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Chapter 1

Introduction

Often time series are organized into a hierarchy. For example, the total visi-
tors of a country can be divided into regions and the visitors of each region
can be further divided into sub-regions. Hierarchical time series are common
in several fields, such as retail sales (Makridakis et al. 2021) or electricity
demand (Taieb et al. 2021). Hierarchical forecasts should be coherent. For
instance, the sum of the forecasts for the sub-regions should match the fore-
cast for the entire region. However, the forecasts produced independently
for each time series (base forecasts) do not generally satisfy the summing
constraints; they are hence incoherent.

Reconciliation algorithms (Hyndman et al. 2011; Wickramasuriya et al.
2019) adjust the incoherent base forecasts, making them coherent. In the
process, they generally improve the accuracy compared to the base forecasts
(Athanasopoulos et al. 2020). Indeed, forecast reconciliation has recently
been reinterpreted as forecast combination (Hollyman et al. 2021; Di Fonzo
and Girolimetto 2022). Reconciliation is particularly important for tempo-
ral hierarchies (Athanasopoulos et al. 2017; Kourentzes and Athanasopoulos
2021), in which forecasts are produced for the same variable at different tem-
poral scales. For instance, reconciliation can be used to enforce coherence
between monthly, quarterly, and yearly forecasts.

Most literature focuses on the reconciliation of the point forecasts (Hyn-
dman et al. 2011; Wickramasuriya et al. 2019; Wickramasuriya et al. 2020;
Di Fonzo and Girolimetto 2023). However, to support decision making we
need to provide the entire reconciled predictive distribution, not only the
reconciled point forecasts. Two algorithms for probabilistic reconciliation
are proposed by Jeon et al. 2019 and Taieb et al. 2021; however, they have
a number of shortcomings, as explained by Panagiotelis et al. 2022. In par-
ticular, little formal justification is provided for the algorithms, which are
tailored towards specific applications. Recent applications of probabilistic

9



10 CHAPTER 1. INTRODUCTION

reconciliation include solar energy forecasting (Yang 2020). In Corani et al.
2020, the reconciled distribution is obtained through a Bayesian approach,
but only under the Gaussian assumption. Wickramasuriya 2021 also focuses
on the Gaussian case. Panagiotelis et al. 2022 formally defines probabilistic
reconciliation as a projection. The parameters of the projection are opti-
mized through Stochastic Gradient Descent in order to minimize a chosen
scoring rule. A limit of this approach is that it does not scale to large hier-
archies. Moreover, it does not deal with discrete distributions, and thus it
cannot treat count time series, which are very common (Kolassa 2016).

In Chapter 2, we provide a general definition of coherence for probabilis-
tic forecasts, which applies to discrete and continuous distributions. Then,
we propose a concept of probabilistic reconciliation based on conditioning.
It is rather general, as it can be applied to continuous and count time se-
ries. A similar approach has been independently developed by Corani et al.
2022. However, the underlying Markov Chain Monte Carlo (MCMC) algo-
rithm does not scale well to large hierarchies. Our approach to sample from
the reconciled distribution is based on importance sampling (IS). Yet, vanilla
IS is not effective to sample from high dimensional distributions; this pre-
vents using it to reconcile large hierarchies. Moreover, we show that a large
incoherence is connected to a low performance of IS. The numerical exper-
iments confirm that IS is not robust with respect to the hierarchy size and
the incoherence level.

In Chapter 3, we thus propose a new algorithm, which we call Bottom-
Up Importance Sampling (BUIS). This algorithm allows to efficiently sample
from the reconciled distribution, with a speedup of up to three orders of mag-
nitude compared to the method of Corani et al. 2022. This is possible since
BUIS is based on importance sampling (IS), which works in parallel and not
sequentially as MCMC. Our algorithm is able to overcome the drawbacks of
vanilla IS. Moreover, BUIS can be used even if the base forecast distribution
is only available through samples. We also provide a formal proof of conver-
gence of BUIS to the actual distribution. A current limit of this algorithm is
that it assumes the conditional independence of the base forecasts. We leave
for future work the extension of the algorithm to manage also the correla-
tion between forecasts. We run several experiments on synthetic data, which
show that BUIS is able to efficiently sample from the reconciled distribution,
even in the case of big hierarchies or large incoherence levels. Finally, we
test our method exhaustively on time series extracted from different data
sets, providing a clear improvement in the performance of the probabilistic
forecasts.

In Chapter 4, we study the effects of reconciliation on the forecast dis-
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tribution. In the Gaussian case, where the reconciled distribution can be
obtained analytically, the reconciled mean of a variable is a compromise be-
tween the base mean of that variable and a linear combination, according
to the hierarchy, of the base means of the other variables. For instance, the
reconciled mean of the upper variable is a convex combination of the base
and the bottom-up mean. Moreover, the variance of the forecast distribution
of each variable decreases after reconciliation. However, in general, especially
for count distributions, this may not be true: if there is a large incoherence,
the variance may increase. On the other hand, when we deal with asym-
metric distributions, a small incoherence may lead to a negative shift on the
mean of both the bottom and the upper variables. We illustrate this point
both from a theoretical viewpoint, and using some examples with Bernoulli
and Poisson distributions. Then, we present an application to count time
series of extreme events on the Credit Default Swap (CDS) market. The
probabilistic forecasts are computed using a multivariate negative binomial
score-driven model, proposed by Agosto 2022. We efficiently reconcile all
the 3508 daily probabilistic forecasts, achieving a clear improvement in the
performance of the forecasts, and observing the effects of the reconciliation
discussed above.

In Chapter 5, we introduce and study the p-Fourier Discrepancy Func-
tions, a new family of metrics for comparing discrete probability measures.
Discrepancies are important tools for every task that requires the comparison
of probability measures, such as assessing the performance of probabilistic
forecasts. The performance of probabilistic forecasts is typically evaluated
using a scoring rule, which is a function that takes as arguments a prob-
ability measure and a realization. A scoring rule K should be proper, i.e.
Ex∼Q[K(Q, x)] ≤ Ex∼Q[K(P, x)], where Q is the forecast distribution, x the
realization, and P any other probability measure. Proper scoring rules pro-
vide performance measures that address calibration and sharpness simulta-
neously (Gneiting et al. 2008). In the univariate setting, the most common
scoring rule is arguably the rank probability score (RPS), which is defined
as the l2-distance between the predictive cumulative distribution function
(CDF) and the true CDF, i.e. the step function at the true value of the
time series (Kolassa 2016). Hierarchical forecasting is, however, a multi-
variate problem. A generalization of the RPS to the multivariate setting
is the energy score (ES), which is a proper scoring rule (Gneiting et al.
2008), unlike other common multivariate scoring rules as the logarithmic
score (Panagiotelis et al. 2022). ES is based on the energy distance, which
can be expressed as a Fourier-based metric (Székely and Rizzo 2013). In this
chapter, we introduce the Fourier Discrepancies, a discretized version of the
χr-metrics (Rachev 1991). We show that the Fourier Discrepancies can be
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expressed as the square root of a bilinear form induced by a positive definite
matrix, hence they are 1-homogeneous and convex. We also prove that the
squared Fourier Discrepancy is twice differentiable and that both its gradient
and Hessian have an explicit formula. Finally, we study the lower and up-
per tight bounds of the Fourier Discrepancy in terms of the Total Variation
distance.

Conclusions and future work are placed in Chapter 6. For the sake of
clarity, we only report the essential proofs in the body of the thesis and leave
the others in the appendix.



Chapter 2

Probabilistic reconciliation

This chapter is organized as follows. In Section 2.1, we set our notation and
briefly recall temporal hierarchies and point reconciliation. In Section 2.2, we
provide a general definition of coherence for probabilistic forecasts. We then
obtain the expression of the reconciled distribution through conditioning, and
we compare it to the existing literature. For the sake of clarity, in Section 2.3
we analytically derive the reconciled distribution in the Gaussian case. Our
approach to sample from the reconciled distribution, based on importance
sampling, is shown in Section 2.4, where we also highlight the issues that
arise when dealing with large hierarchies or high incoherence between the
base forecasts.

2.1 Notation

Consider the hierarchy of Figure 2.1. We denote by b = [b1, . . . , bm]
T the

vector of bottom variables, and by u = [u1, . . . , un−m]
T the vector of upper

variables. We then denote by

y =

[
u

b

]
∈ R

n

the vector of all the variables. The hierarchy may be expressed as a set of
linear constraints:

y = Sb, where S =

[
A

I

]
. (2.1)

Here, I ∈ Rm×m is the identity matrix. S ∈ Rn×m is called summing matrix,
while A ∈ R(n−m)×m is called aggregating matrix. The constraints can thus
be written as u = Ab. We use a graphical tree-like representation for the
hierarchy, where each node is the sum of its children, as in Hyndman and

13
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U1

U2

B1 B2

U3

B3 B4

Figure 2.1: A simple hierarchy with 4 bottom and 3 upper variables

Athanasopoulos 2021, Chapter 11. For example, the aggregating matrix of
the hierarchy in Figure 2.1 is given by

A =



1 1 1 1
1 1 0 0
0 0 1 1


 .

A point y ∈ Rn is said to be coherent if it satisfies the constraints given by
the hierarchy. We denote by S the set of coherent points, which is a linear
subspace of Rn:

S := {y ∈ R
n : y = Sb}. (2.2)

2.1.1 Temporal hierarchies

In temporal hierarchies (Athanasopoulos et al. 2017; Kourentzes and Athana-
sopoulos 2021), forecasts are generated for the same variable at different
temporal scales. For instance, a quarterly time series may be aggregated to
obtain semi-annual and annual series. If we are interested in predictions up
to one year ahead, we compute the four quarterly forecasts pq1, pq2, pq3, pq4, the
two semi-annual forecasts ps1, ps2, and the annual forecast pa1. We then obtain
the hierarchy in Figure 2.1, with b = [pq1, pq2, pq3, pq4]

T and u = [pa1, ps1, ps2]
T .

The base forecasts independently computed at different frequencies are inco-
herent: for example, the quarterly predictions do not sum up to the annual
prediction. Reconciliation adjusts the base forecasts, enforcing coherence.

2.1.2 Point forecasts reconciliation

Let us now denote by py =
[
puT | pbT

]T
the vector of the base (incoherent)

forecasts. In the literature, point reconciliation is typically presented as a
two-step process (Hyndman et al. 2011; Panagiotelis et al. 2021). First, the
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reconciled bottom forecasts are computed by combining the base forecasts of
the whole hierarchy:

b̃ = Gpy,

for some matrix G ∈ Rm×n. Then, the reconciled forecasts are obtained as

ỹ = Sb̃,

where S is the summing matrix. Hence, ỹ is coherent by design. For ex-
ample, if we set G = [I | 0], we have the bottom-up approach, which sums
up the bottom forecasts, ignoring the base forecasts of the upper variables
(Hyndman and Athanasopoulos 2021, Chapter 11.2). In the minT method
(Wickramasuriya et al. 2019), G is defined as

G = (STW−1S)−1STW−1,

where W is the covariance matrix of the errors of the base forecasts. This
method minimizes the trace of the covariance matrix of the reconciled fore-
casts, under the assumption that the base forecasts are unbiased.

2.1.3 Probabilistic framework

In many cases, decision making requires an estimate of the uncertainty of
the predictions (Gneiting and Katzfuss 2014). This requires a probabilistic
framework, in which forecasts are in the form of probability distributions.
We denote by pν ∈ P(Rn) the forecast distribution for y, where P(Rn) is
the space of probability measures on (Rn,B(Rn)), and B(Rn) is the Borel σ-
algebra on Rn. Moreover, we denote by pνu and pνb the marginal base forecast
distributions of, respectively, the upper and the bottom components of y.

The forecast distribution pν may be either discrete or absolutely continu-
ous. In the following, if there is no ambiguity, we will use pπ to denote either
its probability mass function, in the former case, or its density, in the latter.
Therefore, if pν is discrete, we have

pν(F ) =
∑

x∈F

pπ(x),

for any F ∈ B(Rn). Note that the sum is well-defined as pπ(x) > 0 for at most
countably many x’s. On the contrary, if pν is absolutely continuous, for any
F ∈ B(Rn) we have

pν(F ) =

∫

F

pπ(x) dx.
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2.2 Probabilistic Reconciliation

In this section, we discuss the notion of coherence in the probabilistic frame-
work and our approach to probabilistic reconciliation.

In the non-probabilistic framework, a point forecast is incoherent if it
does not belong to the set S, defined as in (2.2). Let pν ∈ P(Rn) be a forecast
distribution. Intuitively, we say that pν is incoherent if there exists a set T
of incoherent points, i.e. T ∩ S = ∅, such that pν(T ) > 0. Or, equivalently, if
supp(pν) ⊈ S, where supp(pν) := {x : pπ(x) > 0} is the support of pν. We now
define the summing map s : Rm → Rn as

s(b) = Sb. (2.3)

The image of s is given by S. Moreover, from (2.3) and (2.1), s is injective.
Hence, s is a bijective map between Rm and S, with inverse given by s−1(y) =

b, where y =
[
uT ,bT

]T
∈ S. As explained in Panagiotelis et al. 2022, for

any ν ∈ P(Rm) we may obtain a distribution ν̃ ∈ P(S) as ν̃ = s#ν, namely
the pushforward of ν using s:

ν̃(F ) = ν(s−1(F )), ∀F ∈ B(S),

where s−1(F ) := {b ∈ Rm : s(b) ∈ F} is the preimage of F . In other words,
s# builds a probability distribution for y supported on the coherent subspace
S from a distribution on the bottom variables b. Since s is a measurable
bijective map, s# is a bijection between P(Rm) and P(S), with inverse given
by (s−1)# (see Appendix A.1). We thus propose the following definition.

Definition 1. We call coherent distribution any distribution ν ∈ P(Rm).

This definition works with any type of distribution. Moreover, since it
does not require s to be a linear map, it can be applied to any problem where
non-linear constraints are involved.

2.2.1 Probabilistic reconciliation

In the probabilistic framework, the aim of reconciliation is to obtain a co-
herent reconciled distribution ν̃ ∈ P(Rm) from the base forecast distribution
pν ∈ P(Rn).

A naive approach could be to simply set ν̃ = pνb; this may be considered a
probabilistic bottom-up, which ignores any probabilistic information about
the upper series.

Panagiotelis et al. 2022 proposes a reconciliation method based on pro-
jections. Given a continuous map ψ : Rn → S, the reconciled distribu-
tion is defined as ν̃ = ψ#pν ∈ P(S), i.e. ν̃(F ) = pν(ψ−1(F )), for any
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F ∈ B(Rn). Since the map ψ is expressed as ψ = s ◦ g, with g : Rn → Rm

and s : Rm → S, the reconciled distribution may be equivalently defined
as ν̃ = g#pν ∈ P(Rm). Note that, if py1, . . . , pyN are independent samples
from the base incoherent forecast distribution pν, then ỹ, . . . , ỹN , defined as
ỹi := g(yi) for i = 1, . . . , N , are independent samples from the reconciled
distribution ν̃. The function g : Rn → Rm combines information from all
the levels by projecting on the bottom level the incoherent forecasts. For

instance, if we define g as g(y) = b, where y =
[
uT ,bT

]T
, we obtain the

probabilistic bottom-up, as ν̃ = pνb. In Panagiotelis et al. 2022, the map g
is assumed to be in the form g(y) = d +Gy, with d ∈ Rm and G ∈ Rm×n,
and the parameter γ := (d, vec(G)) is optimized through stochastic gradient
descent (SGD) to minimize a chosen scoring rule.

2.2.2 Probabilistic Reconciliation through condition-

ing

We now present our approach to probabilistic reconciliation, based on con-
ditioning on the hierarchy constraints. Let pY = (pU, pB) be a random vector

with law given by pν, so that pνu and pνb are the laws of, respectively, pU and
pB.

Let us first suppose that the base forecast distribution pν ∈ P(Rn) is
discrete. We define ν̃ by conditioning on the coherent subspace S:

ν̃(F ) = P(pB ∈ F | pY ∈ S)

=
P(pB ∈ F, pY ∈ S)

P(pY ∈ S)

=
P(pB ∈ F, pU = ApB)

P(pU = ApB)

=

∑
b∈F pπ(Ab,b)∑
x∈Rm pπ(Ax,x)

, (2.4)

for any F ∈ B(Rm), provided that P(pY ∈ S) > 0. The sums in (2.4) are
well-defined, as pπ(y) > 0 for at most countably many y’s. Hence, ν̃ is a
discrete probability distribution with pmf given by

π̃(b) =
pπ(Ab,b)∑

x∈Rm pπ(Ax,x)
∝ pπ(Ab,b). (2.5)

Note that, if pν is absolutely continuous, we have that pν(S) = 0, since the

Lebesgue measure of S is zero. Hence, P(pB ∈ F | pY ∈ S) is not well-
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defined. However, if we denote by pπ the density of pν, the last expression is
still well-posed. We thus give the following definition.

Definition 2. Let pν ∈ P(Rn) be a base forecast distribution. The reconciled
distribution through conditioning is defined as the probability distribution ν̃ ∈
P(Rm) such that

π̃(b) ∝ pπ(Ab,b), (2.6)

where pπ and π̃ are the densities of (respectively) pν and ν̃, if pν is absolutely
continuous, or the probability mass functions otherwise.

To rigorously derive (2.6) in the continuous case, we proceed as follows.

Let us define the random vector Z := pU−ApB. Note that the event {pY ∈ S}

coincides with {Z = 0}. The joint density of (Z, pB) can be easily computed
(Appendix A.1):

π(Z,pB)(z,b) = pπ(z+Ab,b).

Then, the conditional density of pB given Z = 0 is given by (Çinlar 2011,
Chapter 4):

π̃(b) =
π(Z,B)(0,b)∫

Rm π(Z,B)(0,x) dx

=
pπ(Ab,b)∫

Rm pπ(Ax,x) dx

∝ pπ(Ab,b),

provided that
∫
Rm pπ(Ax,x) dx > 0. Finally, note that, if pU and pB are

independent, (2.6) may be rewritten as

π̃(b) ∝ pπu(Ab) · pπb(b), (2.7)

where pπu and pπb are the densities of (respectively) pνu and pνb.
From a Bayesian perspective, the reconciliation process can be interpreted

as a generalization of the Bayes’ rule. Indeed, the base distribution on the
bottom variables may be interpreted as the prior:

b ∼ pνb, (2.8)

while the likelihood expresses the hierarchy constraints:

π(u | b) = δ{u=Ab}. (2.9)

Thus, the evidence is not given by a single observation, but rather by a
probability distribution, i.e., the base conditional distribution of pU given
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pB. In the area of Bayesian networks, this approach is known as updating
using soft evidence (Darwiche 2009, Chapter 3.6); it is at the core of the
reconciliation approach by Corani et al. 2022.

While in Panagiotelis et al. 2022 the reconciled distribution was obtained
by projecting the base distribution ν̃ on S, in this work ν̃ is obtained by
conditioning pν on the constraints given by the hierarchy. Our approach can be
applied to both continuous and discrete distributions. On the other hand, the
approach based on projection optimizes the parameters through stochastic
gradient descent, which is computationally expensive and not applicable for
discrete distributions.

In our approach, the behaviour of the base distribution outside the co-
herent subspace is ignored: intuitively, we do not take into account the prob-
ability of incoherent points, since they are not “admissible”. Indeed, (2.6)
clearly shows that ν̃ only depends on the values of pν on S. The reconciled
distribution through conditioning satisfies the following property: for each
pair of coherent points y1,y2 ∈ S, we have

π̃(y1)

π̃(y2)
=

pπ(y1)

pπ(y2)
(2.10)

if π(y2) ̸= 0, and π̃(y2) = 0 if π(y2) = 0. The reconciliation thus preserves
the odds ratio: if, for example, y1 is three times more likely than y2 ac-
cording to the base distribution, then it is the same also for the reconciled
distribution.

2.3 Gaussian case

When the base forecast distribution is a multivariate Gaussian, the reconciled
distribution is also Gaussian, and its mean and covariance matrix can be an-
alytically computed (Corani et al. 2020). In this case, reconciliation through
conditioning coincides with minT, which has been proven to minimize the
log score (Wickramasuriya et al. 2019; Wickramasuriya 2021). Let

pY =

[
pU
pB

]
∼ N

(
py, pΣY

)
(2.11)

be the base forecast distribution for the entire hierarchy, where

py =

[
pu
pb

]
, pΣY =

[
pΣU

pΣUB

pΣT
UB

pΣB

]
.
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Let us define T ∈ Rn×n as

T =

[
0 Im

In−m −A

]
,

and let Z := TpY. Hence, Z is Gaussian:

Z ∼ N
(
Tpy, TpΣYT

T
)
. (2.12)

We have

Tpy =

[
pb

pu−Apb

]
,

TpΣYT
T =

[
pΣB

pΣT
UB − pΣBA

T

pΣUB −ApΣB Q

]
, (2.13)

where Q = pΣU − pΣUBA
T −ApΣT

UB +ApΣBA
T . Since

Z =

[
pB

pU−ApB

]
=:

[
Z1

Z2

]
,

the reconciled bottom distribution is given by the conditional law of Z1 given
Z2 = 0, which is a multivariate Gaussian. Assuming that the covariance
matrix of Z2 is positive definite, we have

Z1 |Z2 = 0 ∼ N
(
b̃, Σ̃B

)
,

where

b̃ = pb+
(

pΣT
UB − pΣBA

T
)
Q−1(Apb− pu),

Σ̃B = pΣB −
(

pΣT
UB − pΣBA

T
)
Q−1

(
pΣT

UB − pΣBA
T
)T

.

Since Ũ = AB̃ and B̃ ∼ N
(
b̃, Σ̃B

)
, the reconciled upper distribution is

also Gaussian: Ũ ∼ N
(
ũ, Σ̃U

)
, with

ũ = Ab̃, Σ̃U = AΣ̃BA
T . (2.14)
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If we define D := pΣU − pΣUBA
T , from the above equations we have

ũ = Apb+
(
ApΣT

UB −ApΣBA
T
)
Q−1(Apb− pu)

= Apb+ (D−Q)Q−1(Apb− pu)

= Apb+DQ−1(Apb− pu)− (Apb− pu)

= pu+
(

pΣU − pΣUBA
T
)
Q−1(Apb− pu).

Moreover, we have

Σ̃U = ApΣBA
T −

(
ApΣT

UB −ApΣBA
T
)
Q−1

(
ApΣT

UB −ApΣBA
T
)T

= ApΣBA
T − (D−Q)Q−1

(
DT −Q

)

= ApΣBA
T −DQ−1DT +D+DT −Q

= pΣU −
(

pΣU − pΣUBA
T
)
Q−1

(
pΣU − pΣUBA

T
)T

.

2.4 Sampling from the reconciled distribu-

tion

The reconciled distribution ν̃ is not, in general, a known distribution. In a
non-Gaussian framework, we generally need to resort to sampling approaches.
Our method is based on Importance Sampling (IS), which we briefly recall
in the next subsection. For a complete discussion, we refer to Elvira and
Martino 2021. From now on, we will use the term density to denote either
the probability mass function (for discrete distributions) or the density with
respect to the Lebesgue measure (for absolutely continuous distributions).

2.4.1 Importance Sampling

Importance Sampling is a popular technique used to approximate expecta-
tions with respect to a target distribution by sampling from another distri-
bution. It was first introduced in the 50s in statistical physics (Kahn and
Marshall 1953; Hammersley and Morton 1954), and since then it has been
extensively used and developed.

Let X be a random variable with density p. Suppose we want to compute
the expected value m = E[f(X)], for some function f . If we are able to draw
independent samples x1, . . . , xN from p, we can use the standard Monte Carlo
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estimate:

E[f(X)] ≈
1

N

N∑

i=1

f(xi). (2.15)

In many cases, however, sampling from p could be impractical, or it could
lead to a very high variance of the Monte Carlo estimator (2.15).

Now, let q be another density such that q(x) > 0 if f(x)p(x) ̸= 0. We
have that

E[f(X)] =

∫
f(x)p(x) dx =

∫
f(x)

p(x)

q(x)
q(x) dx = E[f(Y )w(Y )],

where w is defined as w(y) = p(y)
q(y)

and Y is a random variable with density q.
Hence, if y1, . . . , yN are independent samples drawn from q, the importance
sampling estimate is given by

E[f(X)] ≈
1

N

N∑

i=1

w(yi)f(yi). (2.16)

In most practical cases, the density p is known only up to a normalizing
constant: we can then write w(y) = cw̄(y), where w̄ is known but the constant
c is unknown. In such cases, we may replace (2.16) with the self-normalized
importance sampling estimate

E[f(X)] ≈

∑N

i=1 w̄(yi)f(yi)∑N

i=1 w̄(yi)
. (2.17)

A crucial role for the efficiency of IS is played by the choice of the proposal
distribution q. In most applications, a good proposal should be a good
approximation of the target distribution p. A common diagnostic to assess
the efficiency of IS is the Effective Sample Size. The ESS of a weighted sample
represents the number of independent samples from the target distribution
that yields the same efficiency in the estimation. The efficiency is usually
interpreted in terms of the variance of the Monte Carlo estimator. A popular
approximation of the ESS (Elvira et al. 2022) is given by

zESS =

(∑N

i=1w(yi)
)2

∑N

i=1w(yi)
2
. (2.18)

Notice that zESS is a number between 1 and N . If we are able to sample
directly from the target distribution, i.e. q = p, then w(y) = 1 for any y,
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hence zESS = N . On the contrary, when we use a bad proposal distribution,
typically few weights are much larger than the others, leading to a very low
ESS. In particular, when the dimension of the space grows, it gets harder
to find a good proposal, and the performance of IS, in terms of ESS, drops
dramatically (Agapiou et al. 2017). This phenomenon is usually referred to
as curse of dimensionality.

2.4.2 Probabilistic reconciliation via IS

Let ν̃, as in Definition 2), be the target distribution. We set pνb as proposal
distribution. Given a sample b1, . . . ,bN drawn form pνb, the weights are
computed as

wi :=
pπ(Abi,bi)

pπb(bi)
. (2.19)

Then, (bi, w̃i)i=1,...,N is a weighted sample from ν̃, where w̃i := wi/∑N
j=1 wj

are the normalized weights. Note that (2.19) may be interpreted as the

conditional density of pU at the point Abi, given that pB = bi. Loosely
speaking, we draw samples (bi)i from the base bottom distributions, and
then weight how likely they are using the base upper distributions. We thus
combine the information contained in the distributions of both the bottom
and the upper variables. From a Bayesian perspective, we sample from the
prior, and then we assign weights to the samples by using the soft evidence.
Finally, note that, under the assumption of independence between pB and pU,
the density of ν̃ may be factorized as in (2.7). In this case,

wi = pπu(Abi). (2.20)

2.4.3 Limitations of IS

It is well-known that importance sampling is not effective to sample from high
dimensional distributions; this prevents using it to reconcile large hierarchies.
We also expect low performance when the proposal distribution pνb is not a
good approximation of the target distribution ν̃. The following result relates
the Kullback-Leibler divergence (Kullback and Leibler 1951) between the
base and reconciled distribution to the efficiency of IS.

Proposition 1. Let pB be a random vector distributed as pνb, and let W :=
pπ(ApB, pB)/pπb(pB). Then, the Kullback-Leibler divergence of the base bottom
distribution from the reconciled bottom distribution is given by

KL(pνb ∥ ν̃) = log (E[W ])− E[log(W )]. (2.21)



24 CHAPTER 2. PROBABILISTIC RECONCILIATION

Figure 2.2: A binary hierarchy

In Appendix A.2, we recall the definition of the KL divergence and we
report the proof of Proposition 1. The right-hand side of (2.21) is a measure
of the dispersion of the random variable W . Indeed, by the Jensen’s inequal-
ity, it is always non-negative, and it is zero when W is constant a.s.; it gets
larger as W becomes more dispersed. In the context of the measures of in-
equality, it usually referred to as Mean Logarithm Deviation (Haughton and
Khandker 2009). Note that, from (2.19), the importance sampling weights
are IID copies ofW . Hence, the more distant are the base and the reconciled
distribution, in terms of the Kullback-Leibler divergence, the more dispersed
are the IS weights. As explained above, a large dispersion of the weights leads
to a low effective sample size, and thus to a poor performance of importance
sampling.

The incoherence of the forecasts is often defined as the difference between
the bottom-up mean and the base upper mean, i.e. Apb− pu. Intuitively, we
expect that the distance between the distributions of ApB and pU grows as
the incoherence grows, and therefore also the distance between pνb and ν̃, as
the latter merges the information coming from the bottom and the upper
variables.

We run some experiments to test the dependence of the efficiency of IS
on the size of the hierarchy and on the percentage level of incoherence. We
set a binary hierarchy, described by a tree where each node has 1 parent and
2 children (except for the top and the bottom nodes). If k is the number of
levels of the hierarchy, then there are m = 2k bottom nodes and 1+2+ · · ·+
2k−1 upper nodes. An examples for k = 3 levels is reported in Figure 2.2.

The base distribution is defined by setting an independent Poisson distri-
bution on each node of the hierarchy. We fix a vector λb ∈ Rm

+ of the bottom
means. Then, we fix an incoherence level ϵ > 0, and we set the means of the
upper nodes as λu = (1 + ϵ)Aλb. Hence, for example, an incoherence level
of ϵ = 0.5 means that the base upper means are 50% greater than the sum
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(a) (b)

Figure 2.3: Effective sample size as the dimension of the hierarchy (left) or the
incoherence level (right) grows. The y axis is logarithmic

of the corresponding base bottom means.
We set ϵ = 0.2, and for each hierarchy size k ∈ {2, 3, 4, 5} we draw

100, 000 weighted samples from ν̃ and we compute the effective sample size.
We repeat 30 times and take the average. The results are reported in Figure
2.3a. Then, we set k = 3 and we do the same for ϵ ∈ {0.1, 0.2, . . . , 0.8}. The
results are reported in Figure 2.3b. As expected, the effective sample size
dramatically drops as the hierarchy size or the incoherence level grows. Note
that, in Figure 2.3, the y axis is logarithmic.

These experiments, along with Proposition 1, justify the need of a more
robust algorithm. In the next chapter, we introduce the Bottom-Up Impor-
tance Sampling algorithm.





Chapter 3

Algorithm and experiments

This chapter is organized as follows. In Section 3.1, we introduce the Bottom-
Up Importance Sampling algorithm. We then show how to adapt it in order
to deal with distributions in the form of samples, or in case of grouped
non-hierarchical time series. In Section 3.2, we run several experiments on
synthetic data to show the efficiency of our algorithm. Finally, in Section 3.3,
we test our method exhaustively on time series extracted from different data
sets, providing a significant improvement in the quality of the probabilistic
forecasts.

3.1 Bottom-Up Importance Sampling algorithm

First, we state the main assumption of our algorithm:

Assumption 1. The base forecasts of each variable are independent.

For instance, consider the Gaussian base forecast distribution defined
by (2.11): it satisfies Assumption 1 only if the covariance matrix pΣY is
diagonal. Of course, a coherent distribution on the entire hierarchy does not
satisfy this assumption, because of the constraints on the variables. However,
this is a common assumption when forecasts are produced independently for
each time series, as their source of errors are assumed to be independent. For
example, this is typically the case with temporal hierarchies (Athanasopoulos
et al. 2017). For the sake of simplicity, we present our algorithm making also
the following assumption:

Assumption 2. The data structure is hierarchical.

This means that the data structure disaggregates in a unique hierarchical
manner (Hyndman and Athanasopoulos 2021, Chapter 11.1). Hence, it is

27
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represented by a tree, in which every node only has one parent. An example is
given by the binary hierarchy in Figure 2.2. This assumption will be relaxed
in Section 3.1.2, so that the algorithm can deal also with non-hierarchical
structures.

Under Assumption 1 and Assumption 2, we develop a new algorithm,
called Bottom-Up Importance Sampling (BUIS). The core idea is to split a
single (n − m)-dimensional importance sampling problem into n − m one-
dimensional problems. To do so, we start by drawing a sample from the base
distribution pνb. Then, for each level of the hierarchy, from bottom to top,
we update the sample through an importance sampling step. At each step,
the “partially” reconciled distribution is used as proposal. In this way, we
encapsulate the information contained in the base distributions of the upper
time series, as explained in Section 2.4.2. The advantage of this algorithm is
that we independently perform importance sampling for each upper variable.
This deeply alleviates the curse of dimensionality.

For each level l = 1, . . . , L of the hierarchy, we denote the upper variables
at level l by u1,l, . . . , ukl,l. Moreover, for any upper variable uj,l, we denote by
b1,(j,l), . . . , bqj,l,(j,l) the bottom variables that sum up to uj,l. In this way, we

have that
∑L

l=1 kl = n−m, the number of upper variables, while
∑kl

j=1 qj,l =
m, the number of bottom variables, for each level l.

Let us consider, for example, the hierarchy in Figure 2.1. For the first level
l = 1, we have k1 = 2, u1,1 = U2, and u2,1 = U3. Moreover, q1,1 = q2,1 = 2,
and b1,(1,1) = B1, b2,(1,1) = B2, b1,(2,1) = B3, b2,(2,1) = B4. For the last level
l = 2, we have k2 = 1, u1,2 = U1, q1,2 = 4, b1,(1,2) = B1, b2,(1,2) = B2,
b3,(1,2) = B3, b4,(1,2) = B4.

Algorithm 1 Bottom-Up Importance Sampling

1: Sample
(
b(i)
)
i=1,...,N

from pπb
2: for l in levels do
3: for j = 1, . . . , kl do

4: qw(i) ← pπuj,l

(∑qj,l
t=1 b

(i)
t,(j,l)

)
for i = 1, . . . , N

5: w(i) ← qw(i)
∑

h qw(h) for i = 1, . . . , N

6:
(
b̄
(i)
j

)
i
← Resample

((
b
(i)
1,(j,l), . . . , b

(i)
qj,l,(j,l)

)
, w(i)

)
i

7: end for

8: b(i) ←
[
b̄
(i)
1 , . . . , b̄

(i)
kl

]
for i = 1, . . . , N

9: end for

10: return
(
b(i)
)
i

The BUIS algorithm is presented above (Alg. 1). The “Resample” step is
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performed by sampling with replacement from the discrete distribution given
by

P

(
b =

(
b
(i)
1,(j,l), . . . , b

(i)
qj,l,(j,l)

))
= w(i), (3.1)

for all i = 1, . . . , N . We explicit the BUIS algorithm on the simple hierarchy
in Figure 2.1:

1. Sample (b
(i)
j )i=1,...,N from pπBj

, for j = 1, 2, 3, 4

2. Compute the weights (w(i))i=1,...,N with respect to U2 as

w(i) = pπU2

(
b
(i)
1 + b

(i)
2

)

3. Sample
(
b̄
(i)
1 , b̄

(i)
2

)
i
with replacement from

(
(b

(i)
1 , b

(i)
2 ), w(i)

)
i=1,...,N

4. Repeat step 2 and 3 using B3, B4 and U3 to get
(
b̄
(i)
3 , b̄

(i)
4

)
i

5. Set
(
b
(i)
1 , b

(i)
2 , b

(i)
3 , b

(i)
4

)
i
=
(
b̄
(i)
1 , b̄

(i)
2 , b̄

(i)
3 , b̄

(i)
4

)
i
and move to the next level

6. Compute the weights (w(i))i=1,...,N with respect to U1 as

w(i) = pπU1

(
b
(i)
1 + b

(i)
2 + b

(i)
3 + b

(i)
4

)

7. Sample
(
b̄
(i)
1 , b̄

(i)
2 , b̄

(i)
3 , b̄

(i)
4

)
i
with replacement from

(
(b

(i)
1 , b

(i)
2 , b

(i)
3 , b

(i)
4 ), w(i)

)
i

Proposition 2. The output of the BUIS algorithm is approximately a sample
drawn from the reconciled distribution ν̃.

The proof is reported in Appendix A.3.

3.1.1 Sample-based BUIS

The densities of the forecast distributions are not always available in ana-
lytical form. For instance, probabilistic forecasts on count time series are
typically given as samples (Liboschik et al. 2017). However, we are able
to perform reconciliation even without the analytical form of the densities.
Since we only deal with one-dimensional densities to compute the weights,
we may effectively use approximations based on samples. For discrete dis-
tributions, we use the empirical distribution. As for the continuous setting,
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several methods are available to approximate the true density, such as kernel
density estimation (Chen 2017). Therefore, we only need to replace line 4 in
Algorithm 1 with:

Sample
(
u
(i)
j,l

)
i=1,...,N

from pπuj,l

qπ ← Density Estimation

((
u
(i)
j,l

)
i=1,...,N

)

qw(i) ← qπ
(∑qj,l

t=1 b
(i)
t,(j,l)

)
for i = 1, . . . , N

From a computational perspective, the sample-based algorithm is slower due
to the density estimation step.

3.1.2 More complex hierarchies: grouped time series

Time series with a data structure that does not disaggregate in a unique
hierarchical manner are referred to as grouped time series (Hyndman and
Athanasopoulos 2021, Chapter 11). For instance, consider a weekly time
series, for which we compute the following temporal aggregates: 2-weeks,
4-weeks, 13-weeks, 26-weeks, 52-weeks. If we deal with one year forecasts,
we have 52 bottom variables and 26 + 13 + 4 + 2 + 1 = 46 upper variables.
Clearly, this structure cannot be represented as a tree.

Since Assumption 2 is not satisfied, the BUIS algorithm, as described in
Section 3.1, cannot be used. Indeed, as highlighted in the proof, we need
the independence of b̄1, . . . , b̄kl to multiply their densities. If Assumption
2 does not hold, correlations between bottom variables are created when
conditioning on the upper levels.

To overcome this problem, we proceed as follows. First, we find the largest
sub-hierarchy within the group structure. For instance, in the example above,
we consider the sub-hierarchy given by the bottom variables and by the 2-
weeks, 4-weeks and 52-weeks aggregates. All the other upper variables are
then regarded as additional constraints. We use the BUIS algorithm on the
sub-hierarchy, obtaining a sample b. Then, we compute the weights on b

using the base distributions of the additional constraints. This is equivalent
to performing a plain IS, where we use the output of BUIS on the hierarchical
part as proposal distribution. In this way, we reduce the dimension of the
IS task from n−m, the total number of upper constraints, to the number of
constraints that are not included in the sub-hierarchy: in the above example,
from 46 to 6. We highlight that the distribution we sample from would be
the same even with different choices of sub-hierarchies. However, picking
the largest one is the best choice from a computational perspective. We still
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refer to this extended version of the algorithm as Bottom-Up Importance
Sampling.

3.2 Experiments on synthetic data

Figure 3.1: A binary hierarchy

We present experiments on synthetic data, aimed at checking the cor-
rectness of our algorithm. We compare the accuracy of IS, BUIS, and
the method by Corani et al. 2022, which we implement as in their pa-
per using the library PyMC3 (Salvatier et al. 2016). PyMC3 adopts an
adaptive Metropolis-Hastings algorithm (Haario et al. 2001) for discrete dis-
tributions and the No-U-Turn Sampler (NUTS, Hoffman, Gelman, et al.
2014) for continuous distributions. We run 4 chains with 5, 000 samples
each. We use 100, 000 samples for IS and BUIS, which are faster. We per-
form experiments on two different hierarchies: the binary tree of Figure 3.1
and the weekly hierarchy described in Section 3.1.2. We implemented the
BUIS algorithm in Python. We make available a notebook to reproduce
our synthetic experiments at the url https://drive.google.com/file/d/
1dUThfSfWv9Qij6-slwtYwMd-Prw2KagR/view?usp=sharing.

3.2.1 Reconciling Gaussian forecasts

We start by considering Gaussian base forecasts, for which the reconciled
distribution can be analytically computed (Corani et al. 2020). For the binary
hierarchy, we set on each bottom node a Gaussian distribution with mean
randomly chosen in the interval [5, 10], and standard deviation pσb = 2. We
denote by pmb ∈ R8

+ the vector of the base bottom means. We introduce
incoherence by setting the means of the base forecast of the upper variables as
pmu = (1+ϵ)A pmb, whereA is the aggregating matrix and ϵ is the incoherence
level. We consider the incoherence levels ϵ ∈ {0.1, 0.3, 0.5}. Hence, an
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incoherence level of 0.5 means that the base upper means are 50% greater
than the sum of the corresponding base bottom means. We set pσu = 3 as
standard deviation for the base forecast of each upper variable.

We compare the reconciled mean computed via sampling (ȳ) with the
analytically reconciled mean (ya) using the mean absolute percentage error
(MAPE):

MAPE(ȳ,ya) =
1

n

n∑

i=1

|ȳi − y
a
i |

yai
· 100.

We use the MAPE as it is an intuitive way for comparing the relative error
between ȳ and ya, although it is generally not recommended for evaluating
the forecast accuracy (Kolassa 2016).

We repeat each experiment 30 times using the same parameters, and we
report the average errors in Table 3.1. Remarkably BUIS reduces the error
with respect to IS, dealing robustly also with large incoherence. The re-
sults are graphically represented in Figure 3.2, where we show the boxplot of
the reconciled mean of a bottom variable. The blue line represents the ex-
act value. We complete our analysis by reporting the 2-Wasserstein distance
(Panaretos and Zemel 2019) between the true reconciled distribution and the
empirical distribution obtained via sampling. The results, shown in Table
3.2, are similar to those discussed for the mean. Hence, BUIS is almost as
accurate as MCMC, while drastically reducing the computational times from
30 seconds to less than a second (Table 3.3). Such a major speedup is possi-
ble because IS simultaneously generates samples and computes the weights.
MCMC, on the contrary, generates the samples sequentially. This could be
a major advantage in modern applications, which require reconciling a large
number of time series. A more detailed comparison of the computational
times is given in Appendix A.4.

Error wrt analytical solution

ϵ IS BUIS MCMC

0.1 0.17 % 0.11 % 0.12 %
0.3 0.33 % 0.11 % 0.10 %
0.5 1.75 % 0.13 % 0.08 %

Table 3.1: MAPE on the reconciled mean (binary hierarchy, Gaussian distribu-
tions)
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W2

ϵ IS BUIS MCMC

0.1 0.041 0.028 0.031
0.3 0.094 0.031 0.030
0.5 0.521 0.042 0.031

Table 3.2: Average Wasserstein distance between the empirical and actual recon-
ciled distribution (binary hierarchy, Gaussian distributions)
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Figure 3.2: Boxplot of the reconciled mean of a bottom variable (binary hierarchy,
Gaussian distributions)

Average time

hierarchy IS BUIS MCMC

binary 0.06 s 0.17 s 33.9 s
weekly - 1.47 s 1065.4 s

Table 3.3: Average computational times (Gaussian distributions)

Weekly hierarchy

We reconcile a weekly hierarchy with 52 bottom and 46 upper variables (Sec-
tion 3.1.2). We run 30 experiments for the incoherence levels ϵ ∈ {0.1, 0.3, 0.5}.
We only compare BUIS and MCMC, since the dimension of the space is too
large to use IS. Even with such a large hierarchy, BUIS achieves good results
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(Tables 3.4 and 3.5), while its computational time is 3 orders of magnitude
smaller than MCMC (second row of Table 3.3).

Error

ϵ BUIS MCMC

0.1 0.07 % 0.06 %
0.3 0.09 % 0.05 %
0.5 0.21 % 0.04 %

Table 3.4: MAPE on the reconciled mean (weekly hierarchy, Gaussian distribu-
tions)

W2

ϵ BUIS MCMC

0.1 0.020 0.018
0.3 0.029 0.018
0.5 0.083 0.018

Table 3.5: Average Wasserstein distance between the empirical and actual recon-
ciled distribution (weekly hierarchy, Gaussian distributions)

3.2.2 Reconciling Poisson forecasts

We now consider discrete base forecasts. We set a Poisson distribution on
each bottom variable, with mean randomly chosen in the interval [5, 10]. We

denote by pλb ∈ R8
+ the vector of the base bottom means. As before, for each

incoherence level ϵ ∈ {0.1, 0.3, 0.5}, we set the mean of the upper variables

as pλu = (1+ϵ)Apλb. In the Poisson case, the reconciled distribution cannot be
analytically computed. We thus compare the results obtained using IS and
BUIS with the results obtained using MCMC. Since probabilistic forecasts
of count time series are typically given as samples (Liboschik et al. 2017),
we also run sample-based BUIS (Section 3.1.1): we assume that the base
distribution is unknown, and that only samples are available. The mean
absolute percentage errors are computed with respect to the reconciled mean
via MCMC (Table 3.6).

The boxplot of the reconciled mean of a bottom variable is shown in Fig-
ure 3.3. The results obtained using BUIS, in both cases, are similar to those
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obtained using MCMC. Note that, for small incoherence levels, the standard
deviation with MCMC is larger than with BUIS. Finally, the average compu-
tational times are reported in Table 3.7. Both BUIS and sample-based BUIS
are two orders of magnitude faster than MCMC.

Error wrt MCMC

ϵ IS BUIS
BUIS

w/samples

0.1 0.36 % 0.37 % 0.37 %
0.3 0.35 % 0.32 % 0.33 %
0.5 0.51 % 0.33 % 0.33 %

Table 3.6: MAPE on the reconciled mean (binary hierarchy, Poisson distributions)

Average time

hierarchy IS BUIS
BUIS

w/samples MCMC

binary 0.12 s 0.22 s 0.31 s 35.5 s
weekly - 2.10 s 2.69 s 2417.8 s

Table 3.7: Average computational times (Poisson distributions)

Weekly hierarchy

The Mean absolute percentage errors over 30 experiments, using a weekly
hierarchy with Poisson base distributions, are reported in Table 3.8; our
reference method is MCMC. Note that the dimension of the space is too
large to use IS. Even in the case of such a large hierarchy, using BUIS we are
able to achieve a very small error. Finally, the average computational times
are reported in Table 3.7. BUIS and sample-based BUIS are about 3 orders
of magnitude faster than MCMC. Note that sample-based BUIS is almost as
fast as BUIS, despite the density estimation step.

3.3 Experiments on real data

We now perform probabilistic reconciliation on temporal hierarchies, using
time series extracted from two different data sets: carparts, available from
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Error wrt MCMC

ϵ BUIS
BUIS

w/samples

0.1 0.34 % 0.33 %
0.3 0.36 % 0.36 %
0.5 1.09 % 1.07 %

Table 3.8: MAPE on the reconciled mean (weekly hierarchy, Poisson distributions)
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Figure 3.3: Boxplot of the reconciled mean of a bottom variable (binary hierarchy,
Poisson distributions)

the R package expsmooth (Hyndman 2018), and syph, available from the R
package ZIM (Yang et al. 2018).

The carparts data set is about monthly sales of car parts. As in Hyndman
et al. 2008, Chapter 16, we remove time series with missing values, with less
then 10 positive monthly demands and with no positive demand in the first
15 and final 15 months. After this selection, there are 1046 time series left.
Note that we use less restrictive criteria in the selection of the time series than
Corani et al. 2022, where only 219 time series from carparts were considered.
Monthly data are aggregated into 2-months, 3-months, 4-months, 6-months
and 12-months levels.

The syph data set is about the weekly number of syphilis cases in the
United States. We remove the time series with ADI greater than 20. The

ADI is computed as ADI =
∑P

i=1 pi
P

, where pi is the time period between two
non-zeros values and P is the total number of periods (Syntetos and Boylan
2005). We also remove the time series corresponding to the total number of
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cases in the US. After this selection, there are 50 time series left. Weekly
data are aggregated into 2-weeks, 4-weeks, 13-weeks, 26-weeks and 52-weeks
levels.

For both data sets, we fit a Generalized Linear Models using the tscount
package (Liboschik et al. 2017). We use a negative binomial predictive dis-
tribution, with a first-order regression on past observations. The test set has
length 1 year for both data sets. We thus compute up to 12 steps ahead
at monthly level, and up to 52 steps ahead at weekly level. Probabilistic
forecasts are returned in the form of samples.

Reconciliation is performed in three different ways. In the first case, we
fit a Gaussian distribution on the returned samples. Then, we follow (Corani
et al. 2020) to analytically compute the Gaussian reconciled distribution. In
the second case, we fit a negative binomial distribution on the samples, and
we reconcile using the BUIS algorithm. Since for both data sets Assumption
2 does not hold, we use the method of Section 3.1.2 for grouped time series.
Finally, we use the sample-based BUIS directly on the samples, as explained
in Section 3.1.1. Although the sample-based algorithm is slightly slower, this
method yields a computational gain over BUIS, as fitting a negative binomial
distribution on the samples requires about 1.2 s for the monthly hierarchy
and 3.9 s for the weekly hierarchy. We refer to these methods, respectively,
as N, NB, and samples. Furthermore, we denote by base the unreconciled
forecasts.

We use different indicators to assess the performance of each method.
The mean scaled absolute error (MASE) (Hyndman 2006) is defined as

MASE =
MAE

Q
,

where MAE = 1
h

∑h

j=1|yt+j − ŷt+j|t| and Q = 1
T−1

∑T

t=2|yt − yt−1|. Here, yt
denotes the value of the time series at time t, while ŷt+j|t denotes the point
forecast computed at time t for time t+ j. The median of the distribution is
used as point forecast, since it minimizes MASE (Kolassa 2016).

The mean interval score (MIS) (Gneiting 2011) is defined, for any α ∈
(0, 1), as

MIS = (u− l) +
2

α
(l − y)1(y < l) +

2

α
(y − u)1(y > u),

where l and u are the lower and upper bounds of the (1−α) forecast coverage
interval and y is the actual value of the time series. In the following, we use
α = 0.1. MIS penalizes wide prediction intervals, as well as intervals that do
not contain the true value.
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N vs base NB vs base samples vs base
metric hier-level

ES 0.07 0.52 0.53

MASE Monthly -1.02 0.14 0.13
2-Monthly -0.53 0.25 0.27

Quarterly -0.42 0.21 0.26

4-Monthly -0.40 0.16 0.21

Semiannual -0.33 0.14 0.16

Annual -0.26 0.18 0.17
average -0.49 0.18 0.20

MIS Monthly -0.08 0.45 0.63

2-Monthly 0.28 0.45 0.56

Quarterly 0.22 0.43 0.46

4-Monthly 0.03 0.35 0.36

Semiannual -0.07 0.37 0.26
Annual -0.17 0.40 0.22
average 0.03 0.41 0.42

Table 3.9: Skill scores on the time series extracted from carparts, detailed by each
level of the hierarchy

Finally, the Energy score (Székely and Rizzo 2013) is defined as

ES(P,y) = EP [∥y − s∥α]−
1

2
EP [∥s− s′∥α] ,

where P is the forecast distribution on the whole hierarchy, s, s′ ∼ P are
a pair of independent random variables and y is the vector of the actual
values of all the time series. The energy score is a proper scoring rule for
distributions defined on the entire hierarchy (Panagiotelis et al. 2022). We
compute ES, with α = 2, using samples, as explained in Wickramasuriya
2021.

We use the skill score to compare the performance of a method with
respect to a baseline method, in terms of percentage improvement. We use
base as baseline method. For example, the skill score of NB on MASE is
given by

Skill(NB, base) =
MASE(base)−MASE(NB)

(MASE(base) + MASE(NB)) /2
. (3.2)

In the literature, the skill score is often defined using MASE(base) as the
denominator in (3.2) (Wheatcroft 2019). However, we believe that our defi-
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N vs base NB vs base samples vs base
metric hierc-level

ES 0.08 0.11 0.15

MASE Weekly -0.63 0.14 0.14

2-Weekly -0.40 0.16 0.14
4-Weekly -0.22 0.13 0.12
Quarterly -0.10 0.01 0.04

Semiannual 0.01 0.07 0.15

Annual -0.05 -0.00 0.04

average -0.23 0.08 0.10

MIS Weekly -0.06 0.46 0.45
2-Weekly 0.08 0.33 0.34

4-Weekly 0.03 0.19 0.25

Quarterly -0.15 -0.11 -0.08

Semiannual -0.34 -0.27 -0.21

Annual -0.33 -0.23 -0.22

average -0.13 0.06 0.09

Table 3.10: Skill scores on the time series extracted from syph, detailed by each
level of the hierarchy

nition has two main advantages. First, it is symmetric. Second, the skill score
is well-defined even if the baseline error is zero, and moreover it always lies
between −2 and 2. For each level, since the skill score is scale-independent,
we compute it for each forecasting horizon, and take the average.

The skill scores for carparts are reported in Table 3.9. Both NB and
samples methods yield a significant improvement for all the indicators, and
for all the hierarchy levels. For both methods, the average improvement is
about 20% for MASE, 40% for MIS and 50% for ES. The skill scores for syph
are reported in Table 3.10. As before, the average improvement of NB and
samples is significant for all indicators. For both datasets, the N method
performs poorly, in many cases yielding negative skill scores. As observed in
Corani et al. 2022, this method does not capture the asymmetry of the base
forecasts. Finally, samples appears to perform better that NB. Indeed, the
step of fitting a Negative Binomial distribution on the forecast samples may
yield an additional source of error.





Chapter 4

Reconciliation effects and

application

This chapter is organized as follows. In Section 4.1, we focus on the Gaussian
case. In Section 4.2 and 4.3, we analyze the effect of the reconciliation on
(respectively) the variance and the mean of the forecast distribution, and we
present some examples with Bernoulli and Poisson distributions. In Section
4.4, we present the multivariate score-driven model introduced by Agosto
2022 and the data set. Finally, in Section 4.5, we reconcile all the 3508 daily
forecasts, obtaining a large improvement in the performance, and we observe
the effects discussed before.

4.1 Gaussian case

As shown in Section 2.3, when the base forecast distribution is a multivariate
Gaussian, the reconciled distribution can be analytically computed. Let

pY =

[
pU
pB

]
∼ N

(
py, pΣY

)
(4.1)

be the base forecast distribution for the entire hierarchy, where

py =

[
pu
pb

]
, pΣY =

[
pΣU

pΣUB

pΣT
UB

pΣB

]
.

The reconciled bottom and upper distributions are then multivariate Gaus-
sian:

B̃ ∼ N
(
b̃, Σ̃B

)
, Ũ ∼ N

(
ũ, Σ̃U

)
,

41
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where

b̃ = pb+
(

pΣT
UB − pΣBA

T
)
Q−1(Apb− pu), (4.2)

Σ̃B = pΣB −
(

pΣT
UB − pΣBA

T
)
Q−1

(
pΣT

UB − pΣBA
T
)T

, (4.3)

ũ = pu+
(

pΣU − pΣUBA
T
)
Q−1(Apb− pu), (4.4)

Σ̃U = pΣU −
(

pΣU − pΣUBA
T
)
Q−1

(
pΣU − pΣUBA

T
)T

, (4.5)

and Q := pΣU − pΣUBA
T −ApΣT

UB +ApΣBA
T .

Note that the reconciled variance does not depend on the point forecasts,
but only on the base variances. Moreover, the following proposition shows
that the variance of each variable decreases after reconciliation (the proof is
in Appendix A.5).

Proposition 3. For each i = 1, . . . ,m, and j = 1, . . . , n−m, we have

Var(B̃i) ≤ Var( pBi),

Var(Ũj) ≤ Var(pUj). (4.6)

Moreover, we observe that the shift applied to the base forecast mean is
proportional toApb−pu, which is often called incoherence. Let us now consider
a simple hierarchy with 1 upper and 2 bottom variables, as in Figure 4.1.

U

B1 B2

Figure 4.1: A simple hierarchy

Let us assume that pB1, pB2, and pU are independent and Gaussian-distributed:

pB1 ∼ N (pb1, pσ
2
1), pB2 ∼ N (pb2, pσ

2
2), pU ∼ N (pu, pσ2

U).

From (4.2) and (4.4), the reconciled means are given by

b̃1 = (1− g1)pb1 + g1(pu−pb2),

b̃2 = (1− g2)pb2 + g2(pu−pb1),

ũ = (1− gu)pu+ gu(pb1 +pb2), (4.7)
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where g1 =
σ2
1

σ2
1+σ2

2+σ2
u
, g2 =

σ2
2

σ2
1+σ2

2+σ2
u
, and gu = σ2

u

σ2
1+σ2

2+σ2
u
.

The reconciled mean of U is thus a convex combination of the base mean
pu and the bottom-up mean pb1 + pb2. Indeed, the reconciliation merges the
information coming from the base forecast distribution of the bottom and
the upper variables. Note that, if σU = 0, we have gu = 0 and thus ũ = pu.
Indeed, there is no uncertainty in the forecast of U , hence only the bottom
point forecast are adjusted in order to have b̃1 + b̃2 = pu:

b̃1 = pb1 +
σ2
1

σ2
1 + σ2

2

(pu−pb1 −pb2),

b̃2 = pb2 +
σ2
2

σ2
1 + σ2

2

(pu−pb1 −pb2).

On the other hand, if σU is very large compared to σ1 and σ2, we have g1 ≈ 0,
g2 ≈ 0, and gu ≈ 1, hence

b̃1 ≈ pb1, b̃2 ≈ pb2, ũ ≈ pb1 +pb2.

This corresponds to a bottom-up approach: if the uncertainty on the pre-
diction of the upper variable is very large, only the information coming from
the bottom variables is taken into account.

4.2 Reconciled variance

In the Gaussian case, the variance of the reconciled distribution is always
smaller than the variance of the base distribution. This is somehow anal-
ogous to the Gaussian conjugate model in Bayesian statistics, where the
variance of the posterior distribution is always guaranteed to decrease as we
get more data. In the non-Gaussian case, however, the variance of the poste-
rior may increase if the new observations are not coherent with prior beliefs
(Gelman 2011). Analogously, the variance of the reconciled distribution may
be larger than the variance of the base distribution. Intuitively, we expect
this behaviour when there are conflicting information coming from the base
forecast distributions.

We now show that in the case of count variables, the variance can in fact
increase after reconciliation.

Proposition 4. Let us assume that p := P
(

pU = ApB
)
> 0. Then, for any

j = 1, . . . ,m, we have

Var
[
B̃j

]
=

Var
(

pBj

)
− (1− p) Var

[
pBj|pU ̸= ApB

]
− p(1− p) (a− b)2

p
,

(4.8)
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where a := E
[

pBj|pU ̸= ApB
]
and b := E

[
pBj|pU = ApB

]
.

The proof is reported in Appendix A.6. The term p = P
(

pU = ApB
)
rep-

resents the probability of coherence, according to the base forecasts. From
(4.8), if p is small enough, the reconciled variance might be greater then the
base variance. Indeed, in this case, there is conflict between the informa-
tion coming from the bottom and the upper distributions. We present two
examples using Bernoulli and Poisson distributions.

4.2.1 Bernoulli example

Let us consider the hierarchy in Figure 4.1, with 1 upper and 2 bottom
variables. We now assume that the base bottom distributions are given by
independent Bernoulli:

pB1 ∼ B(p1), pB2 ∼ B(p2),

for some p1, p2 ∈ [0, 1]. We denote by pπ1 and pπ2, respectively, the probability

mass functions of pB1 and pB2, so that pπ1(0) = 1−p1, pπ1(1) = p1, and pπ1(k) = 0
for any k ̸= 0, 1.

The base distribution of the upper variable is given by

pU =





0 prob = q0

1 prob = q1

2 prob = q2,

hence the probability mass function πU of pU is defined as pπU(0) = q0, pπU(1) =
q1, pπU(2) = q2, and pπU(k) = 0 for any k ̸= 0, 1, 2.

Then, the probability mass function π̃ of the reconciled distribution of
the bottom variables is given by

π̃(b1, b2) ∝ pπ1(b1)pπ2(b2)pπU(b1 + b2),

so that the reconciled bottom distribution may be expressed as

(B̃1, B̃2) =





(0, 0) prob = (1− p1)(1− p2)q0/S

(1, 0) prob = p1(1− p2)q1/S

(0, 1) prob = (1− p1)p2q1/S

(1, 1) prob = p1p2q2/S,

where S := (1 − p1)(1 − p2)q0 + p1(1 − p2)q1 + (1 − p1)p2q1 + p1p2q2 is the
normalizing constant. Hence

B̃1 ∼ B(p̃1), B̃2 ∼ B(p̃2),
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with

p̃1 =
[(1− p2)q1 + p2q2]p1

S
,

p̃2 =
[(1− p1)q1 + p1q2]p2

S
. (4.9)

Moreover

Ũ =





0 prob = (1− p1)(1− p2)q0/S

1 prob = (p1 + p2 − 2p1p2)q1/S

2 prob = p1p2q2/S.

(4.10)
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Figure 4.2: Probability mass function of U (p1 = 0.3, p2 = 0.2, q = [0.1, 0.2, 0.7])

Let us now set p1 = 0.3, p2 = 0.2, and q = [0.1, 0.2, 0.7]. From (4.9) and
(4.10), we have

p̃1 ≈ 0.52,

p̃2 ≈ 0.40,

q̃ ≈ [0.32, 0.44, 0.24]. (4.11)
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In Figure 4.2, we compare the base, bottom-up, and reconciled distribution
of the upper variable. Since the information provided by the bottom and the
upper variables are in conflict, the resulting reconciled distribution is more
spread across the domain. Indeed, the variance of all the variables increases
after reconciliation:

Var[ pB1] = 0.21, Var[B̃1] ≈ 0.25,

Var[ pB2] = 0.16, Var[B̃2] ≈ 0.24,

Var[pU ] = 0.44, Var[Ũ ] ≈ 0.56.

4.2.2 Poisson example

Let us consider the same hierarchy, but we now assume to deal with inde-
pendent Poisson base distributions:

pB1 ∼ Poi(λ1), pB2 ∼ Poi(λ2), pU ∼ Poi(λu),

for some λ1, λ2, λu > 0. In this case, reconciliation cannot be performed
analytically. We thus use importance sampling to sample from the reconciled
distribution.

We set λ1 = 0.5, λ2 = 0.8, and λu = 6.0. Then, we have

Var[ pB1] = 0.5, Var[B̃1] ≈ 0.81,

Var[ pB2] = 0.8, Var[B̃2] ≈ 1.13,

Var[pU ] = 6.0, Var[Ũ ] ≈ 1.40.

Since we have a large incoherence, the variance of the bottom variables in-
creases. In Figure 4.3 we show the probability mass function of all the vari-
ables before and after reconciliation. In Figure 4.4, we compare the base,
bottom-up, and reconciled distribution of the upper variable.
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Figure 4.3: Base and reconciled probability mass functions of B1, B2, and U

(λ1 = 0.5, λ2 = 0.8, λu = 6.0)
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Figure 4.4: Base, bottom-up, and reconciled probability mass functions of U (λ1 =
0.5, λ2 = 0.8, λu = 6.0)
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4.3 Reconciled mean

In the Gaussian case, the reconciled mean is given by a compromise between
the base means of all the variables. In particular, from (4.7), we see that the
reconciled mean of U is a convex combination of the base mean of U and
the bottom-up mean. As before, this is analogous to the Gaussian conjugate
model, where the posterior expectation is a convex combination of the prior
expectation and the sample mean (Diaconis and Ylvisaker 1979).

This “compromise” effect has also been observed by Corani et al. 2022,
using Poisson distributions. However, we show that this is not the only
possible behavior. As explained before, if the incoherence is not large we
typically observe a reduction of the variance of the forecast distribution.
Indeed, in this case, the information provided by the bottom and the upper
base distributions are consistent with each other: hence, the uncertainty
decreases, and the mass gets concentrated on the values that are more likely.
We refer to this effect as “strengthening” effect. The tail of the distribution
is typically shortened as the variance decreases: if we deal with asymmetric
distributions, this leads to a shift of the mean in the direction opposite to the
tail. The reconciled mean of the upper variable may thus be lower than both
the base upper mean and the bottom-up mean. We show these two different
behaviors, first using a Poisson example, then through an application to
financial count data time series (Section 4.5).

4.3.1 Poisson example

Let us consider the same example as in Section 4.2.2. Depending on the
parameters of the base distributions, we observe the two different effects of
the reconciliation described above.

Example 1: “strengthening” effect

We set λ1 = 0.5, λ2 = 0.8, and λu = 1.5. Then, we have

E[ pB1] = 0.5, E[B̃1] ≈ 0.43,

E[ pB2] = 0.8, E[B̃2] ≈ 0.68,

E[pU ] = 1.50, E[Ũ ] ≈ 1.11.

Note that the means of all the variables decrease after reconciliation. In
Figure 4.5, we show the probability mass functions of all the variables before
and after reconciliation. We observe a shift to the left as the tails of the
distributions get thinner. In Figure 4.6, we compare the base distribution, the
bottom-up distribution, and the reconciled distribution of the upper variable.
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The effect of the reconciliation is to strengthen the information provided by
the base and the bottom-up distributions, reducing the uncertainty.
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Figure 4.5: Effect of the reconciliation on the probability mass function of B1,
B2, and U (λ1 = 0.5, λ2 = 0.8, λu = 1.5)
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Figure 4.6: Effect of the reconciliation on the probability mass function of U

(λ1 = 0.5, λ2 = 0.8, λu = 1.5)
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Example 2: “compromise” effect

We now set λ1 = 5, λ2 = 7, and λu = 18. Then, we have

E[ pB1] = 5, E[B̃1] ≈ 6.02,

E[ pB2] = 7, E[B̃2] ≈ 8.43,

E[pU ] = 18, E[Ũ ] ≈ 14.44.

In this case, the bottom means increase after reconciliation, while the upper
mean decreases. In Figure 4.7, we show the probability mass functions of
all the variables before and after reconciliation. We observe a shift to the
left for the upper distribution, and to the right for the bottom distributions.
In Figure 4.8, we compare the base, bottom-up, and reconciled distribution
of the upper variable. The behavior is analogous to the Gaussian case: the
reconciled distribution merges the information coming from the bottom and
from the upper distributions.
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Figure 4.7: Effect of the reconciliation on the probability mass function of B1,
B2, and U (λ1 = 5, λ2 = 7, λu = 18)
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Figure 4.8: Effect of the reconciliation on the probability mass function of U
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4.4 Model and data set

4.4.1 Multivariate score-driven models for count time

series

Agosto 2022 proposed a multivariate negative binomial score-driven specifi-
cation, assuming that the observations in each time series i follow a negative
binomial distribution with a time-varying location parameter µit > 0 and a
static dispersion parameter αi ≥ 0:

Xit ∼ NB(µit, αi) (4.12)

The probability mass function is the following:

P [Xit = xit|µit, αi] =
Γ(xit + α−1

i )

Γ(xit + 1)Γ(α−1
i )

(
α−1
i

α−1
i + µit

)α−1
i
(

µit

α−1
i + µit

)xit

(4.13)
for i = 1, ..., k and t = 1, ...T.

The time-varying location parameters ft follows a Generalized Autore-
gressive Score (GAS) specification (Creal, 2013, Harvey, 2013). In the gen-
eral GAS specification, the dynamics of filtered parameters ft+1 = (f1, ..., ft)
are captured by an autoregressive term and by the scaled score (gradient) of
the conditional observation density through the recursions
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ft+1 = G+Hft + L S(ft)∇(xt, ft) (4.14)

where ft = (f1t, ..., fkt) is the vector of time-varying parameters, G =
(g1, ..., gk) are the constant parameters, H = diag(h1, ..., hk) is the k × k
diagonal matrix of autoregressive parameters, L is the k × k matrix of coef-
ficients associated to the scaled score and S(ft) is a scaling function for the
score ∇(xt, ft).
Moreover, following Heinen and Rengifo 2007 and Escribano and Maggi 2019,
Agosto 2022 assumes:

L = diag(e) + γδ′ (4.15)

where e, γ, δ ∈ Rk are column vectors. In addition, to be able to estimate
the values of γ and δ, we impose δk = 1−

∑k−1
i=1 δi.

The score ∇(xt, ft) corresponds to the first derivative of the negative
binomial log-likelihood function:

∇(xt, ft) =
xt − exp(ft)

α exp(ft) + 1
(4.16)

Agosto 2022 applied the model to the analysis of dependence between
time series of extreme market event counts in different economic sectors.
In such a context,the parameters entering the score filter dynamics can be
interpreted as follows:

• TheG constant parameters determine the unconditional and long-term
mean of the number of events f = (I−H)−1G.

• The H coefficients express dependence of the expected number of ex-
treme market events on the past expectations, allowing to capture long-
memory effects in the count processes.

• The L matrix expresses in-sector and cross-sector dependence through
the score. Being the latter calculated as the scaled difference between
the observed and expected number of events at the previous time, the L
coefficients determine the impact of shocks in the extreme event counts
occurred in t− 1 on the expected number of extreme events in t in the
same sector (diagonal effects) and in other sectors (off-diagonal effects).
Formulation (4.15) gives a further insight into the interpretation of
parameters: e measures the own effect of shock events in sector i. The
γ and δ vectors act instead as multipliers of the off-diagonal elements
of L.
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The θ = (α,G,H, e,γ, δ)′ parameter vector describing the score-driven
dynamics (4.14) can be estimated by maximum likelihood maximization (see
Agosto, 2022 for details).

4.4.2 Empirical analysis

Data

This model has been applied to the count time series of extreme CDS returns
of companies belonging to the Euro Stoxx 50 index in the period from 31
December 2004 to 19 December 2018, calculated from Bloomberg data and
used in Agosto (2022). An extreme market event is considered to occur at
time (day) t in a given asset if the corresponding observation exceeds the
90-th percentile of the CDS spread distribution of the same asset in the last
trading year. Each count time series corresponds to one of the following
industries: Financial (FIN), Information and Communication Technology
(ICT), Manufacturing (MFG), Energy (ENG), Trade (TRD). As it can be
seen from the descriptive statistics provided in Table 4.1, all the considered
series show a high frequency of zeros and are overdispersed, i.e. their variance
is higher than the mean. These features motivate the use of count data
models for rare events allowing for possible zero-inflation and overdispersion.

Sector Number of companies Mean Standard deviation Frequency of zeros

FIN 10 0.96 2.12 0.74
ICT 4 0.38 0.86 0.79
MFG 7 0.67 1.40 0.73
ENG 5 0.48 1.13 0.80
TRD 3 0.29 0.66 0.81

Table 4.1: Number of companies, mean and standard deviation of extreme event
counts and frequency of zero extreme event counts for each analyzed sector

Hierachical structure

As it can be easily noticed, the considered time series have a hierarchical
structure: the bottom level is represented by the five count time series re-
ferred to the different economic sectors, while at the top level there is the
aggregate time series obtained as the sum of the extreme events counts at
each trading day in the sample period. While the dynamics of bottom time
series is conditional on the other series’ shocks, the aggregate series follows
a purely autoregressive - GARCH-type - process.
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Score-driven model estimation

The count predictions for the bottom time series model are obtained by
fitting the negative binomial score-driven model introduced in Section 4.4.1.
The α coefficients are estimated using the univariate score-driven model by
Blasques et al. 2018, and their values are shown in Table 4.2. As in Agosto
2022, we use a unit-scaling for the filtered dynamics, that is we set s(ft) = Ik
in (4.14). The predictions for the top time series, which aggregates the counts
of the individual sectors, are obtained by applying the univariate score-driven
model by Blasques et al. 2018.

Parameter FIN ICT MFG ENG TRD

α̂ 0.40 0.15 0.02 0.14 0.10

Table 4.2: Estimated dispersion parameters (α)

4.5 Results

For each of the 3508 days, we reconcile the forecast distributions of the 6 time
series. Since we deal with a small hierarchy, we use importance sampling (IS)
to sample from the reconciled distribution, as explained in Chapter 2. We
draw 100, 000 samples.

We use different indicators to assess the performance of the forecasts.
The absolute error (AE) is defined as AE := |yt − pyt|t−1|, while the squared

error (SE) is defined as SE :=
(
yt − pyt|t−1

)2
. Here, yt denotes the value of

the time series at time t, while pyt|t−1 denotes the point forecast computed at
time t− 1 for time t. We use the median of the distribution as point forecast
for the AE, and the mean as point forecast for the SE (Kolassa 2016).

The mean interval score (MIS) (Gneiting 2011) and the Energy score
(Székely and Rizzo 2013) have already been defined in Section 3.3. For the
MIS, we set α = 0.1, which corresponds to 90% coverage intervals. The ES,
with α = 2, is computed using samples, as explained in Wickramasuriya
2021.

We use the skill score (see Section 3.3), which is symmetric and scale-
independent, to compare the performance of the reconciled forecast distri-
bution with respect to the base forecast distribution, in terms of percentage
improvement. We compute the skill score for each day, and for each time
series. The average skill scores are reported in Table 4.3. In Figure 4.10, we
show the boxplot of the skill score on ES, while in Figure 4.9, we show the
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boxplot of the skill scores on AE, SE and MIS for all the time series. Both
AE and SE measure the accuracy of the point forecasts. In most cases, there
is no improvement in AE as the skill score is very close to 0. On the contrary,
the improvement in SE is significant for all the time series. Indeed, SE is
less robust with respect to extreme values, which are cut down using recon-
ciliation. When we deal with intermittent time series, however, it is usually
more important to compare the prediction intervals, rather then the point
forecasts. We observe a very large improvement in MIS, which is a measure
of the quality of the 90% coverage interval. Indeed, the average width of the
coverage intervals decreases after reconciliation (Table 4.4), as in most cases
the variance of the forecast distribution decreases. Note, however, that the
reconciled forecast distribution is still calibrated, as for more than 90% of the
days the actual value is contained within the interval (Table 4.5). Finally,
we observe a very significant improvement also for ES.

ALL FIN ICT MFG ENG TRD
metric

AE -0.02 0.02 -0.02 -0.01 -0.03 -0.02
SE 0.82 1.10 1.11 1.07 1.12 1.11
MIS 0.87 1.11 0.2 1.07 0.22 0.18
ES 1.00

Table 4.3: Average skill scores, for all the time series

ALL FIN ICT MFG ENG TRD

base 6.91 3.20 1.13 1.89 1.26 0.92
reconc. 3.33 2.10 0.95 1.25 1.04 0.77

Table 4.4: Average width of the 90% coverage interval

ALL FIN ICT MFG ENG TRD

base 96.2% 97.7% 97.9% 98.0% 97.9% 98.6%
reconc. 91.1% 95.5% 97.2% 96.7% 97.4% 98.0%

Table 4.5: Percentage of days for which the actual value in contained in the 90%
coverage interval.
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Figure 4.9: Boxplot of the skill scores on AE, SE, and MIS
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Figure 4.10: Boxplot of the skill scores on ES

4.5.1 Reconciled mean and variance

For each day, and for each time series, we compute the shift as the difference
between the reconciled mean and the base mean. Hence, a positive shift
means that the mass of the distribution has moved to the right, and vice
versa.

We then divide all the 3508 days into two groups, depending on whether
the sum of the bottom shifts has the same sign of the upper shift or not. Most
of the days (3360, i.e. the 95.8%) fall within the first group: in this case,
we thus observe the “strengthening” effect discussed in Section 4.3. For the
remaining 148 days, the upper shift and the sum of the bottom shifts have a
different sign. In this case, we observe the “compromise” effect: through the
reconciliation, we merge the information coming from the bottom and the
upper time series.

We visually represents the two groups using a scatter plot, with the
bottom-up mean on the x axis and the base upper mean on the y axis;
each point is a different day. As expected, the points from the first group
are concentrated around the line y = x, which corresponds to coherence,
while the points from the second group are more dispersed. We recall that
the incoherence of the point forecasts is given by the difference between the
bottom-up mean and the base upper mean, i.e. Apb − pu. In Figure 4.12,
we show the boxplot of the incoherence for all the days, divided in the two
groups. As expected, the days with a small incoherence are those in which
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Figure 4.12: Boxplot of the incoherence in the two different cases

the shifts on the bottom and on the upper variables have the same sign.
In Figure 4.13, we show the probability mass functions of the bottom

and upper time series before and after reconciliation, for one of the days
in the first group. We also compare the base, bottom-up, and reconciled
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Figure 4.13: Probability mass function before and after reconciliation, day 123
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upper time series, day 123

distribution of the upper time series (Figure 4.14). The main effect is a
reduction of the variance, which leads to a flattening of the tail, and thus to
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a negative shift since the distribution has a positive skewness. The effect of
the reconciliation for one of the days of the second group is shown in Figures
4.15 and 4.16. In this case, we observe the “compromise” effect: through the
reconciliation, we merge the information coming from the bottom and the
upper time series.
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Figure 4.15: Probability mass function before and after reconciliation, day 1699

Finally, we compute the variance of the distributions before and after
reconciliation. In most cases (3394 days, i.e. the 96.8%) the variance of all
the variables decreases. There are some cases, however, in which the variance
of one or more bottom variables increases. An example is shown in Figures
4.17 and 4.18: the information provided by the base upper distribution is in
conflict with the information provided by the bottom, hence the variance of
the bottom distributions increase.
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Figure 4.17: Probability mass function before and after reconciliation, day 2307
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Chapter 5

The Fourier Discrepancy

Function

5.1 Discrepancies between probability mea-

sures

Discrepancies are becoming omnipresent tools in every applied fields that
require the comparison of probability measures. Examples include computer
vision (Angenent et al. 2004; Bassetti et al. 2020; Auricchio et al. 2019;
Cuturi and Doucet 2014; Papadakis 2015; Vogel and Oman 1996; Fang et al.
2021; Ojha et al. 2021), supervised learning (Janocha and Czarnecki 2016;
Bengio et al. 2017; Bishop 2006; Schmidhuber 2015; Frogner et al. 2015; Yu
et al. 2012), and generative models (Arjovsky et al. 2017; Ansari et al. 2020;
Li et al. 2017; Wang et al. 2019; Yu et al. 2018; Pan et al. 2020). Often the
usage of these tools is bounded by their numerical complexity (Peyré and
Cuturi 2019; Dvinskikh and Tiapkin 2021; Tarjan 1997; Nesterov 2007). To
mitigate these issues, in recent years, several studies have been devoted to
introduce new discrepancies (Lin 1991; Bonneel and Coeurjolly 2019) or to
study the properties of the existing ones (Ling and Okada 2007; Auricchio
et al. 2018). A special role is played by the study of the relationships between
different discrepancies, usually through bounds. In particular, the problem
of finding the tight bounds (Gilardoni 2006) in terms of the Total Variation
has been particularly interesting for source coding (Csiszár 1967a; Csiszár
1967b; Sason 2014).

A well-known family of distances between probability measures is given by
the χr-metrics. They are defined as the Lp distance between the characteris-
tic functions of two given measures weighted by the function ∥k∥−rp. Despite
the appealing properties they enjoy, the use of these metrics is bounded by

63



64 CHAPTER 5. THE FOURIER DISCREPANCY FUNCTION

the fact that they are not well-defined unless the two measures we are com-
paring have equal moments up to the ⌈r⌉-th one (Rachev 1991; Rachev et al.
2013). This is a standard assumption in some applied fields, such as kinetic
theory (Carrillo and Toscani 2007; Baringhaus and Grübel 1997). In gen-
eral, however, requiring two measures to have the same expectation is too
restricting. In Auricchio et al. 2020, the authors studied the χr-metrics in
the specific framework of discrete measures supported over a regular grid. In
this framework, they proved that some requirements about the measures can
be dropped while still preserving the appealing properties of their continuous
counterparts. However, these distances are defined through an integral, and
for r ≥ 2 some conditions on the moments are still required to ensure the
finiteness of the integral. In this chapter, we overcome this issue by intro-
ducing a discretized version of the χr-metrics, called Fourier Discrepancies.

The rest of the chapter is organized as follows. In Section 5.2, we re-
call the main notions about discrete probability measures and the Discrete
Fourier Transform (DFT) (Rao and Yip 2018). In Section 5.3, we intro-
duce a new family of distances between discrete probability measures, the
p-Fourier Discrepancies. We show that they can be expressed as the square
root of a bilinear form induced by a positive definite matrix, hence they are
1-homogeneous and convex. Moreover, we prove that the squared Fourier
Discrepancy is twice differentiable and that both its gradient and Hessian
have an explicit formula. In Section 5.4, we study the lower and upper
tight bounds of the Fourier Discrepancy in terms of the Total Variation dis-
tance. In particular, we prove that the upper tight bound between any
q-homogeneous and convex function and the Total Variation is attained in
a finite set. We then present an open conjecture about the value of the up-
per tight bound of the Fourier Discrepancy. We conclude this chapter with
a discussion about the appealing properties of the p-Fourier Discrepancies,
and their possible applications to several applied fields (Section 5.5).

5.2 Preliminaries

In this section, we state the framework of our work and fix our notation.
Throughout the chapter, we only consider one-dimensional discrete measures,
but all the results may be extended to a multidimensional setting. Let us
define the set IN ⊂ [0, 1] as IN :=

{
0, 1

N
, . . . , N−1

N

}
. For the sake of simplicity,

we will assume that N is an even number. A discrete measure µ on IN is
defined as

µ :=
N−1∑

j=0

µjδ j

N
, (5.1)
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where all the µj’s are real values and, for any k ∈ IN , δk is the Dirac’s delta
centered in k. We denote by M(IN) the set of discrete measures over IN
and by P(IN) := {µ ∈ M(IN) : µj ≥ 0,

∑N−1
j=0 µj = 1} the space of discrete

probability measures.

Remark 1. Since any discrete measure supported on IN is fully characterised
by the N−uple of positive values (µ0, . . . , µN−1), we refer to discrete measures
and vectors interchangeably. Although this might lead to a slight abuse of
notations, it allows us to express the Fourier Transform of a discrete measure
through a linear operator.

Definition 3. The Discrete Fourier Transform (DFT) of µ ∈ P(IN) is the
N−dimensional vector µ̂ := (µ̂0, . . . , µ̂N−1) defined as

µ̂k :=
N−1∑

j=0

µje
−2πi j

N
k, k ∈ {0, . . . , N − 1}. (5.2)

Remark 2. Since the complex exponential function k → e−2πi j

N
k is a N−periodic

function for any integer j, we set µ̂k := µ̂modN (k) for any k ∈ Z, where
modN(k) is the N−modulo operation. In particular, µ̂−k = µ̂N−k for any
k ∈ {0, . . . , N − 1}.

Remark 3. The DFT of a discrete measure can be expressed as a linear
map:

(µ̂0, . . . , µ̂N−1) = Ω · (µ0, . . . , µN−1), (5.3)

where Ω is the N ×N matrix defined as

Ω :=




ω0,0 ω0,1 . . . ω0,N−1

ω1,0 ω1,1 . . . ω1,N−1
...

...
. . .

...
ωN−1,0 ωN−1,1 . . . ωN−1,N−1


 , (5.4)

and ωk,j := e−2πi j

N
k. Since the matrix Ω is invertible, the DFT is a bijective

function.

For a complete discussion about the Discrete Fourier Transform (DFT),
we refer to Rao and Yip 2018.
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5.3 The Fourier Discrepancy Function

In this section we introduce the p-Fourier Discrepancy Functions, a family
of discrete versions of the metrics introduced by Auricchio et al. 2020. The
p-Fourier Discrepancies inherit from their continuous counterparts the prop-
erty of being bounded by the Wasserstein distance. We show that the Fourier
Discrepancies are convex and have an explicit derivative.

Definition 4. For any p ≥ 1, the p-Fourier Discrepancy Function is defined
as Fp : P(IN)× P(IN)→ [0,+∞), where

F
2
p(µ, ν) :=

N
2
−1∑

k=1

|µ̂k − ν̂k|
2

|k|2p
+
|µ̂N

2
− ν̂N

2
|2

|N |2p
. (5.5)

Remark 4. It is easy to show that every Fp is a distance on P(IN). In par-
ticular, unlike its continuous counterparts, Fp is finite even without requiring
the two measures to have any equal moment.

Remark 5. Following Auricchio et al. 2020, it is possible to prove that

Fp ≤ CpW1 (5.6)

for any p > 3
2
, where W1 is the 1-Wasserstein distance (Villani 2008) and

Cp is a constant that only depends on p.

For any p ≥ 1, let us introduce the matrix Kp := diag(bp), where the
vector bp is defined as

bp :=
1

2

(
1, 1−2p, . . . ,

(
N

2
− 1

)−2p

,
2

N2p
,

(
N

2
− 1

)−2p

, . . . , 1−2p

)
. (5.7)

Since µ̂k = µ̂N−k, we can express the Fourier Discrepancy function as a
quadratic form:

F
2
p(µ, ν) = (µ̂− ν̂)TKp(µ̂− ν̂) = (µ− ν)THp(µ− ν), (5.8)

where Hp := ΩTKpΩ and Ω is the DFT matrix. Notice that we only con-
sider the first N

2
frequencies as the last N

2
have the same magnitude, hence

no information is lost by omitting them. Moreover, Hp is a symmetric and

circulant matrix, since (Hp)i,j = Re((b̂p)i−j). Therefore, its eigenvalues can
be explicitly computed (Davis 1979), leading us to the following result.
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Lemma 1. For any p ≥ 1, the matrix Hp is positive definite and its eigen-
values are given by

λi = N · (bp)i, i = 0, . . . , N − 1.

Since Hp is positive definite, there exists a matrix Lp such that LT
p Lp = Hp.

We can then write Fp(µ − ν) = ∥Lp(µ − ν)∥2, where ∥ · ∥2 is the l2 norm.
Hence, we have the following.

Proposition 5. For any p ≥ 1, the Fourier Discrepancy Fp is convex and
1−homogeneous with respect to µ− ν.

To conclude, we observe that we are able to explicitly compute the gra-
dient and Hessian matrix of F2

p.

Proposition 6. For any p ≥ 1 and for any probability measure ν, the func-
tion Lp,ν : P(In) → R, defined as Lp,ν(µ) := F2

p(µ, ν), is twice differentiable.
Moreover, its gradient and Hessian matrix are expressed through the explicit
formulae:

(∇Lp,ν)l(µ) =
∂Lp,ν

∂µl

(µ) = 2
N−1∑

j=0

(µj − νj) · Re
(
(b̂p)j−l

)
(5.9)

and

(HLp,ν)h,l(µ) =
∂2Lp,ν

∂µh∂µl

(µ) = 2Re
(
(b̂p)h−l

)
, (5.10)

where b̂p is the Fourier Transform of the vector bp.

5.4 Tight Bounds

In this section, we study the tight bounds for the p-Fourier Discrepancy in
terms of the Total Variation distance. We recall that, for any pair of discrete
measures supported on IN , the Total Variation is defined as

TV (µ, ν) :=
1

2

N−1∑

j=0

|µj − νj|.

Following Sason 2014, for any given θ ∈ (0, 1], we define the lower and
the upper tight bounds, respectively CL(θ) and CU(θ), as

CL(θ) := inf
µ,ν: TV (µ,ν)=θ

Fp(µ, ν), (5.11)

CU(θ) := sup
µ,ν: TV (µ,ν)=θ

Fp(µ, ν). (5.12)
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Due to the linearity of the DFT, we have that

F
2
p(µ, ν) =

N
2
−1∑

k=1

| {(µ− ν)k|
2

|k|2p
+
| {(µ− ν)N

2
|2

|N |2p
, (5.13)

we then set ∆ := µ− ν and express Fp as a function of ∆, rather than µ and
ν. Analogously, we will often write TV (∆) instead of TV (µ, ν), as long as
∆ = µ− ν. We now introduce the set of null-sum measures over IN , O(IN),
defined as O(IN) :=

{
∆ ∈ M(IN) s.t.

∑
i ∆i = 0

}
. Given any pair of

probability measures µ and ν, it is easy to see that µ− ν ∈ O(IN). Up to a
multiplicative constant, the converse is also true.

Proposition 7. Given any non-zero ∆ ∈ O(IN) and θ ∈ (0, 1], there exists
C > 0 and a pair of probability measures (µ, ν) such that

µ− ν = C ·∆ and TV (µ, ν) = θ.

The proof is reported in Appendix A.7.

Remark 6. Thanks to Proposition 7, and for the 1-homogeneity of Fp, we
have that, for any θ ∈ [0, 1)

CL(θ) = inf
∆∈O(IN ):

∆ ̸=0

Fp

(
θ

TV (∆)
∆

)
= θ · inf

∆∈O(IN ):
∆ ̸=0

Fp(∆)

TV (∆)
, (5.14)

and, analogously,

CU(θ) = θ · sup
∆∈O(IN ):

∆ ̸=0

Fp(∆)

TV (∆)
. (5.15)

5.4.1 Lower tight bound

Let us define ωk ∈ CN as the k−th column of the DFT matrix Ω. Since
{ωk}k=0,...,N−1 is an orthogonal basis of Cn (Rao and Yip 2018), for any ∆ ∈
O(IN) there exists a unique N -tuple of complex coefficients

(
λ(k)
)
k=0,...,N−1

such that

∆ =
N−1∑

k=0

λ(k)ωk.

We then define the set

Ξ :=
{
∆ ∈ O(IN) :

N−1∑

k=0

|λ(k)| = 1
}
, (5.16)
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and notice that Ξ is not empty, as we have that ωN
2
= (−1,+1,−1,+1,−1, . . . ,+1) ∈

Ξ. Finally, since both TV and Fp are 1-homogeneous functions, we rewrite
(5.14) as

CL(θ) = θ · inf
∆∈O(IN ):

∆ ̸=0

Fp

(
∆∑
|λ(k)|

)

TV
(

∆∑
|λ(k)|

)
∑
|λ(k)|∑
|λ(k)|

= θ · inf
∆∈Ξ

Fp(∆)

TV (∆)
. (5.17)

We now state the main result of the section.

Theorem 1. The lower tight bound CL(θ) is given by

CL(θ) = 2θN−p, (5.18)

and is attained at ωN
2
.

Proof. To prove the theorem, we show that ωN
2
both minimizes the Fourier

Discrepancy and maximizes the Total Variation over the set Ξ. This is enough

to conclude CL(θ) = θ
Fp(ωN

2
)

TV (ωN
2
)
which, through a simple computation, proves

(5.18). For the sake of clarity, we divide the proof into two steps.

First step (ωN
2
maximizes TV over Ξ).

For any ∆ ∈ Ξ, we have

TV (∆) = TV
(N−1∑

k=0

λ(k)ωk

)
=

1

2

N−1∑

j=0

∣∣∣
N−1∑

k=0

λ(k)(ωk)j

∣∣∣

≤
1

2

N−1∑

j=0

N−1∑

k=0

∣∣∣λ(k)(ωk)j

∣∣∣ =
1

2

N−1∑

k=0

|λ(k)|
N−1∑

j=0

|(ωk)j|

=
N

2

N−1∑

k=0

|λ(k)| =
N

2
.

We then conclude the first step of the proof by noticing that TV (ωN
2
) = N

2
.

Second Step (ωN
2
minimizes Fp over Ξ). For any j = 0, . . . , N − 1, the

DFT of ωj is given by

y(ωj)k =
N−1∑

l=0

e−i 2π
N

lk(ωj)l =
N−1∑

l=0

e−i 2π
N

l(k−j) = Nδk−j.



70 CHAPTER 5. THE FOURIER DISCREPANCY FUNCTION

From the linearity of the DFT, we infer

p∆k =
N−1∑

j=0

λ(j) y(ωj)k = N

N−1∑

j=0

λ(j)δk−j = Nλ(k), (5.19)

therefore, for any ∆ ∈ O(IN), we have

F
2
p(∆) = N2

( N
2
−1∑

k=1

|λ(k)|2

k2p
+
|λ(

N
2
)|2

|N |2p

)
. (5.20)

Finally, we conclude the proof by showing

inf
∆∈Ξ

Fp(∆) = Fp(ωN
2
) = N1−p.

Let ∆ ∈ Ξ. From (5.19), we have that λ(0) = 1
N

p∆0 = 1
N

∑
j ∆j = 0. More-

over, since ∆ is real, we have that p∆k = p∆N−k for any k = 1, . . . , N − 1,
hence |λ(k)| = |λ(N−k)|. Then, if we define

γj :=

{
2|λ(j)| j = 1, . . . , N

2
− 1,

|λ(
N
2
)| j = N

2
,

the constraint (5.16) is written as

N
2∑

j=1

γj = 1,

while from (5.20) we obtain F2
p(∆) =

∑N
2
k=1 αkγ

2
k , with

αk :=





(
N
2

)2
k−2p k = 1, . . . , N

2
− 1,

N2−2p k = N
2
.

Since the coefficient αN
2
is the lowest one, as long as p ≥ 1, the minimum of

Fp is achieved when γN
2
= 1 and γj = 0 for j = 1, . . . , N

2
− 1, and the proof

is complete.

5.4.2 Upper tight bound

We now show that it is possible to restrict the search space of the maximizer
of (5.15) to a finite set with cardinality N . In particular, we prove that a



5.4. TIGHT BOUNDS 71

similar restriction may be applied whenever we search for the upper tight
bound between the Total Variation and any convex and p−homogeneous
function of ∆ ∈ O(IN). To accomplish that, we show that every ∆ ∈ O(IN)
can be written as a linear combination of simpler null-sum measures, namely
ηi,j, defined as

ηi,j := δi − δj,

for any i, j ∈ {0, . . . , N − 1} such that i ̸= j. In particular, we have the
following (the proof is in Appendix A.8).

Lemma 2. Let ∆ be a null-sum measure on IN . Then, we can express ∆ as
∆ = TV (∆) ·∆′, where ∆′ is a convex combination of {ηik,jk}k such that, for
any k ̸= k′, we have ik ̸= jk′.

This characterization allows us to restrict the set of possible maximizers
of any convex and p−homogeneous function over the finite set {ηi,j}i,j.

Theorem 2. Let G : O(IN) → [0,+∞) be a convex and p−homogeneous
function. Then, there exist i⋆, j⋆ ∈ {0, . . . , N − 1} such that, for any θ ∈
(0, 1]:

θ · ηi⋆,j⋆ = argmax
TV (∆)=θ

G(∆). (5.21)

Proof. First, we notice that

(i⋆, j⋆) := argmax
i,j∈{0,...,N−1}

G(ηi,j), (5.22)

is well-defined as the maximum is taken over a finite set. Given any θ ∈ (0, 1],
let ∆ be a null-sum measure such that TV (∆) = θ. Lemma 2 allows us to
write ∆ = θ ·

∑
k λkηik,jk , with λk ≥ 0 for any k and

∑
k λk = 1. Finally,

from the p-homogeneity and the convexity of G, we obtain:

G(∆) = G

(
θ ·
∑

k

λkηik,jk

)
= θp · G

(
∑

k

λkηik,jk

)

≤ θp ·
∑

k

λkG (ηik,jk) ≤ θp ·
∑

k

λkG (ηi⋆,j⋆)

= θp · G (ηi⋆,j⋆) = G (θ · ηi⋆,j⋆) ,

which concludes the proof.

Using the previous result we may recover the well-known upper tight
bound between the lp norm and the Total Variation. Indeed, since ||ηi,j||p =
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2
1
p for any p, we find that the inequality ||µ− ν||p ≤ 2

1
pTV (µ, ν) is tight.

Since Fp : O(IN) → [0,+∞) is convex and 1−homogeneous, we infer
CU(θ) = θ ·Fp(ηi⋆,j⋆), for some i⋆, j⋆ ∈ {0, . . . , N − 1}. Therefore, to find the
upper tight bound of Fp we only need to search over a finite set of points,
which correspond to the differences between two Dirac’s deltas. Since the

DFT is linear, we have that xηl,j = Θl−Θj, where Θk =
(
ei

2πk
N

0, ei
2πk
N

1, . . . , ei
2πk
N

(N−1)
)

is the k−th column of the matrix Ω. Hence:

F
2
p(δl, δj) = F

2
p(ηl,j) =

N
2
−1∑

k=1

|(Θl −Θj)k|
2

|k|2p
+
|(Θl −Θj)N

2
|2

|N |2p
,

which boils down to (see Appendix A.9)

F
2
p(ηj,l) =

N
2
−1∑

k=1

2− 2 cos
(2π|j − l|

N
k
)

|k|2p
+

2− 2 cos(π|j − l|)

|N |2p
, (5.23)

for any j, l ∈ {0, . . . , N − 1}. Finally, notice that F2
p(ηj,l) depends on j and

l only through d := |j − l|. Hence, we can further restrict to measures of the
form η0,d, with d ∈ {1, . . . , N − 1}.

Corollary 1. For every p ≥ 1, there exists d ∈ {0, 1, . . . , N − 1} such that

CU(θ) = θ · Fp(η0,d).

Notice that, for any d ∈ {0, 1, . . . , N − 1}, we have F2
p(η0,d) = C − 2gp(d),

where C is a constant and gp : [0, N ]→ R is defined as:

gp(d) :=

N
2
−1∑

k=1

cos
(2πd
N

k
)

|k|2p
+

cos(πd)

|N |2p
. (5.24)

By studying the derivatives with respect to d, it is possible to show that
d∗ = N

2
is a local minimum for gp. This leads us to the following open con-

jecture.

Conjecture 1. For every p ≥ 1 and d ∈ {0, 1, . . . , N − 1}, we have

Fp(η0,N
2
) ≥ Fp(η0,d).
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Figure 5.1: Plots of Fp(η0,d) for p ∈ {1, 1.5 , 2} and for N = 10 (left), N = 1000
(right). As conjectured, the maximum is attained at d = N

2 .

If our conjecture was true, we would have

CU(θ) = θ ·

√√√√√
N
2
−1∑

k=1

2− 2(−1)k

|k|2p
+

2− 2(−1)
N
2

|N |2p
. (5.25)

Notice that, for p = 1, the value (5.25) converges to
√∑∞

k=1
2−2(−1)k

k2
= π

2
as

N →∞.

We numerically verify that the conjecture is true for p ∈ {1, 1.5, 2} and
for any even N that ranges from 2 to 1000. In Figure 5.1, we report the
graph of the function d→ Fp(η0,d) for p ∈ {1, 1.5, 2} and N ∈ {10, 1000}.

5.5 Discussion

In this chapter, we have introduced a new class of metrics between discrete
probability measures, the p-Fourier Discrepancy Functions. For any p ≥ 1,
Fp is a well-defined distance induced by a bilinear form. It is convex, and its
square is twice differentiable with explicit formulae for both the gradient and
Hessian. Moreover, as Figure 5.1 shows, the Fourier Discrepancy between
two Dirac’s deltas depends on the distance between their supports. Most
common discrepancies, such as the Total Variation or the Kullback-Leibler,
do not enjoy this property, which is instead a feature of the Wasserstein
distance. This is consistent with the bound (5.6) and with the equivalence
between Fourier-based and Wasserstein distances (Auricchio et al. 2020). In
the last years, the Wasserstein distance has been widely used in several ap-
plied fields because of its topological weakness and its ability to deal with
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the geometry of the underlying space (Arjovsky et al. 2017). However, its
applicability, especially in higher dimensions, is bounded by the computa-
tional cost for both the distance and its gradient. On the other hand, the
Fourier Discrepancy and its gradient are cheap to compute using the Fast
Fourier Transform algorithm. We believe that the appealing properties of
the Fourier Discrepancy make it a compelling alternative to the Wasserstein
distance in several applied fields, such as machine learning (Frogner et al.
2015; Han et al. 2020; Hou et al. 2017), time series comparison (Zhang et al.
2020), or barycenters computation (Anderes et al. 2016; Bassetti et al. 2020;
Cuturi and Doucet 2014). Finally, the Fourier Discrepancy may be easily
generalized to a multidimensional setting.



Chapter 6

Conclusions

We have proposed a new approach for probabilistic reconciliation based on
conditioning, rather than on projecting (Panagiotelis et al. 2022). We have
also proposed the BUIS algorithm, which samples efficiently from the recon-
ciled distribution. As a results, our approach is currently the only one which
is both general (it reconciles both continuous and discrete distributions) and
computationally fast. This algorithm can be used even if the base distri-
butions are only available in the form of samples, which is often the case
when forecasting count time series. The extensive numerical experiments,
conducted on both standard data sets (carparts and syph) and on count
time series of extreme events in the CDS market, show a clear improvement
of the reconciled forecasts over the base forecasts. Finally, we have studied
the effects of the reconciliation on the mean and variance of the forecast
distribution.

Future research directions include:

• extending the algorithm to deal with correlations between the base
forecasts

• writing an R package for probabilistic reconciliation

• studying a diagnostic, analogous to the ESS used for IS, to assess the
performance of BUIS

• using the Fourier Discrepancy for time series comparison, as an alter-
native to dynamic time warping or time adaptive optimal transport.
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Appendix A

A.1 Propositions for Section 2.2

Proposition 8. Let s : X → Y be a measurable bijection between two mea-
sure spaces (X,X ) and (Y,Y). Then, the pushforward s# : P(X)→ P(Y ) is
a bijection, with inverse given by (s−1)#.

Proof. First, we recall that the pushforward s# is defined, for any ν ∈ P(X)
and F ∈ Y , as

s#ν(F ) = ν(s−1(F )).

Hence, for any ν ∈ P(X) and G ∈ X , we have

(
(s−1)# ◦ s#

)
ν (G) = (s−1)#

(
s#ν

)
(G)

= s#(ν)
(
(s−1)−1(G)

)

= s#(ν)
(
s(G)

)

= ν
(
s−1(s(G))

)

= ν(G),

and therefore (s−1)#◦s# is the identity map. Analogously, for any µ ∈ P(Y )
and F ∈ X , we have

(
s# ◦ (s

−1)#
)
µ (F ) = s#

(
(s−1)#µ

)
(F )

= (s−1)#(µ)
(
s−1(F )

)

= µ
(
(s−1)−1

(
s−1(F )

))

= µ(s(s−1(F )))

= µ(F ).
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Proposition 9. Let π̂ be the joint density of the random vector (U,B).
Then, the density of (Z,B), where Z := U−AB, is given by

π(Z,B)(z,b) = π̂(z+Ab,b).

Proof. The joint density of (Z,B) can be computed using the rule of change
of variables Billingsley 2008, Chapter 17. Let H : Rn → Rn be defined as

H :

[
u

b

]
→

[
u−Ab

b

]
.

H is invertible, with inverse given by

H−1 :

[
z

b

]
→

[
z+Ab

b

]
,

and we have that ∣∣JH−1(b, z)
∣∣ =

∣∣∣∣
I AT

0 I

∣∣∣∣ = 1.

Then, the joint density of (Z,B) is given by

π(Z,B)(z,b) = π̂
(
H−1(z,b)

)
·
∣∣JH−1(z,b)

∣∣
= π̂(z+Ab,b).

A.2 Proof of Proposition 1

First, we recall that, given a pair of absolutely continuous probability
distributions µ and ν, the Kullback-Leibler (KL) divergence is defined as

KL(µ ∥ ν) =

∫
log

(
p(x)

q(x)

)
p(x) dx,

where p and q are the densities of, respectively, µ and ν. The discrete case
is completely analogous.

Now, let ν̂b be the base bottom forecast distribution, and ν̃ the reconciled
distribution. We recall that the density of ν̃ is given by

π̃(b) =
1

c
π̂(Ab,b),
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where

c :=

∫
π̂(Ab,b) db =

∫
π̂(Ab,b)

π̂b(b)
π̂b(b) db = E

[
π̂(AB,B)

π̂b(B)

]

is the normalizing constant, and B ∼ ν̂b. Then, we have

KL(ν̂b ∥ ν̃) =

∫
log

(
c

π̂b(b)

π̂(Ab,b)

)
π̂b(b) db

= log(c)−

∫
log

(
π̂(Ab,b)

π̂b(b)

)
π̂b(b) db

= log

(
E

[
π̂(AB,B)

π̂b(B)

])
− E

[
log

(
π̂(AB,B)

π̂b(B)

)]

= log (E[W ])− E[log(W )]. (A.1)

A.3 Proof of Proposition 2

We show that the output
(
b(i)
)
i
of the BUIS algorithm is approximately

a sample drawn from the target distribution ν̃.
From (2.7), and from Assumption 1, we have that

π̃(b) ∝ π̂b(b) · π̂u(Ab)

=
m∏

t=1

πbt(bt) ·
L∏

l=1

kl∏

j=1

πuj,l

( qj,l∑

k=1

bk,(j,l)

)
,

where we are using the notation of Sect. 3.1. The initial distribution of
the sample

(
b(i)
)
i=1,...,N

is given by π̂b =
∏m

t=1 πbt(bt). We show that each

iteration of the algorithm corresponds to multiplying by a πuj,l

(∑qj,l
k=1 bk,(j,l)

)

term.
Let πX be a density over Rd, and w : Rd → R a continuous function. Let

X1, . . . , XN be independent samples from πX , and compute the unnormalized
weights (ŵ(i))i=1,...,N as ŵ(i) = w(Xi). Then, if we draw Y1, . . . , Yn from the
discrete distribution given by

P (Y = Xi) = w(i), i = 1, . . . , N,

where w(i) = ŵ(i)
∑N

j=1 ŵ
(j) , then (Yi)i=1,...,n is approximately an IID sample from

the density πY (x) ∝ πX(x) · w(x). This technique is known as importance
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resampling or weighted bootstrap (Smith and Gelfand 1992). The same holds
also for discrete distributions, using the pmf instead of the density.

Hence, if we compute the weights w(i)’s as in the algorithm and sample(
b̃
(i)
j

)
i
from (3.1), it is approximately equivalent to sampling from π̂b(b) ·

πuj,l

(∑qj,l
t=1 bt

)
, where π̂b is the original density of

(
b1,(j,l), . . . , bqj,l,(j,l)

)
. In

other words, the weighting-resampling step corresponds to multiplying the
density of the sample by a πuj,l

(∑qj,l
t=1 bt

)
term.

Finally, note that in this way we are conditioning with respect to uj,l. Af-
ter the weighting-resampling step,

(
b1,(j,l), . . . , bqj,l,(j,l)

)
are correlated. Since,

from Assumption 2, the hierarchy is given by a tree, we are guaranteed that
for any level l and for all j = 1, . . . , kl, b̃j only depends on b1,(j,l), . . . , bqj,l,(j,l),
uj,l and each upper variable that is under uj,l. From Assumption 1, we have

that b̃1, . . . , b̃kl are independent. Hence, the density of
[
b̃1, . . . , b̃kl

]
is given

by the product of the densities of all b̃j’s, and the proof is concluded.

A.4 MCMC-IS comparison

In order to fully understand the reasons for the significant difference in
computational time between the MCMC and the IS approach, we compare
the two methods on a minimal example. Le us consider a hierarchy given by
two bottom variables, b1 and b2, and just one upper variable u, which is the
sum of b1 and b2. We set a Gaussian distribution for each variables.

We implement a simple Metropolis-Hastings algorithm with a Gaussian
proposal distribution with fixed variance τI to sample from the reconciled
distribution π̃(b) = πb1(b1) · πb2(b2) · πu(b1 + b2). The algorithm reads as
follows:

Initialize b(0)

for j = 1, . . . , N do

Sample y(j) ∼ N (b(j−1), τI)

α← min

(
1, π̃(y(j))

π̃(b(j−1))

)

u← Unif(0, 1)
if u < α then

b(j) ← y(j)

else

b(j) ← b(j−1)

end if

end for

return
(
b(i)
)
i
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On a standard laptop, it takes about 4 seconds to get 10, 000 samples
from π̃. In particular, most of the time is employed by the computation of
the acceptance probability α, which requires about 3.7 · 10−4 seconds per
loop. Sampling from the proposal distribution only requires about 3 · 10−5

seconds.
We then implement an IS algorithm on the same hierarchy, using Python:

Sample b(1), . . . ,b(N) IID
∼ π̂b

wi ← π̂u

(
b
(i)
1 + b

(i)
2

)

return
(
b(i), wi

)
i

It takes about 7 · 10−3 seconds to draw 100, 000 IID samples from π̂b, and
about the same time to compute all the weights. The significant improvement
in computational time using IS instead of MCMC is due to the fact that both
sampling and computation of the weights are done simultaneously for all the
samples, rather than sequentially as in MCMC.

A.5 Proof of Proposition 3

Since, from (2.3), the matrix Q is positive definite, Q−1 is also positive
definite. Therefore, the matrices

G :=
(

pΣT
UB − pΣBA

T
)
Q−1

(
pΣT

UB − pΣBA
T
)T

,

H :=
(

pΣU − pΣUBA
T
)
Q−1

(
pΣU − pΣUBA

T
)T

,

are positive semi-definite.
From (4.3), we have that, for each i = 1, . . . ,m

Var(B̃i) = Var( pBi)−Gii ≤ Var( pBi),

as Gii ≥ 0 since the matrix G is positive semi-definite. Analogously, we have

Var(Ũj) = Var(pUj)−Hjj ≤ Var(pUj),

for all j = 1, . . . , n−m.

A.6 Proof of Proposition 4

Let us denote Z := 1{U=AB}, so that Z = 1 when the constraint is
satisfied, and 0 otherwise. By the law of total variance (Weiss 2005), for any
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j = 1, . . . ,m, we have

Var(Bj) = E[Var(Bj|Z)] + Var(E[Bj|Z]). (A.2)

Since

E[Bj|Z] =

{
E[Bj|U = AB] if Z = 1

E[Bj|U ̸= AB] if Z = 0,

we have that E[Bj|Z] = a+ (b− a)Ber, where Ber ∼ Bernoulli(p), hence

Var(E[Bj|Z]) = (b− a)2p(1− p). (A.3)

Moreover, since

Var[Bj|Z] =

{
Var[Bj|U = AB] if Z = 1

Var[Bj|U ̸= AB] if Z = 0,

we have

E[Var(Bj|Z)] = pVar[Bj|U = AB] + (1− p) Var[Bj|U ̸= AB]. (A.4)

From (A.2), (A.3), and (A.4), we have

Var(Bj) = p Var[Bj|U = AB] + (1− p) Var[Bj|U ̸= AB]

+ p(1− p) (a− b)2,

from which

Var[Bj|U = AB] =
Var(Bj)− (1− p) Var[Bj|U ̸= AB]− p(1− p) (a− b)2

p
.

A.7 Proof of Proposition 7

Let C := θ
TV (∆)

and ∆̃ := C ·∆, which are well-defined since TV (∆) ̸= 0
for any non-zero ∆. Then, for the 1−homogeneity of TV , we have that
TV (∆̃) = θ

TV (∆)
· TV (∆) = θ.

Let µ̃ and ν̃ be, respectively, the positive and negative part of ∆̃. Therefore,
∆̃ = µ̃− ν̃ and µ̃i, ν̃i ≥ 0 for any i. We have that

2θ =
∑

i

|∆̃i| =
∑

i

µ̃i +
∑

i

ν̃i, (A.5)
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and moreover, since ∆̃ is a null-sum measure:

0 =
∑

i

∆̃i =
∑

i

µ̃i −
∑

i

ν̃i. (A.6)

From (A.5) and (A.6) follows easily that
∑

i µ̃i =
∑

i ν̃i = θ.
We now define

µ := µ̃+ (1− θ)δ0, ν := ν̃ + (1− θ)δ0.

We have that µ is a probability measure since µi ≥ 0 for any i and∑
i µi =

∑
i µ̃i + (1 − θ) = 1. The same holds for ν. Moreover, µ − ν = ∆̃,

hence TV (µ, ν) = TV (∆̃) = θ.

A.8 Proof of Lemma 2

Let ∆ be a null-sum measure. Without loss of generality, we can reorder
the values of ∆ as follows:

∆ = (α1, . . . , αr,−β1, . . . ,−βl, 0, . . . , 0),

where r + l ≤ N , αi, βj > 0, αi ≤ αi+1, βj ≤ βj+1, for any i and j, and∑
αi =

∑
βj.

Without loss of generality, we assume that

α1 ≤ β1.

Hence, we can write
∆ = α1η0,r +∆(1),

where

∆(1) = (0, α
(1)
2 , . . . , α(1)

r ,−β(1)
1 , . . . ,−β(1)

l , 0, . . . , 0)

: = (0, α2, . . . , αr,−(β1 − α1),−β2, . . . ,−βl, 0, . . . , 0).

Next, we compare α
(1)
2 and β

(1)
1 and repeat the process until every entry

vanishes. At the end, we find

∆ = λ1η0,r + · · ·+ λkηr−1,N−1 =:
∑

k

λkηik,jk . (A.7)

Notice that each ηi,j in (A.7) is such that i < r and j ≥ r by construction,
which implies i ̸= j.
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Since by hypothesis, for any l = 0, . . . , N − 1, all the l-th entries (ηik,jk)i
have the same sign, we can write

|∆l| =
∣∣∣
∑

k

λk(ηik,jk)l

∣∣∣ =
∑

k

λk|(ηik,jk)l|.

Therefore:

TV (∆) =
1

2

∑

l

|∆l| =
1

2

∑

l

∑

k

λk|(ηik,jk)l|

=
1

2

∑

k

∑

l

λk|(ηik,jk)l|

=
1

2

∑

k

λk
∑

l

|(ηik,jk)l| =
∑

k

λk,

since
∑

l |(ηi,j)l| = 2 for any i, j. To conclude, it suffices to set

∆′ :=
1

TV (∆)
∆ =

∑

k

λ̃kηik,jk ,

where λ̃k :=
λk∑
l λl

> 0, and
∑

k λ̃k = 1.

A.9 Computing Fp(ηj,l)

Let us consider null-sum measures of the form ηl,j. We recall that ηl,j :=
δl − δj. Since

xηl,j = Ω · ηl,j,

we have
xηl,j = Θl −Θj, (A.8)

where Θk is the k−th column of the matrix Ω. By the definition of Ω we
have

Θl =
(
ei

2πl
N

0, ei
2πl
N

1, . . . , ei
2πl
N

(N−1)
)
,

therefore, the value F2
p(ηl,j) is then given by

F
2
p(ηl,j) =

N
2
−1∑

k=1

|(Θl −Θj)k|
2

k2p
+
|(Θl −Θj)N

2
|2

|N |2p
. (A.9)

Let us now compute explicitly |(Θl −Θj)k|
2 for a given k. We have

(Θl −Θj)k = cos

(
2πl

N
k

)
− cos

(
2πj

N
k

)
+ i sin

(
2πl

N
k

)
− i sin

(
2πj

N
k

)
,
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therefore,

|(Θl −Θj)k|
2 =

(
cos

(
2πl

N
k

)
− cos

(
2πj

N
k

))2

+

(
sin

(
2πl

N
k

)
− sin

(
2πj

N
k

))2

= 2− 2

(
cos

(
2πl

N
k

)
cos

(
2πj

N
k

)
+ sin

(
2πl

N
k

)
sin

(
2πj

N
k

))

= 2− 2 cos

(
2π(j − l)

N
k

)
, (A.10)

where the equality in (A.10) comes from the following trigonometric identity:

cos(α− β) = cos(α) cos(β) + sin(α) sin(β).

Therefore,

F
2
p(ηj,l) =

N
2
−1∑

k=1

2− 2 cos
(2π|j − l|

N
k
)

k2p
+

2− 2 cos(π|j − l|)

N2p
. (A.11)
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[12] L. Baringhaus and R. Grübel. “On a class of characterization prob-
lems for random convex combinations”. In: Annals of the Institute of
Statistical Mathematics 49.3 (1997), pp. 555–567.

[13] F. Bassetti, S. Gualandi, and M. Veneroni. “On the Computation
of Kantorovich-Wasserstein Distances Between Two-Dimensional His-
tograms by Uncapacitated Minimum Cost Flows”. In: SIAM Journal
on Optimization 30.3 (2020), pp. 2441–2469.

[14] Y. Bengio, I. Goodfellow, and A. Courville. Deep learning. MIT press,
2017.

[15] P. Billingsley. Probability and measure. John Wiley & Sons, 2008.

[16] C. M. Bishop. Pattern recognition and machine learning. Springer,
2006.
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