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Abstract

Nowadays, the need for reliable, timely, high-resolution land cover maps is more than

urgent if large-scale environmental problems are to be tackled effectively. Many different

contexts would in fact benefit from such products, such as climate change, desertification,

arctic greening, deforestation, urbanization, soil erosion, forest monitoring, conservation

of biodiversity, urban area management, water resources management, agriculture, food

security and many others. Due to the fact that the involved variables tend to change

very rapidly in time and space, the availability of frequent and good quality global land

cover products raises great interest.

Several regional/global thematic and land cover maps have been delivered and other are

expected, but they often do not meet the specific requirements of various applications;

this is mainly due to the fact that all the existing products have been generated from

different satellite sensors (optical, radar or both), different sampling strategies, differ-

ent types of mapped land cover types, different validation protocols, etc. Moreover,

the spatial and/or temporal resolution of these products is often insufficient for some

applications.

In this thesis work, we investigated how to leverage multitemporal optical and SAR data

to characterize a very small set of classes rather than a full range of land cover types. Our

work focuses on vegetation (including tree species, grasslands, shrublands and others),

water bodies (including lakes, seas, rivers and others) and organic croplands (specifically,

organic farming practices).

Regarding vegetation, the technical literature offers numerous well-established method-

ologies aimed at mapping vegetated land covers. On the contrary, approaches that use

SAR sensors as the main source of data are definitely more scarce. For this reason, part

of this thesis work will be devoted to analyze the potential of multitemporal SAR data

to characterize several types of natural vegetation.

Regarding mapping of water bodies, the scientific literature provides several solutions

based on optical and SAR data. However, almost all the analyzed methodologies have

some limitations, mainly related to lack of automatism, impossibility to use the proposed

method in other regions of interest, relatively low spatial resolution and others. Given

the climate change community’s need for timely information on the status of water bodies

at the global level regardless of weather conditions, in this thesis a methodology aimed
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at mapping water bodies using sequences of SAR data, that is able to overcome the most

severe limitations of the existing methodologies, is proposed.

Finally, to characterize organic farmland, several aspects must be detected and mon-

itored, including weed-killer operations, fertilization activities and tillage techniques. To

do so, both multitemporal optical and SAR data are exploited to build small detection

blocks, that will be part of a more complex organic farming monitoring system aimed at

improving transparency and traceability within the organic food supply chain.

In general, results showed that SAR time series can be successfully employed to clas-

sify these land cover types. For instance, the proposed vegetation land cover mapping

methodology achieved, on average, 71% overall accuracy with a standard deviation of

about σ = 14.2% considering four very diverse test sites; the standard deviation justifies

the obtained relatively low result, mainly caused to the very complex test site located

in Siberia, without whom the accuracy pushes towards values near 80% and much lower

standard deviation values (σ = 5%). Still, the developed methodology showed great

potential in characterizing vegetated areas.

Regarding the water bodies monitoring and mapping application developed in this thesis

work, it was able to achieve, on average, 94.6% overall accuracy and standard deviation

σ = 10−3% using reliable ground truth data and considering the whole Lombardy region

(North Italy) as test site. An additional independent validation process was carried out

by an expert validation team from the European Space Agency (ESA), within the frame-

work of the WorldWater project. Based on their validation, the proposed methodology

achieved, on average, 93.4% overall accuracy over five very diverse and complex test re-

gions. The methodology also showed great potential in monitoring temporary/seasonal

water bodies.

Finally, regarding mapping of organic farming parcels, it has been demonstrated that

multitemporal SAR data can also be used to detect some operations that are carried out

within the crop field, like for example the type of tillage, that help characterize organic

farmland as opposed to traditional farmland. Other farming practices that provide clues

for organic vs. non-organic discrimination, such as weed-killing operations and fertiliza-

tion, were instead better characterized using multitemporal optical data. The obtained

results were analyzed qualitatively and were considered promising to monitor organic

crop fields for transparency and traceability purposes within the whole supply chain and

organic certification process.



Sommario

Oggigiorno, per poter affrontare efficacemente i problemi ambientali su larga scala, la

necessità di disporre di mappe di copertura del suolo affidabili e ad alta risoluzione spa-

ziale e temporale è più che mai urgente. Infatti, numerosi contesti potrebbero trarre

beneficio da tali prodotti come, ad esempio, il cambiamento climatico, la desertificazio-

ne, l’inverdimento dell’artico, la deforestazione, l’urbanizzazione, l’erosione del suolo, il

monitoraggio delle foreste, la conservazione della biodiversità, la gestione delle aree ur-

bane, la gestione delle risorse idriche, l’agricoltura, la sicurezza alimentare e molti altri.

Siccome le variabili di interesse tendono a cambiare molto rapidamente nel tempo e nel-

lo spazio, la disponibilità di mappe di copertura del suolo frequenti e di buona qualità

suscita un grande interesse.

Negli ultimi anni sono state prodotte diverse mappe tematiche e di copertura del suolo

su scala regionale/globale le quali, tuttavia, spesso non soddisfano i requisiti imposti

dalle applicazioni; ciò è dovuto principalmente al fatto che i prodotti esistenti sono stati

generati da diversi sensori satellitari (ottici, radar o entrambi), diverse strategie di cam-

pionamento, diverse legende, diversi protocolli di validazione, ecc. Inoltre, la risoluzione

spaziale e/o temporale di tali prodotti è spesso insufficiente per diverse applicazioni.

In questo lavoro di tesi è stato studiato come sfruttare dati multitemporali di tipo ot-

tico e SAR (Synthetic Aperture Radar) per caratterizzare un insieme molto ristretto di

classi, piuttosto che un’ampia gamma di tipi di copertura del suolo. Il lavoro presentato

si concentra sulla vegetazione (tra cui specie arboree, praterie, arbusti ed altri), corpi

idrici (tra cui laghi, mari, fiumi ed altri) e colture biologiche (in particolare, pratiche di

agricoltura biologica).

Per quanto riguarda la vegetazione, la letteratura scientifica offre numerose metodologie

consolidate, finalizzate alla mappatura delle coperture vegetative. Al contrario, gli ap-

procci che sfruttano i sensori SAR come principale fonte di dati sono decisamente più

rari. Per questo motivo, parte di questa tesi è dedicata all’analisi della potenzialità dei

dati SAR multitemporali nel caratterizzare diversi tipi di vegetazione naturale.

Per quanto riguarda la mappatura dei corpi idrici, la letteratura tecnica fornisce diverse

soluzioni basate sia su dati ottici che SAR. Tuttavia, la maggioranza delle metodologie

analizzate presentano alcune limitazioni legate principalmente alla mancanza di automa-

tismo degli algoritmi, l’impossibilità di utilizzare il modello in altre regioni di interesse,
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alla risoluzione spaziale relativamente bassa ed altri. Dal momento che la comunità sul

cambiamento climatico necessita di informazioni tempestive relative allo stato dei corpi

idrici a livello non solo locale/regionale ma anche globale, e che sia indipendente dalle

condizioni meteorologiche delle diverse aree del mondo, in questa tesi si propone una

metodologia volta a mappare i corpi idrici sfruttando sequenze temporali di dati SAR,

che sia in grado di superare le limitazioni più gravi presenti negli approcci esistenti.

Infine, per quanto concerne la caratterizzazione dei terreni agricoli biologici, occorre rile-

vare e monitorare diversi aspetti, tra cui le operazioni di diserbo, le attività di fertilizza-

zione e le tecniche di lavorazione del terreno. A tal fine, sia i dati ottici multitemporali

che i dati SAR vengono sfruttati per costruire piccoli blocchi che faranno parte di un

sistema di monitoraggio dell’agricoltura biologica più complesso, volto a migliorare la

trasparenza e la tracciabilità all’interno della catena di approvvigionamento alimentare

biologica.

In generale, i risultati hanno dimostrato che le sequenze temporali di dati SAR possono

essere impiegate con successo nella classificazione dei diversi tipi di copertura del suolo

di cui sopra. Ad esempio, la metodologia sviluppata per la mappatura della vegetazione

ha raggiunto, in media, il 71% di accuratezza complessiva, con una deviazione standard

di circa σ = 14, 2% considerando quattro siti di prova aventi caratteristiche climatiche

e geomorfologiche molto diverse tra loro; la deviazione standard giustifica il risultato

relativamente basso, ottenuto principalmente a causa dell’area di test situata in Siberia,

senza la quale l’accuratezza si spinge verso valori prossimi all’80%, con valori di devia-

zione standard decisamente inferiori (σ = 5%). Tuttavia, la metodologia proposta ha

mostrato un notevole potenziale nella caratterizzazione delle aree vegetative.

Per quanto riguarda l’applicazione di monitoraggio e mappatura dei corpi idrici svilup-

pata in questo lavoro di tesi, il modello proposto è stato in grado di ottenere, in media,

il 94.6% di accuratezza complessiva e deviazione standard pari a σ = 10−3%, utilizzando

dati affidabili di realtà a terra e considerando l’intera regione della Lombardia (nord Ita-

lia) come sito di test. Un secondo processo di validazione completamente indipendente è

stato effettuato da un gruppo composto di esperti dell’Agenzia Spaziale Europea (ESA)

nell’ambito del progetto “WorldWater”. Sulla base della loro validazione, la metodologia

sviluppata in questa tesi ha raggiunto, in media, il 93.4% di accuratezza complessiva,

considerando cinque regioni del mondo estremamente diverse. L’algoritmo ha inoltre mo-

strato un notevole potenziale nel monitoraggio dei corpi idrici temporanei e stagionali.
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Infine, per quanto riguarda la mappatura delle coltivazioni biologiche, è stato dimostrato

che i dati SAR multitemporali possono essere utilizzati anche per rilevare alcune ope-

razioni agricole effettuate all’interno del campo di coltura, come ad esempio il tipo di

lavorazione del terreno impiegato, che contribuiscono a caratterizzare i terreni agricoli

biologici rispetto a quelli tradizionali. Altre pratiche agronomiche che forniscono indizi

per la discriminazione biologica vs. non biologica come le operazioni di diserbo e la

fertilizzazione, sono state invece caratterizzate meglio utilizzando dati ottici multitem-

porali. I risultati ottenuti sono stati analizzati qualitativamente e sono stati considerati

promettenti per lo sviluppo di sistemi di telerilevamento volti al monitoraggio dei cam-

pi coltivati a biologico, ai fini di una maggiore trasparenza e tracciabilità all’interno

dell’intera catena di fornitura e del processo di certificazione biologica.
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Chapter 1

Introduction

1.1 Vegetation Land Cover: challenges

Land Cover (LC) products play a key role in many different contexts, from climate change

to food security [1–3]. Recognized an essential climate variables [4], LC maps are in fact

very important sources of information, that allow to better understand the relationship

between human activities and changes occurring from the local to the global scale. Being

a measure of the land surface change mainly due to human activities - that translates

into pressure on ecosystems and biodiversity - Land Cover Change (LCC) provides fun-

damental information that can be employed, for example, in climate change studies,

environmental health, urban area management, resource management, biodiversity con-

servation, food security, forest carbon and many others [5, 6]. For all these reasons, there

exists a strong demand for frequent, high quality land cover maps at the global scale.

The features of vegetated land cover tend to change rapidly due to the natural phenology

of the observed vegetation1. This aspect represents a challenge in terms of product

validation, as an accurate assessment of the quality and reliability of the generated maps

turns out to be a difficult task. This limitation becomes even more critical when the main

objective is mapping and monitoring of broad areas; in fact, previous work focussed on

monitoring small, local areas and/or short periods of time, making it difficult to compare

results (for instance, due to differences in satellite data sources and mapping methods)

and to quantify the actual changes, in a reliable way.
1Land cover maps represent spatial information on different types (classes) of physical coverage of

the Earth’s surface, e.g. forests, grasslands, croplands, lakes, wetlands, etc.

1
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In general, automatic or semi-automatic monitoring and mapping algorithms strongly

depend on the quality and quantity of reference sample data sets, and their capability to

generate meaningful statistics. Reference or “ground truth” data are generally collected

by means of in-situ campaigns, where professionals are tasked with interpreting, manually

collecting and labelling ground truth data [7]. The high reliability of manually collected

reference data comes however from campaigns that are usually very expensive, in terms

of both time and resources.

Other LC mapping approaches are instead based on reference data that has been collected

by previous, existing LC maps [8]. Of course, this latter approach is much more efficient

and time-effective, but the final quality of results strongly depends on the quality of the

involved LC map.

1.2 Existing Land Cover products

In recent years, several regional and global land cover maps have been produced based on

many different spaceborne remote sensing data, such as multi- and hyper-spectral data

and Synthetic Aperture Radar (SAR) data. Some of the most widely used low-spatial

resolution products (i.e., from 300 m to 1 km) are the European Space Agency (ESA)

Climate Change Initiative (CCI) global land cover map at 300 m resolution [9], the Global

Land-Cover map (GlobCover) at 300 m resolution [10], the Moderate Resolution Imaging

Spectroradiometer (MODIS) land-cover map at 500 m resolution [11], the Global Land-

Cover Classification map (GLC2000) at 1 km scale [12] and the International Geosphere-

Biosphere Programme (IGBP) land cover map at 1 km resolution [13].

However, in many contexts such as climate change, urban extent monitoring, resource

managements and agriculture, these coarse spatial resolutions are not enough to provide

spatial details that are needed to carry out studies on them. In fact there exists great

interest in mapping and monitoring land cover types and their changes with finer spatial

resolution for improved characterization.

Many efforts have been done to improve classification accuracy of land cover maps,

based on the most recent spaceborne Earth Observation (EO) missions. Finer-resolution

products have been released, most of them having spatial resolution ranging from 10

to 30 m scale. Citing the most famous ones: the GlobeLand30 [14] at 30 m scale pro-

duced using Landsat 4 and 7, the Finer Resolution Observation and Monitoring of Global
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Land Cover (FROM-GLC) [15] generated using Landsat Thematic Mapper (TM) and

Enhanced Thematic Mapper Plus (ETM+), the Global Land-Cover product with Fine

Classification System (GLC_FCS30) [16] at 30 m spatial resolution based on Landsat

data, the ESA CCI Land Cover Sentinel-2 map (ESA-S2-LC20) of Africa at 20 m res-

olution [17], the Finer Resolution Observation and Monitoring of Global Land Cover

at 10 m scale (FROM-GLC10) [18] and, finally, the ESA WorldCover product at 10 m

resolution for year 2020 [19], generated based on Sentinel-1 and -2 data (released in late

2021).

Many different thematic high-resolution land-cover products have also been delivered.

For example, regarding urban areas extent, available data sets include the ESA Global

Human Settlement Layer (GHSL) [20, 21], the Normalized Urban Areas Composite Index

(NUACI) product [22], the annual maps of Global Artificial Impervious Areas (GAIA)

[23] and the Global 30 m impervious surface product using multi-source and multi-

temporal data sets in 2020 (MSMT_IS30-2020) product [24].

Regarding inland water bodies data sets, we can cite the 30 m resolution Landsat Global

Inland Water product (GLCF-GIW) [25], the Global 3-second/1-second Water Body Map

(G3WBM and G1WBM) [26] at 90 m scale, the European Commission Joint Research

Centre (JRC) Global Surface Water dataset [27] at 30 m resolution and the Global Land

Analysis and Discovery (GLAD) Global Surface Water Dynamics (GSWD) product [28].

For cropland land cover maps, the most widely used reference products include the Global

Food Security-Support Analysis Data (GFSAD) at 30 m scale [29], the Global Cropland

Area Database (GCAD30) at 30 m spatial resolution based on Landsat and MODIS

data [30], and the 30 m Finer Resolution Observation and Monitoring Global Cropland

(FROM-GC) dataset [31].

Finally, regarding global forest land cover, there exist several thematic products, such

as the Global 2010 Tree Cover (treecover2010) [32] at 30 m scale, the Global Forest

Cover Change (GFCC) [33] product by NASA at 30 m spatial resolution and the 30 m

resolution Global Forest Cover (GFC30) [34], based on Landsat-8 imagery. Table 1.1

summarizes all the described relevant products found in the technical literature.

These high spatial resolution land cover and thematic maps were developed based on

different satellite sensors (optical or radar) and classification approaches and, as a con-

sequence, significant differences exist among the various products, in terms of accuracy

and overall spatial agreement. Moreover, the efforts made to build reference data sets
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Dataset EO sensor(s) Res. Year(s)

General Land Cover products

International Geosphere-Biosphere Programme
(IGBP) land cover map [13]

Advanced Very High
Resolution Radiometer
(AVHRR)

1 km 1992 - 1993

Global Land-Cover Classification map
(GLC2000) [12] SPOT 4 1 km 2000

Moderate Resolution Imaging Spectroradiometer
(MODIS) land-cover map [11] MODIS 500 m 2001-2020

Global Land-Cover map (GlobCover) [10] MERIS (ENVISAT mis-
sion) 300 m 2009

European Space Agency (ESA) Climate Change
Initiative (CCI) global land cover map [9]

MERIS (ENVISAT mis-
sion) 300 m 1992-2018

GlobeLand30 [14] Landsat 4 and 7 30 m 2000, 2010,
2020

Finer Resolution Observation and Monitoring of
Global Land Cover (FROM-GLC30) [15]

Landsat Thematic Map-
per (TM) and Enhanced
Thematic Mapper Plus
(ETM+)

30 m 2011-2020

Global Land-Cover product with Fine Classific-
ation System (GLC_FCS30) [16] Landsat-8 30 m 2015

ESA CCI Land Cover Sentinel-2 map (ESA-S2-
LC20) of Africa [17] Sentinel-2A 20 m 2016

Finer Resolution Observation and Monitoring of
Global Land Cover (FROM-GLC10) [18] Sentinel-2A 10 m 2017

ESA WorldCover product [19] Sentinel-1 and -2 10 m 2020-2021

Thematic Land Cover products: urban areas

ESA Global Human Settlement Layer (GHSL)
[20, 21] Sentinel-1 and -2 10 m - 1

km

1975, 1990,
2000, 2015,
2018, 2020

Normalized Urban Areas Composite Index
(NUACI) product [22] Landsat-5 10 m - 1

km 1990, 2010

Global Artificial Impervious Areas (GAIA) [23] Landsat TM, ETM+ and
Landsat-8 30 m 1985, 2018

Global impervious surface product
(MSMT_IS30-2020) [24]

Landsat-8, Sentinel-1 and
VIIRS NTL 30 m 2015

Thematic Land Cover products: water bodies
Landsat Global Inland Water product (GLCF-
GIW) [25] Landsat TM and ETM+ 30 m 2000

Global 3-second/1-second Water Body Map
(G3WBM and G1WBM) [26] Landsat TM and ETM+ 90 m 2015

JRC Global Surface Water dataset [27]
Landsat-5 TM, Landsat-
7 ETM+ and Landsat-8
OLI

30 m 1984-2015

Global Land Analysis and Discovery (GLAD)
Global Surface Water Dynamics (GSWD)
product [28]

Landsat-5 TM, Landsat-
7 ETM+ and Landsat-8
OLI

30 m 1999-2018

Thematic Land Cover products: cropland
Global Food Security-Support Analysis Data
(GFSAD) [29] Landsat-8 30 m 2015

Global Cropland Area Database (GCAD30) [30] Landsat and MODIS 30 m 1990, 2010
Finer Resolution Observation and Monitoring
Global Cropland (FROM-GC) dataset [31]

Landsat TM, Landsat
ETM+ and MODIS 30 m 2010

Thematic Land Cover products: forests
Global Tree Cover (treecover2010) [32] Landsat-7 ETM+ 30 m 2010
Global Forest Cover Change (GFCC) [33] Landsat-7 ETM+ 30 m 2000-2015
Global Forest Cover (GFC30) [34] Landsat-8 OLI 30 m 2018

Table 1.1: Available global land cover products subdivided in two groups: the first group relates
to general LC products; whereas, the second group is devoted to thematic LC products.



Introduction 5

for validation of high-resolution global land cover maps were limited due to strong incon-

sistencies mainly between legends, sampling strategies and validation procedures used.

Despite the efforts that were made aimed at improving mapping accuracy in the last

few decades, the above listed 30 m spatial resolution global land cover maps still suffer

from a relatively low accuracy. For this reason, some of the maps do not match the

requirements of many applications [13].

1.3 Optical versus microwave remote sensing

Spaceborne remote sensing data can help monitor the ground surface at a large scale

by providing precise and timely information on the status of different land cover types

(classes). These data are generally divided into three categories:

• Optical data: multi-spectral and hyper-spectral data;

• Microwave data: Synthetic Aperture Radar (SAR) data acquired using carrier

frequencies typically in the range from L- to X-band (from ∼ 1 to ∼ 12.5 GHz);

• Fused data: the result of considering together optical and SAR data and/or aux-

iliary data sources, such as weather stations and other sensors. The operation of

merging these different data sources is termed “data fusion".

The information retrieved by optical data strongly differs from that derived by SAR

sensors: on the one hand, optical sensors are passive instruments that can capture in-

formation from the visible and near-infrared regions of the electromagnetic spectrum,

thus providing clues on the surface composition. On the contrary, SAR sensors are act-

ive instruments, which gather information from the microwave region of the spectrum

regarding the shape, orientation and dielectric properties of a target. Naturally, each

source of data has its own advantages and limitations, discussed in this section.

Thanks to satellites carrying multispectral sensors such as Landsat, Landsat Thematic

Mapper, SPOT (Satellite Pour l’Observation de la Terre) and MODIS (Moderate Resolu-

tion Imaging Spectroradiometer), the remote sensing community had at its disposal more

than forty years of optical imagery at the global scale. In general, medium- and high-

spatial-resolution data (≤ 300 m) are used for small-scale mapping (regional to national
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scale); however, thanks to the steadily increasing computational power and number of

geospatial cloud computing platforms, even global land cover mapping became feasible

using high resolution satellite data.

Even if these sensors are not able to provide finer spatial details, the main advantage

is represented by their coverage capability; in fact, these satellites can map a specific

region of the Earth on a daily (or near-daily) basis, allowing scientists to analyze tem-

porally dense time sequences of multispectral data. Optical data time series are capable

of capturing both slow and fast land cover changes and can overcome cloud cover issues

[35]. In fact, cloud cover strongly limits the use of optical products; Cloud issues can

be reduced using image compositing, with the consequent cost of constraining multitem-

poral change analysis. Optical-based methodologies are also limited by the similarities

in spectral reflectance across a landscape, meaning that different crops or tree species

that have similar phenological features may be indistinguishable in optical data; for this

reason, similar land cover characteristics enhance the inability to distinguish land cover

types and land uses, and employment of complex hyperspectral data analysis may be

considered.

Moreover, optical sensors only interact with upper surfaces; this means that vegetation

canopies obscure the terrain beneath and crops obscure agricultural soil, limiting the

inferences of land cover and land use to only when these are well correlated with the

characteristics of the top layers. Finally, changes in the spectral properties of the soil

and atmosphere can also prevent the inference of land and vegetation properties. How-

ever, optical data are the most commonly found and easily accessible spaceborne Earth

Observation (EO) data, and are often used to explore unique spectral characteristics of

a target using, for example, spectral indices. Optical data are very easy to interpret and

to apply, but obtaining enough optical data without cloud interference at a large scale

remains a challenge [36].

On the other hand, microwaves in the widely-used SAR wavelength range (approxim-

ately a few centimetres to meters) are not affected by smoke, atmospheric haze, dust,

cloud cover and rain and thus they are suitable for monitoring regions dominated by

cloudy and rainy weather, during night and day time. However, the use of microwave

sensors for LC mapping purposes has not been used as widely as that of optical sensors,

especially for global mapping [37]. In fact, most of the past and current SAR sensors
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have been used for regional-scale monitoring and mapping. Among these, we can cite

the European Remote Sensing 1 and 2 (ERS-1 and -2), the Advanced Land Observation

Satellite (ALOS), the Advanced Synthetic Aperture Radar (ASAR), the Japanese Earth

Resources Satellite (JERS-1), RADARSAT-1 and -2. Related to land cover, several

studies tackled a large variety of topics: land cover classification [38, 39], forest cover

classification [40], grassland monitoring [41], woodlands monitoring [41], deforestation

mapping and monitoring [42], water body monitoring [43, 44], urban area monitoring

[45] and others.

Also in the case of land use, few studies have been carried out on: urban land use [46],

agricultural areas classification [47], crop monitoring (for example, rice crops) [48, 49]

and many others.

However, similarly to optical sources, several critical aspects affect radar data. For in-

stance, speckle noise increase measurement uncertainty and can lead to poor classification

accuracy; to limit speckle noise, spatial and/or temporal filters are required. Topography

also represent a critical issue: over morphologically complex regions such as mountains

and hills, in fact, geometric and radiometric distortions emerge (such as foreshortening

and layover effects caused by radar shadows).

Until few years ago, monitoring land cover dynamics at medium-to-high resolution was

limited by the lack of available high temporal and spatial resolution satellite imagery. As

the most widely accessible medium to high spatial resolution optical satellite products,

Sentinel-2 and Landsat products are often used to create merged products with high tem-

poral resolutions. SAR data availability has also increased since the launch of Sentinel-1A

and B on 3rd April 2014, and 25th April 2016, respectively. This was the first opera-

tional SAR mission of the European Commission’s Copernicus program, which provides

an unprecedentedly large amount of free data even for commercial use. Sentinel-1, in

particular, is designed for continuous near-real-time land monitoring and offers dual-

polarized mode (VV/VH) SAR images with a global spatial resolution of 5m to 20m at

least every 5-6 days on any place on the Earth.
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1.4 The advantages of using multitemporal satellite data

Earth Observation models allow to efficiently and rapidly monitor, identify, map and

assess land cover at different spatial and temporal scales. In turn, correct identification

of the different types of land cover allows to build reliable monitoring applications.

Including sequences of spaceborne data within land cover mapping algorithms can provide

clues on the stability of the classes and their change in time. Thanks to the ever increas-

ing number of Earth Observation satellites, time series data has become the dominant

form of remote sensing data for monitoring changes on the land surface [50], allowing to

detect finer changes and to provide their temporal patterns.

As previously discussed in Section 1.2, several regional and global land cover maps have

been generated that, however, need to be frequently updated and validated; this is a

challenging task, especially in highly heterogeneous regions. Time sequences of remotely

sensed data have the potential to generate wide-area land cover products, that are able

to capture the complexity of the changes occurring on the Earth surface. Time series

data have been employed in many studies, such as forest disturbance [51] using Landsat

data, water body mapping using Landsat data [52], annual land cover changes character-

ization using MODIS data [53], flood monitoring with Sentinel-1 SAR imagery [54], crop

mapping using Sentinel-2 data [55], and many others. Moreover, intra-annual sequences

of remotely sensed data can provide useful information on the phenological stages of

different land covers, allowing to better characterize them and identify finer differences

across the years.

All in all, methodologies based on time series have been demonstrated to outperform

single-date approaches in many applications, such as Above-Ground Biomass (AGB) es-

timation [56], forest cover loss quantification [57], land cover mapping [58, 59] and many

others.

1.5 Objectives of this dissertation

In this thesis, we will focus on the characterization of three different land cover types

leveraging the features hidden inside temporal sequences of satellite data. The three

types are vegetation, water and organic cropland; specifically, the vegetation macro-class

includes several types of natural vegetated land covers, such as different tree species,



Introduction 9

grassland, shrubland, etc. Regarding the water class, this includes only inland water

bodies, such as lakes, rivers, small seas and reservoirs. Lastly, in the case of organic cro-

pland, particular attention will be devoted to the characterization of farming practices

carried out within organic crop fields, such as weed-killing and fertilization operations

and tillage monitoring; these are clues that help discriminating organic cropland from

traditional cropland.

Regarding vegetated land cover mapping, findings from the scientific literature convey

a clear message: in general, approaches based on sequences of optical data outperform

those based on SAR time series [60–62]. Consequently, as can be observed from Chapter

2, the technical literature offers plenty of methodologies aimed at characterizing vegetated

land cover types using optical data. On the other hand, very few studies leverage dense

sequences of SAR data to characterize vegetated land covers; moreover, these studies

also present several limitations that this thesis will try to overcome. Given this context,

we decided to explore in this thesis work the untapped potential of multitemporal SAR

data in characterizing natural vegetation species.

Regarding water bodies monitoring and mapping, also in this case the technical liter-

ature offers a large variety of methodologies aimed at characterizing water land cover

using multitemporal optical data. However, it turned out that all the analyzed work

suffers several limitations. The most critical limitation is represented by clouds; for ex-

ample, flood monitoring applications strongly suffer from cloud issues, as generally bad

weather is associated to flood risk. Flooded vegetation can also represent a limitation,

as optical sensors cannot sense soil beneath vegetation. Since almost three-fourths of the

Earth surface is continuously covered by clouds, it is difficult to develop systems aimed

at generating frequent water maps for any region of the World. Many methodologies also

lack of automatism and cannot be transferred to other regions of interest, as their para-

meters are locally tuned. Lastly, there are currently no methodologies able to generate

frequent, high-resolution (<30 m) water bodies maps at very large (up to global) scale.

SAR-based methodologies are also present in the literature (but fewer than optical-based

ones), still they have several limitations in terms of spatial and temporal resolution, lack

of automatism, reference data sets generation an many others that will be deeply dis-

cussed in Chapter 2. Based on all the above considerations, in this thesis we will assess

the potential of multitemporal SAR data to build a fully automated, global-scale, high-

resolution water body monitoring and mapping application that aims at overcoming the

most severe limitations found in the technical literature.
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Finally, regarding characterization of organic farming practices, the selection of the most

suitable source of data strictly depends on the parameter that needs to be monitored.

For instance, multispectral data can be successfully use to detect fertilization operations

[63, 64], classify crops [65] and monitor weed-killer activities [66]. On the other hand,

SAR data can provide useful information regarding the type of tillage [67], the estima-

tion of flooding periods in case of aquaculture [68], the determination of harvesting dates

[69], yield forecasting [70] and discrimination of different species of the same crop [71].

In this thesis, we will focus mainly on monitoring three very important aspects that

mostly characterize organic farming, i.e., assessing the type of utilized tillage technique

using SAR time series data, detecting weed-killer activities in sequences of multispectral

data and monitoring fertilization operations through pairs of multispectral data. Con-

sequently, in this last part of the thesis, we proposed a new methodology to characterize

organic farming by a multisource approach, i.e., using both optical and radar data.



Chapter 2

A review of land cover mapping

methodologies based on space-borne

time series data

2.1 Scientific literature review on vegetation land cover map-

ping

2.1.1 Optical-based vegetation land cover methodologies

The technical literature offers plenty of vegetation mapping approaches which are based

on optical data. In the first part of this section, a brief review of land use and land

cover mapping using optical data is carried out; specifically, this will include a summary

of the relevant knowledge related to classification models, training sample strategies,

segmentation algorithms, geographical areas and others.

In recent years, several analysis techniques and algorithms were developed, aimed at char-

acterizing land cover and land cover changes. In [72], the Authors discussed the most

used techniques for land cover classification at the regional/global level; their review

study showed that the Random Forest (RF) classifier is one of the preferred technique

by the Remote Sensing community, as it can handle high data dimensionality, it is a fast

algorithm and, more importantly, it is insensitive to overfitting.

The work cited in [73] presented both opportunities and challenges represented by the use

11
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of satellite images time series on large scale for land cover mapping; the main outcome

of this study was that leveraging time series in land cover mapping approaches allows to

gather information on the class stability and their transition.

In [74] guidelines on the choice of different pixel-based image classification processes were

provided. The Authors shown that the highest improvement in terms of overall accur-

acy is given by the inclusion of textural information within the classification frameworks

(with an average increase of about 12.1% OA). Moreover, the study demonstrated that

the use of ancillary data such as topographic information, also have the potential to

complement existing spectral information.

Regarding machine learning models, in [75] an overview of machine learning from an ap-

plied point of view is given; specifically, the Authors focussed on several machine learn-

ing approaches, such as Support Vector Machines (SVM), Decision Trees (DT), Random

Forests (RF), Boosted Decision Trees (BDT), Artificial Neural Networks (ANN) and

k -Nearest Neighbours (k-NN ). For each approach, issues concerning the choice of the

most suitable algorithm, training data requirements, user-defined parameter selection

(and optimization), features space and computational costs were analyzed.

In [76] the Authors provided an overview of different Earth Observation data sets, spa-

tial/spectral/temporal features of satellite data and approaches employed in land use

and land cover classification. They also provided recommendations on how to generate

accurate LC maps, depending on the source of data and on the region of interest. An

important outcome of the study relates to the temporal resolution; as a matter of fact,

temporal information play a fundamental role in detecting class changes and their dy-

namics, as frequent remotely sensed data allow to monitor crop types, natural vegetation

such as forest cover, phenological stages, urban areas, and many others.

The study reported in [77] characterized the forest vertical structure for estimating forest

water storage capacity from multitemporal, Sentinel-2 optical imagery and topographic

data using an Artificial Neural Network (ANN) with fourteen input neurons (generated

based on satellite data).

In [78], the Authors proposed an algorithm based on adaptive thresholds (decision trees)

to generate land cover maps, computed from very high-resolution WorldView-2 images

and according to the different input samples from the study area.

Based on decision trees, the Authors of [11] generated land cover products through an

ensemble supervised classification algorithm applied on MODIS time series data.

In [79], multi-annual series of MERIS image composites were used within a Gaussian
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Maximum Likelihood (GML) classifier, aimed at minimizing classification errors based

on Bayes’ theorem of decision making.

All in all, as also mentioned in [80], the majority of the related works found in the tech-

nical literature takes advantage of time series spaceborne data, multitemporal analysis

and two main classification approaches, namely, pixel-based classification and object-

based classification. In the former case, multi-/hyper-spectral time series data are used

to monitor single pixels’ trends along time, while in the latter, pixel’s neighbourhood

relations for segmentation and classification are analyzed using the GEographic Object-

Based Image Analysis (GEOBIA) approach. Moreover, object-based classification pro-

cedure are often used together with machine learning algorithms such as random forests

and support vector machines.

Currently, the majority of the studies that can be found in the scientific literature rely

on Vegetation Indices (VI) to build their classification frameworks, in order to assess the

nature of the land cover composition and its changes in time. The most common VIs

used in those studies are generated based on reflectance values gathered from the visible

and near-infrared regions of the electromagnetic spectrum. The Normalized Difference

Vegetation Index (NDVI) [81] is computed based on the red and near-infrared bands,

and is extremely sensitive to vegetation’s chlorophyll, allowing to track plants’ growth;

the Soil-Adjusted Vegetation Index (SAVI) [82] also relies on the red and near-infrared

bands, and represents an improvement of the NDVI index, as it minimizes soil brightness

issues through a correction factor; the Enhanced Vegetation Index (EVI) [83] relies on the

blue, red and near-infrared bands and accounts for atmospheric noise, thus preventing

saturation over highly vegetated areas; lastly, the Normalized Difference Water Index

(NDWI) [84] uses the green and near-infrared bands to highlight water bodies and to

measure vegetation water status; all the cited indices are the most widely used in optical-

based classification approaches; however, some variations of the same have been designed

to account for some limitations and improve their sensitivity.

Time sequences of optical data were successfully employed in many vegetation land cover

mapping applications. In [85], a comparison of land cover maps generated based on time

sequences of Sentinel-1 SAR data, Sentinel-2 multispectral data and Landsat-8 multis-

pectral data was provided (in terms of overall accuracy). Several vegetation types were

mapped, such as grasslands, shrublands, rangelands and pastures. The Authors used
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several vegetation indices mentioned above, together with some modifications of them

to enhance detection of specific species; it has been shown that different composite gen-

erated based on Sentinel-2 data leaded to better results, compared to the (single) use of

the other two sources of data. This study demonstrates that temporal aggregation is a

promising tool for integrating large amounts of data in an efficient way and that it can

compensate for the lower quality of automatic image selection and cloud masking. It also

shows that combining data from different sensors can improve classification accuracy.

The work reported in [86] analyzed the potential of Sentinel-2’s red-edge bands to gener-

ate land cover maps, compared to Landsat-8 capability in accomplish the same task. To

this aim, three different machine learning algorithms were used, such as random forest,

stochastic gradient boosting and support vector machine. A relatively wide range of

classes were analyzed, such as cereals, legumes, shrubland, forest, settlement, bare soil

and water, and it was found that classification based only on Sentinel-2’s red-edge bands

achieved better results compared to those obtained using only Landsat-8 data.

In [87] the relationship between eight vegetation indices generated from Sentinel-2 data

was evaluated, in order to characterize three forest and two grassland areas in Australia,

assessing how much Gross Primary Productivity (the most important component of ter-

restrial carbon flux) variations can be explained by Sentinel-2’s red-edge bands.

The Authors of the work reported in [88] used Landsat time series data to characterize

burned pastures, tilled pastures and forests using a random forest classifier obtaining

very good results, and demonstrating (once again) that the detection of temporally ir-

regular events is possible using dense sequences of cloud-free observations. As a matter

of fact, involving time series in land cover classification algorithms reduces limitation

represented by cloud cover.

The work cited in [89] a Support Vector Machine (SVM) applied to several spectral

indices was used to classify the morphologically complex heterogeneous land cover pat-

terns of cities, focussing on the discrimination between bare soil and built-up regions in

Istanbul. The Authors showed that a multi-index approach (i.e., a combination of three

spectral indices, namely, the NDTI, NDVIre and MDDWI) was able to significantly im-

prove the separation between urban areas and bare soils, also enhancing the distinction

between other major land cover classes, such as water and vegetation.

In [90], the Authors generated annual land cover maps containing eight classes, such

as woody formation, forest, swampy region and flooded grassland, grassland, farming,

non-vegetated areas and water; to this aim, data from Landsat sensors Thematic Mapper
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(TM), Enhanced Thematic Mapper Plus (ETM+) and the Operational Land Imager and

Thermal Infrared Sensor (OLI-TIRS), on board of Landsat 5, Landsat 7 and Landsat 8,

respectively were used to train a random forest classifier.

All the above mentioned studies represent only a tiny fraction of the large number of

published papers on vegetation classification approaches based on time sequences of

optical data. In general, they showed that optical data can be successfully employed

to characterize vegetated land cover types, especially if time series data are used. On

the other hand, the scientific literature review carried out in this Chapter also revealed

lack of methodologies aimed at classifying vegetation species using multitemporal SAR

data. Moreover, as mentioned in the introduction of this thesis, in the case of natural

vegetation several studies demonstrated that optical time series based methodologies

outperform those based on SAR time series [60–62].

Given all the above considerations, in the present thesis the potential of multitemporal

SAR data in characterizing vegetated land covers at large (up to global) scale is assessed.

Specifically, while being well aware of the advantages of optical data compared to SAR

data, in this dissertation we will try to understand how to leverage SAR data to obtain

results comparable to those obtained with optical-based classification approach. To this

aim, the relevant findings from the technical literature are deeply analyzed in the next

section.

2.1.2 SAR-based vegetation land cover methodologies

The first analysed work is reported in [91]. In this study, the estimation of tropical

forest structural characteristics was assessed in Vietnam, using ALOS-2 SAR data, an L-

band microwave sensor. Particular attention was payed on the effects of the polarization

and seasonality of the SAR data on forest biomass estimation. The Authors showed

that combinations of HH and HV polarizations used to feed linear regression models did

not improve the biomass estimation with respect to use the HV channel alone. They

also demonstrated that the HV backscatter intensity correspondent to the dry season

(February) was much more sensitive to the amount of biomass, compared to the rainy

season (October) HV backscattering intensity. In fact, it has been noticed that SAR data

acquired during the wet season, hence, in heavily humid conditions, was not significantly

sensitive to the biomass.
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Regarding the methodology used for the biomass estimation, this relies on two parameters

that are related to the geometrical structure of the vegetation (forest). These parameters

are the diameter of the tree trunk (D) measured at 1.3 m from ground and the total

height (H) of the tree (both measured using lasers-based measuring tools). This sampling

was made for all trees that have trunk diameter greater than 5 cm inside a 1 hectare

(1ha = 100× 100m2) sample plot.

Then, the Above Ground Biomass (AGB) was computed by means of allometric equations

(that provide biomass estimation), using D and H as input data. The AGB was computed

separately for deciduous (2.1) and evergreen (2.2) trees, using the following equations.

AGBdeciduous = 0.14 ·D2.31 (2.1)

AGBevergreen = 0.098 · e2.08·ln(D)+0.71·ln(H)+1.12·ln(dw) (2.2)

Where AGB is the Above Ground Biomass in kilograms [kg], D is the diameter of the

trunk of the tree at 1.3 m above ground expressed in meters [m], H is the height of

the tree in meters [m] and dw is the wood density, expressed in tons per cubic meters

[ton/m3]. The equations for AGB estimation provide the actual amount of per-tree

biomass, including branches and leaves, and the measure unit is [Mg · ha−1].

At this point, the mean backscatter intensity for both HH and HV polarizations has been

computed over the 100 × 100m2 reference plots, and the relationship between biomass

and backscatter intensity was then analyzed by means of simple linear regression models.

To this aim, the correlation coefficient R2 and the Root Mean Square Error (RMSE)

have been derived and used to evaluate the relationship between the two variables. The

analysis shown that the HV backscattering intensity was more correlated to biomass,

with respect to the other channel (or combination of polarizations, such as the ratio).

Moreover, the correlation between biomass and backscatter intensity turned out to be

stronger during dry season (R2 = 0.57) with respect to the wet season (R2 = 0.34).

The study demonstrated the importance of selecting the best polarization and season for

satellite-based biomass estimation.

Another very interesting study is reported in [92]. The Authors of this work wanted to

perform fine-scale mapping of the AGB at the provincial level in Viterbo, Italy, using
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ALOS-2 (L-band), Sentinel-1 (C-band) and Sentinel-2 (optical) multitemporal SAR data.

Similarly to what has been made in the previous study, a simple linear regression analysis

was carried out to assess the relationship between backscatter intensity and AGB. Results

showed there exist quite good correlation between the two parameters, with R2 = 0.7.

The Authors demonstrated that the temporal information is very relevant, as it allows

to discriminate between different types of trees (for example, it has been shown that

broadleaf forests have different behaviours in yearly backscatter time series). They also

declared that the models based on Sentinel-1 data could improve their capability in

predicting AGB, if they are developed separately for each vegetation class (i.e., deciduous

and evergreen classes).

The methodology relies on the use of SAR time series to map the AGB and on several

parameters that were measured in situ, such as the diameter at breast height (DBH) of

both living and dead stems with a diameter greater that 5 cm, the species, thirty heigth

samples per main species per plot and the age of the trees. Regarding Sentinel-1 data,

two different time sequences were generated: a sequence made of 10 three-month time

windows (Jan-Feb-Mar, Feb-Mar-Apr, Mar-Apr-May, etc.) and a complete yearly time

sequence made of all the available acquisitions for a specific year of interest. Then, for

each stack, a mean composite image was generated. Moreover, polarization compositions

were also tested, specifically the ratio and the product of VH (HV) and VV (HH) channels

were computed for Sentinel-1 and ALOS-2. Whereas, for Sentinel-2, a single yearly mean

composite was computed, and the NDVI and RENDVI vegetation indices were derived.

To summarize, the features used in this work are the following:

• Sentinel-1 features: 10 three-months mean composites and one-year mean compos-

ite for VV, VH, VH/VV and V H · V V polarizations (for a total of 44 features);

• ALOS-2 features: one-year mean composite for HV, HH, HV/HH and HV · HH

(for a total of 4 features);

• Sentinel-2 features: given the one-year mean composite, 10 bands and 2 vegetation

indices were used as features (for a total of 12 values).

As shown in Figure 2.1a, in the case of evergreen trees the correlation between AGB and

backscatter intensity in time remain almost unaltered along the whole year (ρ ≥ 0.75)
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for all the polarization channels (and compositions). While in the case of deciduous

vegetation (Figure 2.1b), the correlation is lower for all the polarizations (ρ < 0.7).

Based on the analysis carried out in this paper, some conclusions can be drawn. First of

all, it was observed that the leaves tend to provide the strongest backscatter contribute

in C-band (5.405 GHz). In fact, the wavelength of the radar signal is comparable to

the size of the leaves. In particular, the Authors demonstrated that Sentinel-1 C-band

signals are sensitive to the phenology of deciduous vegetation, as the correlation between

VH backscatter intensity and AGB for this type of tree varies greatly depending on the

season. On the other hand, the correlation values in case of evergreen vegetation are

high during the whole year.

Referring to Figure 2.1b, high correlation values occur in the period when the tree has

developed leaves on it (high AGB), that contributes to the so-called “volume scattering”,

which is much lower in the period in which the tree is leafless. In fact, when the leaves

fall from the tree, the biomass decreases, whilst the backscatter intensity experience

an overall increase due to a stronger “double-bounce” scattering mechanism that occurs

at the trunk-ground interface. On the contrary, referring to Figure 2.1a, the persistent

presence of leaves generates an almost constant volumetric backscattering intensity along

the whole year.

Overall, this work demonstrated the potential of Sentinel-1 SAR data in monitoring and

mapping biomass using high spatial resolution SAR data. The results suggests that

multitemporal C-band SAR data is fundamental for characterizing broadleaf forests.

(a) Correlation between AGB and Sentinel-
1 SAR backscatter intensity in case of ever-

green trees.

(b) Correlation between AGB and Sentinel-
1 SAR backscatter intensity in case of de-

ciduous trees.

Figure 2.1: Charts of the Pearson correlation coefficient computed between SAR
backscatter intensity and AGB in case of (a) evergreen species and (b) species. Image

source: [92].



A review of land cover mapping methodologies based on space-borne time series data 19

Notwithstanding the demonstrated ability of Sentinel-1 data in estimating AGB, the

joint use of L-band data turned out to be necessary in order to improve AGB predictions.

Carrying on with the scientific literature review, a study is reported in [93] in which

the Authors describe the important role of topographic variables in forest classification

algorithms. Even if not directly related to the use of multitemporal SAR time series,

this work provides interesting insights that can be exploited when forest classification is

the task.

The Authors stated that, in general, performing detailed tree species classification using

satellite data is very challenging mainly due to the limited availability of high-resolution

remotely sensed data; moreover, the complex geometry of the different tree species and

the lack of suitable classification approaches make this task difficult. In this work, it has

been explored the potential of ZiYuan-3 (ZY-3) multi-spectral and stereo imagery from

leaf-on and leaf-off season in order to distinguish land cover types, forest and tree spe-

cies distributions. These classifications where made by testing six different classification

algorithms, such as Artificial Neural Networks (ANN), k -Nearest Neighbors algorithms

(kNN), Maximum Likelihood Classifiers (MLC), Support Vector Machines (SVM), De-

cision Tree algorithms (DT) and Random Forest classifiers (RF). The main results of

this study can be here summarized:

• If only spectral bands are used to classify forest types, MLC outperforms other

machine learning algorithms;

• Images acquire during leaf-off season lead to better classification performances than

those acquired during leaf-on period. However, the combination of these images

can significantly improve classification results by more than 10%. Of course, such

improvement can be achieved only if bi-temporal data are used;

• The use of ancillary data such as spectral responses, textures and topographic

information can improve the classification quality, especially when random forest

and support vector machines are involved. By exploiting these variables, together

with spectral data, it is possible to increase the classification result by more than

12%;
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• The canopy height information may lead to better discrimination capabilities in

the case of particular tree species. Accurate canopy height can be derived from

LIDAR or space-borne stereo images and can improve forest classification;

• If general land cover mapping is the task, RF and SVM machine learning algorithms

leaded to the best classification accuracy, that is greater than 80%. If the focus

is forest classification, then MLC outperforms RF and SVM, achieving more than

89% overall accuracy.

Based on the above discussion, this work demonstrated the need of specific classification

approaches that correspond to different tree species, as no single classification method

was able to achieve high classification accuracy on all the considered species. Moreover,

this study highlights the importance of topographic variables such as elevation and slope,

as they can discriminate classes having different spatial distribution (e.g., tree species

living only at certain altitudes).

In study [94], the Authors leveraged on the joint use of Sentinel-1 and Landsat-8 time

series to classify evergreen and deciduous broad-leaved forests, tropical monsoon forests,

typical rain forests and others. On the one hand, Landsat-8 multispectral data can

provide useful information for mapping and classifying forests; however, tropical areas,

such as the Hainan Island in China analyzed in this work, are often covered by clouds,

thus representing a critical limitation for optical data. On the contrary, SAR data can

penetrate such harsh weather conditions and can provide useful information on forests

able to characterize canopies.

The classification methodology relies on multitemporal Sentinel-1 and Landsat-8 time

series and on field survey data; specifically a sampling campaign was conducted to collect

more than 400 sample points, labelled with the specific type of forest.

Being a coherent imaging system, each pixel in SAR images represents the coherent

addition of scatterers from a corresponding resolution cell; depending on the phase of

the scatterers, they can interfere either in a constructively or destructively manner. This

(unwanted) effect is called speckle noise, and translates into randomly bright and dark

pixels (also known as “salt and pepper” effect), even within homogeneous regions. To

reduce this effect, all Sentinel-1 data were pre-processed before actual use with a Refined
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Lee filter (using a 7× 7 kernel). The features used to feed the SVM algorithm are: one-

year mean VV and VH composites for Sentinel-1, and Blue, Green, Red, NIR, SWIR

and the NDVI vegetation index for Landsat-8.

Based on the SVM, the Authors proposed a two-stage classification strategy aimed at

better distinguishing the different forest types. The first step consists of performing a

“raw” classification aimed at distinguishing the main land cover types, present in the

area of interest. These classes include open water, tropical forest, artificial forest, bare

soil, coastal forest, artificial surface and other vegetation species. In this first step,

the SVM was used, and images acquired in a similar period were used as input. At

this point, a finer classification was carried out (again by using SVM) exploiting the

multitemporal information. Thanks to this second stage, the natural tropical forest class

can be clustered in finer, sub-classes, such as evergreen broad-leaved forest, tropical

monsoon forest, evergreen and deciduous broad-leaved forest, typical tropical rain forest,

evergreen coniferous forest and coastal forest.

Another very interesting paper found while reviewing the state-of-the-art methods for

land cover classification using SAR time series is reported in [95]. The Authors of this

work presented an analysis aimed at assessing the potential of using multitemporal C-

band data for monitoring and classifying forests in northern Switzerland.

Previous studies on mixed temperate forest characterization focussed on the analysis

of fully-polarimetric SAR data in order to associate a specific scattering mechanism to

a specific forest type [38], or estimate forest density using supervised classifiers [96],

whilst just few works analyzed long C-band backscatter time series over forest regions.

The Authors of this research presented a methodology that aims at using VV and VH

polarized Sentinel-1 imagery to classify one coniferous and two broad-leaved deciduous

trees.

The analysis starts with the calibration of Sentinel-1 data; specifically, the data are

radiometrically calibrated and terrain-geocoded, obtaining Geometrically Terrain Cor-

rected (GTC, γ0E), using available Digital Terrain Models (DTM). Then, GTC data

undergo a radiometric terrain correction using the procedure described in [97], that nor-

malizes backscatter intensity values based on the illuminated local area (instead of using

a simple ellipsoid model, as done for GTC products). The obtained terrain-corrected

images (RTC, γ0T ) have the advantage of being better interpretable over morphologically
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complex areas, such as hills and mountains.

RTC images are then passed through a multitemporal despeckle filter aimed at reducing

the speckle noise affecting them and increase the spatial resolution. Moreover, descending

and ascending orbit RTC images acquired within a specific time window are combined by

means of the Local Resolution Weighting (LRW, γ0LWR) approach to generate composite

backscatter images (whose procedure is described in [98]). Specifically, it was observed

that 24-days windows and a temporal sampling interval of 12 days turned out to be

enough to observe phenology changes in backscatter time series, while also providing the

complete coverage of the area of interest.

At this point, the LRW composite images were used to extract features that are useful

to classify the different species within the study region. For each LRW image of the

time sequence, several textural statistics are computed and plotted in time in order

to carry out a preliminary analysis of the seasonal behaviour of the classes. These

parameters are the median, 25% percentile and 75% percentile, and they are computed

inside a specific ground truth mask related to a specific class (e.g., the evergreen forest

class). Moreover, in order to better characterize the behaviour of the different classes,

other temporal statistical parameters were derived from the time sequences of the three

textural parameters previously computed. These parameters are: overall median of the

medians, median of the 25% percentiles, median of the 75% percentiles, median of the

medians during Winter (from the 1st of December to the 15th of March), median of

the medians during Summer (from the 1st of June to the 25th of September) and the

difference (delta) of the two latter variables (Winter minus Summer). To better clarify

how all the features were extracted, the reader is referred to Figure 2.2.

Two additional descriptors are also derived, called “breakpoints”. These two parameters

correspond to two specific dates on which structural changes in the annual time series are

observed. Specifically, the first break date was set as the leaves emergency date; whereas

the second break date was set as the fall of the leaves.

All the computed features were then used to feed a Random Forest (RF) classifier; the

RF was chosen, as it was able to handle all the non-linear relationships that are present

in the study data. Moreover, it was demonstrated in previous studies that RF classifiers

fed with multitemporal C-band SAR data outperformed other types of classifiers.

Another paper that uses multitemporal Sentinel-1 time sequences is described in [99],
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Figure 2.2: Feature extraction based on LRW composite images time series. x̃N is
the spatial median of the N-th LRW composite, QN

1 is the spatial 25% percentile of
the N-th LRW image, and QN

3 is the spatial 75% percentile of the N-th LRW image
(computed inside a mask).

where the Authors used joint Sentinel-1 and -2 (SAR and optical) data to generate

crop maps in Belgium. The main finding of the study is that the combination of SAR

and multispectral data always lead to better classification results, compared with single-

sensor approaches. Moreover, the classification accuracy further increases from the be-

ginning of the season (January) until June, as the differences between crops is maximum.

The developed methodology relies on a set of features extracted from Sentinel-1 and -2

time series. In particular, all the available Sentinel-1 images (from both A and B plat-

forms) acquired within a 12-day window are used to generate a single image composite.

Since each satellite has 12 days revisit time, there are at least two images in each 12-days

time window. As shown in Figure 2.3, all the images belonging to each time window

is converted from dB to natural units; then, a single mean composite is generated on a

per-pixel basis and is re-converted to dB.

The averaging operation allowed to reduce speckle noise as it acted as a multitemporal

filter, and to ensure the same amount of features for each single location within the

study area. In this work, all the images acquired between the 1st of March and the 16th

of August 2017 were used, resulting in a total of 60 ascending and descending VV and

VH 12-day composites that were used as input features in the proposed classification

procedure. It is important to note that, due to significant differences in terms of viewing
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Figure 2.3: Generation of image composites from series of images acquired every 12
days.

angle between ascending and descending orbits, these were analyzed separately. Then,

all the images undergone a speckle noise reduction through a refined Lee filter and the

effects of incidence angle variations were reduced by means of a squared-cosine angle

normalization, whose equation is reported below.

σ0
θref

=
σ0
θ cos

2(θref )

cos2(θ)
(2.3)

In Equation (2.3), which is a simplified incidence angle correction based on Lambert’s

law of optics, σ0
θ is the backscatter intensity measured under the observed incidence angle

θ, and σ0
θref

is the estimated intensity as it was measured with a reference incidence angle

θref .

Regarding Sentinel-2 optical data, after correcting them geometrically and atmospher-

ically, a cloud-masking procedure was applied to each scene of the multitemporal stack.

Then, the NDVI value was computed for each image, thus obtaining time sequences of

NDVI values on a per-pixel basis. In order to overcome the loss of information due to
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cloud coverage, the NDVI sequences were interpolated and smoothed using the pixel-

wise weighted least squared approach, described in [100]. Such smoothing procedure was

applied based on temporal windows of 10 days between the 1st of March 2017 and the

31st of August 201, for a total of 18 features used as input for a two-step Random Forest

(RF) classifier.

The first classification step aims at classifying “macro-classes”, such as built-up, water,

forest and crops. Whereas, in the second (and last) step, the “crop” class is split into dif-

ferent types: wheat, barley, rapeseed, maize, potatoes, beets, flax, grassland and others.

To do so, the Authors of this work analyzed 18 different classification schemes:

1. In the first 6 schemes, only Sentinel-1 SAR data were used and the number of

utilized images increased after each scheme:

(a) March;

(b) March - April;

(c) March - April - May;

(d) March - April - May - June;

(e) March - April - May - June - July;

(f) March - April - May - June - July - August

2. In the second group of 6 schemes, it was applied the same previous approach, but

now using Sentinel-2 images.

3. In the third and last group of 6 schemes, it was applied the same previous approach,

but now using both Sentinel-1 and -2 images.

For each classification scheme, the overall accuracy (OA) and Cohen’s kappa coefficient

of agreement (k) were computed to assess the classifier performance. The proposed

approach was able to achieve maximum OA of 82% and k coefficient of 0.77 when the

March-to-July scheme based on both sources of data was used. The most important

outcome of this study is the fact that the joint use of optical and radar data always leads

to better results, compared with single-sensor based approaches.

In [101] the Authors used both multitemporal Sentinel-1 and -2 data to generate a 10-m

spatial resolution land cover map for Iran with 13 classes, using a random forest classi-

fier within the Google Earth Engine geospatial cloud computing platform. The Authors
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also proposed a method based on Sentinel-2 data, that aims at migrating ground truth

samples from a reference year to automatically generate a land cover map for any year

of interest.

The methodology is based on the joint use of Sentinel-1 and -2 images acquired in year

2017, that are used to characterize 13 land cover types exploiting an object-based clas-

sification, in order to obtain “cleaner” results. The 13 classes were selected based on

the thematic legend of a land cover map of year 2016, generated by the Iranian Space

Agency (ISA) using low spatial resolution MODIS data (500 m). Ground truth data was

collected manually by the Authors by photo-interpretation of the ISA LC map, cross-

checking using high-resolution optical imagery that are available in Google Earth. The

built dataset was then split in half, where 50% of it was used to train the random forest

classifier, whereas the other 50% was used to validate the model.

The classes mapped by the Authors are: urban, water, wetland, kalut (Landforms cre-

ated from soft riverbed and seabed sediment and silt through wind erosion), marshland,

salty land (Areas with high soil salinity), clay, forest, outcrop (Unconsolidated deposits

of bedrock and mountains appeared on the Earth’s surface), uncovered, plain (Plain bare

soils without any vegetation cover), sand, farmland and rangeland.

Regarding the data selection, a total of 2.869 and 11.994 Sentinel-1 and Sentinel-2 images

(acquired in year 2017) were used, respectively. In the case of Sentinel-1 SAR data, both

VV and VH polarizations were selected. The main features that have been derived from

these data are the mean and the median in the case of Sentinel-1 and -2, respectively.

Specifically, a single, very large Sentinel-1 mosaic was generated by averaging all the

acquisitions for each polarization. Similarly, a single median composite covering Iran was

computed based on all Sentinel-2 acquisitions. In this case, all the images with cloud

coverage greater than 10% were discarded from the computation, in order to create a

stable and cloud-free composite. To reduce the computational processing cost, only some

spectral bands were involved in the classification; in particular, for Sentinel-1 both VV

and VH backscatter intensity values were used, while only the blue, green, red, NIR, RE

and SWIR bands were utilized in the case of Sentinel-2 (so only 6 bands out of a total

of 13). So in total, 8 features have been used as input variables in the random forest

classifier, whose number of trees and node variables was chosen to be equal to the square

root of the total number of variables (as suggested in [102]).

Since the RF classifier implemented in Earth Engine is pixel-based, the obtained result
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was post-processed in order to produce an object-based LC map, which is much stable

and leaded to better accuracy. To do so, a Simple Non-Iterative Clustering (SNIC)

algorithm was applied to the Sentinel-2 median composite. Then, a majority voting

technique was applied within each single segment extracted by the SNIC.

So in general, the methodology proposed by the Authors was able to accurately map the

different land cover types, especially the forest class, which achieved alone a producer’s

accuracy of about 99.9%. For this reason, in future works, it is foreseen to split this class

into sub-classes classes (enhancing the quality of the Iranian LC map).

In some studies, in order to produce land cover maps using multitemporal SAR data, the

coherence information is exploited. An example of such approach is reported in study

[103]. In particular, the Authors wanted to assess the performance of interferometric

coherence compared to intensity information only when land cover mapping is the task.

Seven different classification approaches were analyzed, including pixel- and object-based

techniques and supervised and unsupervised classification methodologies. Following,

some main conclusions:

• Interferometric coherence is a very important information when performing land

cover classification; for three regions of interest analyzed in the study, an average

of 75% overall accuracy was achieved;

• In general, coherence outperforms intensity for each considered scenario. How-

ever, using both sources of information leaded to better results, compared to those

obtained by utilizing only one of them;

• If only the intensity information is used, then the VV channel performed better

than VH channel in all the considered cases. Again, joint use of both polarization

is better;

• Also the training set plays an important role in land cover mapping. In fact,

the higher the number of (good quality) training points, the higher the final map

accuracy. In this study, the number of reference points was around 1% of the total

image dimension and were randomly collected;

• As demonstrated in other studies, object-based approaches lead to better results

with respect to pixel-based ones. However, the natural drawback of object-based

methodologies is the loss of spatial detail.
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Based on the above observations and on the findings of the study, the Authors demon-

strated that coherence-based results provided higher accuracy than intensity-based ap-

proaches, when a temporal sampling of 6/12 days is considered.

In another study [104], the Authors demonstrated the utility of Sentinel-1A SAR data for

the characterization of Land Use and Land Cover (LULC), to support natural resource

management for land use planning and monitoring in Bac Lieu, a province of the Mekong

Delta, in Vietnam.

In this work, 21 Sentinel-1 SAR images, all acquired in year 2016, are used; based on

the methodology reported in [105], Grey Level Co-occurrence Matrices (GLCM) textures

were computed based on the original stack of images. A GLCM is a second-order statist-

ical texture measurement that considers the relationship between groups of two pixels.

Specifically, the GLCM is a matrix of the frequencies of pixel pair values within a neigh-

bourhood of a specific kernel size. Together with the original Sentinel-1 acquisitions,

these textural images were used to train a random forest (RF) and a support vector

machine (SVM) classifier, aimed at characterizing urban areas, forest, aquaculture and

paddy rice fields. Therefore, 3 features are utilized for each image of the original stack:

the VV and VH polarization images and the GLCM texture image.

Regarding the training reference points, 500 points were manually extracted from the offi-

cial land use map of the Mekong Delta, also with the support of high-resolution imagery,

such as Google Earth imagery and Planet data. The generated classification product

was then post-processed in order to obtain a clearer map by means of a 8-neighbouring

cells majority filter. Additionally, a class boundary smoothing and a region grouping

algorithm was applied to further enhance the final result.

To validate the proposed methodology, 270 validation reference points were used and

extracted in the same way as the training set. The study was able to achieve 91.8% and

94% overall accuracy during the dry and wet season, respectively. The Authors showed

that multi-temporal Sentinel-1 SAR data is effective for land cover mapping and useful to

understand spatial-temporal changes coastal landscapes, especially in tropical countries

where frequent cloud cover obstructs optical remote sensing methodologies.

Another very interesting paper we found carrying out the scientific literature review

is referenced in [85]. In this work, the Authors leveraged on the huge computational

power of Google Earth Engine to classify wide areas (100 × 100 km2 tiles) in the West

of England. To do so, data sets were generated based on Sentinel-1, Sentinel-2 and
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Landsat-8 images, acquired from October 2016 and September 2017 (so to highlight the

seasonality of particular classes, such as crops).

Almost all the features used in this work were obtained by “temporal aggregation” of

optical and SAR data over a specified time window. For instance, a “one-interval” dataset

was obtained by reducing all the available images (acquired within the year of interest)

to one single image composite. Whereas, a “two-interval” dataset was generated by

aggregating images acquired in two different periods of the year of interest (e.g., two

6-months composites); in this way, two single image composites are generated. In Figure

2.4 the feature selection scheme used in this work is reported.

From Figure 2.4 it is possible to note that, in case of multispectral data, a cloud-masking

algorithm was applied to each scene in order to obtain cloud-free image composites.

In addition to the composites, elevation information was added to the set of features.

Specifically, elevation, aspect and slope were used as features with the aim of enhancing

the classifier performance and increasing the final accuracy. Different data sets were

generated using different sensors; for example, the “s1_med4” dataset (based on Sentinel-

1 data) was generated by subdividing the whole year of interest in 4 intervals of same

length. Then, for each of the 4 obtained time series, a single median composite is

computed for each polarization (VV, VH and VV-VH). So in this case, the number of

features is equal to the number of composites multiplied by the number of bands (4

images times 3 bands).

Sentinel-1 data was pre-processed using a spatial Lee filter, aimed at reducing speckle

noise; both channels were used as input features, together with the VV-VH combination,

Figure 2.4: Feature selection procedure. Image source: [85].



A review of land cover mapping methodologies based on space-borne time series data 30

that was demonstrated to play a key role in land cover classification procedures. Also

the use of temporal SAR composites was demonstrated to be an excellent strategy to

overcome some weather conditions, such a strong wind.

Regarding the training dataset, 10000 reference points were randomly collected for 13

classes from a local land use map (the UK Broad Habitat Land Cover Map) and used to

train a random forest classifier. Results showed that joint use of optical and SAR data

leaded to better results, compared with single-sensor methods. Specifically, combined

data sets (S1/S2 or S1/S2/L8) outperformed single-sensor data sets, while data sets

based only on spectral indices achieved the lowest accuracy levels. This study provides

a very useful comparison of the accuracy among multi- and single-sensor data for land

cover mapping, as well as providing a range of combinations and parameters that are

used as features input for the classification model.

2.2 Scientific literature review on water body mapping

2.2.1 Optical-based water body mapping methodologies

In the context of climate change studies, increasingly detailed information on land cover

and land use to precisely model and predict climate are needed. A fundamental land

cover type that needs to be constantly monitored by the climate change community is

water. Due to its typical spectral signature, water is well-distinguishable in multispectral

data, and several spectral indices have been designed to detect water bodies by means of

optical data, such as the Normalized Vegetation Index (NDVI), Normalized Difference

Water Index (NDWI) [84], Modified Normalized Difference Water Index (MNDWI) [106]

and the Automated Water Extraction Index (AWEI) [107].

In general, almost all the existing optical-based water bodies methodologies rely on the

typical low reflectance values of water in the infrared bands which, compared to other

land covers, is a unique feature. Based on this principle, a large number of algorithms

have been developed that aim at extracting water bodies from time sequences of optical

data. Moreover, water bodies represent a very dynamic type of land cover, as they rapidly

change in time due to both natural and human-induced factors; therefore, approaches

based on spatio-temporal analysis are widely used, as such technique is essential to assess

the availability of water resources at the regional and global scale.
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In [108], sequences of MODIS data were used to characterize short- and long-term lake

inundations; the Authors of this work extracted water boundaries using the Floating

Algae Index (FAI), which is computed based on the red and shortwave-infrared bands

of the E.M. spectrum, and used it with a gradient method to detect the water/land

interface of the inundation.

The work reported in [25] generated a global surface water dataset at 30 m scale through

an automatic algorithm applied to Landsat surface reflectance values, spectral indices

(both water and vegetation indices), terrain metrics and existing coarse-resolution wa-

ter maps (based on MODIS data). The proposed methodology relied on a two-stages

approach: the first stage, namely, the deductive stage, focussed on the generation of

reference water pixels by comparing spectral (water-related) indices and topographic

variables with MODIS water estimation at coarse resolution; the second stage, namely,

the inductive stage, was based on decision trees aimed at optimizing and refine prior

information.

In [109], decision trees were built based on multispectral bands to discriminate water

bodies from other land cover types leveraging on Landsat data. The aim of the overall

study was to map historical flood extents for inundation frequency estimation; despite

the achieved good results, limitations related to the use of Landsat emerged in terms of

revisit time and cloud coverage issues.

The Authors of [110] used a set of water-related spectral indices to characterize both

flood extents, vegetation and moisture content based on pixel-based classification pro-

cedure applied to time sequences of MODIS data.

In [111], a fine-resolution water mask for North America, and that has been derived from

Landsat data, has been presented. The methodology relies on dynamic thresholding of

the mNDWI multispectral index.

The work carried out in [112] was about the use of time sequences of Landsat TM/ETM+

data to map the extent and dynamics of surface water and flooding based on random

forest models (an ensemble classifier). Thanks to the high spatial and temporal resolu-

tion Landsat data, the Authors were able to quantify small scale changes of water bodies’

extents.

In [113] several supervised classifiers such as Maximum Likelihood Classifier (MLC), Ar-

tificial Neural Networks (ANN) and Object-Based Image Analysis were employed to clas-

sify water, built-up, bare soil, low vegetation and forest land covers, based on Sentinel-2

time series.
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The study reported in [114] demonstrated that spatio-temporal patterns were useful to

characterize irrigated cultures using an object-based analysis applied to Sentinel-2 time

series. The methodology relied on segmentation to obtain delineated fields, and on a ran-

dom forest based classification step aimed at identifying croplands. Finally, a decision

tree was in charge of distinguish irrigated crops and rain-fed crops based on NDVI time

series.

In [115], the performance of Sentinel-2 multispectral data for detecting urban surface

water was evaluated. Specifically, the Authors proposed an automatic classification ap-

proach based on dynamic thresholding and object-based segmentation, and different

water indices were compared. Results showed that urban surface water can be success-

fully mapped using the modified NDWI (mNDWI).

The Authors of [116] proposed a novel water index computed on Sentinel-2’s red-edge

and shortwave infrared bands, namely, the SWI (Sentinel-2 Water Index). Their study

showed that the SWI was able to provide better contrast than NDWI, and that a method

based on the integration of SWI and Otsu algorithms could accurately extract different

types of water bodies.

Similarly to what emerged from the technical literature regarding vegetation land cover

mapping methods, also in the case of water body mapping, a large number of algorithms

and approaches based on time sequence of multispectral data exists. However, all the

above cited works have limitations. The most critical one is represented by cloud cov-

erage; for instance, clouds are almost always associated to rainfall-induced flood events,

exactly when inundation detection is important. Moreover, optical sensors cannot gather

information from regions with water beneath vegetation. More in general, clouds repres-

ent a severe limitation for continuous monitoring and frequent water body map genera-

tion, especially at large scale. Finally, many of the cited works lack of automatism, they

cannot be applied to other regions than the one used in the study and, often, the tem-

poral and spatial resolution is not enough for several applications. On the other hand,

SAR signals can penetrate almost all weather conditions and can thus monitor ideally

any region of the Earth surface; depending on the operational frequency, SAR signals

can also penetrate through vegetation and provide information regarding the condition

of the soil beneath.

Compared to optical-based approaches, the technical literature does not offer a large

number of methodologies aimed at classify water bodies extent at large (up to global)
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scale and at high spatial resolution using time sequences of SAR data. Moreover, the

existing approaches all have limitations, that are going to be discussed in the next Section.

Given this context, in this thesis work the potential of multitemporal SAR data to map

water bodies at the global scale is assessed. To this aim, in the following Section, a deep

literature review on water body mapping using multitemporal SAR data is given.

2.2.2 SAR-based water body mapping methodologies

The first relevant work emerged from the literature review is reported in [117], where the

Authors used Sentinel-1 SAR data to derive a land cover map for Lagos state, Nigeria.

To this aim, a supervised pixel-based classification methodology was applied to the data.

In this work, water bodies, bare land, vegetation and urban areas were classified by

means of Maximum Likelihood Classification (MLC) algorithm that has been trained

with manually collected reference points. The focus of this work was to determine the best

features possible, when water body mapping is the task. Based on empirical approaches,

the Authors identified VH as the best polarization to classify water class; however, the

use of this channel alone was not suitable to classify, for instance, urban areas. Therefore,

the final set of SAR features that turned out to lead to a better discrimination between

classes is composed by VH, VV+VH and VV-VH polarization compositions. Despite the

good obtained classification results, some confusion errors occurred. In fact, due to the

similar geometric characteristics of water class, even lots of actual bare soil pixels were

classified as water, and vice versa.

The Authors also noticed that their proposed methodology based on MLC, achieved

lower accuracy values than other studies that extract water bodies using, for example,

Otsu thresholding or k -means clustering approaches.

In [118] is described a methodology aimed at evaluating the potential of RADARSAT-1

data in monitoring and mapping flood water in flood-prone areas. In particular, the main

goals of the work are to mapping inundated areas using multitemporal RADARSAT-1

data, to compute flood duration and to map the propagation of flood waves using multi-

date flood maps. To this aim, HH-polarized images were used, as this polarization

is less sensitive to minor vertical differences on the surface of the water (e.g., waves).

These data were pre-processed in order to reduce speckle noise (by means of a median

filter with kernel 3 × 3) and correct for geometric distortions (leveraging on manually
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distributed ground control points, or GCPs). Since inundated areas appear in dark tone

in SAR images, it is possible to separate them from non-inundated regions based on

the roughness of the surface on water and land. To do so, the Authors converted SAR

backscattering coefficients to Digital Numbers (DN), with 8 bit of radiometric resolution.

Then, the flooded regions were extracted using a specific radiometric threshold.

The areas detected using such thresholding approach is a combination of flooded and

permanent water areas. Therefore, it is necessary to eliminate permanent water bodies

from the final flood map. To do so, a permanent water bodies map was generated

based on a pre-flood image, acquired by the IRS-1C satellite. This paper describes a

methodology aimed at effectively extracting flooded areas from SAR images and, based

on the findings, the methodology can also be applied to extract permanent water bodies.

Another interesting study that uses a simple thresholding approach to classify permanent

water bodies in multitemporal SAR data is reported in [43]. Here the Authors leverage

on two very important features related to the characterization of water in radar data:

low backscatter intensity and very high temporal variability. Specifically, in C-band,

water bodies are characterized by low backscatter intensity values and by high temporal

variability due to the waves (i.e., high standard deviation). These two features can be

extracted from multitemporal SAR data and used in a water classification model. In this

work, Envisat Advanced SAR (ASAR) Wide Swath Mode (WSM) data were considered

and analyzed over six test sites, having different types of water bodies and land surfaces.

Each SAR image was first multi-looked, terrain geocoded and speckle filtered using a

multi-channel filter. Then, starting from the stack of SAR images, the overall (per-pixel)

mean, minimum and standard deviation values were computed. Figure 2.5 shows an

RGB composite, where the Red (R) channel is represented by the mean SAR backscatter

image, the Green (G) by the minimum image and the Blue (B) by the standard deviation

(i.e., temporal variability) image.

Referring to Figure 2.5, water bodies appear bluish due to the low minimum backscatter

(thus, no green) and high temporal variability (thus, strong blue channel). On the other

hand, other land cover types are characterized by a lower contribution of the blue channel,

as they are more stable in time (e.g., urban areas).

The signature analysis carried out by the Authors suggested that a simple decision al-

gorithm, based on the location of a measurement in terms of minimum and standard
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Figure 2.5: False color composite of average SAR backscatter (red), minimum SAR
backscatter (green) and standard deviation (blue) for the Netherlands. Dataset: En-

visat ASAR Wide Swath Mode. Image source: [43].

deviation backscatter values, can be enough to separate permanent water bodies and

other land cover types. The equation proposed by the Authors, and aimed at separating

water and non-water classes, is:

y = 3.5x− 28 (2.4)

where x is the standard deviation in dB, and y the minimum backscatter value in dB. Of

course, the identified equation corresponds to the best classification results for the study

area (the Netherlands). Furthermore, to reduce classification errors, all the pixel labelled

as “water” that are located on slopes greater than 10 degrees are, instead, re-labelled as

“non-water” class. The slope information was derived from the SRTM-3 Digital Elevation

Model (DEM). The proposed methodology was able to achieve accuracy values on the

order of 90%, even if several omission errors were made, due to the inability of the

algorithm in detecting small water bodies.

In [119], the Authors demonstrated that the joint use of Sentinel-1 time series data and

a metric based on the product of co- and cross-polarized channels can lead to an efficient

support of the so-called “smart water management”. In particular, a methodology was

developed to extract the waterline and estimate the extent of water-covered areas using



A review of land cover mapping methodologies based on space-borne time series data 36

VV and VH polarizations and an unsupervised classifier.

The algorithm develops in two phases: enhancement of the separability between wa-

ter and land, and edge detection method. Regarding the first step, this relates to the

pre-processing of SAR data. Specifically, the data are multi-looked, speckle filtered,

resampled and co-registered. Whereas, the second step aims at extracting waterlines

exploiting Single- (SP) and Dual-polarization (DP) channels.

Exploiting dual-polarimetric data, it is possible to estimate waterline using different com-

binations of co- and cross-polarized channels; in this work, the Authors used the metric

based on the product of co- and cross-polarized data (amplitude information) reported

in Equation (2.5),

r = ⟨|SV V | · |SV H |⟩ (2.5)

where | · | and ⟨·⟩ represent the modulus and the spatial averaging, respectively. This

metric was employed, as it was demonstrated in previous works to enhance sea/land

contrast when coastline extraction is the task. Based on the experiment that have been

carried out, the Authors of this article were able draw several conclusions:

• Sentinel-1 SAR data allow to track not only normal season trends, but also anom-

alies;

• Dual-polarization (DP) measurements lead to better results, compared with single-

polarization ones. This fact was observed in terms of overall accuracy and quality

of the extracted profile of the water body;

• In single-polarization data are used, then the co-polarized (e.g., VV) channel per-

forms better than cross-polarized ones (e.g., VH), as the latter tens to overestimate

water-covered areas, thus leading to numerous false positive occurrences;

• In general, time-series analysis can be successfully employed to discriminate per-

manent water bodies (such as reservoir areas) from regions covered by water only

for a limited amount of time during the year.

Another interesting paper was found during the literature review, that deals with super-

vised learning models aimed at mapping inland water bodies using Sentinel data at the
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state level [120].

In this work, the Authors exploited both SAR and multispectral Sentinel data for water

body mapping. Even if the majority of the water mapping algorithms rely on optical

data, the choice to include also SAR data is mainly driven by the fact that SAR signals

can provide information almost in any weather condition, thus allowing constant mon-

itoring of important water bodies or wetlands. Moreover, such data fusion for has been

proved to be much more robust than single-sensor based approaches.

Regarding the proposed water body mapping methodology, first several pre-processing

steps are carried out, in order to overcome some single-sensor limitations (i.e., cloud

coverage for optical data and speckle noise for SAR data). An effective way to reduce

speckle noise, without lose spatial details, is based on the generation of a temporal mean

composite image. To this aim, all the Sentinel-1 SAR images acquired within a specific

time window are temporally averaged on a per-pixel basis. As a result, the obtained

composite is cleaner and more stable than single-date acquisitions.

Similarly, to limit the issue represented by clouds in Sentinel-2 optical data, a single tem-

poral median composite is generated from a stack of images acquire within a specific time

window. In this case, the median composite exhibits pixels whose values are in between

very low reflectance values (dark, shadowed areas) and very high values (bright, clouded

areas). To visually appreciate its effects, In Figure 2.6 an example of such compositing

is reported.

Regarding Sentinel-1, both VV and VH channels (of the mean composite) are used as

features; whereas, for Sentinel-2, all 10 and 20 m bands are used, together with two

spectral indices: the Normalized Difference Vegetation Index (NDVI) and the Modified

Normalized Difference Water Index (MNDWI), which is an extension of the NDWI.

Another interesting aspect of this work is represented by the methodology employed to

sample reference, training data. In fact, in order to build a well-generalizing model,

is is necessary to sample points belonging to a wide variety of water body types, from

large lakes, to small and shallow rivers. To do so and, most importantly, to avoid time-

expensive manual approaches, an automatic sampling procedure is proposed based on the

use of the OpenStreetMap (OSM) layer. Specifically, only water bodies (such as rivers,

lakes, etc.) are extracted from the layer and used for sampling reference points; moreover,

to avoid selecting pixels on the water bodies boundaries, while ensuring selection of only

“pure” water pixels, a negative buffering of 20 m has been applied on all the extracted
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Figure 2.6: On the left: comparison between single-date Sentinel-1 image (top) and
temporal mean composite (bottom). On the right: comparison between single-date

(clouded) Sentinel-2 image (top) and temporal median composite (bottom).

water polygons. Then, all polygons with area greater than 10000 m2 are removed from

the list of water polygons, and the remaining are used for sampling. Finally, within

the Google Earth Engine platform, a Support Vector Machine (SVM) with Radial Basis

Function (RBF) kernel is trained with the training set built using the method described

above.

Based on the achieved overall results (around 98%), the Authors concluded that a fully

automatic large-scale water body monitoring and mapping is possible. To this aim, the

configuration that exhibited the best results is a pixel-based fusion of Sentinel-1 and

-2 data. They also stated that, in order to improve the proposed methodology, post-

processing steps aimed at removing false positive occurrences should be implemented.

Moreover, dedicated speckle noise filtering and cloud removal algorithms should be used,

in order to unlock the possibility of weekly monitoring of water bodies.

In study [121], an automatic method for water cover detection based on the k -means clus-

tering was developed within the Google Earth Engine cloud computing platform. The

algorithm relies on Sentinel-1 SAR data, that were used to monitor surface water changes
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from October 2014 to November 2018 in the protected area of the Upper-Kiskunsag Al-

kaline Lakes region in Danube-Tisza Interfluve, Hungary, with the aim of supporting

nature protection planning.

Sentinel-1 SAR data is first of all pre-processed; specifically, SAR backscatter coefficients

must be normalized, to account for incidence angle effects. In fact, backscatter values

measured with a small incidence angle are higher that those measured with a larger angle,

considering the same identical area. To limit incidence angle effects, the commonly-used

technique is the cosine squared correction method, previously introduced in the present

scientific literature review, whose equation is reported in (2.3).

The second step provides for the removal of all the SAR images acquired during strong

wind conditions (with speed greater than 12 km/h), as waves induced by wind increase

the surface roughness, thus increasing the intensity of the backscatter. To do so, the Au-

thors used wind speed data extracted from the 20 km spatial resolution Climate Forecast

System Version 2 (CFSV2) dataset.

The third step consists of the reduction of speckle noise using a refined Lee filter al-

gorithm. Thanks to this procedure, it was able to reduce speckle noise, while maintaining

high frequency details. Finally, the last step was to compute monthly mean composites

from the “clean” stack of SAR images for for both ascending and descending orbits, sep-

arately.

Regarding the classification procedure, this is based on the k -means clustering algorithm,

with a number of clusters k = 15, using both VV and VH channels as input features.

Whereas, regarding the training set, 10000 random pixels were collected over the area of

interest. Given the clusterer result, water clusters were identified by visual inspection,

prior knowledge of the study area and empirical threshold limits for backscatter values.

Once the water cluster is correctly identified, it is extracted and converted to a binary

raster layer, where ones represent water and zeroes non-water pixels.

In other works, fully-polarized SAR data are exploited to detect water bodies using a

combination of radiometric thresholding and image segmentation. An example is repor-

ted in [122], where the Authors used quad-polarized RADARSAT-2 data for monitoring

changes in surface water extent within wetlands or other areas.

First, all RADARSAT-2 images undergo a pre-processing step aimed at calibrating the

data (from raw data to σ0), reducing the effects of speckle noise using a polarimetric Lee

filter, orthorectifying using the rational polynomial coefficients provided with the images
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metadata and the Shuttle RADAR Topography Mission (SRTM) digital elevation model

(DEM), and co-registering all the images by means of a Fast Fourier Transform (FFT)

phase-matching algorithm. The final pre-processing step consists of a simple linear-to-dB

conversion, to highlight the histogram tails of each image.

The methodology derived two different thresholds that are used for two different pur-

poses: surface water detection and water boundary detection (in the description of this

paper, we will focus only on the former one). To detect surface water, histograms of

either HH or HV polarizations are generated and used to select a consistent threshold.

Since several previous studies have shown that cross-polarized backscatter intensity val-

ues (VH and HV) are less affected by wind than co-polarized signals, in this study the

Authors decided to use HV-polarized imagery, so to detect water regardless of the rough-

ness conditions. However, the described methodology can be applied to any polarization,

as it based only on the analysis of bi-modal distributions of SAR intensity values (i.e.,

water and non-water modes). The histogram is then log-scaled in the vertical axis to

better visualize the low probability mode. At this point, a high-order polynomial fitting

is performed, and the threshold is set to the local minimum between the two modes.

To group adjacent pixels with similar characteristics in the HV image, the SLIC super-

pixel algorithm was used. Based on an empirical approach, it was found that subdividing

the entire image into 1000 × 1000 smaller tiles, each containing 3600 superpixels, was

the best approach for identifying potential water bodies of any size. In order to build

the final water map, the HV intensity image is segmented and all the pixels inside each

superpixel are averaged. This average value is then compared with the previously found

threshold and, if it is lower than such threshold, than the superpixel is labelled as “water”.

To further improve the final classification result, water boundaries (obtained by threshold-

ing the variance SAR image) are intersected with all the regions identified as water in the

classification map; only those water regions that are adjacent to the boundaries are kept

in the final water product. From Figure 2.7 it is possible to observe that the methodology

also allows to cleanup the final result, as some misclassified superpixels (e.g., roads) are

excluded from the final water product.

Another very interesting water body detection methodology is described in [123]. Here,

the Authors used TanDEM-X quick-look images at 50 m spatial resolution acquired from

2011 to 2016, to generate a global water body layer exploiting the bistatic interferometric

coherence as the main source of information.
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Figure 2.7: (a) RADARSAT-2 HV-polarized image, acquired over the Prairie Pothole
Region; (b) variance texture image; (c) water boundaries extracted by thresholding
the variance image; (d) segmented image generated using SLIC superpixel algorithm;
(e) water bodies and superpixel segmentation; (f) final water bodies after intersection

between detected water bodies and water boundaries.

SAR interferometry (InSAR), in fact, introduces the use of the interferometric coher-

ence for water mapping purposes. Interferometric coherence is defined as the normalized

cross-correlation coefficient between a pair of interferometric images, and represents the

measure of the quality of an interferogram [124]. In InSAR data, water bodies usually

exhibit very low coherence values and, in general, have a more stable behaviour and are

less influenced by waves and wind (that causes the surface roughness to vary signific-

antly).

In repeat-pass systems, the InSAR coherence is affected by temporal decorrelation, which

causes the coherence to decrease, thus making almost impossible to discriminate unstable

land cover classes (such as forests and crop fields) from water bodies. Whereas, in bi-

static systems such as TanDEM-X, the pair of interferometric images is acquired at the

same identical time. In this situation, InSAR data is no longer affected by temporal

decorrelation.

The proposed algorithm can be summarized in three main steps: the first step relates
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to the data preparation, in order to derive the input features, suitable for water detec-

tion in InSAR data. The second step deals with the placement of seed points for the

detection algorithms. Finally, the last step deals with the actual classification of all the

independent scenes and mosaicking of the final global map.

Regarding the data preparation step, this consists of masking out the typical geometric

distortions affecting SAR data, i.e., layover and shadow regions. These regions were

labelled as “non-water” in the images by filtering high slopes based on an empirical slope

threshold set to 10 degrees. The second step consists of the placement of seeds, that

must be performed before the application of the watershed segmentation algorithm. In

this work, “seeds” are defined as the catchment basin present on a topographic surface.

Referring to Figure 2.8, the plotted surface represents the height of each single point in

the map; therefore, if water is dropped on such surface, it will reach a minimum height

and it will stop in that area. All the points of the surface that collect water drops (thus

reaching a local minimum) are called seeds, and are used as starting points for detecting

water bodies in the proposed algorithm.

Regarding the classification methodology, this relies on the watershed segmentation al-

gorithm, a widely used approach in image segmentation applications. Being a non-

parametric method, it has the advantage that no empirical threshold values are needed.

Figure 2.8: Principle of water seeds placement for the watershed algorithm. They are
identified in blue as the topographic minimum of catchment basins.
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Starting from the previously identified seeds, the watershed evaluates an input pixel as

an elevation information. Then, each basin is iteratively “flooded”, and all the areas

where the floods from different basins meet are identified as contours, representing the

different partitions of the image, which can be now segmented. In this procedure, the

topographic representation of the input pair of TanDEM-X images is obtained using a

Scharr transform, a filter used to identify gradient edges and features by means of a 2-D

kernel (representing the first derivatives).

Eventually, the described watershed algorithm is applied on the interferometric pair,

and the resulting segmented regions (where the seeds were places) are identified as water

bodies.

The final global water map is generated by mosaicking 1◦ × 1◦ tiles. To generate such

mosaic, a 3-dimensional data cube for each tile is created by stacking the water rasters

on a latitude (ϕ) and longitude (λ) grid. Then, for each (ϕ, λ) coordinate, the prob-

ability to be water is computed. The final binary classification of water and non-water

is performed by selecting a threshold of 35% on the probability value (based on empir-

ical experiments): pixel values above such threshold are labelled as “water”, while pixels

whose values are below the threshold are labelled as “non-water”. This final global water

mosaic was validated by comparison with other existing global products, achieving high

overall accuracy, with F-score index around 90% in case of tiles with water class covering

more than 1% of the total tile area.

The work reported in [125], describes how the Authors leveraged on the computational

power offered by Google Earth Engine to develop a large-scale water mapping system,

based on a random forest classifier and joint use of Sentinel-1, Landsat-7 ETM+ and

Landsat-9 OLI data.

Together with satellite data, auxiliary data were also used, including the SRTM at 30

m spatial resolution DEM, the Artificial Impervious Surface data of year 2015 and the

Global Land Ice Measurements from Space (GLIMS) Glacier database. Moreover, the

JRC GSW dataset was used to collect both training and validation points.

Regarding the satellite data, all the available Top-of-Atmosphere (TOA) Landsat-7 im-

ages, Surface Reflectance (SR) Landsat-8 images and Ground Range Detected (GRD)

Sentinel-1 images were collected between January 2019 and June 2020. Landsat-7 images

were used as the main source of information, while the Quality Assessment (QA) band

of Landsat-8 was mainly used to remove clouds, snow and shadows in Landsat-7 images.
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The SRTM elevation model was used to derive slope information, that was used to re-

move false positive occurrences over morphologically complex areas, such as hills and

mountains, by means of a simple thresholding procedure. The GLIMS glacier dataset

was used to remove glaciers pixels from the final water map, and the impervious surface

data were used to remove built-up areas interference.

The proposed method can be summarized in four steps. In the first one, the training set

was built by automatic sampling of the JRC GSW water product. In the second step,

based on a combination of Landsat-7 and 8 and Sentinel-1 data, monthly images com-

posites were created. The third step consists of extracting features suitable for surface

water detection; these include spectral reflectance features, terrain characteristics, SAR

backscatter features, textural features and spectral indices. In the final step, a random

forest classifier was trained within each 5◦×5◦ geographical tile, and the accuracy of the

classification was assessed by comparing the obtained result with JRC GSW data.

In this work, the Author proposed an automatic reference points sampling procedure, as

many previous studies leverage on visual interpretation and manual collection of sampling

points. Of course, such approach represents a severe limitation when classifying wide

areas is the task. Therefore, the JRC GSW dataset was used to automatically collect

reference points, thanks to the fact that this dataset has high spatial resolution (30 m),

is generated based on expert knowledge and it is updated every month. For each tile,

the ratio between water and non-water training points was 1:3; specifically, 1000 water

and 3000 non-water points were automatically sampled.

The features that have been used in this classification model were derived within the

Google Earth Engine platform. After the removal of clouds, shadows and snow pixels,

monthly median composites were generated based on Landsat-7 and Sentinel-1 imagery

(the latter were down-sampled to 30 m, in order to match the spatial resolution of

Landsat-7 data). Regarding the spectral bands, from Landsat-7 bands from B1 to B5

and B7 were selected, while bands from B2 to B7 were selected from Landsat-8 data.

Moreover, spectral indices suitable for water detection were obtained, such as the NDWI,

MNDWI, NDVI and NDBI. In addition to these indices, the NIR band was exploited to

compute the GLCM matrix in order to extract local textural features, such as variance,

dissimilarity and entropy.

Regarding Sentinel-1 SAR data, VV and VH monthly composites were generated and

used as input classification features. The last input feature is represented by the slope
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and aspect information; in this work, the slope was also used to clean up the final water

map, by removing those pixels wrongly labelled as water by the classifier, and located

over regions associated with slopes greater than 10 degrees.

2.3 Scientific literature review on crop management using

satellite data

Remote sensing based methodologies play a very important role in crop classification,

crop monitoring and yield assessment. Thanks to satellite technologies, in fact, it is

possible to monitor the agricultural production system and the biological life cycle of

crops. Moreover, as these parameters rapidly change in time, satellite-based approaches

allow to promptly provide information related to the crop status thanks to the high

revisit frequency of satellite constellations.

In the field of agriculture, satellite data can be employed in many applications, such as

yield estimation, precision agriculture, crop stress monitoring, crop growth monitoring,

land use changes, nutrient and water content estimation, Nitrogen levels monitoring,

weed identification, crop disease monitoring and others.

In this thesis, particular attention will be devoted to the characterization of organic

farming practices.

2.3.1 Organic farming practices

Unlike conventional farming practices, organic farming aims at producing food using

natural substances and processes, resulting into limited environmental impact by en-

couraging maintenance of biodiversity, regional ecological balances, soil fertility, water

savings and energy savings, and more.

Organic food is generally expensive, due to costly production practices, but still accep-

ted by the consumer because of its features. Recently, the number of Italian organic rice

producers has been growing at a pace that raised suspicion about the likelihood of such

an “avalanche” transition and the full compliance of the actors involved with the strict

regulations of the organic crop growing. This phenomenon is extremely harmful, to all

“real organic” producers, and also to final consumers, increasingly wary of organic labels.

In this framework, the market need that has been identified and assessed is twofold: 1)
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genuine organic producers wish to provide supplemental evidence about the authenticity

of their organic production; 2) organic food distributors wish to obtain independent as-

sessment about self-declared organic producers.

This delicate type of agriculture requires great additional care in growing because, for

instance, it is forbidden the use of chemicals in crop treatment: every single required

action must be planned in advance in order to not compromise the harvest.

Within the framework of the Italian Space Agency (ASI) “MultiBigSARData” and the

Joint Research Centre (JRC) “GEOINT” project, described more in detail in Chapter

5, methodologies aimed at supporting organic farming and monitor agronomic practices

compliance using both spaceborne SAR and multispectral data are proposed. Specific-

ally, the project focussed on organic rice crops monitoring and, to date, no works or

projects on monitoring of organic cultures from space can were carried out; this aspect

makes the work carried out in this Ph.D. thesis particularly innovative.

2.3.2 The organic crops growing panorama

In the context of preliminary works, several aspects of organic rice cultivation that may

be monitored and assessed from space have been identified using the information provided

by rounds of interviews with local farmers and producers. An important technical detail

regards the sequence of the cultures; in a 4- to 5-year cycle, the practice of organic

rice cultivation is characterized by the so-called “crop rotation”, which is mandatory for

qualifying a crop as organic. The actual occurrence of such rotation can be assessed

through satellite observation by analysing the Sentinels’ multi-annual data records on

the monitored field. This technical aspect implies the identification from space of all the

species emerging in the same field in a cycle of 4 to 5 years.

Another aspect, which is subject to monitoring from space, and which represents the real

challenge in the organic crop field, is weed control. Such management must be planned

largely in advance in order to avoid compromising the production, and it is based on three

main alternative agronomic techniques: grooming, green mulching and transplanting.

The technique of green mulching involves using green manure, a mixture of plant ma-

terials, named “cover crops”, incorporated into the soil before or soon after the sowing

phase to improve the soil. The interesting aspect for certification - and one that can

be monitored from space - is that a possible, non-compliant, weedicide activity can be
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detected from space thanks to drying up and yellowing of plants within 24-36 hours after

the treatment. Therefore, a variation in the spectral response should emerge and be

subject to space-based identification.

A third fundamental aspect which in particular regards aquatic cultivars, differentiating

organic production from non-organic one, is the management of the water network. This

is about planning inflow and drainage of water from the field chamber, and consequently

about monitoring water level in the field (for example, in the case of rice crops). From a

technical point of view, it is not possible to reliably detect water depth from satellite, still,

we can determine the moment in time when the inflow and outflow of water takes place.

Since the management of water is correlated to the specific agronomic technique used, this

assessment is extremely significant in verifying whether the previously declared organic

technique was actually implemented or not. This aspect can be successfully assessed by

exploiting radar data. In fact, monitoring of water is reliable and effective using space-

borne radar data; moreover, radar signals are insensitive to weather conditions and can

therefore provide data in cloudy conditions as well.

Another very important aspect is related to tillage techniques. Tillage can indeed be

performed with different techniques, resulting in diverse impacts on soil properties; min-

imum tillage is a typical organic technique minimizing stubble burial and overturning of

clods. Organic agriculture favours minimum tillage because it reduces erosion and surface

runoff. Different approaches to tillage translate into different features at the air-to-soil

interface and different characteristics of the soil, thus activating different backscattering

mechanisms during spaceborne radar observation.

As mentioned at the beginning of this section, in the process of building the state-

of-the-art in organic crop monitoring and support to certification, we realized that no

papers on monitoring of organic crops from space can be found in the scientific literature.

Therefore, each of the required technical aspects related to organic farming practices were

individually investigated. Note that some of the above discussed aspects have been deeply

investigated and reported in Chapter 5; some other cannot fit into the framework of the

present thesis. In particular, the topics that have been widely analyzed are weed-killer

activities detection, surface roughness estimation (with special regards to plowing-and-

harrowing as opposed to minimum tillage) and fertilization activities detection (such as
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spreading of manure). A dedicated literature review on these topics is given in Chapter

5.

Since no previous studies on monitoring of organic farming practices have been carried

out, in the next section some papers that analyzed the relationship between crop man-

agement operations and satellite data are described. Even if these studies are not directly

related to organic farming monitoring, some of the described aspects provided us with

clues on how to exploit such methodologies for organic crop monitoring purposes.

2.3.3 Relationship between crop management operations and space-

borne data

The first analyzed study is reported in [65]. The authors proposed the development of

a 3 color-coded warning alert system (green, yellow and red) for the management and

control of direct aids to the farmers in the context of the Common Agricultural Policy

(CAP). The system is based on the analysis of the crops’ spectral response during their

growth cycle and on machine learning techniques. The system is based on three main

steps, and, at the end of each step, a warning colour is assigned to each analysed parcel.

The steps are here summarized:

1. Use of Vegetation Indices (VI) temporal metrics allow to perform an initial val-

idation of the farmers’ declarations. This step is therefore aimed at identifying

false declarations, i.e., crop fields that do not show their typical growth cycle along

the season. This is achieved by analyzing the VI curves for each analyzed field.

The monitored parameters are related to the most important stages of vegetative

growth: onset of greenness, maturation stage and onset of senescence. These para-

meters can be extrapolated by the VI time series themselves, using the methods

explained in [126]. Analyzing the VI temporal metrics and the corresponding Cu-

mulative Density Functions (CDF), it is possible to select the best threshold for

class separability. These metrics are the minimum and maximum value, the mean

value, the standard deviation value, and the minimum and the maximum gradient

value extracted from four different vegetation indices (NDVI, RedEdge Chlorophyll

Index, NDWI and Brightness Index);
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2. The interpolated surface reflectance (SR) time series and the “compliant” parcels

identified in step 1 are used to train a random forest model. At this point, all the

fields whose predicted crop is consistent with the declared crop (ground truth) are

flagged as “compliant”. For the classifier, all the reference fields validated as truthful

(compliant) in the step 1, were split into 75% training set and 25% validation set;

3. The final step consists of the refinement of the obtained classification. The mis-

classification occurrences to be corrected are represented by temporary crop fields

being classified as vineyard or olive grove (due to the high representativeness of

these two permanent crops in the polygons dataset). The purpose of this step is

to identify whether a parcel corresponds to a temporary or permanent crop. To

do so, an additional feature is added as an auxiliary input feature. This feature

is the texture, extracted from a GLCM matrix. As a matter of fact, the texture

allows to evaluate the crop density and shape (whereas, the vegetation index, such

as the NDVI, enables the evaluation of the growth status). The texture feature was

computed for each synthetic panchromatic band, resulting from blending different

proportions of the visible blue (11%), green (59%) and red (30%) bands in the

original time series, and only one of the possible textural features was used (the

GLCM-Mean), computed using a kernel of size 3× 3.

Another interesting study found carrying out the literature review is described in [66].

In this work, the Authors showed a method aimed at detecting and monitoring weed

management using glyphosate-based herbicides (GBH) in agricultural practices using

Sentinel-2 time series. The main result of the study is that broadband NDVI calculated

from S2 data showed explicit feedback after the herbicide treatment. The final goal of the

study is to use the results to provide the necessary transparency about weed treatment

in agricultural practices and to support environmental monitoring.

To this aim, Sentinel-2 data was acquired and processed to level L2A (Bottom Of At-

mosphere, or BOA) and four spectral indices were computed, based on the scientific

literature review. These spectral indices are derived from green (band 3), red (band 4)

and NIR (band 8) regions of the spectrum. Whereas, the computed spectral indices are:

NDVI (Normalized Difference Vegetation Index), GNDVI (Green Normalized Difference

Vegetation Index), CVI (Chlorophyll Vegetation Index) and SAVI (Soil Adjusted Ve-

getation Index). For each test site and vegetation index, the following statistics were

calculated: mean, median, quantile at 25% and 75%. The final results were compared
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against reference fields, i.e., fields without glyphosate treatment. In Figure 2.9 an ex-

ample of temporal dynamic of the NDVI index for each test site is shown.

From the plot of Figure 2.9, day 0 represents the day of GBH treatment. The main

result is that all spectral indices decrease consequently over time after weed treatment.

Just two days after treatment, it is possible to detect such operation due to a decrease

of the indices values. The study demonstrated that the sensitivity of the NDVI index to

herbicide applications clearly exists.

Regarding works related with fertilization detection and monitoring, it is interesting to

report study [64]. The objective of this work is to measure the sensitivity of the NDVI

signal to on-farm fertility treatments applied to five locally important crops: cotton,

pearl millet, sorghum, maize and peanut.

The methodology can be summarized in four main blocks. In the first one, the seasonal

temporal NDVI profiles are presented for each crop type and fertilization level. Then, the

mean and standard deviation were computed from the NDVI time series for each crop

type, from emergence to senescence. The second step consists of detecting the fertilization

treatment at the field scale, for each crop and for each acquisition date. To this aim, the

variance components are estimated using the ANOVA (ANalysis Of VAriance) variance

Figure 2.9: Temporal dynamic of NDVI for the test sites. The x-axes represent the
number of days after GBH treatment. Day 0 is the day of GBH treatment. The y-axes

represent the mean value of the NDVI of the appropriate study site.
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decomposition method. The variance is decomposed for each field at each date (from crop

emergence to harvest). For this method, the determination coefficients R2 of a linear

model estimates the part of variance which is caused by fertilization, with respect to

the total variance. A higher median R2 indicates a better discrimination of fertilization

levels, using NDVI for a given crop at a given date.

The third block is about the assessment of the relationship between NDVI and plant

growth (e.g., ground coverage fraction and height). Specifically, linear relationships

between the variables were established for each crop type using least-squares. Finally,

the last step consists of comparing the effects of fertilization treatments to variations

occurring within and between fields in relation to position, farming practices and soil

type. To this aim, a hierarchical linear model was set up for each crop type to decompose

the total NDVI variance, in order to estimate the contributions of three components that

cause variation: plot (induced by fertility treatments), field (induced mainly by other

management factors) and landscape (mostly induced by environmental factors, such as

soil, elevation and others).

A relevant analyzed work is reported in [69], where time series of coherence and backs-

catter coefficients were used to determine crop harvesting dates, leveraging on Sentinel-1

Single Look Complex (SLC) SAR data.

The main concept of the methodology relies on the features of radar images coherence:

during the periods of time when fully developed vegetation is present in crop fields (or

when farming operations are performed), very low coherence values are registered. On

the other hand, when the field is harvested (and therefore it almost behaves as a bare

soil) relatively high coherence values are measured. Such concept is exploit in this work,

by associating the end of harvesting to a steep coherence increase.

The utilized Sentinel-1 SLC images were acquired from the 1st of May 2018 to the 28th

of October 2018, every 12 days. Regarding the intensity information, as opposed to

co-polarized data (VV and HH), VH-polarized images were used to detect harvest op-

erations, as this polarization was demonstrated to better correlate backscatter intensity

and vegetation-related parameter, such as the Leaf Area Index (LAI). Moreover, the

cross-polarized channels are more sensitive to volume scattering than co-polarized ones.

Whereas, coherence maps were generated based on VV-polarized imagery, as the VH-

based coherence turned out to be less sensitive to changes within the crop field, based

on several studies. Then, for each reference polygon (crop field), time series of averaged
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backscatter intensity σ0 and coherence CV V values were generated.

Based on the experiments, time sequences of coherence values can behave mainly in two

manners. The coherence can increase due to the ripening and drying up of the crops;

then, during the harvesting period, it typically drops. After dropping, it starts to in-

crease again, due to the static (post harvesting) condition. The second scenario is that

coherence remains almost unaltered and with low values, until the end of the harvest

operation, which causes the coherence to steeply increase. In order to claim a crop field

“harvested”, at least 70% of the points randomly collected inside the field (around 30

points per polygon) must be labelled as “harvested”, based on the correspondent σ0 and

CV V time sequences. Overall, the proposed methodology was able to estimate harvesting

dates with a relatively high degree of accuracy, considering the temporal resolution of the

Sentinel-1 constellation; in fact, the mean absolute error was 6.5 days (and can decrease

if the temporal resolution of SAR satellites increases).

In [127], Sentinel-1 data are used to automatically map rice fields based on the features

hidden in time series of backscatter values. In fact, as schematically depicted in Figure

2.10, different rice crops growing stages translate into roughness changes of the soil, that

can be detected in SAR data.

Specifically, by means of the superpixel segmentation algorithm, the Authors of this work

generated time sequences of backscatter values for each segment (rice field) considered

in the study. The methodology can be summarized in the following five main steps:

1. Selection of ascending and descending VV- and VH-polarized Interferometric Wide

Swath (IW) SAR data;

Figure 2.10: Interaction between SAR signals and the different growing stages of rice
crops.
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2. Pre-processing of the data by using the conventional Sentinel-1 data calibration

chain, available within the SNAP software;

3. Segmentation of the rice fields using the Simple Linear Iterative Clustering (SLIC)

algorithm;

4. Extraction of time series of backscatter value for each segment and for each date

(averaging all the pixel values within the segment);

5. All the extracted time sequences are then classified using a 5-nodes decision tree,

based on radiometric thresholds.

Notwithstanding the relatively effectiveness of this approach, the use of decision trees

built based on the local geographical features makes the algorithm less flexible in terms

of transferability to other regions of the World.

One of the most important operation that is performed in rice fields is the flooding

of the rice field chamber. In the technical literature there exist numerous papers that

automatically detect rice fields from space, leveraging the peculiar signal caused by such

operation. Among the studies found in the literature, it is possible to cite the work

in [68], where the Authors estimated flooding, emergency and growing dates based on

SAR time series. The described methodology relies on multitemporal Sentinel-1 data

and exploits the typical “V” shape of the SAR time series, caused by the field filled

with water (thus, by a smooth surface), before plants emergency (the moment when

crops break the water/air interface). After an analysis on these SAR time sequences,

the Authors proposed a classification model based on radiometric thresholds (similarly

to the study described above).

Another very interesting study is reported in [71]. Here, COSMO-SkyMed (CSK) data

were used to automatically determine rice-cultivated ares, sowing dates and discriminate

between short and long cycle varieties. The methodology relies on the three main phases,

summarized below:

1. Analysis and interpretation of SAR data and in situ data. Regarding in situ data,

these refer to sowing dates, harvesting dates, rice variety, plants height and pheno-

logical stages. Whereas, SAR data were calibrated and used to extract backscatter

values based on the “age” of the plant, i.e., the crop status after sowing;
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2. Extraction of SAR indicators for the identification of different varieties of rice.

Specifically, SAR time sequences of HH- and (HH/VV)-polarized (ratio) CSK im-

ages were used to derive statistics; the maximum and minimum value derived from

HH CSK sequences were used to identify rice fields, while the maximum value of

(HH/VV)-polarized sequences were used to discriminate short and long cycle spe-

cies (the maximum peak in the case of long cycle varieties shows up around 60

days after sowing, and has a value greater than ∼10 dB with respect to the ∼8 dB

value registered around 50 days after sowing for short cycle varieties).

3. Determination of sowing dates leveraging the date corresponding to the sprouting

stage, identified in HH/VV sequences. Sowing dates are determined based on the

region of interest, agricultural practices (e.g., sowing or transplant) and incidence

angle.

This study achieve good overall accuracy, which was around 92% in rice grown area, 96%

on rice short or long cycle and a RMS error of 4.3 days in sowing date. Still, the non

transferability of the methodology represents a strong limitation.

Another parameter that can be estimated from space is the yield of a crop field. Typically

expressed in tons per hectare [ t
ha ], this parameter allows to discriminate an organic rice

field from a conventional one, as they are characterized by very different yields. Study

[70] leverages multitemporal Sentinel-1 SAR data and Sentinel-2 multispectral data to

train an Artificial Neural Network (ANN) to make predictions on the yield of a given

rice field. The methodology can be summarized in the following three steps:

1. Co-registration between SAR data and multispectral data; the latter were chosen

based on a “minimum cloud coverage” criterion;

2. Sampling of ground truth data. Specifically, the NDVI and NDWI spectral indices

derived from Sentinel-2 were used within a stratified random sampling procedure.

These two indices were used to determine the health of rice fields along the different

growing stages;

3. Training of the ANN network using VV- and VH-polarized Sentinel-1 SAR data.

The RMS error is then considered to measure the difference between predicted and

actual yield.
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The methodology described in this study was able to achieve about 91% overall accuracy,

when VH-polarized SAR data were used (VV-polarized data performed worse).

The methodology described in this study showed that using VH-polarized data instead

of VV-polarized data lead to better results, with a coefficient of determination R2 and

root mean square error (RMSE) of 0.72 and 600.11 kg/ha, respectively. Whereas, for

VV-polarization data the results were R2 = 0.26 and RMSE = 948.46 kg ·ha−1. Overall,

the study demonstrates that the effective use of ANN model may provide reliable yield

estimation accuracy from remotely sensed imagery alone.

Given the carried out analysis of the most relevant studies for characterizing farming

practices, it is clear that some parameters can be modelled using SAR data, some others

require multispectral data. In general, all those operations that somehow modify the

chemical composition of the soil (e.g., fertilization, weeding, etc.) are better detectable

in optical data; on the other hand, operation that modify the soil from a physical point

of view (e.g., tillage, harvest, etc.) can be characterized using SAR data.

2.4 Overall considerations on the reviewed state-of-the-art

methodologies

Notwithstanding the demonstrated effectiveness of the studies in the technical literature,

these present limitations. The most important ones - and that are going to be tackled

in this thesis - can be here summarized:

• To date, most of the methodologies lack of complete automatism. Despite the

degree of automatism, in fact, human intervention is always needed;

• Referring to the point above, training and validation data sets are usually built

by means of experience, photointerpretation and manual collection of reference

samples, to train a classification model and to validate it;

• In most cases, is not possible to transfer a classification model from a region of

interest to another, without user intervention and without a-priori information.

Generally, classification models and algorithms are tailored to a specific area of

interest, and all the parameters are “tuned” based on that;
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• Usually, land cover classification is performed over relatively small areas, mainly

due to computational costs and to the non-transferability of the model to wider

(or different) areas;

• Methodologies based only on optical data reduce their classification capabilities

over strongly cloud-covered regions;

• Most of the studies based on SAR data do not account for terrain-induced geomet-

rical distortions, thus they cannot be applied over morphologically complex regions

(e.g., mountainous areas);

• Many land cover maps do not exploit the great potential of spatial and temporal

resolution SAR data.



Chapter 3

Vegetation land cover monitoring

and mapping1

Based on the scientific literature review on vegetation land cover monitoring and mapping

methodologies, in this Chapter an algorithm that aims at classifying several vegetation

classes is presented and discussed in detail. The objective of the proposed algorithm is to

overcome the most severe limitations found in previous studies, as discussed in Section

2.4.

3.1 The European Space Agency Climate Change Initiative

(CCI+) project

The first part of this thesis was carried out within the framework of the European Space

Agency (ESA) “Climate Change Initiative Extension (CCI+) Phase 1: New Essential

Climate Variables (New ECVS).
1this chapter is based on material published in the works:

• [128] Marzi, David, and Paolo Gamba. “Global Vegetation Mapping for ESA Climate Change
Initiative Project Leveraging Multitemporal High Resolution Sentinel-1 SAR Data.” IGARSS
2020-2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020.

• [129] Marzi, David, Shantanu Todmal, and Paolo Gamba. “Mapping Globally Using Multitem-
poral Sentinel-1 SAR: A Semiautomatic Approach.” 2021 IEEE International India Geoscience
and Remote Sensing Symposium (InGARSS). IEEE, 2021.

• [130] Sorriso, Antonietta, David Marzi, and Paolo Gamba. “A General Land Cover Classification
Framework for Sentinel-1 SAR Data.” 2021 IEEE 6th International Forum on Research and
Technology for Society and Industry (RTSI). IEEE, 2021.

57
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The main purpose of the CCI+ project is to continue the achievements made within

the CCI (Climate Change Initiative) project, with the following new focus points of the

CCI+ project:

• Developing new ECVs which are not included in the previous CCI project;

• Additional research and development studies on existing ECVs already established

in the CCI project;

• Exploitation of the different ECVs;

• Supporting activities on knowledge exchange;

• Interaction between Earth Observation (EO) science community and climate sci-

ence community;

• Prototype product generation and system definition.

These needs emerged, as long-term global EO archives are nowadays available to the

scientific and user community from past, current and future ESA EO missions for cli-

mate change purposes. The CCI+ project aim at defining and validating innovative

approaches for continuously generating and updating a comprehensive, long term set of

ECV products, by focussing on the consistency and quality analysis from a climate model

perspective.

Among the various ECV products, the “High Resolution (HR) Land Cover ECV” rep-

resents a new variable, which focusses on the impact of land cover (LC) and land cover

changes (LCC) on climate changes, with the main objective of assessing in detail the role

of the spatial resolution of the detected changes in order to support climate modelling

research.

Even if it cannot be directly used as an input to climate change models, land cover is

an essential climate variable to quantify surface energy, water fluxes and the sources of

greenhouse gasses, to monitor variation in land use and land surface and to characterize

the impacts of extreme events, such as floods, heatwaves, droughts, hurricanes and oth-

ers.

Land cover change is, in fact, both a cause and a consequence of climate change, either

when the change is induced by human beings or generated by natural events. The pre-

vious CCI project focussed on the generation of Moderate Resolution (MR) Land Cover
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ECV maps at the global scale; specifically, the MRLC CCI provided annual LC maps at

300 m spatial resolution for years from 1992 to 2015. The CCI project introduced a new

concept of global land cover mapping with respect to the past years, by considering a

multi-sensor approach and generating time series of interoperable and consistent global

annual products.

With the CCI+ project, the goal is to extend and improve this concept by increasing the

spatial resolution of the obtained maps, which represents an innovation and an unpreced-

ented attempt. From the climatological point of view, the consistency of the generated

maps is vital to monitor and understand ongoing processes such as desertification, urban-

ization, soil erosion, deforestation, arctic greening and the influence of land cover changes

on the physical climate system itself. Therefore, the possibility of using high resolution

(10 to 30 m) remotely sensed data to produce land cover maps and detect changes opens

the door to a wide range of possibilities for climate change analysis, including improved

quantification of energy, water and carbon budgets of the terrestrial ecosystem.

3.2 Study areas

For the vegetation classification system described in this chapter and for the water ex-

traction algorithm described in Chapter 4, almost the same test areas were involved, as

they are areas of interest within the CCI+ project. The size of each area is equal to a

standard Sentinel-2 tile, which corresponds to a size of 100×100 km2. Therefore, in this

Section all the study areas are introduced and described at once.

As shown in Figure 3.1, the utilized test sites are located in Siberia (tile 42WXS), Italy

(tiles 32TNR and 32TPP), Amazonia (tile 21KUQ) and Africa (tile 37PCP). These

test sites were chosen as they offer completely different geo-morphology and climate,

thus, they allow to test the effectiveness of the developed methodologies in very diverse

conditions and environments.

The first region (tile 21KUQ), reported in Figure 3.2, concerns the Amazon basin which

has for several decades focus the attention of the scientific community due to large

deforestation rates and potential associated large-scale climate impacts. Agricultural

expansion and climate variability have become important agents of disturbance in the

Amazon basin, mainly in the southern and eastern portions. Although Amazonian forests
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Figure 3.1: Overview of all the test regions: Siberia (tile 42WXS), Italy (tiles 32TNR
and 32TPP), Amazonia (tile 21KUQ) and Africa (tile 37PCP). The background image

is the visualization of the OpenStreetMap basemap.

have considerable resilience to moderate annual drought, the interactions between de-

forestation, fire and drought potentially lead to losses of carbon storage and changes in

regional precipitation patterns and river discharge, with some signs of a transition to a

disturbance-dominated regime.

This region is dominated by vegetation and hot tropical weather, and represents a perfect

example of SAR data usefulness: in fact, due to such harsh climate, it is very difficult to

obtain cloud-free optical images over this area. Temperature ranges from 22 to 40 ◦C,

and the rainfall is persistent during most of the year, ranging from 200 to 320 mm every

single month with an average of 89% of humidity.
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Figure 3.2: Detailed overview of the Amazonian tile (21KUQ). The red, dashed line
represents the Sentinel-2 tile boundaries, and the background image is the ESRI World

Imagery base map.

In Figure 3.3 the second region of interest (tile 37PCP) is reported; this is the Sahel

band in Africa, including West and East Africa which is a very complex climatic region

which experiences severe climatic events (droughts in the 70’s and 80’s and floods more

recent) often attributed to climate warming and for which the future predictions (amp-

litude of the regional warming and rainfall changes) are very uncertain. Present climate

and especially the position and seasonal dynamics of the monsoons (the West African

and the Indian ones) are generally not correctly represented in most of the climate mod-

els. Recently, many studies highlighted the key role of the surface processes on the

representation of the near surface meteorological variables and their consequences on the

turbulence in the mixing layer and the initiation of the precipitation. In the eastern part

of the Sahelian band, the role of El Niño in the initiation of dramatic drought events in

the horn of Africa is also not really understood and deserves more work to better predict

and help mitigation studies.
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Figure 3.3: Detailed overview of the African tile (37PCP). The red, dashed line
represents the Sentinel-2 tile boundaries, and the background image is the ESRI World

Imagery base map.

The third region, represented in Figure 3.4 is situated in the northern high latitudes,

for which future climate changes are expected to be particularly strong, a phenomenon

known as “polar amplification”. In Siberia, complex climate feedbacks over land, implic-

ating natural and human factors, may further amplify these changes and make this region

as a possible hot spot of future climate changes. Siberia represents 10% of land surface

and 30% of forested surfaces globally. The warmer temperatures and increased winter

rainfall have promoted increases in biosphere’s activity and longer active seasons. Land

cover changes have been reported with the displacement of the forest-shrubs-grasslands-

transition zone to the north. In addition, changes in land cover may impact directly the

fate of the carbon stored in permafrost. which in turn will affect long-term terrestrial

carbon balance and ultimately climate change. From a morphological point of view, this

region is characterized by many complex rivers and water bodies, covered with ice and

snow for ∼ 75% of the year. Extremely cold weather is dominant during the whole year,
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with temperatures ranging from -40 to 20 ◦C. Again, the advantage of using multitem-

poral SAR data is clear: SAR signals can penetrate clouds and rain, ensuring periodic

data acquisitions;

The last two considered regions, shown in Figures 3.5 and 3.6, are located in northern

and central Italy, respectively. These regions were not considered by the CCI+ project,

but given their diverse morphological characteristics compared to all the other sites, we

decided to include them as test regions. Tile 32TNR (Figure 3.5) lies exactly in the

middle of the Lombardy region, and is characterized by the so-called Mediterranean,

with temperatures ranging from 20 to 35 ◦C during Summer (with the exception of

the extreme hot temperatures reaching 45 ◦C and severe drought registered during the

present Summer 2022), and from -1 to 10 ◦C in Winter. Clouds, fog and haze are often

present, and the region includes a small minority of mountains areas in the north, that

make it complex in terms of morphology. Finally, tile 32TPP (3.6) is located in the

Figure 3.4: Detailed overview of the Siberian tile (42WXS). The red, dashed line
represents the Sentinel-2 tile boundaries, and the background image is the ESRI World

Imagery base map.
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Tuscany region, central Italy. Here the climate is generally mild, with some differences

depending on the geography of each area; the coast and valleys tend to have hotter

summers than the hills or mountains although the coast benefits from breezes off the

sea for cooler temperatures even in those warmer months. Temperature in Winter are,

on average, around 7 ◦C along the coast, while they can range between 3.5 to 5.5 ◦C

inland. Also this tile presents diverse morphological features, from few plains to hills

(which characterize nearly two-thirds of the total area) and mountains chains.

3.3 Sentinel-1 SAR data

In Table 3.1 is provided a list of a number of available SAR sensors which can be used for

land cover mapping and monitoring. However, among these satellites, the Copernicus’

Sentinel constellation appeared to be the best source of data. Their free and open data

Figure 3.5: Detailed overview of the Italian tile (32TNR). The red, dashed line rep-
resents the Sentinel-2 tile boundaries, and the background image is the ESRI World

Imagery base map.
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Figure 3.6: Detailed overview of the Italian tile (32TPP). The red, dashed line rep-
resents the Sentinel-2 tile boundaries, and the background image is the ESRI World

Imagery base map.

policy, in fact, encourages EO data users to easily access and use the data anywhere in

the World. Sentinel-1, in particular, provides freely accessible data, even for commercial

use, at both temporal and spatial resolutions fully compatible with the application we

intended to develop in this work. Therefore, Sentinel data was preferred over other

expensive sources of data.

However, such open data also present limitations for our application. For instance, due

to its dual-polarization nature, polarimetric analysis cannot be performed with Sentinel-

1 data and, thus, it is not possible to investigate the scattering mechanism occurring on

the target. Other sources such as TerraSAR-X, COSMO/SkyMed, Radarsat, would be

able to provide more information fit for the scope, but would also imply much higher

cost.

The Sentinel-1A SAR sensor, whose schematized structure is reported in Figure 3.7,

operates in C-band with a central frequency of 5.405 GHz (Figure 3.8 reports a basic
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Platform Operation Band Polarization Spatial
resolution

Institution
Country

Free
data

Radarsat-2 2007-present C Quad-pol 3-100 m NASA/JPL
- USA no

RISAT-1 2012-present C Dual- and
Quad-pol 1-50 m ISRO -

India no

Sentinel-1A/B 2014-present C Dual-pol 5-40 m ESA -
Europe yes

ALOS-2 2014-present L Quad-pol 1-100 m JAXA -
Japan no

Gaofen-3 2016-present C Quad-pol 1-500 m CAST -
China no

SAOCOM-1/2 2018-present L Quad-pol 10-100 m CONAE/ASI
- Argentina no

TerraSAR-X 2007-present X Quad-pol 0.25-40 m GmbH -
Germany no

COSMO-
SkyMed 2007-present X Dual-pol 1-100 m ASI - Italy

yes
(pro-
posal)

COSMO-
SkyMed 2nd

gen.
2020-present X Quad-pol 0.3-40 ASI - Italy

yes
(pro-
posal)

Table 3.1: List of available SAR satellites.

radar block diagram).

The platform was launched on 3rd of April, 2014, and its revisit time is 12 days at

the equator on a polar orbit. The antenna aboard the satellite is right-looking and

its incidence angles can vary from 29.1◦ to 46◦. Such antenna is capable to provide a

total radiometric accuracy within 1 dB. Regarding the polarization modes, Sentinel-1A

can provide images acquired with a signal which is vertically transmitted and vertically

received (VV) and/or vertically transmitted and horizontally received (VH). This can

Figure 3.7: 3D model of the Sentinel-1A satellite.
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be done in the default operation mode of the system, i.e., in Interferometric Wide-swath

(IW) acquisition mode.

The Interferometric Wide (IW) swath mode is the main acquisition mode over land for

Sentinel-1. It acquires data with a 250 km swath at 5 × 20 m spatial resolution (single

look). As depicted in Figure 3.9, IW mode captures three sub-swaths using Terrain

Observation with Progressive Scans SAR (TOPSAR). With the TOPSAR technique, in

addition to steering the beam in range as in ScanSAR, the beam is also electronically

steered from backward to forward in the azimuth direction for each burst, avoiding scal-

loping and resulting in homogeneous image quality throughout the swath. TOPSAR

mode replaces the conventional ScanSAR mode, achieving the same coverage and resol-

ution as ScanSAR, but with a nearly uniform SNR (Signal-to-Noise Ratio) and DTAR

(Distributed Target Ambiguity Ratio). IW Single-Look Complex (SLC) products contain

one image per sub-swath and one per polarisation channel, for a total of three (single

polarisation) or six (dual polarisation) images in an IW product. Each sub-swath image

consists of a series of bursts, where each burst has been processed as a separate SLC

image. The individually focused complex burst images are included, in azimuth-time

order, into a single sub-swath image with black-fill demarcation in between, similar to

ENVISAT ASAR Wide ScanSAR SLC products.

The satellite is able to produce L1C products in SLC format or as multi-looked intensity

images in ground range detected format (GRD) with 10 × 10 meters of pixel size. A

second satellite, the Sentinel-1B, was launched on the 22th of April 2016. This additional

Figure 3.8: Basic radar block diagram.
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Figure 3.9: Sketch of the TOPSAR acquisition geometry. TB is the burst duration
and ωr is the steering angle rate (image credit: DLR).

satellite, perfectly identical from a functionality point of view, uses the same orbit plane,

thus, halving the revisit time and consequently doubling the number of acquisitions.

This pair of satellites allows the production of SAR time series with very high temporal

density, never had before at this resolution.

Note: on 23 December 2021, Copernicus Sentinel-1B experienced an anomaly related

to the instrument electronics power supply provided by the satellite platform, leaving it

unable to deliver radar data. Since then spacecraft operators and engineers have been

working tirelessly to rectify the issue. Unfortunately, despite all concerted efforts, ESA

and the European Commission announce that it is the end of the mission for Sentinel-

1B. Copernicus Sentinel-1A remains fully operational and plans are in force to launch

Sentinel-1C as soon as possible (scheduled for the second quarter of 2023). Until then,

only Sentinel-1A data will be available to users, with 12 days revisit time.

3.4 Background of the proposed vegetation land cover map-

ping methodology

As deeply discussed in the introduction section of this manuscript, land cover (LC) map-

ping on wide areas is becoming an increasingly feasible tasks thanks to the availability

of free multispectral and SAR data sets (e.g., by the Sentinel constellation [131]) and of

cloud processing services (e.g., Google Earth Engine [132] and the Copernicus DIAS -

Data and Information Access Services). Still, the challenges that the procedures designed
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using these new data sets and tools are facing are far from being completely tackled.

For instance, no general solution is available for the extraction of the most suitable fea-

tures from sequences of data sets by heterogeneous sensors [133]. Similarly, the issue

of the limited size of available training sets and the possibility/suitability of using ex-

isting land cover maps as starting point has been explored [79, 134], but with no final

decision. Another issue is how to extract the same land cover classes when using different

sensors, with different sensitivity and different spatial/spectral resolutions. To this aim,

unsupervised approaches or transfer learning techniques [135] have been considered.

The main objective of the proposed methodology is the use of Sentinel-1 SAR time series

for land cover classification at the regional level using only training points extracted

from pre-existing coarser resolution maps, in a completely automated manner. As a

matter of fact, global approaches to land cover mapping using satellite data are currently

mostly limited to medium-resolution multispectral data sets. As seen in Chapter 1,

typical examples are the 300 m GlobCover project [136], which exploits multispectral

data recorded by the MERIS (MEdium Resolution Imaging Spectrometer) sensor and the

100 m Copernicus Global Land Service (CGLS) [137]. Only a few global land covers were

extracted using SAR, and no complete land cover maps. Examples are water surfaces

[43] using ENVISAT data, the Global Urban Footprint [138] from TerraSAR-X data, and

the Forest/Non-Forest global map from ALOS/PALSAR data [37].

In order to fill this research gap, Sentinel-1 annual data sequences are exploited for the

production of a global land cover map. To uniformly cover geographically wide areas, and

potentially the whole Earth surface, the methodology is based on a progressive mapping

of the tiles of the Sentinel-2 grid [139], used here for Sentinel-1 data partition as well.

As target legend, a subset of the the CGLS legend is considered. Indeed, because of

its rather coarse spatial resolution, the CGLS legend includes many mixed classes. Its

legend was thus reduced to a subset of “pure classes”, which is in fact an improvement

from the point of view of the mapping product. A randomly selected subset of points

belonging to these classes in the Medium-Resolution Land Cover (MRLC) map is used

as training set. This sampling approach is similar to the one presented in [134]; however,

in that study the training set is built leveraging spectral clustering techniques applied

to Sentinel-2 multispectral data, starting from a 30 m spatial resolution land cover map

based on Landsat imagery (the CORINE land cover map).
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The starting scientific question that this work addresses is how to use a year-long mul-

titemporal SAR sequence from the Sentinel-1 constellation to effectively map land cover

classes using as reference only an existing medium resolution map. This question trans-

lates into the two main points discussed here in the following: a) how to select a reliable

set of training points from a medium resolution map, and b) how to use a multitemporal

SAR sequence to discriminate among classes that are typically mapped using multispec-

tral data.

Figure 3.10 summarizes the scheme of the proposed methodology. Starting from an

annual sequence of pre-processed high-resolution SAR images, first a “seasonal” SAR

time series (VH polarization only) is extracted, as better explained in the next sections,

and a set of spatial features are computed from this reduced time series. Then, a second

time series is added to the pool of features. This time series is composed by fifteen

“24-days” composites (both VV and VH polarizations). The latter time series, also as

explained in the next sections, is obtained by arithmetic average of the SAR acquisitions

available within separated intervals of 24 days.

Figure 3.10: A simplified block diagram of the proposed land cover mapping pro-
cedure. Part of the pre-processing chain is pre-implemented in Google Earth Engine;
whereas, the radiometric correction and speckle noise reduction steps were added to

the chain.
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3.5 SAR data pre-processing

Most of the processing steps involved in the presented methodology, and described in the

next sections, rely on pre-processed Sentinel-1 SAR images provided by Google Earth

Engine (GEE). GEE is an online cloud platform for scientific analysis and visualization

of geospatial datasets, for academic, non-profit, business and government users. Earth

Engine hosts satellite imagery and stores it in a public data archive that includes histor-

ical Earth images dating back more than forty years. The images, ingested on a daily

basis, are then made available for global-scale data mining. Moreover, the platform also

provides APIs and other tools to enable analysis of large data sets. The data sets from

GEE are delivered as L1C products in Ground Range Detected (GRD) with 10 m of pixel

spacing. Single-Look Complex (SLC) images are not available yet, due to current diffi-

cult management of complex numbers, typical of SLC images. For this work, Sentinel-1

(A and B) GRDH (High resolution GRD data) images were used.

GRD Images from the Sentinel-1 GEE archive are pre-processed with the Sentinel-1 Tool-

box2 (SNAP) in order to derive the backscatter coefficient σ0 (sigma naught) in decibels

(dB), which represents the target backscattering area (RCS or Radar Cross Section) per

unit area. The scattering behaviour depends on the physical characteristics of the target:

geometry and electromagnetic characteristics. The pre-processing chain used to obtain

the backscatter coefficient for each pixel of the image can be summarized in 5 steps:

1. Application of orbit file, which updates the orbit metadata;

2. Removal of low intensity GRD border noise and invalid data on the edges of the

scene;

3. Removal of additive thermal noise in sub-swaths to help reduce discontinuities

between sub-swaths for scenes in multi-swath acquisition modes;

4. Radiometric calibration using sensor calibration parameters present in the GRD

metadata in order to compute the backscatter intensity;

5. Range-Doppler terrain correction, which converts the data from ground range to σ0

using the SRTM 30 meter or ASTER Digital Elevation Model (DEM). The latter

is used for high latitudes, greater than 60◦ or less than -60◦.
2https://step.esa.int/main/toolboxes/snap/

https://step.esa.int/main/toolboxes/snap/
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Since the standard Sentinel-1 pre-processing chain does not include radiometric terrain

correction, we added an angular-based radiometric slope correction routine for Sentinel-1

SAR images, developed in [140]. This model leverages a well-established physical ref-

erence model which is also extended to simultaneously generate masks of invalid data

represented by active layover and shadow affected regions.

The angular-based algorithm developed in [140] is a simplified model compared to more

accurate pixel-area-based models, as it does not fully compensate for the radiometric

distortions; in fact, this angular-based model does not account for the apparent hetero-

morphic relationship between map (geocoded image) and radar geometry. However, this

model is currently the best option possible for GEE users, as pixel-area-based methods

are not practical due to heavy memory usage and its consequent saturation.

The radiometrically corrected SAR products significantly improve the potential usage of

Sentinel-1 imagery for a wide range of land applications, such as land cover classification,

deforestation monitoring, the retrieval of bio-geophysical parameters as well as the com-

bination of imagery from different geometries. From Figure 3.11 it is possible to observe

how a Sentinel-1 SAR image benefits from the radiometric terrain correction described

above.

In the procedure implemented in this work, once the Region of Interest (a Sentinel-2 tile

according to [139]) and the year of interest are selected, all the SAR images in that year

are considered as long as they cover at least 70% of the selected tile footprint. According

to the study presented in [128] (published by the undersigned Author within this Ph.D.

framework and whose main outcomes are described in Section 3.5.1), the use of the

whole annual temporal series is not necessary for land cover mapping, and temporally

aggregated versions of it are more suitable. Leveraging on those results, the selected set

of SAR images is grouped into quarterly clusters that resemble, although roughly, the

seasonal cycle of the different land cover types.

The four “seasonal” clusters, each obtained by averaging in time all possible SAR images

acquired within three-months time windows, are then subject to speckle noise reduction

exploiting a multitemporal denoising filter based on the one presented in [141], which

appears to provide better results then a spatial filter applied independently to each SAR

image. The procedure, depicted in Figure 3.12, basically consists in the estimation of

a “super-image”, obtained as arithmetic mean of all the SAR acquisitions within the

year of interest (in case the number of images of the original stack is not large enough,
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Figure 3.11: Sentinel-1 RGB color composite (Red: σ0
V V (dB), Green: σ0

V H (dB)
Blue: VV/VH power ratio) over the region of interest before (a) and after correction
with model 1 (b) and model 2 (c), as well as the difference of model 1–model 2 for the
VV polarised bands stretched between -5 and 5 dB (d). Regions of active layover and

shadow are overlaid in black and white (b,c) as well as in red and blue (d).

a spatial filtering step on the super-image is necessary). Then, the ratio between the

original, noisy image at time t and the super-image is computed and spatially denoised

exploiting a simple low-pass filter, with a moving 3×3 kernel; finally, each denoised ratio

composite at time t is re-multiplied by the super-image. Due to the improved stationarity

of the ratio images, multitemporal speckle-reduction techniques are demonstrated to be

much more effective than denoising each image in the original multitemporal dataset.

As mentioned above, after the multitemporal denoising filtering is applied, an artificial

SAR composite time series made of four images is built by the arithmetic mean of all

the acquisitions along each seasonal cluster.
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Figure 3.12: Algorithm of the multitemporal despeckle filtering used in the proposed
land cover classification methodology.

3.5.1 Leveraging of aggregated SAR time series

This section is devoted to a brief analysis aimed at demonstrating that long time se-

quences of SAR data can be reduced in order to obtain a new, yet equally informative

sequence that can be more easily processed.

in the article cited in [128] (published by this thesis’ Author), a collection of Sentinel-1

images acquired in year 2018 has been selected, and a series of possible inputs have been

considered to evaluate the performances of different aggregated time sequences. These

inputs are:

1. A single image selected during the year (in good weather conditions);

2. A single image obtained by temporally averaging all the images for the whole year;
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3. The whole sequence of images as a long multitemporal stack;

4. A multitemporal seasonal image where the annual collection was subdivided into

four seasons and an arbitrary number N of images are evenly extracted from these

groups of images and subsequently averaged in time.

In any of the above-mentioned cases, each Sentinel-1 image belonging to the original

dataset was chosen according to the Sentinel-2 tiles’ area coverage percentage. In this

specific work ([128]), only SAR images overlapping at least 80% each tile footprint were

selected. This also prevents the system from using acquisitions in different orbits, avoid-

ing incidence angle issues which affects backscatter intensity and, thus, classification

[142]. Different features have been extracted prior to the classification; specifically, if

only VV or VH backscatter intensity information is used (so-called “single-band” case),

spatial filters are used to compute features with the aim of exploring the spatial inform-

ation hidden inside the SAR scenes. Namely, these features are the VV (or VH) original

value, Lee-filtered, Mean, Median, Max, Min and MaxMin (max − min). Note that

the “Lee-filtered” feature is an image obtained by applying the Refined Lee filter to the

original SAR image. As an improved version of the well-known Lee filter, the Refined

Lee filter follows the development in the k -Nearest Neighbour (kNN) algorithm, and is

aimed at reducing speckle noise, thus improving SAR images [143].

Regarding the case of multiband image (both VV and VH polarizations), polarimetric

features were computed as combination of bands, as they may provide greater classifica-

tion results [144]. Namely, these polarimetric feature are VV original value, VH original

value, Sum (V V + V H), Mean (V V+V H
2 ), Ratio ( V V

V H ) and Difference (V V − V H).

Regarding the classification model, a Random Forest (RF) classifier was employed, as it

provides good results in many studies for vegetation classification purposes (see Chapter

2). Figure 3.13 shows the block scheme of the procedure which aims at assessing the

classification potential when temporally aggregated versions of the original SAR time

series are used for land cover purposes.

Examples of classification results for the test site in Amazonia (tile 21KUQ) are shown

in Figure 3.14. It is possible to appreciate the effectiveness of the involvement of time

series with respect to the use of a single image (considering only VV polarization in the

example), mainly as a result of the drastically reduced speckle effects. Such effects are

also reduced by using more than one image per season (in this case, 3 or 5).
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Figure 3.13: Overview of the classification model aimed at assessing the potential of
temporally aggregated Sentinel-1 SAR time series.

(a) (b) (c)

(d) (e) (f)

Figure 3.14: Visual comparison between (a) the 2018 European Space Agency (ESA)
CCI LC map at 300 m spatial resolution and the LC maps obtained by using (b) a single
scene acquired on 2018.04.27, (c) single image obtained averaging in time all available
images for year 2018, (d) a multitemporal stack of all the 2018 images, (e) a set of
4 seasonal images obtained by averaging 3 images per season, (f) a set of 4 seasonal
images obtained by averaging 5 images per season. Black areas in (a) represent classes

discarded from the classification.



Vegetation land cover monitoring and mapping 77

Land cover classification was also performed in other two regions, i.e., Africa and Siberia

(tiles 37PCP and 42WXS, respectively), to test the effectiveness of temporally aggregated

SAR time series. Classification results are reported in Table 3.2 for the considered

different input data sets.

Referring to Table 3.2, it must be noted that, since the evaluation is provided against the

original coarse land cover map (at 300 m scale), the absolute numbers are not meaningful.

Therefore, only the improvements (in percentage) for different options of input SAR

data are provided, considering as base map (i.e. worst result) the map obtained with

a single scene in input to the classifier. The second column reports the results when

a single image, obtained by averaging all the available scenes for year 2018, was used.

In the third column, results are obtained when the input is an image composed by the

temporal stack of all available images for year 2018. Whereas, in the fourth column,

the annual Sentinel-1 sequence was split into four seasonal collections; for each season,

N = 3 scenes were averaged in time, ending up with a time series made of four images

which was provided as input. Finally, the last column shows classification results for a

case similar to the previous one, but using N = 5 images per season averaged in time.

From Table 3.2, a relevant increase of effectiveness of the classification procedure is

achieved in all test areas when time series are involved. As a matter of fact, the ex-

ploitation of the phenological information in SAR time series confirms state of the art

vegetation mapping using radar data. Based on this relatively simple analysis, the main

result is that, building a seasonal time series made of 4 composite images, where each

image is obtained by temporally averaging the same number of scenes per season, the

phenological information is preserved without using the whole annual image collection,

thus reducing the overall computational effort. Moreover, referring to Figure 3.14, it is

Tile Averaged
image

Annual time
series

Seasonal
time series

(N=3)

Seasonal
time series

(N=5)

21KUQ +14.41 +10.7 +17.48 +19.89

37PCP +1.76 +4.64 +2.41 +2.44

42WXS +16.0 +9.29 +15.78 +15.9

Table 3.2: Classification improvements [%] with respect to the worst result, occurring
when only a single SAR image is provided in input to the classifier.
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notable the major capability by the classifier to discriminate water bodies when working

on an averaged multitemporal sequence, while in all other cases water is barely distin-

guishable. This result suggests that multitemporal data has always an advantage, but

the way the original SAR sequence may be best exploited depends on the class(es) to be

mapped. This concepts will be particularly relevant in the next Chapter, where a water

body classifier is developed.

3.6 Features extraction

The second step in the proposed procedure is the selection of the most useful input fea-

tures for the classifier. As mentioned in previous sections, it is expected that despeckled

SAR sequences are able to provide a better discrimination among different land cover

types (as also observed in [92, 95, 103, 104, 145, 146]).

Exploiting the “seasonal” time series described in Section 3.5, a single mean composite

image is computed by averaging in time all the images belonging to a specific season.

Then, a set of textural features are computed from each of the four mean composites of

the seasons: the spatial median, maximum, minimum and range. Each of these spatial

statistical descriptors is derived using a kernel of 5 × 5 pixels. Figure 3.15 clarifies the

procedure used to extract textural features from the aggregated, seasonal SAR time

season.

Referring to Figure 3.15, it is possible to note that the total number of spatial features

is equal to the number of seasons times the number of extracted textural features (i.e.,

4 seasons times 5 textural features, for a total of 20 spatial features).

A set of temporal features are also extracted from the original stack of images, that are

going to be used as input to the classifier. These features are represented by a new SAR

time series, appropriately aggregated (based on findings from the technical literature).

In this case, first the complete collection is clustered into 24-days collections; then, each

collection is denoised with the multitemporal denoising filter described above; finally,

both the VV and VH polarizations are used to generate a time sequence per channel,

where the sequence elements are obtained by the arithmetic mean of the images in each

24-days denoised cluster. In Figure 3.16 the procedure for extracting the aggregated

SAR time series is schematized.
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Figure 3.15: Extraction of textural features from seasonal mean composites, using a
5 × 5 kernel. Note that this features extraction procedure is not limited only to four

seasons, but it can be applied on N seasonal collections.

The above mentioned seasonal spatial features, plus the 24-days based sequence (either

VV or VH), are stacked and classified by means of a Random Forest (RF) classifier.

The RF classifier is trained using a training set extracted, as mentioned in the following

section, from the Copernicus Global Land Service (CGLS) medium resolution land cover

(MRLC) map at 100 m scale, while its final classification result is a High-Resolution

Land Cover (HRLC) map with 10 m posting.

3.7 Medium resolution (MR) training set

As in any supervised classification procedure, the selection of the training set plays a

crucial role in the proposed procedure. As discussed in Chapter 1, since there are already
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Figure 3.16: Extraction of temporal features from 24-days denoised clusters. Note
that this procedure is applied to both VV and VH channels, separately (therefore two

24-days based collections are generated).

good quality global land cover maps available at medium spatial resolution, the idea is

to exploit the information they contain.

Specifically, in this work the training samples are collected from the CGLS MRLC map

at 100 m resolution. The CGLS is a product delivering a global land cover map at 100

m spatial resolution that provides a primary land cover scheme [137]. Together with

discrete classes, the CGLS also includes continuous field layers for all basic land cover

classes that provide proportional estimates for vegetation/ground cover for the different

land cover types. These consistent land cover maps are provided for the period from

2015 to 2019 over the entire Earth, and are derived from the PROBA-V 100 m time

series (a database of high quality land cover training sites and several ancillary data sets,

reaching around 80% of accuracy across all years. Moreover, the CGLS is also planned

to provide yearly updates, from 2020, through the use of the Copernicus Sentinels.

As mentioned in Section 3.4, the land use class set of this map is not suitable for a map
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at finer spatial resolution. In fact, it includes many mixed land cover types. Therefore, a

different yet related class set must be used for the new map, which includes only “pure”

classes, i.e. classes representing only one land cover type. The new class set, reported in

Table 3.3, is thus composed only by pure classes. Additionally, classes in the original MR

set that cannot be reliably discriminated using SAR data are merged. As an example, the

MR class set contains two classes named evergreen broadleaf tree and deciduous broadleaf

tree, which are merged into a single class named broadleaf tree. In fact, according to

[147], C-band signals are less reliable than L- and P-band SAR signals when biomass

estimation is the task; this happens because only small branches (with section ranging

from 0.8 to 1 cm) contribute most to the backscattered energy. On the other hand, thicker

branches essentially contribute to backscattering attenuation and “forward scattering”.

Moreover, the capability of C-band radar signals to discriminate forests from other types

of vegetation is decreased, as small scattering elements characterize the majority of the

herbaceous and crop species.

Here follows a brief description of the selected classes, according to the Food and Agri-

culture Organization (FAO) Land Cover Classification System (LCCS)3:

1. Tree cover broadleaf : primarily vegetated areas with a tree canopy cover of

more than 50% at the time of fullest development. Snow and/or ice, open water

or built-up areas cover less than 50% of the area. A tree is a woody, perennial or

seasonal plant with a simple and well-defined stem, bearing a more or less defined
3https://www.fao.org/home/en/

Class ID CGLS class(es) Land cover type Color

1 112, 114, 122, 124 Tree cover broadleaf
2 111, 113, 121, 123 Tree cover needleleaf
3 20 Shrubland
4 30 Grassland
5 90 Vegetation aquatic
6 100 Lichens and mosses
7 60 Bare areas
8 80, 200 Open water

Table 3.3: The class legend used in the proposed land cover mapping methodology.

https://www.fao.org/home/en/
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crown (Ford-Robertson, 1971) and a minimum height of 5 m. Trees are broadleaved

and come from the Angiospermae group.

2. Tree cover needleleaf : Primarily vegetated areas with a tree canopy cover of

more than 50% at the time of fullest development. A tree is a woody, perennial or

seasonal plant with a simple and well-defined stem, bearing a more or less defined

crown (Ford-Robertson, 1971) and a minimum height of 5 m. Trees carry typical

needle-shaped leaves and come from the Gymnospermae group.

3. Shrubland: Primarily vegetated areas with a shrub canopy cover of more than

50% at the time of fullest development. Snow and/or ice, open water or built-up

areas cover less than 50% of the area. A shrub is a woody plant with persistent

woody stems and without any defined main stem (Ford-Robertson, 1971), being

less than 5 m tall.

4. Grassland: Primarily vegetated areas with an herbaceous cover of more than

50% at the time of fullest development. Snow and/or ice, open water or built-up

areas cover less than 50% of the surface. Herbaceous plants are defined as plants

without persistent stem or shoots above ground and lacking definite firm structure

(Scoggan, 1978).

5. Vegetation aquatic: Primarily vegetated areas with trees, shrubs, grasslands or

lichens and mosses covering more than 50% of the area flooded by water for more

than 4 months throughout the year. The water can be saline, fresh or brackish.

6. Lichens and mosses: Primarily vegetated areas with a cover of more than 50%

at the time of fullest development. Snow and/or ice, open water or built-up areas

cover less than 50% of the surface. Mosses are a group of photo-autotrophic land

plants without true leaves, stems or roots (Gray, 1970). Lichens are composite

organisms formed from the symbiotic association of fungi and algae (Gray, 1970).

7. Bare areas: Areas where the sum of vegetation cover is less than 50% at the time

of fullest development. Snow and/or ice, open water or built-up areas cover less

than 50% of the surface. Bare rock areas, sands and deserts are classified as bare

areas. Extraction sites (open mines and quarries) and salt flats covered by water

for less than 5 months are classified as bare areas.
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8. Open water (permanent): Areas where open water covers at least 50% of the

surface and remains for more than 9 months a year, except in special circumstances

(particularly dry year, construction of dams, etc.). Snow and/or ice and built-up

areas cover less than 50% of the surface. Water bodies can be natural or artificial.

Water can be saline, fresh or brackish.

Starting from the MRLC map including only the classes to be recognized in the new

map, a morphological erosion processing step is applied separately to each class layer.

This step, performed using a 3×3 pixels kernel, aims at avoiding the selection of training

points on the border of the classified area, which might be mixed pixels at medium spatial

resolution. To avoid undersampling of classes that have only few pixels in the scene, if

the abundance of a class after the erosion appears to be less than the number of samples

to be extracted (e.g., less than 500 pixels), the original class extent is entirely recovered

and used for sampling. Figure 3.17 shows how the erosion operation performs on a small

region within the Amazon tile (21KUQ).

The eroded version of the MRLC map is then used to derive more reliable training points,

by means of an innovative algorithm here described in the next section.

Figure 3.17: Visual example of how the erosion operation works on the MRLC map,
based on a 3 × 3 pixels kernel. The left image is the original, non eroded map, while
the right one is the erosion output. Note that in both maps, balck regions represent

classes that were not selected to be classified.
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3.7.1 High-resolution training set generation

Due to great effort in building reliable training data sets, semi-supervised methodologies

have been developed that aim at optimizing the selection of training samples, achieving

better results at a lower cost. These so-called “active learning” procedures consists of

iteratively proposing training points to an operator until a satisfying classification accur-

acy is achieved. However, these approaches are not applicable when land cover mapping

at large scale is the task. In fact, generally a very large number of samples characterizing

each single class is needed; moreover, it is also mandatory to have photo-interpretation

expertise all around the world. Therefore, in this section a fully automated training set

generation procedure is proposed, aimed at collecting reliable training samples virtually

in any region of the Globe, without any human-based intervention.

Figure 3.18 summarizes the processing steps aimed at obtaining points whose reliability is

much higher than a simple stratified random sampling performed on the original MRLC

map, either eroded or not.

The first step consists of extracting a class from the MRLC map and then generate a

set of training points (seeds) to be used as input for a k -Means clusterer applied to the

stack of SAR-based features described in Section 3.6. Note that the k -Means clustering

is implemented according to the “Weka” open source machine learning software [148] and

starts from a representative subset of the data to generate a model aimed at making

predictions on the whole data set. The trained clustering model is then used to extract

k = 2 clusters inside the original MR class boundaries, whose associated land cover types

are not know in advance.

At this point, the originally selected seeds belonging to a single land cover class in the

MR map is split into two clusters. Only the most abundant cluster is retained and a

large number of samples (4000 in this implementation) are randomly selected to sample

the stack of SAR features. Each of the 4000 sampled pixels is associated to a features

vector of the form:

pi
k(n) =

[
pik(1), p

i
k(2), · · · , pik(N)

]
with pi

k(n) ∈ RN (3.1)

where N is the number of features that define the N -dimensional feature space (that

train the RF classifier), and pik(n) is the value of the n-th feature element in the vector
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Figure 3.18: Block diagram of the high-resolution training set generation procedure.

pi
k(n) associated to the k -th pixel, which belongs to the i-th class.

All these vectors are then reduced to a single vector by an element-wise mean. This mean

vector is considered as the “representative” vector for that particular class. Therefore, if

the i -th class in considered, the associated mean features vector can be written as:

f i(n) =
[
f i(1), f i(2), · · · , f i(N)

]
with f i(n) ∈ RN (3.2)

Finally, each of the extracted 4000-features vectors, having the form of the vector in

Equation (3.1) is compared with the i-th representative vector of Equation (3.2) by

computing the Pearson correlation coefficient (ρ). Eventually, only the points with cor-

relation ρ ≥ 0.95 are kept to be part of the final random forest training set for that
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specific class. This procedure is iterated for all the classes in the selected legend that are

present in the region of interest, according to the MRLC map.

Figure 3.19 shows the main outputs of the training set generation procedure described

above. Specifically, Figure 3.19a shows the initial situation, where the MRLC map is

just eroded. Then, as shown in Figure 3.19b, a specific class from the original MRLC

map is selected, and a given number of clusters (k = 3 in the example in the figure) are

extracted within the class boundaries using a k -Means clustering model, trained based

on the stack of SAR features. Lastly, 3.19c shows the selected cluster, which represents

the most abundant cluster extracted by the k -Means. This final cluster is then associated

to the original MR class (thus, they are labelled with the same class ID) and used for

sampling at 10 m scale.

3.8 Results and discussion

The entire workflow described in the previous sections was implemented leveraging the

great computational power offered by Google Earth Engine, a powerful cloud computing

platform aimed at processing and analysing huge amounts of remotely sensed data and

GIS data in general.

To test the methodology, all four regions of interest described in Section 3.2 (Siberia,

Italy, Brazil and Africa) were used to evaluate the robustness of the proposed approach

in areas with very different land covers and climate typologies.

As explained in Section 3.5, for each case study, all the Sentinel-1 acquisitions covering

(a) (b) (c)

Figure 3.19: Main outputs of the training set generation procedure: in (a) is shown
the eroded MRLC map; in this example, the aquatic vegetation is selected and clustered
(b) using a k -Means clusterer with k = 3. Finally, in (c) the most abundant cluster is

extracted and sampled with 10 m scale.
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at least 70% of the tile in 2019 are considered. This high overlap ratio is selected to avoid

the use of images acquired from different orbits, therefore avoiding incidence angle issues

affecting backscatter intensity and, consequently, the classification results. Such overlap

ratio it is also necessary to prevent the training set to be chopped to a subset, due to

SAR images covering only a small part of the region of interest. To better understand

this issue, the reader is referred to Figure 3.20. Starting from a given number of points

extracted from the MR land cover map (all the red starting points in Figure 3.20), it

is possible that the final training set is composed only by a tiny subset of them; this

happens when the features images are cropped due, for example, to the relative orbit

number. For the training process, it is mandatory that all the sampled points have the

exact same number (and type) of features; from Figure 3.20, it is possible to notice

that the only valid area corresponds to the intersection of all images’ footprints. All the

starting points falling outside this area are discarded because they cannot sample the

same features of those belonging to the intersection region. For all these reasons, it is

clear that selecting images that have a certain degree of overlap between their footprint

and the region of interest boundaries is a relevant detail in order to build a consistent

training set.

This selection results into a collection of 29 SAR images for Siberia, 38 for Italy, 32 for

Amazonia and 25 for Africa (on average, this means one acquisition every 12 days).

All the images are Ground Range Detected (GRD) and acquired in Interferometric

Wideswath (IW) mode; both VV and VH descending orbit data sets were selected.

Once all the features are computed as described in Sections 3.6 and 3.7.1, all the fea-

tures vectors were classified using the random forest (RF) classifier trained as mentioned

above. Random forest is a one of the most powerful and most used supervised learning

Figure 3.20: Chopping of training set issue caused by low overlapping degree between
region of interest and each SAR image belonging to the original time series.
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algorithms. It allows to quickly identify significant information from vast data sets. The

biggest advantage of random forest is that it relies on collecting various decision trees

to arrive at any solution. As depicted in Figure 3.21, this is an “ensemble algorithm”

that considers the results of more than one algorithms of the same or different kind of

classification.

After assuming to have a number m of features, its working principle can be summarized

in the following steps:

1. Randomly chose k features such that k < m;

2. Among the k features, calculate the root node by choosing a node with the highest

Information gain, which is a decrease of entropy (is the difference between the

starting node uncertainty and the weighted impurity of the two child nodes);

3. Split the node into child nodes;

4. Repeat the previous steps n times;

5. End up with a “forest” made of n “trees”;

6. Perform Bootstrapping, i.e., combining the results of all Decision Trees.

Figure 3.21: Simplified concept scheme of a random forest classifier.
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Random forest classifiers are in general very robust to outliers, work fairly well on non-

linear data, overfitting risks are reduced, runs very efficiently on large data sets and

have better overall accuracy with respect to many other classifiers used for land cover

mapping. However, RF classifiers are found to be biased while dealing with categorical

variables, they are slow to train and they not suitable for linear methods with a lot of

sparse features.

The RF classifier used in this work consisted of 60 decision trees (based on empirical

testing), a number of variables per split equal to the square root of the total number

of input features (as per scientific literature), and the fraction of input for bagging (per

tree) was set to 1/2 and each tree had a minimum leaf population equal to 1 (so that

every new node has at least 1 point in its training set).

To validate the mapping results and provide a quantitative analysis, a total of 1350, 712,

1432 and 1709 High-resolution (HR) validation points for Siberia, Italy, Amazonia and

Africa, respectively, were manually collected by experts in different institutions (most of

them collaborate to the ESA CCI+ project). This HR set was extracted by visual inter-

pretation from multispectral and multitemporal 10 m spatial resolution Sentinel-2 data

sets and/or Very High Resolution single date SPOT-6/7 ortho images at 1.5 m spatial

resolution; when available, ground panoramic images were inspected as well. The only

exception is the training set generated for the Italian tile: in this case, together with in-

terpretation of Sentinel-2 multispectral data, high-resolution imagery from Google Earth

and visual inspection of the CGLS map at 100 m scale were used to derive training points.

The spatial and class-wise distribution of the validation points for each test site is re-

ported in Figure 3.22, while Figure 3.23 shows the trend of each class (when present) in

multitemporal VH-polarized SAR data.

Qualitative classification results are shown for the selected tiles in Figure 3.24. It is

possible to note that the new land cover product (in the last column) offers a significantly

increased spatial detail of the classes with respect to the MRLC map. In other words,

the new product is coherent with the coarser CGLS map at 100 m, used to select the

training set, but improves its details. Please note that the black regions in the MRLC

maps indicate areas labeled with mixed classes in the MR map, hence removed from this

comparison (also the areas not covered by the tile of interest are filled with black color).
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(a) (b)

(c) (d)

Figure 3.22: Spatial distribution of the validation points in (a) Siberia (tile 42WXS),
(b) Italy (central Italy tile, 32TPP), (c) Amazonia (tile 21KUQ) and (d) Africa (tile

37PCP). The color code is reported in Table 3.3

To further appreciate the increased spatial resolution of the final product of the proposed

procedure, in Figure 3.25 it is possible to observe the classification of a very small portion

of each test site. The aim of this figure is to provide a qualitative comparison between

the MRLC map used to train the RF classifier and the obtained result in areas which

are significant. In particular, in the African HR map it is possible to observe the much

more outlined area of aquatic vegetation surrounding the lake; also, small broad-leaved

trees are now visible to the East of the scene. Regarding the Amazonian tile, lots of

important spatial details are visible: small river branches, as well as the regular square-

shaped regions, due to (sadly) deforestation activities. In these areas, current grassland
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Figure 3.23: Phenology tracking of classes in multitemporal Sentinel-1 SAR data
(note that the tiles do not always contain the same number of classes).

cover (yellow) replaced previous dense vegetation (dark green) zones. Whereas, in the

Italian tile, the enhanced spatial resolution of the HR map highlights very small water

bodies, surrounded by thin layers of grassland. Also, many agricultural fields boundaries

are clearly distinguishable (even if not classified as actual crop fields, since this class was

neither selected from the MRLC map nor classified). Finally, looking at the Siberian

tile, small water bodies and grassland areas are well visible and separated. Moreover, a

large variety of land cover types emerge where the two river branches split, types that

are invisible in the MR map.

Table 3.4 reports, finally, the quantitative analysis of the maps extracted in the four test

areas, using the above mentioned manually extracted validation sets. For each tile and

test site, this table shows the achieved overall accuracy (OA) values together with the

number of samples used to validate each class (px), as well as the corresponding producer

(pa) and the user accuracy (ua) values for each of class. The producer accuracy is the

map accuracy from the point of view of who generated the map (the producer); this

refers to how often are real features on the ground correctly shown on the classified map,

or the probability that a certain land cover of an area on the ground is classified as such.

On the other hand, the user Accuracy is the accuracy from the point of view of who uses
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Figure 3.24: Qualitative results for the four test areas. Columns refer to 1) the Google
Satellite basemap view, 2) the annual mean composite derived by all the VH-channel
images overlapping the tile of interest, 3) the CGLS map at 100 m resolution and 4)

the obtained classification result with 10 m pixel spacing.
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Figure 3.25: Small sample areas inside each test site: on the left a multispectral
Sentinel-2 image of each area, at the center the CGLS map, and on the right the result

of the proposed procedure.
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the map (the user), and not the map maker. The user accuracy essentially tells how

often the class on the map will actually be present on the ground, also referring to the

“reliability” of the map.

All the values in Table 3.4 were computed for both the original MRLC map used in

this work (the CGLS at 100 m resolution) and for the results of the proposed procedure

(labeled “this work” in the table).
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Moreover, to better understand the consistency of the high-resolution reference points

collected by the experts within the CCI+ project, from Table 3.4 it is possible to ob-

serve that the overall accuracy was also computed against the medium resolution CGLS

land cover map at 100 m spatial resolution, for each considered test region, in order

to provide a quantitatively estimation of “how good” the HR validation points are with

respect to the MR land cover map used to build the training set. Based on this evalu-

ation, it turned out that, in general, the quality of the HR validation dataset is relatively

low, if compared to the MR map used in the training process; since the training and

validation processes are carried out using two completely different data sets (which are

not directly comparable), this fact justifies the relatively low accuracy values obtained,

on average, over the test sites. Despite this, a very clear take away message from the

numbers of Table 3.4 is that the proposed methodology allows to achieve significantly

higher accuracy values on the independent HR validation set than the CGLS map. This

increment is equal to 18.4% for Siberia, 5.9% for Italy, 24.2% for Brazil and 16.8% for

Africa. Note that Italy achieved the lowest improvement because the validation points

were manually extracted also using the support of the CGLS map (therefore, the result is

slightly biased). The methodology was able to achieve on average 71% overall accuracy

and standard deviation equal to 14.2%. Such high variation is mainly due to the results

obtained in the Siberian tile (50.5% OA); this was in fact a very challenging region, as

snow, ice and clouds cover the tile of interest for almost 3/4 of the year, thus, even radar

data was not able to reliably track the phenology of the classes present in the area. If

this region was discarded from the evaluation of the classifier performance, the average

overall accuracy could have reached values around 79-80%, with associated low standard

deviation values (around 5%). Still, to provide a clear and transparent evaluation of

both strengths and weaknesses/limitations, the Siberian tile was kept.

These results are somehow coherent with the different accuracy levels achieved by other

global land cover products at 30 m spatial resolution. Accuracy values significantly vary

depending on the considered land cover type; for example, in the case of classes asso-

ciated to “pure” spectral properties or that occupy a large proportion of the considered

region of interest such as forests, croplands and water bodies, generally high accuracy

values can be found. On the other hand, complex classes such as shrubland, grass-

land, wetland and many others are very often confused with other types of land covers.

Quantitatively speaking, the forest class achieved 94% OA for the GLC_FCS30 map,
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76.5% OA for the FROM_GLC30 map and 83.6% OA for the GlobeLand30 map. The

classification carried out in this work does not account for a single “forest” class but

considers, instead, two different types of forest: broadleaved and needleleaved trees; in

this case, the obtained accuracy values were, on average, 73.8% and 67.5%, respectively.

Moreover, for broadleaved trees the accuracy could be much higher, around 92%, due

to the fact that this class is very rare in the considered African tile and, therefore, it

is subject to classification errors which decrease the mapping accuracy. Regarding the

shrubland class, the accuracy values were lower, i.e., 56.8% for the GLC_FCS30, 33.9%

for the FROM_GLC30 and 72.6% for the GlobeLand30. The proposed methodology

reached 35.5% accuracy for this class, as it is very difficult to detect in radar data; in the

Amazonian tile the accuracy of the shrubland class achieved only 11.4% accuracy (which

contributed to decrease the overall accuracy for this class), as almost all the classes

are barely distinguishable both in spatial and temporal SAR features (see Figure 3.26).

Lastly, regarding the vegetation aquatic class, accuracy values were around 61.8% for the

GLC_FCS30 map, 3.3% for FROM_GLC30 map and 52.6% for the GlobeLand30; the

proposed classification methodology was able to achieve, on average, 50.3% accuracy.

Also in the case of aquatic vegetation, such class is in general very hard to distinguish in

SAR data, as it is confused with many other land covers. It was not possible to make a

similar comparison for the other classes mapped in this work, due to legends incompat-

ibilities. Note that the above accuracy values achieved by the 30 meters products were

computed based on different validation data sets, thus, they are not fully comparable

with the results obtained in this work.

Cohen’s kappa coefficient k was also computed for each test site. The k coefficient

basically provides information related to how much better a classifier is performing over

the performance of a classifier that simply guesses randomly according to the frequency

of each class. It is defined as follows:

k =
po − pe
1− pe

= 1− 1− po
1− pe

(3.3)

where po is the observed agreement and pe is the expected agreement. Cohen’s kappa

coefficient is always less than or equal to 1. Values of 0 or less, indicate that the classifier

is completely useless. However, there is no standardized way to interpret its values: in
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[149], the Authors provide a way to characterize values, which accords with the following

scheme:

• k ≤ 0 → no agreement;

• 0 < k ≤ 0.2 → slight agreement;

• 0.2 < k ≤ 0.4 → fair agreement;

• 0.4 < k ≤ 0.6 → moderate agreement;

• 0.6 < k ≤ 0.8 → substantial agreement;

• 0.8 < k ≤ 1 → almost perfect agreement

The estimated k coefficient was 0.76 for Amazonia, 0.55 for Africa, 0.7 for Italy and 0.38

for Siberia.

Despite the MR map was obtained using multispectral data and the new result is based

only on SAR data, the SAR-base methodology achieves better results thanks to the

exploitation of spatio-temporal features and to the intelligent training point selection

procedure.

Please note that the numbers in Table 3.4 refer to one specific result of the procedure,

because the first step for training point selection is a random extraction of points from

the MRLC map using the procedure shown in Section 3.7.1. To understand the impact

of this random seed, a cross-validation was carried out, and it was found that the overall

accuracy values are stable, with very small standard deviations within the range [0.5 -

1]%.

To understand the source of the classification errors, in Figure 3.26 the mean features

vectors for the training set of each class in each considered region are depicted. The plots

in Figure 3.26 are divided in three groups: the trend of the spatial features, the trend of

the VH-polarized temporal features and the trend of the VV-polarized temporal features.

Although only the average behaviour per class is shown, it is clear that, apart from

water, all the vegetated land covers have a similar pattern. Still, the small differences

are enough to enable a decent discrimination of the different land cover classes. Based

on the HR validation points - independently extracted by experts - the produced land

cover maps appear to be very promising, except than for Siberia. As a matter of fact,
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discriminating classes in Siberia is complicated by the long cold season during which the

soil is covered with snow and ice. These harsh conditions effectively reduce the amount of

multitemporal SAR images useful to discriminate among different land cover types. Still,

the proposed methodology achieves good results for specific land covers (for instance, the

producer accuracy for shrublands increases by 43% with respect to the MRLC map).
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Another very important point that can be observed from Table 3.4 regards the complete

absence of classes number 7 and 8, corresponding to “lichens and mosses” and “bare

areas”, respectively.

Regarding lichens and mosses, unfortunately, such land cover type was not present within

the medium resolution land cover map used to build the training set (the CGLS at 100

m scale), for any of the four considered regions. In fact, if a class is not present in the

MRLC product (i.e., there are no pixels associated to that land cover), then it is not

considered in the overall accuracy computation (so HR validation points of that class

are discarded). However, since reference points representing lichens and mosses were

manually collected in the Siberian tile, we decided to show such land cover in Table

3.4 anyways, even if it has never been mapped. Note that this approach was applied,

in general, for all the classes and in all test sites; if the total number of MR pixels of

a specific class is very low (e.g., less than 10 pixels), then this class is excluded from

the validation process, even if HR reference points were available. This is, for example,

visible for class number 1 (broadleaf trees) in Siberia; the number of MR pixels was

considered insufficient to reliably train the classifier and, therefore, it was completely

discarded from accuracy computation (despite a certain number of HR validation points

were available for this class).

On the other hand, the bare areas class was treated differently. In this case, in fact, bare

areas are present almost in all the regions of interest. However, the number of medium

resolution pixels representing this class is quite low (not low enough to be discarded

by the classifier) and, after collecting them to be part of the training set, they are all

discarded by the high-resolution training set generation procedure, described in Section

3.7.1. Considering, for instance, the African tile, it is possible to note in Table 3.4 that

the bare areas class is missing. In this case, the number of MR pixels belonging to this

class was equal to 43, thus, very low; then, after subdividing the whole class into two

sub-classes through the k -Means clustering, the number of remaining pixels associated to

bare areas (and used to build the mean, representative vector) amounts to 14, preventing

to correctly reconstruct the statistics of the bare areas class; for this reason, if the correl-

ation coefficient ρ used to select points whose features are similar to those belonging to

the representative vector is set to high values (i.e., ρ = 0.95 in the proposed algorithm),

none of the original 43 pixels can satisfy such constraint. All the pixel features belonging

to the bare areas class are, in fact, considered not similar enough to the representative

features, thus, all 43 pixels are discarded from the training set generation procedure.
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In order to include this class in the classification, despite its scarcity, it is necessary to

decrease the correlation constraint; experiments showed a value of ρ = 0.8 could allow

the classifier to consider such class. However, since this value is globally applied inside

the classification procedure, the overall classifying performance is affected; this is likely

due to the fact that a high level of confusion is introduced by the inclusion of the bare

ares class in the procedure, and also because “dirtier” training points are collected for

each of the other classes.

Of course, both the selection of the degree of similarity (correlation coefficient) and the

exclusion of classes based on a low number of MR training points (e.g., broadleaf trees

in Siberia) represent an important trade-off of the proposed mapping approach that

deserves to be deeply explored.

3.8.1 Comparison with other training set generation procedures

Three different training set generation approaches have been tried, to evaluate their

performances within the presented land cover mapping methodology. This brief section

is devoted to the comparison in terms of achieved accuracy in three different cases:

1. Training set generation using the procedure described in Section 3.7.1;

2. Training set generation based only on the morphological erosion of the MRLC map;

3. Training set generation based on the MRLC map eroded using the Multiclass Bor-

der Reduction Filter (MBRF) described in [79].

Similarly to the scope of this thesis work, the paper reported in [79] aims at locally train

a classifier using an automated selection of training points from existing (but outdated)

land cover maps. The classifier used in the cited work is based on optical data acquired

by the Medium Resolution Imaging Spectrometer (MERIS), a programmable spectro-

meter on board the Envisat mission.

In general, a classical erosion filter may remove too many pixels, at the risk of completely

remove those classes that do not homogeneously cover large areas (e.g., urban areas) or

present linear shapes (e.g., thin rivers). To overcome this issue, this work developed a
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Multiclass Border Reduction Filter (MBRF) that is able to remove pixels on the bound-

aries, while keeping at least one pixel among each group of adjacent pixels. Therefore,

all the original classes are preserved also in the eroded version of the LC map.

The working principle of the MBRF filter can be summarized in two steps (per class):

first, the number of pixels belonging to the class of the central pixel inside a moving

kernel is registered; then, the central pixel is set to “no data” if it did not reach the

largest count of neighbours amongst the pixels that belong to the same class inside the

moving kernel.

At the end of the procedure, the MBRF removed 5% less pixels than the classical erosion

filter. Such percentage belongs to those classes that are much less frequent or present in

linear patterns.

Carrying on with the comparison, in Table 3.5 are reported the achieved overall, producer

and user accuracy, together with the k coefficient for each of the three cases described

at the beginning of this section, and for each test area.
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From the comparison table it is possible to observe that case 1 (i.e., the proposed meth-

odology described in Section 3.7.1) outperforms the other two approaches for all the

considered test areas, except from Italy, using the same HR validation dataset, manually

extracted by experts.

3.8.2 Selection of features suitable for land cover mapping

This section intends to briefly justify the choice of the final input features, described in

Section 3.6. Prior to the final decision regarding which features are the most useful for

characterizing land cover, several experiments were carried out. To carry out these ex-

periments, a stratified random sampling procedure was applied on the CGLS land cover

map at 100 m scale in order to generate independent, non-overlapping training and val-

idation sets. Before sampling, the CGLS was only eroded to avoid collecting points over

transition regions. Since the overall accuracy is not computed on the manually extracted,

high quality and high-resolution validation set, such computed statistic is not intended

for actual validation purposes. Still, by keeping unaltered the entire classification system

and changing only the set of input features, it is possible to understand the impact of

the selected features in terms of classification performance.

Table 3.6 shows how accuracy values change as a function of the set of input SAR

features. In the table, four cells are highlighted in greenish colour to indicate that the

SAR features configuration was considered as the optimal one. As a matter of fact,

for the test sites located in Amazonia, Africa and Italy, the overall, producer and user

accuracy values were among the highest. For Siberia, the highest values are reached for

configuration no. 10; however, the number of features in this case is 84 which, compared

to those of configuration no. 13 (46) is almost twice. The overall accuracy for Siberia

was about 77.60% and 75.15% in the case of configurations no. 10 and 13, respectively;

since such values are similar, the configuration with fewer input features was selected

(no. 13).

Different is the case of the test site located in Amazonia, whose highest overall accuracy

is achieved thanks to configuration no. 7 (75.97%). However, results are similar to those

obtained using configuration no. 13 (75.75%); for this reason, we decided to use the latter

configuration even for the Amazonian site, in order to exploit the same configuration for

any region of interest. The objective is, in fact, to build a classifier that works “fairly”
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well worldwide, which means that the classifier will perform better in certain areas of

the World, and worse in others.

Given all the above considerations, the vegetation mapping model described in the pre-

vious sections is tuned based on the input SAR features corresponding to configuration

no. 13 of Table 3.6.
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Chapter 4

Inland water body monitoring and

mapping1

Similarly to what has been done in the previous Chapter for the development of a ve-

getation land cover mapping application, in this fourth Chapter an algorithm that aims

at classifying inland water bodies has been developed and described in detail.

4.1 Background of the proposed inland water body mapping

methodology

As discussed previously in Chapter 1, in the context of climate change studies, there exist

great interest in mapping and monitoring land cover types and their changes at the global

scale. Indeed, it is necessary to produce high resolution land cover maps for consecutive

years in order to better observe and analyse changes in terms of extent and/or transition

of the classes, thus characterizing the effects of climate change from the local to the

global scale. The most useful maps for land cover types of interest at the global scale
1this chapter is based on material published in the works:

• [44] Marzi, David, and Paolo Gamba. “Inland Water Body Mapping Using Multitemporal
Sentinel-1 SAR Data.” IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing 14 (2021): 11789-11799.

• [150] Marzi, David, and Paolo Gamba. “Wide-Scale Water Bodies Mapping Using Multi-Temporal
Sentinel-1 Sar Data.” 2021 IEEE International Geoscience and Remote Sensing Symposium IG-
ARSS. IEEE, 2021.
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for climate change initiatives and their connection with Earth Observation (EO) sensors

have been provided by projects funded by the ESA Climate Change Initiative (CCI).

To obtain these maps, data from multiple satellite sensors have been employed, namely

multispectral, hyperspectral, and microwave passive radiometers, as well as lidar and

radar active sensors. Since each source of data has its own pros and cons, it is not

possible to reliably map all classes with a single type of data. For instance, optical

systems (multi- and hyper-spectral sensors) are suitable to recognize surface materials

by measuring their reflectance at different wavelengths, typically ranging from the visible

to the infrared. For this reasons, optical data are widely used in vegetation mapping,

agricultural applications, and soil characterization [151].

As mentioned in Section 2.2, due to its typical spectral signature, water is also well-

distinguishable in optical data, and several water indices have been designed to detect

water bodies by means of optical data such as the Normalized Difference Vegetation Index

(NDVI), Normalized Difference Water Index (NDWI), Modified Normalized Difference

Water Index (MNDWI) and the Automated Water Extraction Index (AWEI) [107]. Still,

constant monitoring of any land cover type using optical sensors is a real challenging task

in cloudy areas.

Thanks to the efforts of many researchers and the use of multispectral and radar data sets,

several projects aimed at producing water body maps at the global scale were developed.

These products (sorted by increasingly coarser spatial resolution) are summarized in

Table 4.1 and subdivided in data sets dedicated only to water class and data sets which

contain multiple information on different classes, among which, water surfaces.

The Water and Wetness product [152] from the European Commission Copernicus pro-

ject is generated based on the fusion of multi-temporal optical satellite imagery and SAR

data and represents a thematic product that shows water occurrence from 2009 to 2018;

the Landsat Dynamic Surface Water Extent (DSWE) [153] is a multi-band raster layer

representing per-pixel surface water inundation; the JRC Global Surface Water Map-

ping Layers [27] data set contains maps of the location and persistence of surface water

over the last 35 years, also providing statistics on the extent and change of those water

surfaces; the Global Surface Water Dynamics product [28] highlights estimates of open

surface water extent and change from 1999 to 2020; the Global WaterPack [154] is a 250

m resolution data set revealing dynamics of global inland water bodies on a daily basis

and represents the surface water map product having the highest temporal resolution
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with respect to all other products of Table 4.1; the Global Forest Change Water Cover

(GFCC30WC) [155] data set provides surface-water information and was derived from

water bodies masks in the GFCC Tree Cover (GFCC30TC) and Forest Cover Change

(GFCC30FCC) products based on a classification-tree model; the Copernicus Global

Land Service (CGLS) [137] delivers a global land cover map that includes many classes,

including water surfaces; finally, the GlobCover Land Cover maps by the ESA CCI pro-

ject [156] provide global annual Land Cover maps and, contrary to all other land cover

types, water bodies are mapped with the Envisat Advanced Synthetic Aperture Radar

(ASAR).

Previous works proposed methodologies for water body extraction using SAR data by

means of supervised classifications [117], thresholding techniques using quad-pol data

[118], SAR and optical data fusion [157] and signature analysis in the feature space

[43, 119].

Following, a very brief recall about the current state-of-the-art in water body monitoring

and mapping (see Chapter 2, Section 2.2 for details). In [119] the authors demonstrated

that the joint use of Sentinel-1 time series data and a metric based on the product of

co- and cross-polarized channels can lead to an efficient support of the so-called “smart

Data set EO sensor(s) Resol. Ref. year(s)

Copernicus Land Monitoring Ser-
vice – High Resolution Layer Water
and Wetness (v2) [152]

Landsat-5, -6, -7 and -8,
Sentinel-1A, ENVISAT-
ASAR)

20 m 2009 - 2018

Landsat Dynamic Surface Water
Extent (DSWE) [153] Landsat-4, -5, -7, -8 30 m 1982 - present (2021)

JRC Global Surface Water Map-
ping Layers (v1.3) [27] Landsat-5, -7, -8 30 m 1984 - present (2021)

Global surface water dynamics [28] Landsat-5, -7, -8 30 m 1999 - 2020

Global WaterPack [154] MODIS Terra & Aqua 250 m 2013 - 2015

Global Forest Cover Change Water
Cover (GFCC30WC) [155] Landsat-7, MODIS 30 m 2000

Copernicus Global Land Cover
Layers (CGLS-LC100 collection 3)
[137]

PROBA-V 100 m 2015 - 2019

GlobCover Land Cover Maps [156] MERIS, Envisat-ASAR 300 m 1992 - 2018

Table 4.1: Available global water surface products subdivided in two groups and sorted
by increasingly coarser spatial resolution: the first group relates to projects focusing
only on water bodies extraction; whereas, the second group is devoted to projects aimed

at generic Land Cover (LC) mapping.
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water management”; in particular, the proposed methodology, based on two steps, allows

to efficiently extract waterlines and retrieve water surfaces.

The study in [120] compares 10 different feature combinations to train a supervised

support vector machine (SVM) model. The conclusion of the study states that optical

indices are not useful as expected and, from the accuracy point of view, the best SAR

configuration for detecting water is the single-channel VH-polarised intensity data, with

an average overall accuracy of 98.07%.

Another interesting study is reported in [121], where a k -Means clustering approach

is employed with a number of extracted clusters k = 15. The methodology extracts

features starting from a yearly Sentinel-1 time-series obtained by averaging ascending and

descending orbit images separately within each month (ending up with 12 two-average-

composites per year), and VV and VH intensity data are used as inputs. Eventually, the

temporal average backscatter value is computed for each cluster and a specific threshold

is applied to obtain the “water” class. Compared to the methodology proposed in this

paper, the work in [121] lacks the flexibility to be applied to other regions of interest

because it does not exploit any initial set of water points. Moreover, the parameters are

tailored to the specific area of interest.

All in all, as also stated at the end of the scientific literature carried out in Chapter

2, the studies analyzed from the technical literature have limitations, related to lack of

automatism (e.g., manual sampling of training samples), the impossibility to apply the

methodologies to other study regions without a-priori information (e.g., because they

have thresholds and decision steps calibrated for specific regions of interest), the high

computational cost of working on quad-pol images, or the reduced classification capability

over cloudy regions when optical data is employed. Moreover, the main characteristics of

the global water products listed in Table 4.1 suggest that the limitations of those data sets

are mostly related to the spatial resolution, which is coarser than the result obtainable

with the proposed approach. Finally, almost no products use the great potential in terms

of both spatial and temporal resolution of Sentinel-1 data.

Given all the above considerations, the objective of this part of the thesis work is to

use data sets that have never been used to generate annual water surfaces maps with

an unprecedented spatial resolution. Specifically. a novel fully-automated water surface

mapping algorithm is presented, able to deal with any region of the World, with no

limitation in size and no prior information about the area. This is possible thanks to
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the use of Sentinel-1 SAR data sequences, and the exploitation of previous medium

resolution global land cover maps for an initial training sample collection. The entire,

fully automated procedure has been implemented in Google Earth Engine (GEE).

The proposed unsupervised water body extraction processing chain is summarized in

Figure 4.1, and is meant to be applied to a stack of multitemporal SAR data. First,

a multitemporal denoising step is performed on the sequence of all the ascending and

descending SAR images overlapping (completely or partially) the selected tile, aiming at

reducing the effect of speckle noise. Then, a set of statistical and temporal features are

computed to guide the k -Means clustering algorithm. Finally, a few post-processing steps

(such as morphological operations and steep slope removal) are applied to the classified

result to improve the final water surface mapping accuracy.

4.2 SAR data pre-processing for water detection

Before actual use, all the data must undergo several pre-processing steps. These steps -

similar to those applied for the vegetation land cover classifier - are summarized in Figure

Figure 4.1: Overview of the complete procedure designed to extract water bodies
from Sentinel-1 SAR data sequences.
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4.1 and include: application of orbit file, GRD border noise removal, thermal noise re-

moval, radiometric calibration and Range-Doppler terrain correction (orthorectification)

using SRTM30 or ASTER DEM for regions located at more than 60 degrees latitude. All

these steps are directly applied by the Google Earth Engine cloud computing platform.

Since the standard Sentinel-1 pre-processing chain does not include radiometric terrain

correction, we added an angular-based radiometric slope correction routine for Sentinel-

1 SAR images, developed in [140]. The idea behind such correction is to exploit an

established physical reference model which is also extended to simultaneously generate

masks of invalid data represented by active layover. The radiometrically corrected SAR

products significantly improve land cover mapping on a large scale, especially over mor-

phologically complex regions (e.g., mountains).

The radiometrically corrected SAR products significantly improve the potential usage of

Sentinel-1 imagery for a wide range of land applications, such as land cover classifica-

tion, deforestation monitoring, the retrieval of bio-geophysical parameters as well as the

combination of imagery from different geometries.

Moreover, the proposed procedure exploits a multitemporal speckle noise filter, applied

to the sequence of Sentinel-1 SAR images according to [141]. As already described in the

previous Chapter, the filtering algorithm starts with the estimation of a “super-image”

obtained by averaging all the SAR images of the multitemporal stack. Then, the ratio

between each original and noisy image and the super-image is computed; the result of

this ratio is denoised with a 7×7 low-pass filter kernel (note: the original procedure used

spatial Lee filter for this step, which was replaced with a simpler, yet effective low-pass

filtering step); finally, each low-pass-filtered image is re-multiplied by the super-image

(see Figure 3.12 for details).

4.3 Extraction of water-related SAR features

Based on findings from the technical literature, in the proposed water extraction al-

gorithm we rely only on the VH intensity data, that has been proven to be the best

selection in terms of classification accuracy in [120]. More specifically, the following VH-

based temporal features are computed, on a per-pixel basis, from the denoised SAR time

series:
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• Three-months composites named “quarter composites”. These composites are ob-

tained by averaging in time all the available SAR images within a temporal window

that roughly corresponds to a quarter of a year;

• The overall annual mean composite;

• The overall minimum composite;

• The overall maximum composite;

• The temporal variance.

In Figure 4.2 the block scheme of the features extraction procedure is depicted.

Among all the above mentioned features, variance and minimum are particularly im-

portant when water monitoring and mapping is the objective. In fact, contrary almost

all other types of land covers, water bodies are characterized by very high temporal

variability (hence, variance) and very low minimum backscatter intensity along the year

[43].

The main difference between this approach and the one in [43] is the use of the so-

called “quarter composites”, a possibility due to the high revisit frequency of Sentinel-1

constellation. Quarter composites helps to better discriminate between water and other

similar classes. For instance, many agricultural fields are flooded several times along

the corresponding crop growth season (e.g., rice fields); therefore, their annual mean,

Figure 4.2: Set of features extracted from a Sentinel-1 time series, suitable for water
detection in SAR data.
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minimum backscatter and temporal variability parameters may be very close to those of

water bodies. The selected four composites allow to recognize the temporal pattern along

the year due to the variability of specific land cover types (e.g., because of the phenology

in case of vegetation). Indeed, differently from a water body, agricultural fields will show

significant phenological variations along the year and this helps the classifier to recognize

such fields as non-water. Such discrimination may be more difficult if only annual (or

multi-annual) values are used.

4.4 Training the k-means model

The features extracted in Section 4.3 are used to sample a balanced set of water and

non-water points derived from coarse maps, such as the medium resolution CGLS map

(at 100 m scale). The procedure for the extraction of training points is outlined in Figure

4.3.

First a binary mask from the MRLC map of water bodies is extracted (4.3b) and eroded

with a 3×3 sliding kernel to increase the likelihood of sampling “pure” water pixels (4.3c).

In the case the erosion procedure ends up with no water pixels in the considered tile,

the original (not eroded) mask is restored and used for sampling. Whereas, if the tile of

interest contains no water pixels in the MR map at all, an empty image (all zeroes) is

provided in output. To sequentially extract a map all over the world, the Sentinel-2 tile

system is used [139], and ∼ 10000 km2, i.e., ∼ 100 million pixels at 10 m resolution, are

analyzed at a time. Finally, a stratified random sampling is applied to the binary mask

to generate water and non-water points in a ratio of 1:3. Specifically, in the proposed

algorithm 1000 and 3000 points are collected for water and non-water class, respectively.

These training points are then used as initial seeds for the k -Means clustering algorithm,

and the model extracted from them is eventually used to cluster all points belonging to

the wide area of interest. Note that the k -Means algorithm implemented in GEE is based

on the “Weka” open source machine learning software [148], optimized to work with very

large data sets (like the ones of this work). Starting from a representative subset of the

data (the above high-resolution training set), the Weka k -Means algorithms generates a

model that is then used to make predictions on the full data set.
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(a) (b)

(c) (d)

Figure 4.3: Main outcomes of the training set generation procedure: (a) shows the
original CGSL map at 100 m spatial resolution; the “water” class is then extracted (b)
from the MR map and eroded (c). Finally, the eroded water class is randomly sampled
inside and outside water regions (d) to generate a balanced set of points. The Iseo

Lake, located in the Lombardy region in North Italy, was used in this example.

Even if it may look counter intuitive, the k -Means algorithm is run with k = 4; this means

that each training pixel is automatically assigned to one among four (unknown) clusters.

The number of clusters comes from the idea that inside the initial mask (and near water

bodies) there may be essentially four main land cover types: water, vegetation, bare or

impervious soil.

Indeed, we experimentally found that the use of only k = 2 clusters leads in many cases to

confusion between water and some of these classes. By increasing k, the k -Means model

performs a more reliable clustering since the potentially confusing classes are clustered in

different non-water clusters. This results in a more robust discrimination of water bodies
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from the other land cover types, and drastically reduces the number of false positives.

Since the k -Means model makes no assumptions on the distribution of the data (as it is

essentially an optimization problem), it is a suitable approach to deal with multitemporal

SAR composites, whose statistical characteristics are very complex.

Moreover, in order to avoid oversampling the water class when the tile include wide

open water areas (such as portions of seas and oceans), the shoreline/coastline data from

the Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG)

is used to mask out open water from all Sentinel-1 images [158] before the clustering is

applied. The GSHHG is a free, high-resolution geography data set containing the “World

Vector Shorelines (WVS)”, a shapefile of the shorelines of the entire Earth, available

at different spatial resolutions. For the proposed water body mapping algorithm, the

“high resolution” shapefile is used, obtained by using the Douglas-Peucker lines-reduction

algorithm to reduce the maximum number of vertices of the “full resolution” shapefile by

80% (hence, reducing the size of the dataset). This step was necessary first of all to avoid

oversampling the water class, but also to avoid sampling of open water bodies, whose

SAR features are not similar to those of inland water bodies (such as lakes and rivers).

For instance, due to the persistent presence of waves, the minimum SAR backscatter

value is not low enough to be associated to an inland water body (which in general is

more stable in time). Experiments showed that open water is sometimes confused with

vegetation, due to similar mean backscatter values that are in common with the two

classes. Therefore, thanks to the GSHHG dataset, it is possible to prevent open water

from being classified, as it would represent a strong source of errors. In this way, only

water not farther than 300 m from the shores are involved in the classification procedure.

4.5 Automatic water cluster extraction

Being an unsupervised learning algorithm (i.e., there is no labelled data for clustering),

the k -Means model performs the division of objects into clusters that share similarities

(features). The nature, i.e., the associated land cover type, of each generated cluster is

not known in advance. In many previous works, once the clusters have been generated,

human intervention is needed in order to extract the cluster associated to the land cover

of interest, by photo-interpretation and experience. Of course, this approach strongly

lacks of automatism and is time consuming.
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In the proposed water mapping algorithm, once the four clusters have been extracted, a

simple yet effective method is applied to automatically select the one representing the

water class (procedure summarized in Figure 4.4). To this aim, the original water mask

derived from the CGLS land cover map is converted from raster to vectors (in order to

obtain a multi-polygon layer representing water boundaries in the MR map). Then, to

ensure the operations to be performed only inside the boundaries of the water class, a

negative buffer of 100 m is applied to the vectorized water mask; at this point, a frequency

histogram at 20 m scale is computed over the 4-cluster result, within the multi-polygon

boundaries. Since the frequency histogram shows frequencies for each cluster, i.e., how

many times each cluster occurs inside the vector layer in terms of number of pixels, we

assumed the cluster associated with highest frequency to be representative of the water

class. Such cluster is eventually extracted as the final high resolution water map.

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Main steps of the water cluster selection procedure: (a) shows the satellite
view of the example scene; the (b) CGLS map at 100 m resolution is loaded, and a
negatively buffered (100 m) multi-polygon layer (c) is generated. Then, a frequency
histogram is computed over the clustered result (d) inside the multi-polygon layer. The
most frequent cluster is then associated to the water class (e), and extracted as the

final HR water map (f).
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4.6 Post-processing of the clustering result

To increase the reliability of the water mapping algorithm, the final high-resolution wa-

ter map derived in the previous Section undergoes a few post-processing steps to get

rid of isolated pixels and residual false positive occurrences. As discussed in Section

4.2, a radiometric terrain correction pre-processing step was applied to the whole stack

of Sentinel-1 images in order to account for slope-induced backscatter differences, which

are mainly caused by hills and mountains due to the natural slanted acquisition geometry

of SAR systems.

Notwithstanding the great effectiveness of the radiometric terrain correction in redu-

cing the backscatter dependency to the terrain geometry, such approach represents a

simplified angular-based model and have some limitations which translate into residual

topographic effects. These effects are mainly related to the inaccuracy of the used DEM,

the assumption of homomorphism between map (geo-coded imagery) and radar geo-

metry, and the image geometry approximations [140]. Moreover, unlike the radiometric

terrain correction model chosen for this work, pixel-area-based slope correction models

- which account for actual topology between map and radar geometry - are proven to

be more accurate and suitable to address this issue [97]. However, such algorithms are

impractical to use within Google Earth Engine, since the area of the pixel should be

computed on-the-fly, causing long run-times and/or memory saturation issues.

Due to the residual topographic effects described above, false positive occurrences may

persist over steep-sloped regions. A simple slope masking proved to be enough to get rid

of the remaining false positives over these regions. To this aim, a steep-slope masking

using the ALOS World 3D - 30m (AW3D30 [159]) Digital Surface Model (DSM) from

the JAXA Earth Observation Research Center is applied. The ALOS DSM is a globe-

covering raster data set where each pixel represents height-above-sea level at 30 m spatial

resolution. To derive slopes from the elevation data, the local gradient is computed using

the 4-connected neighbors of each pixel. The resulting product was finally used to mask

out terrain pixels with slope greater than 8 degrees. To visually appreciate the effects of

such additional slope masking procedure, the reader is referred to Figure 4.5.

To further improve the final result, an “opening” morphological operation with a 3 × 3

kernel is applied to the above described slope-filtered result. The effect of the opening

operation is the removal of foreground (bright) pixels. Contrary to a simple erosion,
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(a) (b) (c)

Figure 4.5: Benefits of the slope filtering: (a) shows the satellite view of the scene,
while (b) and (c) show how false positive occurrences were removed, hence improving

classification results.

which may be too disrupting, the opening operation is defined by an erosion followed by

a dilation; therefore, at the cost of a slight loss of spatial details, the spatial resolution

is 30× 30 m2, while the posting of the final result is 10 m.

4.7 Results and discussion

The presented methodology for water body mapping was tested mainly over three (very

diverse) study sites to asses the robustness and reliability of the proposed methodology

in situations with very few common features. These regions, presented in Section 3.2,

are located in Siberia (tile 42WXS, Figure 3.4), northern Italy (tile 32TNR, Figure 3.5

and Amazonia (tile 21KUQ, Figure 3.2).

On these areas, multitemporal Sentinel-1 SAR data were used. It is worth noticing that

the incidence angle in Interferometric Wide Swath (IW) mode ranges from 29.1 to 46

degrees across the range direction; however, even if the incidence angle variation heavily

affects backscatter intensity, for water detection purposes such variation is not very

critical, thanks to the strong dominance of mirror reflection backscatter mechanism over

flat regions. Moreover, since the data has been subject to radiometric terrain correction,

incidence angle related effects are even more attenuated.

The year considered in this work is 2019 and 27, 60 and 31 IW VH-polarized SAR images

acquired over Siberia, Italy and Amazon, respectively, were considered for the analysis.

Note that the number of available images intersecting (even partially) the region is much

larger; however, only images overlapping at least 70% of one of the test areas were

considered.
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Figure 4.6 shows the final classification results at 10 m spatial resolution over tiny areas

inside the selected test regions compared with the CGLS map (100 m spatial resolution).

By visual comparison, it is clear that the water areas delineated in the medium resolution

maps are confirmed in the high resolution (HR) map extracted by the proposed approach.

Moreover, in the latter, water pixels inside very small water bodies and narrow river

branches are also extracted, while they are not visible in the other maps.

A more detailed, but still qualitative analysis is shown in Figure 4.7, where the analysis

is enlarged to compare samples of the extracted maps with the water layer of the Glob-

cover (300 m spatial resolution), the Copernicus Global Land Cover map (100 m spatial

resolution) and the JRC Global Surface Water Mapping Layer (30 m spatial resolution).

A visual comparison confirms that using the technique proposed in this thesis, a map

consistent with those available is obtained, with the potential to disclose more details

due to the finer spatial resolution.

Referring to Figure 4.7, from left to right, it is provided the visual comparison among

the water layer of the Globcover map (300 m spatial resolution), the Copernicus Global

Land Cover (CGLS) map (100 m), the JRC Global Surface Water Mapping Layer (30 m)

and the results of the proposed approach (10 m). The considered zoomed areas are loc-

ated in Amazonia (-22.728, -57.93142), Siberia (64.1333, 72.9079), Italy (45.161, 9.8607),

Italy (45.0084, 8.7647), Mexico (22.0452, -105.5576), Gabon (0.0923, 9.6849) and Italy

(45.4823, 12.5104). Background images are taken from the Google Satellite basemap and

the coordinates are expressed in decimal degrees (EPSG:4326, WGS 84; ellipsoidal 2D

CS; axes: latitude, longitude; orientations: north, east; UoM: degree).

4.7.1 Consistency analysis

To quantitatively prove the consistency between the new HR result of this work and the

existing maps, a random sample of the Globcover, Copernicus and JRC water maps was

extracted and compared with those of the generated 10 m water map. Specifically, up

to 1000 pixels for both the water and non-water classes were selected. The confusion

matrices for the study cases with respect to each compared data sets are shown in Table

4.2. Note that before sampling the reference maps, they were all up-sampled to 10 m and

eroded using a square kernel with radius of 50 m, in order to avoid pixels in transitional

areas.
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Figure 4.6: Qualitative results over very small areas inside the considered tiles. The
images on the left show samples from the 100 m spatial resolution water layer in the
CGLS map; the images on the right show instead the output of the proposed meth-
odology with a spatial resolution of 10 m in Siberia (top), Amazon (middle) and Italy
(bottom). In all the cases, water regions are colored in light blue and overlapped to the

Google Satellite basemap.
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Figure 4.7: From left to right, visual comparison among the water layer of the Glob-
cover, the Copernicus Global Land Cover (CGLS) map, the JRC Global Surface Water

Mapping Layer and the results of the proposed approach (10 m).
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Siberia Amazonia Italy

W NW W NW W NW

C
C

I W 805 194 205 84 840 160

NW 45 955 8 966 1 993
C

G
L
S W 881 119 922 78 952 48

NW 63 937 8 968 5 987

JR
C W 909 90 952 48 985 15

NW 54 946 4 979 5 992

Table 4.2: Confusion matrices for the three regions of interest, generated based on
test points collected from the three different reference maps: the CCI Globcover (300
m), the CGLS (100 m) and the JRC (30 m). “W” and “NW” stand for water and

non-water respectively.

From the confusion matrices, the producer accuracy for both the water (PAw) and non-

water (PAnw) classes and the overall accuracy (OA) values were computed as a way to

evaluate the consistency between the maps obtained by the proposed technique and the

reference maps. All the results are summarized in Table 4.3. Even if these results do not

provide a real validation, but only a comparison between the extracted water body maps

and the pre-existing and coarser resolution water maps, they are extremely promising

since, on average, the OA is around 96.2% when the best water map in terms of spatial

resolution, the JRC map, is adopted as reference.

4.8 Validation of the proposed method on the Lombardy

region

Since the analysis carried out in the previous section only provided a measure of con-

sistency between the obtained HR water maps and different MR water maps, the aim

of this section is to accurately validate the methodology developed in this thesis, and

provide a meaningful and reliable quantitative analysis of the final high resolution water

product. To do so, a validation procedure was carried out exploiting the ground truth

dataset available for the whole Lombardy region, located in northern Italy.
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Siberia Amazon Italy

C
C

I PAw 80.6 71 84
PAnw 95.5 99.2 99.4
OA 88 92.7 91.9

C
G

L
S PAw 88.1 92.2 95.2

PAnw 93.7 99.2 99.5
OA 91 95.6 97.3

JR
C

PAw 91 95.2 98.5
PAnw 94.6 99.6 99.5
OA 92.8 97.4 98.5

Table 4.3: Overall accuracy (OA), water producer accuracy (PAw) and non-water
producer accuracy (PAnw) for each study case using CCI Globcover (300 m), the CGLS
(100 m) and the JRC (30 m) map as references (all the values are in percentage [%])

Depicted in Figure 4.8, the region has an extent of 23863 km2 and is characterized by a

large number of water bodies with very different characteristics, such as big rivers with

their tributaries and narrow branches and numerous very large and small lakes of glacial

origin. Additionally, the morphology of the area is quite variable, from the main Po

valley to hilly and Alpine mountainous areas.

All the described characteristics of the Lombardy region were considered challenging

enough to test our methodology and provide an accurate validation analysis. Moreover,

the whole area is covered by official land use data, provided by the Regional Territorial

Information Infrastructure. In particular, we used the DUSAF (Destinazione d’Uso dei

Suoli Agricoli e Forestali - Agricultural and Forestry Land Use) catalog of year 2018, a

huge, detailed geographic database containing information on many different land cover

types [160]. In its latest version (DUSAF 6.0), a greater level of detail has been added

thanks to the exploitation of very-high spatial resolution SPOT6/7 satellite images (1

pixel = 1.5 m).

The DUSAF 6.0 land cover legend is structured according to 5 hierarchic levels: the first

three consist of the classes present in the Corine Land Cover project [161], while the

last two levels describe classes typical of the Lombardy region. The first level is in turn

divided in five “fundamental” classes and, among these, the “water bodies” class.

Since the DUSAF 6.0 reference dataset comes with a spatial resolution of 1.5 m, it

is necessary to make it compatible (in terms of map content) with the 10 m spatial
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Figure 4.8: The Lombardy region, northern Italy. Red solid line represents the
political boundaries of the region.

resolution of the extracted map. To this aim, a negative buffer on the vector data

representing the reference water bodies was applied. By doing so, Two typologies of

water bodies that cannot be detected by definition in Sentinel-1 SAR data were excluded

from the validation experiment to avoid any negative bias. The first set is composed of

very small water bodies with size less than one Sentinel-1 pixel, i.e. ∼100 m2. The

second set is composed of long and thin water bodies, such as very narrow river branches

with a width smaller than the spatial resolution of the SAR sensor.

Figure 4.9 provides a visual comparison between the considered validation set and the

map extracted in this work, generated by classifying nine 100×100 km2 tiles, which were

necessary to cover the whole region (namely, these tile are 32TMQ, 32TMR, 32TMS,

32TNQ, 32TNR, 32TNS, 32TPQ, 32TPR, 32TPS). Starting from the validation set, a

total of 20.000 points, equally distributed between water and non-water classes, were

collected. All these points were then used to sample the classification result, build a

confusion matrix and compute the producer, user and overall accuracy. Specifically, a

cross-validation was performed by repeating the procedure 10 times, changing the random
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locations of the validation samples in order to prove the precision of the classification

procedure.

The methodology was able to achieve, on average, an overall accuracy of 94.6%, with

a standard deviation of the order of 10−3, meaning that the OA is not affected by the

change of the location of the validation samples (thus, demonstrating the high precision

of the algorithm). The producer’s accuracy is, on average, 89.4% and 99.8% for water

and non-water classes, respectively.

To further assess the limits of the proposed classification procedure, examples of omission

occurrences for the water class were investigated. To this aim, a map highlighting all

the points over which the proposed method fails to extract water bodies was built. On

average, 9.3% of actual water class are not extracted by the proposed procedure. The

spatial distribution of these points was thus analyzed to better understand under which

conditions the extraction fails. From Figure 4.10 it is possible to observe the distribution

of omitted water points in the region after classification.

There are two notable cases. The first one is due to the complex terrain morphology:

Figure 4.11a shows an example in a lake whose boundaries are characterized by steep

and overhanging hilly banks. In such conditions, SAR images suffer from strong fore-

shortening and layover effects - the latter is dominant in this area. The second source

of omission errors, depicted in Figure 4.11b, is due to the presence of small and/or long

and thin water bodies. In this case, such bodies are not extracted or they are classified

as thin lines of pixels which tend to disappear when applying the final opening step that

was included to reduce false positives. Other cases of omission may also be represented

by thin rivers surrounded by vegetation laying upon them.

Overall, the developed water body monitoring and mapping methodology achieved very

good results and was also published on one of the top-of-the-line remote sensing Journals

[44].
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(a)

(b)

Figure 4.9: Visual comparison between (a) the validation set and (b) the extracted
water bodies map for the whole Lombardy region. Both sets are presented in blue,
whilst the red solid line represents the boundaries of the Lombardy region (the white
background allows to better highlight water bodies and the differences between the two

sets).
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Figure 4.10: Spatial distribution of omitted water points (black dots) for a specific
classification run. Red solid line represents the boundaries of the Lombardy region and
blue areas represent water bodies from the DUSAF 6.0 dataset. Black dashed boxes “a”
and “b” show examples of foreshortening/layover effects and morphological operation

issued, respectively (see Figure 4.11).

4.9 The ESA WorldWater Round Robin
2

During the development of the water body monitoring and mapping algorithm described

in the previous sections, we had the privilege to participate in a Round Robin organ-

ized by the European Space Agency (ESA). The “WorldWater” project3 was about a

Round Robin aiming at the inter-comparison of Earth Observation algorithms for sur-

face water detection, using free and open satellite data such as Sentinel-1, Sentinel-2 and

Landsat 8. The project was supported by several international organizations, includ-

ing CNES (Centre national d’études spatiales), NASA (National Aeronautics and Space
2this chapter is based on material published in the work: [162] Tottrup, Christian, et al. “Surface Wa-

ter Dynamics from Space: A Round Robin Intercomparison of Using Optical and SAR High-Resolution
Satellite Observations for Regional Surface Water Detection.” Remote Sensing 14.10 (2022): 2410.

3https://worldwater.earth/

https://worldwater.earth/
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(a) (b)

Figure 4.11: Spatial distribution of omitted water points for a specific classification
run. Case 1: foreshortening and layover; case 2: small water bodies not extracted or
canceled by morphological operations. Omission points lay on the background image
which is represented by the Google Maps layer (over which the boundaries of the Lom-

bardy region, in red, are superimposed).

Administration), EARSC (European Association of Remote Sensing Companies), CEOS

(Committee on Earth Observation Satellites) and GEO (Group on Earth Observations).

The main objectives of the Round Robin were to provide a better understanding of the

pros and the cons of EO-based approaches for monitoring and mapping inland water

bodies extent, compare different algorithms and identify shortfalls and areas of further

research. All the important outcomes of the Round Robin experience are available in

the published paper, referenced in [162].

The participants were asked to produce monthly maps of surface water presence at 10

m spatial resolution in 5 (very) different 100× 100 km2 sized test sites, for 2 consecutive

years (from July 2018 to June 2020), for a total of 120 water maps to be produced.

Moreover, participants were also allowed to use ancillary data sets under the condition

they were publicly available, such as DEMs and a priori surface water maps (e.g., the

Copernicus DEM and the JRC-GSWE). As shown in Figure 4.12 these sites are located

in Colombia, Gabon, Greenland, Mexico and Zambia.
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Figure 4.12: Overview of the WorldWater pilot Countries and test sites: Colombia,
Gabon, Greenland, Mexico and Zambia.

Following, a brief description of the test sites, in terms of their morphological character-

istics and water bodies variety:

1. Colombia (Figure 4.13a): this region is located in the central eastern part of

Colombia and is characterized by mountainous areas with complex river system

and intensive farmlands;

2. Gabon (Figure 4.13b): this site is located in Western Gabon and is characterized

by a lagoon system with numerous narrow rivers and lakes;

3. Greenland (Figure 4.13c): the Ice sheet test site is located at the ice sheet margin

in Southwestern Greenland and includes an extremely dense network of inland lakes

and supra glacial lakes;

4. Mexico (Figure 4.13d): located in central Mexico, this area is characterized by in

inland dry forest region, mixed with agricultural land;

5. Zambia (Figure 4.13e): this challenging test site represents a very complex region,

dominated by seasonally- or permanently-flooded grasslands.

The five test sites used for intercomparison represent very different conditions, which

can also be inferred by looking at multiannual water occurrence maps for the respective

test sites (see Figure 4.14). Site variability is, on the one hand, dictated by geographic
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(a) (b) (c)

(d) (e)

Figure 4.13: All the test sites used in the ESA WorldWater Round Robin.

location and, on the other hand, by surface water characteristics. The latter is clearly

shown in the water occurrence maps, which show the differences between test sites in

terms of size and type of water bodies, as well as the relative distribution of permanent

and seasonal water (Figure 4.14).

All the water detection models participating at the Round Robin were evaluated indi-

vidually and in cross-comparison using independent reference data collected from each

test site. As discussed in the introductory sections of this thesis, a fundamental premise

Figure 4.14: Overview of the WorldWater pilot Countries and test sites: Colombia,
Gabon, Greenland, Mexico and Zambia.



Inland water body monitoring and mapping 136

for sound scientific validation is to use reference data of higher quality than the product

to be validated. There are two ways to ensure higher quality in the reference data: the

first way is to use a reference dataset having better resolution with respect to the dataset

used for results production; whereas, the second approach aims at using a more accurate

measurement or interpretation than being used for results production.

In the case of this Round Robin validation, a two-step approach was followed:

1. Sample-based validation (i.e., pixel-based) and labelling using the production im-

agery (verification by higher method);

2. Object extraction accuracy (i.e., area-based) and using Very High Resolution (VHR)

PlanetScope data (3 m spatial resolution) as a reference (verification by higher

data).

The sample-based validation has the advantage of delivering reference data, which can be

directly matched (in space and time) to the validation input, whereas the PlanetScope

data offer the advantage of better capturing and, hence, better evaluation of smaller

and narrower water bodies and features. Still, the acquisition and interpretation of

PlanetScope data is costly, and their representation is therefore restricted in space and

time.

In a final step, the temporal consistency of the optical, SAR, and dual sensor-mapping

approaches were evaluated by comparing the total areal water extent mapped within

each test site and across the monthly time series. Each validation and evaluation step is

described in more detail in the two next sections.

4.9.1 Sample-based validation

Stratified random sampling was used to generate reference points over each 100 × 100

km2 test site and within three strata across the land–water continuum: permanent water,

seasonal water, and non-water.

The three strata were generated from the 30 m spatial resolution JRC-GSWE long-term

water occurrence and defined according to the following thresholds:

• Permanent water: > 90%
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• Seasonal water: > 0% and < 90%

• Non-water: = 0%

The aim was to have a minimum of 50 samples in each stratum, while using subsequent

sample size allocations to provide a proportional allocation of samples in better accord-

ance with the actual area of the different strata within each test site. In addition, the

expected variance within each stratum was also considered; i.e., the transitional strata

are expected to have the highest variance, and why it has a higher sample allocation.

In total, 7980 samples were allocated across the five test sites and assigned to be either

water or non-water by two independent and experienced interpreters using blind visual

interpretations of monthly Sentinel-1 and -2 composites. To harmonize and achieve con-

sistent reference labelling, a standard validation interface was used to ensure interpreters

were looking at same area and using the same reference data and the predefined set of

classes. In cases where the interpreters disagreed, a quality manager intervened to seek

consensus. If consensus could not be agreed upon, the sample was rejected. For each

sample we extracted, the respective water classifications and the final set of samples

were used to derive standard metrics for accuracy assessments, i.e., overall accuracy

(OA), producer accuracy (PA), and user accuracy (UA). For this analysis, all pixels in

the individual Round Robin classifications not classified as water were considered to

be non-water; i.e., the non-water class also included pixels being masked (e.g., due to

clouds).

4.9.2 Object extraction accuracy

In general, stratified sampling under-sample Small Water Bodies (SWB) due to the fact

that they represent only a tiny fraction of the total water area, even if the number of

such SWB is larger than the number of large water bodies. To deal with this issue, the

Round Robin validation team complemented the conventional stratification, sampling,

and confusion matrix-type accuracy assessments with an evaluation of object extraction

accuracy based on area-based accuracy metrics and the use of higher spatial resolution

but single date (i.e., time-limited) PlanetScope data [163]. The acquired data was Plan-

etScope Level 3B (Ortho Scene Product) at 3 m spatial resolution, with 4 spectral bands

(Red, Green, Blue and Near-Infrared). The PlanetScope data was acquired within the
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coverage of each of the test sites and for two areas of approximately 25 km2.

For each PlanetScope image, a supervised Gradient Boosting (lightGBM) algorithm [164]

was used to generate water masks using the convolution layers derived from spatial filter-

ing of Planet imagery as the explanatory variables and manually derived training samples

for water and land (i.e., non-water) as the response variable. At the end of the process,

all water masks were manually checked and corrected to ensure high quality. Once ana-

lyzed, the PlanetScope data was used to evaluate the object extraction accuracy of the

water classifications derived using Sentinel data.

The accuracy evaluation of object extraction is based on object matching, and the focus

is on two elements related to this concept: object matching and area-based accuracy

measures [165]. Referring to Equation (4.1) The main idea of object matching is to es-

timate the maximum overlap area by computing the coincidence degree, Amax, between

two objects:

Amax =
1

2

(
AC,i ∩AR,j

AC,i
+

AC,i ∩AR,j

AR,j

)
(4.1)

where AC,i is the area of the i-th evaluated object, AR,j is the area of the j -th reference

object and AC,i∩AR,j is the intersection area. Naturally, two objects (i.e., the evaluated

object and the candidate reference object) are considered a matching pair if the area of

the coincidence degree is maximum, i.e., Amax = 1.

The maximum overlap object matching is also complemented by three area-based accur-

acy measures: correctness, completeness and quality. Correctness (Acor) is defined as

the ratio of the correctly extracted area AC and the whole extracted area ADC ; whereas,

completeness (Acom) refers to the ratio of the correctly extracted area to the reference

area ARC .

Correctness and completeness range from 0 to 1; if AC completely corresponds to ADC

or ARC , then the value is 1. On the contrary, if there is no overlap between AC and ADC

or ARC then the value is 0. For instance a large ADC value leads to a small correct-

ness value, while a small ARC translates into a large completeness value. To deal with

this issue, in Equation (4.2) is defined the quality Aqual, which is designed to provide a

measure of quality by balancing correctness and completeness:

Aqual =
AC

ADC +ARC −AC
(4.2)
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Aqual can range from 0 to 1: if the water extraction results are the same as the reference

data, then Aqual = 1; on the contrary, if none of the extracted water area overlaps with

the reference water area, then Aqual = 0. The advantage of area-based accuracy measures

compared to the sample-based validation relates to the fact that the confusion matrix of

the latter depends on the total pixel number. In contrast, area-based accuracy measures

rely only on the evaluation, as reference objects are independent from the total number

of pixels.

4.9.3 Results and discussion

Figure 4.15 shows the classification results aggregated by input data type (multispectral,

SAR, multispectral+SAR). It is possible to observe that joint use of optical and SAR

data generally outperforms single sensor approaches.

For instance, in Colombia the joint use of optical and SAR sensors leaded to the best

results in terms of overall accuracy; however, SAR and optical models performed better

in terms of both user and producer accuracy. In Gabon, SAR-based algorithms worked

better than the other models in terms of overall accuracy, while optical-based models

performed better in Colombia and Zambia in terms of PA and UA, respectively. In

Mexico, OA and UA are almost the same among all the models, a part from a drop in

PA values for the optical data models, compared with the SAR and dual sensor models.

The observed differences in UA and PA are mainly related to the specific characteristics of

each site. For instance, the higher UA achieved in Gabon and Colombia using SAR data

provide an indication of the benefit of using SAR in cloudy regions. On the contrary, SAR

achieves lower UA in Zambia and Mexico due to commission errors caused by dry and

sandy surfaces. Also optical model faced limitation in these areas: in fact, it was noted

that sun glint in certain months caused erroneous cloud masking for certain processors,

hence contributing to lowering the PA for the optical-based models.

The Zambia site is dominated by the Kafue flats, an extensive wetland ecosystem subject

to variable flooding and with a sharp contrast to the surrounding drier landscape, where

fire is a major natural factor impacting the landscape. Such dynamic nature and many

confounding factors (e.g., fires and emergent vegetation) make Zambia a particularly

challenging site. Here, dual sensor approaches displayed their strongest potential in

balancing the individual strengths and weaknesses of optical and SAR data.
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In Greenland, the topography and light conditions are the main challenges. For optical

data, this translates into higher commission errors due to shading effects and low sun

angles. SAR-based models are better at dealing with these issues because it works

independent of sunlight; moreover, by using ascending and descending SAR scenes, the

part of the landscape that can be monitored is increased. Still, the influence of low-

backscatter areas (e.g., exposed river beds and in snow dominated landscapes) make

SAR-based models suffer from commission errors and lower PA.

Regarding the object extraction accuracy analysis, 3 m spatial resolution PlanetScope

water classification maps, depicted in Figure 4.16, were utilized. From Figure 4.17,

which summarizes the obtained results, it is possible to note that models that include

multispectral data perform better than those based on SAR data only. The lowest

overall accuracy was obtained in the Colombian site, where is also possible to observe

the difference between the best optical-based models and the best SAR-based models.

Moreover, the highest object extraction accuracy is achieved in Zambia, which (together

with Greenland) has the largest share of water bodies within the test sites. Figure 4.17

also shows that the optical data model outperforms SAR data models in all test sites,

except for Gabon (whereas, Greenland achieved similar results for single- and dual-sensor

based approaches).

Figure 4.15: Accuracy statistics from the WorldWater Round Robin test sites, indi-
vidually and overall, summarized by model input data type (OA = Overall Accuracy;

UA = User Accuracy; PA = Producer Accuracy).
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Figure 4.16: False colour PlanetScope QuickLooks and associated water classifications
for each test site used in the object-based validation approach.
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Figure 4.17: False colour PlanetScope QuickLooks and associated water classifications
for each test site used in the object-based validation approach.

Findings from the object extraction accuracy analysis indicate that using or integrating

optical data into the water detection algorithm is vital in order to achieve accurate water

object definitions. In Colombia, the average water body size/width is smaller compared

to other sites; for this reason, the difference between the optical-based algorithms and

SAR-based approaches is the largest. This is explained by the characteristics of the

input data, with key spectral water detection bands from Sentinel-2 available only in

10 m spatial resolution, while the true spatial resolution of Sentinel-1 is understood to

be closer to 20 m (with 10 m pixel spacing). There are also some differences between

the optical- and the SAR-based approaches in Mexico, which is likely caused by the

dry environment and a landscape dominated by large dry areas and sandy surfaces. In

contrast, the difference between optical and SAR is much less pronounced in Zambia and

Gabon; this may be likely related to the larger average size of the water bodies (Zambia)

and the dense tropical forest landscape causing a strong land–water contrast (Gabon).

Regarding the water mapping algorithm developed in this thesis (Chapter 4), the per-

formances of the proposed approach are extremely promising. The validation procedure

carried out in the framework of the WorldWater Round Robin provided evidence of the

scientific robustness of the developed methodology, which was proved to be one of the

best SAR-based models.



Inland water body monitoring and mapping 143

Results concerning the sample-based validation are reported in Table 4.4, whilst those ob-

tained by means of the object extraction accuracy are reported in Table 4.5. Comparison

between the proposed model (model “J”) and all the other Round Robin participants can

be accessed at https://www.mdpi.com/article/10.3390/rs14102410/s1.

Lastly, in Figure 4.18 examples of water body extraction over the five test site, to visually

appreciate the outcomes of the proposed algorithm, are reported.

4.9.4 Takeaway messages

The first very important lesson learnt during the Round Robin was that satellite-based

surface water monitoring systems are vital to supporting more evidence-based planning

and management of water resources, and to provide the ability of efficiently report and

PAw PAnw UAw UAnw OA

Zambia 88 95 82 97 93

Mexico 83 99 98 91 93

Colombia 76 98 87 95 94

Gabon 98 98 99 96 98

Greenland 89 88 91 86 89

Average 86.8 95.6 91.4 93 93.4

Table 4.4: Results from the ESA WorldWater project validation process. “w” and
“nw” stand for water and non-water respectively, whereas PA, UA and OA stand for
Producer Accuracy, User Accuracy and Overall Accuracy respectively (in percentage

[%]).

Amax Aqual OA

Zambia 0.73 0.55 0.40

Mexico 0.43 0.37 0.16

Colombia 0.19 0.11 0.02

Gabon 0.79 0.63 0.49

Greenland 0.75 0.55 0.41

Average 0.58 0.44 0.3

Table 4.5: Summary of object extraction accuracies. The accuracy metrics are max-
imum overlap area (Amax) and quality (Aqual) as a joint balanced measure of correctness
(Acor) and completeness (Acom). The overall score is the product between Amax and

Aqual.

https://www.mdpi.com/article/10.3390/rs14102410/s1
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Figure 4.18: Qualitative results for the five WorldWater Round Robin test sites:
Colombia (tile 18NYL), Gabon (tile 32MND), Greenland (tile 22WET), Mexico (tile
14QKH) and Zambia (35LNC). Background optical images are taken from the Google
Satellite basemap, except for the second column, which shows the annual mean VH
composite image for each tile of interest (the grey-scale composite is obtained by setting
-30 dB and 0 dB for minimum (black) and maximum (white) σ0 values respectively).
The scale bar is shown only once for full view of the tiles and for the detailed, zoomed

region.
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act in response to the global water agenda.

In the framework of the ESA WorldWater Round Robin, 14 different EO-based mod-

els for surface water monitoring and mapping were analyzed and evaluated. The whole

experience showed that single sensors models are able to produce very accurate and con-

sistent results under almost ideal conditions. On the other side, joint use of optical and

SAR data allows to achieve more accurate and consistent water maps.

The main outcomes of this exercise allow to bear several important perspectives for for-

mulating a new best practice where multispectral and SAR data are used in a synergistic

way in order to achieve the highest accuracy possible. However, even is accuracy is a

very critical and important factor for selecting a surface water detection approach, there

exist other important aspects, such as computational efficiency, simplicity and ease of

implementation; these aspects all contribute to increase understanding, maintainability

and scalability.

It has been shown that, for larger scales across diverse ecological gradients, synergistic

models are better; on the other hand, at the local scale SAR data is the preferred source

of data because they allow to effectively and promptly monitoring water extents during

natural events, such as floods during cloudy periods. Whereas, optical data alone is

preferred when the task is to monitor the status of reservoirs and small water bodies

during periods when clouds do not represent an issue.

For all these reasons, instead of claiming the “best” water detection model, it is recom-

mended more flexibility and options to build and/or adapt methods that are suitable for

individual user needs in terms of management goals, environmental settings and scale of

study.

To conclude, the Round Robin experience demonstrated that EO data and methods

for monitoring surface water dynamics are available and successfully applied in many

contexts all around the World.

4.10 Seasonal water body monitoring and mapping

This very brief section is devoted to the analysis of the capability of the proposed water

body monitoring and mapping algorithm to discriminate permanent water bodies from

temporary/seasonal ones. The objective of the methodology described at the beginning
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of Chapter 4 was to generate annual high resolution permanent water bodies maps over

a specific region of interest. In the case of annual maps, the multitemporal stack of

four “quarter composites” (see Section 4.3) was essential to characterize water bodies,

hence being able to separate this class from other classes which may represent sources

of confusion; this was possible thanks to the fact that such reduced SAR time series is

able to reconstruct the phenology of the different land cover types.

However, during the Round Robin described in Section 4.9, it was required to generate

monthly water maps for two consecutive years. Given this constraint, it was no longer

possible to take advantage of the quarter composites. To generate monthly water map,

the quarter composite was removed from the feature space, while the minimum, max-

imum, mean and variance features were kept.

During the experiments carried out within the Round Robin framework, this new setup

unlocked the possibility to generate maps of both permanent and temporary water bod-

ies, which represent a very important distinction for climate change scientists. Unfor-

tunately, it was not possible to develop this topic and go deep into it, as such activity

require much more effort and time, which cannot fit into the framework of the present

thesis. However, few preliminary results are presented, in order to show the potential of

the developed water mapping algorithm to discriminate permanent and temporary water

bodies.

First of all, it is necessary to define what is a permanent water body and a tempor-

ary/seasonal one. To this aim, referring to official definition from the FAO Land Cover

Classification System (LCCS)4, these two classes are defined as follows:

• Permanent water: Areas where open water covers at least 50% of the surface

and remains for more than 9 months a year, except in special circumstances (par-

ticularly dry year, construction of dams, etc.). Snow and/or ice and built-up areas

cover less than 50% of the surface. Water bodies can be natural or artificial. Water

can be saline, fresh or brackish;

• Seasonal water: Areas where open water covers at least 50% of the surface and

remains between 5 and 9 months a year, except in special circumstances (partic-

ularly dry year, construction of dams, etc.). Snow and/or ice and built-up areas
4https://www.fao.org/3/x0596e/x0596e00.htm

https://www.fao.org/3/x0596e/x0596e00.htm
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cover less than 50% of the surface. Water bodies can be natural or artificial. Water

can be saline, fresh or brackish.

Based on the above definitions, a modified water body methodology has been designed

Figure 4.19 shows the modified block scheme for seasonal water body mapping. The idea

of such procedure is to subdivide the entire, despeckled SAR time series into monthly

time series, ending up with N = 12 smaller SAR sequences made of all the available SAR

images within each single month for a specified year of interest. It is however important

to keep in mind that, for some regions in the World, it is not always possible to build

12 smaller sequences, due to coverage issues; for instance, experiments carried out in the

Siberia revealed the complete absence of SAR images in some months along the year.

Therefore, even if N = 12 is the ideal condition, in general N may be smaller.

From each of the N time series, four temporal composite images are then computed,

namely: the minimum, maximum, mean and variance composites. These temporal stat-

istics are then used as input features within a k -Means clusterer, which is instantiated

from scratch for each month. The only thing in common with all the instantiated classi-

fiers is the set of seed points, which is extracted from the CGLS map at 100 m resolution,

as per Section 4.4. At this point, each k -Means classifier generates a water map which

is represents the situation of water bodies for a specific month.

Then, as depicted in Figure 4.20, all the N generated maps (in the form of binary masks

where 0s and 1s represent non-water and water, respectively) are used to build a single,

annual water map where permanent and seasonal water bodies are separated. To this

aim, first the N water maps (each representing one month) are stacked considering N as

the temporal dimension. As mentioned above, N can range between 1 and 12, where 1 is

the worst possible case and 12 is the best one. Then, the number of water occurrences are

counted along the N -axis, for each single pixel, ending up with a map of per-pixel water

occurrences. In this map, each pixel is associated to a value n, where n ∈ [1, 12]. At

this point, each pixel of the previous result is divided by the total number N of monthly

maps, to obtain the amount of time water is present along the year on a per-pixel basis.

In this new result, each pixel p is associated to a number ( n
N ) which is used to label such

pixel as water or non-water, based on the following rules:

• If tinf ≤ n
N ≤ tsup then p → Seasonal;
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Figure 4.19: Scheme of the proposed seasonal water body mapping algorithm (which
is a variation of the original water body mapping model).

• If n
N > tsup then p → Permanent;

• If n
N < tinf then p → Non-water

Where tinf = 5
12 = 0.4167 and tsup =

9
12 = 0.75.

So, based on the FAO definition of permanent and seasonal water bodies, if a pixel is

labelled as “water” 11 times (not necessarily in a row) out of 12, then n
N = 11

12 = 0.9167 >

tsup = 0.75 (i.e., the pixel eventually labelled as permanent water body). In this way, it

is possible to assign to permanent/seasonal water class a pixel based on the percentage of

time such pixel is labelled as “water” in the monthly maps, given any number N of maps.

Of course, the lower the number of maps, the less reliable is the final permanent/seasonal

water map.
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Figure 4.20: Final stage of the permanent/seasonal water body mapping algorithm,
that aims at generating the final water map based on the frequency of water presence,

per pixel.

4.10.1 Example of permanent and seasonal water body mapping: the

Monte Cotugno reservoir

In this section, some preliminary qualitative results related to permanent/seasonal water

body mapping are presented. The area of interest, where experiments were carried

out, is located in the Potenza province, Basilicata region, South Italy. Specifically, the

algorithm was tested over the Monte Cotugno reservoir, the biggest clay dam in Europe

(Figure4.21).

Applying the algorithm depicted in Figure 4.19, 12 water maps were generated for year

2019. To visually appreciate the water maps extracted for each month, these were

grouped together in Figure 4.22. From this figure is possible to observe how the ex-

tent of the water body surface changes in time, from January to December 2019. In

particular, in is interesting to note that the surface extent decreases from August to

December, while it begins to increase from January.
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Figure 4.21: The Monte Cotugno reservoir in the Potenza province, Basilicata region,
South Italy.

Figure 4.22: The Monte Cotugno reservoir in the Potenza province, Basilicata region,
South Italy.
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All these maps are then used as input to the algorithm schematized in Figure 4.20, which

aims at producing the final, high-resolution permanent/seasonal water map reported in

Figure 4.23. The final map visually matches the expected behaviour of the reservoir:

the frequency of water pixels located in the South, North and on the West parts of the

reservoir is around 6-7 over 12. This means that all these pixels are labelled as “seasonal

water”.

Lastly, another interesting feature that can be exploited based on the described method-

ology, regards the possibility to generate vector layers that track, month by month, the

situation of the water body extent. Figure 4.24 shows an example of GIS layer useful to

analyse the annual trend at a glance.

Given all the obtained results, the developed methodology has demonstrated to posses

the potential to reliably generate water body maps, were permanent and seasonal water

type are distinguished. Future works on this topic will include the collection of ground

truth data, to quantitatively assess the proposed algorithm.

Figure 4.23: Final high resolution (10 m) permanent/seasonal water body map gen-
erated over the Monte Cotugno reservoir.
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Figure 4.24: Vector layer showing the extent of the analyzed water body for each
month (year of interest: 2019). Note that there are some false positive occurrences

around the reservoir, due to the absence of post-processing steps.



Chapter 5

Organic farming characterization1

In the present Chapter, the last topic of this thesis is presented and analyzed: the char-

acterization of organic farming practices using both spaceborne, multitemporal optical

and radar data.

The objective of organic farming is to produce food using natural substances and pro-

cesses, which ensure limited environmental impact and foster maintenance of biodiversity,

regional ecological balances, soil fertility, water quality etc. [169]. Rice is an interesting

example in relation with the European context in general and the Italian case in partic-

ular. Italy alone, indeed, accounts for about 53% in weight of the total European Union

(EU) rice production, and exports more than 45% in weight of its domestic output,

thus playing a primary role in the European rice market. Most of the Italian rice pro-

duction takes place in North-Western Italy, with the province of Pavia, providing alone

just above one third of the total domestic rice production thanks to its 82000 hectares

of rice paddy fields; the nearby Piedmont region contributes slightly less than half the
1this chapter is based on material published in the works:

• [49] Marzi, David, and Fabio Dell’Acqua. “Mapping European Rice Paddy Fields Using Yearly
Sequences of Spaceborne Radar Reflectivity: A Case Study in Italy.” Earth 2.3 (2021): 387-404.

• [166] Marzi, David, and Fabio Dell’Acqua. “An experiment on extended, satellite-based traceab-
ility of organic crops in North-Western Italy.” 2022 IEEE International Geoscience and Remote
Sensing Symposium IGARSS. IEEE, 2022.

• [167] Marzi, David, Cristian Garau, and Fabio Dell’Acqua. “Identification of rice fields in the
Lombardy region of Italy based on time series of Sentinel-1 data.” 2021 IEEE International
Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021.

• [168] Marzi, D., and F. Dell’Acqua. “Space-based monitoring of organic rice: The ESA KSA
project “Vialone” contributes to supporting an Italian high-tier product.” Proceedings of the
GTTI Radar and Remote Sensing Workshop. 2019.
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total. Other significant contributors include the Veneto, Emilia-Romagna, Sardinia and

Calabria regions. However, data from the Italian National Statistics Institute (ISTAT)

reports that, per each Italian citizen, traditional agriculture introduces on average into

the environment more than 70 kg of pesticides, weedicides and chemical fertilizers; the

situation is similar in other developed countries, and the need to change the approach

is becoming increasingly clear. Consumer awareness on health and environment impacts

of rice consumption [170] is indeed growing, and so the appeal of organic products. Al-

though the environmental effects of organic farming have not yet been explored to their

very end and some aspects are controversial [171], it surely generates a positive impact

through for example the ban on pesticides, that contributes to a cleaner environment.

On the downside, organic food is generally more expensive than traditional food due to

more costly production practices and lower yields [172], yet still accepted by the con-

sumer because of its features. Demanding, selective, environment-aware consumers are

available to pay far higher prices per unit in exchange for products that are supposedly

more healthy and more sustainable. Specifically in the case of rice, the organic product

can be sold at a unit price up to five times higher than traditional one.

In this framework, “fake organic” rice, i.e. traditional rice fraudulently declared and

sold as organic, represents a great, albeit illegal, revenue opportunity for unscrupulous

farmers. The astonishing speed of growth in the number of “green” farms is a factor

in suspicion arising about the veracity of some organic compliance statements. These

episodes may dent the appeal of the “organic” label to the consumer, thus damaging the

vast majority of genuine organic producers.

Increasing public awareness about the problem calls for not only legal, but also tech-

nological countermeasures. This may include monitoring from space of the reportedly

organic fields to expose possible lack of compliance that may have been missed by the

field surveys of certifying authorities. These latter cannot be pervasive, and thus may

happen to leave blind spots. In space-based observation, temporal and spatial resolutions

make it virtually impossible to directly detect from space a single forbidden operation

the very moment it is carried out, like e.g. rolling a tractor to spread weed-killer sub-

stances. Still, a number of parameters exist that are visible from space and can provide

significant clues about possible non-compliance.

In Chapter 2 (Section 2.3), an overview of the methodologies that can be useful to

characterize crop management using satellite data was given. More importantly, the fact



Organic farming characterization 155

that no previous studies on monitoring of organic farming practices have been carried out

was highlighted. Despite this, the technical literature on conventional crop monitoring

and mapping using satellite data provided us with the tools that may be successfully

exploited for organic crop monitoring purposes.

In this Chapter, three main topics are discussed:

1. Detection of weed-killer activities by analyzing their short/long-term effects on

crops using optical data;

2. Assessment of the type of tillage technique using SAR data.

3. Detection of fertilization operations using optical data;

The first two topics were developed within the framework of the Italian Space Agency

(AS) “MultiBigSARData” project (Section 5.1), while the last one was carried out within

the Joint Research Centre (JRC) “Geospatial Intellicence Against Nitrate Pollution”

(GEOINT) project (Section 5.4.1).

5.1 The Italian Space Agency (ASI) “MultiBigSARData”

project

The “MultiBigSARData” project is part of a very important methodological framework,

i.e., the field of research dedicated to the use of time sequences of SAR data for the

characterization of phenomena with both high spatial and temporal resolution. The

project aims, in fact, at obtaining a multifrequency, multitemporal and multiresolution

description of the same phenomenon using a combination of L- C- and X-band SAR data.

Thanks to the combination in three different directions of spectral resolution (w.r.t. the

wavelength), spatial resolution (w.r.t. the dimension) and temporal resolution (w.r.t.

the acquisition frequency), it is possible to extract information regarding events that

cover different temporal and spatial scales, and which have different features in the given

frequencies.

The aim of this project is to identify, adapt and develop methodologies that best combine

with respect to the time, spatial and spectral axes the data acquired from different

sensors, thus allowing to exploit all their potential in a synergistic way. This project has
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the potential to significantly impact many different areas. For instance, in the field of

urban remote sensing, the use of data from multiple sensors allows to promptly identify

any change due to the construction or even the redevelopment (change of scope) of

a building, a neighborhood or a urban environment. In case of cropland monitoring,

the use of multifrequency data may improve the identification of different scattering

mechanisms which are related to the geometric characteristics of the crops, but also to

their health status. Also target detection algorithms may benefit from the joint use of

multisource SAR data, as the use of different satellites - that make the whole SAR time

series denser - allow to better identify events that can be caught only in a specific time

window. Finally, regarding the control of the environment in terms of risk management

and defence, the possibility of combining information from different times and from

different sources is essential at the decision level. Similarly, even land cover and land use

classification methodologies can benefit from the use of multifrequency, multitemporal

and multiresolution data.

To summarize, the “MultiBigSARData” serves a triple purpose:

• Implementation of a procedure for the appropriate combination of multisensor SAR

data in a single sequence, aimed at enriching multitemporal sequences acquired in

the same band with different spatial resolution, or in different bands with same

spatial resolution;

• Implementation of procedures to analyze multisensor SAR data at different fre-

quencies in order to obtain from the overall sequence useful temporal information

for the characterization of a particular event, in terms of its changes in time and

of its bio-physical characteristics;

• Implementation of a procedure for the joint classification of multifrequency and

multiresolution SAR data for the characterization of phenomena in which the ana-

lysis at different wavelengths and/or polarizations is more important than revisit

time, due to the nature of the event itself.

Within the framework of this project, the present thesis focussed on the characterization

of crop fields, specifically, on organic crops, with the support of optical data.
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5.2 Detection of weed-killer activities using optical data

In this Section, the capabilities of Sentinel-2 multispectral data to detect weed-control

chemical treatments on crops are explored. Together with many other organic-related

parameters, these treatments represent a key aspect from an organic certification point

of view; in fact, weed control involve chemical products in conventional rice fields, an

approach which is forbidden in organic farming practices. Hence, these assessments are

extremely significant in verifying whether the previously declared organic cultivation was

factual or less so.

5.2.1 Space-based monitoring of organic compliance on rice

Earth observation satellite technology enables collection of data on crop fields and con-

sequent generation of information that may be profitably integrated into the process of

checking organic compliance. The same pool of information can also be used to expand

traceability information on organic products.

As mentioned in Chapter 2, Section 2.3.2, several aspects of organic rice cultivation that

may be monitored and assessed from space were identified and are here briefly recalled.

A first, important technical detail regards the sequence of crops; in a 4- to 5-year cycle,

the practice of organic rice cultivation is characterized by the so-called “crop rotation”,

which is mandatory for qualifying the cultivation practice as organic. When rice cultiva-

tion is paused, the field must be sowed with other crops that help implementing natural

weed management and maintaining soil fertility [173], or kept fallow when it does not

make agronomic or economic sense to seed other crops as is sometimes the case in some

farms in northern Italy. In order to assess such practice, classification algorithms can be

used, based on either supervised or unsupervised techniques.

Examples of classification algorithms include statistical decision trees like in [174], where

the capabilities of Google Earth Engine (GEE) cloud platform for large scale crop map-

ping using Landsat-8 optical imagery are investigated, comparing the proposed decision

trees with other reference methods on a standard agricultural benchmark dataset in

Ukraine; random forests like in [175], where parameter tuning is also discussed, or in

[176], where large-scale mapping is addressed with the connected big data issues; un-

mixing algorithms like in [177], where a parametric mixture model is proposed to de-

scribe satellite data monitoring crop development in the US Corn Belt; crop growth
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models like in [178] where both spaceborne multispectral and radar data are ingested

by a suitable model that accurately predicts cash crop yields for insurance purposes;

finally, machine learning techniques were also proposed as in [179] where a multilevel DL

architecture is presented, targeting land cover and crop type classification from multi-

temporal, multisource satellite imagery. Another key aspect subject to monitoring from

space, and representing a major challenge in organic paddy field management, is weed

control [180]. This latter can be achieved using different field management techniques

strictly related with water management, which include false seeding, weeder harrowing,

green mulching, transplanting, manual cleaning.

A third fundamental aspect differentiating organic production from non-organic one is

water management. This is about planning inflow and drainage of water from the paddy

field chamber, and consequently about monitoring water level in the field. From a tech-

nical point of view, it is not possible to reliably detect water depth from satellite, still, it

is possible to determine the moment in time when the inflow and outflow of water takes

place; it has been indeed demonstrated in literature [181]) that flood water in the field

can be detected even from optical satellites.

Since the management of water is strictly correlated to the specific agronomic technique

used, this assessment is extremely significant in verifying whether the previously declared

organic technique was actually implemented or not. This aspect can be successfully as-

sessed by exploiting radar data. In fact, monitoring of water is reliable and effective

using space-borne radar data [44, 182, 183]); moreover, radar signals are insensitive to

weather conditions and can therefore provide data in cloudy conditions as well [184].

5.2.2 Study area

As mentioned in the previous Section, collaboration with local farmers in the Pavia

and Vercelli areas, northern Italy, granted us the composition of an interesting pool of

ground truth (GT) information for year 2018. Specifically identified rice paddy fields were

translated into GIS polygons reflecting the boundaries of each field. Then, as depicted

in the block diagram of Figure 5.1, the polygons were used for isolating responses from

each single field, spatially averaging them within each polygon and composing the related

NDVI time series for each field. The NDVI spectral index, whose value can range from

-1 to 1, is computed based on red (RED) and near-infrared (NIR) bands, according to

Equation (5.1).
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Figure 5.1: Scheme of the NDVI time series extraction procedure.

NDV I =
NIR−RED

NIR+RED
(5.1)

The operation of building GT information leveraged legitimate weed control and fertiliz-

ation activities in conventional rice fields, as the focus of our research is to assess whether

such operations are detectable from space. For obvious reasons, building a statistically

significant sample of “fake” organic rice fields is tricky; however, one can take advantage

of legitimate weed control and fertilization activities in conventional rice fields, as the

objective is to assess whether they are detectable from space.

In particular, the goal of the analysis described in this Section is to determine the ability

of Copernicus’ Sentinel-2 satellites to spot out the effects of weed-management chemical

products on rice crops.

The GT dataset is composed of 14 rice paddy fields with sizes varying between 0.9 ha and

8 ha, with an average of about 3.9 ha, and covering a total area of roughly 58 ha. Each

field was labelled with a conventional name, reported together with additional details

in Table 5.1; the related GIS polygons are represented in Fig. 5.2. It is important to

keep in mind that weeding dates are not systematically recorded in the farm operations

log. Hence, such dates can only be estimated based on the sowing date, which is instead

recorded in writing.

Starting from the GT information, we clustered all fields into three groups based on the

sowed rice variety, thus generating the S.Andrea, Luna CL and Sole clusters. Clustering

helps carrying out a more focussed analysis, as each variety has its own features and may

lead to different temporal trajectories. For example, both Sole and Luna are somehow

precocious, but Luna can be sowed a bit later and with a slightly lower density. S. Andrea

is sowed even later, and the plant is somehow taller. These different features are expected



Organic farming characterization 160

Figure 5.2: Ground truth (GT) polygons representing conventional rice fields.

Field ID Lat., Long. Rice
var.

Type of
sowing Sowing Weeding

Essiccatoio 45.215, 8.982 SA Water 15/5 12/6
Triangolo 45.213, 8.981 SA Water 15/5 12/6
Platani 45.212, 8.983 SA Water 15/5 12/6
Bandi 45.213, 8.988 SA Dry 11/5 11/6, 15/6

Baccanino 45.223, 8.967 LCL Water 21/5 14/6, 9/7
Cabina 45.225, 8.968 LCL Water 21/5 14/6, 10/7
Baccano 45.224, 8.970 LCL Water 21/5 14/6, 10/7
Vigna 45.223, 8.973 LCL Water 21/5 14/6, 10/7

Prosoni 45.225, 8.975 LCL Dry 19/5 22/5, 11/6, 14/6, 10/7
Cerine 45.226, 8.975 LCL Water 24/5 14/6, 10/7
Orti 45.218, 8.984 SO Dry 17/5 21/5, 11/6, 16/6, 13/7

Marcite 45.213, 8.984 SO Water 17/5 15/6, 12/7
Pasquale 1 45.225, 8.982 SO Water 24/5 14/6, 12/7
Pasquale 2 45.224, 8.984 SO Dry 17/5 21/5, 11/6, 14/6, 12/7

Table 5.1: Rice fields and corresponding geo-location, sowed variety (SA = S. Andrea,
LCL = Luna CL, SO = Sole), type of sowing (dry-seeding or water sowing), sowing

date and weeding dates. Geographic coordinates are expressed in decimal degrees.
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to impact on their appearance in satellite data. NDVI time series were generated on each

field by averaging per-pixel NDVI values within the boundaries of the field. In order to

give the reader an idea of the magnitudes involved, we computed some statistics over

the NDVI values of individual fields at two representative dates, i.e. 15th August 2018

(Summer statistics) and 11th November 2018 (Winter statistics). In Summer, single-field

averages range between 0.775 and 0.880, with single-pixel values spread from 0.412 to

0.895. Standard deviations among pixels in individual fields range between 0.012 and

0.068 with an average of 0.03, which suggests a good degree of homogeneity despite a

few outliers in single-pixel values. Relative Standard Error (RSE) values range between

0.261 and 1.555%, with an average of 0.704%. Although shifted to generally lower values,

Winter statistic show similar trends. Single-field averages range between 0.1 and 0.233,

with single-pixel values ranging from 0.014 to 0.397. Standard deviations among pixels

in individual fields range between 0.021 and 0.091 with an average of 0.039, i.e. slightly

less homogeneous than summer, but still stable. RSE values range between 1.877 and

11.609%, with an average of 4.638%, reflecting the decrease in homogeneity with respect

to summer. All these statistics were summarized in Table 5.2.

The stability of values across the fields, especially in summertime, hints that the analysis

described in the next chapter rests on a statistically robust sample.

5.2.3 Sentinel-2 multispectral data

This constellation was chosen, among many others, because it offers a very welcome open

policy on its data, while at the same time featuring spatial and temporal resolutions that

are fine enough for our purposes [185, 186].

Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mission supporting

Copernicus Land Monitoring studies, including the monitoring of crops. In this work,

Single-field
mean

Single-pixel
values

Std. dev.
of

single-pixel
values

Mean
single-pixel
std. dev.

Relative
std. err.

Average
relative std.

err.

Summer 0.775-0.88 0.412-0.895 0.012-0.68 0.03 0.261-1.555 0.704

Winter 0.1-0.233 0.014-0.397 0.021-0.091 0.039 1.887-11.609 4.638

Table 5.2: NDVI values statistics of the individual fields at two representative dates.
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Level-1C processed Sentinel-2 images were used, each containing 13 spectral bands rep-

resenting Top-Of-Atmosphere (TOA) reflectance. In addition to this set of bands, three

useful bands containing cloud masks (QA10, QA20 and QA60) are provided.

Regarding data level, atmospheric-corrected L2A data offers better accuracy than L1C

data in reflectance estimation, which is important in the agricultural context for ex-

ample for interpretation of growth patterns and evapo-transpiration monitoring [187].

After weighing the pros and cons, we still preferred to use level-1C data, for a num-

ber of reasons. The investigation does not focus on estimated reflectance but rather

on NDVI, which is more robust to (moderate) atmospheric bias thanks to its inherent

normalization process. Each Level-1C product is composed of a “tile”, i.e. a 100 × 100

km2 ortho-image in UTM/WGS84 projection, containing pixels conveying Top Of At-

mosphere (TOA) reflectance values on the 13 bands of Sentinel-2 MSI, and results from

the following pre-processing steps:

• Projection of the image in cartographic geometry by using a Digital Elevation

Model (DEM);

• Per-pixel conversion from radiance to Top Of Atmosphere (TOA) reflectance values;

• Image resampling to 10, 20 and 60 m depending on the resolution of the spectral

bands;

Details on Sentinel-2 multispectral instrument (MSI) are provided in Table 5.3. As

mentioned above, the NDVI index is computed based on red and near-infrared bands

which, in the case of Sentinel-2 data, translates into band 4 (B4) and band 8 (B8)

respectively. At 664.5nm (for S-2A) / 665nm (for S-2B), indeed, B4 fits best the definition

of “red band”, and at 835.1nm (S-2A) / 833nm (S-2B) B8 fits best the definition of

“infrared band” required for NDVI computation. Both bands come at a spatial resolution

of 10 m, hence the resulting NDVI map is generated at such resolution.

5.2.4 Results and discussion

Chemical products are usually leveraged for weed control and fertilization purposes in

conventional rice cultivation as they afford increased crop yields, albeit at a cost to the

environment. Unlike for conventional rice cultivation, such products in organic farming
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Band Description Resolution Wavelength

B1 Aerosols 60 m 443.9 nm (S2A) / 442.3 nm (S2B)
B2 Blue 10 m 496.6nm (S2A) / 492.1nm (S2B)
B3 Green 10 m 560nm (S2A) / 559nm (S2B)
B4 Red 10 m 664.5nm (S2A) / 665nm (S2B)
B5 Red Edge 1 20 m 703.9nm (S2A) / 703.8nm (S2B)
B6 Red Edge 2 20 m 740.2nm (S2A) / 739.1nm (S2B)
B7 Red Edge 3 20 m 782.5nm (S2A) / 779.7nm (S2B)
B8 NIR 10 m 835.1nm (S2A) / 833nm (S2B)

B8A Red Edge 4 20 m 864.8nm (S2A) / 864nm (S2B)
B9 Water vapor 60 m 945nm (S2A) / 943.2nm (S2B)
B10 Cirrus 60 m 1373.5nm (S2A) / 1376.9nm (S2B)
B11 SWIR 1 20 m 1613.7nm (S2A) / 1610.4nm (S2B)
B12 SWIR 2 20 m 2202.4nm (S2A) / 2185.7nm (S2B

QA10 Always empty 10 m
QA20 Always empty 20 m
QA60 Cloud mask 60 m

Table 5.3: Spectral bands for the Sentinel-2 sensors (S2A & S2B).

are forbidden. We investigated whether such use could be revealed through the analysis

of NDVI time series acquired over the previously mentioned study sites. For completeness

of information, it is worth mentioning that Sole and Luna fields employed the Clearfield

([188]) weeding technology, whereas S.Andrea fields were treated with selective herbi-

cides. For more details about common weeding practices, see also [189].

Yellowing of weeds consequent to weedkiller application is expected to shift the observed

spectral mix away from the high values of NDVI that characterize vegetation. The re-

search question is whether a minority of yellowing weeds mixed with a majority of healthy

rice plants on a visible water/mud background is sufficient to push the NDVI value off

the range of random variations due to measurement errors.

In trying to answer this question, we first split the GT into separate clusters, each con-

taining one variety. Fields containing the same variety were subject to farming operations

on the same dates, so each cluster is composed of homogeneous samples in this respect.

Starting from the S.Andrea cluster, in Figure 5.3 the NDVI series for the three fields are

reported. It is clearly noticeable a plunge in the mean value of the NDVI in all fields

after the application of chemical products for weed management (yellow vertical line).

The next measurements were made by Sentinel-2 on 16th Jun, 21st Jun and 26th Jun,

i.e., after 4, 9 and 14 days respectively from the weeding date (12th Jun). Visible effects
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of the applied weedkiller usually emerge 10 to 20 days after its application; the observed

decrease in NDVI matches this time frame, suggesting that the effects do visibly reflect

into the NDVI trend.

Proceeding with our analysis, we considered the second cluster of rice fields where the

Luna CL variety was sowed. The NDVI time series of the six fields are reported in

Figure 5.4. Even in this case, we can observe very interesting behaviours. On 14th Jun

all fields underwent a weeding treatment; in the following, a similar trend to to the cases

of Figure 5.3 is observed, consisting of an analogous plunge in the sequence of mean

NDVI values. Not all fields, however, responded with the same pattern. In particular,

for fields Baccanino, Baccano and Vigna we can observe a slump in the NDVI values

seven days after the treatment of the 14th Jun; a second drop is observed between 26th

Jun and 1st Jul (12 and 17 days after treatment respectively). Between the two dates

where decreases in NDVI values were recorded (i.e., between 21st Jun and 26th Jun)

we can note an increase which, apparently, conflicts with the considerations previously

made for the first cluster of fields. It is however important to remember that the natural

growth cycle of rice results into a strong, positive contribute to NDVI; weedkillers are

becoming increasingly selective, and they do not affect rice vigour significantly anymore.

This particular cluster of rice fields also represents a controversial study case generated

by the lack of information. As discussed at the beginning of this chapter, suppression of

cloudy pixels resulted into unevenly spaced time sequences; relevant loss of information

Figure 5.3: NDVI time series of all fields sowed with the S. Andrea rice variety.
Coloured vertical lines mark the dates where major agricultural operations were carried

out.
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Figure 5.4: NDVI time series of all fields sowed with the Luna CL rice variety.
Coloured vertical lines mark the dates where major agricultural operations were carried

out.

was witnessed between July and August 2018 due to frequent cloud coverage. In Figure

5.4, this issue impacts on the second weeding activity (10th Jul), where the time series

presents a gap of 20 days between 6th Jul and 26th Jul due to three cloudy scenes (11th,

16th and 21st Jul) in a row. Such lack of data makes it impossible to draw consistent

conclusions regarding possible variations of the NDVI time series caused by the use of

chemical products on the 10th of July.

Another interesting aspect of Figure 5.4 is represented by the Prosoni field. This rice

field is the only one receiving an additional chemical treatment significantly in advance

of all the others (vertical pink line on 22nd May). The NDVI mean value decreased

between 12nd May and 1st Jun only on this rice field, confirming that a temporary

inversion of trend is a good indicator of a weeding treatment, including at an early

stage. Moreover, the Prosoni NDVI curve remains consistently below the other curves.

A reasonable interpretation is if a rice field is treated with weedkillers immediately after

the sowing date, the growth of the invasive plants’ sprouts is stopped, and the positive

NDVI contribution of weeds is consistently missing or reduced on the rest of the sequence.

In fact, the plunge consequent to the weeding on 14th Jun is lower on Prosoni than on

any other field. Another possible factor is the direct effect of the treatment on the rice

status.

The last analysed cluster is the one sowed with Sole variety. The NDVI time series for

each rice field in the cluster are reported in Figure 5.5. Also in this case it is possible

to observe trends similar to all previous cases. Weeding treatments were applied on 21st



Organic farming characterization 166

May only on fields Orti and Pasquale_2 (red vertical line in Figure 5.5); whereas, the

next treatments were applied between 11 Jun and 16 Jun (first yellow vertical line) and

between 12nd Jul and 13rd Jul (second yellow vertical line) on all fields in the cluster.

Once more it is possible to observe a fall of the NDVI value only for fields Orti and

Pasquale_2, while for Pasquale_1 and Marcite the value is respectively almost constant

(due to sowing on 24th May) and slightly increased (due to sowing on 17th May). An

interesting consequence related to the two latter fields is highlighted after the second,

common weeding period (11th Jun to 16th Jun). We can in fact observe that both

Pasquale_1 and Marcite NDVI values rapidly decrease after weedkiller application on

mid June, due to the decay of greater amounts of weeds in the rice fields; this is not

observed in Orti and Pasquale_2 where the first weeding carried out on 21 May had

hampered the development of weeds.

Finally, after the second weedkiller application between 12th and 13th Jul, the situation is

similar to the second Cluster (“Luna CL” rice variety of Figure 5.4). The frequent cloud

coverage in July 2018 prevents observation of the relevant tract of NDVI trend, and we

can only guess that the small increase between the last acquisition before weeding, and

the first after it, is due to rice.

To add some quantitative data, an evaluation of the cases in Figure 5.5 led to the following

results. The average increase of NDVI from emergence to maturity is 0.0875 per month,

with a standard deviation of 0.025. Assuming a Gaussian distribution of values, this

means that 99% of times the average increase per month lies between 0.1625 and 0.0125

(µ± 3σ) per month. The average plunge of NDVI after a weeding operation is -0.05, far

Figure 5.5: NDVI time series of all fields sowed with the Sole rice variety. Coloured
vertical lines mark the dates where major agricultural operations were carried out.
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below the µ−3σ limit. This suggests the event is detectable by a thresholding operation

on each incremental value for a single field.

This work investigates possible methods for satellite-based monitoring of organic crops to

enhance their traceability information, with special regards to supporting organic com-

pliance claims. Based on this first analysis carried out on multispectral data alone for

a cluster of rice paddy fields in Northern Italy, it is possible to conclude that weeding

operations can be detected, as they result in significant deviations from the typical bell-

shaped trajectory of the NDVI time series observed on rice fields.

Naturally, an organic field is a very complex system, whose management and monitoring

cannot be effectively carried out relying on satellite data alone, even when a multitude

of sources are available and frequent revisiting is offered [190]. Organic cultivation in-

volves intricate management strategies and smart handling of contingencies, that may

not be reduced to a single, pre-determined model. Human-in-the-loop techniques may

help in effective collection of data, especially if organized in a large-scale service under

the Copernicus hat [191]. Direct interaction with the managing farmer is still necessary

to understand the multifaceted aspects of organic management as it applies to the spe-

cific, considered fields.

Notwithstanding the complexity of the problem, it has been demonstrated that space-

borne Earth observation has a potential to provide independent support to organic cultiv-

ation claims for rice paddy fields. This work is the first in a series, which will investigate

visibility of organic compliance from space using different types of remotely sensed data,

including radar and passive microwave sensing.

5.3 Tillage assessment using SAR data

In this section is devoted to the presentation of preliminary results towards assessing the

type of tillage applied to a cropland, again in the framework of space-based collection

of extended traceability information for organic agricultural products. As mentioned in

Chapter 2 (Section 2.3.2), a very important aspect that characterizes organic farming

is the type of used tillage technique. As a matter of fact, tillage can be performed

mainly in two ways, resulting in diverse impacts on soil properties, hence, on SAR

backscattered signals; the typical tillage technique used in conventional farming relies

on the overturning of big clods, which causes relatively strong backscatter signals due
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to volumetric scattering mechanisms. Whereas, in organic farming, the preferred tillage

technique is known as “minimum tillage”; in this case, stubble burial and overturning

of clods is minimized, hence, the registered SAR backscatter signal is weaker than the

previous case, as the volumetric backscatter mechanism is less dominant.

The approach described in this section relies on the link between tillage practice and

the resulting level of surface roughness after processing. Minimal tillage induces low

levels of roughness, whereas ploughing causes significant roughness, partly mitigated by

subsequent harrowing but still significantly higher that for minimal or mild tillage. The

typically high sensitivity of radar backscatter to surface roughness of the observed target

closes the link with satellite data. To turn this link into an actionable algorithm, a

suitable model connecting radar response to surface roughness has to be selected.

5.3.1 Backscattering models

Being related to the acquisition geometry of the SAR system, incidence angle, polar-

ization and wavelength directly affect SAR signals and measurements. However, even

the target strongly affects the signal; in fact, all the parameters which are related with

the target properties, such as conductivity, water content and geometric characteristics

interact with the impinging electromagnetic wave.

In the literature there exist several models that link the measured SAR signal to soil

(the target) parameters. These backscattering models can be grouped in three main

categories:

• Physical backscattering models;

• Empirical backscattering models;

• Semi-empirical backscattering models.

With respect to the latter two models, physical models provide the most complete and

accurate description of the relationship between SAR measurements and target paramet-

ers. However, such models are often very complex and difficult to use. For this reason,

generally empirical and semi-empirical backscattering models are preferred.

One of the most widely used physical models is the so-called “Integral Equation Model”

(IEM) [192]. This model provides the most complete description of the relationship
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between the backscattered radar signal, sensor parameters (angle of incidence, polariza-

tion, frequency, etc.) and soil-related parameters (dielectric constant, correlation length,

standard deviation of surface height, etc.). In general, soil parameters provide an “index

of roughness” that allows to evaluate the level of roughness of the soil. The IEM can be

in fact used to simulate backscattering values on bare soils and, therefore, its use is suit-

able in case of agricultural fields before the emergence of sprouts (which is the condition

when tillage is applied). The IEM model describes the backscattered SAR signal σ0
pq as

the sum of two terms: a partial signal generated by single reflection (σS
pq) and a second

partial signal generated by multiple reflections (σM
pq ), as shown in Equation (5.2).

σ0
pq = σS

pq + σM
pq (5.2)

Referring to Equation (5.2), p is the “transmitting” polarization (either vertical V or

horizontal H), while q is the “receiving” one (either vertical V or horizontal H). Since most

of the natural surfaces are characterized by fairly low roughness values, the fundamental

hypothesis of the IEM model is that the whole σ0
pq is determined only by the single-

reflection component σS
pq. Under this condition, the expression describing the relationship

between the backscattering signal, sensor and ground parameters is as follows (Equation

(5.3)):

σ0
pq =

k2

2
e−2k2zs

2
∞∑
n=1

s2n
∣∣Inpq∣∣2 W (n)(−2kx, 0)

n!
(5.3)

where kz = k cos θ, kx = k sin θ (with θ incidence angle), k is the wave number defined

as k = 2π
λ and s is the standard deviation of the surface roughness height. The term Inpq

is function of the incidence angle, the soil dielectric constant and the Fresnel reflection

coefficient, while W (n)(−2kx, 0) is the Fourier transform of the n-th power of the surface

auto-correlation function (which may be described by a Gaussian or exponential function,

based on the type of soil).

Since the backscatter coefficient is given (i.e., we have the measurement done by the radar

satellite), the IEM model is inverted to extract the needed soil parameters. However,

this inversion is very difficult, due to the its complexity and the high number of soil

variables that have to be known or hypothesized.
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An empirical model which is based on the IEM is the Oh model [193]. This model was

generated based on a very large dataset made of a wide variety of soils with different

dielectric constant values and roughness levels. Specifically, the Oh model analyzes the

interaction between the so-called “cross-polarized” ratio, defined as q =
σ0
HV

σ0
V V

, and soil

parameters (and also acquisition geometry parameters). The authors showed the very

low sensitivity of the model in terms of water content of the soil, while, on the other

hand, the ratio q was found to be very sensitive to the roughness of those types of

soil, regardless of their water content. The mathematical expression of the Oh model is

reported in Equation (5.4):

q =
σ0
HV

σ0
V V

= 0.23
√
Γ0

[
1− e−ks

]
with Γ0 =

∣∣∣∣1−√
ϵr

1 +
√
ϵr

∣∣∣∣ (5.4)

where k is the wave number, s is the standard deviation of the surface roughness height,

ϵr is the relative dielectric constant of the soil and Γ0 is the Fresnel reflectivity coefficient

(at nadir). The Oh model also provides an expression for the “co-polarized” ratio p =

σ0
HH

σ0
V V

. Notwithstanding the easier mathematical form compared to the IEM, this model

requires both polarimetric SAR data and soil parameters, which makes this model hardly

employable.

The model described in [194], namely, the Dubois model, is an empirical model that

reduces the number of soil-related variables to only two: dielectric constant (as a function

of water content) and standard deviation of the surface roughness height; the main

advantage of this model is that the correlation length is not involved, as it represents a

soil parameter particularly difficult to accurately measure (and is affected by the measure

itself). Equations (5.5) and (5.6) define the Dubois model for HH- and VV-polarized

signals:

σ0
HH = 10−2.75 cos

1.5 θ

sin θ5
100.028ϵ tan θ

(
ks sin1.4 θ

)
λ0.7 (5.5)

σ0
V V = 10−2.35 cos

3 θ

sin θ
100.046ϵ tan θ

(
ks sin3 θ

)1.1
λ0.7 (5.6)

where θ is the incidence angle, ϵ is the real part of the dielectric constant of the soil, s

is the standard deviation of the surface roughness height, k is the wave number and λ is
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the wavelength in [cm].

Since VH signals are weaker than VV ones over bare soils, the Dubois model did not

provide a description for cross-polarized data. Moreover, the model does not account for

the topology of the area of interest, and the fact that does not consider the correlation

length of the surface reduces its reliability.

In [195] an improved version of the Dubois model is provided. With this empirical model,

namely the Baghdadi model, strong over- or under-estimations of radar backscattering

coefficients observed with the Dubois model according to soil moisture, surface roughness

and incidence angle are clearly eliminated. Moreover, the Baghdadi models provides with

a description of cross-polarized signals, such as HV. The set of the new expression defining

the model is defined by Equations (5.7), (5.8) and (5.9).

σ0
HH = 10−1.287 (cos θ)1.227 100.009 cot(θ)mv (ks)0.86 sin(θ) (5.7)

σ0
V V = 10−1.138 (cos θ)1.528 100.008 cot(θ)mv (ks)0.71 sin(θ) (5.8)

σ0
HV = 10−2.325 (cos θ)−0.01 100.011 cot(θ)mv (ks)0.44 sin(θ) (5.9)

In [196], a significant difference was highlighted between the measured backscatter values

and those simulated via IEM. This is mainly related to the correlation length parameter,

difficult to measure with sufficient accuracy. The Authors then built a semi-empirical

model replacing field-measured correlation length with a fitting parameter (Lopt), which

depends on surface roughness (s) and radar configuration (angle, polarization, frequency,

etc.). Subsequent studies confirmed better estimation of backscatter values using such

parameter, as it ensured a good fit between the backscattering coefficient provided by

the SAR sensor and the backscattering coefficient simulated by the IEM model.

Notwithstanding the validity of the presented backscattering models, they all present

some limitations. First, they all require numerous input parameters, related to both

radar sensor and soil surface. Therefore, the precise analysis of the relationship between

actual surface roughness and SAR signal is not trivial and several errors and discrepancies

are introduced. Moreover, these models are often difficult to invert and, as a consequence,

soil parameters are non easily obtainable. Finally, many soil parameters are often very



Organic farming characterization 172

difficult to measure accurately in situ (e.g., the correlation length), leading to significant

differences between the measured and simulated backscatter coefficients.

An improved version of [196] was finally selected for this work, i.e. a semi-empirical model

[67] combining the effects of surface roughness s and correlation length CL. It models

the backscatter coefficient based on a single roughness parameter, ZS = Hrms2/CL. Zs

is the product of s times the ratio s/CL, which represent a slope factor [197]; the intu-

ition behind this parameter is to introduce a slope effect for σ0 estimation. The authors

identified a strong correlation between Zs and the measured backscatter coefficients σ0.

The use of a single surface roughness parameter that strongly correlates with the IEM

physical model and the straightforward inversion permitted by its relatively simple math-

ematical form were the key factors in selecting this model as visible from its expressions

in Equations (5.10) and (5.11):

σ0
V V = 0.5 (kZs)

0.84 cos θ
4

sin θ3
α2
V V (5.10)

σ0
HH = 3.2110p(θ) (kZs)

q(θ) cos θ
4

sin θ3
α2
HH (5.11)

with

αHH = R⊥ =
cos θ −

√
ϵr − sin2 θ

cos θ +
√
ϵr − sin2 θ

(5.12)

αV V = (ϵr − 1)
sin2 θ − ϵr(1 + sin2 θ)

[ϵr cos θ +
√
ϵr − sin2 θ]2

(5.13)

where R⊥ is the Fresnel coefficient for HH polarization, ϵr is the dielectric constant

(real part), k is the wave number defined as k = 2π/λ and θ is the incidence angle.

Finally, the polynomials q(θ) and p(θ) are function of θ and are defined as q(θ) =

2.6289θ2 − 3.2561θ + 1.969 and p(θ) = 2.303θ2 − 2.3217θ.

For this work VV-polarized SAR data was used, so the backscatter coefficient σ0
V V is the

input and the inversion of (5.10) is straightforward:
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Zs =

[
σ0

vv
sin θ3

sin θ4
1

k0.840.5α2
vv

] 1
0.84

(5.14)

where Zs, the final roughness parameter, is measured in [cm].

5.3.2 Data and case study

5.3.2.1 Data

In this work, we leveraged Copernicus’ free and open data policy in using Sentinel-1 SAR

data. The reader is referred to Chapter 3, Section 3.3, for a deep description of these

data.

In this work the focus was the analysis of surface roughness based on time series of VV-

polarized data acquired in Interferometric Wide Swath (IW) mode. As schematically

reported in Figure 5.6, for each case study described in the next section, the multitem-

poral image collection covering the whole calendar year is loaded in Google Earth Engine.

The selected data undergo several pre-processing steps, including application of orbit file,

GRD border noise removal, thermal noise removal, radiometric calibration and terrain

correction (orthorectification) using SRTM30, or ASTER DEM for regions located at

more than 60◦ latitude. Pre-processing are directly performed by the Google Earth En-

gine cloud computing platform [198]. More details on typical trends for SAR reflectivity

in rice paddy fields can be found in [49].

Next, the spatially averaged value of computed backscatter coefficients σ0
V V is computed

over each single crop field at each given date. A typical example of σ0
V V time sequence

over a rice paddy field is reported in Figure 5.7. Based on the computed σ0
V V time

series, the maximum value along time is derived, and used as input in (5.14) to derive

Zs. As a matter of fact, the peak of backscatter intensity recorded during the season is

likely caused by the tilled soil, whose roughness after such operation reflects into stronger

scattering than other soil conditions, including fully emerged rice.

The incidence angle θ was computed on each parcel based on the geometric parameters of

the maximum-backscatter SAR image selected as described above. The last critical soil-

related parameter is the dielectric constant; as for soil roughness, relative permittivity

also affects the overall backscattered SAR signal. The dielectric constant is in turn
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Figure 5.6: Procedure for the extraction of the roughness index parameter Zs.

Figure 5.7: Typical paddy field SAR backscatter time series. Vertical axis values are
in dB.



Organic farming characterization 175

affected by wetness condition of the soil (for example, the dielectric constant decreases

as the soil becomes dry). For this reason, estimating dielectric constant values using

SAR data is not trivial, as inversion of backscattering models is required, and change

detection techniques are needed to derive soil moisture from SAR data.

Since a more rigorous activity on dielectric constant retrieval cannot fit in the present

thesis work, for this preliminary study on surface roughness estimation we decided to

fix the dielectric constant value. Based on findings from the related scientific literature,

we set ϵr = 50, as this was the value estimated for rice fields using dual-pol (VV,

VH) Sentinel-1 SAR data [199, 200]. The methods described in the articles showed

an acceptable agreement between the estimations made using SAR data and in situ

measurements made with a Ground Penetrating Radar (GPR), a technology used for

measuring pavement layer thickness.

5.3.2.2 Case study

The utilized study site is described in Section 5.2.2 and depicted in Figure 5.2. Thanks

to our collaboration with local farmers, in this area we identified 14 paddy fields man-

aged with traditional approaches in year 2018 and we built a GIS layer with polygons

describing field boundaries. These polygons were ingested in the Earth Engine platform

and used to select Sentinel-1 data from solar year 2018. This dataset was the basis for

building the related σ0
V V time series, detecting the tillage period by identifying a local

reflectivity maximum in spring, considering the corresponding σ0
V V and deriving Zs from

it using the model as described in Equation (5.14). Results are summarized in Table 5.4.

Referring to Table 5.4, it can be noted that maximum backscatter values are generally

around -5.7 dB, corresponding to roughness parameter values around 0.0747 cm. Such

value of ZS is consistent with those in [197], where the authors showed that Zs ranges

from 0.068 to 1.92 cm for bare farmland; please note that despite being expressed in

[cm] unit, as defined by the underlying maths, the value expressed by Zs should not be

interpreted as a physical length.

For sake of comparison the model was also applied to two very different land cover classes,

namely urban areas and water. 14 more polygons in the case study area were identified

for each of these latter classes, and the same procedure was applied to these polygons.
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ID σ0
V V Zs Date ID σ0

V V Zs Date

0 -6.47 0.057 16 Apr 7 -4.95 0.094 4 May
1 -5.81 0.069 16 Apr 8 -4.00 0.110 4 Apr
2 -5.35 0.076 16 Apr 9 -4.51 0.104 4 May
3 -6.58 0.057 16 May 10 -5.61 0.072 16 Apr
4 -5.15 0.084 16 Apr 11 -5.96 0.067 16 Apr
5 -5.46 0.078 4 Apr 12 -5.93 0.070 4 May
6 -6.94 0.056 4 Apr 13 -7.11 0.050 4 Apr

Table 5.4: Roughness parameter estimation for each rice field. σ0
V V max is the

maximum backscatter coefficient of the entire times series in decibels [dB], Zs is the
surface roughness parameter in centimeters [cm] and the “Date” column reports the
date at which the maximum backscatter value was registered along the rice growth

season (year 2018).

The statistics of Zs values for the three classes are reported in the boxplot in Figure 5.8.

Some interesting facts can be noted:

1. standard deviation for the analysed rice paddy fields is smaller than for other

classes; this is consistent with the fact that all fields are managed under traditional

agricultural practices, which include ploughing and harrowing;

2. the three classes are completely separated, even considering outliers (see max and

min of each class in Fig 5.8);

3. on the Zs axes, classes appear in an order which is consistent with the levels of

complexity of surface shape (largest for urban, smallest for water bodies)

Current results are not sufficient to support classification of tillage type based on the

identified model, because no counter-examples with minimal tillage were available. Yet

Zs values obtained on sample fields are consistent with literature, and encourage to

further pursue the objective by collecting additional ground truth data including on

organic-run rice paddy fields.

5.3.3 Preliminary conclusions

In this work, some preliminary steps towards assessing the type of tillage applied to

a given farmland parcel are presented, in the framework of space-based collection of
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Figure 5.8: Boxplot of roughness values Zs for paddy fields, urban areas and water.
Zs is in log10 units for clearer visualization.

extended traceability information for organic agricultural products. A suitable model

has been identified that links radar backscatter to post-tillage surface roughness. This

latter provides clues regarding the approach adopted in tillage, a key selection in organic

agriculture practices. Experiments were conducted using Sentinel-1 data on a group

of rice paddy fields in Northern Italy, and on other land cover classes for comparison.

Results suggest that the model is effective in retrieving surface roughness at key dates,

and it represents a good starting point for further investigation. The next planned

development steps will include combining different sources of radar data on the same

areas; by doing so, it is expected both accuracy and reliability of roughness estimates will

increase significantly. Moreover, a larger pool of samples will help determine separability

of different tillage techniques, representing an important piece of information in the

context of high-tier organic food traceability.
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5.4 Detection of fertilization operations using multispectral

data

5.4.1 The Joint Research Centre (JRC) “Geospatial Intelligence Against

Nitrate Pollution” (GEOINT) project

The issue of nutrient pollution from agriculture has been an ongoing challenge for dec-

ades [201]. In particular, the use of nitrogen (N) fertilizers can result in losses of nitrate

(NO−
3 ) to surface and groundwater and emissions of nitrous oxide (N2O) and ammonia

(NH3) to the atmosphere, contributing to climate change and poor air quality.

In the European Union (EU), policies have been developed that aim at addressing nu-

trient pollution from agriculture. Policies have also been developed that have indirect

effects on nutrient pollution, for instance, by protecting ecosystems and habitats. Other

regulations came into force, in order to ensure that the nutrient cycle is managed in a

more sustainable and efficient manner.

One of the most important countermeasures against nutrient pollution implemented in

Nitrate Action Programmes (NAPs) are the so-called “fertilizer closed periods”. Closed

periods are specific time periods along the year when the use of fertilizing products

(either organic or inorganic) is prohibited, with the aim of reducing losses of NO−
3 . This

countermeasure is useful since there are specific periods during the year when losses of Ni-

trogen are more likely; such periods occur when the terrain contains significant amounts

of soluble nitrogen, i.e., when the water content in soils exceed a certain threshold, above

which water cannot be retained anymore (or lost through evapotranspiration). Generally,

these conditions are caused by heavy rainfall periods, occurring in low-temperature sea-

sons, during which agriculture is limited and farmlands are bare. Such conditions match

the ones characterizing winter months, thus representing the most risky period. Hence,

prohibiting the application of nitrogen-based fertilizers during winter helps avoiding N

losses and limit N2O emissions. In [202] it has been shown that closed periods help in

reducing risks of organic material run-off, N2O and NH3 emissions.

Given this context, the Joint Research Centre (JRC) Geospatial Intelligence Against

Nitrate Pollution (GEOINT) project aims at assessing whether farmers comply with

the regulations described above (closed periods) or there are infringement cases, using

satellite technologies. Specifically, the idea of this project is to leverage spaceborne EO
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data to detect cow manure applications during winter months, when nitrates leaching is

more likely.

The next Sections are devoted to analyze the potential of multispectral satellite data in

detecting cow manure applications over agricultural fields, within the framework of the

GEOINT project.

5.4.2 Scientific literature review on manure detection using space-

borne data

While reviewing the state-of-the-art methodologies for spotting out manure application

over agricultural fields, we faced both a criticality and an opportunity. On the one hand,

scientific literature strictly focussing on the problem turned out to be definitely scarce, on

the other hand some similar problems are known in the remote sensing arena and former

knowledge can be leveraged to develop new methodologies and applications, useful to

the satellite remote sensing community. Both aspects are treated in this Section.

Scientific papers specifically addressing the problem of satellite-based detection of manure

application are very few. The most relevant single paper encountered in the literature

review was one by Dodin et al. [63], which aimed at monitoring both frequency and

location of exogenous organic matter (EOM) applications on farmland. EOM applica-

tions, despite being typically unreported, generate relevant impacts both in agronomic

terms (e.g., yield potential, soil carbon storage) and ecological terms (e.g., pollution from

nitrate leaching and ammonia volatilization).

In the cited work, the Authors evaluated the potential of Sentinel-2 data for detecting

EOM amendments, such as Green Waste Compost (GWC) and livestock manure. In

particular, the spectral shift resulting from GWC and manure application was investig-

ated. To this aim, multispectral Sentinel-2 image pairs were analysed before and after

EOM application over six crop fields in the Versailles Plain, France. Results showed that

multitemporal Sentinel-2 series report significant spectral differences before and after

application events.

A significant decrease in reflectance values in the visible and near-infrared (NIR) regions

of the electromagnetic spectrum was indeed observed after EOM spreading. With refer-

ence to Table 5.3 that contains nomenclature and information related to all Sentinel-2

bands, it was observed that the largest reflectance decrease occurred for bands B8 (NIR)
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and B8A (Red Edge 4), whereas the smallest decrease occurred in band B12 (SWIR 2).

The plot in Figure 5.9 shows such decrease of reflectance values before (on 25 Jul) and

after (on 2 Aug) a manure treatment which took place on the 28th of July.

The Authors then developed a more specific approach by defining five tailored Exo-

genous Organic Matter Indices (EOMI1...5), whose performances were then evaluated

individually:

EOMI1 =
B11 −B8a

B11 +B8a
(5.15)

EOMI2 =
B12 −B4

B12 +B4
(5.16)

EOMI3 =
(B11 −B8a) + (B12 −B4)

B11 +B8a +B12 +B4
(5.17)

EOMI4 =
B11 −B4

B11 +B4
(5.18)

NBR2 =
B11 −B12

B11 +B12
(5.19)

In terms of performances, the study showed the EOMI2 index, defined by Equation (5.16)

yielded the largest statistical distance (based on the Euclidian distances computations

made between the before and after indices values distributions). This means that the

Figure 5.9: Reflectance values decrease after EOM treatment over five sites (four with
GWC and one without EOM treatment). Image source: [63]



Organic farming characterization 181

EOMI2 index was the one that better discriminated fields with and without EOM spread-

ing. The boxplot in Figure 5.10 shows the EOMI2 for each field’s set of pixels before and

after EOM spreading.

From the plot of Figure 5.10, it is possible to observe that EOMI2 values increases after

the EOM treatment (in case of GWC). Moreover, the index is very low for the “control

field” (the one without EOM amendment, named No_EOM) for all three dates, with a

mean value of 0.1.

Regarding the applications of cattle manure (CM), two treated field have been analyzed

in this work. As for the GWC case, reflectance values decreased both in the visible and

NIR spectrum regions after manure application (as depicted in Figure 5.11).

Note that both CM fields were treated with manure, but the CM_1_Tilled was also

tilled and sowed. As shown in Figure 5.11, in the case of the tilled field, the largest

reflectance decrease occurs for bands B8 and B8A; whereas, the largest increase occurs

for band B12. Another interesting finding of the work is related to the fact that, in the

case of GWC and sheep manure, these EOM treatments can be detected at a minimum

rate of 15 t/ha (when EOM is placed on the surface of the field and not buried).

Another interesting study that emerged from the scientific literature is reported in [203].

Here the authors propose a method that aims at using remotely sensed data for detection

Figure 5.10: Boxplots of EOMI2 pixels values before (B) and after (A) EOM spread-
ing. The Sentinel-2 acquisition dates are 25 Jul (orange), 2 Aug (green) and 4 Aug

(blue). Image source: [63]
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Figure 5.11: Mean reflectance of sample fields before (2 Aug) and after (4 Aug) cattle
manure application. Image source: [63]

of environmentally hazardous cattle-breeding facilities in the Caserta Province, Southern

Italy.

Pollutants generated by manure, litter and process wastewater can negatively affect hu-

man health and the environment. As a matter of fact, many diseases found in manure are

easily transferrable to humans, including Salmonellosis, Tuberculosis and Leptospirosis.

Such an environmental condition is particularly relevant to the Caserta Province, due to

the high number of buffalo breeding facilities.

In this work, both optical and SAR data were employed. The optical data comes from

the GeoEye-1 (0.5 m spatial resolution after pan-sharpening), whereas COSMO-SkyMed

satellite (3 m spatial resolution) was used as the SAR source of data. As depicted

in Figure 5.12, the methodology relies on the detection of two main classes: manure

areas and metal roofs (of the facilities). The choice of these two classes comes from the

need to identify new facilities that are unknown to the official census, as the number of

unregistered buffalo breeding farms is increasing in the study region.

The methodology aims at discriminating the two classes mainly based on their spectral

content. On the other side, SAR data was used to reduce false positive occurrences

over highly urbanized areas. This may not be relevant to our case, where farmland can

be assumed to have been mapped accurately, and the problem is just to detect manure

application. Binary decision trees were used to classify the two different materials. The

choice of using such binary trees was an improvement of [204], where the same authors
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Figure 5.12: Typical buffalo breeding farm. Yellow boxes contain manure areas,
whereas green boxes represent metal roofs. Image source: [203]

of this work used a maximum likelihood classifier based on Gaussian models that worked

on many different classes. This choice made it possible to reduce the cost of data and

to simplify the design of the algorithms. The decision tree classifier performs multistage

classifications using different binary decisions in order to assign each single pixel to one of

the two classes. To further improve classification performances, false positive occurrences

were filtered out based on the following criteria:

• Removal of regions smaller than 8000 m2 in the case of roofs;

• Removal of regions smaller than 800 m2 in the case of manure.

An example result of this work can be observed in Figure 5.13.

The result showed in Figure 5.13(d) was then used in a GIS system to verify whether a

recognized farm matches with an entry of the cadastral database or not. In the latter case,

the farm is labelled as “unregistered”, and an in-situ verification procedure is activated.

5.4.2.1 Target Detection in Hyperspectral data

Section 5.4.2 focussed on methods specifically developed for manure detection. Other

approaches are however possible, leveraging existing solutions to more general problems

that can be applied, either as they are or adapted to the specific problem. For example,

detection of manure from space can be potentially tackled by target detection techniques,
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Figure 5.13: Classification product based on the described work and intermediate
results. a) shows the detection of manure areas. b) shows the detection of metal roofs.
In c) the detected manure areas were filtered based on a proximity analysis applied
on metal roofs. Finally, in d) photointerpretation was carried out to recognize buffalo

breed facilities.

as such task can be reduced to the identification of just two classes: manure (the “target”),

and non-manure (the “background”). Target detection is a very specific class of problems

in Remote Sensing that usually involves hyperspectral data. The goal of target detection

methods is to identify a specific spectral signature, among many, non-interesting other

ones in the scene. In our case, the target class is manure.

Detection algorithms and hyperspectral images are used in several contexts, such as

environment monitoring, mining, geology, soil and vegetation characterization and agri-

culture [205]. In the case of agriculture, spectral signatures of vegetation allow to monitor

crops health (e.g., stress by pests, diseases, and nutrient deficiencies). Such monitoring,

however, it is not straightforward due to the high spectral variability of targets and back-

ground. The problem related to how to model the spectral variability can be addressed by

two main approaches: statistical models (which describe the background patterns stat-

istically) and geometric models (which describe the background patterns geometrically).
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The first category contains the following state-of-the-art algorithms:

• Adaptive Coherence Estimator (ACE). This is a model based on the main assump-

tion that the background covariance matrix is known, allowing greater separation

between target and background while suppressing false alarms [206];

• Constrained Energy Minimization (CEM). The CEM is filter with a finite impulse

response, that is capable to minimize the energy of the resulting output generated

by the background, allowing the target to be detected [207];

• Matched Filter (MF). The MF algorithm is based on the binary hypothesis test

(background and target having the same covariance matrix) and is widely involved

in target detection applications that use hyperspectral data [208].

The second category includes:

• Orthogonal Subspace Projection (OSP). This algorithm allows to remove the re-

sponse of non-target pixels and applies a filter to find matches with the desired

target. OSP uses a structured background model to characterize the spectral vari-

ability [206];

• Spectral Angle Mapper (SAM). The SAM algorithm is another widely used al-

gorithm that allows to evaluate how similar are two spectra, by computing the

angle between target and background vectors. It has low computational complex-

ity and cost and is faster with respect to the other models [209].

In [205] it has been demonstrated that the ACE statistical model had the best perform-

ance in terms of spectral variability modelling of target and background.

Nowadays, the use of Machine Learning (ML)-based nor Artificial Intelligence (AI)-based

approaches is proposed for almost every problem, including in Earth observation. We did

not consider to use them in this case because they would need large amounts of positive

and negative samples to train the algorithms; since collecting ground truth information

is difficult and very little of it is available, we estimate training-dependent approaches

are ineffective in this context. We thus decided not to further investigate this type of

possible solutions.
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The analysis carried out in these two last sections revealed an almost absolute lack of

exhaustive work in this area; no relevant methodologies or established algorithms that

can be used in a straightforward manner have been found during our investigation.

Although no ready-to-use solution apparently exists, considering the clues that were

collected, mediating them with our expertise and the specific features of the target class,

our educated guess is methods [63] and [203] may be the best starting point to tackle the

problem. As a matter of fact, these papers provide hints on how to leverage the spectral

information of manure in order to detect it from space.

The next steps of this work will therefore focus on a pair of identified study cases,

where the exact date of manure application was registered, and leverage the contents

of the above-cited papers to further develop the methods and test their effectiveness.

Specifically, the analysis will focus on the spectral shift caused by the transition from bare

or vegetated soil towards manure cover, exploiting mainly Sentinel-2 multispectral data.

It is worthwhile to add that neither of the above mentioned papers considered temporal

information; very low revisit time satellites would enable to leverage very dense image

time sequences to spot sudden changes in time over crop fields. future works are expected

to experiment with time-dense sequences subject to availability of relevant satellite data.

5.4.3 Development of a manure detection methodology

This Section presents the proof of concept for a method aimed at detecting manure

application from multispectral Earth observing satellite data, and discusses a case study

where such method is applied. The size of the sample set used for the case study is

very small, but results appear to be convincing nonetheless. The limited amount of

samples is due to the difficulty in obtaining suitable ground truth information, which

is not public, not frequently disclosed, and perishable if not collected at the time of

production. Specifically, two case studies are presented to illustrate the grounds for the

proposed methodology and support their relevance to the intended goal.

The two case studies consist of two crop fields for which manure application dates are

known. As depicted in Figure 5.14(a), both sites are located in in the Lombardy region

of northern Italy. The first field of interest, named FOI1 from now on, has a size of 1,744

m2 (0.1744 hectares) and is located in the Varese province (Figure 5.14(b)). This field

consisted of bare soil at the time it was covered with manure on the 12th of April 2022.
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The second crop field, named FOI2 and reported in Figure 5.14(c), has a size of 32330

m2 (3.23 hectares) and is located in the Pavia province. The field was characterized

mainly by bare soil with sparse vegetation (grass) before manure application on the 31st

of March 2022.

5.4.3.1 Analysis with Sentinel data

The methods identified from the literature leverage multispectral satellite data, and

Sentinel-2 was the most obvious choice to replicate them. In fact, as described in Section

5.2.3, the Copernicus mission named Sentinel-2 consists of a satellite constellation made

of two 180-degree phase-shifted units (Sentinel-2A and -2B), capable to produce fresh

high-resolution (10 m) data every three to five days over any given location at mid-

latitude. This short revisit time enables near-real-time monitoring of crop growth as

well as other applications requiring regular and frequent re-acquisition. Each satellite

is equipped with a multispectral instrument measuring radiance on 13 spectral bands,

whose features are summarized in Table 5.3.

The spatial resolution ranges between 10 m and 60 m, depending on the considered

band. In this work, we used Sentinel-2 Level-2A products obtained through the Google

Figure 5.14: Test sites used to develop the manure detection algorithm.
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Earth Engine geospatial cloud computing platform. Data at level L2A, derived from

L1C products, are atmospherically corrected and provide estimates of surface reflectance

values (Bottom-of-Atmosphere, or BOA, data). To analyze the effects on the spectral

shifting caused by the transition from other agricultural land cover classes, such as bare

soil or vegetation, to manure cover, we used pairs of images acquired before and after

manure application, selecting the closest possible dates to manure application. Specific-

ally, for FOI1, the cloud-free Sentinel-2 L2A images closest to the manure spreading date

were acquired on 11th April 2022 (before manure application) and on 16th April 2022

(after manure application). Whereas, for FOI2 we selected images on the 22nd March

2022 (before manure application) and 11th April 2022 (after manure application), using

the same criteria.

As it can be observed from Figure 5.15, after the application of manure, reflectance

values for both the analyzed fields decreased significantly in different regions of the

electromagnetic (EM) spectrum, especially in the NIR region. In fact, the NIR band

(band B8 of Sentinel-2), experienced a decrease of about 8.2% and 22.8% in fields FOI1

and FOI2, respectively, which correspond to the strongest decreases along both spectral

signatures. The smallest decrease was recorded in band B2 (Blue) - which basically

remains unaltered - and in band B5 (Red Edge 1) for FOI1 and FOI2, respectively.

Whereas, for both fields, the reflectance value of band B12 (SWIR 2) increased by about

7.2% and 36.2% for FOI1 and FOI2, respectively.

The reason why the smallest reflectance values decrease occurs in different regions of the

spectrum can be explained by the fact that the two crop fields have different land cover

types prior to the application of manure. In fact, with respect to the mixture of bare and

vegetated land covers of FOI2, the bare soil of FOI1 features higher reflectance values in

the visible band and lower values in the NIR region of the EM spectrum. This is due to

the fact that, compared to bare soil, vegetation reflects more energy in the NIR band, and

less in the visible bands. Therefore, it is reasonable that the smallest decrease in FOI1

and FOI2 occurs around different regions of the EM spectrum. However, from Figure

5.15, the most interesting aspect is that the multispectral signature of manure in the case

of two fields located in different regions and manured in different periods, is almost the

same, regardless of the type of land cover present in the field before manuring. This is also

supported by the fact that the computed Pearson’s correlation coefficient between the

two earliest post-manuring spectral responses is ρ = 0.98. This analysis supports the idea
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Figure 5.15: Average spectral shifts registered in the two fields of interest, before and
after manure application.

that manure can potentially be detected over crop fields, using Sentinel-2 multispectral

data and regardless of the land cover type before the application of manure.

For sake of completeness, in Figure 5.16 the true-color representation before and after

manure application for both test sites is reported.

5.4.3.2 Analysis with Planet data

In addition to Sentinel-2 data, we considered also Planet data, featuring very high tem-

poral resolution at high spatial resolution. Specifically, we used third generation, Sun-

synchronous orbit PlanetScope satellites (also known as Dove-R or PSB.SD), each car-

rying an eight-band frame imager with butcher-block filter and providing coastal blue,

blue, green I, green, yellow, red, red-edge and NIR stripes. Table 5.5 reports the de-

tails for each band, and whether they are interoperable with Sentinel-2 or not. These

sensors provide images with Ground Sampling Distance (GSD) at nadir equal to 3.7 m,

resampled to 3 m, with a daily revisit time (at nadir). The PlanetScope satellite fleet is

operational from March 2020, and is capable of capturing 200 million km2 per day. For

this work, we used cloud-free images before and after the manuring event, for each of

the two fields of interest. In particular, in the case of FOI1 we used an image acquired
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Figure 5.16: RGB composites of Sentinel-2 before and after images of the test sites.

on the 10th of April 2022 for pre-event, and one on the 15th of April 2022 for post-event.

Whereas, for FOI2 we used an image sensed on the 28th of March 2022, hence before

manuring, and another one after manuring, acquired on the 5th of April 2022.

Spectral signatures in Planet data, before and after the date of manure application, were

identified as reported in Figure 5.17. Even in this case one may note that reflectance

Band Description Resolution
[m]

Wavelength
[nm]

Interoperable with
Sentinel-2

B1 Coastal Blue 3 443 Yes - with S-2 band B1
B2 Blue 3 490 Yes - with S-2 band B2
B3 Green I 3 531 No equivalent with S-2
B4 Green 3 565 Yes - with S-2 band B3
B5 Yellow 3 610 No equivalent with S-2
B6 Red 3 665 Yes - with S-2 band B4
B7 Red Edge 3 705 Yes - with S-2 band B5
B8 NIR 3 865 Yes - with S-2 band B8a

Table 5.5: Description of PlanetScope bands.
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values decrease after manure spreading. Moreover, like for the case of Sentinel-2 data,

the biggest differences are recorded in the NIR region of the EM spectrum. In particular,

the biggest difference in reflectance values occurred in band B7, with a decrease of about

72%, and in band B8, with a decrease of 32%, for FOI1 and FOI2, respectively. Whereas,

the smallest difference was registered in band B1 for both fields, with a decrease of about

28.8% and 9% for FOI1 and FOI2, respectively.

Similarly to what emerged from the analysis of the Sentinel-2 spectra, due to the presence

of vegetation in FOI2, the NIR band (B8) is associated with higher reflectance values

than those of FOI1, before manure application. Moreover, the before and after FOI2

reflectance values are almost the same in the visible range, while they significantly shift

in the NIR region. A change in the red band (B6) was also observed, with a remarkable

increase of about 30%. Since Planet’s B6 band is harmonized with Sentinel-2’s B4 band,

it is worth noticing that also the reflectance value of B4 in Sentinel-2 experiences a

significant increase (see Figure 5.15). Regarding FOI1, reflectance values are higher in

the visible region due to the bare soil land cover, and the drop of values occurred in

all Planet bands, but especially in bands B4 (Green), B6 (Red) and B7 (Red Edge).

Finally, also in this case the two spectra recorded after manure application are quite

similar; regardless of the previous land cover type, in fact, Pearson’s correlation coefficient

Figure 5.17: Average spectral shifts registered in the two fields of interest, before and
after manure application (using Planet data).
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between the two series of post-manuring spectral samples equals ρ = 0.95. However, the

absence of SWIR bands, which have shown from the S-2 data analysis to be key in

detecting manure application, are not available on Planet, so the EOMI index cannot

be computed. Moreover, the absence of SWIR bands is not compensated by sufficiently

distinctive features in the available bands. Considering all the above, we finally decided

to discontinue experimenting with Planet data, notwithstanding the advantage of very

high temporal resolution.

5.4.3.3 The proposed manure detection methodology

In this section a proposal on how to detect manure application based on the two study

cases is presented. Specifically, the approach relies on time series analysis of EOMI

values, focussing mainly on the increments of such index.

Before carrying out the actual EOMI time series analysis, a pre-processing step on

the image collection is necessary to filter out cloudy images. The simplest approach

is to leverage cloud cover information in metadata; Sentinel-2 imagery comes with a

CLOUDY_PIXEL_PERCENTAGE property, expressing the percentage of cloudy pixels in

the whole scene. This parameter can be used to filter out from a sequence all extensively

clouded scenes. Such filtering, however, is very fast but not always effective: an image

with high cloud cover percentage may still be cloud-free on the spot being analyzed,

whereas an almost cloud-free image may have clouds exactly over the site of interest.

A more effective approach disregards the overall cloud percentage and uses the specific

cloudy pixel mask.

Another issue encountered in the cloud filtering step is occasional poor quality of the

QA60 band content. The method used to identify clouded pixels, thus to build the QA60

band, is mainly based on thresholding applied to reflectance on band B2, considered

together with SWIR bands B11 and B12 that help discriminating snow from clouds.

Therefore, if a dataset is affected by radiometric calibration issues, this also affects the

quality of the QA60 band. In Figure 5.18 an example of complete inconsistency between

QA60 and visual evidence is reported; the cloud mask refers to level L2A Sentinel-2

image acquired on the 1st of January 2022. The effectiveness of the pixel-based cloud

filtering process relies on the quality of cloud masks; still, the described incidents seem
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to be rare enough for pixel-based selection to remain a better option with respect to

metadata-based selection.

Radiometric calibration also caused critical issues with EOMI sequences. Specifically,

some images generated unexpected values when processed to raise them from level L1C

to level L2A, i.e., from TOA (Top Of Atmosphere) to BOA (Bottom of Atmosphere)

reflectance values. The EOMI index showed unexplainably high values for the whole

month of January 2022, so we decided to visually inspect the images acquired in that

period. From Figure 5.19 it is possible to visually appreciate this issue and, in particular,

it is noticeable that the problem lasts for almost the whole month of January. From the

26th of January the problem seems to be solved, and the radiometric values seem to be

returned within their normal range.

Moreover, to cross-check that Sentinel-2 data was actually affected by calibration prob-

lems, we qualitatively compared Sentinel-2 L1C, L2A and Planet products as shown in

Figure 5.20. This comparison was made essentially to verify whether a particular atmo-

spheric condition may have impacted on the data, or maybe a calibration issue affected

specifically S-2 data. Regarding the L1C products, it is noticeable that the correspondent

true-color composites (RGB) do actually look as expected. Also the true-color Planet

image composite shows the expected features. Whereas, the two L2A-processed products

are clearly affected by radiometric calibration issues, as their true-color composites barely

allow to distinguish their content.

Figure 5.18: Example of bad quality cloud mask generated for the L2A Sentinel-2
image acquired on the 1st of January 2022.
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Figure 5.19: Radiometric calibration issues, encountered for both study sites and for
the same period.

Finally, in Figure 5.21 we reported the histograms of the tile that incorporates FOI1, for

the 1st of January and the 1st of May, to assess the distribution of spectral values. From

Figure 5.21(a) it is possible to observe that bands B1, B2 and B3 feature strong outliers

that may cause issues in statistical estimations, while Figure 5.21(b) shows a normal

radiometric situation. In this work, all the images with obvious radiometric problems

have been discarded from the final collection of images.

5.4.3.4 EOMI analysis

In this section, the analysis of the generated EOMI time series is carried out, first for

FOI1 and then for FOI2.

In Figure 5.22 the time series of mean EOMI values for the FOI1 field is reported. Se-

quences for three different cases were reported. Specifically, Figure 5.22(top) shows the

EOMI sequence without applying any type of cloud filtering. In this case, in corres-

pondence of the strong EOMI drops where the field was completely covered by clouds,

hampering manure detection.

Figure 5.22(middle) reports the EOMI sequence generated from a sequence of images

with no more than 60% of overall cloud coverage. With respect to the previous situation
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Figure 5.20: Visual comparison among different products. a) is the L1C RGB com-
posite of the whole Sentinel-2 tile, b) is L2A RGB composite of the whole Sentinel-2
tile, c) and d) are zoomed regions around FOI1 field, respectively, and e) is the RGB
composite of a Planet image, acquired the same date as the Sentinel’s ones (6th of

January).

where no filtering was applied, the sequence appears now smoother and more regular.

As discussed in Section 5.4.3.3, the drawback of filtering based just on image metadata

is that invalid samples may be included, causing glitches in the EOMI value. Finally,

in Figure 5.22(bottom) the EOMI time series obtained by pixel-based filtering is shown.

As a matter of fact, this represents the best situation with respect to all considered

cases. It can be noted that this sequence is populated with more samples with respect

to the metadata filtering approach. This translates into a denser sequence of EOMI

measurements, enabling more accurate tracking of index value changes.
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Figure 5.21: Histograms of spectral values a) before and b) after radiometric calib-
ration issues.

Considering from now on the EOMI time series of Figure 5.22(bottom), it is possible

to make some considerations. The most important aspect is that the EOMI index is

capable of detecting the change from a previous land cover type, to manure cover. In

fact, the mean EOMI value changed from 0.147 to 0.207, meaning an increase of more

than 40%, between the 11th of April and the 16th of April, respectively. From Figure

5.23 it is possible to visually appreciate the overall increase of EOMI values in FOI1.

The second consideration is that EOMI reaches its maximum immediately after manure

spreading, which then decreases in subsequent acquisitions. Unfortunately, we do not

possess ground truth from previous years, and thus we cannot assure the EOMI remains

lower than its maximum value even in summer. However, since the main objective of

this work is to spot out manure application operations in winter, this does not represent

a critical aspect at the moment.
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Figure 5.22: From top to bottom: 1) EOMI time series without any type of cloud
filtering, 2) time series obtained by filtering the metadata to consider only images with
60% or less of overall cloud coverage, and 2) EOMI time series obtained by selectively

filtering clouded pixels only inside the crop field (FOI1).

Based on the above analysis, it is possible to conclude that a relatively simple algorithm

detecting a sudden increase in the EOMI value can be a starting point for a precise

manure detection methodology. In particular, once a peak EOMI value is detected

within the EOMI time series extracted over a test field, it is possible to inspect the

optical images before and after the date associated to the registered maximum value. A

warning flag could be the generated, and the field of interest could undergo additional

analysis.

Similarly to what was done for FOI1, let’s first analyze the EOMI time series derived over
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Figure 5.23: Map of EOMI values of FOI1.

FOI2. The value sequences for three different cloud-filtering procedures are reported in

Figure 5.24. Figure 5.24(top) shows the sequence with no cloud filtering. Steep decreases

of the EOMI index generally mean that the crop field is temporarily covered by clouds.

Figure 5.24(middle) reports the sequence after removing all the images with over 60%

cloud cover. In this case, it is possible to observe that notwithstanding the relatively

strong filtering based on the metadata, there are still very low EOMI values caused by

clouds. In fact, by visually inspecting the images acquired on the dates corresponding to

the EOMI value drops, most of the clouds in the scene are concentrated in the area where

FOI2 belongs to. Figure 5.24(bottom) shows the sequence generated by eliminating all

those images that are cloudy only on the field of interest. By doing so, it was possible

to keep relevant samples only.

Considering the EOMI time series of Figure 5.24(bottom), it is possible to make some

remarks. Similarly to what was observed for the first field, we can notice that the EOMI

index increased significantly after manure application. In fact, from the 22nd of March

to the 11th of April, the EOMI index recorded an increase of about 21%; specifically,

the mean EOMI index increased from 0.157 to 0.19. From Figure 5.25 it is possible to

visually appreciate the overall increase of EOMI values in FOI2.

However, even if the index revealed a significant change between the two cloud-free dates

(22nd of March and 11th of April), it is worth noticing that the maximum EOMI value

is reached on the 16th of April, which is 16 days after manuring. Whereas, In FOI1 the

maximum value is reached only 4 days after manure spreading. This can be explained by

the fact that the mix of manure is different in the two cases; for instance, it is possible
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Figure 5.24: From top to bottom: 1) EOMI time series without any type of cloud
filtering, 2) time series obtained by filtering the metadata to consider only images with
60% or less of overall cloud coverage, and 2) EOMI time series obtained by selectively

filtering clouded pixels only inside the crop field (FOI2).

that the nutrients that compose the manure mixture are long-releasing substances in

FOI2, while they are shortly released in FOI1. Another possible explanation can be

related to soil type; also in this case, different types of soil may react differently to the

application of manure, absorbing its substances with different time rates. Still, we believe

a delay of two weeks in the detection of manure can also generate a useful warning flag,

aimed at activate further investigation on the field.

Based on the above considerations, we still suggest that the maximum EOMI value can

be computed and used to warn the user about a potential manuring activity that took

place around the date corresponding to the maximum value.



Organic farming characterization 200

Figure 5.25: Map of EOMI values of FOI2.

As schematized in Figure 5.26, two methods for manure detection can be hypothesized,

based on the intended application:

1. If manuring is to be detected solely for recording purposes: the most robust ap-

proach, based on the observations made, is to build the yearly EOMI value, find

the yearly maximum and trace back to the previous local minimum. The manure

event is expected between the local minimum and the next sample; the maximum

of EOMI must be above 0.2, and the total increment above 0.05 for the event to

be classified as manuring.

2. If manuring is to be detected in near-real-time for alerting purposes: the wait for

an yearly series to build is too long. The approach in this case would involve

identifying steep increases between adjacent samples; if an increment greater than

0.03 is observed, an alert is raised.

The methods described above are believed to represent a suitable structure for a manure

detection algorithm. A complete definition of a detection method would require tuning

of the parameters (e.g. minimum EOMI increment to declare a manuring event), which

cannot be done with the very small amount of samples available for our experiments.

5.4.3.5 An additional experiment

In this section we will briefly discuss some results obtained by applying our methodology

to a new test field we identified near the city of Vigevano, in the agricultural province of
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Figure 5.26: Two possible approaches aimed at spotting out potential manure spread-
ing activities during winter months.

Pavia in northern Italy. This was done to assess the operation of the proposed method

in real cases other than those used to build it. The test field is reported in Figure 5.27,

together with the obtained results.

True-color Figures 5.27(a) and (b) show the situation of two crop fields, namely Field_1

and Field_2, on the 11th and the 16th of April 2022, respectively. Visual inspection

reveals a significant change in both the fields between the two dates. Due to the typical

brownish color visible in the second image, we assumed that manure was spread over

the two fields. We then computed the per-pixel EOMI index for both images, and

reported the results in the colour maps of Figures 5.27(c) and 5.27(d). From these maps,

it is immediately noticeable that the EOMI values of the whole Field_1 field sharply

increased, whilst those belonging to Field_2 barely changed. To further investigate this

situation, we extracted the spectral responses before and after the supposed manuring

operation for both fields. The results, reported in Figures 5.27(e) and 5.27(f), reveal quite

an interesting fact. The reflectance values of Field_1, not only decreased significantly
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Figure 5.27: An additional site used to test the proposed manure detection algorithm.
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in the visible and near-infrared regions of the spectrum, but bands B11 and B12 (SWIR

bands of Sentinel-2) remained almost unaltered. On the other hand, the whole spectral

signature of Field_2 dropped significantly, including reflectance values for the SWIR

bands. This is a very interesting point, since both the study cases analyzed in the

previous sections showed an increase SWIR reflectance together with an overall decrease

in the visible and NIR regions. Based on these assumptions, we finally extracted the

EOMI time series over the two fields to assess their behaviour in time. Figure 5.27(h)

shows the EOMI time series for Field_1, and a clear peak of the index, corresponding

to the maximum value of the series, was registered between the two considered dates.

Whereas, for Field_2, the EOMI index is almost flat in the same period (Figure 5.27(g)).

Based on the developed methodology, we concluded that Field_1 was actually fertilized

with manure, while Field_2 just undergone a ploughing operation, which caused the

overturned soil to appear brown to the human eye. If the assumptions are correct, this

test confirms that the proposed method can work on samples other than those used to

develop it.

To conclude, in these sections the results of the literature search were presented, which

led to identifying the EOMI, an index computed on multispectral satellite data; the

EOMI index is in principle suitable to detect manuring events on farmland. In the two

presented case studies, time series of the EOMI index have shown distinctive features on

the occasion of known manuring events, with a sudden rise in value that may continue

along two temporal samples. Based on the observations, a method for satellite-based

manure detection has been proposed and tested on a third test case, where a manuring

event was assumed from visual interpretation. The method proved capable of identifying

a significant difference between two fields that visually appeared very similar while one

of them featured an EOMI trend like those observed in the known manuring events.

This does not constitute a proof that the method works, because we have no actual

ground truth, however the observed temporal trajectory is very similar to those previously

witnessed. In general, a key factor is the lack of an extensive set of samples with related

ground truth on manuring events, so any conclusion in these circumstances is relatively

weak. However, certainly these observation may help building an operational manure

detection method based on multispectral spaceborne Earth observation data.



Chapter 6

Conclusions

6.1 Conclusions

This thesis describes the work carried out during my Ph.D. course in Electronic Engin-

eering at the University of Pavia, Pavia, Italy.

The thesis starts in Chapter 1 with an introduction on the challenges related to land

cover (LC) mapping and, more specifically, to land cover mapping using high-resolution

(10-30 m) satellite data. Producing reliable LC maps is in fact a very complicated task

in terms of product validation, due to rapid changes of the classes phenology. This as-

pect becomes even more relevant when LC mapping is preformed over wide geographical

areas. As a consequence, most previous studies focussed on monitoring and mapping

land cover and land cover changes at the local scale and for short periods of time. For

this reason, it is difficult to compare LC products and to quantify actual changes in

a reliable manner. Moreover, in situ campaigns aimed at collecting reference data for

model validation purposes are usually very expensive both in terms of time and financial

resources, making the product validation process even more tough.

However, in recent years, several LC maps have been produced using different satellite

data sources that have been used in LC monitoring and mapping algorithms to collect

ground truth data. In this way, tuning and validation of models are carried out in a much

more efficient and time saving way, as long as the used LC maps are reliable enough.

Chapter 1 carries on with the analysis of the pros and cons of using multitemporal satel-

lite data. A review of the technical literature related to land cover mapping using time

satellite data time series revealed that most studies leverage optical data, while only a

204
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few employ SAR data due to their more complex nature and their inability (compared

to optical data) to discriminate particular classes.

In this thesis work, the potential of using multitemporal data for land cover mapping

purposes was explored and quantitatively assessed (when possible). Specifically, three

main topics were tackled in this work: vegetation land cover mapping, inland water body

extent mapping and characterization of farming practices over croplands (with a focus on

organic agriculture). Regarding vegetation mapping, the exhaustive scientific literature

review carried out in Chapter 2 revealed that optical data represent the most suitable

source of data to characterize vegetated land covers. In fact, from the technical literature

it is possible to find a wide variety of optical-based methodologies aimed at monitoring

and mapping vegetation. On the other hand, a much smaller part of the literature is

devoted to vegetation land cover mapping using SAR data; moreover, those studies that

involve SAR data present several critical issues. Therefore, part of this thesis has been

devoted to the assessment of the potential of multitemporal SAR data to characterize

vegetated land covers.

Slightly different is the situation regarding water body mapping; in this case, it is possible

to find a relatively large number of both optical- and SAR-based methodologies aimed at

characterize water cover. However, all the analyzed approaches have many limitations.

Given the demonstrated ability of SAR signals to detect water bodies (mainly thanks

to the mirror reflection backscatter mechanism) and to penetrate almost any weather

condition, in this thesis multitemporal SAR data were used to build a high-spatial and

-temporal water mapping system that can be employed in any region of the World, over-

coming the most severe limitations found in the technical literature.

In the case of both vegetation and water land covers, the works found in the literature

presented the following issues: 1) lack of automatism, 2) the reference data sets are

manually built based on experience and photo-interpretation (which is extremely time

consuming), 3) it is not possible to transfer the generated models to other regions of

interest without a priori information, 4) almost all the methodologies are tuned to work

on small areas, 5) the use of optical data often reduces classification performances over

cloud-covered regions, 6) many SAR-based models are usually inadequate to work in

any region of interest due to locally-tuned pre-processing steps, 7) the generated land

cover products do not meet the requirements of many applications (e.g., from a spatial

and/or temporal point of view). Given this context, in Chapters 3 and 4 a SAR-based

methodology for vegetation and water land cover mapping were developed, with the aim
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of overcoming the limitations of the approaches found in the scientific literature.

Regarding the last land cover type analyzed in this thesis, i.e., organic croplands, sev-

eral farming practices were characterized with the most suitable source of data. In fact,

depending on the parameter that needs to be monitored, optical or SAR data were em-

ployed. Among many variables that characterize organic crops, in this thesis three of

them were analyzed: weed-killer activities, tillage techniques and fertilization operations.

Based on findings from the technical literature, weed-killer and fertilization operations

were monitored using multispectral data, while for assessing the type of tillage, multi-

temporal SAR data were employed.

Regarding the developed vegetation mapping methodology, it has been shown that it is

possible to obtain a significant land cover map in different regions of the World, using

year-long sequences of Sentinel-1 SAR data; very encouraging results were obtained in

four different locations, with very diverse environments and land covers. The presen-

ted work, which achieved on average 71% overall accuracy (with standard deviation

σ = 14.2%), represents a first step towards the possibility to obtain a global land cover

map using solely SAR data. The accuracy obtained in the Siberian tile (50.5%) negat-

ively affected the mean accuracy value, due to the strong limitations that characterize

this area, such as snow and ice cover for nine month a year. If this test area was not con-

sidered in the overall model performance evaluation, the proposed methodology is able

to achieve accuracy values near to 80%, with a much lower standard deviation (around

5%). However, it is important also to show the weaknesses of the approach. Moreover,

the proposed methodology introduced an approach to automatically build training sets

from existing medium-resolution land cover maps, reducing possible outliers and training

a good classification model. The developed model was able to increase the overall accur-

acy of about 16% in average with respect to the medium resolution multispectral-based

existing land cover map used to build the training set. Specifically, compared to the

MRLC map, the proposed model was able to increase the accuracy of about 18.4% for

Sibera, 5.9% for Italy, 24.2% for Amazonia and 16.8% for Africa.

Regarding the inland water body extent monitoring and mapping methodology described

in this thesis, the proposed approach allows to extract water bodies in wide geographical

areas, automatically generating clustering seed from pre-existing coarser global water

maps. The approach, based on multitemporal Sentinel-1 SAR data, enhances the cap-

ability to detect temporary water bodies and also limits the effects of speckle noise.
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Moreover, the use of a DEM increases classification performances over morphologically

complex regions that are typically dominated by mountains. A thorough validation

performed on the water body map for the whole Lombardy region (North of Italy), us-

ing external reference information provided by the regional mapping authority, certifies

that the proposed automatic methodology achieves overall accuracy values higher than

94%, with a slightly less good performance for water points than for non-water classes

(89.4% vs. 99.8% producer accuracy, respectively). These results confirm the reliability

of the proposed procedure, which has also been tested for consistency with similar global

products. They also stress the robustness of the proposed extraction methodology on

very wide areas, since nine 100×100 km2 tiles (each corresponding to the size of a single,

conventional Sentinel-2 tile) were processed to characterize the whole of Lombardy. An

additional validation test was also independently carried out by an expert validation

team of the ESA WorldWater round robin over five 100×100 km2 test sites, using highly

reliable VHR PlanetScope data. Notwithstanding the challenges represented by the di-

versities of the sites in terms of terrain complexity, climate and water bodies types, the

presented model was able to achieve, on average, 93.4% overall accuracy. Finally, the

proposed methodology showed great potential in detecting temporary/seasonal water

bodies, which can be employed for monitoring, for example, small reservoirs and other

water bodies that need to be constantly monitored.

The last topic, presented in Chapter 5, regards the identification of farming practices,

with the aim of supporting organic production and organic compliance claims. This

Chapter was divided in three main parts: the first part was about the development of

a methodology capable of detecting weed-killer operations; the second part was devoted

to the assessment of the type of utilized tillage technique by using multitemporal SAR

data; finally, the last part dealt with the detection of fertilization operations to limit

nitrate pollution.

Regarding the detection of weed-killer activities, it has been demonstrated that weeding

operations can be detected using multispectral data, as long as the monitoring condi-

tions are favourable (e.g., cloud coverage during the growing season). Since organic

cultivation practices are characterized by intricate management strategies, future work

may also involve Artificial Intelligence (AI) strategies, aimed at helping assessing organic

compliance.
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Some preliminary steps towards assessing the type of tillage applied to a given agricul-

tural field were also presented. Specifically, a suitable backscattering model has been

identified, which is able to link radar backscatter to post-tillage surface roughness. This

latter provides clues regarding the approach adopted in tillage, which represents a key

aspect in organic farming practices. Experiments were conducted using multitemporal

Sentinel-1 SAR data on a set of rice fields in northern Italy. Results suggest that the

model is effective in retrieving surface roughness at key dates, thus representing an ex-

cellent starting point for further investigation.

The last part of Chapter 5 was devoted to the development of an algorithm aimed at de-

tecting fertilization operations exploiting multispectral data. In particular, a method for

satellite-based manure detection has been proposed and tested, based on multitemporal

Sentinel-2 data. It has been shown that, given the available information, the proposed

methodology was able to detect manuring activities; however, due to the very limited test

set, further tuning of the algorithm is required in order to build a more robust manure

detection model, able to raise reliable warnings in case of actual fertilization activities.

6.2 Future work

Notwithstanding the promising results achieved by the models proposed in this thesis

work, there exists large room for improvement. For example, regarding the presented

vegetation land cover mapping methodology, the legend of the classes must be enlarged

by characterizing “second level” land covers, such as the distinction between deciduous

and evergreen vegetation types. If such discrimination is relatively easy using optical

data, for SAR data it represents a challenge. Moreover, the training set generation

procedure must be improved in order not to penalise the less abundant land cover types

within the considered area. Finally, deep learning methodologies based on SAR time

series should be analyzed to assess their classification capability compared to “classical”

machine learning techniques, such as the one employed in this work.

Regarding the water body monitoring and mapping application developed in this thesis,

experiments showed that improvements must be done in order to prevent strong classific-

ation errors in geographical areas mainly characterized by dry, sandy regions. Generally,

in fact, sand causes the backscatter to drop below the Noise Equivalent Sigma Zero
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(NESZ), often lying below water backscatter values. As a consequence, the methodo-

logy often confuses sand with water bodies. This aspect should be deeply analyzed in

order to prevent it. Based on experiments carried out during the development of the

water mapping model (that have not been reported in this thesis), it was found that

the number of extracted clusters by the k -Means clusterer had a significant role on the

classification performance, especially in desert regions. Therefore, a more dynamic ap-

proach must be designed, that automatically adapts the number of extracted clusters

based on the land cover types distribution within the region of interest. Also different

combinations of SAR features should be considered in order to evaluate their classifica-

tion capabilities. Moreover, a more robust temporary water bodies mapping algorithm

must be established, as in this work only preliminary results were shown.

Finally, regarding the approaches aimed at characterizing farming practices, a mission

devoted to the collection of reference data is vital. In fact, most of the experiments

were carried out on a very small ground truth dataset and, for this reason, despite all

the conclusions that have been drawn are very promising, there are several weaknesses.

Once a larger and reliable reference dataset has been generated, then all the developed

models can be tuned and improved. A specific comment regards the tillage assessment in

SAR data; in this particular case, results should be compared with in situ measurements

of surface roughness which, however, are very expensive to do in terms of both time

and resources. Regarding the fertilization detection algorithm, this was developed based

only on two crop fields for which several information were available; notwithstanding the

achieved good results, this is definitely not enough to claim the methodology as “reliable”.

Finally, regarding the detection of weed-killer operations, it has been shown that clouds

represent a critical issue for the developed detection algorithm; therefore, integration

with other sources of data, e.g., SAR data, should be considered for improvements.

6.3 Published works during the Ph.D. course

• [210] D. Marzi, A. Sorriso, F. Dell’Acqua and P. Gamba, “Heterogeneous SAR
Sequence Processing for Land Cover Mapping,” IGARSS 2022 - 2022 IEEE Inter-
national Geoscience and Remote Sensing Symposium, 2022, pp. 5172-5175, doi:
10.1109/IGARSS46834.2022.9884205.

• [166] D. Marzi and F. Dell’Acqua, “An Experiment on Extended, Satellite-Based
Traceability of Organic Crops in North-Western Italy,” IGARSS 2022 - 2022 IEEE



Conclusions 210

International Geoscience and Remote Sensing Symposium, 2022, pp. 4650-4653,
doi: 10.1109/IGARSS46834.2022.9883883.

• [162] Tottrup, Christian, et al. “Surface Water Dynamics from Space: A Round
Robin Intercomparison of Using Optical and SAR High-Resolution Satellite Ob-
servations for Regional Surface Water Detection.” Remote Sensing 14.10 (2022):
2410.

• [44] Marzi, David, and Paolo Gamba. “Inland Water Body Mapping Using Multi-
temporal Sentinel-1 SAR Data.” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 14 (2021): 11789-11799.

• [129] Marzi, David, Shantanu Todmal, and Paolo Gamba. “Mapping Globally
Using Multitemporal Sentinel-1 SAR: A Semiautomatic Approach.” 2021 IEEE
International India Geoscience and Remote Sensing Symposium (InGARSS). IEEE,
2021.

• [49] Marzi, David, and Fabio Dell’Acqua. “Mapping European Rice Paddy Fields
Using Yearly Sequences of Spaceborne Radar Reflectivity: A Case Study in Italy.”
Earth 2.3 (2021): 387-404.

• [130] Sorriso, Antonietta, David Marzi, and Paolo Gamba. “A General Land Cover
Classification Framework for Sentinel-1 SAR Data.” 2021 IEEE 6th International
Forum on Research and Technology for Society and Industry (RTSI). IEEE, 2021.

• [150] Marzi, David, and Paolo Gamba. “Wide-Scale Water Bodies Mapping Using
Multi-Temporal SentineL-1 Sar Data.” 2021 IEEE International Geoscience and
Remote Sensing Symposium IGARSS. IEEE, 2021.

• [167] Marzi, David, Cristian Garau, and Fabio Dell’Acqua. “Identification of rice
fields in the Lombardy region of Italy based on time series of Sentinel-1 data.” 2021
IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE,
2021.

• [128] Marzi, David, and Paolo Gamba. “Global Vegetation Mapping for ESA Cli-
mate Change Initiative Project Leveraging Multitemporal High Resolution Sentinel-
1 SAR Data.” IGARSS 2020-2020 IEEE International Geoscience and Remote
Sensing Symposium. IEEE, 2020.



Bibliography

[1] Steffen Fritz, Linda See, and Felix Rembold. Comparison of global and regional
land cover maps with statistical information for the agricultural domain in Africa.
International Journal of Remote Sensing, 31(9):2237–2256, 2010.

[2] Peter H Verburg, Kathleen Neumann, and Linda Nol. Challenges in using land
use and land cover data for global change studies. Global change biology, 17(2):
974–989, 2011.

[3] Ban Yifang, Peng Gong, and Chandra Gini. Global land cover mapping using
Earth observation satellite data: Recent progresses and challenges. ISPRS journal
of photogrammetry and remote sensing (Print), 103(1):1–6, 2015.

[4] PJ Mason, M Manton, DE Harrison, A Belward, AR Thomas, and DK Dawson.
The second report on the adequacy of the global observing systems for climate in
support of the UNFCCC. GCOS Rep, 82:74, 2003.

[5] Zhiyong Lv, Tongfei Liu, Jón Atli Benediktsson, and Nicola Falco. Land cover
change detection techniques: Very-high-resolution optical images: A review. IEEE
Geoscience and Remote Sensing Magazine, 10(1):44–63, 2021.

[6] Han Liu, Peng Gong, Jie Wang, Nicholas Clinton, Yuqi Bai, and Shunlin Liang.
Annual dynamics of global land cover and its long-term changes from 1982 to 2015.
Earth System Science Data, 12(2):1217–1243, 2020.

[7] Congcong Li, Peng Gong, Jie Wang, Cui Yuan, Tengyun Hu, Qi Wang, Le Yu,
Nicholas Clinton, Mengna Li, Jing Guo, et al. An all-season sample database for
improving land-cover mapping of Africa with two classification schemes. Interna-
tional Journal of Remote Sensing, 37(19):4623–4647, 2016.

[8] Xiao-Peng Song, Matthew C Hansen, Stephen V Stehman, Peter V Potapov, Al-
exandra Tyukavina, Eric F Vermote, and John R Townshend. Global land change
from 1982 to 2016. Nature, 560(7720):639–643, 2018.

[9] Céline Lamarche, Maurizio Santoro, Sophie Bontemps, Raphaël d’Andrimont, Ju-
lien Radoux, Laura Giustarini, Carsten Brockmann, Jan Wevers, Pierre Defourny,
and Olivier Arino. Compilation and validation of SAR and optical data products
for a complete and global map of inland/ocean water tailored to the climate mod-
eling community. Remote Sensing, 9(1):36, 2017.

[10] P Bicheron, M Leroy, C Brockmann, U Krämer, B Miras, M Huc, F Ninõ, Pierre
Defourny, Christelle Vancutsem, O Arino, et al. Globcover: a 300 m global land
cover product for 2005 using ENVISAT MERIS time series. In Proceedings of the
Recent Advances in Quantitative Remote Sensing Symposium: 25–29 September
2006. Valencia, pages 538–542. Universitat de Valencia Valencia, 2006.

211



Bibliography 212

[11] Mark A Friedl, Damien Sulla-Menashe, Bin Tan, Annemarie Schneider, Navin
Ramankutty, Adam Sibley, and Xiaoman Huang. MODIS Collection 5 global land
cover: Algorithm refinements and characterization of new datasets. Remote sensing
of Environment, 114(1):168–182, 2010.

[12] Matthew C Hansen, Ruth S DeFries, John RG Townshend, and Rob Sohlberg.
Global land cover classification at 1 km spatial resolution using a classification tree
approach. International journal of remote sensing, 21(6-7):1331–1364, 2000.

[13] Thomas R Loveland, Bradley C Reed, Jesslyn F Brown, Donald O Ohlen, Zhiliang
Zhu, LWMJ Yang, and James W Merchant. Development of a global land cover
characteristics database and IGBP DISCover from 1 km AVHRR data. Interna-
tional journal of remote sensing, 21(6-7):1303–1330, 2000.

[14] Jun Chen, Jin Chen, Anping Liao, Xin Cao, Lijun Chen, Xuehong Chen, Chaoying
He, Gang Han, Shu Peng, Miao Lu, et al. Global land cover mapping at 30 m
resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry
and Remote Sensing, 103:7–27, 2015.

[15] Peng Gong, Jie Wang, Le Yu, Yongchao Zhao, Yuanyuan Zhao, Lu Liang, Zhenguo
Niu, Xiaomeng Huang, Haohuan Fu, Shuang Liu, et al. Finer resolution observation
and monitoring of global land cover: First mapping results with Landsat TM and
ETM+ data. International Journal of Remote Sensing, 34(7):2607–2654, 2013.

[16] Xiao Zhang, Liangyun Liu, Xidong Chen, Yuan Gao, Shuai Xie, and Jun Mi.
GLC_FCS30: Global land-cover product with fine classification system at 30 m
using time-series Landsat imagery. Earth System Science Data, 13(6):2753–2776,
2021.

[17] ESA. S2 Prototype Land Cover 20m Map of Africa 2016, 2021 (accessed August
31, 2022). URL https://2016africalandcover20m.esrin.esa.int/.

[18] B Chen, B Xu, Z Zhu, C Yuan, H Ping Suen, J Guo, N Xu, W Li, Y Zhao,
JJSB Yang, et al. Stable classification with limited sample: Transferring a 30-m
resolution sample set collected in 2015 to mapping 10-m resolution global land
cover in 2017. Sci. Bull, 64:370–373, 2019.

[19] ESA. Worldwide land cover mapping, 2022 (accessed August 31, 2022). URL
https://esa-worldcover.org/en.

[20] Aneta J Florczyk, Christina Corbane, Daniele Ehrlich, Sergio Freire, Thomas Kem-
per, Luca Maffenini, Michele Melchiorri, Martino Pesaresi, Panagiotis Politis, Mar-
cello Schiavina, et al. GHSL data package 2019. Luxembourg, EUR, 29788(10.2760):
290498, 2019.

[21] Marcello Schiavina, Michele Melchiorri, Martino Pesaresi, Panagiotis Politis,
S Freire, Luca Maffenini, Pietro Florio, Daniele Ehrlich, Katarzyna Goch, Pier-
paolo Tommasi, et al. GHSL Data Package 2022. (Journal not available), 2022.

[22] Xiaoping Liu, Guohua Hu, Yimin Chen, Xia Li, Xiaocong Xu, Shaoying Li, Feng-
song Pei, and Shaojian Wang. High-resolution multi-temporal mapping of global
urban land using Landsat images based on the Google Earth Engine Platform.
Remote sensing of environment, 209:227–239, 2018.

https://2016africalandcover20m.esrin.esa.int/
https://esa-worldcover.org/en


Bibliography 213

[23] Peng Gong, Xuecao Li, Jie Wang, Yuqi Bai, Bin Chen, Tengyun Hu, Xiaoping Liu,
Bing Xu, Jun Yang, Wei Zhang, et al. Annual maps of global artificial impervious
area (GAIA) between 1985 and 2018. Remote Sensing of Environment, 236:111510,
2020.

[24] Xiao Zhang, Liangyun Liu, Changshan Wu, Xidong Chen, Yuan Gao, Shuai Xie,
and Bing Zhang. Development of a global 30 m impervious surface map using
multisource and multitemporal remote sensing datasets with the Google Earth
Engine platform. Earth System Science Data, 12(3):1625–1648, 2020.

[25] Min Feng, Joseph O Sexton, Saurabh Channan, and John R Townshend. A
global, high-resolution (30-m) inland water body dataset for 2000: First results
of a topographic–spectral classification algorithm. International Journal of Digital
Earth, 9(2):113–133, 2016.

[26] Dai Yamazaki, Mark A Trigg, and Daiki Ikeshima. Development of a global˜
90 m water body map using multi-temporal Landsat images. Remote Sensing of
Environment, 171:337–351, 2015.

[27] Jean-François Pekel, Andrew Cottam, Noel Gorelick, and Alan S Belward. High-
resolution mapping of global surface water and its long-term changes. Nature, 540
(7633):418–422, 2016.

[28] Amy H Pickens, Matthew C Hansen, Matthew Hancher, Stephen V Stehman, Alex-
andra Tyukavina, Peter Potapov, Byron Marroquin, and Zainab Sherani. Mapping
and sampling to characterize global inland water dynamics from 1999 to 2018 with
full Landsat time-series. Remote Sensing of Environment, 243:111792, 2020.

[29] MK Gumma, PS Thenkabail, P Teluguntla, A Oliphant, J Xiong, RG Congalton,
Kamini Yadav, and C Smith. NASA Making Earth System Data Records for Use
in Research Environments (MEASURES) Global Food Security-Support Analysis
Data (GFSAD) Cropland Extent 2015 South Asia, Afghanistan, Iran 30 m v001.
(Journal not available), 2017.

[30] Prasad S Thenkabail, Munir A Hanjra, Venkateswarlu Dheeravath, and Mura-
likrishna Gumma. A holistic view of global croplands and their water use for
ensuring global food security in the 21st century through advanced remote sensing
and non-remote sensing approaches. Remote sensing, 2(1):211–261, 2010.

[31] Le Yu, Jie Wang, Nicholas Clinton, Qinchuan Xin, Liheng Zhong, Yanlei Chen, and
Peng Gong. FROM-GC: 30 m global cropland extent derived through multisource
data integration. International Journal of Digital Earth, 6(6):521–533, 2013.

[32] Matthew C Hansen, Peter V Potapov, Rebecca Moore, Matt Hancher, Svetlana A
Turubanova, Alexandra Tyukavina, David Thau, Stephen V Stehman, Scott J
Goetz, Thomas R Loveland, et al. High-resolution global maps of 21st-century
forest cover change. science, 342(6160):850–853, 2013.

[33] JO Sexton, M Feng, S Channan, XP Song, DH Kim, P Noojipady, D Song,
C Huang, A Annand, K Collins, et al. Earth science data records of global forest
cover and change. User guide, 38, 2016.

[34] Xiaomei Zhang, Tengfei Long, Guojin He, Yantao Guo, Ranyu Yin, Zhaoming
Zhang, Han Xiao, Moxuan Li, and Bo Cheng. Rapid generation of global forest



Bibliography 214

cover map using Landsat based on the forest ecological zones. Journal of Applied
Remote Sensing, 14(2):022211, 2020.

[35] Hugo Carrão, Paulo Gonçalves, and Mário Caetano. Contribution of multispectral
and multitemporal information from MODIS images to land cover classification.
Remote Sensing of Environment, 112(3):986–997, 2008.

[36] Liheng Zhong, Peng Gong, and Gregory S Biging. Efficient corn and soybean map-
ping with temporal extendability: A multi-year experiment using Landsat imagery.
Remote Sensing of Environment, 140:1–13, 2014.

[37] Masanobu Shimada, Takuya Itoh, Takeshi Motooka, Manabu Watanabe, Tomohiro
Shiraishi, Rajesh Thapa, and Richard Lucas. New global forest/non-forest maps
from ALOS PALSAR data (2007–2010). Remote Sensing of environment, 155:
13–31, 2014.

[38] Jeffrey W Cable, John M Kovacs, Jiali Shang, and Xianfeng Jiao. Multi-temporal
polarimetric RADARSAT-2 for land cover monitoring in Northeastern Ontario,
Canada. Remote Sensing, 6(3):2372–2392, 2014.

[39] Marcus E Engdahl and Juha M Hyyppa. Land-cover classification using multi-
temporal ERS-1/2 InSAR data. IEEE Transactions on Geoscience and Remote
Sensing, 41(7):1620–1628, 2003.

[40] Marc Simard, Susan S Saatchi, and Gianfranco De Grandi. The use of decision tree
and multiscale texture for classification of JERS-1 SAR data over tropical forest.
IEEE Transactions on Geoscience and Remote Sensing, 38(5):2310–2321, 2000.

[41] Pauline Dusseux, Thomas Corpetti, Laurence Hubert-Moy, and Samuel Corgne.
Combined use of multi-temporal optical and radar satellite images for grassland
monitoring. Remote Sensing, 6(7):6163–6182, 2014.

[42] Martin Whittle, Shaun Quegan, Yumiko Uryu, Michael Stüewe, and Kokok Yuli-
anto. Detection of tropical deforestation using ALOS-PALSAR: A Sumatran case
study. Remote Sensing of Environment, 124:83–98, 2012.

[43] Maurizio Santoro and Urs Wegmüller. Multi-temporal SAR metrics applied to
map water bodies. In 2012 IEEE International Geoscience and Remote Sensing
Symposium, pages 5230–5233. IEEE, 2012.

[44] David Marzi and Paolo Gamba. Inland Water Body Mapping Using Multitem-
poral Sentinel-1 SAR Data. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 14:11789–11799, 2021.

[45] Gianni Lisini, Andreas Salentinig, Peijun Du, and Paolo Gamba. SAR-based urban
extents extraction: from ENVISAT to Sentinel-1. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 11(8):2683–2691, 2017.

[46] Wenjin Wu, Huadong Guo, Xinwu Li, Laurent Ferro-Famil, and Lu Zhang. Urban
land use information extraction using the ultrahigh-resolution Chinese airborne
SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 53(10):
5583–5599, 2015.

[47] Damian Bargiel and Sylvia Herrmann. Multi-temporal land-cover classification
of agricultural areas in two European regions with high resolution spotlight
TerraSAR-X data. Remote sensing, 3(5):859–877, 2011.



Bibliography 215

[48] Alexandre Bouvet and Thuy Le Toan. Use of ENVISAT/ASAR wide-swath data
for timely rice fields mapping in the Mekong River Delta. Remote Sensing of
Environment, 115(4):1090–1101, 2011.

[49] David Marzi and Fabio Dell’Acqua. Mapping European Rice Paddy Fields Using
Yearly Sequences of Spaceborne Radar Reflectivity: A Case Study in Italy. Earth,
2(3):387–404, 2021.

[50] Zhipeng Tang, Giuseppe Amatulli, Petri KE Pellikka, and Janne Heiskanen. Spec-
tral Temporal Information for Missing Data Reconstruction (STIMDR) of Landsat
Reflectance Time Series. Remote Sensing, 14(1):172, 2021.

[51] Patrick Griffiths, Tobias Kuemmerle, Matthias Baumann, Volker C Radeloff,
Ioan V Abrudan, Juraj Lieskovsky, Catalina Munteanu, Katarzyna Ostapowicz,
and Patrick Hostert. Forest disturbances, forest recovery, and changes in forest
types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image
composites. Remote Sensing of Environment, 151:72–88, 2014.

[52] Mirela G Tulbure and Mark Broich. Spatiotemporal dynamic of surface water
bodies using Landsat time-series data from 1999 to 2011. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 79:44–52, 2013.

[53] He Yin, Dirk Pflugmacher, Robert E Kennedy, Damien Sulla-Menashe, and Patrick
Hostert. Mapping annual land use and land cover changes using MODIS time series.
IEEE Journal of selected topics in applied earth observations and remote sensing,
7(8):3421–3427, 2014.

[54] Sandro Martinis, Simon Plank, and Kamila Ćwik. The use of Sentinel-1 time-series
data to improve flood monitoring in arid areas. Remote Sensing, 10(4):583, 2018.

[55] Davoud Ashourloo, Hamed Nematollahi, Alfredo Huete, Hossein Aghighi, Mohsen
Azadbakht, Hamid Salehi Shahrabi, and Salman Goodarzdashti. A new phenology-
based method for mapping wheat and barley using time-series of Sentinel-2 images.
Remote Sensing of Environment, 280:113206, 2022.

[56] Cristina Gómez, Joanne C White, Michael A Wulder, and Pablo Alejandro. Histor-
ical forest biomass dynamics modelled with Landsat spectral trajectories. ISPRS
Journal of Photogrammetry and Remote Sensing, 93:14–28, 2014.

[57] Mark Broich, Matthew C Hansen, Peter Potapov, Bernard Adusei, Erik Lindquist,
and Stephen V Stehman. Time-series analysis of multi-resolution optical imagery
for quantifying forest cover loss in Sumatra and Kalimantan, Indonesia. Interna-
tional Journal of Applied Earth Observation and Geoinformation, 13(2):277–291,
2011.

[58] Steven E Franklin, Oumer S Ahmed, Michael A Wulder, Joanne C White, Txomin
Hermosilla, and Nicholas C Coops. Large area mapping of annual land cover
dynamics using multitemporal change detection and classification of Landsat time
series data. Canadian Journal of Remote Sensing, 41(4):293–314, 2015.

[59] João Andrade, John Cunha, João Silva, Iana Rufino, and Carlos Galvão. Eval-
uating single and multi-date Landsat classifications of land-cover in a seasonally
dry tropical forest. Remote Sensing Applications: Society and Environment, 22:
100515, 2021.



Bibliography 216

[60] Mailys Lopes, Pierre-Louis Frison, Sarah M Durant, Henrike Schulte to Bühne,
Audrey Ipavec, Vincent Lapeyre, and Nathalie Pettorelli. Combining optical and
radar satellite image time series to map natural vegetation: savannas as an ex-
ample. Remote Sensing in Ecology and Conservation, 6(3):316–326, 2020.

[61] Flávia de Souza Mendes, Daniel Baron, Gerhard Gerold, Veraldo Liesenberg, and
Stefan Erasmi. Optical and SAR remote sensing synergism for mapping vegetation
types in the endangered Cerrado/Amazon ecotone of Nova Mutum—Mato Grosso.
Remote Sensing, 11(10):1161, 2019.

[62] Manuela Hirschmugl, Carina Sobe, Janik Deutscher, and Mathias Schardt. Com-
bined use of optical and synthetic aperture radar data for REDD+ applications in
Malawi. Land, 7(4):116, 2018.

[63] Maxence Dodin, Hunter D Smith, Florent Levavasseur, Dalila Hadjar, Sabine
Houot, and Emmanuelle Vaudour. Potential of Sentinel-2 Satellite Images for Mon-
itoring Green Waste Compost and Manure Amendments in Temperate Cropland.
Remote Sensing, 13(9):1616, 2021.

[64] Xavier Blaes, Guillaume Chomé, Marie-Julie Lambert, Pierre Sibiry Traoré, Ant-
onius GT Schut, and Pierre Defourny. Quantifying fertilizer application response
variability with VHR satellite NDVI time series in a rainfed smallholder cropping
system of Mali. Remote sensing, 8(6):531, 2016.

[65] Ana Navarro, Inês Silva, João Catalão, and João Falcão. An operational Sentinel-
2 based monitoring system for the management and control of direct aids to the
farmers in the context of the Common Agricultural Policy (CAP): A case study
in mainland Portugal. International Journal of Applied Earth Observation and
Geoinformation, 103:102469, 2021.

[66] Marion Pause, Filip Raasch, Christopher Marrs, and Elmar Csaplovics. Monitor-
ing glyphosate-based herbicide treatment using Sentinel-2 time series—a proof-of-
principle. Remote Sensing, 11(21):2541, 2019.

[67] Mehrez Zribi, Nicolas Baghdadi, and Christine Guérin. Analysis of surface rough-
ness heterogeneity and scattering behavior for radar measurements. IEEE trans-
actions on geoscience and remote sensing, 44(9):2438–2444, 2006.

[68] Pei Zhan, Wenquan Zhu, and Nan Li. An automated rice mapping method based
on flooding signals in synthetic aperture radar time series. Remote Sensing of
Environment, 252:112112, 2021.

[69] Olena Kavats, Dmitriy Khramov, Kateryna Sergieieva, and Volodymyr Vasyliev.
Monitoring harvesting by time series of Sentinel-1 SAR data. Remote Sensing, 11
(21):2496, 2019.

[70] Pavan Kumar Sharma, Pratyush Kumar, Hari Shanker Srivastava, and Thota
Sivasankar. Assessing the potentials of multi-temporal sentinel-1 SAR data for
paddy yield forecasting using artificial neural network. Journal of the Indian So-
ciety of Remote Sensing, 50(5):895–907, 2022.

[71] Hoa Phan, Thuy Le Toan, Alexandre Bouvet, Lam Dao Nguyen, Tien Pham Duy,
and Mehrez Zribi. Mapping of rice varieties and sowing date using X-band SAR
data. Sensors, 18(1):316, 2018.



Bibliography 217

[72] Mariana Belgiu and Lucian Drăguţ. Random forest in remote sensing: A review of
applications and future directions. ISPRS journal of photogrammetry and remote
sensing, 114:24–31, 2016.

[73] Cristina Gómez, Joanne C White, and Michael A Wulder. Optical remotely sensed
time series data for land cover classification: A review. ISPRS Journal of Photo-
grammetry and Remote Sensing, 116:55–72, 2016.

[74] Reza Khatami, Giorgos Mountrakis, and Stephen V Stehman. A meta-analysis of
remote sensing research on supervised pixel-based land-cover image classification
processes: General guidelines for practitioners and future research. Remote Sensing
of Environment, 177:89–100, 2016.

[75] Aaron E Maxwell, Timothy A Warner, and Fang Fang. Implementation of machine-
learning classification in remote sensing: An applied review. International Journal
of Remote Sensing, 39(9):2784–2817, 2018.

[76] Prem Chandra Pandey, Nikos Koutsias, George P Petropoulos, Prashant K Srivast-
ava, and Eyal Ben Dor. Land use/land cover in view of earth observation: data
sources, input dimensions, and classifiers—a review of the state of the art. Geocarto
International, 36(9):957–988, 2021.

[77] Yong-Suk Lee, Sunmin Lee, and Hyung-Sup Jung. Mapping forest vertical structure
in Gong-ju, Korea using Sentinel-2 satellite images and artificial neural networks.
Applied Sciences, 10(5):1666, 2020.

[78] Mahmoud Allam, Tarek Mahmoud, Ahmed Elsharkawy, and Bassem Sheta. Land
Cover Mapping using Adaptive Decision Tree Algorithm for WorldView-2 High-
Resolution Images. In 2021 International Telecommunications Conference (ITC-
Egypt), pages 1–5. IEEE, 2021.

[79] Julien Radoux, Céline Lamarche, Eric Van Bogaert, Sophie Bontemps, Carsten
Brockmann, and Pierre Defourny. Automated training sample extraction for global
land cover mapping. Remote Sensing, 6(5):3965–3987, 2014.

[80] Michel ED Chaves, Michelle CA Picoli, and Ieda D Sanches. Recent applications
of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A
systematic review. Remote Sensing, 12(18):3062, 2020.

[81] John W Rouse Jr, R Hect Haas, JA Schell, and DW Deering. Monitoring the
vernal advancement and retrogradation (green wave effect) of natural vegetation,
1973.

[82] Alfredo R Huete. A soil-adjusted vegetation index (SAVI). Remote sensing of
environment, 25(3):295–309, 1988.

[83] Alfredo Huete, Kamel Didan, Tomoaki Miura, E Patricia Rodriguez, Xiang Gao,
and Laerte G Ferreira. Overview of the radiometric and biophysical performance of
the MODIS vegetation indices. Remote sensing of environment, 83(1-2):195–213,
2002.

[84] Stuart K McFeeters. The use of the Normalized Difference Water Index (NDWI)
in the delineation of open water features. International journal of remote sensing,
17(7):1425–1432, 1996.



Bibliography 218

[85] Luis Carrasco, Aneurin W O’Neil, R Daniel Morton, and Clare S Rowland. Eval-
uating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat
8 for land cover mapping with Google Earth Engine. Remote Sensing, 11(3):288,
2019.

[86] Gerald Forkuor, Kangbeni Dimobe, Idriss Serme, and Jerome Ebagnerin Tondoh.
Landsat-8 vs. Sentinel-2: examining the added value of sentinel-2’s red-edge bands
to land-use and land-cover mapping in Burkina Faso. GIScience & remote sensing,
55(3):331–354, 2018.

[87] Shangrong Lin, Jing Li, Qinhuo Liu, Longhui Li, Jing Zhao, and Wentao Yu. Eval-
uating the effectiveness of using vegetation indices based on red-edge reflectance
from Sentinel-2 to estimate gross primary productivity. Remote Sensing, 11(11):
1303, 2019.

[88] Benjamin Jakimow, Patrick Griffiths, Sebastian van der Linden, and Patrick
Hostert. Mapping pasture management in the Brazilian Amazon from dense Land-
sat time series. Remote Sensing of Environment, 205:453–468, 2018.

[89] Paria Ettehadi Osgouei, Sinasi Kaya, Elif Sertel, and Ugur Alganci. Separating
built-up areas from bare land in mediterranean cities using Sentinel-2A imagery.
Remote Sensing, 11(3):345, 2019.

[90] S Baeza, E Vélez-Martin, D De Abelleyra, S Banchero, F Gallego, J Schirmbeck,
S Veron, M Vallejos, E Weber, M Oyarzabal, et al. Two decades of land cover
mapping in the Río de la Plata grassland region: The MapBiomas Pampa initiative.
Remote Sensing Applications: Society and Environment, page 100834, 2022.

[91] Luong Viet Nguyen, Ryutaro Tateishi, Hoan Thanh Nguyen, Ram C Sharma,
Tu Trong To, and Son Mai Le. Estimation of tropical forest structural character-
istics using ALOS-2 SAR data. Advances in Remote Sensing, 5(2):131–144, 2016.

[92] Gaia Vaglio Laurin, Johannes Balling, Piermaria Corona, Walter Mattioli, Dario
Papale, Nicola Puletti, Maria Rizzo, John Truckenbrodt, and Marcel Urban.
Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy
with integration of ALOS2 and Sentinel-2 data. Journal of Applied Remote Sensing,
12(1):016008, 2018.

[93] Zhuli Xie, Yaoliang Chen, Dengsheng Lu, Guiying Li, and Erxue Chen. Classifica-
tion of land cover, forest, and tree species classes with ZiYuan-3 multispectral and
stereo data. Remote Sensing, 11(2):164, 2019.

[94] Lu Zhang, Xiangxing Wan, and Bing Sun. Tropical natural forest classification
using time-series Sentinel-1 and Landsat-8 images in Hainan Island. In IGARSS
2019-2019 IEEE International Geoscience and Remote Sensing Symposium, pages
6732–6735. IEEE, 2019.

[95] Marius Rüetschi, Michael E Schaepman, and David Small. Using multitemporal
sentinel-1 c-band backscatter to monitor phenology and classify deciduous and
coniferous forests in northern switzerland. Remote Sensing, 10(1):55, 2017.

[96] AO Varghese and AK Joshi. Polarimetric classification of C-band SAR data for
forest density characterization. Current Science, pages 100–106, 2015.



Bibliography 219

[97] David Small. Flattening gamma: Radiometric terrain correction for SAR imagery.
IEEE Transactions on Geoscience and Remote Sensing, 49(8):3081–3093, 2011.

[98] David Small. SAR backscatter multitemporal compositing via local resolution
weighting. In 2012 IEEE International Geoscience and Remote Sensing Sym-
posium, pages 4521–4524. IEEE, 2012.

[99] Kristof Van Tricht, Anne Gobin, Sven Gilliams, and Isabelle Piccard. Synergistic
use of radar Sentinel-1 and optical Sentinel-2 imagery for crop mapping: A case
study for Belgium. Remote Sensing, 10(10):1642, 2018.

[100] DL Swets, BC Reed, JR Rowland, and SE Marko. A weighted least-squares ap-
proach to temporal smoothing of NDVI 1999 ASPRS Annual Conference, From
Image to Information, Portland, Oregon, May 17–21, 1999. Proceedings: Bethesda,
Maryland, American Society for Photogrammetry and Remote Sensing, CD-ROM,
1, 1999.

[101] Arsalan Ghorbanian, Mohammad Kakooei, Meisam Amani, Sahel Mahdavi, Ali
Mohammadzadeh, and Mahdi Hasanlou. Improved land cover map of Iran using
Sentinel imagery within Google Earth Engine and a novel automatic workflow
for land cover classification using migrated training samples. ISPRS Journal of
Photogrammetry and Remote Sensing, 167:276–288, 2020.

[102] Meisam Amani, Bahram Salehi, Sahel Mahdavi, Jean Elizabeth Granger, Brian
Brisco, and Alan Hanson. Wetland classification using multi-source and multi-
temporal optical remote sensing data in Newfoundland and Labrador, Canada.
Canadian Journal of Remote Sensing, 43(4):360–373, 2017.

[103] Alexander W Jacob, Fernando Vicente-Guijalba, Carlos Lopez-Martinez, Juan M
Lopez-Sanchez, Marius Litzinger, Harald Kristen, Alejandro Mestre-Quereda,
Dariusz Ziółkowski, Marco Lavalle, Claudia Notarnicola, et al. Sentinel-1 InSAR
coherence for land cover mapping: A comparison of multiple feature-based classi-
fiers. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 13:535–552, 2020.

[104] Khanh Duc Ngo, Alex M Lechner, and Tuong Thuy Vu. Land cover mapping of
the Mekong Delta to support natural resource management with multi-temporal
Sentinel-1A synthetic aperture radar imagery. Remote Sensing Applications: Soci-
ety and Environment, 17:100272, 2020.

[105] Robert M Haralick, Karthikeyan Shanmugam, and Its’ Hak Dinstein. Textural
features for image classification. IEEE Transactions on systems, man, and cyber-
netics, (Vol. not available)(6):610–621, 1973.

[106] Hanqiu Xu. Modification of normalised difference water index (NDWI) to enhance
open water features in remotely sensed imagery. International journal of remote
sensing, 27(14):3025–3033, 2006.

[107] Gudina L Feyisa, Henrik Meilby, Rasmus Fensholt, and Simon R Proud. Auto-
mated Water Extraction Index: A new technique for surface water mapping using
Landsat imagery. Remote Sensing of Environment, 140:23–35, 2014.

[108] Lian Feng, Chuanmin Hu, Xiaoling Chen, Xiaobin Cai, Liqiao Tian, and Wenxia
Gan. Assessment of inundation changes of Poyang Lake using MODIS observations
between 2000 and 2010. Remote Sensing of Environment, 121:80–92, 2012.



Bibliography 220

[109] Ian Olthof. Mapping seasonal inundation frequency (1985–2016) along the St-John
River, New Brunswick, Canada using the Landsat archive. Remote Sensing, 9(2):
143, 2017.

[110] Abbas Mohammadi, Justin Francis Costelloe, and Dongryeol Ryu. Application of
time series of remotely sensed normalized difference water, vegetation and moisture
indices in characterizing flood dynamics of large-scale arid zone floodplains. Remote
sensing of environment, 190:70–82, 2017.

[111] George H Allen and Tamlin M Pavelsky. Patterns of river width and surface area
revealed by the satellite-derived North American River Width data set. Geophysical
Research Letters, 42(2):395–402, 2015.

[112] Mirela G Tulbure, Mark Broich, Stephen V Stehman, and Anil Kommareddy. Sur-
face water extent dynamics from three decades of seasonally continuous Landsat
time series at subcontinental scale in a semi-arid region. Remote Sensing of Envir-
onment, 178:142–157, 2016.

[113] Mateo Gašparović and Tomislav Jogun. The effect of fusing Sentinel-2 bands on
land-cover classification. International journal of remote sensing, 39(3):822–841,
2018.

[114] Marjolein FA Vogels, Steven M De Jong, Geert Sterk, Harke Douma, and Elisa-
beth A Addink. Spatio-temporal patterns of smallholder irrigated agriculture in
the horn of Africa using GEOBIA and Sentinel-2 imagery. Remote Sensing, 11(2):
143, 2019.

[115] Xiucheng Yang and Li Chen. Evaluation of automated urban surface water extrac-
tion from Sentinel-2A imagery using different water indices. Journal of Applied
Remote Sensing, 11(2):026016, 2017.

[116] Wei Jiang, Yuan Ni, Zhiguo Pang, Xiaotao Li, Hongrun Ju, Guojin He, Juan
Lv, Kun Yang, June Fu, and Xiangdong Qin. An effective water body extraction
method with new water index for sentinel-2 imagery. Water, 13(12):1647, 2021.

[117] Esther O Makinde and Oluwaseun E Oyelade. Land cover mapping using sentinel-1
SAR satellite imagery of Lagos state for 2017. Elsevier Proceedings, 2(22):1399,
2018.

[118] Md Rejaur Rahman and Praveen K Thakur. Detecting, mapping and analysing of
flood water propagation using synthetic aperture radar (SAR) satellite data and
GIS: A case study from the Kendrapara District of Orissa State of India. The
Egyptian Journal of Remote Sensing and Space Science, 21:S37–S41, 2018.

[119] Emanuele Ferrentino, Ferdinando Nunziata, Andrea Buono, Angelo Urciuoli, and
Maurizio Migliaccio. Multipolarization time series of sentinel-1 SAR imagery to
analyze variations of reservoirs’ water body. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 13:840–846, 2020.

[120] Michael Schmitt. Potential of large-scale inland water body mapping from sentinel-
1/2 data on the example of Bavaria’s lakes and rivers. PFG–Journal of Photogram-
metry, Remote Sensing and Geoinformation Science, 88(3):271–289, 2020.



Bibliography 221

[121] András Gulácsi and Ferenc Kovács. Sentinel-1-imagery-based high-resolution water
cover detection on wetlands, Aided by Google Earth Engine. Remote Sensing, 12
(10):1614, 2020.

[122] Amir Behnamian, Sarah Banks, Lori White, Brian Brisco, Koreen Millard,
Jon Pasher, Zhaohua Chen, Jason Duffe, Laura Bourgeau-Chavez, and Michael
Battaglia. Semi-automated surface water detection with synthetic aperture radar
data: A wetland case study. Remote Sensing, 9(12):1209, 2017.

[123] Jose-Luis Bueso-Bello, Michele Martone, Carolina González, Francescopaolo Sica,
Paolo Valdo, Philipp Posovszky, Andrea Pulella, and Paola Rizzoli. The global
water body layer from TanDEM-X interferometric SAR data. Remote Sensing, 13
(24):5069, 2021.

[124] Richard Bamler and Philipp Hartl. Synthetic aperture radar interferometry. In-
verse problems, 14(4):R1, 1998.

[125] Hailong Tang, Shanlong Lu, Muhammad Hasan Ali Baig, Mingyang Li, Chun
Fang, and Yong Wang. Large-Scale Surface Water Mapping Based on Landsat and
Sentinel-1 Images. Water, 14(9):1454, 2022.

[126] Silvia Valero, David Morin, Jordi Inglada, Guadalupe Sepulcre, Marcela Arias,
Olivier Hagolle, Gérard Dedieu, Sophie Bontemps, Pierre Defourny, and Benjamin
Koetz. Production of a dynamic cropland mask by processing remote sensing image
series at high temporal and spatial resolutions. Remote Sensing, 8(1):55, 2016.

[127] Kersten Clauss, Marco Ottinger, and Claudia Künzer. Mapping rice areas with
Sentinel-1 time series and superpixel segmentation. International journal of remote
sensing, 39(5):1399–1420, 2018.

[128] David Marzi and Paolo Gamba. Global Vegetation Mapping for ESA Climate
Change Initiative Project Leveraging Multitemporal High Resolution Sentinel-1
SAR Data. In IGARSS 2020-2020 IEEE International Geoscience and Remote
Sensing Symposium, pages 4791–4794. IEEE, 2020.

[129] David Marzi, Shantanu Todmal, and Paolo Gamba. Mapping Globally Using Multi-
temporal Sentinel-1 SAR: A Semiautomatic Approach. In 2021 IEEE International
India Geoscience and Remote Sensing Symposium (InGARSS), pages 74–77. IEEE,
2021.

[130] Antonietta Sorriso, David Marzi, and Paolo Gamba. A General Land Cover Clas-
sification Framework for Sentinel-1 SAR Data. In 2021 IEEE 6th International
Forum on Research and Technology for Society and Industry (RTSI), pages 211–
216. IEEE, 2021.

[131] European Space Agency (ESA). Copernicus Sentinel data 2020. Retrieved from the
Copernicus Open Access Hub, 2020. URL https://scihub.copernicus.eu/.

[132] Noel Gorelick, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and
Rebecca Moore. Google Earth Engine: Planetary-scale geospatial analysis for
everyone. Remote Sensing of Environment, 2017. doi: 10.1016/j.rse.2017.06.031.
URL https://doi.org/10.1016/j.rse.2017.06.031.

https://scihub.copernicus.eu/
https://doi.org/10.1016/j.rse.2017.06.031


Bibliography 222

[133] Tongdi He and Shengxin Wang. Multi-spectral remote sensing land-cover classi-
fication based on deep learning methods. The Journal of Supercomputing, pages
1–15, 2020.

[134] Claudia Paris, Lorenzo Bruzzone, and Diego Fernández-Prieto. A novel approach
to the unsupervised update of land-cover maps by classification of time series of
multispectral images. IEEE Transactions on Geoscience and Remote Sensing, 57
(7):4259–4277, 2019.

[135] Yousra Hamrouni, Eric Paillassa, Véronique Chéret, Claude Monteil, and David
Sheeren. From local to global: A transfer learning-based approach for mapping
poplar plantations at national scale using Sentinel-2. ISPRS Journal of Photo-
grammetry and Remote Sensing, 171:76–100, 2021.

[136] European Space Agency (ESA). ESA GlobCover Project, 2018 (accessed November
12, 2020). URL http://due.esrin.esa.int/page_globcover.php.

[137] Marcel Buchhorn, Myroslava Lesiv, Nandin-Erdene Tsendbazar, Martin Herold,
Luc Bertels, and Bruno Smets. Copernicus global land cover layers—collection 2.
Remote Sensing, 12(6):1044, 2020.

[138] Thomas Esch, Felix Bachofer, Wieke Heldens, Andreas Hirner, Mattia Marconcini,
Daniela Palacios-Lopez, Achim Roth, Soner Üreyen, Julian Zeidler, Stefan Dech,
et al. Where we live—A summary of the achievements and planned evolution of
the global urban footprint. Remote Sensing, 10(6):895, 2018.

[139] European Space Agency (ESA). Sentinel-2 Data Products, 2020 (accessed
September 22, 2020). URL https://sentinel.esa.int/web/sentinel/
missions/sentinel-2/data-products.

[140] Andreas Vollrath, Adugna Mullissa, and Johannes Reiche. Angular-based ra-
diometric slope correction for Sentinel-1 on google earth engine. Remote Sensing,
12(11):1867, 2020.

[141] Weiying Zhao, Charles-Alban Deledalle, Loïc Denis, Henri Maître, Jean-Marie Nic-
olas, and Florence Tupin. Ratio-based multitemporal SAR images denoising: RA-
BASAR. IEEE Transactions on Geoscience and Remote Sensing, 57(6):3552–3565,
2019.

[142] Viktoriya Tsyganskaya, Sandro Martinis, Philip Marzahn, and Ralf Ludwig. SAR-
based detection of flooded vegetation–a review of characteristics and approaches.
International journal of remote sensing, 39(8):2255–2293, 2018.

[143] Aiyeola Sikiru Yommy, Rongke Liu, and Shuang Wu. SAR image despeckling using
refined Lee filter. In 2015 7th International Conference on Intelligent Human-
Machine Systems and Cybernetics, volume 2, pages 260–265. IEEE, 2015.

[144] Saygin Abdikan, Fusun Balik Sanli, M Ustuner, and Fabiana Calò. Land cover
mapping using sentinel-1 SAR data. In The International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7,
2016 XXIII ISPRS Congress, 2014.

[145] Saeed Khabbazan, Paul Vermunt, Susan Steele-Dunne, Lexy Ratering Arntz, Ca-
terina Marinetti, Dirk van der Valk, Lorenzo Iannini, Ramses Molijn, Kees West-
erdijk, and Corné van der Sande. Crop monitoring using Sentinel-1 data: a case
study from The Netherlands. Remote Sensing, 11(16):1887, 2019.

http://due.esrin.esa.int/page_globcover.php
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products


Bibliography 223

[146] Mateo Gašparović and Dino Dobrinić. Comparative assessment of machine learning
methods for urban vegetation mapping using multitemporal sentinel-1 imagery.
Remote Sensing, 12(12):1952, 2020.

[147] Paolo Ferrazzoli and Leila Guerriero. Radar sensitivity to tree geometry and woody
volume: A model analysis. IEEE Transactions on Geoscience and Remote Sensing,
33(2):360–371, 1995.

[148] Eibe Frank, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer,
Ian H Witten, and Len Trigg. Weka-a machine learning workbench for data mining.
In Data mining and knowledge discovery handbook, pages 1269–1277. Springer,
2009.

[149] J Richard Landis and Gary G Koch. The measurement of observer agreement for
categorical data. biometrics, pages 159–174, 1977.

[150] David Marzi and Paolo Gamba. Wide-scale water bodies mapping using multi-
temporal sentinel-1 sar data. In 2021 IEEE International Geoscience and Remote
Sensing Symposium IGARSS, pages 6032–6035. IEEE, 2021.

[151] Julie Transon, Raphaël d’Andrimont, Alexandre Maugnard, and Pierre Defourny.
Survey of hyperspectral earth observation applications from space in the sentinel-2
context. Remote Sensing, 10(2):157, 2018.

[152] Water and Wetness — Copernicus Land Monitoring Service, 2018 (accessed
August 31, 2022). URL https://land.copernicus.eu/pan-european/
high-resolution-layers/water-wetness.

[153] John W Jones. Improved automated detection of subpixel-scale inunda-
tion—Revised dynamic surface water extent (DSWE) partial surface water tests.
Remote Sensing, 11(4):374, 2019.

[154] Igor Klein, Ursula Gessner, Andreas J Dietz, and Claudia Kuenzer. Global
WaterPack–A 250 m resolution dataset revealing the daily dynamics of global in-
land water bodies. Remote sensing of environment, 198:345–362, 2017.

[155] Townshend, J. (2016). Global Forest Cover Change (GFCC) Water Cover 2000
Global 30 m V001 [Data set], NASA EOSDIS Land Processes DAAC. Accessed
2021-06-03 from https://doi.org/10.5067/MEaSUREs/GFCC/GFCC30WC.
001.

[156] ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep., 017 (accessed
August 31, 2022). URL maps.elie.ucl.ac.be/CCI/viewer/download/
ESACCI-LC-Ph2-PUGv2_2.0.pdf.

[157] Kabir Uddin, Mir A Matin, and Franz J Meyer. Operational flood mapping using
multi-temporal sentinel-1 SAR images: a case study from Bangladesh. Remote
Sensing, 11(13):1581, 2019.

[158] Pål Wessel and Walter HF Smith. A global, self-consistent, hierarchical, high-
resolution shoreline database. Journal of Geophysical Research: Solid Earth, 101
(B4):8741–8743, 1996.

https://land.copernicus.eu/pan-european/high-resolution-layers/water-wetness
https://land.copernicus.eu/pan-european/high-resolution-layers/water-wetness
https://doi.org/10.5067/MEaSUREs/GFCC/GFCC30WC.001
https://doi.org/10.5067/MEaSUREs/GFCC/GFCC30WC.001
maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf


Bibliography 224

[159] Junichi Takaku, Takeo Tadono, Masanori Doutsu, Fumi Ohgushi, and Hiroki Kai.
Updates of ‘AW3D30’ALOS Global Digital Surface Model with Other Open Access
Datasets. The International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, 43:183–189, 2020.

[160] Regione Lombardia. Dusaf 6.0 - Uso del suolo 2018, 2020 (accessed Au-
gust 31, 2022). URL https://www.dati.lombardia.it/Territorio/
Dusaf-6-0-Uso-del-suolo-2018/7rae-fng6.

[161] Copernicus. CORINE Land Cover, 2018 (accessed June 14, 2021). URL https:
//land.copernicus.eu/pan-european/corine-land-cover.

[162] Christian Tottrup, Daniel Druce, Rasmus Probst Meyer, Mads Christensen, Mi-
chael Riffler, Bjoern Dulleck, Philipp Rastner, Katerina Jupova, Tomas Sokoup,
Arjen Haag, et al. Surface Water Dynamics from Space: A Round Robin Inter-
comparison of Using Optical and SAR High-Resolution Satellite Observations for
Regional Surface Water Detection. Remote Sensing, 14(10):2410, 2022.

[163] Planet Labs. Planet Imagery and Archive, (accessed August 31, 2022). URL
https://www.planet.com/products/planet-imagery/.

[164] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree.
Advances in neural information processing systems, 30, 2017.

[165] Liping Cai, Wenzhong Shi, Zelang Miao, and Ming Hao. Accuracy assessment
measures for object extraction from remote sensing images. Remote Sensing, 10
(2):303, 2018.

[166] David Marzi and Fabio Dell’Acqua. An experiment on extended, satellite-based
traceability of organic crops in north-western italy. In IGARSS 2022-2022 IEEE
International Geoscience and Remote Sensing Symposium, pages 4650–4653. IEEE,
2022.

[167] David Marzi, Cristian Garau, and Fabio Dell’Acqua. Identification of rice fields
in the lombardy region of italy based on time series of sentinel-1 data. In 2021
IEEE International Geoscience and Remote Sensing Symposium IGARSS, pages
1073–1076. IEEE, 2021.

[168] D Marzi and F Dell’Acqua. Space-based monitoring of organic rice: The ESA
KSA project “Vialone” contributes to supporting an Italian high-tier product. In
Proceedings of the GTTI Radar and Remote Sensing Workshop, 2019.

[169] Joséphine Peigné, Marion Casagrande, Vincent Payet, Christophe David, F. Xavier
Sans, José M. Blanco-Moreno, Julia Cooper, Kate Gascoyne, Daniele Antichi,
Paolo Bàrberi, and et al. How organic farmers practice conservation agricul-
ture in Europe. Renewable Agriculture and Food Systems, 31(1):72–85, 2016. doi:
10.1017/S1742170514000477.

[170] Zeynab Jouzi, Hossein Azadi, Fatemeh Taheri, Kiumars Zarafshani, Kindeya
Gebrehiwot, Steven Van Passel, and Philippe Lebailly. Organic farming and small-
scale farmers: Main opportunities and challenges. Ecological Economics, 132:144–
154, 2017.

https://www.dati.lombardia.it/Territorio/Dusaf-6-0-Uso-del-suolo-2018/7rae-fng6
https://www.dati.lombardia.it/Territorio/Dusaf-6-0-Uso-del-suolo-2018/7rae-fng6
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
https://www.planet.com/products/planet-imagery/


Bibliography 225

[171] Jacopo Bacenetti, Alessandra Fusi, Marco Negri, Stefano Bocchi, and Marco Fiala.
Organic production systems: Sustainability assessment of rice in Italy. Agriculture,
Ecosystems & Environment, 225:33–44, 2016.

[172] Verena Seufert, Navin Ramankutty, and Jonathan A. Foley. Comparing the yields
of organic and conventional agriculture. Nature, 485(1):229–232, 2012. doi: https:
//doi.org/10.1038/nature11069.

[173] Pietro Barbieri, Sylvain Pellerin, and Thomas Nesme. Comparing crop rotations
between organic and conventional farming. Scientific reports, 7(1):1–10, 2017.

[174] Andrii Shelestov, Mykola Lavreniuk, Nataliia Kussul, Alexei Novikov, and Sergii
Skakun. Large scale crop classification using Google earth engine platform. In
2017 IEEE international geoscience and remote sensing symposium (IGARSS),
pages 3696–3699. IEEE, 2017.

[175] R Saini and SK Ghosh. Crop Classification on Single Date Sentinel-2 Imagery
Using Random Forest and Support Vector Machine. International Archives of the
Photogrammetry, Remote Sensing & Spatial Information Sciences, 2018.

[176] XM Zhang, GJ He, ZM Zhang, Yan Peng, and TF Long. Spectral-spatial multi-
feature classification of remote sensing big data based on a random forest classifier
for land cover mapping. Cluster Computing, 20(3):2311–2321, 2017.

[177] Colin Lewis-Beck, Zhengyuan Zhu, Anirban Mondal, Joon Jin Song, Jonathan
Hobbs, Brian Hornbuckle, and Jason Patton. A Parametric Approach to Unmixing
Remote Sensing Crop Growth Signatures. Journal of Agricultural, Biological and
Environmental Statistics, 24(3):502–516, 2019.

[178] Tri D Setiyono, Emma D Quicho, Luca Gatti, Manuel Campos-Taberner, Lorenzo
Busetto, Francesco Collivignarelli, Francisco Javier García-Haro, Mirco Boschetti,
Nasreen Islam Khan, and Francesco Holecz. Spatial rice yield estimation based
on MODIS and Sentinel-1 SAR data and ORYZA crop growth model. Remote
Sensing, 10(2):293, 2018.

[179] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov. Deep Learning Classification
of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and
Remote Sensing Letters, 14(5):778–782, 2017.

[180] Khawar Jabran and Bhagirath S Chauhan. Overview and significance of non-
chemical weed control. In Non-chemical weed control, pages 1–8. Elsevier, 2018.

[181] Luigi Ranghetti, Lorenzo Busetto, Alberto Crema, Mauro Fasola, Elisa Cardarelli,
and Mirco Boschetti. Testing estimation of water surface in Italian rice district
from MODIS satellite data. International Journal of Applied Earth Observation
and Geoinformation, 52:284–295, 2016. ISSN 0303-2434. doi: https://doi.org/10.
1016/j.jag.2016.06.018. URL https://www.sciencedirect.com/science/
article/pii/S0303243416301015.

[182] Donato Amitrano, Gerardo Di Martino, Antonio Iodice, Daniele Riccio, and Gi-
useppe Ruello. Unsupervised rapid flood mapping using Sentinel-1 GRD SAR
images. IEEE Transactions on Geoscience and Remote Sensing, 56(6):3290–3299,
2018.

https://www.sciencedirect.com/science/article/pii/S0303243416301015
https://www.sciencedirect.com/science/article/pii/S0303243416301015


Bibliography 226

[183] Evan R DeLancey, Jahan Kariyeva, Jerome Cranston, and Brian Brisco. Monitor-
ing hydro temporal variability in Alberta, Canada with multi-temporal Sentinel-1
SAR data. Canadian Journal of Remote Sensing, 44(1):1–10, 2018.

[184] MA Clement, CG Kilsby, and P Moore. Multi-temporal synthetic aperture radar
flood mapping using change detection. Journal of Flood Risk Management, 11(2):
152–168, 2018.

[185] Amanda Veloso, Stéphane Mermoz, Alexandre Bouvet, Thuy Le Toan, Milena
Planells, Jean-François Dejoux, and Eric Ceschia. Understanding the temporal
behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applic-
ations. Remote sensing of environment, 199:415–426, 2017.

[186] Joel Segarra, Maria Luisa Buchaillot, Jose Luis Araus, and Shawn C Kefauver.
Remote sensing for precision agriculture: Sentinel-2 improved features and applic-
ations. Agronomy, 10(5):641, 2020.

[187] Diofandos G Hadjimitsis, G Papadavid, A Agapiou, K Themistocleous,
MG Hadjimitsis, A Retalis, S Michaelides, N Chrysoulakis, L Toulios, and CRI
Clayton. Atmospheric correction for satellite remotely sensed data intended for
agricultural applications: impact on vegetation indices. Natural Hazards and Earth
System Sciences, 10(1):89–95, 2010.

[188] Edi Sudianto, Song Beng-Kah, Neik Ting-Xiang, Nestor E. Saldain, Robert C.
Scott, and Nilda R. Burgos. Clearfield rice: Its development, success, and key
challenges on a global perspective. Crop Protection, 49:40–51, 2013. ISSN 0261-
2194. doi: https://doi.org/10.1016/j.cropro.2013.02.013. URL https://www.
sciencedirect.com/science/article/pii/S0261219413000495.

[189] Hansjoerg Kraehmer, Cyrille Thomas, and Francesco Vidotto. Rice production in
Europe. In Rice production worldwide, pages 93–116. Springer, 2017.

[190] Francesca Orlando, Sumer Alali, Valentina Vaglia, Elena Pagliarino, Jacopo Ba-
cenetti, Stefano Bocchi, et al. Participatory approach for developing knowledge on
organic rice farming: Management strategies and productive performance. Agri-
cultural Systems, 178:102739, 2020.

[191] Fabio Dell’Acqua and Daniele De Vecchi. Potentials of Active and Passive Geospa-
tial Crowdsourcing in Complementing Sentinel Data and Supporting Copernicus
Service Portfolio. Proceedings of the IEEE, 105(10):1913–1925, 2017.

[192] Adrian K Fung, Zongqian Li, and Kun-Shan Chen. Backscattering from a randomly
rough dielectric surface. IEEE Transactions on Geoscience and remote sensing, 30
(2):356–369, 1992.

[193] Yisok Oh, Kamal Sarabandi, and Fawwaz T Ulaby. An empirical model and an
inversion technique for radar scattering from bare soil surfaces. IEEE transactions
on Geoscience and Remote Sensing, 30(2):370–381, 1992.

[194] Pascale C Dubois, Jakob Van Zyl, and Ted Engman. Measuring soil moisture
with imaging radars. IEEE transactions on geoscience and remote sensing, 33(4):
915–926, 1995.

https://www.sciencedirect.com/science/article/pii/S0261219413000495
https://www.sciencedirect.com/science/article/pii/S0261219413000495


Bibliography 227

[195] Nicolas Baghdadi, Mohammad Choker, Mehrez Zribi, Mohammad El Hajj, Si-
monetta Paloscia, Niko EC Verhoest, Hans Lievens, Frederic Baup, and Francesco
Mattia. A new empirical model for radar scattering from bare soil surfaces. Remote
Sensing, 8(11):920, 2016.

[196] Nicolas Baghdadi, Mehrez Zribi, Simonetta Paloscia, Niko EC Verhoest, Hans
Lievens, Frederic Baup, and Francesco Mattia. Semi-empirical calibration of the
integral equation model for co-polarized L-band backscattering. Remote Sensing,
7(10):13626–13640, 2015.

[197] Mehrez Zribi and Monique Dechambre. A new empirical model to retrieve soil
moisture and roughness from C-band radar data. Remote Sensing of Environment,
84(1):42–52, 2003.

[198] Google Earth Engine. Sentinel-1 Algorithms, 2021 (accessed April 08,
2021). URL https://developers.google.com/earth-engine/guides/
sentinel1#metadata-and-filtering.

[199] Harry M Jol. Ground penetrating radar theory and applications. elsevier, 2008.

[200] S Putiamini, F Marpaung, and D Fernando. Estimation of Peatland Distribu-
tion Using Ratio Dual-pol from Sentinel-1A. IOP Conference Series: Earth and
Environmental Science, 280(1):012012, 2019.

[201] Annabel Sharma. The wicked problem of diffuse nutrient pollution from agricul-
ture. Journal of Environmental Law, 32(3):471–502, 2020.

[202] John Tzilivakis, DJ Warner, Andrew Green, and KA Lewis. A broad-scale spatial
analysis of the environmental benefits of fertiliser closed periods implemented under
the Nitrates Directive in Europe. Journal of Environmental Management, 299:
113674, 2021.

[203] Francesco Gargiulo, CESARIO VINCENZO ANGELINO, Luca Cicala, Giuseppe
Persechino, and Massimiliano Lega. Remote sensing in the fight against environ-
mental crimes: The case study of the cattle-breeding facilities in Southern Italy.
International Journal of Sustainable Development and Planning, 11(5):663–671,
2016.

[204] Angela Errico, Cesario Vincenzo Angelino, Luca Cicala, Giuseppe Persechino,
Claudia Ferrara, Massimiliano Lega, Andrea Vallario, Claudio Parente, Giuseppe
Masi, Raffaele Gaetano, et al. Detection of environmental hazards through the
feature-based fusion of optical and SAR data: A case study in southern Italy.
International Journal of Remote Sensing, 36(13):3345–3367, 2015.

[205] Ariolfo Camacho Velasco, César Augusto Vargas García, and Henry Ar-
guello Fuentes. A comparative study of target detection algorithms in hyperspectral
imagery applied to agricultural crops in Colombia. Tecnura, 20(49):86–99, 2016.

[206] Xiaoying Jin, Scott Paswaters, and Harold Cline. A comparative study of target
detection algorithms for hyperspectral imagery. In Algorithms and Technologies
for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, volume 7334, page
73341W. International Society for Optics and Photonics, 2009.

https://developers.google.com/earth-engine/guides/sentinel1#metadata-and-filtering
https://developers.google.com/earth-engine/guides/sentinel1#metadata-and-filtering


Bibliography 228

[207] Chein-I Chang, JihMing Liu, BinChang Chieu, Hsuan Ren, Chuin-Mu Wang, Chi-
enShun Lo, Pau-Choo Chung, Ching-Wen Yang, and DyeJyun Ma. Generalized
constrained energy minimization approach to subpixel target detection for multis-
pectral imagery. Optical Engineering, 39(5):1275–1281, 2000.

[208] Dimitris Manolakis, Eric Truslow, Michael Pieper, Thomas Cooley, and Michael
Brueggeman. Detection algorithms in hyperspectral imaging systems: An overview
of practical algorithms. IEEE Signal Processing Magazine, 31(1):24–33, 2013.

[209] Fred A Kruse, AB Lefkoff, JW Boardman, KB Heidebrecht, AT Shapiro, PJ Bar-
loon, and AFH Goetz. The spectral image processing system (SIPS)—interactive
visualization and analysis of imaging spectrometer data. Remote sensing of envir-
onment, 44(2-3):145–163, 1993.

[210] D Marzi, A Sorriso, F Dell’Acqua, and P Gamba. Heterogeneous sar sequence
processing for land cover mapping. In IGARSS 2022-2022 IEEE International
Geoscience and Remote Sensing Symposium, pages 5172–5175. IEEE, 2022.


	Abstract
	Sommario
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Vegetation Land Cover: challenges
	1.2 Existing Land Cover products
	1.3 Optical versus microwave remote sensing
	1.4 The advantages of using multitemporal satellite data
	1.5 Objectives of this dissertation

	2 A review of land cover mapping methodologies based on space-borne time series data
	2.1 Scientific literature review on vegetation land cover mapping
	2.1.1 Optical-based vegetation land cover methodologies
	2.1.2 SAR-based vegetation land cover methodologies

	2.2 Scientific literature review on water body mapping
	2.2.1 Optical-based water body mapping methodologies
	2.2.2 SAR-based water body mapping methodologies

	2.3 Scientific literature review on crop management using satellite data
	2.3.1 Organic farming practices
	2.3.2 The organic crops growing panorama
	2.3.3 Relationship between crop management operations and spaceborne data

	2.4 Overall considerations on the reviewed state-of-the-art methodologies

	3 Vegetation land cover monitoring and mapping
	3.1 The European Space Agency Climate Change Initiative (CCI+) project
	3.2 Study areas
	3.3 Sentinel-1 SAR data
	3.4 Background of the proposed vegetation land cover mapping methodology
	3.5 SAR data pre-processing
	3.5.1 Leveraging of aggregated SAR time series

	3.6 Features extraction
	3.7 Medium resolution (MR) training set
	3.7.1 High-resolution training set generation

	3.8 Results and discussion
	3.8.1 Comparison with other training set generation procedures
	3.8.2 Selection of features suitable for land cover mapping


	4 Inland water body monitoring and mapping
	4.1 Background of the proposed inland water body mapping methodology
	4.2 SAR data pre-processing for water detection
	4.3 Extraction of water-related SAR features
	4.4 Training the k-means model
	4.5 Automatic water cluster extraction
	4.6 Post-processing of the clustering result
	4.7 Results and discussion
	4.7.1 Consistency analysis

	4.8 Validation of the proposed method on the Lombardy region
	4.9 The ESA WorldWater Round Robin
	4.9.1 Sample-based validation
	4.9.2 Object extraction accuracy
	4.9.3 Results and discussion
	4.9.4 Takeaway messages

	4.10 Seasonal water body monitoring and mapping
	4.10.1 Example of permanent and seasonal water body mapping: the Monte Cotugno reservoir


	5 Organic farming characterization
	5.1 The Italian Space Agency (ASI) ``MultiBigSARData'' project
	5.2 Detection of weed-killer activities using optical data
	5.2.1 Space-based monitoring of organic compliance on rice
	5.2.2 Study area
	5.2.3 Sentinel-2 multispectral data
	5.2.4 Results and discussion

	5.3 Tillage assessment using SAR data
	5.3.1 Backscattering models
	5.3.2 Data and case study
	5.3.2.1 Data
	5.3.2.2 Case study

	5.3.3 Preliminary conclusions

	5.4 Detection of fertilization operations using multispectral data
	5.4.1 The Joint Research Centre (JRC) ``Geospatial Intelligence Against Nitrate Pollution'' (GEOINT) project
	5.4.2 Scientific literature review on manure detection using spaceborne data
	5.4.2.1 Target Detection in Hyperspectral data

	5.4.3 Development of a manure detection methodology
	5.4.3.1 Analysis with Sentinel data
	5.4.3.2 Analysis with Planet data
	5.4.3.3 The proposed manure detection methodology
	5.4.3.4 EOMI analysis
	5.4.3.5 An additional experiment



	6 Conclusions
	6.1 Conclusions
	6.2 Future work
	6.3 Published works during the Ph.D. course

	Bibliography

