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Abstract
The aim of this PhD thesis is to explore the application of computational methods
to address segmentation and image generation problems for different biomedical
applications and imaging techniques. The developed algorithms aim to achieve
various objectives, including accelerating traditionally manual or computationally
slow operations, improving results accuracy, ensuring applicability across different
imaging techniques and anatomical areas, and creating transparent models for
easy understanding of their functionality. The thesis investigates three main
research topics:

• Statistical mechanics-based segmentation: we propose a new method based
on statistical mechanics for biomedical image segmentation. This approach
conceptualizes each pixel as a particle with evolving positions and static
gray levels, which interact with each other to form regions of segmentation.
A key aspect of this model is the integration of a dynamic diffusion term,
which quantifies stochastic variations arising during image acquisition.
The Boltzmann formulation of the model is efficiently simulated using a
Monte Carlo approach. An optimization strategy is proposed to fine-tune
the system’s internal parameters. The method is evaluated on different
biomedical datasets, achieving segmentation performances in terms of Dice
similarity coefficient of at least 0.91 for low-complexity segmentation tasks
and at least 0.67 for high-complexity datasets. Future research should
aim to enhance segmentation performance in more complex segmentation
tasks.

• COVID-19 lung lesion segmentation: we present the LungQuant system,
a fully-automatic deep learning (DL) pipeline designed for segmenting
and quantifying COVID-19 lung lesions in computed tomography (CT)
images. This system is composed of a cascade of two U-nets, a specialized
convolutional neural network architecture designed for image segmentation
tasks. The LungQuant system produces as output lung and COVID-
19 lesion segmentation masks, the percentage of affected lung and the
corresponding CT-Severity Score (CT-SS). We trained and tested all the
DL models exclusively on publicly available datasets, achieving a 90%
accuracy in CT-SS classification. We are currently developing various
extensions of the study, which include technical improvements of the
system, a multicenter validation and a radiomics study for clinical outcome
prediction.

• Optimized magnetic resonance fingerprinting (MRF): we propose an
optimized MRF framework for generating quantitative multiparametric
maps in preclinical studies. This method is composed by a DL model
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Abstract

and a hyperparameter tuning strategy that enables the simultaneous
optimization of the neural network architecture, the structure of the DL
model, and the supervised learning algorithm. The system reduces the
mean percentage relative error of the computed maps by a factor of at
least 2 and improves the computational time by at least a factor of 37,
compared to the traditional reconstruction algorithm. Furthermore, our
findings demonstrate that DL method allows the use of fewer MRF images
and a reduced k-space sampling percentage, making MRF examinations
more efficient. Future developments of this research may involve extending
the proposed system to different anatomical regions or applying it to in
vivo preclinical MRF.
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Chapter 1

Introduction

1.1 Biomedical imaging

Biomedical imaging is widely recognized as one of the most important diagnostic
tools in modern medicine. It encompasses various methods and techniques
that enable the non-invasive acquisition of precise representations of the
internal structures of the body, providing valuable information about anatomical
components, physiological processes and pathological conditions. Biomedical
images are obtained from a wide range of acquisition modalities such as X-ray,
Computed Tomography (CT), Magnetic Resonance Imaging (MRI), nuclear
imaging (including positron emission tomography (PET)) and ultrasound.
Each imaging modality provides different information about the region under
examination and is chosen based on the specific clinical question and patient
requirements [1].

Biomedical image interpretation is the process of extracting valuable
information from medical images. By carefully analyzing and interpreting
medical images, healthcare professionals can identify and characterize anatomical
structures, detect abnormalities, and evaluate the progression or regression of
diseases. This information is essential for making accurate diagnoses, determining
optimal treatment strategies, and monitoring the effectiveness of interventions
over time. In clinical practice, the interpretation of medical images has mostly
been carried out by healthcare professionals, such as radiologists and physicians.
However, due to the wide range of pathologies and imaging modalities, manual or
visual interpretation of images requires significant and tedious effort on the part
of medical experts. Moreover, the subjective nature of the work makes it prone
to human error and may introduce considerable variations in interpretations
among different experts. As a result, in recent years there is growing interest in
the potential benefits of integrating computational methods to support medical
image interpretation [2].

1.1.1 Computational techniques for biomedical image analysis

Image processing can be conceptualized as an input-output system [3]. Figure 1.1
illustrates the block diagram representation.

Input Q0 Image Processor τ Output Q

Figure 1.1: Image Processing block diagram. Source [3].

Where, τ represents an image processor (such as denoising, deblurring,
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1. Introduction

segmentation, compression, or inpainting). The input data is denoted as
Q0 and represents a measured single image or a sequence of images. The
output Q = (q1, q2, . . . ) contains all the desired image features. The aim of
mathematical research in image processing is to model the processing operator τ ,
to automatically associate the input data Q0 with the required output features
Q. By constructing accurate and efficient models for these processing operators,
researchers can facilitate the extraction of meaningful information from images,
thereby simplifying tasks that are typically performed manually or visually.

In the field of biomedical image analysis, various processing operators can be
applied to images, including registration, segmentation, classification, denoising,
pattern recognition, and more. For all these operators, the extraction of
valuable information from medical images can be approached using two primary
computational methodologies: mechanistic modelling and data-driven modelling
or machine learning (ML) [4].

A mechanistic model is a mathematical function that predicts outcomes
based on a theoretical understanding of the system. It relies on the creation
of new hypotheses about causal mechanisms, which are generated through
observations of the phenomenon under investigation. Mechanistic modelling
follows a two-stage process: initially, a subset of available data is utilized to
construct and calibrate the model and subsequently additional data is employed
to validate and refine the model to improve its accuracy. The aim is to develop
models that can be utilized in situations where conducting experiments is
either impossible or challenging, allowing for practical applications based on the
acquired understanding of the underlying mechanisms. One main advantage
of mechanistic models is their intrinsic interpretability, as the results given by
the model can be explained based on the underlying mathematical principles.
However, it can be challenging to construct accurate models for complex or
ambiguous image patterns.

On the other hand, ML has gained significant popularity in image analysis,
particularly with the emergence of Deep Learning (DL) algorithms. ML can be
defined as a computer-based process that improves its performance on a given
task through experience [5]. This experience can be acquired through two main
sources: interactions with labeled data or interactions with the environment
while actively performing the task. ML is a programming approach that is
completely different from mechanistic modeling because, instead of explicitly
designing a mathematical model, it uses algorithms that learn from experiences
to improve their performance in executing a specific task. In the field of ML, DL
leverages neural networks (NNs) to approximate intricate, nonlinear relationships
between inputs and outputs. ML and DL techniques are well-suited for handling
complex and unstructured data such as biomedical images, allowing them to
learn intricate patterns and generalize to unseen inputs. However, the lack of
interpretability in some ML and DL models poses challenges in understanding
the rationale behind specific decisions.
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1.1.2 Applications

The applications of computational techniques for biomedical image analysis are
numerous and encompass a wide range of tasks. This thesis focuses on two
fundamental topics in this research area: biomedical image segmentation and
biomedical image generation.

Image segmentation refers to the process of partitioning an image into distinct
objects or regions of interest (ROIs). In the biomedical imaging field these ROIs
may correspond to organs, tissues, pathologies or other biologically relevant
structures. Image segmentation plays a crucial role in the clinical workflow
for several reasons. First, by segmenting images, clinicians can measure the
size, shape, and spatial distribution of anatomical structures, tissues, or lesions,
aiding in quantitative analysis and assessment. This information provides
valuable insights for diagnostic purposes, treatment planning, and monitoring
disease progression. For example, by segmenting an organ and measuring the
volume of its damaged portion, it is possible to estimate the percentage of organ
impairment [6], [7]. This information can be valuable in assessing the extent of
organ damage and determining appropriate treatment or intervention strategies.
Moreover, the segmentation process is the first step for the extraction of region-
specific features, enabling further analysis, such as texture characterization or
functional mapping. One of these techniques is radiomics, a biomedical imaging
analysis which is used to derive a wide range of quantitative features from a
segmented ROI [8]. These features include intensity-based attributes, shape
descriptors, and texture characteristics, among others. The extraction of such
features has the potential to enable a comprehensive characterization of the
ROI, providing valuable information for diagnostic, prognostic, and treatment-
related purposes. Traditionally, healthcare professionals or radiologists perform
segmentation by visually analyzing the images and manually delineating the ROIs.
However, this manual approach is time-consuming, subjective, and can introduce
inter-observer variability. To address these challenges, various algorithms have
been proposed. This thesis will address two specific segmentation approaches,
DL and clustering, which will be extensively described in sections I and II.

Biomedical image generation represents one of the most challenging
applications among computational techniques. It involves the process of
computationally synthesizing new visual representations that mimic real-world
biomedical data. The complexity of this task arises from the elaborate and
highly dimensional nature of biomedical images, as well as the demand for
accuracy and reliability for their effective use in medical diagnosis and treatment.
However, despite these challenges, biomedical image synthesis has numerous
applications, such as superresolution [9], denoising and contrast enhancement [10],
transforming images between different modalities [11], accelerating image
acquisition and reconstruction [12], motion correction [13], among many others.
To achieve these goals, a wide range of computational techniques is utilized.
These techniques are almost exclusively based on ML methods, particularly on
DL. In recent years, there has been extensive testing of various DL models
for image generation, characterized by different architectures with varying
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levels of complexity. These models span from straightforward pixel-to-pixel
transformation methods to more sophisticated Convolutional Neural Networks
(CNNs) and Generative Adversarial Networks (GANs) [14]. Specifically, GANs
are a special type of DL algorithm used for image generation and data synthesis.
GANs consist of two main parts: the generator and the discriminator. The
generator creates images that should resemble real ones, while the discriminator’s
job is to distinguish between real and generated images. They work together,
with the generator trying to improve its output to fool the discriminator, and
the discriminator becoming better at choosing real from fake. This competition
leads to the generation of high-quality and realistic data. However, training
GANs effectively requires a vast collection of real-world biomedical images.
Acquiring a sufficiently large dataset for GAN training is challenging in the
biomedical domain, posing a significant obstacle to the advancement of GAN-
based biomedical image generation. Selecting the appropriate complexity for the
model is crucial and should be based on the specific difficulty of the problem
and the available data resources.

1.1.3 Challenges in biomedical image analysis

As we have seen above, computational techniques have a wide range of
applications and utilities in the field of biomedical imaging. However, their
applicability is hindered by several challenges, which vary according to the
specific research question and the computational approach used.

The first challenge in biomedical image analysis is the requirement of
sufficiently large annotated datasets to build and test mathematical models. The
scarcity of labeled medical images obstacles the development and generalization
of algorithms, particularly in rare diseases or specialized imaging domains. Data
privacy and ethical considerations also must be carefully addressed to ensure
confidentiality and patient consent when using medical images for analysis.

Another significant challenge in the field of biomedical image analysis is
data standardization. The existence of different data sources, hardware systems
and imaging centers contributes to high variations in acquisition protocols,
image formats, and metadata. This variability complicates the development
of algorithms and computational tools that can effectively handle and analyze
these heterogeneous datasets. Harmonizing data standards becomes crucial
to ensure the correct integration of biomedical images from different sources.
However, it is important to underline that issues related to image acquisition,
such as noise, artifacts and patient movement, as well as variations in annotation
styles, generate a variability that cannot be completely overcome through data
standardization alone. Robust algorithms are required to handle variations in
image quality and effectively address these issues in biomedical image analysis.

Moreover, the interpretability and explainability of computational models are
essential in biomedical image analysis. DL models, although highly effective, are
often regarded as black boxes due to their complex architectures. Understanding
how and why these models make inferences is crucial for building trust and
confidence in their use in clinical practice.
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Overall, addressing these challenges is crucial for advancing biomedical image
analysis and leveraging its potential for improved diagnostics, treatment planning,
and research in healthcare.

1.2 Thesis aim and scope

This thesis proposes new computational methods to overcome the limitations
of image segmentation and generation for different biomedical applications
and imaging techniques. To accomplish these tasks, both mechanistic models
and data-driven approaches will be introduced and compared. The biomedical
challenges tackled in this thesis can be summarized as follows: i) improve
operational speed, ii) refine accuracy and alignment with desired outcomes,
iii) achieve scalability and applicability across different anatomical regions and
imaging modalities and iv) provide explainable results.

More in detail, the first part A focuses on image segmentation problems
using two different computational approaches. The first approach I utilizes a
clustering method based on statistical mechanics, which provides a non-trainable
model for general biomedical imaging problems. The key idea of the method
is to represent pixels as particles that interact with each other following a
revised consensus dynamic model. To address stochastic variations in the image
acquisition process, we incorporate a diffusion term that enhances the model’s
flexibility. The unsupervised nature of clustering provides several advantages
over supervised ML and DL models for image segmentation, particularly when
addressing segmentation challenges that are not excessively complex. It doesn’t
rely on labeled training data, making it suitable for small datasets and adaptable
to various imaging techniques. In addition to these aspects, our proposed method
is based on a statistical mechanics model, providing inherent interpretability to
the segmentation process.

The second approach II involves DL techniques for segmenting COVID-19
lung lesions from CT images, with the aim of quantifying the percentage of
lung impairment. Given the complexity of discerning COVID-19 lesions from
healthy lung tissue in CT images, attributed to the diverse texture, shape, and
distribution patterns exhibited among various patients, mechanistic segmentation
techniques are not appropriate for fulfilling this objective. On the other hand,
DL-based approaches such as CNNs are valuable tools in tackling this complex
segmentation task effectively. We propose the LungQuant system, a DL-based
approach for automated segmentation and quantification of COVID-19 lung
lesions from CT scans. The system is composed of a cascade of two CNNs
developed specifically for image segmentation, known as U-nets. The first network
segments lung tissue, while the second identifies COVID-19 lesions within the
segmented lungs. The system calculates the compromised lung volume as a
percentage of the total lung volume and converts it into the CT-Severity Score
(CT-SS).

The second part B is focused on the task of image generation to optimize the
process of acquiring and reconstructing Quantitative MRI (QMRI) images using
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magnetic resonance fingerprinting (MRF) methodology. MRF is a QMRI [15]
technique able to acquire multiple tissue properties in one-shot measurement.
However, while the MRF data acquisition protocol is fast, the traditional
post-processing procedure to extract tissue properties is relatively slow and
requires significant storage capacity. We developed an optimized MRF DL-based
framework to provide quantitative multiparametric maps for preclinical studies.
The primary objective of the DL model is to generate accurate quantitative maps
from raw MRF acquisitions. Through this approach, we aim to improve both
the accuracy of the parameter reconstruction and the computational efficiency
of the computation process.

In conclusion, this thesis aims to propose novel computational methods for
addressing challenges in image segmentation and image generation. Through such
contributions, the thesis aims to advance the accuracy, efficiency and usability of
computational techniques in these imaging domains. However it’s important to
underline that the included papers do not aim to provide complete solutions to
the image segmentation or generation problems but rather focus on enhancing
specific aspects within the larger framework. These methods are developed for
research contexts, lacking practical software solutions applicable to everyday
scenarios, such as clinical care. Consequently, for the proposed methods to
become viable in practice, a thorough evaluation on larger datasets is required.
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Chapter 2

Background on Machine Learning
and Deep Learning

Machine learning (ML) is a subfield of Artificial Intelligence with the goal of
developing algorithms capable of automatically learning from data and making
predictions or decisions without being explicitly programmed. The fundamental
concept of ML is to build algorithms that are capable of improving a computer’s
program performance at some task through the experience learned from the
data. Many different tasks can be solved using ML techniques. Three of the
most common tasks are:

• Classification: the goal of this task is to assign inputs to specific categories
or classes. ML algorithms are trained to generate a function that maps
continuous and/or categorical variables to categorical values.

• Regression: the purpose of this task is to predict numerical values based
on input data. ML algorithms are used to build models that can map
continuous and/or categorical variables to continuous outputs.

• Clustering: is a task where the objective is to group similar inputs together
based on patterns and similarities within the data. Unlike in classification,
the specific groups or categories are not predefined.

In addition to these tasks, there are many other possible applications of ML.
A complete overview of ML algorithms and applications can be found in the
references [1]–[3].

2.1 Classes of machine learning algorithms

ML algorithms can be categorized based on the type of experience they learn
during the training process. They can be broadly classified into three categories:

• Supervised learning: is a type of ML where the algorithm learns from
labeled data. The training dataset consists of examples where each data
point is associated with its correct label. Common tasks in supervised
learning include classification and regression, where the algorithm learns
to predict labels or values for new and unseen data based on the patterns
and relationships learned from the labeled training data.

• Unsupervised learning: is a class of ML where the algorithm focuses on
discovering patterns and structures in unlabeled data. Unlike supervised
learning, there are no predefined labels or target outputs. Instead,

9



2. Background on Machine Learning and Deep Learning

unsupervised learning algorithms aim to identify inherent patterns, clusters,
or relationships within the data itself.

• Reinforcement learning: is a category of ML where the algorithm learns
by interacting with an environment and receiving feedback in the form
of rewards or penalties. The objective of the learning system is to find
an optimal strategy that maximizes rewards over time. The algorithm
learns through trial and error, adjusting its behavior based on the feedback
received from the environment.

In addition to these three main categories of ML algorithms, there exist
numerous alternative approaches that combine elements from different learning
paradigms. One such notable approach is active learning [4], [5], which represents
a subtle modification of traditional supervised learning. Active learning is an
interactive ML approach where the model or an external supervisor actively
selects examples for effective learning. Unlike supervised traditional methods,
active learning involves model initialization with initial training on a small
dataset, selection of informative examples for further learning, and iterative model
retraining until satisfactory performance is achieved. The goal is to minimize
manual data annotation by focusing on specific examples that provide the most
information for the model. This could be particularly useful in situations where
manual data annotation is costly or time-consuming. Active learning has gained
particular attention in recent years, particularly in biomedical imaging, where
the acquisition and annotation of high-quality labeled data can be extremely
expensive and time-consuming.

In the next paragraph, we will provide a more detailed description of the
class of supervised learning algorithms, as they will be extensively utilized in
the subsequent chapters of this thesis.

2.1.1 Setting up a supervised learning problem

Many problems in supervised ML start with the same fundamental elements.
The first element is the dataset D = (x, y) where x is a vector of independent
variables and y is a vector of dependent variables. The dataset is a collection
of examples composed by inputs x and outputs y. The second element is the
model f(x; θ), which is a function f : x → y parameterized by θ. f is used to
predict output values based on input variables. The final element is the loss
function L(y, f(x; θ)), which allows us to assess the performance of the model
by measuring the discrepancy between the predicted output f(x; θ) and the true
output y. The model is fit by finding the optimal values of θ that minimize the
loss function. The goal of the procedure is therefore to find the function f that
approximate the unknown relationship f∗ between the inputs and the outputs.
A schematic representation of these elements is provided by Figure 2.1.

What distinguishes ML from simple optimization is the emphasis on
generalization. The trained model should perform well not only on the training
data but also on new and previously unseen inputs. The ability to generalize is
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Classes of machine learning algorithms

Input (x)
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model
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Figure 2.1: Block diagram of a supervised learning algorithm.

crucial. The main challenge in ML is to achieve low generalization error, which
is the value of the loss function on new inputs.

To estimate the generalization error of a ML model, a common approach
is to randomly divide the dataset D into two mutually exclusive groups: the
training set Dtrain and the test set Dtest. The model is trained by minimizing
the loss function using only the data in the training set. Then, the predictive
performance of the model is evaluated by computing the loss function using the
test set. By splitting the data into separate training and test sets, we obtain an
unbiased estimate of the model’s predictive performance. This practice, known as
cross-validation, helps assess how well the model generalizes to new and unseen
data.

2.1.2 Gradient descent method

We have previously seen that in supervised ML algorithms, optimization of the
loss function involves adjusting the model’s parameters. One of the most widely
used methods for this purpose is the gradient descent (GD).

The fundamental idea behind gradient descent is to reduce the loss function
L(y, f(x; θ)) by updating the parameters θ in small steps with the opposite
direction of the gradient. This iterative process ensures that the parameters
move towards a local minimum of the loss function. In the simplest form of GD
algorithm, we update the parameters as follows: we initialize the parameters to
some value θ0 and then iteratively update them using the equation:

θt+1 = θt − ϵ∇θL(θ) (2.1)

where ∇θL(θ) represents the gradient of the loss function L(θ) = L(y, f(x; θ)),
and ϵ is the learning rate, i.e. a positive scalar determining the step size.

However, the simple gradient descent algorithm can be slow and computa-
tionally expensive, particularly for large datasets. Additionally, in many ML
algorithms, the loss function is a sum of terms, with each term corresponding to
a data point:

L(θ) =
n∑

i=1
li(xi, θ) (2.2)
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Computing the gradient by summing over all n data points at each GD step can
be computationally inefficient. To address this issue, the Stochastic Gradient
Descent (SGD) method was introduced. Instead of computing the actual gradient
over the entire dataset, SGD approximates the gradient using a small partition
of the data known as a “mini-batch”:

∇θL(θ) =
n∑

i=1
∇θli(xi, θ) →

n∑
i∈BK

∇θli(xi, θ) (2.3)

where Bk denotes the mini-batches. The algorithm cycles over all k = 1, . . . , n/M
(with M as the mini-batch size) mini-batches one at a time and uses the mini-
batch approximation to update the parameters θ at each step k. Completing a
full iteration over all n data points, using all n/M mini-batches, is referred to as
an epoch. SGD significantly speeds up the calculation as it avoids the need to
use all n data points to approximate the gradient.

One limitation of GD and SGD algorithms is their sensitivity to the choice
of learning rate. A very small learning rate leads to extremely slow training,
while larger learning rates may cause GD to diverge and yield poor results.
Moreover, the learning rate is constrained by the steepest direction, which can
vary depending on the current position in the loss function landscape.

To overcome this issue, there has been recent progress in introducing methods
that adaptively adjust the step size based not only on the gradient but also on
the second moment of the gradient i.e. the uncentered variance (the mean is not
subtracted during variance computation). Examples of such methods include
AdaGrad, AdaDelta, RMSprop, and Adam [1]. These techniques allow for more
efficient and effective optimization of the loss function.

2.2 Deep Learning

Deep learning (DL) is a subfield of ML that leverages neural networks (NNs)
to tackle complex problems. NNs are nonlinear models for supervised and
unsupervised learning, drawing inspiration from the biological neural networks
found in animal brains.

Conceptually, NNs can be categorized into three main types:

1. Feedforward Neural Networks: these models are versatile and widely used
for supervised learning tasks. They consist of an input layer (i.e. an array
of learnable parameters), one or more hidden layers and an output layer.
Information flows in a forward direction, from the input layer through the
hidden layers to the output layer.

2. Convolutional Neural Networks: CNNs are specifically designed for image
processing tasks. They use convolutional layers, consisting of arrays of
learnable parameters that filter input images, to extract local patterns and
features from input images, enabling effective analysis and understanding
of visual data.
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3. Recurrent Neural Networks: RNNs are specialized NNs that excel in
handling sequential data. They have connections between neurons at
different time steps, allowing them to remember past inputs and process
sequential information effectively.

Each category of NNs has its own unique characteristics and is suited for
different types of data and problem domains. In the following sections, we will
explore these three categories of NNs in more detail.

2.2.1 Feedforward Neural Networks
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Figure 2.2: Basic architecture of a feedforward NN with two hidden layers.
Neurons are arranged into layers with the output of one serving as the input
to the next layer. The signal travels from the first layer (the input layer), to
the last layer (the output layer), after passing through intermediate layers (the
hidden layers).

Feedforward NNs, also known as multilayer perceptrons (MLPs), are
mathematical functions that map an input vector x to an output vector y.
The objective of a NN is to approximate a non-linear function y = f∗(x). A
MLP can be represented as a composition of many different functions:

f(x) = f (d) ◦ f (d−1) ◦ · · · ◦ f (2) ◦ f (1) (2.4)

The first function f (1) is referred to as the input layer, while the final function
f (d) is the output layer. The functions in between are known as hidden layers.
The learning algorithm determines how to utilize these layers to best approximate
f∗. Since the desired output for these intermediate layers is not provided in the
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Figure 2.3: The basic unit of a NN, the neuron or node. It consists of a linear
transformation that weights the importance of various inputs, followed by a
non-linear activation function.

training data (unlike the output layer), they are referred to as “hidden layers”.
The number of layers determines the depth of the network. Modern NNs typically
consist of multiple hidden layers, hence the term “deep” in deep DL. Figure 2.2
illustrates an MLP with two hidden layers.

Each function within the network is typically vector-valued. However, instead
of considering each layer as a single vector-to-vector function, we can also view
the layer as comprising many units that operate in parallel, with each unit
representing a vector-to-scalar function. The fundamental unit i of the layer j of
the NN, also known as a “neuron” or “node”, takes a vector of n input features
x = (x1, x2, . . . , xn) and produces a scalar output a

(j)
i (x), referred to as the

activation.
The function a

(j)
i can be decomposed into a linear operation that weighs

the relative importance of the inputs using neuron-specific weights w
(j)
i =

(w(j)
i,1 , w

(j)
i,2 , . . . , w

(j)
i,n), followed by re-centering with a neuron-specific bias b

(j)
i :

z
(j)
i = w

(j)
i

T
· x + b

(j)
i (2.5)

The complete input-output function can be expressed as:

a
(j)
i (x) = σ

(j)
i (z(j)

i ) (2.6)

where σi(z)(j) is the non-linear function, known as the activation function, which
is typically the same for all neurons within a layer. Figure 2.3 represents a
schematic of a node within an MLP, illustrating its components.

Historically, common non-linearities used in neurons include step functions,
sigmoids, and hyperbolic tangents. However, more recently, rectified linear units
(ReLUs), leaky rectified linear units (leaky ReLUs), and exponential linear units
(ELUs) have gained popularity [1].
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Figure 2.4: An example of 2D convolution with stride equal to 1. In this
illustration, we have an input array I with dimensions 7 × 7 × 1 and a 3 × 3
kernel denoted as K. The result of the convolution operation is referred to as
the feature map, which is a 5 × 5 array.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [6] are a class of NNs designed to handle
data with a grid-like structure, like images. A CNN typically is composed of two
classes of layers: convolutional layers and a pooling layers.

The convolution layer is the core building block of the CNN. Its primary task
is taking a multidimensional array of data as input and producing a transformed
multidimensional array, known as features map, as output. The convolution
transformation consists of a dot product between two arrays: the first array is
a set of learnable parameters known as a kernel, while the second array is a
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restricted portion of the input data. The kernel is spatially smaller than the
input but it has more channels. This means that, if we consider a RGB image
as input (three channels), the kernel’s height and width will be small, but the
depth extends up to all three channels. During the convolution process, the
kernel slides across the height and width of the input array. At each spatial
position, the corresponding elements of the two grids are multiplied and then
summed up to calculate a scalar value. This computation leads to the generation
of a multidimensional features map, which results by the convolution operation
performed at each spatial position within the input array. The sliding size of
the kernel is called stride and determines the dimension of the features map.
The choice of kernel size is a key aspect in CNN design. A smaller kernel size
captures finer details of the input array, whereas a larger kernel size focuses on
larger, more abstract features. A visual representation of convolution applied to
a 2D tensor is provided by Figure 2.4.

Since convolution is a linear operation and images contain non-linear patterns,
introducing non-linearity functions allows the CNN to capture and process
complex features in the feature map. These non-linearity functions are the same
activation functions used in feedforward NNs.

The second class of layers of a CNN are the pooling layers. The pooling layer
substitutes the output of the CNN at a certain location with a summary statistic
computed from nearby outputs. Pooling reduces the spatial dimension of the
feature maps and it is applied individually to each slice of the feature maps.
Various pooling functions exist, including average pooling, which calculates the
average output within the neighborhood, and max pooling, which reports the
maximum output within the neighborhood.

2.2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [7] are a family of NNs designed for processing
sequential data. The key idea behind RNNs is inspired by the way humans
think. When we read a sentence, our understanding of each word relies on what
we’ve comprehended from the preceding words. This persistence of information
is lacking in traditional NNs like MLPs, making them less suitable for processing
sequential data. RNNs address this issue. They are networks that share the
same weights across several time steps, allowing information to persist.

Suppose to operate on a sequence of vectors x(t) = (x(τ), x(τ−1), . . . , x(2), x(1)).
In the left graph of Figure 2.5, a single block of RNN, denoted as h, takes an
input x and generates an output value o. The loop in the graph symbolizes
how information can be propagated from one time step of the network to the
next time step, capturing temporal dependencies within the data. If we unfold
the loop, the RNN can be thought of as a chain of multiple copies of the same
network, each passing a message to a successor, as depicted in the right graph of
Figure 2.5. Specifically, the forward propagation of the RNN shown in Figure 2.5
begins by specifying the initial state h(0). Subsequently, for each time step from
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Figure 2.5: Illustration of a RNN. The left graph shows the compact
representation of the RNN, while on the right, the same structure is displayed as
a time-unfolded computational graph, where each node corresponds to a specific
time instance in the sequence. The RNN consists of three sets of connections:
input-to-hidden connections parametrized by weight matrix U, hidden-to-hidden
recurrent connections parametrized by weight matrix W, and hidden-to-output
connections parametrized by weight matrix V.

t = 1 to t = τ , we utilize the following update equations:

a(t) = b + Wh(t−1) + Ux(t)

h(t) = σ(a(t))
o(t) = c + Vh(t)

(2.7)

where b and c are the bias vectors while U, V and W are the weight matrices for
input-to-hidden, hidden-to-output and hidden-to-hidden connections respectively.
σ is the activation function for the hidden units.

Despite the theoretical capability of RNNs to handle long-term dependencies,
they often have difficulties in effectively learning such dependencies due to the
vanishing or exploding gradient problem [8], [9]. When gradients flow backward
during the training, they can decrease exponentially over time, causing issues in
capturing long-term interactions.

To address this challenge, Long Short-Term Memory networks (LSTMs) were
introduced [8], [10]. LSTMs have a chain-like structure similar to RNNs but
with a different repeating module. The core element of LSTMs is the cell state,
represented by the horizontal line at the top of diagram 2.6. The cell state
functions as a conveyor belt, allowing information to flow along it with some
minor linear interactions. Moreover, LSTMs have three specialized structures
called gates, which selectively control the passage of information by removing
or adding information to the cell state. The gates consist of a sigmoid neural
net layer followed by a pointwise multiplication operation, which outputs values
between zero and one to control the flow. The three gates in an LSTM are
responsible for effectively safeguarding and controlling the cell state.

This design allows LSTMs to overcome the limitations faced by traditional
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Figure 2.6: The block diagram illustrates the structure of an LSTM recurrent
network cell. LSTM cells utilize gating units to control input, state, and output,
enabling efficient handling and storage of information over long sequences.

RNNs making them more effective at handling sequential data with long-term
dependencies.

2.3 Training a neural network

The process of training a NN is a supervised learning problem. The fundamental
steps of NN training are similar to what we described for supervised ML
algorithms: defining a loss function and then using the gradient descent method
to minimize the loss function and find the optimal weights and biases for the NN.
However, the main distinction between linear ML models and NNs lies in the
presence of multiple non-linear hidden layers in NNs, making the computation
of the gradient more complex.

As with any supervised learning procedure, the first step in training a NN
is to define a suitable loss function. Given a data point from the training set
(xi, yi), where xi ∈ Rd+1, the NN makes a prediction ŷi(w), where w represents
the parameters of the NN. The choice of loss function depends on whether you
aim to make continuous or categorical predictions.

For continuous data, common loss functions used to train NNs include the
mean squared error (MSE):

L(w) = 1
n

n∑
i=1

(yi − ŷi(w))2 (2.8)
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and the mean absolute error (MAE):

L(w) = 1
n

n∑
i=1

|yi − ŷi(w)| (2.9)

For categorical data, the most commonly used loss function is the cross-
entropy. In binary data classification, the output of the top layer of the NN
is the probability ŷi(w) = p(yi = 1|xi; w) that data point i is predicted to
belong to category 1. The cross-entropy between the true labels yi ∈ 0, 1 and
the predictions is given by:

L(w) = −
n∑

i=1
yi log ŷi(w) + (1 − yi) log[1 − ŷi(w)] (2.10)

For categorical data with M possible values, y can take on 0, 1, . . . , M − 1.
To handle this, we define a “one-hot” vector yim for each data point i, such that:

yim =
{

1, if yi = m

0, otherwise.
(2.11)

We also define the probability that the NN assigns a data point to category m
as ŷim(w) = p(yi = m|xi; w). Then, the categorical cross-entropy is defined as:

L(w) = −
n∑

i=1

M−1∑
m=0

yim log ŷim(w) + (1 − yim) log[1 − ŷim(w)] (2.12)

Once the NN architecture and the loss function have been specified, gradient
descent-based methods are employed to minimize the loss function and train the
model. The basic idea of the gradient descent method is to iteratively update
the parameters w by moving in the direction of the gradient of the loss function
∇wL(w). The most challenging aspect of training a NN compared to other ML
models is the computation of the gradient.

To calculate the gradient of the loss function concerning the parameters
of the NN, the back-propagation algorithm is utilized. The key idea behind
back-propagation is to apply the chain rule for partial differentiation, starting
from the output layer and propagating the gradients backward to the first layer.
This process efficiently computes the gradients of the loss function with respect
to each parameter in the NN. For a more comprehensive understanding of the
back-propagation algorithm, including its mathematical details, you can find a
complete description in the reference [1].

2.4 Explainable Deep Learning

Explainable DL (X-DL) refers to the development of ML models that can
provide clear and understandable explanations for their decisions and predictions.
In image analysis, X-DL aims to correlate the outputs of DL models to
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specific biomedical properties of the inputs. The importance of X-DL becomes
particularly evident in fields like medical image analysis, where the transparency
and interpretability of a model’s decision-making process can be critical for
gaining the trust of physicians, regulators, and patients. While DL models have
shown great success in a variety of medical diagnostic tasks, their black-box
nature has limited their clinical use. Recent research in X-DL aims to address
this limitation by developing methods for visualizing and interpreting the features
that influence a model’s decisions. These methods can be broadly classified into
following key approaches:

• Visualization Methods: Visualization methods employ scientific visualiza-
tion techniques, such as saliency maps or heatmaps, to highlight input
features that significantly influence the output of a NN. These importance
maps are generated by analyzing the volume of gradients passed through
layers during network training or by comparing the network output of an in-
put with that of a modified copy of the input. By visually representing the
relative importance of different input features, these visualizations provide
intuitive insights into the model’s decision-making process, making it easier
to understand how the model arrives to its predictions [11]. For example,
in the reference [12], the authors addressed a DL classification problem
involving X-rays of patients with COVID-19 or pneumonia. They employed
a visualization X-DL approach to generate heatmaps that highlighted the
regions of the X-ray that most influenced the DL model’s classification.

• Model Distillation: Model distillation involves training a separate, “white
box” ML model to mimic the input-output behavior of the DL model. Two
popular techniques for explaining DL model decisions are LIME (Local
Interpretable Model-Agnostic Explanations) [13] and SHAP (SHapley
Additive exPlanations) [14].
LIME is a local approximation method that explains the predictions of any
black box model by approximating it with a simpler, interpretable model
that is locally faithful to the original model. LIME uses perturbation-
based sampling to generate a dataset of interpretable instances around the
input instance of interest, and then fits a simplified model to explain the
predictions of the black box model on this instance. This information is
then used to create an explanation that shows which features of the input
were most important for the model’s prediction.
SHAP explains the predictions of any black box model by assigning a value
to each input feature, called the Shapley value, indicating its contribution
to the prediction. This value is determined using a game-theoretical
approach involving perturbing or removing parts of the input to identify
regions in the input that the model’s output is sensitive to. While SHAP
is considered a local approximation method, we can run it multiple times
on different input instances to obtain global explanations. For example, in
the work [15], the authors introduce an interpretable prediction pipeline
for classifying gene mutations based on radiomics MRI data from glioma
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patients. They utilize SHAP values to evaluate the global impact of each
radiomic feature on model predictions. Since the radiomic features have
a specific mathematical definition, it is easier to correlate them with a
physical or biological meaning.

• Intrinsic Methods: Intrinsic methods are a class of NNs specifically
designed to generate explanations along with their predictions. Intrinsic
explainability offers a more integrated approach to understanding DL
models, because it includes explanation generation into the model’s
architecture. Two popular methods in intrinsic methods are: i) introducing
attention mechanisms to a NN to create a vector of weights that accounts
for the relevance of input units to the task [16], and ii) adding additional
explanation task to the original model task, and jointly training the
explanation task along with the original task [17]. For instance, in the
work [18], the authors introduced CA-Net, a DL architecture that utilizes
attention mechanisms. This model not only generates segmentation masks
but also yields interpretable attention maps that highlight the regions of
the input images that most influence the segmentation decision.

In summary, these techniques provide valuable tools for enhancing the
explainability of DL models, making them more transparent and trustworthy for
deployment in critical applications. For a comprehensive review of explainable
DL algorithms and their diverse applications, please refer to the references [19],
[20].
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Segmentation of biomedical
images





Introduction

Image segmentation is the process of dividing an image into distinct and
meaningful regions of interest (ROIs), each characterized by specific attributes
such as proximity, gray level, color, texture, brightness, or contrast [1]–[3]. In
the biomedical imaging field these ROIs may correspond to organs, tissues,
pathologies or other biologically relevant structures. Popular biomedical image
segmentation tasks include the segmentation of brain and brain tumors [4], [5],
lungs and pulmonary nodules [6], [7], liver and liver tumors [8], cells [9] and
more [10].

Let Ω represent the image domain. The goal of segmentation is to find sets
Sk ⊂ Ω in such a way that their union covers the entire Ω. This can be expressed
mathematically as:

Ω =
K⋃

k=1
Sk (2.13)

where, Sk ∩ Sj = ∅ for k ̸= j and K is the total number of regions. In certain
applications, the value of K is assumed to be known based on prior knowledge
of the anatomy being considered. For example, in the segmentation of MR brain
images, it is common to assume that K = 3, representing the gray matter, white
matter, and cerebrospinal fluid tissue classes. In some different scenarios, the
total number of regions cannot be chosen a priori. This is particularly evident in
cases where regions are fragmented or consist of non-contiguous portions due to
the intricate nature of tissues or anatomical structures, as shown in Figure 2.7.

Figure 2.7: Different applications of biomedical image segmentation, i.e. (from
left to right) segmentation of blood vessels, skin cancer, lung, cell nuclei and
tissue classes. Source [11].
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In recent years, numerous algorithms have been developed for the segmenta-
tion of biomedical images [12]. These methods can be broadly categorized into
the following:

1. Thresholding: thresholding is a straightforward and computationally
efficient technique that segments an image based on a predefined intensity
threshold value. Pixels with intensity values exceeding the threshold are
classified as foreground, while those below are considered background. This
method is particularly effective for images with clear contrast between
foreground and background regions. However, its performance may
deteriorate in images with uneven illumination or intricate backgrounds [13].

2. Region-based methods: region-based methods group pixels into regions
based on their intensity values and spatial relationships. These methods
are well-suited for images containing homogeneous regions but may struggle
with complex structures or overlapping regions.

• Region growing: this algorithm initiates from a seed pixel and expands
the region by incorporating neighboring pixels that meet specific
criteria, such as intensity similarity (i.e. similarity in the pixel intensity
values) or texture similarity (i.e. similarity in the spatial arrangement
of pixel intensities) [14].

• Region split and merge: this method involves dividing an image
into quadrants and iteratively merging adjacent regions found to be
uniform based on predefined rules, such as intensity, texture, size, and
shape [15].

• Watershed approach: watershed segmentation is a method that treats
an image like a topography, with brighter pixels representing mountain
peaks and darker pixels representing valleys. It identifies boundaries
by flooding the image with water (i.e. mask label) from seeds placed
in the valleys. Water from different seeds doesn’t mix, creating dams
that represent object boundaries [16].

3. Clustering: clustering algorithms group pixels based on their similarity
in intensity values or other features [17], [18]. Techniques like k-means,
an iterative method that groups data points into a predefined number
of clusters where each data point belongs to the cluster with the nearest
mean, and fuzzy c-means, a data clustering algorithm that allows each data
point to belong to multiple clusters with varying degrees of membership,
are commonly employed for this task. While clustering is beneficial for
images with multiple regions, it may not perform well on images with
overlapping regions. A more detailed description of clustering models for
biomedical image segmentation, including k-means and fuzzy c-means, will
be provided in the following sections.
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4. Edge Detection: edge detection aims to identify the boundaries between
distinct regions in an image. These boundaries, or edges, represent
the transition points between areas with varying intensity levels. One
widely used edge detection algorithm is the Laplacian of Gaussian (LoG)
filter [19]. This algorithm operates by convolving the image with a LoG
kernel, a combination of the Gaussian filter and the Laplacian filter. The
Gaussian filter is first used to smooth the image, which reduces noise. The
Laplacian filter is then used to find edges in the smoothed image. This
convolution process highlights areas where the intensity values undergo
significant changes, effectively identifying the image’s edges. The LoG
filter is particularly effective for images with clear and distinct boundaries
between regions. However, it may encounter challenges when dealing with
low-contrast or noisy images.

5. Graph-based approaches: these techniques represent the image as a graph,
where nodes correspond to pixels and edges represent connections between
pixels. The weights of the edges are determined based on the similarity or
dissimilarity between neighboring pixels such as the difference in color or
intensity values, effectively capturing the relationships within the image.
Utilizing the graph structure, the graph-based approach transforms the
image segmentation problem into a graph partition problem, enabling the
application of diverse graph-partitioning algorithms. For example, the
graph-cut algorithm identifies the cut on the graph with the minimum
weight, where a cut is a set of edges that divides the graph into two distinct
regions: foreground and background [20].

6. Model-based: model-based methods segment an image by employing a
model that describes the features of the object of interest. These methods
are particularly effective for objects with identifiable and consistent visual
traits throughout the entire image.

• Atlas-based approach: this method utilizes a reference image, known as
atlas, to guide the segmentation of a target image. The atlas contains
manually segmented regions of interest, which provide prior knowledge
about the expected appearance of objects in the target image. The
atlas regions are deformed to align with the target image [21], [22].

• Machine Learning and Deep Learning models: unlike the previously
mentioned methods, which depend on manually crafted features and
explicit programming, ML and DL models can automatically learn
segmentation tasks directly from labeled examples. This is facilitated
by their capacity to extract significant features directly from raw
images, eliminating the necessity for manual feature engineering. In
particular, it has been demonstrated that CNNs excel at identifying
intricate patterns and relationships within images, leading to state-
of-the-art performance in various biomedical segmentation tasks [10],
[23]. A more comprehensive discussion of DL models for biomedical
image segmentation will be presented in the following sections.
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Nevertheless, the process of segmenting biomedical images presents three
fundamental challenges related to specific image characteristics [3]. The first
challenge originates from the noise introduced by sensors and electronic systems.
This noise can potentially alter pixel intensities and introduce uncertainty into
their categorization. The second challenge is related to intensity inhomogeneity,
in which homogeneous tissues appear non-uniform in the image due to gradual
variations in intensity levels across its extent. Examples of this phenomenon
encompass motion artifacts, ring artifacts, or ghosting. The third issue is related
to the finite pixel dimensions that lead to the partial volume effect, where
individual pixel volumes encompass mixtures of different tissue classes, causing
pixel intensities to deviate from a single class assignment. All these factors
combine to make biomedical image segmentation a highly complex task.

To effectively assess the performance of biomedical image segmentation
models, a large number of metrics have been introduced to evaluate their
segmentation quality [10]. These metrics provide quantitative measures of the
similarity between the segmented regions and ground truth annotations created
by a medical expert. In the following, we give some insights of some popular
metrics for evaluating the performance of medical image segmentation. These
metrics will be used to evaluate the performance of the segmentation algorithms
presented in subsequent works.

The first metric is the Dice Similarity Coefficient (DSCmetric), which
quantifies the overlap between the segmented region and the ground truth
region. It is defined as:

DSCmetric = 2 × |Strue ∩ Sest|
|Strue| + |Sest|

(2.14)

where Strue represents the corresponding ground truth region for the segmented
region Sest. The DSCmetric ranges from 0 to 1, where 1 indicates a perfect
match between the segmentation and the ground truth.

Another important metric is the Jaccard Index (JImetric), also known as the
Intersection over Union (IoU). It is defined as:

JImetric = |Strue ∩ Sest|
|Strue ∪ Sest|

(2.15)

Similar to the DSCmetric, the Jaccard Index provides a measure of how well the
segmented region aligns with the ground truth region. It also ranges from 0 to
1, with 1 representing a perfect match.

Furthermore, segmentation metrics can also be used in the training phase
of neural networks for image segmentation tasks. When these metrics are
differentiable with respect to the model’s parameters, they can be utilized
as loss functions during the training process. In addition to the previously
defined metrics (where DSCloss = 1 − DSCmetric and JIloss = 1 − JImetric),
a commonly employed function for training purposes is the Cross-Entropy, as
defined in Equation 2.12. In the context of image segmentation, where the task
involves classifying each pixel into different categories corresponding to different
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ROIs, the Cross-Entropy is used to assess how well the predicted pixel-wise
probability distribution aligns with the ground truth distribution. This loss
function would have a value of zero only if there is a perfect match between the
segmentation mask predicted by the model and the true segmentation mask.
Moreover, in cases where classes are imbalanced, which occurs when the ROI
area is much smaller than the background area, a weighted Cross-Entropy can
be employed. This approach involves assigning distinct weights wc to each class
c, which take into account class frequencies or other weighting factors relevant
for the task.

The two works that will be described in the following paragraphs are located
in this context. The first study, detailed in paper I, presents a clustering model
based on statistical mechanics. The second research project, discussed in paper II,
describes a DL model designed for the automatic segmentation and quantification
of COVID-19 pulmonary damage. The following paragraphs will provide an
overview of clustering methods, as well as an introduction to the U-Net algorithm
used for image segmentation. These principles constitute the fundamental basis
of the two segmentation models that will be discussed in the next sections.

Clustering for segmentation of biomedical images

In the field of image analysis, a strategy often adopted to perform image
segmentation involves the use of clustering algorithms [1], [12]. Clustering
is an unsupervised learning technique whose goal is to categorize unlabeled data
into clusters, using measures of similarity or distance. Specifically, a cluster is
defined as a collection of points that exhibit a common pattern or structure.
Clustering is one of the main examples of unsupervised learning models, since it
doesn’t rely on labeled data for its operation.

The task of image segmentation can be understood as a clustering process,
where the goal is to group similar pixels together based on a specific feature
vector. This feature vector could represent a range of attributes extracted from
the local neighborhood of each pixel, such as pixel intensity, color value, pixel
intensity variations, and other characteristics that offer insights into the visual
content of the image. By analyzing these feature vectors, the clustering algorithm
identifies and groups pixels with similar feature vectors, effectively dividing the
image into homogeneous regions.

One widely used clustering algorithm is k-means. This algorithm iteratively
computes mean intensities for each cluster and subsequently segments the image
by attributing each pixel to the cluster whose mean intensity is closest. Another
example is the fuzzy c-means algorithm, which extends the k-means algorithm’s
functionality by facilitating adaptable segmentations thanks to the principles
of fuzzy set theory. This theory allows data points to exist in multiple clusters
with varying degrees of membership, resulting in a more versatile representation
of the underlying data structure.

However, it has been shown in the works [1], [24] that clustering algorithms
can be sensitive to noise and intensity inhomogeneities, which are features often
encountered in biomedical images. In this context, in paper I we propose
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a clustering method based on statistical mechanics to specifically segment
biomedical images even in the presence of noise or intensity inhomogeneities.

Unet

A different approach to image segmentation involves the use of deep neural
networks, especially CNNs. CNNs excel at capturing intricate patterns and
relationships within the images, leading to state-of-the-art performance in many
biomedical image segmentation tasks. The U-Net architecture is a specialized
CNN design developed primarily to address image segmentation problems. Its
structure takes the form of the letter “U” composed by an encoder path, a decoder
path, and a central connecting middle block. This innovative architecture was
first introduced in 2015 in the work by Ronneberger et al. [25]

In more detail, the encoder path is constructed with a series of convolutional
and pooling layers. This configuration enables the extraction of higher-level
features from the input image, progressively reducing its spatial dimensions while
enhancing its feature depth. Subsequently, the decoder path is composed of
transposed convolutions and upscaling layers. These operations are employed
to restore the initial spatial resolution of the encoded features. A middle block,
consisting of several convolutional layers, connects the encoder and decoder.

The exceptional segmentation performance is determined by skip connections
i.e. links between the encoder and decoder paths. Skip connections consist
of concatenating feature vectors from the encoder to the decoder path. These
connections facilitate the extraction of local features and play a crucial role in
enhancing the network’s ability to distinguish intricate boundaries.

Through this architecture, the U-Net integrates high-resolution features with
fine-grained details, enhancing the precision of localization in segmentation tasks.
The U-Net architecture demonstrates a remarkable capability to handle diverse
image sizes while preserving intricate details, making it highly suitable for a
variety of biomedical imaging segmentation tasks.

A kinetic approach to consensus-based segmentation of
biomedical images

In the first paper I of this chapter, we propose a novel segmentation method
that uses a clustering model based on statistical mechanics. This approach is
in line with statistical mechanics-based techniques that have been increasingly
applied across a diverse range of social and biological applications [26]–[28].

The central concept behind these approaches is to employ the mathematical
framework from the physics of gases to describe the behavior of groups of
interacting agents. In the dynamics of gases, molecules are characterized by
properties such as position and velocity and interact with each other through
the exchange of kinetic energy. Similarly, other categories of agents may exhibit
distinct microscopic states and interact based on application-specific rules. As
in the case of gases collective properties emerge from the interactions of a
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multitude of particles, the same phenomenon can occur in social or biological
systems. Furthermore, when dealing with a large number of agents, a statistical
description becomes feasible. In particular, since the total number of agents is
assumed constant, it is possible to introduce a probability distribution function
to describe the statistical distribution of the states of the agents. The evolution
of this probability distribution function follows the Boltzmann equation, which,
however, can pose challenges for analytical solutions. Consequently, numerical
techniques are widely adopted, such as Monte Carlo direct simulations (DSMC)
in the form of Nanbu-Babovsky [29] or Bird schemes [30].

In more detail, the primary objective of our work is to extend the clustering
model proposed in [31] for image segmentation in the biomedical imaging field.
The model is based on the Hegselmann-Krause aggregation model, originally
designed for opinion dynamics but adapted to handle image data. The key idea
of this approach is to represent each pixel as a particle with a time-dependent
position vector and a static feature (gray level). These particles interact until they
reach an equilibrium state, resulting in the formation of clusters that represent
the segmentation regions. To enhance the model’s flexibility, we introduce a non-
constant diffusion term dependent on the pixel’s gray level, allowing us to account
for stochastic variations in the image acquisition process. By incorporating the
diffusion coefficient into the binary interaction rules, we derive the Boltzmann
formulation of the model. This formulation enables the development of a DSMC,
making the simulation of binary collision dynamics computationally efficient.
The proposed extension overcomes the time-consuming limitations of the random
subset algorithm proposed in [31], making it applicable to high-dimensional
biomedical images.

Additionally, we propose an optimization strategy for internal parameter
configuration. Using a suitable loss function measuring the distance between
the ground truth segmentation mask and the evaluated mask, we determine
the optimal configuration of the parameters that minimizes the introduced
segmentation metric. We test this system on three different biomedical datasets:
the HL60 cell nuclei dataset, the brain tumor dataset, and the thigh muscles
dataset. Promising results are achieved for the HL60 cell nuclei and brain tumor
datasets, while segmentation precision is lower for the thigh muscles dataset. To
address this complexity, we propose a patch-based approach, dividing the image
into smaller arrays and applying the segmentation system to subregions. This
improves the quality of the segmentation mask in the thigh muscles dataset.

Quantification of pulmonary involvement in COVID-19 pneumonia
by means of a cascade of two U-nets: training and assessment on
multiple datasets using different annotation criteria

In the second paper II of this chapter, we propose a fully automated DL system to
segment and quantify coronavirus disease 2019 (COVID-19) pulmonary lesions
from CT images. COVID-19 is a highly infectious disease caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has been observed

31



Introduction

that COVID-19 can affect various organ systems, including the lungs, brain,
kidneys, liver, gastrointestinal tract, and cardiovascular system. One of the most
common and visible complications of COVID-19, even in the early stages, is
pneumonia. Chest CT scans are commonly employed to evaluate COVID-19-
related pneumonia due to their significance in diagnosing and assessing various
lung conditions. Common findings on CT scans of affected subjects include
ground-glass opacities and consolidations. These lesions often exhibit patchy
or bilateral distributions and can impact different lung lobes. Moreover, their
appearance may evolve over time in response to disease progression or treatment.
Quantifying the extent of lung lesions in COVID-19 patients may offer insight into
disease severity, assisting in patient management and treatment strategies [32],
[33].

A widely adopted evaluation approach is the CT-Severity Score (CT-SS),
which evaluates the volume of lesion opacifications and total lung volume,
assigning a score based on their percentage of involvement. CT-SS has
been demonstrated to directly correlate with disease severity [34]. However,
distinguishing COVID-19 lesions from healthy lung tissue on CT images can be
challenging due to variations in texture, shape, and distribution within the lung
among different patients. These factors pose significant obstacles to mechanistic
segmentation methods. Conversely, DL-based approaches such as CNNs are
valuable tools for effectively addressing this complex task.

In our work, we propose the DL-based method, named the LungQuant system,
for the automated quantification of CT-SS. Our analysis pipeline consists of a
cascade of two U-nets. The first U-net is dedicated to identifying the lung
parenchyma, while the second one focuses on detecting COVID-19 lesions
within the segmented lungs. The system outputs the estimated percentage
of compromised lung volume, calculated as the ratio between the volume of
COVID-19 lesions and the total lung volume. This percentage is further converted
into CT-SS. The system was trained on publicly available data and evaluated
using different datasets, heterogeneously populated and annotated according
to different criteria. Our results reveal that the performance of the DL-based
segmentation is influenced by the quality of annotations in the datasets.

In the following work [35], we refined the LungQuant system by incorporating
an additional CNN to crop CT scans closer to the lungs, achieving stable
performance across different CT-SS classes. Additionally, the system underwent
validation in a multicentric study [36] involving 14 clinical experts, confirming
its accuracy and effectiveness in classifying CT-SS.
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Abstract

In this work, we apply a kinetic version of a bounded confidence consensus
model to biomedical segmentation problems. In the presented approach,
time-dependent information on the microscopic state of each particle/pixel
includes its space position and a feature representing a static characteristic
of the system, i.e. the gray level of each pixel. From the introduced
microscopic model we derive a kinetic formulation of the model. The large
time behavior of the system is then computed with the aid of a surrogate
Fokker-Planck approach that can be obtained in the quasi-invariant scaling.
We exploit the computational efficiency of direct simulation Monte Carlo
methods for the obtained Boltzmann-type description of the problem
for parameter identification tasks. Based on a suitable loss function
measuring the distance between the ground truth segmentation mask and
the evaluated mask, we minimize the introduced segmentation metric
for a relevant set of 2D gray-scale images. Applications to biomedical
segmentation concentrate on different imaging research contexts.
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I A kinetic approach to consensus-based segmentation of biomedical images

I.1 Introduction

In image processing and computer vision, image segmentation is a fundamental
process to subdivide images in subsets of pixels that has found application in
many research contexts [1]. In the field of medical imaging, the identification of
image subregions is a powerful tool for tissue recognition to track pathological
changes. Image segmentation can help clinical studies of anatomical structures
and in the identification of regions of interest, and to measure tissue volume for
clinical purposes.

The main goal of image segmentation is to divide the image into a set of pixel
regions that share similar properties such as closeness, gray level, color, texture,
brightness, and contrast [2]. By converting an image into a group of segments,
it is possible to process only the important areas instead of studying the entire
image. To this end, various computational strategies and mathematical methods
have been developed in the last decades. Among them, Neural Networks (NNs)
are one of the most common strategies used in modern image segmentation
problems. These techniques can approximate, starting from a series of examples,
the nonlinear function between the inputs and the outputs of interest. It has been
observed that well trained NNs can achieve good segmentation accuracy even
with complex images [3]–[6]. Anyway, the approximation obtained through NNs
may require extensive supervised training procedure. Indeed, the performances of
NNs essentially depend on the adopted training procedure and on the availability
of unbiased data [7].

A different approach to image segmentation is based on clustering techniques
such as the k–means method, the c–means method, hierarchical clustering
method and genetic algorithms [8], [9]. We refer to clustering process as a
dynamics to identifying groups of similar data points according to some observed
characteristics. These strategies belong to the category of the unsupervised
algorithms since they do not require a training procedure and do not depend on
training datasets. It can be observed that image segmentation is a clustering
process where the pixels are classified into multiple distinct regions so that pixels
within each group are homogeneous with respect to certain features, while pixels
in different groups are different from each other [10]–[13].

In this work, following the approach introduced in the recent work [14] for
clustering problems, we adopt a mathematical strategy to image segmentation
that is based on consensus dynamics of large systems of agents. In this direction,
we adopt a kinetic-type approach by rewriting generalized Hegselmann-Krause
(HK) microscopic consensus models in terms of a binary scheme. The evolutions
of aggregate quantities are then obtained through a Boltzmann-type model whose
steady state can be approximated by means of a quasi-invariant approach [15].
Indeed, in the mentioned scaling, a reduced complexity Fokker-Planck model
corresponds, in the zero-diffusion limit, to the mean-field model defined in [14].
Suitable steady state preserving numerical methods can be applied to verify the
consistency of the approach.

Following the approach in [14], each pixel is represented by a particle
characterized by a time-dependent position vector and a static feature that
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Modelling consensus dynamics

describes an intrinsic property of the particle, i.e. the gray level of the pixel.
Particles interact with each other until they reach the equilibrium state in
which they group into a finite number of clusters. Hence, a segmentation mask is
generated by assigning the mean of their gray levels to each cluster of particles and
by applying a binary threshold. The two main advantages of this segmentation
system compared to other standard clustering techniques such as the k–means
method, are that the clustering process also takes into account the gray level of
the pixels and not just their reciprocal positions and it is not necessary to select
in advance the final number of the clusters.

In the following, we apply a particle-based clustering method to biomedical
image segmentation problems. In particular, we will incorporate in the model a
non-constant diffusion term which depends on the gray level of the pixel which
consent to quantify aleatoric uncertainties in the segmentation pipeline. The
aleatoric uncertainties derive from image acquisition processes and can affect
the quality of the considered image.

The Boltzmann-type formulation of the problem allows to apply a direct
Monte Carlo method to simulate the binary collision dynamics with a
computational cost directly proportional to the number of particles N of the
system, as described in [15]. The computational efficiency is important for
parameter identification purposes since the segmentation masks to optimize
corresponds to the large time distribution of the system. Applications to
biomedical images will be presented to test the performance of the proposed
method. In more detail, the manuscript is organized as follows. In Section I.2
we introduce the generalized Hegselmann-Krause model for image segmentation.
The evolution of aggregate quantities are then obtained by means of a Boltzmann-
type equation in Section I.3.1. We derived a surrogate Fokker-Planck model for
which the large time distribution can be efficiently computed and compared with
the one of the Boltzmann-type model. In Section I.4 we describe how to generate
segmentation masks and in section I.4.1 the strategy to optimize the model
parameters is discussed. In Section I.4.2 we apply the proposed segmentation
pipeline to three different biomedical image datasets. Finally, in Section I.4.3 we
propose a patch-based version of the method that we apply for the segmentation
of Magnetic Resonance Images of the thigh muscles. Our numerical experiments
show that the introduced segmentation method achieves good performances for
the tested images.

I.2 Modelling consensus dynamics

The study of consensus formation has gained great interest in the field of opinion
dynamics to understand the basic ingredients underlying the phenomena of
choice formation in connected communities. Several mathematical models of
consensus have been proposed in the form of systems of first order ordinary
differential equations (ODEs) or binary algorithms describing the behaviour of a
finite number of particles/agents. In this direction, we mention the pioneering
works [16], [17] where simple agent-based models were introduced to observe the
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I A kinetic approach to consensus-based segmentation of biomedical images

relative influence among individuals, see also [18] for a stochastic version of the
above information exchange processes.

In recent years, several differential models of consensus have been introduced
to understand the underlying social forces of social phenomena. Without
intending to review all the literature, we point the interested readers to some
references for finite systems: in [19], [20] simple Ising spin models have been
introduced to mimic the mechanisms of decision making in closed communities,
in [21] a binary scheme is adopted to measure the convergence towards consensus
under interaction limitations. Furthermore, models incorporating leader-follower
effect have been considered in [22] and models of social interaction on networks
have been studied in [23]. Finally, in [24] a microscopic modelling approach is
considered to measure convergence towards consensus in the case of asymmetric
interactions. For a review we mention [25]. We highlight how consensus-like
dynamics may model heterogeneous phenomena, see e.g. flocking dynamics [26],
[27] or economic interactions [28], [29].

Beside microscopic particle-based models for consensus dynamics, in the limit
of infinitely many agents, it is possible to cope with the evolution of distribution
functions characterizing the aggregate trends of the interacting systems. These
approaches are generally based on kinetic-type partial differential equations
(PDEs) and are capable of linking microscopic forces to emerging features of
the system. In this direction we mention [30]–[36] and the references therein.
For macroscopic models of consensus dynamics we point the interested reader to
[37], [38].

I.2.1 The bounded confidence model

In the following, we consider a population of N ≥ 2 particles characterized
by an initial state xi(0) ∈ X ⊆ R. Each particle i ∈ {1, . . . , N} modifies its
state xi ∈ X through the interaction with the particle j ∈ {1, . . . , N}, j ̸= i,
only if xi is sufficiently close to xj , i.e. |xi − xj | ≤ ∆, being ∆ > 0 a suitable
threshold. This model stresses the homophily in learning processes and is known
as Hegselmann-Krause (HK) model [39], see [40] for a survey. At the time-
continuous level, the dynamics of the ith particle may be suitably defined as
follows

d

dt
xi = α

N∑
j=1

χ(|xj − xi| ≤ ∆)(xj − xi) i = 1, . . . , N (I.1)

where χ(·) is a characteristic function and defines the bounded confidence
interaction scheme, and α > 0 is a suitable scaling constant measuring that
contribution of each interaction. Generally, it is assumed α = 1/N such that, if
X = [−1, 1] and ∆ = 2 the system converges towards the mean x̄ = 1

N

∑N
j=1 xj(t).

Furthermore, it has been proved that the HK model converges to a steady
configuration where the initial states are grouped in a finite number of clusters,
see [24], [41], [42]. In Figure III.1 we show the dynamics of a system of N = 100
particles according to the HK model for different values of the threshold ∆ > 0.
We may easily observe how multiple clusters appear for small values of ∆ > 0.
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(a) ∆ = 1 (b) ∆ = 0.5 (c) ∆ = 0.3

Figure I.1: Results of the Hegselmann-Krause bounded confidence model for
three different values of the ∆ threshold. At the initial time we selected N = 100
particles equally spaced in [−1, 1].

I.2.2 Consensus models in segmentation problems

An application of the HK model to image segmentation problems has been
proposed in [14]. The key idea of this approach is to link each particle
i ∈ {1, . . . , N} to a time-dependent position xi = (xi(y), yi(t)) ∈ R2 and a
scalar quantity expressing a feature ci ∈ [0, 1] and corresponding to a static
characteristic of the system. In particular, in the following ci ∈ [0, 1] expresses
the gray level of the ith pixel. In this setting, the consensus process defined in
(I.1) depends also on the feature of the system and assumes the following form

d

dt
xi = 1

N

N∑
j=1

P∆1,∆2(xi, xj , ci, cj)(xj − xi)

d

dt
ci = 0 i = 1, . . . , N

(I.2)

where xi(0) = x0
i , ci(0) = c0

i and where we introduced the interaction function

P∆1,∆2(xi, xj , ci, cj) = χ(|xj − xi| ≤ ∆1)χ(|cj − ci| ≤ ∆2) (I.3)

and ∆1 ≥ 0 and ∆2 ≥ 0 are the confidence intervals of the position vectors and
of the gray levels, respectively. In (I.3) the function χ(·) is the characteristic
function. The two introduced scalar and image-dependent quantities are
particularly important to determine the optimal segmentation masks. Indeed,
they determine the confidence level under which the ith pixel tends to form a
cluster through interactions with the whole set of pixels determining the image.

It is important to highlight that biomedical images are often affected by
ambiguities due to several sources of uncertainty linked to both clinical factors
and to possible bottlenecks in data acquisition processes [43], [44]. Among them
it is possible to distinguish two major types of uncertainty, we may refer to
the first as aleatoric uncertainty and is linked to stochasticities in the data
collection process. In this case, we have to face reconstruction problems in which
the image processing models suffer raw acquisition data. On the other hand,
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I A kinetic approach to consensus-based segmentation of biomedical images

the second kind of uncertainty is of epistemic-type and determines deviation of
model parameters. In particular, in medical imaging MRI (Magnetic Resonance
Imaging) scans may lead to ambiguous segmentation outputs [45]. In this regard,
the study of uncertainty quantification in image segmentation is a growing field to
produce robust segmentation algorithms that are capable of avoiding erroneous
results.

Therefore, in order to take into account aleatoric-type uncertainties affecting
the correct feature of an image we consider a stochastic consensus model. In
particular, we concentrate on the stochastic version of (I.2) whose form is defined
as follows

dxi = 1
N

N∑
j=1

P∆1,∆2(xi, xj , ci, cj)(xj − xi)dt +
√

2σ2D(ci)dWi

d

dt
ci = 0, i = 1, . . . , N

(I.4)

where the interaction function is compatible with (I.3), xi(0) ∈ R2, ci(0) ∈ [0, 1]
and Wi’s are independent Wiener processes. Furthermore, since marked
deviations can be expected far from the boundaries of the features’ domain, we
consider a non-uniform impact of the introduced aleatoric uncertainty. To this
end, we consider a local diffusion function D(c) such that D(0) = D(1) = 0. A
possible form of this function is D(c) = c(1 − c), c ∈ [0, 1]. In (I.4) the diffusion
is weighted by the parameter σ2 > 0. In Section I.4.4, other choices of the local
diffusion function D(c) will be considered.

I.3 Kinetic models for image segmentation

In [14] the mean-field limit of the generalized HK model is studied and it is
formally argued that for N → ∞ a system of particles whose dynamics is (I.2)
can be described in terms of the following nonlocal partial differential equation

∂tf(x, c, t) = ∇x · [B[f ]∆1,∆2(x, c, t))f(x, c, t)]
f(x, c, 0) = f0(x, c)

(I.5)

where B∆1,∆2 [f ](t, x, c) is the operator that describes the interaction dynamics
and is defined as

B∆1,∆2 [f ](x, c, t) =
∫ 1

0

∫
R2

P∆1,∆2(x, x∗, c, c∗)(x − x∗)f(x∗, c∗, t)dx∗dc∗, (I.6)

where the interaction function P∆1,∆2(x, x∗, c, c∗) is defined as in (I.3). In the
following, we argue how the same model can be obtained in suitable limits from
binary interaction dynamics.

I.3.1 Boltzmann-type derivation

In order to define consensus dynamics from the point of view of kinetic theory
we set up a consistent binary scheme defining the interactions between pixels.
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Kinetic models for image segmentation

To this end, inspired by [15], [46], we consider the dynamics defined in (I.4) for
two particles characterized by positions xi, xj ∈ R2 and features ci, cj ∈ [0, 1].
Hence, we introduce a time discretization at the level of particles with time step
ϵ > 0. Setting

x := xi(t), x∗ := xj(t), x′ = xi(t + ϵ), x′
∗ = xj(t + ϵ),

c := ci(t), c∗ := cj(t), c′ := ci(t + ϵ), c′
∗ := cj(t + ϵ),

we may discretise the stochastic differential equation with Euler-Maruyama
scheme with time step ϵ > 0 to obtain the following binary dynamics

x′ = x + ϵP∆1,∆2(x, x∗, c, c∗)(x∗ − x) +
√

2σ2D(c)η
c′ = c

x′
∗ = x∗ + ϵP∆1,∆2(x∗, x, c∗, c)(x − x∗) +

√
2σ2D(c∗)η

c′
∗ = c∗

(I.7)

where η = (ηi, ηj) is a centered 2D Gaussian random variable such that

⟨η⟩ = (0, 0) ⟨ηiηj⟩ = Σij , i, j = 1, 2 (I.8)

where ⟨·⟩ denotes the integration with respect to the distribution of η and
Σ = (Σij)i,j=1,2 is a diagonal matrix with unitary diagonal components. A first
important consequence of the binary scheme (I.7) with D ≡ 0 is that the support
of the positions can not increase. Indeed, since P∆1,∆2 ∈ [0, 1] and ϵ ∈ (0, 1) we
have

|x| = |(1 − ϵP∆1,∆2)x + ϵP∆1,∆2x∗| ≤ (1 − ϵP∆1,∆2)|x| + ϵP∆1,∆2 |x∗|
≤ max{|x|, |x∗|}.

Furthermore, we can observe that, as in [36], the binary interactions (I.7) are
such that

⟨x′ + x′
∗⟩ = x + x∗ + ϵ (P∆1,∆2(x, x∗, c, c∗) − P∆1,∆2(x∗, x, c∗, c)) (x∗ − x)

= x + x∗,

(I.9)

meaning that, since the interaction function P∆1,∆2 is symmetric, the mean is
conserved on average in a single binary interaction.

In general, for the introduced interaction function (I.3) the energy is not
conserved. A particularly simple case may be obtained by considering P∆1,∆2

constant. In this case, from (I.9) we deduce that the mean position is conserved
in each binary interaction, whereas if σ2 = 0, the mean energy is dissipated

Let us introduce the distribution function f = f(x, c, t) : R2×[0, 1]×R+ → R+
such that f(x, c, t)dxdc is the fraction of particles which at time t ≥ 0 are
represented by their position in x ∈ R2 and feature c ∈ [0, 1]. The evolution
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I A kinetic approach to consensus-based segmentation of biomedical images

of f undergoing binary interactions (I.7) can be described in the following
Boltzmann-type kinetic equation

∂tf(x, c, t)

=
〈∫ 1

0

∫
R2

1
′J

(f(′x, ′c, t)f(′x∗, ′c∗, t) − f(x, c, t)f(x∗, c∗, t))dx∗dc∗

〉
,

(I.10)

where (′x, ′x∗) are the pre-interaction positions which generate the postinter-
action positions (x, x∗) according to the interaction rule (I.7). Similarly, we
denoted with (′c, ′c∗) the preinteraction features generating the postinteraction
features (c, c∗). Anyway, following the scheme (I.7), the dynamics do not pre-
scribe evolution of the features. Finally, we denoted by ′J the Jacobian of the
transformation (′x, ′x∗) → (x, x∗).

Equation (I.10) may be recast in weak form as follows

d

dt

∫
[0,1]

∫
R2

ϕ(x, c)f(x, c, t)dxdc

=
∫

[0,1]2

∫
R4

⟨ϕ(x′, c′) − ϕ(x, c)⟩ f(x, c, t)f(x∗, c∗, t)dxdcdx∗dc∗,

(I.11)

where ϕ(x, c) : R2 × [0, 1] → R is a test function. Choosing ϕ(x, c) = 1, we get
that the total mass of f is constant in time, meaning that the total number of
particles/pixels are conserved. Choosing instead ϕ(x, c) = x we get

d

dt

∫ 1

0

∫
R2

xf(x, c, t)dxdc

= ϵ

∫
[0,1]2

∫
R4

(P∆1,∆2(x, x∗, c, c∗) − P∆1,∆2(x∗, x, c∗, c))(x∗ − x)

× f(x, c, t)f(x∗, c∗, t)dxdx∗dcdc∗.

Therefore, the mean position M =
∫ 1

0
∫
R2 xf(x, c, t)dxdc is conserved in time

being P∆1,∆2 symmetric.
In the following, we introduce a suitable scaling under which we can obtain

the nonlocal mean-field model (I.5) starting from the binary interaction scheme
(I.7). The procedure is based on the quasi-invariant regime introduced in [36].
We introduce the new time scale τ = ϵt, we scale the distribution function
g(x, c, τ) = f(x, c, τ/ϵ), and we introduce the following scaling for the variance

σ2 → ϵσ2. (I.12)

We observe that ∂τ g = 1
ϵ ∂tf and the equation satisfied by g is

d

dτ

∫ 1

0

∫
R2

ϕ(x, c)g(x, c, τ)dxdc

= 1
ϵ

∫
[0,1]2

∫
R4

⟨ϕ(x′, c′) − ϕ(x, c)⟩ g(x, c, τ)g(x∗, c∗, τ)dxdx∗dcdc∗.

(I.13)
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Hence, if ϵ ≪ 1 and if ϕ is sufficiently smooth then the difference
⟨ϕ(x′, c′) − ϕ(x, c)⟩ is small and can be expanded in Taylor series. We obtain

⟨ϕ(x′, c′) − ϕ(x, c)⟩ = ⟨x′ − x⟩ · ∇xϕ(x, c) (I.14)

+1
2 ⟨(x′ − x)T H[ϕ](x′ − x)⟩ + Rϵ(x, x∗, c), (I.15)

where Rϵ(x, x∗, c) is the remainder term of the Taylor expansion and H[ϕ] is the
Hessian matrix. Within the scaling (I.12) we highlight that, by construction, the
remainder term Rϵ depends in a multiplicative way on higher moments of the
random variable η su that Rϵ/ϵ ≪ 1 for ϵ ≪ 1. We point the interested reader
to [47], [48] for further details. We note that all the terms multiplied by c′ − c
do not appear in expression (I.14) since c′ = c.

Hence, by substituting (I.14) into equation (I.13) we have

d

dτ

∫ 1

0

∫
R2

ϕ(x, c)g(x, c, τ)dxdc

= 1
ϵ

∫
[0,1]2

∫
R4

⟨x′ − x⟩ · ∇xϕ(x, c)g(x, c, t)g(x∗, c∗, τ)dxdx∗dcdc∗

+ 1
2ϵ

∫
[0,1]2

∫
R4

⟨(x′ − x)T H[ϕ(x, c)](x′ − x)⟩g(x, c, τ)g(x∗, c∗, τ)dxdcdx∗dc∗

+ 1
ϵ

∫
[0,1]2

∫
R4

Rϵ(x, x∗, c)ϕ(x, c)g(x, c, τ)g(x∗, c∗, τ)dxdx∗dcdc∗

(I.16)

In the limit ϵ → 0+ we formally obtain:

d

dτ

∫ 1

0

∫
R2

ϕ(x, c)g(x, c, τ)dxdc

=
∫

[0,1]2

∫
R4

P∆1,∆2(x, x∗, c, c∗)(x∗ − x) · ∇xϕ(x, c)g(x, c, t)g(x∗, c∗, τ)dxdcdx∗dc∗

+ σ2
∫

[0,1]2

∫
R4

D(c)∇2
xϕ(x, c)g(x, c, τ)g(x∗, c∗, τ)dxdx∗dcdc∗.

(I.17)

Next, we may integrate back by parts and restoring the original variables we get
the following Fokker-Planck-type equation

∂tg(x, c, τ) = ∇x ·
[
B∆1,∆2 [g](x, c, t)g(x, c, τ) + σ2D(c)∇xg(x, c, τ)

]
, (I.18)

provided the following boundary condition is satisfied

B∆1,∆2 [g](x, c, τ)g(x, c, τ) + σ2D(c)∇xg(x, c, τ)

∣∣∣∣∣
|x|→+∞

= 0

In (I.18) the nonlocal operator B∆1,∆2 [·] corresponds to the one defined in (I.6).
We may observe how the obtained model is equivalent to the Fokker Planck
equation (I.5) in absence of the diffusion coefficient, i.e. in the case σ2 = 0.
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I.3.2 DSMC method for Boltzmann-type equations

In this section, we introduce a direct simulation Monte Carlo (DSMC) approach
to Boltzmann-type equations. The numerical approximation of nonlinear
Boltzmann-type models is a major task and has been deeply investigated in the
recent decades, see e.g. [15], [49]–[51]. The main issue of deterministic methods
relies on the so-called curse of dimensionality affecting the approximation of the
multidimensional integral of the collision operator. Furthermore, the preservation
of relevant physical quantities is challenging at the deterministic level, making
the schemes model dependent. On the other hand Monte Carlo methods for
kinetic equations naturally employ the microscopic dynamics defining the binary
scheme to satisfy the physical constraints and are much less sensitive to the curse
of dimensionality. Among the most popular examples of Monte Carlo methods
for the Boltzmann equation we mention the DSMC method of Nanbu [52], Bird
[53]. Rigorous results on the convergence of the methods have been provided in
[54]. Furthermore, the computational cost of the method is O(N), where N is
the number of the particles of the system, making this method very efficient.

In the following, we describe the DSMC method based on the Nanbu-Babovsky
scheme. This method consists in selecting particles by independent pairs and
making them evolve at the same time according to the binary collision rules
described in equation (I.7). Let us consider a time interval [0, T ] and discretize
it in Nt intervals of size ∆t. We introduce the stochastic rounding of a positive
real number x as

Sround(x) =
{

⌊x⌋ + 1 with probability x − ⌊x⌋
⌊x⌋ with probability 1 − x + ⌊x⌋ ,

where ⌊x⌋ denotes the integer part of x. We sample the random variable η from
a 2D Gaussian distribution with mean equal to zero and diagonal covariance
matrix.

The kinetic distribution, as well as its moments, is then recovered from the
empirical density function

fN (x, c, t) = 1
N

N∑
i=1

δ(x − xi(t)) ⊗ δ(c − ci(t)),

where δ(·) is the Dirac delta function. Hence, for any test function ϕ we denote
the moments of the distribution f by

(ϕ, f)(t) =
∫ 1

0

∫
R2

ϕ(x, c)f(x, c, t)dxdc,

we have

(ϕ, fN )(t) = 1
N

N∑
i=1

ϕ(xi, ci).

46



Kinetic models for image segmentation

Algorithm 1 Monte Carlo algorithm for Boltzmann equation (I.11)
1: Given N particles (x0

n, c0
n), with n = 1, . . . , N computed from the initial

distribution f0(x, c);
2: for t = 1 to T do
3: set np = Sround(N/2);
4: sample np pairs (i, j) uniformly without repetition among all possible

pairs of particles at time step t;
5: for each pair (i, j), sample η
6: for each pair (i, j), compute the data change:

∆xt
i = ϵP∆1,∆2(xt

i, xt
j , c0

i , c0
j )(xt

j − xt
i) +

√
2σ2D(c0

i )η

∆xt
j = ϵP∆1,∆2(xt

j , xt
i, c0

j , c0
i )(xt

i − xt
j) +

√
2σ2D(c0

j )η
(I.19)

compute
xt+1

i,j = xt
i,j + ∆xt

i,j (I.20)

7: end for

In the following, we will evaluate the approximation of the empirical density fN

obtained by

fN,∆x,∆c(x, c, t) = 1
N

N∑
i=1

S∆x(x − xi(t)) ⊗ S∆c(c − ci(t)), (I.21)

with S∆x(x), S∆c(c) suitable mollifications of the indicator function. In the
simplest setting, if we consider the indicator function it would lead to the
standard histogram.

I.3.3 Numerical examples for the Hegselmann-Krause dynamics

In this section we provide numerical evidence of the consistency of the Boltzmann-
type approach with respect to the one introduced in (I.18) corresponding, in the
zero-diffusion limit to the model (I.5). In particular, the numerical solution of the
Fokker Planck equation (I.18) has been obtained through a structure preserving
deterministic scheme [55].This class of schemes are capable of approximating
with arbitrary order of accuracy the steady state of a Fokker-Planck-type model
and preserve important physical properties like positivity and entropy dissipation.
The numerical approximation of the Boltzmann model has been obtained through
the Algorithm 1.

We consider in particular N = 105 particles uniformly distributed in the
domain [−1, 1]2 × [0, 1] ⊂ R2 × [0, 1]

f(x, c, 0) =
{

β (x, c) ∈ [−1, 1]2 × [0, 1]
0 elsewhere

(I.22)
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(a) (b)

Figure I.2: Transient solutions of the Fokker-Planck equation (I.18) approximated
through a semi-implicit SP scheme over [0, T ], T = 50, with time step
∆t = 3 · 10−1. In the left panel we consider ∆1 = 2, ∆2 = 1 and σ2 = 5 · 10−2

while in the right panel ∆1 = 0.5, ∆2 = 1 and σ2 = 10−2. The initial distribution
is (I.22).

with β > 0 a normalization constant such that
∫ 1

0
∫
R2 f(x, c, 0)dxdc = 1. Hence,

we compare solution of the Boltzmann-type model (I.10) under the scalings
ϵ = 10−1 and ϵ = 10−2 with the solution of the Fokker-Planck model (I.18). We
consider the local diffusion function D(c) of the form D(c) = c(1 − c), c ∈ [0, 1].

Let us introduce the spatial grid xi ∈ [−L, L], yj ∈ [−L, L], ck ∈ [0, 1] such
that xi+1 − xi = ∆x, yj+1 − yj = ∆y, ck+1 − ck = ∆c. We further assume
∆x = ∆y such that L = Nx∆x = Ny∆y and Nx = Ny = 61, the discretization
of the features’ interval [0, 1] is instead computed with Nc = 31 gridpoints. We
use a second order semi-implicit method for the time integration of (I.18), we
refer to [55] for a detailed description of these methods.

In Figure III.4 we show the transient behaviour of the Fokker-Planck solutions
obtained with the semi-implicit SP scheme up in the time interval [0, 50] with
time step ∆t = 3 · 10−1 and we fix σ2 = 5 · 10−2 for the left panel and σ2 = 10−2

for the right panel. We represent the projection of the kinetic density along the
x-axis computed as fyc(x, t) =

∫ L

−L

∫ 1
0 f(x, y, c, t)dcdy. In the left panel we fix

the confidence coefficients ∆1 = 2 and ∆2 = 1 and in the right panel we choose
∆1 = 0.5 and ∆2 = 1. We may observe how the qualitative behavior of the
solution dramatically changes since multiple clusters appear for large times, see
[38].

Similarly, in Figure III.5 we show the projections on the xy, xc and yc
planes of the numerical solution of the introduced FP model at time T = 50.
The projections are computed as fc =

∫ 1
0 f(x, c, T )dc, fy =

∫ L

−L
f(x, c, T )dy,

fx =
∫ L

−L
f(x, c, T )dx. We may observe how, for large times, the kinetic density

displays multiple clusters both the space variable x and in the features’ variable
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(a)

(b)

Figure I.3: Asymptotic solutions of the Fokker-Plank equation numerically
computed with the SP scheme at the final time T = 50. The left column
represents the xy-projections, the middle column the xc-projections and the
right column the yc-projections. In the top row we use ∆1 = 2, ∆2 = 1 and
σ2 = 5 · 10−2 while in the bottom row ∆1 = 0.5, ∆2 = 1 and σ2 = 10−2.

c. The parameters ∆1, ∆2 and σ2 are the same used in III.4a and III.4b for the
top and bottom panels of Figure III.5 respectively.

In Figure I.4 we show the x-axis projection of the Fokker-Planck solution
provided by the SP scheme and the solutions of the Boltzmann equation obtained
with Algorithm 1 with ϵ = 10−2, 10−1. We can also observe that, as expected,
the solution of the Boltzmann model is a good approximation of the solution of
the Fokker-Planck model for small values of the parameter ϵ > 0.

I.4 Application to biomedical images

In this section we focus on segmentation problems for medical images. In
particular, we concentrate on the segmentation of images of cell nuclei, of brain
tumour and on the recognition of thigh muscles. In all the aforementioned cases,
we apply Algorithm 1 to generate the segmentation masks.

The procedure to generate segmentation masks can be summarized as follows:

i) The pixels of the 2D image are interpreted as uniformly spaced particles,
each characterized by the spatial position (xi, yi) and with static feature
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(a) (b)

Figure I.4: Comparison between the numeric solution of the Fokker-Planck
equation computed by the SP scheme (in blue) with final distribution provided
by the MC algorithm for the Boltzmann-type equation with two different values
of the parameter ϵ (in red and green). Both the panels represent the x-projections
of the asymptotic distributions computed for T = 50. In the left panel we use
∆1 = 2, ∆2 = 1 and σ2 = 5 · 10−2 while in the right panel ∆1 = 0.5, ∆2 = 1 and
σ2 = 10−2. The green distribution is computed with ϵ = 10−1 and the red one
with ϵ = 10−2.

ci defined are the gray level of the corresponding pixel. Hence, the initial
distribution is reconstructed through (I.21). In all the applications of this
work we linearly scale the initial position of the particles on a reference
domain [−1, 1] × [−1, 1] and the initial values of the features to the [0, 1]
range.

ii) We numerically determine the large time solution of the Boltzmann-
type model in (I.10) by means of the DSMC Algorithm 1. In this way,
particles tend to aggregate in a number of finite clusters based on the
Euclidean distance and on the difference between the gray levels of the
pixels quantifying the features.

iii) The segmentation masks are generated by computing the mean value of
the features of pixels in the same cluster. We assign to these values to
the initial position of the pixels. Using this method, homogeneous regions
with similar characteristics are created in the image and correspond to the
segmentation mask.

iv) The obtained multi-level mask can be transformed into a binary mask by
fixing a threshold c̃ such that if ci < c̃ then ci = 0 and if ci ≥ c̃ then ci = 1.

Once the segmentation mask has been computed by this procedure, we
apply two morphological refinement steps in order to remove those small regions
misclassified as foreground parts and to fill possible small holes that were
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Figure I.5: Summary of the segmentation process. The first panel shows the input
image; the second panel displays the multi-level segmentation mask produced by
DSMC Algorithm 1; the third panel represents the mask after the binarization
process; and the fourth panel shows the binary mask after the two morphological
refinement steps.

misidentified background parts. Specifically, for the first step we label all the
connected components of the foreground mask and remove the components whose
number of pixels is below a fixed threshold. The second stage of morphological
refinement works in the same way as the first, except that it is performed
in a complementary manner on the background pixels. To implement these
operations, we used the scikit-image python library [56] which exploits the graph
theory to find distinct objects of a binary image [57]. By using this approach,
we were able to obtain more accurate segmentation masks by reducing some
small imperfections of the segmentation process. The introduced segmentation
procedure and the results of the two morphological steps are sketched in
Figure I.12.

I.4.1 Parameter identification

The purpose of this phase of the work is to choose the set of the optimal
parameters ∆1 > 0, ∆2 > 0 and σ2 > 0 for the segmentation problem based on
the available data. We perform the optimization procedure by systematically
scanning the parameter search space through a random sampling process and
measuring the segmentation performance to find the best combination of ∆1,
∆2 and σ2.

For image segmentation problems, the objective function quantifies the
goodness of segmentation by measuring the distance or similarity between the
ground truth segmentation mask and the evaluated mask. Let us consider as
objective function the Dice Similarity Coefficient (DSCloss), which is defined as
follows

DSCloss = 1 − DSCmetric

= 1 − 2|Strue ∩ Sest|
|Strue| + |Sest|

,
(I.23)

where Strue is the true mask and Sest is the estimated mask and the DSCloss is
computed only on the foreground (white voxels). This index is null if there is a
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perfect overlap between the two masks and it is equal to one if the masks are
completely disjoint [58]. It follows that the best segmentation will minimize this
index. We refer to [59] for a complete overview of segmentation metrics.

Hence, we solve the optimization problem

min
∆1,∆2,σ2>0

DSCloss (I.24)

where the loss function is computed by looking at the numerical equilibrium of
the model (I.10) associated to a particular choice of parameters and obtained
through Algorithm 1.

To solve the optimization problem Equation (I.24), we used the random
sampling algorithm from the Hyperopt python package [60]. The key idea of
this class of algorithms is to define a range of potential values for parameters
of interest and randomly selecting a number of combinations to test. The
performance of the objective function is evaluated for each point tested of the
search space and the set of parameters that minimize the objective function
represents the best configuration for solving the optimization problem. This
technique can be useful for complex functions with non-linear, non-convex, or
noisy shapes where gradient-based optimization may be difficult to apply [61].
To determine the bounds for ∆1, ∆2 and σ2, we performed the optimization
on a sufficiently large search space and repeated the process by progressively
limiting the search space to the most promising area.

I.4.2 2D biomedical image segmentation

We apply the Monte Carlo Algorithm 1 and the optimization strategy described
in section I.4.1 to 2D gray-scale biomedical image segmentation. We consider
three different datasets:

• The HL60 cell nuclei dataset is a public dataset collected for the Cell
Tracking Challenge and available at http://celltrackingchallenge.net/. It
consists of synthetic 2D time-lapse video sequences of fluorescent stained
HL60 nuclei moving on a substrate, realized with the Fluorescence
Microscopy (FM) technique. Each image is accompanied with the ground
truth segmentation mask which identifies the cell nuclei. To test our 2D
segmentation pipeline we use the first time frame of the sequences.

• The brain tumor dataset consists 3D in multi-parametric magnetic
resonance images (MRI) of patients affected by glioblastoma or lower-
grade glioma, publicly available in the context of the Brain Tumor
Image Segmentation (BraTS) Challenge http://medicaldecathlon.com/.
The acquisition sequences include T1-weighted, post-Gadolinium contrast
T1-weighted, T2-weighted and T2 Fluid-Attenuated Inversion Recovery
(FLAIR) volumes. Three intra-tumoral structures were manually annotated
by experienced radiologists, namely “tumor core”, “enhancing tumor” and
“whole tumor”. We evaluate the performances of the MC algorithm for
two different segmentation tasks: the “tumor core” and the “whole tumor”
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annotations. For the first task we use a single slice in the axial plane of
the post-Gadolinium contrast T1-weighted scans while for the second task
we use a single slice in the axial plane of the T2-weighted scans.

• The thigh muscles dataset consists of 3D MRI scans of left and right
thighs of healthy subjects and facioscapulohumeral dystrophy (FSHD)
patients with muscle alterations. All the images were collected on a
3T MRI whole-body scanner (Skyra, Siemens Healthineers AG Erlangen,
Germany) at the Mondino Foundation, Pavia Italy. Two acquisition
protocols were performed for each subject: 3D six-point multi-echo gradient
echo (GRE) sequence with interleaved echo sampling and a 2D multi-
slice multi-echo spin echo (MESE) sequence. The dataset includes the
ground truth segmentation mask of the 12 muscles of the thighs manually
drawn by the radiologist team (we refer to [62] for a complete description
of the acquisition settings and the annotation procedure). To test the
segmentation pipeline we consider a single slice in the axial plane of the
GRE scans of a healthy and an FSHD patient.

We optimize the values of the parameters ∆1, ∆2 and σ2 by solving the
minimization problem (I.24). For each dataset and segmentation task, we select
the combination of the parameters that minimize the DSCloss. The search space
is defined by introducing additional constraints on the choice of parameters,
in particular we consider ∆x ≤ ∆1 ≤ 0.7, 0.05 ≤ ∆2 ≤ 0.3. The values
of the parameter σ2 are determined by sampling the data from a log-uniform
distribution with support [e−5, 1]. The DSMC Algorithm 1 has been implemented
in the quasi-invariant scaling with ϵ = 10−2 with final time Tmax = 2000.

We present in Figure III.6 the results of the optimization process for the
HL60 cell nuclei dataset. In particular, we show the values of the DSCloss

function as a function of ∆1, ∆2 and σ2 parameters. The best configurations of
the ∆1, ∆2 and σ2 parameters for each dataset and segmentation task are listed
in Table III.1.

Dataset name ∆1 ∆2 σ2

HL60 cell nuclei 0.49 0.14 0.84
Brain tumor - tumor core 0.69 0.17 0.03
Brain tumor - whole tumor 0.34 0.28 0.25
Thigh muscles - healthy 0.55 0.13 0.02
Thigh muscles - FSHD 0.57 0.17 0.43

Table I.1: Best configurations of the ∆1, ∆2 and σ2 parameters given by the
optimization process.

Once the best configurations of the ∆1, ∆2 and σ2 parameters have been
established, we generate the segmentation masks for all the datasets and
annotation tasks solving the Boltzmann model in (I.10) with the optimal choice
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Figure I.6: Results of the optimization process for the HL60 cell nuclei dataset
as a function of the three parameters ∆1, ∆2 and σ2. We use scatter plots to
graphically represent the distribution of the loss (DSCloss) values as a function
of the ∆1, ∆2 and σ2 values. Red dots highlight the best configuration.

Figure I.7: Results of the segmentation process for the HL60 cell nuclei dataset
obtained with the optimal set of ∆1, ∆2 and σ2 parameters and with the
morphological refinement steps. The three panels represent respectively from
the left to the right the original image, the ground truth segmentation mask and
the mask computed by the segmentation process.

of parameters. At the end of the segmentation procedure, we apply the two
morphological refinement steps as described in Section I.4 to improve the quality
of the segmentation masks.

In Figure III.8 we represent the results of the segmentation process obtained
for the HL60 cell nuclei dataset. We can observe from the initial image that
cells have regular borders but they are represented by a wide range of gray
levels. By comparing the ground truth mask and the reconstructed one, we may
observe that they are in good agreement. The method can provide good results in
detecting the location of cells even for those regions whose gray level is close to the
background. We evaluate the performance of the segmentation algorithm using
the DSCmetric coefficient defined in Equation (I.23) which quantifies the overlap
between the predicted and the true mask. The method reaches a DSCmetric of
0.94 on the image of the HL60 cell nuclei dataset reported in Figure III.8.
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Figure I.8: Segmentation results for the “tumor core” task of the brain tumor
dataset, obtained with the optimal set of ∆1, ∆2 and σ2 parameters and with
the morphological refinement steps.

In Figure III.9 we test the performance of the method in segmenting the
“tumor core” region of one image of the brain tumor dataset. In this example,
the region of interest is characterized by less regular edges, by the presence of
cavities but by a quite homogeneous color. We can see from the Figure III.9
that the method identifies with a good precision the shape of the tumor and it
preserves the small empty structures within the mass. In terms of the evaluation
metric, the segmentation system achieves a DSCmetric of 0.93.

In Figure I.9 we present the second segmentation task performed on the brain
tumor dataset where we apply the method to identify the “whole tumor” region.
In this case, the region of interest is characterized by an irregular shape that
also contains small holes, concave and convex areas. From the right panel of
Figure I.9 we can observe that the reconstructed segmentation mask is very close
to the reference one, except of some holes are not entirely identified as well as the
small region in the upper area which is misclassified as a tumor part. However,
the overall agreement of the two segmentations is good, also considering that
the initial image is more complex than the previous ones. The evaluation metric
DSCmetric reached by the model on the dataset is equal to 0.91.

In Figure I.10 we represent the results of the segmentation process for the
thigh muscles dataset for a healthy subject I.10a and a FSHD patient I.10b. We
can observe from the left panel that this dataset, compared to the previous ones,
presents some features that appear more complex. Indeed, it is known how the
thigh muscles are not well defined structures. Furthermore, thigh muscles often
overlap each other or are separated by very thin segments of other tissues. The
regions of interest are not uniform in color and differ slightly from the gray level
of the surrounding areas. In particular, if we consider the MRI scan of the FSHD
subject, we can observe how the disease has altered some muscles (three muscles
of the lower area of the image) making them difficult to distinguish from the
surrounding adipose tissues. Scan artifacts are stronger than in the other images,
making the homogeneity of the gray levels poorer than in previous ones.

From the left panel of Figure I.10, we may observe that the method recognizes
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Figure I.9: Segmentation results for the “whole tumor” task of the brain tumor
dataset, obtained with the optimal set of ∆1, ∆2 and σ2 parameters and with
the morphological refinement steps.

the thigh muscles by separating them from the other anatomical structures.
However, from a visual assessment we notice that the segmentation precision
achieved by the model on this dataset is lower than the previous ones. Especially
in the peripheral areas, the method does not correctly distinguish the surrounding
tissues from the muscles. If we consider the performances on the FSHD patient
image, we can see how the method fails to recognize the muscles altered by
the disease, misclassifying them as adipose tissue. In terms of the evaluation
metric, the model reaches a DSCmetric equal to 0.60 on the healthy subject and
a DSCmetric equal to 0.73 for the FSHD one, which are lower values respect the
results obtained above.

It is interesting to observe that, by comparing the results obtained for the
healthy and the FSHD patient, the optimal values of the confidence intervals ∆1
and ∆2 are compatible, while the best value of σ2 coefficient is greater in the
FSHD subject. This happens because the value of the σ2 diffusion coefficient
is directly related to the inhomogeneities of the gray levels of the pixels, which
are greater in the image of the sick patient due to muscle damage. The increase
in the diffusion parameter is particularly interesting as it could be used as an
estimate of the FSHD muscle impairment and therefore an indicator of the
progress of the disease.

I.4.3 Patch-based 2D biomedical Image segmentation

To alleviate the limitations of the method encountered when dealing with more
complex operations and lower quality image data, such as those in the thigh
muscles dataset, in this section we present an improvement of the segmentation
pipeline described in the previous paragraphs.

This new approach relies on the assumption that the method should recognize
fine structures more accurately by focusing on smaller regions of the image.
Therefore, we decide to apply the segmentation pipeline I.4 and the optimization
algorithm I.4.1 to portions of the image that we will call patches (i.e. small
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(a) Healthy subject

(b) FSHD subject

Figure I.10: Results of the segmentation process for the thigh muscles dataset
obtained with the optimal set of ∆1, ∆2 and σ2 parameters and with the
morphological refinement steps.

subregions of the image defined as two-dimensional pixel arrays) rather than to
the whole matrix of pixels [63], [64].

The method is composed of the following steps. Input images are first
converted in square matrices by adding a padding of background pixels on the
border of the input array. This step is necessary to obtain square patches,
however the segmentation procedure could also be applied to rectangular ones.
Images are then divided in non-overlapping patches that are passed as input
of the optimization algorithm. In this way, the optimization process will find
the best combination of the ∆1, ∆2 and σ2 parameters for each single patch.
Once the local optimization has been performed, the segmentation masks of each
patch are estimated through the MC algorithm 1 with the best combination of
parameters. The two refinement steps are applied to each patch masks in order
to improve the quality of the results. Hence, all the patch masks are connected
together to create the entire segmentation mask and the two post-processing
routines are repeated over the complete mask to get the final segmentation.

We test the patch-based segmentation pipeline on the thigh muscles dataset
for the healthy subject, which was the worst performing example. Using the
padding process, we transform the 210 × 178 pixel array into a 216 × 216 pixel
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Figure I.11: Results of the segmentation process for the thigh muscles dataset
obtained with the patch-based method with the optimal set of ∆1, ∆2 and σ2

parameters and the morphological refinement steps.

array to fit four square patches to the width and height of the image. In this
way, we generate 16 patches each of 54 × 54 pixels. Then, for each patch we
solve the optimization problem (I.24) to determine the optimal parameters ∆1,
∆2 and σ2 under the constraints ∆x ≤ ∆1 ≤ 1.6, 0.05 ≤ ∆2 ≤ 0.2. The values
of σ2 are sampled from a log-uniform distribution with support [e−12, 1] .

The results of the patch-based segmentation algorithm for the thigh muscles
dataset are represented in Figure I.11. We can observe that the reconstructed
mask is clearly closer to the expected one, compared to the mask in Figure I.10.
The method recognizes the thigh muscles with more precision and distinguishes
them from the surrounding tissue more accurately. Particularly, if we consider
the tissues in the peripheral area of the thigh that were wrongly classified as
muscle tissues in Figure I.10, they are now correctly excluded from the muscles
region. In terms of the evaluation metric, the segmentation system achieves a
DSCmetric of 0.67. This result is satisfactory considering the complexity of the
image in terms of anatomical regions and scan quality.

I.4.4 Comparison of different diffusion functions

In this section we compare the segmentation results obtained with two different
local diffusion functions D(c). In details, we consider the functions D1(c) > 0
and D2(c) > 0 defined as follows

D1(c) = c(1 − c), D2(c) =
{

αc c ≤ 0.5
−αc + α c > 0.5

(I.25)

with c ∈ [0, 1] and α = 1
2 such that D1

( 1
2
)

= D2
( 1

2
)
, see Figure I.12.

Hence, we implemented the DSMC Algorithm 1 to segment the tumor core
region of the brain tumor dataset using both D1(c) and D2(c). The parameters
∆1, ∆2 and σ2 were optimized independently for both cases, and the best
configurations are reported in Table I.2.
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Figure I.12: Diffusion functions considered for image segmentation.

D(c) ∆1 ∆2 σ2

D1 0.69 0.17 0.03
D2 0.58 0.27 0.06

Table I.2: Estimated values of ∆1, ∆2 and σ2 by the optimization process for
two different diffusion functions.

In Table I.3 we report the segmentation results in terms of DSCmetric

obtained with local diffusion functions D1(c) and D2(c). We may observe that
we obtained better performance of the segmentation pipeline defined with D1(c)
with respect to the case D2(c). It is important to observe also that the difference
in performance are alleviated by the morphological refinement step. Figure I.13
shows the segmentation results obtained with both diffusion functions. We may
observe how the segmentation mask obtained with D2 includes two small regions
erroneously classified as part of the tumor area. These results suggest that the
segmentation performance is influenced by the selection of a different diffusion
function and, in this specific example, the quadratic function D1(c) leads to
better results in the considered case.

However, the choice of the optimal diffusion function may be application-
specific and be related to various factors such as the nature of the image, the
size of the region of interest, and the desired level of detail in the segmentation
mask.

DSCmetric DSCmetric
Diffusion function Row mask Final mask
D1 0.87 0.93
D2 0.79 0.90

Table I.3: Values of DSCmetric before (row mask) and after (final mask) the
morphological refinement steps.
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Figure I.13: Segmentation results for the “tumor core” task of the brain tumor
dataset, obtained with the optimal set of ∆1, ∆2 and σ2 parameters and with
the two different diffusion functions D1 and D2.

Conclusions

In this work we proposed a kinetic model for consensus-based segmentation
tasks inspired by the Hegselmann-Krause (HK) model. We derived a Boltzmann
description of the generalized HK model based on a binary interaction scheme for
the particles’ locations and features. In the quasi-invariant limit we showed the
consistency of the approach with existing mean-field modelling approaches by
deriving a surrogate Fokker-Planck model with nonlocal drift. The Boltzmann-
type description allows us to apply efficient direct simulation Monte Carlo schemes
to evaluate the collision dynamics with low computational burden. Hence, we
proposed an optimization strategy for the internal parameter configuration.

This model-based segmentation strategy is tested on three different biomedical
datasets: a HL60 cell nuclei dataset, a brain tumor dataset and a thigh muscles
dataset. The performances of the method are evaluated in terms of the DSCmetric

that quantifies the overlap between the reconstructed mask and the reference
mask. Good results are obtained for the HL60 cell nuclei dataset and the brain
tumor dataset, while for the thigh muscle dataset the segmentation accuracy
is lower. For this more complex dataset, we proposed a patch-based approach
which consists of dividing the image into smaller arrays of pixels and applying
the segmentation system to these subregions of the initial image. This second
version of the method improves the quality of the segmentation mask.

Several extensions of the presented modelling approach to include color
images and modified interaction functions are currently under study and will be
discussed in future works.
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II Quantification of pulmonary involvement in COVID-19 pneumonia

Methods We developed an automated analysis pipeline, the
LungQuant system, based on a cascade of two U-nets. The first one
(U-net1) is devoted to the identification of the lung parenchyma, the
second one (U-net2) acts on a bounding box enclosing the segmented
lungs to identify the areas affected by COVID-19 lesions. Different public
datasets were used to train the U-nets and to evaluate their segmentation
performances, which have been quantified in terms of the Dice Similarity
Coefficients. The accuracy in predicting the CT-Severity Score (CT-SS) of
the LungQuant system has been also evaluated.

Results Both the volumetric DSC (vDSC) and the accuracy showed a
dependency on the annotation quality of the released data samples. On an
independent dataset (COVID-19-CT-Seg), both the vDSC and the surface
DSC (sDSC) were measured between the masks predicted by LungQuant
system and the reference ones. The vDSC (sDSC) values of 0.95±0.01
and 0.66±0.13 (0.95±0.02 and 0.76±0.18, with 5 mm tolerance) were
obtained for the segmentation of lungs and COVID-19 lesions, respectively.
The system achieved an accuracy of 90% in CT-SS identification on this
benchmark dataset.

Conclusion We analysed the impact of using data samples with
different annotation criteria in training an AI-based quantification system
for pulmonary involvement in COVID-19 pneumonia. In terms of vDSC
measures, the U-net segmentation strongly depends on the quality of the
lesion annotations. Nevertheless, the CT-SS can be accurately predicted
on independent test sets, demonstrating the satisfactory generalization
ability of the LungQuant.

Keywords: COVID-19, Chest Computed Tomography, Ground-glass opacities,
Segmentation, Machine Learning, U-net.

II.1 Introduction

The task of segmenting the abnormalities of the lung parenchyma related to
COVID-19 infection is a typical segmentation problem that can be addressed with
methods based on Deep Learning (DL). CT findings of patients with COVID-
19 infection may include bilateral distribution of ground-glass opacifications
(GGO), consolidations, crazy-paving patterns, reversed halo sign and vascular
enlargement [1]. Due to the extremely heterogeneous appearance of COVID-
19 lesions in density, textural pattern, global shape and location in the lung,
an analytical approach is definitely hard to code. The potential of DL-based
segmentation approaches is particularly suited in this case, provided that a
sufficient number of annotated examples are available for training the models.
Few fully automated software tools devoted to this task have been recently
proposed [2]–[4]. Lessmann et al. [2] developed a U-net model for lesion
segmentation trained on semi-automatically annotated COVID-19 cases. The
output of this system was then combined with the lung lobe segmentation
algorithm reported in Xie et al. [5]. The approach proposed in Fang et al. [3]
implements the automated lung segmentation method provided in the work of
Hofmanninger et al. [6], together with a lesion segmentation strategy based on
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Dataset name Lung GGO CT-SS N. of
mask mask cases

Plethora [9] Yes No No 402
Lung CT Segmentation Challenge [10] Yes No No 60

COVID-19 Challenge [11] No Yes No 199
MosMed [12] No No No 1110

MosMed (annotated subsample) No Yes Inferable 50
MosMed (in-house annotated subsample) Yes No No 91

COVID-19-CT-Seg [4] Yes Yes Inferable 10

Table II.1: A summary of the datasets used in this study. The CT Severity Score
(CT-SS) information is not available for all datasets, but it can be computed for
data which has both lung masks and ground-glass opacification (GGO) masks.

multiscale feature extraction [7]. The specific problem related to the development
of fully automated DL-based segmentation strategies with limited annotated
data samples has been explicitly tackled by Ma et al. [4]. The authors studied
how to train and evaluate a DL-based system for lung and COVID-19 lesion
segmentation on poorly populated samples of CT scans. They also made the
data publicly available, allowing for a fair comparison with their system.

In this work we present a DL-based fully automated system to segment
both lungs and lesions associated with COVID-19 pneumonia, the LungQuant
system, which provides the part of lung volume compromised by the infection. We
extended the study proposed by Ma et al. [4] focusing our efforts in investigating
and discussing the impact of using different datasets and different labeling
styles. Data can be highly variable in terms of acquisition protocols and
machines when they are gathered from different sources. This poses a serious
problem of dependence of the segmentation performances on the training sample
characteristics. Despite advanced data harmonisation strategies could mitigate
this problem [8], this approach is not applicable in absence of data acquisition
information, as it is in this study for the available CT data. Nevertheless, DL
methods, when trained with sufficiently large samples of heterogeneous data,
can acquire the desired generalisation ability by themselves. In our analysis, we
implemented an inter-sample cross-validation method to train, test and evaluate
the generalisation ability of the LungQuant DL-based segmentation pipeline
across the different available datasets. Finally, we also quantified the effect of
using larger datasets to train, validate and test this kind of algorithm.

II.2 Material and Methods

II.2.1 Datasets

We used only publicly available datasets in order to make our results easily
verifiable and reproducible. Five different datasets have been used to train and
evaluate our segmentation pipeline. Most of them include image annotations,
but each annotation has been associated with patients using different criteria.
In Table II.1, a summary of available labels for each dataset is reported.
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The lung segmentation problem has been tackled using a wide representation
of the population and three different datasets: the Plethora, the Lung CT
Segmentation Challenge and a subset of the MosMed dataset. On the other
hand, the number of samples that are publicly available for COVID-19 infection
segmentation may not be sufficient to obtain good performances on this task.
The currently available data, provided along with infection annotations, have
been labelled following different guidelines and released in NifTI format. They do
not contain complete acquisition and population information and they have been
stored according to different criteria (see the Appendix II.A for further details).
Some of the choices made during the DICOM to NifTI conversion may strongly
affect the quality of data. For example, the MosMed dataset as described by
Morozov et al. [12] preserves only one slice out of ten during this conversion.
This operation results in a significantly loss of resolution with respect to the
COVID-19 Challenge dataset. Questioning how much such conversion influences
the quantitative analysis is important to improve not only the performance but
also the possibility of comparing DL algorithm in a fair modality.

II.2.2 LungQuant: a DL based quantification analysis pipeline

The analysis pipeline, which is hereafter referred to as the LungQuant system,
provides in output the lung and COVID-19 infection segmentation masks, the
percentage P of lung volume affected by COVID-19 lesions and the corresponding
CT-SS (CT-SS=1 for P<5%, CT-SS=2 for 5% ≤ P<25%, CT-SS=3 for 25% ≤
P<50%, CT-SS=4 for 50% ≤ P<75%, CT-SS=5 for P ≥ 75%).

A summary of our image analysis pipeline is reported in Fig. II.1. The central
analysis module is a U-net for image segmentation [13] (see sec. II.2.2.1), which
is implemented in a cascade of two different U-nets: the first network, U-net1, is
trained to segment the lung and the second one, U-net2, is trained to segment
the COVID lesions in the CT scans.

II.2.2.1 U-net

For both lung and COVID-19 lesion segmentation, we implemented a U-net using
Keras [14], a Python DL API that uses Tensorflow as backend. In Figure II.2 a
simplified scheme of our U-net is reported.

Each block of layers in the compression path (left) is made by 3 convolutional
layers, ReLu activation functions and instance normalization layers. The input
of each block is added to the block output in order to implement a residual
connection. In the decompression path (right), one convolutional layer has been
replaced by a de-convolutional layer to upsample the images to the input size.
In the last layer of the U-nets, a softmax is applied to the final feature map and
then the loss is computed.
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Figure II.1: A summary of the whole analysis pipeline: the input CT scans are
used to train U-net1, which is devoted to lung segmentation; its output is refined
by a morphology-based method. A bounding box containing the segmented
lungs is made and applied to all CT scans for training U-net2, which is devoted
to COVID-19 lesion segmentation. Finally, the output of U-net2 is the definitive
COVID-19 lesion mask, whereas the definitive lung mask is obtained as the union
between the outputs of U-net1 and U-net2. The ratio between the COVID-19
lesion mask and the lung mask provides the CT-SS for each patient.

II.2.2.2 The U-net cascade for lesion quantification and severity score
assignment

The input CT scans, whose number of slices is highly variable, have been
resampled to matrices of 200x150x100 voxels and then used to train U-net1,
which is devoted to lung segmentation, using the three datasets containing
original CT scans and lung masks (see Table II.1). The output of U-net1 was
refined using a connected-component labeling strategy to remove small regions
of the segmented mask not connected with the main objects identified as the
lungs. We identified the connected components in the lung masks generated by
U-net1 and we excluded those components whose number of voxels was below
an empirically-fixed threshold (see Supplementary Materials for further details).
We then built for each CT a bounding box enclosing the refined segmented
lungs, adding a conservative padding of 2.5 cm. The bounding boxes were used
to crop the training images for U-net2, which has the same architecture as
U-net1. Training U-net2 to recognize the COVID-19 lesions on a conservative
bounding box has two main advantages: it allows to restrict the action volume
of the U-net to the region where the lung parenchyma is supposed to be, thus
avoiding false-positive findings outside the chest; it facilitates the U-net training
phase, as the dimensions of the lungs of different patients are standardized to
focus the U-net learning process on the textural patterns characterizing the
COVID-19 lesions. The cropped images were resized to a matrix of 200x150x100
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Figure II.2: U-net scheme: the neural network is made of 6 levels of depth. In the
compression path (left), the input is processed through convolutions, activation
layers (ReLu) and instance normalization layers, while in the decompression
one (right), in addition to those already mentioned, 3D Transpose Convolution
(de-convolution) layers are also introduced.

voxels. We applied a windowing on the grey-level values of the CT scans to
optimize the image contrast for the two segmentation problems: the [-1000,
1000] HU window range for the U-net1 and the [-1000, 300] HU range for U-net2.
The first window highlights the contrast between the lung parenchyma and
the surrounding tissues, whereas the second one enhances the heterogeneous
structure of the lung abnormalities related to the COVID-19 infection. We
implemented a data augmentation strategy, relying on the most commonly used
data augmentation techniques for DL (see Supplementary Materials for further
details) to overcome the problem of having a limited amount of labelled data.
We transformed the images with rotations, zooming, elastic transformations and
adding gaussian noise.

The LungQuant system returns the infection mask as the output of U-net2
and the lung mask as the union between the output of U-net1 and U-net2. This
choice has been made a priori by design, as U-net1 has been trained to segment
the lungs relying on the available annotated data, which are almost totally of
patients not affected by COVID-19 pneumonia. Thus, U-net1 is expected to be
unable to accurately segment the areas affected by GGO or consolidations; as
also these areas are part of the lungs, they should be instead included in the
mask.

Lastly, once lung and lesion masks have been identified, the LungQuant
system computes the percentage of lung volume affected by COVID-19 lesions
as the ratio between the volume of the infection mask and the volume of the

72



Material and Methods

lung mask, and converts it into the corresponding CT severity score.

II.2.3 Training details and evaluation strategy for the U-nets

Both U-net1 and U-net2 have been evaluated using the volumetric Dice Similarity
Coefficients (vDSC). U-net1 has been trained with the vDSC as loss function,
while U-net2 has been trained using the sum of the vDSC and a weighted cross-
entropy as error function in order to balance the number of voxels representing
lesions and the background (see Supplementary Materials for further details).
The performances of the whole system have been evaluated also with the surface
Dice Similarity Coefficient (sDSC) for different values of tolerance [15].

II.2.3.1 Cross-validation strategy

To train, validate and test the performances of the two U-nets, we partitioned
the datasets into training, validation and test sets. We then evaluated the
network performance separately and globally. U-net2 has been trained twice,
i.e. on the 60% and 90% of the CT scans of COVID-19-Challenge and Mosmed
datasets to investigate the effect of maximizing the training set size on the lesion
segmentation. The amount of CT scan used for train, validation and test sets
for each U-net is reported in Table II.2. To evaluate the ability of the trained
networks to predict the percentage of the affected lung parenchyma and thus the
CT-SS classification, we used a completely independent set consisting of 10 CT
scans from the COVID-19-CT-Seg dataset, which is the only publicly available
dataset containing both lung and infection mask annotations.

U-net1 train val test
Plethora 319 40 40

MosMed (91 CT-0) 55 18 18
LCTSC 36 12 12

COVID-19-CT-Seg / / 10
U-net60%

2 train (60%) val (20%) test
COVID-19 Challenge 119 40 40
MosMed (50 CT-1) 30 10 10
COVID-19-CT-Seg / / 10

U-net90%
2 train (90%) val (10%) test

COVID-19 Challenge 179 20 /
MosMed (50 CT-1) 45 5 /
COVID-19-CT-Seg / / 10

Table II.2: Number of CT scans assigned to the train, validation (val) and test
sets used during the training and performance assessment of the U-net1 and the
U-net2 networks.
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II.3 Results

In this section we report, first, the performance achieved by U-net1 and U-
net2, then, the quantification performance of the integrated LungQuant system,
evaluated on a completely independent test set. We trained both the U-nets for
300 epochs on a NVIDIA V100 GPU using ADAM as optimizer and we kept the
models trained at the epoch where the best evaluation metric on the validation
set was obtained.

II.3.1 U-net1: Lung segmentation performance

U-net1 for lung segmentation was trained and validated using three different
datasets, as specified in Table II.2. Then, we tested U-net1 on each of the three
independent test sets and we reported in Table II.3 the performance achieved in
terms of vDSC, computed between the segmented masks and the reference ones,
both separately for each dataset and globally.

The evaluation of the lung segmentation performances was made in three
cases: 1) on CT scans and masks resized to the 200x150x100 voxel array
size; 2) on CT scans and masks in the original size before undergoing the
morphological refinement; 3) on CT scans and masks in the original size and
after the morphological refinement. Even if segmentation refinement has a small
effect on vDSC, since it is a volume-based metric, as shown in Table II.3, it is a
fundamental step to allow the definition of precise bounding boxes enclosing the
lungs, and thus to facilitate the U-net2 learning process.

Test set Masks of U-net size Masks before refinement Masks after refinement
vDSC vDSC vDSC

Plethora 0.96 ± 0.02 0.95 ± 0.02 0.95 ± 0.04
MosMed 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02
LCTSC 0.96 ± 0.03 0.95 ± 0.03 0.96 ± 0.01

COVID-19-CT-Seg 0.96 ± 0.01 0.95 ± 0.01 0.95 ± 0.01

Table II.3: Performances achieved by U-net1 in lung segmentation on different
test sets, evaluated in terms of the vDSC at three successive stages of the
segmentation procedure.

II.3.2 U-net2: COVID-19 lesion segmentation performance

U-net2 for COVID-19 lesion segmentation has been trained and evaluated
separately on the COVID-19-Challenge dataset and on the annotated subset of
the MosMed dataset, following the train/validation/test partitioning reported in
Table II.2. The segmentation performances achieved on the test sets are reported
in terms of the vDSC in Table II.4, according to the cross-sample validation
scheme.

As expected, the U-net2 performances are higher when both the training set
and independent test sets belong to the same data cohort. By contrast, when a
U-net2 is trained on COVID-19-Challenge data and tested on Mosmed (and the
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U-net Trained on Test set U-net size Original CT size
(vDSC) (vDSC)

COVID-19 Challenge COVID-19 challenge 0.51 ± 0.24 0.51 ± 0.25
COVID-19 Challenge MosMed 0.39 ± 0.19 0.40 ± 0.19

U-net60%
2 MosMed MosMed 0.54 ± 0.22 0.55 ± 0.22

MosMed COVID-19 challenge 0.25 ± 0.23 0.25 ± 0.23
COVID-19 challenge COVID-19 challenge 0.49 ± 0.21 0.50 ± 0.21

+ MosMed + MosMed

U-net90%
2 COVID-19 Challenge COVID-19 Challenge 0.64 ± 0.23 0.65 ± 0.23

+ MosMed + MosMed

Table II.4: Performances achieved by U-net2 in COVID-19 lesion segmentation,
evaluated in terms of the vDSC. The composition of the train and test sets is
reported in Table II.2.

other way around) performances significantly decrease. This effect is related to
the different criteria used to both collect and annotate the data. We obtained
a better result with the U-net2 trained on the COVID-19 Challenge dataset
and tested on the MosMed test set, since the network has been trained on a
larger data sample and hence it has a higher generalization capability. The best
segmentation performances have been obtained by the U-net2 trained using the
90% of the available data, U-net90%

2 , which reaches a vDSC of 0.65 ± 0.23 on
the test set. This result suggests the need to train U-net models on the largest
possible data samples in order to achieve higher segmentation performance.

II.3.3 Evaluation of the quantification performance of the
LungQuant system on a completely independent set

II.3.3.1 Evaluation of lung and COVID-19 lesion segmentations

Once the two U-nets have been trained and the whole analysis pipeline has been
integrated into the LungQuant system, we tested it on a completely independent
set (COVID-19-CT-Seg dataset) of CT scans. The performances of the whole
process were quantified both in terms of vDSC and sDSC with tolerance values
of 1, 5 and 10 mm (Table II.5). A very good overlap between the predicted and
reference lung masks is observable in terms of vDSC, whereas the sDSC values
are highly dependent on tolerance values, ranging from moderate to very good
agreement measures. Regarding the lesion masks a moderate overlap is measured
between the predicted and reference lesion masks in terms of vDSC, whereas
the sDSC returns measures extremely dependent on tolerance values, that span
from limited to moderately good and ultimately satisfactory performances for
tolerance values of 1 mm, 5 mm and 10 mm, respectively. Figure II.3 allows
for a visual comparison between the lung and lesion masks provided by the
LungQuant system integrating U-net90%

2 and the reference ones.
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Lung Segmentation
Metrics vDSC sDSC (1 mm) sDSC (5 mm) sDSC (10 mm)

LungQuant (U-net60%
2 ) 0.96 ± 0.01 0.66 ± 0.09 0.95 ± 0.02 0.98 ± 0.01

LungQuant (U-net90%
2 ) 0.95 ± 0.01 0.65 ± 0.09 0.95 ± 0.02 0.98 ± 0.01

Infection Segmentation
Metrics vDSC sDSC (1 mm) sDSC (5 mm) sDSC (10 mm)

LungQuant (U-net60%
2 ) 0.62 ± 0.09 0.29 ± 0.06 0.75 ± 0.11 0.90 ± 0.09

LungQuant (U-net90%
2 ) 0.66 ± 0.13 0.36 ± 0.13 0.76 ± 0.18 0.87 ± 0.13

Table II.5: Performances of the LungQuant system on the independent COVID-
19-CT-Seg test dataset. The vDSC and sDSC computed between the lung
and lesion reference masks and those predicted by the LunQuant system are
reported.

Figure II.3: On the rows: three axial slices of the first CT scan on the COVID-19-
CT-Seg test dataset (coronacases001.nii) are shown. On the columns: original
images (left); overlays between the predicted and the reference lung (center) and
COVID-19 lesion (right) masks. The reference masks are in green, while the
predicted ones, obtained by the LungQuant system integrating U-net90%

2 ,are in
blue.
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II.3.3.2 Percentage of affected lung volume and CT-SS estimation

The lung and lesion masks provided by the LungQuant system can be further
processed to derive the physical volumes of each mask and the ratios between
the lesion and lung volumes. We show in Fig. II.4 the relationship between
the percentage of lung involvement as predicted by the LungQuant system vs.
the corresponding values for the reference masks of the fully independent test
set COVID-19-CT-Seg, for both the LungQuant systems with the U-net60%

2
and the U-net90%

2 . Despite the limited range of samples to carry out this test,
an agreement between the LungQuant system output and the reference values
is observed for both U-net60%

2 and U-net90%
2 . In terms of the mean absolute

error (MAE) among the estimated and the reference percentages of affected
lung volume (P), we obtained a Mean Absolute Error equal to MAE=4.6% for
the LungQuant system with U-net60%

2 and MAE=4.2% for the system with
U-net90%

2 .

Figure II.4: Estimated percentages P of affected lung volume versus the ground
truth percentages, as obtained by the LungQuant system integrating U-net60%

2
(left) and U-net90%

2 (right). The gray areas in the plot backgrounds guide the
eye to recognize the CT-SS values assigned to each value of P (from left to right:
CT-SS=1, CT-SS=2, CT-SS=3).

The accuracy in assigning the correct CT-SS class is reported in Table II.6,
together with the number of misclassified cases, for the 10 cases of the COVID-
19-CT-Seg dataset. The best accuracy achieved by LungQuant is of 90% with
U-net90%

2 . In all cases, the system misclassifies the examples by 1 class at most.

II.4 Discussion and Conclusion

We developed a fully automated quantification pipeline, the LungQuant system,
for the identification and segmentation of lungs and pulmonary lesions related
to COVID-19 pneumonia in CT scans. The system returns the COVID-19
related lesions, the lung mask and the ratio between their volumes, which is
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U-net Dataset Accuracy Misclassified Misclassified
by 1 class by 2 classes

U-net60%
2 COVID-19-CT-Seg 6/10 4/10 0

U-net90%
2 COVID-19-CT-Seg 9/10 1/10 0

Table II.6: Classification performances of the whole system in predicting CT
Severity Score on MosMed and COVID-19-CT-Seg datasets. The number of
misclassified cases is reported.

converted into a CT Severity Score. The performance obtained against a voxel-
wise segmentation ground truth was evaluated in terms of the vDSC, which
provides a measure of the overlap between the predicted and the reference masks.
The LungQuant system achieved a vDSC of 0.95 ± 0.01 in the lung segmentation
task and of 0.66 ± 0.13 in segmenting the COVID-19 related lesions on the fully
annotated publicly available benchmark COVID-19-CT-Seg dataset of 10 CT
scans. The LungQuant has been evaluated also in terms of sDSC for different
values of tolerance. The results obtained at a tolerance of 5 mm, equal to
0.76±0.18 is satisfactory for our purpose, given the heterogeneity of the labelling
process.

Regarding the correct assignment of the CT-SS, the LungQuant system
showed an accuracy of 90% on the completely independent test set COVID-
19-CT-Seg. Despite this result is encouraging, it was obtained on a rather
small independent test set, thus, a broader validation on larger data sample
with more heterogeneous composition in terms of disease severity is required.
Training DL algorithms requires a huge amount of labeled data. The lung
segmentation task has been made feasible in this work thanks to the use of
lung CT datasets collected for purposes different from the study of COVID-19
pneumonia. Training a segmentation system on these samples had the effect
that when we use the trained network to process the CT scan of a patient with
COVID-19 lesions, especially in case ground glass opacities and consolidation are
very severe, the lung segmentation is not accurate anymore. In order to overcome
this problem, the proposed LungQuant system returns a lung mask which is
the logical union between the output mask of the U-net1 and the infection mask
generated by the U-net2. The LungQuant system can actually be improved
whether lung masks annotation are available on subjects with COVID-19 lesions.
A similar problem occurs for the segmentation of ground glass opacities and
consolidations. The available data, in fact, are very unbalanced with respect
to the severity of COVID-19 disease and, hence, the accuracy in segmenting
the most severe case is worse. The current lack of a large dataset, collected
by paying attention to adequately represent all categories of disease severity,
limits the possibility to carry out accurate training of AI-based models. Finally,
we found that the difference in the annotation and collection guidelines among
datasets is an issue. Processing aggregated data from different sources can be
difficult if labelling has been performed using different guidelines. CT scans
should contain the acquisition parameters, usually stored in the DICOM header,
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when they are published. The lack of this information is a drawback of our
study. If we had that data, we could study more in detail the dependence of the
LungQuant performances on specific acquisition protocols or scanners. On the
contrary, even with this information, it would not be possible to standardize
the different annotation styles. The results of LungQuant (last 2 rows of Table
II.4) demonstrate its robustness across the different datasets even without a
dedicated preprocessing step to account for this information.

Appendix II.A
Additional descriptions of Materials and Methods

II.A.1 Characteristics of the public datasets used in the study

II.A.1.1 The Plethora dataset

The PleThora dataset [9] is a chest CT scan collection with thoracic volume
and pleural effusion segmentations, delineated on 402 CT studies of the Non-
Small Cell Lung Cancer (NSCLC) radiomics dataset, available through the The
Cancer Imaging Archive (TCIA) repository [16]. This dataset has been made
publicly available to facilitate improvement of the automatic segmentation of
lung cavities, which is typically the initial step in the development of automated
or semi-automated algorithms for chest CT analysis. In fact, automatic lung
identification struggles to perform consistently in subjects with lung diseases.
The PleThora lung annotations have been produced with a U-net based algorithm
trained on chest CT of subjects without cancer, manually corrected by a medical
student and revised by a radiation oncologist or a radiologist.

II.A.1.2 The 2017 Lung CT Segmentation Challenge dataset

The Lung CT Segmentation Challenge (LCTSC) dataset consists of CT scans of
60 patients, acquired from 3 different institutions and made publicly available in
the context of the 2017 Lung CT Segmentation Challenge [10]. Since the aim of
this challenge was to foster the development of auto-segmentation methods for
organs at risk in radiotherapy, the lung annotations followed the RTOG 1106
contouring atlas.

II.A.1.3 The 2020 COVID-19 Lung CT Lesion Segmentation Challenge
dataset

The 2020 COVID-19 Lung CT Lesion Segmentation Challenge dataset (COVID-
19 Challenge) is a public dataset consisting of unenhanced chest CT scans of 199
patients with positive RT-PCR for SARS-CoV-2 [11]. Each CT is accompanied
with the ground truth annotations for COVID-19 lesions. Data has been provided
in NIfTI format by The Multi-national NIH Consortium for CT AI in COVID-19
via the NCI TCIA public website [16]. Annotations have been made using a
COVID-19 lesion segmentation model provided by NVIDIA, which takes a full CT
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chest volume and produces pixel-wise segmentations of COVID-19 lesions. These
segmentations have been adjusted manually by a certified radiologists board, in
order to give 3D consistency to lesion masks. The dataset annotation was made
possible through the joint work of Children’s National Hospital, NVIDIA and
National Institutes of Health for the COVID-19-20 Lung CT Lesion Segmentation
Grand Challenge.

The dataset and the annotations have been made available in the context of
a MICCAI-endorsed international challenge (https://covid-segmentation.grand-
challenge.org/) which had the aim to compare AI-based approaches to automated
segmentation of COVID-19 lung lesions.

II.A.1.4 The MosMed dataset

MosMed [12] is a COVID-19 chest CT dataset collected by the Research and
Practical Clinical Center for Diagnostics and Telemedicine Technologies of the
Moscow Health Care Department. It includes CT studies taken from 1110
patients. Each study is represented by one series of images reconstructed into
soft tissue mediastinal window. MosMed provides 5 labeled categories, based
on the percentage of lung parenchyma affected by COVID-19 lesions. The 5
categories of lung involvement and their correspondence to the CT-SS scale are
described in Table II.7. The first category (CT-0) contains cases with normal
lung tissue and no CT-signs of viral pneumonia, whereas the other categories
contain GGO (CT-1 and CT-2) and both GGO and regions of consolidation in
the higher classes (CT-3 and CT-4).

MosMed N. of cases Percentage P of involved Corresponding
CT category lung parenchyma CT-SS

0 254 P = 0 0
1 684 0 < P ≤ 25 1, 2
2 125 25 < P ≤ 50 3
3 45 50 < P ≤ 75 4
4 2 75 < P ≤ 100 5

Table II.7: MosMed severity categories defined on the basis of the percentage P
of lung volume affected by COVID-19 lesions. The correspondence to the CT-SS
scale is reported.

A small subset of class CT-1 cases (50 patients) had been annotated by expert
radiologists with the support of MedSeg software (2020 Artificial Intelligence AS).
The annotations consist of binary masks in which white voxels represent both
ground-glass opacifications and consolidations. Both CT scans and annotations
were provided in NIfTI format. During the DICOM-to-NIfTI conversion process,
only one slice out of ten was preserved and, as a result, MosMed CT scans have
a reduced total number of slices with respect to the other datasets.
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II.A.1.5 The COVID-19-CT-Seg dataset

The COVID-19-CT-Seg dataset is a collection of CT scans taken from the
Coronacases Initiative and Radiopaedia [4]. It contains 20 CT scans tested
positive for COVID-19 infection. This public dataset contains both lung and
infection annotations. The ground truth has been made in three steps: first,
junior radiologists (1-5 years of experience) delineated lungs and infections
annotations, then two radiologists (5-10 years of experience) refined the labels and
finally the annotations have been verified and optimized by a senior radiologist
(more than 10 years of experience in chest radiology). The annotations have
been produced with the ITK-SNAP software. Ten CT images of this dataset
were provided in 8-bit depth, therefore, we decided to not use them.

II.A.2 Additional training details and evaluation strategy for the
U-nets

II.A.2.1 Evaluation metrics

The segmentation performances for both U-nets have been evaluated with the
volumetric Dice Similarity Coefficient (vDSC), computed between the true mask
volume (Vtrue) and the predicted mask volume (Vpredict), and with the surface
Dice Similarity Coefficient (sDSC), computed between the true surface (Strue),
and the predicted one defined, (Spredict) [15], as follows;

vDSCmetric = 2 · |Vtrue ∩ Vpredict|
|Vtrue| + |Vpred|

(II.1)

sDSCmetric = 2 · |Strue ∩ Spredict|
|Strue| + |Spred|

(II.2)

The loss function used to train the U-net for lung segmentation is the vDSC
loss, defined as follows

vDSCloss = 1 − 2 · |Mtrue ∩ Mpred|
|Mtrue| + |Mpred|

(II.3)

and computed only on the foreground (white voxels). We used this strategy in
order to avoid giving excessive weight to the background (black voxels), since
the number of black and white voxels is quite unbalanced in favor of the former.

For U-net2, we used a loss function (L) consisting of the sum of the vDSC
loss and a weighted cross-entropy (CE), defined as follows:

L = vDSCloss + CEweighted (II.4)

CEweighted = w(x)
∑
x∈Ω

log(Mtrue(x) · Mpred(x)) (II.5)

where w(x) is the weight map which takes into account the frequency of white
voxels, x is the current sample and Ω is the training set.
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Since the background class is larger than the foreground class on the order
103, we computed the weight map w(x) for each ground-truth segmentation
to increase the relevance of the underrepresented class, following the approach
described in [17]. The weight map was defined as w(x) = w0/fj where fj is
the average number of voxels of the jth class over the entire training data set
(j = 0, 1) and w0 is the the average between the frequencies fj .

II.A.2.2 Data augmentation

Data augmentation is a strategy to increase the size of the training set
by synthetically generating additional training images through geometric
transformations. This technique is particularly important to improve the
generalization capability of the model, especially in the case of a limited number
of training samples. In our work, we applied data augmentation during the data
pre-processing phase (after defining the bounding boxes enclosing the segmented
lungs) in order to generate a fixed number of augmented images for each original
data. We chose an augmentation factor equal to 2 which means that the number
of artificially generated images is twice the number of the original training set.
For each image in the training set, two of the following geometric transformations
were randomly chosen:

• Zooming. The CT image and the ground truth masks were zoomed in
the axial plane, using a third-order spline interpolation and the k-nearest
neighbor method, respectively. The zooming factor was randomly chosen
among the following values: 1.05, 1.1, 1.15, 1.2.

• Rotation. The CT image and the ground truth mask were rotated in
the axial plane, using a third-order spline interpolation and the k-nearest
neighbor method, respectively. The rotation angle was randomly sampled
among the following values: -15°, -10°, -5°, 5°, 10°, 15°.

• Gaussian noise. An array of noise terms randomly drawn from a normal
distribution was added to the original CT image. For each image, the
mean of the Gaussian distribution was randomly sampled in the [-400, 200]
HU range and the standard deviation randomly chosen among 3 values:
25, 50, 75 HU.

• Elastic deformation. An elastic distortion was applied to the original 3D
CT and mask arrays following the approach of Simard et al. [18]. This
transformation has two parameters: the elasticity coefficient which we
fixed to 12 and the scaling factor, fixed to 1000.

• Motion blurring. Slice by slice, we convolved the CT image with a linear
kernel (i.e. ones along the central row and zero elsewhere for a matrix of
size k × k) through the function filter2D, defined in the OpenCV Python
library [19], keeping the output image size the same as the input image. The
filter is applied with a kernel size of 4, 3, and 3, in the anterior-posterior,
latero-lateral and cranio-caudal direction, respectively.
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An example of the application of these augmentation techniques to one CT scan
of the dataset is provided in Fig. II.5.

Figure II.5: Data augmentation to increase the diversity of dataset: a) Image
without data augmentation; b) Zooming; c) Rotation; d) Gaussian noise; e)
Elastic deformations; f) Motion blurring.

II.A.3 Morphological refinement of U-net1 lung segmentation

In order to remove false-positive regions (i.e. voxels misclassified as lung parts),
at first, we identified the connected components in the lung masks generated
by U-net1, then, we excluded those components whose number of voxels was
below an empirically-fixed threshold. This threshold was set to the 40% of the
foreground mask, and it was reduced to 30% whether the resulting number of
voxels was found to be lower than the 65% of the initial mask provided by U-net1.
Figure II.6 shows some examples of how this procedure works on real CT scans.

II.A.4 Generation of a set of reference lung segmentation for
model training

As reported in Table 1 (main paper), the available datasets with lung mask
annotations, which were necessary to train the U-net for lung segmentation, are
mainly of subjects affected by lung cancer (Plethora and LCTSC datasets). To
complement this sample with subjects without lesions, and, at the same time,
to expose to U-net to the acquisition characteristics of the MosMed CT scans,
we generated the lung mask annotations for a subset of subjects of the CT-0
MosMed category, i.e. that of subjects without COVID-19 lesions.

An in-house lung segmentation algorithm was developed for this purpose
and implemented in matlab (The MathWorks, Inc.). It is based on the following
steps: 1) CT windowing in the [-1000,1000] HU range; 2) rough segmentation
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Figure II.6: Morphological refinement of the U-net1 output: a) and c) lung masks
as generated by U-net1; b) and d) refined masks after the connected component
selection.

of the lungs on a central coronal slice (Otsu binary thresholding and removal
of components connected with the image border) to define the minimum and
maximum axial coordinates of the lung region; 3) 2D rough segmentation of the
lungs on each axial slice (same procedure as the previous step) to generate a
3D seed mask for the following step; 4) segmentation of the lung parenchyma
by an active contour model (activecontour matlab function); 5) filling holes
(e.g. vessels and airway walls) with 3D morphological operators (imclose matlab
function).

This algorithm, which accurately segments the lung parenchyma in absence
of lesions, has very limited performance on CT scans of subjects with COVID-19
lesions.
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Introduction

In the second part of this thesis, we propose a DL model and a hyperparameter
optimization strategy to generate T1 and T2 maps acquired using the Magnetic
Resonance Fingerprinting (MRF) methodology. MRF is a quantitative magnetic
resonance imaging (QMRI) [1] technique, a powerful approach that allows the
generation of quantitative maps that represent distinct tissue properties.

Although traditional qualitative MRI is one of the most important tomo-
graphic tools adopted in clinical practice, it primarily provides information
about morphology and anatomy, which are visually assessed by clinical experts.
The main limitation of qualitative MRI images lies in their relative scale of
intensities, making them highly susceptible to variations caused by different ac-
quisition sequences and parameters. On the other hand, QMRI offers pixel-level
measurements of specific biological or physical properties, providing absolute
quantitative measurements. This characteristic makes QMRI more suitable for
accurate comparisons and analysis. In this chapter, we will focus on two specific
quantitative maps: T1 and T2 relaxation maps.

To comprehend the concepts of T1 and T2 relaxation times along with their
physical interpretations, we will provide a concise overview of the fundamentals of
MRI. A complete description of MRI technique can be found in reference [2]. MRI
is based on the principle of Nuclear Magnetic Resonance (NMR), a spectroscopic
technique that allows the study of different physical properties of materials.
The NMR phenomenon arises from the interaction of 1H nuclear spins with
an external magnetic field B0. By applying a static external magnetic field to
the material of interest, the nuclear magnetic moments begin to move along
the field’s axis through a circular motion called precession. The combination of
these individual magnetic moments gives rise to a net macroscopic magnetization
vector M of the system. At the equilibrium, assuming that B0 is aligned along
the z axis, the projection on the xy plane of the magnetization vector M⊥ has an
expectation value equal to zero, while the component of the magnetization along
z, Mz, assumes a constant value, M0. This equilibrium state is perturbed by
the application of a second Radio Frequency (RF) oscillating magnetic field B1,
perpendicular to the direction of the static field and whose frequency matches the
intrinsic precession frequency of the nuclear spin. Once the RF pulse is turned
off, the magnetization will return to the equilibrium state, through a process
called relaxation. By analyzing the radiated signal emitted by the magnetization
during the relaxation, it is possible to obtain microscopic information of the
investigated system. Specifically, during the relaxation, the magnetization vector
M can be described by the empirical equation known as the Bloch equation [3]:

dM

dt
= γM × B0 + 1

T1
(M0 − Mz)z − 1

T2
M⊥ (II.6)
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(a) T1 (b) T2

Figure II.7: In Figure II.7a illustrates the recovery of the longitudinal component
of magnetization from its initial value Mz(0) to reach the equilibrium value M0.
In Figure II.7b, it is represented the decay of the magnitude of the transverse
magnetization in the co-rotating reference frame (i.e. a reference frame rotating
around the z axis with the same frequency as B1), starting from an initial value
M⊥(0). Source [2].

where γ is the nuclear gyromagnetic ratio of 1H. From the equation we can
observe that, the relaxation of the magnetization is characterized by two separate
processes, each with their own time constants:

• T1 or longitudinal relaxation time is the relaxation time of Mz. It arises
from nuclear spin interactions with the surrounding microenvironment
(spin-lattice interactions), Figure II.7a;

• T2 or transverse relaxation time is the relaxation time of M⊥ = Mxx+Myy.
This relaxation is a result of interactions between nuclear spins (spin-spin
interactions), Figure II.7b.

Considering these aspects, it becomes evident that measurements of T1 and
T2 relaxation times provide insight into the physical properties of the studied
materials, as they are influenced by interactions among 1H nuclear spins within
their surrounding environment. If we consider NMR relaxation of water protons
of the human body, T1 and T2 relaxation times have the potential to quantify
specific physical properties of tissues, which may be used to monitor medical
conditions or disease progression. In this context, QMRI aims to generate
images known as quantitative maps, in which each pixel’s intensity represents
the corresponding physical property’s value.

Most QMRI approaches involve a series of measurements that vary one MRI
acquisition parameter at a time (e.g., flip angle (FA), echo time (TE), inversion
time (TI), or repetition time (TR)) to calculate the QMRI parameter value
from the resulting changes in pixel-wise intensities. Acquisition imperfections
(e.g., magnetic field inhomogeneities) are either averaged out by the series of
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(a) T1 (b) T2

Figure II.8: Conventional T1 and T2 mapping approach, reprinted from [4].
In Figure II.8a, a series of IR-SE or IR-TSE images with different inversion
times are acquired, enabling the calculation of the T1 value for each pixel. In
Figure II.8b, a series of SE or TSE images are acquired with different echo times.
An exponential fitting is performed for each pixel to determine the T2 value.

measurements or are directly measured and subsequently corrected. Compared
to conventional MRI, QMRI parametric maps are more reliable since they are
ideally independent of scanner hardware, software, and acquisition site. The
typical MRI sequences employed for the acquisition of T1 and T2 maps are:

• Spin Echo (SE) or Turbo Spin Echo (TSE): images are acquired by keeping
all the parameters fixed and varying TE. A pixel-wise exponential fitting
is performed on the series of images, according to the following equation:

y(TE) = a1 · e−T E/T2 + b1 (II.7)

The T2 value is calculated for each pixel and the T2 map is generated,
Figure II.8b.

• Inversion Recovery-Spin Echo (IR-SE) or Inversion Recovery-Turbo Spin
Echo (IR-TSE) (i.e., SE or TSE with an initial π inversion RF-pulse):
images are acquired by keeping all the parameters fixed and varying TI. A
pixel-wise fitting is performed on the data, according to:

y(TI) = a2 · |1 − b2 · e−T I/T1 | (II.8)

by the fitted T1 parameter the corresponding T1 map is generated,
Figure II.8a.

While QMRI offers several advantages, it is important to acknowledge its
two primary limitations. Firstly, it permits the measurement of only one map
at a time, which results in increased acquisition time when multiple maps are
required. Furthermore, the acquisition times for these sequences are notably
lengthy, making QMRI impractical for routine clinical use.
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Figure II.9: A sequence of images is acquired by varying some instrumental
parameters (TR and FA) in a pseudo-random way. Every voxel generates a
unique signal trajectory, called voxel fingerprint.

Magnetic Resonance Fingerprinting

MRF has recently emerged as a technique able to overcome the problems
described above [5], [6]. It is a fast technique able to obtain multi-parametric
maps in one-shot measurement. The MRF methodology consists of three parts:
signal acquisition, dictionary creation, and pattern matching for maps generation.
These three phases will be briefly described here below.

Signal Acquisition The key idea of MRF is to apply a train of RF pulses
varying in a pseudo-random way some MR instrumental parameters (e.g. FA, TR
etc.) that provides fingerprint-like signal evolutions for combinations of desired
tissue properties, such as T1 and T2, Figure II.9. In this way, tissues generate
unique signal trajectories, or “fingerprints”, which reflect specific properties of
the scanned material. Many different acquisition sequences can be used (such as
steady-state free precession (FISP), echo planar imaging (EPI), etc.), as long
as they offer sufficient signal-to-noise ratio and sensitivity to the properties
of interest. Additionally, it is necessary that the signal evolution trajectories
produced by these sequences should be well-understood and easily described by
the Bloch equations II.6.

Dictionary Generation All the acquired voxel fingerprints are compared
with a precomputed dictionary of possible signal trajectories realized using
an appropriate signal simulation model. The dictionary is generated by modeling
the spin behavior during the acquisition. Usually, the trajectories are simulated
using the Bloch equations II.6, which model the effects of the sequence on a
single voxel.

Pattern Matching The final step after acquisition and dictionary generation
involves pattern matching to identify the dictionary entry that best represents
the tissue properties of each voxel. This is achieved by computing the inner
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product between the acquired voxel fingerprint and each dictionary entry to find
the entry with the highest similarity value. This process is repeated for every
voxel in the image, generating multiple property maps from a single acquisition
scan.

The important advantages of MRF compared to other QMRI approaches
are: i) the shorter acquisition time compared to the conventional T1 and T2
mapping, ii) the simultaneous estimation of different parametric maps and iii)
less sensitivity to instrumental constraints, including temporal delays and motion
artifacts. All these aspects could improve the patient comfort during the exam
and bring economic benefits to the hospital, related to the energy-saving needed
to operate the machines and to the possibility to analyze more patients.

Limitations of the reconstruction process

One of the primary limitations of the MRF methodology is the computationally
expensive reconstruction process. This is because the dictionary must be large
and dense enough to cover all the possible tissue values. Additionally, the size
of the dictionary increases exponentially with the number of tissue parameters
encoded in the simulated trajectories. This rapid growth can lead to the
creation of exceedingly large dictionaries, which require significant computational
resources for processing. The resulting high memory, storage, and computational
requirements are limiting factors for the clinical adoption of MRF.

Some dictionary compression methods have been recently developed to reduce
the dictionary size and to speed up the matching process. For example, in [7] the
singular value decomposition (SVD) is used as a compression tool to reduce the
time-dimension of the dictionary, resulting in fewer points to compare. However,
the dictionary compression by the SVD method is itself a computationally
expensive operation. Another approach to face the problem is proposed by [8],
which uses a polynomial fitting of the fingerprinting signals in order to reduce
the memory requirements for storing the dictionary. However, this technique
introduces additional approximations which can affect the accuracy of the
reconstructed maps.

Fast DL reconstruction techniques for preclinical MRF

In the following work III, we present an optimized MRF framework to provide
quantitative multiparametric maps for preclinical studies. We implement the
MRF acquisition by comparing two different acquisition parameter profiles.
To estimate T1 and T2 maps from the MRF trajectories, we proposed a
DL method and a hyperparameters optimization algorithm to automatically
select the best reconstruction methodology. A summary of our MRF analysis
framework is depicted in Figure II.10. This new DL approach improves the
reconstruction performance in the estimation of both T1 and T2 maps as well
as the computational time necessary for the calculation. Furthermore, we
demonstrated that the DL system allows us to use a lower number of MRF
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Figure II.10: Overview of the MRF analysis framework. The system consists of
three phases: i) MRF acquisition, ii) DL hyperparameter optimization and iii)
MRF sequence optimization.

images and a lower k-space sampling percentage, significantly reducing the
acquisition time of MRI examinations.
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Abstract

We propose a deep learning (DL) model and a hyperparameter optimization
strategy to reconstruct T1 and T2 maps acquired with the magnetic
resonance fingerprinting (MRF) methodology. We applied two different
MRF sequence routines to acquire images of ex vivo rat brain phantoms
using a 7-T preclinical scanner. Subsequently, the DL model was trained
using experimental data, completely excluding the use of any theoretical
MRI signal simulator. The best combination of the DL parameters
was implemented by an automatic hyperparameter optimization strategy,
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III Fast DL reconstruction techniques for preclinical MRF

whose key aspect is to include all the parameters to the fit, allowing the
simultaneous optimization of the neural network architecture, the structure
of the DL model, and the supervised learning algorithm. By comparing
the reconstruction performances of the DL technique with those achieved
from the traditional dictionary-based method on an independent dataset,
the DL approach was shown to reduce the mean percentage relative error
by a factor of 3 for T1 and by a factor of 2 for T2, and to improve the
computational time by at least a factor of 37. Furthermore, the proposed
DL method enables maintaining comparable reconstruction performance,
even with a lower number of MRF images and a reduced k-space sampling
percentage, with respect to the dictionary-based method. Our results
suggest that the proposed DL methodology may offer an improvement in
reconstruction accuracy, as well as speeding up MRF for preclinical, and
in prospective clinical, investigations.

Keywords: MR Fingerprinting, Deep Learning, Neural Networks, Quantitative
MRI

III.1 Introduction

In recent years, there has been growing interest in quantitative multiparametric
mapping (MPM) by means of magnetic resonance imaging (MRI) as a valuable
tool for measuring, until the millimeter scale of resolution, physical properties
such as nuclear spin–lattice relaxation time (T1), nuclear spin–spin relaxation
time (T2), and proton density (PD) [1], [2]. The quantification of multiple
MR parameters improved the applicability of noninvasive MRI methods in the
diagnostic assessment and follow-up of pathological conditions in different clinical
and preclinical areas [3]–[8]. Quantitative MPM, however, requires multiple
sequences to measure quantitative parameters, and so it may result in a very
time-consuming approach [9], [10].

Recently, MR fingerprinting (MRF) has emerged as an accurate and
time-efficient MPM technique delivering multiparametric maps in one-shot
measurement [11]. The key idea of MRF is to apply a train of radiofrequency
(RF) pulses varying in a pseudo-random way some MR acquisition parameters,
for example, flip angle (FA), repetition time (TR), echo time (TE), or readout
trajectory, to eventually provide unique signal evolutions, called “fingerprints”,
for combinations of desired tissue physical properties, such as T1, T2, and PD [12].
In this way, the sample properties and composition can be traced back from the
analysis of the fingerprints collected in each voxel. The important advantages
of MRF compared with other MPM approaches are (i) the shorter acquisition
time, (ii) the simultaneous estimation of different parametric maps, and (iii) less
sensitivity to instrumental constraints, including temporal delays and motion
artifacts [11]–[13].

The traditional MRF maps reconstruction method is known as pattern
matching [14]. Such a method compares the acquired voxel-wise fingerprints with
a precomputed dictionary of synthetic MR signal evolutions generated using the
Bloch equations or the extended phase graph (EPG) signal simulation model [15].
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For each voxel, the dictionary entry with the best matching correlation with
the fingerprint is selected and the associated parameters (e.g., T1, T2, and
PD) are assigned to the voxel to generate the quantitative maps associated
with tissue properties. One of the main drawbacks of this methodology is
that the reconstruction dictionary must be sufficiently large to cover the entire
range of possible tissue values and to avoid errors in reconstructed tissue maps.
Furthermore, the dictionary size grows exponentially with the number of tissue
parameters encoded in the simulated fingerprints [16]. This requires significant
storage and computational resources, which are limiting factors for the clinical
adoption of MRF techniques. Some dictionary-compression methods have been
developed to reduce the dictionary size and to speed up the matching process [17].
However, these methods make additional approximations that can affect the
accuracy of the reconstructed maps.

The use of machine learning (ML) and deep learning (DL) algorithms has been
suggested as a strategy to overcome these reconstruction issues [18]–[20]. Among
these methods, neural networks (NNs) are particularly able to approximate a
nonlinear function between the inputs and the outputs that may be difficult to
represent via analytical functions. Using these techniques, it is possible to define
a regressive DL model that is capable of predicting, after a supervised training
procedure, the parameters associated with the experimental fingerprint as input.
The three main advantages of this approach are (i) the fast computation of the
quantitative parameter maps, (ii) the possibility of predicting MR parameters of
unknown signal evolutions (while the matching process restricts the parameters
prediction to those present in the dictionary), and (iii) the capability of addressing
the scalability problem of the dictionary without increasing the calculation time.
Recent studies [18], [19], [21] demonstrated the feasibility of a DL-based approach
for MRF. This was achieved by training the DL model using ground truth data
generated via pattern matching, then applying the results to experimental data.
The NN is trained to learn the tissue properties from the generated dataset,
eliminating the need to memorize the whole set of fingerprints after the training
procedure. These works show that, compared with the traditional matching
procedure, the application of the DL model to MRF data is 300–5000 times
faster [21].

Because of these advantages, many applications of the MRF framework
have been reported in the clinical field. For example, in brain studies, the
MRF-generated relaxometry maps were shown as a promising tool to help the
diagnosis of suspicious hippocampal sclerosis in patients with mesial temporal
lobe epilepsy [22], to identify inconspicuous epileptogenic lesions from patients
with negative conventional MRI diagnosis [23], to study focal cerebral alterations
and identify patients with frontotemporal lobe degeneration [24], and to classify
Parkinson’s disease subjects and their disease severity [25]. Moreover, the fast
MRF map quantification makes it highly applicable to abdominal and cardiac
imaging [26], [27].

However, as far as we know, the applications of MRF methodology in
the preclinical field are still limited and an optimized MRF protocol for both
acquisition and reconstruction phases that exploits DL techniques has not been
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proposed yet. In this context, the aim of this preclinical study is to provide
an optimized, DL-based MRF framework to measure T1 and T2 maps of the
ex vivo rat brain. To pursue this goal: (i) we implemented a preclinical MRF
pulse sequence with two different FA and TR pseudo-random profiles [28], [29]
to generate unique T1 and T2 MRF signal timecourses and to investigate which
pseudo-random profile delivers the most accurate T1 and T2 maps reconstruction
via the pattern-matching method; (ii) we trained, validated, and tested two
supervised DL models with all the acquired MRF images to assess which network
predicts the T1 and T2 maps with the most accuracy; and (iii) we optimized
both the MRF acquisition sequence and the DL models to deliver the least
time-consuming framework to acquire MRF images and to predict accurate and
reliable T1 and T2 maps.

In particular, this study aims to extend current DL-based methods for
the analysis of MRF data in three main directions. First, we will perform a
supervised training procedure on experimental data, excluding the use of MRI
signal simulators. This approach ensures that the DL models are trained on real
experimental inputs, which should enhance their reliability and generalizability.
Second, we will present an automatic procedure to optimize simultaneously the
NN architecture, the structure of the DL model, and the supervised learning
algorithm. Lastly, we will compare different MRF acquisition settings and DL
architectures to optimize both the acquisition and reconstruction phases. By
combining these approaches, we aim to develop an advanced DL-based MRF
framework that improves both the accuracy and efficiency of T1 and T2 map
measurements in preclinical research settings.

III.1.1 Magnetic resonance imaging acquisition

MRI acquisitions were performed with a 7-T Pharmascan scanner (Bruker,
Billerica, MA, USA) equipped with a circularly polarized 1H transmit/receive
volume coil. Before performing gold standard mapping and running the MRF
protocols, a B0 map was acquired and automatic shimming by means of the
MAPSHIM utility was executed using all the available shims up to the Z3
order. All the acquisition protocols were based on Cartesian sampling with a
linear phase-encoding order, starting from the lower edge of the k-space. No
phase-encoding acceleration was applied.

The gold standard T1 and T2 mapping protocol was applied to one axial
slice (slice thickness = 1.0 mm, FOV = 33×33 mm2, matrix size = 128×128,
with read, phase and slice offset = 0) and included an inversion recovery-spin
echo (IR-SE) sequence with 10 inversion time points (TR/TE = 5000/4.59 ms,
TI = 100, 200, 400, 700, 1100, 1600, 2200, 2900, 3700, 4600 ms, scan time =
106 min), and a SE sequence with 10 echo time points (TR = 5000 ms; TE =
6, 10, 20, 40, 60, 80, 100, 150, 200, and 300 ms; scan time = 106 min). The
IR-SE and SE data were analyzed with an in-house fitting software developed in
Matlab (MathWorks, MA, USA). In particular, T1 maps were computed from
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the following three-parameter model:

y(TI) = a1 · |1 − b1 · e− T I
T1 | (III.1)

while T2 maps from the following exponential decay function:

y(TE) = a2 · e− T E
T2 + b2 (III.2)

The MRF framework was implemented according to the MRF-steady-state
free precession (FISP) sequence proposed by Gao et al. [28], keeping the same
slice geometry set for the gold standard mapping protocol [slice thickness =
1.0 mm, FOV = 33×33 mm2, matrix size = 128×128, with read, phase and slice
offset = 0] with TE = 3.2 ms and two different FA/TR profiles. Specifically, we
implemented both the 600 FA/TR points profile proposed by Gao et al. [28]
and the optimized 400 FA/TR points profile proposed by Zhao et al. [29] with
scan times of 30 min and 20 min respectively. For detailed visualization of
these profiles, please refer to Figure III.1. As regards the MRF dictionary-based
reconstruction method, T1 and T2 maps were computed by using the traditional
dictionary simulation and the pattern matching method. In particular, the
two dictionaries (Gao et al. and Zhao et al.) were generated exploiting the
Extended Phase Graph (EPG) formalism15 to simulate the fingerprints for 26710
combinations of T1 (range: 100-2500 ms) and T2 (range: 1-200 ms).

III.1.2 Input data

The dataset consisted of six slices of two ex vivo rat brain phantoms, five slices
from the first phantom and one slice from the second one. For each slice of the
dataset, ground truth T1 and T2 maps (through the IR-SE and SE sequences,
respectively) and the two MRF sequences were acquired.

Before passing the MRF images to the DL model, the following preliminary
steps were performed. First, we normalized the pixel intensities of the MRF
images and ground truth T1 and T2 maps to the [0,1] range. Then the MRF
images and ground truth T1 and T2 maps were transformed into collections of
mono dimensional trajectories that compose the input and the expected output
datasets, respectively. We excluded from the training dataset MRF signals that
belong to the background and to the skull regions.

III.1.3 Deep Learning reconstruction

We defined two different architectures of the DL model: a multilayer perceptron
(MLP) and a recurrent neural network (RNN). Both the models were used to
perform a voxel-wise regression of the T1 and T2 parameters, given a MRF
signal evolution trajectory as input. This means that the DL model receives,
as input, the MRF signal evolution trajectory from an individual voxel and
produces, as output, the estimated pair of T1 and T2 values corresponding to
that specific voxel. A schematic representation of both the architectures is
provided in Figure III.2. While MLPs are general purpose models for handling
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(a) Gao et al. profile

(b) Zhao et al. profile

Figure III.1: Flip angle (FA)/repetition time (TR) profiles used for the
magnetic resonance fingerprinting (MRF) acquisitions and dictionary generation.
Specifically, III.1a Profile used for acquiring the Gao et al. dataset of 600 time
points; III.1b Profile used for acquiring the Zhao et al. dataset of 400 time
points.

nonspecific input data, RNNs are intended to deal with time-series signals to
solve temporal problems. Specifically, the MLP was composed of a sequence of
fully connected layers. The input layer consists of a number of nodes equal to
the MRF sequence length with a sigmoid activation function, while the output
layer consists of two nodes for the prediction of T1 and T2 values. The RNN was
composed of a long-short term memory (LSTM) block with a hyperbolic tangent
activation function and a sigmoid activation for the recurrent step, followed
by a fully connected layer with two nodes for the output predictions. Because
the LSTM block works better with short input sequences [30], we reshape the
one-dimensional MRF sequence into multiple parallel time series, each 20 time
points long. The appropriate activation function of the output layer of each of
the models was found using the hyperparameter optimization algorithm.

The supervised training procedure of both models was performed by
minimizing the mean squared error (MSE) loss function and using the mean
absolute error (MAE) as an additional metric to monitor the process. Early
stopping was performed by monitoring the validation error: the training
procedure was stopped when the validation error did not improve within a
maximum number of epochs. This maximum number of steps is called early
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Figure III.2: Schematic representation of the two architectures used: a multilayer
perceptron (MLP) on the left and a recurrent neural network (RNN) composed of
a long-short term memory (LSTM) block on the right. Both models receive the
magnetic resonance fingerprinting trajectory of a single voxel as input and output
the corresponding T1 and T2 values for that voxel. The activation functions,
number of hidden dense layers, and number of dense units for the MLP, as well as
the number of LSTM units for the RNN, were optimized through the automatic
hyperparameter tuning procedure.

stopping patience, and it was set equal to a percentage of the total number of
training epochs. To train, test, and evaluate the generalization ability of the
proposed method, we performed a cross-validation procedure among different
slices of the two phantoms. Specifically, we trained the model on five slices of
the first phantom, randomly partitioning the input dataset into two separate
subsets (80%/20%) for the training and validation phases, respectively. We used
the slice of the second phantom excluded from the training process and from the
hyperparameter tuning as an independent test set.

Code has been written in Python 3.8 leveraging on the tensorflow 2.8 machine
learning platform [31].

III.1.4 Hyperparameter optimization

To find the best configuration of the model for the MRF problem and for the
available data, we performed the hyperparameter optimization through the
Hyperopt library [32]. Using the Hyperopt framework, many combinations
among a selection of parameters are scanned in a semiautomatic way using the
tree-structured Parzen estimator (TPE) algorithm to find the best configuration
of the model. In particular, the TPE algorithm performs a Bayesian scan of
the search space by sampling more densely the most promising regions of the
space and, as a consequence, learning from the tuning history. To optimize the
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Figure III.3: Schematic representation of k-fold cross-validation for hyperpa-
rameter optimization. The cross-validation was performed on the five slices of
the first phantom. The sixth slice of the second phantom was not included in
the optimization process and was used as an independent test set. MSE, mean
squared error.

hyperparameters configuration we applied the k-folding method (k = 5) to five
slices of the first phantom. The model was trained and validated on k–1 slices
(80% training, 20% validation) and it was tested on the k-th slice. For each
hyperparameter combination, the k-folding technique was repeated five times,
giving an opportunity to each fold to be the held-out test set, and the results
were averaged to obtain a global evaluation of the hyperparameter combination.
The whole process was repeated for 1000 hyperparameter combinations and
returns the configuration of the search space, which minimizes the tuning loss.
A schematic representation of the k-fold cross-validation strategy is provided
in Figure III.3. Specifically, we used the average MSE to evaluate the tuning
procedure, defined as:

L = 1
5

5∑
k=1

MSEk. (III.3)

The hyperparameters that were tuned include the architecture of the model
(i.e., MLP/RNN), some NN parameters (i.e., the number of hidden layers, the
size of each layers, the initialization function and the activation function of the
final layer), as well as some parameters of the supervised learning algorithm (i.e.,
the optimizer, the initial learning rate, the maximum number of epochs, and the
early stopping patience).
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III.1.5 Evaluation strategy

oth the dictionary-based reconstruction method and the DL method were
evaluated using the percentage relative error (PRE) and the structural similarity
index (SSIM).

The PRE quantifies the agreement between the reconstructed map y and
the reference one ŷ by computing the |ŷi − yi|/ŷi · 100%, where yi and ŷi are
the i-th voxel of y and of ŷ, respectively. To assess the overall agreement of the
reconstructed maps, we studied the distribution of the PRE over the entire maps,
excluding the areas associated with the background and skull, and over some
anatomical districts of interest. Specifically, we selected the cortex and corpus
callosum to provide examples of gray and white matter regions, respectively.
We used the SSIM to measure the goodness of the reconstruction by comparing
the statistical distributions of the two arrays of pixels [33]. Unlike the PRE,
the SSIM measures the difference between two images by assessing perceptual
characteristics. The SSIM can assume values between 0 and 1: if it is equal to 1
then there is perfect structural similarity between the image and the reference
image, while a value of 0 indicates that the images are completely different from
each other.

III.1.6 Sequence compression methods

The aim of this phase of the work was to determine the optimal design of the
MRF sequence that allows for good estimation of the parametric maps with a
shorter acquisition time. We examined the following aspects of the scanning
scheme: the minimum number of sequence images necessary to obtain accurate
quantitative maps and the minimum sampling percentage of the Cartesian
k-space that guarantees good reconstruction performances.

As regards the first point, we evaluated the reconstruction performances of
the algorithm with different acquisition sequence lengths, obtained by selecting
several subsets of images, starting from the beginning of the MRF acquisition.
In particular, we tested different sequence lengths, ranging from the full-length
experiments to 20 time points sequences. For the second aspect, to undersample
the k-space, we proceeded in the following way. First, we transformed all the
MRF images in the frequency domain by using the 2D Fourier transform. Then
we undersampled the k-space data by keeping only the central phase-encoding
lines of the k-space and applying zero filling to the peripheral lines. We tested
10 different subsampling percentages of the k-space, ranging from 100% to 10%
of the total number of phase-encoding lines. By applying the inverse Fourier
transform of the undersampled k-space data, we obtained the MRI images. To
determine both the minimum number of images of the MRF sequence and the
minimum k-space sampling percentage to be used, we applied the Elbow method
proposed by Satopaa et al [34]. Specifically, we plotted the SSIM and the mean
PRE as a function of the two parameters and we identified the optimal point of
the MRF sequence as the point of maximum curvature on the graph using the
kneed Python library.
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III.2 Results

III.2.1 Hyperparameter optimization results

The optimization procedure was performed separately on each of the Gao et al.
and Zhao et al. datasets to obtain the best configuration for both acquisition
schemes. We performed 1000 iterations of the optimization algorithm and
selected the configuration that minimized the tuning loss, L.

The best configurations for the Gao et al. and Zhao et al. datasets given by
optimization scan are listed in Table III.1. The best architecture of the NN for
the Gao et al. dataset is defined by MLP with a single hidden layer composed of
15 dense units, while the NN’s optimal architecture for the Zhao et al. dataset
consists of a RNN composed of a LSTM block with 64 units. The sigmoid
activation function is preferred for the output layer, as well as the Glorot [35]
initialization function, to set the initial values of the layer’s weights (specifically,
the Glorot uniform for the Gao et al. dataset and the Glorot normal for the
Zhao et al. dataset). Regarding the hyperparameters of the training phase, the
Adam optimizer [36] achieved the best result, with an initial learning rate of the
order of 10¯5. Finally, concerning the maximum number of epochs and the early
stopping patience, no large differences were observed in the behavior of the loss
function as a function of the scanned values. Figure III.4 presents the results of
the hyperparameters tuning process for the III.4a Gao et al. and III.4b Zhao et
al. datasets.

Hyperparameters Gao et al. value Zhao et al. value
Architecture MLP RNN
Number of hidden layers 1 /
Size dense layers 15 /
Size LSTM block / 64
Dense activation function Sigmoid Sigmoid
Initialization functions Glorot uniform Glorot normal
Optimizer Adam Adam
Initial learning rate 5.7 × 10−5 9.3 × 10−5

Maximum number of epochs 200 50
Early stopping patience 40% 35%

Table III.1: Best configuration of the parameters obtained using the ptimization
process. LSTM, long-short term memory; MLP, multilayer perceptron; RNN,
recurrent neural network.
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(a) Gao et al. dataset

(b) Zhao et al. dataset

Figure III.4: Results of the optimization process for the III.4a Gao et al. dataset
and III.4b Zhao et al. dataset as a function of each hyperparameter tuned. We use
violin plots and scatter plots to graphically represent the distribution of the loss
(mean squared error) values. Red dots highlight the best configuration. LSTM,
long-short term memory; MLP, multilayer perceptron; NN, neural network; RNN,
recurrent neural network.
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III.2.2 Phantom results

We trained the best configuration of the model on both the Gao et al. and Zhao
et al. datasets separately, following the cross-validation strategy described in
Section III.1.3 and we evaluated the predictive performances of the DL model
by applying it to the independent test set. Gold standard T1 and T2 maps,
the dictionary-based reconstructed maps, and the DL-reconstructed maps, are
presented in Figure III.5 for both the Gao et al. and Zhao et al. datasets. First,
we can qualitatively see that the estimated parametric maps of both methods
have correctly reconstructed the anatomical structures of the brain, preserving
the visual contrast between different tissues. We can also observe that the range
of T1 and T2 maps estimated with all the MRF techniques are comparable with
the reference T1 and T2 maps, validating the MRF acquisition designs proposed
by Gao et al. and Zhao et al. [28], [29]

Figure III.5 shows the error map associated with each parameter computed
voxel-wise as the PRE. We observe good agreement between the reference and
each of the reconstructed maps for most of the anatomical regions of the phantom.
In particular, good results were achieved in the regions of the brain. Larger
discrepancies are visible in the volume surrounding the phantom and near to
the skull, probably because of the imperfections in the RF excitation field, as
already discussed in Gao et al. [28] These errors are more evident in the T2
maps compared with the T1 maps. We summarized the distributions of the error
maps in the boxplots of Figure III.6. We can observe that the agreement of the
reconstructed maps with the ground truth ones is better for the DL method
compared with the traditional dictionary-based one, both in terms of mean
value and dispersion of the errors. Figure III.7 presents the distributions of the
PREs of the two regions of interest (ROIs) marked in the upper left corner. We
can see that the PRE distributions for the voxels of the two ROIs reflect the
PRE distributions obtained over the entire image (Figure III.6). However, the
mean values and the standard deviations of the two ROIs are smaller than those
obtained for the complete image. Overall, T1 and T2 estimates for white matter
are slightly better than those for gray matter. Considering the SSIM of the T1
map, the DL method reaches a value of 0.91 for the Gao et al. dataset and
0.92for the Zhao et al. dataset; while for the T2 map, the SSIM is equal to 0.88
for the Gao et al. dataset and 0.89 for the Zhao et al. dataset. Concerning the
dictionary-based reconstruction method, the T1 map achieves a SSIM of 0.91 for
both the Gao et al. and the Zhao et al. dataset; considering the T2 map, the
model reaches a SSIM equal to 0.73 for the Gao et al. dataset and 0.81 for the
Zhao et al. dataset.

III.2.3 Length of the MRF sequence results

We evaluated the reconstruction performances of the DL algorithm and of the
dictionary-based one with different acquisition sequence lengths for both datasets
(Figure III.8). As can be observed from Figure III.8, good agreement between
the DL-reconstructed and true maps was obtained for a sequence length of at
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Figure III.5: Comparison between the T1 and T2 true maps (first column), those
reconstructed with the traditional dictionary-based method (Dict) and those
generated with the deep learning (DL) method. The second and third columns
represent the results for the Gao et al. dataset, while the fourth and fifth columns
represent the results for the Zhao et al. dataset. Regions associated with the
background and the skull are set to the minimum value of each map. Error maps
are computed voxel-wise as the percentage relative error (PRE).

least 100 time points for both T1 and T2. We repeated the same simulation for
the dictionary-based method and found that a MRF sequence of at least 480
time points is necessary for a reliable reconstruction of T1 maps and of 490 time
points for T2 maps. In terms of the acquisition time, reducing the number of
MRF time points from 600 of the complete Gao et al. sequence to 100 of the
compressed sequence means speeding up the acquisition phase by an acceleration
factor of about 2.2.

Regarding the Zhao et al. MRF sequence, the results show that for the DL
system, a good reconstruction of T1 maps is achieved with at least 100 time
points, and with at least 60 time points for T2 maps. For the dictionary-based
method, 290 and 330 images are necessary for a good reconstruction of T1 and
T2 maps, respectively. By using 100 MRF images of the initial 400 means
accelerating the acquisition time by a factor of about 1.7.
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Figure III.6: Boxplots of the percentage relative errors of the T1 and T2 maps
reconstructed with the deep learning (DL) methodology and with the dictionary-
based (Dict) method for the Gao et al. and Zhao et al. datasets. Outlier values
were excluded from the plot, as well as background and skull PREs. Red dots
represent the mean values of the distributions.

Figure III.7: Boxplots of the percentage relative errors of T1 and T2 values
computed on the two regions of interest (ROIs) highlighted in the upper left
image. We use the red color to represent the ROI denoted with white matter
that corresponds to the corpus callosum, while blue represents gray matter,
which corresponds to the cortical area. The graph shows the PRE distributions
obtained with the deep learning (DL) methodology and with the dictionary-based
(Dict) method for the Gao et al. and Zhao et al. datasets. Outlier values were
excluded from the plot. Red dots represent the mean values of the distributions.
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Figure III.8: Boxplots of the percentage relative errors of T1 and T2 test maps
as a function of different sequence lengths of 20, 40, 60, 100, 200, 400, and 600
time points for the Gao et al. acquisition schedule (first row) and of 20, 40, 60,
100, 200, and 400 time points for the Zhao et al. acquisition schedule (second
row). Outlier values were excluded from the plot. Red dots represent the mean
values of the distributions.

III.2.4 K-space undersampling results

We tested the reconstruction accuracy of the DL model and of the traditional
dictionary-based method for different k-space Cartesian sampling percentages
considering the Gao et al. and Zhao et al. full-length experiments (Figure III.9).
We performed different scans for the two datasets by varying the k-space sampling
percentage from 100% to 10%.

The results for the Gao et al. and Zhao et al. sequences are presented in
Figure III.9 for the DL reconstruction method. We can observe that the T1 and
T2 maps are consistent with a minimum k-space percentage of 40% for both the
Gao et al. and Zhao et al. sequences. Considering the traditional reconstruction
method, we found that a minimum sampling percentage of 50% is required to
estimate accurate maps for both the Gao et al. (40% T1 and 50% T2) and the
Zhao et al. (40% T1 and 40% T2) datasets. For the two acquisition schemes
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Figure III.9: Boxplots of the percentage relative errors of T1 and T2 test maps
as a function of the k-space sampling percentage. For both datasets, we tested
10 sampling percentages ranging from 10% to 100% (100% corresponds to full k-
space sampling). Outlier values were excluded from the plot. Red dots represent
the mean values of the distributions.

and reconstruction methods, we observed that below these thresholds the loss of
spatial resolution because of k-space subsampling becomes evident. Because the
acquisition time is directly proportional to the number of k-space phase-encoding
lines sampled, the scanning time decreases, reducing the k-space coverage. For
the Gao et al. sequence, by reducing the k-space sampling percentage from 100%
to 30%, we reduced the acquisition time by an acceleration factor equal to 3.3.
Considering the Zhao et al. sequence, by sampling 40% of the k-space lines, the
acquisition time was reduced by a factor equal to 2.5.

We tested the reconstruction accuracy of the DL model and of the traditional
dictionary-based method for different k-space Cartesian sampling percentages
considering the Gao and Zhao full-length experiments, Figure III.9. We performed
different scans for the two dataset by varying the k-space sampling percentage
from 100% to 10%.
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III.2.5 Computation time

All simulations were performed on a 2.60 GHz Intel Core i7 central processing
unit with 12 cores and 16 GB RAM. The DL model training process, realized on
the dataset of 128 × 128 × 5 examples, took around 5 min and 38.4 s for the Gao
et al. sequence and 8 min and 39.6 s for the Zhao et al. sequence. T1 and T2
map predictions, each consisting of 128 × 128 pixels, required about 0.23 s for
the Gao et al. dataset and 0.67 s for the Zhao et al. dataset. Considering the
dictionary-based reconstruction method, the dictionary generation took around
57 and 34 min for the Gao et al. and the Zhao et al. datasets, respectively. The
map estimation process took 26.26 s for the Gao et al. dataset and 24.58 s for
the Zhao et al. dataset. The DL method enables speeding up the reconstruction
process by a factor of 114 for the Gao et al. sequence and by a factor of 37 for
the Zhao et al. sequence.

III.2.6 Comparison with other DL methods

The proposed method was compared with other DL techniques to evaluate
the reconstruction performances using the same dataset of preclinical MRF
images. We considered the following DL architectures: convolutional neural
network 1D (CNN 1D), convolutional neural network 2D (CNN 2D), convolutional
encoder-decoder neural network (CED), 2D Unet, and 3D Unet. These five
models are some of the state-of-the-art methods in the field of DL techniques for
image analysis. The specific architecture of each of these NNs is described
in Appendix III.A of this document. Table 2 shows the results of the
compared techniques in terms of PRE and SSIM of the reconstructed maps
of the independent test set. We can see that our method reached the lowest
reconstruction error considering both metrics and outperformed all the other
considered models.

III.3 Discussion and conclusions

In the current study, we propose a DL framework for the reconstruction of T1 and
T2 maps acquired with two different MRF schemes. The image analysis system
is composed of a DL NN that receives the MRF signal evolution trajectory voxel-
wise as input and outputs the estimated values of the two T1 and T2 relaxation
maps, and of a hyperparameter optimization algorithm to automatically choose
the best structure of the DL model. The NN was trained using two sets of
MRF data of ex vivo rat brain phantoms acquired with a 7-T preclinical scanner.
Both the datasets were randomly split into two separate subsets for training
and validation phases then tested on an independent dataset. We compared the
reconstruction performances of the DL technique with those achieved from the
traditional dictionary-based method, evaluating the PRE and the SSIM. The
DL reconstruction method achieved better results compared with the dictionary-
based one for both the Gao et al. and the Zhao et al. datasets. In particular, we
proved that our DL method decreased the mean PRE by a factor of 3 for T1 and
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PRE mean (%) PRE SD (%) SSIM
Model T1 T2 T1 T2 T1 T2

CED
Gao et al. 18.8 31.85 18.76 29.46 0.47 0.46
Zhao et al. 17.58 27.7 19.33 30.84 0.51 0.49

2D Unet
Gao et al. 15.18 29.56 17.45 31.0 0.51 0.49
Zhao et al. 16.38 20.28 18.06 21.46 0.52 0.50

3D Unet
Gao et al. 31.26 84.91 19.23 3.99 0.48 0.33
Zhao et al. 41.47 84.91 27.42 3.99 0.51 0.33

2D CNN
Gao et al. 6.79 11.73 8.55 17.63 0.88 0.84
Zhao et al. 6.59 12.72 9.22 15.63 0.88 0.86

1D CNN
Gao et al. 7.12 11.99 9.76 17.02 0.86 0.83
Zhao et al. 6.29 11.73 9.40 15.95 0.90 0.86

Proposed method
Gao et al. 5.61 11.36 8.25 12.99 0.92 0.88
Zhao et al. 5.92 10.91 8.14 14.95 0.91 0.89

Table III.2: Comparison with some of the state-of-the-art models for image
analysis for the Gao et al. and Zhao et al. datasets. All metrics were evaluated
on the independent test set. CED, convolutional encoder-decoder neural network;
CNN, convolutional neural network; PRE, percentage relative error; SD, standard
deviation; SSIM, structural similarity index. The best result in each column is
highlighted in bold text.

by a factor of 2 for T2. In terms of SSIM, both reconstruction methods achieved a
SSIM equal to 0.91 for T1 maps, while for T2 maps, the DL method increased the
SSIM from 0.77 to 0.89. Besides this improvement of the estimation performances,
we also demonstrated that the proposed method significantly accelerates the
computational time of the reconstruction process.

We extended current DL-based methods for the analysis of MRF data in
two main directions: (i) we performed a supervised training procedure on
experimental data excluding the use of theoretical MRI signal simulators; and
(ii) we proposed an automatic procedure to automatically optimize the structure
of the NN and the training process. As regards aspect (i), by excluding the
MRI signal simulator from the reconstruction process, we exploit the flexibility
of the NN, which is also able to recognize data stochasticities related to the
acquisition process. This phenomenon is evident in Figure III.5 if we compare
the T2 maps of both the acquisition schemes reconstructed with the dictionary-
based method with those generated by the DL method. In the first case, the T2
maps present artifacts in the area surrounding the phantom, probably because
of imperfections in the RF excitation field, while in the second case, these
artifacts are significantly reduced, because the network has learned to recognize
and discard them. Furthermore, this approach is particularly convenient for
quantitative parameters whose MRI signal cannot be described with well-studied
models, and for which, therefore, the dictionary cannot be generated by any
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theoretical simulator.
As regards point (ii), we implemented a hyperparameter optimization strategy

to select the best combination of the DL parameters. The key aspect of this
optimization process is to include all the parameters in the fit, allowing the
simultaneous optimization of the NN architecture, the structure of the DL model,
and the supervised learning algorithm. Because the behavior of a DL model
depends on configuration settings that are often interconnected to each other, for
a correct hyperparameter tuning it is essential to evaluate the combined effect of
all the parameters at the same time. This methodology is useful because it allows
you to choose the optimal hyperparameter setup in a semiautomatic way with a
systematic pipeline, avoiding performing such searches by hand. In particular,
we used the TPE optimization algorithm, which performs a Bayesian scan of the
search space by sampling more densely the most promising regions of the space
to find the best configuration that can optimally solve the MRF problem. Using
this strategy, we compared two different architectures of the NN by testing the
MLP and a recurrent NN composed of an LSTM block. The results showed that
for the Gao et al. dataset the MLP model outperformed the RNN, both in terms
of lower reconstruction errors and stability of the performances, while for the
Zhao et al. dataset, the RNN was the best architecture of the NN. Architectures
with convolutional layers achieved lower accuracy. This can be explained by
considering the fact that the values of FA and TR defined in Gao et al. and
Zhao et al. are not ordered. In future studies, it would be valuable to explore
the potential of different architectures, like the self-attention model proposed by
Hong et al. [37]

The MRF acquisition scheme was analyzed to determine the best design of
the MRF sequence necessary to obtain accurate quantitative maps with a reduced
acquisition time. We evaluated the performances of both the reconstruction
approaches with different numbers of MRF images and with different k-space
sampling percentages. The results of Figure III.8 demonstrated that, for the
Gao et al. dataset, the number of MRF images can be reduced to 100 images for
good reconstruction of both the T1 and T2 maps, compared with the 300 images
necessary for the dictionary-based reconstruction. As regards the Zhao et al.
dataset, Figure 8 shows that at least 100 time points are required for a good
reconstruction of both the T1 and T2 maps, in contrast to the dictionary-based
method, where 400 time points are required. Considering the k-space sampling,
we showed that for both of the MRF sequences, 40% of the k-space sampling is
sufficient for a reliable estimation of the T1 and T2 maps with the DL method
and 50% of the k-space sampling for the dictionary-based method. Therefore,
the DL approach enables not only speeding up the reconstruction phase avoiding
the pattern-matching process, but also reduces the time duration of the MRF
acquisition, enabling the use of a smaller number of time points as well as a minor
sampling percentage of the k-space. These results are particularly significant
for simplifying in vivo applications of MRF sequences in the field of preclinical
imaging.

We extensively compared two different MRF acquisition schemes, considering
the sequence designs proposed in the work of Gao et al. [28] and Zhao et al. [29]

115



III Fast DL reconstruction techniques for preclinical MRF

Regarding the DL reconstruction, the graphs in Figure III.8 show that the model
achieves similar performances on both datasets, demonstrating the stability of the
methodology to changes in the acquisition parameter scheme. On the other hand,
if we consider the dictionary-based reconstruction method, some differences in the
maps calculated from the two MRF sequences are evident. As already discussed
in the work of Gao et al. [28], T2 maps present some inhomogeneities, probably
because of imperfections in the RF excitation field that may lead to errors in
the matching process between the acquired voxel fingerprints and the dictionary
ones. By comparing the T2 error maps of Figure III.5, we can observe that these
inhomogeneities are significantly reduced by the Zhao et al. acquisition scheme
compared with the Gao et al. scheme. These results suggest that the TR and FA
profiles used in the Zhao et al. scheme generate MRF signal evolution trajectories
that are less susceptible to hardware imperfections and that therefore make the
pattern-matching algorithm more robust. Furthermore, these inhomogeneities
are further reduced with the DL-based reconstruction method. Thus, our study
demonstrates that the combination of the FA/TR profile proposed by Zhao et
al. and our DL-based method for map reconstruction effectively minimizes RF
excitation field inhomogeneities, overcoming the limitations highlighted in the
work of Gao et al. [28]

Although satisfactory results have been achieved, this work can be improved
in different ways. First, our method is focused on estimating T1 and T2 maps of ex
vivo brains of healthy rats. To enhance the robustness and generalizability of our
findings, it would be relevant to increase the sample size of our study and extend
the proposed methodology to other anatomical regions and pathological tissues.
A good strategy would be to include samples with heterogeneous relaxometric
properties in the training dataset so that the model is able to predict T1 and T2
over a wider range of values with the same accuracy. Furthermore, the results
obtained in the current work suggest that the two proposed MRF sequences
combined with the DL reconstruction method could be reasonably applied to
in vivo imaging of rodents. In fact, the acquisition time of both the MRF
sequences makes quantitative mapping compatible with the duration of an in
vivo acquisition protocol. However, it is worth emphasizing that, for a proper
translation of the experimental approach in vivo, it is necessary to make some
adjustments to the entire MRI acquisition protocol, because animal health also
becomes a priority when setting the experimental conditions and parameters.
In particular, a careful optimization is required to shorten the typical duration
of several hours of SE and IR-SE acquisitions of relaxation times maps, which
serve as the gold standard necessary to validate the MRF ones. Once these
adjustments and optimizations are made, the proposed method used ex vivo can
be implemented in vivo, allowing for quantitative mapping of T1 and T2 relaxation
times in future animal studies. Other potential improvements to further decrease
the duration of the MRF sequence involve considering the utilization of an echo-
planar imaging (EPI)-based sequence in the preclinical field, as demonstrated in
clinical studies [38]–[40]. EPI sequences employ a more efficient k-space sampling
strategy, enabling a significant reduction in acquisition time. This approach
could be explored to achieve more time-efficient MRF acquisitions, also in the
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preclinical setting. Moreover, additional MRI parameters can be included in the
quantified maps, such as diffusion [41], perfusion [42], or magnetization transfer
maps [43]. For example, in the work of Yu et al. [41], the authors formulated a
MRF framework to simultaneously measure quantitative maps of T1 and T2, as
well as the apparent diffusion coefficient, demonstrating the potential of MRF
to also quantify diffusion maps.

Appendix III.A
Additional descriptions of DL methods compared

Convolutional Encoder-Decoder Neural Network (CED)

A Convolutional Encoder-Decoder Neural Network (CED) [44] was used to
perform a 2D regression of T1 and T2 maps taking as input 16×16×T patches of
MRF images (where T is the number of time-points of the MRF sequence) and
returning 16 × 16 × 2 patches of T1 and T2 maps as output. The model consisted
of an encoder for feature extraction followed by a decoder to reconstruct the
desired matrix size. The encoder was composed of three down-sampling blocks
each consisting of two consecutive convolutional layers with kernel size equal
to 3 × 3 × 3 and rectified linear unit (ReLU) activation function followed by a
Maxpooling layer with pool size equal to 2 × 2 × x. The pool size of the time
channel x was set such that the output of the third down-sampling block has
size 2 on the third dimension. The architecture of the decoder was analogous
to the encoder except for the Maxpooling layer which was replaced with an
Upsampling layer with upsampling factor equal to 2×2×1. Encoder and decoder
are connected together by a middle block composed by two convolutional layers.

2D Unet

2D Unet [45] was used to perform a 2D regression of T1 and T2 maps taking as
input 16 × 16 × T patches of MRF images and returning as output 16 × 16 × 2
patches of T1 and T2 maps. The model consisted of an encoder followed by a
decoder connected together through skip connections. The encoder was composed
by three down-sampling blocks each consisting of two consecutive convolutional
layers with kernel size equal to 3 × 3 and ReLU activation function followed by
a Maxpooling layer with pool size equal to 2 × 2. The first layer of the encoder
treats the input patch as a multi-channel image, performing 2D convolutions for
each channel individually and then combining together to form a single-channel
image. The architecture of the decoder was analogous to the encoder except
for the Maxpooling layer which was replaced with an Upsampling layer with
upsampling factor equal to 2 × 2. A middle block composed by two convolutional
layers connected together encoder and decoder.
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3D Unet

Two 3D Unets [45] were used to perform two 3D regressions of the T1 and T2
maps separately, taking as input 16 × 16 × T MRF image patches and returning
the corresponding map patches as output. The model consisted of an encoder
followed by a decoder connected together through skip connections. To connect
each down-sampling block to the corresponding upsampling block, we repeated
the ground truth patch T times along the third axis to form a 16 × 16 × T patch.
The encoder was composed by three down-sampling blocks each consisting of
two consecutive convolutional layers with kernel size equal to 3 × 3 × 3 and
ReLU activation function followed by a Maxpooling layer with pool size equal
to 2 × 2 × 2. The architecture of the decoder was analogous to the encoder
except for the Maxpooling layer which was replaced with an Upsampling layer
with upsampling factor equal to 2 × 2 × 2. A middle block composed by two
convolutional layers connected together encoder and decoder. The predicted
16 × 16 × T patches are finally averaged along the third axis to form 16 × 16
patches of T1 or T2 maps.

2D Convolutional Neural Network (2D CNN)

A 2D Convolutional Neural Network (2D CNN) was used to perform a pixel-wise
regression of T1 and T2 maps. The CNN takes as input the MRF time trajectory
of a single pixel suitably reshaped to form a 2D array and outputs T1 and T2
values of that pixel. The CNN was made up of a series of two convolutional
blocks followed by a flattening layer and three fully connected layers for output
predictions. Each convolutional block consisted of a 2D convolutional layer
with kernel size equal to 3 × 1 and ReLu activation, Batch Normalization and a
MaxPooling layer with pool size equal to 2 × 1.

1D Convolutional Neural Network (1D CNN)

A 1D Convolutional Neural Network (1D CNN) was used to perform a pixel-wise
regression of T1 and T2 maps. The CNN takes as input the 1D MRF time
trajectory of a single pixel (mono-dimensional array of length T ) and outputs T1
and T2 values of that pixel. The CNN was made up of a series of two convolutional
blocks followed by a flattening layer and three fully connected layers for output
predictions. Each convolutional block consisted of a 1D convolutional layer
with kernel size equal to 3 and ReLu activation, Batch Normalization and a
MaxPooling layer with pool size equal to 2.
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Conclusions

This PhD thesis proposes novel computational methods for addressing biomed-
ical image segmentation and generation problems. The developed algorithms
are designed to achieve one of the following objectives: accelerate operations
typically performed manually or with slow computational methods, increase
the accuracy of the results, create methods applicable across various imaging
techniques and anatomical areas, and develop explainable models to ensure easy
understanding of the computed results. In particular, the thesis explores three
main research topics: i) the development of a new method based on statistical
mechanics for segmenting biomedical images, ii) the creation of a deep learning
(DL) system for the automatic segmentation and quantification of COVID-19
lung lesions from computed tomography (CT) images, and iii) the development
of a DL method for the rapid generation of quantitative maps acquired using
the magnetic resonance fingerprinting (MRF) methodology.

Considering the first research project, we developed a kinetic version of a
bounded confidence consensus model for biomedical segmentation problems.
The key idea of this approach is to represent each pixel as a particle with an
evolving position and a static gray level. The particles interact with each other
by grouping together and forming regions of segmentation. To increase the
model’s flexibility we added a non-constant diffusion term, which allows us to
account for stochastic variations in the image acquisition process. We derived
the Boltzmann formulation of the model, which was efficiently simulated using
a direct Monte Carlo approach. Additionally, we proposed an optimization
strategy to fine-tune parameters for improved segmentation results

We tested this system using three different biomedical datasets: the HL60 cell
nuclei dataset, the brain tumor dataset, and the thigh muscles dataset, which
included both healthy and facioscapulohumeral dystrophy (FSHD) patients.
We evaluate the performance of the segmentation algorithm using the Dice
similarity coefficient (DSCmetric) which quantifies the overlap between the
predicted and the true masks. Encouraging results were obtained for HL60
cell nuclei and brain tumor datasets, with DSCmetric equal to or greater than
0.91. However, the segmentation precision was comparatively lower for the thigh
muscles dataset, where DSCmetric scores were 0.73 for FSHD subject and 0.60
for healthy subject. To address this challenge, we introduced a patch-based
approach, dividing the image into smaller arrays and applying the segmentation
system to subregions, which improved the quality of the segmentation masks in
the thigh muscles dataset, resulting in a DSCmetric value of 0.67 for the healthy
subject. Additionally, we observed that the optimal diffusion coefficient is higher
in FSHD patients compared to healthy subjects, suggesting its potential as a
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marker for FSHD muscle impairment.
The main advantages of this method are summarized as follows:

• Explainability: since the model is based on a statistical mechanics clustering
model, the segmentation process is transparent and all computations are
easy to comprehend.

• Unsupervised: the system is an unsupervised model that doesn’t require a
training process to learn the segmentation task. This is particularly useful
when dealing with small datasets where a training process may not be
feasible.

• Scalability to different dataset and imaging techniques: because it doesn’t
rely on a training process, the model can be applied to various anatomical
areas and imaging modalities without the need for modifications to the
segmentation algorithm.

• Flexibility to data acquisition imperfections: by including the diffusion
term in the model, it takes into account potential imperfections in the data
acquisition processes and provides a way to quantify them.

Despite these positive aspects, our work can be extended and improved in several
directions. Firstly, it is necessary to validate the model on larger and different
datasets to assess the reliability and generalizability of the model. Additionally,
we observed that segmentation performance is lower in complex segmentation
problems where distinguishing boundaries between regions of interest (ROIs)
is challenging. Therefore, future research should aim to enhance segmentation
performance in more complex segmentation tasks. One possible approach is
to incorporate external manual information to help or guide the segmentation
process. This may involve specifying the initial points for segmentations or the
total number of ROIs to be created.

In the second study, we proposed the LungQuant system, a fully-automatic DL
pipeline aimed at segmenting and quantifying COVID-19 lung lesions. Pneumonia
is one of the most prevalent complications of COVID-19, even in its early stages.
However, assessing the extent of lung lesions in CT scans of COVID-19 patients
can be a challenging task, mainly due to the intricate nature of these lesions. The
automated assignment of a severity score to CT scans of subjects afflicted with
COVID-19 pneumonia has the potential to alleviate the workload in radiology
departments.

The LungQuant system consists of a cascade of two U-nets, which are
specialized convolutional neural network (CNN) architectures designed for image
segmentation tasks. The first U-net identifies the lung parenchyma, whereas the
second one operates within a bounding box enclosing the segmented lungs to
identify the regions affected by COVID-19. A morphological refinement step is
inserted between the two U-nets to eliminate small regions within the segmented
mask that are not connected to the lungs. The system’s output includes the
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computed percentage of affected lung, which is further converted into the CT-
Severity Score (CT-SS). The pipeline was trained and tested on public datasets
to ensure the verifiability and reproducibility of our results. In particular, a
completely independent dataset was used to evaluate the final performance of
the algorithm. The segmentation tasks, assessed in terms of the DSCmetric,
achieved values of 0.95 ± 0.01 for lung segmentation and 0.66 ± 0.13 for lesions
segmentation. In terms of CT-SS classification, the system demonstrated a good
level of accuracy, achieving a value of 90% on this independent test dataset.

The key features of the LungQuant system are summarized as follows:

• Fully automatic: the LungQuant system operates completely automatically,
speeding up and simplifying operations that are typically done manually
and visually.

• Comprehensive output: the system provides outputs for all main phases,
including lung and COVID-19 lesion segmentation masks, the computed
percentage of affected lung, and the corresponding CT-SS. These outputs
not only offer a comprehensive evaluation of disease severity but also make
it easier to identify possible errors within the system and determine at
which stage they occur.

• Verifiability and reproducibility: the complete system was trained and
tested on public datasets to ensure the verifiability and reproducibility
of our results. Furthermore, the complete code of the LungQuant
pipeline is publicly available in the following public repository: https:
//doi.org/10.15161/oar.it/76937.

Regarding future perspectives on this research topic, our work is currently
undergoing three distinct extensions. Firstly, we have proposed an improvement
to the pipeline [1] by incorporating an initial CNN to crop CT scans to the
lung region, excluding anatomical regions not essential for this application.
In reference [1], it was demonstrated that this modification also improves
the system’s performance in severe cases, where performance was previously
lower. This modified system was subsequently validated in a multicentric study
involving 14 radiologists from 5 different centers [2]. This study proved the
clinical utility of an automated system to quantify COVID-19 lung lesions.
Finally, the system’s output is being utilized in a radiomics study to predict
the clinical outcomes of COVID-19 patients. This involves extracting radiomic
features from the segmented masks of COVID-19 lesions and passing them as
input of a Machine Learning classification pipeline to obtain clinical outcome
predictions.

In the third research project, we presented an optimized magnetic resonance
(MRF) framework to provide quantitative multiparametric maps for preclinical
studies. MRF is an imaging technique for performing simultaneous measurements
of multiple tissue properties through a single and time-efficient acquisition
schedule. While MRF data acquisition is faster compared to standard mapping
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techniques, the traditional post-processing procedure has been relatively slow and
demanded significant storage capacity. To address these aspects, we proposed a
DL method and an optimization strategy for reconstructing T1 and T2 maps from
ex vivo rat brain phantoms using two MRF acquisition profiles. This approach
allowed the simultaneous optimization of the neural network architecture, the
structure of the DL model and the supervised learning algorithm. The DL system
improved the reconstruction performance in the estimation of both T1 and T2
maps and the computational time necessary for the calculation. Furthermore, we
demonstrated that the DL system allows us to use a lower number of MRF images
and a lower k-space sampling percentage, significantly reducing the acquisition
time of MRF examinations.

Through an optimized acquisition and reconstruction framework, we improved
the following aspects of the preclinical MRF methodology:

• Speed-up the reconstruction process: the DL method and hyperparameter
optimization allowed for faster and more efficient reconstruction of T1 and
T2 maps, reducing the computational time required for calculation by at
least a factor of 37.

• Speed-up the acquisition process: the DL method allowed to maintain
comparable reconstruction performance even with a lower number of MRF
images and a reduced k-space sampling percentage with respect to the
traditional reconstruction method, significantly reducing the acquisition
time of MRI examinations.

• Enhanced performance and reduction of map artifacts: the DL method
decreased the mean percentage relative error by a factor of 3 for T1 and
by a factor of 2 for T2. Additionally, we observed that the DL method
effectively minimized artifacts in T1 and T2 maps, potentially attributed
to imperfections in the RF excitation field.

As for future perspectives on this research topic, there are several directions for
further improvement and development. Firstly, to enhance the robustness and
generalizability of our method, it is crucial to increase the sample size and extend
our methodology to include various anatomical regions and pathological tissues.
Furthermore, our findings suggest that the proposed MRF sequences, when
combined with DL reconstruction, have the potential to be adapted for in vivo
preclinical imaging. However, this transition necessitates careful adjustments
to the acquisition protocol to prioritize the health of the animals. Another
potential direction for improvement is the utilization of compressed and faster
acquisition sequences, such as echo-planar imaging-based sequences, to further
accelerate MRF acquisitions. Finally, to enhance the information provided by
our method, we can incorporate additional biological and physical parameters
among the evaluated maps. This expansion may offer a more comprehensive
quantification of tissue properties, thus broadening the potential applications of
MRF in preclinical studies.
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