term, respec-
tively; pa(j) is the parent set of Yj and β jk is the regression coefficient, i.e. the weight
of the direct link (Yk → Yj). DAG models assume independent errors (no confound-
ing), cov(Uj; UK) = 0, and unequal error variances, σj = var(Uj) with a Gaussian
(Normal) distribution, Uj ∼ N(0, σj) for all j ∈ V.
For high dimensional data, recently Jakobsen et al., 2022 suggest models of reduced
complexity (i.e., directed trees) as causal graphs. Their approach is known as causal
additive trees (CAT). A directed tree is a connected DAG in which all nodes have a
unique parent, except the root node (r) with none parent. The node, r is the unique
node with a directed path to any other nodes in the tree. In graph theory, a directed
tree is also called an arborescence, a directed rooted tree, and a rooted out-tree, and is a
sub-class of polytree, that allows multiple root nodes, and nodes with multiple par-
ents. CAT is also a SEM defined with bivariate nonlinear structural equations:

Yj = f j(Ypa(j)) + Uj, for all j ∈ V (3.2)

where f j(.) is a non linear function of any form between the child Yj and the
unique parent Yk = Ypa(j), i.e., (Yk → Yj), and f j(.) = Y3

k , or f j(.) = sin(Yk), or
f j(.) = Yk + Y2

k + Y3
k , etc. While, the additive Uj term is assumed with a Gaussian

distribution as in linear SEM.
Generally, the causal structure is not identifiable from the observational data. Com-
mon "data-driven" structure learning methods (Heinze-Deml, Maathuis, and Mein-
shausen, 2018) use different assumptions to ensure identifiability of the causal DAG
or a list of all the equivalent DAGs (i.e., a Markov equivalence class) embedded in
a CPDAG. The authors Jakobsen et al., 2022 prove that exact identification, and not
just an equivalent class, is possible for systems of lesser complexity. CAT procedure
consistently recovers the causal directed tree of the non linear SEM in equation [2].
The causal graph recovery problem (see Figure 3.1) is resolved finding a minimum
edge weight directed spanning tree of the fully connected graph, G = (V, E) with p
nodes V = Y and p(p− 1) mutual edges E = (Yk → Yj; Yk ← Yj).

CAT uses a score-based method to recover a directed tree, T = (V, E∗) mini-
mizing a suitable score function, S over all mutual edges of the full graph, that is
proportional to the Gaussian log-likelihood score function, defined by:

S = min
T

∑
(k→j)
(k←j)

wG
jk = ∑

1
2

log
(

σr

sr

)

(3.3)
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FIGURE 3.1: CAT procedure: (a) the fully connected graph with mu-
tual edges and (b) the directed tree (an arborescence) minimizing edge
weights with Chu-Liu±Edmonds’ algorithm (CLE) algorithm, where
the edge weights represents the error variance ratio and the lower the

value, the better the link prediction.

where σr and sr are the error variance of Uj (or Uk) and the variance of Yj (or
Yk), respectively. The weight, wG

jk represents the error variance ratio and the lower
the value, the better the link prediction. It is simple to implement, computation-
ally efficient, and only requires two steps. The mutual edge weights of the di-
rected full graph are estimated using the residual variances of (Yj − f j(Yk)) and
(Yk − fk(Yj)) from the (bivariate) additive regression methods in the first phase.
These weights are then incorporated into the CLE algorithm to recover a directed
tree with minimal edge weight in the second phase. To note, the non linearity is
essential to distinguish the links (k→ j) and (k← j). In linear regression with stan-
dardized variables the weights are equivalent to the negative mutual information,
−MI = log[1− abs(cor(Yj; Yk))], a symmetric measure that doesn’t preserve direc-
tionality information.
For the implementation, SEMtree() function performs: (i) additive model fitting with
penalized regression splines using the R-function gam from the R-package mgcv,
in order to obtain estimates of f̂ j,k (resp. f̂k,j) and σ̂j = var(Yj − f̂ j,k) (resp. σ̂k =

var(Yk − f̂k,j)) in the weighting phase; (ii) the R-function edmondsOptimumBranching()

from the R-package RBGL for the CLE algorithm in the recovery phase.
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3.2.2 User interface

The example code of the function SEMtree() running CAT is as follows.

SEMtree(graph= NULL , data , seed , type = "CAT",

eweight = NULL , verbose = FALSE , ...)

The inputs are:

• a graph representing the network of interest as igraph object or graph=NULL,
if a full graph is used;

• a gene expression data where rows correspond to subjects, and columns to
graph nodes (data);

• a vector of user-defined seed nodes (seed);

• the Tree-based structure learning method, where four graph and data-driven
algorithms are available (type" = CAT", or "CPDAG", or "ST", or "MST");

• the edge weight type for igraph object where by default the edge weights are
internally computed using 1-abs(cor), otherwise are determined from the user-
defined distances (eweight);

• the logical argument verbose, if TRUE allows the user to visualize and fitting
(through SEMrun() function) the tree.

The output is the recovered tree represented by an igraph object. To read more
about SEMtree() function, in terms of description and usage, refer to
https://rdrr.io/cran/SEMgraph/man/SEMtree.html.

3.3 Experimental design

Workflow of the active-subnetwork search approach is display in Figure 3.2.
We selected four methods from literature for comprehensive assessment of sub-

network detection if: (i) the method is implemented within a well-maintained R
package (or open source R code) and (ii) it represents diversity of methodology. Ta-
ble 3.1 summarizes the selected method, highlighting the key characteristics and key
differences between each method in terms (i) algorithm used to construct the sub-
networks, (ii) input requirements (iii) node scoring, (iv) edge scoring (if any) and (v)
statistical test for assessing the significance of the identified active subnetworks (if
any).

3.3.1 Benchmark data

Coronavirus disease (COVID-19) RNA-seq expression data from Carapito et al., 2021
(GEO accession: GSE172114) have been used as benchmark data with 69 subjects ×
14000 genes. Subjects include patients in the intensive care unit with Acute Respi-
ratory Distress Syndrome ("critical group", n=46) defined as cases, and those in a
non-critical care ward under supplemental oxygen ("non-critical group", n=23) de-
fined as controls. The empirical Bayes technique, as implemented in the limma R
package (Smyth, 2005), was used to fit linear models on the normalized RNA-seq
data across the 46 case and 23 control samples. The gene P-values were adjusted for
multiple testing using the method of Benjamini-Hochberg (Benjamini and Hochberg,
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Gene 1 Gene 2 ...

Subject 1 ... ... ...

Subject 2 ... ... ...

... ... ... ...

Gene 1,

Gene 2,

Gene 3, 

...

Gene P-value

... ...

Gene FC

... ...

tree ACEs(%) ...

Method 1 ... ... ...

Method2 ... ... ...

... ... ... ...

or

Input Data Active Subnetwork Search1 2

Filtering Subnetwork Evaluation Metrics43

(1) Undirected graph

(2) Merge nodes

(3) CAT extraction

(1) System perturbation

(2) Disease classifier

(3) Gene/GO Enrichment 

FIGURE 3.2: Overview of the active-subnetwork search approach.
The required input is a gene expression data (n subjects x p genes)
or a two-column table representing Gene identifiers and adjusted
p-values or log-fold changes associated with differential expression
data. The data are then used for active subnetwork search, start-
ing from a KEGG PPI consisting of 3033 nodes and 19735 undirected
edges. The active module is then recovered in a network format or
a list of genes representing the module. Next, the identified active
subnetworks are filtered according to the following steps: 1) an undi-
rected graph is first obtained for each method; 2) group of nodes have
been merged according to hierarchical clustering with prototypes; 3)
an aborescence layout has been recovered with CAT algorithm. In
the end, the evaluation of subnetwork detection methods has been
summarized in a table in terms of: 1) system perturbation; 2) disease

classifier; 3) gene/GO enrichment.
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TABLE 3.1: Overview of subnetwork detection methods.

Method Algorithm
Input
Network

Input
Data

Node
Scoring

Edge
Scoring

BioNet
Integer-
Linear
Programming

HPRD p-values p-values -

COSINE
Genetic
algorithm

HPRD
Gene
expression
data

F-test ECF-test

pathfindeR
Greedy
algorithm

HPRD p-values p-values -

SEMtree
Fast ST
algorithm (1)

HPRD seed seed 1-abs(cor)

Fast ST
algorithm (2)

HPRD seed seed sem p-values

WalktrapGM
Random Walk
algorithm (1)

HPRD FC-values FC-values FC-values

Random Walk
algorithm (2)

HPRD
Gene
expression
data

p-values r-to-z p-values

1995). Those P-values can be directly used as the input for subnetwork detection, be
ranked to select a seed gene set, or be converted into a set of particular weights tai-
lored to the requirement of the model.
Network information has been retrieved from the KEGG interactome object of the
SEMgraph package as an igraph network object of 5007 nodes and 44755 edges cor-
responding to the union of 225 KEGG pathways extracted using the ROntoTools R
package (Ansari et al., 2017). The latter interactome has been transformed into an
undirected network to be suitable for fitting the already existing subnetwork detec-
tion methods. For efficiency purposes, the network has been filtered according to the
genes included in the benchmark data and the largest component has been retained.
This procedure results in a reference network of 3033 nodes and 19735 undirected
edges.

3.3.2 Subnetwork detection methods

Table 3.1 summarizes the selected method, highlighting the key characteristics and
key differences between each method in terms (i) algorithm used to construct the
subnetworks, (ii) input requirements (iii) node scoring, (iv) edge scoring (if any) and
(v) statistical test for assessing the significance of the identified active subnetworks
(if any).
The methods analyzed here use a wide range of scoring functions to score the nodes
and edges. Most of them provide a scoring function for nodes or edges, but only
some of them take into account the scores of both nodes and edges. Edge-based
scoring networks focus on the strength of the interaction between proteins or genes,
whereas node-based scoring networks look at the relevance of one gene or protein
in the context of the entire network. Node-based scoring algorithms may yield sub-
networks with high scoring nodes but no significant connectivity between nodes.
Edge-based scoring network may generate subnetworks with highly related genes
but low network relevance. Methods that consider both node and edge scores are
more likely to yield a more accurate active module. In principle, scoring functions
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should be the summary statistics that capture the network perturbation, signal prop-
agation as well as the changes between different phenotypes. Specifically:

• Steiner tree (ST) extracts a active subgraph from the input graph such that ad-
ditional nodes (called the Steiner nodes) connecting "seed" nodes (called the
terminal nodes) minimize the sum of the weight of every edge in the subgraph.
ST have been tested with SEMtree(), that use the simple but effective heuris-
tic approach based on the fast Kou’s algorithm, as first published in 1981 by
Kou, Markowsky, and Berman, 1981. We used weightGraph() from SEMgraph

package to edge scoring the input graph, specifying different edge weight-
ing methods. For comparison on benchmark data, we select the argument
type="ST" proposed as default option from SEMtree() function, where edge
weights are defined according to 1-abs(cor), and the best performing ST among
weightGraph() options, resulting in edge weights defined by Fisher’s r− to− z
method (Fisher, 1915). The seeds were selected with a False Discovery Rate
(FDR) = 5-E06.

• BioNet (Dittrich et al., 2008), model the Prize-collecting Steiner tree (PCST) al-
gorithm as a mathematical programming-based optimization that aims to find
subgraphs of maximum weight using CPLEX library (a fast heuristic version in
R is also implemented in the function runFastHeinz ()). BioNet requires multi-
ple nominal (not adjusted) P-values derived from various sources (differential
expression analysis, survival analysis, etc) and then models their combination
as a Beta distribution, developing an additive scoring, where positive values
are statistically significant with a FDR defined by user, and negative otherwise.
Here, we use P-values derived from one source and with the threshold for FDR
= 5-E06.

• COSINE (Ma et al., 2011)), i.e., COndition SpecIfic subNEtwok, on the other
hand, uses a Genetic Algorithm (via the function ga.bin() in the R package
genalg) to search for an optimal subnetwork with the highest aggregate score
that jointly measures the condition-specific changes of both nodes and edges
using F-statistic and Expected Conditional F-statistic (ECF-statistic), respec-
tively. The subnetwork scoring is defined as a weighted average of nodes and
edges with the parameter, λ. Thus, this method requires gene expression data
as input to evaluate both the differential expression of individual genes and
the differential correlation of gene pairs. Here, we use the default parameters
of the genetic algorithm, and λ=0.5, i.e., equal relevance for nodes and edge
weights.

• pathfindeR (Ulgen, Ozisik, and Sezerman, 2019) identifies active sub-networks
in an unweighted reference PPI network by implementations of a greedy al-
gorithm, a simulated annealing algorithm, or a genetic algorithm. Here, we
use the greedy algorithm, a problem-solving/optimization procedure that se-
lects locally the best option in each stage with the expectation of reaching the
global optimum. The procedure start with a seed node and adds direct neigh-
bors (d=1 by default) in each step to maximize the subnetwork score, ad so on
for all seed nodes, removing a subnetwork that overlaps with a higher scoring
subnetwork (at 0.5 threshold by default). Here, we use the default parame-
ters, and the non overlapping genes list in the all extracted sub-networks is
recovered.
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• WalktrapGM (Petrochilos et al., 2013) runs a short random-walk-based commu-
nity detection algorithm to identify disease modules from an edge weighted
reference network (via the function cluster_walktrap() in the R package igraph).
According to the node and edge weighting scheme, two different WalktrapGM
algorithms have been tested. WGM_FC assigns gene fold change (FC) val-
ues and estimates the edge weights as a function of differential expression,
taking the mean of the absolute FC-values of the two adjacent nodes of the
edge (Petrochilos et al., 2013). WGM_RWR, a modified R function of Walk-
trapGM, assigns gene p-values to node weights and computes edge weights
from Fisher’s r-to-z transform for testing pairwise correlation coefficient of
interacting nodes. Then, for both algorithms (WGM_FC, and WGM_RWR),
module scores are used to rank high-scoring modules, comparing the module
cumulative activity, i.e., the sum of node weights, against a bootstrap distribu-
tion of random differential expression values per module size. Here, the first
top modules for both algorithms are recovered.

Most of the methods included in this analysis (Steiner Tree, BioNet, pathfindeR,
and WalktrapGM) require the user to input a gene list (i.e., a seed list) as the signifi-
cant gene set or gene P-values to serve as starting points of the algorithm. The only
exceptions is COSINE that uses gene expression data and internally computes the
F-test and ECF-statistic to capture node and edges changes across multiple condi-
tions. SEMtree() allows the user to choose between different types of edge weights
for the ST algorithm. To note, pathfindeR and WalktrapGM algorithms require
node weights for ranking the sub-networks. Both followed the scoring scheme that
was proposed by Ideker et al (Ideker et al., 2002). pathfindeR and WGM_FC use
the unweighted sum of node z-score (i.e., the standard normal inverse of a single
gene’s P-value) adjusted for the size of the sub-network, and calibrated by the mean
and standard deviation of a Monte Carlo simulation for each possible sub-network
size. WGM_RWR applies the weighted sum of node z-score from iPINBPA (Wang,
Mousavi, and Baranzini, 2015). The weights of the z-scores are obtained with a
random walk with restart (RWR) method (Köhler et al., 2008) to prioritize disease-
associated genes, and improve sub-network extraction.

3.3.3 Tree (CAT) extraction

The existing subnetwork detection methods (Table 3.1) differ for the class of the out-
put in which the recovered active module is represented. Three out of five algo-
rithms, i.e. COSINE, pathfindeR and WalktrapGM, give as output a list of genes
representing the identified subnetworks, not allowing the user to visualize the full
graph with the interactions between nodes. On the other side, BioNet and SEMtree()

output the subnetwork in an undirected graph format. Therefore, we extract from
the obtained gene list of COSINE, pathfindeR and WalktrapGM the undirected in-
duced subgraphs on the reference undirected KEGG interactome.
Since in the Section Evaluation metrics a directed graph structure is required in the
benchmark data analysis to evaluate the node perturbation through SEM fitting, the
different type of output has been converted to a directed graph (a directed tree) by
the following two steps procedure:

1. First, when all the undirected graphs representing the identified active mod-
ules have been recovered, their dimensionality has been investigated to have a
a maximum number of about 200 nodes as the upper bound to retain the inter-
pretability of the recovered modules as suggested by Petrochilos et al., 2013,
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and similar to the size (232) of the KEGG "Coronavirus disease - COVID-19"
pathway". Beyond this threshold, to solve this high-dimensionality problem,
SEMgraph offers the possibility to merge groups of nodes using hierarchical
clustering with prototypes from the protoclust R package (Minmax linkage)
(Bien and Tibshirani, 2011) with mergeNodes() function. We therefore have a
single representative data point (the prototype) for the resulting cluster for
each merging of the agglomerative procedure. The mergeNodes() function cuts
the dendrogram at height h = 1− abs(ρ0), where ρ0 is the Pearson’s correlation
coefficient, cor(Yj; Yk). This procedure results in a merged node (and a reduced
graph) in which every node in the cluster has correlation of at least ρ0 with the
prototype node. We tuned the height h to control the size of subnetworks to be
approximately 200 genes.

2. Second, after merging nodes, an arborescence layout with CAT algorithm has
been recovered from each method to (i) be more comparable from a struc-
tural viewpoint with a more interpretable yet visible subnetwork, (ii) to iden-
tify gene signature, i.e., significant root node, driver-gene and hub or module
structure, (iii) to reduce considerably the CPU-time computation of SEM fit-
ting.

3.3.4 Evaluation metrics

In the benchmark data analysis, the performance of the state-of-the-art approaches
has been evaluated in terms of (i) system perturbation, (ii) disease classifier per-
formance and (iii) COVID-19 gene set/GO enrichment. We also add to the seven
extracted CAT modules two reference trees (after CAT conversion): (8) the KEGG
"Coronavirus disease - COVID-19" pathway, and (9) the data-driven directed tree
extracted from the top 200 DEGs ranking by a Random Forest variable importance
procedure with the randomForest() function of randomForest R package (Breiman,
2001).

1. Evaluation of system perturbation of extracted CAT subnetworks has been
evaluated via SEMace() and SEMgsa() functions of SEMgraph. Firstly, we com-
pute Average Causal Effects (ACEs) between every possible source-sink node
pair, using the parent adjustement set procedure, and we report (i) the num-
ber of significant paths (P < 0.05 after Bonferroni correction) over the to-
tal estimated paths, and (ii) the Bonferroni combination of ACEs’ p-values
(P=K*min(pvalues)), where K is the total estiamate paths,the lower the value,
the better the score. Then, we perform a Gene Set Analysis (GSA) on CAT
modules and we report (iii) node activation and node inhibition P-values (P+
and P-, respectively) through a Bonferroni statistics (P = 2 ∗ min(P+; P−)),
and (ii) the number of DEGs, i.e. differential expression genes with P-values
< 0.05 after Benjamini-Hochberg (BH) correction.

2. Disease classifier performance was carried out by a penalized Fisher’s Discrim-
inant Analysis (pFDA) with the PenalizedLDA() function of PenalizedLDA R
package Witten and Tibshirani, 2011 to identify genes in the extracted subnet-
works able to discriminate between groups. Specifically, pFDA tries a discrim-
inant projection (a discriminant variable), aTx = Σjajxj in a lower dimensional
space such that the ratio of between-class variance and within class variance
is maximized, subject to an additional l1 (lasso)-constraint on the weights, a′s.
This constraint ensures that some discriminant weights, aj will be estimated as
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exactly zero and the corresponding variable, will not be contribute to the dis-
criminant variable. Then, the FDA threshold d = (aTx0 + aTx1)/2 was defined
to classify the patients as case if aTx− d > 0 or as non-case, vice versa.
To avoid model over-performance on a specific dataset, and consequent loss
of classification generality, and reproducibility, we performed a K-fold cross-
validation analysis, with K = 5. At each iteration, K-1 partitions were merged
into one and used for the learning process (training step), while the K-th left
out partition (i.e., the validation set) was used to predict the outcome (i.e., the
diagnostic class). The 2x2 frequency table (i.e. confusion matrix) was obtained
at each iteration of the K-fold cross-validation, and the classical performance
indices of the FDA classifier (sensitivity, specificity, and accuracy). Let TP be
the true positives from the 2x2 confusion table, FP be the false positive, TN
be the true negative, and FN be the false negative. Then, Se= TP/(TP+FN),
Sp=TN/(TN+FP), and Ac=(TP+TN)/n, where n is the total sample, and the
confusion table is computed both by averaging the indices of K 2x2 tables and
by using the overall 2x2 table over the K iterations.

3. 3033 genes which were contained both in COVID-19 gene expression profiles
and KEGG network were included in the subsequent network analysis. In ad-
dition, 245 genes related to COVID-19 disease were obtained from the collec-
tion of diseases-related genes of Feng et al., 2022. This data based comprehen-
sively included genes collected from searches against OMIM (), KMDB/Mutation-
View (), DisGeNET database (), and NCBI database (Tatusova et al., 2016).
Non-matching genes derived from an updated version of the databases were
added, resulting in 278 total genes. Among the 278 genes, 92 were included
in the 3033 genes of the benchmark expression dataset. Then, we extracted the
GO terms related to the 92 COVID-19 reference genes, resulting in a total of
1099 recovered GO terms.
We perform an assessment of enrichment performance, both on benchmark
and simulated data, looking at precision, recall and F1 score. To this goal, the
genes (or the GO terms) are separated into two groups, Foreground Genes FG
(or Foreground GO terms, FGO) and Background Genes BG (or Background
GO terms). The FG (FGO) are the reference 92 COVID-19 genes (1099 GO
terms), while, for simulated data, FG genes are artificially differentially ex-
pressed. Let TP and the FP the number of FG and BG present in the active
modules, respectively, and the FN are the number of missing FG (i.e. the FG
that were not retrieved). Then, Pre = TP/(TP+FP), Rec = TP/(TP+FN), and F1
= 2*(Prec*Rec)/(Pre+Rec) have been computed, taking the average over 100
simulation runs for simulated data.
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3.3.5 Data simulations

Following the experimental setup of Ma et al., 2011, we simulated five datasets, in-
cluding one "white" dataset (i.e. control) and four datasets to be compared to the
control one (i.e. cases) from multivariate normal distributions. Different mean pa-
rameters (µ) and covariance matrices (with different ρ correlation coefficient) were
set for each dataset, fixing the variances to 1. Each dataset consists of 500 genes and
20 samples and the condition-specific sub-network for case datasets 1, 2, 3 consisted
of 50 genes while for the case dataset 4 consisted of 40 genes. Specifically:

• Control group: µ = ρ = 0 for all genes (to be compared with each of the four
case sets for the identification of the optimal sub-network).

• Case set 1 (both differential expression and differential correlation): Gene 1 to
Gene 50 have µ = 0.75, and ρ = 0.6 between each gene pair; the other 450
genes have µ = ρ = 0.

• Case set 2 (only differential expression, no differential correlation): Gene 1 to
Gene 50 have µ = 0.75, and ρ = 0 between each gene pair; the other 450 genes
have µ = ρ = 0.

• Case set 3 (differential correlation and differential expression with both up and
down regulation): Gene 1 to Gene 25 have µ = 0.75, and ρ = 0.6 between each
pair; Gene 26 to Gene 50 have µ = −0.75 and ρ = 0.6 between each pair of
them; ρ = −0.6 between any gene from 1 to 25 and any gene from 26 to 50.
The other 450 genes have µ = 0 and ρ = 0 .

• Case set 4: 10 genes from each of set 2, set 3, set 4 and set 5, the other 460
genes from set 1 (mixed pattern of differential expression and differential cor-
relation).

Given the PPI network recovered from KEGG database and the ground truth
subnetwork, four gene expression data (against one control dataset) were simulated
with 100 randomizations. Then we performed differential expression analysis across
the 20 case and 20 control samples and we assigned to each gene an adjusted P-value
representing its significance of differential expression. Gene expression data, DEGs
or P-values were supplied according to the subnetwork detection method of interest.
We ran 6 selected subnetwork methods 100 times for 4 case datasets. Finally, we
obtained 2400 (100 randomizations × 4 case datasets × 6 methods) subnetworks.
Note that, for each simulation run, the evaluation metrics (average Recall, Precision,
and F1-score over 100 runs) have been computed only if an active module with more
than one node has been identified.

3.4 Results

3.4.1 Benchmark results

We aim to apply SEMtree() on COVID-19 real data to compare its performance with
existing methods and to reveal significant biological processes. The goal is to re-
trieve a single condition-specific sub-network composed of genes with a good sys-
tem perturbation, while reporting optimal ability to discriminate between groups.
In addition, the ability of each method to identify COVID-19 related genes (gene
enrichment) and GO terms related to those genes (GO enrichment) has been tested.
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Table 3.2 shows that the highest percentage of source-sink path perturbation and
the lowest combination of path P-values (ACEs(%) and PVAL(E) respectively) is re-
ported by ST, in line with RF_C19 and immediately followed by STr2z. pathfindeR
reports the most perturbed network, with 112 DEGs (No.DEGS) and the lowest com-
bination of node P-values (PVAL(V)), followed by BioNet, ST and STr2z. The com-
bination of all these metrics allows to consistently identify ST as the most perturbed
subnetworks among the considered ones in terms of both path and node perturba-
tion.

In addition, Table 3.3 shows that most of the methods report high accuracy val-
ues (above 90%) in classifying patients as case or non-case, with the exception of
COSINE and WGM_FC that report accuracy below 90% but still around 80%. How-
ever, according to the higher number of zero features (no.zero) the most parsimo-
nious predictors (genes) are in STr2z, WGM_RW, WGM_FC and ST. BioNet reports
high classification metrics but almost all the features have non-zero discriminant
vector. To note, the reference modules have the poorer (KEGG_C19) and the greater
(RF_C19) classification performance.

Gene and GO precision, recall and F1-score are shown in Table 3.4. ST methods
show the best performance in identifying COVID-19 related genes, with the highest
gene F1-score (0.12 for STr2z and 0.11 for ST) among all the considered methods. The
latter methods are able to identify, respectively, 18 and 15 reference genes (see Table
3.5) over the total of 92. ST gene enrichment metrics are in line with KEGG_C19
baseline that reports a gene F1-score equal to 0.23. On the other side, pathfindeR
reports the highest GO F1-score equal to 0.50, immediately followed by ST, STr2z
and WGM_RW (0.44). pathfindeR is able to recover 703 reference GO terms over
the total of 1099, while STr2z and ST select, respectively, 650 and 535 COVID-19 GO
terms. Worst performance, both on gene and GO metrics, is reported by COSINE,
with a gene F1-score of 0.05 (with a number of selected COVID-19 genes equal to 8)
and a GO F1-score of 0.25 (with a number of selected COVID-19 GO terms equal to
184).

Overall, SEMtree() Kou’s ST algorithm is able to retrieve the subnetwork of inter-
est, with good enrichment metrics, if compared to the other methods. The module
retrieved by ST together with its perturbation is reported in Figure 3.3. For tree
interpretation, the SEMtree() recovered subnetwork can be investigated to identify
significant causal paths and hub-genes with high level of graph arborescence, i.e.
many edges point away from that specific node. After testing for significant ACEs
(P < 0.05 after Bonferroni correction, see Table 3.6), a significant path consisting
of 14 nodes (with only two genes not perturbed) and 13 edges (with high pairwise
correlation) between source node ATG16L1 (Gene ID: 55054) and sink node CCR5
(Gene ID: 1234) has been highlighted in orange, and compared with COVID-19 lit-
erature in the legend of Figure 3.3. This perturbed route, along with others, between
the virus and the host cell interaction could suggest a possible mechanism of viral
pathogenesis.

In summary, trees (arborescences) are simple models, but can nevertheless pro-
vide useful biological insights and extract unrevealed knowledge-based network
structures to experimentally validate new hypothesis for disease (here, COVID-19)
research.
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TABLE 3.2: Evaluation metrics (graph filtering and system pertur-
bation) from the benchmark data analysis are reported in the table
below. The original graph size (graph), the optimal height (h) to
cut the minimax clustering and the direct tree (arborescence) struc-
ture (tree) have been firstly displayed. Then, the path perturbation
of each method can be evaluated looking at the percentage of sig-
nificant paths in the network together with the combination of their
p-values (ACEs(%) and PVAL(E) respectively). Node perturbation
can be measured with the number of DEGs (No.DEGS) in the net-
work and the combination of node activation and inhibition p-values

(PVAL(V)).

System perturbation
method graph tree ACEs(%) PVAL(E) No. DEGs PVAL(V)
BioNet (263;569) (193;192) 19 2.70e-04 112 2.15E-08
COSINE (241;171) (206;205) 2 3.44e-02 57 8.71E-09
pathfindeR (264;700) (205;204) 0 2.86e-01 112 2.78E-11
ST (396;395) (192;191) 63 5.41e-06 103 4.91E-10
STr2z (459;458) (204;203) 22 1.55e-05 94 3.17E-13
WGM_RWR (166;600) (166;165) 0 4.17e-01 66 3.75E-10
WGM_FC (155;560) (155;154) 4 9.64e-02 49 4.77E-08
KEGG_C19 (183;113) (183;182) 0 3.17e-01 48 1.64E-10
RF_C19 (200;199) (200;199) 43 6.58e-03 141 2.09E-12

TABLE 3.3: Evaluation metrics (disease classifier performance) from
the benchmark data analysis are reported in the table below. The abil-
ity of each method to discriminate between groups has been tested via
pFDA and it has been evaluated in terms of number of zero features
(no.zeros, with zero penalized discriminant vector) in relation to the
number of recovered genes (no.genes) and the classical classification

metrics (Sensitivity Se, Specificity Sp, Accuracy Ac).

Disease classifier performance
method no. genes no. zeros Se Sp Acc
BioNet 193 2 0.96 0.87 0.93
COSINE 206 20 0.89 0.87 0.88
pathfindeR 205 42 0.96 0.87 0.93
ST 192 46 0.96 0.87 0.9
STr2z 204 87 0.96 0.87 0.93
WGM_RW 166 59 0.93 0.83 0.90
WGM_FC 155 47 0.91 0.83 0.88
KEGG_C19 183 80 0.80 0.78 0.80
RF_C19 200 0 0.96 0.91 0.94
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TABLE 3.4: Evaluation metrics (gene/GO enrichment) from the
benchmark data analysis are reported in the table below. Gene
and GO precision, recall and F1-score are also reported (GenePre,

GeneRec, GeneF1, GOPre, GORec, GOF1).

Gene/GO Enrichment
method GenePre GeneRec GeneF1 GOPre GORec GOF1
BioNet 0.07 0.14 0.09 0.51 0.4 0.45
COSINE 0.04 0.09 0.05 0.47 0.17 0.25
pathfindeR 0.07 0.16 0.1 0.41 0.64 0.50
ST 0.08 0.16 0.11 0.41 0.49 0.44
STr2z 0.09 0.2 0.12 0.35 0.59 0.44
WGM_RW 0.07 0.13 0.09 0.50 0.39 0.44
WGM_FC 0.03 0.05 0.04 0.53 0.36 0.43
KEGG_C19 0.17 0.34 0.23 0.62 0.46 0.53
RF_C19 0.03 0.05 0.03 0 0 NA

TABLE 3.5: Recovered genes/GO and selected COVID-19 related
genes/GO for the nine recovered subnetworks from benchmark data

analysis.

method all_genes C19_genes all_G C19_GO
BioNet 193 13 862 440
COSINE 206 8 391 184
pathfindeR 205 15 1708 703
ST 192 15 1315 535
STr2z 204 18 1855 650
WGM_RWR 166 12 872 432
WGM_FC 155 5 756 397
KEGG_C19 183 31 815 507
RF_C19 200 5 0 0
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FIGURE 3.3: The graph shows the differentially regulated nodes
(DRNs) as activated (pink-shaded) or inhibited (blue-shaded) vari-
ables. White nodes do not show significant variation in COVID-19,
respect to healthy controls. Node size reflects node degree, the big-
ger the size, the higher the value of vertex degree. The width of
edges shows the strength of correlation coefficient of pairs of inter-
acting nodes. Path between source node ATG16L1 (Gene ID: 55054)
and sink node CCR5 (Gene ID: 1234) has been highlighted in orange.
The node ATG16L (down-regulated) gene produces a key autophagy
protein that interacts with ATG5 and ATG12 to form a complex nec-
essary for the extension of the autophagophore. Through influenc-
ing multiple components of the immune response, autophagy plays
a crucial antiviral function in a variety of human illnesses (Tao et al.,
2020; Ahmad, Mostowy, and Sancho-Shimizu, 2018). However, some
viruses, including SARS-CoV-2, have learned how to manipulate the
autophagy machinery in order to avoid their destructive destiny. On
the other side, CCR5 (down-regulated) is a receptor for proinflamma-
tory chemokines, which are implicated in host responses, particularly
to viruses. Findings of (Cizmarevic et al., 2021) imply that the CCR5-
32 allele may be protective against SARS-CoV-2 infection and HIV
infection alike and represent a predictive biomarker for COVID-19
susceptibility, severity, and death. The activity of three hub struc-
tures along the path MAPK14 → GNAI3 → RHTO1 are altered.
According to recent research reports, MAPK14 (up-regulated) stim-
ulates regulation of inflammation that may contribute to exacerbate
organ damage linked with complications of COVID-19 (Su, Rousseau,
and Emad, 2021), GNAI3 (down-regulated) is a gene target predict-
ing COVID-19Ðhypertension comorbidity pathway crosstalk (Barh
et al., 2021), and RHTO1 (up-regulated) maps a hub protein sharing
interactions with both viral baits and host baits for antiviral drug dis-

covery (Liu et al., 2021).
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TABLE 3.6: Significant average causal effects (ACEs) between source-
sink pairs as obtained from SEMace function while testing for pertur-

bation with SEMpath.

pathL sink <- source d_est d_se d_z pvalue d_lower d_upper
9 DDIT3 <- ATG16L1 0.90 0.26 3.50 0 0.39 1.40
9 NDUFA10 <- ATG16L1 -0.92 0.24 -3.79 0 -1.39 -0.44
9 CPEB3 <- ATG16L1 0.88 0.24 3.67 0 0.41 1.34
8 MAD1L1 <- ATG16L1 -0.93 0.20 -4.74 0 -1.31 -0.54
9 SLC7A11 <- ATG16L1 0.79 0.22 3.66 0 0.37 1.21
6 IL1R2 <- ATG16L1 0.80 0.19 4.11 0 0.42 1.18
13 CCR5 <- ATG16L1 -0.87 0.21 -4.23 0 -1.27 -0.47
6 NFKBIA <- ATG16L1 1.02 0.22 4.65 0 0.59 1.45
6 TLE4 <- ATG16L1 1.00 0.25 4.05 0 0.51 1.48
10 EEF2 <- ATG16L1 -0.94 0.25 -3.82 0 -1.42 -0.46
10 AHNAK <- ATG16L1 -0.80 0.22 -3.68 0 -1.23 -0.37
8 PPARG <- ATG16L1 0.87 0.24 3.68 0 0.40 1.33
7 RELB <- ATG16L1 0.83 0.23 3.62 0 0.38 1.27
7 DYNC2H1 <- ATG16L1 -0.83 0.20 -4.14 0 -1.22 -0.43
7 IL1RN <- ATG16L1 0.90 0.24 3.78 0 0.43 1.36
8 FYN <- ATG16L1 -0.92 0.17 -5.44 0 -1.25 -0.59
8 CTSF <- ATG16L1 -0.69 0.17 -4.02 0 -1.03 -0.35
6 ZNF3 <- ATG16L1 -0.72 0.19 -3.74 0 -1.10 -0.34
9 PPP2R5A <- ATG16L1 0.84 0.23 3.65 0 0.39 1.29

3.4.2 Simulation results

To test the seven sub-network detection methods on the simulated data, each of
the four case datasets was compared with the Control Group to identify condition
specific sub-networks. The goal is to retrieve a single condition-specific sub-network
composed of 50 genes while for the case dataset 4 consisted of 40 genes. Simulation
results are shown in the Figure 3.5.

Compared with the other methods, SEMtree() ST and STr2z achieve high preci-
sion, around 90%− 80% for all the case datasets, just below the precision of BioNet.
Since BioNet recovers the smallest subnetwork for all the case datasets (see Figure
3.4), its precision is the highest one compared to the other methods. SEMtree() re-
covers the smaller subnetworks immediately after BioNet and, therefore, it shares
similar precision metrics with the latter. The highest network dimension is reported
by WGM_RWR and WG_FC, resulting in the lower precision scores since the method
selected more BG (i.e., false positives). Similar performance is reported by pathfindeR.
Looking at the recall metrics (Figure 3.5), COSINE reports slightly higher results
given that the higher dimensionality of its modules allows to select more genes and
obtain a smaller number of false negatives. The recall values of ST and STr2z are in
line with BioNet and higher than pathfindeR, WGM_RWR and WGM_FC.
Then, we calculated the F1-score to determine how good the methods are to retrieve
the FG while avoiding picking BG. The F1 score for COSINE is around to 60% for all
case datasets, while it is near 30%− 40% for ST, STr2z and BioNet. The latter meth-
ods are able to reach the highest F1-scores for case dataset 1 and 3, driven by the
high precision values. In detail, STr2z reports F1 score around 60% for case dataset
1 and 3. For more details about simulation metrics, we refer the reader to Table 3.7.
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TABLE 3.7: Average simulation results (over 100 runs) for the seven
subnetwork detection methods for each case dataset.

method set size_mean precision_mean recall_mean f1_mean
BioNet 1 11.29 0.98 0.35 0.47
BioNet 2 9.30 0.99 0.19 0.31
BioNet 3 9.78 0.99 0.31 0.43
BioNet 4 3.93 0.96 0.16 0.26
COSINE 1 44.95 0.75 0.67 0.71
COSINE 2 31.61 0.78 0.49 0.60
COSINE 3 30.24 0.69 0.40 0.51
COSINE 4 28.37 0.68 0.47 0.55
pathfindeR 1 32.00 0.09 0.06 0.07
pathfindeR 2 32.00 0.09 0.06 0.07
pathfindeR 3 32.00 0.09 0.06 0.07
pathfindeR 4 32.00 0.09 0.08 0.08
ST 1 12.92 0.92 0.36 0.47
ST 2 11.24 0.92 0.21 0.33
ST 3 11.62 0.91 0.31 0.42
ST 4 6.35 0.87 0.18 0.29
STr2z 1 13.51 0.92 0.48 0.60
STr2z 2 14.77 0.76 0.28 0.40
STr2z 3 12.05 0.90 0.44 0.57
STr2z 4 5.99 0.79 0.30 0.43
WGM_RWR 1 99.13 0.19 0.33 0.29
WGM_RWR 2 87.93 0.09 0.17 0.17
WGM_RWR 3 99.44 0.18 0.32 0.28
WGM_RWR 4 89.27 0.08 0.20 0.19
WGM_FC 1 135.40 0.01 0.04 0.19
WGM_FC 2 137.97 0.01 0.05 0.15
WGM_FC 3 139.59 0.02 0.06 0.16
WGM_FC 4 140.52 0.03 0.12 0.14
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3.5 Discussion

The key challenge in many disciplines is to derive networks from high-dimensional
data, and numerous methods have been proposed. Despite being too simple for
accurate representations of complex biological processes, trees (undirected and di-
rected) can be used as the starting point to provide a general comprehension of the
dependence structure of the network. Directed trees is an obvious choice for causal
inference in high-dimensional data. Moreover, we can consider certain attributes of
the chosen tree to be substitutes for related attributes of the real, underlying net-
work. Connectivity, path length, and degree are a few attributes that can be em-
ployed in this way. All of these factors led us to design SEMtree(), a tree-based
structure learning algorithm based on SEM. The ST approach has been chosen to be
compared to the other existing methods, representative of the main algorithms dedi-
cated to the identification of active modules: PCST (BioNet), genetic algorithm (CO-
SINE), greedy algorithm (pathfindeR) and random walk (WalktrapGM). We have
performed a comprehensive assessment of those subnetwork detection methods us-
ing COVID-19 real data and simulation data. The key conclusion in this study can
be summarized as follows.
First, based on the real ans sumulation data sets, each of the approaches was as-
serted to be efficient in their original articles. Our results on benchmark data show
high system perturbation for the ST of SEMtree(), while high levels of GO enrich-
ment are reported by pathfindeR. Simulation results report high precision value for
BioNet and ST, but a good F1-score around 60% for COSINE. However, worst per-
formance on the benchmark data is reported by COSINE. As none of the methods
outperformed other methods overall, users should choose an appropriate method
based on the purposes of their studies.
Second, in terms of ease of use, some of the methods do not offer user-friendly inter-
face or visualization functions for the identified subnetworks. Most of the existing
subnetwork detection methods output a list of genes representing the module, not
allowing the user to visualize the entire network. BioNet outputs the subnetwork in
an undirected graph format.
We propose SEMtree() algorithm in order to overcome some limitations of existing
literature. The advantages of our algorithm are summarised as follows:

1. SEMtree() function includes four tree-based structure learning methods imple-
mented with graph and data-driven algorithms. Fast Kou’s algorithm has
been chosen for comparison with the other existing methods based on the
pre-established networks (interactomes), with default edge weighting, but the
users can choose one of the methods of weightGraph() function based on their
needs.

2. SEMtree() utility goes beyond subnetwork detection with the graph extraction
functionality. Starting from a seed list, SEMtree() allows the user to recover
the structure of the network with data-driven algorithms. In detail, the CAT
(arborescence) or the CPDAG (polytree) can be recovered from a user defined
gene list or a list of differentially regulated genes, active modules or pathways.

In addition, SEMgraph package provides a set of utilities that have been crucial
to build up the analysis of the chapter. These functions allow the user to: cluster the
graph (mergeNodes()); apply SEM-based gene set analysis to recover the perturba-
tion metrics (SEMgsa()), evaluate ACEs between source-sink pairs (SEMace()), evalu-
ate SEM fitting given the recovered network and the data of interest (SEMrun()), and
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visualize the identified module with gplot() function, specifying different type of
layouts, and other functions illustrated in Grassi, Palluzzi, and Tarantino, 2022. As,
to our knowledge, no existing method is able to fully leverage the network and data
information as SEMtree(), allowing the user to easily recover the tree-based structure
with different algorithms, extract a directed graph from a seed list and visualize the
recovered module.
Given the advance in tree development, our direction for future work is also to con-
sider the most recent proposals suggested in finance literature (Ahelegbey, Giudici,
and Hadji-Misheva, 2019; Agosto, Ahelegbey, and Giudici, 2020; Giudici and Poli-
nesi, 2021), and in machine learning (Chatterjee and Vidyasagar, 2022; Tramontano,
Monod, and Drton, 2022). Specifically, the random matrix theory (Giudici and Po-
linesi, 2021), and the new xi-coefficient of correlation (Chatterjee and Vidyasagar,
2022) could be incorporate in SEMtree() as first-step filtering technique for ST and
MST, and as asymmetrical edge scoring in high-dimensional (n < p) regime for
CAT, respectively.

3.6 Conclusions

We have shown that SEMtree() is easily accessible to common users and provides ro-
bust results under several experimental conditions. It recovers the tree-based struc-
ture starting from the interactome and gene expression information while offering
good enrichment metrics, perturbation extraction and classifier performance.
Even though trees are overly simplistic representations of biological systems, we be-
lieve that SEMtree() can be a valuable tool for practitioners, not only when undertak-
ing complex subnetwork detection analysis, but also when extracting dependence
(causal) structure with a direct tree (arborescence) starting from a list of genes. This
simple graph can be useful as a preliminary step for visualizing observational high-
dimensional data, highlighting densely connected hub nodes or neighborhoods that
might be further investigated.
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Chapter 4

SEMbap( )

4.1 Background

Studies of large-scale gene expression and genotype data are frequently affected by
biological and technical sources of expression variation, such as batch effects, sample
characteristics, and environmental influences. The ability of researchers to quantify
interesting biological signals can be enhanced by recognizing and removing these
potential confounders. Confounding factors might be established sources of ex-
pression variance (known covariates) or developed empirically from the expression
dataset (hidden covariates).

In addition, in presence of unobserved confounding factors that impact both the
predictors and the outcome, the performance of many high-dimensional regression
approaches may deteriorate. Directed Acyclic graphs (DAGs) encoded in linear
Structural Equation Models (SEM) assume casual sufficiency (Pearl, 2009) that re-
quires no hidden (or latent) variables that are common causes of two or more ob-
served variables; i.e., the covariance matrix of the unobserved terms is diagonal.
This assumptions is particularly constraining, and unrealistic in most applications.

Adjusting for unobserved confounding variables is crucial, and different decon-
founding techniques have been proposed for use in diverse real-world systems.
Standard high-dimensional regression methods assume that the underlying coeffi-
cient vector is sparse; i.e., the response is only affected by a few predictors (Bühlmann
and Geer, 2011). However, when there is confounding in a linear model, in addition
to the few predictors that do in fact influence the response, there are more hidden
predictors that are associated with the outcome. Some methods for relaxing the spar-
sity assumption represent the structure of the regression parameter as the sum of a
sparse and a dense vector. The real underlying regression vector will be altered by
some modest, dense perturbation if the confounding factors have an impact on a
large number of predictors (Guo, ÂCevid, and Bühlmann, 2022).

The approaches frequently employ some form of Principal Component Analysis
(PCA) defined by Singular Value Decomposition (SVD) to estimate the confounding
variables directly from the data. If dense latent factors exist, the initial main compo-
nents are distinct from the others, and a two-step procedure is performed comput-
ing normalized residuals prior to downstream regression analysis. Chernozhukov,
Hansen, and Liao, 2017 and Cevid, Buhlmann, and Meinshausen, 2020 suggest mul-
tiplying the response vector and the predictor matrix leftward by a well selected
spectrum transformation matrix, which modifies the singular values of input data.
Chernozhukov, Hansen, and Liao, 2017 propose the Lava estimator whilst Cevid,
Buhlmann, and Meinshausen, 2020 suggest straightforward spectral transformation
known as the "trim" transform. After that, the altered data matrix may be utilized as
the input for a high-dimensional sparse regression method, of which the LASSO is a
prime example.
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In graphical models the goal is to estimate a concentration matrix, i.e. the in-
verse of the covariance matrix, of the observed variables. Chandrasekaran, Parrilo,
and Willsky, 2012 address the issue of calculating the precision matrix in the pres-
ence of a few hidden confounding factors by decomposing the concentration matrix
into a sparse matrix and a low-rank matrix for revealing the conditional graphi-
cal model structure in the observable variables as well as the number and impact
of the hidden variables. Low Rank plus Sparse (LRpS) decomposition algorithm re-
moves unwanted variation by using the Alternating Direction Method of Multipliers
(ADMM) algorithm (Goldstein, Donoghue, and Setzer, 2014). Unlike the other meth-
ods, Chandrasekaran, Parrilo, and Willsky, 2012 decomposition regards the entire
precision matrix and not only the regression coefficient. In causal structure learning,
a two-step approach is suggested by Frot, Nandy, and Maathuis, 2019 which first re-
moves the effect of the hidden variables by LRpS and then estimates the Completed
Partially DAG (CPDAG) under the assumption of causal sufficiency by using the
estimated sparse covariance matrix of LRpS.

Jablonski et al., 2021 introduce a novel computational approach in DAG gene ex-
pression application, known as Differential Causal Effects (DCEs), which contrasts
healthy cells with cancerous cells using Average Causal Effects (ACEs); i.e. the to-
tal effect of a source-sink link of a SEM. The technique enables for the detection
of specific edges in a signaling pathway that are dysregulated in cancer cells while
controlling for confounding. The authors extend the linear function representing
the sink = source + parent(source) equation by including the first q principal com-
ponents of the design matrix as additional source variables.

The main contribution of this chapter is the development of a two-stage decon-
founding procedure based on Bow-free Acyclic Paths (BAP) search developed into
the framework of SEM called SEMbap() and implemented in the R package SEM-

graph (Grassi, Palluzzi, and Tarantino, 2022). A BAP is an acyclic graph that can
have directed and bidirected edges, where the directed edges represent direct causal
effects encoded by regression coefficients, and the bidirected edges represent hidden
confounders encoded by pairwise covariances. The bow-freeness condition means
that there cannot be both a directed and a bidirected edge on the same pair of vari-
ables. Our approach assume arbitrary latent confounding, i.e. latent variables (LVs)
induce confounding dependencies among the observed variables with bow-free co-
variances if arbitrarily exists at least one pair of variables with covariances not equal
zeros. This assumption is substantially weaker than the latent denseness, where few
hidden variables have direct effect on many of the observed variables, as required
from the previous cited methods.

A second objective is to provide a meaningful comparison of the state-of-the-art
deconfounding methods on real and synthetic data and on a priori knowledge of a
biological signalling pathway encoded in a DAG in terms of (i) SEM fitting, (ii) sys-
tem perturbation for observed data, (iii) recovery performance metrics on simulated
data.

The rest of the chapter is divided into the following sections. First, both the
inference process and the user interface for SEMbap() features with respect to gene
expression data are described. The experimental setup for assessing deconfounding
techniques is then described, including real data application. Finally, we present the
findings and a concluding discussion.
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4.2 Method and implementation

4.2.1 SEM

A linear SEM is a set of linear equations involving the variables Yi = (Yi1, ..., Yip)
T

and unobserved terms Ui = (Ui1, ..., Uip)
T:

Yi = BYi + Ui, with cov(Ui) = Ψ (4.1)

where B(p, p) is a real matrix, and Ψ(p, p) is a positive definite matrix. We con-
sider an i.i.d. assumption across the indices i = 1, ..., n, and that all variables, Yi have
been standardized to mean zero and variance one. SEM has an associated graph,
G = (V, E) where V is the set of nodes (i.e., variables) and E is the set of edges (i.e.,
connections), that reflects the structure of B and Ψ. For every non-zero entry Bjk

there is a directed edge from k to j (k → j), and for every non-zero entry Ψjk there is
a bidirected edge between j and k (j↔ k).

The graph (or the path diagram), G, is also a formal tool to evaluate the hierar-
chical structure of a system, where we can identify exogenous variables, having zero
explanatory variables in all structural equations, and endogenous variables, having at
least one explanatory variable in at least one structural equation. In graph theory,
exogenous variables are source nodes, with incoming connectivity equal to 0, whilst
endogenous variables are nodes with non-zero incoming connectivity. Endogenous
variables can be further divided into connectors, with non-zero outgoing connectiv-
ity, and sinks, having no outgoing connections.

We consider three special types of SEM:

• Directed Acyclic Graphs (DAGs) used in causal inference (Heinze-Deml, Maathuis,
and Meinshausen, 2018), where loops are not allowed; i.e., B defines a lower
(or upper) triangular weighted adjacency matrix, and all covariances are null:
ψjk = 0 and Ψ = diag(ψ1, ..., ψp).

• Bow-free Acyclic Paths (BAPs), B has an acyclic structure, and bidirected con-
nections (covariances) in Ψ are not null only if do not share any directed link:
if ψjk ̸= 0 then β jk = 0; i.e., they are bow-free (Brito and Pearl, 2002).

• Latent (or Hidden) Variable Graphs (LVs), B has an acyclic structure, and U
terms encode a Factor Analysis (FA) model (Bai and Li, 2012) with common
latent factors and specific errors: Ui = ΓFi + Ei, where Γ(p, q) are the loading
factors of q < p LVs (i.e., new exogenous or source variables), Fi = (Fi1, ..., Fiq)

T

and Ei = (Ei1, ..., Eip)
T are idiosyncratic error terms.

The multivariate system (1) is equivalent to Yi = (I − B)−1Ui that links the ob-
served variables, Yi only on the unobserved variables, Ui with the population co-
variance matrix, Σ =cov(Yi) = E(YiY

T
i ) for DAG, BAP or LV models given by:

Σ1 = (I − B)−1Dψ(I − B)−T (4.2)

Σ2 = (I − B)−1Ψ(I − B)−T (4.3)

Σ3 = (I − B)−1(ΓΓT + De)(I − B)−T (4.4)

Considering Ujk an unobserved confounder between pair of observed variables,
the covariance matrices Ψ1 = Dψ, Ψ2 = Ψ and Ψ3 = ΓΓT + De account for un-
observed confounding, that we call de-correlated, arbitrary or pervasive confounding,
respectively.
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By definition, DAG is a de-correlated model, BAP model states that the LVs in-
duce confounding dependencies between at least one pair of observed variables
(Yj, Yk), and LV model assumes that several unobserved variables have an effect on
many of the observed ones. To note, not every Yi needs to be affected by each LV.

4.2.2 BAP deconfounding

DAGs are used for visual representations of a priori causal hypotheses making un-
derlying relations explicit: a connection between two variables denotes causation,
and variables without a clear causal relationship are left unconnected. The underling
DAG may become a BAP with directed (regression weight) and bidirected (covari-
ance) connections, adding specific missing edges hidden by unmeasured variables.
Assuming arbitrary confounding and the implied population precision matrix Ψ−1

known, we can adjust (or de-correlate) the observed variables, Yi in the multivariate
system (1) by Mahalanobis’s transformation:

Ψ−1/2Yi = Ψ−1/2(B Yi + Ui) s.t. Zi = A Zi + Di (4.5)

where Zi = Ψ−1/2Yi, A = Ψ−1/2BΨ1/2, and Di = Ψ−1/2Ui. The Mahalanobis’s
transform performs a de-correlation of the bow-free covariances: cov(Di) = Ip and
Σ4 =cov(Zi) = (I − A)−1(I − A)−T.

For a fixed (know) Ψ−1, it follows that the log-likelihood of the model with a
multivariate Gaussian distribution the Mahalanobis norm, i.e. the weighted squared
l2-loss, is equivalent to the SEM log-likelihood (Loh and Bühlmann, 2014):

logL(B, Ψ; Y) ≡ −E(||Ψ−1/2(Y− BY)||22) = −||Z− AZ||22 (4.6)

Removing bow-free covariances helps to better train a DAG model, which as-
sumes independence among error terms, and to perform Maximum Likelihood Es-
timate (MLE) of regression coefficients with Ordinary Least-Squares.

Zi is an example of a whitening transformation of Yi, that minimises the expected
total squared component-wise difference between Y ’s and Z’s: the whitened and
original variables are always positively correlated, see Kessy, Lewin, and Strimmer,
2018 for a review. This facilitates the interpretation of the whitened variables.

When the population precision matrix is unknown, the adjusted (de-correlate)
variables, Zi should be computed from data by BAP (or covariance) search. We sug-
gest to perform d-separation (Pearl, 2009) test between all pairs of variables with
missing connection in the input DAG by Shipley's basis sets (Shipley, 2000).

d-separation test. In a DAG, missing edges between nodes imply a series of in-
dependence relationships between variables (either direct or indirect). These inde-
pendences are implied by the topology of the DAG and are determined through
d-separation: two nodes, Yj and Yk, are d-separated by a set of nodes S if condition-
ing on all members in S blocks all confounding (or backdoor) paths between Yj and
Yk (Pearl, 1998).

We need to define: (i) a path that begins with an arrow pointing to Yk and ends
with an arrow pointing to Yj, called a confounding (or back-door) path from Yk to Yj

(Yk ← ...→ Ys); (ii) a node Ys ∈ S in which two arrowheads meet Ys (→ Ys ←) called
a collider; (iii) a collider along a path blocks (close) that path. However, conditioning
on a collider (or any of its descendants) unblocks (open) that path; (iv) blocking a
confounding path requires conditioning on any intercepted (not-collider) nodes on
the path.
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With these definitions out of the way, two nodes Yk and Yj are d-separated by S
if conditioning on all members in S blocks all confounding paths between the two
nodes. Shipley, 2000 find a basis set of d-separation relations (and therefore inde-
pendence claims) that are implied by a DAG: SU =

{

Yj ⊥ Yk |pa(j) ∪ pa(k), j > k
}

,
where pa() is the "parent" set; i.e., the variables with a direct effect on the response
variable in a DAG.

The number of d-separation constraints in the set SU equals the number of miss-
ing edges, corresponding to the number of degrees of freedom (df) of the model.
Because the individual tests implied by the basis set, SU are mutually independent,
each one can be tested separately at a significance level of α, a using the Fisher's z-
transform of the partial correlation. An edge (j; k) is absent in the graph when the
null hypothesis:

H0 : ρjk = cor(Yj; Yk |pa(j) ∪ pa(k)) = 0 (4.7)

is not rejected, after multiple testing correction following a Bonferroni or False
Discovery Rate (FDR) procedure.

If the graph is not very large with huge missing edges, it is possible to perform
local testing of all missing edges separately. If the number of missing edges is large,
only those tests where the number of conditioning variables does not exceed a given
value can be performed. High-dimensional conditional independence tests can be
very unreliable. We suggest to force the sparsity by: testing bow-free covariances
with basis set size close to the sparsity index, s =

√
n/log(p) (Janková and Geer,

2015) or, beyond 200 nodes, estimating not-zero elements of the precision matrix fix-
ing to zero the elements of the DAG structure by gLASSO algorithm, see details in
Section Gaussian Graphical Models.

CGGM. In summary, BAP search uses d-separation tests between all pairs of vari-
ables with missing connection in the input DAG. A BAP is then built by adding a
bidirected edge (i.e., bow-free covariance) to the DAG when there is a significant as-
sociation between them. BAP bidirected edges, encoded in the selected covariances,
provides information about which part of a DAG is not supported by the observed
data.

Although covariances do not indicate a specific direction of causality, they iden-
tify the local misspecification given by the structural assumptions implied by the
DAG, which may substantially alter the observed data variability, and if the selected
bow-free covariances, are not correctly removed, it would be difficult to analyze (fit)
a causal DAG.

We propose a post-inference procedure for BAP deconfounding (or data decorre-
lation) based on Constrained Gaussian Graphical Model (CGGM), where the mini-
mization of the objective function uses the solution originally described in "Elements
of Statistical Learning" book (Hastie, Tibshirani, and Friedman, 2009, pg. 631), and
spectral decomposition defined by:

1. fitting the constrained precision matrix, Ψ−1 using CGGM with null (zero) pat-
tern corresponding to the DAG edges and null (zero) edges after the local d-
separation screening, and

2. removing the latent triggers responsible for the nuisance edges by condition-
ing out from the observed data with the spectral decomposition of the fitted
precision matrix, Ψ̂−1 = VLVT from which we get the adjusted (de-correlate)
matrix by Mahalanobis’s transformation, Zi = (VL

1
2 VT)Yi.
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Using Z as additional information might enhance the DAG fitting. Since the
confounding correlation vanishes, we find that this de-correlation step is able to sub-
stantially increase DAG goodness-of-fit indices, applying the best trade-off between
global model fitting and local statistical significance of regression coefficients.

4.2.3 PCA deconfounding

Component analysis is a common technique used in deconfounding methods to di-
rectly estimate pervasive confounding variables from the data, which appear in a
number of economic and biological applications (see Price et al., 2006; Leek and
Storey, 2007 for a review). In a dense confounding regime the initial principal com-
ponents are different from the others, and measuring confounding proxies for hid-
den variables as the scores of the first q principal components, P is a possible proce-
dure (Jablonski et al., 2021). This defines a SEM:

Yi = BYi + ΓPi + Ui, with cov(Ui) = Dψ; cov(Pi) = Iq (4.8)

Of course, we have that cov(Y) = Σ3. The principal components are additional
uncorrelated source nodes in the DAG, G = (V = (Vp; Vy), E = (Ep; Ey)), and the
adjusted data matrix is the augmented matrix, Z = cbind(P, Y).

Computational aspect uses routine software. Standard PCA learns the projec-
tions or principal components of a dataset, Y(n, p) on q-dimensional orthonormal
basis, Q(p, q) where q < p. PCA issue, though non-convex, has a global minimum
that can be calculated using SVD, producing the low-rank representation of the data,
Ŷ = PQT where P(n, q) = YQ is the projected data; i.e., the principal component
scores (see Section Spectral transformation).

PCA deconfounding assumes that confounding is dense, but as suggested by
Jablonski et al., 2021: "not every Y needs to be affected by each confounder. How-
ever, the more Y each LV affects, the more information we have about it in the data,
and thus the confounding proxies (i.e., LVs estimated by data) capture the effect of
the confouders better". In addition, dense assumption ensures simply tuning of the
number q̂ of confounding proxies. In the literature, some method have been de-
veloped for selecting q̂, see a review in Onatski, 2010. Here, we use a permutation
method: it randomly permute the columns of the data matrix, and selects compo-
nents if their singular values are larger than those of the permuted data (Dobriban,
2020). The permutation methodology determines a maximum number, q̂ and visu-
alizing the scree plot (Cattell, 1966) user can reduce the selected q̂ by goodness-of-fit
statistics of two SEM fitting (see Figure 4.12).

gLPCA. BAP or PCA consider arbitrary or pervasive patterns of confounding but
we sometimes expect mixed structure. Numerous works on low-rank representation
recovery have connected data manifold information in the form of a discrete graph,
or its adjacency matrix, into the framework for dimensionality reduction (Jiang et
al., 2013; Tao et al., 2015). The fundamental hypothesis is that high-dimensional
data samples are on or near a smooth low-dimensional manifold.

Specifically, let A(p, p) be the weighted symmetric matrix that encodes the adja-
cency information between the variables of dataset, Y(n, p) and D = diag(d1, ..., dp)

be the diagonal degree matrix with dj = ∑k Ajk. Then, L = D−
1
2 (D− A)D−

1
2 is the

definition of the normalized graph Laplacian, which describes the structure in A.
The graph Laplacian, L(p, p) may be used to leverage the data manifold informa-
tion in A, leading to different Graph Regularized PCA models.
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Graph Laplacian PCA (gLPCA) was introduced in this setting by Jiang et al.,
2013, combining data cluster structures inherent in A with PCA. The model is a
data representation, i.e. Ŷ = PWT where P(n, q) = YW is the projected data on
the q-dimensional orthonormal basis, W(p, q) embedding the cluster structures in
A. The spectral vectors, W are the eigenvectors corresponding to the first q smallest
eigenvalues of the combined matrix:

Gβ = (1− β)(Ip −YTY/e1) + β(L/e2 + 11T/n) (4.9)

where β is a tuning parameter ∈ (0, 1) weighting PCA or graph Laplacian based
aspect, while e1 and e2 are normalized values, see Jiang et al., 2013 for details.

We use as weighted adjacency matrix the element-wise product, A = S ∗C where
S is the covariance matrix and C is the unweighted adjacency matrix (1,0) of the sig-
nificant bow-free covariances selected by BAP search, to extract the projected scores,
P of gLPCA. The number of components, q is determined by the number of clusters
by spectral clustering through cluster_leading_eigen() function of igraph R pack-
age, and the beta parameter is fixed to β = 0.75 or β = 1, if q > 3. In a mixed
confounding regime, we suggest to add these projected scores to the input data and
its uncorrelated source nodes to DAG, as in the PCA procedure.

4.2.4 Spectral transformation

The idea of spectral transformation is to transform data, Y by applying a linear trans-
formation, TY that only transform the singular values of the data, while keeping it
singular vectors intact. It is designed to reduce the magnitude of dense confounding.
In particular, when the LVs aligns with the top singular values of Y (i.e. the magni-
tude of LV effects are large compared with specific error terms), a SEM is designed
on the transformed data (in matrix form):

TY = TYBT + U, with cov(U) = Dψ (4.10)

making standard DAG assumptions.
Here, we review the "trim" and "pcss" transformations. Following Cevid, Buhlmann,

and Meinshausen, 2020, let Y = PDQT be the SVD of Y(n, p), where P(n, r), Q(p, r),
D(r, r) = diag(d1 ≥ d2 ≥ ... ≥ dr) are the spectral matrices with PTP = QTQ = Ir,
and r = min(n; p) is the rank of Y. We use the truncated form of the SVD, which
uses only non-zero singular values. The "trim" method upper-bounds each singu-
lar value to dm := median(d1, ..., dr), and the spectral transformation is given by
T := PDmPT, where Dm is diagonal with each element on the diagonal equal to
Dm(ii) := min(di; dm)/di. Therefore:

Z = TY = PDmPTY = (PDmPT)(PDQT) = PDtQ
T (4.11)

where Dt(ii) := min(di; dm). The spectral transformation keeps the ordering of
singular values in the transformed design matrix while still shrinking the large ones,
and an advantage is that we do not have to estimate the number of LVs. See Cevid,
Buhlmann, and Meinshausen, 2020 for additional details.

The PCSS transformation consider the commonly used approach to extract the
first q < r principal component of Y. The principal components (or the projected
scores), P(n, q) serve as a measuring proxies for LVs; i.e., are "sufficient statistics"
(pcss) for unobserved scores, if the confounders are dense or pervasive (Agrawal
et al., 2022). Ideally q is equal to or slightly larger than the dimension of dense



84 Chapter 4. SEMbap( )

confounders. One then adjusts data by using the partial residuals after a linear re-
gression of Y on P:

Z = Y− PB̂ = Y− P(PTP)−1PTY = (Ip − H)Y (4.12)

where H = P(PTP)−1PT is the projection matrix on the principal component
space. These partial residuals can be interpreted in term of a spectral transformation,
TY where T = PD0PT with D0 = diag(01, .., , 0q, 1q+1, ..., 1r); i.e., the first q singular
values are set to zero, and the others remain intact. Of course we have that T =
Ip − H.

4.2.5 Gaussian Graphical Models

In Gaussian Graphical Model (GGM) (Shutta et al., 2022) statistical inference is based
on conditional dependence of pairwise variables (Yj; Yk) given the conditional set
rest defined by all variables in the graph excluding (Yj; Yk), and the pairwise partial
correlations, ρjk=cor(Yj; Yk|rest) are reflected in the elements of the precision matrix;
i.e., the inverse of the covariance matrix, Θ = Σ−1. Specifically:

ρjk ==
−θjk

√

θjjθkk

= 0 ⇐⇒ θjk = 0 (4.13)

Thus the sparsity pattern of Θ contains the pairwise Conditional Independence
(CI) relations encoded in the corresponding precision graph, and the problem of
estimating a GGM is equivalent to the problem of estimating Θ.

With a large input graph, the CI evaluation is performed with the graphical
LASSO procedure (Friedman, Hastie, and Tibshirani, 2008b), a sparse penalized
maximum likelihood estimate (MLE) of the precision matrix, Θ̂. The LASSO (L1)
penalty applied to Θ encourage sparsity and can produce shrinkage estimates equal
to zero, θ̂jk = 0.

We use the algorithm in glasso() function of glasso R package, that also include
the option to estimate a graph with missing edges by specifying which edges are
fixed zeroes for some elements, while regularization on the other elements is acti-
vated. The edge set of a GGM is therefore defined by the set of all pairs (Yj; Yk) with
nonzero elements in the estimated precision matrix.

Given that the confounding variables in a arbitrary regime is encoded in miss-
ing edges of a priori DAG, we built the GGM graph if θ̂jk ̸= 0, fixing to zero the
DAG structure. Thus, the DAG edges are guaranteed to be absent in the resulting
precision graph.

Successively, the adjusted (de-correlaed) data, as in BAP deconfounding, are ob-
tained by Mahalanobis’s transformation using the square root of the precision matrix
estimated by glasso, Zi = Θ̂1/2Yi.

LRpS. Alternatively in a pervasive regime, Low Rank plus Sparse (LRpS) (Chan-
drasekaran, Parrilo, and Willsky, 2012) of the GGM can be applied. LRpS learns a ob-
served precision matrix assuming that variables are partially observed, Y = (YO, YH)
and the precision matrix is partitioned as:

Σ−1 =

(

ΘO ΘOH

ΘHO ΘH

)

(4.14)
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The matrix, ΘO describes the estimated precision matrix between p observed
variables, the matrix, ΘH represents the estimated effect of q hidden (latent) vari-
ables, and ΘOH =cov(YO; YH). By standard theory for multivariate Gaussian distri-
butions, the conditional covariance matrix of YO|YH is:

Σ−1
O = ΘO −ΘOHΘ−1

H ΘHO = ΘO − L (4.15)

For sparse DAGs, ΘO is a sparse matrix and for q << p, L is low-rank with
rank(L) = q. The ΘO is the target matrix for inference. Hence, when the confounders
are pervasive, it is possible to estimate each component through a low-rank plus
sparse matrix decomposition using the Alternating Direction Method of Multipliers
(ADMM) solver (Goldstein, Donoghue, and Setzer, 2014) applied to a covariance
matrix in stage 1, and using the estimated covariance, Θ̂−1

O in stage 2, following the
two-stage procedure suggested by Frot, Nandy, and Maathuis, 2019.

4.2.6 User interface

The SEMbap() pipeline employs the following R functions: Shipley.test() of SEM-

graph, the fitConGraph() of ggm, the glasso() of glasso, and the svd() of base for
bow-free covariance search, constrained estimation solver, glasso fitting and spectral
decomposition, respectively.

The example code of the function SEMbap() is as follows.

SEMbap(graph , data , group = NULL , dalgo = "cggm",

method = "BH", alpha = 0.05, hcount = "auto",

cmax = NULL , limit = 200, ...)

The inputs are: an igraph object (graph); a matrix with rows corresponding to
subjects and columns to graph nodes (data); a binary vector with 1 for cases and 0
for control subjects (group); the deconfounding method (dalgo, default = "cggm");
the multiple testing correction method (method, default = "BH"); the significance
level (alpha, default = 0.05) and other optional inputs.

Both a graph and data input are required for methods involving BAP search,
since the input graph will be used to recover the non-zero missing covariances. As
the other methods involve SVD, only the data input is required.

Based on the deconfounding method that has been specified, SEMbap() will in-
volve different computational steps:

• "cggm" (default) (i) BAP recovery through Shipley.test(); (ii) estimation of
the constrained precision matrix, Ψ−1 through fitConGraph() function of ggm

R package; (iii) obtain the de-correlated data matrix Z by multiplying the data
matrix, Y rightward by the square root of the estimated precision matrix, Z =
YΨ̂−1/2.

• "glpc": (i) BAP recovery through Shipley.test(); (ii) fitting gLPCA and obtain
confounding proxies as the last q principal component scores; (iii) extend the
DAG by including these confounding proxies and add these LV scores to the
data matrix, Z=cbind(P,Y).

• "pc": (i) First q principal components (projected scores) to obtain the factor
scores proxies; (ii) extend the DAG by including these confounding proxies
and add these LV scores to the data matrix, Z=cbind(P,Y).
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• "trim" or "pcss": (i) SVD of the observed data; (ii) compute spectrum transfor-
mation matrix, T of "trim" or "pcss" methods; (iii) obtain adjusted data ma-
trix by multiplying observed data Y by the spectral transformation matrix,
Z = TY.

• "limit=200", beyond this limit, the precision matrix is estimated by "glasso"
algorithm to reduce the computational burden of the exhaustive BAP search.

A list of four objects:

• dag, the DAG extracted from input graph. If (dalgo = "glpc" or "pc"), the DAG
also includes LVs as additional source nodes.

• dsep, the data.frame of all d-separation or CI tests over missing edges in the
DAG. If (dalgo = "pc" or "trim"), d-separation dataframe is equal to NULL.

• adj, the adjacency matrix of selected covariances; i.e, the missing edges se-
lected after multiple testing correction. If (dalgo = "pc" or "trim"), adjacency
matrix is equal to NULL.

• data, the adjusted (de-correlated) data matrix or, if (dalgo = "glpc" or "pc"), the
combined data matrix where the first columns represent LVs scores and the
other columns the raw data.

To read more about SEMbap() function, in terms of description, usage, function
arguments and value, see help documentation: ?SEMbap or refer to
https://rdrr.io/cran/SEMgraph/man/SEMbap.html.

4.3 Experiments

For testing and comparing the performance of the mentioned deconfounding meth-
ods we use simulation and real data. Our simulation set-ups consider a (2 graph
dimension x 2 sample size x 6 confounding types) design with 100 randomization
per design levels as reported in Table 4.1.

TABLE 4.1: Overview of the 4× 6 simulation design.

dense sparse
1LV
all

3LVs
cluster

3LVs
overlap

HDLVS
sporadic

HDLVS
interconnected

DAG

n=100 p=32 100 100 100 100 100 100
p=190 100 100 100 100 100 100

n=400 p=32 100 100 100 100 100 100
p=190 100 100 100 100 100 100

Starting from the "Amyotrophic lateral sclerosis" (ALS) pathway from KEGG
database (Kanehisa and Goto, 2000), two subgraphs have been extracted to test for
different dimensions of number of variables p in the simulated data. The small graph
is a subgraph with 32 nodes and 47 edges whilst the larger one has 190 nodes and
259 edges. Hence, the number of variables is varied in p ∈ {32, 190} (see Figure 4.1
and Figure 4.2).



4.3. Experiments 87

6647

10452 84134

54205

7124

836

581 572596 598

317

842

7132 7133

1616

4217

5606 5608

1432 56005603 6300

47474741 4744

5630

79139 5530 5532 5533 55345535

FIGURE 4.1: Small subgraph from ALS pathway for simulated data
(32 nodes and 47 edges).
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FIGURE 4.2: Large subgraph from ALS pathway for simulated data
(190 nodes and 259 edges).
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The number of samples is varied in n ∈ {100, 400} to test for situations of, re-
spectively, high (p = 190 > n = 100) and low (p = {32, 190} < n = 400) dimension-
ality. In the former, the covariance matrix could not be definite positive, preventing
parameter estimates. When this occurs, the function pcor.shrink() of the corpcor

R package implements the James-Stein-type shrinkage estimator, which enables co-
variance matrix regularization. However, in some cases it could happen that matrix
regularization generates a near identity matrix and, as a result, misleading evalu-
ation metrics. To avoid this issue, in these cases we also set n = 400. In detail,
we consider six scenarios described below. For each of these, we generate n inde-
pendent errors, E(n, p) from a multivariate normal distribution with a mean vector,
µ(p, 1) and a covariance matrix, Σ(p, p) that has an idiosyncratic component and a
component due to confounding. All edge weights (i.e., the non-zero entries of the
DAG coefficient matrices, B(p, p) are drawn from an uniform distribution on the in-
terval between 0.1 and 1, whilst their signs are drawn from a Bernoulli distribution
with probability 0.5. Then, data have been generated according to Y = E(I − B)−1.

The mean vector is sampled from an uniform distribution on the interval from
0.05 to 0.75 to recreate differential expression between cases and controls for the 25%
of p genes, otherwise the mean vector is equal to zero.

Error covariance matrix can be represented by (i) a random Factor Analysis (FA)
model, Σ = ΓΓT + diag(σ1, ..., σp), where Γ(p, q) is the matrix of factor loadings,
ΓΓT represents the shared variance in the common factor structure, and the diagonal
elements σj are referred to as the specific variances of the variables; (ii) a random
uniform distributions, U(min; max); or (iii) a random small-word network gener-
ate by Watts-Strogats (WS) model (Watts and Strogatz, 1988) defined by dimension,
neighborhood and rewired probability, SW(d, nei, p).

Based on how the few LVs affect the observed variables, two different main con-
founding design have been investigated:

(i) Dense confounding: the effect of few LVs is "spread out" over most of the
observed variables;

(ii) Sparse confounding: every confounding variable affects few variables in the
dataset.

The six scenarios that are considered distinguish themselves by a different struc-
ture of the error covariance matrix, Σ the number of latent confounders, q and overall
strength of latent confounding. The diagonal entries of Σ are defined as random uni-
form terms sampled from U(0.1; 0.9). According to the chosen initial graph (small
or high dimension), variances of source nodes is set to 1.
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FIGURE 4.3: Example of simulated covariance matrices with n = 400
and p = 32 for each confounding design (dense and sparse). For dense
confounding, three covariance patterns have been generated (starting
from the left): (1) 1 LV all; (2) 3 LVs cluster; (3) 3 LVs over. The remain-
ing sparse scenarios (starting from the left) are: (1) HDLVS sporadic;

(2) HDLVS interconnected; (3) DAG.

Three scenarios regard the dense confounding design while the remaining three
the sparse confounding one. Both dense and sparse scenarios can be better visual-
ized in Figure 4.3.

The three dense scenarios can be listed as follows:
(i) One LV all: q = 1 LV affects all the observed variables. This is a FA sce-

nario where all the covariances are non-zero, with factor loadings sampled from an
uniform distribution, U(0.64; 0.81), respectively from medium to high loadings ac-
cording to Widaman, 2018;

(ii) Three LVs cluster: q = 3 LVs affect three (not overlapping) blocks of observed
variables. This is a FA scenario where three blocks of covariances are non-zero, with
factor loadings sampled from an uniform distribution, U(0.2; 0.7), respectively from
low to medium loadings;

(iii) Three LVs over: q = 3 LVs affect three (overlapping) blocks of observed
variables. This is a FA scenario where three blocks of covariances are non-zero, with
factor loadings sampled from an uniform distribution, U(0.2; 0.7), respectively from
low to medium loadings, with loadings larger than 0.7 if more than one LVs affect a
specific variable.

The remaining three sparse scenarios are:
(i) High Dimensional LVs (HDLVS) sporadic: many LVs affect sporadic (iso-

lated) observed variables. This is a scenario characterized by hidden confounding
with no modularity (no groups of the nodes that are more densely connected to-
gether than to the rest of the network) but with random affected nodes which are
isolated. There are many non-zero covariances sampled from an uniform distribu-
tion, U(0, 1);
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TABLE 4.2: Overview of the considered deconfounding methods.

Method Algorithm Input data
Confounding
assumption

BAP SVD

CGGM
Constrained Gaussian
Graphical Model
(w/ dsep search)

Gene expression
and graph object

Arbitrary Yes No

gLPCA
Graph-Laplacian PCA
(w/ dsep search)

Gene expression
and graph object

Mixed Yes No

PCA
Singular Value
Decomposition (SVD)

Gene expression Dense No Yes

Trim Spectral trasformation Gene expression Dense No Yes
PCSS Spectral trasformation Gene expression Dense No Yes
gLASSO Graphical LASSO Gene expression Arbitrary No No

LRpS
Low rank plus
sparse decomposition

Gene expression Dense No No

(ii) HDLVS interconnected: many LVs affect few interconnected modules of ob-
served variables. This is a scenario characterized by hidden confounding with high
modularity of affected nodes. There are many non-zero modules of covariances sam-
pled from Watts-Strogats (WS) model, SW(d = p, nei = 5, p = 0.9);

(iii) DAG: negative control with no hidden confounding. The covariances are 0.
While, for real data we make use of the (pre-processed) breast cancer RNA-seq

dataset from TCGA project, also analyzed in Jablonski et al., 2021.
Table 4.2 provides a summary of the deconfounding methods in terms of type

of algorithm employed, input requirements, confounding assumption and method-
ological steps together with main papers for reference. We compare the methods
included in our SEMbap() function plus LRpS procedure provide by the R pack-
age lrspadmm (https://github.com/benjaminfrot/lrpsadmm), using default argu-
ments. While for glasso() function activated in SEMbap() with limit=1 the regolar-
ized "rho" argument is fixed to the canonical, ρ =

√

log(p)/n and the "zero" argu-
ment is fixed to the indices (j; k) indicating the DAG structure.

Besides the type of algorithm, these methods differ in three main aspects: (i) the
input requirements, gene expression data and graph object or only the former; (ii)
the confounding assumption, arbitrary or pervasive; (iii) methodological steps, BAP
search or SVD.

CGGM, gLPCA and gLASSO requires as input also a graph object, since CGGM
and gLPCA algorithm involves BAP search with d-separation tests between all pairs
of DAG missing edges, while for gLASSO the precision matrix was constrained
fixing zero entry for DAG edges. The remaining methods only require a gene ex-
pression data as input since their approach involves a SVD on observed data or the
ADMM as for LRpS algorithm. Most of the methods work under the structural as-
sumptions regarding the sparsity of the underlying DAG and the denseness of latent
effect, except for CGGM, gLPCA and gLASSO, where the confounding assumption
is arbitrary or mixed. As a result, since different experimental designs have been
tested within simulation runs, some methods are expected to perform better than
others depending on the starting confounding assumption. Hence, the goal is to
find a deconfounding method that represents an optimal solution in both situations.
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4.4 Metrics

Varying the covariance matrix structure, number of samples, n dimension, p and
strength of the latent confounders, we run 100 simulations of each unique parameter
configuration and compute the following quantities:

1. Recovery performance measures. Once obtained the estimated confounding
covariance matrix, Σ̂ for each method, we try to recover the component due to
confounding in the form of adjacency matrix ([0, 1] entries) to be easily com-
parable with true hidden confounding matrix. Specifically, non-zero entries
correspond to LVs effects. Easily for methods based on BAP search (CGGM
and gLPCA), the hidden component is represented by the adjacency matrix of
the BAP covariances. Differently, the other methods report the hidden compo-
nent as a continuous output (being a part of the estimated covariance matrix).
Specifically, the outputs obtained by each method can be listed as follows:

• the matrix of Γ̂ coefficients obtained from SEM fitting for PCA, thus the
common factor covariance, Γ̂Γ̂T;

• the estimated inverse covariance matrix from glasso fitting;

• the estimated dense low-rank matrix from LRpS procedure;

• NULL covariance for SVD methods.

These continuous matrices have been converted to binary [0, 1] format by ap-
plying a reasonable threshold to the absolute values of the confounding ma-
trix. In the same way, the true hidden confounding matrix has been recovered
from the covariance matrix of the simulated data, putting 1 for the non-zero
entries. In the end, the two confounding adjacency matrices have been com-
pared to obtain the 2x2 frequency table (i.e. confusion matrix) and the clas-
sical performance indices (precision, recall and f1-score). Let TP be the true
positives, FP be the false positive, TN be the true negative, and FN be the
false negative. Then, Pre = TP/(TP+FP), Rec =TP/(TP+FN), and f1-score =
(2*Rec*Pre)/(Rec+Pre). The higher the metrics, the better the performance. In
addition, (iv) false positive rate, fpr = FP/((TP+FP) has been recovered to eval-
uate if, in the DAG scenario with no confounding, the methods still recognize
the presence of LVs. For SVD methods with NULL confounding covariance,
none performance metrics have been computed.

2. Goodness-of-fit measures. We obtain the adjusted data from each method, ac-
counting for estimated hidden confounding. Then, we fit the ALS graph (small
and large) via SEMrun() function of SEMgraph R package considering the un-
adjusted data (with hidden confounding) and the adjusted data. We obtain
SEM evaluation metric using the Standardized Root Mean Square Residual
(SRMR): the square root of the average of squared standardized residuals be-
tween the observed and the hypothesized covariance. This metrics has been
compared with the reference cut-off suggested from SEM literature (0.08 for
SRMR). The lower the value, the better the performance. In addition, it is pos-
sible to identify differentially regulated nodes (DRNs), or variables that exhibit
a statistically significant difference in their activity (for example, gene expres-
sion) between the experimental and control groups, by taking into account
an exogenous group variable acting over a common model. Node activation
and node inhibition P-values (P+ and P−, respectively) have been combined
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through a Bonferroni statistics (P = 2min(P+; P−)) to obtain a measure of
the ability of each method to recover group perturbation of simulated data de-
spite confounding adjustment. As the latter statistics was transformed by the
negative logarithm function, nlog10(P) the higher the value, the better the per-
formance. The ability of each method was evaluated in terms of recovery the
perturbation level of not-adjusted data when removing hidden confounding.
Moreover, the absolute number of nodes showing significant variation in cases
with respect to healthy controls has been reported (vcountP).

4.5 Results

We report here the performance metrics on simulated data with n=400, and the
goodness-of-fit measures on real breast cancer RNA-seq dataset.

Simulated data. Considering the simulated run with n=400 of Figure 4.4, we
observe that CGGM/gLPCA based on BAP search recovers an high proportions of
the simulated covariance representing the sparse/dense hidden confounding (f1-
score around 0.9 for the large graph and around 0.75 for the small graph). PCA
approximately has an f1-score of 0.7 for all dense setting, as expected. Similarly,
given the pervasive confounding assumption of LrPS, it reports high f1-score (0.9)
in the 1LV setting. Lowest scores are reported by gLASSO (0.3-0.5). These results are
representative of the results obtained for different recovery measures.
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FIGURE 4.4: F1 score summarised as mean over simulations for
dense/sparse confounding design with n=400. For SVD methods
with NULL confounding covariance, none performance metrics have

been computed.

The relative performance of all methods has been summarized under different
experimental conditions on 100 simulation replications to better quantify the effi-
ciency of each deconfounding method. Note that the results referring to the case
with n = 400 will be discussed, since in this case we obtain more robust evaluation
metrics. However, the results regarding the experimental design with n = 100 show
similar conclusions.

Classification performance. Obviously, some methods are expected to perform bet-
ter than others in some experimental set-ups based on their confounding assump-
tion (i.e. arbitrary or dense). As the recovered adjacency matrix representing hidden
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confounding is the same, classification metrics for CGGM and gLPCA have been
aggregated.
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FIGURE 4.5: Precision, recall and f1 score summarised as mean over
simulations for dense confounding design with n=400.

Figure 4.5 shows that, respectively, for the dense confounding design CGGM/gLPCA
recovers both an high proportion of covariances compared to the true ones (recall)
and an high number of correctly identified covariances over the estimated ones (pre-
cision). This result allows to reach an f1-score around 0.9 for the large graph and
around 0.75 for the small graph scenario. PCA seems to reach the level of (approx-
imately) 0.7 f1-score for all the dense confounding scenarios, except for 1LV_all de-
sign in the small graph case where the method exceeds the threshold of 0.7, reaching
an f1-score of 0.9. Given the pervasive confounding assumption of LRpS, the latter
reports high f1-score (around 0.7-0.8) for 1LV_all design and lower metrics for the
other dense scenarios. Lowest scores are reported by gLASSO (0.3-0.5).
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FIGURE 4.6: Precision, recall and f1 score summarised as mean over
simulations for sparse confounding design with n=400.
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Figure 4.6 reports also high classification metrics for CGGM/gLPCA, with an f1-
score around 0.7 for almost all sparse confounding scenarios, with a maximum of
0.9 for the HDLVS_interconnected design. However, in this sparse scenario, PCA
reports a f1-score around (or below) 0.15 for the large graph case; the latter method
is able to reach the 0.5 threshold only in the HDLVS_interconnected design. Almost
same conclusions as for PCA can be reported for gLASSO and LRpS. Generally, in
most of the sparse cases, the number of the correctly identified covariances over the
estimated ones was low (precision).
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FIGURE 4.7: False positive rate summarised as mean over simulations
for sparse confounding design (DAG) with n=400.

In addition, Figure 4.7, shows if the methods are able to control fpr in the DAG
scenario with no hidden confounding. CGGM and gLPCA show a fpr equal to 0.
Also PCA is able to control the error rate, reporting a fpr around 0.1. However, the
largest scores are reported by gLASSO for the small graph case (0.22) and LRpS for
the largest one (0.31). High proportion of false hidden confounding is recovered by
those methods.

Goodness-of-fitting performance. As for benchmark data analysis, a good perfor-
mance is also characterized by a low srmr value together with a good perturbation
level. Figures 4.8 and 4.9 show the srmr for each method summarized as mean across
simulations, respectively for dense and sparse confounding design.

Almost all the methods are able to lower the srmr of the simulated data but only
some are able to lower it below the threshold value of 0.08. The lowest values of srmr
are reported by PCA in almost all sparse and dense confounding scenarios. CGGM
reports low values but around 0.1 for most of the cases whilst gLPCA has higher
srmr score given that, to prevent overfitting when the number of identified clusters
in the recovered subnetwork is higher than 3, the gLPCA procedure switches to full
Laplacian graph. The worst srmr score, around 0.2, is reported by PCSS in both the
dense and sparse confounding design (large graph case).

Figure 4.10 and 4.11 report the results with regards to the perturbation level for,
respectively, dense and sparse scenario. Surprisingly, almost all the methods are able
to recover the same level of perturbation of simulated data despite the adjustment
for hidden confounding. Only LRpS is not able to recover enough data perturbation,
consistently with benchmark data results.
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FIGURE 4.8: SRMR summarised as mean over simulations for dense
confounding design with n=400.
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FIGURE 4.10: Perturbation (nlog10P) summarised as mean over sim-
ulations for dense confounding design with n=400.
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Benchmark data. For testing and comparing the performance of the mentioned
deconfounding methods we use the (pre-processed) breast cancer RNA-seq dataset
from TCGA project (Jablonski et al., 2021). The extracted data matrix has p = 20501
genes and n = 224 human samples grouped into 112 normal and 112 tumor subjects.
As a knowledge graph, we retrieve the "Breast Cancer Pathway" (hsa05224) from
KEGG which contains 147 nodes and 509 edges. There are a total of 22 transcription
factors (TFs) into the pathway if matching with TRRUST reference database, which
states that in the actual causal ordering the TFs should come before the others genes.
Thus, we use 109 nodes and 397 edges after removing TFs and mapping on the
benchmark breast cancer data.

By removing the TFs, we can evaluate how well the comparison methods con-
cealed confounding. TFs are correlated with a lot of genes, but we analyzed only the
remaining genes. Suppose that the "observed" gene, Yj is strongly correlated with
one of the "latent" TF, Xk. Since we know the true values of the TFs, we would ex-
pect a sharp decrease in the high correlation, cor(Yj; Xk) after subtracting out the TF
confounding variation.

The number of degree of freedom, i.e. the number of missing edges to be tested
in BAP search is 5489, and the basis set, SU have been properly tuned at cmax = 3
parents. The number of confounding proxies (LVs) for PCA deconfounding meth-
ods (i.e. gLPCA, PCA and PCSS) has been determined according to a permutation
method and then the scree plot has been visualized where eigenvalues are displayed
against the number of the principal component. We’ve selected an optimal number
of 3 confounding proxies that explains 41% of total variance, based on trade-off be-
tween SEM fitting and perturbation metrics.
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FIGURE 4.12: Scree plot of the eigenvalues against the number of the
principal component in benchmark data analysis.

We want to evaluate if the methods are able to adjust the data while retain-
ing most of data perturbation, see Table 4.3 for benchmark results. Some methods
performs better than others on both sides. gLPCA reaches the lowest srmr value



98 Chapter 4. SEMbap( )

TABLE 4.3: Evaluation metrics (srmr, dev/df, nlog10(P) and
vcountP) from benchmark data analysis.

Method srmr dev/df nlog10P vcountP

Unadjusted 0.15 3.57 13.77 85
CGGM 0.09 2.45 12.58 55
gLPCA 0.08 2.64 13.63 71
PCA 0.08 2.59 11.90 69
PCSS 0.13 7.02 2.70 6
Trim 0.05 0.90 3.14 35
gLASSO 0.08 1.98 5.45 44
LRpS 0.02 0.10 0.17 5
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FIGURE 4.13: Perturbed original subnetwork from benchmark data
analysis. Nodes in the recovered subnetworks are coloured in yellow
if they represent TFs, pink-shaded if significantly activated or blue-

shaded if signficantly inhibited.
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(0.08) while retaining a good perturbation level (13.63) with 71 differentially regu-
lated nodes (DRNs) over the total of 85 for the unadjusted data. On the other side,
gLPCA report the same srmr value (0.08) but slightly lower data perturbation met-
rics (nlog10P = 11.90 and vcountP = 69). Also CGGM reports a good performance
but with a lower number of DRNs (55).

Trim shows good fitting metrics but, even if has 35 DRNs, the combination of
node activation and inhibition p-values (as summarised by nlog10p = 3.14) is really
low if compared to the previous methods. Same conclusions as for Trim can be re-
ported for gLASSO, with an srmr value equal to 0.08 and 44 DRNs. LRpS recovers
the lowest srmr value (0.02) but has also the lowest level of retained perturbation.
Thus, the method aggressively adjusts the data while losing a huge portion of infor-
mation. The srmr value could be a sign of overfitting problems. Same conclusions
can be reported for PCSS.

By removing the TFs, we can evaluate how well the techniques handle con-
cealed confounding effect, visualizing the scatter plots with the transcription factor
TCF7L2, i.e. EGFR and BAK1, respectively. In Figure 4.14 and 4.15, we examine the
highest positively and negatively linked genes with the transcription factor TCF7L2,
i.e. EGFR and BAK1, respectively. Each gene’s unadjusted expression level corre-
lates well with TCF7L2, as can be seen. We observe how the shared confounding
effect of the transcription factor TCF7L2 is removed using the various deconfound-
ing techniques. The points seem to be scattered randomly, showing no correlation
(or really low values) between the two variables. Since gLPCA and PCA methods
add to data the first principal components without further changes, adjusted gene
expression levels have been obtained as residuals by subtracting the LVs’ effect from
the response variable of interest.

Unadjusted CGGM gLPCA PCA PCSS Trim gLASSO LRpS
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FIGURE 4.14: Gene EFGR has a positive correlation greater than 0.5
with the unobserved transcription factor TCF7L2 (Unadjusted). After
subtracting out the confounding variation estimated using the differ-
ent methods for each gene (denoted as ªdeconfoundedº expression

level), the genes are no longer correlated with TCF7L2.
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Unadjusted CGGM gLPCA PCA PCSS Trim gLASSO LRpS
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FIGURE 4.15: Gene BAK1 has a negative correlation greater than 0.5
with the unobserved transcription factor TCF7L2 (Unadjusted). After
subtracting out the confounding variation estimated using the differ-
ent methods for each gene (denoted as ªdeconfoundedº expression

level), the genes are no longer correlated with TCF7L2.

4.6 Discussion

We have discussed the problem of dealing with unobserved confounding factors
to correctly quantify interesting biological signals. Building on existing literature
(Chernozhukov, Hansen, and Liao, 2017; Cevid, Buhlmann, and Meinshausen, 2020;
Chandrasekaran, Parrilo, and Willsky, 2012), a two-stage (deconfounding plus fit-
ting) procedure based on Bow-free Acyclic Paths (BAP) search developed into the
framework of SEM has been proposed. The existing deconfounding methods differ
in the way they perform the first stage, i.e.:

• directly estimate confounding variables from the data as the scores of the first
q principal components and simply add them to the data matrix, creating an
augmented data matrix;

• transform data by applying a linear transformation that only transform the
singular values of the data, while keeping it singular vectors intact;

• decompose the concentration matrix as a sum of a sparse matrix and a low-
rank matrix where the latter reveals the number and effect of the hidden vari-
ables.

Instead, our approach first makes an exhaustive BAP search of missing edges
with significant covariance with Shipley's independent d-separation local tests and
then either (i) fit the inverse of the selected covariance matrix via CGGM and decor-
relate the data matrix via Mahalanobis’s trasformation or (ii) learn a low dimen-
sional representation of the observed data matrix that incorporates graph structures
and add the last q principal component scores to the data matrix.

This methodology differs from the other methods since it requires a priori graph-
ical structure as input and makes use of both arbitrary (CGGM), mixed (gLPCA) or
pervasive deconfounding assumption (based on the chosen combination of method-
ological steps) unlike the other approaches that operate only under dense LV regime.

After removing hidden confounding, based on the goal of the analysis, the meth-
ods can perform a second step where the modified data can be used as an input for
SEM fitting, a high-dimensional sparse regression technique or for any structure
learning algorithm. Since our approach starts from a knowledge-based biological
network (i.e., either Breast cancer or ALS provided by KEGG database, in our ex-
amples), we aim to adjust the data for hidden confounding, map the adjusted data
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matrix onto the input graph and convert it into a SEM to assess goodness-of-fit (srmr,
dev/df) and perturbation recovery (nlog10P, vcountP).

In benchmark data analysis, best performances are reported by gLPCA and PCA,
immediately followed by CGGM. As previously mentioned, these methods differ in
their deconfounding assumption and methodological approach. To better evaluate
how the methods perform in different setting, i.e. dense and sparse confounding
scenario, different simulation set-ups have been generated. Simulation results con-
firm benchmark data analysis since report an outstanding performance of CGGM
and gLPCA in both sparse and dense confounding scenarios. On the other side, as
expected, PCA reports good evaluation metrics only for the dense scenario.

Note that, in the simulation data analysis, in addition to SEM evaluation met-
rics, the adjacency matrix representing hidden confounding has been recovered for
each method and evaluated in terms of classification metrics (f1, precision, recall,
tpr). Thus, we have provided three different optimal choices that can be used by
the user based on its needs. PCA represents an efficient algorithm in case of dense
confounding whilst CGGM and gLPCA can be implemented in case of sparse con-
founding or a mixture or both. However, PCA and gLPCA can be preferred over
CGGM methodology because the former methods add the first (or last) principal
components as additional source nodes without adjusting the existing data matrix.

In the end, SEMbap() is easily accessible to common users and provides several
methods to deal with hidden confounding under several experimental conditions.
However, the reader needs to be aware that, to obtain an optimal performance of
the deconfounding methodology, the inputs of BAP search algorithms need to be
properly tuned, especially with respect to:

• cmax (default = NULL): maximum number of parents set. In more detail, this
option can only be applied to run tests where the number of conditioning vari-
ables does not go over the specified value. Conditional independence tests
with a high dimensionality may not be very reliable. Our recommendation is
to test bow-free covariances with basis set sizes that are near to the sparsity
index, s =

√
n/log(p) in order to drive the sparsity;

• alpha (default = 0.05): False discovery rate (FDR) significance level for Ship-
ley’s local d-separation tests. The data de-correlation process is controlled by
this argument. A higher alpha level takes into account more hidden covari-
ances, hence accounting for more confounding factors. Data de-correlation is
not enabled if alpha = 0.;

• hcount (default = ªautoº): The number of latent (or hidden) variables. By de-
fault hcount="auto", the hidden count is determined with a permutation ap-
proach where, permuting the columns of the data matrix, Y, the singular val-
ues are compared to what they would be if the variables were independent,
and components are chosen if their singular values are greater than those of
the permuted data (for a review see Dobriban, 2020).

Furthers studies will combine the deconfounding problem with causal discovery
algorithms (Heinze-Deml, Maathuis, and Meinshausen, 2018), allowing the user to
use the presented deconfounding approach not only starting from a priori knowledge-
based network but also from a fully data-driven network. Moreover, once the hidden
confounding has been removed, another data-driven network will be recovered to
represent true data variation.
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4.7 Conclusions

We have shown that SEMbap() is easily accessible to common users and provides sev-
eral methods to deal with hidden confounding under several experimental condi-
tions. We have introduced and validated (both on benchmark and simulated data) a
two-stage deconfounding plus fitting procedure based on BAP search. Results report
that CGGM and gLPCA are able to correctly identify hidden confounding whilst
controlling false positive rate and achieving good fitting and perturbation metrics
in both sparse and dense confounding scenarios. We believe that, both CGGM and
gLPCA can valuable tools for practitioners when undertaking complex sparse con-
founding scenario while PCA can be used in case of pervasive confounding.
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Chapter 5

SEMdag( )

5.1 Background

Causality is a complex topic with roots in many disciplines, including statistics, eco-
nomics, epidemiology, computer science, and philosophy. The two primary fields
of causality research are causal inference and causal discovery. The former empha-
sizes deriving causal knowledge directly from observable data. It is the process of
evaluating whether an observed association actually reflects a cause-and-effect rela-
tionship. The latter aims to deduce causal structure from data. In other words, find
a causal model that accurately reflects a dataset.

A formal representation of the interactions between the observable variables,
such as a casual graph, is crucial for causal inference, or the process of quantify-
ing the influence of a cause on its consequence. Such a basic premise for a graphical
representation is so powerful when it comes to explanation. Following Spirtes, Gly-
mour, and Scheines, 2000, it basically comes down to drawing arrows from a cause
to an effect (outcome) in order to gain a qualitative description of the system un-
der consideration. Contrasting sharply with this are black-box strategies, which rely
only on data to make predictions about a result. As indicated in Bareinboim et al.,
2022; Pearl, Glymour, and Jewell, 2016, these strategies are ineffective in terms of
decision-making as well as explainability.

According to Lauritzen, 1996, a graphical model is a family of multivariate dis-
tributions connected to a graph, where the network’s nodes stand in for random
variables and the graph’s connections denote permitted conditional dependency
relationships between the corresponding random variables. A particular kind of
graphical model called a causal graphical model interprets its edges as having direct
causal effects.

In a wide range of fields, such as genetics (Sachs et al., 2005), finance (Sanford
and Moosa, 2012), and social science (Newey, Powell, and Vella, 1999), a Directed
Acyclic Graph (DAG) offers an elegant way to describe directional or causal struc-
tures among collected nodes. Learning the DAG structures from observable data has
received a lot of attention recently from both academia and business.

Structure learning is well known to be computationally difficult, and several al-
gorithms have been proposed to solve it, using one of three possible approaches:
constraint-based algorithms (Spirtes, Glymour, and Scheines, 2000), which use con-
ditional independence tests to learn the dependence structure of the data; score-
based algorithms (Chickering, 2003; Yuan et al., 2018), which maximize some goodness-
of-fit scores in the potential graph space; and hybrid algorithms, which combine
both approaches (Tsamardinos, Brown, and Aliferis, 2006; Nandy, Hauser, and Maathuis,
2018). However, the majority of the aforementioned methods can only restore a
DAG’s Markov equivalence class. Exact DAG recovery has recently received a lot of
attention. It has been demonstrated that algorithms based on correctly constructed
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Functional Causal Models are capable of differentiating between various Directed
Acyclic Graphs (DAGs) in the same equivalence class. This advantage is attributable
to more data distributional assumptions than just conditional independence rela-
tions. Several forms of the SEM have been shown to be able to produce unique causal
directions, and have received practical applications. By designing the function and
noise, a group of functional causal models are proposed, such as linear model with
equal error variances (EqVarDAG, Chen, Drton, and Wang, 2019), linear model with
non-Gaussian error (LiNGAM, Shimizu et al., 2006), non-linear model with Gaus-
sian error (ANM, Peters, Janzing, and Schölkopf, 2010), and causal additive model
(CAM, Bühlmann, Peters, and Ernest, 2014).

The main contribution of this chapter is the development of a two-step algo-
rithm for learning high-dimensional sub-Gaussian linear SEMs with the same error
variances (Peters and Bühlmann, 2014), called SEMdag() and included in the R pack-
age SEMgraph (Grassi, Palluzzi, and Tarantino, 2022). First, a 1) a node (vertex)
or layer (level) ordering of the p nodes is extracted and then 2) the DAG is esti-
mated using penalized (L1) regressions (Shojaie and Michailidis, 2010). The esti-
mated linear order is determined by a priori graph topological vertex (TO) or level
(TL) ordering, or by using a data-driven Bottom-up (BU) approach. To investigate
the utility of our approach, we used a training dataset for model training and a test
dataset for evaluating classification performance. We performed four sets of exper-
iments on Amyotrophic Lateral Sclerosis (ALS), Breast cancer (BRCA), Coronavirus
disease (COVID-19) and ST-elevation myocardial infarction (STEMI). We tested the
ability of our framework to discover plausible DAGs against of five popular causal
discovery methods, i.e. PC (Spirtes, Glymour, and Scheines, 2000), GES (Chicker-
ing, 2003), ARGES (Nandy, Hauser, and Maathuis, 2018), directLINGAM (Shimizu,
2014), CAM (Bühlmann, Peters, and Ernest, 2014), NOTEARS (Zheng et al., 2018) to
provide a meaningful comparison in terms of disease predictive performance.

The outline of the paper is as follows. Section 2 discusses the problem setting,
introduces different classes of structure learning methods and, in the end, our con-
tribution. Section 3 describes the experimental design and the evaluation scheme.
Section 4 discusses about the results. We close with a brief discussion in Section 5
and the conclusions in Section 6.

5.2 Method and implementation

5.2.1 Graphical and structural equation models

A DAG is defined as G = (V, E), where V is the vertex set and E is the set of directed
edges. When there is an edge (j, k) ∈ E, the edge j ← k is implied. The parent set
and the set of children of the j-th node in the graph G are indicated, respectively, by
the symbols pa(j) and sib(j). If pa(j) = ∅, the vertex j is a source (root) vertex in
G; if sib(j) = ∅, the vertex j is a sink (leaf) vertex in G, otherwise the vertex j is a
connector vertex in G.

If each variable in child set can be expressed as a linear combination of the vari-
ables in its parent set as shown below, the system of linear equation is as follows:

Yj = ∑
k∈pa(j)

β jkYk + Uj, j ∈ V (5.1)

where Yj and Uj are an observed variable and an unobserved (hidden) error term,
respectively, while β jk is a regression (path) coefficient. The error terms U1, ..., Up are
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independent with Gaussian distribution, Uj ∼ N(0, σj), j ∈ V. In vectorized form
model is expressed as:

Y = BY + U and Cov(U) = diag(σ2
1 , ..., σ2

p) (5.2)

As result, the joint distribution of Y factorizes according to the following decom-
position of the DAG, G: P(Y) = ∏

p
j=1 P(Yj|pa(j)). P is then called Markov w.r.t. G.

Various assumptions for the model defined in Equation (2) are specified:

• Causal sufficiency: The absence of hidden (or latent) variables is referred to as
causal sufficiency (Spirtes et al. 2000). For modeling hidden variables, there
are two typical approaches: (i) they may appear as a dependence between the
error terms, U or (ii) they may be explicitly modeled as nodes in the structural
equations. The absence of latent confounding in equation (2) uses (i): the U
terms are considered to be independent, i.e., cov(Uj; Uk) = 0 for all pairwise
(j, k).

• Causal faithfulness: If there are no Conditional Independence (CI) relations other
than those implied by the Markov property, the distribution of P(Y) produced
by Equation (2) is faithful to a DAG G. This indicates that using the so-called
d-separation rule (Spirtes, Glymour, and Scheines, 2000), all CI can be read out
from a DAG G if the distribution P is faithful to the DAG G. Given a set S, two
nodes (k, j) are said to be d-separated if the conditional correlation between
node j and k (given S) is equal to 0.

• Acyclicity: The DAG G needs to be acyclic, which implies that it is not feasible
to start at any variable in the DAG, go ahead along the directed arrows, and
then return to the same variable. Solution of structural equations requires that
(I − B) is invertible and can be interpreted as instantaneous feedback system
that converges to a stable equilibrium. In this case the equilibrium is: Y =
(I − B)−1U.

• Linearity and Gaussianity: Nodes (observed variables) of the DAG G can be
expressed as a linear combination of its parents plus independent Gaussian
noise random variables, U ∼ Np(0, Dσ2).

The different algorithm are discussed below, and their assumptions are summa-
rized in Table 5.1 .

TABLE 5.1: The assumptions of the considered structure learning
methods.

Method
Causal
faithfulness

Causal
sufficiency

Graph
acyclicity

Model
linearity

Gaussian
error

Equal error
variances

PC yes yes yes yes yes no
GES yes yes yes yes yes no
ARGES yes yes yes yes yes no
LiNGAM no yes yes yes no no
CAM no yes yes no ni no
NOTEARS no yes yes ni yes yes
SEMdag no yes yes yes yes yes
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5.2.2 Structure learning methods

The problem of learning the structure of a SEM is as follows. Given an n× p data
matrix, Y := (Y1, ..., Yp) with i.i.d n rows drawn from G and a SEM (B, {σ2

i }), we
want to learn a Ĝ and a SEM (B̂, {σ̂2

i }) from Y such that G = Ĝ.
G is typically not identifiable from the distribution of Y, but we may determine

its Markov equivalence class, or in other words, its Completed Partially Directed
Acyclic Graph (CPDAG). Markov-equivalent DAGs have the same skeleton and v-
structures (Frydenberg, 1990; Verma and Pearl, 1990b). A v-structure consists of
the triple u → v ← w, where u and w are not adjacent. Each Markov equivalence
class may be represented as a CPDAG that can include both directed and undirected
edges (Andersson, Madigan, and Perlman, 2000). Only when the edge v → w is
shared by all DAGs in the equivalence class, a CPDAG has the edge v → w. If a
DAG with v → w and a DAG with v ← w are both present in the class, hence the
CPDAG has the undirected v− w.

To learn the CPDAG (assuming causal faithfulness) numerous structure learning
techniques are used, which may be broadly divided into three classes (Spirtes, Gly-
mour, and Scheines, 2000; Peters, Janzing, and Schölkopf, 2017).

Constraint-based methods. The first class is the constraint-based approach (Spirtes,
Glymour, and Scheines, 2000; Kalisch and Bühlmann, 2007), which tests pairwise
causal links using a local conditional independence criterion.

The PC algorithm (Spirtes, Glymour, and Scheines, 2000) carries the names of its
creators, Peter Spirtes and Clark Glymour. In order to understand the structure of
the underlying DAG, it does a number of conditional independence tests. In par-
ticular, it learns the CPDAG of the underlying DAG in three steps: (a) determining
the skeleton, (b) determining the v-structures, and (c) determining additional edge
orientations. The undirected graph created by swapping out all directed edges for
undirected edges forms the skeleton of the CPDAG.

In step (a), starting with an entirely undirected graph, the PC algorithm develops
its skeleton. It then evaluates the conditional independence of Yj and Yk given Ys

for all S ⊆ adj(j) k with |S| = r and for all S ⊆ adj(k) j with |S| = r for the
r = 0, 1, 2, ... and neighboring nodes j and k in the current skeleton. If a conditional
independence is discovered (i.e., the independence null hypothesis was not rejected
at some significance level, α), the edge is removed, and the corresponding separation
set S is stored. If the degree of the graph is equal to the size of the conditioning set,
step (a) comes to an end.

In step (b), all edges are replaced by−, and the algorithm then takes into account
all unshielded triples, or triples i − j − k where i and k are not contiguous. The
algorithm decides whether or not to align the triple as a v-structure with i → j ← k
based on the separating set that caused the removal of i− k.

In step (c), additional orientation criteria are applied to orient as many of the
remaining undirected edges as possible, for detail see (Meek, 1995).

The PC algorithm was shown to be consistent in certain high-dimensional set-
tings (Kalisch and Bühlmann, 2007). There are various modifications of the algo-
rithm. We consider the stable and order-independent version (Colombo and Maathuis,
2014).

Score-based and hybrid methods. Score-based methods (Chickering, 2003; Yuan
et al., 2018) rely on the fact that each DAG, G ∈ G may be scored in relation to the
data, often using a penalized likelihood score, e.g, the BIC (Schwarz, 1978):
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Ĝ ∈ arg min
G∈G

S(G; Y) := −logL(Y; G) + λ|E| (5.3)

where L(Y; G) is the likelihood function of the SEM mapped on the DAG G,
|E| represents the number of parameter (edges) in the model, and λ is a penalized
parameter (λ = log(n) for BIC). The algorithm then look for a CPDAG that gives
the best score. Greedy techniques are often utilized because the space of poten-
tial graphs, G is too large. One of these is the well-known two-phase approach
known as Greedy Equivalence Search (GES, Chickering, 2003). Specifically, by do-
ing a search on the space of potential CPDAGs through Markov equivalence classes,
GES discovers the CPDAG of the underlying causal DAG. In the forward phase of
its greedy search, it does single edge additions to maximize score improvement, and
in its backward phase, it performs single edge removals. High-dimensional consis-
tency of GES was demonstrated by Nandy, Hauser, and Maathuis, 2018.

The hybrid methods learn the CPDAG by combining the ideas of constraint-
based approach and score-based methods. Among the hybrid approaches, here we
consider a novel version of the GES algorithm, called adaptively restricted greedy
equivalence search (ARGES), has been introduced by Nandy, Hauser, and Maathuis,
2018. ARGES use a greedy search on a restricted search space using as input the
skeleton of the PC algorithm or an estimated conditional independence graph (CIG),
i.e. an undirected graph with edge between Yj and Yk ⇐⇒ cor(Yj; Yk|rest) ̸= 0, de-
rived from a preliminary search. But also changes adaptively the forward phase of
GES, by restricting edge additions. Let G be the loop CPDAG and X and Y be two
of its non-adjacent vertices. Then an edge connecting X and Y is acceptable if (i)
X and Y are adjacent in the (estimated) skeleton of G or (ii) there is a node Z such
that X → Z ← Y is a v-structure in G. At every stage of the algorithm, shields
of v-structures (or unshielded triples) in the current CPDAG are allowed in addi-
tion to the CIG’s (or CPDAG-skeleton’s) edges. ARGES scales well to sparse graphs
with thousands of variables, and as GES, the output is a consistent estimate of the
CPDAG.

Order-based methods. Exact DAG recovery (without causal faithfulness as-
sumption) has recently received a lot of attention. It has been demonstrated that
algorithms based on correctly model definition are capable of differentiating be-
tween various DAGs in the same equivalence class. This advantage is attributable
to more data distributional assumptions than just conditional independence rela-
tions. Different studies have emphasized that under certain conditions, such as
linearity with constrained error variances, linearity with non-Gaussian errors, and
non-linearity with additive errors, unique identification is achievable by topological
ordering search.
The topological ordering of the variables (nodes) of a DAG G is defined as a non-
unique permutation π of the nodes: Y1 ≺ Y2 ≺ · · · ≺ Yp, where the relation k ≺ j
is understood to mean that node k comes before node j (i.e., there is an acyclic route
connecting node k and node j). Formally, πk < πj ⇐⇒ j ∈ de(k) and k ∈ an(j),
where de(k) are the descendants of the k-th node, and an(j) are the ancestors of the
j-th node in the DAG G.
These algorithms decompose the DAG learning problem into two phases: (i) Topo-
logical order learning under certain conditions; (ii) Graph estimation depends on
the learned topological order via a step-wise selection procedure of ancestor nodes.
The following is a brief review of the identifiable conditions:
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(1) Linearity with constrained error variances. According to Peters and Bühlmann,
2014, when the observational data are produced using a Gaussian linear SEM that
captures the causal linkages and has equal error variances, the causal graph may be
distinguished from the joint distribution. In addition, Ghoshal and Honorio, 2018
and Park and Kim, 2020 provide relaxed identifiability conditions with heteroge-
neous variances requiring an explicit order among the noise variances. In detail:

• Equal error variance assumption (Peters and Bühlmann, 2014):
Cov[U] = diag(σ2

1 , ..., σ2
p) = σ2 I;

• Bottom-up variance assumption (Ghoshal and Honorio, 2018):
the noise variance of the child node (variable) is approximately larger that of
its parents (ancestors), σ2

j > σ2
k , j = πm ∈ V, k = an(j);

• Top-down variance assumption (Park and Kim, 2020):
the noise variance of the parent node (variable) is approximately lower that of
its childs (descendants), σ2

j < σ2
k , j = πm ∈ V, k = de(j).

Along these lines, numerous order-based learning techniques are put forth to
determine the precise DAG structure (Ghoshal and Honorio, 2018; Yuan et al., 2018;
Chen, Drton, and Wang, 2019; Park, 2020; Gao, Ding, and Aragam, 2020).

For example, the top-down algorithm runs as follow. Stage (1) infers the order-
ing by successively finding sources. We start with the set which contains all nodes,
R = V and the empty set, S = ∅. We iterate over R and S: for each node in R
we calculate its conditional (error) variance given all nodes in S. We select the node
with the lowest variance and append it to the ordering set, S and also remove it from
the remaining set, R. With the updated R and S we repeat the process of finding
the node with the lowest conditional (error) variance given the nodes in S, append
it to the ordering set S and remove it from the remaining nodes in R, and so on until
R = ∅. Lastly, the node ordering in S is returned. Once the ordering is know (esti-
mated), in Stage (2) existing linear (or nonlinear) variable selection methods (glmnet,
leaps, L0learn, etc) suffice to learn the parent set pa(j) and hence the DAG G. Lim-
itation of this procedure is that can be challenging to actually confirm assumptions
of equal or ordered noise variances.

(2) Linearity with non-Gaussian errors. Recent research has demonstrated that,
without requiring any prior information of the network structure, the application
of non-Gaussianity may reveal the whole structure of a linear acyclic model, that
is, a causal ordering of variables and the strength of their connections. The lin-
ear non Gaussian DAG, often referred to as the linear non-gaussian acyclic model
(LiNGAM) (Shimizu et al., 2006), relaxes the Gaussianity condition and does not
call for an additional constrained noise variance assumption for identifiability. All
external unobserved errors, U are continuous random variables with non-Gaussian
distributions, zero means, non-zero variances, and are independent of each other
such that no hidden confounding factors exist.

As shown by Shimizu et al., 2006, the causal ordering of a linear non-Gaussian
DAG may be reconstructed via an iterative search method. Permutation and linear
independent component analysis (ICA) are two techniques used in this approach.
However, this ICA-LiGAM algorithm has several potential problems. Thus, Shimizu
et al., 2011 proposes a novel approach, called directLiNGAM, to estimate a causal or-
dering of variables, that ensure the validity of DAG identification in the LiNGAM
model. The new technique calculates the topological (causal) order of variables by
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sequentially computing residual errors from the model’s input data. This procedure
is carried out with a top-down procedure, starting at root nodes, followed by chil-
dren of the root nodes and so on until completion. In detail:

• (a) Given the observed data matrix, Y and the order list, π = ∅ perform linear
regressions of Yj on Yk and compute the residual vectors, R

(k)
j = Yj − β̂ jkYk

for all (j ̸= k) ∈ V/π. Then, the root node, Y(1) in the order list, π = Y(1)
is the most independent variable over all its residuals using a non-parametric
independence (IND) test, Y(1) = min (k ∈ V/π) ∑j ̸=k IND(Yk; R

(k)
j );

• (b) collect the (p− 1) residuals of the root node in a new data matrix, Y := R(1),
i.e., removing the effect of the root node, perform step (a) on these residuals,
and append the new root Y(2) in the order list, π = (Y(1), Y(2));

• (c) repeat (a)-(b) until R(p−1) = ∅.

To note, non-Gaussian errors are crucial because for a Gaussian random variable,
uncorrelated and independent are equivalent, so the residual are always indepen-
dent of its regressors. Vice versa, when the errors are non-Gaussian, the indepen-
dence of residuals and regressors can be used to select the root sequence with the
independence (IND) measure.
Once the causal ordering between the variables are established, it is simple to esti-
mate the strength of the relationships of a strictly triangular matrix B by following
the order in π, using SEM covariance-based procedure such least squares and max-
imum likelihood approaches, pruning the non-significant (P < 0.05) β coefficients,
or via a nodewise-based model selection procedure of ancestor nodes.

(3) Non-linearity with additive errors. Non-linear transformation is frequently used
in data generation in practice, hence it should be considered as alternative to linear
models. A functional causal model, called additive noise model (ANM), depicts the
causal effect on each Yj as a function of the direct causes Ypa(j) and some addittive
unmeasurable noise, Uj (Peters and Bühlmann, 2014):

Yj = f j(Ypa(j)) + Uj, j ∈ V (5.4)

where Uj(j = 1, ..., p) are (mutually) independent with Gaussian distribution,
i.e., there are no hidden variables. Generally, the function, f is a suitably restricted
functional class and describes how the outcome, Y is produced from its causes, X
supposed independent with noise errors, X ⊥⊥ U. Because the independence con-
straint between the noise and cause, only holds for the correct causal direction and is
broken for the incorrect direction, the non-linear functional classes make it possible
to identify the causal order and direction between X and Y.

The authors therefore propose a two-phase iterative procedure, called RESIT (Re-
gression with Subsequent Independence Test). First phase, yields a topological or-
dering or a fully connected DAG. Second phase, visits every node and eliminates
incoming edges in the full DAG until the residuals are not independent anymore.
RESIT not scale well in high dimensional data, and the order in which the residual
independence tests are performed may lead to different results.

Thus, Bühlmann, Peters, and Ernest, 2014 develop estimation for potentially
high-dimensional on a special (and more practical) ANN, or functional SEM, with
(mutually) independent and potentially misspecified Guassian errors, called Causal
Additive Model (CAM):
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Yj = ∑
k∈pa(j)

f j,k(Yk) + Uj, j ∈ V (5.5)

An important results is that if all functions f j,k(.) are nonlinear, the underlying
DAG structure is identifiable from the observational distribution, P(Y). An efficient
order-based algorithm which can deal with many variables consists of three phases
(stages) is proposed by Bühlmann, Peters, and Ernest, 2014. In detail:

• Preliminary neighborhood selection. Fit an additive model for each variable, Yj on
all other variables, Y{−j} for estimating a superset of the skeleton of the under-
lying DAG with K (usually K < 10) "possible" parents of Yj using a boosting
procedure for additive model implemented in the gamboost() R-function of the
package mboost;

• Estimating the topological order by greedy search. Order search for the variables
that starts with an empty order and iteratively adds edges between nodes that
corresponds to the largest gain in negative log-likelihood score:

S(Gπ; Y) :=
p

∑
j=1

log||Yπ
j −

j−1

∑
k=1

f̂ π
j,k(Y

π
k )||22 (5.6)

until no more edges can be added without decreasing the score S(Gπ; Y), where
Gπ is the full connected DAG, in which each ordered node k has an directed
arrow to all j if k ≺ j. The possible permutations, π(R) are "restricted" taking
into account that edges are compatible with the preliminary neighborhood se-
lection sets. After p(p− 1)/2 interactions the graph is completed to a full con-
nected DAG, corresponding to the best restricted permutation, π̂(R) for the
indices of the variables. The score is based on a generalized additive model
with penalized regression splines (with 10 basis functions per variable) using
the gam() R-function from the package mgcv;

• DAG pruning by feature selection. For pruning the full DAG, nodewise additive
models can be used by applying significance testing on the covariate functions,
usually with a P-value < 0.001, or with penalized additive models excluding
expected non-parent variables if f̂ j,k = 0.

Limitation of ANM and CAM is that in the absence of detailed knowledge about
the data generating mechanism, the assumed model must be capable of capturing
complex nonlinear relationships with respect to the linear model. The findings of
causal discovery could be misleading if the expected functional links are too con-
strained to be able to match the real process of data generation.

Gradient-based methods. Aciclicity is the most common assumption in causal
discovery and score-based methods uses heuristic greedy algorithms for solving
non-convex optimization without feedback loops, i.e., a combinatorial problem that
scales super-exponentially with the number of variables. Recent work called NOTEARS
(Zheng et al., 2018) provide a new algorithmic framework for score-based learn-
ing of DAG models. The procedure is based on a new algebraic characterisation of
acyclicity constraint, which recasts the score-based optimization issue as a continu-
ous problem rather than using the conventional combinatorial technique.

In the linear situation, the matrix B ∈ Rp×p properly encodes the graph G, i.e.,
an edge j ← k in G is present if and only if βkj ̸= 0. The entire problem may be
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expressed in terms of B. Given a score function, S(B; Y) the solution of B is defined
by optimizing S(B; Y) subject to the continuous constraint, h(B) = 0: :

arg min
B∈Rp×p

S(B; Y) s.t. h(B) = 0 (5.7)

where h is a non-negative non-convex differentiable function used to enforce
acyclicity in the estimated graph. Some possible score functions include:

• Least squares-EV: ∑
p
j=1 ||Yj − ∑ β jkYk||22 for linear SEM with equal error vari-

ances (Peters and Bühlmann, 2014);

• Negative log-likelihood-EV: p
2 log ∑

p
j=1 ||Yj−∑ β jkYk||22 for linear SEM with Gaus-

sian equal error variances (Ng, Ghassami, and Zhang, 2020);

• Negative log-likelihood-NV: 1
2 ∑

p
j=1 log||Yj−∑ β jkYk||22 for linear SEM with Gaus-

sian not-equal errors variances (Ng, Ghassami, and Zhang, 2020).

The function h quantify the "DAG-ness" of the graph, and now literature contains
many different proposals:

• The NOTEARS condition (Zheng et al., 2018). The first differentiable aciclicity
characterization of DAG: h(B) = tr[exp(B ◦ B)]− p;

• A polynomial condition (Yu et al., 2019). Proposed to ease the coding effort as
the matrix exponential may not be available in all deep learning platforms:
h(B) = tr[I − (B ◦ B)/p]p − p;

• The DAGMA condition (Bello, Aragam, and Ravikumar, 2022). For a non-negative
matrix with spectral radius less than one that has better gradients and run
faster than exp and poly conditions: h(B) = −log det[I − (B ◦ B)].

Where ◦ denotes the Hadamard product, [B ◦ B]jk = β2
jk. Usually, the score func-

tion includes a sparsity (regolarized) L1-penalty, followed by a thresholding step of
the estimated weighted adjacency matrix using a relatively large cut-off of 0.3.

Continuous optimization methods are pervasive in the field of deep learning,
whereby highly parameterized networks are optimized using variations on well-
studied gradient-based solvers (Goodfellow, Bengio, and Courville, 2016). In gen-
eral, these methods are more global than other approximate greedy or 2-3 stages
methods. This is because they update all edges at each step based on the gradient of
the score and as well as based on the acyclicity constraint, and usually have a faster
training time as optimization run is known to be highly parallelizable on GPU.

This has resulted in the confluence of black-box deep learning approaches, and
causal structure discovery based on non-linear SEM with Gaussian errors in Equa-
tion (4), i.e., NOTEARS-MLP, GraNDAG, DAG-GNN, MCSL, and many others pro-
posal can be found in the recent review (Vowels, Camgoz, and Bowden, 2022). gCastle
Python package (Zhang et al., 2021) includes many development gradient-based
methods with optional GPU acceleration. Ng, Huang, and Zhang, 2023 investigates
cases of poor performance of structure learning with continuous optimization.

Table 5.2 provides a summary of the structure learning methods in terms of type
of algorithm employed, category and output with main papers for reference. Be-
sides the type of algorithm, these methods differ in three main aspects: (i) the input
requirements; (ii) the category; (iii) the output. All the methods require as input a
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data matrix n× p where n is the number of subjects and p is the number of genes,
with the exception of SEMdag() that requires also a graph object. The latter can be
derived from existing knowledge or can be an empty graph object if the user decide
to implement a full data-driven procedure. Each method represent a different cat-
egory, in order to provide a comprehensive overview of existing structure learning
approaches. Then, PC, GES, and ARGES give as output a CPDAG while the others
are able to recover a DAG object. The goal is to find a structure learning method that
provide an optimal solution while controlling the computing time of the algorithm.

TABLE 5.2: Overview of the considered structure learning methods.

Method
[REF]

R package Algorithm Category Output

PC
[Spirtes et al. (2000)]

pcalg
Peter & Clark
algorithm

Constraint CPDAG

GES
[Chickering (2003)]

pcalg
Greedy Equivalence
Search

Score CPDAG

ARGES
[Nandy et al. (2018)]

pcalg
Adaptively Restricted
GES

Hybrid CPDAG

LiNGAM
[Shimizu (2014)]

CausalXtreme
Top-down order
search

Order DAG

CAM
[Bühlmann et al. (2014)]

CAM
Greedy order
search

Order DAG

NOTEARS
[Zheng et al. (2018)]

gnlearn
NOTEARS (linear)
algorithm

Gradient DAG

SEMdag
[Grassi et al. (2022)]

SEMgraph
Knowledge-based
ordering (TO/TL)

Order DAG

Bottom-up ordering
(TO/TL)

Order DAG

5.2.3 SEMdag algorithm

Our SEMdag() function uses a two-stage order-based search with prior knowledge-
based or data-driven approach, under the assumption that a linear SEM with equal
variance error terms is assumed (Peters and Bühlmann, 2014). After determining
the vertex (node) or level (layer) order of nodes in stage (1), the DAG may be trained
using penalized (L1) regressions in stage (2) (Shojaie and Michailidis, 2010).

Learning ordering

The estimated linear order is determined via a prior graph topological vertex (TO)
or level (TL) ordering, or by using a data-driven node or level bottom-up (BU) pro-
cedure. In detail:

Knowledge-based ordering. Topological sorting or ordering of a directed graph’s
vertices is only feasible if and only if the knowledge-based graph is a directed acyclic
graph, which means we must convert the graph in a DAG. At least one topological
ordering exists in every DAG. For DAGs, topological vertex sorting is a linear order-
ing of the vertices such that vertex u occurs before vertex v for each directed edge
u → v. We can construct a topological sort with running time linear to the number
of vertices plus the number of edges, i.e., O(V + E). Examples are the Kahn’s al-
gorithm or the Depth First Search algorithm. However, there can be more than one
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topological sorting for a DAG. To overcome this issue, we consider DAG topological
layer (level) sorting.

Given a DAG G, define a collection of sets as follows (cf.Gao, Ding, and Aragam,
2020): L0, denotes the set of root (source) nodes in the top layer, Lj = ∪j

m=0Lm and
for j > 0, Lj is the set of all source nodes in the subgraph G[V − Lj−1] formed by
removing the nodes in Lj−1. So, e.g., L1 is the set of source nodes in G− L0. This de-
composes G into d layers, L(G) := (L1; ...; Ld) where each layer Lj consists of nodes
that are sources in the subgraph G[V − Lj−1], and Lj is an ancestral set for each j.
The number d of "layers" denotes the longest possible distance from some nodes in
the DAG to a root node and measures the "depth of a DAG. See Figure 5.1 for an
illustration.

The idea of a topological layer enables us to transform a DAG into a distinct and
unique topological structure with d levels, where a node’s parents must be located
in the node’s upper layers and acyclicity is thus naturally ensured (Jothi et al., 2009).
In particular, given a DAG G, we derive the topological structure of the DAG by
allocating each node to a single layer depending on its longest distance to one of the
leaf nodes. Starting with a DAG, we first create DAGT, the transpose of the DAG,
by flipping the orientation of the DAG’s edges. Next, a linear hierarchical order-
ing of the nodes for each network is obtained by applying the iterative leaf-removal
procedure to DAG and DAGT. The leaf-removal method is a bottom-up iterative
process that eliminates all leaf nodes from the network as well as the edges that inci-
dent on them with each iteration. Leaf nodes are those that have no outgoing edges.
The algorithm ends when the network is entirely deconstructed. The topological or-
dering of the network’s nodes is ultimately determined by reversing the bottom-up
ordering of nodes in DAGT (which is identical to the top-down ordering of nodes in
DAG) and combining it with the bottom-up ordering of nodes in DAG. Vertex sort
gives a linear ordering of nodes that encompasses all feasible solutions rather than
just one by utilizing DAG and DAGT. We refer the reader to Figure 5.1 for more
details about the leaf-removal algorithm.

Any node, j ∈ Lj have some parents in the previous layer, Lj−1 and some childs in
the next layer, Lj+1. Learning G is equivalent to learning the sets L(G) = (L1; ...; Ld),
since any topological sort π of G can be determined from L(G), and from any sort
π, the graph G can be recovered via variable selection. Unlike a topological sort of
G, which may not be unique, the layer decomposition L(G) is always unique.
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FIGURE 5.1: Application of the leaf-removal algorithm on the net-
work of interest (1) and its transpose (2) to determine the linear order-
ing of the network’s nodes by the combination (4) of the node struc-

ture in step (1) and (3).

Bottom-up ordering. The proposed algorithm for learning DAG sworks by con-
structing the DAG in a bottom-up fashion as in Ghoshal and Honorio, 2018, esti-
mating with a backward procedure the inverse covariance matrix, Ω̂ = Σ̂−1 of the
sample covariance (correlation) matrix, S := (YTY)/n using the graphical lasso al-
gorithm (Friedman, Hastie, and Tibshirani, 2008a):

Ω̂ ∈ arg min
Ω⪰0

tr(ΩS)− log det(Ω) + λ ∑
j ̸=k

|ωjk| (5.8)
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and define step by step a reversed causal ordering recovering the minimum preci-
sion: var(Yj|Y{−j})

−1, i.e., the maximum full conditional variance, from its diagonal
elements. To note, if λ → 0 and n >> p, then the Maximum Likelihood Estimate
(MLE) is given as: Ω̂ = S−1.

In detail, each element of the ordering is approximated through the following
steps:

• Start with the empty set, P = ∅ and select the node with the highest full con-
ditional variance as terminal vertex, Yp, i.e. the vertex with minimum value in
the diagonal values of the precision matrix, ω̂ = min(diag(Ω̂)) or the terminal
layer (> 1 vertices, Ld) with ω̂ ∈ min(diag(Ω̂)) + η. The latter means that all
nodes with a maximum distance of η from the precision value of the terminal
vertex’s can be combined to determine the terminal layer rather than just one
terminal vertex.

• Append Yp or Ld to the ordering set, P and also remove the selected node(s)
from the column(s) of the data matrix. With the updated data matrix repeat
the process of estimating the precision matrix and identifying the vertex (or
vertices) with the lowest precision(s);

• and so on until the source node, Y1 or the top layer, L0 is found.

Lastly, the reverse of the node (or level) ordering in the set P is returned. The
glasso procedure is run using the penalized parameter, λ = 0.001 or λ =

√

log(p)/n
for low (n > p) or high (n < p) dimensional data, respectively.

Learning parents

Finding the topological vertex (node) or level (layer) ordering, as stated by Shojaie
and Michailidis, 2010 the challenge of estimating the DAG structure (edge set) may
be viewed in terms of penalized likelihood. Assuming fixed the node or layer order-
ing from stage (1): Y1 ≺ Y2 ≺ · · · ≺ Yp, or L0 ≺ L1 ≺ · · · ≺ Ld, the stage (2) executes
parent estimations by doing LASSO (Least Absolute Shrinkage and Selection Oper-
ator) regressions of the j-th outcome variable on the predictor (ancestor) variables,
Sj :=

{

Yk : Yk ≺ Yj

}

or Sj :=
{

Yk : Lk ≺ Lj

}

in the vertex or level order list:

β̂ ∈ arg min
β∈Rk≺j

||Yj −∑
k≺j

β jkYk||22 + λj ∑
k≺j

wjk|β jk| (5.9)

It is possible to estimate the DAG adjacency matrix, Â removing nodewise the
beta coefficients equal zero (Ajk = 0 if β̂ jk = 0 and 1 otherwise) or using a thresh-
old on the beta absolute values. To allow for differential shrinkage, various penalty
factors wjk might be given to each beta coefficient. There is no shrinkage if wjk = 0
for some variables, and those variables are always included in the chosen model. If
the input graph is known (knowledge-based approach), weights can be based on the
graph edges: 0 (i.e., edge present) and 1 (i.e., edge absent).

The λj parameter for each outcome variable in LASSO regression is chosen by
tuning a vector of λ values, or by cross-validation (p ≤ 100) or BIC-based (p > 100)
lambdas selection. To further improve efficiency, some tuning-free schemes (such
as λ = (N(0,1)-quantile at α/[2p(j− 1)])/

√
n, suggested in Shojaie and Michailidis,

2010, or λ =
√

log(p)/n, suggested in Janková and Geer, 2015 for graphical lasso)
can also be enabled.
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User interface

The example code of the function SEMdag() is as follows.

SEMdag(graph , data , LO = "TO", beta = 0, eta = NULL ,

lambdas = NA , penalty = TRUE , verbose = FALSE , ...)

The inputs are: an igraph object (graph) that can be a priori graph topological order
or a graph with no edges (data-driven procedure: note that in this case it can be
created with the function make_empty_graph() of the igraph package, specificying
the number of nodes n as input); a matrix with rows corresponding to subjects and
columns to graph nodes (data); the linear order method (LO, default = "TO"); the
minimum absolute LASSO beta coefficient for a new direct link to be retained in
the final model (beta, default = 0); the minimum fixed eta threshold for bottom-up
search of vertex (eta, default = 0.05); a vector of regularization LASSO lambda values
(lambdas, default = NA); penalty factors for differential shrinkage (penalty, default
= TRUE).

Using a two-step order search methodology, the recovered DAG is approximated.
Following the determination of the vertex (node) or level (layer) order of p nodes
run the glasso() function of the glasso R package (Friedman, Hastie, and Tibshi-
rani, 2019), in step 1) the DAG may be trained using penalized (L1) regressions with
the glmnet() function of the glmnet R package (Friedman et al., 2023), in step 2).

When choosing between node or layer ordering, the user has to keep in mind the
reduced computational burden in the layer-based approached compared to the node
one. In detail, in step 1), the layer approach has to identify the order of d + 1 layers,
where d represents the "depth" of the DAG, instead the node approach needs to find
the order of p + 1 nodes, where p is the number of nodes in the DAG. As a result,
an high dimensional graph could impact the computation time of the latter step in
the nodewise approach. Same consideration could be done for the step 2) where the
number of L1 regressions in the nodewise approach is equal to (p− 1); instead, for
the layer-based one, the number of regressions is equal to p - (number of layers), a
smaller set compared to the latter.

The output of SEMgsa() is represented by a list containing four objects: dag, the es-
timated DAG; dag.new, new estimated connections; dag.old, connections preserved
from the input graph; LO, the estimated vertex ordering.

To read more about SEMdag() function, in terms of description, usage, function
arguments and value, see help documentation: ?SEMdag or refer to
https://rdrr.io/cran/SEMgraph/man/SEMdag.html.
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5.3 Experimental design

5.3.1 Benchmark data

For each specific disease, two different datasets have been selected: one for the train-
ing process and the other for testing the proposed modelling scheme. Before se-
lecting the data, we’ve checked that each pair of datasets had the same study type
(expression profiling by high throughput sequencing, i.e. RNA-seq data), the same
platform and a similar number of subjects. This selection procedure resulted in 4 x 2
datasets as shown in Table 5.3.

TABLE 5.3: Description of the selected training/testing datasets for
each disease.

Data
(Type)

Split GSE n case control p KEGG pathway vcount ecount

ALS
(RNA-seq)

Train GSE124439 160 139 21 100
Amyotrophic
lateral sclerosis

190 261

Test GSE153960 273 206 67 100
BRCA
(RNA-seq)

Train TCGA 224 112 112 100 Breast cancer 133 483

Test
GSE81538 +
GSE205725

377 190 187 100

COVID-19
(RNA-seq)

Train GSE157103 126 100 26 100
Coronavirus disease
- COVID-19

54 83

Test GSE152641 86 62 24 100
STEMI
(RNA-seq)

Train GSE59867 98 84 14 100
Lipid and
atherosclerosis

191 420

Test GSE62646 88 65 23 100

Amyotrophic Lateral Sclerosis (ALS). A rare kind of neurodegenerative illness called
amyotrophic lateral sclerosis (ALS) causes the gradual loss of motor neurons that
regulate voluntary muscles. For training, we selected postmortem cortex ALS RNA-
seq expression data (GSE124439) from Cooper-Knock et al., 2015 with 139 ALS cases
and 21 healthy controls. For testing, postmortem cortex RNA-seq data from the
NYGC ALS Consortium (GSE153960) were selected, with 206 ALS cases and 67
controls. Network information has been extracted from the KEGG pathway "Amy-
otrophic lateral sclerosis", consisting of 364 nodes and 333 edges. For computational
purposes, the largest connected component has been retained, corresponding to 190
nodes and 261 edges.

Breast Cancer (BRCA). Breast cancer develops when cells in the breasts multiply
and expand out of control, resulting in a mass of tissue known as a tumor. For train-
ing, we make use of the (pre-processed) breast cancer RNA-seq dataset from TCGA
project, which has n = 224 human samples, comprising 112 BRCA samples and
112 control samples. For testing, two RNA-seq datasets were combined: GSE81538
(Brueffer et al., 2018) for 190 breast cancer cases and GSE205725 (German et al., 2023)
for 187 healthy controls. Network information has been extracted from the KEGG
pathway "Breast cancer", consisting of 147 nodes and 488 edges. For computational
purposes, the largest connected component has been retained, corresponding to 133
nodes and 483 edges.
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Coronavirus disease (COVID-19). The severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) is the cause of the respiratory infection known as coron-
avirus disease of 2019 (COVID-19), which is extremely contagious. RNA-seq data
from Overmyer et al., 2021 (GSE157103) were considered for training, with a total of
n = 126 samples with 100 COVID-19 patients and 26 non-COVID-19. Conversely,
RNA-seq data (GSE152641, Thair et al., 2020) from whole blood of 62 COVID-19 pa-
tients and 24 healthy controls was considered for testing. Network information has
been retrieved from the KEGG pathway "Coronavirus disease - COVID-19", consist-
ing of 232 nodes and 208 edges. For computational purposes, the largest connected
component has been retained, corresponding to 54 nodes and 83 edges.

ST-elevation myocardial infarction (STEMI). A heart attack known as a STEMI, hap-
pens when an elevation in the ST segment, often results in myocardial injury or
necrosis. As training data, we made use of the RNA-seq dataset (GSE59867) from
Maciejak et al., 2015 that reports a total of 98 subjects, among which 84 are cases and
14 are healthy controls. As testing data, we selected the RNA-seq dataset (GSE62646)
from Kiliszek et al., 2012, where 65 subjects were cases and 23 controls. Network in-
formation has been extracted from the KEGG pathway "Lipid and atherosclerosis"
(a pathway associated with myocardial disease) consisting of 215 nodes and 428
edges. For computational purposes, the largest connected component has been re-
tained, corresponding to 191 nodes and 420 edges.

5.3.2 DAG structure recovery

The causal DAG discovery procedure implemented in this analysis is visually sum-
marised in the first two boxes of Figure 5.3 and is better explained in this section.

• Data filtering (gene extraction). To reduce the computational burden of structure
discovery methods, genes of the data matrix have been filtered according to
Differential Expression Analysis (DEA). In detail linear models for DEA were
fitted with the limma R package (Smyth, 2005) and p-values were adjusted
for multiple testing using the method of Benjamini-Hochberg (Benjamini and
Hochberg, 1995). In this way, the p = 100 most significant DEGs were fil-
tered out for each dataset, implementing a fully data-driven procedure for
causal structure discovery. The differential expression patterns for each pair
of datasets of each specific disease is shown in Figure 5.2. Each pair of datasets
share similar differential expression structure, highlighting same biological
differences between healthy and diseased states. As a result, the model fit-
ted on the training (learning) data should be well generalizable to the testing
(validation) data.
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ALS − Train ALS − Test

BRCA − Train BRCA − Test

COVID−19 − Train COVID−19 − Test

STEMI − Train STEMI − Test

FIGURE 5.2: Heatmap of differentially expressed genes (DEGs) for
each train/test dataset of each specific disease. The heatmap illus-
trates expression levels for all DEGs, where red indicates high expres-

sion and blue indicates low expression.
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• DAG/CPDAG structure recovery. The considered methods recover the DAG
structure in three different formats:

(i) adjacency matrix: the functions pc() and ges() from pcalg R package (Kalisch
and Bühlmann, 2007) estimate the connectivity matrix of a DAG specifying, as
input, various possible methods (PC, GES and ARGES) have been selected.
On the other side, the causalXtreme R package (Gnecco et al., 2021) provides
wrapper functions for fitting the DirectLINGAM algorithm and obtaining an
adjacency matrix output. In the end, an igraph object has been obtained from
the graph_from_adjacency_matrix() function of the igraph package (Csardi and
Nepusz, 2006);

(ii) edgelist: the function CAM() from the CAM R package (Bühlmann, Pe-
ters, and Ernest, 2014) estimates the edge list of a DAG using the CAM al-
gorithm. From the edgelist output, an igraph object has been obtained from
the graph_from_edgelist() function of the igraph package;

(iii) graph: the function notears() from the gnlearn R package (Lebrón and
Varando, 2021) estimates the DAG structure as an igraph object, without the
need for further refinements; the function SEMdag() from the SEMgraph pack-
age (Grassi, Palluzzi, and Tarantino, 2022) using as input gives as output the
igraph object of interest.

All the methods require as input the data matrix, with the exception of SEMdag()
that also requires a graph object. So, an empty graph with a number of genes equal
to the number of selected DEGs (p = 100) is generated and the data-driven bottom-
up (BU) search of vertex (or layer) order is performed using the vertices of the empty
graph.

FIGURE 5.3: Experimental design scheme.



5.3. Experimental design 121

5.3.3 Disease prediction

The last step of the experimental design scheme is summarised in the last box of Fig-
ure 5.3. Our aim is to make out-of-sample predictions with a SEM-based predictive
procedure (Rooij et al., 2022) taking into account the recovered graph structure from
the causal discovery algorithms. Additionally, we consider the Random Forest (RF)
algorithm (ref), a popular supervised machine learning method for disease predic-
tion, that requires only a data matrix as input and is used for benchmark comparison.
RF is performed with the rfCMA() function of the CMA R package (ref). In this way,
comparisons are made with the most performed supervised learning algorithm and
within different causal recovery methods. We briefly describe the SEM-based pre-
dictive procedure in the next subsection.

SEM based out-of-sample predictions. Suppose that the variables can be divided
into two sets: one set of predictor variables and the other set of response or outcome
variables. In SEM, it is assumed that the variables have a joint multivariate normal
distribution where the predictor variables have mean µx and the response variables
µy. The covariance matrix of predictors and responses (Σ) can be expressed as fol-
lows:

Σ =

[

Σxx Σxy

Σyx Σyy

]

where Σyy is the R×R covariance matrix of the responses, Σxx is the P× P covari-
ance matrix of the predictors, and Σxy contains the covariances between predictors
and responses, and is of size P× R. In detail:

• P = number of DEGs. Specifically, if the prediction is a continuous variable rep-
resenting sink nodes, P = number of source nodes and mediators otherwise,
if the prediction is a binary group variable, P = number of source, mediators
and sink.

• R = number of sink nodes or a binary group variable. Specifically, in the latter,
the prediction can be a binary vector with 1 for cases and 0 for controls.

Suppose we have fitted our SEM (i.e. the recovery graph from a causal discov-
ery procedure) to an empirical data set to obtain the estimated parameter vector (θ̂)
including means, and regression weights. We can extract from the fitted model the
estimated model-implied mean vector (µ(θ̂)) and covariance matrix (Σ(θ̂)). The pre-
dictive distribution, a model-implied conditional distribution of the responses given
the predictors, can be used to make predictions. Suppose we have a new observation
with predictor values of x0. The predictive distribution for a fitted SEM is a (multi-
variate) normal distribution with the mean vector (µy|x0

(θ̂)) and covariance matrix
(Σy|x0

(θ̂)) as shown below:

µ̂y|x0
= µ̂y + Σ̂T

xyΣ̂−1
xx (x0 − µ̂x)

Σ̂y|x0
= Σ̂yy − Σ̂T

xyΣ̂−1
xx Σ̂xy

The mean of the predictive distribution provides the most common method for
obtaining a point prediction. The SEM-based prediction rule for a normal distribu-
tion is ŷ = µ̂y|x0

, which can be expressed as:
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ŷ = µ̂y + Γ̂(x0 − µ̂x) = µ̂y − Γ̂µ̂x + Γ̂x0 = α̂ + Γ̂x0

where Γ̂ = Σ̂T
xyΣ̂−1

xx . The key distinction is that, as opposed to conventional (least
squares) regression, the intercept and regression weights are estimated differently
by taking into consideration the structure defined in the SEM. The scores on the
predictors using the model estimates from the current sample, will be used to predict
the score of the output variables for new cases.

If the outcome variable is a binary group, the corresponding output value is a
real value, but can be properly converted in a discrete score by choosing a suitable
threshold value. The cut-off point is calculated as a half-sum of the mean of the two
groups (cases and controls). In the end, the samples will be categorized as cases or
controls. Predictions have been made via the function predicty() of the SEMgraph

package. For more information, see the help documentation: ?predicty.

5.3.4 Evaluation metrics

The aforementioned structure recovery methods have been evaluated with the fol-
lowing metrics:

• MultiDimensional Scaling (MDS): Once obtained the estimated graph struc-
tures from each method, the Structural Hamming Distance (SHD) has been
computed to generate a measure of structural similarity between graphs by
comparing their adjacency matrices. This might be interpreted as how many
addition/deletion operations are necessary to transform the edge set of G1 into
that of G2. To obtain a distance measure between 0 and 1, the measurement
was related to the size (number of nodes) of each graph; the higher the num-
ber, the more distant the objects. Then, a visual representation (MDS) of dis-
tances between the obtained SHDs has been generated to identify more or less
similar structures (respectively, objects with shorter or longer distances) via
the cmdscale() function of the stats R package. The graph objects have been
divided into k clusters, with each observation belonging to the cluster with
the closest mean, using the K-means algorithm. The number of cluster (K) is
selected via hierarchical clustering (hclust() function of the stats R package,
with complete linkage method as default). After plotting the dendogram, the
optimal height for cutting the tree has been chosen to be the one that better re-
flects the more distant clusters of objects, joining together the ones with really
low SHD values.

• Matthews correlation coefficient (MCC): Out-of-sample predictions for each
disease prediction method, categorized as positive and negative cases, have
been obtained for testing datasets and compared with ground truth. The con-
fusion matrix, also known as the error or contingency matrix, has been used
to assess the diagnostic capacity of classifiers. True positives (TP) and true
negatives (TN) are the positive and negative cases that have been correctly
identified by the classifier. False positives (FP) are cases where the classifier
mistakenly classified a negative as positive, and false negatives (FN) are situa-
tions when the classifier mistakenly classified a positive as negative. In binary
classification tasks, accuracy and F1 score calculated using confusion matrices
continue to be among the most often used measures. However, on unbalanced
datasets, these statistical techniques can dangerously show inflated and too
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optimistic outcomes. Alternatively, a more faithful statistical rate is the MCC,
which yields a high score only when the prediction performed well in each of
the four confusion matrix categories (TP, FN, TN, FP), proportionately to the
size of the dataset’s positive and negative elements (see Matthews, 1975; Baldi
et al., 2000; Chicco and Jurman, 2020 for reference). As a result, DAG structure
recovery methods and RF algorithm have been compared with each other us-
ing MCC. To note that a MCC = −1 denotes complete disagreement between
the prediction and the observation, C = 0 is for a prediction that is no better
than random, and C = 1 shows perfect agreement.

To note that, regarding the procedure with SEMdag() function, all four causal
structure recovery strategies have been implemented: i) Knowledge-based order-
ing (TO/TL) based on the KEGG pathway of the disease of interest, i.e. a biologi-
cally validated network structure: SEMdag_KB_TO and SEMdag_KB_TL; ii) Data-
driven Bottom-Up ordering (TO/TL) based on the empty graph with p = 100 nodes
(DEGs): SEMdag_BU_TO and SEMdag_BU_TL.

5.4 Results

DAG/CPDAG. Table 5.4 and Table 5.5 report a descriptive analysis of the recovered
graph structures in terms of graph dimension (vertex and edges), number of source
and target nodes and measures of centrality as degree and betweenness.
In terms of node dimension, we have the same number of 100 DEGs for almost all
methods except for SEMdag_KB. In the latter case, the node dimension depend on
the largest component of the KEGG pathway of reference, matched with the nodes in
the data. The largest DAGs, with the higher number of nodes together with the most
dense structure of connections, are the SEMdag_KB_TL and SEMdag_KB_TO of the
ALS and STEMI dataset, where the starting graphs are the largest ones compared to
BRCA and COVID-19. After these two methods, the most densely connected graphs
are the ones of LINGAM. Lower density graphs are reported by ARGES, GES and
PC methods.
Moreover, given the source-sink prediction structure explained in Section 5.3.3, it
is interesting to understand the number of source and sink nodes reported by each
causal discovery method. The highest number of source-sink nodes is reported by
the PC method for all datasets together with the ARGES method for the COVID-
19 and STEMI datasets. Also SEMdag_TL reports an high number of source nodes.
Conversely, the lowest number of source-sink nodes is shown by GES.
Degree centrality instead involves counting the number of direct connections a node
has; as a result, if high, there is an high number of nodes with high degree (hub
nodes). It is interesting to note that the higher mean degree is shown by SEMdag()

methods and the lower one by ARGES, GES, PC and NOTEARS.
Betweenness centrality instead involves calculating how often a node occurs on all
shortest paths between other pair of nodes. Thus, high betweenness indicate that the
structure is characterised by vertices with high influence over the network. Higher
betweenness values can be highlighted for CAM and GES for all datasets, and the
lower ones for PC.
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TABLE 5.4: Descriptive table of recovered DAG/CPDAG structures
for each method, divided by ALS and BRCA data. V counts the num-
berf of Vertices in the network and E the number of Edges; S reports
the number of Source nodes and T the number of Targer nodes; D

stands for mean(Degree) and B for mean(Betweenness)

ALS BRCA
method G(V,E) G(S,T) G(D,B) G(V,E) G(S,T) G(D,B)
ARGES G(100,125) G(3,22) G(2,58) G(100,175) G(1,16) G(4,124)
CAM G(100,276) G(1,15) G(6,91) G(100,335) G(1,9) G(7,105)
GES G(100,148) G(1,5) G(3,75) G(100,197) G(1,5) G(4,152)
LiNGAM G(100,436) G(2,19) G(9,50) G(100,471) G(2,15) G(9,47)
NOTEARS G(100,198) G(6,25) G(4,58) G(100,186) G(6,25) G(4,72)
PC G(100,148) G(18,23) G(3,13) G(100,175) G(25,26) G(4,8)
SEMdag_BU_TL G(100,580) G(2,19) G(12,14) G(100,666) G(37,13) G(13,13)
SEMdag_BU_TO G(100,591) G(1,8) G(12,56) G(100,727) G(6,15) G(15,54)
SEMdag_KB_TL G(168,1162) G(12,129) G(14,18) G(107,865) G(28,16) G(16,30)
SEMdag_KB_TO G(168,1077) G(4,21) G(13,117) G(107,804) G(1,11) G(15,52)

TABLE 5.5: Descriptive table of recovered DAG/CPDAG structures
for each method, divided by COVID-19 and STEMI data. V counts
the numberf of Vertices in the network and E the number of Edges;
S reports the number of Source nodes and T the number of Targer

nodes; D stands for mean(Degree) and B for mean(Betweenness)

COVID-19 STEMI
method G(V,E) G(S,T) G(D,B) G(V,E) G(S,T) G(D,B)
ARGES G(100,38) G(62,62) G(1,0) G(100,73) G(27,34) G(1,4)
CAM G(100,99) G(1,43) G(2,48) G(100,189) G(1,17) G(4,160)
GES G(100,50) G(50,50) G(1,0) G(100,100) G(1,1) G(2,488)
LiNGAM G(100,470) G(2,13) G(9,55) G(100,407) G(2,19) G(8,47)
NOTEARS G(100,210) G(4,28) G(4,26) G(100,211) G(5,20) G(4,101)
PC G(100,144) G(29,29) G(3,3) G(100,110) G(35,35) G(2,1)
SEMdag_BU_TL G(100,608) G(3,19) G(12,17) G(100,514) G(4,12) G(10,24)
SEMdag_BU_TO G(100,610) G(2,10) G(12,48) G(100,531) G(2,8) G(11,62)
SEMdag_KB_TL G(49,202) G(9,18) G(8,12) G(159,1069) G(32,52) G(13,51)
SEMdag_KB_TO G(49,195) G(3,9) G(8,17) G(159,767) G(8,27) G(10,61)

MDS. Figure 5.4 shows the MDS plots divided by disease (ALS, BRCA, COVID-
19, STEMI). The figures give a quick overview about how the causal discovery meth-
ods are grouped together based on the SHD of the recovered graph structures. A
cluster between ARGES-CAM-GES-LINGAM-NOTEARS-PC can be identified, show-
ing similar causal structures. The most distant objects are represented by all SEM-
based methods that appear to be distant from all the other ones, belonging to differ-
ent classes. For ALS and STEMI, SEMdag_KB methods belong to the same classes,
moving away from SEMdag_BU methods.
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FIGURE 5.4: MDS plots divided by disease (ALS, BRCA, COVID-19,
STEMI).

MCC. MCC. Figure 5.5 report the MCC score divided by disease (AD, ALS, BRCA,
COVID-19). Higher MCC score is reported for BRCA dataset where MCC reaches
almost the level of 1, indicating perfect agreement between the observation and
prediction. However, no real differences between the methods can be assessed,
only that SEMdag_KB_TO has lower performance. MCC around 0.5 is reported for
COVID-19 dataset, specifically shown by RF together with GES, SEMdag_BU_TL
and SEMdag_KB_TL. Regarding STEMI and ALS dataset, SEMdag_KB_TO is the
only method able to almost recover the RF performance around 0.3, with a good
performance also of the other SEMdag() methods. In that case, good score is also
reported by CAM, LINGAM and PC. GES, ARGES are the methods with lower per-
formance: for the ALS disease, their MCC scores are around 0, showing a predic-
tion no better than random choice; for the STEMI disease, GES has a negative MCC
score, showing total disagreement between prediction and observation in the latter.
Overall, SEM-based methods are able to recover RF in almost all scenarios, with BU
approach methods that have slightly lower MCC scores.



126 Chapter 5. SEMdag( )

COVID−19 STEMI

ALS BRCA

A
R

G
E

S

C
A

M

G
E

S

L
IN

G
A

M

N
O

T
E

A
R

S

P
C

R
F

S
E

M
d
a
g
_
B

U
_
T

L

S
E

M
d
a
g
_
B

U
_
T

O

S
E

M
d
a
g
_
K

B
_
T

L

S
E

M
d
a
g
_
K

B
_
T

O

A
R

G
E

S

C
A

M

G
E

S

L
IN

G
A

M

N
O

T
E

A
R

S

P
C

R
F

S
E

M
d
a
g
_
B

U
_
T

L

S
E

M
d
a
g
_
B

U
_
T

O

S
E

M
d
a
g
_
K

B
_
T

L

S
E

M
d
a
g
_
K

B
_
T

O

0.00

0.25

0.50

0.75

1.00

−0.2

−0.1

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.2

0.4

FIGURE 5.5: MCC score divided by disease (ALS, BRCA, COVID-19,
STEMI).

5.5 Discussion and conclusions

Building on existing literature, we have discussed the problem of learning high-
dimensional linear SEMs introducing a two-stage algorithm called SEMdag() and in-
cluded in the R package SEMgraph. First, (1) the linear order is estimated via a priori
graph topological vertex (TO) or level (TL) ordering, or by using a data-driven node
or level bottom-up (BU) procedure; then, (2) the DAG is estimated using penalized
(L1) regressions.

This methodology stands within the class of order-based methods and assumes
equal variance of the error terms. SEMdag() differs from the other methods since it
requires a graphical structure as input and makes use of different procedures for
learning the ordering.

In the experimental design scheme, we performed a set of experiments on ob-
served RNA-seq data considering a pair of training and testing dataset for four dif-
ferent diseases, where the latter has been used for disease predictive performance
evaluation. Comparisons have been made with (i) a traditional supervised learning
algorithm (RF) and with (ii) a set of structure discovery methods to find a structure
learning method that provide an optimal solution while controlling the computing
time of the algorithm.

If the input graph is known (knowledge-based approach), SEMdag() predictions
are able to recover almost the same performance of RF algorithm in all four dis-
ease datasets, with slightly higher performance in the knowledge-based approach.
This result was expected, since, starting from existing graph knowledge, the causal
structure should better reflect the data of interest. However, even if the graph is
not known, our algorithm is able to report good performance (bottom-up ordering).
Unlike SEMdag(), the other methods are case-sensitive, having a lower or higher per-
formance depending on the data matrix given as input, not representing a generally
optimal solution.
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In addition to the good results in predictive terms, unlike the existing literature,
SEMdag() is able to: deal with high dimensional problems with reduced computa-
tional burden; allow the user to specify different structure learning procedures; re-
cover a graph structure that well fits the data of interest.
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Conclusions

Identification and characterization of the individual molecules inside a complex bi-
ological system, such as cells, tissues, or even the human body, is insufficient for
understanding the system. Having a detailed understanding of how molecules and
pathways interact is also essential. This is especially true when trying to grasp com-
plex diseases. The motivation of this thesis is grounded on the growing attention on
computational models to support researchers in developing hypotheses to direct the
design of new experimental tests, systematically analyzing perturbations of systems,
and eventually evaluating the suitability of particular molecules as novel therapeu-
tic targets. Researchers can use mathematical models to examine the relationships
between intricate regulatory mechanisms , such as metabolic processes or signaling
and regulatory pathways, and how disturbances of these processes may lead to the
onset of disease. This thesis aims to provide a completely automated framework for
managing complex biological systems as multivariate networks embedded in struc-
tural equation models.

In Chapter 1, a fast and user-friendly, yet powerful R package for causal network
analysis is presented, called SEMgraph. It conveys causal structure learning within
the framework of multivariate linear networks, combining accurate data-driven dis-
covery and confounding adjustment to model interpretability. The other chapters
aim to present and validate the four main algorithms within the SEMgraph pack-
age.

In Chapter 2, we employed SEMgsa() to find biologically significant results in a
FTD DNA methylation dataset and a COVID-19 RNA-seq dataset, and we com-
pared its performance with various other approaches. SEMgsa() outperforms other
software tools and exhibits low p-values (0.001) and high rankings while being very
sensitive to the disease-specific pathways. To produce simulated expression data
and assess the effectiveness of the approaches in terms of type I error and statistical
power, three route dysregulation mechanisms were used. The best overall perfor-
mance of SEMgsa() is supported by simulation results. SEMgsa() is an innovative but
powerful approach to evaluate enrichment in relation to gene expression data. It
uses pathway perturbation statistics and topological data to disclose biological in-
formation.

In Chapter 3, we used SEMtree() on simulated datasets with distinct differential
expression patterns as well as the COVID-19 RNA-seq dataset. SEMtree(), as com-
pared to other approaches, is able to capture biologically significant sub-networks
with straightforward directed path visualization, effective perturbation extraction,
and classifier performance. Despite the fact that trees are oversimplified represen-
tations of biological systems, we think that SEMtree() can be a helpful tool for prac-
titioners when performing complex subnetwork detection analysis as well as when
determining dependence (causal) structure using a direct tree (arborescence) begin-
ning with a list of genes. By emphasizing highly connected hub nodes or neighbor-
hoods that could be further studied, this straightforward graph might be helpful as
a first step in visualizing observational high-dimensional data.
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In Chapter 4, we applied SEMbap() on the BRCA RNA-seq dataset and simulated
expression data. In the latter, many hidden covariance matrix configurations have
been replicated. SEMbap() is a two-stage procedure. In the first stage, an exhaustive
search of missing edges with significant covariance is performed via d-separation
tests; then, in the second stage, a CGGM is fitted or a low dimensional represen-
tation of bow-free edges structure is obtained via gLPCA. In comparison to other
approaches, the BAP search algorithm achieves good fitting and perturbation met-
rics, controls the false positive rate, and properly identifies hidden confounding. We
have demonstrated that SEMbap() offers a number of ways to deal with hidden con-
founding in a variety of experimental setups.

In Chapter 5, we used SEMdag() on four sets of experiments involving pairs of ob-
served RNA-seq data (training and testing) for ALS, BRCA, COVID-19 and STEMI
diseases. In order to make a relevant comparison regarding the performance in
predicting disease, we examined our framework’s capacity to find plausible DAGs
against six well used causal discovery techniques. In conclusion, predictions based
on SEMdag() graph structures are able to achieve high performance in all four dis-
ease datasets, representing a generally optimal solution. Moreover, the evaluated
structure discovery methods can be differentiated according to the accessibility (and
adaptability) of their algorithms and the processing time required. In the end, SEMdag()
recovers a graph structure that nicely matches the data of interest, handles high di-
mensional issues with less computing load, and lets the user define several structure
learning techniques.

This thesis is mainly focused on methodological aspects combining network anal-
ysis and causal inference within the framework of SEM and applied on biological
systems. The contribution of this thesis is in the development of new approaches
to evaluate relevance and perturbation of every biological variable in the context of
their shared interactions, extending its connectivity on the base of empirical data
and possible exogenous influences, highlighting sources, predictors, causal paths
connecting them, and their possible aggregation into modules in knowledge-based
biological networks.

Future research should extend and improve the methodological frameworks pre-
sented so far. Moreover, further interesting domains of application are already under
examination, such as identifying relevant genes in a co-expression network using
a (cooperative) game theoretic approach (Shapley values) and a non-linear exten-
sion of linear SEM through deep neural network (DNN) algorithms enclosed in a
nodewise-based model fitting.
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Appendix A

Supplementary material

A.0.1 SEMgraph

Code to reproduce all results of this supplementary material, and additional code of
how-to-use graph utilities (conversion and helper functions) implemented in SEM-

graph can be found in the supplementary file available at: https://github.com/

fernandoPalluzzi/SEMgraph/blob/master/replicationCode.R.
SEMgraph package is available under the GNU General Public License version 3
or higher (GPL ≥ 3) from CRAN repository, at https://cran.r-project.org/web/
packages/SEMgraph and the latest stable version can be installed via:
install.packages("SEMgraph"). The development version of SEMgraph can be in-
stalled from the GitHub repository, at https://github.com/fernandoPalluzzi/SEMgraph
through:devtools::install_github("fernandoPalluzzi/SEMgraph").

SEMgraph works directly with a collection of interactomes from commonly used bi-
ological databases after igraph conversion or any user igraph objects. KEGG (Kane-
hisa and Goto, 2000), Reactome (Jassal et al., 2020), and STRING (Szklarczyk et al.,
2019) interactomes stored as igraph objects, so that they can be manipulated in R, are
available in the SEMdata data package at: https://github.com/fernandoPalluzzi/
SEMdata. KEGG and Reactome are also present as a list of igraph objects (kegg.pathways
and reactome.pathways, respectively), each being a single pathway.
However, an external graph representation can be easily used as input for SEM-

graph workflow provided that it has been transformed to an igraph object. The
igraph package provides a variety of conversion tools, including graph_from_data_frame(),
graph_from_edgelist(), graph_from_graphnel(), graph_from_adjacency_matrix() func-
tions that create an igraph from data frames, edge list (i.e., SIF format), graphNEL
graphs, adiacency matrices, respectively. In addition, SEMgraph includes lavaan2graph()
and dagitty2graph() functions to convert lavaan syntax and dagitty graphs in igraph

objects.

For performance details, Table A.1 shows results of run time (in seconds) and SEM
fitting indices (dev/df and SRMR) for the main SEMrun() function on four graph ob-
jects (small, medium, large and merged), three fitting algorithms (ªlavaanº, ªricfº,
and ªcggm") and three different option settings: group=NULL (sem0), group=group
(sem1), and group=group + fit=2 (sem2), using full ALS RNA-seq expression data
retrieved in SEMdata package (n = 160 subjects, and p = 17695 genes). Input graphs
have been specified as follows:

1. small graph (V=32; E=47): subgraph of the KEGG pathway: ªAmyotrophic
Lateral Sclerosis (ALS)º
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2. medium graph (V=190; E=261): ªAmyotrophic Lateral Sclerosis (ALS)º KEGG
pathway

3. large graph (V=366; E=1128): union of ALS with the related KEGG pathway:
ªPathways of neurodegeneration - multiple diseasesº

4. merged graph (V=188; E=622): merged graph of the union graph (3) with pro-
totypes nodes (h=0.2)

The merged graph derives from the mergeNodes() function applied on the large
graph (see documentation ?mergeNodes). This function allows to reduce the input
graph by hierarchical clustering with prototypes derived from the protoclust R pack-
age. By cutting the dendrogram at height h = 1− |rjk| = 0.2, i.e. Pearson’s correla-
tion coefficient r = 0.8, we obtain a merged graph that is roughly half the size of the
large graph, but preserving its global structure.
Table 1 shows similar results for the three fitting algorithms, but different system
time. As expected, lavaan is very slow for graph of medium or large size (>100
nodes) due to huge Hessian matrix computation for parameter Standard Error (SE).
While, RICF is very fast, but computes individual parameter p-values only in the
setting of group perturbation in the ªcommonº model (sem1). CGGM is fast in all
setting. Thus, SEMrun() function switch settings from algo=ºlavaanº to algo=ºricfº
(if group=group) or algo=ºcggmº (if group=group and fit=2) for fast fitting in case
of graph (models) with >100 nodes. In addition, the merged graph can be fitted with
the lavaan algorithm (and related SE computation) in relatively short time.

TABLE A.1: System time in seconds (PC: Intel(R) Core(TM) i7-
10750H CPU @ 2.60GHz; RAM 32.0 GB; Windows 11Pro-21H2)
and fitting global measures of SEMrun() with group=NULL (sem0),
group=group (sem1), and group=group + fit=2 (sem2) with algo =

ªlavaanº, ªricfº, or ªcggmº.

sem0 sem1 sem2

graph method time srmr time srmr time srmr

small lavaan 0.30 0.29 0.42 0.27 0.73 0.28
ricf 0.07 0.30 0.35 0.27 0.12 0.29
cggm 0.08 0.29 0.10 0.27 0.18 0.29

medium lavaan 59.00 0.36 86.98 0.35 249.82 0.37
ricf 0.35 0.36 0.76 0.35 0.61 0.37
cggm 1.10 0.36 1.07 0.35 2.08 0.37

large lavaan 18 min 0.31 24 min 0.32 90 min 0.31
ricf 1.09 0.33 2.07 0.32 2.17 0.34
cggm 26.69 0.29 28.31 0.28 44.56 0.30

merged lavaan 154.89 0.23 204.72 0.24 10 min 0.23
ricf 0.70 0.25 1.19 0.24 1.29 0.25
cggm 1.95 0.22 2.14 0.21 4.07 0.23
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A.0.2 SEMgsa

Source code and data are available in
https://github.com/fernandoPalluzzi/SEMgraph/tree/master/SEMgsa_replication.

A.0.3 SEMtree

Code to reproduce all results of the analysis, together with the COVID-19 data used
in this study can be found in the supplementary files available at:
https://github.com/fernandoPalluzzi/SEMgraph/tree/master/SEMtree.

A.0.4 SEMbap

Code to reproduce all results of the analysis, together with BRCA RNA-seq dataset
used in this study are available at:
https://github.com/fernandoPalluzzi/SEMgraph/tree/master/SEMbap.

A.0.5 SEMdag

Code to reproduce all results of the analysis, together with ALS, BRCA, COVID-19
and STEMI RNA-seq dataset used in this study are available at:
https://github.com/fernandoPalluzzi/SEMgraph/tree/master/SEMdag.
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