
Dottorato di Ricerca in Fisica — XXXV ciclo

Ph.D. Thesis

Variational quantum algorithms for
machine learning
Theory and Applications

Stefano Mangini

Supervisor: Prof. Chiara Macchiavello

Submitted to the Graduate School of Physics in partial fulfillment of the requirements for the
degree of Dottore di Ricerca in Fisica (Doctor of Philosophy in Physics) at the

University of Pavia

May 14, 2023

Copyright © 2023 Stefano Mangini

LATEX Template “The Legrand Oragne Book” v3.1 by Vel and Mathias Legrand.

Quantum circuits drawn with the quantikz LATEX package.

Thesis background image by kjpargeter, initial covers by Harryarts, on Freepik.
Chapter cover images generated with Midjourney, a Generative AI for images.

https://www.latextemplates.com/template/legrand-orange-book
https://ctan.org/pkg/quantikz
https://www.freepik.com/
https://midjourney.com/

A tutta la mia famiglia.

Acknowledgements

I remember when, on January 2019, already a few months after I moved to Pavia to start my Ph.D.,
I was still in the guest room with Leonardo, the colleague with whom I would eventually have
shared the office, and the highs and lows of this journey, hopelessly waiting for the assignment
of a proper office that was still lacking. While trying to figure out where we ended up and what
it means to “research”, we also got to know each other cheerfully and innocently read the news
about a weird health situation in China, without any concern whatsoever that such a situation would
become our situation. Or better, everyone’s situation.

Needless to say, Covid-19 essentially cut down in half the enjoyable part —assuming there
is one— of the Ph.D., as the first half of it was essentially a sequence of lockdown, boring
remote conferencing, and lone investigations. The original idea of spending the Ph.D. travelling
the world for conferences and research visits was brutally set aside. But finally, as the health
situation recovered and the possibility to travel was restored, I could participate in an amazing
(un)conference in Lapland and a Quantum Hiking in Val d’Aosta (I cannot be grateful enough to
Sabrina Maniscalco and Lorenzo Maccone for organising such cool and inspiring events), and then
also to London for a research period abroad, and eventually to sunny Malta for a summer school.

At the end of the day, I am more than happy with how things ended up. During these years many
things happened to the World (even a bit too much) and to myself personally, and, as I repeatedly
experience over and over when something ends, what remains are the people we have met and the
experiences we have shared. All the rest is just sand castles.

I cannot but start thanking all the people in the Quantum Information Group (QUIT) at the
University of Pavia, my academic family for the last few years, for the coffee breaks, lunch (with
or without “schiscetta”), and dinners, and for the teachings and anecdotes of what it means to
be a true “quittino”, a title I am very proud to carry. I thank Alessanrdo Bisio and Alessandro
Tosini (aka ”gli Alessanndri”), Max Sacchi, and Paolo Perinotti. I thank Lorenzo Maccone for the
fruitful discussions about science, mountains, and all sorts of things, for always being kind, and
for organising the Quantum Hiking Conference, one of the most unique experiences I have had. I
deeply thank my supervisor Chiara Macchiavello for giving me space and freedom to follow my
interests and experiment with research topics and methods, and for always being kind and open to
discussions.

I wish to thank Dario Gerace and Daniele Bajoni for the great collaboration and for being
always available for interesting discussions, and to Francesco Scala for being such a cool roommate
for the QTML2022 conference in Naples, and for the stimulating chats we had on quantum machine
learning. A big thank goes to Francesco Tacchino for helping me out at the start of the Ph.D., for
the very fruitful and happy collaboration that succeeded, and for the chats and thoughts we shared

5

Figure 1: A careful selection of high quality memes from “High Impact PhD Memes” that were
hung on the walls in the office by Matteo Lugli, our de facto meme interior designer.

down the road. Although we overlapped in person for just a few months in Pavia, my Ph.D. may
have started in a completely different route if it was not for you, thanks!

I am happy to thank all the people with whom I spent many great days and nights: Giovanni
“il Giò” Chesi for teaching all of us how to “calm down now”, to Matteo Lugli for providing our
office with top-notch memes on Ph.D. life, Davide Rolino for his unbelievable politeness, Simone
Roncallo for the few but inspiring discussions, Simanraj for his very entertaining and weird stories,
Lorenzo Trezzini for sharing great memories of Trieste, to Francesca Brero and Margherita Porru
for offering what is now known as the best coffee in the Department, and eventually to Marco
Erba for introducing me to Pavia’s and QUIT’s world and for letting me experience “atypical
adventures”.

Also, I am very happy to thank all the fantastic people I have had the honour of meeting
in London, where I spend a wonderful four months in the Spring of 2022 for an internship in
Quantinuum. I must thank Mattia Fiorentini for giving me the opportunity of joining the team and
for being such a friendly person, and Marcello Benedetti for what I consider the most stimulating
scientific discussions I have had in these years, and especially for being such a cheerful and humane
person. Also, a big thanks to all the Quantum Lads: to Chris, Conor, Mateusz, Enrique, and Miguel
for all the amazing chats we have had in front of a pint, at Enrique’s farewell party, or while

6

eating the street food from near the office. To Sam Duffield for being my Englishman of trust and
introducing me to the Brits’ lifestyle, to David Amaro not only for being my best vegan buddy, but
for the amazing discussions on society, and the wonderful day we spent together in Greenwich. To
Kirill, my neighbour near Victoria, for all the days we spent together in the office, for introducing
me to “Secret Hitler”, and overall for being such a nice friend there in London. And finally to Luuk,
for all the stories about drunk people in Dublin, for the exciting discussions we had in the office,
but ultimately for being such a wonderful person and a close friend. Although it was only for a
relatively brief period, the time spent in London was one of the few highs of the Ph.D., and this
is especially because of all of you. Moreover, it only rained once in four months and I even saw
The Queen’s Platinum Jubilee, probably the last one for a long long time. What else could I have
wanted?

Finally, I am obliged to thank my amazing friends Claudio and Leonardo, with whom I had the
pleasure of sharing the office these years! It was an honour to have you by my side, in what is easily
the best office in the Department, thanks to the people inside (“i Dottorandini”), and of course also
the classy balcony. The discussions we had in the office on the most disparate topics (quantum,
society, mathematics, teaching, music, ...), the pizzas we ate at “La Botticella”, and the coffees we
drank at the bar: these memories are the most important outcome of the Ph.D., memories that I am
truly grateful to bring with me. A very special thank goes to Leonardo, my most faithful companion
of these years, with whom I shared everything (even a sofa), and without whom there would be no
thesis or Ph.D. to talk about. Despite Covid, breakups, and stress, we were together fighting against
the odds. Thank you for being there and for making these three years worth remembering!

There are many other people that I came across and which I would like to thank, but I will do
that when I see you in person! For the moment, take a look at the figure above and enjoy a selected
choice of memes about Ph.D. life that accompanied me and my colleagues in these years.

At last, the biggest and deepest thank you goes to my Family. In a world where everything
changes, you remain the same, and we remain together.

May 14, 2023

List of Publications

These manuscripts are part of the thesis:

1. Mangini, S., Tacchino, F., Gerace, D., Macchiavello, C., & Bajoni, D. (2020). Quantum
computing model of an artificial neuron with continuously valued input data. Machine
Learning: Science and Technology, 1(4), 045008. [195]

2. Tacchino, F., Mangini, S., Barkoutsos, P. K., Macchiavello, C., Gerace, D., Tavernelli, I.,
& Bajoni, D. (2021). Variational Learning for Quantum Artificial Neural Networks. IEEE
Transactions on Quantum Engineering, 2, 1-10. [296]

3. Mangini, S., Tacchino, F., Gerace, D., Bajoni, D., & Macchiavello, C. (2021). Quantum
computing models for artificial neural networks. Europhysics Letters, 134(1), 10002. [192]

4. Mangini, S., Marruzzo, A., Piantanida, M., Gerace, D., Bajoni, D., & Macchiavello, C.
(2022). Quantum neural network autoencoder and classifier applied to an industrial case
study. Quantum Machine Intelligence, 4(2), 13. [196]

5. Mangini, S., Maccone, L., & Macchiavello, C. (2022). Qubit noise deconvolution. EPJ
Quantum Technology, 9(1), 1-30. [194]

6. Ballarin, M., Mangini, S., Montangero, S., Macchiavello, C., & Mengoni, R. (2022). Entan-
glement entropy production in Quantum Neural Networks. arXiv preprint arXiv:2206.02474.
Accepted in Quantum. [18]

7. Mangini, S., Benedetti, M. Manuscript in preparation. [193]

These manuscripts are not part of the thesis:

8. Skolik, A., Mangini, S., Bäck, T., Macchiavello, C., & Dunjko, V. (2023). Robustness of
quantum reinforcement learning under hardware errors. EPJ Quantum Technology, 10(1),
1-43. [285]

9. Benatti, F., Mancini, S., & Mangini, S. (2019). Continuous variable quantum perceptron.
International Journal of Quantum Information, 17(08), 1941009. [24]

10. Scala, F., Mangini, S., Macchiavello, C., Bajoni, D., & Gerace, D. (2022). Quantum
variational learning for entanglement witnessing. In 2022 International Joint Conference on
Neural Networks (IJCNN) (pp. 1-8). IEEE. [259]

11. Di Sipio, R., Huang, J. H., Chen, S. Y. C., Mangini, S., & Worring, M. (2022). The dawn of
quantum natural language processing. In ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (pp. 8612-8616). IEEE. [84]

Chapter 2 and Chapter 3 are loosely based on manuscripts 3 and 7 with substantial additions;
Chapter 4 is based on manuscript 1 [195]; Chapter 5 is based on manuscript 2 [296]; Chapter 6

https://iopscience.iop.org/article/10.1088/2632-2153/abaf98/meta
https://iopscience.iop.org/article/10.1088/2632-2153/abaf98/meta
https://ieeexplore.ieee.org/abstract/document/9364892
https://iopscience.iop.org/article/10.1209/0295-5075/134/10002/meta
https://iopscience.iop.org/article/10.1209/0295-5075/134/10002/meta
https://link.springer.com/article/10.1007/s42484-022-00070-4
https://link.springer.com/article/10.1007/s42484-022-00070-4
https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-022-00151-0
https://arxiv.org/abs/2206.02474
https://arxiv.org/abs/2206.02474
https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-023-00166-1
https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-023-00166-1
https://www.worldscientific.com/doi/abs/10.1142/S0219749919410090
https://ieeexplore.ieee.org/abstract/document/9892080
https://ieeexplore.ieee.org/abstract/document/9892080
https://ieeexplore.ieee.org/abstract/document/9747675
https://ieeexplore.ieee.org/abstract/document/9747675

8

is based on manuscript 4 [196]; Chapter 7 is based on manuscript 6 [18]; Chapter 8 is based on
manuscript 5 [194].

Summary

The topic of the present Ph.D. thesis is Quantum Computation and Information processing, with
a specific focus on the relatively new fields of Variational Quantum Algorithms and Quantum
Machine Learning. These disciplines not only offer a unique perspective on studying quantum
information processing tasks, but also have the potential to provide a useful computational quantum
advantage even with the currently available first-generation small and noisy quantum computing
devices.

Variational Quantum Algorithms involve a hybrid quantum-classical computational loop, where
a quantum computer is used only for some specific ideally quantum-native subroutines, and a
classical computer runs an optimisation procedure on variational parameters to minimise a cost
function whose minimum corresponds to the solution to the problem to be solved. This framework
shares the same foundational idea as state-of-the-art Deep Learning models, where complex
parametric models are tuned via optimisation methods to solve various tasks. The intersection of
quantum computing and machine learning has led to the development of quantum machine learning,
an interdisciplinary area that explores the benefits of combining quantum computation and artificial
intelligence.

This thesis provides a comprehensive analysis of the state of the art of the field, including
numerous original contributions, from the study of quantum models for artificial neurons to the
characterisation of entanglement created in quantum architectures for neural networks, up to
discussing the effect of measurement noise on a more quantum information perspective.

The first chapters are devoted to a careful review of the basics of quantum computing and a
thorough discussion of variational quantum algorithms. Then the discussion is moved to quantum
machine learning, where an introduction to the elements of machine learning and statistical learning
theory is followed by a review of the most common quantum counterparts of machine learning
models.

Afterward, multiple novel contributions to the field are presented. A newly introduced model for
a quantum perceptron is discussed, along with applications to pattern recognition and classification
tasks. Such a model is then generalised to include strategies based on variational protocols to
reduce the circuital footprint of the proposed architecture, and also analyse its performances where
multiple optimisation strategies are considered. Subsequently, a quantum algorithm comprising a
quantum autoencoder followed by a quantum classifier is presented to first compress and then label
classical data coming from an industrial power plant, thus providing one of the first attempts to
integrate quantum computing procedures in a real-case scenario of an industrial pipeline.

The analysis is then broadened to a more quantum information perspective, by first studying
the entanglement features of quantum neural networks. Specifically, tensor networks are employed

to study the entanglement entropy in parameterized quantum circuits of up to fifty qubits and show
that the entanglement generated in such architectures reaches that of typical random quantum states
under various measures. Finally, the focus is shifted from quantum machine learning to that of
quantum noise, and a noise deconvolution technique is presented to remove a wide class of noises
when performing arbitrary measurements on qubit systems.

The thesis then ends with conclusions where loose ends are discussed, and final remarks are
exposed. Overall, the thesis provides a well-balanced investigation of multiple scientific domains,
including quantum physics and computer science, through theoretical exploration, computational
simulations, and experimental verification on already available quantum computing devices.

Contents

Acknowledgements . 3

List of Publications . 6

Summary . 8

1 Introduction . 19

2 Quantum Computing and Variational Quantum Algorithms 22

2.1 Basics of Quantum Computation . 23
2.1.1 Single qubit systems and operations . 23
2.1.2 Multi qubits systems and two-qubits operations . 25
2.1.3 Density matrix formalism . 28
2.1.4 Measurements and expectation values . 30
2.1.5 The quantum circuit model . 33
2.1.6 The NISQ era of quantum computation . 34

2.2 Variational Quantum Algorithms . 36
2.2.1 The basis of variational quantum algorithms . 36
2.2.2 Parameterised quantum ansätze . 37
2.2.3 Optimisation of variational quantum algorithms . 39
2.2.4 Barren plateaus and unitary designs . 43
2.2.5 Expressibility of PQCs . 50

2.3 Conclusions . 51

3 Quantum Machine Learning . 52

3.1 Introduction . 53
3.1.1 The four-fold way of Quantum Machine Learning . 53

3.2 Classical Machine Learning . 55
3.2.1 Basics of (supervised) Machine Learning . 57
3.2.2 Machine learning models . 62

3.3 Quantum Machine Learning . 67
3.3.1 Linear quantum models: quantum classifiers and kernel methods 68
3.3.2 Data reuploading models and Quantum Neural Networks 71
3.3.3 Generalization of QML models . 77
3.3.4 The power of quantum machine learning . 79

3.4 Conclusions . 80

4 Quantum computing model of an artificial continuous neuron . . 81
4.1 Introduction . 81
4.2 Continuously valued quantum neuron model . 82
4.2.1 Some properties: colour invariance and noise resilience 84
4.2.2 Quantum circuit model of a continuously valued perceptron 85

4.3 Results . 87
4.3.1 Testing the quantum neuron for image recognition tasks 88

4.4 Training the quantum neuron . 88
4.4.1 Classification tasks . 90
4.4.2 MNIST dataset . 92

4.5 Conclusions . 93

5 Variational learning for quantum neural networks 94
5.1 Introduction . 94
5.2 A model of quantum artificial neurons . 95
5.2.1 Exact implementation with quantum hypergraph states 97

5.3 Variational realisation of a quantum artificial neuron 97
5.3.1 Global variational training . 98
5.3.2 Local variational training . 99
5.3.3 Case study: pattern recognition . 100
5.3.4 Structure of the ansatz and scaling properties . 101

5.4 Conclusions . 106

6 Quantum autoencoder and classifier for an industrial use case . 108
6.1 Introduction . 108
6.2 Case study . 109
6.3 Neural network autoencoder . 110
6.3.1 Classical Autoencoders . 112

6.4 Quantum Data Compression . 113
6.4.1 Quantum Autoencoder . 113

6.5 Experiments and Results . 115
6.5.1 Data compression . 115
6.5.2 Classification . 119

6.6 Conclusions . 121

7 Entanglement entropy production in quantum neural networks . 123
7.1 Introduction . 124
7.2 Methods . 125
7.2.1 Tensor Networks and Matrix Product States . 125

7.2.2 Entanglement measure in Matrix Product States . 126
7.2.3 Entanglement entropy in random quantum states . 127
7.2.4 Quantum Neural Networks as Parameterised Quantum Circuits 128
7.2.5 Randomness, Entanglement and Trainability . 129

7.3 Results . 130
7.3.1 Alternating vs. Sequential data reuploading . 130
7.3.2 Entanglement distribution across bonds . 131
7.3.3 Entanglement scaling with increasing depth . 134
7.3.4 Entanglement Speed . 135
7.3.5 Expressibility . 138
7.3.6 Distribution of the singular values . 138

7.4 Discussion . 139
7.5 Conclusion . 141

8 Noise deconvolution . 142

8.1 Introduction . 142
8.2 Methods . 144
8.2.1 Quantum channels . 145
8.2.2 Qubit systems and Pauli Transfer Matrix formalism . 145
8.2.3 Quantum tomographic reconstruction . 146

8.3 Noise Deconvolution . 147
8.4 Inversion of common noise maps . 149
8.5 Experimental deconvolution . 154
8.5.1 Decoherence noise model . 154
8.5.2 Arbitrary Pauli channel . 157

8.6 Conclusions . 157

9 Conclusions . 159

References

Bibliography . 164

Appendices

A Variational Quantum Algorithms . 190

A.1 Global and local cost functions . 190
A.2 Variance of gradients . 191

B Quantum Machine Learning . 194

B.1 Generalisation bound for data-reuploading quantum neural networks 194
B.1.1 Rademacher complexity and generalisation error . 194
B.1.2 Rademacher complexity of Linear Classes . 195
B.1.3 Generalisation bound of Quantum Neural Networks 196

C Continuous Quantum Neuron . 199
C.1 Proof of the activation function of the quantum neuron 199
C.2 Noise resilience . 199
C.3 Alternative schemes for the data encoding operations 200

D Entanglement of Quantum Neural Networks 202
D.1 Lower bound on entanglement entropy for unitary 2-designs 202
D.2 Details on Haar entanglement . 203
D.3 Triviality of the full entangling map . 204
D.4 Expressibility of Parameterised Quantum Circuits 205
D.5 Entanglement scaling with increasing depth . 205
D.6 Convergence of MPS simulations . 206
D.7 Entanglement evolution during training . 207
D.7.1 Details on the classification procedure . 210

E Noise Deconvolution . 213
E.1 Kraus Decomposition . 213
E.2 Tomographic reconstruction formula for qubits . 213
E.3 Noise deconvolution for qubits . 214
E.4 Inverse maps of Noise channels . 214
E.4.1 Bit-flip, phase-flip, and bit-phase-flip channels . 214
E.4.2 Depolarizing channel . 216
E.4.3 General Pauli channel . 217
E.4.4 Amplitude Damping . 218
E.4.5 2-Kraus channel . 219

List of Figures

1 A selection of very high-impact memes . 5

2.1 Bloch sphere representation of a qubit . 24
2.2 Examples of currently available quantum computers . 34
2.3 Schematic representation of variational quantum algorithms 38
2.4 Sources of Barren Plateaus . 44

3.1 Variants of Quantum Machine Learning applications . 54
3.2 Generalisation and overfitting in machine learning . 61
3.3 A feedforward neural network . 66
3.4 Linear quantum models . 68
3.5 Parameterised quantum circuit as a Fourier series . 73
3.6 Quantum Neural Network . 76

4.1 Scheme of a classical perceptron model . 83
4.2 Quantum circuit for the quantum perceptron model. 85
4.3 Circuital implementation of the continuous quantum neuron. 87
4.4 A grey-scale image with pixels intensities. 88
4.5 Image recognition task performed by the artificial quantum neuron 89
4.6 Training the quantum neuron . 90
4.7 Classification of two dimensional data . 91
4.8 Classification of two dimensional circles . 91
4.9 Application of the quantum neuron on the MNIST dataset 92

5.1 Variational learning via unsampling . 98
5.2 Comparison of exact to approximate implementations 100
5.3 Optimisation of the global unitary with nearest neighbours entanglement 102
5.4 Final fidelity for different structures and number of qubits 103
5.5 Number of iterations to reach target fidelity . 104
5.6 Optimisation in presence of stochastic measurement outcomes 105
5.7 Scaling of circuit depth . 106

6.1 Snapshot of a separator . 109
6.2 Summary of the approach followed in the work . 111
6.3 Details on the procedure . 112

6.4 Schematic representation of a quantum autoencoder 114
6.5 Quantum circuit for the quantum autoencoder . 116
6.6 Optimisation of the quantum encoder . 117
6.7 Performances of the quantum autoencoder . 118
6.8 Circuit to evaluate the fidelity . 119
6.9 Results of the classification task . 120

7.1 Graphical representation of QNN and MPS . 124
7.2 Normalised entanglement for various numbers of qubits 132
7.3 Average entanglement entropy across bonds . 133
7.4 Number of layers to reach a target Haar-randomness . 134
7.5 Equivalence of full and linear entangling topologies . 135
7.6 Normalised entanglement versus normalised number of layers 136
7.7 Normalised entanglement for real-world datasets . 137
7.8 Expressibility of the quantum neural networks . 138
7.9 Convergence to the Marčenko-Pastur (MP) distribution 139

8.1 Summary of the noise deconvolution process . 143
8.2 Deconvolution of decoherence noise on real hardware 156
8.3 Deconvolution of Pauli channels . 158

C.1 Variational approach for the quantum neuron . 201

D.1 Equivalence of full and linear entangling maps . 205
D.2 Total entanglement for various quantum neural networks 206
D.3 Approximation errors of MPS . 207
D.4 Evolution of entanglement entropy during training . 208
D.5 Preprocessing of the IRIS dataset . 211
D.6 Mean entanglement entropy per IRIS class . 212

List of Tables

2.1 Summary table of two-qubits gates . 26
2.2 Summary table of two-qubits gates . 28
2.3 Examples of native gates on real quantum hardware . 33

6.1 Key figures of compression and classification with a quantum autoencoder . . 110

7.1 Number of parameters in considered ansätze . 131
7.2 Entangling speed . 136

8.1 Noise channels and their inverse maps . 149

List of Abbreviations and Symbols

This list list summarise the abbreviations and symbols that are used throughout the work.

Abbreviations

BP Barren Plateau

CPTP Completely Positive Trace Preserving

ML Machine Learning

PQC Parameterised Quantum Circuit

PTM Pauli Transfer Matrix

QML Quantum Machine Learning

VQA Variational Quantum Algorithm

Mathematical symbols

qqq Trainable parameters of a parameterised quantum circuit in a variational quantum algorithm

www Trainable parameters of a parametric classical machine learning model

xxx Input sample belonging to input data space, xxx 2 X

H Hilbert space

X Input data space, usually X ⇢ Rd

Y Output data space, usually Y ⇢ R

Z Data space given by pairs inputs and outputs, Z = X ⇥Y

d Dimension of the input vectors, xxx 2 X ⇢ Rd

m Number of data samples in the training set S ⇢ Zm

p Dimension of the trainable parameter vectors, www, qqq 2⇢ Rd

S Training set consisting of pairs of inputs and outputs

y Output sample belonging to output data space y 2 Y

1. Introduction

Nature isn’t classical, dammit, and if you want to make a
simulation of Nature, you’d better make it quantum mechanical,
and by golly it’s a wonderful problem because it doesn’t look so
easy.

Richard Feynman, 1982 [102]

As far as I can tell from my still brief experience of research into Quantum Computation during
these years of Ph.D., it is not possible to start a discussion on this topic without mentioning the
(moral) father of such a discipline, the mighty Richard Feynman who, in 1982, roughly at the
same time of other scientists of those years [237], firstly proposed the idea of building a quantum-
mechanical computing device for simulating Nature. Thus, since I don’t feel in the position to
interrupt this grand tradition, please take a few moments to enjoy for the umpteenth time Feynman’s
quote on quantum computing, which you can find at the start of the page.

With a leap forward 40 years into the future, quantum computing is starting to become a solid
reality, with the first small-scale prototypes of quantum computers being actively developed and
tested, and with a universal fault-tolerant quantum computing device hopefully to appear within a
few decades in the future, although the road to this goal is strewn with major technical, experimental,
and theoretical challenges. The current generation of quantum computers has been dubbed NISQ,
for Noisy Intermediate-Scale Quantum [236], which indicates devices consisting of small quantum
processing units consisting of just tens to few hundreds of carriers of quantum information, the
qubits, and that these qubits are imperfect, subject to noise that diminishes their quantum properties,
hence their computational relevance.

With the impossibility of timely orchestrating those elements that make quantum computers
unique and powerful objects, namely superposition, entanglement, and interference, many of
the celebrated quantum algorithms that were proposed in the previous decades with provable
computational speedups, Shor’s being the most convincing example [220], currently remain well
out of reach. However, the imperfect nature of current quantum devices prompted the creation of
seemingly imperfect quantum algorithms that trade off provable guarantees of quantum speedups
with reasonable intuitions of classical hardness and the careful human craftsmanship of algorithms
with the heavy lifting provided by powerful classical optimisation techniques. However, as we shall
see in a few paragraphs, this situation does not only concern quantum computing but rather the field
of applied computer science as a whole.

These relatively new types of quantum procedures are called Variational Quantum Algorithms

20 Chapter 1. Introduction

and are specifically thought to be executable already on available computing devices, and thus
take full advantage of the current generation of quantum computing. The variational paradigm
prescribes the use of a hybrid quantum-classical computational loop in which a quantum computer
is used in tandem with a classical computer, where the former is used only for some specific
ideally quantum-native subroutines, and the latter instead to run an optimisation procedure on some
variational parameters to minimise a cost function whose minimum (maximum) corresponds to
the solution to the problem to be solved. This framework for NISQ-friendly quantum algorithms
gained much momentum over the last few years, and it is considered one of the best candidates to
achieve some form of useful computational quantum advantage, even though the debate on this
expectation is far from being settled.

However, it is very important to recall that quantum computation and quantum information
science first remain scientific disciplines that deserve thorough and enthusiastic scientific research
on their own, and regardless of possible technological applications, with quantum computers to be
considered, at least at this moment, mainly scientific tools. In this respect, borrowing the words
from Simone Severini: “The paradigm with which quantum computers work is totally different from
the one with which classical computers work. Therefore, it is too simplistic to make comparisons
in terms of speed and efficiency. The most sensible analogy is not with a classical computer, but
rather with a telescope: the quantum computer should be regarded as an instrument that allows
one to look further” [147].

Even more than Quantum Computing and Quantum Technologies in general, over the past
decade, Artificial Intelligence and Deep Learning have garnered increasing scientific and techno-
logical attention. These fields offer a variety of tools that can handle a diverse range of tasks, from
achieving superhuman performance on board games [279] to controlling nuclear reactors [83],
and even having astonishingly human-like conversational abilities [60]. State-of-the-art Deep
Learning models operate by optimising large, complex, and often opaque parametric models to
minimise a problem-dependent loss function. Although a complete theoretical understanding of
these models’ inner workings is still lacking and the subject of active research, their widespread
success is undoubtedly motivated by their empirical success in practical applications.

In recent years, the fields of quantum computing and machine learning joined forces and
stimulated the development of Variational Quantum Algorithms, which, as we mentioned above,
rely on optimising complex parametric models (parametric quantum circuits instead of artificial
neural networks) using optimisation methods like gradient descent to minimise a problem-specific
cost function. This union was so fruitful that it was given the name Quantum Machine Learning, an
interdisciplinary area that explores the interplay and benefits of combining quantum computation
and artificial intelligence [88]. In fact, the overlap between these two fields predates Variational
Quantum Algorithms, as linear algebra-based quantum subroutines have been proposed as accelera-
tors in classical machine learning algorithms for some time already [31], and it is possible to find
resources about quantum computation and neural networks even from decades ago [120, 182].

The topic of this thesis lies in the most recent incarnation of quantum machine learning,
namely the use of variational quantum circuits as machine learning models. It aims to provide a
comprehensive analysis of the state of the art of the field, as well as the discussion of numerous
original contributions, from the study of quantum models for artificial neurons to the characterisation
of entanglement created in common quantum models for neural networks, up to discussing the effect
of measurement noise on a more quantum information perspective. As we shall see in the following
chapters, this crossover proves very valuable and most importantly interesting both on a theoretical
and practical level. Indeed, studies on these topics are stimulating as they require specialised
knowledge from multiple disciplines from quantum physics and computer science, and permit a
very well-balanced investigation between theoretical exploration, computational simulations, and
also experimental verification on already available quantum computing devices.

The rest of the thesis is organised as follows. In Chapter 2 we start reviewing the basics and

21

introducing the notation of quantum computing, to then move towards a thorough discussion on
variational quantum algorithms. Chapter 3 is instead dedicated exclusively to quantum machine
learning, where an introduction to the elements of machine learning and statistical learning theory
is followed by a review of the most common quantum counterparts of machine learning models.

In Chapter 4 we discuss a newly introduced model for a quantum perceptron, which is a
quantum algorithm mimicking the behaviour of a classical artificial neuron, and show how it can
be used to implement pattern recognition and classification tasks. This model is then generalised
in Chapter 5, where various strategies based on variational protocols are described to reduce the
circuital footprint of the quantum neuron model. Afterwards, in Chapter 6 we propose a quantum
algorithm comprising a quantum autoencoder followed by a quantum classifier to first compress
and then label classical data coming from an industrial power plant, thus providing one of the
first attempts to integrate quantum computing procedures in a real-case scenario of an industrial
pipeline.

In Chapter 7 we expand the perspective and analyse the entanglement features of quantum
neural networks. Specifically, we use tensor network tools to study the entanglement entropy in
parameterized quantum circuits of up to fifty qubits and show that the entanglement generated in
such architectures reaches that of typical random quantum states under various measures. Finally,
in Chapter 8 we step out from quantum computation and machine learning and rather focus on the
topic of noise from a quantum information viewpoint and present a noise deconvolution technique
to remove a wide class of noises when performing arbitrary measurements on qubit systems.

Finally, in Chapter 9 we try to draw some inspiring conclusions about this journey on variational
algorithms, noisy quantum computers, and machine learning. In the appendices, some calculations
or additional details regarding the related topics discussed in the main text are reported.

Without further ado, let us start!

2. Quantum Computing and Variational
Quantum Algorithms

When life gives you lemons, make lemonade!

Proverbial phrase, and often Scott Aaronson.

2.1 Basics of Quantum Computation . 23
2.1.1 Single qubit systems and operations . 23
2.1.2 Multi qubits systems and two-qubits operations . 25
2.1.3 Density matrix formalism . 28
2.1.4 Measurements and expectation values . 30
2.1.5 The quantum circuit model . 33
2.1.5.1 Executing a quantum circuit on a real quantum device 33
2.1.6 The NISQ era of quantum computation . 34

2.2 Variational Quantum Algorithms . 36
2.2.1 The basis of variational quantum algorithms . 36
2.2.2 Parameterised quantum ansätze . 37
2.2.3 Optimisation of variational quantum algorithms . 39
2.2.3.1 Parameter shift-rule . 40
2.2.3.2 Higher order derivatives . 42
2.2.3.3 Discussion . 43
2.2.4 Barren plateaus and unitary designs . 43
2.2.4.1 Haar measure and random unitary matrices . 46
2.2.4.2 Barren plateaus in the optimisation of PQCs . 47
2.2.4.3 Discussion and mitigation of barren plateaus . 49
2.2.5 Expressibility of PQCs . 50

2.3 Conclusions . 51

In this chapter, we discuss Quantum Computing and Variational Quantum Algorithms. We
start by introducing the necessary tools and definitions of quantum computation and then move
on to discuss recent results on variational quantum algorithms, which are a class of algorithms
specifically suited for currently available near-term quantum devices. Extended discussions of such
topics can be found in [29, 58, 59, 192, 301].

2.1 Basics of Quantum Computation 23

2.1 Basics of Quantum Computation
Quantum Computation and Quantum Information are fields of research that study how physical
quantum systems can be used to process information and perform computations. In analogy with
the classical setting, the basic element of quantum information is called quantum bit or qubit1,
an object describing the behaviour of a two-level quantum system, for example a particle having
access to the ground state and first excited state of an energy potential. Independently of its actual
physical realisation, the quantum state of a qubit is mathematically described as a vector living in a
two-dimensional vector space over the complex numbers, namely C2.

2.1.1 Single qubit systems and operations
Let H = C2 denote the Hilbert space of the qubit, that is the vector space C2 equipped with the
standard inner product given by the Euclidean dot product for vectors with complex entries. Dirac’s
bra-ket notation of quantum mechanics prescribes the use of the so-called kets |·i to indicate vectors
(i.e. quantum states) in this space, namely |yi 2H, where y indicates a state. Similarly, one uses
bras h·| to indicate the conjugate transpose of a vector

hy| =
�
|yi
�†

, |yi 2H ,

where the dagger operation A† = (A⇤)T is the composition of complex conjugation A⇤ and transpo-
sition AT . With this notation, the inner product between two states is denoted with the juxtaposition
of a bra with a ket, as follows

h·|·i : H⇥H! C, |yi , |fi 2H, hf |yi 2 C .

Let |0i and |1i denote an orthonormal basis of H, and call it the computational basis of the
space. Then, any (pure) state can be expressed as a linear combination of the computational basis
states with complex coefficients

|yi= a |0i+b |1i , a, b 2 C . (2.1)

with a normalisation condition hy|yi = 1 which constraints the complex coefficients to satisfy
aa⇤+ bb ⇤ = |a|2 + |b |2 = 12. Also, states that differ only for a global phase factor, like |yi
and eid |yi, represent the same physical state because overall phases are not observable, in that
measurements involving phase-shifted states will yield the same results. Thus, out of the initial four
real parameters, a (pure) state of a qubit can be written in terms of just two parameters (q ,j) as

|yi= cos
q
2
|0i+ eij sin

q
2
|1i . (2.2)

This equation is called Bloch sphere representation of the qubit, because it makes it evident that the
state of a qubit can be visualised as a point on the unit sphere with coordinates (q ,j), where the
poles are the orthogonal basis states |0i and |1i, see Fig. 2.1.

It is often useful to reason in terms of vector components instead of states. Representing the
basis states |0i and |1i as column vectors, Eq. (2.1) can be rewritten as

|yi= a |0i+b |1i= a

1
0

�
+b

0
1

�
=

a
b

�
with |0i=

1
0

�
, |1i=

0
1

�
. (2.3)

1A term which is surprisingly recent, just as young as me at the time of writing, introduced for the first time in 1995
by Benjamin Schumacher [271].

2Normalisation of states is a useful requirement that makes Born’s rule for probabilities of measurement outcomes
easier to compute.

24 Chapter 2. Quantum Computing and Variational Quantum Algorithms

|yi

X

Y

|0i Z

|1i

q

j

Figure 2.1: Bloch sphere representation of a qubit. A pure state of a qubit can be represented as a
point on a unit sphere whose poles are the orthogonal basis states |0i and |1i. The angles (q ,j) are
defined in Eq. (2.2). The six points arising from the intersection of the unit sphere with the three
orthogonal axes are the eigenstates of the Pauli matrices X , Y , and Z, defined in Eq. (2.4)

Single qubit operations Operations on qubits are linear transformations U : H!H mapping
quantum states to quantum states, and these can be represented by unitary matrices that map
unit complex vectors to other unit complex vectors preserving the norm. The unitary evolution
of (closed) quantum systems implies that not only the norm of quantum states is preserved, but
also the reversibility of quantum computation, since for any operation U also the inverse one U†

with UU† = I is a valid quantum operation. This is different from classical computation, where
operations on bits can be, in general, irreversible.

A set of operators of particular relevance for describing qubit systems are the Pauli matrices
{X ,Y,Z}, which in the computational basis {|0i , |1i} have matrix representation3

X =

0 1
1 0

�
, Y =

0 �i
i 0

�
, Z =

1 0
0 �1

�
. (2.4)

In hindsight, the computational basis is actually defined to consist of the eigenstates of the Z
operator, which acts on such basis as Z |0i= |0i and Z |1i=� |1i. The X operator is also called the
“NOT" operation, again in accordance with the classical computation terminology, as its action is to
flip the state of the qubit X |0i= |1i and X |1i= |0i. Together with the identity I, these matrices
form a basis of the space of 2⇥ 2 complex matrices. Other useful properties are that the Pauli
matrices are unitary (AA† = I), Hermitian (A = A†), involutory (A2 = I), traceless (Tr[A] = 0),
and the following commutation relations hold [si,s j] = 2iei jksk, where si,s j 2 {X ,Y,Z}, ei jk is
the Levi-Civita tensor, and summation is implied over repeated indices. The Pauli matrices have
eigenvalues l 2 {±1}, with corresponding eigenstates

Z |0i= + |0i X |+i= + |+i Y |+ii= + |+ii
Z |1i=� |1i X |�i=� |�i Y |�ii=� |�ii

with |±i :=
|0i±|1ip

2
|±ii :=

|0i± i |1ip
2

(2.5)

These states are highlighted in the Bloch sphere of Fig. (2.1), and are located at the intersection of
the unit sphere with the three orthogonal axes, which then represent the “directions" of the Pauli
matrices.

3Operators and their matrix representation are not the same things, as one can define and use operators without
invoking their matrix representation, which is specific to the chosen basis. In quantum computing however, the basis is
always considered to be the computational basis, and, with a slight abuse of notation, in the following we use the same
symbol to denote both the operator and its matrix representation.

2.1 Basics of Quantum Computation 25

In the quantum computing jargon, operations on qubits are called gates, in analogy with the
terminology used in classical computation to indicate elemental logical operations on bits. A major
role in variational quantum algorithms is played by Pauli rotations gates, which are parametrized
operations defined via exponentiation of the Pauli as follows

RX(q) := e�iXq/2 ⌘ cos
q
2
I� isin

q
2

X =

cos q

2 �isin q
2

�isin q
2 cos q

2

�
(2.6)

RY (q) := e�iY q/2 ⌘ cos
q
2
I� isin

q
2

Y =

cos q

2 �sin q
2

sin q
2 cos q

2

�
(2.7)

RZ(q) := e�iXq/2 ⌘ cos
q
2
I� isin

q
2

Z =

e�iq/2 0

0 eiq/2

�
(2.8)

where the passage from the exponential to the trigonometric formula is easily obtained via the
definition of the exponential function and the involutory property (A2 = I) of Pauli matrices

e�iwA :=
•

Â
k=0

(�iwA)k

k!
= Â

k2even

wk

k!
I� Â

k2odd

wk

k!
A = coswI� sinw A . (2.9)

These gates are called rotation operations because they act on a qubit rotating it around the respective
Pauli axis in the Bloch sphere representation by an amount indicated by the angle parameter. Also,
these operations are ubiquitous in Variational Quantum Algorithms because they are the most
straightforward way to introduce free parameters in a quantum computation, and are also usually
easy to implement on real quantum hardware.

In addition to the aforementioned Pauli and Pauli rotation gates, another fundamental operation
is the Hadamard gate, denoted by H, which is used to create superposition states as it maps the
ground state |0i to the superposition state |+i= H |0i. In Table 2.1 we report the most common
single qubit gates, along with their circuital representation when depicted as gates in a quantum
circuit and their matrix representation in the computational basis. All other single-qubit gates can
be expressed in terms of these operations. Indeed, the most general single-qubit operation, that is a
general 2⇥2 unitary matrix, can be written (up to global phase) as

U(q ,j,l) =

cos q

2 �eil sin q
2

eij sin q
2 ei(j+l) cos q

2

�
, (2.10)

and there exists some angles such that it can be decomposed with a sequence of rotations
U(q ,j,l) = eiaRZ(b)RY (g)RZ(d) [220]. Note that other equivalent decompositions into ele-
mentary rotations are possible.

2.1.2 Multi qubits systems and two-qubits operations
Usually, more qubits together are used to implement a quantum information processing task or
a computation. The Hilbert space for a system composed of multiple qubits is built considering
the tensor product of the single-qubit Hilbert spaces. For example, a two-qubit system lives in the
Hilbert space H = H1⌦H2 = (C2)⌦2 = C4, and its state can be expressed as a linear combination
of the four computational basis states

|yi= a |00i+b |01i+ g |10i+d |11i , a,b ,g,d 2C , |a|2 + |b |2 + |g|2 + |d |2 = 1 (2.11)

where the basis states {|00i , |01i , |10i , |11i} arise from considering tensor products of the single
qubits basis states, namely

|00i := |0i⌦ |0i=

1
0

�
⌦

1
0

�
=

2

6664

1 ·

1
0

�

0 ·

1
0

�

3

7775
=

2

664

1
0
0
0

3

775 , |01i=

2

664

0
1
0
0

3

775 , |10i=

2

664

0
0
1
0

3

775 , |11i=

2

664

0
0
0
1

3

775 . (2.12)

26 Chapter 2. Quantum Computing and Variational Quantum Algorithms

Name Symbol/Circuital rep. Matrix representation

Pauli-X X

0 1
1 0

�

Pauli-Y Y

0 �i
i 0

�

Pauli-Z Z

1 0
0 �1

�

Pauli rotation-X RX(q)

cos q

2 �isin q
2

�isin q
2 cos q

2

�

Pauli rotation-Y RY (q)

cos q

2 �sin q
2

sin q
2 cos q

2

�

Pauli rotation-Z RZ(q)

e�iq/2 0

0 eiq/2

�

Phase gate P(q)

1 0
0 eiq

�

T gate T

1 0
0 eip/4

�

Hadamard H
1p
2

1 1
1 �1

�

Table 2.1: Summary of the most important single-qubit operations. Here are shown the name of
the operations, the abbreviations, the circuital representations when implemented as a gates in a
quantum circuit, and the matrix representations in the computational basis. Note that the phase gate
P and RZ are related by just a global phase, but it is useful to keep them separately.

In the same way, an n-qubit (pure) state is a vector in H= (C2)⌦n =C2n and it can be expressed
in full generality as a normalized superposition of the 2n basis states

|yi=
2n�1

Â
i=0

ci |ii , ci 2 C ,

2n�1

Â
i=0

|ci|2 = 1 (2.13)

where the state |ii is a shorthand to denote multi-qubit computational basis states, where i is the
decimal representation of the binary string (or bit-string) of zeros and ones composing the basis4.

Two-qubit operations As for single qubits, an operation on a n-qubit state can be represented
by a unitary matrix in

�
C2�n⇥

�
C2�n, and any such matrix is a valid multi-qubit quantum gate.

However, instead of considering general unitaries, one usually constructs multi-qubit gates starting
from single- and two-qubit ones, since these form a so-called universal set of gates. We elaborate
more on this concept at the end of the section and now proceed to describe common two-level gates.

First, two independent single-qubit operations acting on two different qubits are cast in the
form of a single two-qubit gate via the tensor product operation. For example, the action of two

4For example, the two-qubit state |11i is denoted as |11i ! |3i, as 112 in basis 2 is 310 in basis 10 (the subscript
denotes the basis).

2.1 Basics of Quantum Computation 27

Pauli-Z gates in parallel on a system of two qubits is described by the operator

Z⌦Z =

1 0
0 �1

�
⌦

1 0
0 �1

�
=

2

6664

1 ·

1 0
0 �1

�
0 ·

1 0
0 �1

�

0 ·

1 0
0 �1

�
�1 ·

1 0
0 �1

�

3

7775
=

2

664

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 1

3

775 . (2.14)

At the basis of every quantum computation are the two-qubit controlled operations that are
used to create entangled states. These operations act on the state of a target qubit conditionally on
the state of another qubit, called control. The prototypical gate in this class is the controlled-NOT
operation (CNOT or CX), which does nothing —i.e., acts with the identity— if the control qubit is
in the state |0i, and acts with the X gate on the target if the control is in the |1i state instead. Its
definition and matrix representation is

CNOT := |0ih0|⌦ I+ |1ih1|⌦X =

1
0

� h0|z }| {⇥
1 0

⇤
⌦

1 0
0 1

�
+

0
1

� h1|z }| {⇥
0 1

⇤
⌦

0 1
1 0

�
(2.15)

=

1 0
0 0

�
⌦

1 0
0 1

�
+

0 0
0 1

�
⌦

0 1
1 0

�
(2.16)

=

2

664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3

775 . (2.17)

Similarly, the controlled-Z (CZ) operation does nothing if the control qubit is |0i and applies Z
to the target qubit otherwise, it is defined as CZ := |0ih0|⌦ I+ |1ih1|⌦Z. It can be checked that the
CZ has the same action if the control and target are exchanged, since its overall effect is to add a
minus sign to CZ |11i=� |11i, while leaving the remaining three states in the computational basis
unchanged. Indeed, its graphical representation, shown in Fig. 2.2, is symmetrical and does not
distinguish between a target and a control. In general, one can define a controlled version of any
single qubit operation U , via CU := |0ih0|⌦ I+ |1ih1|⌦U .

One last very important operation is the SWAP gate, whose action is to exchange the state of
two qubits SWAP |yi⌦ |fi= |fi⌦ |yi ,8 |yi , |fi 2 C2. It can be checked that this operation can
be implemented using a sequence of three CNOTs with alternating target and control, as shown in
Fig. 2.2. In Fig. 2.2 we summarise some common two qubits gates, showing their circuital form
and matrix representation in the computational basis.

One and two-qubit gates are universal It can be proven that any n-qubit unitary can be
written as a product of just two-qubit operations, and further that any such two-level unitary can
be approximated efficiently with a composition of single-qubit gates and two-qubit controlled
operations [20, 220]. This means that a restricted set of operations, namely single qubit gates and a
controlled operation like the CNOT, is sufficient to implement an arbitrary n-qubit computation,
and for this reason, such a pool of operators is called a universal gate set.

Examples of universal gate sets are {H,T,CNOT} or {Rx,Ry,Rz,CNOT}, but there exist
several different ways of combining single-qubit operations and two-qubit interactions to achieve
universality. A closely related concept is that of native or basis gates, which are the set of physical
transformations that can actually be performed on quantum computing hardware, and depends on
the specific technology used to build the hardware (superconducting, ion traps, neutral atoms, ...).
We briefly touch upon this theme in Sec. 2.1.5 when discussing the quantum circuit model.

28 Chapter 2. Quantum Computing and Variational Quantum Algorithms

Name (abbr.) Symbol/Circuital rep. Matrix representation

Controlled-NOT (CNOT)

2

664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3

775

Controlled-Z (CZ)

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

3

775

Controlled-phase (CP)
P(j)

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eij

3

775

Controlled-U (CU)

2

664

1 0 0 0
0 1 0 0
0 0 U00 U01
0 0 U10 U11

3

775

Swap (SWAP) =

2

664

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3

775

Table 2.2: Summary of the most important two qubits operations. The name of the operation is
shown, the symbol used to refer to the operation when implemented as a gate in a quantum circuit,
and the matrix representation of the gate in the computational basis.

2.1.3 Density matrix formalism
So far we have described quantum states as vectors in a Hilbert space, yet there exists an equivalent,
and often more appropriate, description of quantum states via operators, which go by the name of
density matrices. This alternative formalism arises quite naturally in quantum mechanics when one
wants to account for uncertainties in the knowledge of a quantum state.

Consider a set of quantum states {|yii} and a process that selects a state |yii from such a set
with probability pi 2 [0,1], so that all probabilities sum up to one Âi pi = 1. Given that each state is
drawn probabilistically from the set, one can describe this statistical uncertainty by considering a
weighted mixture of the states in the set. Formally, given an ensemble of states with corresponding
probabilities {pi, |yii}i, the density matrix which describes the quantum state of the system is given
by the convex combination

r = Â
i

pi |yiihyi| Â
i

pi = 1 . (2.18)

Such a state is called mixed state, and is used to describe the statistical uncertainty one could have
about the state of a quantum system. These are opposed to the pure states described so far, which
are instead used to describe systems whose state is known exactly, with no statistical uncertainty
associated with it.

By definition, let H be the Hilbert space associated with a quantum system, density matrices
are linear squared operators on H that are positive semidefinite r � 0 with unit trace Tr[r] = 1, and

2.1 Basics of Quantum Computation 29

are used to represent the quantum state of the system. The density matrix notation can also easily
take into account pure states, represented by projectors r = |yihy|. Indeed, one defines the purity
of a quantum state r as Tr

⇥
r2⇤, which is highest when the state is pure

Tr
⇥
r2⇤= Tr

h
|yihy|2

i
= Tr[|yihy|] = 1 ,

and reaches the minimum value of 1/d when the quantum system is in the so-called completely
mixed state r = I/d, where d is the dimension of the Hilbert space of the system5 (d = 2n for a
system of n qubits).

As discussed in Chapter 8, density matrices are of fundamental importance when dealing with
quantum channels, a generalisation of the unitary evolution for open quantum systems, and the
backbone of the mathematical description of noise processes acting on quantum systems.

Bloch representation of a single qubit mixed state We argued earlier that the Pauli
matrices together with the identity form a basis of the space of 2⇥2 complex matrices, and in fact
the state of a qubit can be expanded in this basis as the linear combination

r =
I+ rxX + ryY + rzZ

2
. (2.19)

where the condition Tr[r] = 1 along with the fact that the Pauli matrices are traceless imposes that
the identity appears with coefficient 1/2, and rx,ry,rz 2 R because of the positivity of the density
matrix and the hermiticity of the Pauli matrices. If the state is pure, then

1 = Tr
⇥
r2⇤= Tr

"✓
I+ rxX + ryY + rzZ

2

◆2
#

=
1+ r2

x + r2
y + r2

z

2
=) r2

x + r2
y + r2

z = 1. (2.20)

This is the equation of a sphere of radius one, and this is, indeed, another way to derive the Bloch
sphere representation of a qubit of Fig. (2.1). On the contrary, if the state is not pure then the purity
is less than one, which is equivalent to the condition

Tr
⇥
r2⇤ 1 =) r2

x + r2
y + r2

z =~r2 1 , (2.21)

where we have introduced the Bloch vector rrr := (rx, ry, rz), consisting of the coordinates of
the quantum state along the Pauli axes. For example, the ground state r = |0ih0| has Bloch
vector rrr = (0, 0, 1), since it can be written in terms of the Pauli matrices as r = (I+ Z)/2 =
|0ih0|. One can check that a general quantum state of the form in Eq. (2.2) has Bloch vector
rrr = (cosj sinq , sinj sinq , cosq) .

Equations (2.20) and (2.21) then tell that pure states live on the surface of the Bloch sphere of
Fig. 2.1, while mixed states correspond to points inside the sphere. The centre of the sphere is the
completely mixed state r = I/2, with the corresponding Bloch vector rrr = (0, 0, 0).

Evolution While pure states evolve after the application of a unitary operation U as |yi U�!U |yi,
the state obtained by acting with a unitary operation on a quantum system described by density
matrix r is instead r U�!UrU†.

Reduced density matrices One is often interested in studying the state of just a subsystem
(for example, a single qubit) of a larger quantum system consisting of multiple parts. Let rAB
be the density matrix of a bipartite quantum system with Hilbert space HA⌦HB, where A and B
denote the subsystem we are interested in. One defines the reduced density matrix of the system A

5This fact can be easily proven by considering an eigendecomposition of the density matrix, and using Lagrange
multipliers to minimize the purity Tr

⇥
r2⇤= Âd

i=1 p2
i under the constraint Âd

i=1 pi = 1.

30 Chapter 2. Quantum Computing and Variational Quantum Algorithms

the density operator rA given by the partial trace over the uninteresting degrees of freedom of B,
namely

rA := TrB[rAB] =
dB

Â
i=1

(IA⌦hyi|B)rAB (IA⌦ |yiiB)⌘
dB

Â
i=1
hyi|rAB|yiiB (2.22)

where TrB[·] indicates the partial trace operation as defined above, dB = |HB| is the dimension of
the Hilbert space of B, {|yiiB}i is an orthonormal basis in HB.

One can check that the reduced density operator defined above is a valid quantum state as it is
positive semi-definite rA � 0 and with trace equal to one Tr[rA] = 1 .

2.1.4 Measurements and expectation values
Measurements are processes that extract classical information from quantum states. These usually
occur at the end of a quantum computation (but also during it, depending on the task) to read out
the final outcome of the implemented data processing task. The measurement process in quantum
mechanics is a very delicate topic at a fundamental level since it involves the problem of the
quantum to classical transition, but here we take an operational formulation following the standard
probabilistic interpretation of quantum mechanics stemming from Born’s rule, used to determine
probabilities of measurement outcomes.

The probability that a quantum system described by quantum state |yi= Âi ci |iiwhen measured
in the computational basis reduces to state |ki is given by

pk = |hk|yi|2 = |ck|2 . (2.23)

In addition to measurements in the computational basis, a measure can be used to infer some
physical properties of the quantum system under investigation. Since these properties can only
take real values (as opposed to complex), the set of physical quantities to which an observer has
access, which are referred to as observables, are represented mathematically by Hermitian operators
O = O†, which have real eigenvalues. Examples of common observables are the Pauli matrices
X ,Y , and Z. The expectation value of an observable O on a quantum system described by pure state
|yi is

hOi := hy|O|yi . (2.24)

More generally, in the density matrix formalism, expectation values instead read

hOi := Tr[Or] , (2.25)

where this formula clearly reduces to the first one for pure states Tr[O |yihy|] = hy|O|yi. Since
observables are Hermitian operators, O admits a spectral decomposition O = Âi oi |oiihoi|, and so
Eq. (2.25) can be also expressed explicitly as

Tr[Or] = Tr

"

Â
i

oi |oiihoi| r

#
= Â

i
oi hoi|r|oii = Â

i
oi pi . (2.26)

where pi = hoi|r|oii is the probability of measuring the state r in |oii.
In real experiments, the estimation of the expectation value of an observable is a resourceful

multi-step process that requires the ability to repeatedly prepare and measure the quantum state, and
then combine the measurement outcomes via classical post-processing. In the quantum computing
jargon, a single act of measure is called shot, and the overall number of measurement shots used
in an experiment, often indicated with M, affects the statistical accuracy of the estimation, which
scales as O

�
1/
p

M
�
. In Algorithm 1 we summarise the steps needed to estimate the expectation

value of an observable O on a quantum state r , and we now proceed to explain them in detail.

2.1 Basics of Quantum Computation 31

Algorithm 1: Estimate expectation value of an observable
Data: Quantum state r 2 Cd⇥Cd ; observable O, number of shots M.
Result: Ō⇡ hOi= Tr[Or] with associated statistical error O

�
1/
p

M
�
.

for m = 1, . . . ,M do
Prepare r;
Apply a change of basis operation U on r , such that U†OU = Âd�1

i=0 oi |iihi| is diagonal
in the computational basis;

Do projective measurement on computational basis {|ii}d�1
i=0 , find state |ki;

Store result rm = ok;
end
Classically compute the sample mean Ō := 1

M ÂM
m=1 rm.

First, it is required that the experimenter has access to many copies of the quantum state r , or
can prepare it efficiently multiple times. The preparation of the quantum state is then followed by a
change of basis that makes the observable O diagonal in the computational basis, or equivalently,
expresses r in the eigenbasis of the observable. This is usually a required step, as common quantum
computing hardware can only perform projective measurements on the computational basis, and so
one has to reframe every estimation procedure on this basis. Since O is Hermitian, there is a unitary
U that diagonalizes the observable as O!O0 = U†OU = Âi oi |iihi|. Then, by rotating the quantum
state r ! r 0 = U†rU and measuring the diagonal —in the computational basis— observable O0,
one correctly obtains the desired expectation value

d�1

Â
i=0

oi hi|U†rU |ii= Tr

"
d�1

Â
i=0

oi |iihi|U†rU

#
= Tr

⇥
U†OU U†rU

⇤
= Tr[Or] = hOi , (2.27)

where the first term on the left is the definition of Tr[O0r 0] from Eq. (2.26), which, as required, only
involves measurement along the computational basis {|ii}.

As an example, consider the simple case of measuring the expectation value of the Pauli-X
operator on a single-qubit quantum state r . Using Z = HXH, it is easy to check that a rotation of
the qubit with a Hadamard gate r ! r 0 = HrH, followed by a measurement of the experimentally
accessible Pauli-Z operator, correctly yields the desired expectation value hXi, in fact

hZir 0 = Tr
⇥
Z r 0

⇤
= Tr[Z HrH] = Tr[HZH r] = Tr[Xr] = hXir .

We remark that the change of basis step is only a practical requirement to circumvent the hardware
constraints that only allow for measurements on the computational basis, but adds nothing funda-
mental to the computation. In addition, note that the operator U that diagonalizes the observable O
has to be calculated classically, before the measurement procedure begins.

After preparation of the state and subsequent change of basis, the system is finally measured in
the computational basis. Suppose that upon measurement the state is found in state |ki corresponding
to the eigenvalue ok: this number constitutes the result of the measurement. By repeating the
entire preparation and measurement procedure M times, one gathers a sample of measurement
results {r1, . . . , rM}, where each result rm 2 {o0, o1, . . . , od�1} is the eigenvalue obtained on the
m-th measurement shot. The values rm are independent —because they come from independent
measurement events— random variables whose statistical properties are defined by

E[rm] = E[O] := hOi , Var[rm] = Var[O] :=
⌦
O2↵�hOi2 , 8 m = 1, . . . ,M (2.28)

where the expectation values and variances of the random variables rm are evaluated over the
probability distribution of measurement outcomes given by Born’s rule (2.23). The sample mean

32 Chapter 2. Quantum Computing and Variational Quantum Algorithms

Ō := ÂM
m=1 rm/M is an unbiased estimator of the true expectation value hOi, with variance

E[Ō] =
1
M

M

Â
m=1

E[rm] = hOi , (2.29)

Var[Ō] =
1

M2

M

Â
m=1

Var[rm] =
1
M

Var[O] , (2.30)

where we have used Eqs. (2.28), and the fact that the rm are independent random variables to move
the variance inside the sum in the second equation.

Assuming that the variance of the observable is bounded and independent of the system size, as
it happens for observables made of tensor product of Pauli matrices6, then

Var[O] =
⌦
O2↵�hOi2 = Tr

⇥
O2r

⇤
�Tr[Or]2 2O(1) , (2.32)

and so the statistical error associated to the empirical mean Ō scales as Std[Ō] 2 O
�
1/
p

M
�
.

Alternatively, suppose one wants to calculate the expectation value with precision e with a failure
probability of at most d , then by Chebyshev’s inequality

P
�
|Ō�hOi | > e

�
 Var[Ō]

e2 = d =) M 2O
✓

1
de2

◆
, (2.33)

which states that the number of measurements M to reach a target accuracy e scales quadratically
with the desired precision. A similar scaling can also be obtained with other statistical inequalities,
for example via Hoeffding’s inequality [138].

We conclude by noticing that in practical scenarios one is often interested in measuring either
simple observables made of tensor products of Pauli matrices, often referred to as Pauli strings

O = s1⌦s2⌦ · · ·⌦sn , (2.34)

where n is the number of qubits in the system, or in weighted sums of these Pauli strings

O =
P

Â
k=1

gk Ok =
P

Â
k=1

gk s (k)
1 ⌦s (k)

2 ⌦ · · ·⌦s (k)
n , (2.35)

where the coefficients are real to ensure Hermiticity gk 2 R, and s (k)
i 2 {I,X ,Y,Z} are single-qubit

Pauli matrices. In this last case, very prominent in quantum chemistry applications [106], the usual
approach is to estimate each Pauli string separately hOki, and then combine the results classically
with the coefficients gk, via hOi= Âk gk hOki.

Clearly, measuring a single Pauli string is much simpler, and the estimation is associated with
a lower variance compared with the case of more complex observables when a fixed budget of
measurement shots is allowed. Various strategies have been proposed in the literature to optimize
the measurement resources needed to estimate expectation values of the form in (2.35), most of
them based on a clever grouping of commuting Pauli strings that can be measured at the same
time [29], or for example using adaptive methods to reduce the statistical fluctuations associated
with the estimation [106].

6This can be easily proved as follows. Let O = s1⌦s2⌦ · · ·⌦sn be an observable made of tensor products of
single-qubit Pauli matrices si 2 {I,X ,Y,Z}. Since Pauli matrices are involutory, s2

i = I, then O2 = In. In addition, since
the eigenvalues of O = Âi oi |oiihoi| are either oi 2 {±1}, expectation values hOi are bounded

|hOi| = |Tr[Or]| =

�����Âi
oi hoi|r|oii

�����Â
i
|oi|hoi|r|oii= Â

i
hoi|r|oii= 1 , (2.31)

where we have used that hoi|r|oii � 0 are positive numbers because r � 0 is a positive operator, the eigenstates {|oii}i
are a basis of the space, and the state is normalized Tr[r] = 1. Thus, finally one has 0 Var[O] = Tr

⇥
O2r

⇤
�Tr[Or]2 =

1�Tr[Or]2 1 , where again we have used Tr[r] = 1 and 0 Tr[Or]2 1 from (2.31).

2.1 Basics of Quantum Computation 33

2.1.5 The quantum circuit model
As discussed earlier, a generic quantum computation can be expressed in terms of single- and
two-qubit operations, which makes it easy to represent it graphically via a sequence of a few
circuital symbols, already introduced in Tables 2.1 and 2.2.

In quantum circuit diagrams, time evolves from left to right, single wires are used to indicate
separate quantum systems (qubits in our case), and the single- and two-qubit gates are represented
with the symbols shown in the corresponding summary tables. Unless otherwise stated, qubits are
assumed to start in the ground state, that is all qubits are in the |0i state when the computation is
started. At last, at the end of the circuit some or all the qubits may be measured, in which case an
appropriate symbol is shown on the corresponding wire. Unless explicitly said otherwise, every
measurement is assumed to be in the computational basis.

A simple example of a quantum circuit is the following, which creates and measures the
three-qubit maximally entangled GHZ state |yGHZi= (|000i+ |111i)/

p
2.

|0i H

|0i

|0i

2.1.5.1 Executing a quantum circuit on a real quantum device
The quantum circuit model is a useful tool to describe the logical action of quantum computation
through a pictorial representation. Furthermore, although quantum circuits are the standard format
for submitting instructions to a real quantum computer for execution, they are by no means a
faithful description of what actually happens on the device.

In fact, for a logical quantum circuit to be executed on a real device, some classical preprocessing
steps are needed. First, it is necessary to identify a subset of the available physical qubits on the
machine that matches the connectivity required by the two-qubits gates in the circuit to be run.
Secondly, one has to express every gate in the original circuit in terms of the so-called native
basis gates, which are the set of physical operations that can actually be implemented on the
device. These strongly depend on the actual technology used to build the quantum computer, and
in Table 2.3 we report the native gates available on some common quantum computing hardware.
Following the discussion in Sec. 2.1.2, these single and two-qubit operations provide different
universal sets of gates that can implement any quantum computation.

Manufacturer Technology Native gates Refs.

IBM Superconducting
�p

X ,X ,RZ,CNOT

[145]
Google Superconducting {U(q ,j,l), Sycamore gate} [16, 114]
IonQ Trapped-ions {RX , RY , Mølmer-Sørensen} [217, 328]

Table 2.3: Examples of single- and two-qubits gates available on some current quantum computing
hardware. The U(q ,f ,l) operation is the general single-qubit rotation of (2.10), and the “Sycamore
gate" is a two-qubit gate similar to a combination of a SWAP gate and a controlled phase rotation.
The Mølmer-Sørensen gate [212] is a two-qubit gate of the form XX(f) = e�ifX⌦X/2 common in
ion-trap based architectures. The single-qubit rotation gates on available on IONQ devices are
variations of RX and RY rotations, for a precise definition see [217].

This process of rewriting the circuit into an appropriate form goes by the name of circuit compi-
lation, or transpilation, and its result is to output a new quantum circuit which is (approximately)
equivalent to the original one, but that can be readily executed on the machine. As discussed in the

34 Chapter 2. Quantum Computing and Variational Quantum Algorithms

next section, current quantum hardware is limited in both size and performance, and a quantum
circuit may lend itself to better execution on specific backends, due to a more favourable mapping
in terms of required qubit-qubit connection topology, and/or available gates.

In the next section, we provide a brief overview of the state of the art of current quantum
computing technology, discussing both the technological aspects as well as their scientific relevance.

2.1.6 The NISQ era of quantum computation

Figure 2.2: Examples of currently available quantum computers based on two different technologies:
trapped-ions (IonQ) [148] and superconducting circuits (IBM Quantum) [145]. In the panels next to
the devices, examples of the usual connectivity between qubits found in the respective technologies
are shown, specifically the Aria device with n = 21 qubits with an all-to-all connectivity [10], and
IBM’s ibm_washington device with n = 127 qubits with leveraging a grid-like connectivity [92].

Although enormous technological progress made it possible to build the first generations of
quantum computers, these are still far from the realisation of universal fault-tolerant quantum
computers, which are ideal quantum computers in which errors in the computation can be detected
and corrected, through a procedure called Quantum Error Correction (QEC) [220].

Instead, the current era of quantum computation has been dubbed Noisy Intermediate-Scale
Quantum [236], NISQ for short, which is used to denote near-term quantum devices which are
imperfect and not error corrected, hence are strongly affected by noise, and can only leverage a
limited number of qubits, and thus are also limited in scale. Several experimental platforms are being
used to develop quantum computing solutions [6, 294], based, for example, on superconducting
circuits [16, 145], trapped-ions [148, 241], neutral atoms [135, 245], photonic chips [240, 329]
and others7. In Fig. 2.2 we report two examples of currently available quantum computers based
on trapped ions and superconducting circuits, which are arguably the leading technologies for
constructing quantum computers in the NISQ era. In the figure, both the physical Quantum
Processing Units (QPUs), and a graphical representation of the layout of the qubits on such chips.

Although the pace at which these machines are developed suggests a quantum variant of the
classical Moore’s law to hold, NISQ devices still face serious constraints, which we briefly discuss
in what follows. First of all, state of the art quantum computers are limited in size, consisting of
about dozens to a few hundred qubits depending on the technology, with first generations of QPUs
with more than a thousand qubits only planned to appear in the following years [146]. In order
to reach a clear sign of quantum advantage and surpass the regime of classical simulability, it is
necessary to be able to efficiently scale up these machines. For example, it is estimated that roughly
20 million physical qubits —as opposed to logical8— are required to implement a non-trivial

7In this list we omit computing platform based on quantum annealing, like D-Wave’s machines [71], as they cannot
implement universal quantum computation.

8By physical qubit one refers to a single noisy hardware implementation of a two-level quantum system corresponding
to a qubit. These are opposed to logical qubits, which are instead ideal versions of the qubits that are immune to errors.
A single logical qubit can be represented using multiple physical qubits along with quantum error correction codes [220].

2.1 Basics of Quantum Computation 35

application of Shor’s algorithm, arguably the most convincing example of exponential speedup of
quantum computation over classical one [108]. Quantum computers of this size and capabilities
will probably require new breakthroughs both on the experimental and algorithmic side, and will
only appear in the next decades.

In addition, as we already discussed previously in Sec. 2.1.5.1, the types of operation that can
be implemented on a device are often quite limited. This is especially true for two-qubit gates,
which can only be applied directly to qubits that are physically close on the machine, so that they
can be made to interact. The connectivity between qubits on a device, as shown in Fig. 2.2, imposes
a serious constraint on the class of algorithms that can be run on a specific machine. While the
limited connectivity is a clear issue for superconducting-based quantum computers, other platforms,
like trapped-ions, implement an all-to-all interaction that makes it possible to operate two-qubit
gates on any pair of qubits on the device. However, operations (both single- and two-qubit gates) on
these machines can be orders of magnitudes slower than on superconducting chips, with the time to
implement a quantum gate ranging in the order of microseconds t ⇠ 1�100µs for the former [43]
and nanoseconds t ⇠ 1�100ns for the latter [145].

The most compelling problem with near-term devices is noise that affects the qubits inside the
computer, which strongly limits the computing capabilities of the hardware. Errors in quantum
computers occur due to undesired interaction of the quantum systems with the external environment,
as well as due to faulty execution of the operations inside the computer. The former type of
noise is commonly measured by coherence times, which characterise the quality of the qubit by
assessing the time it takes for it to lose its quantum properties due to unwanted interaction with the
external environment. For example, common values of coherence times for current superconducting
architectures are of about T ⇠ 10�100 µs [145], while trapped-ions usually have longer times of
about T ⇠ 1�100s [148], corresponding to higher quality qubits. We will discuss more in detail
how to describe noise in quantum systems in Chapter 8.

As for errors introduced by an imperfect realisation of the quantum gates —especially two-
qubit gates—, these are measured in terms of gate error rates via a procedure called Randomised
Benchmarking [133, 191]. Current error rates are of the order of 0.01% and 1% for single and
two-qubit gates respectively for superconducting circuits, and roughly one order of magnitude less
for ion traps.

It is then clear that multiple sources concur to the realisation of an effective device, namely the
number of qubits, the connectivity map, and the error rates. For this reason, new figures of merit
such as Quantum Volume (QV) have been introduced to provide a unifying measure to assess the
capability of near-term quantum computing devices [29, 69]. Roughly speaking, the QV is a single
real number that measures the largest square-shaped (i.e. number of qubits equal to the depth of
the circuit) random quantum circuit that the quantum computer can execute successfully. It can be
understood as the number of “effective" qubits available on the machine, and it is formally defined
as [69]

log2 QV = argmax
n

min(n,D(n)) (2.36)

where n is the number of qubits and D(n) is the depth of the quantum circuit, that is the minimum
number of steps needed for quantum gates to be applied in parallel to implement a quantum
circuit. At the time of writing, the highest Quantum Volumes reported for superconducting and
trapped-ions architectures are, respectively, QV = 512, corresponding to running square circuits of
size log2 QV = 9, for IBM’s superconducting chip Prague with a total of n = 27 qubits [243], and
QV = 8192 (log2 QV = 13) for Quantinuum’s trapped-ions based System Model H1 [242] which
has a total of n = 20 qubits.

Every technology has its own advantages and drawbacks, and it is not yet clear which one will
provide the most effective solution towards scalable and fault-tolerant quantum computers. In the
meantime, near-term devices not only constitute a necessary step towards the implementation of

36 Chapter 2. Quantum Computing and Variational Quantum Algorithms

large-scale universal quantum computers but also provide new tools to investigate the limits of
quantum mechanics and provide a new paradigm for performing computation. Indeed, the topic
of the next section is to discuss what NISQ devices can be used for, thus introducing variational
quantum algorithms, which are a class of quantum algorithms specifically tailored for current
quantum computing devices.

2.2 Variational Quantum Algorithms
Variational Quantum Algorithms (VQAs) are the leading proposal to exploit current quantum
computing platforms, based on the hope that it is possible to achieve a meaningful quantum
advantage already in the non error-corrected regime, before standard quantum algorithms, like
Shor’s factoring, can be realised at scale. Moreover, and regardless of any quantum advantage, the
research on variational quantum algorithms is of interest on its own, both on a fundamental level
because it conceives a new paradigm of hybrid computation where classical and quantum resources
are used in tandem to achieve a task, and on a practical level because it fosters the development of
new software and hardware solutions for quantum computing by providing compelling use cases.

NISQ devices are limited in size and inherently noisy, and the idea of variational quantum
algorithms is to circumvent the problem simply by using them as little as possible, only for the bare
minimum, while outsourcing all remaining tasks to a classical computer. This idea then identifies
a class of hybrid quantum-classical algorithms in which quantum and classical computational
resources are used in combination to solve a task.

The second ingredient of variational algorithms, to which they owe their name9, make them
also very similar to the highly successful field of machine learning. In fact, variational quantum
algorithms are optimisation-based procedures that tackle a problem by first encoding its solution as
the minimum of an appropriately defined cost function C(qqq) depending on some tunable parameters
qqq , and then iteratively vary these parameters, usually via gradient-based methods, to find the
minimum of the function, hence the solution. The incredible results achieved by deep learning in
recent years have shown how versatile and powerful learning-based procedures can be [83, 178,
210]. Variational quantum algorithms then introduce free adjustable parameters inside a quantum
computation in order to cope with the serious constraints imposed by current NISQ hardware. In
this way, however, the success and/or runtime guarantees of standard textbook quantum algorithms
like Grover’s and Shor’s are lost, as the optimisation procedures in VQAs are usually highly
non-convex, and so theoretical analysis of the performances can only go so far.

In all, VQAs essentially trade off guarantees of success with the feasibility of execution, in the
hope of retaining a quantum advantage of some sort.

2.2.1 The basis of variational quantum algorithms
At the basis of any variational algorithm is the definition of a cost, or loss, function that measures
how well the algorithm is performing, and an ansatz circuit, which is a guess quantum circuit with
tunable parameters that should be able to represent a good solution to the problem.

Let U(qqq) be the unitary of the parameterised quantum circuit (PQC) ansatz, and qqq 2 Rp the
vector of the parameters. The goal of VQAs is to find an optimal set of parameters that minimises
the cost function C(qqq) : Rp! R, namely

qqq opt = argmin
qqq

C(qqq) , (2.37)

9The term “variational" as originally proposed by Peruzzo et al. [230] comes from the Rayleigh-Ritz variational
principle to compute lowest energy eigenvalues. The term variational in turn comes from the idea of varying the
parameters of a trial model in order to solve a task, a concept that is at the core of modern machine learning (ML) as
well. The connection between VQAs and ML was developed later as the field gained momentum, and now there is a
fruitful exchange of ideas and concepts between these two topics.

2.2 Variational Quantum Algorithms 37

where the cost is some function of the expectation values of a set of observables {Ok} measured on
the parameterized state generated by the variational circuit, that is

C(qqq) = Â
k

fk(Tr[Ok rqqq]) = Â
k

fk
�
Tr
⇥
Ok U(qqq) |0ih0|U(qqq)†⇤�

. (2.38)

This definition highlights that the cost function depends explicitly on the parameters qqq , and
implicitly actually also on the set of observables {Ok}k and the specific shape of the circuit ansatz
U(·), so that C = C(qqq ;{Ok}k;U) [58]. While this definition is fully general, in practical scenarios
one usually considers simpler costs given by the expectation value of a single observable10

C(qqq) = hOiqqq = Tr
⇥
OU(qqq) |0ih0|U(qqq)†⇤

. (2.39)

Ideally, the loss function should fulfil certain desirable properties to be considered a good candidate
for a cost in a variational quantum algorithm. Firstly, it should be classically hard to compute
but efficiently calculable with a quantum device, for if it were not, this would negate any hope of
quantum advantage. Secondly, the cost function should be trainable, that is there exists a procedure
capable of finding the minimum of the cost with some guarantees of success. This latter condition
is particularly relevant for variational algorithms, as the loss landscape of these procedures is often
found to be very flat and thus difficult to navigate via standard optimization methods, a phenomenon
which goes by the name of barren plateaus, see Sec. 2.2.4.2. Finally, two other useful requirements
are that the global minimum of the loss function should only be attained when the true solution to
the problem is found, and not otherwise; and that the cost function should always convey a measure
of the suitability of the proposed solution, so that smaller values of the cost always correspond to
better solutions. When the latter two conditions are met, the cost function is often referred to as
faithful and operationally meaningful, respectively [58].

Hence, given a properly defined cost function, variational algorithms then proceed by combining
quantum and classical resources in an iterative loop as follows:

(i) On the quantum computer: estimate the cost function C(qqq) for the current values of the
parameters qqq via repeated measurements;

(ii) On the classical computer: input the outcome in a classical optimisation algorithm that
proposes a new value for the parameters qqq 0, so that the cost is lower C(qqq 0) < C(qqq);

(iii) repeat steps (i)-(ii) until stop conditions are met (convergence, execution time, ...).
These steps are schematically represented in Fig. 2.3, which shows the usual way of picturing

the hybrid quantum-classical loop of variational quantum algorithms.
Two questions remain to be answered. First, what is the explicit form of the parameterised

quantum circuit U(qqq) and how can one choose it? Secondly, what are the usual strategies for
performing the optimisation loop? Let us now proceed by addressing these two topics.

2.2.2 Parameterised quantum ansätze
Just as in standard parametric models, also in variational quantum algorithms the functional form
of the model has to be fixed a priori, and this is done by considering a specific parameterised
quantum circuit U(qqq). Such a choice is referred to as an ansatz circuit, and while there is no unique
prescription for constructing a good one, some guiding principles can be used to identify good
candidates.

It is clear that the choice of ansatz plays a key role in determining the effectiveness of the
variational algorithm. For example, the model may be too simple to express the target solution,
or it may be so complex that it makes optimisation difficult, thus favouring convergence to sub-
optimal solutions. Any such ansatz prevents a good result from the variational algorithm. We

10Note that this simplified loss is obtained whenever the general cost in Eq. (2.38) depends linearly on the expectation
values, that is fk(hOki) = ck hOki. Then, by linearity of the trace and considering the overall observable O = Âk ckOk,
one obtains Eq. (2.39). This is the case of quantum chemistry applications, as discussed earlier at the end of Sec. 2.1.4.

38 Chapter 2. Quantum Computing and Variational Quantum Algorithms

CPU
Classical optimisation algorithm

QPU
Estimate cost function

Update parameters of the variational circuit

Figure 2.3: Schematic representation of variational quantum algorithms. First, on the left, a
parameterised quantum circuit with parameters qqq is used to prepare a variational trial state |yi=
U(qqq) |0i and a cost function C(qqq) = hOiqqq = hyqqq |O|yqqq i is measured on a Quantum Processing
Unit (QPU). Then, on the right, the result is passed to a classical processing unit (CPU), that runs
an optimisation algorithm to find new values for the parameters qqq 0 corresponding to a lower cost.
The loop is repeated until convergence to a minimum of the cost is reached or stopping criteria are
met.

hereby anticipate that these concepts of expressibility and trainability are indeed related, as will be
discussed in detail in Sec. 2.2.4. In addition, the most important —and almost trivial— condition
that an ansatz should satisfy is that it should be feasible in practice, in that there is a near-term
quantum computing device capable of implementing it.

Generally, all ansätze share the common feature of being defined in terms of a repeated structure
of similar blocks arranged in sequential layers. For example, many variational ansätze can be
expressed as

U(qqq) =
L

’̀
=1

W`U`(qqq `) = WLUL(qqq L) · · ·W1U1(qqq 1) , (2.40)

where U`(qqq `) are parameterised gates, usually single-qubit Pauli rotations, and W` on the other
hand are fixed operations usually consisting of two-qubits entangling gates, such as CNOTs or CZ.
The number of layers L in the circuit is an important hyperparameter in the definition of the ansatz
and decides the overall depth of the quantum circuit. The circuit shown in Fig. 2.3 is an example of
such a layered structure.

In the following, we summarise the most common strategies used in the literature to propose
ansätze.

Hardware Efficient Ansätze (HWE) This class of ansätze contains all those parameterised
circuits that are specifically thought to be easily run on current quantum hardware [155], and are
often used as a starting point for exploring a variational approach to solving a problem, especially
when it is not straightforward to incorporate knowledge about the task to be solved in a circuital
form. All the gates used in the ansatz are either taken from the native basis set of the device, or can
be implemented with only a few of them. Most importantly, two-qubit operations act only on those
pairs of qubits that are physically connected on the device, thus respecting the connectivity map
available on the hardware.

Various properties of these circuits have been studied in the literature, regarding their express-
ibility [281], entanglement [18], performances on benchmark problems [144], as well as trainability

2.2 Variational Quantum Algorithms 39

properties [57, 202].

Problem-inspired Ansätze Whenever the ansatz is built by leveraging the knowledge of the
underlying physics of the problem to be solved, one says that the ansatz is problem-inspired. This
is often the case for quantum chemistry applications, and the most prominent example in this
class is the Unitary Coupled Cluster (UCC) ansatz, specifically thought for dealing with electronic
structure calculations, also used in the seminal work by Peruzzo et al. [230] on variational quantum
algorithms. Various generalisations of the UCC ansatz for several quantum chemistry problems
have been introduced, and one can find detailed information in the reviews [8, 29, 58, 301]. Another
example of a problem-inspired ansatz for quantum chemistry is the Hamiltonian Variational Ansatz
inspired by the adiabatic state preparation theorem [317].

Regarding machine learning applications of variational quantum algorithms, and inspired by the
classical machine learning literature on geometric deep learning [40], many recent proposals focus
on constructing so-called equivariant quantum circuits, that are parameterised quantum circuits
that encode the symmetries of the problem to be solved [173, 208, 219, 284].

By focusing specifically on a restricted class of relevant models, problem-inspired ansätze
usually perform better and are easier to optimise with respect to problem-agnostic ones, even
though this advantage may come at a cost of a more difficult implementation on real hardware.

QAOA-like Ansätze The Quantum Approximate Optimisation Algorithm (QAOA) [100] is a
widely studied parameterised ansatz to deal with combinatorial optimisation problems on near-term
devices. The variational ansatz is given by a layered alternating structure

U(bbb ,ggg) =
L

’̀
=1

e�ib` HM e�ig` HP , (2.41)

where HM is called mixer Hamiltonian, HP is the problem Hamiltonian whose ground state encodes
the solution to the combinatorial problem at hand, L is a hyperparameter that defines the accuracy
of the procedure, and (ggg,bbb) are two sets of parameters to be optimised.

This ansatz essentially implements a Trotterised adiabatic evolution of degree L, that slowly
evolves an easy to prepare ground state of the mixer Hamiltonian HM , to the target ground state of
the problem Hamiltonian HP. It has been shown that the alternating structure of QAOA implements
a universal dynamics for quantum computation [186], and an extension of QAOA to deal with more
general classes of Hamiltonians has been proposed with the name of Quantum Alternating Operator
Ansatz [122].

Adaptive Ansätze The optimisation of the variational angles alone is often not enough to obtain
a well performing algorithm. In this case, one can relax the condition of fixing the circuit ansatz
upfront, and instead adaptively optimise its structure along with that of the variational parameters.
Examples are the RotoSolve algorithm [222] that optimizes both the angle and the axis of single
qubit rotation gates, ADAPT-VQE algorithms [118, 298] that procedurally grow an ansatz by
adding gates to the circuit form a pool of operators, and other approaches that try to add but also
remove gates to keep the circuit shallow [32]. The adaptive generation of superior ansätze comes at
the cost of optimisation problems that are hard to solve in general, but that can be addressed using
approximate heuristics like Evolutionary Algorithms [248].

2.2.3 Optimisation of variational quantum algorithms
Once a cost function and an ansatz have been defined, one can then proceed with the optimisation
loop to find the optimal solution of Eq. (2.37). A simple yet effective strategy to solve optimisation
problems of differentiable functions is gradient-descent methods, widely used and studied in the
classical machine learning literature. These procedures are first-order methods that need access

40 Chapter 2. Quantum Computing and Variational Quantum Algorithms

to the first derivatives of the function, as opposed to zeroth- and second-order ones, that instead
require only function evaluations or access to the Hessian, respectively.

Be qqq (t) the value of the variational parameter at a time step t, and C(qqq) 2 R the scalar cost
function to be minimised. Gradient descent methods iteratively change the value of the parameters
by moving against the direction of the gradient of the function evaluated at that point, namely

qqq (t+1) = qqq (t)�h—qqqC(qqq)
��
qqq (t) . (2.42)

where 0 < h ⌧ 1 is a hyperparameter called learning rate that is used to tune the step size of the
algorithm. As long as the learning rate is small enough, this update rule will propose a new value
for the parameters corresponding to a lower cost. This can be seen by Taylor expanding the cost at
step t +1 around the parameters of the previous step t, as

C
⇣

qqq (t+1)
⌘

= C
⇣

qqq (t)�h—qqqC
⇣

qqq (t)
⌘⌘

(2.43)

⇡ C
⇣

qqq (t)
⌘

+—qqqC
⇣

qqq (t)
⌘⇣
�h—qqqC

⇣
qqq (t)
⌘⌘

+O
�
h2� (2.44)

= C
⇣

qqq (t)
⌘
�h

���—qqqC
⇣

qqq (t)
⌘���

2

2
C

⇣
qqq (t)
⌘

. (2.45)

where k·k2 denotes the 2-norm (or Euclidean norm) of a vector, and the last inequality comes from
the fact that both the learning rate and the gradient norm are positive quantities.

The basic gradient descent update rule in Eq. (2.42) can be easily improved and generalised,
for example taking into account information about the second derivatives of the function (e.g.
BFGS [244]), employing a stochastic approximation of the exact gradient (e.g. SPSA [287]), or
adding momentum terms and adaptive learning rates (e.g. ADAM [165]). The research on numerical
optimisation methods is very vast and active, providing useful tools for training variational quantum
algorithms [290, 321].

2.2.3.1 Parameter shift-rule
Gradient-based methods require access to the first (partial) derivatives of the target function, which
can be approximated numerically with the (central) finite-difference formula

∂iC(qqq) :=
∂C(qqq)

∂qi
⇡ C(qqq + eeeei)�C(qqq � eeeei)

2e
, 0 < e ⌧ 1 (2.46)

where eeei = (0, . . . ,1, . . . , 0) is a unit vector with entries zero everywhere except for a one in the
i-th position, and the equality sign is recovered in the limit of vanishing displacement e ! 0. It
turns out that a similar but exact formula holds for derivatives of parameterised quantum circuits, a
fact which is now commonly referred to as parameter-shift rule [57, 198, 209, 270, 322]. This rule
is a direct consequence of the rotation-like nature of the parameterised gates used in variational
circuits, and we hereby prove this formula following the derivation presented in ref. [198].

Common parameterised operations used in variational quantum circuits are rotation-like gates
of the form

Vj(q j) = e�iq jPj/2
, (2.47)

where q j is a variational angle, and Pj is the Hermitian generator of the gate. When Pj is involutory
(P2

j = I), then the exponential can be recast in trigonometric form as (see Eq. (2.9))

Vj(q j) = cos
q j

2
I� isin

q j

2
Pj . (2.48)

Note that many operations can be expressed in this way, including single-qubit rotations and more
generally any rotation generated by tensor products of Pauli matrices.

2.2 Variational Quantum Algorithms 41

Let C(qqq) = Tr
⇥
OU(qqq)rU(qqq)†⇤ be the cost function to be differentiated, and Vj(q j) be the

parameterised gate depending on the variable q j with respect to which we want to calculate the
derivative. Consider a bipartition of the circuit U(qqq) containing all the gates that act before (UB)
and after (UA) the operation of interest Vj(q j) takes place11

U(qqq) = UAVj(q j)UB , (2.49)

where the dependence on the remaining variational parameters in UB and UA is suppressed for ease
of notation. The cost function can then be written as

C(qqq) = Tr
h
OUAVj(q j)UBrU†

BV †
j (q j)U†

A

i
= Tr

⇥
OAVj(q j)rBVj(q j)

†⇤ (2.50)

where OA = U†
AOUA and rB = UBrU†

B , and we isolated the dependence of the cost on the variable
of interest q j. Substituting the trigonometric formula (2.48) in the expression above one obtains

C(qqq) = Tr

OA

✓
cos

q j

2
I� isin

q j

2
Pj

◆
rB

✓
cos

q j

2
I+ isin

q j

2
P†

j

◆�

= Tr

cos2 q j

2
OArB + isin

q j

2
cos

q j

2

⇣
OArBP†

j �OAPjrB

⌘
+ sin2 q j

2
OAPjrBP†

j

�

=
1+ cosq j

2
Tr[OArB]+

1� cosq j

2
Tr
h
OAPjrBP†

j

i
+

i
2

sinq j Tr
h
OA

⇣
rBP†

j �PjrB

⌘i

= C0 +C1 cos(q j)+C2 sin(q j) (2.51)

where C0, C1, and C2 are real numbers that do not depend on the parameter q j, defined as

C0 =
Tr
h
OA

⇣
rB +PjrBP†

j

⌘i

2
, C1 =

Tr
h
OA

⇣
rB�PjrBP†

j

⌘i

2
,

C2 =
Tr
h
OA

⇣
rB�PjrBP†

j

⌘i

2
,

(2.52)

Equation (2.51) is particularly interesting because it shows that the cost function is essentially a
trigonometric polynomial with respect to each individual variational parameter. Then, using the
following identities for the derivatives of sine and cosine functions

d cosx
dx

=
cos(x+ s)� cos(x� s)

2sins
d sinx

dx
=

sin(x+ s)� sin(x� s)
2sins

8s 6= mp, m 2 Z , (2.53)

the derivative of the cost in Eq. (2.51) with respect to q j can be written as

∂C(qqq)

∂q j
= C1

d cosq j

dq j
+C2

d sinq j

dq j

=
C0 +C1 cos(q j + s)+C2 sin(q j + s)

2sins
�C0 +C1 cos(q j� s)+C2 sin(q j� s)

2sins

=
1

2sins
[C(qqq + seee j)�C(qqq � seee j)] , (2.54)

where in the last line we recognised that both numerators are instances of the cost (2.51) with an
appropriate redefinition of the variational parameter. By setting s = p/2 in the expression above,
one eventually arrives at the usual formulation of the parameter-shift rule [56, 209, 270]

∂C(qqq)

∂q j
=

1
2

h
C
⇣

qqq +
p
2

eee j

⌘
�C
⇣

qqq � p
2

eee j

⌘i
, (2.55)

11If the same parameter appears more than once in the circuit, one can check that the full derivative is given by shifting
independently each parameterised gate, and then summing all contributions [270].

42 Chapter 2. Quantum Computing and Variational Quantum Algorithms

As argued earlier, the parameter-shift rule (2.55) is indeed very similar to the finite-difference
formula (2.46), with the big difference that while the former is an exact relation between the
derivative of a function and its value at specific points, the latter is only an approximation.

In general, a parameter-shift rule (2.55) can be derived when the parameterised operation is of
the form (2.47) and the generator of the rotation has only two unique eigenvalues, which is related
to the requirement that the generator is involutory [68, 270]. Whenever these conditions are not
met, one can use generalisations of the parameter-shift rules that overcome the issue for example by
decomposing the parameterised gate as a product of rotation-like operations [68], or expanding the
generator of the unitary evolution in the Pauli basis and evaluating the gradients of each component
with a stochastic approach [19].

The parameter-shift rule is a useful tool because it gives a precise recipe on how to calculate
gradients of variational circuits directly on real quantum hardware, simply by composing the
result of two appropriately defined quantum circuits. For example, a single-step of the gradient
descent algorithms in Eq. (2.42) requires measuring the outcome of 2p different circuits, where
p is the number of parameters qqq 2 Rp. While such linear scaling of resources is not bad per se,
this procedure can still be daunting on near-term quantum devices with limited access, especially
when the number of parameters is large and many iterations are required to reach a good solution.
For example, suppose that the optimisation of a variational circuit with p parameters requires T
applications of the gradient-descent update rule, and that each expectation value is estimated on
quantum hardware with M measurements shots, then the total number of circuit executions on
the quantum hardware scales like O(pT M), which can be quite big already for modest instances
(p⇠ T ⇠ 102, M⇠ 103). As a comparison, gradients in classical machine learning algorithms can be
calculated much more efficiently, within a single computational step, via automatic differentiation
techniques and backpropagation. This is done by storing intermediate values of the computation
while it takes place, and then combining these values at the end via the chain rule to calculate
derivatives of composed functions. Unfortunately, since it is not possible to measure intermediate
states in a quantum computation without disturbing the system, there is no straightforward way of
applying backpropagation to variational quantum algorithms.

Finally, note that gradients of parameterised quantum circuits can also be calculated with an
ancilla-based measurement scheme similar to a Hadamard test [270, 301].

2.2.3.2 Higher order derivatives

The parameter shift rule can be applied iteratively to calculate also higher-order derivatives of the
cost function [56, 198]. For example, second mixed derivatives read

∂ 2C(qqq)

∂q j∂qi
=

1
2

∂

∂q j
C
⇣

qqq +
p
2

eeei

⌘
� ∂

∂q j
C
⇣

qqq � p
2

eeei

⌘�

=
1
4

C
⇣

qqq +
p
2

eeei +
p
2

eee j

⌘
�C
⇣

qqq +
p
2

eeei�
p
2

eee j

⌘

�C
⇣

qqq � p
2

eeei +
p
2

eee j

⌘
+C
⇣

qqq � p
2

eeei�
p
2

eee j

⌘�
, (2.56)

which assume the rather simple form for diagonal elements i = j

∂ 2C(qqq)

∂q 2
i

=
1
2
[C(qqq +peeei)�C(qqq)] , (2.57)

since one can easily check that C(qqq +peeei) = C(qqq �peeei), which is due to to the 2p-periodicity of
parameterised gates (2.47).

In general, any derivative of a parameterised quantum circuit for which the parameter shift

2.2 Variational Quantum Algorithms 43

holds, can be expressed as a linear combination of circuit executions

∂ a1+...+aMC(qqq)

∂q a1
1 . . .∂q aM

M
=

1
2a1+...+aM

2a1+...+aM

Â
m=1

smC(q̃qq m) , (2.58)

where sm 2 {±1} are signs, and q̃qq m are parameters obtained by accumulating shifts along different
directions.

2.2.3.3 Discussion
The easy access to the derivatives of the cost function provided by the parameter-shift rule opens
up the possibility of using a plethora of gradient-based optimisation methods, like vanilla gradient
descent, BFGS or ADAM, but these are not the only viable route. In fact, also zeroth-order methods
like Nelder-Mead [218] and COBYLA [235] have been widely used in the literature to optimise
parameterised quantum circuits [29, 301], as well as more quantum-native approaches developed
specifically for variational algorithms. Examples are the Rotosolve algorithm [222] that offers an
analytic solution to the optimisation problem, or the Quantum Natural Gradient (QNG) method,
that, inspired by its classical counterpart, proposes an update of the parameters that takes into
account the metric of the space of the quantum states created by the parameterised quantum model,
rather than the euclidean metric of parameter space [290].

With every approach having its own perks and disadvantages, no consensus has been reached at
the moment regarding the best practices for optimising variational quantum algorithms, and the
performances are usually studied on a case-by-case basis.

2.2.4 Barren plateaus and unitary designs
In the previous section, we discussed how to optimise variational circuits, but now we discuss why
this procedure may turn out to be a particularly arduous task in practice. Indeed, various theoretical
challenges hinder the optimisation of variational algorithms, a phenomenon dubbed in the literature
as the barren plateau (BP) problem. At the current state of the art, by barren plateaus one usually
refers to a number of different scenarios where it can be shown that variational quantum algorithms
suffer from trainability issues related to vanishing gradients and very flat optimisation landscapes,
hence their name.

The emergence of barren plateaus was first observed in [202], where the occurrence of vanishing
gradients was related to the way parameterised quantum ansätze behave in the large qubit regime
upon assignment of random parameters, as they resemble high-dimensional random unitary matrices.
A large set of results in measure theory in high-dimensional spaces underline the phenomenon of
concentration of measure, an example being Levy’s lemma, according to which smooth functions
on these spaces strongly concentrate around their mean values, and are essentially constant on the
space [180]. Since the average value of gradients of parameterised circuits is often found to be
zero, then by concentration of measure they are zero almost always, for most random choices of
the parameters, hence any optimisation method will likely fail to find any interesting minimising
direction. Formally, given a PQCs acting on a system of n qubits, it can be theoretically argued and
numerically confirmed that [57, 137, 201]

Eqqq

∂C(qqq)

∂qk

�
= 0, (2.59)

Varqqq

∂C(qqq)

∂qk

�
2O

�
b�n�

, b > 0 . (2.60)

That is, upon random assignment of the variational parameters, the expectation value of the
gradients of the cost function is zero, and their variance is exponentially vanishing with the number
of qubits. Then, as the number of qubits grows large, the gradients become exponentially small

44 Chapter 2. Quantum Computing and Variational Quantum Algorithms

Cost function-induced

Noise-inducedEntanglement-induced

Expressibility-induced

...

No Barren Plateau

✓1

✓2

0.0

0.5

1.0

✓1

✓2

0.0

0.5

1.0

Barren Plateau

Figure 2.4: Summary of the sources of Barren Plateaus (BP) in the optimisation landscape of
variational quantum algorithms. Trainability issues arise in variational algorithms whenever the
circuit is too deep and expressive, global observables are used in the cost function, too much
entanglement is created inside the circuit, or too much noise is present in the circuit. In these cases,
as the number of qubits grows large, the optimisation landscape becomes exponentially flat almost
everywhere, hence the name barren plateau.

on average, and thus one would need an exponential number of measurement shots to reliably
estimate their value on real hardware, for example via parameter-shift rules. Such impossibility of
properly training parameterised circuits clearly hampers the applicability of any quantum variational
procedure suffering from a barren plateau (concentration of measure) phenomenon.

Trainability issues in variational quantum algorithms have been studied extensively in the
literature, and the emergence of barren plateaus in the optimisation landscape parameterised circuits
has been found in various settings, that can be grouped into four major classes [300]12:

1. Expressibility-induced BP [13, 202]: this is the case explained above, where the untrain-
ability stems from the randomness induced by deep random ansätze initialised with random
parameters. This causes an exponential flattening of the loss landscape and its gradients due
to concentration of measure.

2. Cost function-induced BP [57]: the use of a global observable, that is, an observable acting
nontrivially on all qubits in the circuit, in the cost function (2.39), is also linked to vanishing
gradients. Intuitively, this can be understood as a consequence of measuring quantities in an
exponentially big Hilbert space, which effectively results in a wash-out of information.
Most importantly, while expressibility-induced barren plateaus are obtained only for deep-
enough (or better, random-enough) ansätze, the use of a global observable will likely result
in exponentially vanishing gradients irrespectively of the depth of the circuit, and a barren
plateau will occur even at shallow depths L 2O(1), where L is the number of layers in the

12As briefly mentioned here when discussing Entanglement-induced BP and then carefully explained in Ch. 7, the
sources of barren plateaus can be reduced to three, not four, since Expressibility-induced BP and Entanglement-induced
BP are intimately connected to each other through randomness.

2.2 Variational Quantum Algorithms 45

ansatz (2.40).
On the contrary, it was shown that a layered ansatz leveraging local operations on neighbour-
ing qubits, when used with a local cost function, that is a loss defined in terms of expectation
values of observables acting non-trivially only on a small subset –one or two– of qubits, can
be trainable at least for shallow depths L 2O(logn), where n is the number of qubits.
For completeness, in Appendix A.1 we report the toy model proposed in ref. [57] to show
the occurrence of barren plateaus even for depth-one circuits when a global cost is used, and
how the issue can be mitigated by leveraging an equivalent local version of the cost.

3. Entanglement-induced BP [221]: it was also shown the creation of large entanglement
inside a circuit can be detrimental to variational algorithms. As for the expressibility-induced
case, also entanglement-induced BP arise as a consequence of the behaviour of random
quantum states and matrices. Essentially, whenever the ansatz is expressible enough to create
highly-entangled states, then any reduced density operator on m qubits will be very close to
the maximally mixed state

r = Trn�m[|yqqq ihyqqq |]⇡
I

2m , |yqqq i= U(qqq) |000ih000|U(qqq)† highly entangled, (2.61)

and thus little information can be retrieved from measurements of observables on reduced
systems. This source of barren plateaus motivates the study performed in Chapter 7, where the
production of entanglement in common variational quantum circuits is studied. In particular,
we anticipate that entanglement-induced BP and expressibility-induced BP both stem from
the resemblance of the parameterised quantum circuit to random unitary matrices, and these
two sources are indeed one and the same [258], as extensively discussed in Chapter 7.

4. Noise-induced BP [312]: noise that occurs in the quantum circuit can be on its own the cause
of the emergence of flat loss landscapes and barren plateaus. Indeed, it was shown that local
Pauli errors happening throughout the circuit perturb the quantum state by moving it close to
the fixed point of the noise map13, that is the maximally mixed state. By this mechanism,
parameterised circuits whose depth scales linearly with the number of qubits L 2O(n) will
again suffer from barren plateaus.
It is interesting to notice that this class of barren plateaus is conceptually different from all
the cases treated previously, since the former are generally probabilistic statements regarding
the expectation value of the gradients and their variance, which is exponentially suppressed,
when random initialisation of the parameters are considered. The latter instead is not a
probabilistic statement on the variance of the gradient, but rather is the gradient itself that is
vanishing, due to the loss landscape becoming essentially flat everywhere in parameter space.
On the contrary, in the previous cases the loss landscape is flat almost everywhere, in fact
there are exceptional optimal points (called in the literature narrow gorges) where the loss is
very steep and optimisation is possible [11, 57].

In the following, we show how to derive Equations (2.60) for the case of expressibility-induced
barren plateaus, as they are the most studied and common source of trainability issues in variational
algorithms, and are also the most amenable to a concise exposition. The analysis of the problem
requires knowledge of random unitary matrices, which we briefly introduce below. Then, after
showing how to use these results to prove the emergence of barren plateaus, we discuss how this
issue is related to the concept of expressibility of quantum circuits, which is a measure of how well
a parameterised ansatz addresses the full unitary space.

13The fixed point of a noise channel E [r] is the state that is unchanged after application of the map, namely E [r] = r .
It is interesting to notice that every quantum noise channel has a fixed point [220]. The definition of noise channels and
their properties can be found in Chapter 8.

46 Chapter 2. Quantum Computing and Variational Quantum Algorithms

2.2.4.1 Haar measure and random unitary matrices
Expressibility-induced barren plateaus arise whenever a parameterised quantum circuit resembles a
random unitary matrix when random parameters are assigned to the circuit. Equations (2.60) are
then derived by characterising the statistics of random unitaries, and studying what happens when
they are used inside a variational optimisation routine. In order to evaluate average values, namely
integrals, of functions of random unitary matrices, one requires a probability measure that weights
the elements of the unitary group and that is used inside the integrals. The most natural distribution
one can think of is the uniform distribution, and the Haar measure is the mathematical tool that
formally defines a uniform probability measure on compact groups [204].

Let U(d) be the group of d⇥d unitary matrices, the Haar measure dµ(U) on the group U(d) is
the unique translationally invariant measure, i.e. for any integrable function f (·) and unitary matrix
V 2 U(d) it holds

Z
dµ(U) f (VU) =

Z
dµ(U) f (UV) =

Z
dµ(U) f (U), 8V 2 U(n) . (2.62)

The property of translational invariance, which is also referred to as right- and left-invariance,
encodes the fact that the Haar measure represents the uniform measure of the group. Thus, we say
that a unitary matrix is Haar distributed to indicate a unitary matrix that is sampled uniformly from
the space of unitary matrices. In addition, the volume element is normalised, namely

Z
dµ(U) = 1 . (2.63)

We will use the following simplified notation to indicate expectation values and integration
over Haar-distributed random unitary matrices

EU [f (U)] :=
Z

dµ(U) f (U) . (2.64)

Explicit formulas exist for evaluating integrals over random unitary matrices [104, 238], and
here we recall two useful identities regarding the expectation values for low degree polynomials of
random unitary matrices [57, 137, 141, 202]

EU [UAU†] =
Z

dµ(U)UAU† =
Tr[A]I

d
(2.65)

EU [AUBU†CUDU†] =
Z

dµ(U)AUBU†CUDU†

=
Tr[BD]Tr[C]A+Tr[B]Tr[D]AC

d2�1
(2.66)

� Tr[BD]AC +Tr[B]Tr[C]Tr[D]A
d(d2�1)

EU
⇥
Tr
⇥
UAU†B

⇤
Tr
⇥
UCU†D

⇤⇤
=
Z

dµ(U) Tr
⇥
UAU†B

⇤
Tr
⇥
UCU†D

⇤

=
Tr[A]Tr[B]Tr[C]Tr[D]+Tr[AC]Tr[BD]

d2�1
(2.67)

� Tr[AC]Tr[B]Tr[D]+Tr[A]Tr[C]Tr[BD]

d(d2�1)

Here A, B, C and D are unitary matrices in U(d), where d = 2n for matrices acting on a system of n
qubits.

Strictly related to uniform random matrices, is the concept of unitary designs, which are
ensembles of unitaries that replicate properties of the Haar distribution up to a given moment.

2.2 Variational Quantum Algorithms 47

Formally, let U = {U1, . . . ,UK} be an ensemble of unitary matrices Ui 2 U(d), and Pt,t(Ui) a
polynomial of degree at most t in the entries of Ui, and degree at most t in the entries of U†

i . Then,
the ensemble U is said to be a unitary t-design if [80]

EU[Pt, t(U)] :=
1
K

K

Â
i=1

Pt, t(Ui) =
Z

dµ(U)Pt, t(U) , (2.68)

that is, averaging over the discrete set U = {U1, . . . ,UK} is equivalent to averaging over the full
unitary group with respect to the Haar measure. Intuitively, unitary designs are sets of operators
that are random enough to match moments of the Haar distribution up to a given degree.

In particular, looking back at Eqs. (2.65) and (2.66), one can obtain the same expectation values
by averaging over a unitary 2-design instead of considering the full unitary group. This is by
definition of unitary 2-design, and noticing that both UAU and AUBU†CUDU† are polynomials
P2,2(U) of degree of most t = 2 in the entries of U and U†.

Examples of unitary designs are the Pauli group, defined as the set of all possible tensor products
of Pauli matrices, which is a unitary 1-design, and the Clifford group, defined as the set of operators
that normalises the Pauli group, that can be shown to be a unitary 3-design (hence also a 1- and
2-design) [316]. The Pauli group Pn on n qubits is defined as all possible combinations of Pauli
matrices with coefficients ±1 and ±i

Pn := {±1,±i}⇥{s1⌦s2⌦ . . .⌦sn |si 2 {I,X ,Y,Z}}, (2.69)

while the Clifford group Cn consists of set of unitary operators that maps the Pauli group to the
Pauli group under conjugation (and up to a phase), namely

Cn := {U 2 U(2n) |8s 2 Pn =) UsU† 2 Pn}/U(1). (2.70)

2.2.4.2 Barren plateaus in the optimisation of PQCs
The theory of random unitary matrices, and specifically unitary 2-designs, is at the core of the
barren plateau phenomenon, as it will be now clear.

Let U(qqq) 2 U(2n) a parameterised quantum circuit with variational parameters qqq 2 RP acting
on a system of n qubits, and C(qqq) = Tr

⇥
OU(qqq)rU(qqq)†⇤ a loss function to be minimised. As done

previously for deriving the parameter-shit rule (2.49), given a parameter qk 2 qqq = (q1, . . . ,qP),
consider a bipartition of the circuit happening at the position of the parameterised gate depending
on the parameter qi

U(qqq) = UAVk(qk)UB , (2.71)

where Vk(qk) = e�iqkPk/2 is again a parameterised Pauli rotation, and for simplicity of notation
we suppressed the dependence of UR and UL, on the remaining variational parameters UR,L =
UR,L(q1, . . . ,qk�1,qk+1, . . . ,qP). The derivative of the unitary U(qqq) with respect to qk then amounts
to

∂kU(qqq) = UA ∂k

⇣
e�iqkPk/2

⌘
UB =� i

2
UA Pk UB , (2.72)

and similarly for U(qqq)†, ∂kU(qqq) = iU†
L Pk U†

R/2. Then, the derivative of the cost with respect to
parameter qk can be written as

∂kC(qqq) = Tr
⇥
O(∂kU(qqq))r U(qqq)†⇤+Tr

⇥
OU(qqq)r

�
∂kU(qqq)†�⇤ (2.73)

=� i
2

Tr
h
OUAPkUB r U†

BU†
A

i
+

i
2

Tr
h
OUAUB r U†

BPkU†
A

i
(2.74)

=� i
2

Tr
h
U†

AOUA

h
Pk,UBrU†

B

ii
=� i

2
Tr[OA [Pk,rB]] , (2.75)

48 Chapter 2. Quantum Computing and Variational Quantum Algorithms

where again we have defined the evolved observable and state OA = U†
AOUA and rB = UBrU†

B ,
respectively. Note that this is an alternative expression for the derivative of the cost function, as
opposed to the one derived above when discussing the parameterised-shift role. One can check that
all the calculations that follow can be applied identically if using the expression (2.55).

Suppose now that one of the parameterised circuits, either UA or UB, is complex enough so that
the unitaries generated by assigning random parameters to the circuit closely resemble random
unitary matrices. More formally, given a set of parameter vectors {qqq 1,qqq 2, . . . ,qqq K}, suppose
that corresponding set of unitaries UA,B = {UA,B(qqq 1), . . . ,UA,B(qqq K)} = {U (1)

A,B, . . . ,U (K)
A,B } form a

1-design, as defined in (2.68). Then, the expected value of the derivative ∂kC(qqq) over a random
assignment of the parameter vector can be evaluated as follows

EUA [∂kC(qqq)] =� i
2
EUA [Tr[OA [Pk,rB]]] =� i

2
Tr
h
EUA [U

†
A OUA] [Pk,rB]

i
(2.76)

=� i
2

Tr

ITr[O]

2n [Pk,rB]

�
=� iTr[O]

2n+1 Tr[PkrB�rBPk] = 0 , (2.77)

where in the first line we exchanged the trace and the expectation value since they are both linear
operations, and in the second line we first made use of the formula for first moments randomly
distributed unitary matrices (2.65), and then used the fact that the trace of a commutator is zero,
due to cyclicity of the trace. The same result is obtained if UB is a 1-design instead, in fact

EUB [∂kC(qqq)] =� i
2

Tr
h
OA

h
Pk,EUB [UBrU†

B]
ii

=� i
2

Tr

OA

Pk,

ITr[r]

2n

��
= 0 (2.78)

where the last equality follows from the vanishing commutator [Pk,I] = 0. Thus, one can summarise
Eqs. (2.76) and (2.78) as follows.

Theorem 2.1 — Zero average gradient for random PQCs. Let U(qqq) represent a parame-
terised quantum circuit with variational parameters qqq 2 RM acting on a system of n qubits, and
let C(qqq) = Tr

⇥
OU(qqq)rU(qqq)†⇤ be a cost function depending on the variational parameters via

gates of the form Vk(qk) = e�iqkPk/2. For any parameter qk, k = 1, . . . , M, consider the bipartition
of the circuit U(qqq) = UA(qqq)Vk(qk)UB(qqq), and let UA,B = {UA,B(qqq 1), . . . ,UA,B(qqq K)} denote the
set of unitaries generated when some randomly generated parameters {qqq 1, . . . ,qqq K} are assigned
to the circuit sections UA,B. Then, if at least one of UA or UB forms a 1-design, the expected
value of any partial derivative of the cost function when random parameters are assigned to the
quantum circuit is zero

EUA,B

∂C(qqq)

∂qk

�
= 0 8 k, if either UA, or UB, or both, are at least a 1-design. (2.79)

Note that no particular assumptions are made on the actual probability distribution used to
sample the parameters qk, the only requirement is that the corresponding set of unitaries UA,B form
1-designs. In practical scenarios, it is common practice to initialise parameterised quantum circuits
with random parameters uniformly distributed in qk ⇠Unif[0,2p]. In this case, one can also use the
trigonometric nature of the cost function shown before (2.55) to show that derivatives are indeed
biased towards zero

Eqk⇠Unif[0,2p][∂kC(qqq)] = =
Z 2p

0
dqk ∂k(C0 +C1 cosqk +C2 sinqk) (2.80)

=
Z 2p

0
(�C1 sinqk +C2 cosqk) = 0 . (2.81)

So far, we have reproduced the first result of the barren plateau phenomenon described in (2.60),
and now we move on to estimating the variance of the cost function derivatives when random

2.2 Variational Quantum Algorithms 49

parameters are assigned to the circuit. Since the variance is a function of second degree with respect
to the circuit, the calculations are more involved, as they entail computing expectation values over
2-designs. We are now interested in studying the following quantity

Var[∂kC(qqq)] := E
⇥
(∂kC(qqq))2⇤�E[∂kC(qqq)]2 = E

⇥
(∂kC(qqq))2⇤ (2.82)

=�1
4
E

Tr
h
U†

AOUA

h
Pk,UBrU†

B

ii2
�
, (2.83)

which can be computed using Eq. (2.66) and (2.67) for second degree polynomials of random
unitary matrices, assuming that the ensembles UA,B are now random enough to be also 2-designs.
We report the full calculation in Appendix A.2, and hereby state only the final result.

Theorem 2.2 — Vanishing gradients for random PQCs. In the same conditions of Th. 2.1,
but assuming that the ensembles of unitaries UA,B are now random enough to be also 2-designs,
then the following holds:

If UA is at least a 2-design, then 8 k:

VarUA [∂kC(qqq)] =�1
4

1
22n�1

Tr
⇥
O2⇤� Tr[O]2

2n

!
Tr
h

Pk,UBrU†
B

i2
�

(2.84)

If UB is at least a 2-design, then 8 k:

VarUB [∂kC(qqq)] =�1
4

1
22n�1

✓
Tr
⇥
r2⇤� 1

2n

◆
Tr
h

U†
AOUA,Pk

i2
�

(2.85)

If UA,B are both at least 2-designs, then 8 k:

VarUA,B [∂kC(qqq)] =�1
4

2
22n�1

✓
Tr
⇥
r2⇤� 1

2n

◆✓
Tr
⇥
O2⇤Tr[Pk]

2 +Tr[O]2 Tr
⇥
P2

k
⇤

22n�1

�
Tr
⇥
O2⇤Tr

⇥
P2

k
⇤
+Tr[O]2 Tr[Pk]

2

2n(22n�1)
�

Tr
⇥
O2⇤Tr

⇥
P2

k
⇤

2n

◆

(2.86)

In practical instances when for example the parameterised gates are generated by Pauli rotations
Pk, the measured observable O is a Pauli string, and the input state is a pure state r = |0ih0|, then
the variance vanish exponentially with the number of qubits

Var[∂kC(qqq)] 2O
�
2�n�

. (2.87)

As shown in the Appendix, despite the minus sign in the expressions above, one can check that the
variances are correctly positive values.

By combining the results of Theorem 2.1 and Theorem 2.2 together with Chebyshev’s inequality,
one eventually arrives at

Pr(|∂kC(qqq)| > d) Var[∂kC(qqq)]

d
2O

�
2�n� (2.88)

which states that the probability of having a non-negligible gradient in a random parameterised
quantum circuit vanishes exponentially with the number of qubits. Thus, as it is not possible
to determine any interesting minimising direction, it is not possible to train variational circuits
efficiently in the large qubit regime n� 1, where one expects to find a quantum advantage of sort.

2.2.4.3 Discussion and mitigation of barren plateaus
The emergence of randomness-induced barren plateaus is tightly connected to the concentration on
measure phenomenon in high-dimensional spaces, and indeed it was clearly shown that vanishing

50 Chapter 2. Quantum Computing and Variational Quantum Algorithms

gradients (i.e. barren plateaus) are the flip side of the exponential concentration of the cost function
around the mean [13], which makes the loss landscape flat almost everywhere, except for so-called
narrow gorges corresponding to the minimum of the function. If, by chance, one initialises the
parameters of the quantum circuit inside or close to a narrow gorge, then optimisation is possible.
Moreover, note that while barren plateaus are usually defined in terms of vanishing derivatives,
gradient-free optimisation methods are not a solution to the problem [12].

Several mitigation strategies have been proposed to alleviate trainability issues related to barren
plateaus, for example initialising the parameters in the quantum circuit such that the circuits initially
acts as an identity [115], correlating parameters inside the quantum circuit [309], using heuristics
to initialise parameters already close to an optimal solution [331], leveraging classical algorithms
based on tensor-network pre-training [257] or recurrent neural networks [305] to propose good
values for the parameters, optimise the parameters procedurally in a layer-wise fashion [283], opting
for local—instead of global— cost functions [57], and eventually restricting the expressibility of
the circuit ansatz by carefully choosing problem-inspired ansätze [173, 208, 284].

While all these strategies may seem unrelated to each other, most of them work by imposing
some type of constraint on the parameterised quantum circuit, so that it is far from being a general
random circuit and resembling a unitary design. Indeed, while trainability issues may arise as
a consequence of many different factors (see Fig. 2.4), all of these sources can be tamed by
appropriately controlling the expressibility of the circuit, which comes at the cost of either using
very specific problem-inspired ansätze, or strongly limiting the depth of the quantum circuit to
include only logarithmically many operations L 2 O(logn) [57, 66, 231]. The use of shallow
circuits does not only avoid randomness-induced barren plateaus, but also noise-induced ones, as
errors cannot accumulate and grow to the extent of causing a flattening of the loss landscape.

2.2.5 Expressibility of PQCs
Up until now we frequently used the term expressibility of parameterised quantum circuits to
intuitively convey a measure of their ability to represent a general (random) unitary matrix. This
statement can be made formal by defining the expressibility with the superoperator [137, 281]

A(t)
U (·) :=

Z

Haar
dµ(V) V⌦t(·)(V †)⌦t �

Z

U
dU U⌦t(·)(U†)⌦t (2.89)

where the first integral is evaluated over the Haar distribution on the unitary group U(d), and the
second one is over the uniform distribution on the ensemble of unitaries U to be characterised.
Small values of A(t)

U (·) means high expressivity. Indeed, if the ensemble U is a t-design, then
A(t)
U (X) = 0 will be zero for all operators X . The expressibility then measures the “power" of an

ensemble of unitaries U in terms of its generality, that is measuring how faithful it is at reproducing
the same statistical moments of the Haar distribution.

With this definition, it is possible to derive a formal connection between the expressibility
and the barren plateau phenomenon described previously. In fact, authors in [137] provided a
generalisation of the randomness-induced barren plateau phenomenon, by extending its validity
to circuits forming approximate rather than exact 2-designs. In particular, it was shown that the
variance of gradients of an arbitrary ansatz can be upper bounded by

Var[∂kC(qqq)] Var2-des[∂kC(qqq)]+ f
�
eO
U ,er

U
�

eO
U :=

���A(2)
U
�
O⌦2�

���
2
, er

U :=
���A(2)

U
�
r⌦2�

���
2

(2.90)

where the first term on the right is the variance obtained if the circuit — or better, parts of it as
shown in Th. 2.2 — was an exact 2-design, and the second term is a function that depends on
the expressibility of the circuit, specifically through some observable (O) and state (r) dependent
quantities. The notation k·k2 denotes the Frobenius norm for operators, defined as kAk2 :=

2.3 Conclusions 51
p

Tr[A†A]. We refer to [137] for the complete statement of the result, including the explicit form of
the function f (·, ·).

For our discussion, it is sufficient to note that if the circuit is an exact 2-design, then the
expressibility term f

�
eO
U ,er

U
�

vanishes and the inequality becomes an equality, thus obtaining
again the exponentially vanishing gradients of Theorem 2.2. On the contrary, if the circuit is
not very expressible and f

�
eO
U ,er

U
�

/2 O(2�n), then the upper bound allows for non-vanishing
gradients. Thus, in conclusion, this result implies that while highly expressive ansätze have
vanishing gradients and hence are harder to train, imperfectly expressive guarantee a viable solution
to restore trainability. This is in line with recent proposals in the literature, already briefly mentioned
in Sec. 2.2.2, that advocate for the use of problem-inspired constrained ansätze for variational
quantum algorithms.

Finally, we note that while the definitions in Eq. 2.90 turn out useful for theoretical analysis, an
alternative formulation in terms of so-called frame potentials can be used for numerical evaluations
of the expressibility, as discussed in Chapter 7.

2.3 Conclusions
In this chapter, we gave an overview of the state of the art of quantum computing, specifically
focused on the class of quantum algorithms that can be run on near-term devices.

We started by recalling the basic building blocks of quantum computation — qubits, gates, and
measurement — and then proceeded by describing the current situation on the practical realisation
of quantum computing machines. As opposed to ideal universal fault-tolerant quantum computers,
current quantum devices are referred to as Noisy Intermediate-Scale Quantum (NISQ) computers,
to remark that they are imperfect devices which are not error-corrected and are of limited size.

Meanwhile future experimental and theoretical advancements pave the way toward the con-
struction of large-scale noise-resilient quantum computers, near-term devices give the opportunity
to experiment with quantum information processing, and also invite researchers to explore a new
paradigm for computation based on hybrid quantum-classical algorithms, namely Variational
Quantum Algorithms (VQAs).

In the next chapter, we will introduce a sub-field of variational quantum algorithms called
Quantum Machine Learning (QML), which has gained significant attention over the past years, and
presents itself as one of the most interesting application for near-term devices.

3. Quantum Machine Learning

‘Isn’t it a shame that with the tremendous amount of work you
have done you haven’t been able to get any results?’ Edison
turned on me like a flash, and with a smile replied: ‘Results!
Why, man, I have gotten a lot of results! I know several thousand
things that won’t work.’

Thomas Edison, to one of its associate [91]

3.1 Introduction . 53
3.1.1 The four-fold way of Quantum Machine Learning . 53

3.2 Classical Machine Learning . 55
3.2.1 Basics of (supervised) Machine Learning . 57
3.2.1.1 Training dataset . 57
3.2.1.2 Hypothesis class . 57
3.2.1.3 Empirical Risk Minimisation . 57
3.2.1.4 Loss functions and Learning . 58
3.2.1.5 Generalisation . 59
3.2.2 Machine learning models . 62
3.2.2.1 Linear models and kernel methods . 62
3.2.2.2 Neural Networks . 65

3.3 Quantum Machine Learning . 67
3.3.1 Linear quantum models: quantum classifiers and kernel methods 68
3.3.1.1 Explicit models . 69
3.3.1.2 Quantum kernel (or implicit) models . 70
3.3.1.3 Explicit or Implicit? . 71
3.3.2 Data reuploading models and Quantum Neural Networks 71
3.3.2.1 Deriving the Fourier expansion . 73
3.3.2.2 A single-qubit data reuploading circuit . 75
3.3.2.3 Quantum Neural Networks . 76
3.3.3 Generalization of QML models . 77
3.3.4 The power of quantum machine learning . 79

3.1 Introduction 53

3.4 Conclusions . 80

In this chapter, we explore the field of Quantum Machine Learning (QML), one of the leading
proposals to achieve a meaningful quantum advantage already with current near-term devices
based on variational quantum algorithms. We start by giving a broad overview of the field in the
Introduction 3.1, and then proceed by introducing the main elements of classical machine learning
in Sec. 3.2. These concepts will be used to present quantum versions of learning models in Sec 3.3,
which is dedicated to variational Quantum Machine Learning. In-depth analyses and reviews on
various aspects of Quantum Computing and Machine Learning can be found in the following
references [15, 25, 31, 52, 59, 63, 82, 87, 88, 192, 266].

3.1 Introduction
So far, we have discussed how the current generation of noisy quantum computers impelled the
use of a new paradigm of computation which uses classical and quantum resources in tandem to
perform a computation. At the core of variational quantum algorithms is the optimisation process,
which tunes the trainable parameters of a parameterised quantum circuit in order to minimise an
appropriately chosen cost function.

Needless to say, this approach of optimising — or training — a parametric model to solve a
complicated problem also accurately describes the field of Machine Learning (ML), especially
its latest version called Deep Learning (DL) [112, 178]. Indeed, state of the art Deep Learning
prescribes the use of massive parametric models with billions of tunable parameters, a recipe which
has shown incredible success over the past decade in a variety of tasks, ranging from controlling
nuclear fusion reactors [83] to generating human-level original digital art [247].

The strong connection between Variational Quantum Algorithms and Deep Learning made
it possible to borrow many of the concepts from the well-established field of classical machine
learning and apply them to variational quantum algorithms, so much so that this field is also often
referred to with the more captivating name of “Quantum Machine Learning" (QML) [4, 25, 59],
even though a border between the two can be drawn, as discussed later. However, it is important to
stress that the field of Quantum Machine Learning has been around since earlier than Variational
Quantum Algorithms gained momentum over the last few years [88, 120, 182, 267, 268, 325].

Earlier works at the boundaries of machine learning and quantum physics include quantum
algorithms with provable speedups devoted to solving linear algebra tasks relevant for some machine
learning models [31, 188, 250]. The interest in these approaches however progressively declined
over recent years, giving way to the rise of variational quantum algorithms as best representatives
of quantum machine learning. This happened for a variety of reasons, including the lack of
good-enough experimental hardware to run these linear algebra-based quantum subroutines — for
example, based on the HHL procedure for matrix inversion [125]—, subtleties in the assumptions
that hinders the applicability of these algorithms in real cases [1], and, arguably the most important,
the discovery that many of these algorithms can be dequantised, in that there exists a class of
quantum-inspired classical algorithms that has the same runtime complexity [297]. Nonetheless,
while dequantisation proved the absence of exponential speedups of some quantum algorithms over
their classical counterparts, important polynomial improvements may still be attained in practical
scenarios [14, 67, 88].

3.1.1 The four-fold way of Quantum Machine Learning
The most general definition of Quantum Machine Learning is that a research field whose aim is
to investigate the interplay between (classical) Machine Learning (ML) — and more generally,
Artificial Intelligence (AI) — and Quantum Computing, with the hope that a fruitful exchange

54 Chapter 3. Quantum Machine Learning

CC CQ

QC QQT
yp

e
of

 A
lg

or
it

h
m

Type of Problem

Classical for Classical Classical for Quantum

Quantum for QuantumQuantum for Classical

Q
u
an

tu
m

C
la

ss
ic

al

QuantumClassical

Figure 3.1: Quantum Machine Learning (QML) aims at studying the interplay between (classical)
Machine Learning and Quantum Computation. Broadly speaking, the field can be schematically
divided into four main areas, “Classical for Classical" (CC), “Classical for Quantum" (CQ), “Quan-
tum for Classical" (QC) and “Quantum for Quantum" (QQ), depending on the type of algorithm
used (hence the computing device, being classical or quantum), and the type of problem to be
solved. See the main text for detailed explanation on such division. Such schematic representation
of QML applications is customary in the literature, and can be found, for instance, in [206, 266].

between these two subjects can lead to mutual computational benefits and improved theoretical
understandings.

The field is quite broad and it requires specialised knowledge from various domains of science,
including mathematics, computer science, statistics, and of course quantum physics. However,
usual investigations regarding Machine Learning and Quantum Computation can be factorised in
four main areas, almost unrelated to each other, which are usually represented as shown in Fig. 3.1.

Indeed, depending on the type of problem to be solved, and the type of algorithm, hence the
computing device, to solve it, the field of Quantum Machine Learning can be divided in:

1. Classical for Classical (CC) This area actually has actually no quantum part to it, and
indicates those purely classical cases when a classical machine learning algorithm is used to
solve a classical problem, that is task defined on objects and/or datasets which does not come
from a quantum process. Examples are using Deep Neural Networks to classify images [113]
or mastering board games [279];

2. Classical for Quantum (CQ) This area indicates those studies which aim to use classical
machine learning procedures to deal with problems in the quantum physics domain [52,
55, 82]. Examples are using neural networks to represent quantum states [51], or using
reinforcement learning techniques to compile quantum circuits for a quantum hardware [215];

3. Quantum for Classical (QC) This area instead refers to using quantum resources or algo-
rithms, for example variational quantum algorithms, to analyse or process classical informa-
tion, that is data that come from a classical source [25, 293]. Examples are the use of quantum
subroutines to speed up linear algebra tasks in classical machine learning algorithms [160,
188], the use of parameterised quantum circuits to implement reinforcement learning agents
for classical problems [151, 282, 285], or lastly the use of quantum computers to solve

3.2 Classical Machine Learning 55

optimisation problems in finance [94, 136];
4. Quantum for Quantum (QQ) This last area is arguably the most compelling yet unexplored

application of Quantum Machine Learning, regarding the use of quantum processors to
learn or study properties of quantum systems. Indeed, while it is reasonable to assume that
quantum computing devices should be particularly suited to learning properties of quantum
systems, at the moment this area is the most challenging to investigate, not only for the
unavailability of reliable quantum computers to run the algorithms, but especially for the lack
of so-called quantum data, on which the algorithms should be applied [59]. Whilst a clear
definition of quantum data is yet to be found, one generally refers to either: in a weaker sense,
to classical information extracted from a quantum system, for example via a measurement
process; or, in a stronger sense, to sets of quantum states or objects stored on a quantum
memory or device, and that can be accessed or generated on demand. Examples of this area
are the use of convolutional quantum neural networks to identify phase transitions or devise
error correction schemes [66], and the use of variational algorithms to learn quantum circuits
to prepare mixed states [99].

Thus, as clear from the — somewhat arbitrary — division above, the subdomains of Quantum
Machine Learning can be very broad and diverse, both in terms of topics and goals. In fact, as
described in the review [325], while some investigations are more applied and specifically devoted
to quantum-enhanced version of machine learning, others aim at a more theoretical exchange of
ideas between machine learning and quantum physics, for example via quantum-inspired algorithms
for classical machine learning [291, 297], or devising quantum-generalised versions of machine
learning models and tasks. Examples of this last case are generalisations of neural networks to the
quantum domain [21, 163, 195, 267], or the use of formalism of quantum mechanics to describe
natural language processing (NLP) tasks [65, 320]. Needless to say, the diversity of QML is also a
consequence of the great diversity and very rapid development of classical Machine Learning and
Artificial Intelligence.

In this work, we are mainly interested in the use of quantum resources, specifically variational
quantum algorithms, to analyse classical or quantum data, thus corresponding to the “QC" and
“QQ" cases described above and in Fig. 3.1. Despite the variety of approaches, the current leading
proposal for quantum machine learning is based on variational quantum algorithms, which, thanks
to the use of limited quantum circuits in tandem with classical computers, can be run on near-term
quantum devices.

In the following section, we introduce some basic concepts and definitions of (classical) machine
learning, which will then be used later to introduce their quantum variants or generalisations.

3.2 Classical Machine Learning
Machine Learning (ML) is a subdomain of the broad field of Artificial Intelligence (AI), and it
is a research field which investigates how to devise algorithms capable of discovering hidden
patterns in data automatically, providing no —or very little— expert knowledge about the data to
be analysed. The “discovery" process is called learning or training, and usually consists of some
form of optimisation procedure where a penalty (reward) function, called loss function, depending
on the data and on the task to be solved, is minimised (maximised).

Machine learning is usually divided into three main paradigms, supervised, unsupervised and
reinforcement learning, depending on how the algorithm interacts with the data to be analysed, and
the corresponding task to be solved. These can be summarised as follows:

1. Supervised learning: the algorithm is asked to reproduce the mapping between a set of
inputs and desired outputs, and then extrapolate the acquired knowledge also on other data
that was not used during training. In this case, the dataset provided to the algorithms consists
of a pair of numbers, the input to be processed, and the correct result that the machine
should output. The name supervised conveys the fact that, while training, the algorithm has

56 Chapter 3. Quantum Machine Learning

a target output, chosen by a human, that it has to reproduce. Regression over a series of
two-dimensional points is an example of this type of learning.
This is arguably the most common and pedagogical use case of machine learning, even though
in recent years it has been overshadowed by other approaches, due to the difficulty of meeting
the criteria of having very large sets of annotated datasets, that are data accompanied with
the corresponding correct label. Indeed, with the advent of the big data era, the acquisition of
input data is often automated and efficient, but the annotation of the dataset usually requires
human intervention, which may cause a bottleneck.

2. Unsupervised learning: in this case the algorithm has only access to a set of inputs, with no
additional information about desired outputs. The goal, in this case, is to find patterns in the
inputs, and extract relevant information and understanding about the whole dataset fed to
the machine. The term unsupervised refers to the fact that the algorithm requires no human
supervision to function.
Traditional examples of unsupervised learning are clustering algorithms, which divide input
data into groups sharing similar features, or Principal Component Analysis (PCA), used to
compress a large-dimensional dataset into a lower-dimensional representation, depending
on the direction of the highest variance of the inputs. These procedures are often used as
a preprocessing step to simplify the dataset before this is used as input to other (machine
learning) algorithms.
State of the art research however points out how this paradigm of learning, when accompanied
by very large parametric models and computational power, can reach amazing performances.
An obvious example is Large Language Models (LLMs), which are advanced deep learning
algorithms that are capable of understanding written language [42, 60].

3. Reinforcement learning: in this case the machine has no dataset at all to work with.
Rather, this is generated by the algorithm itself while running, specifically through so-called
interaction with the environment. Indeed, in the reinforcement learning framework, the
algorithm, also referred to as an agent, interacts with an environment by performing actions.
The environment then responds to the agent by giving it a reward if the performed action
was good, where “good" is appropriately defined by the task to be solved.
Prototypical examples of reinforcement learning are algorithms capable of playing games,
such as Chess or Go. In cases like these, there is no single obvious solution, and the algorithm
is trained by trial end error, repeatedly playing the game, and rewarding it when it wins
until it has learned a good-enough strategy. Again, state of the art research showed that
reinforcement learning powered by large deep learning models can achieve super-human
performances [279].

While these three paradigms summarise most of the machine learning methods, state of the
art research on the field also comprises new approaches, like semi-supervised learning [98], self-
supervised learning [85], continual learning [226] and transfer learning [318].

Before moving on, it is very important to stress that the most important feature of learning
models is the so-called generalisation. As the name suggests, generalisation indicates the ability
of a model (or a human, for that matter) to use the knowledge acquired over a restricted set of
observations on a larger set of data, that was never seen earlier and without losing performances.
This is indeed the most striking feature of machine learning models, which are empirically seen to
generalise very well, and justify their recent enormous success. Generalisation performances are
what ultimately distinguish machine learning (especially supervised learning) from standard fitting
techniques.

In the following, we examine the basic definitions and tools of machine learning, particularly in
the context of supervised learning, which is not only the most common and easiest way to introduce
machine learning concepts, but is also the learning scenario used for the quantum machine learning
models discussed in this work.

3.2 Classical Machine Learning 57

3.2.1 Basics of (supervised) Machine Learning
The goal of machine learning is to discover patterns from a set of limited observations of a given
problem, and extrapolate such knowledge to other previously unseen instances of the problem. We
now introduce the main components of machine learning borrowing the terminology from statistical
learning theory, which is the branch of machine learning devoted to its theoretical understanding
and mathematical formulation. A thorough discussion on statistical learning theory is beyond the
scope of the present work, and we refer to [211, 274] for in-depth treatment of these topics.

3.2.1.1 Training dataset
The set of observations the learning algorithm has access to is called training set, and in the
supervised learning scenario it consists of a series of pairs of input data, accompanied by a
corresponding desired output. In full generality, let X denote the input space from which inputs are
drawn, and Y the space of the outputs. Let Z = X ⇥Y be the data space given by pairs of inputs
and outputs, then the training set is usually defined as a set of identically independently distributed
iid random variables

S := {zi = (xxxi,yi) | zi ⇠D}m
i=1, S 2 Zm

, (3.1)

where xxxi 2 X are inputs, yi 2 Y are outputs, D is a probability distribution over the data domain Z
from which samples zi 2 Z are sampled, and m is the number of samples in the training dataset.

In the vast majority of cases, inputs are vectors with real entries, xxx 2 X ⇢ Rd , and outputs are
either real numbers y 2 Y ⇢R, or integers y 2 Y ⇢N. In the former case, the problem is referred to
as regression problem, while the latter is an example of a classification problem, since the desired
outputs are discrete, are called labels in this context. However, there is no restriction on the nature
of the inputs and the outputs, and the data space Z = X ⇥Y varies depending on the problem to
be solved and the learning model used. For the sake of generality, in the following we keep using
arbitrary domains for the data.

3.2.1.2 Hypothesis class
A learning model M is defined as a family of functions which maps the input data space X to the
output data space Y , namely

M⇢ {h : X 7! Y} . (3.2)

This set of functions is called hypothesis class, and represents the set of functions that the chosen
model can implement. For example, this represents the set of all possible mappings that a given
neural network (see Sec. 3.2.2.2) with a fixed architecture could implement.

More often than not, the hypothesis class consists of a parametric model whose tunable
parameters can be tuned to change the type of function implemented by the model. For simplicity,
suppose the tunable parameters are real numbers www 2Rp, then the hypothesis class can be rewritten
also as

M := {hwww : X 7! Y | hwww = h(· ; www), www 2 Rp} , (3.3)

where hwww = h(· ; www) is the specific parameterised function depending on trainable parameters www.

3.2.1.3 Empirical Risk Minimisation
Given the training set and a hypothesis class, we now need to introduce a measure of the performance
of the model. As with variational quantum algorithms, such measure is defined in terms of an

58 Chapter 3. Quantum Machine Learning

objective function (or loss function, or cost function) which measures how well a model h 2M
is performing over the dataset S, and depends heavily on the task to be solved. The introduction
of the loss function as a way to measure the fitness of the model effectively renders the training
process an optimisation procedure.

Let ` : Y⇥Y 7! R be a loss function, the performances of a model h in an hypothesis class M
are measured by the empirical risk over the training dataset S, defined as

LS(h) :=
1
m

m

Â
i=1

`(ŷi, yi) , with ŷi = h(xxxi) , (3.4)

where ŷi(www) is the prediction of the model when evaluated on input xxxi, and yi is the desired output
corresponding to such input, as prescribed by the training set S (3.1). Alternatively, if the hypothesis
class is determined by a parametric model as in Eq. (3.3), the equivalent definitions hold

LS(www) :=
1
m

m

Â
i=1

`(ŷi, yi) , with ŷi(www) = hwww(xxxi) = h(xxxi; www) . (3.5)

The optimal model is then defined as the one that minimises (or maximises) the empirical risk

hopt = argmin
h2M

LS(h) or equivalently wwwopt = argmin
www

LS(www) , (3.6)

where the second equation above is equivalent to the definition of the optimal solution for variational
quantum algorithms, as discussed in Eq (2.37).

The empirical risk (3.5) is also called training error, as it measures the fitness of the model on
the available data contained in the training set. Such learning paradigm of defining the optimal
model as the one having the lowest error on the training set is called Empirical Risk Minimisation
(ERM) [274]. Empirical risk is opposed to the true risk, which is defined as the average value of the
loss evaluated over the actual probability distribution D from which observations zi = (xxxi,yi)⇠D
are sampled, that is

LD(h) := Ez⇠D[`(ŷ; y)] , with ŷ = h(xxx), z = (xxx,y) . (3.7)

It is important to note that true risk (3.7) represents the actual quantity of interest that charac-
terises the real performance of a learning model when dealing with the task. Indeed, by definition,
the true risk (or expected risk) measures the performances of the learner on the whole probability
distribution defining the task, not just on a restricted set of samples. However, this distribution is
not known to the learner and the expected loss cannot be calculated directly, even though bounds
on it can be derived, as discussed later in Sec. 3.2.1.5.

Thus, it is reasonable to use Empirical Risk Minimisation to select the optimal model, because
it is the one that minimises the error over the available information of the problem to be solved,
namely the one contained in the training dataset.

3.2.1.4 Loss functions and Learning
Supervised machine learning tasks can be grouped into two main classes, namely Regression and
Classification problems, which differ essentially for the type of output that the learners have to
reproduce.

Regression problems are those problems where the output data space is the real line, Y ⇢R, and
the goal of the learner is thus to learn a function mapping the inputs xxxi 2 X to their corresponding
outputs in the training set yi 2 Y . The go-to loss function used in this scenario is the Mean Squared
Error (MSE), defined as

LS(h) =
1
m

m

Â
i=1

(ŷi� yi)
2
, (3.8)

3.2 Classical Machine Learning 59

where again ŷi = h(xxxi) is the prediction of the model h on input xxxi. A straightforward generalisation
to the case of multidimensional outputs Y ⇢ Rd is obtained by substituting the scalar squared
difference with the Euclidean norm of the difference, namely `(ŷyyi, yyyi) := kŷyyi� yyyik

2
2.

Classification tasks instead are those for which the outputs, called labels in this context, are
integers values Y ⇢ N. Thus, in this case, the goal of the learner is to split the inputs into separate
classes, by assigning to each input in the dataset the correct label. For simplicity, let’s consider the
case of a binary classification task where the labels can only take two distinct values Y = {0,1}.
The prediction of the learning model is then a real number ŷi 2 [0,1] that encodes the probability
that the input xxxi belongs to the class 0, or 1. The standard loss function used in this case is the
so-called Crossentropy, defined as

LS(h) =
1
m

m

Â
i=1
�(ŷi logyi +(1� ŷi) log(1� yi)) . (3.9)

which measures the difference between the predicted probability and the ground truth. Generalisa-
tions to multiclass classification problems (that is those where the number of classes is greater than
two) are straightforward.

The introduction of a loss function makes the training, that is the procedure by which an
optimal model is selected out of the hypothesis class, an optimisation procedure, as clear from the
ERM approach of Eq. (3.5). Specifically, whenever the hypothesis class is a parametric model,
training consists in adjusting the trainable parameters to minimise the empirical loss LS(www). As
with variational quantum algorithms, such minimisation is implemented via variants of gradient
descent (2.42), which we report also here for simplicity

www(t+1) = www(t)�h—wwwLS(www)
��
www(t) . (3.10)

Gradient descent-like update roles are particularly suited to neural network architectures, since
there is an efficient strategy, called backpropagation, to compute the partial derivatives of the
empirical loss with respect to each parameter in the model. However, as shown later in the
section regarding linear models 3.2.2.1, there are cases where performing gradient-descent in
the parameters space is not needed, as the optimal parameters can be found using an analytical
closed-form solution.

3.2.1.5 Generalisation

The success of machine learning models, especially state of the art Deep Learning ones, is rooted
in their generalisation performances, that is their ability to effectively use the knowledge extracted
from the limited set of observations in the training dataset, also to new observations, which were
not used during the training procedure. Generalisation conveys the desirable requirement that the
learner has truly understood something of the problem to be solved, whereas it didn’t just learn by
heart the patterns in the training set.

Test set As we argued earlier, the true measure of performance (and generalisation) of a learner is
given by the expected loss LD(h), which is however impossible to access because the probability
distribution of the samples D is not known.

A practical solution to the estimation of generalisation performances of a model is to take the
available corpus of observations {zi}i 2 Zm+m0 , and split it into two separate datasets: the training
set S 2Zm, and a test set T 2Zm0 . The former, defined before, is used during the training procedure
to select the optimal model hopt via minimisation of the empirical risk LS(hopt); while the latter is
used only at the end of training, to measure the performance of the model on previously unseen
observations, called test error LT (hopt), which is exactly a measure of the generalisation capabilities
of the model. Generally, it is common practice to use about 80% of the available data to build the

60 Chapter 3. Quantum Machine Learning

training set, and the remaining 20% for the test set1.

Generalisation bounds It is desirable for a learner h that its training error LT (h) and generalisa-
tion error LD(h) are close, so that the performance shown on the training dataset are representative
of those obtained also on new data drawn from the same distribution.

This is true when the number of samples m in the training dataset is large, equivalent to saying
that the model has access to a large amount of information about the problem to be solved. Given
an hypothesis h, one can show that the probability that the true risk L(h) (3.7) and the empirical
risk LS(h) (3.5) are different goes to zero as the size m of the training set S⇠Dm goes to infinity,
namely

lim
m!•

P(|LD(h)�LS(h)|� e) = lim
m!•

P

 �����Ez⇠D[`(z)]� 1
m

m

Â
i=1

`(zi)

������ e

!
! 0 . (3.11)

This result is an application of the law of large numbers, which states that the average loss LS(h)
tends to its expected value LD(h) (3.7) as the sample size goes to infinity. Note that, for ease of
notation, we used the simplified expressions for the risk `(z) = `(h(x),y) and `(zi) = `(h(xi),y).

While interesting, the result in Equation (3.11) holds only asymptotically and gives no in-
formation about real case scenarios when the training set has a finite size. Luckily, one of the
greatest achievements of statistical learning theory was to show that guarantees on the generalisation
performances of a learning model can be obtained also in the finite size case [34, 274, 303, 304].
Indeed, making use of concentration inequalities [35], one can derive probabilistic statements
about the generalisation performances of a hypothesis class M, given a training dataset S 2 Zm

consisting of iid samples zi drawn from a probability distribution D. These statements are referred
to as generalisation bounds, and roughly take the following form [53, 251, 274].

Definition 3.1 — A general Generalisation Bound. Let M be an hypothesis class and D a
probability distribution, for all d 2 (0,1) with probability 1�d over randomly drawn samples
S⇠Dm, and for all h 2M it holds that

LD(h) LS(h)+ f (M,m,d) , (3.12)

where f (M,m,d) is a function that depends on the sample size m, the probability of error d ,
and the hypothesis class M, specifically through measures of its complexity (or capacity), which
is a measure of the expressible power or richness of the hypothesis class. Examples of such
complexity measures are the VC-dimension [304] or the Rademacher Complexity [274].

Generalisation bounds are statements about the predictive power of a learning model, expressing
its generalisation performances in terms of two contributions: the empirical error obtained on the
available data, and the flexibility of the hypothesis class. Roughly, if the complexity of the model
can be controlled, and the empirical error is low, then one can be confident that the true error will
be also small, and so some form of generalisation will take place. These bounds are interesting
because, based on the available information on the performance of the learner, LS(h), it is possible
to bound the true quantity of interest, namely the generalisation error LD(h), even though this is
not directly accessible. In a certain sense, generalisation bounds can be seen as a mathematical
formulation of Occam’s razors: out of many possible explanations (the models), the simplest one
(low complexity of the model) should be preferred.

There exists a plethora of generalisation bounds in the statistical learning literature, each one
stemming from different assumptions and complexity measures. The interested reader can find

1Actually, the best practice for implementing a safe training procedure involves the use of three distinct datasets:
training, test and validation set, where the latter is used to monitor the generalisation error of the model while the model
is training.

3.2 Classical Machine Learning 61

detailed information in [211, 274], as well as in Appendix B, where we show a concrete example of
a generalisation bound for linear models based on Rademacher Complexity. For our discussion, it
is sufficient to know that such bounds exist, since, as shown in Sec 3.3.3, we will discuss a specific
scenario in which it is possible to derive a generalisation bound also for some type of quantum
machine learning models, specifically data-reuploading quantum neural networks.

Test error

L
os

s

Training error

Generalisation gap

Model complexity

Good predictor

Overfitting

Figure 3.2: Generalisation and overfitting in supervised machine learning. There is a trade-off
between the minimisation of the training error and the complexity of the learning model: if the
model is not complex enough, it won’t be able to solve the problem (large training and test error),
however, if the model is too expressible (complex) it will fit precisely the training data (low training
error), at the cost of compromising its generalisation (high test error). The difference between the
loss attained on the training and test set is called generalisation gap. On the right, is an explicit
example of overfitting in fitting a sinusoidal function (dashed line) given only a few data samples
(the training dataset, blue dots): while a good model is capable of reproducing the desired sinusoidal
behaviour of the data, and an overfitting model has zero error on the training data but miss the
sinusoidal behaviour. Such a representation of the generalisation properties of a model is common
in the machine learning literature, and can be found for example in [113, 128].

Overfiting Practically, generalisation is not guaranteed to happen in machine learning models
unless specific actions, like regularisation techniques, are used to enforce it. Whenever the learner
shows remarkable performances on the training set but fails to do the same on the test set, the model
is said to be overfitting the training data. In this scenario, the learning model has specialised to
reproduce exactly the mapping in the training dataset but not on other samples, thus showing poor
generalisation.

Such a scenario is graphically depicted in the left panel of Fig. 3.2. As the complexity of the
hypothesis class increased the test error of the model usually follows an “U"-shaped curve, which
is a clear sign that the mode model has started overfitting the training data. Indeed, a first increase
in complexity is needed to give the model enough flexibility to deal with the problem, but there
is a moment after which the model is so expressible —i.e. complex— that it can explain every
feature in the training data (even noisy data) so well that its knowledge cannot be generalised any
more to other samples, and the error on the test set thus start increasing. An example of a good and
bad learner is shown in the right panels of Fig. 3.2, for the task of reproducing a sinusoidal signal:
whereas a good model (red line) is able to reproduce with good accuracy the required input-output
mapping of the training data (blue dots) without compromising generalisation, an overfitting model
reproduce exactly the training data at the cost of introducing data-dependent artefacts that miss the
salient features of the underlying true problem. The trade-off between being to accurately model
the pattern in the training data without compromising the generalisation performances is known as

62 Chapter 3. Quantum Machine Learning

the bias-variance trade-off.
In order to combat overfitting one resorts to regularisation techniques, which are set of proce-

dures that impose constraints on the model to limit its complexity, with the hope that these help
preserve generalisation. Examples are early-stopping, which stops the gradient-descent minimisa-
tion of the training loss before this reaches zero, at which point the model would have presumably
overfitted the data, or the use of penalty terms in the loss function to favour simpler models over
more complex ones [128].

3.2.2 Machine learning models
We now give two examples of machine learning models, specifically linear models (and kernel
methods) and neural networks, of which generalised quantum versions have been proposed in the
literature.

3.2.2.1 Linear models and kernel methods
Linear models correspond to the parametric hypothesis class (3.3)

Mwww =
n

hwww : X ⇢ Rd 7! Y ⇢ R | hwww(xxx) = www · xxx, www 2 Rd
o

, (3.13)

where we added the subscript Mwww to make it explicit that the hypothesis class is implemented by a
parametric model depending linearly on parameters www 2 Rd . Linear models like the one in (3.13)
can be used for regression tasks with the empirical risk given by the mean squared error

LS(www) =
1
m

m

Â
i=1

(yi�hwww(xxxi))
2 =

1
m

m

Â
i=1

(yi�www · xxxi)
2
. (3.14)

By grouping inputs and outputs in the following matrix from

XXX :=

2

6664

| xxx1 |

| xxx2 |

...

| xxxm |

3

7775
2 Rm⇥d

, yyy :=

2

6664

| y1 |

| y2 |

...

| ym |

3

7775
2 Rm

, (3.15)

the empirical mean squared error can be rewritten more compactly as

LS(www) =
1
m

(yyy�XXXwww)2 =
1
m
kyyy�XXXwwwk2

2 , (3.16)

The optimal model is the one minimising the empirical loss

wwwopt = argmin
www
kyyy�XXXwwwk2

2 (3.17)

and has a closed form expression, known as least square estimator, which amounts to [82]

wwwopt = (XXX|XXX)�1XXX|yyy . (3.18)

In this case, we assumed that the matrix XXX|XXX is non-singular, hence admits an inverse. In
general, the solution to the least square minimisation problem (3.16) is given by the Moore-
Penrose pseudoinverse, a generalisation of the inverse of a matrix, denoted as wwwopt = XXX+yyy [22, 23,
112, 129]2.

2When there are more samples than parameters n > p, the learning model is said to be underparameterised, and the
related system of equations XXXwww = yyy is underdetermined, which means that a solution may not exist. In this case, if XXX
has full column rank, then (XXX|XXX)�1 exists and the Moore-Penrose pseudoinverse reduces to XXX+ = (XXX|XXX)�1XXX|, as in
Eq. (3.18) for ordinary least squares. On the contrary, if there are more parameters than training data n < p, the model is
said to be overparameterised and the system XXXwww = yyy overdetermined, that is multiple solutions exist. In this case, if XXX
has full row rank, then (XXXXXX|)�1 exists and the Moore-Penrose presudoinverse reduces to XXX+ = XXX|(XXXXXX|)�1. At last, if
n = p and XXX�1 exists, then the solution is simply wwwopt = XXX�1yyy. The introduction of a regularisation term as in Eq. (3.19)
is not only useful to enforce generalisation, but also to ameliorate issues related to the singularity of the data matrices.

3.2 Classical Machine Learning 63

A more comprehensive treatment of linear regression is given by introducing a regularisation
term in the loss (3.16) which penalises solutions with large norm, and also avoids subtleties related
to the invertibility of the data matrices. This approach is known as ridge regression, and the optimal
solution is defined as

wwwopt = argmin
www

⇢
1
m
kyyy�XXXwwwk2

2 +
l
m
kwwwk2

2

�
. (3.19)

where l > 0 is a parameter that controls the trade-off between minimising the empirical risk and
preferring lower-norm solutions. Similarly to the previous case, the optimal parameters can be
written explicitly as

wwwopt = (XXX|XXX +l I)�1XXX|yyy , (3.20)

where the matrix (XXX|XXX + l I) is non singular. Moreover, by making use of the matrix equality
(XXX|XXX +l I)XXX| = XXX|(XXXXXX| +l I) [23, 82, 233], the optimal model can be eventually written in a
more convenient form

hopt(xxx) = wwwopt · xxx = xxx|wwwopt

= xxx|XXX| (XXXXXX| +l I)�1yyy .
(3.21)

which is often referred to as the solution of the dual problem of linear ridge regression. Let’s now
analyse the terms in this expression. First, one can easily check that the elements of the matrix
XXXXXX| 2 Rm⇥m are the inner products of the training input vectors, namely

Ki j := [XXXXXX|]i j = xxxi · xxx j (3.22)

where K = Ki j is usually called kernel, or Gram, matrix. Then, noticing that

xxx|XXX| = [xxx · xxx1, xxx · xxx2, . . . , xxx · xxxm] 2 Rm
, (3.23)

âaa := (K +l I)�1yyy 2 Rm
. (3.24)

where âaa are often called dual variables of the optimal weights wwwopt (3.20), one can finally rewrite
the optimal predictor (3.21) as

hopt(xxx) = (xxx|XXX|) · âaa =
m

Â
i=1

âi (xxx · xxxi) = xxx ·

m

Â
i=1

âi xxxi

!
. (3.25)

This expression makes it evident that the optimal model depends on the data only through the inner
products among data samples, and that it consists of a linear combination of the inner product
between the new sample xxx, with all the input data in the training set S 2 Zm. In addition, as clear
from the last equality in (3.25), the optimal weights can be expressed as a linear combination of
such training samples.

Feature maps The derivation above follows identically even when we allow the input data
xxxi 2 X ⇢ Rd to go through an arbitrary function fff : X 7! F ⇢ Rs. Indeed, consider the arbitrary
mapping

xxx 7! fff(xxx) = (f1(xxx), f2(xxx), . . . , fs(xxx)) , (3.26)

this is called feature map, and the inputs now belong to a new space called feature space, in this case
F ⇢ Rs. The linear model now acts on such feature vectors as h(xxx) = www ·fff(xxx). The construction

64 Chapter 3. Quantum Machine Learning

of the optimal predictor derived before can be applied identically also in this case, simply by
substituting the data matrix XXX with the feature matrix

FFF :=

2

6664
| fff(xxx1) |

| fff(xxx2) |

...
| fff(xxxm) |

3

7775
2 Rm⇥s

, (3.27)

with the optimal predictor now being

hopt(xxx) =
m

Â
i=1

âi (fff(xxx) ·fff(xxxi)), âaa = (FFFFFF| +l I)�1yyy (3.28)

=
m

Â
i=1

âi k(xxx,xxxi), âaa = ([k(xxxi,xxx j)]i j +l I)�1yyy . . (3.29)

In the last line we defined the kernel function k : X ⇥X 7! R, which takes two inputs and outputs
the scalar value k(xxx,xxxi) := fff(xxx) · fff(xxxi), from which one can define again the associated kernel
matrix K 2 Rm⇥m

, Ki j := k(xxxi,xxx j), evaluated on the training points.
The idea of using a feature map is to enrich the expressibility of the parameterised model

by introducing a nonlinear dependence on the input data. Specifically, while the regression or
classification task may not be solvable (or have high error) in the original data space X , it may be
much easier to solve in an appropriately chosen feature space [82]. Additionally, as clear from
the expression (3.29), it is important to remark that the optimal model only depends on the data
samples directly but only on inner products. This turns out useful because there are cases where
a closed form expression for k(·, ·) exists, and it is thus not necessary to transform the data with
feature map fff(·) and then computing the inner product in the feature space F . This simplification
is known as kernel trick.

Kernel machines Equation (3.29) may suggest that instead of considering the hypothesis class of
linear models (B.8), one could start directly from considering the parameterised class of predictors
of the form

h(xxx) =
m

Â
i=1

ai k(xxx,xxxi) , (3.30)

where k : X ⇥X ! R is a general but fixed kernel function, the parameters aaa 2 Rm are to be
optimised, and the model thus consists of a linear combination of kernel evaluations of the new
data xxx with those in the training set {xxxi}m

i=1. Models like the one in Eq. (3.30) are called kernel
methods, as they are based on the choice of an appropriate kernel function, which is a measure of
similarity between data samples. Moreover, if the kernel function is symmetric and positive definite
(known as Mercer’s conditions), then there exist a feature map fff : X 7! F and a feature Hilbert
space F such that the kernel function is equivalent to the inner product of vectors in such feature
space [211, 274]

k(xxx,xxx0) =
⌦
f(xxx)

��f(xxx0)
↵
F (3.31)

where h·|·iF is the inner product on the Hilbert space F , which is called the Reproducing Kernel
Hilbert Space (RKHS) of the kernel function k : X ⇥X ! R. Interestingly, it turns out that kernel
predictors of the form (3.30) are very general and powerful, since they arise as a result of common
machine learning optimisation problems. This is a consequence of the renowned Representer
theorem of statistical learning, which shows that for supervised learning tasks that minimise an
empirical risk in an RKHS, the optimal solutions can be expressed simply as a linear combination
of kernel evaluations of with the training data [211, 260, 264].

3.2 Classical Machine Learning 65

While this seems obscure, this result is important because it guarantees that one can formulate
the search of an optimal model in a possibly infinite-dimensional RKHS, simply as a search of
kernel expansion coefficients {ai}m

i=1 as in (3.30). For example, suppose one wants to minimise a
linear model with a feature map

h(xxx) = hwww|fff(xxx)iF (3.32)

where fff : X ! F , and the dimension of the feature space F is large, possibly even infinite. By
virtue of the Representer theorem, one knows that the optimal predictor can be expressed as
hopt(xxx) = Âm

i=1 aik(xxx,xxxi) where k(xxx,xxx0) = hfff(xxx)|fff(xxx0)iF is the kernel induced by the feature map.
Thus, one only has to search for the m real parameters ai instead of looking directly for wwwopt in the
large dimensional space F . An example of infinite dimensional feature space is that corresponding
to the so-called Radial Basis Function (RBF) kernel k(xxx,xxx0) = exp

⇣
�kxxx� xxx0k2

/2s2
⌘

, which is
induced by an infinite feature map fff(xxx) = [f1(xxx), f2(xxx), . . .] [82]. Instead, an example of finite but
large feature space is that of quantum states, which will be the topic of the next sections.

A common application of a kernel method is Kernel Ridge Regression (KKR), where the kernel
model (3.30) is trained with the regularised squared loss

LS(h) =
m

Â
i=1

(yi�h(xxxi))
2 +lkhk2

F = (yyy�Kaaa)2 +laaa|Kaaa , (3.33)

where Ki j = k(xxxi,xxx j) is the kernel, or Gram, matrix evaluated on the training samples. Note that
the first term is the usual squared loss (3.8), and the second term is a regularisation term similar to
the one used in standard ridge regression (3.19), and depends on the norm of the kernel model in
the corresponding RKHS3. The empirical loss is convex with respect to the parameters, and the
minimum can be found analytically, achieved with parameters âaa = (K +l I)�1yyy.

Another ubiquitous example of kernel methods for classification —rather than regression—
task is Support Vector Machines (SVM), which minimize the so-called hinge loss instead of the
mean squared error [82, 211, 274]. To summarise, the general idea of kernel methods, is to define
an appropriately chosen measure of similarity between samples (i.e. the kernel function k(xxx,xxx0)),
and then search just for the expansion coefficients. The supervised learning task of finding the
optimal parameters essentially translates to that of finding a proper kernel function for the task to
be solved.

3.2.2.2 Neural Networks
A second very important example of a machine learning model are Neural Networks (NN). While
they inherit their name from early mathematical models for biological neurons in the brain [255],
modern neural networks have very little in common with how information is processed in the brain,
but the name eventually stuck in the machine learning literature. Broadly speaking, by neural
networks one refers to a broad class of parametric models where information is processed by single
units, often referred to as neurons, and then transferred to other units in the network, which is
composed of several of these neurons connected to each other according to a specific connectivity
pattern. Depending on the specifics of the network, several different versions of neural networks

3If the kernel k is a legitimate symmetric positive definite kernel, then it induces an inner product in a Reproducing
Kernel Hilbert Space (RKHS) F , so that k(xxx,xxx0) = hf(xxx)|f(xxx0)iF . Thus the kernel model can be written as

h(xxx) =
m

Â
i=1

ai k(xxx,xxxi) =

*
f(xxx)

�����

m

Â
i=1

ai f(xxx0)

+

F
= hf(xxx)|FiF (3.34)

which is a “linear model" in the RKHS of the kernel function, and the model “parameters" are given by the state
|Fi = Âm

i=1 ai |f(xxx0)i. Then, the norm of the model in the RKHS is defined as khkF =
p
hh|hiF , and so khk2

F =
hF|Fi= Âm

i, j=1 aiak
⌦
f(xxxi)

��f(xxx j)
↵

= Âm
i, j=1 aiakk(xxxi,xxx j) = aaa|Kaaa , where Ki j = k(xxxi,xxx j) is the kernel matrix.

66 Chapter 3. Quantum Machine Learning

deep

Input layer Hidden layers Output layer

Figure 3.3: Graphical representation of a feedforward Neural Network. Inputs are fed to the
network in the Input layer and then processed by a series of hidden layers, up until the end of the
network is reached, corresponding to the output layer. Each node in the network is called neuron
and implements the transformation (3.35), while neurons aligned vertically constitute a layer, whose
action is reported in Eq. (3.36). The overall action of the network is given by concatenating each
layer, as reported in Eq. (3.38). In this specific case, the neural network accepts inputs xxx 2 R4, has
3 hidden layers of variable sizes (8, 8 and 6), and outputs a 2-dimensional vector NN(xxx) 2 R2. The
graph for the neural network was generated using [181], and similar representations are customary
in standard literature on the subject, e.g. [112, 113, 128].

have been proposed, and in the following we introduce the most common example, feed-forward
Neural Networks (ffNN), graphically represented in Fig. 3.3.

Feed-forward Neural Networks are called this way because information flows only in one
direction in the network, where inputs are progressively processed by a series of layers of the
network, until a final output is reached. A single unit in the neural network (drawn as a coloured
node in Fig. 3.3) implements the mapping

xxx neuron����! s(www · xxx+b) (3.35)

where www 2 Rp and b 2 R are parameters to be optimised, which in the neural network jargon are
called weights and biases respectively, and s : R! R is a generic nonlinear function which is
called activation function.

A set of neurons acting on the same input data form a layer of the neural network, and are
represented by the vertically aligned nodes of Fig. 3.3. Let xxx2Rd and let the first layer be composed
of h neurons, then the overall action of the layer on the input can be written as

xxx layer���! s(Wxxx+bbb), W 2 Rh⇥d
, bbb 2 Rb (3.36)

where W is a matrix whose rows are the weights of the neurons in the layer, and similarly for the
bias vector bbb, and with a slight abuse of notation we impose that the activation function s acts
elementwise on the entries of a vector, namely s(vvv) = [s(v1), s(v2), . . .].

In general, let W (l) 2 Rhl⇥hl�1 and bbb(l) denote the weights and biases of the l-th layer of the
neural network, an L-layers (excluding the input layer) feedforward neural network consists of the

3.3 Quantum Machine Learning 67

following parameterised hypothesis class

MNN =
n

NN(xxx) = s
⇣

W L s
⇣

W (L�1) s
⇣
. . .s

⇣
W (1)xxx+bbb(1)

⌘
. . .

⌘
+bbb(L�1)

⌘
+bbb(L)

⌘

��W (l) 2 Rhl⇥hl�1 , bbb(l) 2 Rhl , l = 1, . . . , L
o

,

(3.37)

which consists of a nested application of the transformation (3.36) using different parameters, but
using the same activation function s , even though this last constraint is not necessary. By defining
the activation vector at layer l as a(l)(xxx) = s(W (l)a(l�1)(xxx)+bbb(l)), one can write the action of the
neural network more compactly as

NN(xxx) = a(L)(xxx) = s
⇣

W (L)a(L�1)(xxx)+bbb(L�1)
⌘

, (3.38)

with a(0)(xxx) = xxx being the trivial input layer containing simply the input vector.
Noteworthy, in addition to the trainable parameters given by the weights and biases, a neural

network is specified by other additional parameters specifying its architecture, like the number of
layers L (or depth of the network) and the activation function, that have a direct impact on the type
of functions that the network can implement. As for the activation function, the key requirement
is that it has to be nonlinear, as if this is not the case one can easily prove that the whole neural
network collapse to a single-layer architecture implementing a simple affine transformation of the
input xxx 7!Wxxx + bbb. Standard choices for the activation function are the sigmoid or the Rectified
Linear Unit (ReLu)

s(x) =
ex

ex +1
, s(x) = ReLu(x) =

(
x if x > 0
0 if x 0

. (3.39)

A neural network can be trained in a supervised fashion by minimising the empirical mean
squared loss over the training set S = {(xxxi,yi)}m

i=1 (3.1). Let WWW = {W (l)
, bbb(l) | l = 1, . . . , L} denote

the set of all trainable parameters in the neural network, the optimal model is implicitly defined by

LS(NN) =
1
m

m

Â
i=1

(yi�NN(xxxi))
2
, WWW opt = argmin

WWW
LS(NN) . (3.40)

In this case however, there is no way analytical solution to this optimisation problem because the
loss function is highly non-convex with respect to the parameters, as opposed to the previous case
in Sec. 3.2.2.1 where there was a linear dependence on the trainable parameters.

Instead, neural network models are trained with gradient descent (3.10) via backpropagation,
which is a very efficient method for calculating gradients of composed functions as neural networks.
Indeed, one can compute the derivative of any parameter inside the network by a repeated application
of the chain rule: starting from the output of the network, one proceeds backwards by “peeling-off"
layers and accumulating gradients, up until the desired weight has been reached [82, 112]. The
backpropagation algorithm permits a very efficient computations of gradients in neural networks
and paved the way towards the adoption of large-scale Deep Learning models, with state of the art
ones now leveraging up to hundreds of billions of parameters [60]. At last, it is worth noticing that
the backpropagation algorithm is a specific example of automatic differentiation (AD), which is a
set of techniques aiming at calculating the gradients of a computation algorithmically.

3.3 Quantum Machine Learning
In the previous section, we introduced the main concepts and tools of machine learning, and also
discussed two prototypical examples of learning models: kernel methods and neural networks. In
this section, we first introduce the idea of Quantum Machine Learning models distinguishing them

68 Chapter 3. Quantum Machine Learning

Explicit model Kernel method

Figure 3.4: Circuit representation of linear quantum models: an explicit model on the left, and a
kernel method (also called implicit model) on the right. In the former, a data encoding unitary
operation is followed by a trainable variational block before the measurement of an observable
takes place. In quantum kernel methods, the quantum computer is used to calculate the kernel
function (i.e. inner products), while the tunable parameters are instead purely classical.

from Variational Quantum Algorithms, and then provide examples of quantum versions of the two
classical models explained previously.

At the core of variational quantum algorithms and machine learning is the optimisation proce-
dure, by which the algorithms are progressively adjusted to reach good performances. On the other
hand, a striking difference is that machine learning models are algorithms that learn from obser-
vations (the training set), and in fact the presence of data is the hallmark of any machine learning
model. Thus, a reasonable definition of a quantum machine learning model could be

Definition 3.2 — (Informal) Quantum Machine Learning model. A Quantum Machine
Learning model is an algorithm that uses also, but not exclusively, quantum computational
resources to solve a problem defined in terms of data.

Far from being a rigorous statement, such definition is admittedly general and omits a proper
definition of “data", still it suffices to describe many of the approaches described in Sec. 3.1.

Specifically, in this work we are focused on near-term quantum algorithms, namely variational
algorithms, and thus, by the definition above, a near-term quantum machine learning model is
a variational quantum algorithm where the cost function to be optimised is defined in terms of
a set of observations or data. For example, a variational quantum algorithm for estimating the
ground state energy of a molecule is not a quantum machine learning model, but a parameterised
quantum circuit to implement a classification task of a set of observations is. In this sense, quantum
machine learning models are a subset of variational quantum algorithms. However, while such
characterisation can be useful to draw a boundary between QML and VQAs, these are often used
interchangeably to indicate a quantum computation with tunable parameters that needs optimisation.

In the following, we introduce two quantum machine learning models that have been proposed
in the literature: quantum classifiers and quantum kernel machines, which can be seen as quantum
counterparts of classical linear models, and quantum neural networks which, as the name suggests,
are inspired by classical neural networks.

3.3.1 Linear quantum models: quantum classifiers and kernel methods

The counterpart of linear models in the quantum domain are often called linear quantum models,
because they effectively implement a linear separation in the Hilbert space of the quantum computer.
Also in this case, such models are also strongly connected to quantum kernel methods, a connection
which we explore in the following sections.

3.3 Quantum Machine Learning 69

3.3.1.1 Explicit models
A quantum machine learning model deals with data, and thus it is necessary to find a way to
load such information onto the quantum computer, so that it can be used as inputs for a quantum
algorithm. The data to be analysed could be either classical, for example a set of input vectors
xxxi 2 X ⇢ Rd , or quantum, such as a set of quantum states |yii 2H = C2n, where H is the Hilbert
space of a quantum system made of n qubits. In the following, we restrict our attention to the case
of classical data, even though the discussion could be adapted to quantum data as well with minor
modifications4.

Suppose we are given a set of classical data {xxxi}m
i=1, the idea is to map these data to the quantum

Hilbert space of the quantum computer, by a procedure which is often called feature embedding.
Specifically, this is done by using a parameterised unitary operation U(xxx) depending on the classical
data to be loaded, so that the feature embedding consists of the map

f : X ! F , X ⇢ Rd
, F = H = C2n

,

xxx 7! |f(xxx)i= U(xxx) |0i⌦n or xxx 7! r(xxx) = |f(xxx)ihf(xxx)| ,
(3.41)

where F is the feature space, as used in Sec. 3.2.2.1 when discussing linear models is feature
spaces, in this case given by the qubits Hilbert space F = H, and |f(xxx)i and r(xxx) are the input
quantum state and density matrix, respectively.

The parameterised block U(·) that actually maps the data to a quantum state is general, and
various ansätze can be used to accomplish this task. A natural example, which has the benefit of
being easily implementable on actual quantum computers, are parameterised Pauli rotations that
use one qubit per dimension of the input data d = n, defined as

U(xxx) =
nO

i=1
RPi(xi), xxx = [x1,x2, . . . ,xn], Pi 2 {X ,Y,Z} , (3.42)

where RP(x) are Pauli rotations (2.6) around one of the Pauli axis P 2 {X ,Y,Z}. This approach of
encoding the data as a rotational angle in a parameterised Pauli gate goes by the name of angle
embedding. In addition, more complicated ansatz can be used involving multiple parameterised
operations as well as two-qubits entangling gates, as those discussed in Chapter 7. It is fundamental
to remark that, whenever inputs are encoded in a circuit as angles of parameterised rotations, these
have to be rescaled in an appropriate angular range, for example xxx 2 X ⇢ [0,2p[d , before feeding
them to the circuit. If this is not the case then inputs differing by even multiples of 2p would be
mapped on the same quantum state, since U(xxx+2p) = U(xxx).

After the encoding phase, a variational unitary V (qqq) acts on the system, thus yielding the
parameterised state |fqqq (xxx)i= V (qqq) |f(xxx)i= V (qqq)U(xxx) |0i⌦n. An observable O is measured at the
end of the computation, and the final result is then

fqqq (xxx) = hOiqqq ;xxx = hfqqq (xxx))|O|fqqq (xxx)i= hf(xxx)|V (qqq)† OV (qqq)| {z }
Oqqq

|f(xxx)i (3.43)

= Tr[Oqqq r(xxx)] = hOqqq ,r(xxx)iHS , (3.44)

where in the last line we used the density matrix r(xxx) = |f(xxx)ihf(xxx)|, and then expressed the
expectation value in terms of the Hilbert-Schmidt inner product of operators hA,BiHS := Tr

⇥
A†B

⇤
.

A graphical representation of the quantum circuit implementing this evolution is shown in Fig. 3.4.
4Specifically, instead of considering the parameterised encoding unitary |yxxxi= U(xxx) |0i⌦n depending on the input

data xxx, one can consider the unitary Ui that prepares the desired input state when acting on the ground state |yii=Ui |0i⌦n.
In this last case however, it is important to note the circuit implementation Ui to implement a general (possibly Haar
random) quantum state yi can be exponentially —with respect to the number of qubits— deep. Thus, ideally, either the
input quantum states are efficiently preparable on the quantum computer, or there is a controllable physical evolution
that outputs the desired quantum state to be then processed by an appropriate quantum computing device

70 Chapter 3. Quantum Machine Learning

The last expression in Eq. (3.44) clearly exhibits the linear nature of this model in the Hilbert
space H of the quantum system5, in that the outcome of the circuit is a simple inner product between
two Hermitian operators: the data-dependent state r(xxx) and the trainable observable Oqqq , which
is the quantum analogue of the trainable weights www of a classical linear model (3.13). However,
note that while the results of the circuit depend linearly on such parameterised observable (and also
on the quantum state), the dependence on the parameters and the input data is clearly nonlinear,
usually trigonometric, since Pauli rotations are used to parameterise the encoding block U(xxx) and
the variational ansatz V (qqq).

As with a regular machine learning model, the output of the quantum circuit ŷi = fqqq (xxxi) =
hOqqq ,r(xxxi)iHS can then be used in a loss function to drive the training procedure, as discussed
previously in Sec. 3.2.1.4. Moreover, whenever the required conditions hold one can use the
parameter shift role (2.55) to calculate the gradients of the circuit and use gradient descent to find
the optimal value of the parameters.

The quantum machine learning model we have just described often goes by the name of
explicit model [131, 152, 206, 264], because the optimal observable Oqqq opt — actually, the optimal
parameters qqq opt — is searched directly in the Hilbert space via optimisation of the variational
parameters, and the classification or regression problem is implemented by measuring it on a
quantum computer. Explicit models are opposed to implicit models (or quantum kernel methods),
which is the topic of the next section.

3.3.1.2 Quantum kernel (or implicit) models
We have discussed in Section 3.2.2.1 that linear models and kernel methods are strictly related,
since kernel models can be seen as linear models in the so-called Reproducing Kernel Hilbert
Space (RKHS) of the kernel function, and vice versa. These relations also hold for quantum kernel
methods (often called implicit models [264]), which are parameterised predictors of the form [131,
206, 263]

f (xxx) =
m

Â
i=1

ai k(xxx,xxxi) =
m

Â
i=1

ai Tr[r(xxx)r(xxxi)] . (3.45)

As with their classical counterparts (3.30), quantum kernel models make predictions using a linear
combination of kernel evaluations between the new sample xxx and those in the training set {xxxi}m

i=1,
where now the kernel function k(xxx,xxx0) = Tr[r(xxx)r(xxx0)] = |hf(xxx)|f(xxx0)i|2 is given by the inner
product in the feature quantum space. Models like these use the quantum computer only to compute
the kernel, while the parameters {ai}m

i=1 remain purely classical. A quantum circuit for evaluating
the kernel function (i.e. inner product) for pure states is shown in the right panel of Fig. 3.4, but
other strategies exist, for example leveraging the so-called SWAP test.

As we briefly mentioned when discussing classical kernel models, models of the form (3.45)
are proven to be optimal by the Representer theorem, in the sense that any model in the RKHS that
minimises an empirical risk can be expressed as a simple linear combination of kernel evaluations
with the training set. Moreover, the complexity of the optimisation problem is sensibly reduced,
since rather than optimising a parameterised observable Oqqq 2C2n⇥2n which can be a quite daunting
task for n� 1, one only has to find the m real parameters {ai}m

i=1.
Finally, note that by linearity of the trace, the model (3.45) implicitly defines a linear model of

the form (3.44) where the observable is given by a linear combination of the feature quantum states
from the training set, namely

f (xxx) = Tr

"
r(xxx)

m

Â
i=1

ai r(xxxi)

!#
= Tr[r(x)OS]. (3.46)

5Note that for ease of exposition we are ignoring some subtleties related to the definition of the feature quantum
space, as this can be the space of states |f(xxx)i or that of Hermitian operators (density matrices) r(xxx). For a detailed
discussion on this topic, we refer to [263].

3.3 Quantum Machine Learning 71

Using the inner products between quantum states as kernel, these quantum kernel machines can
then be used within regular ridge regression (3.19) or for classification tasks in the form of quantum
support vector machines [131, 264].

3.3.1.3 Explicit or Implicit?

We have seen two examples of quantum machine learning models, explicit and implicit models,
both belonging to the class of linear quantum models since they can be expressed as the inner
product of the input quantum states with an observable f (xxx) = Tr[Or(xxx)] = hO,r(xxx)iHS. But what
is the difference between the two, and are there any reasons to prefer one over the other? Two main
distinctions can be made, regarding the optimisation and the classification performances of these
models.

Let’s first discuss the optimisation properties of these two models. Implicit models like (3.30)
require O

�
m2� queries to the quantum computer to estimate the kernel matrix of inner products

between the m samples in the training dataset6, and additional O
�
m3� classical post-processing steps

to compute the optimal weights via inversion of the Gram matrix (3.23) for ridge regression [152,
211, 260]. On the other hand, variational training of explicit models is cheaper, because it is
expected to terminate after a number of iterations proportional to the number of training samples,
and thus it requires O(pm) calls to the quantum computer, where p is the number of parameters
in the trainable observable Oqqq ,qqq 2 Rp. Thus, the most efficient strategy depends on the scenario:
if a moderate amount of parameters are sufficient to fit a large amount of training data, then
variational training may be the solution. On the contrary, if the required number of parameters
scales with the number of data, then the two methods are equivalent in terms of computational
resources. Clearly, the number of parameters in the variational block V (qqq) to parameterise a general
observable Oqqq , which is needed to explore the whole space of observables to look for the optimal
one, scales exponentially with the number of qubits. In practical scenarios, however, one restricts
the expressibility of the model by selecting a specific parameterised ansatz with a limited amount
of parameters.

Regarding the classification performances, implicit models are guaranteed by the Representer
theorem to achieve the lowest possible empirical risk on the training set, when compared to explicit
models trained with the same feature encoding. On the other hand, as argued in ref. [152], the latter
may be desirable in terms of generalisation error, because their limited expressivity could help avoid
overfitting. Hence, the use of constrained observables in explicit models —instead of the optimal
observable of implicit models, see eq. (3.46)— may be advantageous to learning performances.

At last, we remark that if one is concerned with quantum advantages or speedups in these
types of machine learning models, these can only be achieved if the kernel function k(xxx,xxx0) =
Tr[r(xxx)r(xxx0)] is hard to compute classically. Indeed, if this is not the case, then the quantum kernel
model (3.45) can be simulated classically without the need for a quantum computer, and thus no
advantages can be attained.

3.3.2 Data reuploading models and Quantum Neural Networks
A second class of quantum machine learning models are data reuploading quantum circuits, often
referred to as Quantum Neural Networks (QNNs). Differently from linear quantum models, the
output of a quantum neural network cannot be written as an inner product between a data-dependent
quantum state and a trainable observable, because these circuits use a repeated structure where data
encoding blocks are interleaved trainable unitaries, so that the action of these two elements cannot
be separated anymore.

Notably, it was recently shown that models in this class can be mapped to linear quantum
models using approximate strategies or leveraging post-selection and gate teleportation, even though

6We hereby only count the number of values to be estimated on the quantum computer, ignoring the actual number of
measurements needed to estimate each expectation value.

72 Chapter 3. Quantum Machine Learning

these constructions require additional conditions that cannot be easily met in practice [152]. Thus,
while such a result suggests a unifying theoretical framework for describing quantum learning
models, in practical instances (that are those that one would execute on an actual near-term quantum
computer), linear models and data reuploading ones behave rather differently, as we shall see.

Data reuploading quantum circuits have appeared independently multiple times in the litera-
ture [109, 229, 269], with all of them underlining the tight connection between input redundancy
inside a quantum circuit, and the capability of the latter of expressing more complicated —-
specifically, higher-frequency trigonometric— functions on the input data. In a sense, this need of
loading the inputs multiple times in the circuits, hence the name data reuploading, can be seen as
an analogue of feeding the same input to multiple neurons in the first layer of a classical neural
network, as depicted in Fig. 3.3.

Indeed, provided that input data enters the circuit via rotation-like gates (see below for a more
rigorous statement), it is possible to show that the outcome of any parameterised quantum circuit
depending on data can be written as a truncated Fourier series, or as a Generalised Trigonometric
Polynomial (GTP) [53, 109, 269, 322].

Theorem 3.1 — Data-dependent parameterised quantum circuits are truncated Fourier
series [53, 109, 269]. Let Uqqq (xxx) be the unitary matrix of a parameterised quantum circuit
depending on some input data xxx 2 X ⇢ [0,2p[d and trainable parameters qqq . If data coordinates
xi 2 xxx enter the quantum circuit via data encoding operations of the form U(xi) = exp(�i xi H)
where H is an Hermitian operator, then the following holds

fqqq (xxx) = hOixxx;qqq = h000|Uqqq (xxx)† OUqqq (xxx)|000i= Â
www2W

cwww e�iwww·xxx
, (3.47)

where W =
�

www 2 Rd is the frequency spectrum associated with the quantum circuit and depends
solely on the number of data encoding operations present in the circuit, as well as their generators,
a piece of information denoted as data encoding strategy. The expansion coefficients {cwww 2 C}
instead depend on the structure of the circuit (including the data encoding strategy), the trainable
parameters qqq , and finally also the observable O. For any frequency www 2W, also �www 2W. Also,
the coefficients satisfy cwww = c⇤�www , which ensures that the Fourier expansion correctly evaluates to
a real number.

As an example, parameterised quantum circuits that encode the input data via Pauli rotations
of the form (3.42) belong to this class of model, hence admit a Fourier expansion.

The Fourier representation in Eq. (3.47) beautifully summarises the class of functions that
parameterised quantum models depending on data via parameterised rotations can implement,
namely trigonometric functions7,8. A clear example of such circuits are those that encode data via
Pauli rotations of the form (3.42).

Interestingly, a Fourier expansion of the form (3.47) holds for any quantum circuit provided that
inputs are loaded via an angle-embedding scheme, irrespectively of the choice of the gates in the
circuit, their position, or their number, as shown in Fig. 3.5. Such formulation clearly demonstrates
that the Fourier-like nature of the circuit is a consequence of the data encoding strategy, and also
this implicitly determines the set of frequencies www 2 W that the quantum model has access to.
Instead, the trainable parameters, along with the observable and the structure of the circuit, control

7It is important to note that we are neglecting classical preprocessing step of the input data. That is, the data xxx 2 X
are fed directly as parameters to the data encoding operations U(xxx) without any classical preprocessing. If classical
preprocessing is used, yyy = g(xxx), then the PQC is clearly a Fourier series of yyy, not of the original data xxx. Classical
preprocessing can be used to change the functional dependence of the expectation value on the original input [209, 276].

8We already had an hint of this fact in Eq. (2.51), when we discussed how to derive the parameter-shift rule for
parameterised quantum circuits. Also in that case, when fixing all the parameters but one, we saw that the circuit
effectively implements a trigonometric function of that remaining parameter with frequency spectrum W = {0,1}.

3.3 Quantum Machine Learning 73

= Generic gate = Data encoding

Figure 3.5: A generic quantum circuit can be expressed as a truncated Fourier series (3.47) over the
input data xxx, provided that the coordinates of the input are loaded in the quantum circuit via gates
of the form U(xi) = exp(�i xi H). This figure is a custom reproduction of Fig. 3 in [53].

which frequencies can actually be expressed by the circuit, by tuning the expansion coefficients
{cwww}.

3.3.2.1 Deriving the Fourier expansion
In the following, we derive the Fourier expansion (3.47) along the lines of the elegant treatment in
ref. [53]. Different proofs and further discussions can be found also in refs. [109, 229, 269].

As for the previous quantum machine learning models, also in this case we distinguish between
encoding gates U(xxx), depending on the input data xxx 2 X ⇢ Rd , and trainable operations {Vl(qqq l)},
depending on trainable parameters {qqq l}l . However, as we shall see, the explicit form of such
trainable gates is not necessary to derive the desired Fourier-like expansion of the quantum circuit.
In fact, any gate non depending on data, be it fixed or parameterised, is effectively absorbed into
the definitions of the expansion coefficients, possibly in a very intricate way, without playing any
major role in the mathematical derivation.

Let xxx = [x1, x2 . . . , xd] 2 Rd be the usual input vector, we consider encoding unitary operations
that encode the coordinates of the input via evolutions of the form

U (i)
j (xxx) = exp

⇣
�i xi H(i)

j

⌘
= exp

⇣
�i eeei · xxx H(i)

j

⌘
, (3.48)

where H(i)
j is the j-th Hermitian operator encoding the i-th coordinate xi, and eeei is a unit vector

having zeros everywhere except on the i-th component, so that eeei · xxx = xi. As the notation suggests,
we allow for each data coordinate to be uploaded in the circuit multiple times throughout the circuit,
even with different generators.

Let’s consider the action of the data encoding block (3.48) on a generic quantum state with
density matrix r . Let U(xxx) = exp(�i eee · xxx H) with H = Âk lk |lkihlk| the spectral decomposition
of the generator, by expanding state r on the eigenbasis of H, one obtains

r ! r(xxx) = U(xxx)r U(xxx)† = U(xxx)

Â
kl

rkl |lkihll|
!

U(xxx)†

= Â
kl

e�i(lk�ll)eee·xxx rkl |lkihll| . (3.49)

74 Chapter 3. Quantum Machine Learning

This expression can be simplified by grouping together those indexes (k, l) that give rise to the
same frequency difference lk�ll . In order to do so, it is convenient to introduce the frequency
spectrum associated with the generator, that is the set of all possible differences of its eigenvalues
multiplied by the unit vector

W(H) = {(lk�ll)eee | 8lk,ll 2 eigvals(H)} . (3.50)

Note that, by definition of the frequency spectrum, for any frequency www 2W(H), also the negative
frequency belongs to the spectrum �www 2W(H). It is possible to group together those terms that
correspond to the same frequency difference, that is defining

rwww = Â
(k,l)2I(www)

rkl |lkihll| with I(www) :=
�
(i, j) | (li�l j)eee = www

. (3.51)

With these definitions, the evolved quantum state can be finally rewritten as

r(xxx) = Â
www2W(H)

e�iwww·xxx rwww , (3.52)

with the expectation value of an observable O on this state thus being

hOi= Tr[Or(xxx)] = Â
www2W(H)

e�iwww·xxx Tr[Orwww] = Â
www2W(H)

cwww e�iwww·xxx
, (3.53)

where we defined the coefficients cwww = Tr[Orwww]. Since the original state r is Hermitian, using the
definitions (3.51) one can check that rwww = r†

�www , hence the coefficients satisfy cwww = c⇤�www , as needed
to ensure that hOi is real-valued as expected. We have thus recovered the Fourier representation
of the circuit (3.47) for the case of a single encoding step on a generic quantum state. The same
derivation can be applied straightforwardly when more encoding gates are applied, and also when
other operations, like the trainable unitaries, act on the system.

Indeed, starting from the former case, one can see that the action of any non-data-encoding
unitary only amounts to a change of basis which can be absorbed inside the operators rwww . In fact,
suppose a unitary W acts on the quantum state r(xxx) (3.52), this is consequently changed to

r(xxx)!V r(xxx)V † = V

Â
www2W(H)

e�iwww·xxx rwww

!
V † = Â

www2W(H)

e�iwww·xxx V rwwwV † (3.54)

= Â
www2W(H)

e�iwww·xxx r̃www , (3.55)

where the action of the unitary can be just absorbed in the operators {rwww}! {V rwwwV †}, hence
the in coefficients {cwww}, without changing the frequency spectrum of the circuit W or its Fourier
representation. Thus, we can concentrate on the action of the data encoding gates only.

Indeed, let U2(xxx) = exp(�i eee2 · xxx H2) be another encoding operation (for clarity, in what follows
we add the subscript “1” to indicate the previous encoding operation), the state r(xxx) is evolved
according to

r(xxx)! r 0(xxx) = U2(xxx)r(xxx)U2(xxx)† = Â
www12W(H1)

e�iwww1·xxx U2(xxx)rwww1U2(xxx)† (3.56)

= Â
www12W(H1)

e�iwww1·xxx Â
www22W(H2)

e�iwww2·xxxrwww1,www2 (3.57)

where in the second line we expressed the operators {rwww1} in the eigenbasis of the generator H2,
and then re-indexed the sum in terms of the corresponding frequency spectrum W(H2), namely

U2(xxx)rwww1U2(xxx)† = U2(xxx)

Â
kl

[rwww1]kl

���l (2)
k

ED
l (2)

l

���

!
U2(xxx)† (3.58)

= Â
kl

e�i
⇣

l (2)
k �l (2)

l

⌘
eee2·xxx[rwww1]kl = Â

www22W(H2)

e�iwww2·xxxrwww1,www2 (3.59)

3.3 Quantum Machine Learning 75

where the frequency spectrum W(H2) is defined as before (3.50), and the sum was re-indexed
accordingly.

One more ingredient is needed to simplify the expression (3.57), namely how to compose the
frequency spectrums W(H1) and W(H2) arising from the two different encoding operations. This
can be done by the so-called Minkowski sum between the two sets of frequencies, defined as

W = W(H1)+W(H2) := {www1 +www2 | 8www1 2W(H1), 8www2 2W(H2)} . (3.60)

With this, the quantum state can thus be written as

r 0(xxx) = Â
www12W(H1)

Â
www22W(H2)

e�i(www1+www2) ·xxx rwww1,www2 = Â
www2W

e�iwww·xxx rwww , (3.61)

where, as before, the operators {rwww1,www2} corresponding to the same frequency www = www1 + www2
were summed together, and the sum was then re-indexed according to the frequencies in the joint
spectrum W. From this, one can calculate the expectation value of the observable hOi= Tr[Or 0(xxx)],
thus obtaining again Eq. (3.53).

The same derivation can be applied multiple times for all data encoding gates in the circuit,
which have the net effect of adding more frequencies in the accessible spectrum W. All other
operations instead just impact the coefficients in the series. Thus, we showed that any quantum
circuit that encodes input data via evolutions of the form (3.48) can be expressed as a truncated
Fourier series (3.47) of the inputs, as desired. ⌅

3.3.2.2 A single-qubit data reuploading circuit
Although the Fourier expansion (3.61) is a powerful and concise statement about the output of a
quantum circuit, an inexperienced user might find it difficult to use it on real instances, mainly
because of the rather opaque composition rule (3.60) by which the total frequency spectrum W
is defined. To make things clearer, let’s then consider a simple example of a single-qubit data-
reuploading circuit for a univariate input data x 2 R, namely

fqqq (x) = h0|Uqqq (x)† OUqqq (x)|0i , Uqqq (x) = VL(qqq L)UL(x) · · ·V1(qqq 1)U1(x)V0(qqq 0) , (3.62)

where the encoding gates are Ul(x) = exp(�i xPl), Pl 2 {X/2,Y/2,Z/2} are Pauli rotations. The
eigenvalues of every Pauli matrix are eigvals(Pl) = {±1/2}, so by the definition (3.50), the frequency
spectrum associated to any such matrix is

W(Pl) = {lk�ll | 8lk,ll 2 {±1/2}} = {�1,0,1}, Pl 2 {X ,Y,Z}⇥ 1
2

. (3.63)

When L encoding gates Ul(x) are used load the data, the total spectrum (3.60) will be

W = W(P1)+ . . .+W(PL) = {w1 + · · ·+wL | w1 2W(P1), . . . , wL 2W(PL)}
= {w1 + · · ·+wL | wi 2 {�1,0,1}}
= {�L,�(L�1), . . . ,�1, 0, 1, . . . , L�1, L} ,

(3.64)

The size of the spectrum |W| = 2L+1 directly depends on the number of times the input x appears
in the circuit, as each Pauli encoding gate effectively increases the accessible frequency spectrum
by adding higher order integer frequencies.

Noteworthy, an integer-valued spectrum is a general feature of Pauli encodings, which is due to
their generators having eigenvalues ±1/2. Indeed, this also holds for the more complicated case
of multivariate inputs and multiple qubits: whenever Pauli rotations are used to encode the data
xxx 2 Rd in the quantum circuit, the generated spectrum is integer-valued www 2W⇢ Zd .

76 Chapter 3. Quantum Machine Learning

 = Data encoding = Trainable ansatz

layer

Figure 3.6: Data reuploading quantum circuit in the form of Quantum Neural Network (3.66),
consisting of multiple layers of encoding gates U(xxx) and trainable unitaries V (qqq). Leveraging on
the Fourier analysis developed so far (3.47), we know that the data encoding blocks define which
frequencies {wi} are accessible by the quantum neural network, while the variational unitaries
control the coefficients {ci} of the Fourier expansion. This figure is a custom reproduction of Fig. 1
in [269].

Finally, given the spectrum (3.64), the action of a data reuploading single-qubit quantum circuit
using Pauli encodings can then be expressed as

fqqq (x) =
L

Â
n=�L

cn(qqq)e�inx
, (3.65)

which is a truncated Fourier series of degree L of the input data x.
With a little imagination, one can convince himself that an equivalent result can be obtained

also for higher-dimensional inputs on bigger circuits with multiple qubits. Essentially, whenever
a data coordinate xi is encoded in the circuit, more frequencies of that coordinate appear in the
Fourier expansion of the circuit (3.47).

In conclusion, one can design the frequency spectrum accessible by the circuit by changing the
data encoding strategy, namely the number of encoding gates per coordinate and their generators.
The size of the accessible spectrum, hence the complexity of the Fourier expansion, depends
uniquely on the data encoding strategy, and by considering different eigenvalues of the encoding
generators one can create rather different frequency spectrum [232, 276].

3.3.2.3 Quantum Neural Networks
We have just seen that uploading the data multiple times inside a circuit is of paramount importance
to enrich the class of functions that a quantum machine learning model can express.

Building on such intuition, a class of quantum models that appeared prominently in the literature
are so-called Quantum Neural Networks (QNNs). Although this term is also often used to indicate

3.3 Quantum Machine Learning 77

any variational quantum circuit using a machine learning jargon, it seems reasonable to indicate
with quantum neural networks specifically those parameterised circuits which depend on data (see
definition 3.2) and that use a repeated structure of encoding and variational layers to add input
redundancy, thus increasing the expressivity of the model. More formally, QNNs usually take the
following form

Uqqq (xxx) =
L

’
l=1

U(xxx)Vl(qqq l) , (3.66)

which is a repeated structure of data encoding blocks U(xxx) and trainable operations Vl(qqq), and L is
the number of layers in the quantum neural networks. A graphical representation of this circuit is
shown in Fig. 3.6.

Such circuital architectures made of repeated layers of similar operations make them similar
to how feed-forward neural networks 3.3 are built, and thus “justifies” the name quantum neural
networks. Needless to say, classical and quantum neural networks are completely different objects,
with different properties and corresponding hypothesis classes, and such juxtaposition only holds
on at a conceptual level.

3.3.3 Generalization of QML models
We have just shown that the action of a parameterised quantum model can be written concisely in
closed form as a truncated Fourier series. Such a formulation is very helpful because it exposes
the class of functions that the quantum model can implement, and we can thus use the formalism
of statistical learning not only to define the hypothesis class implemented by data-reuploading
circuits, but also derive statements about their generalisation performances. Indeed, in this section
we give an example of how concepts from classical statistical learning can be applied to characterise
quantum learning models, thus hinting at the fruitful exchange that there can be between these two
fields and consequently highlighting the multidisciplinary nature of subjects like quantum machine
learning.

Let rqqq (xxx) =Uqqq (xxx) |000ih000|Uqqq (xxx)† be the quantum state generated by a data-reuploading quantum
circuit satisfying the assumptions of Th. 3.1, and O the observable estimated on such state. The
hypothesis class implemented by such quantum neural network is

MQNN =

(
xxx 7! f (xxx) = Tr[Orqqq (xxx)] = Â

www2W
cwww e�iwww·xxx �� {cwww}www such that | f (xxx)| kOk•

)
, (3.67)

where the constraint on the coefficients is a consequence of the output of the circuit being the
expectation value of an observable, which is upper bounded by its largest eigenvalue

|hOi| = |Tr[Or]| krk1kOk• = kOk• (3.68)

where we used Hödler’s inequality to upper bound the expectation value in term of the Shatten
p-norms k·kp of the operators9 [30, 315], and krk1 = 1 because it is a density matrix, and kOk• :=
max{|oi| | O = Âi oi |oiihoi|} is the maximum absolute eigenvalue of the observable.

9Given an operator A, its Shatten p-norm is equal to the vector p-norm of its singular values kAkp = ksss(A)kp where
sss(A) is the vector of the singular values of A. A direct proof of the bound (3.68) can also be obtained without resorting
to operator norms, but by direct computation as in eq. (2.31), namely

|hOi| = |Tr[Or]| =

�������
Â

i
oi hoi|r|oii| {z }
�0, r�0

�������
Â

i
|oi|hoi|r|oii max

i
|oi| Â

i
hoi|r|oii

| {z }
=Tr[r]=1

= max
i

|oi| . (3.69)

78 Chapter 3. Quantum Machine Learning

As shown and discussed in Appendix B.1, the hypothesis class MQNN can be further simplified,
so much so that it can be interpreted as a classical linear model (3.26) using a specific Fourier-like
feature map. Indeed, a data-reuploading QNN can be equivalently rewritten as

MQNN =
n

xxx 7! f (xxx) = wwwqqq ·fff(xxx)
�� wwwqqq ,fff(xxx) 2 R|W|

, kwwwqqqk2 2kOk•

o
, (3.70)

where wwwqqq 2R|W| are parameters that depend in a highly non-trivial way on the trainable parameters
xxx, and fff : X ! RW is a feature map that takes an input xxx and maps it to a larger vector whose
entries are Fourier features of the input, see Eq. (B.32). Essentially, this formulation tells us that
data-reuploading quantum circuits can be seen as “linear” models in the Fourier features.

Interestingly, now that the hypothesis class is in the form of a classical “linear” model, one can
use the results from classical statistical learning to characterise the generalisation performances
of a data-reuploading quantum neural network. Indeed, as proved in Appendix. B.1 by adapting
results for classical linear models, one can derive generalisation bounds of the form (3.12) also for
data-reuploading circuits. In fact, using the concepts and notation introduced earlier in Sec. 3.2.1.5,
one can prove the following theorem.

Theorem 3.2 — Generalisation Bound for Quantum Neural Networks (see also Theorem 6
in Ref. [53]). Be Z = X ⇥Y ⇢ [0,2p]d⇥R a data space of inputs and outputs. Consider a data
reuploading quantum circuit whose encoding scheme generates an integer-valued spectrum W,
whose model class is MQNN := {xxx 7! Tr[r(xxx;qqq)O] = Âwww2W cwwwe�iwww·xxx}. Be ` : R⇥R! [0,c] an
L-Lipschitz loss function and define GQNN := {z = (x,y) 7! `(h f (x),y) | f 2MQNN}. For any
d > 0 and probability measure D over Z , with probability at least 1� d over the drawn of a
training set S 2 Zm of size m, for all g 2 GQNN:

LD(g)�LS(g) < 4kOk• L

r
|W|
m

+3c

r
log2/d

2m
(3.71)

A complete derivation of Theorem 3.2 can be found in Appendix B.1, where we first show how
to use Rademacher complexity to prove a generalisation bound for classical linear models, and
then show how this result directly translates to data-reuploading quantum neural networks [193].
Various encoding-dependent generalisation bounds, like the one reported in Theorem 3.2, were
first proved in ref. [53], where the authors use different measures of complexity (Rademacher
Complexity and Covering Numbers) to discuss generalisation performances of data-reuploading
circuits. We remark that, even though our derivation is based on the Rademacher complexity to
measure the complexity of the model, the derivation reported in Appendix B.1 follows an arguably
simpler and more straightforward strategy, based on the realisation that quantum neural networks
can be seen as linear models in a Fourier space (3.67).

The gist of the generalisation bound (3.71) is to show that the generalisation error, namely the
difference between the expected (test) error and the empirical (training) error scales as

Generalisation Error of QNNO
 r

|W|
m

!
, (3.72)

that is, if the Fourier spectrum W of the circuit is too large (which corresponds to a high complexity
of the model) then there are poor guarantees that the model will generalise. However, as expected,
an increased training set size m helps in overcoming the issue.

The generalisation bound (3.71) is specific to data-reuploading quantum circuits that admit a
Fourier representation, where a strong accent is posed on the accessible spectrum defined by the data
encoding strategy. However, many other results have appeared in the quantum machine literature
aiming at characterising the complexity and generalisation performances of quantum models.
Examples are works dedicated to the study of the complexity and performances of linear (implicit

3.3 Quantum Machine Learning 79

or explicit) variational models [86, 121, 141, 170], based on a quantum information-theoretic
approach linking the generalisation performances of a quantum model to the mutual information
between the data-embedded quantum states and the classical data space [19], or generalisation
bounds based on the Fisher information [4]. An extended discussion of such results is far beyond
the scope of the present work, but we refer to [53] for a concise summary of recent results on the
generalisation of quantum machine learning models.

3.3.4 The power of quantum machine learning
Part, if not all, of the reasons for the great success of classical machine learning, is that these
methods perform incredibly well in practice and across a wide variety of domains, even reaching
super-human performances in some cases. Although the theory behind learning models is rich,
interesting and far from being completely understood, it is the practical benefits that drive the
adoption of these learning models for data-intensive tasks.

One would then expect (near-term) quantum machine learning to hold these promises and
even surpass its “ordinary” classical counterpart in terms of performance. However, despite much
recent effort in exploring this topic, the question regarding the power of quantum machine learning
model is still far from being settled, with no clear signs of quantum advantage. However, some
investigations point out directions where a quantum advantage of some sort could be attained.

In terms of model complexity, quantum neural networks were shown to be richer than classical
neural networks of comparable size [4], thus hinting at a possible way to ensure an advantage.
However, not only theoretical analysis on the capacity of learning models does not directly translate
to practical benefits, but generalisation bounds of the form (3.12) suggest care when using complex
models, as these can incur in generalisation performances. Moreover, we have seen that data
reuploading circuits essentially are to truncated Fourier series in disguise, and thus admit a simple
and fully classical interpretation. Consequently, authors in ref. [261] underline how quantum
advantages with these models can only be achieved at training rather than prediction time, since
a surrogate classical model mimicking the prediction of the quantum circuit can be constructed
efficiently via a discrete Fourier transform10.

Regarding quantum kernel methods, authors in ref. [141] show that there may be cases where
these methods have lower prediction error than their classical counterparts, at least on some
engineered datasets, as discussed also in [185]. Specifically, based on the available training data,
the authors introduce a geometric test between the kernel functions implemented by the quantum
and classical models to check whether there is room for a quantum advantage. If such geometric
difference is small, then classical methods will perform similarly or even better. If, on the other
hand, the geometric difference is large, then one can construct classification tasks (training data and
labels) on which quantum models have better prediction errors.

As for quantum data, that is allowing for the possibility of storing and processing quantum
information coming for example from experiments, quantum-native learning models can be shown
to perform better than classical ones [59, 140, 141, 143], even though classical algorithms learning
on data can still perform well, better than classical non-learning procedures, when given access
to quantum datasets [141, 142]. At last, regarding quantum machine learning applications for
classical data on future fault-tolerant quantum computers, there are hopes that QML could provide
polynomial speedups for algebra-based subroutines [59].

Researchers should not be discouraged by the lack of clear advantages, both because the study

10This result can be seen as an application of Nyquist–Shannon sampling theorem to reconstruct a continuous periodical
signal given a discrete set observations. The output of a data-reuploading circuit is a truncated Fourier series (3.47),
which is a periodic signal of the inputs composed of multiple waves having different frequencies. By sampling the signal
—that is, measuring the output of the circuit— at inputs which are distant less than 1/2wmax, where wmax is the largest
frequency in the signal, then one can reconstruct classically the complete action of the circuit. The procedure is efficient
as long as the maximum frequency in the spectrum of the circuit scales polynomially with the number of qubits, even
though this is not always the case [232, 276].

80 Chapter 3. Quantum Machine Learning

of quantum machine learning is inherently interesting from a theoretical point of view [265], and
because the field is still in its early stages and there is much work to be done to fully understand
and harness the power of quantum algorithms for machine learning. As was the case for classical
machine learning, it took many decades and several “winter periods” to transform the first proposals
of learning algorithms in the 1950 [255] into today’s surprisingly powerful artificial intelligence
models. With the strong hope for a shorter incubation period, in the coming years it will be
interesting to see how the field develops and if quantum machine learning can live up to its
potential.

3.4 Conclusions
In this chapter, we have gone through a long journey about classical and quantum learning models.
We have started with a general definition of quantum machine learning, the topic of the chapter and
this entire thesis work, and we argued that different declinations of this field exist, thus explaining
the four-fold way of QML 3.1. Moreover, we underlined our focus here is on near-term applications
of quantum machine learning based on variational quantum algorithms, especially for analysing
classical data.

We then moved to laying the basics of classical machine learning, introducing the main concepts
and tools and discussing two common models, namely linear models and kernel methods, and
neural networks. With these tools, we proceeded to the main part of this chapter where we
discussed examples of quantum machine learning models, showing how they relate to their classical
counterparts. Moreover, we showed how results from classical statistical learning theory can be
applied also to quantum models, which is a very helpful tool to characterise their performances.
At last, we concluded with a birds-eye view of state-of-the-art QML, talking over how and where
quantum computers could bring advantages for learning tasks.

In the following chapters, we will present explicit examples of variational algorithms imple-
menting machine learning models, starting from models of quantum neurons and also showing how
these can be applied to analyse data from real use cases. Then, we will discuss the entanglement
properties of common parameterized quantum neural networks clinging on the relation between
randomness and simulability of the circuit, and finally mention a technique that is not directly
related to quantum machine learning, but can be used to mitigate the noise happening in quantum
measurement procedures.

4. Quantum computing model of an
artificial continuous neuron

4.1 Introduction . 81
4.2 Continuously valued quantum neuron model . 82
4.2.1 Some properties: colour invariance and noise resilience 84
4.2.2 Quantum circuit model of a continuously valued perceptron 85

4.3 Results . 87
4.3.1 Testing the quantum neuron for image recognition tasks 88

4.4 Training the quantum neuron . 88
4.4.1 Classification tasks . 90
4.4.2 MNIST dataset . 92

4.5 Conclusions . 93

In this chapter1 we discuss a newly introduced model for a quantum perceptron, that is a
quantum algorithm mimicking the behaviour of a classical neuron, the building block of artificial
neural networks, see Sec. 3.2.2.2. Specifically, we show how the design for the implementation of a
previously introduced quantum artificial neuron [293], which fully exploits the use of superposition
states to encode binary valued input data, can be further generalised to accept continuous- instead of
discrete-valued input vectors, without increasing the number of qubits. This further step is crucial
to allow for a direct application of gradient descent-based learning procedures, which would not be
compatible with binary-valued data encoding.

4.1 Introduction
Quantum computers hold the promise to greatly enhance the computational power of not-so-distant
in future computing machines [16, 236]. In particular, improving machine learning techniques by
means of quantum computers is the essence of the thriving field of Quantum Machine Learning,
as discussed in Sec 3.1. Several models for the quantum computing version of artificial neurons
have been proposed [50, 163, 168, 268, 293, 302, 319], together with novel quantum machine
learning techniques implementing classification tasks [131, 262, 264], quantum autoencoders [171,
253], quantum convolutional networks [66, 134] and quantum Boltzmann machines [7, 330] to

1The content of this chapter is based on the author’s work [195], and all the figures in this chapter are taken from, or
are adaptations of, the figures present in such work.

82 Chapter 4. Quantum computing model of an artificial continuous neuron

give a non-exhaustive list. In this context, quantum signal processing leverages the capabilities of
quantum computers to represent and elaborate exponentially large arrays of numbers, and it could
be used for enhanced pattern recognition tasks, going beyond the capabilities of classical computing
machines [159]. In these regards, the development of artificial Neural Networks dedicated for
quantum computers [267] is of fundamental importance, due to the preponderance of this type of
classical algorithms in image processing [252].

In the commonly accepted terminology of graph theory, (feed-forward) neural networks are
directed acyclic graphs (DAG), that is a collection of nodes where information flows only in
one direction, without any loop, as shown previously in Fig. 3.3. Each node is called artificial
neuron, since it represent a very simplistic mathematical model for a natural neuron, and consists
of an object that takes some input data, processes them using some internal parameters (weights),
and eventually gives an output value. In their simplest form, these are called McCulloch-Pitts
neurons [203] and only deal with binary values, while in the most common and most useful form,
named Perceptrons [255], they accept real, continuously-valued inputs and weights.

Continuous inputs are not possible in conventional digital computers, and these are usually
represented using bitstrings: for instance, a grey scale image pixel is rendered with integer numbers
ranging from 0 to 255 using 8-bit binary strings. Some approaches propose to use a similar repre-
sentation in quantum computers by assigning several qubits per value [175, 177, 183]. However,
these approaches are particularly wasteful, especially in light of the fact that quantum mechanical
wavefunctions can be inherently represented as continuously valued vectors.

Recent work has introduced a model for a quantum circuit that mimics a McCulloch-Pitts
neuron [293], and in this chapter we generalise this model to the case of a quantum circuit that also
accepts continuous-value input vectors. We thus present a model for a continuous quantum neuron
which, as we shall see, can be used for pattern recognition in grey-scale images without the need to
increase the number of qubits to be employed. This represents a further memory advantage with
respect to classical computation, where an increase in the number of encoding bits is required to
deal with continuous numbers. We employ a phase-based encoding, and show that it is particularly
resilient to noise.

Differently from classical perceptron models, artificial quantum neurons as described, e.g., in
Ref. [293] can be used to classify linearly non separable sets. In the continuously valued case, we
thus harness the behaviour of our quantum perceptron model to show its ability to correctly classify
several notable cases of linearly non separable sets. Furthermore, we test this quantum artificial
neuron for digit recognition on the MNIST dataset [101], with remarkably good results. We further
stress that the present generalisation of the binary-valued artificial neuron model is a crucial step
towards the use of gradient descent-based optimisation techniques (see Eq. (3.10)) that cannot be
applied to the oversimplified integer-valued McCulloch-Pitts neuron model.

4.2 Continuously valued quantum neuron model

Let us consider a perceptron model with real-valued input and weight vectors, respectively indicated
with iii = (i0, . . . , id�1) and www = (w0, . . . ,wd�1), with ik,wk 2 R. A schematic representation of a
classical perceptron model is depicted in Fig. 4.1, whereas its mathematical formulation was
already introduced previously in Eq. (3.35), and also discussed in detail for the case of binary
McCulloch-Pitts neurons in Sec. 5.2 in the next chapter.

Similarly, we define a model of a quantum neuron capable of accepting continuously valued
input and weight vectors, by extending a previous proposal for the quantum computing model of
an artificial neuron only accepting binary valued input data [293], of which we give an extended
review in the next Chapter 5. In order to encode data on a quantum state, we make use of a phase
encoding. Given an input qqq = (q0, . . . ,qd�1) with qi 2 [0,p], consisting of the classical data to be

4.2 Continuously valued quantum neuron model 83

w0i0

w1i1

...
...

...
...

wd�1id�1

Â ikwk Output

Activation
function

Inputs Weights

Figure 4.1: Scheme of a classical perceptron model. The artificial neuron evaluates a weighted sum
between the input vector, iii, and the weight vector, www, followed by an activation function which
determines the actual output of the neuron, see Eq. (3.35).

analyzed, we consider the vector:

iii =
⇣

eiq0 ,eiq1 , . . . ,eiqd�1
⌘

, (4.1)

which we will be referring to as the input vector in the following. For data not lying in the interval
[0,p] but more generally in [a, b], a normalisation scheme can be used to transform the data in the
appropriate range, for example qi! p(qi�a)/(b�a). Explicit examples will be given later. With
the input vector in Eq. (4.1), we define the corresponding input quantum state of n = log2 d qubits

|yii=
1

2n/2

2n�1

Â
k=0

ik |ki , (4.2)

where the states |ki denote the computational basis states of n qubits ordered by increasing binary
representation, namely |00 . . .0i , |00 . . .1i , . . . , |11 . . .1i. Since we are dealing with an artificial
neuron, we have to encode another vector, namely that of the weights jjj = (j0, . . . , jd�1) with
ji 2 [0,p], and the corresponding vector

www =
�
eij0 , eij1 , . . . ,eijd�1

�
(4.3)

which in turn defines the weight quantum state

|ywi=
1

2n/2

2n�1

Â
k=0

wk |ki . (4.4)

Note that (4.2) and (4.4) have the same structure, in that they consist of an equally weighted
superposition of all the computational basis states, although with varying phases. By means of such
encoding scheme, we can fully exploit the exponentially large dimension of the n qubits Hilbert
space, i.e., by only using n qubits it is possible to encode and analyse data of dimension d = 2n.
Due to global phase invariance, the number of actual independent phases is 2n�1, but this does not
spoil the overall efficiency of the algorithm, as we will see. We also note that states of the form

84 Chapter 4. Quantum computing model of an artificial continuous neuron

1
2n/2 Âi eiai |ii, as those in (4.2) and (4.4), are known as locally maximally entanglable (LME) states,
as introduced in [169].

Having defined the input and weight quantum states, their similarity is estimated by considering
the inner product

hyw|yii=
1
2n

2n�1

Â
k, j=0

ikw⇤j h j|ki=
1
2n iii ·www⇤ =

1
2n

⇣
ei(q0�j0) + · · ·+ ei(q2n�1�j2n�1)

⌘
, (4.5)

which corresponds to evaluating the scalar product between the input vector in Eq. (4.1) and the
complex conjugate of the weight vector www⇤ in Eq. (4.3), thus implementing a similar processing of
the classical perceptron algorithm. Since probabilities in quantum mechanics are represented by
the squared modulus of wavefunction amplitudes, we consider |hyw|yii|2, which can be calculated
explicitly as (see App. C.1):

|hyw|yii|2 =
1
2n +

1
22n�1

2n�1

Â
i< j

cos((q j�j j)� (qi�ji)) . (4.6)

One can easily check that |hyw|yii|2 = 1 for qi = ji 8i, since the two states would coincide
in such case. The trigonometric formula in Equation (4.6) represents the activation function
implemented by the proposed quantum neuron. Even if it does not remind any of the activation
functions conventionally used in classical machine learning techniques, such as the Sigmoid or
ReLu functions shown in (3.39), its nonlinearity suffices to accomplish classification tasks, as we
will discuss in the following sections.

4.2.1 Some properties: colour invariance and noise resilience
From Eq. (4.6), we define the activation function of the quantum artificial neuron as

f (qqq ,jjj) = |hyw|yii|2 . (4.7)

Keeping the weight vector jjj fixed, suppose two different input vectors are passed to the quantum
neuron, namely qqq and qqq 0 = qqq +DDD, with DDD = (D, . . . , D). One can easily check that whatever the
value of D, both input vectors will give rise to the same activation function, that is f (qqq ,jjj) =
f (qqq 0,jjj). Hence, two input vectors only differing by a constant, albeit real valued, quantity will
be equally classified by such model of quantum perceptron. Hence, in the context of image
classification, we can state that the present algorithm has a built-in colour translational invariance.
This should not come as a surprise, since the activation function actually depends of the differences
between phases. In fact, the artificial neuron tends to recognise as similar any dataset that displays
the same overall differences, instead of perfectly coincident states.

Next, we assume that the input and weight vectors do coincide, but only up to some noise
corrupting the input vector, such that qqq = jjj + DDD, where DDD = (D0, D1, . . . , D2n�1) represents the
small variations, now assumed to be different on each coordinate. Substituting the above values in
Eq. (4.7), we obtain

f (qqq ,jjj) = f (DDD) =
1
2n +

1
22n�1

2n�1

Â
i< j

cos(D j�Di) . (4.8)

For simplicity of calculation, assume the noise factors are distributed according to a uniform
distribution in the interval Di ⇠ Unif[�a/2,a/2], a 2 R. Then, the activation function averaged
over the probability distribution of Di can be calculated as (see App. C.2)

EDDD[f (DDD)] =
1
2n +

2n�1
2n�1

✓
1� cos(a)

a2

◆
. (4.9)

4.2 Continuously valued quantum neuron model 85

Input data lie in the interval [0,p], thus a reasonable noise is of the order of a some small fraction
of p , which implies a < 1. Specifically, in the case of small noise, Eq. (4.9) reduces to

EDDD[f (DDD)] = 1� 2n�1
2n

a2

12
+O

�
a4� for a⌧ 1 . (4.10)

Thus, the output of the quantum neuron is only slightly perturbed by the presence of noise corrupting
an input vector which would otherwise have a perfect activation. As shown in Appendix C.2, a
similar result can be derived for any input vectors, not only those having perfect activation, and
also for Gaussian —instead of uniform— noise. In this respect, one can find a more recent and
comprehensive analysis on the effect of Gaussian noise on the parameters of variational quantum
algorithms in Ref. [285].

Having outlined the main steps defining the quantum perceptron model for continuously valued
input vectors, we now proceed to build a quantum circuit that allows implementing it on a qubit-
based quantum computing hardware.

4.2.2 Quantum circuit model of a continuously valued perceptron
A quantum circuit implementing the quantum neuron model described above is schematically
represented in Fig. 4.2. It consists of thee main parts: the first section of the circuit, denoted
as Ui, transforms the initial quantum state |000i= |0i⌦n to the input quantum state |yii defined in
Eq. (4.2); then the operation Uw performs the inner product of Eq. (4.5) between the input and
weight quantum state; and finally a multi-controlled CNOT gate targeting an ancillary qubit is used
to extract the final result of the computation, namely Eq. (4.6). We now proceed by explaining in
detail how each of these transformations can be implemented in practice.

...

Encoding
qubits

|0i

Ui Uw

|0i

...

|0i

|0i

Ancilla |0i |hyi|ywi|2

Figure 4.2: Quantum circuit model of a perceptron with continuously valued input and weight
vectors.

Data encoding The Ui operation creates the quantum input state Ui |000i= |yii (4.2), and it can be
implemented by means of a brute-force approach. First of all, we apply a layer of Hadamard gates,
H⌦n, which creates the balanced superposition state H⌦n |000i= |+i⌦n, with |+i= (|0i+ |1i)/

p
2.

The quantum state |+i⌦n consists of the equally weighted superposition of all the states in the
n-qubits computational basis, hence we can target each of them and add the appropriate phase to it
in order to obtain the desired result (4.2). Such transformation is implemented by the diagonal (in
the computational basis) unitary matrix

U(qqq) :=

2

6664

eiq0 0 · · · 0
0 eiq1 · · ·
...

...
. . .

...
0 0 · · · eiq2n�1

3

7775
, (4.11)

86 Chapter 4. Quantum computing model of an artificial continuous neuron

whose action is to phase shift each state of the computational basis as |ii ! eiqi |ii, with phases
qi 2 R, that are (in general) independent from each other. One can decompose such overall unitary
in smaller pieces

U(qqq) =
2n�1

’
i=0

Ũi(qi) , (4.12)

where each Ui(qi) acts as Ũi(qi) |ii= eiqi |ii, while leaving all the other states in the computational
basis unchanged. These unitaries can be constructed with an appropriate combination of Pauli-X
gates and a multi-controlled phase shift gates, Cn�1P(q), where the phase shift P(q) = diag

�
1, eiq�,

was already introduced earlier in Tab. 2.1 while discussing single-qubit gates.
For example, suppose having n = 3 qubits, and consider the state |101i to be phase shifted to

eiq3 |101i. Such transformation can be achieved with the following quantum circuit

= X X

1 0
0 eiq3

�
1 0
0 eiq3

�

whose action is indeed Ũ3(q3) |101i= eiq3 |101i, while leaving all other states of the computational
basis untouched. Iterating a similar gate sequence for each state of the computational basis {|ii},
one eventually obtains the desired overall unitary operation U(qqq) (4.11).

Summarising, we have shown how to build the data encoding quantum circuit Ui that creates
the quantum state |yii (4.2) by means of the operation Ui |000i := U(qqq)H⌦n |000i = |yii, where the
parameters qqq are the input classical data to be analysed (4.2).

Inner product The unitary Uw can then be constructed in a similar fashion. First, one has to
notice that the inner product hyw|yii resides in the overlap between the quantum state |ji,wi :=
(U(jjj)H⌦n)† |yii and the ground state |000i. In fact, by definition of U(fff) in Eq. (4.11), it holds that
U(jjj)H⌦n |000i= |ywi and thus the scalar product is given as

h000|

|ji,wiz }| {�
U(jjj)H⌦n�† |yii= h000|H⌦nU(jjj)†

| {z }
hyw|

|yii= hyw|yii . (4.13)

Then, in order to extract the result, a final layer of Pauli-X gates are applied to all encoding qubits,
such that the desired coefficient now multiplies the state |111i instead of |000i, namely

X⌦n |ji,wi= |eji,wi=
2n�2

Â
k=0

ck |ki+ c2n�1 |11 . . .1i with c2n�1 = hyw|yii . (4.14)

Thus, by combining (4.13) and (4.14), one finds that the transformation Uw of Fig. 4.2 actually
consists in the quantum operations Uw := X⌦nH⌦nU(jjj)†.

Measurement-induced activation function By means of a multi-controlled CnNOT, one
can load the coefficient of interest c2n�1 on an ancillary qubit as follows

CnNOT |eji,wi⌦ |0iancilla =
2n�1

Â
k=0

ck |ki⌦ |0iancilla + c2n�1 |11 . . .1i⌦ |1iancilla . (4.15)

4.3 Results 87

In fact, a final measurement of the ancilla qubit will yield result |1i, interpreted as a firing neuron,
with probability pout = |c2n�1|2 = |hyw|yii|2 = |iii ·www⇤|2/

�
22n�, which is the quantum neuron acti-

vation function we introduced in Eq. (4.6).

We now make a few remarks before proceeding with the application of the proposed neuron
model to practical learning tasks. First of all, we note that the input vector iii 2 Cd (4.2) contains
d = 2n elements, while only n + 1 qubits are required to implement the quantum neuron circuit
in Fig. 4.3. Moreover, the additional ancillary qubit can be easily removed by performing a joint
measurement on all n qubits in the state |ji,wi of Eq. (4.13), and now considering the probability
of measuring |000i instead. However, since machine learning techniques yield their full potential
when used with connected structures of multiple single neurons, and having in mind the idea of
implementing a quantum version of a feedforward neural network, it is essential to have a model
for which information can be easily transferred from a neuron to another. This can be accomplished
by using an ancilla qubit per artificial neuron, as discussed in [295].

Regarding the time complexity, the number of operations required by this quantum circuit
scales linearly with the dimension of the input vectors, but exponentially with the number of qubits.
Indeed, the quantum circuit introduced above requires O(d) ⌘ O(2n) operations to implement
all the phase shifts necessary to build the LME states of Eq. (4.2). Depending of the relation
between the input data, qi 2 qqq 2 Rd , other preparation schemes involving less operations could be
devised [169], and we refer to Appendix C.3 for a more in-depth discussion of this topic.

Finally, it is worth noticing that due to the global phase invariance of quantum states and
probabilities, the activation function in Eq. (4.6) can be recast as

|hyw|yii|2 =
1

22n

�����

2n�1

Â
i=0

ei(qi�ji)

�����

2

=
1

22n

�����1+
2n�1

Â
i=1

ei(q̃i�j̃i)

�����

2

, (4.16)

with q̃i = qi� q0, j̃i = ji�j0, 8 i � 1. By exploiting this redefinition of the parameters, it is
possible to implement the same activation function but employing fewer gates, and it is equivalent
to leaving the state |000i unchanged without associating any phase to it. Depending on the actual
quantum hardware and data, further simplifications to the circuit could be obtained at compiling
time. In Fig. 4.3, the scheme of a quantum circuit implementing the artificial neuron model is
shown for the specific case involving n = 2 qubits.

Ui Uw

|0i H H X

|0i H P
�
q̃1
�

X P
�
q̃2
�

X P
�
q̃3
�

P(-j̃1) X P(-j̃2) X P(-j̃3) H X

|0i

Figure 4.3: Circuital implementation of the continuous quantum neuron with n = 2 qubits. The
parameters are redefined as q̃i = qi�q0, j̃i = ji�j0, as detailed in Eq. (4.16).

4.3 Results
The quantum neuron model introduced above is particularly suited to perform classification tasks
involving gray-scale images. A gray-scale image consists of a grid of pixels whose intensities are
usually represented by integer numbers in the range [0,255]2, as shown below in Fig. 4.4.

2This encoding of gray-scale images employs a single byte (i.e., 8 bits) per pixel on a classical computing register.

88 Chapter 4. Quantum computing model of an artificial continuous neuron

255 170

85 0

Figure 4.4: A grey-scale image with corresponding pixel intensities. This image can be encoded in
the array (255,170,85,0), ordered from top-left to bottom-right. Highest value of intensity (255)
corresponds to a white pixel, while black pixels are associated to minimum (0) intensity.

Since we make use of a phase encoding, all inputs (and weights) of the artificial neuron should
be normalised in an appropriate angular range, such as [0,2p]. However, in this work we further
restrict this domain for two important reasons. First, the values in [0,p] and [p,2p] are equivalent
due to the periodicity in phase and the squared modulus in Eq. (4.6). Secondly, for the same reason,
states with phase j = 0 or j = p yield the same activation function, which in turn means that
images with inverted colours (obtained by exchanging white with black) would be recognised as
equivalent by this perceptron model. Hence, to distinguish a given image from its negative, we
further restrict the input and weight elements to lie in the range [0,p/2]. Thus, an image such as the
one reported in Fig. 4.4 is subject to the normalisation (255,170,85,0)! qqq = p/2

255 (255,170,85,0),
before using it as an input vector to be encoded into the quantum neuron model.

We implemented and tested the quantum perceptron model both on simulators using Qiskit [5]
and also on superconducting real quantum hardware provided by IBM [145], and we now presents
the results in what follows.

4.3.1 Testing the quantum neuron for image recognition tasks
To better appreciate the potentialities of the continuously valued quantum neuron, we analyse
its performance in recognising similar images. Specifically, we fix the weight vector to jjj target =
(p/2, 0, 0, p/2) corresponding to the checkerboard pattern represented in the left panel of Fig. 4.5,
and then generate a few random images to be used as inputs to the quantum neuron.

For each input, the circuit is executed with nshots = 8192 measurement shots to gather enough
statistics to recover an accurate estimation of the activation function (4.15). With m = 30 random
generated images, the results of the classification are depicted in Fig. 4.5, which includes the
analytic results, the results of numerical simulations obtained with the Qiskit QASM Simulator
that simulates stochastic measurement outcomes, and finally the results obtained by executing the
quantum circuits on the ibmqx2-yorktown real device (accessed in March 2020).

The images producing the largest activation are the ones corresponding to input vectors similar
to the checkerboard-like weight vector, thus confirms the desired behaviour of the quantum neuron
in recognising similar images. On the contrary, the images with lowest activation are similar to
the negative of the target weight vector, as desired. Due to noise in the actual quantum processing
device (see Sec. 2.1.6), the statistics of the outcomes from real experiments differ from either
the simulated one and the analytic result. Nevertheless, the same overall behaviour can be easily
recognised, thus showing that the quantum neuron model can be successfully implemented also on
current quantum processors with reliable results, at least for such image recognition task.

4.4 Training the quantum neuron
As we extensively discussed in the previous chapters, in the machine learning jargon the process
of finding the appropriate value for the weights to implement a given task is called training (or
learning), and it is generally based upon an optimization procedure in which a cost function is
minimised by some gradient descent technique (3.10). Ideally, the minimum of the cost function
corresponds to the targeted solution.

4.4 Training the quantum neuron 89

jjj target

9 19

7 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0.0

0.2

0.4

0.6

0.8

Analytic
QASM
IBMQX2

Figure 4.5: Results of the image recognition task performed by a quantum artificial neuron, obtained
by running the corresponding quantum circuit with either the Qiskit QASM Simulator backend,
and with the ibmqx2-yorktown real quantum processor, and we also report the corresponding
analytical values. The target weight vector jjj target is fixed, and m = 30 random images are given as
input vectors to the quantum artificial neuron. For each input, the corresponding quantum circuit is
executed nshots = 8192 times. The checkerboard-like image corresponds to the target weight vector
jjj target = (p/2, 0, 0, p,2), while the images displaying respectively largest and lowest activation
are the ones labelled as ‘19’ and ‘12’. Input vectors labelled as ‘9’ and ‘7’ are examples of images
with high and low activation, respectively.

A simple learning task for the proposed quantum neuron is to recognise a single given input.
That is, starting from an input vector qqq target, we aim at finding a weight vector jjj yielding an
high activation. A naive yet efficient choice for the loss function driving the learning process is
L(jjj) =

�
1� f (qqq target,jjj)

�2, where f (qqq target,jjj) is the activation function of the artificial neuron
as in Eq. (4.7), qqq 0 is the input vector, and jjj is the trainable vector of the weights. Clearly, the
minimum of the loss L(jjjopt) = 0 is achieved when the quantum neuron has full activation, that is
f (qqq target,jjjopt) = 1. Since the activation function implemented by the quantum perceptron is given
in Eq. (4.6), we know that a perfect activation can be obtained when the input and weight vectors
are exactly coincident, jjjopt = qqq target, although other solutions may do equivalently well.

In our experiments, the minimization process is driven by the Simultaneous Perturbation
Stochastic Approximation (SPSA) [287] algorithm, which is built for optimization processes char-
acterized by the presence of noise and is thus particularly effective in the presence of probabilistic
measurement outputs. Indeed, we implement all training procedures in the presence of shot noise
by simulating the quantum neuron circuits with Qiskit qasm_simulator.

In Fig. 4.6 we report the training results for the the task of recognising the input vector
qqq target = (p/5, 0, p/3, 0.1), whose equivalent grey-scale representation is shown in panel 4.6b.
As expected, the cost function is readily minimised by varying the weight vector, and it rapidly
converges to values close to zero after a few iteration steps. In this case, the minimum of the
loss is achieved at jjjfinal = (1.03, 0.19, 1.47, 0.61), whose grey-scale representation is plotted in
Figure 4.6b. Even though the input and weight vector are not numerically equivalent, we see that
the final weight image actually looks very much like the target one. In fact, the two images retain
almost the same shades of grey, with the optimised one being a bit shifted towards the brightest end
of the spectrum. This is in agreement with the discussion in Sec. 4.2.1 regarding colour invariance,
where we noticed that the neuron is blind to overall colour shifts.

90 Chapter 4. Quantum computing model of an artificial continuous neuron

0 10 20 30 40 50 60
0

0.1

0.2

0.3

Training step

Cost Function

(a)

qqq target jjjstart

!

jjjfinal

(b)

Figure 4.6: Training the quantum neuron to recognise an input pattern. (a) Minimisation of the cost
function L(jjj) =

�
1� f (qqq target,jjj)

�2, as a function of the training steps using the SPSA optimiser
and simulating the quantum circuits with Qiskit qasm_simulator. (b) Images corresponding to
the target input vector qqq target, the randomly initialised starting weight vector jjjstart, and the one
obtained at the end of the optimisation procedure jjjfinal.

4.4.1 Classification tasks
We now move our attention to classification tasks, where we want the neuron to assign a given
desired label to an input. Specifically, we consider supervised binary classification problems3,
where training inputs {qqq i}m

i=1 are associated to binary labels, {yi}m
i=1, yi 2 {0,1}, and the artificial

neuron is asked to reproduce such mapping between inputs and labels.
In order to implement a binary dichotomy with a perceptron model, it is common practice to

introduce a threshold value t, such that if the activation of the neuron is higher than t, then the
output of the neuron is 1, and it is 0 otherwise. Formally, given an input qqq i and weight vector jjj ,
the label ŷi predicted by the quantum neuron is

ỹi(jjj) =

(
1 if f (qqq i,jjj) > t
0 otherwise

. (4.17)

where f (qqq i,jjj) is the activation of the neuron (4.6). Note that the the threshold t is actually a
hyperparameter for our model, and in the following simulations it was heuristically optimized in
order to achieve the best classification accuracy.

As with any supervised learning task, the training process is driven by empirical risk minimi-
sation (3.4), where in this case we picked as a loss function an Mean Squared Error like distance
between the correct label from the one predicted by the artificial neuron, namely

L(jjj) =
1
m

m

Â
i=1

(yi� ỹi(jjj))2
, (4.18)

where m is the number of samples in the training set, yi is the correct label associated to input data
qqq i, and ŷi(jjj) is the label predicted by the neuron according to the decision rule (4.17). We now
proceed discussing two specific classification tasks on which the quantum neuron was tested.

4.4.1.1 Classification of two-dimensional data
As a first example, we considered a classification problem of the form {(qqq i,yi)}m

i=1, in which inputs
qqq i =

⇣
q (i)

1 ,q (i)
2

⌘
2 [0,p/2]2 are two dimensional input data, and yi 2 {0,1} their labels, indicated

by red (y = 0) and blue (y = 1) dots in Fig. 4.7. Since the data are two dimensional we only need a

3This can be generalised in the case of a multi-class classification by adopting a one versus all approach.

4.4 Training the quantum neuron 91

single qubit to encode the information in the quantum state, and also in this case all simulations
were performed using Qiskit qasm_simulator, thus taking into account the statistical noise due to
finite number of shots.

The panel 4.7a shows the data samples in the training set, while those shown in panel 4.7b are
those in the test set, along with the decision boundary that the quantum neuron learnt at the end of
the optimisation procedure. The cost function in Eq. (4.18) is minimised using the SPSA optimiser
and its behaviour is reported in Fig. 4.7c. Training proceeds towards a minimum of the empirical
loss, and, as shown in Fig. 4.7b, at the end of training the optimised neuron implements a perfect
classification also on the test set.

q1

q 2

(a)
q1

q 2

(b)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Training Step

Cost Function

(c)

Figure 4.7: Classification of two dimensional data. (a) Input data used as training set. (b) Test set
and decision boundary implemented by the optimised quantum neuron at the end of the learning
procedure. The threshold used in the decision rule (4.17) is set to t = 0.95. (c) Optimisation with
the SPSA optimiser run on Qiskit qasm_simulator.

4.4.1.2 Classification of non separable data using a bias
We have just seen that a single neuron is capable of classifying some type of two dimensional
data, but this procedure is not guaranteed to succeed on more structured dataset. Indeed, for a
classification task with the data shown Fig. 4.8a, the single-qubit encoding of the previous model is
not enough.

q1

q 2

(a)
q1

q 2

(b)

0 50 100 150 200 250 300
0

0.2

0.4

Training Step

Cost Function

(c)

Figure 4.8: Classification of two dimensional circles. (a) Input data used as the training set. (b)
Test set and decision boundary implemented by the optimised neuron at the end of the learning
procedure. The threshold used in this example is t = 0.95, and the bias b = 0.25. (c) Optimisation
by the SPSA optimiser run on the QASM Simulator. Each iteration in the optimisation procedure was
performed calculating the loss over a batch of just 20 samples instead of the full training dataset,
which explains why the error is not smooth but presents several spikes.

However, such a problem can be tackled successfully by a quantum neuron using two qubits,

92 Chapter 4. Quantum computing model of an artificial continuous neuron

which allows for additional degrees of freedom and thus increased expressivity. In fact, with n = 2
qubits it is possible to encode 22 = 4 parameters on the quantum states of interest: one can be kept
fixed to zero4, two of these are used to encode the actual input data to be analysed, and the last free
parameter can be interpreted as a bias term, to be tuned accordingly to ensure good performances.

Thus, a convenient encoding scheme is to consider a two-qubit quantum neuron whose input
vectors are four-dimensional vectors of the form qqq = (0, q1, q2, 0), and the weight vector is given
by jjj = (0, j1, j2, b), where b denotes the bias term, which in our simulations is an hyperparameter
that we choose heuristically. In Fig. 4.8 we show the results of training such model by minimising
the empirical risk (4.18) on the training data shown in panel (a). After the learning procedure,
reported in Fig. 4.8c, the neuron learns a decision boundary that achieves perfect score also on the
test set, as shown in Fig. 4.8b.

4.4.2 MNIST dataset
As a concluding example, we briefly discuss how the proposed quantum neuron model could be
used to analyse the widely known MNIST dataset [179], which is a set containing 70.000 gray-scale
images of digits, from zero to nine. For simplicity, we limit our analysis to only images of zeros
and ones, of which we show two examples in the left panel of Fig. 4.9. Note that each image in
the MNIST dataset is composed of 28⇥28 pixels, which is not of the form 2n/2⇥2n/2 required to
be encoded on the quantum state of an artificial neuron of n qubits, admitting d = 2n input data.
Thus, we preprocess the images by adding a number of white pixels so that modified images have
dimension 32⇥32 pixels, which can be given as inputs to a quantum neuron of n = 10 qubits.

(a)

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(b)

Figure 4.9: Application of the quantum neuron on the MNIST dataset. (a) Examples of a ‘0’ and a
‘1’ drawn from the MNIST dataset. (b) Matrix containing the fidelities of some samples of “one”
and “zero” images taken from the MNIST dataset, evaluated with the activation function in Eq. (4.6)
and implemented by our quantum neuron model.

The focus of the analysis is to check whether the activation function implemented by the
proposed model (4.6) is effective at discriminating between the encoded images of zeros and ones.
With this goal in mind, one way to proceed is to fix the weight vector of the artificial neuron to a
sample of a ‘1’ selected from the MNIST dataset, and then calculate the activation function of the
neuron when other images of zeros and ones are fed as inputs. By using such a quantum neuron with
the decision rule in Equation (4.17) with threshold set to t = 0.85, the cost function (4.18) evaluated
on a set of m = 2060 images amounts to L ⇠ 0.02, implying a remarkably good classification

4The activation function in Eq. (4.6) only depends on the differences between the parameters, thus fixing one of the
parameters to a constant value can be thought just as choosing a reference point. In other words, the additional parameter
is a global phase that can be ignored.

4.5 Conclusions 93

accuracy of 98%5. Moreover, in the right panel of Fig. 4.9, we also report the activation function
obtained for several pairs on zeros and ones. According to the artificial neuron, ones are more
similar to each other with respect to the zeros, as the fidelities are higher generally much higher
(top left corner of the matrix). Even if classical machine learning techniques can easily yield a
classification accuracy above 99%, the present results show a remarkable degree of precision, also
considering that in this particular example just a single quantum neuron has been used for the
classification.

In addition, we also tested a training-based procedure in which each image in the MNIST
dataset is first compressed to a 4⇥4 image by means of a mean pooling filter that aggregates values
of neighbouring pixels to a single value, and then passed to the neuron. After training, the neuron
reaches a best accuracy of about 80%, which, although far from perfect, shows the potential of the
activation function implemented by the quantum neuron to be used also for recognition of complex
patterns, such as numerical digits.

Our quantum neuron model performs well when compared with other proposed quantum al-
gorithms for the classification of the MNIST dataset. In fact, alternative algorithms have been
proposed for this task, some of them using a hybrid classical-quantum approach, such as lever-
aging well established classical pre/post processing of data through classical machine learning
techniques [5, 160]. These hybrid approaches may yield higher (although comparable) classification
accuracy when compared to our quantum neuron model. However, we emphasise that in our case
the artificial neuron model is fully quantum in nature. When compared to other works [41, 101]
using only quantum resources and reporting accuracies of the order of 85% to 98%, our model
seems to yield comparable or better results.

4.5 Conclusions
We have reported on a novel quantum algorithm allowing to implement a generalised perceptron
model on a qubit-based quantum device that accepts and analyses continuously valued input data.
The proposed algorithm is translated into a quantum circuit model to be readily run on existing
quantum hardware. It takes full advantage of the exponentially large Hilbert space available
to encode input data on the phases of large superposition states, known as locally maximally
entanglable (LME) states. These LME states can be constructed with a bottom-up approach, by
imprinting each single phase separately. However, it should be stressed that alternative and possibly
more efficient strategies could directly yield such states as ground states of suitable Hamiltonians,
or as stationary states from dissipative processes [169].

The proposed continuously valued quantum neuron proves to be a good candidate for classifica-
tion tasks and pattern recognition involving grey-scale images. In particular, the activation function
implemented by the quantum neuron yields very high accuracy in the order of 98% when used
to discriminate between images of zeros and ones from the MNIST dataset, thus indicating the
ability to distinguish also complex patterns. Moreover, thanks to the phase encoding, the neuron
can leverage a built-in “colour translational" invariance, as well as significant noise resilience.

A further step would be to consider multiple layers of connected quantum neurons to build a
continuous quantum feed-forward neural network, as proposed in [295] for binary-valued quantum
neurons. Another important investigation is the design of approximate methods to perform the
weight unitary transformation in a way which scales more favourably with the number of encoding
qubits, a topic which is at the core of the following Chapter 5. Moreover, in Chapter 6 we will
discuss how the application of phase encoding to other quantum machine learning techniques,
namely quantum autoencoders.

5True and predicted labels are yi, ŷi 2 {0,1}, and so the loss function (4.18) effectively measures the number of
misclassified data, that is the number samples for which the true and predicted labels are different.

5. Variational learning for quantum neural
networks

5.1 Introduction . 94
5.2 A model of quantum artificial neurons . 95
5.2.1 Exact implementation with quantum hypergraph states 97

5.3 Variational realisation of a quantum artificial neuron 97
5.3.1 Global variational training . 98
5.3.2 Local variational training . 99
5.3.3 Case study: pattern recognition . 100
5.3.4 Structure of the ansatz and scaling properties . 101

5.4 Conclusions . 106

In this chapter1, we first review a series of recent works describing the implementation of
artificial neurons and feed-forward neural networks on quantum processors, and subsequently
present an original realisation of efficient individual quantum nodes based on variational unsam-
pling protocols. While keeping full compatibility with the overall memory-efficient feed-forward
architecture, our constructions effectively reduce the quantum circuit depth required to determine
the activation probability of single neurons upon input of the relevant data-encoding quantum
states. This suggests a viable approach towards the use of quantum neural networks for pattern
classification on near-term quantum hardware.

5.1 Introduction
This chapter is dedicated to the study and improvement of a recently proposed quantum algorithm
implementing the activity of binary-valued artificial neurons for classification purposes, whose
generalisation to continuous variables was the topic of the previous chapter 4.

Although formally exact, this algorithm for a quantum neuron in general requires quite large
circuit depth for the analysis of the input classical data. To mitigate for this effect we introduce
a variational learning procedure, based on quantum unsampling techniques, aimed at critically
reducing the quantum resources required for its realisation. Indeed, we investigate different learning
strategies involving global and local layer-wise cost functions, and we assess their performances
also in the presence of statistical measurement noise. By combining memory-efficient encoding

1The content of this chapter is based on the author’s work [296], and all the figures in this chapter are taken from, or
are adaptations of, the figures present in such work.

5.2 A model of quantum artificial neurons 95

schemes and low-depth quantum circuits for the manipulation and analysis of quantum states,
the proposed methods suggest a practical route towards problem-specific instances of quantum
computational advantage in machine learning applications.

5.2 A model of quantum artificial neurons
The simplest formalisation of an artificial neuron can be given following the classical model
proposed by McCulloch and Pitts [203]. In this scheme, a single node receives a set of binary
inputs {i0, . . . ,xd�1} 2 {�1,1}d , which can either be signals from other neurons in the network
or external data. The computational operation carried out by the artificial neuron consists in first
weighting each input by a synapse coefficient w j 2 {�1,1} and then providing a binary output
y 2 {�1,1} denoting either an active or rest state of the node determined by an integrate-and-fire
response

y =

(
1 if Â j w jx j � t
�1 otherwise

(5.1)

where t represents some predefined threshold.
A quantum procedure closely mimicking the functionality of a binary valued McCulloch-Pitts

artificial neuron can be designed by exploiting, on one hand, the superposition of computational
basis states in quantum registers, and on the other hand the natural non-linear activation behaviour
provided by quantum measurements. In this section, we will briefly outline a device-independent
algorithmic procedure [293] designed to implement such a computational model on a gate-based
quantum processor. More explicitly, we show how classical input and weight vectors of size m can
be encoded on a quantum hardware by using only n = log2 d qubits [249, 262, 295]. For loading
and manipulation of data, we describe a protocol based on the generation of quantum hypergraph
states [256]. This exact approach to artificial neuron operations will be used in the main body as a
benchmark to assess the performances of approximate variational techniques designed to achieve
more favourable scaling properties in the number of logical operations with respect to classical
counterparts.

Let iii and www be binary input and weight vectors of the form

iii =

0

BBB@

i0
i1
...

id�1

1

CCCA
www =

0

BBB@

w0
w1
...

wd�1

1

CCCA
(5.2)

with i j,w j 2 {�1,1} and d = 2n. A simple and qubit-effective way of encoding such collections of
classical data can be given by making use of the relative quantum phases (i.e. factors ±1 in our
binary case) in equally weighted superpositions of computational basis states. We then define the
states

|yii=
1p
d

d�1

Â
j=0

i j | ji , |ywi=
1p
d

d�1

Â
j=0

w j | ji (5.3)

where, as usual, we label computational basis states with integers j 2 {0, . . . ,d�1} corresponding
to the decimal representation of the respective binary string. The set of all possible states which can
be expressed in the form above is known as the class of hypergraph states [256] and are a special
case of the more general states treated in the previous Chapter 4, where we allowed the coefficients
of the computational basis to be arbitrary phases eiq rather than just signs ±1.

According to Eq. (5.1), the quantum algorithm must first perform the inner product iii ·www. As
shown earlier for the case of the continuous neuron, the inner product between inputs and weights

96 Chapter 5. Variational learning for quantum neural networks

is contained in the overlap hyw|yii= www · iii/d [293], and one can explicitly compute such overlap
on a quantum register through a sequence of iii- and www-controlled unitary operations. For clarity of
exposition, we hereby summarise again the steps necessary to calculate the overlap of interest, and
we refer to the previous chapter for a more detailed discussion.

First, assuming that we operate on a n-qubit quantum register starting in the blank state
|0i⌦n, we can load the input-encoding quantum state |yii by performing a unitary transformation
Ui such that Ui |0i⌦n = |yii. It is important to mention that this preparation step would most
effectively be replaced by, e.g., a direct call to a quantum memory [111], or with the supply of data
encoding states readily generated in quantum form by quantum sensing devices to be analyzed or
classified. It is indeed well known that the interface between classical data and their representation
on quantum registers currently constitutes one of the major bottlenecks for Quantum Machine
Learning applications [31].

Let now Uw be a unitary operator such that

Uw |ywi= |1i⌦n = |d�1i (5.4)

In principle, any d⇥d unitary matrix having the elements of www appearing in the last row satisfies
this condition. If we apply Uw after Ui, the overall n-qubits quantum state becomes

Uw |yii=
d�1

Â
j=0

c j | ji=: |ji,wi (5.5)

Using Eq. (5.4), we then have

hyw|yii= hyw|U†
wUw|yii= hm�1|fi,wi= cm�1 (5.6)

We thus see that, as a consequence of the constraints imposed to Ui and Uw, the desired result
iii ·www µ hyw|yii is contained up to a normalisation factor in the coefficient cd�1 of the final state
|ji,wi.

The final step of the algorithm must access the computed input-weight scalar product and
determine the activation state of the artificial neuron. In view of constructing a general architecture
for feed-forward neural networks [295], it is useful to introduce an ancilla qubit a, initially set in
the state |0i, on which the cd�1 µ hyw|yii coefficient can be written through a multi-controlled
CNOT gate, where the role of controls is assigned to the n encoding qubits [293]:

|fi,wi |0iancilla!
d�2

Â
j=0

c j | ji |0iancilla + cd�1 |d�1i |1iancilla (5.7)

At this stage, a measurement of ancillary qubit a in the computational basis provides a probabilistic
non-linear threshold activation behaviour, producing the output |1i state, interpreted as an active
state of the neuron, with probability |cd�1|2. Although this form of the activation function is already
sufficient to carry out elementary classification tasks and to realise a logical XOR operation [293],
more complex threshold behaviours can in principle be engineered once the information about the
inner product is stored on the ancilla [50, 302]. Equivalently, the ancilla can be used, via quantum
controlled operations, to pass on the information to other quantum registers encoding successive
layers in a feed-forward network architecture [295]. It is worth noticing that directing all the
relevant information into the state of a single qubit, besides enabling effective quantum synapses,
can be advantageous when implementing the procedure on real hardware on which readout errors
constitute a major source of inaccuracy. Nevertheless, multi-controlled NOT operations, which are
inherently non-local, can lead to complex decompositions into hardware-native gates especially in
the presence of constraints in qubit-qubit connectivity. When operating a single node to carry out
simple classification tasks or, as we will do in the following sections, to assess the performances
of individual portions of the proposed algorithm, the activation probability of the artificial neuron
can then equivalently be extracted directly from the register of N encoding qubits by performing a
direct measurement of |ji,wi targeting the |d�1i ⌘ |1i⌦n computational basis state.

5.3 Variational realisation of a quantum artificial neuron 97

5.2.1 Exact implementation with quantum hypergraph states
A general and exact realisation of the unitary transformations Ui and Uw can be designed by using
the generation algorithm for quantum hypergraph states [293]. The latter have been extensively
studied as useful quantum resources [107, 256], and are formally defined as follows. Given a
collection of n vertices V , we call a k-hyper-edge any subset of exactly k vertices. A hypergraph
gn = {V,E} is then composed of a set V of vertices together with a set E of hyper-edges of
any order k, not necessarily uniform. Notice that this definition includes the usual notion of a
mathematical graph if k = 2 for all (hyper)-edges. To any hypergraph gn we associate a n-qubit
quantum hypergraph state via the definition

|gni=
n

’
k=1

’
{qv1 ,...,qvk}2E

CkZqv1 ,...,qvk
|+i⌦n (5.8)

where qv1 , . . . ,qvk are the qubits connected by a k-hyper-edge in E and, with a little abuse of
notation, we assume C2Z ⌘ CZ and C1Z ⌘ Z = RZ(p). For n qubits there are exactly 22n�1

different hypergraph states. We can make use of well known preparation strategies for hypergraph
states to realise the unitaries Ui and Uw with at most a single n-controlled CnZ and a collection of p-
controlled CpZ gates with p < n. It is worth pointing out already here that such an approach, while
optimising the number of multi-qubit logic gates to be employed, implies a circuit depth which
scales linearly in the size of the classical input, i.e. O(d)⌘O(2n), in the worst case corresponding
to a fully connected hypergraph [293].

To describe a possible implementation of Ui, assume once again that the quantum register of n
encoding qubits is initially in the blank state |0i⌦n. By applying parallel Hadamard gates (H⌦n) we
obtain the state |+i⌦n, corresponding to a hypergraph with no edges. We can then use the target
collection of classical inputs iii as a control for the following iterative procedure:

Algorithm 2: Quantum hypergraph states generation routine [293]
for P = 1, . . . , n do

for j = 0, . . . , d�1 do
if | ji has exactly P qubits in |1i and i j =�1 then

Apply CPZ to those qubits;
Flip the sign of ik in iii 8k such that |ki has the same P qubits in |1i;

end
end

end

Similarly, Uw can be obtained by first performing the routine outlined above (without the initial
parallel Hadamard gates) tailored according to the classical control www: since all the gates involved
in the construction are the inverse of themselves and commute with each other, this step produces a
unitary transformation bringing |ywi back to |+i⌦n. The desired transformation Uw is completed
by adding parallel H⌦n and NOT⌦n gates [293].

5.3 Variational realisation of a quantum artificial neuron
Although the implementation of the unitary transformations Ui and Uw outlined above is formally
exact and optimises the number of multi-qubit operations to be performed by leveraging on the
correlations between the ±1 phase factors, the overall requirements in terms of circuit depth pose in
general severe limitations to their applicability in non error-corrected quantum devices. Moreover,
although with such an approach the encoding and manipulation of classical data is performed in
an efficient way with respect to memory resources, the computational cost needed to control the

98 Chapter 5. Variational learning for quantum neural networks

execution of the unitary transformations and to actually perform the sequences of quantum logic
gates remains bounded by the corresponding classical limits. Therefore, the aim of this section
is to explore conditions under which some of the operations introduced in our quantum model of
artificial neurons can be obtained in more efficient ways by exploiting the natural capabilities of
quantum processors.

In the following, we will mostly concentrate on the task of realising approximate versions of the
weight unitary Uw with significantly lower implementation requirements in terms of circuit depth.
Although most of the techniques that we will introduce below could in principle work equally
well for the preparation of encoding states |yii, it is important to stress already at this stage that
such approaches cannot be interpreted as a way of solving the long standing issue represented
by the loading of classical data into a quantum register. Instead, they are pursued here as an
efficient way of analysing classical or quantum data presented in the form of a quantum state.
Indeed, the variational approach proposed here requires ad-hoc training for every choice of the
target vector www whose Uw needs to be realised. To this purpose, we require access to many copies
of the desired |ywi state, essentially representing a quantum training set for our artificial neuron.
As in our formulation a single node characterized by weight connections www can be used as an
elementary classifier recognising input data sufficiently close to www itself [293], the variational
procedure presented here essentially serves the double purpose of training the classifier upon input
of positive examples |ywi and of finding an efficient quantum realisation of such state analyser.

5.3.1 Global variational training

...

(a) (b)

Figure 5.1: Variational learning via unsampling. (a) Global strategy, with optimization targeting all
qubits simultaneously. (b) Local qubit-by-qubit approach, in which each layer is used to optimize
the operation for one qubit at a time.

According to Eq. (5.4), the purpose of the transformation Uw within the quantum artificial
neuron implementation is essentially to reverse the preparation of a non-trivial quantum state
|ywi back to the relatively simple product state |1i⌦n. Notice that in general the qubits in the
state |ywi share multipartite entanglement [107]. Here we discuss a promising strategy for the
efficient approximation of the desired transformation satisfying the necessary constraints based
on variational techniques. Inspired by the well known variational quantum eigensolver (VQE)
algorithm [230], and in line with a recently introduced unsampling protocol [54], we define the
following optimization problem: given access to independent copies of |ywi and to a variational
quantum circuit, characterized by a unitary operation V (qqq) and parametrized by a set of angles
qqq , we wish to find a set of values qqq opt that guarantees a good approximation of Uw. The heuristic
circuit implementation typically consists of sequential blocks of single-qubit rotations followed
by entangling gates, repeated up to a certain number that guarantees enough freedom for the
convergence to the desired unitary [155].

Once the solution V (qqq opt) is found, which in our setup corresponds to a fully trained artificial
neuron, it would then provide a form of quantum advantage in the analysis of arbitrary input states

5.3 Variational realisation of a quantum artificial neuron 99

|yii as long as the circuit depth for the implementation of the variational ansatz is sub-linear in
the dimension of the classical data, i.e. sub-exponential in the size of the qubit register. As it
is customarily done in near-term VQE applications, the optimization landscape is explored by
combining executions of quantum circuits with classical feedback mechanisms for the update of the
qqq angles. In the most general scenario, and according to Eq. (5.4), a cost function can be defined as

F(qqq) = 1� |h11 . . .1|V (qqq)|ywi|2 , (5.9)

and the solution qqq opt represented by

qqq opt = argmin
qqq

F(qqq) (5.10)

which leads to V (qqq opt) 'Uw. We call this approach a global variational unsampling as the cost
function in Eq. (5.9) requires all qubits to be simultaneously found as close as possible to their
respective target state |1i, without making explicit use of the product structure of the desired
output state |1i⌦n. It is indeed well known that VQE can lead in general to exponentially difficult
optimization problems [202], however the characteristic feature of the problem under evaluation
may actually allow for a less complex implementation of the VQE for unsampling purposes [54],
as outlined in the following section. A schematic representation of the global variational training is
provided in Fig. 5.1a.

5.3.2 Local variational training
An alternative approach to the global unsampling task, particularly suited for the case we are
considering in which the desired final state of the quantum register is fully unentangled, makes
use of a local, qubit-by-qubit procedure. This technique, which was recently proposed and tested
on a photonic platform as a route towards efficient certification of quantum processors [54], is
highlighted here as an additional useful tool within a general quantum machine learning setting.

In the local variational unsampling scheme, the global transformation V (qqq) is divided into
successive layers Vj(qqq j) of decreasing complexity and size. Each layer is trained separately, in a
serial fashion, according to a cost function which only involves the fidelity of a single qubit to its
desired final state. More explicitly, every Vj(qqq j) operates on qubits j, . . . ,n and has an associated
cost function

F j(qqq j) = 1� h1|Tr j+1,...,n[r j]|1i , (5.11)

where the partial trace leaves only the degrees of freedom associated to the j-th qubit and, recur-
sively, we define

r j =

(
Vj(qqq j)r j�1V †

j (qqq j) j > 1
|ywihyw| j = 0

. (5.12)

At step j, it is implicitly assumed that all the parameters qqq k for k = 1, . . . , j� 1 are fixed to the
optimal values obtained by the minimisation of the cost functions in the previous steps. Notice that,
operationally, the evaluation of the cost function F j can be automatically carried out by measuring
the j-th qubit in the computational basis while ignoring the rest of the quantum register, as shown
in Fig. 5.1b.

The benefits of local variational unsampling with respect to the global strategy are mainly
associated to the reduced complexity of the optimisation landscape per step. Indeed, the local
version always operates on the overlap between single-qubit states, at the relatively modest cost
of adding n�1 smaller and smaller variational ansätze. In the specific problem at study, we thus
envision the local approach to become particularly effective, and more advantageous than the global
one, in the limit of large enough number of qubits, i.e. for the most interesting regime where the size
of the quantum register, and therefore of the quantum computation, exceeds the current classical
simulation capabilities.

100 Chapter 5. Variational learning for quantum neural networks

5.3.3 Case study: pattern recognition

To show an explicit example of the proposed construction, let us fix m = 16, n = 4. Following
Ref. [293], we can visualise a 16-bit binary vector~b, see Eq. (5.2), as a 4⇥4 binary pattern of black
(b j =�1) and white (b j = 1) pixels. Moreover, we can assign to every possible pattern an integer
label kb corresponding to the conversion of the binary string kb = b0 . . .b15, where b j = (�1)b j .
We choose as our target www the vector corresponding to kw = 20032, which represents a black cross
on white background at the north-west corner of the 16-bit image, see Fig 5.2.

!(a) (b) (c) www

Figure 5.2: Comparison of output activation pout = |hyw|yii|2 among the exact (hypergraph states
routine), global (n = 3) and local (n0 = 2) approximate implementations of Uw. The inset shows
the general mapping of any 16-dimensional binary vector~b onto the 4⇥4 binary image (b) and
the cross-shaped ~w used in this example (c). The selected inputs on which the approximations are
tested were chosen to cover all the possible cases for pout, and are labelled with their corresponding
integer ki (see main text).

Starting from the global variational strategy, we construct a parametrized ansatz for V (qqq) as a
series of entangling E and rotation R(qqq) cycles:

V (qqq) =

l

’
c=1

R(qc,1, . . . ,qc,4)E
!
R(q0,1, . . . ,q0,4) , (5.13)

where l is the total number of cycles which in principle can be varied to increase the expressibility
of the ansatz by increasing its total depth. Rotations are assumed to be acting independently on the
n = 4 qubits according to

R(qc,1, . . . ,qc,4) =
4O

q=1
RY (qc,q) =

4O

q=1
exp
✓
�i

qc,q

2
Y (q)

◆
, (5.14)

where Y (q) is the Pauli-Y matrix acting on qubit q. At the same time, the entangling parts promote

5.3 Variational realisation of a quantum artificial neuron 101

all-to-all interactions between the qubits according to2

E = ’
q

4

’
q0=q+1

CNOTqq0 , (5.15)

where CNOTqq0 is the usual controlled NOT operation between control qubit q and target q0 acting
on the space of all 4-qubits. For l cycles, the total number of q -parameters, including the initial
rotation layer R(q0,1, . . . ,q0,4), is therefore 4+4l.

A qubit-by-qubit version of the ansatz can be constructed in a similar way by using the same
structure of entangling and rotation cycles, decreasing the total number of qubits by one after each
layer of the optimization. Here we choose a uniform number l0 of cycles per qubit (this condition
will be relaxed afterwards, see Sec. 5.3.4), thus setting 8 j 6= 4

Vj(qqq j) =

l0

’
c=1

R(qc, j, . . . ,qc,4)E
!
R(q0, j,q0,4) (5.16)

For j = 4, we add a single general single-qubit rotation with three parameters

V4(a,b ,g) = exp

�i

(a,b ,g) ·sss (4)

2

!
(5.17)

where sss = (X ,Y,Z) are again the usual Pauli matrices.
We implemented both versions of the variational training in Qiskit [5], combining exact

simulation of the quantum circuits required to evaluate the cost function with classical Nelder-
Mead [218] and Cobyla [235] optimizers from the scipy Python library. We find that the values
l = 3 and l0 = 2 allow the routine to reach total fidelities to the target state |1i⌦n well above
99.99%. As shown in Fig 5.2, this in turn guarantees a correct reproduction of the exact activation
probabilities of the quantum artificial neuron with a quantum circuit depth of 19 (29) for the global
(qubit-by-qubit) strategy, as compared to the total depth equal to 49 for the exact implementation of
Uw using hypergraph states. This counting does not include the gate operations required to prepare
the input state, i.e. it only evidences the different realisations of the Uw implementation assuming
that each |yii is provided already in the form of a wavefunction. Moreover, the multi-controlled
CPZ operations appearing in the exact version were decomposed into single-qubit rotations and
CNOTs without the use of additional working qubits. Notice that these conditions are the ones
usually met in real near-term superconducting hardware endowed with a fixed set of universal
operations.

5.3.4 Structure of the ansatz and scaling properties
In many practical applications, the implementation of the entangling block E could prove technically
challenging, in particular for near term quantum devices based, e.g., on superconducting wiring
technology, for which the available connectivity between qubits is limited. For this reason, it
is useful to consider a more hardware-friendly entangling scheme, which we refer to as nearest
neighbours. In this case, each qubit is entangled only with at most two other qubits, essentially
assuming the topology of a linear chain

Enn =
3

’
q=1

CNOTq,q+1 (5.18)

2As discussed later in Chapter 7, this all-to-all entangling scheme is actually equivalent to nearest-neighbour linear
chain of CNOTs in reversed order. Thus, differences in performances between this entangling strategy E in Eq. (5.15)
and the nearest-neighbour one Enn in Eq. (5.18) discussed in this chapter are likely to be attributed to the former one
being more suited to the specific tasks analysed in this work, rather then to the creation of “more" entanglement, as one
would reasonably expect. Although the creation of nontrivial entanglement is necessary to avoid classical simulability
(see Ch. 7), these results confirm the importance of choosing problem-inspired variational ansätze for ensuring good
performances.

102 Chapter 5. Variational learning for quantum neural networks

This scheme may require even fewer two-qubit gates to be implemented with respect to the all-to-all
scheme presented above. Moreover, this entangling unitary fits perfectly well on those quantum
processors consisting of linear chains of qubits or heavy hexagonal layouts.

We implemented both global and local variational learning procedures with nearest neighbours
entanglers in Qiskit [5], using exact simulation of the quantum circuits with classical optimizers to
drive the learning procedure. In the following, we report an extensive analysis of the performances
and a comparison with the all-to-all strategy introduced in Sec. 5.3.3 above. All the simulations are
performed by assuming the same cross-shaped target weight vector www depicted in Fig. 5.2.

In Figure 5.3 we show an example of the typical optimization procedure for three different
choices of the ansatz depth (i.e. number of entangling cycles) l = 1,2,3, assuming a global cost
function. Here we find that l = 3 allows the routine to reach a fidelity F(qqq) to the target state |1i⌦n

above 99%.

Figure 5.3: Optimisation of the global unitary with nearest neighbours entanglement for three
different structures differing in the numbers of entangling blocks l. The cost function is
|h11 . . .1|V (qqq)|ywi|2 = 1�F(qqq), see Eq. (5.9). Only for l = 3 the learning model has enough
expressibility to reach a good final fidelity. The classical optimiser used in this case was
COBYLA [235].

In the local qubit-by-qubit variational scheme, we can actually introduce an additional degree
of freedom by allowing the number of cycles per qubit, l0, to vary between successive layers
corresponding to the different stages of the optimization procedure. For example, we may want
to use a deeper ansatz for the first unitary acting on all the qubits, and shallower ones for smaller
subsystems. We thus introduce a different l0j for each Vj(qqq j) in Eq. (5.16) and we name structure
the string ‘l1l2l3’. The latter denotes a learning model consisting of three optimization layers:
V1(qqq 1) with l1 entangling cycles, V2(qqq 2) with l2 and V3(qqq 3) with l3, respectively. In the last step of
the local optimization procedure, i.e. when a single qubit is involved, we always assume a single
3-parameter rotation, see Eq. (5.17). A similar notation will be also applied in the following when
scaling up to n > 4 qubits.

The effectiveness of different structures is explored in Figure 5.4a. We see that, while the
all-to-all entangling scheme typically performs better in comparison to the nearest neighbour one,
this increase in performance comes at the cost of deeper circuits. Moreover, the stepwise decreasing
structure ‘321’ for the nearest neighbour entangler proves to be an effective solution to problem,
achieving a good final accuracy (above 99%) with a low circuit depth. This trend is also confirmed
for the higher dimensional case of n = 5 qubits, which we report in Fig. 5.4b. Here, the dimension

5.3 Variational realisation of a quantum artificial neuron 103

of the underlying pattern recognition task is increased by extending the original 16-bit weight
vector www with extra 0s in front of the binary representation kw. In fact, it can easily be seen that,
assuming directly nearest neighbours entangling blocks, the decreasing structure ‘4321’ gives the
best performance-depth trade-off.

(a) (b)

Figure 5.4: Final fidelity for different structures and number of qubits. (a) Final fidelity obtained for
the local variational training and using both the all-to-all entangler E (5.15) and nearest neighbour
Enn (5.18). On top of each rectangle, in light blue, it is reported the depth of the corresponding
quantum circuit to implement that given structure with that particular entangling scheme. For
clarity, a structure ‘211’ corresponds to a variational model having two repetitions (l01 = 2) for the
first layer acting on all 4 qubits, and 1 cycle (l01 = l02 = 1) for the remaining two layers acting on
3 and 2 qubits respectively. Each bar was obtained executing the optimization process 10 times,
and then evaluating the means and standard deviations (shown as error bars). The optimization
procedure was performed using COBYLA [235]. (b) Final fidelities for different structures of the
local variational learning model with a nearest neighbour entangler, for the case of n = 5 qubits.
Similarly to the case with n = 4 qubits portrayed in Figure 5.4a, the most depth-efficient structure
is the one consisting of constantly decreasing number of cycles.

Such empirical fact, namely that the most efficient structure is typically the one consisting
of decreasing depths, can be heuristically interpreted by recalling again that, in general, the
optimization of a function depending on the state of a large number of qubits is a hard training
problem [202]. Although we employ local cost functions, to complete our particular task each
variational layer needs to successfully disentangle a single qubit from all the others still present
in the register. It is therefore not totally surprising that the optimization carried out in larger
subsystems requires more repetitions and parameters (i.e. larger n0j) in order to make the ansatz
more expressive.

By assuming that the stepwise decreasing structure remains sufficiently good also for larger
numbers of qubits, we studied the optimization landscape of global (5.9) and local (5.11) cost
functions by investigating how the hardness of the training procedure scales with increasing n.
As commented above for n = 5 qubits, we keep the same underlying target www, which we expand
by appending extra 0s in the binary representation. To account for the stochastic nature of the
optimization procedure, we run many simulations of the same learning task and report the mean
number of iterations needed for the classical optimiser to reach a given target fidelity F = 95%,
and we report simulation results in Figure 5.5.

The most significant message is that the use of the aforementioned local cost function seems
to require higher classical resources to reach a given target fidelity when the number of qubits
increases. This actually should not come as a surprise, since the number of parameters to be
optimised in the two cases is different. In fact, in the global scenarios there are n+n · l (the first n

104 Chapter 5. Variational learning for quantum neural networks

Figure 5.5: Number of iterations of the classical optimiser to reach a fidelity of F = 95%. Each
point in the plot is obtained by running the optimization procedure 10 times and then evaluating
the mean and standard deviation (shown as error bars in the plot). All results refer to exact
simulations of the quantum circuits in the absence of statistical measurement sampling or device
noise, performed with Qiskit statevector_simulator.

is due to the initial layer of rotations) parameters to be optimised, while in the local case there are
n+n · l01 for the first layer, (n�1)+(n�1) · l02 for the second and so on, for a total of

#local =
n

Â
q=2

q+ql0q +3 , (5.19)

where the final 3 is due to the fact that the last layer always consist of a rotation on the Bloch sphere
with three parameters, see Eq. (5.17). Using the stepwise decreasing structure, that is n0q = q�1,
we eventually obtain Ân

q=2 q+q(q�1) = Ân
q=2 q2 ⇠ O(n3), compared to #global ⇠ O(n2). Here we

are assuming a number of layers l = n�1, consistently with the n = 4 qubits case (see Figure 5.3).
While in the global case the optimization makes full use of the available parameters to globally
optimize the state towards |1i⌦n, the local unitary has to go through multiple disentangling stages,
requiring (at least for the cases presented here) more classical iteration steps. At the same time, it
would probably be interesting to investigate other examples in which the number of parameters
between the two alternative schemes remains fixed, as this would most likely narrow the differences
and provide a more direct comparison.

In agreement with similar investigations [283], we can actually conclude that only modest
differences between global and local layer-wise optimization approaches are present when dealing
with exact simulations (i.e. free from statistical and hardware noise) of the quantum circuit. Indeed,
both strategies achieve good results and a final fidelity F(qqq) > 99%. At the same time, it becomes
interesting to investigate how the different approaches behave in the presence of noise, and specifi-
cally statistical noise coming from measurements operations. For this reason, we implemented the
measurement sampling using Qiskit qasm_simulator and employed a stochastic gradient descent
(SPSA) classical optimization method. Each benchmark circuit is executed nshots = 1024 times in
order to reconstruct the statistics of the outcomes. Moreover, we repeat the stochastic optimization
routine multiple times to analyse the average behaviour of the cost function.

In Figure 5.6 we show the optimization procedure for the local and global cost functions in
the presence of measurement noise, with both of them reaching acceptable and identical final

5.3 Variational realisation of a quantum artificial neuron 105

0 1000 2000 3000 4000 5000 6000
0.0

0.2

0.4

0.6

Co
st

Fu
nc

tio
ns

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4

0 2000 4000 6000 8000 10000
SPSA Iteration

0.2

0.4

0.6

0.8

1.0

Co
st

Fu
nc

tio
n

Mean cost function
1-� range

(a)

(b)

Figure 5.6: Optimisation of cost functions for the local (a) and global (b) case in the presence
of measurement noise for n = 5 qubits. In each figure we plot the mean values averaged on 5
runs of the simulation. The shaded coloured areas denote one standard deviation. The number
of measurement repetitions in each simulation was nshots = 1024. The final fidelity at the end of
the training procedure in this case were Flocal = 0.87± 0.02 and Fglobal = 0.89± 0.02. Notice
the difference in the horizontal axes bounds. (a) Optimisation of the local cost functions Vj(qqq j)
(see Eq. (5.11)), plotted with different colours for clarity. The vertical dashed lines denotes the
end of the optimization of one layer, and the start of the optimization for the following one. (b)
Optimisation of the global cost function V (qqq) in Eq. (5.9)

.

fidelities Flocal = 0.87±0.02 and Fglobal = 0.89±0.02. Notice that for the local case (Figure 5.6a)
each coloured line indicates the optimization of a Vj(qqq j) from Eq. (5.11). We observe that the
training for the local model generally requires fewer iterations, with an effective optimization of
each single layer. On the contrary, in the presence of measurement noise the global variational
training struggles to find a good direction for the optimization and eventually follows a slowly
decreasing path to the minimum. These findings look to be in agreement, e.g., with results from
Refs. [57, 283]: with the introduction of statistical shot noise, the performances of the global model
are heavily affected, while the local approach proves to be more resilient and capable of finding a
good gradient direction in the parameters space [57]. In all these simulations, the parameters in the
global unitary and in the first layer of the local unitary were initialised with a random distribution
in [0,2p). All subsequent layers in the local model were initialised with all parameters set to zero
in order to allow for smooth transitions from one optimization layer to the following. This strategy
was actually suggested as a possible way to mitigate the occurrence Barren plateaus [115, 283].

We conclude the scaling analysis by reporting in Fig. 5.7 a summary of the quantum circuit
depths required to implement the target unitary transformation with different strategies and for
increasing sizes of the qubit register up to n = 7. As it can be seen, all the variational approaches
scale much better when compared to the exact implementation of the target Uw, with the global
ones requiring shallower depths in the specific case. In addition, we recall that the use of an
all-to-all entangling scheme requires longer circuits due to the implementation of all the CNOTs,
but generally needs less ansatz cycles (see Figure 5.4a). At last, while the global procedures seem
to provide a better alternative compared to local ones in terms of circuit depth, they might be more

106 Chapter 5. Variational learning for quantum neural networks

Figure 5.7: Scaling of circuit depth for the implementation of Uw computed with Qiskit. The labels
locals and global refer to the local and global variational approaches, while a2a and nn refer to the
all-to-all and nearest-neighbour entangling schemes respectively. The number of ansatz cycles used
for both the global (l) and local/qubit-by-qubit (l0) variational constructions and for each entangling
structure are increased with the number of qubits up to the minimum value guaranteeing a fidelity
of the approximations above 98%.

prone to suffering from classical optimization issues [202, 283] when trained and executed on real
hardware, as suggested by the data reported in Fig. 5.6. The overall promising results confirm the
significant advantage brought by variational strategies compared to the exponential increase of
complexity required by the exact formulation of the algorithm.

5.4 Conclusions
In this chapter we reviewed an exact model for the implementation of artificial neurons on a quantum
processor and we introduced variational training methods for efficiently handling the manipulation
of classical and quantum input data. Through extensive numerical analysis, we compared the
effectiveness of different circuit structures and learning strategies, highlighting potential benefits
brought by hardware-compatible entangling operations and by layerwise training routines. Our
analysis suggests that quantum unsampling techniques represent a useful resource, upon input of
quantum training sets, to be integrated in quantum machine learning applications.

From a theoretical perspective, our proposed procedure allows for an explicit and direct
quantification of possible quantum computational advantages for classification tasks. It is also worth
pointing out that such a scheme remains fully compatible with recently introduced architectures
for quantum feed-forward neural networks [293], which are needed in general to deploy e.g.
complex convolutional filters. Moreover, although the interpretation of quantum hypergraph states
as memory-efficient carriers of classical information guarantees an optimal use of the available
dimension of a n-qubit Hilbert space, the variational techniques introduced here can in principle be
used to learn different encoding schemes designed, e.g., to include continuous-valued features or to
improve the separability of the data to be classified [44, 131, 264].

In all envisioned applications, our proposed protocols are intended as an effective method for
the analysis of quantum states as provided, e.g., by external devices or sensors, while it is worth
stressing that the general problem of efficiently loading classical data into quantum registers still
stands open. Finally, on a more practical level, a successful implementation on near-term quantum

5.4 Conclusions 107

hardware of the variational learning algorithm introduced in this work will necessarily rely on a
deeper analysis of the impact of realistic noise effects both on the training procedure and on the
final optimised circuit. In particular, we anticipate that the reduced circuit depth produced via the
proposed method could critically lessen the quality requirements for quantum hardware, eventually
leading to meaningful implementation of quantum neural networks within the near-term regime.

6. Quantum autoencoder and classifier for
an industrial use case

6.1 Introduction . 108
6.2 Case study . 109
6.3 Neural network autoencoder . 110
6.3.1 Classical Autoencoders . 112

6.4 Quantum Data Compression . 113
6.4.1 Quantum Autoencoder . 113

6.5 Experiments and Results . 115
6.5.1 Data compression . 115
6.5.2 Classification . 119

6.6 Conclusions . 121

Quantum computing technologies are in the process of moving from academic research to real
industrial applications, with the first hints of quantum advantage demonstrated in recent months.
In these early practical uses of quantum computers it is relevant to develop algorithms that are
useful for actual industrial processes. In this chapter1, we propose a quantum pipeline, comprising
a quantum autoencoder followed by a quantum classifier, which are used to first compress and then
label classical data coming from a separator, i.e., a machine used in one of Eni’s Oil Treatment
Plants. This study represents one of the first attempts to integrate quantum computing procedures in
a real-case scenario of an industrial pipeline, in particular using actual data coming from physical
machines, rather than pedagogical data from benchmark datasets.

6.1 Introduction
In this chapter we test the use of quantum machine learning algorithms on a specific industrial use
case. In particular, we propose the application of a newly formulated quantum pipeline comprising
a quantum autoencoder algorithm [38, 161, 171, 253] followed by a quantum classifier, applied
to real data coming from a first stage water/oil separator of one of Eni’s oil treatment plant. This
algorithm is compared to the performance of a classical autoencoder to compress the original data,
which are then used to implement a classification task. It is particularly relevant to notice that

1The content of this chapter is based on the author’s work [196], and all the figures in this chapter are taken from, or
are adaptations of, the figures present in such work.

6.2 Case study 109

these quantum autoencoding algorithms can be run on presently existing quantum hardware, thus
making such quantum machine learning algorithm readily usable with actual input data coming
from a realistic source of industrial interest. While various models of variational autoencoders in
the quantum domain have been proposed in the literature, for example for generative modelling
tasks [161] and for the study of entanglement in quantum states [62], our implementation of the
quantum autoencoder directly follows the architecture proposed by authors in [253], which is often
studied as a prototypical model in the quantum machine learning literature [57], and it was also
even extended to feature input redundancy [229], as discussed in [38].

The chapter is organised as follows. In Sec. 6.2 we explain and give the specifics of the
industrial case study considered in this work. In Sec. 6.3 we introduce the classical neural network
model of the autoencoder, and also discuss the clustering algorithm used to create the two classes
for the classification problem. In Sec. 6.4 we review the quantum algorithm developed for a
continuously valued input neuron already discussed in Chapter 4 [195], from which the quantum
algorithm for the quantum autoencoder is derived. In Sec. 6.5 we show the results obtained for the
data compression task, comparing them with those obtained with the purely classical autoencoder.
At last in Sec. 6.5.2, we use the compressed data to implement a quantum classifier used to label
the original data in a binary classification problem.

6.2 Case study
The industrial case study discussed in this Chapter aims at testing classical and quantum machine
learning approaches to analyse data coming from an industrial equipment within one of Eni’s Oil
Treatment plants, showed in Fig. 6.1. The equipment is a separator, i.e. a vessel receiving a stream

Figure 6.1: Snapshot of the separator. The separator is regulated with three controllers: a pressure
controller for the output gas stream, and two-level controllers for the water and the oil stream. The
controllers use PID controller equations to regulate the opening of valves on the output streams.

of high pressure, high temperature crude oil (left part of the figure, indicated with a black stream),
and exploits gravity to separate three output streams: Water (the heaviest component), indicated in
the figure with a light blue stream; Oil (intermediate component), in the lower part of the figure
indicated with a black stream; and Gas (lightest component), indicated with a light grey stream.
The separator is regulated with three controllers: a pressure controller for the output gas stream,
and two-level controllers for the water and the oil stream. Notice that the controllers use PID

110 Chapter 6. Quantum autoencoder and classifier for an industrial use case

(proportional – integral – derivative) controller equations to regulate the opening of valves on the
output streams.

In a realistic machine learning problem, we might wish to use all the measurements coming
from the sensors installed on this component, as well as on some of the components installed
upstream, in order to predict if the behavior of the equipment is normal or faulty (i.e. working
in a degraded mode). However, due to the limitation in the complexity of the problems that can
currently be faced with quantum computing, we will focus on a simplified problem, involving only
4 variables, that are: the oil level (LIC), the oil output flow (FT), the pressure (PI), and the opening
of the oil output valve (FRC). Sensor measurements are sampled every 10 seconds and stored into
data tables to be used for the training of the neural networks.

The first step of the case study is the implementation of a dimensionality reduction procedure
to compress the 4-dimensional input vector xxx = (xFRC, xFT, xLIC, xPI) 2 R4 into a 2-dimensional
vector. This is done both via a standard classical neural network autoencoder and a quantum
autoencoder, introduced in Sec. 6.3 and Sec. 6.4 respectively.

The second step is the implementation a classifier using the 2-dimensional latent vector from
the compression step to classify the status of the component. In order to do so, we need a labelled
training dataset associating an input xxxi to a label yi = {0,1} corresponding to the “ok” or “faulty”
state respectively. However, since 4 variables are too few to label the working status of the separator
as “ok” or “faulty”, we followed a different approach, as explained in the upper left panel of Fig. 6.2.
We run a binary clustering algorithm on the initial variables, in order to identify two categorical
states, named as “Class A” and “Class B”, and then used these categorical states as the labels for
the classification task. So, the latent vector from the encoder is used as input for the classifier, that
is trained to correctly predict the “Class A” and “Class B” states. The clustering algorithm used is
the KMeans algorithm as implemented in the scikit-learn library [228]. This algorithm takes as
input the desired number of clusters, in our case two, and tries to split the data in groups of equal
variance. The centroids of the clusters were initialised uniformly at random. In Fig. 6.2 we show
the result of the clustering procedure, where for ease of plotting we show only three of the four
variables. This categorical dataset is then used to train a classical and quantum classifier, whose
implementation details and results are discussed in Sec. 6.5.2.

In Table 6.1 we summarise the findings of our work, showing the key figures (compression
error and classification accuracy) for the classical and quantum pipelines considered in the case
study.

Table 6.1: Key figures for the compression and classification tasks for the classical and quan-
tum procedures considered. The compression task is implemented with classical and quantum
autoencoders; the classification task is implemented with a KNeighborsClassifier and with a single
qubit variational classifier. Compression error refers to the average reconstruction error defined in
Eq. (6.6). Classification accuracy is defined as the percentage of correctly classified data.

Compression error Classification accuracy

Classical 5% 89.7%
Quantum 5.4% 87.4%

Quantum hardware (ibmq_x2) — 82.3%

6.3 Neural network autoencoder
As extensively discussed in Sec 3.2, the most common use case of artificial neural networks is
supervised learning, where the network is asked to learn a mapping from an input to an output
space, by having access to an example set of input-output pairs. Specifically, for classification tasks

6.3 Neural network autoencoder 111

(a) (b)

(c)

Figure 6.2: (a) The approach followed in this project: a clustering algorithm was used to define
two categorical classes (Class A and Class B). Then, an autoencoder was used to reduce the
dimensionality of the problem. Finally, a classifier was used to predict Class A and Class B
identified with the clustering algorithm. (b) Results of the clustering algorithm KMeans on the
input data. In particular, only the features FRC, FT and LIC are shown. The different colour
indicates the different label (or class) assigned to the data. (c) Plot of the decoded data on top of the
original validation data averaged by day. Here the features were rescaled to their original range.

the network is presented a labelled dataset S =
�
(xxxi,yi)⇢ Rd⇥{0,1 . . . ,c�1}

 m
i=1 consisting of a

set of inputs xxxi and the corresponding correct labels y j, with c being the total number of classes
the inputs can be divided into (see upper left side of Fig. 6.3). Using this dataset, called training
set, a neural network can be trained in a supervised fashion to learn the relationship between the
input variables and the expected classification results. When the training is complete, the neural
network model can be used for inference, that is for labelling previously unseen data. This property
of neural networks, called generalisation, is ultimately the key figure that distinguishes them from
standard fitting techniques, making them incredibly powerful tools [112, 128, 178, 210].

When dealing with real world problems, such as classifying the operational status of a plant
as “ok” or “faulty” based on the measurements from the sensors installed on the plant, it is often
the case that a large number of input variables are available. In fact, measurements coming from
tens of sensors need to be analyzed not only on their instantaneous values, but also on additional
features computed on time intervals, such as moving averages, and minimal/maximal values trends.
This leads to a situation where too many input variables are available in the dataset, and it is often
ineffective to directly feed them into the neural network classifier. With such a large number of
variables, correlation analysis and feature engineering are often performed to focus only on the

112 Chapter 6. Quantum autoencoder and classifier for an industrial use case

most influencing variables, and only after these preprocessing steps the neural network can be
used effectively. Another strategy is to use a dimensionality reduction approach, consisting in
computing a new set of variables, smaller than the initial one, incorporating most —ideally all— of
the information contained in the original data. These new compressed data are then used as inputs
to the classifier, as shown in Fig. 6.3a.

(a)

(b)
(c)

Figure 6.3: (a) Reducing the dimensionality of a classification problem. (b) Using Autoencoders
to reduce the dimensionality of a problem and solving the classification problem on the reduced
variable set. (c) Schematic representation of the neural network autoencoder architecture. The input
neurons in red are mapped to an hidden layer (in green) of lower dimension, storing the compressed
information. Then, an output layer with the same number of neurons as the input one, tries to
restore the original data with low error.

In order to reduce the problem dimensionality, methods such as PCA (Principal Component
Analysis) or SVD (Singular Value Decomposition) [128] are typically used. However, these
methods are based on linear decomposition of the initial variable space, and they could not be
suitable when nonlinear relationships between the variables need to be kept into account.

6.3.1 Classical Autoencoders
An alternative method to reduce the dimensionality of the problem is to use so-called Autoen-
coders [112], as shown in Fig 6.3c. An autoencoder is a neural network composed of two modules,
called encoder and decoder, designed in such a way that the subsequent application of the encoder
and the decoder to the input data results into an output that is as close as possible to the input,
i.e. the discrepancy between output and input is minimised. With such an approach, the encoder
builds a compressed representation of the input data to be eventually used by the decoder to fully,
and as faithfully as possible, reconstruct the input. This means that the compressed representation
built by the encoder (often referred to as latent vector) contains the same information of the initial
input space, or at least that minimum information is lost. Once the autoencoder has been trained to
reconstruct the input, the latent vector can be used as the input space for the classifier. Therefore,
the classification problem can be described as shown in Fig. 6.3b.

6.4 Quantum Data Compression 113

In our case study, we consider a neural autoencoder as shown in Fig. 6.3c. The original input
variables are fed to the input neurons, which are then passed to an intermediate hidden level (shown
in green) consisting of a number of neurons much smaller than the input. Finally, there is an output
layer (shown in red) with the same number of neurons as the input. The neural network is trained
in an unsupervised fashion in order to generate an output that is as close as possible to the input.
Thus, if it is possible to reconstruct the input (with a minimum loss of fidelity) starting from the
inner layer, this means that the inner layer contains the same information as the input, and therefore
we can use the compressed layer as an input for the classifier. The presence of non-linear activation
functions within the neural network, such as the Rectified Linear Unit ReLU(x) = max(0,x), or
sigmoid s(x) = 1/(1+e�x) (see Eqs. (3.39)), ensures that the network can better capture non-linear
relationships in the input variables compared to PCA or SVD.

6.4 Quantum Data Compression
In order to use a quantum pipeline to analyse the classical data coming from the sensors, we need
to encode such data on a quantum state to be used as the input of the quantum autoencoder. As
discussed in Sec. 3.3.2 regarding the Fourier expansion of quantum circuits, recent literature points
out the importance of choosing a good encoding scheme, even though no standard procedure is yet
available [4, 109, 174, 189, 209, 269].

Given the relatively simple and low dimensional nature of the data sets to be analyzed, we
choose to use the phase encoding strategy introduced earlier when discussing models of quantum
perceptrons [195, 293]. This strategy provides an effective way to load classical data into a
quantum state, and also already proved useful in other machine learning tasks such as pattern-
recognition [195, 293, 295, 296]. In particular, given a data sample xxx = (x1,x2, . . . ,xd) 2 RN , this
is encoded on the quantum state of n = log2 d qubits as follows (see Eq. (5.3))

|yxxxi=
1

2n/2

2n�1

Â
i=0

eixi |ii (6.1)

where the data xxx are first re-scaled to fit into an appropriate range, such as xi 2 [0,p]. We refer
to Chapters 4 and 5 for an extended discussion on this class of states for variational quantum
procedures.

6.4.1 Quantum Autoencoder
Having fixed a data encoding strategy, we now build a variational quantum algorithm for data
compression. In particular, borrowing from the classical machine learning literature, our goal is to
implement a quantum autoencoder [38, 171, 253]. In classical autoencoders, the compression is
built in the geometric structure of the neural network, since the input layer is followed by a much
smaller hidden layer consisting of a number of neurons equal to the desired reduced dimension.
This bottleneck forces the NN to learn a low dimensional representation of the inputs, which is
stored in the intermediate hidden layer(s) of the network. However, this procedure cannot be
straightforwardly applied to the quantum domain, because quantum computations follow a unitary,
thus reversible, evolution. In fact, while classically it is possible to perform fan-in(fan-out)
operations, that is arbitrarily reducing (increasing) the number of classical bits in the computation,
such operations are irreversible, which prevents their direct implementation on a quantum computer.
Alternatively said, it is not possible to eliminate or create new qubits during the execution of a
quantum computation.

Nonetheless, it is possible to circumvent this issue as follows. Consider two quantum systems,
denoted as system A and system B, and be |yiAB the quantum state of the composite quantum
system AB. Our goal is to compress the information stored in the composite state in a lower
dimensional representation, for example given by the state of subsystem A only, with system B

114 Chapter 6. Quantum autoencoder and classifier for an industrial use case

being safely discarded. We can formalise this intuition in the following way: denote with E(qqq) a
quantum encoding (in the sense of compressing) operation depending on variational parameters qqq ,
then the desired compression task consists in the operation

E(qqq) |yiAB = |fiA⌦ |trashiB , (6.2)

where the state |yiAB of the composite system AB is compressed on the state |fiA of subsystem A
only, and the system B is mapped to a fixed reference state of choice, called trash state, for example
being the ground state |trashiB = |0i⌦|B|, with |B| = dim(HB) being the dimension of the Hilbert
HB space associated to system B.

It is clear that the goal of the encoder is to disentangle the two systems in such a way that one
of them, the trash system, goes to the fixed reference state, while the other contains all the original
information of the full quantum state. In order to recover the original quantum state |yiAB, it is
then possible to act with a quantum decoder operation D(qqq), defined as D(qqq) := E(qqq)†. Indeed,
acting with the decoder on the compressed state yields the original state, namely

D(qqq)(|fiA⌦ |trashiB) = D(qqq)(E(qqq) |yiAB) =
�
E(qqq)†E(qqq)

�
|yiAB = |yiAB . (6.3)

Thus, suppose having compressed the information stored in the quantum state of a composite
system into one of its subsystems. Then, it is always possible to retrieve the original information
by coupling such information-carrying system with some new qubits initialised in the |trashi state,
and then act on them with the quantum decoder operator, as schematically represented in Fig. 6.4.

Compressed state| iAB E(✓)

trash |0i

D(✓)

Figure 6.4: Schematic representation of the generic quantum autoencoder algorithm. The composite
input quantum state |yiAB is disentangled, so that system A carries the compressed information,
and system B, called “trash” system, is mapped to a reference quantum state of choice like
|trashiB = |000iB, and it can be discarded. Such procedure may then be reversed by coupling the
information-carrying system A with a new set of clean qubits, and then applying a joint quantum
decoder operation D(qqq) := E†(qqq) to retrieve the original state.

Of course, this only holds in the ideal case where the encoder perfectly manages to disentangle
the subsystems A and B, by obtaining the product state in Eq.(6.2). In practice, this is never the
case since the input state |yiAB depends on the classical input data via the phase encoding, and
these states cannot be exactly disentangled, in general. In fact, after discarding the trash system B,
the compressed state A is no more a pure state, rather a mixed state given by the density matrix
rA = TrB[(E(qqq) |yABi)(hyAB|)E(qqq)†)]. However, upon optimization of the variational parameters
qqq , the trained encoder creates a final state as close as possible to the target product state of Eq. (6.2).

Training the quantum autoencoder The initial quantum state |yiAB is obtained by us-
ing phase encoding to load the classical information on the phase of the quantum state, with
the following scheme. Be

�
xxxi |xxxi 2 Rd

, i = 1, . . . ,m

the set containing the classical data to
be analyzed, then the quantum autoencoder is trained using the quantum states obtained as�
|yxxxi= Âi eixi |ii |8xxx 2 X

. In our specific case, the classical data are four dimensional d = 4 and

6.5 Experiments and Results 115

thus we only need n = log2 d = 2 qubits to encode the data. This in turn implies that the compressed
system A and the trash subsystem B consist of a single qubit each.

Given the input data, the variational parameters qqq of the encoder E(qqq) are optimised in order
to rotate the trash qubit as close as possible to the target trash state, which we choose to be
|trashi := |0i. This is achieved by means of a training procedure whose aim is to find optimal
parameters qqq ⇤ such that the loss function L(qqq) characterising the task is minimised. That is, the
goal of training is to find

qqq ⇤ = argmin
qqq

L(qqq) with L(qqq) =
1
m

m

Â
j=1

���1�hZBi j

��� , (6.4)

where we have defined

hZBi j :=
⌦
yxxx j

��E†(qqq)(IA⌦ZB)E(qqq)
��yxxx j

↵
(6.5)

as the mean value of the Pauli-Z operator evaluated on the trash system B, after the encoder
E(qqq) acted on the input quantum state

��yxxx j

↵
depending on the j-th sample xxx j. The loss function

used in Eq. (6.4) is referred to as Mean Absolute Error (MAE) in the classical machine learning
literature, and together with the Mean Squared Error (MSE) is the one of the most commonly
employed loss functions in supervised regression tasks, which is also our case. Note that the
loss function is faithful, in the sense that it reaches its global minimum L(qqq ⇤) = 0, only when
hZBi j = 1, 8 j = 1, . . . ,m, that is when the trash qubit is always and perfectly disentangled from the
other qubit, and mapped to the target trash state |0i. A schematic representation of the quantum
circuit used for the training procedure is explicitly shown in Fig. 6.5a.

Variational ansatz The actual quantum circuit implementation of the encoder E(qqq), hence
the decoder D(qqq), is arbitrary, and in fact different variational ansätze have been proposed in the
quantum machine learning literature [29, 58, 192, 201], of which we gave an extended overview
previously in Sec. 2.2.2. In our case, we are dealing with only two qubits, and the most general
ansatz consists of repeated applications of single qubit rotations and two-qubits entangling gates. In
fact, having in mind to keep the parameters count and the overall circuit complexity low, we hereby
propose a minimal yet efficient variational autoencoder consisting of two layers of Pauli-Y rotations
RY (q) = e�iY q/2 (2.6) and a CNOT, followed by a final layer of rotations, as schematically depicted
in Fig. 6.5b.

6.5 Experiments and Results
In this section we discuss the experiments implementing the classical and quantum data analysis
approaches described above for the data compression and classification tasks.

6.5.1 Data compression
Classical autoencoder The classical neural network autoencoder was implemented with the
Keras library of TensorFlow [2], and it consists of two dense layers in a 4-2-4 structure as in
Fig. 6.3c, with sigmoid activation function.

The input data consists of a time series with 2873893 samples, 25% of which are used as
validation data, and the rest for training. Before training, features were transformed with a MinMax
scaler, which scaled each feature to fit in the range [0,1]. After the learning phase, the average
reconstruction error ē, defined as

ē :=
1
m

m

Â
i=1

0

@1
4

4

Â
j=1

���x(i, j)
decoder� x(i, j)

original

���
���x(i, j)

original

���

1

A (6.6)

116 Chapter 6. Quantum autoencoder and classifier for an industrial use case

(a)

(b)
layer

Figure 6.5: (a) Quantum circuit used to train the quantum autoencoder. A register initialised in
the ground state |00i is first subject to the phase encoding operation denoted by P(xxx), and then
goes through the quantum encoder E(qqq). Then the trash qubit is measured, and the mean value
of the Pauli operator hZi is evaluated. Such value is then plugged into the loss function L(qqq) to
drive the learning process. (b) Circuit representation of the quantum encoder E(qqq). Two layers of
Pauli-Y rotations and a CNOT, are followed by a final layer of Pauli-Y rotations. In total, the circuit
has 6 trainable parameters. The decoder D(qqq) = E†(qqq) is obtained by reversing the order of the
operations, and changing the sign of the rotations angles.

amounts to 5%, and in Fig. 6.2 we show a comparison of the original against reconstructed
data averaged by day, for the validation dataset. As we can see, the decoder shows quite good
performance in the reconstruction of the input data for 3 of the 4 variables. For the ‘LIC’ variable,
the median of the distribution of the reconstructed data coincides with the one of the original
data, though the fluctuations are not very well described. There is no obvious a priori reason for
the imperfect reconstruction of this particular variable, and this may well be a shortcoming of
the autoencoding approach, which focuses more on the other variables to achieve a good-enough
reconstruction scheme.

In the following step we used the two latent variables from the compressed layer as input for
a supervised classification algorithm, to predict the class assigned at the beginning through the
clustering algorithm. We expect that, if the compressed vector is a suitable representation of the
input data, a classification algorithm would be able to achieve very good performances.

Quantum autoencoder The quantum autoencoder was simulated using a combination of
PennyLane [27], TensorFlow [2] and Qiskit [5], and the optimisation was performed using the
automatic differentiation techniques implemented by these libraries. While automatic differentiation
is only possible when performing a classical simulation of the quantum algorithm, in realistic
scenarios of optimising a quantum circuit on real quantum hardware one can resort to parameter-
shift rules (2.55) to estimate gradients and optimise the variational parameters [209, 270].

The variational circuit was trained using the Adam optimiser [165] with learning rate set to
h = 0.001, to update the six variational parameters qqq = (q0,q1,q2,q3,q4,q5). The training was

6.5 Experiments and Results 117

performed using mini-batches of size 20 for a total training set consisting of m = 10040 samples.
In Fig. 6.6 it is shown the optimisation process across epochs of learning, both for the training loss,
and for a validation set of 520 samples. Before the phase encoding process, the classical data {xxxi}i
were normalised as xxxi p ·xxxi/||xxxi||. It is clear that the quantum encoder is effectively trained, with
the loss reaching the minimum value of L(qqq ⇤) = 0.0058.

Figure 6.6: Optimisation of the quantum encoder, E(qqq), showing the training and validation loss
evaluated with data sets containing 10040 and 520 samples, respectively. The minimum of the loss
at the end of training amounts to L(qqq ⇤) = 0.0058.

With a trained encoder, we can now proceed to investigate the quality of the data compression
provided by the algorithm. The state of the qubits A and B after the quantum encoder operator
consists of a general two-qubit state

|YiAB = a |0iB⌦ |0iA +b |0iB⌦ |1iA + c |1iB⌦ |0iA +d |1iB⌦ |1iA , (6.7)

where, if the encoder has been successfully trained, the probability of measuring qubit B in state
|1i, p1 = |c|2 + |d|2, is much smaller, ideally zero, than the probability of finding it in |0i, namely
p1⌧ p0 = |a|2 + |b|2. Thus, in order to obtain a compressed pure state for qubit A rather than a
mixed one, we could post-select state |YiAB on measuring the trash qubit in state |0i. In this case,
let P̂B

0 = |0ih0|B⌦ IA be the projector on state |0i for system B, then the composite state is projected
to

|YiAB �!
P̂B

0 |YihY|P̂B
0

Tr
⇥
P̂B

0 |YihY|P̂B
0
⇤ = |0ih0|B⌦ |ycihyc|A , |yciA =

a |0iA +b |1iAp
|a|2 + |b|2

. (6.8)

If we wish to retrieve the original information, now stored in compressed form in the state |yciA
of system A only, we can couple this system to a new qubit initialised in |0i, and then apply the
quantum decoder, as shown in Fig. 6.4. An example of this procedure is shown in Fig. 6.7, where
the reconstruction performances of the quantum autoencoder are evaluated on a test set consisting of
1000 samples coming from the original dataset. In the case of Fig. 6.7, the average reconstruction
error defined in Eq. (6.6) amounts to ē = 5.4%, confirming that the quantum autoencoder can
successfully compress and then retrieve information with low error.

It is important to note that the results discussed in this section were obtained with an exact
simulation of the wavefunction of quantum systems, using Qiskit’s statevector_simulator.
This allows for a direct access to the amplitudes of the quantum states, and thus recover the
final phases of the decoded state |jdecoderi= D(qqq)(|0i⌦ |yciA). However, in a real case scenario
with a quantum hardware, it is not possible to perfectly retrieve the phases of the decoded state
|jdecoderi, since one would need to perform quantum tomography of such state, and even in that

118 Chapter 6. Quantum autoencoder and classifier for an industrial use case

Figure 6.7: Performances of the quantum autoencoder in a compression and decoding task. Each
plot shows one of the input features labelled ‘FRC’, ‘FT’, ‘LIC’, ‘PI’, as reconstructed by the
quantum autoencoder (‘decoded’) confronted with the original sample (‘original’). This plots are
evaluated on a test set consisting of m = 1000 samples. The average reconstruction error ē as
defined in the main text in Eq. (6.6), amounts to ē = 5.4%. This results were obtained using the
IBM Qiskit statevector_simulator.

case results could only be obtained up to an arbitrary constant, due to quantum measurement
outcomes following Born’s rule. Thus, while such reconstruction test would prove much harder to
be performed on a real device, the results in Fig. 6.7 obtained with the simulator are still relevant in
checking the inner working of the quantum autoencoder, and that it is actually able to perform the
task it was designed for, even if it is not currently accessible by a real experimenter.

We hereby discuss a second possible approach for measuring the faithfulness of the recon-
struction, which albeit being indirect does not require state tomography and is thus more readily
compatible with actual runs on quantum processors. The performances of the quantum autoencoder
can be tested measuring the fidelity [323] F(rxxx,hqqq

xxx) = Tr
⇥
rxxx hqqq

xxx
⇤

between the initial pure state
rxxx = |yxxxihyxxx| obtained through phase encoding (6.1), and the generally mixed state obtained
through the quantum circuit autoencoder of Fig. 6.4, defined as

hqqq
xxx := D(qqq)[|0ih0|⌦TrB [E(qqq)[rxxx]]] , (6.9)

where E(qqq) and D(qqq) represent the superoperators corresponding to the encoder E(qqq) and decoder
D(qqq) operators, respectively. Clearly, the larger the fidelity the better, since it corresponds to the
quantum autoencoder being able to recreate states that are very close to the initial ones. Using this
figure of merit, post-selecting on the trash subsystem B is not necessary since qubit A can be directly
coupled to a new qubit initialised in |0i, to then act with the decoder and with the evaluation of
Tr
⇥
rxxx hqqq

xxx
⇤
. There are various techniques to evaluate state overlaps on quantum hardware [64, 195],

the most common one being the SWAP test, and here we use the so-called compute-uncompute
method, whose circuit is shown in Fig. 6.8.

Using a test set of m = 1000 samples, a simulation of the trained quantum autoencoder, even
including stochastic measurement outcomes with nshots = 104 shots, yields an average fidelity

E
h
Tr
h
rxxx hqqq

xxx

ii
=

1
m

m

Â
j=1

Tr
h
rxxx j hqqq

xxx j

i
= 0.975±0.001 ,

6.5 Experiments and Results 119

trash

Figure 6.8: Circuit to evaluate the fidelity F(rxxx,hqqq
xxx) = Tr

⇥
rxxx hqqq

xxx
⇤

between the initial pure state
rxxx = |yxxxihyxxx| and the generally mixed state hqqq

xxx , obtained through the autoencoding proce-
dure. The fidelity is obtained by counting the number of |00i outcomes at the end of the cir-
cuit. In fact, dropping the subscripts for simplicity, one has p0 = Tr

⇥
P(xxx)†hqqq

xxx P(xxx) |000ih000|
⇤

=
Tr
⇥
hqqq

xxx P(xxx) |000ih000|P(xxx)†⇤= Tr
⇥
hqqq

xxx |yxxxihyxxx|
⇤
= F(rxxx,hqqq

xxx).

which confirms again that the proposed variational quantum autoencoder is able to compress and
later decode information.

6.5.2 Classification
Classical classifier The supervised classification algorithm used is the KNeighborsClassifier as
implemented in scikit-learn. KNeighborsClassifier assigns the class to a point from a simple
majority vote based on the k nearest neighbours of that point. The number of nearest neighbours is
a parameter of the algorithm, and after some trials we fixed it at k = 100, which correspond to an
optimal trade-off between performances and computational efficiency.

The lowest panel of Fig. 6.9 shows the results of the classification, which is now anticipated but
discussed later in comparison with the quantum algorithm results. In red and blue are the points that
have been correctly classified, while in yellow and green are those which were misclassified. The
classification accuracy, evaluated as the percentage of correctly classified data, reach a remarkably
high value of 89.7%, indicating that the compressed vector is able to summarise the information
carried by the input data.

Single qubit quantum classifier Once the quantum autoencoder has been trained to learn
a compressed representation of the original information, the compressed quantum state can be
used as input for a classification task. We expect that, if the compressed information is a suitable
representation of the input data, the classification algorithm would be able to learn the classes
assigned to the full-size input data through the clustering algorithm described in Sec. 6.2.

To do so, we can use the information-carrying qubit obtained with the encoder E(qqq), as input to
a quantum classifier which is trained to learn the desired clustering of the original data. A quantum
classifier is made of two parts: (i) a trainable parametrized operation, U(jjj), which tries to map
inputs belonging to different classes in two distant regions of the Hilbert space, and (ii) a final
measurement, which is used to extract and assign the label. Since we are dealing with a single qubit
classifier, the most general transformation on a qubit is represented by the unitary matrix (5.17)

U (a,b ,g) =

cos(a/2) e�ig sin(a/2)

eib sin(a/2) ei(b+g) cos(a/2)

�
. (6.10)

Thus, it is reasonable to use such operation as the trainable block of the classifier, since it ensures
the greatest flexibility. Actually, as discussed later, the angle b in Eq. (6.10) does not influence the
measurement statistics of the qubit, hence it has no influence on the training of the classifier. For
this reason, it is kept fixed at b = 0, and the actual trainable gate used is U(a,0,g) = U(a,g).

120 Chapter 6. Quantum autoencoder and classifier for an industrial use case

(a)

(b)

(c)

(d)

Figure 6.9: Results of the classification task performed by the quantum classifier, for a test set of
size m = 103 samples. (a) Plot of the original data with the colour indicating the two different
classes. Note that for simplicity, only the FRC and FT features are shown. (b) Label assigned
by the trained quantum classifier. (c) Focus on the data that are mislabelled by the classifier. The
colour indicates the label assigned by the quantum classifier, and the “cross” marker means that the
data were misclassified. Note that these samples lay on the border of separating the two classes.
The accuracy, evaluated as the percentage of correctly classified data, amounts to 87.4%. (d) Result
of the classification using the classical autoencoder followed by a KNN clustering procedure. Note
that the axis are different from the quantum case due to normalisation of the features. In this case
the classification accuracy amounts to 89.7%

As for the label assignment, since the measurement process of a qubit has only two possible
outcomes, these are interpreted to be the two possible values for the labels, namely “Class A” and
“Class B” which were described earlier in Sec. 6.2. Specifically, a label is assigned based on a

6.6 Conclusions 121

majority vote on multiple shots of the same quantum circuit, that is an input is assigned to “Class
A” if the majority of measurement gave |0i as outcome, and “Class B” otherwise. Formally, let
rA

xxx = TrB[E(qqq)(|yxxxihyxxx|)E(qqq)†] be the compressed quantum qubit, then the label is assigned based
on the decision rule

ŷi =

(
0 if p0 = Tr

⇥
|0ih0|U(jjj)rA

xxxi
U(jjj)†⇤� 0.5

1 otherwise
, (6.11)

where p0 denotes the probability that the measurement yields |0i outcome. As mentioned earlier,
one can check easily that p0 does not depend on the angle b of the unitary U(a,b ,g), and for this
reason it is set to zero, yielding the variational unitary U(a,0,g) = U(a,g).

The loss function used to drive the training of the unitary U(a,g) is the categorical cross
entropy already introduced in Eq. (3.9), defined as

L(yi, ŷi) =�(1� yi) log(1� ŷi) � yi log(ŷi) , (6.12)

where yi is the correct label, and ŷi is the label assigned by the quantum classifier, and the optimiser
used is COBYLA [235] as implemented in SciPy’s Python package [308].

Figure 6.9 shows the results of the classification obtained after the optimization of the variational
parameters jjj = (a,g), for a test set of m = 103 samples. The accuracy, measured as the ratio of
correctly classified to total samples, is measured to be 87.4% when evaluated with exact simulation
of the quantum circuit. As clear from the figure, the misclassified data are only those located near
the edge connecting the two classes. In fact, in this region, the samples are not neatly divided but
rather a blurred border exists. On the contrary, given its relatively simple structure, the quantum
classifier learns essentially a straight cut of the data in this region, thus committing some labelling
errors.

This should not come as a surprise since, as seen when discussing the Fourier representation
of variational circuits in Sec. 3.3.2.2, a single-qubit classifier can only learn simple functions (i.e.
sine functions) of the input data if there is not enough input redundancy [109, 116, 174, 189,
229, 269]. However, note that the dependence of the classification on the original data is strictly
non-linear, since the classical data first go through a classical preprocessing step, then are loaded
onto the quantum states by means of rotations, and finally undergoes the encoding procedure which
scrambles information even more.

It is interesting to notice that the classification performances remain stable even when including
sources of noise, such as stochastic measurement outcomes. Indeed, a simulation of the circuit
using nshots = 1024 on m = 103 samples yields an accuracy of about 82.5%, which is only slightly
lower than the exact case corresponding to an infinite number shots. In addition, the classifier proves
robust even when tested on real quantum hardware. In fact, the circuit for the trained classifier
was tested against IBM’s ibmq_x2 quantum chip (accessed May 2021) but with a smaller test set
of m = 75 samples, due to limitations in the device usage. In this case, using nshots = 1024 shots
per circuit, and averaging over 5 executions with different test samples, the classification accuracy
(evaluated again as the percentage of correctly classified data) was found to be (82.3± 1.3)%,
indeed very close to the simulation including only measurement noise, and not much different from
the noiseless result.

6.6 Conclusions
We have presented a direct comparison between quantum and classical implementations of a neural
network autoencoder, followed by a classifier algorithm, applied to sample real data coming from
one of Eni’s plants, in particular from a first stage separator. While the achievement of a clear
quantum machine learning advantage with variational algorithms is still disputed [4, 140, 141], this
work sets a milestone in the field of quantum machine learning, since it is one of the first examples

122 Chapter 6. Quantum autoencoder and classifier for an industrial use case

of direct application of quantum computing software and hardware to analyse real data sets from
industrial sources.

As a first step, we have implemented and analyzed the performance of a variational quantum
autoencoder to compress and subsequently recover the input data. We verified its performances
using full simulation of the wavefunction, which allowed us to evaluate the average reconstruction
error to about ē = 5% —essentially identical to the classical autoencoder— thus confirming the
capability of the quantum autoencoder to effectively store a compressed version of the original data
set, and then being able to recover it. In addition, we also checked the correctness of the quantum
autoencoding procedure by evaluating the quantum fidelity between original and decoded quantum
states, which were again found to be very similar to each other, even in the presence of simulated
stochastic measurement noise.

Once the optimal parameters for the quantum autoencoder were determined during the training
phase, we used the compressed quantum state as input to a quantum classifier, with the goal of
performing a binary classification task. The algorithm achieved an accuracy above 87%, absolutely
comparable to that achieved in the classical setting using the neural network autoencoder followed
by a nearest-neighbours classifier, thus indicating again that the quantum algorithm is able to
correctly compress the relevant information of the input data. We also tested the performance of
the full quantum pipeline (given by the quantum autoencoder plus the classifier) on actual and
currently available IBM superconducting quantum hardware, obtaining a classification accuracy of
82%, which is only slightly smaller than the ideal result.

The small size of current quantum devices and their relatively high noise levels make it hard to
run actually relevant and large scale computations, thus making an effective quantum advantage
out of reach. On the other hand, in this Chapter we provided a successful proof-of-concept
demonstration that an original quantum autoencoder and a quantum classifier can actually reach
the same level of accuracy as standard classical algorithms, on a data set that is sufficiently low
dimensional to be handled on actual near-term quantum devices. In addition, it is worth emphasising
that the quantum autoencoder allows to obtain results that are quantitatively comparable to the
classical algorithm by using only 6 parameters instead of 16, thus displaying an increased efficiency
in terms of number of trainable parameters already reached on NISQ devices. With continuing
progress in quantum technologies and quantum information platforms, we envision the execution of
the very same quantum algorithms on larger scales, possibly reaching the threshold for a classically
intractable problem. We believe that these results take the first foundational steps towards the
application of usable quantum algorithms on NISQ devices for industrial data.

Although the use of quantum resources may offer computational advantages over purely
classical methods, the latter are incredibly versatile tools, not only capable of giving rise to
incredibly successful machine learning models, but also to provide an effective description of
quantum system themselves. Thus, in order for a (variational) quantum algorithm to deliver a
meaningful advantage, it must be hard to simulate via classical methods. The topic of the next
Chapter is more fundamental and unrelated to practical use-cases, but instead addresses the classical
simulability of quantum circuits under the lens of the entanglement, by studying the entanglement
produced inside common variational quantum circuits.

7. Entanglement entropy production in
quantum neural networks

7.1 Introduction . 124
7.2 Methods . 125
7.2.1 Tensor Networks and Matrix Product States . 125
7.2.2 Entanglement measure in Matrix Product States . 126
7.2.3 Entanglement entropy in random quantum states . 127
7.2.4 Quantum Neural Networks as Parameterised Quantum Circuits 128
7.2.5 Randomness, Entanglement and Trainability . 129

7.3 Results . 130
7.3.1 Alternating vs. Sequential data reuploading . 130
7.3.2 Entanglement distribution across bonds . 131
7.3.3 Entanglement scaling with increasing depth . 134
7.3.4 Entanglement Speed . 135
7.3.5 Expressibility . 138
7.3.6 Distribution of the singular values . 138

7.4 Discussion . 139
7.5 Conclusion . 141

In this chapter1, we use tensor networks techniques to characterise the entanglement features
of several recent proposals for Quantum Neural Networks. Specifically, we study the production
of entanglement in random parameterised quantum circuits of up to fifty qubits, showing that
their entanglement, measured in terms of entanglement entropy between qubits, tends to that of
Haar distributed random states as the depth of the QNN is increased. We certify the randomness
of the quantum states also by measuring the expressibility of the circuits, as well as using tools
from random matrix theory. We show a universal behaviour for the rate at which entanglement is
created in any given QNN architecture, and consequently introduce a new measure to characterise
the entanglement production in QNNs: the entangling speed. These results characterise the
entanglement properties of quantum neural networks, and provides new evidence of the rate at
which these approximate random unitaries.

1The content of this chapter is based on the author’s work [18], and all the figures in this chapter are taken from, or
are adaptations of, the figures present in such work.

124 Chapter 7. Entanglement entropy production in quantum neural networks

7.1 Introduction
The topic of this chapter is the study of the entanglement properties of quantum neural networks
when these initialised with random parameters. We employ methods from the tensor network
literature, namely Matrix Product States (MPS), to study the entanglement generated in various
QNNs architectures composed of up to 50 qubits. Since MPS are a very powerful tool for simulating
quantum systems with bounded entanglement, if a quantum neural network can only access low
entangled states, it can be easily simulated, which spoils any hope of achieving a concrete quantum
advantage. Thus, using entanglement entropy among qubits as a figure of merit, we evaluate the
entanglement capabilities of some of the most common and promising QNN architectures [4, 281].
We consider several QNNs with different combinations of feature maps F and variational forms V
and perform an extended numerical analysis varying: (i) the number of qubits n, (ii) the number of
layers L in the network, (iii) the entangling topology of the circuit, (iv) the data re-uploading [229,
269] structure being either alternated or sequential. A summary of the circuit templates analysed in
this study is shown in Fig. 7.1.

(a)

(b)

(c)
Circuit 2

Ry

Ry

Ry

Ry

Circuit 3

Ry

Ry Rz

Ry Rz

Ry Rz

Circuit 1

Rx Ry

Rx Ry

Rx Ry

Rx Ry

Circuit ZZFeatureMap

H Rz

H Rz Rz

H Rz Rz

H Rz Rz

(d)

Circular

U

U

U

U

Full

U

U U

U U U

Figure 7.1: Graphical representation of QNN and MPS. (a) QNN structure with alternating feature
map F and variational ansatz V . Note that the ansatz parameters are different in each layer, while
the feature map parameters are the same throughout the whole circuit. (b) MPS diagram. Each
sphere is a tensor, representing a qubit q j. The entanglement entropy between bi-partitions A and
B is computed by "cutting" the connecting edge e j. (c) Circuits analysed in the present study,
depicted with a linear entanglement topology, i.e. entangling gates are only applied between nearest
neighbours on a line. (d) Different entanglement topologies: circular, with the first and last qubit of
the line connected, and full, where the entangling gates are applied between each pair of qubits
(see Appendix D.3 for a clear definition and discussion). When using parameterized two qubits
gates, like the controlled rotations in circuit 3, the entanglement maps are generalised to their
parameterized version by using the corresponding parameterized operation. Note that the circuit
templates 2 and ZZFEATUREMAP are those used in the QNN of [4], and also that circuits 1, 2 and
3 share similarities with circuits 1, 15, and 13 of [281], respectively.

For all the considered QNNs with nearest neighbour connectivity, as the number of layers L is
increased, the entanglement generated inside the circuit grows, eventually reaching a plateau when
L⇡ n, where n is the number of qubits. This behaviour is associated with the typical entanglement
of a random Haar-distributed quantum state. The choice of the entangling topology (nearest
neighbours, circular, or all to all) clearly affects the rate of creation of entanglement in the circuit.
We also point out that a careless definition of a full, i.e. all to all, connectivity map can effectively
result in a linear nearest-neighbours interaction if unparameterized two qubits gates (CNOTs) are
used, something apparently overlooked in the recent literature using this type of ansatz [4, 149, 296].
By bounding the entanglement generated by the circuit, we are able to simulate QNNs with MPS up
to n = 50 qubits. It should be stressed that such simulations are exact up to a given number of layers,

7.2 Methods 125

after which a truncation of the entanglement via MPS is applied. By appropriately normalising
the entanglement produced we show that all the points for a given QNN architecture follow the
same curve, independently from the number of qubits. Thus, we exploit this behaviour to define a
universal figure of merit given the QNN architecture, the entangling speed. This figure of merit
characterises how fast the entanglement is produced by the QNN, with respect to the number of
layers L.

In addition, we evaluate the expressibility measure of the considered QNNs as defined in [281]
and argue that the optimality of the QNN introduced in [4] may be related to its good trade-off
between mild entanglement production and high expressibility. Finally, we employ tools from
random matrix theory, specifically convergence to the Marčenko-Pastur distribution, to further
characterise the resemblance of the deep enough quantum neural networks to random unitary
matrices. At last, we note that differently from [281] which bases their analysis on the Meyer-
Wallach entanglement measure [207], in this study we make use of the entanglement entropy among
subsystems, which allows for a more careful analysis of the entanglement distribution in the system,
and it is also readily accessed in an MPS simulation with no computational overhead.

The chapter is organised as follows. In Sec. 7.2 we review the basis of tensor networks and
MPS, and introduce the Von Neumann entropy as an entanglement measure. We then discuss the
entanglement entropy properties of random quantum states. We proceed by discussing the most
recent results on parameterized quantum circuits and QNNs, especially, on the relation between
randomness, trainability, and entanglement found in these circuits. In Sec. 7.3 we show the results
of our analysis for various QNN architectures, and discuss the results in Sec. 7.4. Finally, we
discuss the implications of our analysis and possible routes for future investigations in Sec. 7.5.

7.2 Methods
7.2.1 Tensor Networks and Matrix Product States

An n-qubit quantum state is defined in a Hilbert space H of dimension dim(H) = 2n. The expo-
nential scaling of H with n makes the classical description of quantum states an exponentially
expensive task. This problem is widely known in many-body quantum physics, and many different
techniques have been developed to alleviate the issue, like the Density Matrix Renormalization
Group (DMRG) or Tensor Network (TN) techniques [213, 280].

In this study, we use Tensor Network methods to efficiently describe the n-qubit state. In
particular, we employ Matrix Product States (MPS), which are a specific tensor network ansatz
particularly suited to represent 1-dimensional (i.e. like atoms on a chain, as in Fig. 7.1) quantum
states [95]. The power of tensor networks lies in the assumption that we are only interested in
a tiny subspace of the entire Hilbert space, namely the states that display a limited amount of
entanglement.

An n-qubit pure state |yi 2H can be written as a MPS as follows [95]

|yi=
1

Â
s1,...,sn=0

c

Â
a1,...,an=1

M[1],s1
1a1

M[2],s2
a1a2 . . . M[n�1],sn�1

an�2an�1 M[n],sn
an�11 |s1s2 . . .sni . (7.1)

Each tensor M[i],si
aiai+1 is a local description for the i-th site, which allows one to apply a local operator

to a certain site without the need to change all the other coefficients. For a fixed si, M[i],si
aiai+1 is a

c ⇥ c complex matrix, meaning that Eq. (7.1) is the sum of basis elements weighted by matrix
products. The integer c is called the MPS bond dimension, and a sufficiently high c is needed
to express a general |yi in such form. However, MPS with a lower c can still encode all the
meaningful states, albeit clearly not all possible states. In particular, to correctly describe any
quantum state the bond dimension needed is c = db

n
2 c, where d is the local dimension of the degrees

of freedom (d = 2 for qubits). One can also efficiently evolve the state under the application of

126 Chapter 7. Entanglement entropy production in quantum neural networks

2-qubit gates, using an approach known in the literature as time-evolving block decimation [223],
and perform measurements. Simulations using MPS are not bounded by the number of qubits
in the system, but by the amount of entanglement generated inside it, as we explain in detail in
Section 7.2.2.

Nonetheless, while the use of an MPS simulation imposes some constraints on the maximum
entanglement that it is possible to represent, this issue is relevant only for very deep circuits
involving many qubits. Indeed, we reliably simulate circuit instances involving up to n = 50 qubits
and moderate depth, which is already sufficient to provide clear insights on the entanglement
entropy generated in such circuits. Moreover, as explained below in Sec. 7.2.2, during an MPS
simulation one has constant access to the singular values of the quantum state, so the entanglement
of the state can be calculated on the fly without any computational overhead. Thus, MPS are an
effective tool to study the entanglement properties of quantum circuits, especially in regimes that
cannot be easily accessed with a full-scale simulation of the statevector of the system.

7.2.2 Entanglement measure in Matrix Product States
Entanglement in quantum states can be evaluated using the so-called Von Neumann entanglement
entropy. Let r = |yihy| be the quantum state of a system of n qubits, and consider a bipartition
A ,B of such system of qubits nA and nB = n�nA respectively, like the one shown in Fig. 7.1b. The
entanglement entropy of the subsystem A having reduced density matrix rA = TrB[r], is defined as

S(rA) =�Tr[rA logrA] , (7.2)

and quantifies the amount of entanglement shared between the parties A and its complement B2.
If A and B are in a product state then S(rA) = 0, while if the two subsystems share maximal
entanglement one has S(rA) = nA log(2) [95]. An important property of Eq. (7.2) is that the
entanglement entropy of the two subsystems is equal, namely S(rA) = S(rB), as it can be easily
checked using the Schmidt decomposition of the pure global state r = |yihy| (see below).

It turns out that matrix product states are a natural tool to characterise the entanglement entropy
of a quantum system. This can be illustrated by considering the simple case of a state of n = 2
qubits. Indeed, the statevector

|yi=
1

Â
i, j=0

ci j |i ji with
1

Â
i, j=0

|ci j|2 = 1, (7.3)

can be expressed in the Schmidt decomposition [220] as

|yi=
cs

Â
a=1

la |xai1⌦ |hai2 , (7.4)

where cs is the Schmidt rank, la are the Schmidt coefficients, and {|xai1}a ,{|hai2}a are orthonor-
mal bases in the space of the first and second qubit respectively. Using the decomposition (7.4) in
Eq. (7.2), the entanglement entropy between the two qubits then amounts to

S(rA) =�
cs

Â
a=1

l 2
a logl 2

a . (7.5)

In an MPS simulation one always has access to a subset of the Schmidt coefficients, since
such representation is built by iteratively applying the Singular Value Decomposition (SVD), a
procedure equivalent to Schmidt-decomposing a quantum state. The reason why one has access
only to subsets of the Schmidt coefficients is that the following conditions are imposed on them.
Listing the coefficients in ascending order, i.e. l0 � l1 � · · ·� lcs , then

2Note that throughout the whole Chapter we consider logarithms in natural base e.

7.2 Methods 127

• Schmidt coefficients whose ratio with l0 is smaller than e are discarded. The value of e in
this analysis is fixed at e = 10�9;

• only the first largest cmax coefficient are retained. The value cmax is called maximum bond
dimension.

The approximation we are performing is the optimal one in terms of the represented entanglement.
Then, the measure of entanglement for the MPS now becomes

S(rA) =�
cmax

Â
a=1

l 2
a logl 2

a . (7.6)

As explained in detail in Appendix D.6, despite the approximations, the faithfulness of the
simulation can be easily monitored. Finally, we remark that since we have constant access to the
considered subset of Schmidt coefficients during the state evolution, we are able to compute the
entanglement entropy of a quantum state without any computational overhead.

7.2.3 Entanglement entropy in random quantum states
In this section we briefly describe the entanglement features of uniformly distributed random
pure quantum states, that is quantum states sampled according to the unique unitarily invariant
probability distribution induced by the Haar measure. The Haar measure was already introduced
and discussed previously in Chapter 2 for deriving the Barren Plateau phenomenon 2.2.4.2, and we
hereby just recall some basic concepts necessary for the analysis presented in this Chapter.

Denoting by U(n) the group of 2n⇥2n unitary matrices, there is a unique unitarily invariant
probability measure µ(U) defined on the group, and such measure is called Haar measure [93,
132, 205]. Unitary invariance corresponds to the requirement that the measure is invariant under
translations in the space of unitary matrices, that is

µ(MU) = µ(UM) = µ(U) U, M 2 U(n) . (7.7)

The Haar measure induces a uniform probability distribution in the space of unitary matrices so that
sampling a quantum state according to the Haar measure means randomly picking a state uniformly
from the space of quantum states. We denote with P(n) such probability distribution.

We are interested in the entanglement features of random quantum states, particularly in the
entanglement entropy. Let |yi 2 (C2)⌦n be a quantum state of n qubits sampled from the uniform
distribution |yi ⇠ P(n), and a bipartition of the n qubits system in two subsystems A and B, of
size nA and nB = n�nA respectively. Then, for nA nB, the expectation value of the entanglement
entropy (7.2) corresponding to this cut amounts to the so-called Page value [132, 224]

E[S(rA)] =
dAdB

Â
j=dB+1

1
j
� dA�1

2dB
, (7.8)

where dB = 2nB , dA = 2nA are the local dimensions of the two subsystems, and the expectation
value is over the uniform probability distribution E(·) = E|yi⇠P(n)(·). One can check that the
entanglement is highest whenever the two partitions have equal size nA = nB = n/2 (for n even, and
similarly for n odd, nA = bn

2c and nB = dn
2e).

From Eq. (7.8) it follows that E[S(rA)]� logdA�dA/2dB [132], and since the maximum value
of the entanglement entropy for such bi-partition is logdA, obtained if the subsystems A and B share
maximal entanglement, one concludes that random states are generally highly entangled. Indeed, in
ref. [132] it was shown that the probability that a random pure state has entanglement entropy lower
than logdA�dA/2dB is exponentially small. Thus, with very high probability, random quantum
pure states are almost maximally entangled.

128 Chapter 7. Entanglement entropy production in quantum neural networks

7.2.4 Quantum Neural Networks as Parameterised Quantum Circuits
In this section we briefly recall the main ideas and nomenclature of Variational Quantum Algorithms
(VQAs) and Quantum Neural Networks (QNNs) to present the analysis in this Chapter in a self-
consistent manner, but we refer to Section 2.2 and Section 3.2.2.2 for extended discussion on these
topics.

Variational quantum algorithms are based on PQCs, which are quantum circuits in which some
of the unitary operations are characterized by variational parameters to be adjusted in order to
solve an optimization problem. The optimal parameters are found by minimizing a properly chosen
cost (or loss) function encoding the task to be solved. Let Uqqq be the unitary evolution implemented
by a quantum circuit with tunable parameters qqq , and O a Hermitian operator (an observable). The
goal of variational quantum algorithms is to optimize the quantum circuit parameters qqq in order to
minimize the expectation value (or variations thereof, see Sec. 2.2)

f (qqq) = hOiqqq = Tr
h
OUqqq rU†

qqq

i
(7.9)

where r is an initial quantum state, generally set to the ground state r = |000ih000|. This is achieved
by means of an iterative hybrid quantum-classical approach where the quantum computer is used
to estimate the cost function (7.9), and given such value, the classical computer proposes new
variational parameters according to an optimization method, the most common one being gradient
descent.

There is freedom in the choice of the gate sequence defining the parameterized unitary Uqqq ,
and a choice of its structure is referred to as variational ansatz, of which we gave an extended
overview in the dedicated Section 2.2.2. For example, the unitary could be composed of a layer
of Pauli rotations around the X-axis on each qubit RX(q) = exp(�iqX/2), followed by a layer of
CNOTs acting on pairs of neighbouring qubits. This is in fact the general blueprint of variational
quantum circuits, as they are generally created by repeating single-qubits parameterized rotations
followed by multi-qubits operations which introduce entanglement into the computation. Examples
of parameterized quantum circuits are shown in Fig. 7.1.

Quantum Neural Networks As it is often the case with learning tasks, either classical or quan-
tum, the goal is to solve a problem given access to a dataset of inputs {xxxi}i, xxxi 2 X , representative
of the task to be solved. As outlined in Definition 3.2, whenever data is involved, variational
quantum circuits are often referred to as quantum neural networks. In this case, the quantum circuit
of the “neural network” depends on two sets of parameters xxx and qqq , the former being the input
data to be analyzed, and the latter the variational parameters to be adjusted (i.e. the weights of the
neural network). In the quantum machine learning jargon, the encoding scheme used to load the
input data onto the quantum computer is known as feature map, and consists of a unitary operation
parameterized by xxx. We will denote such feature encoding gate with F(xxx), where xxx 2 X . As with
the variational unitary, there is no standard choice for a feature map, and one has to pick a specific
ansatz, ideally biasing the choice towards architectures built using knowledge of the problem to be
solved [208, 284]. Summing up, a general QNN can be then expressed as

UQNN(xxx;qqq) =
1

’
i=L

V (qqq i)F(xxx) = V (qqq L)F(xxx) · · ·V (qqq 1)F(xxx) , (7.10)

where F(xxx) is the feature map ansatz depending on the input data xxx; V (qqq i) is a variational ansatz
depending on trainable parameters qqq i 2 qqq = (qqq 1, · · · ,qqq L) with qqq 2 Rp; and L is the number of
repetitions (or layers) of the such layered structure.

As already discussed in Sec. 3.3.2, it was recently shown that uploading the input data multiple
times throughout the circuit is essential for quantum neural networks to model higher-order functions
of the inputs [109, 269], via a procedure now dubbed data-reuploading [229, 302]. Indeed, note that

7.2 Methods 129

the input data in the feature map in Eq. (7.10) is the same in every layer, while the variational blocks
V use a different parameter vector in every layer. In Fig. 7.1a we give a graphical representation of
the general structure of QNNs. As for the explicit implementation of F and V , there is no fixed
choice and these are usually composed of single qubit rotations followed by entangling operations,
either fixed (e.g. CNOTs) or themselves parameterized (e.g. controlled rotations). See Fig. 7.1c for
some prototypical examples of parameterized blocks proposed in the literature [4, 281], which we
will consider throughout the presented analysis.

7.2.5 Randomness, Entanglement and Trainability
As we now well know from the discussion in Sec. 2.2.4.2, one of the hardest theoretical challenges
affecting quantum machine learning models is the emergence of barren plateaus (BP). Different
sources can lead to the unfolding of barren plateaus, and these can be summarised as follows3:
randomicity-induced BP [137, 202, 221, 258], BP induced by global cost functions defined with
observables having support on a large number of qubits [57], and eventually noise-induced BP [312].

The analysis presented in this chapter concerns the former type of barren plateaus, that roughly
occur when parameterized quantum circuits, when initialised with random parameters, resemble
general random unitaries. Indeed, despite being quite limited in terms of qubits connectivity and
gate operations, common instances of parameterized quantum circuits are often found to behave
as unitary 2-designs [81], in which case, as proved in Th. 2.2, the variance of the gradients of any
cost function f (qqq) defined on the circuit will vanish exponentially with the number of qubits n,
namely [137]

Varqqq [∂k f (qqq)] 2O
�
c�n� c > 1 , (7.11)

where f (qqq) is as in Eq. (7.9). Specifically, the cost function concentrates around its mean value
and stays constant almost everywhere in parameter space [13], which makes training unfeasible.

Vanishing gradients are used as a witness to assess whether a parameterized quantum circuit
resembles a unitary 2-designs. Of course, this is only necessary but not sufficient condition, as one
can easily devise a circuit that is not a 2-design but has vanishing gradients, for example using a
global cost with a shallow circuit [57], as the one presented in Appendix A.1.

In addition to vanishing gradients, another witness of randomness is the entanglement generated
inside the circuit [221]. Indeed, as discussed previously in Sec. 7.2.3, random quantum states
are almost maximally entangled, so one can use the maximality of entanglement generated by
a parameterized circuit as an indicator of the resemblance to a random unitary evolution. As
for vanishing gradients, the presence of large entanglement is however only a necessary but not
sufficient condition for randomness, as a simple shallow circuit composed of Hadamards and
CNOTs can create maximally entangled states (GHZ states), which are clearly not random. As
discussed in [258], the so-called entanglement-induced BPs [221, 227] provide an alternative yet
equivalent description of local cost barren plateaus (circuits with global costs always suffer of
vanishing gradients [57], regardless of randomicity), as they both stem from the proximity of
parameterized quantum circuits to unitary 2-designs.

Indeed, if a circuit is a unitary 2-design, then the average entanglement entropy of any subsystem
A of dimension dA (dA dB) will be already very close to its maximal value [184, 258]

logdA�1 Eqqq [S(rA)] logdA , (7.12)

and approaches the Page value (7.8) for truly Haar-random states. For completeness, we provide a
proof of Eq. (7.12) based on the Rényi 2-entropy in Appendix D.1.

3In Chapter 2 we anticipated that the four sources of BP shown in Fig.2.4 actually can be reduced to three, since, as
clearly explained in this section, expressibility-Induced BP and entanglement-induced BP both derive from an abundance
of randomness inside the quantum circuit. For this reason, we hereby refer to these types of BPs as randomicity-induced
BP.

130 Chapter 7. Entanglement entropy production in quantum neural networks

To summarise, while the presence of entanglement is a necessary ingredient to avoid classical
simulability, its uncontrolled growth is likely to signal the emergence of barren plateaus. The
evaluation of the entangling capabilities of parameterized quantum circuits is then a valuable
diagnostic tool to provide information both on the classical simulability and trainability issues
of quantum machine learning models. At last, we remark that although various methods have
been put forward to mitigate the occurrence of BPs [115, 283, 309], including proposals based on
entanglement control [164, 227, 258], these remain a bottleneck for scaling up quantum machine
learning computations based on variational circuits.

7.3 Results
We now proceed to analyse the entanglement production in various quantum neural network
architectures with different feature maps and variational ansatz, obtained composing the circuit
blocks shown in Fig. 7.1. In particular, we take as a prototypical example the QNN introduced in
[4], argued as a good candidate for quantum machine learning applications in terms of capacity and
expressibility, possibly achieving an advantage over classical counterparts.

Such QNN model uses as feature-map F(xxx) the so-called ZZFEATUREMAP firstly introduced
in [131] as a classically-hard map to load classical data on a quantum state in a non-linear fashion.
The variational block V (qqq) is instead composed of single qubit rotations followed by entangling
operations. In order to better understand the effect of every single operation in the quantum
circuit, we also consider variations of the QNN introduced above, varying both the feature map,
the variational form, and the entangling topology. All considered circuit blocks are graphically
represented in Fig. 7.1.

Let UL(xxx,qqq) be the unitary representing a specific quantum neural network with L layers with
input data xxx = (x1, . . . ,xd) 2 Rd , and variational parameters qqq = (q1, . . . ,qp) 2 Rp, see Eq. (7.10).
We consider random instances of such QNN by sampling both the inputs and the variational
parameters according to the uniform distribution xi,qi ⇠ Unif[0,p], hence obtaining a collection
of QNNs UL = {UL(xxxi,qqq i) , i = 1, . . . ,M}. Then, we study the entanglement entropy properties of
each of these instances and average the result over the M trials (unless stated otherwise, we take
M = 100). Thus, when in the following we refer to the entanglement entropy of a quantum circuit,
we are always denoting the average over M realisations of that circuit. In order to evaluate the
influence of the depth on the entanglement, we repeat this analysis by increasing the number of
layers in the quantum neural network L = 1, . . . ,Lmax.

Note that although the total number of parameters (inputs and parameters) depends on the
specific feature map and variational form used, for the considered circuits such difference generally
amounts to a constant and does not have a relevant impact on the results. In Tab. 7.1 we report
the number of parameters in each circuit template analyzed in this work. We anticipate that
while the number of parameters in the considered quantum circuits only scales polynomially with
the system size n, these are found to be sufficient to reproduce some entanglement features of
random unitaries, which are instead characterized by an exponential number parameters. This is
in agreement with results on random quantum circuits that states that polynomial resources are
sufficient to approximate unitary designs [123, 126]. We refer to Sec. 7.4 for an extended discussion.

7.3.1 Alternating vs. Sequential data reuploading
As a first analysis, we study the difference in entanglement growth between a standard QNN using
an alternated repetitions of feature maps and variational forms (as in Fig. 7.1), and one in which we
have first L repetitions of the feature map followed by L repetitions of the variational form, which
we refer to as a sequential structure. The former leverages an alternated evolution of the quantum
state which is typical of quantum neural networks using a data reuploading scheme [109, 229, 269].

7.3 Results 131

Abbr. Number of parameters
LINEAR CIRCULAR FULL

CIRCUIT 1 C1 2n 2n 2n
CIRCUIT 2 C2 n n n
CIRCUIT 3 C3 2n�1 2n n2+n

2
CIRCUIT ZZFEATUREMAP CZZ n n n

Table 7.1: Number of parameters for each considered circuit template and their relative entanglement
topology. Notice that, while the number of parameters remains constant for CZZ as shown in the
table, the number of parametric gates varies analogously to C3.

The latter instead uses an initial data-dependent evolution followed by a trainable unitary, thereby
creating an architecture similar to quantum kernel machines [263].

While the two structures (alternated and sequential) may be mapped to each other using ancillary
qubits [152], they can have rather different performances, and we hereby show how they also create
entanglement in a different way. Specifically, given the two unitary evolutions, namely the fixed
input-dependent feature map F(xxx) and the varying parameterised variational form V (qqq i), one
expects the alternated dynamics

Ualt = V (qqq L)F(xxx) . . . V (qqq 1)F(xxx) ,

to introduce randomness at a faster rate than the sequential process

Useq =
1

’
i=L

V (qqq i)
1

’
i=L

F(xxx) ,

and hence introduce more entanglement in the system. Such intuition is confirmed by the numerical
results, and may be understood as a consequence of the universality of the alternating dynamics
proved for example for QAOA circuits [187, 214].

Here we use F = CZZ and V = C2, as defined in Fig. 7.1, both with linear topology. Be Salt and
Sseq the entanglement entropy of the bipartition with an equal number of qubits, which is generally
the highest, for the alternating and sequential structure, respectively. We define the normalized
difference as

DS =
Salt�Sseq

(Salt +Sseq)/2
, (7.13)

and study its behaviour as the depth of the quantum circuit is increased, as shown in Fig. 7.2.
The metric is always positive and features a maximum, implying that the alternated structure

is creating entanglement faster (i.e. with fewer layers) than its non-alternated counterpart. Note
that for L = 1 layers the two structures are identical, so the generated entanglement is the same up
to the statistical error, which explains why all the curves start around zero. At a high number of
repetitions, the two structures tend to the same value, showing a DS' 0, which can be understood
in light of the results presented in the following sections: as the number of layers of a QNN is
increased, the entanglement rapidly converges to that of a Haar-distributed random state, thus the
alternated and non-alternated structure eventually converge to the same value. Given the higher
entanglement production rate of the alternated structure, in the following analysis, we shall focus
on this structure only.

7.3.2 Entanglement distribution across bonds
It is natural to ask how the choice of the feature map, the variational form, and the entangling
topology impact the growth of entanglement of the quantum state. In this section, we start to explore

132 Chapter 7. Entanglement entropy production in quantum neural networks

5 10 15 20

Number of layers L

0.00

0.05

0.10

0.15

N
o
r
m

a
li
z
e
d

d
i�

e
r
e
n
c
e

�
S n =4

n =8

n =12

n =20

Figure 7.2: Normalised entanglement difference DS, as defined in Eq. (7.13) for different numbers
of qubits. The used QNN is defined by F = CZZ and V = C2. All the data points are obtained by
averaging over 103 realisations.

this question by studying how entanglement is distributed across all possible ordered bi-partitions
of the n qubits in the network. That is, given an MPS representation as in Fig. 7.1(b), we study the
entanglement entropy corresponding to each bond in the linear chain. Denoting with ei the bond
connecting qubit qi and qi+1, the entanglement entropy of that bond is (see Eq. (7.2))

S(ei) =�Tr
⇥
r[1:i] logr[1:i]

⇤

r[1:i] = Tri+1,...,n[r]
, (7.14)

where r[1:i] is the reduced density matrix of all the qubits up to the i-th one, and r is the state
obtained from the quantum neural network r = UL(xxx,qqq) |000ih000|UL(xxx,qqq)†.

In Fig. 7.3 we show the entanglement entropy distribution for the case of n = 8 qubits using
three different quantum neural networks architectures: in panel (a) the one proposed in [4] with
feature map F = CZZ, variational ansatz V = C2, both with linear entanglement; in (b) same as
before but using a circular entanglement topology; and eventually in panel (c) a simpler circuit using
a tensor product feature map F = C1 which encodes data independently on each qubit, followed
by the same variational ansatz V = C2, again with linear entanglement both. For reference, it is
also shown the expectation value of the entanglement entropy for Haar-random quantum states
evaluated with Eq. (7.8), as well as an upper bound given by the highest possible entanglement
log(min(dA,dB)), obtained if the two partitions A and B were maximally entangled. Note that while
we report only the simulation data for n = 8, the discussion has general validity as identical results
hold for all tested numbers of qubits, n = 2, . . . ,20.

First of all, the findings agree with the intuition that deeper circuits are able to create higher
entangled states with respect to shallower ones, in accordance with results from [281]. In particular,
the entanglement entropy is higher at the centre of the chain. Clearly, depending on the specifics of
the QNN, the entanglement grows faster in certain architectures with respect to others. Regarding
the effect of the entangling topology, comparing panels (a) and (b) we see that circular connections
produce greater entanglement compared to the nearest-neighbours interaction and that such entan-
glement grows at a faster rate as the number of layers is increased. As for the choice of the feature
map, since the QNN in panel (c) produces entanglement only through the entangling gate in the
variational blocks, its entanglement is lower and also grows slower with respect to the QNN in
panel (a), even though it has twice the number of parameters in the feature map.

7.3 Results 133

0.5

1.0

1.5

2.0

2.5 (a)

Max
Haar
L = 1

L = 2
L = 3
L = 4

L = 5
L = 6
L = 7

0.5

1.0

1.5

2.0

2.5 (b)

1 2 3 4 5 6 7

Bond index cut ei

0.5

1.0

1.5

2.0

2.5 (c)

E
nt

an
gl

em
en

t
en

tr
op

y
S

(e
i)

Figure 7.3: Average entanglement entropy across bonds for a system composed of n = 8 qubits,
where ei is the bond connecting qubit i and i + 1, as in Fig. 7.1. The curves represent different
numbers of layers L in the quantum neural network. (a) QNN with structure: F = CZZ, V = C2, both
with linear entanglement. (b) QNN with structure: same as in (a) but with circular entanglement. (c)
QNN with structure: F = C1 which has no entangling gates, and V = C2 with linear entanglement.

Interestingly, however, as the number of layers approaches the number of qubits L ⇡ n, all
investigated QNNs converge to the same values, that is those obtained for random states sampled
from the uniform Haar distribution. Deep enough QNNs are then flexible enough to reproduce
the same entanglement spectrum of a random state, which, as discussed in section 7.2.3, are very
highly entangled. Again, even though the measure of entanglement is different, this is in agreement
with the results presented in [281], where the convergence to the Haar distribution is encountered
for various parameterized quantum circuits, and also with other results in the literature regarding
the properties of random quantum circuits to approximate the Haar distribution [37, 124]. We will
discuss this more in detail in Sec. 7.4, while a more in-depth analysis of the convergence is the
subject of the next section.

134 Chapter 7. Entanglement entropy production in quantum neural networks

7.3.3 Entanglement scaling with increasing depth
In order to better understand the entanglement scaling properties of QNNs, we introduce a new
quantity, defined as the total entanglement entropy Stot created in the MPS chain

Stot =
n�1

Â
i=1

S(ei) , (7.15)

which is the sum of the entanglement entropy of all the ordered bipartitions of the quantum state.
We use this global measure to quantify how fast QNNs approach the Haar distribution in terms
of overall entanglement production. In particular, we define a new figure of merit, the entangling
layers eL, defined as the number of layers needed by an architecture to reach 90% of the total
entanglement of a Haar distributed state SHaar

tot , namely

eL = min number of of layers such that Stot � 0.9SHaar
tot . (7.16)

The choice of the 90% threshold allows to select states that are already very close to the Haar-
random value, and avoids undesired oscillating behaviours obtained when higher thresholds are
used, e.g. 99%, which are caused by statistical fluctuations (recall that every QNN is sampled
multiple times with different parameters to calculate averages).

In Fig. 7.4 we show the behaviour of eL for four different QNNs as the number of qubits is
increased. Note that each QNN is considered with all the three possible entangling topologies
(linear, circular and full, as defined in Fig. 7.1). At last, note that all QNNs leverage the same
variational form V = C2, while the feature map is changed, as reported in the legend.

4 6 8 10 12
1

4

7

10
Linear

4 6 8 10 12

Circular

F = CZZ

F = C1

F = C2

F = C3

4 6 8 10 12

Full

E
nt

an
gl

in
g

la
ye

rs
e L

Number of qubits n

Figure 7.4: Entangling layers eL, i.e number of layers to reach 90% of the Haar entanglement,
versus the number of qubits. The analysis is carried out over four different QNN architectures, each
evaluated with different entangling topologies (linear, circular, and full). The architectures leverage
the same variational form V , while the feature map F is changed, as reported in the legend.

First, we observe that the entangling layers display a linear behaviour when a linear entan-
glement topology is used. This means that the number of layers needed to entangle the system
scales linearly with the size of the system. The behaviour changes abruptly when we move to a
circular or full entangling topology. All architectures display a faster entanglement production
when passing from a linear to a circular topology, as can be seen from the lower slope of the curves.
The all-to-all connectivity speeds up entanglement production only for F = CZZ, C3, while the
circuits F = C2, C1 show essentially the same behaviour of the linear case. We now proceed to
discuss more in detail such results.

We start comparing the entangling capabilities of CZZ vs. C2. Both with linear and circular
entangling topology, C2 is able to produce entanglement essentially at the same rate as CZZ, despite
C2 being of a much simpler structure, with half the number of two-qubit gates. However, things
change dramatically using a full entangling map, as the QNN reaches the 90% threshold already

7.3 Results 135

at eL = 1, while C2 needs more layers, showing the same dependence of a linear connectivity.
While counter-intuitive at first, is it easy to see that the entanglement generated by C2 with a full
architecture is indeed equivalent to the linear one. This is due to a simple circuit identity regarding
networks of CNOTs reported in Fig. 7.5. Such circuital identity holds for any number of qubits,
which makes the full entangling map as shown in Fig. 7.1 just as a linear entangling map in disguise
(in particular, it is the inverse of the linear entangling map). See Appendix D.3 for a more precise
statement, discussion and proof. Such circuital identity thus explains the equivalence of the yellow
(F = C2) and red (F = C1) curves between the first and last plot of Fig. 7.4.

=

Figure 7.5: Circuital identity between a full (all-to-all) entangling map made of only CNOTs and
the inverse of a linear (nearest-neighbours) entangling map.

Such equivalence clearly does not hold if controlled rotations are used instead of CNOTs.
Indeed, the feature map F = C3 uses controlled rotations with independent random parameters, and
given that these gates do not cancel out, the entanglement is always increasing going from low to
high connectivity. Note that such increase is mainly due to the feature map, as the variational ansatz
V = C2 is the same as other structures, suffering from the CNOTs cancellation issue described
above.

For comparison, we also show the performances of a QNN with the tensor product feature
encoding F = C1, using no entangling operations. Interestingly, even if this QNN uses two-qubit
interactions only inside the variational blocks, these are sufficient to create entanglement similar to
other considered QNNs, even at a slower yet comparable rate.

We report in Appendix D.5 the complete simulation results detailing the evolution of the
entanglement with the depth of the circuit, for different numbers of qubits.

7.3.4 Entanglement Speed
So far we have presented numerical evidence for the entanglement production in QNNs up to
a maximum of 20 qubits. In the following we extend the analysis leveraging MPS to simulate
quantum systems of bigger size up to 50 qubits, with a maximum bond dimension of cmax = 4096.
More importantly, we show how the entanglement growth follows a behaviour that is specific to
each particular QNN architecture and the number of layers considered, but independent of the
number of qubits in the circuit. We can thus uniquely assign an entanglement speed value to each
QNN, which, we stress again, only depends on the choice of the ansatz, and holds identically for
any instantiation of that QNN with arbitrary number of qubits.

Taking into account the entanglement growth discussed in Sec. 7.3.3, we restrict the analysis
to a linear architecture, to increase as much as possible the number of layers we can correctly
simulate with tensor networks techniques. Indeed, the entanglement production with a circular or
full topology is too fast to allow for a convergent simulation with MPS for deep circuits.

Furthermore, we introduce the maximum Haar entanglement entropy, defined as the maximum
across all bond entropies for a given number of qubits, as

SHaar
n,max = max

A

�
E[S(rA)]

�
⇡ n

2
log2� 1

2
for nA =

n
2
� 1, (7.17)

where the approximation in the second line has an error that scales as O
�
2�n/2�, see Appendix D.2

for its derivation. Thus, for n� 30 qubits, when the exact computation of the Haar entanglement

136 Chapter 7. Entanglement entropy production in quantum neural networks

entropy is unfeasible, we employ the approximated Eq. (7.17). Finally, we define the normalised
entanglement entropy eSn as

eSn =
maxei [S(ei)]

SHaar
n,max

. (7.18)

We stress that eSn is normalised to the maximum Haar entanglement for a fixed n, not to the real
maximum of the entanglement, which would be S = n

2 log2 for the equal size bipartition.
In Fig. 7.6 we show the evolution of eSn versus the normalised number of layers L/n for n 2

{8, 12, 16, 20, 30, 50} qubits, for the QNN defined with F = CZZ, V = C2 with linear connectivity.
We note that all the points, independently of the system size n, follow the same curve: an initial
linear growth of the entanglement is followed by a saturation to the Haar-random value for the
entanglement entropy (7.8). In particular, we check this behaviour also at large system sizes with
n = 30, 50 qubits and circuits with up to L = 11 layers, and confirm that such scaling is indeed size
independent. See Appendix D.6 for a discussion on the errors introduced by truncation in the MPS
representation for simulations with n = 30, 50 qubits.

0.00 0.25 0.50 0.75 1.00 1.25

Norm. layers L/n

0.2

0.4

0.6

0.8

1.0

N
o
r
m

.
e
n
t
.

� S n

n = 8

n = 12

n = 20

n = 30

n = 50

Figure 7.6: Normalised entanglement eSn (7.18) versus the normalised number of layers L/n, for
different number of qubits n, and for the QNN defined by F = CZZ, V = C2 with linear connectivity.
All the normalised entanglement points follow the same curve, independently of the system size n.
The points for n = 8, 12, 16, 20 are obtained by averaging over 103 samples, while for n = 30, 50
the averages are over 10 samples.

Feature map F Variational ansatz V Entangling speed vs

CZZ C2 (1.8±0.1)
CZZ C3 (0.59±0.02)
C1 C3 (0.316±0.006)

Table 7.2: Entangling speed, i.e. a measure of how fast the entanglement is created, for different
QNN architectures. These results are obtained using up to 16 qubits.

Inspired by the behaviour of eSn, we introduce a measure for the entanglement production which
is specific to a given QNN architecture (feature map plus variational ansatz) and independent of the
number of qubits. Borrowing from the literature on random quantum circuits, it is known that the
entanglement of a system undergoing random evolution initially grows linearly in time (depth of
the circuit) before reaching the plateau of Haar random states [48, 164, 216, 332]. Indeed, as clear

7.3 Results 137

from Fig. 7.6, we observe the same initial linear growth, and thus we define the entangling speed vs
as

eSn µ vs ·
✓

L
n

◆
for eSn 0.5, (7.19)

where 0.5 is a threshold such that the linear behaviour holds.
The entangling speed can thus be obtained by fitting the curve in Fig. 7.6 with the linear model

of Eq. (7.19) in the appropriate range. We report in Tab. 7.2 the entangling speed for a subset of
the inspected architectures, and notice that entanglement is produced at sensibly different rates. In
agreement with the findings of Sec. 7.3.3, we see that for a linear topology the circuit C2 builds
the entanglement at the fastest rate. Indeed, fixing the feature map to F = CZZ, C2 produces
entanglement three times faster than C3.

To further characterise the applicability of the entangling speed, we shown that the behaviour
of Fig. 7.6 evaluated for random circuits also holds when the input data xxx 2 Rn in the feature
map F(xxx) are not drawn from the uniform distribution, but rather from real world datasets. In
particular, we select two common dataset in the machine learning literature, the wine [324] and
breast cancer [334] datasets, and calculate the entanglement generated in the circuit when these
data are fed into the feature maps (variational blocks are still populated with random parameters as
before). The results presented in Fig. 7.7 are obtained by rescaling all the features of the datasets in
the interval [0,p], and then averaging over all data points in the datasets. The wine dataset (d = 13
features, hence d = n = 13 qubits) follows perfectly the theoretical curve, and the breast cancer
(d = 9 features, n = 9 qubits) only slightly deviates form it, producing entanglement at a smaller
rate. We then conclude that the entangling speed depends primarily on the architecture of the circuit
rather than the actual values of the parameters. Clearly this holds for reasonably distributed data
features, that is excluding pathological cases of values being either zero or concentrating around it.

0.25 0.50 0.75 1.00 1.25

Norm. layers L/n

0.2

0.4

0.6

0.8

1.0

N
o
r
m

.
e
n
t
.

� S n

Random

Wine

Breast cancer

Figure 7.7: Normalised entanglement using inputs from real-world datasets in the feature map,
compared to the one obtained using random input data sampled from the uniform distribution
Unif[0,p], as shown also in Fig. 7.6.

Thus, the entangling speed can be used as a good estimate of the entanglement generated in
a QNN also in real use cases, especially at the start of optimisation, when trainable parameters
are usually initialised at random. For example, one could measure the entangling speed of the
architecture of interest on a random quantum circuit of just a few qubits, and then estimate the
entanglement generated with the same architecture on an arbitrary number of qubits and circuit
layers, especially in regimes where simulations are no longer computationally feasible.

138 Chapter 7. Entanglement entropy production in quantum neural networks

7.3.5 Expressibility
In addition to entanglement, another useful quantity to characterise parametrized quantum circuits
is the expressibility, as defined by authors in [281]. Such measure quantifies how well the QNN is
able to explore the Hilbert space by comparing the distribution of fidelities of states generated by
the QNNs with that of randomly Haar-distributed ones, and we refer to Appendix D.4 for a formal
definition and explanation. Thus, in order to have a comprehensive understanding of the factors
at play in the behaviour of QNNs, in Fig. 7.8 we show the expressibility measure for the QNNs
analysed in Fig. 7.4 with a linear connectivity. As one would expect, the expressibility increases as
the number of layers is increased, up until a plateau is reached.

1 2 3 4 5 6 7 8 9 10

Number of layers L

10�3

10�2

10�1

100

E
x
p
r
e
s
s
ib

il
it
y

Low expressibility

High expressibility

F = CZZ

F = C1

F = C2

F = C3

Figure 7.8: Expressibility of the QNNs analysed in Fig. 7.4, for n = 8 qubits with linear entangle-
ment. The expressibility measures how well a variational circuit is able to address the unitary space
(the lower, the better). All QNNs use the same variational form V = C2, but with different feature
maps. As the number of layers is increased, QNNs become more expressible, eventually reaching a
plateau.

Interestingly, the structure with F = V = C2 turns out to be the least expressible of all the
structures considered, even if it is the one producing entanglement at the fastest rate, in agreement
with the results reported in [281], as such QNN is indeed very similar to the parameterized circuit
label ed ‘15’ in [281]. On the contrary, the QNN with F = CZZ, and V = C2 proposed in [4] is able
to reach high expressibility while producing entanglement at a controlled pace. As the presence of
high entanglement is correlated with trainability issues [221], this QNN attains an optimal balance
of mild entanglement with high expressibility even at low depth, which could be related to its good
performances in quantum machine learning task [4, 131]. However, a similar, yet less favourable
balance, is achieved by the other two architectures, so further investigation is needed to discriminate
where the optimality comes from.

In this respect, the authors in [144] found the expressibility to be correlated with the classifica-
tion accuracy of QNNs in supervised learning tasks, while weak correlation was found with the
entanglement generated inside the circuit, in line with the observations regarding entanglement-
induced barren plateaus [221]. As discussed earlier in Sec. 7.2.5, both expressibility and high
entanglement are related to the resemblance of the circuit to a random unitary, but while the former
provides a more direct evidence, the latter gives an indirect indication. Indeed, there are cases of
circuits having low expressibility but high entanglement, indicating that such circuits selectively
explore only some highly-entangled regions of the Hilbert space [281].

7.3.6 Distribution of the singular values
The randomness of a quantum state can also be probed using tools from random matrix theory.
Specifically, this can be done by studying the distribution of the eigenvalues of the reduced density

7.4 Discussion 139

matrices, which are known to follow the Marčenko-Pastur (MP) law when pure random quantum
states are considered [150, 333]. More in detail, let |yi 2HA⌦HB be an Haar-random bipartite
quantum state with Schmidt decomposition |yi= Âd

i=1 li |xiiA⌦ |hiiB, where d = min(dA,dB) and
dA,B is the dimension of the Hilbert space HA,B. The reduced density matrix rA = TrB [|yihy|] has
eigenvalues l 2

i given by the square of the singular values, and for large system size their distribution
is described by the MP distribution [197, 239].

10�5 10�4 10�3 10�2

Singular values squared �2

10�2

10�1

100

C
u
m

u
la

t
iv

e
p
r
o
b
a
b
il
it
y

C
(
�

2
)

MP

Haar

L =6

L =10

L =15

Figure 7.9: Convergence to the Marčenko-Pastur (MP) distribution of the eigenvalues. The
cumulative distribution C(l) of the eigenvalues l 2 corresponding to the central bond of a quantum
state of n = 15 qubits, generated with F = CZZ, V = C2, and linear connectivity. We show the
behaviour for different numbers of layers L, and for truly Haar-random states which, as expected,
exactly follows the MP curve.

In Figure 7.9 we show the cumulative probability distribution of the eigenvalues C(l 2) of the
reduced state of the first half of the qubits, obtained with a QNN with n = 15 qubits, feature map
F = CZZ, variational ansatz V = C2, and linear connectivity. The distribution of the singular values
for the QNN is obtained by running the circuit 102 times with different sets of parameters, and
storing the singular values corresponding to the central cut. Then, we construct the cumulative
distribution from the histogram of all the singular values obtained from the simulations. As the
number of layers L is increased, the distribution of the eigenvalues approaches the theoretical MP
distribution, eventually matching it when the number of layers is equal to the number of qubits.
This behaviour is displayed also by other QNN architectures. For completeness, we also show the
distribution of the eigenvalues of a truly Haar-random quantum state, generated by sampling its
entries independently from a normal complex distribution and then normalising it [333], which, as
expected, follows perfectly the MP curve.

7.4 Discussion
Moments of the Haar distribution can be approximated efficiently using local random quantum
circuits of sufficient depth. Depending on the connectivity dimension D of the qubits, defined as
the number of other qubits that are connected to each qubit, order O(poly(t) ·n1/D)-depth random
circuits are sufficient to create approximate unitary t-designs [37, 123, 124, 126], that is circuits that
generate a distribution of unitaries which approximately matches moments of the Haar distribution
up to order t [81]. Numerical studies suggest that these results also hold for random parameterized
quantum circuits of various forms [57, 137, 202, 281].

We extend these results by showing similar results also for quantum neural networks featuring
data re-uploading, both for random instances using random inputs and parameters, and also for
real-world dataset when these are used as inputs in the feature map. In particular, for a linear

140 Chapter 7. Entanglement entropy production in quantum neural networks

connectivity, as the number of layers approaches to the number of qubits L ⇡ n, QNNs display
the same entanglement entropy properties of Haar-distributed random states, a fact which can be
taken as a proxy for QNNs approximating unitary designs. Such behaviour was also confirmed
by studying the randomness of the circuits with other metrics, namely the expressibility and the
convergence to the Marčenko-Pastur distribution of the eigenvalues of the reduced states. In both
cases, we find strong evidence of the QNN reproducing the same features of random quantum states
as the number of layers approaches the system size using a linear connectivity.

Our analysis also underlines the importance of the entangling operations, as careless use of
an all-to-all connection can result in unwanted simplifications, making the effective connectivity
identical to a nearest-neighbours one. Parameterised two-qubit interactions can solve the problem,
even though they may be challenging to implement on real hardware. A good trade-off is achieved
with a circular entangling topology, which is immune to simplifications and shows remarkable
entangling capabilities. Indeed, from the results of Fig. 7.4, we see that such connectivity is able to
create high multiparite entanglement between qubits already at shallow depth, and with only minor
additional hardware resources compared to the linear connectivity. An all-to-all topology instead
reaches typical values for entanglement of random states essentially at constant depth L 2O(1),
independently of the system size, and the architecture used (when non-trivial feature maps and
variational ansätze are used).

While limiting the entanglement inside a quantum neural network may be necessary to ensure
its trainability [221], low entanglement makes the circuit prone to be simulated exactly with an
MPS, as discussed in Sec. 7.3.4. Thus, we envision that a sweet spot should be found in order for
QNNs to show signs of quantum advantage: not too high to preclude trainability, not to low to
escape triviality.

At last, the introduction of the entangling speed vs (7.19) can be used as a figure of merit
for the entanglement production of a given QNN, independent of the size of the system. Indeed,
the entangling speed can be studied and assigned to an architecture in the simulable regime (low
number of qubits n), and then used to estimate the number of layers to achieve a well-determined
quantity of the entanglement, for any system size. We also stress that vS characterises the most
interesting interval of layers in a circuit. As discussed earlier, a value of the entanglement too high
might be connected to barren plateaus, underlying the importance of exploring the regime where
the entanglement has not saturated yet, and the linear regime still holds.

We now briefly comment on future interesting investigation directions regarding entanglement
and QNNs. The focus of this study was to carefully study the entanglement features of common
quantum ansätze, specifically when they are initialised with random parameters and no optimisation
has yet started. A natural followup is to ask whether entanglement plays any role also during
the optimisation process, which is at core of variational quantum algorithms. While for some
specific variational procedures like QAOA [90] or VQE-based ground state solvers [326] one has
some knowledge of the structure of the target solution, and hence can infer the behaviour of the
entanglement created in the circuit, this is not the case for quantum machine learning tasks, as
they are usually very task-dependent. Indeed, current proposals for QML advocate for the use of
constrained quantum ansätze specifically tailored to the problem under investigation [208, 246,
284], and then one expects the depth of the circuit and the entanglement generated inside it to
highly depend on the specific task to be solved, and dataset to fit, either classical or quantum [275].
Moreover, while the use of deep QNN ansätze (with arguably more entanglement) could offer
some optimisation advantages due to overparametrization [9, 162, 172], the emergence of barren
plateaus suggests using shallow circuits instead [57, 312]. The characterisation of the role played
by entanglement in QNNs, and how it may be leveraged to achieve a quantum advantage over
classical methods definitely deserved further explorations. For sake of exploration and clarity, in
Appendix D.7 we show some preliminary results on the study of the evolution of entanglement
during training.

7.5 Conclusion 141

7.5 Conclusion
In this Chapter we discussed in detail the entanglement generated by different promising Quantum
Neural Networks (QNNs) when these are initialised with random parameters, and showed that they
reproduce the same properties of random quantum states under various measures.

We employed a Matrix Product States (MPS) simulation of the quantum circuits, which
guarantees an easy computation of the entanglement in the circuits, and let us study systems of
large system size composed of up to n = 50 qubits.

We showed that while all the architectures tend to a Haar entanglement distribution for a
sufficiently high number of layers, the speed of convergence strongly depends on the specific
circuit ansatz. This result highlights the universal behaviour of the normalised entanglement
production (7.18) for a given architecture, so we introduced a new measure to characterise a QNN
in terms of its entanglement production, namely the entangling speed (7.19).

Finally, we argued that a trade-off between expressibility and entanglement is the key to a
better understanding of QNN performances and an auspicious target for the search of quantum
advantage. While high entanglement is a necessary condition to avoid classical simulability, a too-
large entanglement is detrimental to the training procedure due to its tight connection with barren
plateaus, as discussed in Sec. 7.2.2. A promising future direction is to extend the entanglement
analysis of QNNs not only at initialisation but also during the training procedure [164, 258, 326].
These tests would help to understand if QNNs really are a suitable platform for proving quantum
advantage.

Whilst entanglement is a necessary feature to bestow the computational power offered by
quantum mechanics, on the other end of the spectrum is quantum noise, undoubtedly one of —if
not the most— compelling challenges to be tackled to ensure the adoption and applicability of
quantum computers. More generally, noise arise in many quantum information processing tasks,
and it is at the core the next Chapter, where we discuss a technique to remove a wide class of noises
when performing arbitrary measurements on qubit systems.

8. Noise deconvolution

8.1 Introduction . 142
8.2 Methods . 144
8.2.1 Quantum channels . 145
8.2.2 Qubit systems and Pauli Transfer Matrix formalism . 145
8.2.3 Quantum tomographic reconstruction . 146

8.3 Noise Deconvolution . 147
8.4 Inversion of common noise maps . 149
8.5 Experimental deconvolution . 154
8.5.1 Decoherence noise model . 154
8.5.2 Arbitrary Pauli channel . 157

8.6 Conclusions . 157

In this chapter1 we present a noise deconvolution technique to remove a wide class of noises
when performing arbitrary measurements on qubit systems. In particular, we derive the inverse
map of the most common single qubit noisy channels, and exploit it at the data processing step to
obtain noise-free estimates of observables evaluated on a qubit system subject to known noise. We
illustrate a self-consistency check to ensure that the noise characterisation is accurate providing
simulation results for the deconvolution of a generic Pauli channel, as well as experimental evidence
of the deconvolution of decoherence noise occurring on Rigetti quantum hardware.

8.1 Introduction
Quantum noise is currently the largest limiting factor in the adoption of quantum computation and
quantum technology. Their theoretical performances are in fact hindered by the intrinsic fragility of
quantum systems, and over the last years many proposal have been put forward to mitigate, ideally
correct, the effect of noise and recover reliable results. On the computing side, as fault-tolerant
quantum computers remain out of reach at the moment [166, 236, 277, 289], various error mitigation
techniques have been proposed to extend the capabilities of current small scale noisy quantum
devices [49, 292, 307]. These ranges from correcting the readout noise via inversion of probability

1The content of this chapter is based on the author’s work [194], and all the figures in this chapter are taken from, or
are adaptations of, the figures present in such work.

8.1 Introduction 143

(a) O

r M Tr[Or] Ideal

(b) O

r N M Tr[ON (r)] Noisy

(c) N�1(O)

r N M hOi Deconvolution

(d) O
r N0 U N1 Only N�1

1

Figure 8.1: General scheme for the noise deconvolution process applied to a qubit. (a) Ideal
estimation of an observable O on a single qubit in state r . The operator M 2 {I,H,HS†}, with
H and S being the Hadamard and phase gate, used to select a measurement basis in {sz,sx,sy}
respectively, and thus reconstruct a generic observable O, using Eq. (8.13). (b) Noise (indicated
with a yellow box) happening before measurement leads to noisy estimates of the expectation
values. (c) Noise deconvolution approach: measurements of the noise-inverted observables N�1(O)
on the noisy state leads to the mitigated ideal result hOi. (d) The noise deconvolution approach can
be used to mitigate the effects of N1 only. However, the full noise (N0 and N1) can be mitigated
either if the unitary can be easily inverted as well, or if the noise processes commutes with the
interleaving unitary, as is the case for depolarizing noise.

assignment matrix [39], extrapolating the noise in the device to the zero error case [156, 199, 299],
using a probabilistic sampling on specific circuits to approximate the noise free computation [97,
199, 299], to also using machine learning approaches to learn how to recover ideal results [190].

While these methods are concerned with mitigating noise occurring in a computation, here we
instead focus on the more generic task of correcting the expectation value of arbitrary observables
evaluated on a system which is subject to a known noise happening before the measurement stage.
Such a scenario is relevant in quantum communication and quantum tomography tasks [278].

Noise in quantum systems is described by means of quantum channels [220]

r �! E(r) = Â
k

AkrA†
k , (8.1)

where r is the density matrix representing the state of a quantum system, and Ak are operators
acting on the system, which are called Kraus operators. While the effect of unitary dynamics can be
reversed using realisable operations, quantum channels cannot be undone, and one can only hope
to find operations which only approximately invert the noise process at hand. Examples of this
approach leverages for example Petz recovery maps [110, 176, 323], or unitaries which, on average,
are able to best reverse the noise based on given distance measures [17, 158, 273].

Here instead we show that noise can be eliminated by means of a deconvolution process,
provided that the noise map describing the process is known and invertible. In fact, we drop the
requirements of the inverse transformation being itself a quantum channel, since the transformation
is not applied to the quantum system itself, but to the outcome statistics as a classical post-processing
step. We derive the inversion maps of the most common single-qubit noisy channels (both unital
and non-unital), and show how to use these to remove the effect of noise from the expectation values

144 Chapter 8. Noise deconvolution

of general observables. In Figure 8.1 we schematically summarise the noise deconvolution idea.
The mitigation is effectively obtained by multiplying the noisy estimates by a factor depending on
the noise hOimitig ⇠ chOinoisy, which comes at the cost of increasing the variance of the estimation,
as Var[hOimitig]⇠ c2Var[hOinoisy], so one needs to gather more statistic to reach a target precision.
A related post processing technique specialised for quantum many-body systems and quantum field
theory is put forward in ref. [26].

In addition, we provide both numerical simulations of the noise deconvolution process, as well
as evidence of deconvolution of decoherence noise occurring on the superconducting quantum
computer “Aspen-9” provided by Rigetti, accessed using the Quantum Cloud Services (QCS) [157].
We show how simple self-consistency checks can test whether the known noise map is accurate and
how a feedback scheme can be used to adjust the noise parameters.

Our contributions then include: (i) formalisation and discussion of CPTP (namely, completely
positive trace preserving) noise deconvolution of expectation values through (mathematical) inver-
sion of the noise map; (ii) explicit derivation of the inverse map of the most common single qubit
noise channels; (iii) numerical and experimental application of the ideas introduced before.

Before continuing, we briefly describe the relation of the proposed noise deconvolution idea
to probabilistic error mitigation (PEC) [97, 299], a quantum error mitigation technique aimed
at correcting noisy operations during a quantum computation. Given a characterisation of the
noise, PEC works by using the inverse noise map of the operations to build an ensemble of
suitably generated quantum circuits. These are sampled according to specific weights, and the
results combined to build an approximation of the action of the noise-free quantum circuit. In
particular, the mitigation procedure is active, in the sense that the experimenter need to generate
new quantum circuits and run them against the quantum device. On the contrary, we are instead
concerned with the correction of expectation values evaluated on a noisy state, with no computation
or dynamics involved. In addition, within our framework, the mitigation is passive, in the sense that
the mitigation happens classically as a post-processing step, and no action on the quantum system
is necessary. Appropriately limiting PEC to the specific case of measurement error mitigation, and
realising that sampling on quantum circuits is no longer a necessary step, then one can recover
the noise deconvolution procedure presented here, whose regime of application is not restricted
to quantum computation, but applies to a general quantum mechanical measurement scenario. As
such, some of the results presented here can be recovered also with the techniques proposed in [97,
299]. That said, the explicit calculations presented here for the general noise maps we analyse have
not been presented elsewhere in full generality, e.g. see Table 8.1 below.

The chapter is organised as follows. In Sec. 8.2 we recall some basic concepts about quantum
channels and the Pauli transfer matrix formalism, and the idea of noise deconvolution in Sec. 8.3.
In Sec. 8.4 we leverage the Pauli transfer matrix formalism to explicitly derive the inverse map of
the most common single qubit noise channels, and use inside the noise deconvolution procedure to
obtain noise-free estimates. In Table 8.1 we summarise all the maps taken in consideration as well
as their inverse. In Sec. 8.5 we show by means of simulations that the noise deconvolution process
can be used to cancel out the effect of a general Pauli channel, and also provide experimental
evidence of the deconvolution of decoherence noise as performed on a real quantum device by
Rigetti.

8.2 Methods
In this section we introduce the notation and the theoretical tools used to derive the main results of
the work. As in the previous chapters, we denote with H the Hilbert space of the quantum system
under investigation, and with L(H) the space of squared linear operators acting on H. Also, in this
chapter we use the standard quantum information —rather than computation— notation for Pauli
matrices, that is we use {s0,sx,sy,sz} instead of the previous {I,X ,Y,Z} defined in Eq. (2.4),
which is more convenient and appropriate for the topics treated in this chapter. In addition, we refer

8.2 Methods 145

to Appendix E.1 for a brief overview of quantum channels and Kraus decomposition [220].

8.2.1 Quantum channels
In general quantum channels cannot be physically inverted, as there is no quantum evolution capable
of reversing their actions. Formally stated, let E be a CPTP map, it is not possible to find another
CPTP map D = E�1, such that (D �E)(r) = r 8r . The only trivial case when this is possible,
is for maps having only a single Kraus operator, in which case they reduce to standard unitary
evolution E(r) = UrU†, with the inverse given by D(·) = U† (·)U .

The CPTP conditions impose hard constraints to the operatorial form that physically realisable
evolutions must match, namely the Kraus representation. However, the requirement for admitting a
more general operator-sum representation are looser. In fact, any Hermiticity preserving map, i.e. a
map such that F(r)† = F(r) for r = r†, admits an operator-sum representation as [36, 154]

F(r) = Â
k

lk AkrA†
k with lk 2 {±1} . (8.2)

Clearly, if all the coefficients are lk = 1 8k, then the map F(·) is also completely positive, since it
is in standard Kraus form (8.1). Another useful characterisation is the following.

Corollary 8.1 — Corollary II.2 of [36]. Let CN be the space of complex N ⇥N matrices.
Suppose F : CN ! CN is a completely positive map having the form

F(r) = Â
k

bkAkrA†
k , (8.3)

where {Ak}k are linearly independent in CN , and bk 2 R 8k. Then bk � 0 8k.

Conversely, if a map has the form (8.3) with linearly independent operators {Ak}k but has some of
the coefficients bk < 0, then the map is not completely positive. This result is readily applied to
maps acting on qubit systems where CN = C2⇥2. In fact, Pauli matrices sx,sy and sz together with
the identity s0 = I2, form a linearly independent set in the space of 2⇥2 complex matrices, and
then any map of the form

E(r) = b0s0rs0 +b1sxrsx +b2syrsy +b3szrsz , (8.4)

having some negative coefficients is not a CP map, thus it is not a physically realisable channel. In
the following we will derive many inverse maps having this form, for which this result holds. Of
course, we already know that a quantum channel cannot be inverted (apart from the trivial unitary
case), so that if an inversion map is found, then it is certainly not CP. Nonetheless, this result is still
of interest because it gives a nice and clear condition that can be used to quickly assess the nature
of the maps under investigation. In addition, as shown in ref. [153], if a CPTP map is invertible,
then its inverse is Hermitian preserving (HP), and so it admits an operator-sum form of Eq. (8.2).

8.2.2 Qubit systems and Pauli Transfer Matrix formalism
Our analysis is focused on quantum systems made of qubits (H = C2), and we now briefly review
some useful results on qubit channels. The identity and the Pauli matrices {I,sx,sy,sz} form a
basis on L(H) = C2⇥2, and so any operator O 2 L(H) can be expressed in this basis as

O =
3

Â
i=0

oi si = o0 I+ooo ·sss , oi = Tr[si O] (8.5)

where we have introduced the vector of Pauli matrices sss := (sx,sy,sz), and the vector of coeffi-
cients ooo := (o1,o2,o3)2C3. Similarly, as discussed in Sec. 2.1.3, density operators are expressed in

146 Chapter 8. Noise deconvolution

this basis in terms of their Bloch vector as r = (I+ rrr ·sss)/2, with rrr = (rx,ry,rz) 2 R3, and |rrr| 1,
where equality holds only for pure states r = |yihy| [220].

Since any operator O is completely specified by its components in the Pauli basis, we define its
vector of coefficients as the column vector |Oii := (o0,o1,o2,o3)T, but we refer to refs. [75, 254]
for a detailed discussion on the correspondence between operators and vectors.

In addition, every linear map F : L(C2)! L(C2) can be represented in this basis as a 4⇥4
matrix G, whose action is given by [28, 36, 45, 117]

F(O)�! G|Oii=

g0 ggg
ttt T

�
o0
ooo

�
=

g0 o0 + ggg ·ooo
o0 ttt +T ooo

�
,

or F(O) = (g0 o0 + ggg ·ooo)I+(o0 ttt +T ooo) ·sss ,

(8.6)

where ggg and ttt are row and column vectors respectively, and T is a 3⇥ 3 matrix. The matrix G
associated to the map F is called Pauli Transfer Matrix (PTM), and its elements are given by

Gi j =
1
2

Tr[si F(s j)] i, j 2 {0,1,2,3} . (8.7)

If we restrict to trace-preserving maps, then ggg = 000 and g0 = 1, so the G matrix reduces to the simpler
form

G =

1 000
ttt T

�
. (8.8)

Furthermore, if the map is also unital, that is it preserves the identity matrix F(I) = I)), then also
ttt = 000. As an example, the quantum bit-flip channel described by the map

Nx(r) = (1� p)r + psxrsx , (8.9)

has a corresponding PTM representation as

Nx �! Gx =

2

664

1 0 0 0
0 1 0 0
0 0 1�2p 0
0 0 0 1�2p

3

775 . (8.10)

8.2.3 Quantum tomographic reconstruction
Quantum tomography [70, 72, 73, 200] is a method to estimate the ensemble average of any
arbitrary operator by using measurement outcomes of a quorum of observables. The goal of
a tomographic reconstruction of an observable is to identify a set of observables {Ql}, called
quorum [79], such that the mean value hOi= Tr[Or] of any observable O 2 L(H), for all states r ,
can be reconstructed by using measurements outcomes of the quorum observables. A tomographic
reconstruction formula for an operator O is obtained by using a spectral decomposition of the
identity in the operator Hilbert space [33, 78, 79, 225], namely

O =
Z

L
dl Tr

h
C†

l O
i
Cl , (8.11)

where l is a parameter living in either a continuous or discrete manifold L, and operators Cl depend
on the quorum observables. The term E[O](Ql) := Tr

h
C†

l O
i

Cl is called quantum estimator of the
operator O, and given a quantum state r , the expectation value hOi on such state amounts to

hOi= Tr[Or] =
Z

L
dl Tr

h
OC†

l

i
Tr[Cl r] =

Z

L
dl Tr[E[O](Ql)r]

=
Z

L
dl hE[O](Ql)i .

(8.12)

8.3 Noise Deconvolution 147

For qubit systems, the most common choice (but non unique, e.g. [70]) for the quorum are the
Pauli matrices {Ql}l = {sx,sy,sz}, and the tomographic reconstruction formula results in the
standard expansion in the Pauli basis, albeit with a slightly different notation (see Appendix E.2 for
the explicit derivation), that is

hOi= Â
a=x,y,z

1
3
hE[O](sa)i ,

E[O](sa) =

✓
3Tr[Osa]

2
sa +

Tr[O]

2
I
◆

.

(8.13)

Note that the quantum tomographic reconstruction can be straightforwardly applied to multipartite
quantum systems by simply using as a quorum the tensor product of single-system quorums [79].

8.3 Noise Deconvolution
The tomographic reconstruction formula can be used whenever one has access to the quantum state
r and measurements of the quorum observables. In practical scenarios however, estimations are
performed in the presence of noise and one generally deals with noisy quantum states r ! r̃ =
N (r) which then leads to noisy estimates hOir̃ = Tr[ON (r)]. The idea of noise deconvolution is
to correct the errors by considering a new quorum of observables taking into account the noise, and
then use a noise inverted quantum estimator to recover the ideal estimates, namely the ones that we
would obtain in the absence of noise.

Suppose the noise map N acting on the quantum system can be formally inverted, that is there
exist a linear (not CP) map N�1 such that (N�1 �N)(r) = r 8r . Then, we say that the noise can
be deconvolved in the following sense: instead of measuring the original observable O, we can
evaluate the expectation value of the noise-inverted operator N̂�1(O), thus obtaining as a result the
desired noise-free ideal result hOi, that is

⌦
N̂�1(O)

↵
r̃ = Tr

⇥
N̂�1(O)N (r)

⇤
Tr
⇥
ON�1(N (r))

⇤
= Tr[Or] = hOi , (8.14)

where N̂�1(·) denotes the adjoint of the inverse map N�1(·), and in the second line we made
explicit use of the definition of the adjoint map (see Appendix E.4.4 for a formal definition of
adjoint map). The conditions for deconvolving the effect of a noise channel N are [79, 225]:

• the inverted noise map exists, that is there is a N�1 such that (N�1 �N)(O) = O 8O2L(H).
• the quantum estimator E[O](Ql) is in the domain of N�1.
• the map N�1(E[O](Ql)) is a function of Ql .

If these hold, then one can substitute the quantum estimator in Eq. (8.12), with the deconvolved
quantum estimator N̂�1(E[O](Ql)), yielding

Z

L
dl Tr

⇥
N̂�1(E[O](Ql))N (r)

⇤
=
Z

L
dl Tr

⇥
E[O](Ql)N�1(N (r))

⇤

=
Z

L
dl Tr[E[O](Ql)r] = Tr[Or] = hOi .

(8.15)

This procedure yields the ideal expectation value of any observable O on the state r , even if
having access only to a noisy version of it and provided that the noise map is known (and invertible).
Note that this definition is similar to that recently reported in ref. [49], regarding invertible noise
channels with non-CPTP inverse. Specialising it for qubits, using Eq. (8.15) in (8.13), leads to (see
Appendix E.3 for further details)

hOi= 1
2

Tr[O]+
1
2 Â

a=x,y,z
Tr[Osa]

⌦
N̂�1(sa)

↵
r̃ . (8.16)

148 Chapter 8. Noise deconvolution

Similarly to standard tomographic reconstruction, noise deconvolution can be applied also to
multi qubits systems [254], in which case the mitigated tomographic estimates can be obtained
considering the tensor product of the deconvolved quantum estimator of each subsystem. In
addition, generally non-invertible maps could still be deconvoluted if one restricts the attention
only to a subset of states of interest upon which the given map is invertible [76, 77].

As shown later, the correction of the expectation value of a Pauli matrix is obtained by multi-
plying the noisy estimate —the one the experimenter has access to— by a constant depending on
the noise, i.e. hsaimitig = chsainoisy. This clearly increases the variance of the estimation, since
Var[hsaimitig] = c2Var[hsainoisy]⇠ c2

/M, where M is the number of measurement shots performed
on the system, and thus the experimenter need to increase the outcome statistics proportionally to
c2 to reach a desired target precision.

We now proceed discussing how the deconvolution behaves in the presence of multiple noise
channels. Consider two noise processes N0 and N1 separated by a unitary gate U(·) = U ·U†, as
shown in Fig. 8.1(d). The action of the circuit is

�
N1 �U �N0

�
(r) = N1

✓
UN0

�
r
�
U†
◆

= N1(r̃U) , (8.17)

with r̃U = UN0
�
r
�
U†. Using (8.15), it is possible to deconvolve the outermost noise N1 with

Tr
⇥
N̂�1

1 (O)N1(r̃U)
⇤
, (8.18)

but not N0, since the unitary U is in the way. Actually, one could decide to deconvolve the unitary
as well, using the trivial inverse U�1

1 (·) = U†
1 ·U1, and thus making it possible to deconvolve also

the first noise channel N0, as

Tr
⇥
N̂�1

1
�
(UN̂�1

0 (O)U†�N1(r̃U)
⇤
= Tr

⇥�
UN̂�1

0 (O)U†�UN0
�
r
�
U†)

⇤
(8.19)

= Tr
⇥
N̂�1

0 (O)N0(r)
⇤
= Tr[Or] . (8.20)

However, this procedure cannot be employed to invert the noise that happens before a generic
unitary U , since it essentially offloads the computation from the quantum computer to the classical
one, by simulating the inverse evolution of the quantum system.

A more interesting case is obtained when the error map happens to commute with all the
operations in the computation, as is the case for the depolarizing noise, described by the map

Ndep(r) =
pI
2

+(1� p)r , (8.21)

for which it is easy to see that
�
Ndep �U

�
(r) =

�
U �Ndep

�
(r)8 U(·) = U ·U†. Suppose one is

performing a quantum computation given by a sequence of operations Ui, each one followed by
depolarizing noise

r =

✓ d

’
i=1

N (i)
dep �Ui

◆
(r0) =

✓ d

’
i=1

N (i)
dep �

d

’
i=1

Ui

◆
(r0) = N tot

dep(rU) , (8.22)

with N tot
dep = ’iN

(i)
dep the composition of all the depolarizing channels, and rU = ’Ui(r0) the

state obtained by the ideal noise-free computation. Most importantly, one can check that the
composition of multiple depolarizing channels is still a depolarizing channel with probability
parameter 1� ptot = ’i(1� pi), where pi is the probability associated with each depolarizing noise.
In such a case, it is possible to deconvolve all noise at once, using the deconvolution formula for
the depolarizing noise with the total noise parameter ptot (see Eq. (8.37)).

Similarly, this also holds for computations involving multi qubits subject to global depolarizing
errors. The authors in ref. [310] leverage this property to perform a simple yet effective error

8.4 Inversion of common noise maps 149

mitigation technique for quantum computers, based on the assumption that noise in quantum
circuits is well described by global depolarizing error channels. While exact depolarizing errors
(either local or global) are hardly found in realistic quantum circuits where errors are both due
to coherent (i.e. unitary) and incoherent noise (i.e. interaction), Pauli twirling and randomised
compiling techniques [96, 127, 311, 313] can be used to approximately tailor noise to stochastic
Pauli channels, preferably depolarizing noise, and then use the procedure above to mitigate it [306].

8.4 Inversion of common noise maps
We now proceed by explicitly evaluating the inverse maps of some of the most common noisy
channels, leveraging the Pauli Transfer Matrix formalism introduced in Sec 8.2. The general
method for finding the inverse map goes as follows: we first evaluate the matrix representation (8.6)
of the channel, we then invert this matrix, and from this recover the operator sum representation of
the inverse channel whenever this exists. We start from simpler cases to build some intuition on the
construction of the inverse maps, and then proceed towards more complicated cases. In Table 8.1
we summarise the results obtained in this section, comprising all noise channels considered in this
analysis together with their inverse maps.

Noise Channel N (r) Inverse Map N�1(O)

Bit-Flip (1� p)r + psxrsx
1� p
1�2p

O� p
1�2p

sxOsx

Phase-Flip (dephasing) (1� p)r + pszrsz
1� p

1�2p
O� p

1�2p
szOsz

Bit-Phase-Flip (1� p)r + psyrsy
1� p
1�2p

O� p
1�2p

syOsy

Depolarizing (1� p)r + p
I
2

1
1� p

⇣
O� p

2
Tr[O]I

⌘

General Pauli Channel
(see Eq. (8.39)) p0r + Â

k=x,y,z
pkskrsk b0O+ Â

k=x,y,z
bkskOsk

Amplitude Damping V0rV0 +V1rV †
1 K0OK0�K1OK†

1

V0 = |0ih0|+
p

1� g |1ih1|
V1 =

pg |0ih1|

K0 = |0ih0|+
q

1
1�g |1ih1|

K1 =
q

g
1�g |0ih1|

2-Kraus Channel
(see Eq. (8.48)) A0rA0 +A1rA†

1 B0OB†
0�B1OB†

1

A0 = cosa |0ih0|+ cosb |1ih1|
A1 = sinb |0ih1|+ sina |1ih0|

B0 =
p

hab (cosb |0ih0|+ cosa |1ih1|)
B1 =

p
hab (sinb |0ih1|+ sina |1ih0|)

Table 8.1: Table summarising the results of the present analysis, consisting of some of the most
common single-qubit noisy channels N , along with their inverse noise maps N�1, defined as the
map such that (N�1 �N)(r) = r 8r . Clearly, all noise channels are CPTP maps, while the inverse
channels are not, yet they admit an operator-sum representation. All the noise maps except for
amplitude damping and 2-Kraus channel have trivial adjoint channels, so one must pay attention in
using the adjoint channel inside the deconvolution formula (8.16). As discussed in Eq. (8.48), the
coefficient in the inverse 2-Kraus channel is hab = 2/(cos2a + cos2b).

150 Chapter 8. Noise deconvolution

8.4.0.1 Bit-flip, phase-flip and bit-phase-flip
The bit-flip, phase-flip and bit-phase-flip channels are described by the Kraus operators, A0 =

ppI
and A1,a =

p
1� psa , with sa 2 {sx,sz,sy} respectively. For simplicity, in the following we

focus only on the bit-flip channel (generated by sx), but the results hold equivalently also for the
other two channels. The bit-flip channel acts as

Nx(r) = (1� p)r + psxrsx , (8.23)

and its PTM is given by

Gx =

2

664

1 0 0 0
0 1 0 0
0 0 1�2p 0
0 0 0 1�2p

3

775 . (8.24)

In order to find an operator-sum expression for the inverse map N�1
x , consider the inverse matrix

G�1
x =

2

6664

1 0 0 0
0 1 0 0
0 0 1

(1�2p) 0
0 0 0 1

(1�2p)

3

7775
. (8.25)

It’s clear that Gx can be inverted provided that p 6= 1/2, since in that case detGx = 0. This is not a
problem for real case scenarios, where the probability of errors are usually small, and can safely
assume 0 < p < 1/2. We now proceed using a derivation similar to that proposed in [36].

Note that G�1
x is diagonal in the Pauli basis, thus has eigenvectors {|Iii, |sxii |syii |szii} with

eigenvalues lll = (1,1,(1�2p)�1
,(1�2p)�1) respectively. Now, consider the generic map

E(O) =
3

Â
k=0

bk skOsk . (8.26)

Also this map has eigenvectors {I,sss}, but with eigenvalues bbb = (b0,b1,b2,b3). Since two maps
are equal if they have the same action on a basis, if we can find a way to match the two sets of
eigenvalues lll and bbb , we would then recover the operator-sum representation for G�1

x .
By evaluating the PTM GE of E(·) (8.26), we can relate the coefficients in the operator-sum

representation (8.26), with those appearing in the expression for G�1
x (see Appendix E.4 for a

derivation). In particular, we want these to hold

(G�1
x)11 = b0 +b1�b2�b3 , (8.27)

(G�1
x)22 = b0�b1 +b2�b3 , (8.28)

(G�1
x)33 = b0�b1�b2 +b3 , (8.29)

plus the trace-preserving condition 1 = b0 +b1 +b2 +b3, that the inverse map must satisfy because
the direct map is trace-preserving. This condition is inherently satisfied by G�1

x , since its first row
has the form (1,0,0,0). This system has solutions b0 = (1� p)/(1�2p), b1 =�p/(1�2p), and
b2 = b3 = 0, and substituting them back into Eq. (8.26), we obtain the operator-sum representation
of the inverse bit-flip map

N�1
x (O) =

1� p
1�2p

O� p
1�2p

sxOsx . (8.30)

By virtue of Corollary II, and noticing that the coefficients appearing in the expression above
have always opposite signs, we are sure that this map is not CP, as expected, yet it possesses an

8.4 Inversion of common noise maps 151

operator-sum representation. Note how similar the direct and inverse map are, a feature which we
will encounter in all the cases discussed here.

The same procedure can be applied to phase-flip (also referred to as dephasing, generated by
sz), and bit-phase-flip (generated by sy) channels, yielding inverse maps

N�1
z (O) =

1� p
1�2p

O� p
1�2p

szOsz , (8.31)

N�1
y (O) =

1� p
1�2p

O� p
1�2p

syOsy . (8.32)

We can plug these inversion maps in the deconvolution formula (8.16) to obtain noise-free
expectation values of observables. In particular, assume we are measuring a Pauli matrix O = sa ,
and that the system is subject to one of the noise processes r ! rb = Nb (r) with b = {x,y,z}.
Then the ideal expectation values hsair = Tr[sar] can be expressed in compact form as (see
Appendix E.4 for the explicit derivation)

hsai= dab hsairb
+(1�dab)

1
1�2p

hsairb
, (8.33)

where dab is a Kronecker delta. It is then clear that if the noise happens along the measurement
direction (a = b), then the noise does not affect the measurement statistics, as the ideal and noisy
value coincide. While for orthogonal directions (a 6= b), these are equally contracted by a factor
1�2p, thus recovering the usual pictorial representation of the contracting Bloch sphere on the
plane orthogonal to the noise [220].

8.4.0.2 Depolarizing noise
The depolarizing noise channel is defined as

Ndep(r) = (1� p)r +
pI
2

, (8.34)

whose action is to leave the state untouched with probability 1� p, and sends it to the completely
mixed state I/2 with probability p. The channel can be expressed in Kraus form in multiple ways,
one of them being [220]

Ndepol(r) =

✓
1� 3p

4

◆
r +

p
4

✓
sxrsx +syrsy +szrsz

◆
, (8.35)

with corresponding Kraus operators A0 =
p

1�3p/4I, A1 =
ppsx/2 ,A2 =

ppsy/2 ,A3 =
ppsz/2.

Following the same procedure outlined before for the bit-flip channel, one can easily recover the
inverse linear map (see Appendix E.4 for explicit derivation)

N�1
depol(O) =

1
1� p

⇣
O� p

2
Tr[O]I

⌘
. (8.36)

While this is already a known result in the literature [33, 74, 79, 139, 299], it is presented without
an explicit constructive derivation, as given here.

Using this formula in the deconvolution tomographic reconstruction (8.16), we find

hOi= 1
2

Tr[O]+Â
a

Tr[Osa]

1� p
hsaiNdep(r) , (8.37)

where it is clear that to counterbalance the effect of the depolarizing channel, whose effect on
the Bloch sphere is to contract it uniformly, one needs perform an expansion of the same amount,
obtained dividing by 1� p.

While our analysis is focused only on single qubit systems, it is worth noticing that a similar
approach can be used to correct correlated and asymmetric depolarizing channels acting on multi-
qubits systems [47], as recently shown in [254].

152 Chapter 8. Noise deconvolution

8.4.0.3 General Pauli channel
A more general and interesting case is that of general Pauli channels, where noise acts with different
strength along the three Pauli axes, defined as

Nppp(r) = p0O+ pxsxrsx + pysyrsy + pzszrsz . (8.38)

The channel is parametrized by the probabilities ppp = (p0, px, py, pz), with the trace-preserving
condition implying p0 = 1� px� py� pz. Importantly, upon choosing appropriate values for
ppp, this channel reduces to all noise maps treated before. Though of considerable more general
structure, the inverse map of this channel is derived using the same machinery developed above,
and eventually one obtains

N�1
ppp (O) = b0O+b1sxOsx +b2syOsy +b3szOsz , with

b0 =
1
4

✓
1+

1
1�2(px + py)

+
1

1�2(px + pz)
+

1
1�2(py + pz)

◆
,

b1 =
1
4

✓
1� 1

1�2(px + py)
� 1

1�2(px + pz)
+

1
1�2(py + pz)

◆
,

b2 =
1
4

✓
1� 1

1�2(px + py)
+

1
1�2(px + pz)

� 1
1�2(py + pz)

◆
,

b3 =
1
4

✓
1+

1
1+2(px + py)

� 1
1�2(px + pz)

� 1
1�2(py + pz)

◆
.

(8.39)

One can check that varying ppp it is possible to recover the inverse maps of all the cases treated
before. For example, for ppp = (1� p, p,0,0) corresponding to the bit-flip channel in Eq. (8.23), one
gets b0 = (1� p)/(1�2p) and b1 =�p/(1�2p), as in Eq. (8.30).

The noise deconvolution applied to measurements of Pauli matrices O 2 {sx,sy,sz}, leads to
the following relations

hsxi=
1

1�2(py + pz)
hsxiNppp(r) ,

hsyi=
1

1�2(px + pz)
hsyiNppp(r) ,

hszi=
1

1�2(px + py)
hsziNppp(r) ,

(8.40)

which can be used together with Eq. (8.16) to reconstruct the expectation value of a general
observable O. As before, we see that the noise disturbs the estimation along orthogonal directions.
Note that the explicit inversion of the general Pauli channel was also recently reported in ref. [292].

8.4.0.4 Amplitude Damping
The amplitude damping (AD) channel describes the energy loss of a quantum system, for example
obtained through relaxation from the excited to the ground state. Its Kraus representation is

NAD(r) = V0rV †
0 +V1rV †

1 , V0 =

1 0
0
p

1� g

�
, V1 =

0
pg

0 0

�
, (8.41)

where g 2 [0,1] is a parameter that encodes the strength of the energy loss process, which for real
systems is often expressed in terms of characteristic decay times, as discussed in Sec. 8.5.

While still being trace preserving (TP), amplitude damping channel is not unital, since
NAD(I) = I+ gZ. This in turn implies that the Pauli Transfer Matrix GAD is not diagonal, but has
an addition nonzero element in the last row of first column. This changes the derivation of the

8.4 Inversion of common noise maps 153

inverse map with respect to the previous cases, but it can still be carried out without major changes,
as shown in Appendix E.4.4. The inverse linear map in operator-sum representation is then found
to be

N�1
AD(r) = K0OK†

0 �K1OK†
1 K0 =

"
1 0
0 1p

1�g

#
, K1 =

"
0
q

g
1�g

0 0

#
. (8.42)

Up until now, all noisy channels (and their inverse maps) had trivial adjoint map, since all Kraus
operators were Hermitian. However this is not the case for amplitude damping, since both V1 6= V †

1
and K1 6= K†

1 . Thus, one must be careful in applying the adjoint inverse N̂�1 in Eq. (8.16), and not
just N�1 of (8.42) (see Appendix E.4.4 for an extended discussion). Deconvolution of amplitude
damping for measurements of the Pauli matrices leads to

hsxi=
1p

1� g
hsxiNAD(r) ,

hsyi=
1p

1� g
hsyiNAD(r) ,

hszi=
1

1� g
�
hsziNAD(r)� g

�
.

(8.43)

Similarly, one can also obtain the inverse map of the generalised amplitude damping (GAD)
channel, used to model the interaction of a qubit with an environment at a finite temperature [46,
220]. Such channel is parameterised by two parameters g and p, and it is defined as

NGAD(r) = A0rA†
0 +A1rA†

1 +A2rA†
2 +A3rA†

3

A0 =
p

p

1 0
0
p

1� g

�
, A1 =

p
p

0
pg

0 0

�
,

A2 =
p

1� p
p

1� g 0
0 1

�
, A3 =

p
1� p

0pg 0

�
.

(8.44)

One can check that the following map is the inverse of the GAD channel

N�1
GAD(r) = B0rB†

0�B1rB†
1 +B2rB†

2�B3rB†
3

B0 =
p

p

"
1 0
0
q

1
1�g

#
, B1 =

p
p

"
0
q

g
1�g

0 0

#
,

B2 =
p

1� p

"q
1

1�g 0
0 1

#
, B3 =

p
1� p

"
0q

g
1�g 0

#
,

(8.45)

with corresponding noise deconolved Pauli expectation values given by

hsxi=
1p

1� g
hsxiNGAD(r) ,

hsyi=
1p

1� g
hsyiNGAD(r) ,

hszi=
1

1� g
�
hsziNGAD(r)� g(2p�1)

�
.

(8.46)

8.4.0.5 Two-Kraus channels
We conclude the analysis of single-qubit noise channels by considering the set of channels generated
by two parametrized Kraus operators, namely

Ntwo(r) = Â
i=1,2

AirA†
i , (8.47)

154 Chapter 8. Noise deconvolution

with A1 = cosa |0ih0|+ cosb |1ih1|, and A2 = sinb |0ih1|+ sina |1ih0|. This channel reduces to
bit-flip for a = b , and to amplitude damping for a = 0. Following a procedure similar to the
amplitude damping case, the inverse map of the two-Kraus channels is found to be

Ntwo(O)�1 = B1OB†
1�B2OB†

2 ,

B1 =

2

4

p
2cosbp

cos2a+cos2b
0

0
p

2cosap
cos2a+cos2b

3

5 ,

B2 =

2

4
0

p
2sinbp

cos2a+cos2bp
2sinap

cos2a+cos2b
0

3

5 .

(8.48)

Similarly to amplitude damping, one of the generators (B2) is not Hermitian, thus we must employ
the adjoint inverse map when evaluating the deconvolved expectation values. By straightforward
calculations the following holds

hsxi=
1

cos(a�b)
hsxiNtwo(r) ,

hsyi=
1

cos(a +b)
hsyiNtwo(r) ,

hszi= hab
�

cos2 b + sin2 a�1+ hsziNtwo(r)

�
,

(8.49)

with hab = 2/(cos(2a)+ cos(2b)). Note that upon varying the parameters a and b , the formulas
above correctly reduce to the other limiting channels. For example, setting a = 0 leads to amplitude
damping channel in Eq. (8.43) with cos(b) :=

p
1� g .

8.5 Experimental deconvolution
In this section we provide some concrete applications of the noise deconvolution procedures for
qubit tomography outlined above. In particular, we show both numerically and by experimentation
on superconducting quantum hardware by Rigetti how to address a decoherence noise model, and
we also provide numerical evidence for the deconvolution of the general Pauli channel (8.38). All
simulations are performed using PyQuil and the real quantum device used is “Aspen-9", accessed
via Rigetti’s Quantum Cloud Services (QCS) [157, 286].

8.5.1 Decoherence noise model
The concurrent action of a dephasing channel followed by amplitude damping is referred to as
decoherence noise, which is an effective way to describe the noisy evolution a qubit undergoes due
to uncontrolled interaction with its external environment. Using the definitions (8.23) and (8.41),
one obtains

Ndec(r) = (NAD(g)�Nz(p))

✓
a b
c 1�a

�◆

=

1� (1�a)(1� g) (1�2p)

p
1� g b

(1�2p)
p

1� g c (1� g)(1�a)

�

=

1� (1�a)e�t/T1 e�t/T2 b

e�t/T2 c e�t/T1 (1�a)

�
,

(8.50)

where we have introduced the relaxation times T1 and T2 characterising the “quality" of the physical
qubits. These are related to the noise parameters g and p through the following relations

g = 1� e�t/T1 , p =
1
2
�
1� e�(t/T2�t/2T1)

�
, (8.51)

8.5 Experimental deconvolution 155

where t is a time parameter indicating the duration of the noise process.
Since the correction terms in the deconvolution formulas for dephasing (8.43) and amplitude

damping (8.33) are multiplicative, for a decoherence channel these combine as

hsxi=
1

(1�2p)

1p
1� g

hsxiNdec(r) ,

hsyi=
1

(1�2p)

1p
1� g

hsyiNdec(r) ,

hszi=
1

1� g
�
hsziNdec(r)� g

�
.

(8.52)

Additionally, if the quantum system under investigation is subject to repeated applications of a
decoherence noise channel, i.e. N �mdec(r) = N (1)dec �N (2)

dec · · ·�N
(m)
dec (r), then the ideal expectation

values are obtained through the following equations

hsxi=
1

((1�2p)
p

1� g)m hsxiNdec(r) ,

hsyi=
1

((1�2p)
p

1� g)m hsyiNdec(r) ,

hszi=
1

(1� g)m

�
hsziNdec(r)�1+(1� g)m�

.

(8.53)

In Figure 8.2 we show the application of these formulas to deconvolve the decoherence noise
occurring on a qubit. The specific quantum circuit used for the experiments is showed in Figure 8.2a:
first the system is prepared in the superposition state |+i = H |0i = (|0i+ |1i)/

p
2, then we let

qubit decohere for a certain amount of time dictated by the number D of (noisy) identities each of
which supposedly takes a time t, and at last we measure the expectation value of the operator sx.
Clearly, in a noise-free scenario, the result would always be hsxi= 1, independent of the depth D.
Figure 8.2c shows a simulation of these circuits with stochastic measurement outcomes for different
values of D, and for a given choice of noise parameters p and g . For comparison, the individual
effect of dephasing and amplitude damping channels alone are also showed. Thanks to Eq. (8.53)
we can invert the effect of the decoherence noise, and so retrieve the ideal noise-free results.

We also tested this procedure on real superconducting quantum hardware provided by Rigetti, in
particular on the device “Aspen-9”, whose topology is reported in Fig. 8.2b. The device comes with
the calibration data reporting the T1 and T2 parameters for any qubit, as well as the time duration
of a single gate. Identities in the circuits are used to introduce time delays, and thus let the qubit
decohere for longer intervals of time, depending on the depth D. Differently from the previous
simulations where only the identities are supposed to introduce (decoherence) noise, in the real
case scenario noise happens along the whole computation, including state preparation, application
of all gates in the circuit (both Hadamards and Identities), and finally measurement errors. Of
these, the most detrimental are undoubtedly readout errors, and we addressed them by using the
standard mitigation technique of calibrating the device and inverting the assignment probability
matrix to recover readout mitigated results. Calibration data reports that the time it takes to execute
a single qubit identity gate is t = 40 ns, and together with T1 and T2, these are used to calculate the
parameters p and g of the decoherence noise, using relations (8.51). These are in turn used inside
the deconvolution formulas to recover the noise-free results. Figures 8.2d and 8.2e show the results
of the execution of circuit Fig. 8.2a on qubits 4 and 25, respectively.

The noise mitigation procedure on qubit 4 shown in panel 8.2d yields slightly unphysical results,
in that the mitigated expectation values exceeds one at times. A naive solution to this problem
could be to impose that the mitigation results are in the physical range hsai 2 [�1,+1], so that if
the result exceed the limits, it should be substituted with the appropriate physical bound. Though,
assuming a gate time duration of t = 35 ns instead of standard 40 ns, yields results which are more

156 Chapter 8. Noise deconvolution

. . .|0i H I1 I2 ID H h�xi

(a)

Ij = NAD(�) �NDephasing(p) � I

(b)

0 20 40 60 80 100 120 140
Number of Identities

0.80

0.85

0.90

0.95

1.00

h�
x
i

Dephasing p = 0.00052, Amplitude damping � = 0.00111

Noise free

Amplitude damping, �

Dephasing, p

Dephasing and Damping

Deconvolution of full noise

(c)

0 20 40 60 80 100
Number of Identities

0.6

0.7

0.8

0.9

1.0

1.1

h�
x
i

Aspen-9, Qubit 4: T1 = 17.43 µs, T2 = 10.67 µs

Experiment

Deconvolution with gate time = 40 ns

Deconvolution assuming gate time = 35 ns

(d)

0 20 40 60 80 100 120 140
Number of Identities

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

h�
x
i

Aspen-9, Qubit 25: T1 = 35.91 µs, T2 = 25.11 µs

Experiment

Deconvolution with gate time = 40 ns

(e)

Figure 8.2: Deconvolution of decoherence noise both on a simulator and the real quantum device
Aspen-9 by Rigetti. (a) Scheme of the quantum circuit used in the simulations and runs on the actual
quantum device. A qubit is prepared in the superposition state and then it is left to decohere for a
certain amount of time, dependent on the number D of identities in the circuit. Eventually the qubit
is measured in the x-basis to estimate the expectation value sx. (b) Scheme of Aspen-9, the real
quantum device by Rigetti used to run the quantum circuit. (c) Simulation of the decoherence noise
for dephasing (p) and damping (g) intensities equal to those characterising qubit 25 of Aspen-9,
with gate duration of 40 ns. For comparison, the effect of the action of these channels alone is also
showed. Using the deconvolution formulas for decoherence noise (8.53), it is possible to mitigate
the decay caused by the noise, and recover the ideal result. Each expectation value is estimated
evaluating the mean over nshots = 2048 measurement outcomes, and the error bars showed are the
statistical error of the mean. (d) Results obtained from running the circuit on qubit 4 of Aspen-9,
characterised by relaxation times T1 = 17.43 ·10�6 s and T2 = 10.67 ·10�6 s, with nshots = 2048,
and the error bars are twice the error of the mean. See main text for comments on the results. (e)
Results obtained from running the circuit on qubit 25 of Aspen-9, characterised by relaxation times
T1 = 35.91 ·10�6 s and T2 = 25.11 ·10�6 s, with nshots = 1024. Also in this case the error bars are
equals to twice the error of the mean. See main text for comments on the results.

in agreement with the expected theoretical behaviour for decoherence noise, as the deconvoluted
results are compatible with one, as expected. This hints that either the quality of the qubit is better
then reported in the available calibration data (either due to shorter gate times t, or larger T1 and
T2), or that the decoherence model alone poorly describes the noise happening on idle qubit 4 left
interacting with the external environment. However, the good accordance between the deconvoluted
results with t = 35 ns and the experiments suggests the first hypothesis to hold.

Such conclusion is also corroborated by the experimental results obtained with qubit 25. In fact,
using the deconvolution formulas with reported T1, T2 and standard gate time (t = 40 ns), we are
able to mitigate the effect of noise with good accuracy, as showed in Fig. 8.2e, hinting that indeed
the decay law of the qubit is well described through a decoherence noise model of Eq. (8.50). Also,
note that the simulation in Fig. 8.2c is tuned with the same noise parameters p and g characterising

8.6 Conclusions 157

qubit 25. Apart from fluctuations due to, e.g imperfect readout, stochastic measurement outcomes,
and noisy Hadamards, there is good agreement between the simulated (red curve in panel (c)) and
experimental result (red curve in panel (e)). We do not report analogues experiments using other
qubits in the device that produced obviously biased data.

8.5.2 Arbitrary Pauli channel
We implemented a simulation of the noise deconvolution of the general Pauli channel (8.38), using
the quantum virtual machine (QVM) simulator provided with PyQuil [286]. The simulated circuit
is showed on top of Figure 8.3. A qubit starting in the ground state is rotated in the Bloch sphere
around the y axis via RY (q) = e�iqsy/2, and then it is subject to the general Pauli noise (yellow
box), simulated applying a Pauli transformation chosen randomly with probabilities px, py and pz.
At last, we estimate the expectation value of the three Pauli matrices by appending the appropriate
change of basis gate, i.e Mj 2 {I,H,HS†} for {sz,sx,sy} respectively.

The noise parameters (px, py, pz) are used within the deconvolution formulas (8.40) to recover
the mitigated results (green curve), which are, as expected, in perfect agreement with the ideal
noise-free ones, obtained from executing the quantum circuit without the noisy channel (red curve).

8.6 Conclusions
In conclusion we have shown how mathematically invertible noise maps can always be removed
from the final measurement stage, so that one can obtain unbiased expectation values of general
observables provided that the noise process is known. We illustrated the method on most known
qubit noise maps, and systematically derived their inverse maps (see Table 8.1). We simulated the
noise deconvolution procedure for the case of a general Pauli channel (Fig. 8.3) and illustrated our
method on noise on actual quantum hardware (Fig. 8.2).

158 Chapter 8. Noise deconvolution

|0i RY (✓) N (px, py, pz) Mj h�ji

�1.0

�0.5

0.0

0.5

1.0

h�
x
i

�1.0

�0.5

0.0

0.5

1.0

h�
y
i

0 1 2 3 4 5 6
�

�1.0

�0.5

0.0

0.5

1.0

h�
z
i

Ideal

Noisy

Deconvoluted

Arbitrary Pauli noise with px = 0.1, py = 0.05, pz = 0.2

Figure 8.3: Simulation of the deconvolution process for the general Pauli channel Nppp (8.38). The
noise parameters along the three Pauli axes are set to px = 0.1, py = 0.05, pz = 0.2. The results
are obtained simulating the circuit portrayed on top of the image for nshots = 1024 shots and for
multiple values of the angle q . Then, the deconvolution formulas (8.40) are used to retrieve the
ideal noise-free result. It is clear that the deconvolution effectively mitigates the Pauli noise yielding
a final result which is much closer to the ideal noise-free one, up to differences due to stochastic
measurement outcomes. In particular, the estimation of sy is dominated by the statistical error,
which is amplified by the correction factor 1/(1�2(px + pz)) = 2.5.

9. Conclusions

The greatest success of our field [quantum computation and
informatics] will not be to speed up calculations or communicate
in secrecy, but to help people understand that this world is
quantum-mechanical.

Charles Henry Bennett
as reported by Simone Severini in his book “Nella terra dei qubit” [272].

.

In this Thesis we have covered several topics regarding variational quantum algorithms and
quantum machine learning, providing several compelling examples of how parameterized quantum
circuits can be understood as machine learning models.

Indeed, we have started in Chapter 2 with a bird’s eye view on the new and exciting field of
variational quantum algorithms, that is that ensemble of procedures that leverage parameterized
quantum circuits and classical computing power in tandem to take full advantage of near-term
quantum computing devices. Before future experimental and theoretical advancements pave the way
toward the construction of large-scale noise-resilient quantum computers, near-term devices (NISQ)
allow experimenting with quantum information processing, with an eye also on the possibility
of achieving some sort of useful quantum advantage already with this new paradigm of hybrid
quantum-classical computation.

The analysis of variational quantum algorithms then culminated in Chapter 3 where the field
of Quantum Machine Learning was thoroughly characterised. Importantly, we have found how
parameterized quantum models can be effectively described using tools from classical machine
learning, for example when discussing kernel methods, expressing the output of data-dependent
quantum circuits as truncated Fourier series, and last but not least how the classical statistical
learning framework can be applied to derive statements about the generalisation performances of
quantum neural networks.

The discussion then moved on to some concrete examples of quantum learning models, pre-
senting some novel contributions to the field. In Chapter 4 we have reported on a novel quantum
algorithm implementing a generalised perceptron model on a qubit-based quantum device that
accepts and analyses continuously valued input data. The proposed algorithm can be readily
run on existing quantum hardware, and it takes full advantage of the exponentially large Hilbert
space available to encode input data on the phases of large superposition states, known as locally

160 Chapter 9. Conclusions

maximally entanglable (LME) states. In addition, we saw how the proposed model can be used to
implement classification tasks and pattern recognition involving grey-scale images.

In Chapter 5 we reviewed a discrete version of the continuous quantum neuron discussed in
Ch. 4 and we introduced variational training methods for efficiently handling the manipulation
of classical and quantum input data. Through extensive numerical analysis, we compared the
effectiveness of different circuit structures and learning strategies, highlighting potential benefits
brought by hardware-compatible entangling operations and by layerwise training routines that use
local, instead of global, cost functions. In all envisioned applications, our proposed protocols are
intended as an effective method for the analysis of quantum states as provided, e.g., by external
devices or sensors, while it is worth stressing that the general problem of efficiently loading classical
data into quantum registers still stands open.

Building on the phase encoding strategy introduced for the continuous quantum neuron, in
Chapter 6 we have presented a toy model for a quantum pipeline comprising a quantum autoen-
coder and a classifier for analysing data coming from an industrial power plant. Specifically, we
have implemented a variational quantum autoencoder that can compress information stored on
a multipartite quantum state onto just some of its constituents. The compressed quantum states
coming from the trained quantum autoencoder were then used as inputs to a quantum classifier to
perform a binary classification task. For both tasks, the quantum procedures performed equally well
to comparable classical counterparts, and they were also tested on real superconducting quantum
hardware provided by IBM. While the achievement of a clear quantum advantage is still out of
reach, this approach sets a milestone in the field of quantum machine learning, since it is one of the
first examples of a direct application of quantum computing software and hardware to analyse real
data sets from industrial sources.

Finally, in the last Chapters, we broadened our analysis to include more quantum information-
related topics, discussing entanglement and noise. Specifically, in Chapter 7 we discussed in detail
the Entanglement generated by different promising Quantum Neural Networks (QNNs) when these
are initialised with random parameters, and showed that they reproduce the same properties of
Haar random quantum states under various measures. Employing tensor network methods (MPS)
we could simulate wide quantum circuits of up to 50 qubits, and introduced a new measure, the
entangling speed, to characterise the rate of production of entanglement of a given circuit ansatz as
its depth is increased.

At last, Chapter 8 moved our attention to discussing the impact of quantum noise on the
estimation of expectation values of observables. Indeed, we have shown how mathematically
invertible noise maps can always be removed from the final measurement stage so that one can
obtain unbiased expectation values of general observables provided that the noise process is
known. We illustrated the method on most known qubit noise maps, systematically derived their
inverse maps, and also provided simulation and experimental application of the method on actual
superconducting quantum hardware provided by Rigetti.

Quantum computing research is currently experiencing a surge of interest, with a significant
amount of effort devoted to not only studying the long-term goal of universal fault-tolerant quantum
devices, but also maximising the potential of current-generation quantum computers, both scientifi-
cally and technologically. In this thesis, we provided an extensive description of the state-of-the-art
of variational quantum algorithms and machine learning, as well as several compelling original
contributions to the field, some of which are more applied and others more fundamental.

Although the scientific value of near-term quantum computers is undeniable, the field is still
too immature to confidently assess when and how a useful quantum advantage will be achieved.
This is especially true when it comes to Quantum Machine Learning, which is the convergence
of quantum physics and computing with artificial intelligence and deep learning, two notoriously
complex and theoretically difficult fields.

Ultimately, only time will tell whether we will discover a useful and indisputable computational

161

advantage from quantum computing and/or quantum machine learning. In the meantime, we have
the privilege of witnessing the evolution of this exciting field, and we should enjoy the journey as
much as the destination.

References

Bibliography . 164

Bibliography

[1] Scott Aaronson. “Read the fine print”. In: Nat. Phys. 11.4 (Apr. 2015), pages 291–293.
ISSN: 1745-2481. DOI: https://doi.org/10.1038/nphys3272 (cited on page 53).

[2] Martin Abadi et al. “TensorFlow: A system for large-scale machine learning”. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 2016,
pages 265–283. URL: https://www.usenix.org/system/files/conference/
osdi16/osdi16-abadi.pdf (cited on pages 115, 116).

[3] Amira Abbas. amyami187/effective_dimension: version v1.0.1. May 2021. DOI: 10.5281/
zenodo.4732856. URL: https://doi.org/10.5281/zenodo.4732856 (cited on
pages 208, 210).

[4] Amira Abbas et al. “The Power of Quantum Neural Networks”. In: Nature Computational
Science 1.6 (June 2021), pages 403–409. ISSN: 2662-8457. DOI: 10.1038/s43588-021-
00084-1 (cited on pages 53, 79, 113, 121, 124, 125, 129, 130, 132, 138, 208, 210, 211).

[5] Gadi Aleksandrowicz et al. Qiskit: An Open-source Framework for Quantum Computing. en.
2019. DOI: 10.5281/ZENODO.2562111. URL: https://zenodo.org/record/2562111
(cited on pages 88, 93, 101, 102, 116).

[6] Amazon Braket. https://aws.amazon.com/braket/quantum-computers/, 2023
(cited on page 34).

[7] Mohammad H. Amin et al. “Quantum Boltzmann Machine”. In: Phys. Rev. X 8 (2 May
2018), page 021050 (cited on page 81).

[8] Abhinav Anand et al. “A Quantum Computing View on Unitary Coupled Cluster Theory”.
In: (2021). DOI: 10.48550/ARXIV.2109.15176. URL: https://arxiv.org/abs/2109.
15176 (cited on page 39).

[9] Eric R. Anschuetz and Bobak T. Kiani. “Quantum variational algorithms are swamped with
traps”. In: Nature Communications 13.1 (Dec. 2022). DOI: 10.1038/s41467-022-35364-
5. URL: https://doi.org/10.1038/s41467-022-35364-5 (cited on pages 140, 207).

[10] Aria Quantum Processor, IonQ. https://ionq.com/posts/august-02-2022-ionq-
aria-part-two-past-and-future. Accessed: 05-01-2023 (cited on page 34).

[11] Andrew Arrasmith et al. “Effect of barren plateaus on gradient-free optimization”. In:
Quantum 5 (2021), page 558. DOI: https://doi.org/10.22331/q-2021-10-05-558
(cited on page 45).

[12] Andrew Arrasmith et al. “Effect of barren plateaus on gradient-free optimization”. In:
Quantum 5 (Oct. 2021), page 558. ISSN: 2521-327X. DOI: 10.22331/q-2021-10-05-
558. URL: https://doi.org/10.22331/q-2021-10-05-558 (cited on page 50).

[13] Andrew Arrasmith et al. “Equivalence of quantum barren plateaus to cost concentration
and narrow gorges”. In: (2021). arXiv: 2104.05868 (cited on pages 44, 50, 129).

[14] Juan Miguel Arrazola et al. “Quantum-inspired algorithms in practice”. In: Quantum 4
(Aug. 2020), page 307. ISSN: 2521-327X. DOI: https://doi.org/10.22331/q-2020-
08-13-307 (cited on page 53).

[15] Srinivasan Arunachalam and Ronald de Wolf. A Survey of Quantum Learning Theory. 2017.
DOI: 10.48550/ARXIV.1701.06806. URL: https://arxiv.org/abs/1701.06806
(cited on page 53).

https://doi.org/https://doi.org/10.1038/nphys3272
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.5281/zenodo.4732856
https://doi.org/10.5281/zenodo.4732856
https://doi.org/10.5281/zenodo.4732856
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.5281/ZENODO.2562111
https://zenodo.org/record/2562111
https://aws.amazon.com/braket/quantum-computers/
https://doi.org/10.48550/ARXIV.2109.15176
https://arxiv.org/abs/2109.15176
https://arxiv.org/abs/2109.15176
https://doi.org/10.1038/s41467-022-35364-5
https://doi.org/10.1038/s41467-022-35364-5
https://doi.org/10.1038/s41467-022-35364-5
https://ionq.com/posts/august-02-2022-ionq-aria-part-two-past-and-future
https://ionq.com/posts/august-02-2022-ionq-aria-part-two-past-and-future
https://doi.org/%20https://doi.org/10.22331/q-2021-10-05-558
https://doi.org/10.22331/q-2021-10-05-558
https://doi.org/10.22331/q-2021-10-05-558
https://doi.org/10.22331/q-2021-10-05-558
https://arxiv.org/abs/2104.05868
https://doi.org/https://doi.org/10.22331/q-2020-08-13-307
https://doi.org/https://doi.org/10.22331/q-2020-08-13-307
https://doi.org/10.48550/ARXIV.1701.06806
https://arxiv.org/abs/1701.06806

Bibliography 165

[16] Frank Arute et al. “Quantum supremacy using a programmable superconducting processor”.
In: Nature 574.7779 (2019), pages 505–510. DOI: https://doi.org/10.1038/s41586-
019-1666-5 (cited on pages 33, 34, 81).

[17] Erik Aurell, Jakub Zakrzewski, and Karol Życzkowski. “Time reversals of irreversible
quantum maps”. In: Journal of Physics A: Mathematical and Theoretical 48.38 (Aug.
2015), 38FT01. DOI: 10.1088/1751-8113/48/38/38ft01. URL: https://doi.org/
10.1088/1751-8113/48/38/38ft01 (cited on page 143).

[18] Marco Ballarin et al. Entanglement entropy production in Quantum Neural Networks.
Accepted for publication on Quantum. 2022. DOI: 10.48550/ARXIV.2206.02474. URL:
https://arxiv.org/abs/2206.02474 (cited on pages 7, 8, 38, 123).

[19] Leonardo Banchi, Jason Pereira, and Stefano Pirandola. “Generalization in Quantum
Machine Learning: A Quantum Information Standpoint”. In: PRX Quantum 2 (4 Nov.
2021), page 040321. DOI: 10.1103/PRXQuantum.2.040321. URL: https://link.aps.
org/doi/10.1103/PRXQuantum.2.040321 (cited on pages 42, 79).

[20] Adriano Barenco et al. “Elementary gates for quantum computation”. In: Phys. Rev. A
52 (5 Nov. 1995), pages 3457–3467. DOI: 10.1103/PhysRevA.52.3457. URL: https:
//link.aps.org/doi/10.1103/PhysRevA.52.3457 (cited on page 27).

[21] Kerstin Beer et al. “Training deep quantum neural networks”. In: Nat. Commun. 11.1
(2020), page 808. DOI: https://doi.org/10.1038/s41467-020-14454-2 (cited on
page 55).

[22] Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning
through the prism of interpolation. 2021. DOI: 10.48550/ARXIV.2105.14368. URL:
https://arxiv.org/abs/2105.14368 (cited on page 62).

[23] Adi Ben-Israel and Thomas N. E. Greville. Generalized inverses : theory and applications /
Adi Ben-Israel ; Thomas N.E. Greville. eng. 2. ed. CMS books in mathematics. New York:
Springer, 2003. ISBN: 0387002936 (cited on pages 62, 63).

[24] F. Benatti, S. Mancini, and S. Mangini. “Continuous variable quantum perceptron”. In:
International Journal of Quantum Information 17.08 (2019), page 1941009. DOI: 10.1142/
S0219749919410090. eprint: https://doi.org/10.1142/S0219749919410090. URL:
https://doi.org/10.1142/S0219749919410090 (cited on page 7).

[25] Marcello Benedetti et al. “Parameterized quantum circuits as machine learning models”. In:
Quantum Sci. Technol. 5.1 (2020), page 019601. DOI: https://doi.org/10.1088/2058-
9565/ab4eb5 (cited on pages 53, 54).

[26] Cédric Bény. “Quantum Deconvolution”. In: Quantum Information Processing 17.2 (Dec.
2017), page 26. ISSN: 1573-1332. DOI: 10 . 1007 / s11128 - 017 - 1796 - 3 (cited on
page 144).

[27] Ville Bergholm et al. PennyLane: Automatic differentiation of hybrid quantum-classical
computations. 2018. DOI: 10.48550/ARXIV.1811.04968. URL: https://arxiv.org/
abs/1811.04968 (cited on pages 116, 210).

[28] Mary Beth Ruskai, Stanislaw Szarek, and Elisabeth Werner. “An Analysis of Completely-
Positive Trace-Preserving Maps on M2”. In: Linear Algebra and its Applications 347.1
(May 2002), pages 159–187. ISSN: 0024-3795. DOI: 10.1016/S0024-3795(01)00547-X
(cited on pages 146, 213).

[29] Kishor Bharti et al. “Noisy intermediate-scale quantum algorithms”. In: Rev. Mod. Phys.
94 (1 Feb. 2022), page 015004. DOI: 10.1103/RevModPhys.94.015004. URL: https:
//link.aps.org/doi/10.1103/RevModPhys.94.015004 (cited on pages 22, 32, 35,
39, 43, 115).

https://doi.org/https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1088/1751-8113/48/38/38ft01
https://doi.org/10.1088/1751-8113/48/38/38ft01
https://doi.org/10.1088/1751-8113/48/38/38ft01
https://doi.org/10.48550/ARXIV.2206.02474
https://arxiv.org/abs/2206.02474
https://doi.org/10.1103/PRXQuantum.2.040321
https://link.aps.org/doi/10.1103/PRXQuantum.2.040321
https://link.aps.org/doi/10.1103/PRXQuantum.2.040321
https://doi.org/10.1103/PhysRevA.52.3457
https://link.aps.org/doi/10.1103/PhysRevA.52.3457
https://link.aps.org/doi/10.1103/PhysRevA.52.3457
https://doi.org/https://doi.org/10.1038/s41467-020-14454-2
https://doi.org/10.48550/ARXIV.2105.14368
https://arxiv.org/abs/2105.14368
https://doi.org/10.1142/S0219749919410090
https://doi.org/10.1142/S0219749919410090
https://doi.org/10.1142/S0219749919410090
https://doi.org/10.1142/S0219749919410090
https://doi.org/https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1007/s11128-017-1796-3
https://doi.org/10.48550/ARXIV.1811.04968
https://arxiv.org/abs/1811.04968
https://arxiv.org/abs/1811.04968
https://doi.org/10.1016/S0024-3795(01)00547-X
https://doi.org/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004

166 Bibliography

[30] R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics. Springer New York, 1996.
ISBN: 9780387948461 (cited on pages 77, 193).

[31] Jacob Biamonte et al. “Quantum machine learning”. In: Nature 549.7671 (Sept. 2017),
pages 195–202. ISSN: 1476-4687. DOI: https://doi.org/10.1038/nature23474
(cited on pages 20, 53, 96).

[32] M. Bilkis et al. A semi-agnostic ansatz with variable structure for quantum machine
learning. 2021. DOI: 10.48550/ARXIV.2103.06712. URL: https://arxiv.org/abs/
2103.06712 (cited on page 39).

[33] A. Bisio et al. “Optimal Quantum Tomography”. In: IEEE Journal of Selected Topics
in Quantum Electronics 15.6 (Dec. 2009), pages 1646–1660. ISSN: 1558-4542. DOI: 10.
1109/JSTQE.2009.2029243 (cited on pages 146, 151).

[34] Anselm Blumer et al. “Learnability and the Vapnik-Chervonenkis Dimension”. In: J. ACM
36.4 (Oct. 1989), pages 929–965. ISSN: 0004-5411. DOI: 10.1145/76359.76371. URL:
https://doi.org/10.1145/76359.76371 (cited on page 60).

[35] StÃ©phane Boucheron, GÃ¡bor Lugosi, and Pascal Massart. Concentration Inequalities:
A Nonasymptotic Theory of Independence. Oxford University Press, Feb. 2013. ISBN:
9780199535255. DOI: 10.1093/acprof:oso/9780199535255.001.0001. URL: https:
//doi.org/10.1093/acprof:oso/9780199535255.001.0001 (cited on page 60).

[36] P. S. Bourdon and H. T. Williams. “Unital Quantum Operations on the Bloch Ball and
Bloch Region”. In: Physical Review A 69.2 (Feb. 2004), page 022314. DOI: 10.1103/
PhysRevA.69.022314 (cited on pages 145, 146, 150).

[37] Fernando G. S. L. Brandão, Aram W. Harrow, and Michał Horodecki. “Local Random Quan-
tum Circuits Are Approximate Polynomial-Designs”. In: Communications in Mathematical
Physics 346.2 (Sept. 2016), pages 397–434. ISSN: 1432-0916. DOI: 10.1007/s00220-
016-2706-8 (cited on pages 133, 139).

[38] Carlos Bravo-Prieto. “Quantum autoencoders with enhanced data encoding”. In: Machine
Learning: Science and Technology 2.3 (July 2021), page 035028. DOI: 10.1088/2632-
2153/ac0616. URL: https://dx.doi.org/10.1088/2632-2153/ac0616 (cited on
pages 108, 109, 113).

[39] Sergey Bravyi et al. “Mitigating measurement errors in multiqubit experiments”. In: Phys.
Rev. A 103 (4 Apr. 2021), page 042605. DOI: 10.1103/PhysRevA.103.042605. URL:
https://link.aps.org/doi/10.1103/PhysRevA.103.042605 (cited on page 143).

[40] Michael M. Bronstein et al. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics,
and Gauges. 2021. DOI: 10.48550/ARXIV.2104.13478. URL: https://arxiv.org/
abs/2104.13478 (cited on page 39).

[41] Michael Broughton et al. “Tensorflow quantum: A software framework for quantum ma-
chine learning”. In: arXiv preprint arXiv:2003.02989 (2020) (cited on page 93).

[42] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. DOI: 10.48550/
ARXIV.2005.14165. URL: https://arxiv.org/abs/2005.14165 (cited on page 56).

[43] Colin D. Bruzewicz et al. “Trapped-ion quantum computing: Progress and challenges”.
In: Applied Physics Reviews 6.2 (2019), page 021314. DOI: 10.1063/1.5088164. eprint:
https://doi.org/10.1063/1.5088164. URL: https://doi.org/10.1063/1.
5088164 (cited on page 35).

[44] H. Buhrman et al. “Quantum Fingerprinting”. en. In: Physical Review Letters 87.16 (Sept.
2001), page 167902. ISSN: 0031-9007, 1079-7114. DOI: 10.1103/PhysRevLett.87.
167902. (Visited on 08/19/2019) (cited on page 106).

https://doi.org/https://doi.org/10.1038/nature23474
https://doi.org/10.48550/ARXIV.2103.06712
https://arxiv.org/abs/2103.06712
https://arxiv.org/abs/2103.06712
https://doi.org/10.1109/JSTQE.2009.2029243
https://doi.org/10.1109/JSTQE.2009.2029243
https://doi.org/10.1145/76359.76371
https://doi.org/10.1145/76359.76371
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1103/PhysRevA.69.022314
https://doi.org/10.1103/PhysRevA.69.022314
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1088/2632-2153/ac0616
https://doi.org/10.1088/2632-2153/ac0616
https://dx.doi.org/10.1088/2632-2153/ac0616
https://doi.org/10.1103/PhysRevA.103.042605
https://link.aps.org/doi/10.1103/PhysRevA.103.042605
https://doi.org/10.48550/ARXIV.2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1063/1.5088164
https://doi.org/10.1063/1.5088164
https://doi.org/10.1063/1.5088164
https://doi.org/10.1063/1.5088164
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1103/PhysRevLett.87.167902

Bibliography 167

[45] C. King and M. B. Ruskai. “Minimal Entropy of States Emerging from Noisy Quantum
Channels”. In: IEEE Transactions on Information Theory 47.1 (Jan. 2001), pages 192–209.
ISSN: 1557-9654. DOI: 10.1109/18.904522 (cited on pages 146, 213).

[46] Carlo Cafaro and Peter van Loock. “Approximate quantum error correction for generalized
amplitude-damping errors”. In: Phys. Rev. A 89 (2 Feb. 2014), page 022316. DOI: 10.1103/
PhysRevA.89.022316. URL: https://link.aps.org/doi/10.1103/PhysRevA.89.
022316 (cited on page 153).

[47] Carlo Cafaro and Stefano Mancini. “Quantum stabilizer codes for correlated and asymmetric
depolarizing errors”. In: Phys. Rev. A 82 (1 July 2010), page 012306. DOI: 10.1103/
PhysRevA.82.012306. URL: https://link.aps.org/doi/10.1103/PhysRevA.82.
012306 (cited on page 151).

[48] Pasquale Calabrese and John Cardy. “Evolution of entanglement entropy in one-dimensional
systems”. In: Journal of Statistical Mechanics: Theory and Experiment 2005.04 (Apr. 2005),
P04010. DOI: 10.1088/1742-5468/2005/04/p04010. URL: https://doi.org/10.
1088/1742-5468/2005/04/p04010 (cited on page 136).

[49] Ningping Cao et al. NISQ: Error Correction, Mitigation, and Noise Simulation. 2021. arXiv:
2111.02345 [quant-ph] (cited on pages 142, 147).

[50] Yudong Cao, Gian Giacomo Guerreschi, and Alán Aspuru-Guzik. Quantum Neuron: an
elementary building block for machine learning on quantum computers. 2017. DOI: 10.
48550/ARXIV.1711.11240. URL: https://arxiv.org/abs/1711.11240 (cited on
pages 81, 96).

[51] Giuseppe Carleo and Matthias Troyer. “Solving the quantum many-body problem with
artificial neural networks”. In: Science 355.6325 (2017), pages 602–606 (cited on page 54).

[52] Giuseppe Carleo et al. “Machine learning and the physical sciences”. In: Rev. Mod. Phys.
91 (4 Dec. 2019), page 045002. DOI: 10.1103/RevModPhys.91.045002. URL: https:
//link.aps.org/doi/10.1103/RevModPhys.91.045002 (cited on pages 53, 54).

[53] Matthias C. Caro et al. “Encoding-dependent generalization bounds for parametrized
quantum circuits”. In: Quantum 5 (Nov. 2021), page 582. ISSN: 2521-327X. DOI: 10.
22331/q-2021-11-17-582. URL: https://doi.org/10.22331/q-2021-11-17-582
(cited on pages 60, 72, 73, 78, 79, 198).

[54] J. Carolan et al. “Variational quantum unsampling on a quantum photonic processor”. en.
In: Nature Physics 16 (Jan. 2020), page 322. ISSN: 1745-2473, 1745-2481. (Visited on
01/16/2020) (cited on pages 98, 99).

[55] Juan Carrasquilla. “Machine learning for quantum matter”. In: Advances in Physics: X
5.1 (2020), page 1797528. DOI: 10.1080/23746149.2020.1797528. eprint: https:
//doi.org/10.1080/23746149.2020.1797528. URL: https://doi.org/10.1080/
23746149.2020.1797528 (cited on page 54).

[56] M Cerezo and Patrick J Coles. “Higher order derivatives of quantum neural networks with
barren plateaus”. In: Quantum Science and Technology 6.3 (June 2021), page 035006. DOI:
10.1088/2058-9565/abf51a. URL: https://doi.org/10.1088/2058-9565/abf51a
(cited on pages 41, 42).

[57] M. Cerezo et al. “Cost function dependent barren plateaus in shallow parametrized quantum
circuits”. In: Nat. Commun. 12.1 (2021). DOI: https://doi.org/10.1038/s41467-
021-21728-w (cited on pages 39, 40, 43–46, 50, 105, 109, 129, 139, 140, 190, 191, 207).

[58] M. Cerezo et al. “Variational quantum algorithms”. In: Nature Reviews Physics 3.9 (2021),
pages 625–644. DOI: https://doi.org/10.1038/s42254-021-00348-9 (cited on
pages 22, 37, 39, 115).

https://doi.org/10.1109/18.904522
https://doi.org/10.1103/PhysRevA.89.022316
https://doi.org/10.1103/PhysRevA.89.022316
https://link.aps.org/doi/10.1103/PhysRevA.89.022316
https://link.aps.org/doi/10.1103/PhysRevA.89.022316
https://doi.org/10.1103/PhysRevA.82.012306
https://doi.org/10.1103/PhysRevA.82.012306
https://link.aps.org/doi/10.1103/PhysRevA.82.012306
https://link.aps.org/doi/10.1103/PhysRevA.82.012306
https://doi.org/10.1088/1742-5468/2005/04/p04010
https://doi.org/10.1088/1742-5468/2005/04/p04010
https://doi.org/10.1088/1742-5468/2005/04/p04010
https://arxiv.org/abs/2111.02345
https://doi.org/10.48550/ARXIV.1711.11240
https://doi.org/10.48550/ARXIV.1711.11240
https://arxiv.org/abs/1711.11240
https://doi.org/10.1103/RevModPhys.91.045002
https://link.aps.org/doi/10.1103/RevModPhys.91.045002
https://link.aps.org/doi/10.1103/RevModPhys.91.045002
https://doi.org/10.22331/q-2021-11-17-582
https://doi.org/10.22331/q-2021-11-17-582
https://doi.org/10.22331/q-2021-11-17-582
https://doi.org/10.1080/23746149.2020.1797528
https://doi.org/10.1080/23746149.2020.1797528
https://doi.org/10.1080/23746149.2020.1797528
https://doi.org/10.1080/23746149.2020.1797528
https://doi.org/10.1080/23746149.2020.1797528
https://doi.org/10.1088/2058-9565/abf51a
https://doi.org/10.1088/2058-9565/abf51a
https://doi.org/https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/https://doi.org/10.1038/s42254-021-00348-9

168 Bibliography

[59] M. Cerezo et al. “Challenges and Opportunities in Quantum Machine Learning”. In: Nature
Computational Science 2.9 (Sept. 2022), pages 567–576. ISSN: 2662-8457. DOI: 10.1038/
s43588-022-00311-3 (cited on pages 22, 53, 55, 79).

[60] ChatCPT, OpenAI. https://openai.com/blog/chatgpt/. Accessed: 13-01-2023 (cited
on pages 20, 56, 67).

[61] Yanzhu Chen et al. How Much Entanglement Do Quantum Optimization Algorithms Re-
quire? 2022. DOI: 10.48550/ARXIV.2205.12283. URL: https://arxiv.org/abs/
2205.12283 (cited on page 207).

[62] Yiwei Chen et al. “Detecting quantum entanglement with unsupervised learning”. In:
Quantum Science and Technology 7.1 (Nov. 2021), page 015005. DOI: 10.1088/2058-
9565/ac310f. URL: https://doi.org/10.1088/2058- 9565/ac310f (cited on
page 109).

[63] Carlo Ciliberto et al. “Quantum machine learning: a classical perspective”. In: Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences 474.2209 (Jan.
2018), page 20170551. DOI: 10.1098/rspa.2017.0551. URL: https://doi.org/10.
1098/rspa.2017.0551 (cited on page 53).

[64] Lukasz Cincio et al. “Learning the quantum algorithm for state overlap”. In: New Journal
of Physics 20.11 (Nov. 2018), page 113022. DOI: 10.1088/1367-2630/aae94a. URL:
https://doi.org/10.1088/1367-2630/aae94a (cited on pages 118, 201).

[65] Bob Coecke et al. Foundations for Near-Term Quantum Natural Language Processing. 2020.
DOI: 10.48550/ARXIV.2012.03755. URL: https://arxiv.org/abs/2012.03755
(cited on page 55).

[66] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. “Quantum convolutional neural networks”.
In: Nature Physics 15.12 (2019), pages 1273–1278. DOI: https://doi.org/10.1038/
s41567-019-0648-8 (cited on pages 50, 55, 81).

[67] Jordan Cotler, Hsin-Yuan Huang, and Jarrod R. McClean. Revisiting dequantization and
quantum advantage in learning tasks. 2021. DOI: 10.48550/ARXIV.2112.00811. URL:
https://arxiv.org/abs/2112.00811 (cited on page 53).

[68] Gavin E. Crooks. Gradients of parameterized quantum gates using the parameter-shift
rule and gate decomposition. 2019. DOI: 10.48550/ARXIV.1905.13311. URL: https:
//arxiv.org/abs/1905.13311 (cited on page 42).

[69] Andrew W. Cross et al. “Validating quantum computers using randomized model circuits”.
In: Phys. Rev. A 100 (3 Sept. 2019), page 032328. DOI: 10.1103/PhysRevA.100.032328.
URL: https://link.aps.org/doi/10.1103/PhysRevA.100.032328 (cited on
page 35).

[70] G M D Ariano, L Maccone, and M Paini. “Spin tomography”. In: Journal of Optics B:
Quantum and Semiclassical Optics 5.1 (Jan. 2003), pages 77–84. ISSN: 1464-4266. DOI:
10.1088/1464-4266/5/1/311 (cited on pages 146, 147, 213, 214).

[71] D-Wave Systems, Inc. https://www.dwavesys.com/, 2023 (cited on page 34).
[72] G. M. D’Ariano and P. Lo Presti. “Quantum Tomography for Measuring Experimentally

the Matrix Elements of an Arbitrary Quantum Operation”. In: Phys. Rev. Lett. 86 (19
May 2001), pages 4195–4198. DOI: 10.1103/PhysRevLett.86.4195. URL: https:
//link.aps.org/doi/10.1103/PhysRevLett.86.4195 (cited on page 146).

[73] G.M. D’Ariano, L. Maccone, and M.G.A. Paris. “Orthogonality relations in quantum tomog-
raphy”. In: Physics Letters A 276.1 (2000), pages 25–30. ISSN: 0375-9601. DOI: https://
doi.org/10.1016/S0375-9601(00)00660-5. URL: https://www.sciencedirect.
com/science/article/pii/S0375960100006605 (cited on page 146).

https://doi.org/10.1038/s43588-022-00311-3
https://doi.org/10.1038/s43588-022-00311-3
https://openai.com/blog/chatgpt/
https://doi.org/10.48550/ARXIV.2205.12283
https://arxiv.org/abs/2205.12283
https://arxiv.org/abs/2205.12283
https://doi.org/10.1088/2058-9565/ac310f
https://doi.org/10.1088/2058-9565/ac310f
https://doi.org/10.1088/2058-9565/ac310f
https://doi.org/10.1098/rspa.2017.0551
https://doi.org/10.1098/rspa.2017.0551
https://doi.org/10.1098/rspa.2017.0551
https://doi.org/10.1088/1367-2630/aae94a
https://doi.org/10.1088/1367-2630/aae94a
https://doi.org/10.48550/ARXIV.2012.03755
https://arxiv.org/abs/2012.03755
https://doi.org/https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.48550/ARXIV.2112.00811
https://arxiv.org/abs/2112.00811
https://doi.org/10.48550/ARXIV.1905.13311
https://arxiv.org/abs/1905.13311
https://arxiv.org/abs/1905.13311
https://doi.org/10.1103/PhysRevA.100.032328
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://doi.org/10.1088/1464-4266/5/1/311
https://www.dwavesys.com/
https://doi.org/10.1103/PhysRevLett.86.4195
https://link.aps.org/doi/10.1103/PhysRevLett.86.4195
https://link.aps.org/doi/10.1103/PhysRevLett.86.4195
https://doi.org/https://doi.org/10.1016/S0375-9601(00)00660-5
https://doi.org/https://doi.org/10.1016/S0375-9601(00)00660-5
https://www.sciencedirect.com/science/article/pii/S0375960100006605
https://www.sciencedirect.com/science/article/pii/S0375960100006605

Bibliography 169

[74] G.M. D’Ariano and M.F. Sacchi. “Renormalized quantum tomography”. In: Physics Letters
A 374.5 (2010), pages 713–724. ISSN: 0375-9601. DOI: https://doi.org/10.1016/
j.physleta.2009.11.081. URL: https://www.sciencedirect.com/science/
article/pii/S037596010901514X (cited on page 151).

[75] Giacomo Mauro D’Ariano, Giulio Chiribella, and Paolo Perinotti. Quantum Theory from
First Principles: An Informational Approach. Cambridge University Press, 2017. DOI:
10.1017/9781107338340 (cited on page 146).

[76] Giacomo Mauro D’Ariano and Paoloplacido Lo Presti. “Imprinting Complete Information
about a Quantum Channel on its Output State”. In: Phys. Rev. Lett. 91 (4 July 2003),
page 047902. DOI: 10.1103/PhysRevLett.91.047902. URL: https://link.aps.
org/doi/10.1103/PhysRevLett.91.047902 (cited on page 148).

[77] Giacomo Mauro D’Ariano, Lorenzo Maccone, and Paoloplacido Lo Presti. “Quantum
Calibration of Measurement Instrumentation”. In: Phys. Rev. Lett. 93 (25 Dec. 2004),
page 250407. DOI: 10.1103/PhysRevLett.93.250407. URL: https://link.aps.
org/doi/10.1103/PhysRevLett.93.250407 (cited on page 148).

[78] G Mauro D’Ariano, Lorenzo Maccone, and Matteo G A Paris. “Quorum of observables
for universal quantum estimation”. In: Journal of Physics A: Mathematical and General
34.1 (Jan. 2001), pages 93–103. ISSN: 0305-4470, 1361-6447. DOI: 10.1088/0305-
4470/34/1/307 (cited on page 146).

[79] Giacomo Mauro D’Ariano. “Universal quantum estimation”. In: Physics Letters A 268.3
(Apr. 2000), pages 151–157. ISSN: 03759601. DOI: 10.1016/S0375-9601(00)00164-X
(cited on pages 146, 147, 151).

[80] Christoph Dankert et al. “Exact and Approximate Unitary 2-Designs and Their Application
to Fidelity Estimation”. In: Physical Review A 80.1 (July 2009), page 012304. ISSN: 1050-
2947, 1094-1622. DOI: 10.1103/PhysRevA.80.012304 (cited on page 47).

[81] Christoph Dankert et al. “Exact and approximate unitary 2-designs and their application
to fidelity estimation”. In: Physical Review A 80.1 (July 2009). DOI: 10.1103/physreva.
80.012304. URL: https://doi.org/10.1103%5C%2Fphysreva.80.012304 (cited on
pages 129, 139).

[82] Anna Dawid et al. Modern applications of machine learning in quantum sciences. 2022.
DOI: 10.48550/ARXIV.2204.04198. URL: https://arxiv.org/abs/2204.04198
(cited on pages 53, 54, 62–65, 67).

[83] Jonas Degrave et al. “Magnetic Control of Tokamak Plasmas through Deep Reinforcement
Learning”. In: Nature 602.7897 (Feb. 2022), pages 414–419. ISSN: 1476-4687. DOI: 10.
1038/s41586-021-04301-9 (cited on pages 20, 36, 53).

[84] Riccardo Di Sipio et al. “The Dawn of Quantum Natural Language Processing”. In: ICASSP
2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2022, pages 8612–8616. DOI: 10.1109/ICASSP43922.2022.9747675 (cited
on page 7).

[85] Carl Doersch and Andrew Zisserman. Multi-task Self-Supervised Visual Learning. 2017.
DOI: 10.48550/ARXIV.1708.07860. URL: https://arxiv.org/abs/1708.07860
(cited on page 56).

[86] Yuxuan Du et al. “Efficient Measure for the Expressivity of Variational Quantum Algo-
rithms”. In: Physical Review Letters 128.8 (Feb. 2022). DOI: 10.1103/physrevlett.
128.080506. URL: https://doi.org/10.1103/physrevlett.128.080506 (cited on
page 79).

https://doi.org/https://doi.org/10.1016/j.physleta.2009.11.081
https://doi.org/https://doi.org/10.1016/j.physleta.2009.11.081
https://www.sciencedirect.com/science/article/pii/S037596010901514X
https://www.sciencedirect.com/science/article/pii/S037596010901514X
https://doi.org/10.1017/9781107338340
https://doi.org/10.1103/PhysRevLett.91.047902
https://link.aps.org/doi/10.1103/PhysRevLett.91.047902
https://link.aps.org/doi/10.1103/PhysRevLett.91.047902
https://doi.org/10.1103/PhysRevLett.93.250407
https://link.aps.org/doi/10.1103/PhysRevLett.93.250407
https://link.aps.org/doi/10.1103/PhysRevLett.93.250407
https://doi.org/10.1088/0305-4470/34/1/307
https://doi.org/10.1088/0305-4470/34/1/307
https://doi.org/10.1016/S0375-9601(00)00164-X
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1103/physreva.80.012304
https://doi.org/10.1103/physreva.80.012304
https://doi.org/10.1103%5C%2Fphysreva.80.012304
https://doi.org/10.48550/ARXIV.2204.04198
https://arxiv.org/abs/2204.04198
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1109/ICASSP43922.2022.9747675
https://doi.org/10.48550/ARXIV.1708.07860
https://arxiv.org/abs/1708.07860
https://doi.org/10.1103/physrevlett.128.080506
https://doi.org/10.1103/physrevlett.128.080506
https://doi.org/10.1103/physrevlett.128.080506

170 Bibliography

[87] Vedran Dunjko and Hans J Briegel. “Machine learning & artificial intelligence in the quan-
tum domain: a review of recent progress”. In: Rep. Prog. Phys. 81.7 (2018), page 074001.
DOI: https://doi.org/10.1088/1361-6633/aab406 (cited on page 53).

[88] Vedran Dunjko and Peter Wittek. “A non-review of Quantum Machine Learning: trends and
explorations”. In: Quantum 4 (2020), page 32. DOI: https://doi.org/10.22331/qv-
2020-03-17-32 (cited on pages 20, 53).

[89] Maxime Dupont et al. “Calibrating the Classical Hardness of the Quantum Approximate
Optimization Algorithm”. In: PRX Quantum 3 (4 Dec. 2022), page 040339. DOI: 10.1103/
PRXQuantum.3.040339. URL: https://link.aps.org/doi/10.1103/PRXQuantum.
3.040339 (cited on page 207).

[90] Maxime Dupont et al. “Entanglement perspective on the quantum approximate optimization
algorithm”. In: Phys. Rev. A 106 (2 Aug. 2022), page 022423. DOI: 10.1103/PhysRevA.
106.022423. URL: https://link.aps.org/doi/10.1103/PhysRevA.106.022423
(cited on pages 140, 207).

[91] F.L. Dyer and T.C. Martin. Edison: His Life and Inventions. Edison: His Life and Inven-
tions v. 2. Harper & Brothers, 1910. URL: https://books.google.it/books?id=
B7A4AAAAMAAJ (cited on page 52).

[92] Eagle Quantum Processor, IBM Quantum. https://research.ibm.com/blog/127-
qubit-quantum-processor-eagle. Accessed: 05-01-2023 (cited on page 34).

[93] Alan Edelman and N. Raj Rao. “Random Matrix Theory”. In: Acta Numerica 14 (May
2005), pages 233–297. ISSN: 0962-4929, 1474-0508. DOI: 10.1017/S0962492904000236
(cited on page 127).

[94] Daniel J. Egger et al. “Quantum Computing for Finance: State-of-the-Art and Future
Prospects”. In: IEEE Transactions on Quantum Engineering 1 (2020), pages 1–24. DOI:
10.1109/TQE.2020.3030314 (cited on page 55).

[95] J. Eisert. Entanglement and tensor network states. 2013. arXiv: 1308.3318 [quant-ph].
URL: https://arxiv.org/abs/1308.3318 (cited on pages 125, 126).

[96] Joseph Emerson, Robert Alicki, and Karol Życzkowski. “Scalable noise estimation with
random unitary operators”. In: J. Opt. B: Quantum Semiclass. Opt. 7.10 (Sept. 2005), S347–
S352. DOI: 10.1088/1464-4266/7/10/021. URL: https://doi.org/10.1088/1464-
4266/7/10/021 (cited on page 149).

[97] Suguru Endo, Simon C. Benjamin, and Ying Li. “Practical Quantum Error Mitigation for
Near-Future Applications”. In: Phys. Rev. X 8 (3 July 2018), page 031027. DOI: 10.1103/
PhysRevX.8.031027. URL: https://link.aps.org/doi/10.1103/PhysRevX.8.
031027 (cited on pages 143, 144).

[98] Jesper E. van Engelen and Holger H. Hoos. “A survey on semi-supervised learning”. In:
Machine Learning 109.2 (Nov. 2019), pages 373–440. DOI: 10.1007/s10994- 019-
05855-6. URL: https://doi.org/10.1007/s10994-019-05855-6 (cited on page 56).

[99] Nic Ezzell et al. Quantum Mixed State Compiling. 2022. DOI: 10.48550/ARXIV.2209.
00528. URL: https://arxiv.org/abs/2209.00528 (cited on page 55).

[100] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization
Algorithm. 2014. DOI: 10.48550/ARXIV.1411.4028. URL: https://arxiv.org/abs/
1411.4028 (cited on pages 39, 207).

[101] Edward Farhi and Hartmut Neven. Classification with Quantum Neural Networks on Near
Term Processors. 2018. arXiv: 1802.06002 [quant-ph] (cited on pages 82, 93).

https://doi.org/https://doi.org/10.1088/1361-6633/aab406
https://doi.org/%20https://doi.org/10.22331/qv-2020-03-17-32
https://doi.org/%20https://doi.org/10.22331/qv-2020-03-17-32
https://doi.org/10.1103/PRXQuantum.3.040339
https://doi.org/10.1103/PRXQuantum.3.040339
https://link.aps.org/doi/10.1103/PRXQuantum.3.040339
https://link.aps.org/doi/10.1103/PRXQuantum.3.040339
https://doi.org/10.1103/PhysRevA.106.022423
https://doi.org/10.1103/PhysRevA.106.022423
https://link.aps.org/doi/10.1103/PhysRevA.106.022423
https://books.google.it/books?id=B7A4AAAAMAAJ
https://books.google.it/books?id=B7A4AAAAMAAJ
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
https://doi.org/10.1017/S0962492904000236
https://doi.org/10.1109/TQE.2020.3030314
https://arxiv.org/abs/1308.3318
https://arxiv.org/abs/1308.3318
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1088/1464-4266/7/10/021
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1103/PhysRevX.8.031027
https://link.aps.org/doi/10.1103/PhysRevX.8.031027
https://link.aps.org/doi/10.1103/PhysRevX.8.031027
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.48550/ARXIV.2209.00528
https://doi.org/10.48550/ARXIV.2209.00528
https://arxiv.org/abs/2209.00528
https://doi.org/10.48550/ARXIV.1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1802.06002

Bibliography 171

[102] Richard P. Feynman. “Simulating physics with computers”. In: International Journal of
Theoretical Physics 21.6-7 (June 1982), pages 467–488. DOI: 10.1007/bf02650179. URL:
https://doi.org/10.1007/bf02650179 (cited on page 19).

[103] R.A. Fisher. Iris. UCI Machine Learning Repository. 1988 (cited on pages 208, 210).
[104] Motohisa Fukuda, Robert König, and Ion Nechita. “RTNI—A symbolic integrator for

Haar-random tensor networks”. In: Journal of Physics A: Mathematical and Theoretical
52.42 (Sept. 2019), page 425303. DOI: 10.1088/1751-8121/ab434b. URL: https:
//doi.org/10.1088/1751-8121/ab434b (cited on page 46).

[105] Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada. Equivalent Quantum Circuits.
2011. arXiv: 1110.2998 [quant-ph] (cited on page 204).

[106] Guillermo García-Pérez et al. “Learning to Measure: Adaptive Informationally Complete
Generalized Measurements for Quantum Algorithms”. In: PRX Quantum 2 (4 Nov. 2021),
page 040342. DOI: 10.1103/PRXQuantum.2.040342. URL: https://link.aps.org/
doi/10.1103/PRXQuantum.2.040342 (cited on page 32).

[107] M. Ghio et al. “Multipartite entanglement detection for hypergraph states”. en. In: Journal
of Physics A: Mathematical and Theoretical 51.4 (Jan. 2018), page 045302. ISSN: 1751-
8113, 1751-8121. DOI: 10.1088/1751-8121/aa99c9. (Visited on 08/22/2019) (cited on
pages 97, 98).

[108] Craig Gidney and Martin Ekerå. “How to factor 2048 bit RSA integers in 8 hours using
20 million noisy qubits”. In: Quantum 5 (Apr. 2021), page 433. ISSN: 2521-327X. DOI:
10.22331/q-2021-04-15-433. URL: https://doi.org/10.22331/q-2021-04-15-
433 (cited on page 35).

[109] Francisco Javier Gil Vidal and Dirk Oliver Theis. “Input Redundancy for Parameterized
Quantum Circuits”. In: Front. Phys. 8 (2020), page 297. ISSN: 2296-424X. DOI: https:
//doi.org/10.3389/fphy.2020.00297 (cited on pages 72, 73, 113, 121, 128, 130,
210).

[110] András Gilyén et al. “Quantum Algorithm for Petz Recovery Channels and Pretty Good
Measurements”. In: Phys. Rev. Lett. 128 (22 June 2022), page 220502. DOI: 10.1103/
PhysRevLett.128.220502. URL: https://link.aps.org/doi/10.1103/PhysRevLett.
128.220502 (cited on page 143).

[111] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. “Quantum Random Access Mem-
ory”. In: Phys. Rev. Lett. 100 (16 Apr. 2008), page 160501. DOI: 10.1103/PhysRevLett.
100.160501. URL: https://link.aps.org/doi/10.1103/PhysRevLett.100.
160501 (cited on pages 96, 200).

[112] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016
(cited on pages 53, 62, 66, 67, 111, 112).

[113] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016 (cited on pages 54, 61, 66).

[114] Google devices information. https://quantumai.google/cirq/google/devices,
2022 (cited on page 33).

[115] Edward Grant et al. “An initialization strategy for addressing barren plateaus in parametrized
quantum circuits”. In: Quantum 3 (Dec. 2019), page 214. ISSN: 2521-327X. DOI: https:
//doi.org/10.48550/arXiv.1903.05076 (cited on pages 50, 105, 130).

[116] Aikaterini Gratsea and Patrick Huembeli. “Exploring quantum perceptron and quantum
neural network structures with a teacher-student scheme”. In: Quantum Machine Intelli-
gence 4.1 (Jan. 2022). DOI: 10.1007/s42484-021-00058-6. URL: https://doi.org/
10.1007/s42484-021-00058-6 (cited on page 121).

https://doi.org/10.1007/bf02650179
https://doi.org/10.1007/bf02650179
https://doi.org/10.1088/1751-8121/ab434b
https://doi.org/10.1088/1751-8121/ab434b
https://doi.org/10.1088/1751-8121/ab434b
https://arxiv.org/abs/1110.2998
https://doi.org/10.1103/PRXQuantum.2.040342
https://link.aps.org/doi/10.1103/PRXQuantum.2.040342
https://link.aps.org/doi/10.1103/PRXQuantum.2.040342
https://doi.org/10.1088/1751-8121/aa99c9
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/https://doi.org/10.3389/fphy.2020.00297
https://doi.org/https://doi.org/10.3389/fphy.2020.00297
https://doi.org/10.1103/PhysRevLett.128.220502
https://doi.org/10.1103/PhysRevLett.128.220502
https://link.aps.org/doi/10.1103/PhysRevLett.128.220502
https://link.aps.org/doi/10.1103/PhysRevLett.128.220502
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://link.aps.org/doi/10.1103/PhysRevLett.100.160501
https://link.aps.org/doi/10.1103/PhysRevLett.100.160501
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://quantumai.google/cirq/google/devices
https://doi.org/https://doi.org/10.48550/arXiv.1903.05076
https://doi.org/https://doi.org/10.48550/arXiv.1903.05076
https://doi.org/10.1007/s42484-021-00058-6
https://doi.org/10.1007/s42484-021-00058-6
https://doi.org/10.1007/s42484-021-00058-6

172 Bibliography

[117] Daniel Greenbaum. “Introduction to Quantum Gate Set Tomography”. In: arXiv:1509.02921
[quant-ph] (Sept. 2015). arXiv: 1509.02921 [quant-ph] (cited on page 146).

[118] Harper R. Grimsley et al. “An Adaptive Variational Algorithm for Exact Molecular Simula-
tions on a Quantum Computer”. In: Nature Communications 10.1 (July 2019), page 3007.
ISSN: 2041-1723. DOI: 10.1038/s41467-019-10988-2 (cited on page 39).

[119] Lov Grover and Terry Rudolph. Creating superpositions that correspond to efficiently
integrable probability distributions. 2002. DOI: 10.48550/ARXIV.QUANT-PH/0208112.
URL: https://arxiv.org/abs/quant-ph/0208112 (cited on page 201).

[120] Sanjay Gupta and R.K.P. Zia. “Quantum Neural Networks”. In: Journal of Computer and
System Sciences 63.3 (2001), pages 355–383. ISSN: 0022-0000. DOI: https://doi.org/
10.1006/jcss.2001.1769. URL: https://www.sciencedirect.com/science/
article/pii/S0022000001917696 (cited on pages 20, 53).

[121] Casper Gyurik, Dyon Vreumingen van, and Vedran Dunjko. “Structural risk minimization
for quantum linear classifiers”. In: Quantum 7 (Jan. 2023), page 893. ISSN: 2521-327X.
DOI: 10.22331/q-2023-01-13-893. URL: https://doi.org/10.22331/q-2023-01-
13-893 (cited on page 79).

[122] Stuart Hadfield et al. “From the Quantum Approximate Optimization Algorithm to a
Quantum Alternating Operator Ansatz”. In: Algorithms 12.2 (2019). ISSN: 1999-4893. DOI:
10.3390/a12020034. URL: https://www.mdpi.com/1999-4893/12/2/34 (cited on
page 39).

[123] Jonas Haferkamp and Nicholas Hunter-Jones. “Improved spectral gaps for random quantum
circuits: Large local dimensions and all-to-all interactions”. In: Phys. Rev. A 104 (2 Aug.
2021), page 022417. DOI: 10.1103/PhysRevA.104.022417. URL: https://link.aps.
org/doi/10.1103/PhysRevA.104.022417 (cited on pages 130, 139).

[124] Aram Harrow and Saeed Mehraban. Approximate unitary t-designs by short random
quantum circuits using nearest-neighbor and long-range gates. 2018. arXiv: 1809.06957
[quant-ph] (cited on pages 133, 139).

[125] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum Algorithm for Linear
Systems of Equations”. In: Physical Review Letters 103.15 (Oct. 2009). DOI: 10.1103/
physrevlett.103.150502. URL: https://doi.org/10.1103/physrevlett.103.
150502 (cited on page 53).

[126] Aram W. Harrow and Richard A. Low. “Random Quantum Circuits Are Approximate 2-
Designs”. In: Communications in Mathematical Physics 291.1 (Oct. 2009), pages 257–302.
ISSN: 1432-0916. DOI: 10.1007/s00220-009-0873-6 (cited on pages 130, 139).

[127] Akel Hashim et al. “Randomized Compiling for Scalable Quantum Computing on a Noisy
Superconducting Quantum Processor”. In: Phys. Rev. X 11 (4 Nov. 2021), page 041039.
DOI: 10.1103/PhysRevX.11.041039. URL: https://link.aps.org/doi/10.1103/
PhysRevX.11.041039 (cited on page 149).

[128] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer series in statistics. Springer, 2009. ISBN: 978-
0-387-84884-6 (cited on pages 61, 62, 66, 111, 112).

[129] Trevor Hastie et al. “Surprises in high-dimensional ridgeless least squares interpolation”. In:
The Annals of Statistics 50.2 (2022), pages 949–986. DOI: 10.1214/21-AOS2133. URL:
https://doi.org/10.1214/21-AOS2133 (cited on page 62).

[130] Julian Havil. “Gamma: exploring Euler’s constant”. In: The Australian Mathematical
Society (2003), page 250 (cited on page 203).

https://arxiv.org/abs/1509.02921
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.48550/ARXIV.QUANT-PH/0208112
https://arxiv.org/abs/quant-ph/0208112
https://doi.org/https://doi.org/10.1006/jcss.2001.1769
https://doi.org/https://doi.org/10.1006/jcss.2001.1769
https://www.sciencedirect.com/science/article/pii/S0022000001917696
https://www.sciencedirect.com/science/article/pii/S0022000001917696
https://doi.org/10.22331/q-2023-01-13-893
https://doi.org/10.22331/q-2023-01-13-893
https://doi.org/10.22331/q-2023-01-13-893
https://doi.org/10.3390/a12020034
https://www.mdpi.com/1999-4893/12/2/34
https://doi.org/10.1103/PhysRevA.104.022417
https://link.aps.org/doi/10.1103/PhysRevA.104.022417
https://link.aps.org/doi/10.1103/PhysRevA.104.022417
https://arxiv.org/abs/1809.06957
https://arxiv.org/abs/1809.06957
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1007/s00220-009-0873-6
https://doi.org/10.1103/PhysRevX.11.041039
https://link.aps.org/doi/10.1103/PhysRevX.11.041039
https://link.aps.org/doi/10.1103/PhysRevX.11.041039
https://doi.org/10.1214/21-AOS2133
https://doi.org/10.1214/21-AOS2133

Bibliography 173

[131] Vojtěch Havlíček et al. “Supervised learning with quantum-enhanced feature spaces”. In:
Nature 567.7747 (Mar. 2019), pages 209–212. ISSN: 1476-4687. DOI: https://doi.org/
10.1038/s41586-019-0980-2 (cited on pages 70, 71, 81, 106, 130, 138).

[132] Patrick Hayden, Debbie W. Leung, and Andreas Winter. “Aspects of Generic Entangle-
ment”. In: Communications in Mathematical Physics 265.1 (July 2006), pages 95–117.
ISSN: 1432-0916. DOI: 10.1007/s00220-006-1535-6 (cited on pages 127, 202).

[133] J. Helsen et al. “General Framework for Randomized Benchmarking”. In: PRX Quantum
3 (2 June 2022), page 020357. DOI: 10.1103/PRXQuantum.3.020357. URL: https:
//link.aps.org/doi/10.1103/PRXQuantum.3.020357 (cited on page 35).

[134] Maxwell Henderson et al. “Quanvolutional neural networks: powering image recognition
with quantum circuits”. In: Quantum Machine Intelligence 2.1 (Feb. 2020). DOI: 10.1007/
s42484-020-00012-y. URL: https://doi.org/10.1007/s42484-020-00012-y
(cited on page 81).

[135] Loïc Henriet et al. “Quantum computing with neutral atoms”. In: Quantum 4 (Sept. 2020),
page 327. ISSN: 2521-327X. DOI: 10 . 22331 / q - 2020 - 09 - 21 - 327. URL: https :
//doi.org/10.22331/q-2020-09-21-327 (cited on page 34).

[136] Dylan Herman et al. A Survey of Quantum Computing for Finance. 2022. DOI: 10.48550/
ARXIV.2201.02773. URL: https://arxiv.org/abs/2201.02773 (cited on page 55).

[137] Zoë Holmes et al. “Connecting Ansatz Expressibility to Gradient Magnitudes and Barren
Plateaus”. In: PRX Quantum 3 (1 2022), page 010313. DOI: https://doi.org/10.1103/
PRXQuantum.3.010313 (cited on pages 43, 46, 50, 51, 129, 139).

[138] Hsin-Yuan Huang, Kishor Bharti, and Patrick Rebentrost. Near-term quantum algorithms
for linear systems of equations. 2019. DOI: 10.48550/ARXIV.1909.07344. URL: https:
//arxiv.org/abs/1909.07344 (cited on page 32).

[139] Hsin-Yuan Huang, Richard Kueng, and John Preskill. “Predicting Many Properties of a
Quantum System from Very Few Measurements”. In: Nature Physics 16.10 (Oct. 2020),
pages 1050–1057. ISSN: 1745-2481. DOI: 10.1038/s41567-020-0932-7 (cited on
page 151).

[140] Hsin-Yuan Huang, Richard Kueng, and John Preskill. “Information-Theoretic Bounds
on Quantum Advantage in Machine Learning”. In: Phys. Rev. Lett. 126 (19 May 2021),
page 190505. DOI: 10.1103/PhysRevLett.126.190505. URL: https://link.aps.
org/doi/10.1103/PhysRevLett.126.190505 (cited on pages 79, 121).

[141] Hsin-Yuan Huang et al. “Power of Data in Quantum Machine Learning”. In: Nature
Communications 12.1 (May 2021), page 2631. ISSN: 2041-1723. DOI: 10.1038/s41467-
021-22539-9 (cited on pages 46, 79, 121).

[142] Hsin-Yuan Huang et al. “Provably efficient machine learning for quantum many-body
problems”. In: Science 377.6613 (2022), eabk3333. DOI: 10.1126/science.abk3333.
eprint: https://www.science.org/doi/pdf/10.1126/science.abk3333. URL:
https : / / www . science . org / doi / abs / 10 . 1126 / science . abk3333 (cited on
page 79).

[143] Hsin-Yuan Huang et al. “Quantum advantage in learning from experiments”. In: Science
376.6598 (2022), pages 1182–1186. DOI: 10.1126/science.abn7293. eprint: https:
//www.science.org/doi/pdf/10.1126/science.abn7293. URL: https://www.
science.org/doi/abs/10.1126/science.abn7293 (cited on page 79).

https://doi.org/https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1007/s00220-006-1535-6
https://doi.org/10.1103/PRXQuantum.3.020357
https://link.aps.org/doi/10.1103/PRXQuantum.3.020357
https://link.aps.org/doi/10.1103/PRXQuantum.3.020357
https://doi.org/10.1007/s42484-020-00012-y
https://doi.org/10.1007/s42484-020-00012-y
https://doi.org/10.1007/s42484-020-00012-y
https://doi.org/10.22331/q-2020-09-21-327
https://doi.org/10.22331/q-2020-09-21-327
https://doi.org/10.22331/q-2020-09-21-327
https://doi.org/10.48550/ARXIV.2201.02773
https://doi.org/10.48550/ARXIV.2201.02773
https://arxiv.org/abs/2201.02773
https://doi.org/https://doi.org/10.1103/PRXQuantum.3.010313
https://doi.org/https://doi.org/10.1103/PRXQuantum.3.010313
https://doi.org/10.48550/ARXIV.1909.07344
https://arxiv.org/abs/1909.07344
https://arxiv.org/abs/1909.07344
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1103/PhysRevLett.126.190505
https://link.aps.org/doi/10.1103/PhysRevLett.126.190505
https://link.aps.org/doi/10.1103/PhysRevLett.126.190505
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1126/science.abk3333
https://www.science.org/doi/pdf/10.1126/science.abk3333
https://www.science.org/doi/abs/10.1126/science.abk3333
https://doi.org/10.1126/science.abn7293
https://www.science.org/doi/pdf/10.1126/science.abn7293
https://www.science.org/doi/pdf/10.1126/science.abn7293
https://www.science.org/doi/abs/10.1126/science.abn7293
https://www.science.org/doi/abs/10.1126/science.abn7293

174 Bibliography

[144] Thomas Hubregtsen et al. “Evaluation of Parameterized Quantum Circuits: On the Relation
between Classification Accuracy, Expressibility, and Entangling Capability”. In: Quantum
Machine Intelligence 3.1 (Mar. 2021), page 9. ISSN: 2524-4914. DOI: 10.1007/s42484-
021-00038-w (cited on pages 38, 138).

[145] IBM Quantum. https://quantum-computing.ibm.com/, 2022 (cited on pages 33–35,
88).

[146] IBM Quantum Roadmap. https://www.ibm.com/quantum/roadmap, 2023 (cited on
page 34).

[147] Il computer quantistico è “come un telescopio”, ma siamo ancora alla preistoria, Wired.
https://www.wired.it/article/computer-quantistico-tecnologia-obiettivi-
applicazioni/, Feb. 2023 (cited on page 20).

[148] IonQ. https://ionq.com/, 2023 (cited on pages 34, 35).

[149] B Jaderberg et al. “Quantum self-supervised learning”. In: Quantum Science and Technology
7.3 (May 2022), page 035005. DOI: 10.1088/2058-9565/ac6825. URL: https://doi.
org/10.1088/2058-9565/ac6825 (cited on page 124).

[150] Daniel Jaschke and Simone Montangero. “Is quantum computing green? An estimate for
an energy-efficiency quantum advantage”. In: Quantum Science and Technology 8.2 (Jan.
2023), page 025001. DOI: 10.1088/2058-9565/acae3e. URL: https://dx.doi.org/
10.1088/2058-9565/acae3e (cited on pages 139, 206).

[151] Sofiene Jerbi et al. “Parametrized quantum policies for reinforcement learning”. In: Ad-
vances in Neural Information Processing Systems 34 (2021), pages 28362–28375 (cited on
page 54).

[152] Sofiene Jerbi et al. Quantum machine learning beyond kernel methods. 2022. arXiv: 2110.
13162 [quant-ph] (cited on pages 70–72, 131).

[153] Jiaqing Jiang, Kun Wang, and Xin Wang. “Physical Implementability of Linear Maps and
Its Application in Error Mitigation”. In: Quantum 5 (Dec. 2021), page 600. ISSN: 2521-
327X. DOI: 10.22331/q-2021-12-07-600. URL: https://doi.org/10.22331/q-
2021-12-07-600 (cited on page 145).

[154] John de Pillis. “Linear Transformations Which Preserve Hermitian and Positive Semidefinite
Operators.” In: Pacific Journal of Mathematics 23.1 (Jan. 1967), pages 129–137 (cited on
page 145).

[155] Abhinav Kandala et al. “Hardware-Efficient Variational Quantum Eigensolver for Small
Molecules and Quantum Magnets”. In: Nature 549.7671 (Sept. 2017), pages 242–246.
ISSN: 1476-4687. DOI: 10.1038/nature23879 (cited on pages 38, 98).

[156] Abhinav Kandala et al. “Error Mitigation Extends the Computational Reach of a Noisy
Quantum Processor”. In: Nature 567.7749 (Mar. 2019), pages 491–495. ISSN: 1476-4687.
DOI: 10.1038/s41586-019-1040-7 (cited on page 143).

[157] Peter J Karalekas et al. “A quantum-classical cloud platform optimized for variational
hybrid algorithms”. In: Quantum Science and Technology 5.2 (Apr. 2020), page 024003.
DOI: 10.1088/2058-9565/ab7559. URL: https://doi.org/10.1088%5C%2F2058-
9565%5C%2Fab7559 (cited on pages 144, 154).

[158] Vahid Karimipour, Fabio Benatti, and Roberto Floreanini. “Quasi-inversion of qubit chan-
nels”. In: Phys. Rev. A 101 (3 Mar. 2020), page 032109. DOI: 10.1103/PhysRevA.101.
032109. URL: https://link.aps.org/doi/10.1103/PhysRevA.101.032109 (cited
on page 143).

https://doi.org/10.1007/s42484-021-00038-w
https://doi.org/10.1007/s42484-021-00038-w
https://quantum-computing.ibm.com/
https://www.ibm.com/quantum/roadmap
https://www.wired.it/article/computer-quantistico-tecnologia-obiettivi-applicazioni/
https://www.wired.it/article/computer-quantistico-tecnologia-obiettivi-applicazioni/
https://ionq.com/
https://doi.org/10.1088/2058-9565/ac6825
https://doi.org/10.1088/2058-9565/ac6825
https://doi.org/10.1088/2058-9565/ac6825
https://doi.org/10.1088/2058-9565/acae3e
https://dx.doi.org/10.1088/2058-9565/acae3e
https://dx.doi.org/10.1088/2058-9565/acae3e
https://arxiv.org/abs/2110.13162
https://arxiv.org/abs/2110.13162
https://doi.org/10.22331/q-2021-12-07-600
https://doi.org/10.22331/q-2021-12-07-600
https://doi.org/10.22331/q-2021-12-07-600
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/s41586-019-1040-7
https://doi.org/10.1088/2058-9565/ab7559
https://doi.org/10.1088%5C%2F2058-9565%5C%2Fab7559
https://doi.org/10.1088%5C%2F2058-9565%5C%2Fab7559
https://doi.org/10.1103/PhysRevA.101.032109
https://doi.org/10.1103/PhysRevA.101.032109
https://link.aps.org/doi/10.1103/PhysRevA.101.032109

Bibliography 175

[159] Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. “Quantum Algorithms for Deep
Convolutional Neural Networks”. In: (2019). DOI: 10.48550/ARXIV.1911.01117. URL:
https://arxiv.org/abs/1911.01117 (cited on page 82).

[160] Iordanis Kerenidis and Alessandro Luongo. “Classification of the MNIST data set with
quantum slow feature analysis”. In: Phys. Rev. A 101 (6 June 2020), page 062327. DOI:
10.1103/PhysRevA.101.062327. URL: https://link.aps.org/doi/10.1103/
PhysRevA.101.062327 (cited on pages 54, 93).

[161] Amir Khoshaman et al. “Quantum variational autoencoder”. In: Quantum Science and
Technology 4.1 (Sept. 2018), page 014001. DOI: 10.1088/2058-9565/aada1f. URL:
https://doi.org/10.1088/2058-9565/aada1f (cited on pages 108, 109).

[162] Bobak Toussi Kiani, Seth Lloyd, and Reevu Maity. Learning Unitaries by Gradient Descent.
2020. DOI: 10.48550/ARXIV.2001.11897. URL: https://arxiv.org/abs/2001.
11897 (cited on pages 140, 207).

[163] Nathan Killoran et al. “Continuous-variable quantum neural networks”. In: Phys. Rev.
Research 1 (3 Oct. 2019), page 033063 (cited on pages 55, 81).

[164] Joonho Kim and Yaron Oz. Entanglement Diagnostics for Efficient Quantum Computation.
2021. DOI: 10.48550/ARXIV.2102.12534. URL: https://arxiv.org/abs/2102.
12534 (cited on pages 130, 136, 141).

[165] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2014.
DOI: 10.48550/ARXIV.1412.6980. URL: https://arxiv.org/abs/1412.6980 (cited
on pages 40, 116, 211).

[166] E. Knill. “Quantum Computing with Realistically Noisy Devices”. In: Nature 434.7029
(Mar. 2005), pages 39–44. ISSN: 1476-4687. DOI: 10.1038/nature03350 (cited on
page 142).

[167] B. Kraus et al. “Preparation of entangled states by quantum Markov processes”. In: Phys.
Rev. A 78 (4 Oct. 2008), page 042307. DOI: 10.1103/PhysRevA.78.042307. URL:
https://link.aps.org/doi/10.1103/PhysRevA.78.042307 (cited on page 200).

[168] Lasse Bjørn Kristensen et al. “An artificial spiking quantum neuron”. In: npj Quantum
Information 7.1 (Apr. 2021). DOI: 10.1038/s41534- 021- 00381- 7. URL: https:
//doi.org/10.1038/s41534-021-00381-7 (cited on page 81).

[169] C. Kruszynska and B. Kraus. “Local entanglability and multipartite entanglement”. In:
Phys. Rev. A 79 (5 May 2009), page 052304. DOI: 10.1103/PhysRevA.79.052304. URL:
https://link.aps.org/doi/10.1103/PhysRevA.79.052304 (cited on pages 84, 87,
93, 200).

[170] Jonas Kübler, Simon Buchholz, and Bernhard Schölkopf. “The Inductive Bias of Quantum
Kernels”. In: Advances in Neural Information Processing Systems. Edited by M. Ranzato
et al. Volume 34. Curran Associates, Inc., 2021, pages 12661–12673. URL: https://
proceedings.neurips.cc/paper/2021/file/69adc1e107f7f7d035d7baf04342e1ca-
Paper.pdf (cited on page 79).

[171] L. Lamata et al. “Quantum autoencoders via quantum adders with genetic algorithms”. In:
Quantum Science and Technology 4.1 (Oct. 2018), page 014007. DOI: 10.1088/2058-
9565/aae22b. URL: https://doi.org/10.1088/2058- 9565/aae22b (cited on
pages 81, 108, 113).

[172] Martin Larocca et al. Theory of overparametrization in quantum neural networks. 2021.
arXiv: 2109.11676 [quant-ph] (cited on pages 140, 207).

https://doi.org/10.48550/ARXIV.1911.01117
https://arxiv.org/abs/1911.01117
https://doi.org/10.1103/PhysRevA.101.062327
https://link.aps.org/doi/10.1103/PhysRevA.101.062327
https://link.aps.org/doi/10.1103/PhysRevA.101.062327
https://doi.org/10.1088/2058-9565/aada1f
https://doi.org/10.1088/2058-9565/aada1f
https://doi.org/10.48550/ARXIV.2001.11897
https://arxiv.org/abs/2001.11897
https://arxiv.org/abs/2001.11897
https://doi.org/10.48550/ARXIV.2102.12534
https://arxiv.org/abs/2102.12534
https://arxiv.org/abs/2102.12534
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/nature03350
https://doi.org/10.1103/PhysRevA.78.042307
https://link.aps.org/doi/10.1103/PhysRevA.78.042307
https://doi.org/10.1038/s41534-021-00381-7
https://doi.org/10.1038/s41534-021-00381-7
https://doi.org/10.1038/s41534-021-00381-7
https://doi.org/10.1103/PhysRevA.79.052304
https://link.aps.org/doi/10.1103/PhysRevA.79.052304
https://proceedings.neurips.cc/paper/2021/file/69adc1e107f7f7d035d7baf04342e1ca-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/69adc1e107f7f7d035d7baf04342e1ca-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/69adc1e107f7f7d035d7baf04342e1ca-Paper.pdf
https://doi.org/10.1088/2058-9565/aae22b
https://doi.org/10.1088/2058-9565/aae22b
https://doi.org/10.1088/2058-9565/aae22b
https://arxiv.org/abs/2109.11676

176 Bibliography

[173] Martin Larocca et al. “Group-Invariant Quantum Machine Learning”. In: PRX Quantum
3 (3 Sept. 2022), page 030341. DOI: 10.1103/PRXQuantum.3.030341. URL: https:
//link.aps.org/doi/10.1103/PRXQuantum.3.030341 (cited on pages 39, 50, 207).

[174] Ryan LaRose and Brian Coyle. “Robust data encodings for quantum classifiers”. In: Phys.
Rev. A 102 (3 Sept. 2020), page 032420 (cited on pages 113, 121).

[175] Jose I. Latorre. Image compression and entanglement. 2005. DOI: 10.48550/ARXIV.
QUANT-PH/0510031. URL: https://arxiv.org/abs/quant-ph/0510031 (cited on
page 82).

[176] Lea Lautenbacher, Fernando de Melo, and Nadja K. Bernardes. “Approximating invertible
maps by recovery channels: Optimality and an application to non-Markovian dynamics”.
In: Phys. Rev. A 105 (4 Apr. 2022), page 042421. DOI: 10.1103/PhysRevA.105.042421.
URL: https://link.aps.org/doi/10.1103/PhysRevA.105.042421 (cited on
page 143).

[177] Phuc Q. Le, Fangyan Dong, and Kaoru Hirota. “A flexible representation of quantum
images for polynomial preparation, image compression, and processing operations”. In:
Quantum Information Processing 10.1 (Apr. 2010), pages 63–84. DOI: 10.1007/s11128-
010-0177-y. URL: https://doi.org/10.1007/s11128-010-0177-y (cited on
page 82).

[178] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature 521.7553
(May 2015), pages 436–444. ISSN: 1476-4687. DOI: https://doi.org/10.1038/
nature14539 (cited on pages 36, 53, 111).

[179] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit database”. In: ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010) (cited on page 92).

[180] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical surveys and mono-
graphs. American Mathematical Society, 2001. ISBN: 9780821837924. URL: https://
books.google.it/books?id=mCX%5C_cWL6rqwC (cited on page 43).

[181] Alexander LeNail. “NN-SVG: Publication-Ready Neural Network Architecture Schemat-
ics”. In: Journal of Open Source Software 4.33 (2019), page 747. DOI: 10.21105/joss.
00747. URL: https://doi.org/10.21105/joss.00747 (cited on page 66).

[182] M. Lewenstein. “Quantum Perceptrons”. In: Journal of Modern Optics 41.12 (Dec. 1994),
pages 2491–2501. DOI: 10.1080/09500349414552331. URL: https://doi.org/10.
1080/09500349414552331 (cited on pages 20, 53).

[183] Panchi Li and Hong Xiao. “Model and algorithm of quantum-inspired neural network with
sequence input based on controlled rotation gates”. In: Applied Intelligence 40.1 (May
2013), pages 107–126. DOI: 10.1007/s10489-013-0447-3. URL: https://doi.org/
10.1007/s10489-013-0447-3 (cited on page 82).

[184] Zi-Wen Liu et al. “Entanglement, Quantum Randomness, and Complexity beyond Scram-
bling”. In: Journal of High Energy Physics 2018.7 (July 2018), page 41. ISSN: 1029-8479.
DOI: 10.1007/JHEP07(2018)041 (cited on pages 129, 202).

[185] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rigorous and robust quantum
speed-up in supervised machine learning. 2020. arXiv: 2010.02174 [quant-ph] (cited
on page 79).

[186] Seth Lloyd. Quantum approximate optimization is computationally universal. 2018. DOI:
10.48550/ARXIV.1812.11075. URL: https://arxiv.org/abs/1812.11075 (cited on
page 39).

https://doi.org/10.1103/PRXQuantum.3.030341
https://link.aps.org/doi/10.1103/PRXQuantum.3.030341
https://link.aps.org/doi/10.1103/PRXQuantum.3.030341
https://doi.org/10.48550/ARXIV.QUANT-PH/0510031
https://doi.org/10.48550/ARXIV.QUANT-PH/0510031
https://arxiv.org/abs/quant-ph/0510031
https://doi.org/10.1103/PhysRevA.105.042421
https://link.aps.org/doi/10.1103/PhysRevA.105.042421
https://doi.org/10.1007/s11128-010-0177-y
https://doi.org/10.1007/s11128-010-0177-y
https://doi.org/10.1007/s11128-010-0177-y
https://doi.org/https://doi.org/10.1038/nature14539
https://doi.org/https://doi.org/10.1038/nature14539
https://books.google.it/books?id=mCX%5C_cWL6rqwC
https://books.google.it/books?id=mCX%5C_cWL6rqwC
https://doi.org/10.21105/joss.00747
https://doi.org/10.21105/joss.00747
https://doi.org/10.21105/joss.00747
https://doi.org/10.1080/09500349414552331
https://doi.org/10.1080/09500349414552331
https://doi.org/10.1080/09500349414552331
https://doi.org/10.1007/s10489-013-0447-3
https://doi.org/10.1007/s10489-013-0447-3
https://doi.org/10.1007/s10489-013-0447-3
https://doi.org/10.1007/JHEP07(2018)041
https://arxiv.org/abs/2010.02174
https://doi.org/10.48550/ARXIV.1812.11075
https://arxiv.org/abs/1812.11075

Bibliography 177

[187] Seth Lloyd. Quantum approximate optimization is computationally universal. 2018. DOI:
10.48550/ARXIV.1812.11075. URL: https://arxiv.org/abs/1812.11075 (cited on
page 131).

[188] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. “Quantum algorithms for supervised
and unsupervised machine learning”. In: (2013). arXiv: 1307.0411 (cited on pages 53,
54).

[189] Seth Lloyd et al. 2020. arXiv: 2001.03622 [quant-ph] (cited on pages 113, 121).

[190] Angus Lowe et al. “Unified approach to data-driven quantum error mitigation”. In: Phys. Rev.
Research 3 (3 July 2021), page 033098. DOI: 10.1103/PhysRevResearch.3.033098.
URL: https://link.aps.org/doi/10.1103/PhysRevResearch.3.033098 (cited on
page 143).

[191] Easwar Magesan, Jay M. Gambetta, and Joseph Emerson. “Characterizing quantum gates
via randomized benchmarking”. In: Phys. Rev. A 85 (4 Apr. 2012), page 042311. DOI:
10.1103/PhysRevA.85.042311. URL: https://link.aps.org/doi/10.1103/
PhysRevA.85.042311 (cited on page 35).

[192] S. Mangini et al. “Quantum computing models for artificial neural networks”. In: Euro-
physics Letters 134.1 (2021), page 10002. DOI: https://doi.org/10.1209/0295-
5075/134/10002 (cited on pages 7, 22, 53, 115).

[193] Stefano Mangini and Marcello Benedetti. In preparation (cited on pages 7, 78).

[194] Stefano Mangini, Lorenzo Maccone, and Chiara Macchiavello. “Qubit Noise Deconvo-
lution”. In: EPJ Quantum Technology 9.1 (Nov. 2022), page 29. ISSN: 2196-0763. DOI:
10.1140/epjqt/s40507-022-00151-0 (cited on pages 7, 8, 142).

[195] Stefano Mangini et al. “Quantum computing model of an artificial neuron with continuously
valued input data”. In: Mach. Learn.: Sci. Technol. 1.4 (Oct. 2020), page 045008 (cited on
pages 7, 55, 81, 109, 113, 118).

[196] Stefano Mangini et al. “Quantum neural network autoencoder and classifier applied to an
industrial case study”. In: Quantum Machine Intelligence 4.2 (June 2022). DOI: 10.1007/
s42484-022-00070-4. URL: https://doi.org/10.1007/s42484-022-00070-4
(cited on pages 7, 8, 108).

[197] V A Marčenko and L A Pastur. “Distribution of eigenvalues for some sets of random
matrices”. In: Mathematics of the USSR-Sbornik 1.4 (Apr. 1967), page 457. DOI: 10.1070/
SM1967v001n04ABEH001994. URL: https://dx.doi.org/10.1070/SM1967v001n04ABEH001994
(cited on page 139).

[198] Andrea Mari, Thomas R. Bromley, and Nathan Killoran. “Estimating the gradient and
higher-order derivatives on quantum hardware”. In: Phys. Rev. A 103 (1 Jan. 2021),
page 012405. DOI: 10.1103/PhysRevA.103.012405. URL: https://link.aps.
org/doi/10.1103/PhysRevA.103.012405 (cited on pages 40, 42).

[199] Andrea Mari, Nathan Shammah, and William J. Zeng. “Extending quantum probabilistic
error cancellation by noise scaling”. In: Phys. Rev. A 104 (5 Nov. 2021), page 052607.
DOI: 10.1103/PhysRevA.104.052607. URL: https://link.aps.org/doi/10.1103/
PhysRevA.104.052607 (cited on page 143).

[200] G. Mauro D’Ariano, Matteo G.A. Paris, and Massimiliano F. Sacchi. “Quantum Tomog-
raphy”. In: edited by Peter W. Hawkes. Volume 128. Advances in Imaging and Electron
Physics. Elsevier, 2003, pages 205–308. DOI: https://doi.org/10.1016/S1076-
5670(03)80065-4. URL: https://www.sciencedirect.com/science/article/
pii/S1076567003800654 (cited on page 146).

https://doi.org/10.48550/ARXIV.1812.11075
https://arxiv.org/abs/1812.11075
https://arxiv.org/abs/1307.0411
https://arxiv.org/abs/2001.03622
https://doi.org/10.1103/PhysRevResearch.3.033098
https://link.aps.org/doi/10.1103/PhysRevResearch.3.033098
https://doi.org/10.1103/PhysRevA.85.042311
https://link.aps.org/doi/10.1103/PhysRevA.85.042311
https://link.aps.org/doi/10.1103/PhysRevA.85.042311
https://doi.org/https://doi.org/10.1209/0295-5075/134/10002
https://doi.org/https://doi.org/10.1209/0295-5075/134/10002
https://doi.org/10.1140/epjqt/s40507-022-00151-0
https://doi.org/10.1007/s42484-022-00070-4
https://doi.org/10.1007/s42484-022-00070-4
https://doi.org/10.1007/s42484-022-00070-4
https://doi.org/10.1070/SM1967v001n04ABEH001994
https://doi.org/10.1070/SM1967v001n04ABEH001994
https://dx.doi.org/10.1070/SM1967v001n04ABEH001994
https://doi.org/10.1103/PhysRevA.103.012405
https://link.aps.org/doi/10.1103/PhysRevA.103.012405
https://link.aps.org/doi/10.1103/PhysRevA.103.012405
https://doi.org/10.1103/PhysRevA.104.052607
https://link.aps.org/doi/10.1103/PhysRevA.104.052607
https://link.aps.org/doi/10.1103/PhysRevA.104.052607
https://doi.org/https://doi.org/10.1016/S1076-5670(03)80065-4
https://doi.org/https://doi.org/10.1016/S1076-5670(03)80065-4
https://www.sciencedirect.com/science/article/pii/S1076567003800654
https://www.sciencedirect.com/science/article/pii/S1076567003800654

178 Bibliography

[201] Jarrod R McClean et al. “The theory of variational hybrid quantum-classical algorithms”.
In: New J. Phys. 18.2 (2016), page 023023. DOI: 10.1088/1367-2630/18/2/023023
(cited on pages 43, 115).

[202] Jarrod R. McClean et al. “Barren plateaus in quantum neural network training landscapes”.
In: Nat. Commun. 9.1 (2018), page 4812. DOI: https://doi.org/10.1038/s41467-
018-07090-4 (cited on pages 39, 43, 44, 46, 99, 103, 106, 129, 139, 207).

[203] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in nervous
activity”. In: The Bulletin of Mathematical Biophysics 5.4 (Dec. 1943), pages 115–133.
DOI: 10.1007/bf02478259. URL: https://doi.org/10.1007/bf02478259 (cited on
pages 82, 95).

[204] Elizabeth S. Meckes. The Random Matrix Theory of the Classical Compact Groups.
Cambridge Tracts in Mathematics. Cambridge University Press, 2019. DOI: 10.1017/
9781108303453 (cited on page 46).

[205] Elizabeth S. Meckes. The Random Matrix Theory of the Classical Compact Groups. Cam-
bridge Tracts in Mathematics. Cambridge: Cambridge University Press, 2019. ISBN: 978-1-
108-41952-9. DOI: 10.1017/9781108303453 (cited on page 127).

[206] Riccardo Mengoni and Alessandra Di Pierro. “Kernel methods in Quantum Machine
Learning”. In: Quantum Machine Intelligence 1.3-4 (Nov. 2019), pages 65–71. DOI: 10.
1007/s42484-019-00007-4. URL: https://doi.org/10.1007/s42484-019-00007-
4 (cited on pages 54, 70).

[207] David A. Meyer and Nolan R. Wallach. “Global Entanglement in Multiparticle Systems”.
In: Journal of Mathematical Physics 43.9 (Sept. 2002), pages 4273–4278. ISSN: 0022-2488.
DOI: 10.1063/1.1497700 (cited on page 125).

[208] Johannes Jakob Meyer et al. Exploiting symmetry in variational quantum machine learning.
2022. DOI: 10.48550/ARXIV.2205.06217. URL: https://arxiv.org/abs/2205.
06217 (cited on pages 39, 50, 128, 140, 207).

[209] K. Mitarai et al. “Quantum circuit learning”. In: Phys. Rev. A 98 (3 Sept. 2018), page 032309
(cited on pages 40, 41, 72, 113, 116).

[210] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In:
nature 518.7540 (2015), pages 529–533 (cited on pages 36, 111).

[211] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. 2nd. The MIT Press, 2018. ISBN: 0262039400 (cited on pages 57, 61, 64, 65,
71).

[212] Klaus Mølmer and Anders Sørensen. “Multiparticle Entanglement of Hot Trapped Ions”.
In: Phys. Rev. Lett. 82 (9 Mar. 1999), pages 1835–1838. DOI: 10.1103/PhysRevLett.82.
1835. URL: https://link.aps.org/doi/10.1103/PhysRevLett.82.1835 (cited on
page 33).

[213] S. Montangero. Introduction to Tensor Network Methods. Cham, CH: Springer Nature
Switzerland AG, 2018 (cited on page 125).

[214] M. E. S. Morales, J. D. Biamonte, and Z. Zimborás. “On the Universality of the Quantum
Approximate Optimization Algorithm”. In: Quantum Information Processing 19.9 (Aug.
2020), page 291. ISSN: 1573-1332. DOI: 10.1007/s11128-020-02748-9 (cited on
page 131).

[215] Lorenzo Moro et al. “Quantum compiling by deep reinforcement learning”. In: Com-
munications Physics 4.1 (Aug. 2021). DOI: 10.1038/s42005- 021- 00684- 3. URL:
https://doi.org/10.1038/s42005-021-00684-3 (cited on page 54).

https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259
https://doi.org/10.1017/9781108303453
https://doi.org/10.1017/9781108303453
https://doi.org/10.1017/9781108303453
https://doi.org/10.1007/s42484-019-00007-4
https://doi.org/10.1007/s42484-019-00007-4
https://doi.org/10.1007/s42484-019-00007-4
https://doi.org/10.1007/s42484-019-00007-4
https://doi.org/10.1063/1.1497700
https://doi.org/10.48550/ARXIV.2205.06217
https://arxiv.org/abs/2205.06217
https://arxiv.org/abs/2205.06217
https://doi.org/10.1103/PhysRevLett.82.1835
https://doi.org/10.1103/PhysRevLett.82.1835
https://link.aps.org/doi/10.1103/PhysRevLett.82.1835
https://doi.org/10.1007/s11128-020-02748-9
https://doi.org/10.1038/s42005-021-00684-3
https://doi.org/10.1038/s42005-021-00684-3

Bibliography 179

[216] Adam Nahum et al. “Quantum Entanglement Growth under Random Unitary Dynamics”.
In: Phys. Rev. X 7 (3 July 2017), page 031016. DOI: 10.1103/PhysRevX.7.031016. URL:
https://link.aps.org/doi/10.1103/PhysRevX.7.031016 (cited on page 136).

[217] Native Gates Information, IonQ. https://ionq.com/docs/getting-started-with-
native-gates#introducing-the-native-gates, 2022 (cited on page 33).

[218] J. A. Nelder and R. Mead. “A Simplex Method for Function Minimization”. In: The
Computer Journal 7.4 (Jan. 1965), pages 308–313. ISSN: 0010-4620. DOI: 10.1093/
comjnl/7.4.308 (cited on pages 43, 101).

[219] Quynh T. Nguyen et al. Theory for Equivariant Quantum Neural Networks. 2022. DOI:
10.48550/ARXIV.2210.08566. URL: https://arxiv.org/abs/2210.08566 (cited on
page 39).

[220] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information.
Cambridge, UK: Cambridge University Press, 2010. DOI: https://doi.org/10.1017/
CBO9780511976667 (cited on pages 19, 25, 27, 34, 45, 126, 143, 145, 146, 151, 153, 213).

[221] Carlos Ortiz Marrero, Mária Kieferová, and Nathan Wiebe. “Entanglement-Induced Barren
Plateaus”. In: PRX Quantum 2 (4 2021), page 040316. DOI: https://doi.org/10.1103/
PRXQuantum.2.040316 (cited on pages 45, 129, 138, 140).

[222] Mateusz Ostaszewski, Edward Grant, and Marcello Benedetti. “Structure optimization for
parameterized quantum circuits”. In: Quantum 5 (Jan. 2021), page 391. ISSN: 2521-327X.
DOI: 10.22331/q-2021-01-28-391. URL: https://doi.org/10.22331/q-2021-01-
28-391 (cited on pages 39, 43).

[223] Sebastian Paeckel et al. “Time-evolution methods for matrix-product states”. In: Annals
of Physics 411 (Dec. 2019), page 167998. ISSN: 0003-4916. DOI: 10.1016/j.aop.
2019.167998. URL: http://dx.doi.org/10.1016/j.aop.2019.167998 (cited on
page 126).

[224] Don N. Page. “Average entropy of a subsystem”. In: Phys. Rev. Lett. 71 (9 Aug. 1993),
pages 1291–1294. DOI: 10.1103/PhysRevLett.71.1291. URL: https://link.aps.
org/doi/10.1103/PhysRevLett.71.1291 (cited on page 127).

[225] Matteo Paris and Jaroslav Řeháček, editors. Quantum State Estimation. Lecture Notes
in Physics 649. Berlin ; New York: Springer, 2004. ISBN: 978-3-540-22329-0 (cited on
pages 146, 147).

[226] German I. Parisi et al. “Continual lifelong learning with neural networks: A review”. In:
Neural Networks 113 (May 2019), pages 54–71. DOI: 10.1016/j.neunet.2019.01.012.
URL: https://doi.org/10.1016/j.neunet.2019.01.012 (cited on page 56).

[227] Taylor L. Patti et al. “Entanglement devised barren plateau mitigation”. In: Phys. Rev.
Research 3 (3 July 2021), page 033090. DOI: 10.1103/PhysRevResearch.3.033090.
URL: https://link.aps.org/doi/10.1103/PhysRevResearch.3.033090 (cited on
pages 129, 130).

[228] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pages 2825–2830 (cited on page 110).

[229] Adrián Pérez-Salinas et al. “Data re-uploading for a universal quantum classifier”. In:
Quantum 4 (Feb. 2020), page 226. ISSN: 2521-327X. DOI: https://doi.org/10.22331/
q-2020-02-06-226 (cited on pages 72, 73, 109, 121, 124, 128, 130).

[230] Alberto Peruzzo et al. “A variational eigenvalue solver on a photonic quantum processor”.
In: Nat. Commun. 5.1 (2014). DOI: https://doi.org/10.1038/ncomms5213 (cited on
pages 36, 39, 98).

https://doi.org/10.1103/PhysRevX.7.031016
https://link.aps.org/doi/10.1103/PhysRevX.7.031016
https://ionq.com/docs/getting-started-with-native-gates#introducing-the-native-gates
https://ionq.com/docs/getting-started-with-native-gates#introducing-the-native-gates
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.48550/ARXIV.2210.08566
https://arxiv.org/abs/2210.08566
https://doi.org/https://doi.org/10.1017/CBO9780511976667
https://doi.org/https://doi.org/10.1017/CBO9780511976667
https://doi.org/https://doi.org/10.1103/PRXQuantum.2.040316
https://doi.org/https://doi.org/10.1103/PRXQuantum.2.040316
https://doi.org/10.22331/q-2021-01-28-391
https://doi.org/10.22331/q-2021-01-28-391
https://doi.org/10.22331/q-2021-01-28-391
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1016/j.aop.2019.167998
http://dx.doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/PhysRevLett.71.1291
https://link.aps.org/doi/10.1103/PhysRevLett.71.1291
https://link.aps.org/doi/10.1103/PhysRevLett.71.1291
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1103/PhysRevResearch.3.033090
https://link.aps.org/doi/10.1103/PhysRevResearch.3.033090
https://doi.org/%20https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/%20https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/https://doi.org/10.1038/ncomms5213

180 Bibliography

[231] Arthur Pesah et al. Absence of Barren Plateaus in Quantum Convolutional Neural Networks.
2020. arXiv: 2011.02966 [quant-ph] (cited on page 50).

[232] Evan Peters and Maria Schuld. Generalization despite overfitting in quantum machine
learning models. 2022. DOI: 10.48550/ARXIV.2209.05523. URL: https://arxiv.
org/abs/2209.05523 (cited on pages 76, 79).

[233] K. B. Petersen and M. S. Pedersen. The Matrix Cookbook. Version 20121115. Nov. 2012.
URL: http://www2.compute.dtu.dk/pubdb/pubs/3274- full.html (cited on
page 63).

[234] Dénes Petz. “A survey of certain trace inequalities”. en. In: Banach Center Publ. 30.1
(1994), pages 287–298 (cited on page 193).

[235] M. J. D. Powell. “Direct search algorithms for optimization calculations”. In: Acta Numerica
7 (1998), pages 287–336. DOI: https://doi.org/10.1017/S0962492900002841 (cited
on pages 43, 101–103, 121).

[236] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum 2 (Aug.
2018), page 79. ISSN: 2521-327X. DOI: 10.22331/q-2018-08-06-79 (cited on pages 19,
34, 81, 142).

[237] John Preskill. Quantum computing 40 years later. 2021. DOI: 10.48550/ARXIV.2106.
10522. URL: https://arxiv.org/abs/2106.10522 (cited on page 19).

[238] Z. Puchała and J.A. Miszczak. “Symbolic integration with respect to the Haar measure on
the unitary groups”. In: Bulletin of the Polish Academy of Sciences: Technical Sciences
65.No 1 (2017), pages 21–27. DOI: 10.1515/bpasts- 2017- 0003. URL: http://
journals.pan.pl/Content/105697/PDF/10.1515bpasts-2017-0003.pdf (cited on
page 46).

[239] Zbigniew Puchała, Łukasz Pawela, and Karol Życzkowski. “Distinguishability of generic
quantum states”. In: Physical Review A 93.6 (2016), page 062112. DOI: https://doi.
org/10.1103/PhysRevA.93.062112 (cited on page 139).

[240] Qandela. https://www.quandela.com/, 2023 (cited on page 34).

[241] Quantinuum (cited on page 34).

[242] Quantinuum Sets New Record with Highest Ever Quantum Volume. https : / / www .
quantinuum.com/news/quantinuum- sets- new- record- with- highest- ever-
quantum-volume, 2022 (cited on page 35).

[243] Quantum Volume of 512 announced by IBM Quantum on Twitter. https://twitter.
com/jaygambetta/status/1529489786242744320, 2022 (cited on page 35).

[244] “Quasi-Newton Methods”. In: Numerical Optimization. New York, NY: Springer New York,
2006, pages 135–163. ISBN: 978-0-387-40065-5. DOI: 10.1007/978-0-387-40065-5_6.
URL: https://doi.org/10.1007/978-0-387-40065-5_6 (cited on page 40).

[245] QuEra (cited on page 34).

[246] Michael Ragone et al. Representation Theory for Geometric Quantum Machine Learning.
2022. DOI: 10.48550/ARXIV.2210.07980. URL: https://arxiv.org/abs/2210.
07980 (cited on page 140).

[247] Aditya Ramesh et al. Hierarchical Text-Conditional Image Generation with CLIP Latents.
2022. DOI: 10.48550/ARXIV.2204.06125. URL: https://arxiv.org/abs/2204.
06125 (cited on page 53).

[248] Arthur G. Rattew et al. A Domain-agnostic, Noise-resistant, Hardware-efficient Evolution-
ary Variational Quantum Eigensolver. 2019. DOI: 10.48550/ARXIV.1910.09694. URL:
https://arxiv.org/abs/1910.09694 (cited on page 39).

https://arxiv.org/abs/2011.02966
https://doi.org/10.48550/ARXIV.2209.05523
https://arxiv.org/abs/2209.05523
https://arxiv.org/abs/2209.05523
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
https://doi.org/https://doi.org/10.1017/S0962492900002841
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.48550/ARXIV.2106.10522
https://doi.org/10.48550/ARXIV.2106.10522
https://arxiv.org/abs/2106.10522
https://doi.org/10.1515/bpasts-2017-0003
http://journals.pan.pl/Content/105697/PDF/10.1515bpasts-2017-0003.pdf
http://journals.pan.pl/Content/105697/PDF/10.1515bpasts-2017-0003.pdf
https://doi.org/https://doi.org/10.1103/PhysRevA.93.062112
https://doi.org/https://doi.org/10.1103/PhysRevA.93.062112
https://www.quandela.com/
https://www.quantinuum.com/news/quantinuum-sets-new-record-with-highest-ever-quantum-volume
https://www.quantinuum.com/news/quantinuum-sets-new-record-with-highest-ever-quantum-volume
https://www.quantinuum.com/news/quantinuum-sets-new-record-with-highest-ever-quantum-volume
https://twitter.com/jaygambetta/status/1529489786242744320
https://twitter.com/jaygambetta/status/1529489786242744320
https://doi.org/10.1007/978-0-387-40065-5_6
https://doi.org/10.1007/978-0-387-40065-5_6
https://doi.org/10.48550/ARXIV.2210.07980
https://arxiv.org/abs/2210.07980
https://arxiv.org/abs/2210.07980
https://doi.org/10.48550/ARXIV.2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://doi.org/10.48550/ARXIV.1910.09694
https://arxiv.org/abs/1910.09694

Bibliography 181

[249] P. Rebentrost et al. “Quantum Hopfield neural network”. en. In: Physical Review A 98.4 (Oct.
2018), page 042308. ISSN: 2469-9926, 2469-9934. DOI: 10.1103/PhysRevA.98.042308.
(Visited on 05/30/2019) (cited on page 95).

[250] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. “Quantum Support Vector Ma-
chine for Big Data Classification”. In: Phys. Rev. Lett. 113.13 (2014). DOI: 10.1103/
PhysRevLett.113.130503 (cited on page 53).

[251] Mark Reid. “Generalization Bounds”. In: Encyclopedia of Machine Learning. Edited by
Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US, 2010, pages 447–454.
ISBN: 978-0-387-30164-8. DOI: 10.1007/978-0-387-30164-8_328. URL: https:
//doi.org/10.1007/978-0-387-30164-8_328 (cited on page 60).

[252] Raúl Rojas. Neural Networks. Springer Berlin Heidelberg, 1996. DOI: 10.1007/978-3-
642-61068-4. URL: https://doi.org/10.1007/978-3-642-61068-4 (cited on
page 82).

[253] Jonathan Romero, Jonathan P Olson, and Alan Aspuru-Guzik. “Quantum autoencoders for
efficient compression of quantum data”. In: Quantum Science and Technology 2.4 (Aug.
2017), page 045001. DOI: 10.1088/2058-9565/aa8072. URL: https://dx.doi.org/
10.1088/2058-9565/aa8072 (cited on pages 81, 108, 109, 113).

[254] Simone Roncallo, Lorenzo Maccone, and Chiara Macchiavello. “Multiqubit noise decon-
volution and characterization”. In: Phys. Rev. A 107 (2 Feb. 2023), page 022419. DOI:
10.1103/PhysRevA.107.022419. URL: https://link.aps.org/doi/10.1103/
PhysRevA.107.022419 (cited on pages 146, 148, 151).

[255] F. Rosenblatt. “The perceptron: A probabilistic model for information storage and or-
ganization in the brain.” In: Psychological Review 65.6 (1958), pages 386–408. DOI:
10.1037/h0042519. URL: https://doi.org/10.1037/h0042519 (cited on pages 65,
80, 82).

[256] M. Rossi et al. “Quantum hypergraph states”. en. In: New Journal of Physics 15.11 (Nov.
2013), page 113022. ISSN: 1367-2630. DOI: 10.1088/1367- 2630/15/11/113022.
(Visited on 08/22/2019) (cited on pages 95, 97).

[257] Manuel S. Rudolph et al. Synergy Between Quantum Circuits and Tensor Networks: Short-
cutting the Race to Practical Quantum Advantage. 2022. DOI: 10.48550/ARXIV.2208.
13673. URL: https://arxiv.org/abs/2208.13673 (cited on page 50).

[258] Stefan H. Sack et al. Avoiding barren plateaus using classical shadows. 2022. DOI: 10.
48550/ARXIV.2201.08194. URL: https://arxiv.org/abs/2201.08194 (cited on
pages 45, 129, 130, 141, 202).

[259] Francesco Scala et al. “Quantum variational learning for entanglement witnessing”. In:
2022 International Joint Conference on Neural Networks (IJCNN). 2022, pages 1–8. DOI:
10.1109/IJCNN55064.2022.9892080 (cited on page 7).

[260] Bernhard Schölkopf, Alexander Johannes Smola, and Alexander J. Smola. Learning with
Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Reprint.
Adaptive Computation and Machine Learning Series. Cambridge, Mass.: MIT Press, 2002.
ISBN: 978-0-262-19475-4 (cited on pages 64, 71).

[261] Franz J. Schreiber, Jens Eisert, and Johannes Jakob Meyer. Classical surrogates for quantum
learning models. 2022. DOI: 10.48550/ARXIV.2206.11740. URL: https://arxiv.
org/abs/2206.11740 (cited on page 79).

https://doi.org/10.1103/PhysRevA.98.042308
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1007/978-0-387-30164-8_328
https://doi.org/10.1007/978-0-387-30164-8_328
https://doi.org/10.1007/978-0-387-30164-8_328
https://doi.org/10.1007/978-3-642-61068-4
https://doi.org/10.1007/978-3-642-61068-4
https://doi.org/10.1007/978-3-642-61068-4
https://doi.org/10.1088/2058-9565/aa8072
https://dx.doi.org/10.1088/2058-9565/aa8072
https://dx.doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1103/PhysRevA.107.022419
https://link.aps.org/doi/10.1103/PhysRevA.107.022419
https://link.aps.org/doi/10.1103/PhysRevA.107.022419
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://doi.org/10.1088/1367-2630/15/11/113022
https://doi.org/10.48550/ARXIV.2208.13673
https://doi.org/10.48550/ARXIV.2208.13673
https://arxiv.org/abs/2208.13673
https://doi.org/10.48550/ARXIV.2201.08194
https://doi.org/10.48550/ARXIV.2201.08194
https://arxiv.org/abs/2201.08194
https://doi.org/10.1109/IJCNN55064.2022.9892080
https://doi.org/10.48550/ARXIV.2206.11740
https://arxiv.org/abs/2206.11740
https://arxiv.org/abs/2206.11740

182 Bibliography

[262] M. Schuld, M. Fingerhuth, and F. Petruccione. “Implementing a distance-based classifier
with a quantum interference circuit”. In: Europhysics Letters 119.6 (Dec. 2017), page 60002.
DOI: 10.1209/0295-5075/119/60002. URL: https://dx.doi.org/10.1209/0295-
5075/119/60002 (cited on pages 81, 95).

[263] Maria Schuld. Supervised quantum machine learning models are kernel methods. 2021.
DOI: 10.48550/ARXIV.2101.11020. URL: https://arxiv.org/abs/2101.11020
(cited on pages 70, 131).

[264] Maria Schuld and Nathan Killoran. “Quantum Machine Learning in Feature Hilbert Spaces”.
In: Phys. Rev. Lett. 122 (4 Feb. 2019), page 040504 (cited on pages 64, 70, 71, 81, 106).

[265] Maria Schuld and Nathan Killoran. “Is Quantum Advantage the Right Goal for Quantum
Machine Learning?” In: PRX Quantum 3 (3 July 2022), page 030101. DOI: 10.1103/
PRXQuantum.3.030101. URL: https://link.aps.org/doi/10.1103/PRXQuantum.
3.030101 (cited on page 80).

[266] Maria Schuld and Francesco Petruccione. Supervised Learning with Quantum Computers.
Springer International Publishing, 2018. ISBN: 978-3-319-96424-9 (cited on pages 53, 54,
201).

[267] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. “The Quest for a Quantum Neural
Network”. In: Quantum Information Processing 13.11 (Nov. 2014), pages 2567–2586. ISSN:
1573-1332. DOI: 10.1007/s11128-014-0809-8 (cited on pages 53, 55, 82).

[268] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. “An introduction to quantum
machine learning”. In: Contemporary Physics 56.2 (2015), pages 172–185. DOI: 10 .
1080/00107514.2014.964942. eprint: https://doi.org/10.1080/00107514.
2014.964942. URL: https://doi.org/10.1080/00107514.2014.964942 (cited on
pages 53, 81).

[269] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. “Effect of data encoding on
the expressive power of variational quantum-machine-learning models”. In: Phys. Rev. A
103 (3 Mar. 2021), page 032430. DOI: 10.1103/PhysRevA.103.032430. URL: https:
//link.aps.org/doi/10.1103/PhysRevA.103.032430 (cited on pages 72, 73, 76,
113, 121, 124, 128, 130, 210).

[270] Maria Schuld et al. “Evaluating analytic gradients on quantum hardware”. In: Phys. Rev.
A 99 (3 Mar. 2019), page 032331. DOI: https://doi.org/10.1103/PhysRevA.99.
032331 (cited on pages 40–42, 116).

[271] Benjamin Schumacher. “Quantum coding”. In: Phys. Rev. A 51 (4 Apr. 1995), pages 2738–
2747. DOI: 10.1103/PhysRevA.51.2738. URL: https://link.aps.org/doi/10.
1103/PhysRevA.51.2738 (cited on page 23).

[272] Simone Severini. Nella terra dei qubit. La fisica quantistica e i confini dell’informatica.
Tréfoglie, 2022 (cited on page 159).

[273] Fereshte Shahbeigi et al. “Quasi-inversion of quantum and classical channels in finite
dimensions”. In: Journal of Physics A: Mathematical and Theoretical 54.34 (Aug. 2021),
page 345301. DOI: 10.1088/1751-8121/ac13db. URL: https://doi.org/10.1088/
1751-8121/ac13db (cited on page 143).

[274] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, 2014. DOI: 10.1017/CBO9781107298019
(cited on pages 57, 58, 60, 61, 64, 65, 194, 195).

https://doi.org/10.1209/0295-5075/119/60002
https://dx.doi.org/10.1209/0295-5075/119/60002
https://dx.doi.org/10.1209/0295-5075/119/60002
https://doi.org/10.48550/ARXIV.2101.11020
https://arxiv.org/abs/2101.11020
https://doi.org/10.1103/PRXQuantum.3.030101
https://doi.org/10.1103/PRXQuantum.3.030101
https://link.aps.org/doi/10.1103/PRXQuantum.3.030101
https://link.aps.org/doi/10.1103/PRXQuantum.3.030101
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1103/PhysRevA.103.032430
https://link.aps.org/doi/10.1103/PhysRevA.103.032430
https://link.aps.org/doi/10.1103/PhysRevA.103.032430
https://doi.org/https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1103/PhysRevA.51.2738
https://link.aps.org/doi/10.1103/PhysRevA.51.2738
https://link.aps.org/doi/10.1103/PhysRevA.51.2738
https://doi.org/10.1088/1751-8121/ac13db
https://doi.org/10.1088/1751-8121/ac13db
https://doi.org/10.1088/1751-8121/ac13db
https://doi.org/10.1017/CBO9781107298019

Bibliography 183

[275] Kunal Sharma et al. “Reformulation of the No-Free-Lunch Theorem for Entangled Datasets”.
In: Phys. Rev. Lett. 128 (7 Feb. 2022), page 070501. DOI: 10.1103/PhysRevLett.128.
070501. URL: https://link.aps.org/doi/10.1103/PhysRevLett.128.070501
(cited on pages 140, 207).

[276] S. Shin, Y. S. Teo, and H. Jeong. “Exponential data encoding for quantum supervised
learning”. In: Phys. Rev. A 107 (1 Jan. 2023), page 012422. DOI: 10.1103/PhysRevA.107.
012422. URL: https://link.aps.org/doi/10.1103/PhysRevA.107.012422 (cited
on pages 72, 76, 79).

[277] Peter W. Shor. “Scheme for reducing decoherence in quantum computer memory”. In:
Phys. Rev. A 52 (4 Oct. 1995), R2493–R2496. DOI: 10.1103/PhysRevA.52.R2493. URL:
https://link.aps.org/doi/10.1103/PhysRevA.52.R2493 (cited on page 142).

[278] Vikesh Siddhu. “Maximum a posteriori probability estimates for quantum tomography”. In:
Phys. Rev. A 99 (1 Jan. 2019), page 012342. DOI: 10.1103/PhysRevA.99.012342. URL:
https://link.aps.org/doi/10.1103/PhysRevA.99.012342 (cited on page 143).

[279] David Silver et al. “Mastering the Game of Go with Deep Neural Networks and Tree
Search”. In: Nature 529.7587 (Jan. 2016), pages 484–489. ISSN: 1476-4687. DOI: 10.
1038/nature16961 (cited on pages 20, 54, 56).

[280] Pietro Silvi et al. “The Tensor Networks Anthology: Simulation techniques for many-body
quantum lattice systems”. In: SciPost Physics Lecture Notes (Mar. 2019). ISSN: 2590-1990.
DOI: 10.21468/scipostphyslectnotes.8. URL: http://dx.doi.org/10.21468/
SciPostPhysLectNotes.8 (cited on page 125).

[281] Sukin Sim, Peter D. Johnson, and Alán Aspuru-Guzik. “Expressibility and Entangling
Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms”.
In: Adv. Quantum Technol. 2.12 (2019), page 1900070. DOI: https://doi.org/10.
1002/qute.201900070 (cited on pages 38, 50, 124, 125, 129, 132, 133, 138, 139, 205).

[282] Andrea Skolik, Sofiene Jerbi, and Vedran Dunjko. “Quantum agents in the gym: a variational
quantum algorithm for deep q-learning”. In: Quantum 6 (2022), page 720 (cited on page 54).

[283] Andrea Skolik et al. “Layerwise learning for quantum neural networks”. In: Quantum
Machine Intelligence 3.1 (Jan. 2021). DOI: 10.1007/s42484- 020- 00036- 4. URL:
https://doi.org/10.1007/s42484-020-00036-4 (cited on pages 50, 104–106, 130).

[284] Andrea Skolik et al. “Equivariant quantum circuits for learning on weighted graphs”. In:
arXiv preprint arXiv:2205.06109 (2022) (cited on pages 39, 50, 128, 140, 207).

[285] Andrea Skolik et al. “Robustness of Quantum Reinforcement Learning under Hardware
Errors”. In: EPJ Quantum Technology 10.1 (Feb. 2023), page 8. ISSN: 2196-0763. DOI:
10.1140/epjqt/s40507-023-00166-1 (cited on pages 7, 54, 85).

[286] Robert S. Smith, Michael J. Curtis, and William J. Zeng. A Practical Quantum Instruction
Set Architecture. 2016. arXiv: 1608.03355 [quant-ph] (cited on pages 154, 157).

[287] James C Spall. “An overview of the simultaneous perturbation method for efficient opti-
mization”. In: Johns Hopkins apl technical digest 19.4 (1998), pages 482–492 (cited on
pages 40, 89).

[288] Rishi Sreedhar et al. The Quantum Approximate Optimization Algorithm performance with
low entanglement and high circuit depth. 2022. DOI: 10.48550/ARXIV.2207.03404.
URL: https://arxiv.org/abs/2207.03404 (cited on page 207).

[289] A. M. Steane. “Error Correcting Codes in Quantum Theory”. In: Phys. Rev. Lett. 77
(5 July 1996), pages 793–797. DOI: 10.1103/PhysRevLett.77.793. URL: https:
//link.aps.org/doi/10.1103/PhysRevLett.77.793 (cited on page 142).

https://doi.org/10.1103/PhysRevLett.128.070501
https://doi.org/10.1103/PhysRevLett.128.070501
https://link.aps.org/doi/10.1103/PhysRevLett.128.070501
https://doi.org/10.1103/PhysRevA.107.012422
https://doi.org/10.1103/PhysRevA.107.012422
https://link.aps.org/doi/10.1103/PhysRevA.107.012422
https://doi.org/10.1103/PhysRevA.52.R2493
https://link.aps.org/doi/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.99.012342
https://link.aps.org/doi/10.1103/PhysRevA.99.012342
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.21468/scipostphyslectnotes.8
http://dx.doi.org/10.21468/SciPostPhysLectNotes.8
http://dx.doi.org/10.21468/SciPostPhysLectNotes.8
https://doi.org/https://doi.org/10.1002/qute.201900070
https://doi.org/https://doi.org/10.1002/qute.201900070
https://doi.org/10.1007/s42484-020-00036-4
https://doi.org/10.1007/s42484-020-00036-4
https://doi.org/10.1140/epjqt/s40507-023-00166-1
https://arxiv.org/abs/1608.03355
https://doi.org/10.48550/ARXIV.2207.03404
https://arxiv.org/abs/2207.03404
https://doi.org/10.1103/PhysRevLett.77.793
https://link.aps.org/doi/10.1103/PhysRevLett.77.793
https://link.aps.org/doi/10.1103/PhysRevLett.77.793

184 Bibliography

[290] James Stokes et al. “Quantum Natural Gradient”. In: Quantum 4 (May 2020), page 269.
ISSN: 2521-327X. DOI: https://doi.org/10.22331/q-2020-05-25-269 (cited on
pages 40, 43).

[291] Edwin Stoudenmire and David J Schwab. “Supervised Learning with Tensor Networks”.
In: Advances in Neural Information Processing Systems. Edited by D. Lee et al. Volume 29.
Curran Associates, Inc., 2016. URL: https://proceedings.neurips.cc/paper/2016/
file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf (cited on page 55).

[292] Yasunari Suzuki et al. “Quantum Error Mitigation as a Universal Error Reduction Technique:
Applications from the NISQ to the Fault-Tolerant Quantum Computing Eras”. In: PRX
Quantum 3 (1 Mar. 2022), page 010345. DOI: 10.1103/PRXQuantum.3.010345. URL:
https://link.aps.org/doi/10.1103/PRXQuantum.3.010345 (cited on pages 142,
152).

[293] Francesco Tacchino et al. “An artificial neuron implemented on an actual quantum proces-
sor”. In: npj Quantum Information 5.1 (2019). DOI: https://doi.org/10.1038/s41534-
019-0140-4 (cited on pages 54, 81, 82, 95–98, 100, 106, 113).

[294] Francesco Tacchino et al. “Quantum Computers as Universal Quantum Simulators: State-of-
the-Art and Perspectives”. In: Advanced Quantum Technologies 3.3 (2020), page 1900052.
DOI: https://doi.org/10.1002/qute.201900052. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/qute.201900052. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/qute.201900052 (cited on page 34).

[295] Francesco Tacchino et al. “Quantum implementation of an artificial feed-forward neural
network”. In: Quantum Sci. Technol. 5.4 (2020), page 044010. DOI: https://doi.org/
10.1088/2058-9565/abb8e4 (cited on pages 87, 93, 95, 96, 113).

[296] Francesco Tacchino et al. “Variational Learning for Quantum Artificial Neural Networks”.
In: IEEE Transactions on Quantum Engineering 2 (2021), pages 1–10. DOI: 10.1109/TQE.
2021.3062494 (cited on pages 7, 94, 113, 124).

[297] Ewin Tang. “A Quantum-Inspired Classical Algorithm for Recommendation Systems”. In:
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. STOC
2019. Phoenix, AZ, USA: Association for Computing Machinery, 2019, pages 217–228.
ISBN: 9781450367059. DOI: https://doi.org/10.1145/3313276.3316310 (cited on
pages 53, 55).

[298] Ho Lun Tang et al. “Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-
Efficient Ansätze on a Quantum Processor”. In: PRX Quantum 2 (2 Apr. 2021), page 020310.
DOI: 10.1103/PRXQuantum.2.020310. URL: https://link.aps.org/doi/10.1103/
PRXQuantum.2.020310 (cited on page 39).

[299] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. “Error Mitigation for Short-Depth
Quantum Circuits”. In: Phys. Rev. Lett. 119 (18 Nov. 2017), page 180509. DOI: 10 .
1103/PhysRevLett.119.180509. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.119.180509 (cited on pages 143, 144, 151).

[300] Supanut Thanasilp et al. Subtleties in the trainability of quantum machine learning models.
2021. DOI: 10.48550/ARXIV.2110.14753. URL: https://arxiv.org/abs/2110.
14753 (cited on page 44).

[301] Jules Tilly et al. “The Variational Quantum Eigensolver: A review of methods and best
practices”. In: Physics Reports 986 (2022). The Variational Quantum Eigensolver: a review
of methods and best practices, pages 1–128. ISSN: 0370-1573. DOI: https://doi.org/10.
1016/j.physrep.2022.08.003. URL: https://www.sciencedirect.com/science/
article/pii/S0370157322003118 (cited on pages 22, 39, 42, 43).

https://doi.org/https://doi.org/10.22331/q-2020-05-25-269
https://proceedings.neurips.cc/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf
https://doi.org/10.1103/PRXQuantum.3.010345
https://link.aps.org/doi/10.1103/PRXQuantum.3.010345
https://doi.org/https://doi.org/10.1038/s41534-019-0140-4
https://doi.org/https://doi.org/10.1038/s41534-019-0140-4
https://doi.org/https://doi.org/10.1002/qute.201900052
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201900052
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201900052
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900052
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900052
https://doi.org/https://doi.org/10.1088/2058-9565/abb8e4
https://doi.org/https://doi.org/10.1088/2058-9565/abb8e4
https://doi.org/10.1109/TQE.2021.3062494
https://doi.org/10.1109/TQE.2021.3062494
https://doi.org/https://doi.org/10.1145/3313276.3316310
https://doi.org/10.1103/PRXQuantum.2.020310
https://link.aps.org/doi/10.1103/PRXQuantum.2.020310
https://link.aps.org/doi/10.1103/PRXQuantum.2.020310
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509
https://link.aps.org/doi/10.1103/PhysRevLett.119.180509
https://link.aps.org/doi/10.1103/PhysRevLett.119.180509
https://doi.org/10.48550/ARXIV.2110.14753
https://arxiv.org/abs/2110.14753
https://arxiv.org/abs/2110.14753
https://doi.org/https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/https://doi.org/10.1016/j.physrep.2022.08.003
https://www.sciencedirect.com/science/article/pii/S0370157322003118
https://www.sciencedirect.com/science/article/pii/S0370157322003118

Bibliography 185

[302] E. Torrontegui and J. J. Garcia-Ripoll. “Unitary quantum perceptron as efficient universal
approximator”. In: EPL 125.3 (Mar. 2019), page 30004. DOI: https://doi.org/10.
1209/0295-5075/125/30004 (cited on pages 81, 96, 128).

[303] L. G. Valiant. “A Theory of the Learnable”. In: Commun. ACM 27.11 (Nov. 1984),
pages 1134–1142. ISSN: 0001-0782. DOI: 10.1145/1968.1972. URL: https://doi.
org/10.1145/1968.1972 (cited on page 60).

[304] V. N. Vapnik and A. Ya. Chervonenkis. “On the Uniform Convergence of Relative Frequen-
cies of Events to Their Probabilities”. In: Theory of Probability & Its Applications 16.2
(1971), pages 264–280. DOI: 10.1137/1116025. eprint: https://doi.org/10.1137/
1116025. URL: https://doi.org/10.1137/1116025 (cited on page 60).

[305] Guillaume Verdon et al. Learning to learn with quantum neural networks via classical
neural networks. 2019. arXiv: 1907.05415 [quant-ph] (cited on page 50).

[306] Jean-Loup Ville et al. Leveraging Randomized Compiling for the QITE Algorithm. 2021.
arXiv: 2104.08785 [quant-ph] (cited on page 149).

[307] Lorenza Viola and Seth Lloyd. “Dynamical suppression of decoherence in two-state quan-
tum systems”. In: Phys. Rev. A 58 (4 Oct. 1998), pages 2733–2744. DOI: 10.1103/
PhysRevA.58.2733. URL: https://link.aps.org/doi/10.1103/PhysRevA.58.
2733 (cited on page 142).

[308] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python”. In: Nature Methods 17 (2020), pages 261–272. DOI: 10.1038/s41592-019-
0686-2 (cited on page 121).

[309] Tyler Volkoff and Patrick J Coles. “Large gradients via correlation in random parameterized
circuits”. In: Quantum Sci. Technol. 6 (2021). URL: http://iopscience.iop.org/
article/10.1088/2058-9565/abd891 (cited on pages 50, 130).

[310] Joseph Vovrosh et al. “Simple mitigation of global depolarizing errors in quantum simula-
tions”. In: Phys. Rev. E 104 (3 Sept. 2021), page 035309. DOI: 10.1103/PhysRevE.104.
035309. URL: https://link.aps.org/doi/10.1103/PhysRevE.104.035309 (cited
on page 148).

[311] Joel J. Wallman and Joseph Emerson. “Noise tailoring for scalable quantum computation
via randomized compiling”. In: Phys. Rev. A 94 (5 Nov. 2016), page 052325. DOI: 10.1103/
PhysRevA.94.052325. URL: https://link.aps.org/doi/10.1103/PhysRevA.94.
052325 (cited on page 149).

[312] Samson Wang et al. “Noise-Induced Barren Plateaus in Variational Quantum Algorithms”.
In: Nature Communications 12.1 (Nov. 2021), page 6961. ISSN: 2041-1723. DOI: 10.1038/
s41467-021-27045-6 (cited on pages 45, 129, 140).

[313] Matthew Ware et al. “Experimental Pauli-frame randomization on a superconducting qubit”.
In: Physical Review A 103.4 (Apr. 2021). ISSN: 2469-9934. DOI: 10.1103/physreva.
103.042604. URL: http://dx.doi.org/10.1103/PhysRevA.103.042604 (cited on
page 149).

[314] Michael L. Waskom. “seaborn: statistical data visualization”. In: Journal of Open Source
Software 6.60 (2021), page 3021. DOI: 10.21105/joss.03021. URL: https://doi.
org/10.21105/joss.03021 (cited on pages 210, 211).

[315] John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018.
DOI: 10.1017/9781316848142 (cited on page 77).

[316] Zak Webb. “The Clifford Group Forms a Unitary 3-Design”. In: Quantum Info. Comput.
16.15–16 (Nov. 2016), pages 1379–1400. ISSN: 1533-7146 (cited on page 47).

https://doi.org/https://doi.org/10.1209/0295-5075/125/30004
https://doi.org/https://doi.org/10.1209/0295-5075/125/30004
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1137/1116025
https://doi.org/10.1137/1116025
https://doi.org/10.1137/1116025
https://doi.org/10.1137/1116025
https://arxiv.org/abs/1907.05415
https://arxiv.org/abs/2104.08785
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://link.aps.org/doi/10.1103/PhysRevA.58.2733
https://link.aps.org/doi/10.1103/PhysRevA.58.2733
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
http://iopscience.iop.org/article/10.1088/2058-9565/abd891
http://iopscience.iop.org/article/10.1088/2058-9565/abd891
https://doi.org/10.1103/PhysRevE.104.035309
https://doi.org/10.1103/PhysRevE.104.035309
https://link.aps.org/doi/10.1103/PhysRevE.104.035309
https://doi.org/10.1103/PhysRevA.94.052325
https://doi.org/10.1103/PhysRevA.94.052325
https://link.aps.org/doi/10.1103/PhysRevA.94.052325
https://link.aps.org/doi/10.1103/PhysRevA.94.052325
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1103/physreva.103.042604
https://doi.org/10.1103/physreva.103.042604
http://dx.doi.org/10.1103/PhysRevA.103.042604
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.1017/9781316848142

186 Bibliography

[317] Dave Wecker, Matthew B. Hastings, and Matthias Troyer. “Progress towards practical
quantum variational algorithms”. In: Phys. Rev. A 92 (4 Oct. 2015), page 042303. DOI:
10.1103/PhysRevA.92.042303. URL: https://link.aps.org/doi/10.1103/
PhysRevA.92.042303 (cited on page 39).

[318] Karl Weiss, Taghi M. Khoshgoftaar, and DingDing Wang. “A survey of transfer learning”.
In: Journal of Big Data 3.1 (May 2016). DOI: 10.1186/s40537-016-0043-6. URL:
https://doi.org/10.1186%5C%2Fs40537-016-0043-6 (cited on page 56).

[319] Nathan Wiebe, Ashish Kapoor, and Krysta M Svore. Quantum Perceptron Models. 2016.
DOI: 10.48550/ARXIV.1602.04799. URL: https://arxiv.org/abs/1602.04799
(cited on page 81).

[320] Nathan Wiebe et al. Quantum Language Processing. 2019. DOI: 10.48550/ARXIV.1902.
05162. URL: https://arxiv.org/abs/1902.05162 (cited on page 55).

[321] David Wierichs, Christian Gogolin, and Michael Kastoryano. “Avoiding local minima
in variational quantum eigensolvers with the natural gradient optimizer”. In: Phys. Rev.
Research 2 (4 Nov. 2020), page 043246. DOI: 10.1103/PhysRevResearch.2.043246.
URL: https://link.aps.org/doi/10.1103/PhysRevResearch.2.043246 (cited on
page 40).

[322] David Wierichs et al. “General parameter-shift rules for quantum gradients”. In: Quantum
6 (Mar. 2022), page 677. ISSN: 2521-327X. DOI: 10.22331/q-2022-03-30-677. URL:
https://doi.org/10.22331/q-2022-03-30-677 (cited on pages 40, 72).

[323] Mark M. Wilde. 2nd edition. Cambridge University Press, 2017 (cited on pages 118, 143).

[324] Wine. UCI Machine Learning Repository. 1991 (cited on page 137).

[325] P. Wittek. Quantum Machine Learning: What Quantum Computing Means to Data Mining.
Elsevier Science, 2014. ISBN: 9780128009536. URL: https://books.google.it/
books?id=PwUongEACAAJ (cited on pages 53, 55).

[326] Andreas J. C. Woitzik et al. “Entanglement production and convergence properties of the
variational quantum eigensolver”. In: Phys. Rev. A 102 (4 Oct. 2020), page 042402. DOI:
10.1103/PhysRevA.102.042402. URL: https://link.aps.org/doi/10.1103/
PhysRevA.102.042402 (cited on pages 140, 141, 207).

[327] Michael M. Wolf. Mathematical Foundations of Supervised Learning. 2021 (cited on
page 195).

[328] K. Wright et al. “Benchmarking an 11-Qubit Quantum Computer”. In: Nature Communica-
tions 10.1 (Nov. 2019), page 5464. ISSN: 2041-1723. DOI: 10.1038/s41467-019-13534-
2 (cited on page 33).

[329] Xanadu. https://www.xanadu.ai/, 2023 (cited on page 34).

[330] Tailong Xiao et al. “Quantum Boltzmann machine algorithm with dimension-expanded
equivalent Hamiltonian”. In: Phys. Rev. A 101 (3 Mar. 2020), page 032304. DOI: 10.1103/
PhysRevA.101.032304. URL: https://link.aps.org/doi/10.1103/PhysRevA.
101.032304 (cited on page 81).

[331] Leo Zhou et al. “Quantum Approximate Optimization Algorithm: Performance, Mech-
anism, and Implementation on Near-Term Devices”. In: Phys. Rev. X 10 (2 June 2020),
page 021067. DOI: 10.1103/PhysRevX.10.021067. URL: https://link.aps.org/
doi/10.1103/PhysRevX.10.021067 (cited on page 50).

https://doi.org/10.1103/PhysRevA.92.042303
https://link.aps.org/doi/10.1103/PhysRevA.92.042303
https://link.aps.org/doi/10.1103/PhysRevA.92.042303
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1186%5C%2Fs40537-016-0043-6
https://doi.org/10.48550/ARXIV.1602.04799
https://arxiv.org/abs/1602.04799
https://doi.org/10.48550/ARXIV.1902.05162
https://doi.org/10.48550/ARXIV.1902.05162
https://arxiv.org/abs/1902.05162
https://doi.org/10.1103/PhysRevResearch.2.043246
https://link.aps.org/doi/10.1103/PhysRevResearch.2.043246
https://doi.org/10.22331/q-2022-03-30-677
https://doi.org/10.22331/q-2022-03-30-677
https://books.google.it/books?id=PwUongEACAAJ
https://books.google.it/books?id=PwUongEACAAJ
https://doi.org/10.1103/PhysRevA.102.042402
https://link.aps.org/doi/10.1103/PhysRevA.102.042402
https://link.aps.org/doi/10.1103/PhysRevA.102.042402
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1038/s41467-019-13534-2
https://www.xanadu.ai/
https://doi.org/10.1103/PhysRevA.101.032304
https://doi.org/10.1103/PhysRevA.101.032304
https://link.aps.org/doi/10.1103/PhysRevA.101.032304
https://link.aps.org/doi/10.1103/PhysRevA.101.032304
https://doi.org/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067

Bibliography 187

[332] Tianci Zhou and Adam Nahum. “Emergent statistical mechanics of entanglement in random
unitary circuits”. In: Phys. Rev. B 99 (17 May 2019), page 174205. DOI: 10.1103/
PhysRevB.99.174205. URL: https://link.aps.org/doi/10.1103/PhysRevB.99.
174205 (cited on page 136).

[333] Marko Žnidarič. “Entanglement of random vectors”. In: Journal of Physics A: Mathematical
and Theoretical 40.3 (Dec. 2006), F105. DOI: 10.1088/1751-8113/40/3/F04. URL:
https://dx.doi.org/10.1088/1751-8113/40/3/F04 (cited on page 139).

[334] Matjaz Zwitter and Milan Soklic. Breast Cancer. UCI Machine Learning Repository. 1988
(cited on page 137).

[335] Karol Życzkowski and Hans-Jürgen Sommers. “Average fidelity between random quantum
states”. In: Phys. Rev. A 71 (3 Mar. 2005), page 032313. DOI: 10.1103/PhysRevA.71.
032313. URL: https://link.aps.org/doi/10.1103/PhysRevA.71.032313 (cited
on page 205).

https://doi.org/10.1103/PhysRevB.99.174205
https://doi.org/10.1103/PhysRevB.99.174205
https://link.aps.org/doi/10.1103/PhysRevB.99.174205
https://link.aps.org/doi/10.1103/PhysRevB.99.174205
https://doi.org/10.1088/1751-8113/40/3/F04
https://dx.doi.org/10.1088/1751-8113/40/3/F04
https://doi.org/10.1103/PhysRevA.71.032313
https://doi.org/10.1103/PhysRevA.71.032313
https://link.aps.org/doi/10.1103/PhysRevA.71.032313

Appendices

A Variational Quantum Algorithms 190
A.1 Global and local cost functions 190
A.2 Variance of gradients 191

B Quantum Machine Learning 194
B.1 Generalisation bound for data-reuploading quan-

tum neural networks . 194

C Continuous Quantum Neuron 199
C.1 Proof of the activation function of the quantum

neuron . 199
C.2 Noise resilience . 199
C.3 Alternative schemes for the data encoding opera-

tions . 200

D Entanglement of Quantum Neural Net-
works . 202

D.1 Lower bound on entanglement entropy for unitary
2-designs . 202

D.2 Details on Haar entanglement 203
D.3 Triviality of the full entangling map 204
D.4 Expressibility of Parameterised Quantum Circuits205
D.5 Entanglement scaling with increasing depth . 205
D.6 Convergence of MPS simulations 206
D.7 Entanglement evolution during training 207

E Noise Deconvolution 213
E.1 Kraus Decomposition . 213
E.2 Tomographic reconstruction formula for qubits 213
E.3 Noise deconvolution for qubits 214
E.4 Inverse maps of Noise channels 214

A. Variational Quantum Algorithms

A.1 Global and local cost functions
In this Appendix we report the toy model introduced in [57] to show that the global cost functions
can lead to the emergence of vanishing gradients, hence the use of local costs is advisable to ensure
trainability of the parameterised quantum circuit. Consider a simple tensor-product parameterised
ansatz

U(qqq) =
nO

i=1
e�iqiX/2

, (A.1)

and the global and local observables

OG = I⌦n� |000ih000| , OL = 1� 1
n

n

Â
i=1

I(1)⌦ · · ·⌦ |0ih0|(i)⌦ · · ·⌦ I(n)
, (A.2)

where |000ih000| = |0ih0|⌦n is the ground state of quantum system of n qubits, and the local cost is
given by the sum of terms composed of single-qubit operators |0ih0|(i) acting on the i-th site, and
trivially on the others. Then, consider the corresponding cost functions

CG(qqq) = Tr
⇥
OGV (qqq) |000ih000|V (qqq)†⇤

, CL(qqq) = Tr
⇥
OL V (qqq) |000ih000|V (qqq)†⇤

, (A.3)

which has the same vanish on the same solution, that is CG(qqq) = 0 () CL(qqq) = 0. By direct
calculation the cost functions can be easily shown to be

CG(qqq) = 1�
n

’
i=1

cos2 qi

2
, CL(qqq) = 1� 1

n

n

Â
i=1

cos2 qi

2
. (A.4)

whose partial derivatives amount to

∂CG(qqq)

∂qk
=

sinqk

2

n

’
i 6=k

cos2 qi

2
,

∂CL(qqq)

∂qk
=

sinqk

2n
. (A.5)

Assuming that each variational angle is sampled independently from the uniform distribution
qi ⇠ Unif[0,2p], then the expectation value of the partial derivative vanishes

E

∂CG(qqq)

∂qk

�
=E

sinqk

2

� n

’
i6=k

E

cos2 qi

2

�
=
Z 2p

0

dqk

2p
sinqk

2
·
✓Z 2p

0

dq
2p

cos2 q
2

◆n�1

= 0 , (A.6)

and similarly for the local cost E[∂kC(qqq)] = 0. The variance of the gradients can be calculated in a
similar way, thus obtaining

Var

∂CG(qqq)

∂qk

�
= E

"✓
∂CG(qqq)

∂qk

◆2
#

=
Z 2p

0

dqk

2p
sin2 qk

4
·
✓Z 2p

0

dq
2p

cos4 q
2

◆n�1

(A.7)

=
1
8
·
✓

3
8

◆n�1

���!
n!•

0 . (A.8)

A.2 Variance of gradients 191

which is exponentially vanishing with the number of qubits, the hallmark of barren plateaus. On the
contrary, the local cost has a variance which vanish only polynomially with the number of qubits,
since

Var

∂CL(qqq)

∂qk

�
= E

"✓
sinqk

2n

◆2
#

=
Z 2p

0

dqk

2p
sin2 qk

4n2 =
1

8n2 . (A.9)

This example makes it clear that a careful choice of the cost function is necessary to ensure
trainability of the circuit. Indeed, in this case we showed that even a depth one circuit suffer of
exponentially vanishing gradients if a global cost function is used. Thus, the use of a local cost
function, that is one that only uses local measurements on a subset of the qubits, can ameliorate the
barren plateau phenomenon, at least for shallow circuits whose depth L scales logarithmically with
the system size n, that is L⇠O(logn) [57].

A.2 Variance of gradients
We are interested in evaluating the following expectation values

Var[∂kC(qqq)] = E
⇥
(∂kC(qqq))2⇤=�1

4
E

Tr
h
U†

AOUA

h
Pk,UBrU†

B

ii2
�
, (A.10)

under the assumption that the unitary ensembles UA,B generated by UA,B are 2-designs, so that
we can apply the explicit formula for integration over random unitary matrices reported in
Eqs. (2.65), (2.67), and (2.66), which we recall also here for d = 2n

EU [UAU†] =
Z

dµ(U)UAU† =
Tr[A]I

d
(A.11)

EU [AUBU†CUDU†] =
Z

dµ(U)AUBU†CUDU†

=
Tr[BD]Tr[C]A+Tr[B]Tr[D]AC

d2�1
(A.12)

� Tr[BD]AC +Tr[B]Tr[C]Tr[D]A
d(d2�1)

EU
⇥
Tr
⇥
UAU†B

⇤
Tr
⇥
UCU†D

⇤⇤
=
Z

dµ(U) Tr
⇥
UAU†B

⇤
Tr
⇥
UCU†D

⇤

=
Tr[A]Tr[B]Tr[C]Tr[D]+Tr[AC]Tr[BD]

d2�1
(A.13)

� Tr[AC]Tr[B]Tr[D]+Tr[A]Tr[C]Tr[BD]

d(d2�1)

UA is a 2-design First, we start with the case when UA is a 2-design. Then, by direct application
of (A.13) to (A.10), and setting Q =

h
Pk,UBrU†

B

i
, one has

�4VarUA [∂kC(qqq)] = EUA

h
Tr
h
U†

AOUAQ
i

Tr
h
U†

AOUAQ
ii

=
Tr[O]2 Tr[Q]2 +Tr

⇥
O2⇤Tr

⇥
Q2⇤

22n�1
�

Tr
⇥
O2⇤Tr[Q]2 +Tr[O]2 Tr

⇥
Q2⇤

2n(22n�1)

=
Tr
⇥
O2⇤Tr

⇥
Q2⇤

22n�1
�

Tr[O]2 Tr
⇥
Q2⇤

2n(22n�1)

=
1

22n�1

Tr
⇥
O2⇤� Tr[O]2

2n

!
Tr
h

Pk,UBrU†
B

i2
�
, (A.14)

192 Appendix A. Variational Quantum Algorithms

where in the second line we made use of Eq. (A.13), and in the third line the terms having Tr[Q]2

vanish because Tr[Q] = 0 since Q is a commutator.

UB is a 2-design The procedure is very similar if UB is a 2-design. First, we rearrange the partial
derivative as

∂kC(qqq) =� i
2

Tr
h
U†

AOUA [Pk, UBrU†
B]
i

=� i
2

Tr
h
UBrU†

B [U†
AOUA, Pk]

i
(A.15)

and then apply again Eq. (2.67). Setting Q =
h
U†

AOUA, Pk

i
, one then obtains

�4VarUB [∂kC(qqq)] = EUB

h
Tr
h
UBrU†

B Q
i

Tr
h
UBrU†

B Q
ii

=
Tr[r]2 Tr[Q]2 +Tr

⇥
r2⇤Tr

⇥
Q2⇤

22n�1
�

Tr
⇥
r2⇤Tr[Q]2 +Tr[r]2 Tr

⇥
Q2⇤

2n(22n�1)

=
1

22n�1

✓
Tr
⇥
r2⇤� 1

2n

◆
Tr
h

U†
AOUA, Pk

i2
�
, (A.16)

where as before terms with Tr[Q] vanish because Q is a commutator, and in the last line we used
Tr[r] = 1 by definition of density matrix.

UA,B are both 2-designs Finally, we analyse what happens when both UA and UB are 2-designs.
First, by setting again OA = U†

AOUA, we rewrite explicitly the squared commutator as

Tr
h
[OA,Pk]

2
i

= Tr
⇥
OAPkOAPk�OAP2

k OA�PkO2
APk +PkOAPkOA

⇤
(A.17)

= 2Tr[OAPkOAPk]�2Tr
⇥
O2

AP2
k
⇤
, (A.18)

and then use Eq. (A.12) to calculate the expectation values of these quantities. The first term
amounts to

EUA

h
Tr
h
U†

AOUAPkU†
AOUAPk

ii
= Tr

h
EUA

h
U†

AOUAPkU†
AOUA

i
Pk

i

= Tr

"
Tr
⇥
O2⇤Tr[Pk]I+Tr[O]2Pk

22n�1
Pk

#
�Tr

"
Tr
⇥
O2⇤Pk +Tr[O]2 Tr[Pk]I

2n(22n�1)
Pk

#

=
Tr
⇥
O2⇤Tr[Pk]

2 +Tr[O]2 Tr
⇥
P2

k
⇤

22n�1
�

Tr
⇥
O2⇤Tr

⇥
P2

k
⇤
+Tr[O]2 Tr[Pk]

2

2n(22n�1)
, (A.19)

and the second term can be calculated using the formula for first-order moments of Haar-random
matrices (A.11)

EUA

⇥
Tr
⇥
O2

AP2
K
⇤⇤

= Tr
h
EUA

h
U†

AO2UA

i
P2

k

i
= Tr

"
Tr
⇥
O2⇤I
2n P2

k

#
=

Tr
⇥
O2⇤Tr

⇥
P2

k
⇤

2n . (A.20)

Thus, one can eventually compute the expectation value over UA,B by combining Eqs. (A.19)
and (A.20) with (A.17), and plugging these into Eq. (A.16), obtaining

�4VarUA,B [∂kC(qqq)] =�4EUA

h
EUB

h
(∂kC(qqq))2

ii

=
1

22n�1

✓
Tr
⇥
r2⇤� 1

2n

◆
EUA

Tr
h

U†
AOUA, Pk

i2
��

=
2

22n�1

✓
Tr
⇥
r2⇤� 1

2n

◆✓
Tr
⇥
O2⇤Tr[Pk]

2 +Tr[O]2 Tr
⇥
P2

k
⇤

22n�1

�
Tr
⇥
O2⇤Tr

⇥
P2

k
⇤
+Tr[O]2 Tr[Pk]

2

2n(22n�1)
�

Tr
⇥
O2⇤Tr

⇥
P2

k
⇤

2n

◆
(A.21)

A.2 Variance of gradients 193

Summing up, we summarise Equations (A.14), (A.16), and (A.21), as follows.

If UA is at least a 2-design, then 8 k:

VarUA [∂kC(qqq)] =�1
4

1
22n�1

Tr
⇥
O2⇤� Tr[O]2

2n

!
Tr
h

Pk,UBrU†
B

i2
�

(A.22)

If UB is at least a 2-design, then 8 k:

VarUB [∂kC(qqq)] =�1
4

1
22n�1

✓
Tr
⇥
r2⇤� 1

2n

◆
Tr
h

U†
AOUA,Pk

i2
�

(A.23)

If UA,B are both at least 2-designs, then 8 k:

VarUA,B [∂kC(qqq)] =�1
4

2
22n�1

✓
Tr
⇥
r2⇤� 1

2n

◆✓
Tr
⇥
O2⇤Tr[Pk]

2 +Tr[O]2 Tr
⇥
P2

k
⇤

22n�1

�
Tr
⇥
O2⇤Tr

⇥
P2

k
⇤
+Tr[O]2 Tr[Pk]

2

2n(22n�1)
�

Tr
⇥
O2⇤Tr

⇥
P2

k
⇤

2n

◆ (A.24)

Note that despite the minus signs in front of the expressions, one can verify that all these
variances are correctly positive. Indeed, for Eq. (A.22), by Cauchy–Schwarz it holds

Tr[OI]2 Tr
⇥
O†O

⇤
Tr[I] = 2n Tr

⇥
O2⇤ =) Tr

⇥
O2⇤� Tr[O]2

2n

and similarly for the term involving the purity Tr
⇥
r2⇤ in (A.23), where the latter can also be seen as

a consequence of the minimum of the purity of a quantum state being achieved on the completely
mixed state. On the contrary, the trace of squared commutators are always negative values, as for
any matrices A,B it holds |Tr[ABAB]| Tr

⇥
A†ABB†⇤ [30, 234]. Applying such inequality for the

specific case of A,B being Hermitian matrices, yields

Tr
⇥
[A,B]2

⇤
= 2
�
Tr[ABAB]�Tr

⇥
A2B2⇤� 2

�
Tr
⇥
A2B2⇤�Tr

⇥
A2B2⇤�= 0 , (A.25)

where in our case A,B are the Hermitian operators Pk, UBrU†
B , and U†

AOUA, as both Pk and O are
Hermitian.

The expressions for the variance take a simpler form when evaluated for the most common case
of parameterised gates generated by Pauli rotations Pk, when the observable O is a Pauli string,
and the initial state is a pure state, for example r = |0ih0|. In this case, one has Tr[Pk] = Tr[O] = 0,
and Tr

⇥
P2

k
⇤
= Tr

⇥
O2⇤= Tr[I] = 2n, because Pauli matrices are traceless and involutory, and also

Tr
⇥
r2⇤= Tr[r] = 1, because r is a pure state. Then, the equations above greatly simplifies to

If UA is at least a 2-design, then 8 k:

VarUA [∂kC(qqq)] =
1
2

2n

22n�1

⇣
1�Tr

h
PkUBrU†

BPkUBrU†
B

i⌘
(A.26)

If UB is at least a 2-design, then 8 k:

VarUB [∂kC(qqq)] =
1
2

1
2n(2n +1)

⇣
2n�Tr

h
PkU†

AOUAPkU†
AOUA

i⌘
(A.27)

If UA,B are both at least 2-designs, then 8 k:

VarUA,B [∂kC(qqq)] =
22n

2(2n +1)(22n�1)
. (A.28)

For all the cases treated above it is clear that the variance of the gradients vanish exponentially with
the number of qubits, namely Var[∂kC(qqq)] 2O(2�n).

B. Quantum Machine Learning

B.1 Generalisation bound for data-reuploading quantum neural
networks
In this Appendix we show how to derive the generalisation bound for reuploading quantum neural
networks as the one shown in Eq. (3.72), using Rademacher complexity as a measure of uniform
convergence. In particular, we first start introducing definitions and tools on Rademacher complexity
and show how to apply them to linear models with features in Sec. B.1.2. Then, in Sec.B.1.3 we
show how to apply these results for the case of data reuploading quantum neural networks.

B.1.1 Rademacher complexity and generalisation error
We now proceed introducing the Rademacher Complexity measure and the so-called Concentration
Lemma, needed for the derivation of the generalisation bound. Then, we state the main theorem
connecting the Rademacher complexity of an hypothesis class with its generalisation error.

Definition B.1 — Empirical Rademacher Complexity. Let F a family of functions mapping
a data space Z to [a,b], and S = (z1, . . . ,zm)⇢ Zm a fixed sample of size m with elements in Z .
The empirical Rademacher complexity of class F with respect to the sample S is defined as

RS(F) :=
1
m
Esss

sup
f2F

m

Â
i=1

si f (zi)

�
, (B.1)

where sss = (s1, . . . ,sm) 2 {±1}m, with si ⇠ Unif{+1,�1} are independent uniformly dis-
tributed binary random variables. The random variables si are called Rademacher variables.

More generally, given a set of vectors A = {aaa1,aaa2, . . . |aaai 2Rm}⇢Rm, one defines the Rademacher
complexity of the set A as

R(A) :=
1
m
Esss

sup
aaa2A

m

Â
i=1

si ai

�
. (B.2)

We now state the Contraction lemma regarding the Rademacher complexity of composed functions.

Lemma B.1 — Contraction Lemma (lemma 26.9 in ref. [274]). For each i 2 1, . . . ,m, let
`i :R!R be a L-Lipschitz function, namely for all a, b 2R we have |`i(a)�`i(b)| L|a�b |.
For aaa 2 Rm let `̀̀(aaa) denote the vector `̀̀(aaa) = (`1(a1), . . . ,`m(am)). Let `̀̀ �A = {`̀̀(aaa) |aaa 2 A}.
Then,

R(`̀̀ �A) LR(A) (B.3)

Let S = {z1, . . . ,zm} ⇢ Zm be a collection of iid variables sampled from a distribution D on
Z . In supervised learning scenarios one has Z = X ⇥Y , where elements zi = (xi,yi) are pairs of
input data xi 2 X and corresponding output yi 2 Y . Let M denote an hypothesis class containing
mappings form input to output space M ⇢ {h |h : X ! Y}, and let ` denote a loss function
` : Y⇥Y ! R. In addition, let

G = `�M := {z = (x,y) 7! `(h(x),y) |h 2M} (B.4)

B.1 Generalisation bound for data-reuploading quantum neural networks 195

be the class of mappings from the data space Z to R, obtained by combining the action of the
models h 2M in the hypothesis class with the loss function `. With g 2 G, we define the true risk
LD(g) and the empirical risk LS(g), as

LD(g) := Ez⇠D[g(z)] , LS(g) :=
1
m

m

Â
i=1

g(zi) , (B.5)

which are defined in terms of the probability distribution D on data space Z , the sample set S
consisting of m data points, the hypothesis class M representing the parameterised learning model,
and finally the loss function ` used to train the model. With these definitions, we are now ready to
state the well-known theorem in classical statistical learning theory which bounds the generalisation
error of a parameterised model with its Rademacher complexity.

Theorem B.1 — Generalisation Bound via Rademacher Complexity (th. 26.5 in Ref. [274],
th. 1.15 in Ref. [327]. Be Z = X ⇥Y a data space with arbitrary inputs and outputs spaces, X
and Y . Consider an hypothesis class M⇢ {h : X ! Y}, a loss function ` : Y⇥Y ! [0,c], and
define G := {z 7! `(h(x),y) |h 2M}. For any d > 0, and probability measure D over Z , with
probability at least 1�d over the draw of a training set S 2 Zm of size m, for all g 2 G:

LD(g)�LS(g) < 2RS(G)+3c

r
log2/d

2m
(B.6)

B.1.2 Rademacher complexity of Linear Classes
In the following we derive the Rademacher complexity of linear — with respect to the trainable
parameters — models where we allow the inputs to be transformed with a feature map. The
derivation follows that found in ref. [274], with the difference that we here allow inputs to go
through a feature map, and we use a different final bound on the norm. Consider the hypothesis
class of parametric linear models

M = {xxx 7! www ·fff(xxx) | kwwwk2 B} , (B.7)

where fff :Rd!RM is a general feature map mapping inputs to feature vectors xxx2Rd 7! fff(xxx)2RM ,
and k·k2 denotes the standard Euclidean norm.

Let S = ((xxx1,y1), . . . ,(xxxm,ym)) 2 (Rd⇥R)m be a training set, and ` : R⇥R! R a L-lipschitz
loss function. Then, consider the class

G = {(xxxi,yi) 7! `(h(xxxi),yi) |h 2M} . (B.8)

The empirical Rademacher complexity of class G on set S is defined as (see Definition B.1)

RS(G) =
1
m
Esss

sup
g2G

m

Â
i=1

si g(zi)

�
(B.9)

=
1
m
Esss

sup

h2M

m

Â
i=1

si `(h(xxxi),yi)

�
(B.10)

 L
m
Esss

sup

h2M

m

Â
i=1

si h(xxxi)

�
, (B.11)

where in the last line we made use of the Contraction lemma B.1 to remove the dependence on the
loss function, by defining the map `̀̀(aaa) 7! (`1(a1), . . . ,`m(am)) = (`(a1,y1), . . . ,`(am,ym)) with
aaa = (h(xxx1), . . . ,h(xxxm)), and assuming that `(ai,yi) is L-Lipschitz for all ai ,yi , i = 1, . . . ,m.

196 Appendix B. Quantum Machine Learning

Substituting the definition of the linear model (B.8) h(xxxi) = www ·fff(xxxi), we then have

RS(G) L
m
Esss

sup
kwwwk2B

m

Â
i=1

si www ·fff(xxxi)

�
(B.12)

=
L
m
Esss

sup
kwwwk2B

www ·
m

Â
i=1

si fff(xxxi)

�
(B.13)

(Cauchy-Schwartz) L
m
Esss

"
sup
kwwwk2B

kwwwk2

�����

m

Â
i=1

si fff(xxxi)

�����
2

#
(B.14)

 BL
m

Esss

"�����

m

Â
i=1

si fff(xxxi)

�����
2

#
(B.15)

=
BL
m

Esss

2

64

0

@
�����

m

Â
i=1

si fff(xxxi)

�����

2

2

1

A
1/2
3

75 (B.16)

(Jensen’s inequality) BL
m

0

@Esss

2

4
�����

m

Â
i=1

si fff(xxxi)

�����

2

2

3

5

1

A
1/2

, (B.17)

where in (B.14) we used Cauchy-Schwartz inequality www · qqq kwwwk2kqqqk2 followed by kwwwk2 B,
and in (B.17) we used Jensen’s inequality to move the square root out of the expectation value.

Now, since the Rademacher variables si are independent, the expectation can be calculated as
follows

Esss

2

4
�����

m

Â
i=1

si fff(xxxi)

�����

2

2

3

5 = Esss

"
m

Â
i, j=1

sis j fff(xxxi) ·fff(xxx j)

#
(B.18)

=
m

Â
i 6= j

fff(xxxi) ·fff(xxx j) Esss [sis j]| {z }
=0

+
m

Â
i=1

fff(xxxi) ·fff(xxxi) Esss
⇥
s2

i
⇤

| {z }
=1

(B.19)

=
m

Â
i=1
kfff(xxxi)k2

2 mmax
i
kfff(xxxi)k2

2 (B.20)

 mM max
i
kfff(xxxi)k2

• (B.21)

where in the last line we used that for any vector fff 2RM one can bound the 2-norm with the infinity
norm as kfffk2

p
Mkfffk•, where the infinity norm of a vector is defined as the maximum absolute

value of its components, namely kfffk• = max(|f1|, . . . , |fM|).
Putting it all together, substituting Eq. (B.21) into Eq. (B.17), we have shown that the linear

model class (B.8) has

RS(G) BL max
i
kfff(xxxi)k2

•

r
M
m

. (B.22)

B.1.3 Generalisation bound of Quantum Neural Networks
Using the result on linear models with features, we are now ready to prove the generalisation bound
shown in Eq. (3.72) for quantum neural networks.

We first show that a data reuploading quantum model can be written in terms of a “linear"
model with trigonometric features. A quantum model can be expressed as

Tr[r(xxx;qqq)O] = f (xxx; qqq) = Â
www2W

cwww(qqq)e�iwww·xxx (B.23)

B.1 Generalisation bound for data-reuploading quantum neural networks 197

where the coefficients are such that c�www = c⇤www , and the spectrum the spectrum W consists of positive
and negative frequencies

W = {W�}[{000}[{W+} with W� = {�www |www 2W+} (B.24)

so that |W| = 2|W+|+1. Dropping the dependence of the coefficients on qqq for ease of notation, the
model can be expressed in terms of real coefficients and trigonometric features as

f (xxx; qqq) = Â
www2W

cwww e�iwww·xxx (B.25)

= Â
www2W�

cwww e�iwww·xxx + c0 + Â
www2W+

cwww e�iwww·xxx (B.26)

= Â
www2W+

c⇤www eiwww·xxx + c0 + Â
www2W+

cwww e�iwww·xxx (B.27)

= c0 + Â
www2W+

�
c⇤www eiwww·xxx + cwww e�iwww·xxx� (B.28)

= c0 + Â
www2W+

�
(awww � ibwww)eiwww·xxx +(awww � ibwww)e�iwww·xxx� (B.29)

= c0 + Â
www2W+

2awww cos(www · xxx)+ Â
www2W+

2bwww sin(www · xxx) (B.30)

= www ·fff(xxx) , (B.31)

where we have introduced a Fourier-like feature map fff : Rd ! R|W| and coefficients vector defined
as

xxx 7�! fff(xxx) =
⇥
1, cos(www1 · xxx), . . . ,cos

�
www |W+| · xxx

�
, sin(www1 · xxx), . . . , sin

�
www |W+| · xxx

�⇤
, (B.32)

and the vector of coefficients www 2 R|W|

www =
h
c0,2awww1 , . . . ,2awww |W+ | ,2bwww1 , . . . ,2bwww |W+ |

i
. (B.33)

Denote with ccc = [cwww ,www 2W] the vector of complex coefficients in Eq. (B.25), then the norm of the
coefficient vectors ccc and www amounts to

kccck2
2 = c2

0 +2 Â
www2W+

a2
www +b2

www (B.34)

kwwwk2
2 = c2

0 +4 Â
www2W+

a2
www +b2

www = 2kccck2
2� c2

0 2kccck2
2 . (B.35)

Now, let xxx 2 [0,2p]d , and assume that the frequency spectrum is made of integer frequencies
only, that is www 2 Zd

, 8www 2W. In this case, one can prove the so-called Parseval’s equality, which
connects the integral of a function to the the norm of the coefficients in the Fourier expansion of the
function. Indeed, by dropping again the dependence on qqq for ease of notation, one can show that

Z

[0,2p]d
dxxx | f (xxx)|2 =

Z

[0,2p]d
dxxx Â

www,nnn2W
c⇤nnncwww e�i(www�nnn)·xxx (B.36)

= Â
www,nnn2W

c⇤nnncwww

Z

[0,2p]d
dxxxe�i(www�nnn)·xxx (B.37)

= Â
www,nnn2W

c⇤nnncwww
d

’
j=1

Z 2p

0
dx(j) e�i(w(j)�n(j))x(j)

(B.38)

= Â
www,nnn2W

c⇤nnncwww (2p)ddwww,nnn = (2p)d Â
www2W

|cwww |2 = (2p)dkccck2
2 , (B.39)

where dwww,nnn is a Kronecker delta which is one if www = nnn , and zero otherwise.

198 Appendix B. Quantum Machine Learning

Since the output of the quantum model is the expectation value of the observable O, the
maximum value it can attain is bounded by the operator norm (i.e. the largest eigenvalue) of the
observable, namely

| f (xxx; qqq)| = |Tr[r(xxx;qqq)O]| kr(xxx;qqq)k1kOk• = kOk•. (B.40)

where kr(xxx;qqq)k1 = Tr[r(xxx;qqq)] = 1 because r(xxx;qqq) is a density matrix. Eventually, one can bound
the 2-norm of the Fourier coefficient vector ccc, hence www, as follows

Z

[0,2p]d
dxxx | f (xxx)|2

Z

[0,2p]d
dxxxkOk2

• = (2p)d kOk2
• (B.41)

=) kccck2 kOk• and kwwwk2 2kOk• . (B.42)

Summing up, we have shown how to write a quantum reuploading model as a linear model with
trigonometric features f (xxx) = www · fff(xxx) (B.31), whose parameter have bounded 2-norm kwwwk2
2kOk•, so that the results from the previous section on linear models readily apply also to the case
of quantum neural networks.

Let MQNN denote the model class implemented by a quantum neural network with an encoding
scheme generating an integer-valued spectrum W, obtained by measuring an observable O. Such
class and its composition with a L-lipschitz loss function `̀̀ can then be expressed respectively as
(see B.1.2)

MQNN =
n

xxx 7! www ·fff(xxx) | kwwwk2 2kOk•, www 2 R|W| as in (B.33),

fff : [0,2p]d ! R|W| as in (B.32)
o

,

(B.43)

and

GQNN = `̀̀ �HQNN = {(xxxi,yi) 7! `(h(xxxi),yi) |h 2MQNN} . (B.44)

Since the feature map fff consists of trigonometric functions of the input data, it holds that fff(xxxi) 2
[�1,1]|W|8i = 1, . . . ,m. Hence maxi kfff(xxxi)k• = 1, achieved on the first element of the vector, it
being the constant feature 1. Thus, finally, using (B.22) on class GQNN, one has

RS(GQNN) 2kOk• L

r
|W|
m

, (B.45)

and plugging this in the generalisation theorem (B.6), one finally has the desired generalisation
bound.

Theorem B.2 — Generalisation Bound for Quantum Neural Networks (see also Theorem 6
in ref. [53]). Be Z = [0,2p]d⇥R a data space of inputs and outputs. Consider a data reuploading
quantum circuit whose encoding scheme generates an integer-valued spectrum W, whose model
class is MQNN := {xxx 7! Tr[r(xxx;qqq)O] = Âwww2W cwwwe�iwww·xxx}. Be ` : R⇥R! [0,c] an L-Lipschitz
loss function and define GQNN := {z = (x,y) 7! `(h(x),y) |h 2MQNN}. For any d > 0 and
probability measure D over Z , with probability at least 1�d over the drawn of a training set
S 2 Zm of size m, for all g 2 GQNN:

LD(g)�LS(g) < 4kOk• L

r
|W|
m

+3c

r
log2/d

2m
(B.46)

C. Continuous Quantum Neuron

C.1 Proof of the activation function of the quantum neuron
Consider a collection of complex numbers zi = rieigi 2 C, i = 1, . . . ,N. The squared modulus of
their sum can be explicitly calculated as follows

�����

N

Â
i=1

zi

�����

2

=

N

Â
i=1

zi

!
N

Â
j=1

z⇤j

!
=

N

Â
i, j=1

ziz⇤j =
N

Â
i= j

|zi|2 +
N

Â
i 6= j

rir jei(gi�g j) (C.1)

=
N

Â
i= j

r2
i +2

N

Â
i< j

rir j cos(g j� gi) , (C.2)

where in the last line the following relation has been applied

eix + e�ix = 2cos(x) . (C.3)

Setting ri = 1/N and gi = qi�fi, one obtains
�����

N

Â
i=1

ei(qi�ji)

N

�����

2

=
1
N

+
2

N2

N

Â
i< j

cos((q j�j j)� (qi�ji)) , (C.4)

which correctly reduces to Eq. (4.6) in the main text upon substituting N = 2n and shifting the
summation indices to start from zero.

C.2 Noise resilience
Consider an input vector qqq equal to the weight vector jjj = qqq , and suppose that the input is
corrupted by some noise and transformed into qqq ! qqq +DDD = jjj +DDD, with D = (D0, D1, . . . , D2n�1).
The activation function in Eq. (4.6) thus reduces to

f (DDD) =
1
2n +

1
22n�1

2n�1

Â
i< j

cos(D j�Di) . (C.5)

Assuming that the noise values Di are sampled from the uniform distribution

p(Di) =
1
a

for Di 2
h
�a

2
,
a
2

i
, a 2 R , (C.6)

it is possible to evaluate the average activation function as

EDDD[f (DDD)] =
1
2n +

1
22n�1

2n�1

Â
i< j

EDDD[cos(D j�Di)]

=
1
2n +

1
22n�1

2n(2n�1)

2
hcos(D j�Di)i (C.7)

where in the last line used that EDDD[cos(D j�Di)] is the same for all i, j. Averaging then yields

EDDD[cos(D j�Di)] :=
Z a

2

� a
2

Z a
2

� a
2

cos(D j�Di)
dDidD j

a2

= 2
✓

1� cos(a)

a2

◆
. (C.8)

200 Appendix C. Continuous Quantum Neuron

Substituting back into (C.7) one obtains

EDDD[f (DDD)] =
1
2n +

2n�1
2n�1

✓
1� cos(a)

a2

◆
. (C.9)

Consider now the case where the input and weight vectors are different qqq 6= jjj , and we ask
again how much does the activation function change if the input is corrupted by the presence of
noise. As before, considering an input qqq ! qqq +DDD, the activation function reads

f (qqq ,fff ,DDD) =
1
2n +

1
22n�1

2n�1

Â
i< j

cos(Ai j +Di j) . (C.10)

with Ai j = (q j � f j)� (qi� fi), and Di j = D j �Di. Since cos(Ai j +Di j) = cos(Ai j)cos(Di j) +
sin(Ai j)sin(Di j), and EDDD[sin(Di j)] = 0 for uniformly distributed noise (C.6), the activation function
finally results in

h f (qqq ,fff ,DDD)i= 1
2n +

D
22n�1

2n�1

Â
i< j

cos(Ai j) . (C.11)

with D = 2(1� cos(a))/a2. A more realistic noise model would consist of a Gaussian distribution
centred in zero with width s = a/2, namely

p(Di) =
1p

2p(a/2)2
e
� D2

i
2(a/2)2 . (C.12)

By repeating the same procedure above one obtains

EDDD[cos(Di�D j)] =
2

pa2

Z •

�•

Z •

�•
e�
p

2(Di+Di)2
/a2

cos(Di�D j)dDidD j = e�a2
/4

, (C.13)

which is comparable to the uniform distribution noise model, but less effective in terms of noise
resilience due to the Gaussian tails having the net effect of lowering the mean activation. Nonethe-
less, this qualitative behaviour proves the quantum neuron to have some internal degree of noise
resilience.

C.3 Alternative schemes for the data encoding operations
Several strategies can be envisioned to reduce the time complexity of the proposed quantum neuron
algorithm. First, the encoding of input data could be effectively replaced by a direct call to a
quantum memory, such as a qRAM [111]. In this case, the information to be analyzed would be
directly stored in the form of quantum states coming, e.g. from quantum internet applications or
quantum simulators.

Alternatively, one could make use of some specific properties of the LME states arising from
the phase encoding procedure used in the main text. Indeed, let Uy be the unitary operation whose
action is to create an LME state from a blank register, i.e Uy |000i = |yi. It is then easy to check
that, for Wk = UyZkU†

y , where Zk is the Pauli-Z operator acting on the k-th qubit, it holds that
Wk |fi= |fi 8kif and only if |fi= |yi. This means that the operators {W1,W2, . . . ,Wn} stabilise
the state |yi. Depending on the values of the phases {ai}2n�1

i=0 , these operators {Wk}n�1
k=0 may be

quasi-local, meaning that they only act on a smaller subsystem of the whole n-qubit register. In this
case, it can be shown [167, 169] that there exists a quantum dissipative process for which |yi is the
only stationary state. Of course, this property strongly depends on the nature of the phases ai of the
target LME state, i.e., correlations in the phases are directly related to a specific preparation scheme.
However, it might be the case that for some special classes of incoming inputs, a clear a priori

C.3 Alternative schemes for the data encoding operations 201

correlation exists between the phases, which would allow to replace the “brute force" approach
used in the main text with a more efficient preparation scheme.

Finally, it is worth mentioning that more general strategies to load probability distributions and
classical datasets on quantum states are known in the literature [119, 266], whose application could
be investigated also in the present case.

Additional room for improvement could be represented by a more efficient implementation
of the inner product operation Uw 4.2. In this case, instead of simply inverting the preparation
circuit, one could devise a variational circuit optimised to output the desired result (4.5) using
the approach shown in Figure C.1. There Vw(fff ,www) is an operator approximating the unitary Uw
depending on variational parameters www and the weights of neuron fff , and L(www;hyw|yii) is a cost
function evaluating the distance between the output of a the circuit using Vw(fff ,www), and the desired
inner product hyw|yii. Optimisation of the trainable parameters www could yield an approximate yet
efficient implementation for evaluating the inner product gate Uw.

It is also interesting to notice that such optimization procedure could in principle be carried out
in combination with a supervised learning approach in order to simultaneously train the value of
the weight vector and the actual quantum circuit realisation of the required operation. Finally, if an
efficient preparation scheme exists for both the quantum input state |yii and the quantum weight
state |ywi, their inner product could also be evaluated by means of specialised algorithms, such as
the SWAP test or the Bell basis algorithm [64].

Vw(fff ,www)|yii L(www;hyw|yii)

Optimize wrt www

∂L
∂www

hyw|yii

Figure C.1: Scheme of a variational approach for implementing the Uw operation in the quantum
neuron model shown in Fig. 4.2.

D. Entanglement of Quantum Neural
Networks

D.1 Lower bound on entanglement entropy for unitary 2-designs
The presented derivation is a straightforward application of known results on the entanglement of
random states and properties of Rényi-entropies [184, 258]. The Rényi a-entropies of a density
operator r are defined as

Sa(r) :=
1

1�a
logTr[ra] , (D.1)

where lima!1 Sa(r) = S(r) is the Von Neumann entropy of Eq. (7.2), and it holds that Sb (r)
Sa(r) for b � a . Of particular interest is the Rényi 2-entropy S2(r) = � logTr

⇥
r2⇤ depending

on the purity Tr
⇥
r2⇤ of the system, which is much easier to computer and it can be used to lower

bound the Von Neumann entropy via S(r) > S2(r).
Indeed, let |yi 2 (C2)⌦n be the state of a composite system made of subsystems A and B

with dimensions dA = 2nA and dB = 2n�nA respectively, and suppose that |yi is a random state
|yi= U |y0i, where U is sampled from an ensemble of unitaries that constitutes at least a unitary
2-design. Then, the average value of the purity of the reduced density matrix rA = TrB[|yihy|]
amounts to [184, 258]

E2-design Tr
⇥
r2

A
⇤
=

dA +dB

dAdB +1
. (D.2)

By the convexity of Rényi-entropies with respect to Tr[ra], and using Jensen’s inequality (that is,
E f � f E), one can lower bound the average Rényi 2-entropy as

E2-design[S2(rA)]�� logE2-design[r2
A] (D.3)

and consequently

E2-design[S2(rA)]�� log
dA +dB

dAdB +1
> logdA� log

dA +dB

dB
> logdA�1 . (D.4)

Then, since S(r) = S1(r)� S2(r) 8 r , taking the expectation value on both sides yields a lower
bound on the average Von Neumann entropy of rA, namely

logdA�1 < E2-design[S2(rA)] E2-design[S(rA)] logdA. (D.5)

which is the bound shown in Eq. (7.12) in the main text.
If the state |yi is instead a truly Haar-random state, that is U is sampled from the uniform Haar

distribution and not just from a 2-design, the entanglement entropy is given by the Page value of
Eq. (7.8) in the main text, which is itself lower bounded by [132]

EHaar[S(rA)] > logdA�
1
2

dA

dB
> logdA�

1
2

(dA < dB) . (D.6)

Summarising, for dA < dB, putting together the bounds (D.5) and (D.6) one has

logdA�1 < E2-design[S(rA)] < logdA (D.7)

logdA�
1
2

< EHaar[S(rA)] < logdA , (D.8)

D.2 Details on Haar entanglement 203

Alternatively, in the limit when the subsystem B is much larger than A, dB� dA, then by approxi-
mating the logarithm log(1+ x)⇡ x in (D.4) one also has

logdA�
dA

dB
< E2-design[S(rA)] < logdA (D.9)

logdA�
1
2

dA

dB
< EHaar[S(rA)] < logdA , (D.10)

Thus, the entanglement entropy of a state sampled from a 2-design is close to that of a
truly Haar-random state, with both achieving near-maximal entanglement. Of course, one also
expects the Von Neumann entropy of a general t-design to be upper bounded by the Page value,
Et-design[S(rA)] < EHaar[S(rA)], with equality obtained in the limit t� 1.

D.2 Details on Haar entanglement
While Eq. (7.8) is the theoretical definition of the Haar entanglement entropy, it is not possible to
exactly compute it due to the exponential number of terms in the sum. However, it is possible to
exploit the similarity of the sum with the harmonic series to obtain a good approximation.

Indeed, first denote with Hn the truncated harmonic series

Hn :=
n

Â
k=1

1
k

. (D.11)

Then, rewrite the sum in Eq. (7.8) in a more convenient form

dAdB

Â
j=dB+1

1
j
=

dAdB

Â
j=1

1
j
�

dB

Â
j=1

1
j
= HdAdB�HdB , (D.12)

where each term can be approximated effectively using a well-known result for truncated Harmonic
series [130], namely

Hn = logn+ g +
1

2n
� en , (D.13)

where g ' 0.5772 is the Euler-Mascheroni constant, and 0 en 1/8n2. Thus, the correction en
goes to zero as the number of terms in the sum n increases, allowing for a meaningful approximation
of the value. Using this technique, we are able to estimate the Haar entanglement entropy of a
50-qubit state with an error of the order 10�16.

We now proceed to compute the maximum and average of the distribution with a fixed number
of qubits n. Using Eq. 7.8 and recalling dA(B) = 2nA(B) , nB = n�nA, nA 2 [1,n/2] we can write:

E[S(yA)] = HdAdB�HdB�
dA�1

2dB
(D.14)

= H2n�H2n�nA �
2nA�1
2n�nA+1 (D.15)

= log2nA� 2nA�1
2n�nA+1 +O

✓
1

2n�nA

◆
. (D.16)

We are now interested in the maximum and average of the distribution. It is easy to see that the
maximum is achieved for nA = n/2. In this scenario, when 2nA � 1, one then has

max
A

�
E[S(yA)]

�
=

n
2

log2� 1
2

+O
✓

1
2n/2

◆
. (D.17)

Taking into account that for an n-qubit system the maximum of the entanglement entropy is
S = n

2 log2 we can state that, in the large n limit, a Haar state presents a maximally entangled bond.

204 Appendix D. Entanglement of Quantum Neural Networks

Algorithm 3: Full (or all-to-all) entangling map
Data: q1, . . .qn, qubits
Result: Quantum circuit
for i = 1, . . . ,n do

for j = i, . . . ,n do
CNOTqi,q j ;

end
end

D.3 Triviality of the full entangling map
The full (or all-to-all) entangling map defined in Alg. 3 can be shown to be equivalent to a
nearest neighbours entangling map with the gates in reversed order, see Fig. D.1. The proof
is straightforward and obtained by direct evaluation, making use of some circuit identities for
networks of CNOTs [105]. In particular, (i) a CNOT can be distributed into four CNOTs acting on
an additional intermediate qubit

=

(ii) CNOTs having different controls and targets commute with each other

=

(iii) a cascade of CNOTs can be decomposed as

=

The full entangling map can be highly simplified using these three rules, reducing it to a simple
sequence of nearest-neighbors interactions. For example, for n = 3 qubits, using (i) to distribute the
long-range CNOT, one obtains

=

I

=

The simplification process can be iterated for a higher number of qubits by first commuting long
range CNOTs at the end of the circuit to create a final cascade, and then making use of the result

D.4 Expressibility of Parameterised Quantum Circuits 205

= = =

= = =

Figure D.1: Equivalence of the full entangling map with a nearest-neighbours scheme. Using
the circuit identities discussed in the main text, it is straightforward to check that the all-to-all
entangling scheme as defined in Alg. 3 is equivalent to a nearest-neighbours interaction.

from the lower dimension case. In Fig. D.1 the simplification process for n = 4, 5 qubits is explicitly
shown, and it is directly generalised for all numbers of qubits.

Clearly, these results only hold for networks composed of plain CNOTs, and do not apply for
general two-qubit interactions made of controlled unitaries.

D.4 Expressibility of Parameterised Quantum Circuits

The expressibility introduced in [281] quantifies how well the QNN is able to explore the unitary
space by comparing the distribution of fidelities of states generated by the QNN with that of
randomly Haar-distributed ones.

Let U(jjj) be the unitary operation implemented by a parameterized quantum circuit with
parameters jjj , and let

��yjjj
↵

= U(jjj) |000i. Given two realizations of the quantum circuit with
parameters jjj1 and jjj2, consider the fidelity F =

��⌦yjjj1

��yjjj2

↵��2. By repeatedly sampling two
sets of parameters and evaluating the corresponding fidelity F , one can construct a histogram
approximating the probability distribution P̂(F) of the fidelity for states generated by the considered
parameterised quantum circuit.

For truly Haar random quantum states, the probability density function of fidelity is known
and amounts to PHaar(F) = (N � 1)(1�F)N�1, where N = 2n is the dimension of the Hilbert
space [335]. The expressibility is then defined as the Kullback–Leibler divergence DKL between
the estimated fidelity distribution and that of a Haar-distributed ensemble, namely

Expressibility := DKL
�
P̂PQC(F)||PHaar(F)

�
. (D.18)

D.5 Entanglement scaling with increasing depth

In Figure D.2 we show the behaviour of the total entanglement Stot defined in Eq. (7.15) for four
different QNNs, and as the depth of the quantum circuit is increased. Note that each QNN is
considered with all the three possible entangling topologies (linear, circular and full as defined
in Fig. 7.1), and the results are shown for several numbers of qubits n = 4,6,8,10,12. At last,
note that all QNNs leverage the same variational form V = C2, while the feature map is changed,
F = CZZ,C2,C3,C1 for panels (a), (b), (c) and (d), respectively. See main text for comments on
results.

206 Appendix D. Entanglement of Quantum Neural Networks

5

10

15

20
(a)

Linear Circular Full

5

10

15

20
(b)

5

10

15

20
(c)

2 4 6 8 10 12 14 16

5

10

15

20
(d)

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Number of layers L

T
ot

al
E
nt

an
gl

em
en

t
E
nt

ro
py

S
to

t
n = 4 n = 6 n = 8 n = 10 n = 12 Haar-random

Figure D.2: Total entanglement Stot (7.15) for four different QNN architectures, each evaluated
with different entangling topologies (linear, circular and full), shown for increasing number of
layers L and for several numbers of qubits n. QNNs architecture given by: (a) F = CZZ, V = C2;
(b) F = C2, V = C2; (c) F = C3, V = C2; (d) F = C1, V = C2. Note that QNNs leverage the
same variational form V , while the feature map F is changed. See the main text for a discussion of
the results.

D.6 Convergence of MPS simulations
Using tensor network methods, MPS in this case, it is possible to approximately simulate large
qubit systems, and in our analysis we go up to simulating circuits of n = 50 qubits.

The error introduced by the approximations can be monitored and so one has always an estimate
of the faithfulness of the tensor network simulation [150]. Let |yexacti be the true state of the
quantum system after the i-th two qubit gates in the circuit is applied (one qubit gates do not imply
approximation errors), and let |ytrunci denote the truncated quantum state represented by the MPS.
The fidelity between these two states evaluated on the i-th step of the computation is

Fi = |hyexact|ytrunci|2 =

�����

cexact

Â
a=1

la hxa |1⌦hha |2
cs

Â
b=1

lb
��xb
↵

1⌦
��hb
↵

2

�����

2

(D.19)

=

�����

cs

Â
a=1

l 2
a

�����

2

=

�����1�
cexact

Â
a=cs+1

l 2
a

�����

2

, (D.20)

where we represented the states in the Schmidt decomposition with respect to the bond where the
i-th two-qubit gate was applied, and cs is the bond dimension of the MPS state. The fidelity Ft of
the simulation after application of the t-th two-qubit gate is lower bounded by the product of the
previous fidelities Fi, as [150]

Ft �
t�1

’
i=1

Fi. (D.21)

D.7 Entanglement evolution during training 207

where we note that the single step fidelities Fi are readily accessed during the MPS simulation, since
one calculates the fidelity before the truncation of the singular values takes place. Equation (D.21)
gives a lower bound to the error introduced by truncation in terms of the fidelity between the true
state and the one evolved using an MPS simulation, and one can then control the faithfulness of the
simulation at any given time step of the circuit.

In Figure D.3 we show the infidelity 1�F of the final state from the circuit for n = 30,50 with
a maximum bond dimension cs = 4096. The plotted result is the average over M = 10 realisation
of the quantum circuit with different sets of parameters. Defining reliable results with the infidelity
of at most 1�F = 10�4 we observe that, for n = 50, we describe reliably circuits up to L = 11
layers, while for n = 30 we can reach L = 12 layers.

1 5 9 13

Number of layers L

10�10

10�7

10�4

10�1

I
n
fi
d
e
li
t
y

o
f
t
h
e

s
t
a
t
e

1
�

F
(
t)

Relaiability threshold

n = 30

n = 50

Figure D.3: We show the infidelity of the state as a function of the number of layers for n = 30, 50
qubits. The results are reliable up to L = 11 layers for n = 50 and up to L = 12 for n = 30.

D.7 Entanglement evolution during training
In this section we discuss some preliminary investigation regarding the evolution of entanglement
entropy while training a quantum neural network. Indeed, the focus of Chapter 7 was the study of the
relationship between entanglement growth and depth in common parameterized quantum ansätze,
specifically when they are initialised with uniform random parameters and no optimization has yet
started. Though the key ingredient in variational quantum algorithms is the learning procedure, and
it is natural to ask what role plays the entanglement — if any — during the optimization process.

In combinatorial problems based on QAOA [100] the final state of the quantum circuit should
correspond to the specific bitstring solving the binary optimization problem at hand. One then
expects that as the number of layers in QAOA is increased, the entanglement may first grow but
then decrease when the circuit is deep enough to find the correct solution [90]. While theoretically
sound, this situation is not always met in real instances [61, 90], and the role of entanglement for
the performance and classical simulability of QAOA is still an active area of research [89, 288].

However, differently from binary optimization problems or ground state solver [326], in general,
there is no a priori structure that can be used to assess the entanglement properties of states
coming from optimised quantum neural networks, independently of their depth. While the use of
deep QNNs could offer some optimization advantages due to overparametrization [9, 162, 172],
randomicity-induced barren plateaus can hinder the training of these circuits altogether [57, 202].
Current proposals then advocate for the use of constrained quantum ansätze specifically tailored
to the problem under investigation [173, 208, 284], and then one expects the impact of depth
to be highly dependant on the specific task to be solved, and dataset to fit, either classical or
quantum [275]. The general impact of circuit depth on the accuracy quantum machine learning
model is still not fully established, let alone the entanglement features of the quantum states

208 Appendix D. Entanglement of Quantum Neural Networks

generated by the model.
As we are specifically focused on the entanglement properties of quantum neural networks,

in the following we start to shed light on the relation between entanglement and optimization by
considering a fixed depth circuit and studying how entanglement entropy evolves during training.
Specifically, we reproduce the classification task of the well-known IRIS dataset [103] proposed
by Abbass et al. in [4] to study the expressivity of quantum machine learning models, but instead
focus our attention on its entanglement features.

In Fig. D.4 we show the results of training the QNNs shown in panel (c), to classify the first two
classes of the IRIS dataset, consisting of m = 100 samples of normalised four-dimensional inputs
vectors, whose features distribution is shown in panel (a). We refer to Sec. D.7.1 for extended
details on the preprocessing of the dataset, the choice of the ansatz, and the optimization process.
The training procedure is run 100 times starting from different initialisations of the parameters,
thus obtaining multiple training trajectories which are plotted in Fig. D.4b.

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

QNN, e1

Haar-random, e1

0 20 40 60 80 100

QNN, e2

Haar-random, e2

0 20 40 60 80 100

QNN, e3

Haar-random, e3

Training steps t

M
ea

n
en

ta
n
gl

em
en

t
en

tr
op

y
⌃

k

0.69 0.86x0

0

20

0.27 0.61x1

0

10

0.17 0.6x2

0

10
1

0

0.01 0.21x3

0

20

IRIS features

P
ro

b
ab

il
it
y

d
en

si
ty (a)

0 20 40 60 80 100

Training step t

0.2

0.4

0.6

0.8

1.0

T
r
a
in

in
g

lo
s
s

L
(
✓)

90 95 100

0.25
0.30
0.35(c)

(d)

(b)

Figure D.4: Evolution of entanglement entropy while training a parameterized quantum circuit
to classify the IRIS dataset, using the same setup proposed in [3, 4]. Extended details on the
preprocessing of the data, the optimiser, the quantum circuit, and the loss function for training the
classifier can be found in Appendix D.7.1. (a) Plot of the distribution of the IRIS features after
normalisation of the dataset. (b) Parameterised quantum circuit used in [4], which uses one qubit
per input data feature. Two repetitions of a ZZFEATUREMAP with an all-to-all connectivity are
used to encode the data, followed by a variational ansatz with 8 trainable parameters. The two-qubit
operations in the feature map are shown in Eq. D.23. (c) Training loss for 102 training runs starting
with different initialisation of the variational parameters. The dashed line is the average over such
training trajectories. Curves are grouped into three classes denoted by the colours (green, red,
purple), depending on the final loss they achieve at the end of training. Such colour-coding is
used in panel (d) to distinguish the training trajectories and study how the final loss relates to the
entanglement created in the circuit. (d) Mean entanglement entropy (D.22) averaged over the full
training dataset, for the bipartitions occurring at bonds e1, e2, and e3. The curves are coloured
according to the final loss obtained at the end of the training, as shown in panel (c). Dashed lines
are obtained by averaging over all the trajectories.

At the end of the training, trajectories cluster around three possible values of the final loss, and
each curve is coloured depending on the cluster they belong to, that is the final loss they achieve at
the end of training. Such colour coding scheme is then used to distinguish trajectories in panel (d),
which shows the evolution of the mean (over the dataset) entanglement entropy Eq. (D.22) during
training, across the three bipartitions corresponding to bonds e1, e2, and e3, indicated in the Figure.

D.7 Entanglement evolution during training 209

Finally, dashed lines in panels (b) and (d) are obtained by taking the mean over all curves in the
corresponding plots.

The mean entanglement entropy Sk(t) is defined as the average over the full training dataset of
the entanglement entropy corresponding to bond ek, when the parameter vector is qqq t at training
step t, namely

Sk(t) =
1
m

m

Â
i=1

S(ek;xxxi,qqq t) , (D.22)

where m = 100 is the size of the dataset, xxxi is an input vector from the dataset, and S(ek;xxxm,qqq t)
is the entanglement entropy of the bipartition corresponding to cut ek of the quantum state
r = U(xxxi,qqq t) |000ih000|U(xxxi,qqq t)†, see Eq. (7.14).

Entanglement at t = 0 Various observations can be drawn from the simulation results reported
in Fig. D.4. First of all, the mean entanglement at the start of training Sk(t = 0), when the circuit is
initialized with random parameters, is very different on single qubit cuts corresponding to bonds e1
and e3. While the first qubit starts with a highly entangled state with the rest of the system, even
more than a typical Haar-random state, qubit four has instead a much lower initial entanglement.
This can be understood as a consequence of the structure of the quantum circuit, as well as the
actual numerical values of the features. Indeed, the two-qubits gates used in the feature map are
parameterized ZZ-interactions of the form

ZZi j(fi j) = exp(�ifi j Zi⌦Z j/2) , (D.23)

where the rotation amount is a function on the numerical value of the features, in our case fi j =
f(xi,x j) = 2xi ·2x j.

If the rotation angle is small f ⌧ 1, then ZZ(f) ⇠ I, and so little entanglement is created
between the interested interacting qubits. Since the feature x3 is particularly smaller than the other
features (especially for class zero, see Fig. D.4a), then the ZZ interactions involving the fourth qubit
will be closer to the identity, and hence the entanglement generated in the feature map between the
fourth qubit and the rest of the system will be consequently smaller.

In addition, the variational part of the circuit consists of a reversed linear network of CNOT
gates, which has a different impact on different qubits. For example, only one CNOT is inside the
past light cone of the fourth qubit (corresponding to the feature x3), while the state of the first qubit
(corresponding to feature x0) is affected by all the CNOTs.

Thus, overall due to the specific structure of the feature map and the variational ansatz, one
can expect the fourth qubit to have little entanglement with the rest of the system, which is indeed
confirmed by the numerical results. At last, it is worth noticing that while the circuit uses two
repetitions of an all-to-all feature map, these are arranged in a sequential manner, and thus entan-
glement at the central bond e2 has not yet reached the Haar-random value, as one would expect
from a two-layered all-to-all circuit, see App. D.5.

Entanglement at t > 0 We now move our attention to the dynamics of entanglement during
training. First, looking at the average dashed lines in panel (d) of Fig. D.4, entanglement among
qubits generally decreases as training progresses, especially for cut e3, but also for e2 to a lesser
extent. The training trajectories that reach better solutions (lower loss, indicated in green) are those
that correspond to lowest entanglement, thus indicating that for this specific setup a decrease in
entanglement is beneficial to reach good performances. This is particularly true for the fourth qubit,
as the training procedure drives the system towards states where the qubit is further disentangled
from the rest of the system.

Specifically, in Sec. D.7.1 we show how the entanglement evolves for the two classes separately,
that is evaluating Sk in Eq. (D.22) not on the full dataset but on each class separately. We see that

210 Appendix D. Entanglement of Quantum Neural Networks

elements in class 0 are almost disentangled from the rest of the system as training proceeds towards
good minima (green curves). The specific choice of the variational ansatz impacts the shape of the
loss landscape, and it is such that continuing to disentangle the fourth qubit is the most effective
strategy to ensure good performance.

A few concluding remarks The dependence between the entanglement generated in the
data encoding part of the quantum circuit and the numerical values of the features underlines the
importance of preprocessing the classical data, which is known to have a profound impact on the
class of functions the parameterized quantum model have access to, so its performances [109, 269].
Moreover, the trainable part of the circuit has a profound impact on how training can increase or
diminish entanglement among qubits.

Finally, we stress that as the quantum model is trained to minimize the loss function, the
entanglement entropy in the circuit must not be a monotone function of the training step, and in fact,
we check numerically that varies a lot both within a single training run, as well as across several
training trajectories. It would be interesting to study whether the exploration of different regimes of
entanglement is related to the performances of a quantum machine learning model.

D.7.1 Details on the classification procedure
For the optimization task of the IRIS dataset we use a custom Pennylane [27] implementation based
on the code [3], accompanying the results presented in Abbass et al. [4].

IRIS dataset The IRIS dataset [103] consists of 150 samples of four dimensional real input vectors
xxxi =

⇣
x(i)

0 ,x(i)
1 ,x(i)

2 ,x(i)
3

⌘
2 R4, each one paired with a corresponding class label li 2 {0, 1, 2}. We

consider a classification task involving only the first two classes li 2 {0, 1}, so the actual dataset
considered for our analysis consists of m = 100 samples1, namely

S =
�
(xxxi,yi) 2 R4⇥{0, 1}

�� kxxxik= 1, i = 1, . . . ,100

, (D.24)

where each input vector was normalised xxxi! xxxi/kxxxik, and we defined the desired output label as
yi = 1�li, that is yi = 1 if the sample is in class li = 0, and zero otherwise.

In Fig. D.5 we summarise the properties of the IRIS dataset used in our simulations. Note that
the plots on the diagonal are those shown in Fig. D.4a, and represent the continuous probability
density of the corresponding features, obtained by smoothing the histogram of the frequencies [314].

Quantum neural network circuit and optimisation The quantum neural network ansatz,
denoted with U(xxxi; qqq), acts on n = 4 qubits and it is showed in Fig. D.4c. It consists of two layers
of the ZZFEATUREMAP with an all-to-all (full) entangling connectivity which encodes the inputs
xxxi into the circuit, where one qubit per feature is used.

The encoding part of the circuit is followed by a variational ansatz with eight trainable parame-
ters qqq 2 R8, and a network of CNOT gates. Note that we used a reversed linear network of CNOTs,
as this is equivalent to the full entangling connectivity originally used in [3, 4], as shown previously
in Appendix D.3.

Given an input xxxi and trainable parameters qqq , the output of the circuit is obtained by measuring
a Pauli-Z operator on all qubits hOixxxi;qqq = h000|U(xxxi;qqq)† Z⌦4U(xxxi;qqq)|000i, and by constructing the
predicted class probability

ỹi(qqq) =
1+ hOixxxi;qqq

2
2 [0, 1] , (D.25)

which is equivalent to measuring the parity of the bitstrings at the output of the circuit.
1The full IRIS dataset comprises 50 samples per class, for a total of 150 samples.

D.7 Entanglement evolution during training 211

Figure D.5: Summary of the preprocessed IRIS dataset used in our simulations to reproduce the
classification task proposed in [4]. The plots on the diagonal of the grid correspond to a smoothed
version of the histogram of the frequencies of each feature built with seaborn [314], and are the
same plots shown in Fig. D.4 in the main text.

The circuit is optimized through gradient descent with Adam optimiser [165] with learning rate
set to h = 0.1, which was used to to minimize the cross-entropy loss function averaged over the
whole training dataset

L(qqq) =
1
m

m

Â
i=1

`i(yi, ŷi(qqq)) =� 1
100

100

Â
i=1

(yi log ŷi +(1� yi) log(1� ŷi)) . (D.26)

We run the training process 100 times, each time initialising the circuit with variational parameters
sampled randomly from the uniform distribution qi ⇠ Unif[0,2p).

Mean entanglement entropy per class In Fig. D.6 we report the mean entanglement entropy
Sk(t) defined in Eq. (D.22), where the average is taken separately over elements belonging to the

212 Appendix D. Entanglement of Quantum Neural Networks

two different classes, namely

S(0)
k (t) =

1
50

50

Â
m=1

S(ek;xxxm,qqq t) for lm = 0 , (D.27)

S(1)
k (t) =

1
50

50

Â
m=1

S(ek;xxxm,qqq t) for lm = 1 . (D.28)

As discussed in the main text, the entanglement entropy for cut e3 for elements belonging to class 0
is smaller in general, due to the feature x3 for Class 0 being roughly one order of magnitude smaller
than the remaining features, see Fig. D.5.

0.4

0.5

0.6

0.7

Bond e1

Haar-random

QNN, Class 0
0.3

0.6

0.9

1.2

Bond e2

0.0

0.2

0.4

0.6

Bond e3

0 20 40 60 80 100

0.4

0.5

0.6

0.7

Haar-random

QNN, Class 1

0 20 40 60 80 100

0.3

0.6

0.9

1.2

0 20 40 60 80 100
0.0

0.2

0.4

0.6

Training steps, t

M
ea

n
E

nt
an

gl
em

en
t

E
nt

ro
py

,
⌃

k

Figure D.6: Mean entanglement entropy Sk (D.22) averaged over elements belonging to the different
classes, for the three bonds e1, e2, e3. Dashed lines represent averages over the various training
trajectories.

E. Noise Deconvolution

E.1 Kraus Decomposition
A quantum physical evolution is represented by (i) linear, (ii)completely-positive and (iii) trace-
preserving (CPTP) maps taking quantum density operators to quantum density operators. A map
satisfying these three properties is called a quantum channel, and can be interpreted as a quantum
evolution obtained through the interaction of the system with an external environment. A map is a
quantum channel if and only if it admits a Kraus (or operator-sum) representation as

r �! E(r) = Â
k

AkrA†
k , (E.1)

with the trace preserving condition requiring

Tr[E(r)] = Tr[r] =) Â
k

A†
kAk = I . (E.2)

The operators {Ak}k are called the Kraus operators of the channel, which are however non-
unique [220]. Such channels are often referred to as stochastic channels [28, 45], and if they
also preserve identity (E(I) = I), they are called unital (or bistochastic). Unitality corresponds to
the requirement that also Âk AkA†

k = I, from which it is clear that a sufficient condition for a CPTP
map to be unital is that its Kraus operators be self-adjoint Ak = A†

k 8k.

E.2 Tomographic reconstruction formula for qubits
In this Appendix, we show how the tomographic reconstruction formula for systems made of
qubits H = C2 can be recovered starting from the standard basis expansion in terms of the Pauli
matrices [70]. The set of matrices {I,sx,sy,sz} forms an orthonormal set and constitutes a basis
for the space of 2⇥2 complex matrices L(H) = C2⇥2. So, given an operator O 2 L(H), it can be
expressed as

O =
ITr[O]+sx Tr[Osx]+sy Tr[Osy]+sz Tr[Osz]

2

=
Tr[O]

2
I+ Â

a=x,y,z

Tr[Osa]

2
sa

= Â
a=x,y,z

1
3

✓
3Tr[Osa]

2
sa +

Tr[O]

2
I
◆

= Â
a=x,y,z

1
3
E [O](sa) , (E.3)

where we defined

E [O](sa) =

✓
3Tr[Osa]

2
sa +

Tr[O]

2
I
◆

(E.4)

which is the desired quantum estimator, with {sx,sy,sz} constituting the quorum of observables
of the tomographic reconstruction. The equation (E.3) has the same form of the tomographic
reconstruction formula in Eq. (8.11), with substitutions

Z

L
�!Â

l
, dl �! 1/3 , l �! {x,y,z} , {Ql}�! {sx,sy,sz} ,

214 Appendix E. Noise Deconvolution

which account for the fact that we are dealing with a discrete, and not continuous, basis expansion.
Also, note that (E.3) is not the unique choice for the tomographic formula. In fact, one could use

a continuous parameterisation of the group SU(2) given by the operator R(~n,y) = ei~s·~ny , where
~s is the spin of the particle (~s = ~s/2 for qubits),~n = (cosf sinq ,sinf sinq ,cosf), q 2 [0,p] and
f , y 2 [0,2p] [70].

E.3 Noise deconvolution for qubits
In this appendix, we derive the noise deconvolution formula for qubits. Let r be a quantum state,
and N be a noise channel that admits an inverse map N�1, and N̂�1 its adjoint map. Then, using
Eq. (8.15) in (8.13), one obtains

hOi= Â
a

1
3

Tr
⇥
N̂�1(E(O)[sa])N (r)

⇤

= Â
a

1
3

Tr
✓

3
2

Tr[Osa]N̂�1(sa)+
1
2

Tr[O]N̂�1(I)
◆
N (r)

�

= Â
a

1
3

0

B@
3
2

Tr[Osa]hN̂�1(sa)iN (r) +
1
2

Tr[O]Tr
⇥
N̂�1(I)N (r)

⇤
| {z }

=Tr[Ir]=1

1

CA

=
1
2

Tr[O]+
1
2 Â

a=x,y,z
Tr[Osa]hN̂�1(sa)iN (r) .

(E.5)

This equation (E.5) lets us deconvolve the effect of noise by evaluating the expectation value
of the noise-inverted Pauli matrices sa on the noisy state N (r). In particular, note that the
formula remains valid whether the noise is unital or not. In fact, in the second line we can always
move the adjoint inverse noise N̂�1 from the identity to the noisy state N (r), thus obtaining
Tr
⇥
N̂�1(I)N (r)

⇤
= Tr

⇥
IN�1(N (r))

⇤
= Tr[r] = 1.

E.4 Inverse maps of Noise channels
We hereby report the explicit calculations to derive the inverse maps of the noise channels considered
in the main text.

E.4.1 Bit-flip, phase-flip, and bit-phase-flip channels
We focus on the bit-flip channel, but the calculations are identical for the phase-flip and bit-phase-
flip channels as well. The bit-flip channel is described by Kraus operators A0 =

p
1� pI and A1 =ppsx, so that its action is given by

Nx(r) = (1� p)r + psxrsx . (E.6)

The Pauli Transfer Matrix Gx is defined as

(Gx)i j =
1
2

Tr[si Nx(s j)] , (E.7)

and by straightforward calculation one obtains

(Gx)11 = (1� p)+ p = 1 ,

(Gx)22 = (1� p)� p = 1�2p ,

(Gx)33 = (1� p)� p = 1�2p ,

(Gx)i j = 0 , for i 6= j ,

E.4 Inverse maps of Noise channels 215

thus yielding

Gx =

2

664

1 0 0 0
0 1 0 0
0 0 (1�2p) 0
0 0 0 (1�2p)

3

775 , (E.8)

whose inverse is trivially

G�1
x =

2

6664

1 0 0 0
0 1 0 0
0 0 1

(1�2p) 0
0 0 0 1

(1�2p)

3

7775
. (E.9)

The eigenvectors of such Pauli Transfer Matrix are clearly the Pauli matrices Iii, |sxii, |syii, |szii,
with eigenvalues lll = (1, 1, 1/(1�2p), 1/(1�2p)), respectively.

The operator sum representation of N�1
x can be reconstructed by noticing that the map

E(O) =
3

Â
j=0

b js jOs j . (E.10)

has also the Pauli matrices as eigenvectors, but with eigenvalues bbb = (b0,b1,b2,b3). Since two
maps are equal if they have the same action on a basis, we can find the operator-sum representation
of N�1

x by finding those b j such that lll = bbb . If we can find such a mapping, then inserting those
values into (E.10), we recover the operator sum of the inverse map. The PTM matrix GE of E
amounts to

GE = diag(b0 +b1 +b2 +b3, b0 +b1�b2�b3, (E.11)
b0�b1 +b2�b3, b0�b1�b2 +b3) , (E.12)

The equality G�1
x = GE correspond to the system of equations

8
>>>><

>>>>:

1 = b0 +b1 +b2 +b3

1 = b0 +b1�b2�b3
1

1�2p = b0�b1 +b2�b3
1

1�2p = b0�b1�b2 +b3

(E.13)

where the first equation is the trace-preserving condition, dictated by the fact that the direct map is
TP, and so the inverse map has to be. This condition is also evident from the expression of G�1

x and
GE , since the first row is of the form (1,0,0,0). The system of equations (E.13) has solutions

b0 =
1� p
1�2p

, b1 =� p
1�2p

, b2 = b3 = 0 ,

and substituting these values in Eq. (E.10) leads to the desired operator-sum representation

N�1
x (O) =

1� p
1�2p

O� p
1�2p

sxOsx . (E.14)

Similarly, the same procedure can be carried out for the dephasing (generated by sz) and
bit-phase-flip channel (generated by sy), leading to

N�1
z (O) =

1� p
1�2p

O� p
1�2p

szOsz , (E.15)

N�1
y (O) =

1� p
1�2p

O� p
1�2p

syOsy . (E.16)

216 Appendix E. Noise Deconvolution

Note that for all these three cases, the adjoint channels are equal to the direct ones, i.e. N̂�1 =N�1,
since the generating operators are all Hermitian (see Appendix E.4.4 for a case where this is not
true).

We now proceed to evaluate the explicit form of the deconvolution formula. Let b 2 {x,y,z}
index one of the noise channels Nb 2 {Nx,Ny,Nz}, the action of the inverse map on a Pauli matrix
sa amounts to

N�1
b (sa) =

1
1�2p

✓
(1� p)sa � psb sasb

◆
=

1�2dab p
1�2p

sa , (E.17)

where in the second line we made use of the fact that sb sasb = (2dab �1)sa . Substituting this
in Eq (E.5), one obtains

hOib =
1
2

Tr[O]+
1

2(1�2p) Â
a=x,y,z

Tr[Osa]
�
1�2dab p

�
hsaiNb (r) , (E.18)

where the subscript b in hOib is just used to denote that we are deconvolving with respect to noise
Nb , but remember that it correspond to the mitigated noise-free result. Clearly, when the observable
to be measured is itself a Pauli matrix O = sg , this further simplifies to

⌦
sg
↵

b =
1

2(1�2p) Â
a=x,y,z

Tr
⇥
sgsa

⇤
| {z }

=2dga

�
1�2dab p

�
hsaiNb (r) (E.19)

=
1�2dgb p

1�2p
⌦
sg
↵
Nb (r) . (E.20)

E.4.2 Depolarizing channel
The depolarizing noise channel is represented by the map

Ndep(r) =

✓
1� 3p

4

◆
r +

p
4

✓
sxrsx +syrsy +szrsz

◆
,

having Kraus operators A0 =
p

1�3p/4I, A1 =
ppsx/2, A2 =

ppsy/2, and A3 =
ppsz/2. By

straightforward calculation, the Pauli Transfer Matrix of the depolarising channel as well as its
inverse, amounts to

Gdep =

2

664

1 0 0 0
0 1� p 0 0
0 0 1� p 0
0 0 0 1� p

3

775 , (E.21)

G�1
dep =

2

6664

1 0 0 0
0 1

1�p 0 0
0 0 1

1�p 0
0 0 0 1

1�p

3

7775
. (E.22)

Following the same procedure used for the bit-flip channel, one arrives at the system of equations
8
>>>><

>>>>:

1 = b0 +b1 +b2 +b3
1

1�p = b0 +b1�b2�b3
1

1�p = b0�b1 +b2�b3
1

1�p = b0�b1�b2 +b3

(E.23)

E.4 Inverse maps of Noise channels 217

which has solutions b0 = (4� p)/4(1� p) and b1 = b2 = b3 =�p/4(1� p). Substituting these
values in (E.10), and using the relation 2Tr[O]I = O+sxOsx +syOsy +szOsz, one obtains

N�1
depol(O) =

1
1� p

⇣
O� p

2
Tr[O]I

⌘
. (E.24)

Plugging this in the tomographic deconvolution formula (E.5), leads to:

hOi= 1
2

Tr[O]+
1
2 Â

a

Tr[Osa]

1� p
hsaiNdep(r) , (E.25)

from which it is clear that whenever a Pauli matrix is to be measured, O = sk, then the expectation
values are contracted by a factor 1� p, i.e. hski= hskidep /(1� p).

E.4.3 General Pauli channel
The most general channel involving only Pauli operators is the channel given by

Nppp(r) = p0r + pxsxrsx + pysyrsy + pzszrsz (E.26)

characterized by probabilities ppp = (p0, px, py, pz), with the trace-preserving condition implying
p0 = 1� px� py� pz. The PTM of this map is diagonal

Gppp = diag(1, p0 + px� py� pz,

p0� px + py� pz, (E.27)
p0� px� py + pz) ,

and has trivial inverse

G�1
ppp = diag(1, (p0 + px� py� pz)

�1

(p0� px + py� pz)
�1

, (E.28)

(p0� px� py + pz)
�1) .

Again, using the same procedure as before, one arrives at the system of equations:

8
>>>><

>>>>:

1 = b0 +b1 +b2 +b3
1

p0+px�py�pz
= b0 +b1�b2�b3

1
p0�px+py�pz

= b0�b1 +b2�b3
1

p0�px�py+pz
= b0�b1�b2 +b3

, (E.29)

whose solution is reported in Eq. (8.39) in the main text. The action of the inverse map on the Pauli
matrix sx is

N�1
ppp (sx) = b0sx +b1sxsxsx +b2sysxsy +b3szsxsz (E.30)

= (b0 +b1�b2�b3)sx (E.31)

=
1

1�2(py + pz)
sx , (E.32)

and a similar expression also hold for sy and sz, from which one obtains the deconvolution formulas
in Eq. (8.40).

218 Appendix E. Noise Deconvolution

E.4.4 Amplitude Damping
The amplitude damping channel is given by the map

NAD(r) = K0rK†
0 +K1rK†

1 ,

K0 =

1 0
0
p

1� g

�
K1 =

0
pg

0 0

�
.

(E.33)

Differently from all the other cases treated above, this channel is not generated by coupled sigma
matrices, and in addition one of its generators is not Hermitian. This has two consequences: first,
we cannot straightforwardly apply the same eigenvalue matching procedure used above, second
one must consider the adjoint channel when deconvolving.

The PTM of the amplitude damping channel is

GAD =

2

664

1 0 0 0
0
p

1� p 0 0
0 0

p
1� p 0

p 0 0 1� p

3

775 (E.34)

whose inverse is

G�1
AD =

2

6664

1 0 0 0
0 1p

1�p 0 0
0 0 1p

1�p 0
�p
1�p 0 0 1

1�p

3

7775
(E.35)

In this case the eigenvalues of GAD and G�1
AD are not the Pauli matrices, and so we cannot use

the eigenvalue matching with the general map in (8.2). However, the two PTMs have the same
structure, so one may easily guess that the operator-sum representation of the two maps share the
same operators, something that also always happened in all previous cases. Let us then suppose
that the inverse map N�1

AD has the form

N�1
AD(·) = K̃0 · K̃†

0 � K̃1 · K̃†
1 (E.36)

with K̃0 = |0ih0|+k |1ih1|, and K̃1 = t |0ih1|, with k ,t free parameters to be determined. This map
has corresponding PTM

G(k,t) =

2

6664

1+k2�t2

2 0 0 0
0 k 0 0
0 0 k 0

1�t2�k2

2 0 0 1+t2+k2

2

3

7775
, (E.37)

and by requiring that G(k,t) = G�1
AD, we obtain

k =
1p

1� g
, t =

r
g

1� g
, (E.38)

thus recovering the inverse map

N�1
AD(O) = K̃0OK̃†

0 � K̃1OK̃†
1 K̃0 =

"
1 0
0 1p

1�g

#
, K̃1 =

"
0
q

g
1�g

0 0

#
. (E.39)

In order to evaluate the deconvolution formula, we first need to calculate the adjoint of the
inverse channel. Let F(·) be a linear map acting on the space of operators L(H), its adjoint F̂ is
defined as the unique map satisfying the following relation

hA,F(B)i= hF̂(A),BiHS . (E.40)

E.4 Inverse maps of Noise channels 219

where h·, ·iHS denotes the Hilbert-Schmidt inner product hA,Bi ⌘ Tr
⇥
A†B

⇤
. Let’s consider a generic

linear map of the form

F(A) = Â
k

ak VkAV †
k , ak 2 R . (E.41)

which is, in general, neither CP nor TP, since we make no further hypothesis on ak and Vk. By
direct application of the definition of adjoint map, we obtain

hA,F(B)i ⌘ Tr
⇥
A†F(B)

⇤
= Tr

"
A† Â

k
ak VkBV †

k

#
= Tr

"

Â
k

ak V †
k A†Vk B

#
(E.42)

= Tr

2

4

Â
k

akV †
k AVk

!†

B

3

5=

*

Â
k

akV †
k AVk,B

+
(E.43)

) F̂(A) = Â
k

akV †
k AVk , (E.44)

where we used the linearity and cyclic property of the trace, as well as the fact that the coefficients
are real, a⇤k = ak 2R. We see that for any map of the form (E.41), its adjoint is obtained by simply
substituting the operators with their adjoint, i.e. Vk!V †

k . If the map F(·) leverages only Hermitian
operators Vk = V †

k , as it happens with every Pauli noise channel, than the adjoint and the direct map
of course coincides, F̂(·) = F(·). However, the Amplitude Channel uses non Hermitian generators
Vk, thus has a non-trivial, yet simple, adjoint map.

Straightforward application of the deconvolution formula then leads to the deconvolved expec-
tation values

hsxi=
1p

1� g
hsxiNAD(r) ,

hsyi=
1p

1� g
hsyiNAD(r) ,

hszi=
1

1� g
�
hsziNAD(r)� g

�
.

(E.45)

E.4.5 2-Kraus channel
The set of channels considered here is generated by two parametrized Kraus operators

Ntwo(r) = Â
i=1,2

AirA†
i , (E.46)

with A1 = cosa |0ih0|+ cosb |1ih1|, and A2 = sinb |0ih1|+ sina |1ih0|. The PTM of this channel
and its inverse are respectively

Gtwo =

2

664

1 0 0 0
0 cos(a�b) 0 0
0 0 cos(a +b) 0

cos(2a)�cos(2b)
2 0 0 cos(2a)+cos(2b)

2

3

775 , (E.47)

G�1
two =

2

6664

1 0 0 0
0 1

cos(a�b) 0 0
0 0 1

cos(a+b) 0
cos(2b)�cos(2a)
cos(2a)+cos(2b) 0 0 2

cos(2a)+cos(2b)

3

7775
. (E.48)

220 Appendix E. Noise Deconvolution

Using the trigonometric relation

cos(2a)+ cos(2b) = 2cos
✓

2a�2b
2

◆
cos
✓

2a +2b
2

◆
(E.49)

= 2cos(a�b)cos(a +b) (E.50)

we can rewrite the elements of G�1
two as

(G�1
two)11 = hab cos(a +b) , (E.51)

(G�1
two)22 = hab cos(a�b) , (E.52)

(G�1
two)33 = h2

ab
cos(2a)+ cos(2b)

2
, (E.53)

(G�1
two)30 = hab

cos(2b)� cos(2a)

2
, (E.54)

with hab = 2/(cos(2a)+ cos(2b)).
Expressed in this manner, these matrix elements are very similar to those in the Pauli transfer

matrix of the direct channel Gtwo in Eq. (E.47). The differences are in the presence of the pre-factor
hab , as well as in the signs of the angles in elements (G�1

two)11 and (G�1
two)22, and in the sign in the

difference in element (G�1
two)30. This suggests that the operator-sum representation of the inverse

map can be obtained starting from the direct one with some small changes, as it happened with
the amplitude damping channel. First of all, we can multiply the Kraus operators by

p
hab to

introduce the pre-factor, then, to account for the difference in elements (G�1
two)11 and (G�1

two)22, we
can subtract the two operators instead of summing them. At last, element (G�1

two)30 can be fixed by
changing a $ b in the first Kraus operator A1. Incidentally, these changes also fix the (G�1

two)33
element to the correct value. Thus, eventually, implementing these changes leads to the definition
of the operators

B1 =
q

hab cos(b) |0ih0|+
q

ha,b cos(a) |1ih1| , (E.55)

B2 =
q

hab sin(b) |0ih1|+
q

ha,b sin(a) |1ih0| , (E.56)

hab =
2

cos(2a)+ cos(2b)
, (E.57)

to be used within the inverse map

N�1
two(·) = B1 ·B†

1�B2 ·B†
2 . (E.58)

One can check that this map has the desired Pauli Transfer Matrix G�1
two. As with the amplitude

damping case, one the generators (B2) is not Hermitian, thus one must be careful in considering the
adjoint inverse map when evaluating the deconvolved mean values. By explicit calculations the
following holds

hsxi=
1

cos(a�b)
hsxiNtwo(r) ,

hsyi=
1

cos(a +b)
hsyiNtwo(r) , (E.59)

hszi= hab
�

cos2(b)+ sin2(a)�1+ hsziNtwo(r)

�
.

	Acknowledgements
	List of Publications
	Summary
	1 Introduction
	2 Quantum Computing and Variational Quantum Algorithms
	2.1 Basics of Quantum Computation
	2.1.1 Single qubit systems and operations
	2.1.2 Multi qubits systems and two-qubits operations
	2.1.3 Density matrix formalism
	2.1.4 Measurements and expectation values
	2.1.5 The quantum circuit model
	2.1.6 The NISQ era of quantum computation

	2.2 Variational Quantum Algorithms
	2.2.1 The basis of variational quantum algorithms
	2.2.2 Parameterised quantum ansätze
	2.2.3 Optimisation of variational quantum algorithms
	2.2.4 Barren plateaus and unitary designs
	2.2.5 Expressibility of PQCs

	2.3 Conclusions

	3 Quantum Machine Learning
	3.1 Introduction
	3.1.1 The four-fold way of Quantum Machine Learning

	3.2 Classical Machine Learning
	3.2.1 Basics of (supervised) Machine Learning
	3.2.2 Machine learning models

	3.3 Quantum Machine Learning
	3.3.1 Linear quantum models: quantum classifiers and kernel methods
	3.3.2 Data reuploading models and Quantum Neural Networks
	3.3.3 Generalization of QML models
	3.3.4 The power of quantum machine learning

	3.4 Conclusions

	4 Quantum computing model of an artificial continuous neuron
	4.1 Introduction
	4.2 Continuously valued quantum neuron model
	4.2.1 Some properties: colour invariance and noise resilience
	4.2.2 Quantum circuit model of a continuously valued perceptron

	4.3 Results
	4.3.1 Testing the quantum neuron for image recognition tasks

	4.4 Training the quantum neuron
	4.4.1 Classification tasks
	4.4.2 MNIST dataset

	4.5 Conclusions

	5 Variational learning for quantum neural networks
	5.1 Introduction
	5.2 A model of quantum artificial neurons
	5.2.1 Exact implementation with quantum hypergraph states

	5.3 Variational realisation of a quantum artificial neuron
	5.3.1 Global variational training
	5.3.2 Local variational training
	5.3.3 Case study: pattern recognition
	5.3.4 Structure of the ansatz and scaling properties

	5.4 Conclusions

	6 Quantum autoencoder and classifier for an industrial use case
	6.1 Introduction
	6.2 Case study
	6.3 Neural network autoencoder
	6.3.1 Classical Autoencoders

	6.4 Quantum Data Compression
	6.4.1 Quantum Autoencoder

	6.5 Experiments and Results
	6.5.1 Data compression
	6.5.2 Classification

	6.6 Conclusions

	7 Entanglement entropy production in quantum neural networks
	7.1 Introduction
	7.2 Methods
	7.2.1 Tensor Networks and Matrix Product States
	7.2.2 Entanglement measure in Matrix Product States
	7.2.3 Entanglement entropy in random quantum states
	7.2.4 Quantum Neural Networks as Parameterised Quantum Circuits
	7.2.5 Randomness, Entanglement and Trainability

	7.3 Results
	7.3.1 Alternating vs. Sequential data reuploading
	7.3.2 Entanglement distribution across bonds
	7.3.3 Entanglement scaling with increasing depth
	7.3.4 Entanglement Speed
	7.3.5 Expressibility
	7.3.6 Distribution of the singular values

	7.4 Discussion
	7.5 Conclusion

	8 Noise deconvolution
	8.1 Introduction
	8.2 Methods
	8.2.1 Quantum channels
	8.2.2 Qubit systems and Pauli Transfer Matrix formalism
	8.2.3 Quantum tomographic reconstruction

	8.3 Noise Deconvolution
	8.4 Inversion of common noise maps
	8.5 Experimental deconvolution
	8.5.1 Decoherence noise model
	8.5.2 Arbitrary Pauli channel

	8.6 Conclusions

	9 Conclusions
	References
	Bibliography

	Appendices
	A Variational Quantum Algorithms
	A.1 Global and local cost functions
	A.2 Variance of gradients

	B Quantum Machine Learning
	B.1 Generalisation bound for data-reuploading quantum neural networks

	C Continuous Quantum Neuron
	C.1 Proof of the activation function of the quantum neuron
	C.2 Noise resilience
	C.3 Alternative schemes for the data encoding operations

	D Entanglement of Quantum Neural Networks
	D.1 Lower bound on entanglement entropy for unitary 2-designs
	D.2 Details on Haar entanglement
	D.3 Triviality of the full entangling map
	D.4 Expressibility of Parameterised Quantum Circuits
	D.5 Entanglement scaling with increasing depth
	D.6 Convergence of MPS simulations
	D.7 Entanglement evolution during training

	E Noise Deconvolution
	E.1 Kraus Decomposition
	E.2 Tomographic reconstruction formula for qubits
	E.3 Noise deconvolution for qubits
	E.4 Inverse maps of Noise channels

