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Preface

In recent years, the evolution of Artificial Intelligence, and in particular of Machine Learn-

ing (ML) methods, has led to several advances in a variety of application fields. The goal

of ML is to create autonomous systems able to learn from past experience in the form

of input observations. Given the massive availability of data, ML is currently a field of

strategic importance, whose success can be mostly attributed to research at the interface

of computer science, statistics, and Operational Research (OR) ([59]).

A second challenging area that has recently gained a noticeable attention both from

academia and companies is sustainability. Nowadays, all the decisions that are taken

at strategical, tactical and operational levels need to account for environmental impacts

([7, 141]). Under the framework of sustainability, waste management is a growing research

area since it involves a wide variety of technical, institutional and economical factors. In

such a complex context, OR techniques may help service providers and decision makers

to implement cost-e↵ective and sustainable plans.

In classic OR problems all parameters are assumed to be perfectly known when taking

decisions. Nevertheless, in many practical cases some parameters may be revealed over

time or subject to perturbations. For instance, real-world data used as input parameters

in ML methods may be plagued by measurement errors or mistakes in the data collection

process. Although the exact value of the parameters is not known, nevertheless decisions

need to be taken. For this reason, optimization under uncertainty techniques have been

devised in the OR literature. Depending on the degree of information about the uncertain

parameters, di↵erent approaches have been explored. In this thesis, we focus our attention

on Stochastic Optimization (SO, [19, 80, 134]) and Robust Optimization (RO, [9, 13, 158]).

SO assumes that the decision maker has complete knowledge about the underlying un-

certainty in a probabilistic sense: the probability distribution of the uncertain parameters

is known or can be empirically estimated from historical data or experts’ opinions ([126]).

Whenever the problem depends on a sequence of decisions over time, the uncertainty is

modeled through scenario trees, discretizing the future outcome of the random parameters.
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This may cause an increase of the computational complexity of the SO model, requiring

the use of decomposition techniques or heuristic approaches.

RO, on the other hand, considers uncertainty in OR problems without the use of

probability distributions. Indeed, uncertainty sets that contain all possible values of the

uncertain parameters are constructed and the corresponding optimization model looks

for a solution which is optimal for all realizations inside the uncertainty sets ([14]). RO

techniques prevent the optimization model against the worst possible realization of the

uncertain parameters within the prescribed uncertainty sets. Unfortunately, this may

cause an excess of conservatism.

In this thesis, we apply Robust Optimization and Stochastic Optimization techniques

to Machine Learning methods (Chapters 1 to 3) and waste collection problems (Chapter

4). The common feature of these applications is the occurrence of uncertainty in some

relevant parameters. We show that taking into account uncertainty in such a kind of prob-

lems provides better accuracies and e�cient policies when compared to the deterministic

counterpart problems.

The thesis is structured as follows.

In Chapter 1, we tackle the problem of binary classification by extending the Support

Vector Machine (SVM) approach of [90] with nonlinear classifiers. In order to take into ac-

count uncertainty in the training observations, we construct bounded-by-norm uncertainty

sets around each sample. By means of RO techniques, we derive the robust counterpart

of the deterministic model. Extensive numerical experiments show the advantages of the

proposed formulation with respect to classic methods in the extant ML literature.

In Chapter 2, we study a classification problem where the classifying categories are

more than two. We extend the Twin Parametric Margin SVM (TPMSVM) formulation

of [116] to the context of multiclass classification. We consider linear and nonlinear clas-

sifiers, and propose two alternatives for the decision function. Then, the approach is

robustified through RO strategies, leading to tractable optimization problems. Finally,

the deterministic and the robust models are tested on multiclass real-world datasets.

Chapter 3 presents an application of the techniques developed in Chapters 1 and 2 to

a vehicles classification task. We consider the problem of predicting vehicles smog rating

score on the basis of di↵erent characteristics. Binary and multiclass robust approaches with

spherical uncertainty sets are explored. The models are validated on synthetic and real-

world datasets, and the results are compared with di↵erent approaches in the literature.

Chapter 4 considers the problem of waste collection with stochastic accumulation rate.

We propose a multi-stage mixed-integer SO model to solve a waste collection inventory
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routing problem. To cope with the computational complexity of the problem, we apply

the rolling horizon approach, providing a worst-case analysis on its performance. Given

the availability of real-world data, the numerical experiments are designed to measure the

impact of stochasticity and evaluate the performance of the rolling horizon approach. We

finally report some managerial insights.

To conclude, in Chapter 5 we outline comprehensive conclusions and provide a discus-

sion about further developments of the topics addressed within the thesis.
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Waste Management

Andrea Spinelli

In this thesis, we deal with optimization problems a↵ected by uncertainty. The first class of

problems we analyze aims at separating sets of data points by means of linear and nonlinear

classifiers. The classification task is performed according to variants of the Support Vector

Machine (SVM) and the uncertainty in real-world data is handled by means of Robust

Optimization (RO) techniques. In the case of binary classification, we start by formulat-

ing a novel SVM-type model with nonlinear classifiers and perfectly known data points.

Secondly, to prevent low accuracies in the classification process due to data perturbations,

we construct bounded-by-norm uncertainty sets around the samples. Then, we derive the

robust counterpart of the deterministic model thanks to RO strategies. To tackle the

problem of multiclass classification, we design a new multiclass Twin Parametric Margin

SVM (TPMSVM). We consider the cases of both linear and kernel-induced boundaries

and propose two alternatives for the final decision function. Data perturbations are then

included in the model and RO techniques are applied to prevent the TPMSVM against

the worst possible realization of the uncertainty. All the aforementioned approaches are

tested on real-world datasets, showing the advantages of explicitly considering the uncer-

tainty versus deterministic approaches. The second problem we analyze is related to waste

collection. Within this application, uncertainty lies in the waste accumulation rate of the

network bins. Since information on the empirical distribution of the uncertainty is avail-

able, Stochastic Optimization (SO) techniques are applied. We model the waste collection

problem as a multi-stage stochastic inventory routing problem, where the decisions are

related to the selection of bins to be visited and the corresponding visiting sequence in a

predefined time horizon. Given the computational complexity of the model, we solve it

through a rolling horizon heuristic approach, and carry out computational experiments on

real-data instances. The impact of stochasticity on waste generation is examined through

stochastic measures, and the performance of the rolling horizon approach is evaluated.

Finally, we discuss some managerial insights.
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Notation

In Chapters 1 to 3, we consider the following notation:

R Set of real numbers

R` Set of nonnegative real numbers

R`
0 Set of positive real numbers

a “ ra1, . . . , ans P Rn Column vector with n components

aJ Transpose of vector a

xpiq Training data points

ypiq Label of training data points

H Feature space

x¨, ¨yH Inner product of H

kzk
H

H-norm of z, kzk
H

“
a

xz, zyH
� : Rn Ñ H Feature map

k : Rn ˆ Rn Ñ R Kernel function, kpxpiq, xpjqq “ x�pxpiqq,�pxpjqqyH
K Gram matrix, Kij “ kpxpiq, xpjqq
kak

p
`p-norm of vector a, with p P r1,8s

en Column vector of ones in Rn

pcq Indicator function: 1 if c ° 0, 0 otherwise

signpcq Signum function: 1 if c ° 0, ´1 if c † 0, 0 otherwise

Upxq Uncertainty set centered in x

|S| Cardinality of set S
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1.1 Introduction

Support Vector Machine (SVM) is one of the main supervised Machine Learning (ML)

techniques deployed for classification and regression purposes. Within the Operational

Research (OR) domain, supervised ML methods are designed to support better decision-

making. To this end, a plethora of methodologies have been devised and applied to various

OR fields ([39]). In particular, combinatorial optimization ([10, 156]), customer churn

prediction ([36, 102, 142]), banking ([46, 87, 163]) and maritime industry ([110, 125]).

Introduced in [150], SVM has outperformed most other ML systems, due to its simplicity

and better performances. For these reasons, it has been applied in many practical research

fields, such as finance ([94, 144]), chemistry ([88, 106]), medicine ([96, 152]), and vehicle

smog rating classification ([40, 99]), to name a few.

Hard Margin-SVM (HM-SVM) is the original SVM approach formulated in [150], con-

sisting in finding a hyperplane classifying data into two classes, such that the margin,

i.e. the distance from the hyperplane to the nearest point of each class, is maximized.

The underlying hypothesis of the HM-SVM is that training data can always be linearly

separated, such that no observation is misclassified. To overcome the assumption of linear

separability, in [38] the Soft Margin-SVM (SM-SVM) is proposed. Within this approach,

the optimal hyperplane seeks a trade-o↵ between the maximization of the margin and the

minimization of the training error of misclassification.

In order to improve the accuracy of the method, several SVM variants have been

devised in the literature. Specifically, in this chapter we focus our attention on the one

presented in [90]. According to this approach, data are firstly separated by means of two

parallel hyperplanes and then the optimal hyperplane is searched in the strip between

them, such that the total number of misclassified points is minimized.

Nevertheless, data points may not be always separable using linear classifiers, dis-

rupting the reliability of the solution. In [22], the extension of the linear SVM is intro-

duced, by considering nonlinear transformation of the data. This approach considers the

use of kernel function to embed data points in a higher-dimensional space, without in-

creasing the computational complexity of the problem. Several variants of this technique

have been proposed, by considering di↵erent properties of the problem (see for example

[11, 20, 29, 44, 45, 47, 69, 71, 73, 104, 116, 130, 161]).

For the methods mentioned above, all data points are implicitly assumed to be known

exactly. However, in real-world observations this condition may not be always true. In-

deed, measurement errors during data collection, random perturbations, presence of noise
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and other forms of uncertainty may corrupt the quality of input values, resulting in wors-

ening performances of the algorithm. In recent years di↵erent techniques have been in-

vestigated with the aim of facing uncertainty in ML methods. Among them, Robust

Optimization (RO) is one of the main paradigm to protect optimization models against

uncertainty (see for example [9, 13, 158]). RO assumes that all possible realizations of the

uncertain parameter belong to a prescribed uncertainty set. The corresponding robust

model is then obtained by optimizing against the worst-case realization of the parameter

across the entire uncertainty set ([14]).

In this chapter, we present a novel SVM-variant aiming at generating two nonlinear

decision boundaries such that all the points of a class lie on a specific side of the separators.

The optimal classifier is finally searched in the region between them such that the mis-

classification error is minimized. Given the uncertain nature of real-world observations,

we derive a robust counterpart of the deterministic model, by considering di↵erent kernel

functions and uncertainty sets.

The main contributions of the chapter can be summarized as follows:

• To extend the linear SVM approach of [90] to the nonlinear case, by considering

di↵erent kernel functions;

• To formulate a robust SVM with bounded-by-`p-norm uncertainty sets model with

nonlinear classifiers;

• To derive bounds on the radii of the uncertainty sets in the input and feature spaces

when considering nonlinear classifiers;

• To provide extensive numerical experiments based on real-world datasets with the

aim of evaluating the performances of the proposed models.

The remainder of the chapter is organized as follows. Section 1.2 reviews the existing

literature on the problem. In Section 1.3, the notation is introduced, along with a brief

discussion on selected SVM-type problems. In Section 1.4, the novel deterministic model

with nonlinear classifier is introduced. Section 1.5 considers the robust version extension

along with the construction of uncertainty sets. In Section 1.6, the computational results

are shown. Finally, Section 1.7 concludes the chapter and discusses future works.

1.2 Literature review

SVM is introduced as a pattern recognition technique in [150] for the case of optimal

hyperplane and with separable classes. The generalization of the linear approach to the
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nonlinear case is proposed in [22], where input vectors are first compared by means of a

distance measure and then mapped to a higher-dimensional space (the so-called feature

space) via a nonlinear transformation. The main drawback of this approach is that training

data points are considered separable. In [149] the shortcoming is overcome by relaxing

the condition of perfect separability. Indeed, a soft margin error vector is introduced, and

the corresponding optimal separation hypersurface maximizes the margin for the correctly

classified vectors and minimizes the magnitude of the soft margin error.

The approach presented so far has been applied to other nonlinear SVM variants,

leading to alternative formulations. In [104] a kernel-induced decision boundary is derived

by considering either a quadratic or piecewise-linear objective function. The corresponding

model turns to be convex and is applied in [86] to extract relevant features of breast

cancer patients. In [130] the formulation of ⌫-Support Vector Classification (⌫-SVC) is

proposed for both linear and nonlinear classifiers. This class of algorithm di↵ers from

the classical SVM paradigm of [149] since it involves a new parameter ⌫ in the objective

function, controlling the fraction of support vectors. In [71] the TWin Support Vector

Machine (TWSVM) is designed. Contrary to standard SVM, TWSVM determines two

nonparallel hyperplanes by solving two small-sized SVM-type problems. In this stream of

research, [116] combines the TWSVM with a flexible parametric margin model, deriving

the Twin Parametric Margin Support Vector Machine (TPMSVM). More recently, in [20]

the classical `2-norm problem has been extended to the more general case of `p-norm

with p ° 1. Second order cone formulations for the resulting dual and primal problems

are then derived. The problem of feature selection in nonlinear SVM is explored in [73].

The authors propose a method based on a min-max optimization problem, embedding a

trade-o↵ between model complexity and classification accuracy.

All the aforementioned papers consider only deterministic SVM models, whose under-

lying hypothesis is that training data points are perfectly known. Unfortunately, in many

real-world applications data are plagued by uncertainty caused by corruption or mea-

surement errors. However, the classification algorithm should perform appropriately even

after such perturbations ([137]). Robust Optimization (RO) is one of the main paradigm

to tackle the problem of dealing with uncertain parameters. Depending on the degree of

information about data, di↵erent uncertainty sets may be constructed. Within the field

of RO applied to linear SVM, in [16] hyperellipsoids around data points are considered,

leading to a Second-Order Cone Programming (SOCP) formulation. A tractable robust

counterpart of the classical SVM approach of [38] is derived in [14]. In particular, the

authors robustify the soft margin SVM model against feature uncertainty by considering
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bounded-by-norm additive perturbations in the training data. In [48] the binary classifi-

cation problem under feature uncertainty is formulated with uncertainty sets in the form

of hyperrectangles and hyperellipsoids around input data. With the same choices of un-

certainty sets, in [53] a RO model of the linear SVM variant presented in [90] is proposed.

The reader is referred to [154] for a survey on linear SVM under uncertainty.

As far as it concerns RO techniques applied to nonlinear SVM, di↵erent approaches

exist in literature. In [15] and [8] the kernel matrix is assumed to be a↵ected by uncertainty,

due to feature perturbations in the input data. A decomposition of the kernel matrix as

a combination of positive semidefinite matrices with bounded-by-`p-norm coe�cients is

proposed. The main limitation of this approach is that the functional form of the kernel

matrices is typically unknown. Thus, it is not obvious how to characterize the elements

in the uncertainty set, unless by using a sampling procedure. In [17] and in [147] data

points in the input space are subject to uncertain but bounded-by-`p-norm perturbations.

Robustified models are derived for both linear and nonlinear classifiers. In the latter case,

when data are mapped to the feature space, an additive and unknown perturbation is

introduced too. The robustification of the nonlinear SVM problem leads to a tractable

SOCP formulation. A related work on bounded uncertainty sets is [158]. In [146] the

stability of linear and quadratic programming SVMs with bounded noise in the input

space is investigated by using linear and nonlinear discriminant functions. Polyhedral

uncertainty sets are considered in [56], [58] and [74], based on the nonlinear classifier of

[104].

RO techniques are applied to other SVM-type problems too. In [119] a robust TWSVM

classifier is proposed, by considering data uncertainty in the variance matrices of the two

classes. In [124] the robust counterpart of TWSVM is derived. For the nonlinear case,

only Gaussian kernel and ellipsoidal uncertainty sets around data points are considered,

resulting in SOCP formulation. In the following chapter, the robust and multiclass exten-

sion of the TPMSVM is provided ([41]). A complete survey on recent developments on

TWSVM models can be found in [143].

When information on the probability distribution of the training data are available,

RO is combined with Chance-Constrained Programming (CCP) and Distributionally Ro-

bust Optimization (DRO) ([72, 77]). The Minimax Probability Machine (MPM) is the

first robust approach in the SVM context that minimizes the worst-case probability of

misclassification ([85]). In [102] the MPMs are extended and applied to the robust profit-

driven churn prediction. Within the MPM framework, the use of Cobb-Douglas function

for maximizing the expected class accuracies under a worst-case distribution setting is
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proposed in [101]. The problem of robust feature selection with CCP is explored in [92]

by using di↵erence of convex functions. Within the multiclass context, in [91] a robust

formulation for multiclass classification via TWSVM is proposed. As far as it concern

DRO methods applied to SVM, we mention the work of [53] where a moment-based dis-

tributionally robust formulation of the [90] approach is designed. Finally, a combination

of CCP and DRO techniques applied to linear SVMs with uncertain data is explored in

[78, 153].

All the approaches discussed so far are listed in Table 1.1. For a comprehensive review

of RO in the field of SVM the reader is referred to [137].

The contribution of this chapter di↵ers from the literature described above in several

aspects. First of all, we present a novel optimization model with nonlinear classifiers,

extending the approach of [90]. Secondly, we consider general bounded-by-`p-norm uncer-

tainty sets around each observation, deriving closed-form expressions of the bounds in the

feature space for some of typically used kernel function in ML literature. Furthermore, we

derive the robust counterpart of the deterministic approach, protecting the model against

data uncertainty.

1.3 Background and notation

In this section, we briefly recall some deterministic SVM-type models for pattern clas-

sification: the linear Soft Margin-SVM (SM-SVM, [149]), the SVM Formulation of the

approach proposed in [90], and the Generalized -SVM (G-SVM, [104]) for nonlinear clas-

sification.

1.3.1 A selected review of SVM models

Let txpiq, ypiqum
i“1 be the set of training data points, where xpiq P Rn is the vector of

features, and ypiq P t´1,`1u is the label representing the class to which the i-th data

point belongs. In particular, we denote by A and B the class of positive (label “`1”) and

negative (label “´1”) data points, respectively.

The Soft Margin Support Vector Machine (SM-SVM)

The Soft Margin-SVM approach (SM-SVM), firstly introduced in [38], finds the best sepa-

rating hyperplane H :“ pw, �q defined by the equation wJx “ �, where w P Rn and � P R,
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Vapnik & Chervonenkis (1974), [150] X
Boser et al. (1992), [22] X
Vapnik (1995), [149] X X
Mangasarian (1998), [104] X
Lee et al. (2000), [86] X
Schölkopf et al. (2000), [130] X X
Fung et al. (2002), [58] X X X
Lanckriet et al. (2002), [85] X X X X X
El Ghaoui et al. (2003), [48] X X X
Bhattacharyya (2004), [16] X X
Bi & Zhang (2005), [17] X X X
Trafalis & Gilbert (2006), [147] X X X
Jayadeva et al. (2007), [71] X X
Liu & Potra (2009), [90] X
Xu et al. (2009), [158] X X X
Bhadra et al. (2010), [15] X X X
Trafalis & Alwazzi (2010), [146] X X X
Peng (2011), [116] X X
Ben-Tal et al. (2012), [8] X X X
Ju & Tian (2012), [74] X X X
Peng & Xu (2013), [119] X X X
Qi et al. (2013), [124] X X X
Fan et al. (2014), [56] X X X
López et al. (2017), [91] X X X
López et al. (2018), [92] X X X
Wang et al. (2018), [153] X X X
Bertsimas et al. (2019), [14] X X
Blanco et al. (2020), [20] X X
Maldonado et al. (2020), [102] X X X
Jiménez Cordero et al. (2021), [73] X
Faccini et al. (2022), [53] X X X X
Maldonado et al. (2022), [101] X X X
Khanjani-Shiraz et al. (2023), [78] X X X

Table 1.1: A selected SVM literature review. In the first row of the table the methodological
contributions are listed in chronological order. Second and third rows specify the type of SVM
classifier (linear or nonlinear). Finally, the RO methodologies employed in the articles are explored
in rows four to ten.
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as solution of the following `q-model, q • 1 (see [20]):

min
w,�,⇠

kwkq
q

` ⌫
mÿ

i“1

⇠i

s.t. ypiqpwJxpiq ´ �q • 1 ´ ⇠i i “ 1, . . . ,m

⇠i • 0 i “ 1, . . . ,m.

(1.1)

The vector ⇠ P Rm is the soft margin error vector and ⌫ • 0 is a regularization

parameter, balancing the trade-o↵ between the maximization of the margin (i.e. the

minimization of kwkq
q
), and the minimization of the misclassification error. Indeed, data

point xpiq is correctly classified by the separating hyperplane, i.e. it lies on the correct

side of H, if 0 § ⇠i § 1, otherwise is misclassified.

A new data point x P Rn is classified as positive or negative depending on the decision

function
`
wJx ´ �

˘
: if it is equal to 1, then x is assigned to class A, otherwise to class

B.

The SVM Formulation of [90]

Instead of a single hyperplane as in the case of classical SM-SVM, in [90] a novel approach

involving two parallel hyperplanes is proposed. The starting point of the formulation

employs the solutions of model (1.1) with q “ 1 to obtain the hyperplane H0 :“ pw, �q
and the soft margin error vector ⇠. Then, H0 is shifted in order to determine two parallel

hyperplanes HA :“ pw, � ´ 1 ` !Aq and HB :“ pw, � ` 1 ´ !Bq, where:

!A :“ max
i:xpiqPA

 
⇠i

(
, !B :“ max

i:xpiqPB

 
⇠i

(
, (1.2)

satisfying the following properties:

(P1) all points of class A lie on one halfspace of HA;

(P2) all points of class B lie on the opposite halfspace of HB;

(P3) the intersection of the convex hulls of A and B is contained in the region between

HA and HB.

Finally, the optimal separating hyperplane H :“ pw, bq is determined such that is par-

allel to HA and HB, lies in their strip, and the number of misclassified points is minimized.

These conditions are satisfied finding the optimal parameter b, solution of the following

32



problem:

min
b

ÿ

i:xpiqPA

`
wJxpiq ´ b

˘
`

ÿ

i:xpiqPB

`
b ´ wJxpiq˘

s.t. � ` 1 ´ !B § b § � ´ 1 ` !A.

(1.3)

Similarly to SM-SVM, a new data point x P Rn is classified in class A or B depending

on the decision rule
`
wJx ´ b

˘
.

The Generalized Support Vector Machine (G-SVM)

Data points coming from real-world measurements may not be always separable by means

of an hyperplane and, even with ad hoc variants of linear SVM, the misclassification error

may be significant. This observation motivates the idea of considering nonlinear kernel-

induced decision boundaries (see [38]).

The concept behind this approach is the following: the training data points are mapped

into a higher-dimensional space, where a separating hyperplane is constructed, yielding

to a nonlinear decision hypersurface in Rn. Specifically, a function �p¨q, usually referred

as feature map, is introduced to map data from the input space Rn to a feature space H,

equipped with the dot product x¨, ¨yH. Thus, model (1.1) in the feature space becomes:

min
w,�,⇠

kwk
H

` ⌫
mÿ

i“1

⇠i

s.t. ypiqpxw,�pxpiqqyH ´ �q • 1 ´ ⇠i i “ 1, . . . ,m

⇠i • 0 i “ 1, . . . ,m,

(1.4)

where w refers to the vector defining the linear classifier in the feature space and the norm

in H is induced by its inner product, i.e., for z P H, kzk
H
:“

a
xz, zyH.

The vector w can be decomposed as a finite linear combination of �pxpjqq, j “ 1, . . . ,m:

w “
mÿ

j“1

ypjquj�pxpjqq, (1.5)

for some coe�cients uj P R. Unfortunately, the expression of the mapping �p¨q is usually

unknown and H is potentially an infinite-dimensional space ([131]). For these reasons,

model (1.4) cannot be solved in practice. To overcome this problem, a symmetric and

positive semidefinite kernel k : Rn ˆ Rn Ñ R is introduced to measure the similarity of

two observations. Examples of kernel function typically used in ML literature are reported

in Table 1.2. For a comprehensive overview, the reader is referred to [131].

Let K be the associate Gram matrix, i.e., Kij :“ kpxpiq, xpjqq “ x�pxpiqq,�pxpjqqyH.
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Kernel function kpx, x1q Parameter
Homogeneous polynomial kpx, x1q “ pxJx1qd d P N
Inhomogeneous polynomial kpx, x1q “ pc ` xJx1qd c P R`, d P N

Gaussian Radial Basis Function (RBF) kpx, x1q “ exp

ˆ
´ kx ´ x1

k
2
2

2↵2

˙
↵ P R`

0

Sigmoid kpx, x1q “ tanhpa xJx1 a P R, b P R

Table 1.2: Examples of kernel functions. The first column reports the name of the functions. The
second column provides their mathematical expressions. Finally, the third column contains the
related relevant parameters.

The properties of kp¨, ¨q imply that K is a real, symmetric and positive semidefinite mˆm

matrix ([122]). Consequently, for all i “ 1, . . . ,m the scalar product xw,�pxpiqqyH in the

first set of constraints of model (1.4) can be formulated as:

xw,�pxpiqqyH “
mÿ

j“1

ypjqujx�pxpjqq,�pxpiqqyH “
mÿ

j“1

Kijy
pjquj “ KiDu,

where D is a diagonal matrix with Dii :“ ypiq and u “ ru1, . . . , umsJ. Furthermore, the

norm kwk
H

can be expressed in terms of matrices K and D as:

kwk2
H

“ xw,wyH “
mÿ

i“1

mÿ

j“1

ypiqypjquiujkpxpiq, xpjqq “ pDuqJKpDuq.

Due to the structure of D, it holds that kDuk
q

“ kuk
q
for all q P r1,8s, since:

kDuk
q

“
ˆ mÿ

i“1

���ypiqui
���
q

˙ 1
q

“
ˆ mÿ

i“1

|ui|
q

˙ 1
q

“ kuk
q
.

Besides, equality (1.5) states that vector w depends linearly on its coe�cients uj .

Thus, as suggested in [86], in order to minimize kwk
H

we minimize the magnitude of

kuk
q
. Therefore, model (1.4) can be rewritten as:

min
u,�,⇠

kukq
q

` ⌫
mÿ

i“1

⇠i

s.t. ypiq
ˆ mÿ

j“1

Kijy
pjquj ´ �

˙
• 1 ´ ⇠i i “ 1, . . . ,m

⇠i • 0 i “ 1, . . . ,m,

(1.6)
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or, equivalently, in matrix form:

min
u,�,⇠

kukq
q

` ⌫eJ
m⇠

s.t. DpKDu ´ em�q • em ´ ⇠

⇠ • 0.

(1.7)

Model (1.7) with q “ 1 corresponds to the Generalized -SVM (G-SVM) presented in

[104].

Within this context, the hyperplane in the feature space translates into a nonlinear

separating decision boundary S in the input space, induced by the kernel function kp¨, ¨q.
Hypersurface S is defined implicitly by the following equation:

mÿ

i“1

kpx, xpiqqypiqui “ �, (1.8)

where u P Rm and � P R are the solutions of model (1.6). Hereinafter, a kernel-induced

decision boundary S in the input space satisfying equation (1.8) will be denoted by S :“
pu, �q.

When a new data point x P Rn occurs, it is classified either in class A or B according

to whether the decision function:

ˆ mÿ

i“1

kpx, xpiqqypiqui ´ �

˙

yields 1 or 0, respectively.

1.4 A novel approach for deterministic nonlinear SVM

In this section, we derive an extension of the [90] approach to the nonlinear case. Thus,

nonlinear separating hypersurfaces in the input space, satisfying the aforementioned prop-

erties (P1)-(P3), are considered.

First of all, by solving model (1.6), we find an initial decision boundary S0 :“ pu, �q
which induces a first nonlinear separation in the input space. The nonlinear hypersurface

S0 corresponds to a linear classifier H0 in the feature space. As in [90], we set q “ 1,

corresponding to the maximization of the margin with respect to the `8-norm. This

choice provides a good compromise between structural risk minimization, related to the

misclassification error, and parsimony since it automatically performs feature selection,

by making zero nonrelevant components of the normal vector u (see [84, 93]). Moreover,
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with q “ 1, problem (1.6) reduces to a linear problem.

Then, as in (1.2), for each of the two classes, we compute the greatest misclassification

error through the following formulas:

!A :“ max
i“1,...,m

pD⇠q
i

!B :“ max
i“1,...,m

p´D⇠q
i
. (1.9)

Due to the structure of problem (1.6), the modulus of ´1`!A represents the distance

of the farthest misclassified point of class A from H0 in the feature space, and similarly

for 1´!B. However, it may happen that H0 already classifies correctly all the data points

of at least one of the two classes. Assume, without loss of generality, that it happens for

class A. This implies that 0 § ⇠i § 1, for all i such that xpiq P A. Thus, the modulus

of ´1 ` !A is just the distance from the closest data points in A to the hyperplane H0.

Accordingly to the literature of SVM (see [38]), we call the points at distance |´1 ` !A|

and |1 ´ !B| the support vectors of class A and B, respectively.

After the computation of !A and !B, we shift H0 by ´1`!A and 1´!B in the feature

space, getting two parallel hyperplanes to H0, namely HA and HB, passing through the

support vectors of the corresponding class. In the input space two nonlinear hypersurfaces

SA and SB are derived, defined as SA :“ pu, � ´ 1 ` !Aq and SB :“ pu, � ` 1 ´ !Bq,
respectively, accordingly to equation (1.8). With this choice, properties (P1)-(P2) are

satisfied by HA and HB in the feature space, and by SA and SB in the input space.

Finally, the optimal separating hypersurface S :“ pu, bq is obtained. The parameter

b is the solution of the following linear search procedure, aiming to minimize the overall

number of misclassified points:

min
b

mÿ

i“1

ˆ
ypiqb ´ ypiq

mÿ

j“1

Kijy
pjquj

˙

s.t. � ` 1 ´ !B § b § � ´ 1 ` !A.

(1.10)

The decision boundary S in the input space is induced by an hyperplane H in the

feature space, lying in the strip between HA and HB, and satisfying property (P3).

Thus, a new observation x P Rn is classified according to the decision function:

ˆ mÿ

i“1

kpx, xpiqqypiqui ´ b

˙
.

For the sake of clarity, all the steps of the approach discussed so far are schematically

reported in Pseudocode 1.
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Pseudocode 1 A novel approach for deterministic nonlinear SVM

Input: txpiq, ypiqum
i“1, ⌫ • 0, kp¨, ¨q : Rn ˆ Rn Ñ R.

1: Calculate matrix Kij “ k
`
xpiq, xpjq˘, i, j “ 1, . . . ,m and the diagonal matrix of the

labels Dii “ ypiq, i “ 1, . . . ,m.

2: Solve model (1.6) with q “ 1.

3: Find the initial separating surface S0 “ pu, �q, defined by equation (1.8).

4: Compute !A and !B, according to formulas (1.9).

5: Shift S0 to get the separating surface for each class, SA “ pu, � ´ 1 ` !Aq and SB “
pu, � ` 1 ´ !Bq, defined by (1.8).

6: Solve model (1.10), obtaining the optimal parameter b.

Output: The optimal decision boundary S “ pu, bq, defined by (1.8).

To conclude, we visualize in Figure 1.1 the interpretation of the novel approach, applied

to a bidimensional dataset, in the case of Gaussian RBF kernel with ↵ “ 1.9. The nonlinear

decision boundaries are the contour lines of the implicit function (1.8).

Figure 1.1: Graphical representation of the implicit function (1.8), in the case of Gaussian RBF
kernel (↵ “ 1.9), along with the separating hyperplanes and decision boundaries. Parameter ⌫ in
the objective function of (1.6) has been set to 1. Support vectors are drawn as stars.
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1.5 A robust model for nonlinear SVM

In this section, we derive the robust counterpart of the deterministic model introduced

before, considering uncertainties in the input data. The uncertainties are taken into

consideration when training the classifier by constructing an uncertainty set Upxpiqq around
each observation xpiq. Thus, the problem is to optimize against the worst-case realization

across the entire uncertainty sets of all the observations ([14]). The uncertainty set can be

defined in di↵erent ways, according to the degree of uncertainty that is considered in the

model. Typically box, ellipsoidal and polyhedral uncertainty sets are considered because

they lead to tractable optimization models (see [48, 56, 93], respectively).

The robust counterpart of the Liu and Potra linear model is derived in [53], where the

uncertainty sets are modelled as box or ellipsoids. Unfortunately, in the nonlinear context,

when data points xpiq are mapped in the feature space H via �p¨q, a priori control about

the shape and the properties of the uncertainty set U
`
�pxpiqq

˘
is not possible. In addition,

a closed-form expression of �p¨q is rarely available. Therefore, further assumptions when

constructing U
`
�pxpiq˘ are necessary.

The remainder of the section is organized as follows. In Subsection 1.5.1 uncertainty

sets bounded by a general `p-norm are constructed by considering di↵erent kernel func-

tions. Bounds on the radii of the uncertainty sets in the feature space are derived in

Subsection 1.5.2. Finally, in Subsection 1.5.3 the robust counterpart of model (1.6) is

formulated.

1.5.1 The construction of the uncertainty sets

We assume that each observation xpiq in the input space is subject to an additive and

unknown perturbation vector �piq. In addition, we assume that its `p-norm, with p P r1,8s,
can be bounded by a known nonnegative constant ⌘piq. Therefore, the uncertainty set

around xpiq in the input space has the following expression:

Uppxpiqq :“
!
x P Rn : x “ xpiq ` �piq, k�piq

kp§ ⌘piq
)
, (1.11)

with p P r1,8s. The nonnegative parameter ⌘piq calibrates the degree of conservatism.

If ⌘piq “ 0, then �piq is the zero vector of Rn and Uppxpiqq coincides with xpiq. Di↵erent `p-

norms lead to di↵erent geometrical properties of Uppxpiqq: `1-norm, `2-norm and `8-norm

yields to polyhedral, ellipsoidal and box uncertainty set, respectively.

According to equation (1.11), if x belongs to Uppxpiqq, then it can be written as xpiq `
�piq. The application of the feature map �p¨q implies that x will be projected onto the
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feature space H. Since x “ xpiq ` �piq, we argue that �pxq results to be a perturbation of

�pxpiqq, through a perturbation vector ⇣piq P H. Therefore:

�pxq “ �pxpiq ` �piqq “ �pxpiqq ` ⇣piq,

where the H-norm of ⇣piq is bounded a nonnegative constant �piq. The latter may be

unknown but, in turn, depends on the known bound ⌘piq in the input space, i.e. �piq “
�piq`⌘piq˘. Specifically, if �p¨q is associated to a kernel function kp¨, ¨q, then it is possible to

derive that ([158]):

���⇣piq
���
2

H

“
����pxq ´ �pxpiqq

���
2

H

“
����pxpiq ` �piqq ´ �pxpiqq

���
2

H

“ x�pxpiq ` �piqq ´ �pxpiqq,�pxpiq ` �piqq ´ �pxpiqqyH
“ x�pxpiq ` �piqq,�pxpiq ` �piqqyH ´ 2x�pxpiq ` �piqq,�pxpiqyH ` x�pxpiqq,�pxpiqqyH
“ kpxpiq ` �piq, xpiq ` �piqq ´ 2kpxpiq ` �piq, xpiqq ` kpxpiq, xpiqq.

The previous set of equalities holds regardless of the choice of kp¨, ¨q. Interestingly, it

can be noted that, if �piq “ 0, then the last right-hand side is equal to zero. This confirms

the fact that if no uncertainty occurs in the input space, no uncertainty will occur in the

feature space too. Thus, ⌘piq “ 0 implies �piq “ 0.

Hence, by combining all the previous results, we model the uncertainty set around

�pxpiqq in the feature space as:

UH

`
�pxpiqq

˘
:“

!
z P H : z “ �pxpiqq ` ⇣piq, k⇣piq

kH§ �piq
)
. (1.12)

In the case of homogeneous polynomial kernel, inhomogeneous polynomial kernel and

Gaussian RBF kernel, it is possible to derive a closed-form expression for the bound �piq

in the feature space, knowing the bound ⌘piq in the input space.

1.5.2 Bounds on the uncertainty sets in the feature space

Let us now consider a symmetric and positive semidefinite kernel kp¨, ¨q, whose correspond-
ing feature map is �p¨q. In the following, we derive closed-form expressions for the bound

�piq by analysing separately the polynomial kernel and the Gaussian RBF kernel. Below,

we provide the results and relegate the proofs to the Appendix A.1.

Proposition 1 (Polynomial kernel). Let Uppxpiqq and UH

`
�pxpiqq

˘
be the uncertainty
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sets in the input and in the feature space as in (1.11) and (1.12), respectively, with

p P r1,8s. Consider the inhomogeneous polynomial kernel of degree d P N and additive

constant c • 0, with �piq ” �piq
d,c
, and:

C “ Cpn, pq “

$
’&

’%

1, 1 § p § 2

n
p´2
2p , p ° 2.

(i) If d “ 1, then the bound in the feature space is:

�piq
1,c “ C⌘piq. (1.13)

(ii) If d ° 1, then:

�piq
d,c

“

gffe`
�piq
d,0

˘2 `
d´1ÿ

k“1

ˆ
d

k

˙
ck

„ d´kÿ

j“1

ˆ
d ´ k

j

˙ ��xpiq��d´k´j

2

`
C⌘piq˘j

⇢2
, (1.14)

where �piq
d,0 is the bound for the corresponding homogeneous polynomial kernel:

�piq
d,0 “

dÿ

k“1

ˆ
d

k

˙ ���xpiq
���
d´k

2

`
C⌘piq˘k. (1.15)

Notice that when c “ 0, eq. (1.14) reduces to (1.15).

Proposition 2 (Gaussian RBF kernel). Let Uppxpiqq and UH

`
�pxpiqq

˘
be the uncer-

tainty sets in the input and in the feature space as in (1.11) and (1.12), respectively, with

p P r1,8s. Consider the Gaussian RBF kernel with parameter ↵ ° 0 and �piq ” �piq
↵ . If:

C “ Cpn, pq “

$
’&

’%

1, 1 § p § 2

n
p´2
2p , p ° 2,

then:

�piq
↵ “

d

2 ´ 2 exp

ˆ
´ pC⌘piqq2

2↵2

˙
. (1.16)

We observe that Propositions 1-2 are consistent with Lemma 7 presented in [158].

However, in this chapter we specify the bound for particular kernels and extend the results

for an uncertainty set bounded-by-`p-norm for a generic p P r1,8s.
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1.5.3 The robust model

Robustifying model (1.6) against the uncertainty set Uppxpiqq yields the following opti-

mization program:

min
u,�,⇠

kuk1 ` ⌫
mÿ

i“1

⇠i

s.t. ypiq
mÿ

j“1

kpx, xpjqqypjquj • 1 ´ ⇠i ` ypiq� @x P Uppxpiqq, i “ 1, . . . ,m

⇠i • 0 i “ 1, . . . ,m.

(1.17)

Model (1.17) is intractable due to the infinite possibilities for choosing x in Uppxpiqq.
However, a closed-form expression can be derived, as stated in the following theorem.

Theorem 1. Let Uppxpiqq and UH

`
�pxpiqq

˘
be the uncertainty sets in the input and in the

feature space as in (1.11) and (1.12), respectively, with p P r1,8s. The model (1.17) can

be rewritten as:

min
u,�,⇠

kuk1 ` ⌫
mÿ

i“1

⇠i

s.t. ypiq
mÿ

j“1

Kijy
pjquj ´ �piq

mÿ

j“1

a
Kjj |uj | • 1 ´ ⇠i ` ypiq� i “ 1, . . . ,m

⇠i • 0 i “ 1, . . . ,m.

(1.18)

Proof. The first set of constraints of model (1.17) is equivalent to:

min
xPUppxpiqq

ypiq
mÿ

j“1

kpx, xpjqqypjquj • 1 ´ ⇠i ` ypiq� i “ 1, . . . ,m. (1.19)

Due to the definition of Uppxpiqq, for all i “ 1, . . . ,m the left-hand side of (1.19) can

be re-stated as:

min
�piq

ypiq
mÿ

j“1

kpxpiq ` �piq, xpjqqypjquj

s.t. k�piq
kp§ ⌘piq.

According to the definition of the kernel function and the assumption on UH

`
�pxpiqq

˘
,

we have that:

kpxpiq ` �piq, xpjqq “ x�pxpiq ` �piqq,�pxpjqqyH “ x�pxpiqq ` ⇣piq,�pxpjqqyH.
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Moreover, the linearity of the dot product in the feature space H implies that the

model can be written as:

min
⇣piq

ypiq
mÿ

j“1

x⇣piq,�pxpjqqyH ypjquj

s.t. k⇣piq
kH§ �piq,

(1.20)

where the term ypiq
mÿ

j“1

x�pxpiqq,�pxpjqqyH ypjquj is equivalent to ypiq
mÿ

j“1

Kijy
pjquj . Being

independent of ⇣piq, it is moved to the right-hand side of (1.19).

Then, by considering the modulus of the objective function of model (1.20), it can be

bounded by
∞

m

j“1

��x⇣piq,�pxpjqqyH
�� ¨ |uj |. By applying the Cauchy-Schwarz inequality in H

and the boundedness condition on
��⇣piq��

H
, we get:

���x⇣piq,�pxpjqqyH
��� §

���⇣piq
���
H

¨
����pxpjqq

���
H

§ �piq ¨
b

x�pxpjqq,�pxpjqqyH “ �piq ¨
a
Kjj .

The value Kjj is nonnegative, due to the positive semidefiniteness of the Gram matrix

K ([122]). Therefore, we obtain:

�����y
piq

mÿ

j“1

x⇣piq,�pxpjqqyH ypjquj

����� § �piq
mÿ

j“1

a
Kjj |uj | . (1.21)

Thus, the objective value of model (1.20) is ´�piq ∞m

j“1

a
Kjj |uj |, and substituting it

in the first set of constraints of (1.17), the thesis follows.

A similar result is derived in [147], where the robust counterpart of the deterministic

model is written as a SOCP. However, in our contribution the robust problem (1.18)

is a Linear Programming (LP) problem, with clearly advantages from a computational

perspective.

When no uncertainty occurs in the data, �piq “ 0 and model (1.18) reduces to model (1.6).

As in the deterministic case, once u, � and ⇠ are obtained as solutions of model

(1.18), then !A and !B are computed according to formulas (1.9). Finally, the optimal

separating hypersurface S “ pu, bq is derived, where parameter b is the optimal solution

of the problem:

min
b

mÿ

i“1

„ˆ
ypiqb ´ ypiq

mÿ

j“1

Kijy
pjquj ` �piq

mÿ

j“1

a
Kjj |uj |

˙

i

⇢

s.t. � ` 1 ´ !B § b § � ´ 1 ` !A.

(1.22)
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1.6 Computational results

In this section, we evaluate the performance of the deterministic model presented in Section

1.4 and its robust counterpart (1.17). The models have been implemented in MATLAB

(v. 2021b) and solved using CVX (v. 2.2, see [64, 65]) and MOSEK solver (v. 9.1.9,

see [112]). As far as it concerns the linear search problems (1.10) and (1.22), the interval

r�`1´!B, �´1`!As has been split into 104 subintervals of equal length. The final solution

is then given by the minimum value of all subproblems (see [53]). All computational

experiments were run on a MacBookPro17.1 with a chip Apple M1 of 8 cores and 16 GB

of RAM memory.

1.6.1 An illustrative example

For the sake of clarity, we start by considering a bidimensional toy example composed by

17 observations (see Figure 1.2). The parameter ⌫ in the objective function of (1.6) and

(1.18) has been set to 1, and the classification performed by Gaussian RBF kernel with

↵ “ 1.9.

We illustrate in Figure 1.2 the results of the deterministic approach. The optimal

classifier S is represented by a solid line, whereas hypersurfaces SA and SB are depicted as

dotted and dashed line, respectively. The support vectors are drawn as stars. According

to the nonlinear version of properties (P1)-(P2), all the black points of class A lie inside

the curve defined by SA, and all the white points of class B are outside SB. The optimal

classifier S satisfies property (P3) since it is comprised in the region between SA and SB,

and minimizes the total number of misclassified points.

We depict in Figure 1.3 the kernel-induced decision boundaries of the robust model,

considering the same toy example as before. The bound ⌘piq on the perturbation in the

input space is set to 0.01 and 0.2 for data points in class A and B, respectively. The model

is trained for both spherical (p “ 2, see Figure 1.3a) and box (p “ 8, see Figure 1.3b)

uncertainty sets Uppxpiqq. Compared to Figure 1.2, the separating curves SA and SB still

satisfy properties (P1)-(P2), as well as S with property (P3), but there are no support

vectors since each data point is corrupted by uncertainties.

1.6.2 Real-world datasets

In order to test the performance of the proposed methodology on real-world data, we

perform classification experiments on a selection of datasets taken from the UCI Machine

Learning Repository (see [76]). The datasets are listed in the first column of Table 1.3,
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Figure 1.2: Separating hypersurfaces obtained with Gaussian RBF kernel (↵ “ 1.9) from the
deterministic model. Support vectors are depicted as stars.

(a) Gaussian RBF kernel (↵ “ 1.9), p “ 2 (b) Gaussian RBF kernel (↵ “ 1.9), p “ 8

Figure 1.3: Separating hypersurfaces obtained with Gaussian RBF kernel (↵ “ 1.9) from the
robust model. The `p-norms defining the uncertainty set are p “ 2 (on the left) and p “ 8 (on
the right).

along with the corresponding number of features n and of observations m. For datasets

with more than two classes we adopt the one-versus-all scheme, finding the optimal clas-

sifier separating the first class of points from the remaining ones.

Each dataset is split into two disjoint parts: the training set, composed by the �% of

the observations, and the testing set, composed by the remaining p1´�q%. We account for

three di↵erent values of �, leading to the following holdouts: 75%-25%, 50%-50%, and 25%-
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75%. The partition is performed inline with the proportional random sampling strategy

(see [34]), meaning that the original class balance in the entire dataset is maintained in

both the training and testing set. Once the partition is complete, a kernel function kp¨, ¨q
is chosen and the training set is used to train the deterministic classifier for di↵erent

values of input parameter ⌫. Specifically, the deterministic formulation is solved on five

logarithmically spaced values of ⌫ between 10´3 and 100. The optimal classifier is chosen

among the five candidates as the one minimizing the misclassification error on the training

set. Finally, the out-of-sample misclassification error on the testing set is computed, as the

ratio between the total number of misclassified points in the testing set and its cardinality.

This procedure is repeated 96 times, parallelizing the code on the 8 cores of the working

machine, in a repeated holdout fashion (see [79]). The results are then averaged.

As far as it concerns the kernel function kp¨, ¨q, we test seven di↵erent alternatives:

homogeneous linear (d “ 1, c “ 0), homogeneous quadratic (d “ 2, c “ 0), homogeneous

cubic (d “ 3, c “ 0); inhomogeneous linear, inhomogeneous quadratic, inhomogeneous

cubic; Gaussian RBF. The parameter ↵ in the Gaussian RBF kernel is set as the maxi-

mum value of the standard deviation across features for the dataset under consideration.

Similarly for the parameter c in the inhomogeneous polynomial kernels.

Potentially, the range of values in the datasets may vary widely across features, with

di↵erent orders of magnitude. Since model (1.6) and its robust counterpart (1.18) are

distance-based, this may result in giving high weights to specific attributes when classi-

fying. For this reason, we apply pre-processing techniques of data transformation before

training the models. Among all the possibilities we consider min-max normalization and

standardization. For an overview on data pre-processing methods, the reader is referred

to [68]. On one hand, in the min-max normalization the training dataset is linearly scaled

feature-wise into the n-dimensional hypercube r0, 1sn, according to the formula:

xpiq1
j

:“
xpiq
j

´ min
l“1,...,m

xplq
j

max
l“1,...,m

xplq
j

´ min
l“1,...,m

xplq
j

i “ 1, . . . ,m, j “ 1, . . . , n, (1.23)

where xpiq1
j

is the j-th transformed feature of observation i. On the other hand, in the

standardization the values of a specific feature j are normalized based on its mean µj and

standard deviation stdj , namely:

xpiq1
j

:“
xpiq
j

´ µj

stdj
i “ 1, . . . ,m, j “ 1, . . . , n. (1.24)
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Among all the optimal deterministic classifiers found for each couple data transformation-

kernel function, the best configuration is chosen as the one minimizing the overall mis-

classification error. Within this choice of data transformation-kernel function, the robust

model is solved. The bounds ⌘piq on the perturbation vectors defining the uncertainty sets

Uppxpiqq are adjusted as:

⌘piq “ ⌘A :“ ⇢A max
j“1,...,n

stdj,A @i : xpiq P A

⌘piq “ ⌘B :“ ⇢B max
j“1,...,n

stdj,B @i : xpiq P B,

where ⇢A is a nonnegative parameter allowing the user to tailor the degree of conservatism

and max
j“1,...,n

stdj,A is the maximum standard deviation feature-wise for training points of

class A. Similarly for ⇢B and max
j“1,...,n

stdj,B. For simplicity, we set ⇢A “ ⇢B “ ⇢, and

consider 7 logarithmically spaced values between 10´7 and 10´1. As in the deterministic

case, we average the out-of-sample testing errors for 96 random partitions of the dataset.

For each dataset, we report in Table 1.3 the best configuration data transformation-

kernel function, along with the average out-of-sample testing errors and standard devi-

ations for the deterministic and robust models. We consider the three main types of

uncertainty set in the literature, defined respectively by `1-, `2- and `8-norm. The listed

results refer to the holdout 75% training set-25% testing set. Details are reported in the

Appendix A.2 respectively in Tables A.1-A.3 for the deterministic model, and in Tables

A.4-A.9 for the robust model.

We notice that all the considered robust formulations outperform the corresponding

deterministic result. Specifically, in 4 out of 9 datasets the best results are achieved by

the box robust formulation (p “ 8), followed by the ellipsoidal (p “ 2, in 3 out of 9) and

finally by the polyhedral (p “ 1). Since box uncertainty sets are the most wide around

data among the three, this implies that the proposed formulation benefits from a more

conservative approach when treating uncertainties.

For the sake of completeness, we explore in details the performance of the proposed

models when applied to the dataset “Parkinson”. First of all, we discuss the results of

the deterministic approach, with respect to both data transformation and kernel function.

The out-of-sample testing errors for the holdout 75%-25% are depicted in Figure 1.4, while

detailed results are reported in Table A.1 in the Appendix A.2. We note that the worst

performances occur when no data transformations are applied (see the dash-dotted line in

Figure 1.4). Conversely, min-max normalization (1.23) and standardization (1.24) provide

good and comparable results: the best performance is achieved by the linear kernel on min-
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Dataset Data transformation Kernel Deterministic Robust
m ˆ n p “ 1 p “ 2 p “ 8
Arrhythmia ´ Gaussian RBF 20.47% ˘ 0.07 19.12% ˘ 0.08 19.30% ˘ 0.07 19.61% ˘ 0.07
68 ˆ 279
CPU time (s) 0.289 0.290 0.288 0.295

Parkinson Min-max normalization Hom. linear 13.19% ˘ 0.03 12.98% ˘ 0.03 12.37% ˘ 0.03 12.61% ˘ 0.04
195 ˆ 22
CPU time (s) 3.626 3.421 3.454 3.418

Heart Disease Standardization Inhom. linear 17.48% ˘ 0.04 16.84% ˘ 0.04 17.53% ˘ 0.03 16.36% ˘ 0.04
297 ˆ 13
CPU time (s) 12.253 11.602 11.477 11.417

Dermatology ´ Inhom. quadratic 1.64% ˘ 0.02 1.65% ˘ 0.01 1.57% ˘ 0.01 0.55% ˘ 0.01
358 ˆ 34
CPU time (s) 20.173 20.055 20.420 20.147

Climate Model Crashes ´ Hom. linear 5.01% ˘ 0.02 4.47% ˘ 0.02 4.50% ˘ 0.01 4.34% ˘ 0.01
540 ˆ 18
CPU time (s) 68.069 66.762 67.169 67.381

Breast Cancer Diagnostic Min-max normalization Inhom. quadratic 3.02% ˘ 0.02 2.63% ˘ 0.01 2.65% ˘ 0.01 2.56% ˘ 0.01
569 ˆ 30
CPU time (s) 77.786 77.968 78.267 77.543

Breast Cancer Standardization Hom. linear 3.17% ˘ 0.01 2.97% ˘ 0.01 3.07% ˘ 0.01 3.06% ˘ 0.01
683 ˆ 9
CPU time (s) 135.765 135.651 137.039 136.286

Blood Transfusion Standardization Inhom. cubic 20.72% ˘ 0.02 20.60% ˘ 0.02 20.55% ˘ 0.02 20.64% ˘ 0.02
748 ˆ 4
CPU time (s) 178.136 178.751 179.682 180.083

Mammographic Mass Standardization Inhom. quadratic 15.71% ˘ 0.02 15.49% ˘ 0.02 15.42% ˘ 0.02 15.54% ˘ 0.02
830 ˆ 5
CPU time (s) 241.205 241.810 242.614 241.929

Table 1.3: Average out-of-sample testing errors and standard deviations over 96 runs for the
deterministic and robust models. Best results are highlighted. Holdout: 75% training set-25%
testing set.

max normalized data (13.19%q. Similar conclusions can be drawn for holdouts 50%-50%

and 25%-75%, where in those cases the homogeneous quadratic kernel outperforms the

others, still in the case of min-max normalized data (see Tables A.2-A.3 in the Appendix

A.2).

In order to evaluate the performance of the robust model, we consider 60 logarith-

mically spaced values of ⇢ between 10´7 and 10´1. The results are depicted in Figure

1.5. We notice that the increase of the value of � leads to better performances when con-

sidering the overall out-of-sample testing error (see Figure 1.5a), since more data points

in the training set are available as input of the optimization model. In addition, when

perturbations are included in the model, the performances improve with respect to the

deterministic case. Indeed, the great majority of the points lies below the corresponding

horizontal line, representing the out-of-sample testing error of the deterministic classifier.

Interestingly, the increase of the uncertainty impacts di↵erently on the two classes (see

Figure 1.5b). It can be noted that points of class A benefit from including high perturba-

tions in the model. On the contrary, points of class B are worsen classified when the level

of corruption is high.

In addition, we compare the performance of our models with the results reported in
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Figure 1.4: Out-of-sample testing error of the deterministic formulation applied to the dataset
“Parkinson”. Each triangle represents the lowest error for the corresponding data transformation
technique. Holdout: 75% training set-25% testing set.

(a) Overall results. (b) Results divided by class.

Figure 1.5: Out-of-sample testing error of the robust formulation applied to the dataset “Parkin-
son”. Overall results are on the left, with the performance of the deterministic classifier depicted
as horizontal line for each holdout. Results divided by class are on the right. The values of ⇢ are
in logarithmic scale.

[53] and [14]. As shown in Table 1.4, in 6 out of 9 datasets the results of our deterministic

classifier outperform the other methods. Consequently, the linear approach presented

in [90] benefits from a generalization towards nonlinear classifier. Moreover, within the

same 6 datasets, our robust formulation leads to even better accuracy, implying that it is
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meaningful to consider uncertainties in the proposed SVM-type model.

Dataset Deterministic Robust
Table 1.3 [53] [14] Table 1.3 [53] [14]

Arrhythmia 20.47% 25.65% 43.08% 19.12% 23.00% 29.23%
Parkinson 13.19% 14.13% 14.36% 12.37% 13.00% 16.41%
Heart Disease 17.48% 16.68% 15.93% 16.36% 16.20% 16.61%
Dermatology 1.64% 0.56% 3.38% 0.55% 0.13% 1.13%
Climate Model Crashes 5.01% 4.99% 5.00% 4.34% 4.34% 4.07%
Breast Cancer Diagnostic 3.02% 4.89% 6.49% 2.56% 3.89% 4.04%
Breast Cancer 3.17% 3.49% 5.00% 2.97% 3.12% 4.26%
Blood Transfusion 20.72% 23.49% 23.62% 20.55% 22.55% 23.62%
Mammographic Mass 15.71% ´ 18.07% 15.42% ´ 19.28%

Table 1.4: Out-of-sample testing error comparison among deterministic and robust results of Table
1.3, data from [53] and [14]. For each approach and dataset, the best result is underlined. The
lowest out-of-sample testing error within a dataset is in bold.

From Table 1.3 it can be noticed that the choice of the best data transformation

method strongly depends on the dataset. In order to guide the final user among the three

possible techniques, we report in Table A.10 in the Appendix A.2 summary statistics on

the 9 datasets. Specifically, for each feature we compute the mean and the corresponding

coe�cient of variation, defined as the ratio between the standard deviation and the mean.

In Table A.10 we list the minimum and the maximum values of the two considered indices

for each dataset, along with the corresponding best data transformation. We argue that,

whenever the values of the observations are close, and so the minimum and the maximum

too, the best approach is to classify the original data without any transformation (see

datasets “Arrhythmia”, “Dermatology” and “Climate Model Crashes”). In the extreme

case of the presence of some constant features, i.e., the minimum and the maximum

values coincide, and thus the coe�cient of variation is zero, formulas (1.23)-(1.24) cannot

be applied since the denominator is equal to zero. This situation occurs with the dataset

“Arrhythmia”, where only original data can be classified. On the other hand, the min-

max normalization is a suitable choice when the order of magnitude across the features

varies a lot. For instance, in datasets “Parkinson” and “Breast cancer diagnostic” there

are 7 and 5 orders of magnitude of di↵erence between the minimum and the maximum

value of the mean of the features. Finally, standardization is an appropriate method

in all other cases, where no significant di↵erences occur among the orders of magnitude

of the features (see datasets “Heart Disease”, “Breast Cancer”, “Blood Transfusion” and

“Mammographic Mass”).

Furthermore, numerical results show that the computational time is significantly high
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for datasets with a large number of observations, especially when considering 75% of the

instances as training set (see Table A.1 in the Appendix A.2). The performing speed

benefits from a reduction of �, even if at the cost of worsening the accuracy. Nevertheless,

when datasets are equally split in training and testing set, the accuracy does not decrease

significantly compared to the case 75%-25% (see Table A.2). A similar conclusion is valid

for the robust model (see Tables A.4-A.7).

1.7 Conclusions

In this chapter, we have proposed a new optimization model for solving a binary clas-

sification task through SVM. From a methodological perspective, we have extended the

technique studied in [90] to the nonlinear context through the introduction of a kernel

function. Data are mapped from the input space to a higher-dimensional space and a final

linear search procedure aiming to minimize the overall misclassification error is considered.

Motivated by the uncertain nature of real-world data, we have adopted a RO approach

by constructing around each input data an uncertainty set bounded-by-`p-norm, with

p P r1,8s. Perturbation propagates from the input space to the feature space through the

kernel function. Therefore, we have derived closed-form expressions for the uncertainty

sets in the feature space, extending the results present in the literature. Finally, we have

derived the robust counterpart of the deterministic model in the case of nonlinear classi-

fier. Both the deterministic and the robust formulation reduce to LP problem, with clear

advantages in terms of computational e�ciency. The proposed models have been tested on

real-world datasets, considering di↵erent combinations of data transformations and kernel

functions. The results outperform other linear SVM approaches in most cases, even in the

deterministic framework. Overall, the model benefits from including uncertainty during

the training process. The accuracy is a↵ected by the choice of the kernel function and of

the data transformation before training. Insights to guide the user in choosing the best

configuration are finally drawn.

Future works will focus on handling uncertainties in the labels of input data. It would

also be interesting to extend the proposed robust approach to other SVM-type models and

in the case of multiclass classification. Finally, devising distributionally robust formulation

with di↵erent classes of ambiguity sets merits further research too.
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2.1 Introduction

Binary pattern classification is one of the most studied Machine Learning (ML) tasks

thanks to its wide variety of application. Despite deep learning is currently the state-of-

the-art paradigm in binary classification, it does not guarantee a strong predictive accuracy

when applied to tabular data ([66]). For this reason, the design of new ML approaches

for classifying such a kind of data is an important ongoing research topic ([101]).

In this chapter, we consider and extend the Twin Parametric Margin Support Vector

Machine (TPMSVM) presented in [116]. The reader is referred to Section 1.1 for an

introduction on Support Vector Machine (SVM), one of the best-known ML tools for

classification. Rather than dealing with a single classifier, in the TPMSVM two nonparallel

classifiers are detected, one for each class, such that training observations of the other class

are as far as possible from the opposite classifier. Computational experiments show that

the TPMSVM achieves better predictive accuracy when compared to other SVM-type

techniques. In addition, its computational complexity is reduced since each of the two

classifiers is the solution of a small-sized optimization model.

SVM was originally designed to solve binary classification problems. However, in

many applications classifying categories might be more than two ([30, 105]), leading to

the design of ad hoc methods in the ML literature. Typically, such a kind of problems are

decomposed into a sequence of binary classification tasks, whose solutions are finally pieced

together in an aggregate decision function ([70]). Depending on how the decomposition

and the following reconstruction are performed, di↵erent approaches have been proposed

([45]). Compared to binary pattern recognition, multiclass classification problems are

more challenging and less explored in the literature ([120]).

To cope with uncertainty arising during the measurement of real-world observations,

Robust Optimization (RO, [9]) techniques have been designed, preventing the model

against the worst possible realization of the uncertain parameter (see Section 1.1 for an

overview on RO). The application of RO methods usually translates to superior predic-

tive performance of the classification process ([53, 98, 102]). Therefore, it is important to

design novel RO models for improving the accuracy of ML procedures.

In this chapter, we propose a novel TPMSVM multiclass classification model under

uncertainty. The main contributions of the chapter can be summarized as follows:

• To extend the binary TPMSVM approach to the context of multiclass classification

with linear and nonlinear classifiers;

• To formulate robust counterparts of the deterministic models with bounded-by-`p-
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norm uncertainty sets;

• To provide computational experiments based on real-world datasets to test the per-

formance of the models, showing the advantages of explicitly considering uncertainty

in the proposed formulation.

The remainder of the chapter is organized as follows. Section 2.2 reviews the existing

literature on the problem. Section 2.3 introduces basic facts on binary TPMSVM model.

In Section 2.4 the deterministic multiclass model is designed, while in Section 2.5 the

robust counterpart is presented. Section 2.6 reports computational results to evaluate

the accuracy of the proposed formulations. Finally, in Section 2.7 conclusions and future

works are discussed.

2.2 Literature review

Starting from the seminal work of Vapnik and Chervonenkis ([150]) where SVM has been

introduced for the first time, several alternative formulations have been proposed in the

literature. In the following, we focus our attention on methods related to TPMSVM. The

reader is referred to Section 1.2 for a general introduction to classical SVM techniques.

The TPMSVM ([116]) can be seen as a combination of the parametric-⌫-margin model

(par-⌫-SVM, [69]) and of the TWin Support Vector Machine (TWSVM, [71]). The par-

⌫-SVM is based on the ⌫-Support Vector Classification (⌫-SVC, [130]) where a positive

parameter ⌫ in the objective function bounds the fractions of supporting vectors and mis-

classification errors. With respect to ⌫-SVC, the par-⌫-SVM approach is able to deal with

heteroscedastic noise. On the other hand, the TWSVM considers two nonparallel classifiers

as solutions of two small-sized SVM-problems. Consequently, the computational complex-

ity of TWSVM is much reduced compared with the classical SVM. Due to its favourable

performance, especially when handling large datasets, many variants of the TWSVM ap-

proach have been devised in the ML literature: Least Squares TWSVM (LS-TWSVM,

[5]), Projection TWSVM (P-TWSVM, [35]), Twin Parametric Margin SVM (TPMSVM,

[116]), Pinball loss TWSVM (Pin-TWSVM, [160]), New Fuzzy TWSVM (NFTWSVM,

[33]). For a comprehensive overview on recent developments on TWSVM the reader is

referred to [143].

As stated above, the TPMSVM is a variant of the TWSVM. Specifically, it aims

at generating two nonparallel classifiers, each of them determining the positive or neg-

ative parametric margin of the separating classifier. Therefore, it integrates the fast
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learning speed of the TWSVM and the flexible parametric margin of the par-⌫-SVM.

Alternative TPMSVM-based formulations are Structural TPMSVM (STPMSVM, [118]),

Least Squares TPMSVM (LSTPMSVM, [132]), Smooth TPMSVM (STPMSVM, [155]),

Centroid-based TPMSVM (CTPSVM, [117]), Truncated Pinball Loss TPMSVM (TPin-

TSVM, [151]).

All the approaches discussed so far consider the case of binary classification. To tackle

the problem of multiclass classification, two main techniques have been formulated in the

literature: all-together methods and decomposition-reconstruction methods ([70]). On the

one hand, all training data points are considered at the same time in one large optimization

model and the classifier is derived accordingly ([23, 161, 165]). On the other hand, the mul-

ticlass classification problem is decomposed into a sequence of binary classification tasks.

Each subproblem is solved independently and the binary classifiers are finally combined

into an aggregate multiclass decision function. Nowadays, decomposition-reconstruction

methods are considered to be as the most e↵ective to achieve multiclass separation ([47]),

especially due to the high computational complexity of the all-together methods with large

datasets ([45]).

Di↵erent formulations have been designed within the decomposition-reconstruction

paradigm. In the one-versus-all strategy ([151, 157]), a classifier for each class is con-

structed such that it separates the data points inside the class from the samples outside the

class. In the one-versus-one approach ([89]), only pairs of classes are considered, leading

to an increased number of binary classifiers. In contrast, in the one-versus-one-versus-rest

strategy ([4, 159]) all training samples are considered in constructing the classification

rule. Indeed, each subproblem focuses on the separation of a pair of classes together with

all the remaining samples by means of two hyperplanes. Each hyperplane is close to a class

and as far as possible from the other, with all the remaining points restricted in a region

between the two hyperplanes ([47]). Other decomposition-reconstruction approaches in

the literature are direct acyclic graph ([123]), all-versus-one (MBSVM, [162]) and binary

tree SVM structure (DTTSVM, [133]). A review on multiclass models specifically designed

for TWSVM can be found in [45].

For the methods mentioned above, all data points are implicitly assumed to be known

exactly. RO techniques prevent worsening the quality of the solution in the case of un-

certainty in the training samples ([14, 158]). In the context of robust TWSVM, a Robust

Minimum Class Variance model (RMCV-TWSVM) is proposed in [119]. Specifically, a

pair of uncertain class variance matrices is considered with uncertainty sets defined accord-

ing to the Frobenius norm. In [124] two nonparallel classifiers are proposed in the case of
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ellipsoidal uncertainty sets (R-TWSVM). The corresponding model is then reformulated as

a Second Order Cone Programming (SOCP) problem. Instead of convex hulls to represent

the training patterns, [93] and [100] consider ellipsoids defined by the first two moments

of the class distributions (RNPSVM and Twin SOCP-SVM, respectively). The robust

problem is then formulated as a Chance-Constrained (CC) programming model ([134])

and the robust counterpart reduces to a SOCP formulation. The same CC approach has

been applied in [91] for the case of twin multiclass SVM (Twin-KSOCP). Recently, in [129]

an improved version of RNPSVM (called IRNPSVM) is proposed to reduce the number of

missing data through a CC approach. Within the multiclass framework, in [165] a robust

classification through piecewise-linear functions is derived, robustifying the approach of

[23] in the case of ellipsoidal uncertainty set.

All the approaches discussed so far on the TWSVM and its variants are schematically

reported in Figure 2.1 and listed in Table 2.1.

In this chapter, we present a novel TPMSVM-type robust model for multiclass clas-

sification. We consider both the cases of linear and kernel-induced decision boundaries.

Given the uncertain nature of real-world observations, we derive robust counterparts of

the nominal models by considering a general bounded-by-`p-norm uncertainty set around

each input data. To assess the accuracy, we test the deterministic and robust method-

ologies on publicly available datasets. To the best of our knowledge, this is the first time

that a robust multiclass formulation based on the TPMSVM is proposed.

2.3 Prior work

The methods that are relevant for our proposal, namely the linear TPMSVM (Section

2.3.1) and the nonlinear TPMSVM (Section 2.3.2) for binary classification are presented

in this section.

2.3.1 The binary TPMSVM for linear classification

Let txpiq, ypiqum
i“1 be the set of training observations, where xpiq P Rn is the vector of

features, and ypiq P t´1,`1u is the label of the i-th data point, denoting the class to

which it belongs. We assume that each of the two categories is composed by m´ and

m` observations, respectively, with m´ ` m` “ m. We denote by X´ P Rnˆm´ and

X` P Rnˆm` the matrices of the negative and positive samples, respectively, and X´ and

X` the corresponding indices sets.

The TPMSVM approach considers two nonparallel hyperplanes H` and H´, defined
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TPMSVM
Peng (2011), [116]

par-⌫-SVM
Hao (2010), [69]

TWSVM
Jayadeva et al. (2007), [71]

Variants of TPMSVM

Deterministic

approach

$
’’’’’’&

’’’’’’%

´ STPMSVM Peng et al. (2013), [118]

´ LSTPMSVM Shao et al. (2013), [132]

´ STPMSVM Wang et al. (2013), [155]

´ CTPSVM Peng et al. (2015), [117]

´ MNP-KSVC Du et al. (2021), [47]

´ TPin-TSVM Wang et al. (2021), [151]

Variants of TWSVM

´ LS-TWSVM Arun Kumar & Gopal (2009), [5]

´ P-TWSVM Chen et al. (2011), [35]

´ DTTSVM Shao et al. (2013), [133]

´ OVA-TWSVM Xie et al. (2013), [157]

´ Twin-KSVC Xu et al. (2013), [159]

´ MBSVM Yang et al. (2013), [162]

´ Pin-TWSVM Xu et al. (2017), [160]

´ NFTWSVM Chen & Wu (2018), [33]

,
//////////.

//////////-

Deterministic

approach

´ RMCV-TWSVM Peng & Xu (2013), [119]

´ R-TWSVM Qi et al. (2013), [124]

´ Twin SOCP-SVM Maldonado et al. (2016), [100]

´ Twin-KSOCP López et al. (2017), [91]

´ RNPSVM López et al. (2019), [93]

´ IRNPSVM Sahleh & Salahi (2022), [129]

,
//////.

//////-

Optimization

under

uncertainty

approach

Figure 2.1: Scheme of the selected TWSVM literature review. The models are distinguished in
deterministic and optimization under uncertainty approaches.
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TWSVM
Linear classifier 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Nonlinear classifier 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Classification
Binary 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Multiclass 3 3 3 3 3 3 3

Optimization Ellipsoidal RO 3

under uncertainty Matrix RO 3

approach Chance-Constraints 3 3 3 3

Table 2.1: A selected TWSVM literature review. In the first row of the table the contributions are
listed in chronological order. In the second and third rows, linear and nonlinear TWSVM classifiers
are considered. Rows four and five deal with binary and multiclass classification. Finally, the
optimization under uncertainty methodologies are explored in rows six to eight.
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by the following equations:

H` : wJ
`x ` ✓` “ 0 H´ : wJ

´x ` ✓´ “ 0.

The normal vectors w`, w´ P Rn and the intercepts ✓`, ✓´ P R of H` and H´ are the

solutions of a pair of Quadratic Programming Problems (QPPs):

min
w`,✓`,⇠`

1

2
kw`k

2
2 ` ⌫`

m´
eJ
m´

`
XJ

´w` ` em´✓`
˘

` ↵`
m`

eJ
m`⇠`

s.t. XJ
`w` ` em`✓` • ´⇠`

⇠` • 0,

(2.1)

and

min
w´,✓´,⇠´

1

2
kw´k

2
2 ´ ⌫´

m`
eJ
m`

`
XJ

`w´ ` em`✓´
˘

` ↵´
m´

eJ
m´⇠´

s.t. XJ
´w´ ` em´✓´ § ⇠´

⇠´ • 0,

(2.2)

where ⌫`, ⌫´ ° 0, ↵`,↵´ ° 0 are regularization parameters, balancing the terms in

the objective functions, and ⇠` P Rm` , ⇠´ P Rm´ are slack vectors, associated with

misclassified samples in each class ([38]).

The objective function of model (2.1) is composed by three parts. The first term is

related to the margin for the positive class. The second term considers the projections

of negative observations on H`, requiring that the negative training points are as far as

possible from H`. Finally, the third term is the penalty function regarding the total num-

ber of misclassified positive samples. Similar observations can be made for the objective

function of model (2.2).

As in [69] and [130], the ratios ⌫`{↵` and ⌫´{↵´ control the fractions of supporting

vectors and margin errors in each class. Hence, ⌫` and ⌫´ cannot be greater than ↵` and

↵´, respectively.

The dual models of (2.1) and (2.2) are the following QPPs, respectively:

max
�`

´ 1

2
�J

`X
J
`X`�` ` ⌫`

m´
eJ
m´X

J
´X`�`

s.t. eJ
m`�` “ ⌫`

0 § �` § ↵`
m`

,

(2.3)
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and

max
�´

´ 1

2
�J

´X
J
´X´�´ ` ⌫´

m`
eJ
m`X

J
`X´�´

s.t. eJ
m´�´ “ ⌫´

0 § �´ § ↵´
m´

,

(2.4)

where �` P Rm` and �´ P Rm´ are the Lagrangian multiplier vectors for each class.

Once (2.3) and (2.4) are solved, by using the Karush-Kuhn-Tucker (KKT) conditions the

optimal parameters pw`, ✓`q and pw´, ✓´q are computed as:

w` “ X`�` ´ ⌫`
m´

X´em´ ✓` “ ´ 1

|N`|

ÿ

iPN`

xpiqJ
w`,

and

w´ “ ⌫´
m`

X`em` ´ X´�´ ✓´ “ ´ 1

|N´|

ÿ

iPN´

xpiqJw´,

where N` is the index set of training observations xpiq, with i P X`, whose corresponding

Lagrangian multiplier �`,i satisfies 0 † �`,i † ↵`{m`. Similarly for N´.

Finally, a new observation x P Rn is classified as negative or positive according to the

following decision function:

flinpxq :“ sign

ˆ
wJ

`x ` ✓`
kw`k2

` wJ
´x ` ✓´
kw´k2

˙
.

In Figure 2.2a we depict the hyperplanes H´ and H`, along with the classifier flin “ 0

for a binary classification task with two features.

(a) Linear binary TPMSVM (b) Nonlinear binary TPMSVM

Figure 2.2: Linear and nonlinear classifiers for the case of binary TPMSVM. The parameters are
⌫` “ ⌫´ “ 0.5, ↵` “ ↵´ “ 1. In the nonlinear case, the Gaussian kernel with � “ 1.5 is
considered. Misclassified points for each class are represented as stars.
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2.3.2 The binary TPMSVM for nonlinear classification

To increase the predictive power of the model, allowing situations where training observa-

tions are not linearly separable, in [116] the nonlinear version of the TPMSVM approach

is provided. According to the classical procedure of [38], input data points are mapped to

a inner product space (H, x¨, ¨yH) via a feature map � : Rn Ñ H.

Following this idea, the separating hyperplanes rH` and rH´ are now defined in the

feature space H as:

rH` : x rw`,�pxqyH ` ✓` “ 0 rH´ : x rw´,�pxqyH ` ✓´ “ 0,

with rw`, rw´ P H and ✓`, ✓´ P R. Accordingly, models (2.1) and (2.2) are modified as:

min
rw`,✓`,⇠`

1

2
k rw`k

2
H

` ⌫`
m´

ÿ

iPX´

`
x rw`,�pxpiqqyH ` ✓`

˘
` ↵`

m`
eJ
m`⇠`

s.t. x rw`,�pxpiqqyH ` ✓` • ´⇠`,i i P X`

⇠` • 0,

(2.5)

and

min
rw´,✓´,⇠´

1

2
k rw´k

2
H

´ ⌫´
m`

ÿ

iPX`

`
x rw´,�pxpiqqyH ` ✓´

˘
` ↵´

m´
eJ
m´⇠´

s.t. x rw´,�pxpiqqyH ` ✓´ § ⇠´,i i P X´

⇠´ • 0,

(2.6)

where k¨k
H

is the norm induced by x¨, ¨yH, i.e. kzkH :“
a

xz, zyH, with z P H.

As mentioned in Chapter 1, a closed-form expression of the feature map �p¨q is rarely

available, and therefore models (2.5)-(2.6) are not solvable in practice ([73]). Nevertheless,

it is possible to reformulate their duals by applying the so-called kernel trick ([38]). Indeed,

a symmetric and positive semidefinite kernel function k : Rn ˆRn Ñ R is introduced such

that kpx, x1q :“ x�pxq,�px1qyH, for all x, x1 P Rn. Examples of kernels typically used in the

ML literature are reported in Table 2.2. The reader is referred to [131] for a comprehensive

overview on kernel functions.

Thus, the dual problems of models (2.5) and (2.6) can be reformulated in terms of

kp¨, ¨q as:

max
�`

´ 1

2
�J

`KpX`, X`q�` ` ⌫`
m´

eJ
m´KpX´, X`q�`

s.t. eJ
m`�` “ ⌫`

0 § �` § ↵`
m`

,

(2.7)
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Kernel function kpx, x1q Parameter
Homogeneous polynomial kpx, x1q “ pxJx1qd d P N
Inhomogeneous polynomial kpx, x1q “ p� ` xJx1qd � • 0, d P N

Gaussian kpx, x1q “ exp

ˆ
´ kx ´ x1

k
2
2

2�2

˙
� ° 0

Sigmoid kpx, x1q “ tanhpa xJx1 ` bq a P R, b P R

Table 2.2: Examples of kernel functions. The first column reports the name of the kernel functions.
The second column provides their mathematical expressions. Finally, the third column contains
the related relevant parameters.

and

max
�´

´ 1

2
�J

´KpX´, X´q�´ ` ⌫´
m`

eJ
m`KpX`, X´q�´

s.t. eJ
m´�´ “ ⌫´

0 § �´ § ↵´
m´

,

(2.8)

where KpX`, X`q is the matrix of the dot products kpxpiq, xpjqq for i, j P X`. Similarly

with KpX`, X´q, KpX´, X`q and KpX´, X´q.

As in the linear case, once problems (2.7) and (2.8) are solved, the KKT conditions

provide p rw`, ✓`q and p rw´, ✓´q. Hyperplanes rH` and rH´ in the feature spaceH correspond

to kernel-induced decision boundaries S` and S´ in the input space Rn.

Finally, the decision function in the case of binary TPMSVM with nonlinear classifiers

is:

fnonlinpxq :“ sign

ˆx rw`,�pxqyH ` ✓`
k rw`kH

` x rw´,�pxqyH ` ✓´
k rw`kH

˙
.

In Figure 2.2b we depict the separating hypersurfaces S` and S´, along with the

classifier fnonlin “ 0, under a Gaussian kernel.

2.4 A novel multiclass TPMSVM-type model

In this section, we extend the binary TPMSVM approach to the case of multiclass classi-

fication both for linear (Section 2.4.1) and nonlinear (Section 2.4.2) decision boundaries.

Among all the possible formulations, we adopt the one-versus-all strategy thanks to its

reduced computational complexity and good accuracy ([45]).

In the following, we assume that C is the total number of classifying categories and,

for each class c “ 1, . . . , C, the subscript ¨´c will refer to points not in class c.
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2.4.1 The multiclass TPMSVM for linear classification

Let txpiq, ypiqum
i“1 be the set of training samples, with ypiq P t1, . . . , Cu. For each class

c, with c “ 1, . . . , C, we denote by mc the number of observations belonging to class c

and m´c :“ m ´ mc. Matrix Xc P Rnˆmc represents all training data points of class

c. Similarly, for matrix X´c P Rnˆm´c . The corresponding indices sets are Xc and X´c,

respectively, and X :“ Xc Y X´c.

For each class c “ 1, . . . , C we aim to find the best separating hyperplane Hc defined

by equation wJ
c x ` ✓c “ 0, where wc P Rn and ✓c P R are the solutions of the following

QPP:

min
wc,✓c,⇠c

1

2
kwck

2
2 ` ⌫c

m´c

eJ
m´c

`
XJ

´cwc ` em´c✓c
˘

` ↵c

mc

eJ
mc

⇠c

s.t. XJ
c wc ` emc✓c • ´⇠c

⇠c • 0.

(2.9)

Parameters ⌫c ° 0, ↵c ° 0 and slack vector ⇠c P Rmc have an equivalent interpretation

of the corresponding ones in model (2.1).

By introducing the Lagrangian function of problem (2.9), the dual model is given by:

max
�c

´ 1

2
�J
c X

J
c Xc�c ` ⌫c

m´c

eJ
m´c

XJ
´cXc�c

s.t. eJ
mc

�c “ ⌫c

0 § �c § ↵c

mc

,

(2.10)

with optimal solutions derived according to the KKT conditions:

wc “ Xc�c ´ ⌫c
m´c

X´cem´c ✓c “ ´ 1

|Nc|

ÿ

iPNc

xpiqJ
wc,

where Nc is the index set of observations xpiq, with i P Xc, whose corresponding Lagrangian

multiplier �c,i satisfies 0 † �c,i † ↵c{mc.

Once all the C hyperplanes have been determined, we propose two alternatives for the

decision function:

flin,minpxq :“ argmin
c“1,...,C

��wJ
c x ` ✓c

��
kwck2

(2.11)

and

flin,maxpxq :“ argmax
c“1,...,C

wJ
c x ` ✓c
kwck2

. (2.12)

In Figures 2.3a-2.3b we consider a bidimensional toy example with three classes. We

perform classification with both decision function (2.11) and (2.12). Hyperplanes H1, H2,
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H3 are depicted, along with the decision functions. Each of the three regions in black,

white and grey corresponds to one of the three classes, according to equation (2.11) or

(2.12).

(a) Linear multiclass TPMSVM with argmin formula
(2.11)

(b) Linear multiclass TPMSVMwith argmax formula
(2.12)

(c) Nonlinear multiclass TPMSVM with argmin for-
mula (2.16)

(d) Nonlinear multiclass TPMSVM with argmax for-
mula (2.17)

Figure 2.3: Linear and nonlinear classifiers for the case of three-classes TPMSVM. The parameters
are ⌫c “ 0.5, ↵c “ 1 for c “ 1, 2, 3. In the nonlinear case, the inhomogeneous polynomial kernel
with d “ 2 and � “ 1.5 is considered.

2.4.2 The multiclass TPMSVM for nonlinear classification

When dealing with nonlinear classifiers, in the feature space H model (2.9) becomes:

min
rwc,✓c,⇠c

1

2
k rwck

2
H

` ⌫c
m´c

ÿ

iPX´c

px rwc,�pxpiqqyH ` ✓cq ` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. x rwc,�pxpiqqyH ` ✓c • ´⇠c,i i P Xc

⇠c,i • 0 i P Xc,

(2.13)
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which is intractable due to the non-availability of �p¨q. However, the kernel trick applied

to model (2.10) leads to:

max
�c

´ 1

2
�J
c KpXc, Xcq�c ` ⌫c

m´c

eJ
m´c

KpX´c, Xcq�c

s.t. eJ
mc

�c “ ⌫c

0 § �c § ↵c

mc

,

(2.14)

where KpXc, Xcq is the mc ˆ mc matrix with entries kpxpiq, xpjqq for i, j P Xc. Similarly

with KpX´c, Xcq. The KKT conditions provide the optimal solutions p rwc, ✓cq in terms of

�c, namely:

rwc “
ÿ

iPXc

�c,i�pxpiqq ´ ⌫c
m´c

ÿ

iPX´c

�pxpiqq ✓c “ ´ 1

|Nc|

ÿ

iPNc

x�pxpiqq, rwcyH. (2.15)

Within this case, the proposed decision functions are:

fnonlin,minpxq :“ argmin
c“1,...,C

|x rwc,�pxqyH ` ✓c|

k rwckH

(2.16)

and

fnonlin,maxpxq :“ argmax
c“1,...,C

x rwc,�pxqyH ` ✓c
k rwckH

, (2.17)

where, for all c “ 1, . . . , C,

x rwc,�pxqyH “ �J
c KpXc, xq ´ ⌫c

m´c

eJ
m´c

KpX´c, xq,

✓c “ ´ 1

|Nc|

ÿ

iPNc

“
Kpxpiq, Xcq�c ´ ⌫c

m´c

Kpxpiq, X´cqem´c

‰
,

and

k rwck
2
H

“ xwc, wcyH “ �J
c KpXc, Xcq�c ´ ⌫c

m´c

�J
c KpXc, X´cqem´c`

´ ⌫c
m´c

eJ
m´c

KpX´c, Xcq�c ` ⌫2c
m2´c

eJ
m´c

KpX´c, X´cqem´c .

In Figures 2.3c-2.3d we depict the results of model (2.14) when considering the same

toy dataset of Figures 2.3a-2.3b and an inhomogeneous quadratic kernel.
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2.5 The robust model

In this section, we derive the robust counterparts of models (2.9) and (2.13) by con-

structing proper uncertainty sets around data points. The deterministic approaches are

then robustified by optimizing over worst-case realizations of the uncertain data in the

uncertainty sets. Tractable reformulations are finally provided.

Section 2.5.1 considers the robust multiclass TPMSVM for linear classification, while

Section 2.5.2 explores the robust kernel-induced decision boundaries.

2.5.1 The robust TPMSVM for linear multiclass classification

As in Section 1.5.1, we assume that each observation xpiq P Rn is subject to an unknown but

bounded by `p-norm perburbation �piq P Rn, with p P r1,8s. Specifically, the uncertainty

set around xpiq has the following expression:

Uppxpiqq :“
 
x P Rn

|x “ xpiq ` �piq,
����piq

���
p

§ "piq(. (2.18)

The value of the radius "piq • 0 controls the degree of conservatism: when "piq “ 0,

the uncertainty set Uppxpiqq reduces to observation xpiq.

Robustifying model (2.9) against the uncertainty set Uppxpiqq yields the following op-

timization model:

min
wc,✓c,⇠c

1

2
kwck

2
2 ` ⌫c

m´c

ÿ

iPX´c

max
k�piqk

p
§"piq

“`
xpiqJ ` �piqJ˘

wc ` ✓c
‰

` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. xpiqJ
wc ` ✓c • ´⇠c,i i P Xc,@x P Uppxpiqq

⇠c,i • 0 i P Xc.

(2.19)

Since there exists infinite possibilities for choosing x P Uppxpiqq, model (2.19) is in-

tractable. In the following theorem, a tractable closed-form expression is derived.

Theorem 2. Let Uppxpiqq be the uncertainty set as in (2.18), with p P r1,8s. Let p1 be

the Hölder conjugate of p, namely 1{p ` 1{p1 “ 1. The robust counterpart of model (2.9)

is:

min
wc,✓c,⇠c

1

2
kwck

2
2 ` ⌫c

m´c

ÿ

iPX´c

`
xpiqJ

wc ` "piq
kwckp1

˘
` ⌫c✓c ` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. xpiqJ
wc ` ✓c ´ "piq

kwckp1 • ´⇠c,i i P Xc

⇠c,i • 0 i P Xc.

(2.20)
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Proof. Model (2.19) can be expressed as ([14]):

min
wc,✓c,⇠c

1

2
kwck

2
2 ` ⌫c

m´c

ÿ

iPX´c

max
k�piqk

p
§"piq

“`
xpiqJ ` �piqJ˘

wc ` ✓c
‰

` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. min
k�piqk

p
§"piq

“`
xpiqJ ` �piqJ˘

wc

‰
` ✓c • ´⇠c,i i P Xc

⇠c,i • 0 i P Xc.

(2.21)

The maximization term in the objective function corresponds to:

⌫c
m´c

ÿ

iPX´c

max
k�piqk

p
§"piq

“
xpiqJ

wc`�piqJ
wc`✓c

‰
“ ⌫c✓c`

⌫c
m´c

ÿ

iPX´c

ˆ
xpiqJ

wc` max
k�piqk

p
§"piq

“
�piqJ

wc

‰˙
.

By definition of the dual norm ([128]), we get:

max
k�piqk

p
§"piq

�piqJ
wc “ "piq

kwckp1 ,

where p1 is the Hölder conjugates of p. This implies that:

´"piq
kwckp1 § �piqJ

wc § "piq
kwckp1 . (2.22)

Consequently, the second term in the objective function of (2.21) corresponds to:

⌫c✓c ` ⌫c
m´c

ÿ

iPX´c

ˆ
xpiqJ

wc ` "piq
kwckp1

˙
.

As far as it concerns the first set of constraints in (2.21), for all i P Xc we have that:

min
k�piqk

p
§"piq

“
�piqJ

wc

‰
• ´⇠c,i ´ ✓c ´ xpiqJ

wc.

By considering the first inequality in (2.22), the previous minimization problem can

be solved as:

xpiqJ
wc ` ✓c ´ "piq

kwckp1 • ´⇠c,i.

This concludes the proof.

If no uncertainty occurs, "piq “ 0 for all i P X and thus the robust model (2.20) reduces

to the deterministic model (2.9). We notice that model (2.20) is a convex nonlinear

optimization model due to the presence of the `2- and `p1-norm of wc. The quadratic

term kwck
2
2 can be easily transformed from the objective function to the constraints by
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introducing auxiliary variables tc, uc, vc P R ([124]), leading to:

min
wc,✓c,⇠c,tc,uc,vc

1

2
puc ´ vcq ` ⌫c

m´c

ÿ

iPX´c

`
xpiqJ

wc ` "piq
kwckp1

˘
` ⌫c✓c ` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. xpiqJ
wc ` ✓c ´ "piq

kwckp1 • ´⇠c,i i P Xc

tc • kwck2

uc ` vc “ 1

uc •
a
t2
c

` v2
c

⇠c,i • 0 i P Xc.

(2.23)

In the cases of polyhedral (p “ 1q, spherical (p “ 2) and box (p “ 8) uncertainty sets,

model (2.23) reduces to a SOCP problem, as stated in the following result.

Corollary 1. Let Uppxpiqq be the uncertainty set as in (2.18). Model (2.23) can be

expressed as a SOCP problem in the following cases:

a) Case p “ 1:

min
wc,✓c,⇠c,tc,uc,vc,sc

1

2
puc ´ vcq ` ⌫c

m´c

ÿ

iPX´c

`
xpiqJ

wc ` "piqsc
˘

` ⌫c✓c ` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. xpiqJ
wc ` ✓c ´ "piqsc • ´⇠c,i i P Xc

tc • kwck2

uc ` vc “ 1

uc •
a
t2
c

` v2
c

sc • ´wc,j j “ 1, . . . , n

sc • wc,j j “ 1, . . . , n

sc • 0

⇠c,i • 0 i P Xc.

(2.24)

b) Case p “ 2:

min
wc,✓c,⇠c,tc,uc,vc

1

2
puc ´ vcq ` ⌫c

m´c

ÿ

iPX´c

`
xpiqJ

wc ` "piqtc
˘

` ⌫c✓c ` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. xpiqJ
wc ` ✓c ´ "piqtc • ´⇠c,i i P Xc

tc • kwck2

uc ` vc “ 1

uc •
a
t2
c

` v2
c

⇠c,i • 0 i P Xc.

(2.25)
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c) Case p “ 8:

min
wc,✓c,⇠c,tc,uc,vc,sc

1

2
puc ´ vcq ` ⌫c

m´c

ÿ

iPX´c

`
xpiqJ

wc ` "piq
nÿ

j“1

sc,j
˘

` ⌫c✓c ` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. xpiqJ
wc ` ✓c ´ "piq

nÿ

j“1

sc,j • ´⇠c,i i P Xc

tc • kwck2

uc ` vc “ 1

uc •
a
t2
c

` v2
c

sc,j • ´wc,j j “ 1, . . . , n

sc,j • wc,j j “ 1, . . . , n

sc,j • 0 j “ 1, . . . , n

⇠c,i • 0 i P Xc.

(2.26)

Proof. a) If p “ 1, then p1 “ 8. By introducing an auxiliary variable sc • 0 equal to

kwck8, and adding the constraints sc • ´wc,j and sc • wc,j for all j “ 1, . . . , n,

model (2.23) is equivalent to model (2.24).

b) If p “ 2, then p1 “ 2, and so kwckp1 “ kwck2 “ tc. The equivalence between models

(2.23) and (2.25) follows straightforwardly.

c) If p “ 8, then p1 “ 1. In this case model (2.23) can be rewritten as model (2.26)

by introducing an auxiliary vector sc P Rn such that each component sc,j is equal

to |wc,j | and adding the constraints sc,j • 0, sc,j • ´wc,j and sc,j • wc,j for all

j “ 1, . . . , n.

For a general analysis of the case of p P p1,`8q, the reader is referred to [20].

As in the deterministic case, once the optimal solutions pwc, ✓cq are obtained for all

c “ 1, . . . , C, the classification of a new observation is performed according to decision

functions (2.11)-(2.12).

2.5.2 The robust TPMSVM for nonlinear multiclass classification

Similarly to Chapter 1 and [147], we model the uncertainty set in the feature space as

follows:

UH

`
�pxpiqq

˘
:“

 
z P H|z “ �pxpiqq ` r�piq,

���r�piq
���
H

§ r"piq(, (2.27)
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where the perturbation r�piq belongs to H and its H-norm is bounded by r"piq • 0. The value

of the constant r"i may be unknown but depends on the bound "i for the corresponding

uncertainty set Uppxpiqq in the input space. Moreover, perturbation r�piq arises in the feature

space if and only if perturbation �piq in the input space occurs. Thus, "piq “ 0 implies

r"piq “ 0. Closed-form expressions of r"piq for kernel functions typically used in the ML

literature are derived in Chapter 1.

We start by robustifying model (2.13) over the uncertainty set (2.27), obtaining the

following optimization model:

min
rwc,✓c,⇠c

1

2
k rwck

2
H

` ⌫c
m´c

ÿ

iPX´c

max
kr�piqk

H
§r"piq

“
x rwc,�pxpiqq ` r�piqyH ` ✓c

‰
` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. x rwc, zyH ` ✓c • ´⇠c,i i P Xc,@z P UH

`
�pxpiqq

˘

⇠c,i • 0 i P Xc.

(2.28)

As in (2.19), model (2.28) is intractable. However, the following theorem holds.

Theorem 3. Let UH

`
�pxpiqq

˘
be the uncertainty set as in (2.27). The robust counterpart

of model (2.13) is:

min
�c,✓c,⇠c

1

2
�J
c K�c ` ⌫c

m´c

ÿ

iPX´c

„
r"piq

b
�J
c K�c `

ÿ

jPX
�c,jkpxpiq, xpjqq

⇢
` ⌫c✓c ` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. ✓c ´ r"piq
b
�J
c K�c `

ÿ

jPX
�c,jkpxpiq, xpjqq • ´⇠c,i i P Xc

�c,i “ ´ ⌫c
m´c

i P X´c

⇠c,i • 0 i P Xc.

(2.29)

Proof. Model (2.28) is equivalent to:

min
rwc,✓c,⇠c

1

2
k rwck

2
H

` ⌫c
m´c

ÿ

iPX´c

max
kr�piqk

H
§r"piq

“
x rwc,�pxpiqq ` r�piqyH ` ✓c

‰
` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. min
kr�piqk

H
§r"piq

“
x rwc,�pxpiqq ` r�piqyH ` ✓c

‰
• ´⇠c,i i P Xc

⇠c,i • 0 i P Xc.

We notice that:

max
kr�piqk

H
§r"piq

“
x rwc,�pxpiqq ` r�piqyH ` ✓c

‰
“ ✓c ` x rwc,�pxpiqqyH ` max

kr�piqk
H

§r"piq

“
x rwc, r�piqyH

‰
.
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Similarly it can be argued for the minimization problem in the first set of constraints.

By applying the Cauchy-Schwarz inequality in H and the structure of the uncertainty set

(2.27), it holds that:

���x rwc, r�piqyH
��� § k rwckH

���r�piq
���
H

§ k rwckH r"piq.

Therefore, the solutions of the maximization and minimization problems are respec-

tively:

max
kr�piqk

H
§r"piq

“
x rwc,�pxpiqq ` r�piqyH ` ✓c

‰
“ ✓c ` x rwc,�pxpiqqyH ` r"piq

k rwckH

and

min
kr�piqk

H
§r"piq

“
x rwc,�pxpiqq ` r�piqyH ` ✓c

‰
“ ✓c ` x rwc,�pxpiqqyH ´ r"piq

k rwckH .

Consequently, model (2.28) is equivalent to:

min
rwc,✓c,⇠c

1

2
k rwck

2
H

` ⌫c
m´c

ÿ

iPX´c

„
r"piq

k rwckH ` x rwc,�pxpiqqyH
⇢

` ⌫c✓c ` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. ✓c ´ r"piq
k rwckH ` x rwc,�pxpiqqyH • ´⇠c,i i P Xc

⇠c,i • 0 i P Xc.

(2.30)

In the feature space, rwc can be decomposed as a linear combination of mapped input

data by means of �p¨q. Specifically, by considering (2.15), it holds that:

rwc “
ÿ

iPXc

�c,i�pxpiqq ´ ⌫c
m´c

ÿ

iPX´c

�pxpiqq “
ÿ

iPX
�c,i�pxpiqq,

where �c P Rm and �c,i “ ´⌫c{m´c, for all i P X´c. Therefore, the squared norm of rw

corresponds to:

k rwck
2
H

“ x rwc, rwcyH “
ÿ

i,jPX
�c,ikpxpiq, xpjqq�c,j “ �J

c K�c, (2.31)

where K is the kernel matrix, i.e. Kij “ Kji “ kpxpiq, xpjqq, with i, j P X , and the dot

product is:

x rwc,�pxpiqqyH “
ÿ

jPX
�c,jkpxpiq, xpjqq.
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Thus, model (2.30) can be rewritten as:

min
�c,✓c,⇠c

1

2
�J
c K�c ` ⌫c

m´c

ÿ

iPX´c

„
r"piq

b
�J
c K�c `

ÿ

jPX
�c,jkpxpiq, xpjqq

⇢
` ⌫c✓c ` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. ✓c ´ r"piq
b
�J
c K�c `

ÿ

jPX
�c,jkpxpiq, xpjqq • ´⇠c,i i P Xc

�c,i “ ´ ⌫c
m´c

i P X´c

⇠c,i • 0 i P Xc.

This concludes the proof.

Model (2.29) can be easily transformed in the following SOCP problem by introducing

variables tc, uc, vc P R:

min
�c,✓c,⇠c,tc,uc,vc

1

2
puc ´ vcq ` ⌫c

m´c

ÿ

iPX´c

„
r"piqtc `

ÿ

jPX
�c,jkpxpiq, xpjqq

⇢
` ⌫c✓c ` ↵c

mc

ÿ

iPXc

⇠c,i

s.t. ✓c ´ r"piqtc `
ÿ

jPX
�c,jkpxpiq, xpjqq • ´⇠c,i i P Xc

�c,i “ ´ ⌫c
m´c

i P X´c

tc •
b
�J
c K�c

uc ` vc “ 1

uc •
a
t2c ` v2c

⇠c,i • 0 i P Xc.

(2.32)

Once �c and ✓c are found, the classification task of a new observation x P Rn is

performed according to decision functions (2.16) and (2.17), where k rwckH is computed as

in (2.31) and the dot product is:

x rwc,�pxqyH “
ÿ

iPX
�c,ix�pxpiqq,�pxqyH “

ÿ

iPX
�c,ikpxpiq, xq.

2.6 Experimental results

In this section, we investigate the performance of the proposed TPMSVM approaches for

a multiclass classification task.

All models are implemented in MATLAB (version 2021b) and numerical results are

obtained using CVX ([64, 65]) with the solver MOSEK (version 9.1.9, [112]). Computa-
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tional experiments are run on a MacBookPro17.1 with a chip Apple M1 of 8 cores and 16

GB of RAM memory.

The section is structured as follows. A description of the benchmark datasets and the

experimental setting are provided in Section 2.6.1. The performance of the deterministic

approach is presented in Section 2.6.2. Finally, the results for the robust models are

reported in Section 2.6.3.

2.6.1 Datasets and experimental setting

We consider three public-domain real-world multiclass datasets from the UCI Machine

Learning repository (UCI, [76]) and from Open Data Canada (ODC, [115]). A description

of the datasets can be found in Table 2.3. The first three columns report the dataset

name, the source and the application field. The size m of the dataset and the number n of

features are in the fourth and in the fifth columns, respectively. Finally, the last column

reports the number of classifying categories.

Dataset Source Application field Observations Features Classes
Iris UCI Life Sciences 150 4 3
Wine UCI Physical Sciences 178 13 3
Fuel Consumption Ratings ODC Transport 374 7 3

Table 2.3: Summary statistics of considered datasets.

In order to evaluate the performance of the proposed methodology, each dataset is

randomly split into training set and testing set, with a proportion of 75%-25% of the total

number of observations. The partition is performed according to the proportional random

sampling strategy ([34]), implying that the original class balance in the entire dataset is

maintained both in the training and in the testing set. In order to avoid imbalances among

the orders of magnitude of the features, before the training phase each dataset is linearly

scaled into the unit interval r0, 1s.
As far as it concerns hyperparameters in models (2.10) and (2.14), for simplicity we

set ⌫c “ ⌫ and ↵c “ ↵ for all c “ 1, . . . , C, and a grid search procedure ([164]) is applied to

tune their values. Specifically, ↵ is selected from the set t2j |j “ ´6,´5, . . . , 5, 6u, whereas
the value of ⌫{↵ is chosen from the set t0.1, 0.3, 0.5, 0.7, 0.9u. In addition, the parameters

� for the inhomogeneous polynomial kernels and � for the Gaussian kernel take value in

t2j |j “ ´4,´3, . . . , 3, 4u.
The best configuration of parameters is selected as the one maximizing the accuracy

of the model on the training set. Finally, the model is tested on the testing set and the
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corresponding accuracy is computed. In order to get stable results, for each hold-out

75%-25% the computational experiments are performed over 50 di↵erent combinations of

training and testing set, and the results are then averaged.

2.6.2 Results for the deterministic TPMSVM models

Tables 2.4-2.5 report the results of deterministic models (2.9) and (2.14) in terms of per-

centage mean accuracy and standard deviation. For the kernel-induced decision classifiers,

we consider five polynomial kernels (homogeneous quadratic and cubic; inhomogeneous lin-

ear, quadratic and cubic) and the Gaussian kernel. The CPU time for training the model

is outlined below each result.

Deterministic model - argmin decision function
Dataset Kernel

Linear Hom. quadratic Hom. cubic Inhom. linear Inhom. quadratic Inhom. cubic Gaussian

Iris
Accuracy 91.78 ˘ 4.05 76.70 ˘ 4.69 85.95 ˘ 5.43 92.22 ˘ 4.11 91.57 ˘ 3.85 88.27 ˘ 4.93 90.76 ˘ 4.79
CPU time (s) 0.92 5.68 5.60 36.06 54.34 54.83 113.63

Wine
Accuracy 96.91 ˘ 2.28 96.23 ˘ 2.70 94.91 ˘ 2.74 96.95 ˘ 2.58 96.18 ˘ 2.22 96.18 ˘ 2.57 39.45 ˘ 1.10
CPU time (s) 0.84 18.42 18.49 91.77 167.29 169.93 353.39

Fuel
Accuracy 55.55 ˘ 4.77 50.75 ˘ 5.35 51.87 ˘ 5.27 54.90 ˘ 4.36 51.98 ˘ 5.46 54.15 ˘ 5.42 71.91 ˘ 4.19
CPU time (s) 1.07 27.95 28.63 109.94 262.62 263.74 753.60

Table 2.4: Detailed percentage results of average accuracy and standard deviation over 50 runs
of the deterministic model. Classification is performed according to the argmin decision functions
(2.11) and (2.16). The best result for the kernelized model (2.14) is underlined. Overall, the best
result is in bold.

Deterministic model - argmax decision function
Dataset Kernel

Linear Hom. quadratic Hom. cubic Inhom. linear Inhom. quadratic Inhom. cubic Gaussian

Iris
Accuracy 73.30 ˘ 5.11 90.27 ˘ 3.86 89.08 ˘ 8.46 69.41 ˘ 2.86 90.70 ˘ 4.20 93.84 ˘ 4.05 90.76 ˘ 4.79
CPU time (s) 0.85 5.59 5.67 35.76 52.99 53.80 113.10

Wine
Accuracy 96.77 ˘ 2.35 96.09 ˘ 2.83 95.82 ˘ 2.84 97.23 ˘ 2.26 96.18 ˘ 2.49 95.77 ˘ 2.60 39.41 ˘ 1.09
CPU time (s) 0.84 18.23 18.58 90.42 169.06 168.93 352.94

Fuel
Accuracy 58.47 ˘ 3.68 57.01 ˘ 4.88 57.16 ˘ 4.20 56.32 ˘ 7.13 58.09 ˘ 4.92 57.98 ˘ 5.05 68.47 ˘ 2.77
CPU time (s) 0.95 27.95 28.07 109.31 264.03 263.11 750.86

Table 2.5: Detailed percentage results of average accuracy and standard deviation over 50 runs of
the deterministic model. Classification is performed according to the argmax decision functions
(2.12) and (2.17). The best result for the kernelized model (2.14) is underlined. Overall, the best
result is in bold.

First of all, by comparing the third column of each table with the remaining ones, we

notice that model (2.14) outperforms the linear classifier of model (2.9) in all the consid-

ered cases. Secondly, the choice of the decision function impacts on the predictiveness of

the models, especially when considering the Iris dataset. Indeed, in the linear case the

accuracy drops when passing from the argmin decision function (2.11) to the argmax one

(2.12) (91.78% vs 73.30%). On the other hand, when the kernel is homogeneous quadratic

or inhomogeneous cubic the best performance is attained with the argmax decision func-
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tion (76.70% vs 90.27%, and 88.27% and 93.84%, respectively). By comparing the two

tables, it can be argued that both the decision functions lead to comparable accuracy as

best results. Finally, when passing from the linear classifier to nonlinear classifiers the

CPU time increases significantly, especially when considering the Gaussian kernel. For

this reason, the final user should look for a trade-o↵ between accuracy and computational

time when using the proposed methodology.

2.6.3 Results for the robust TPMSVM models

In order to test the robust approaches, we assume that the radius of the uncertainty set

(2.18) in the input space is "piq “ " for all i P X . To make a sensitivity analysis, we

consider three increasing levels of perturbation (" “ 10´3, 10´2, 10´1) and three di↵erent

`p-norms (p “ 1, 2, 8). The results of the computations for the case of robust linear

classification are reported in Tables 2.6-2.7.

Robust model - linear classifier - argmin decision function
Dataset `p-norm p “ 1 p “ 2 p “ 8

" 10´3 10´2 10´1 10´3 10´2 10´1 10´3 10´2 10´1

Iris
Accuracy 92.81 ˘ 3.56 92.59 ˘ 3.85 94.49 ˘ 3.45 92.16 ˘ 3.79 92.81 ˘ 3.52 92.43 ˘ 4.19 92.43 ˘ 3.74 92.27 ˘ 3.28 79.24 ˘ 6.89
CPU time (s) 1.12 1.07 1.06 1.13 1.05 1.03 1.18 1.09 1.09

Wine
Accuracy 96.86 ˘ 2.55 97.00 ˘ 2.13 96.68 ˘ 2.11 96.95 ˘ 2.13 96.73 ˘ 2.35 97.27 ˘ 2.20 97.14 ˘ 2.42 97.41 ˘ 1.89 94.14 ˘ 3.56
CPU time (s) 1.19 1.08 1.09 1.05 1.04 1.04 1.08 1.10 1.12

Fuel
Accuracy 52.28 ˘ 3.78 51.85 ˘ 4.12 52.90 ˘ 3.34 51.57 ˘ 4.50 53.10 ˘ 4.94 53.89 ˘ 4.60 50.60 ˘ 4.82 51.81 ˘ 4.56 50.30 ˘ 3.93
CPU time (s) 1.14 1.12 1.12 1.09 1.09 1.09 1.11 1.13 1.13

Table 2.6: Detailed percentage results of average accuracy and standard deviation over 50 runs
of the robust model for linear classification. Classification is performed according to the argmin
decision function (2.11). The best result for each `p-norm is underlined. Overall, the best result
is in bold.

Robust model - linear classifier - argmax decision function
Dataset `p-norm p “ 1 p “ 2 p “ 8

" 10´3 10´2 10´1 10´3 10´2 10´1 10´3 10´2 10´1

Iris
Accuracy 69.95 ˘ 3.02 69.89 ˘ 2.89 69.41 ˘ 2.81 70.16 ˘ 3.18 69.84 ˘ 2.91 68.92 ˘ 2.80 70.05 ˘ 3.31 70.38 ˘ 3.66 85.35 ˘ 5.76
CPU time (s) 1.09 1.08 1.07 1.13 1.05 1.03 1.08 1.09 1.08

Wine
Accuracy 97.09 ˘ 2.39 96.50 ˘ 2.52 96.64 ˘ 2.31 96.55 ˘ 2.44 96.86 ˘ 2.42 96.41 ˘ 2.52 97.09 ˘ 2.30 96.55 ˘ 2.35 96.27 ˘ 2.78
CPU time (s) 1.09 1.10 1.09 1.06 1.05 1.05 1.10 1.10 1.10

Fuel
Accuracy 54.77 ˘ 5.40 52.45 ˘ 5.26 60.86 ˘ 3.59 54.71 ˘ 5.18 56.17 ˘ 5.52 59.81 ˘ 3.63 55.46 ˘ 5.89 57.29 ˘ 4.88 55.27 ˘ 5.80
CPU time (s) 1.16 1.11 1.11 1.14 1.06 1.05 1.09 1.08 1.09

Table 2.7: Detailed percentage results of average accuracy and standard deviation over 50 runs
of the robust model for linear classification. Classification is performed according to the argmax
decision function (2.12). The best result for each `p-norm is underlined. Overall, the best result
is in bold.

A comparison among the results of Tables 2.6-2.7 with the third column of Tables

2.4-2.5 shows that in five out of six cases the robust model outperforms the corresponding

deterministic formulation. We notice that the performance is particularly good with the

argmax decision function (2.12) and boxed uncertainty set (p “ 8). Since such a kind

of uncertainty set is the widest around the observation, opting for the most conservative
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robust model increases the accuracy and prevents from the worst-case realizations of the

uncertain data.

As far as it concerns the robust multiclass model (2.32) with nonlinear classifier, we

consider as kernel function the one attaining the best accuracy in the deterministic setting

(see the results in bold in Tables 2.4-2.5). The outcomes of the computations are shown

in Tables 2.8-2.9.

Robust model - nonlinear classifier - argmin decision function
Dataset Kernel `p-norm p “ 1 p “ 2 p “ 8

" 10´3 10´2 10´1 10´3 10´2 10´1 10´3 10´2 10´1

Iris Inhom. linear
Accuracy 92.59 ˘ 3.66 92.05 ˘ 3.72 91.95 ˘ 3.56 92.38 ˘ 3.69 92.32 ˘ 3.68 92.43 ˘ 3.45 92.59 ˘ 3.49 91.68 ˘ 3.74 90.70 ˘ 5.63
CPU time (s) 49.66 44.49 46.38 48.61 47.39 47.27 47.36 44.73 44.49

Wine Inhom. linear
Accuracy 96.95 ˘ 2.58 96.86 ˘ 2.15 97.36 ˘ 1.97 96.95 ˘ 2.58 96.82 ˘ 2.20 97.36 ˘ 1.86 97.00 ˘ 2.57 96.50 ˘ 2.21 94.68 ˘ 3.17
CPU time (s) 99.14 94.82 97.70 98.99 97.76 97.59 99.41 98.19 96.83

Fuel Gaussian
Accuracy 59.01 ˘ 4.32 59.41 ˘ 2.97 38.98 ˘ 1.49 59.01 ˘ 4.32 59.41 ˘ 2.97 38.98 ˘ 1.49 60.62 ˘ 3.20 57.39 ˘ 4.67 37.50 ˘ 0.69
CPU time (s) 849.64 834.11 791.15 785.78 834.65 805.44 842.42 836.15 839.08

Table 2.8: Detailed percentage results of average accuracy and standard deviation over 50 runs
of the robust model for nonlinear classification (2.32). Classification is performed according to
the argmin decision function (2.16). For each dataset, the kernel in the second column is chosen
according to the corresponding best deterministic result of Table 2.4. The best result for each
`p-norm is underlined. Overall, the best result is in bold.

Robust model - nonlinear classifier - argmax decision function
Dataset Kernel `p-norm p “ 1 p “ 2 p “ 8

" 10´3 10´2 10´1 10´3 10´2 10´1 10´3 10´2 10´1

Iris Inhom. cubic
Accuracy 94.43 ˘ 3.92 94.27 ˘ 3.77 95.03 ˘ 3.29 94.32 ˘ 3.91 94.22 ˘ 2.78 95.03 ˘ 3.64 94.00 ˘ 3.10 94.59 ˘ 2.89 83.24 ˘ 11.02
CPU time (s) 62.35 60.28 58.80 58.58 57.11 56.45 56.96 58.71 57.95

Wine Inhom. linear
Accuracy 96.82% ˘ 2.56 97.00% ˘ 2.18 96.73% ˘ 2.48 96.77% ˘ 2.25 97.23% ˘ 2.07 96.50% ˘ 2.57 96.82% ˘ 2.56 97.00% ˘ 2.18 96.09% ˘ 3.05
CPU time (s) 98.28 98.51 96.96 99.32 95.68 95.89 97.09 99.51 97.29

Fuel Gaussian
Accuracy 50.94 ˘ 5.20 55.78 ˘ 4.47 50.54 ˘ 5.51 50.94 ˘ 5.20 55.78 ˘ 4.47 50.54 ˘ 5.51 53.90 ˘ 6.64 53.76 ˘ 4.10 52.69 ˘ 6.14
CPU time (s) 848.21 833.59 832.41 807.30 791.32 788.50 786.92 840.70 794.83

Table 2.9: Detailed percentage results of average accuracy and standard deviation over 50 runs
of the robust model for nonlinear classification (2.32). Classification is performed according to
the argmax decision function (2.16). For each dataset, the kernel in the second column is chosen
according to the corresponding best deterministic result of Table 2.5. The best result for each
`p-norm is underlined. Overall, the best result is in bold.

In four out of six cases the robust model provides better results when compared to

the deterministic framework. On the other hand, when considering the Fuel dataset

whose best kernel is the Gaussian one, the results worsen in the robust context. This is

mainly due to the fact that this kind of kernel does not bear strong perturbation in data.

Interestingly, the standard deviations over the 50 runs are in general lower when compared

to the ones in the corresponding deterministic settings, meaning that the methodology is

much more stable.

Finally, the CPU time of the robust approach, with both linear and nonlinear classifiers,

is slightly higher than the one in the deterministic formulation. This is due to the fact

that a SOCP problem is solved instead of a QPP.
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2.7 Conclusions

In this chapter, we have proposed a novel method to address the problem of multiclass

classification by adapting the TPMSVM approach of [116]. Both linear and kernel-induced

decision boundaries have been considered. In order to protect the models against pertur-

bations in the samples, we have constructed bounded-by-`p-norm uncertainty sets around

each input data. This allows to increase the flexibility of the proposed methodology. Ro-

bust counterparts of the deterministic models have been derived both in the case of linear

and nonlinear classifiers, leading to SOCP problems. To evaluate the accuracy of the

proposed methodology, we have performed numerical results on real-world datasets, com-

paring deterministic and robust methods. Di↵erent `p-norms and levels of perturbations

have been explored, as well as decision functions. The experimental analysis has shown

that robust solutions provide higher accuracy when compared to deterministic classifiers.

Further research activities could be focused on robustifying the TPMSVM against

uncertainties in the labels of the training set, by constructing a family of classifiers capable

to cope with uncertainties both in the features and in the labels. The extension of the

TPMSVM methodology to distributionally robust approaches should be investigated too.
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3.1 Introduction

Nowadays, sustainability is at the core of policy agendas and debates worldwide. Accord-

ing to the Sustainable Developments Goals 7 and 11 of the UN 2030 Agenda (see [148])

the global greenhouse gas emissions coming from transportations should be e↵ectively re-

duced. This action can be performed through the promotion of electric and zero emission

vehicles by means of new standards, fiscal incentives and improved consumer information.

To raise consumer awareness and promote green attitudes, in 1999 the European Union

promulgated the “car labelling Directive” (see [52]) to inform consumers about the fuel

consumption CO2 emissions of new passenger cars. Similarly, in 2014 the United States

Environmental Protection Agency introduced the air pollution score as a measurement to

rate the amount of air pollution emitted by a vehicle (see [50]). Recently, in Canada fuel

consumption tests have been performed on new vehicles by using a 5-cycle procedure by

considering both city and highway conditions (see [115]). As in the US, a value ranging

from 0 (worst) to 10 (best) is assigned to each new vehicle. Unfortunately, from a practical

perspective, it is not reasonable to test every new vehicle to measure its fuel consumption.

For these reasons, Operational Research and Machine Learning (ML) techniques should

help policymakers providing new and sustainable solutions.

The aim of this study is to apply the robust Support Vector Machine (SVM) techniques

presented in Chapters 1 and 2 to a classification task related to the pollution emitted by

vehicles.

In the ML literature, such a kind of problem has been addressed in various works.

In all of these studies, cars and trucks are classified on the basis of images properties or

camera detections (see [57]). To the best of our knowledge, the approach proposed in

this chapter is the first that considers the problem of classifying vehicles in terms of their

emissions with a ML perspective and under data uncertainty.

In this chapter, we consider the problem of predicting vehicles smog rating on the

basis of di↵erent characteristics of the vehicle such as engine size, number of cylinders,

fuel consumption and CO2 tailpipe emissions. We tackle the classification task by means of

the novel robust SVM formulations from Chapters 1 and 2. Data uncertainty is explicitly

handled within the models by means of spherical uncertainty sets centered around training

observations. In the following, we provide numerical experiments on synthetic and real-

world datasets with the aim of understanding the advantage of explicitly considering the

uncertainty versus deterministic approaches in the considered application.

The chapter is organized as follows. Section 3.2 describes data and reports the numer-
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ical experiments on both synthetic and real-world datasets. Conclusions of the work are

summarized in Section 3.3.

Throughout the chapter we assume that each of the m vehicles in the dataset is de-

scribed by a n-dimensional vector of features xpiq, related to fuel consumptions and CO2

emissions. A label ypiq P t1, . . . , Cu is attached to each vehicle, denoting the class to which

it belongs, where C being the total number of classes. When dealing with robust models,

we construct around each sample xpiq a spherical uncertainty set U2pxpiqq defined as in

(1.11) with p “ 2, namely:

U2pxpiqq :“
!
x P Rn : x “ xpiq ` �piq, k�piq

k2§ ⌘piq
)
. (3.1)

3.2 Experimental study

This section discusses the numerical experiments. In Subsection 3.2.1 we explore the

performance of the models on a synthetic dataset. Then, we describe the features of the

real-world dataset regarding vehicles emissions (Subsection 3.2.2). Finally, in Subsections

3.2.3-3.2.4 the performance of the models on the basis of classical statistical indicators are

discussed.

All computational experiments are obtained using CVX (see [64, 65]) in MATLAB (v.

2021b) and solver MOSEK (v. 9.1.9, see [112]) on a MacBookPro17.1 with a chip Apple

M1 and 16 GB of RAM.

3.2.1 Synthetic dataset

We start by testing model (1.18) on an artificial example taken from [147]. The dataset is

composed by 37 observations, belonging either to one class (13 observations) or to another

class (24 observations), and characterized by two features. We set parameter ⌫ “ 10 and

for the Gaussian kernel ↵ “ 1 as in [147]. In the uncertainty set (3.1) we take ⌘piq “ ⌘

for all i “ 1, . . . ,m. We start by considering ⌘ “ 0, namely the deterministic case. In this

situation, the optimal separating surfaces are depicted in Figure 3.1.

When ⌘ ° 0 data points are subject to perturbations. Specifically, as in [147] we

study the evolution of the inverse of the margin kuk8, when increasing the value of ⌘.

We consider one hundred evenly spaced values of ⌘ between 0 and ⌘max, where ⌘max is

equal to 0.1191 for the linear kernel and 0.0706 for the Gaussian kernel. Indeed, when the

`2-norm of the perturbation is greater than ⌘max, model (1.18) has as solutions u “ 0 P Rm

and � “ 0. This implies that equation (1.8) is trivially satisfied, regardless of x P Rn.
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(a) Linear kernel

(b) Gaussian kernel

Figure 3.1: Optimal separating surfaces in the deterministic case (model (1.18)).

Therefore, no classification is induced. The results of the analysis are represented in Figure

3.2.

When ⌘ § ⌘max, the quantity kuk´1
8 shows a piecewise-linear trend, depicted as a

solid line with diamonds. In particular, the Gaussian case (Figure 3.2b) shows a more

fragmented evolution when compared to the linear case (Figure 3.2a). However, in both

cases, the occurrence of a point of discontinuity in the evolution of kuk´1
8 results in an

increasing of the number of misclassified points, depicted in percentage as circles. In

addition, there exists a value of ⌘ corresponding to the minimum of kuk´1
8 , respectively

at ⌘ “ 0.1191 and ⌘ “ 0.0143. As in [147], we deduce that when a small uncertainty is
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(a) Linear kernel

(b) Gaussian kernel

Figure 3.2: Plots of the inverse of the margin kuk8 depicted as diamonds (left-hand scale) as
function of ⌘, with the corresponding percentage of misclassified training points (circles, right-
hand scale) (model (1.18)).

considered, the robust classifier has a better generalized margin when compared to the

deterministic case, by allowing the model to protect against uncertainty. For instance, in

the linear case even the introduction of a small uncertainty implies a reduction in kuk´1
8

(from 35.86 to 28.13), without a↵ecting the accuracy (25% of misclassified training points).

Finally, we notice that the order of magnitude of ⌘max is di↵erent between the linear and

the Gaussian kernel. In particular, in the linear case a stronger uncertainty is allowed to

be included in the model, but at the expense of predictive power: the misclassification

error is higher when compared to the Gaussian kernel. Therefore we can conclude that
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there exists a trade-o↵ between the maximum level of allowed uncertainty and performance

accuracy.

3.2.2 Real-world dataset description

Real-world data on the fuel consumption ratings on 374 di↵erent vehicles in the first

months of 2023 are taken from [115]. Specifically, we focus our attention on the vehicles

whose fuel type is “regular gasoline” because they are the most polluting. Each vehicle

is described by 7 attributes: engine size (range 1.2 ´ 8), number of cylinders (range 3

´ 16), fuel consumptions rating in city (range 4.4 ´ 30.3), fuel consumptions rating in

highway (range 4.4 ´ 20.9), combined city-highway fuel consumptions rating (range 4.4

´ 26.1), tailpipe emissions of CO2 for combined city-highway driving (range 104 ´ 608),

and tailpipe emissions of CO2 rating (range 1 ´ 9). Each vehicle is labelled according to

the tailpipe emissions of smog-forming pollutants rate and assigned to one of the following

categories: 3 (worst emissions), 5, 6, 7, 8 (best emissions).

The distribution of vehicles among the di↵erent classes is reported in Table 3.1.

Smog rating score Class Number of vehicles Class distribution
3 1 15 4.01%
5 2 127 33.96%
6 3 83 22.19%
7 4 145 38.77%
8 5 4 1.07%

Table 3.1: Distribution of vehicles among classes in the considered datasets.

In the following, we report the performance of the models from Chapter 1 (Subsection

3.2.3) and Chapter 2 (Subsection 3.2.4) on the considered dataset. In both cases, the

dataset has been divided into training set and testing set through a kF -fold cross-validation

technique. Further details on the procedure are provided below.

3.2.3 Model (1.18) validation

We start by considering model (1.18). Since this formulation performs a binary classifica-

tion, we aggregate vehicles in classes 3-5-6 (bad smog rating, 60.16% of the vehicles) and

vehicles in classes 7-8 (good smog rating, 39.84% of the vehicles).

For the cross-validation, we consider kF “ 20 folds. For each fold s, the classifier of

model (1.18) has been trained on 356 points outside the subsample, and tested on the 18
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points of the fold. Associated with fold s, the quality of the solution has been measured

through the following indicators:

As :“
TPs ` TNs

TPs ` FPs ` TNs ` FNs

, FPRs :“
FPs

FPs ` TNs

, Ps :“
TPs

TPs ` FPs

,

where TPs stands for true positive, TNs for true negative, FPs for false positive, and FNs

for false negative. Finally, the results are averaged, obtaining:

Accuracy :“

20ÿ

s“1

As

20
, False Positive Rate :“

20ÿ

s“1

FPRs

20
, Precision :“

20ÿ

s“1

Ps

20
.

As in Subsection 3.2.1, we set ⌫ “ 10 and for the Gaussian kernel ↵ “ 1. For the robust

model, as in [53] we set ⌘piq “ ⌘ for all i “ 1, . . . ,m, and considering three increasing levels

⌘ of uncertainty, namely 0.001, 0.005, 0.01. The results of the simulations are reported in

Table 3.2.

Linear kernel Gaussian kernel
Deterministic Robust Deterministic Robust

⌘ 0 0.001 0.005 0.01 0 0.001 0.005 0.01
Accuracy 76.43% 77.78% 81.33% 76.92% 71.10% 73.27% 72.91% 65.04%
False Positive Rate 12.46% 11.36% 15.04% 14.28% 23.33% 17.35% 11.59% 6.59%
Precision 77.38% 78.64% 74.52% 74.45% 71.24% 71.09% 75.15% 74.17%
CPU time (s) 9.72 9.50 9.57 9.68 9.54 9.56 9.43 9.37

Table 3.2: Performance of model (1.18) measured by di↵erent indicators. For each kernel and for
each indicator, the best result is underlined. Overall, the best performance is highlighted in bold.

It can be noted that all indicators benefit from including uncertainties in the pro-

posed formulations. The highest levels of accuracy (81.33%) and of precision (78.64%) are

achieved by the linear kernel, respectively with ⌘ “ 0.005 and ⌘ “ 0.001. Conversely, with

the Gaussian kernel and ⌘ “ 0.01 the minimum false positive rate is attained (6.59%). It

is worth noticing that, from a practical perspective, it is worse to classify a vehicle with

“bad smog rating” in the class of vehicles with “good smog rating” than the opposite.

Therefore, it is reasonable to consider a more conservative model with good accuracy and

low false positive rate. Consequently and similarly to the artificial example in Section

3.2.1, a trade-o↵ between the average performance of the model and its ability to protect

against uncertainty needs to be taken into account.

In Figures 3.3 we report the confusion matrices of the average results both for the

deterministic and “best robust” models in terms of false positive rate. In line with the

previous reasoning, we focus our attention to the first row of each matrices, namely to the

true and predicted negative samples. It can be noted that within the linear kernel (Figures

3.3a-3.3b) the increase of uncertainty causes a slight better performance (from 12.4% to

11.6% for the false positive samples). On the other hand, when the kernel is Gaussian,
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Figure 3.3: Row-normalized confusion matrices. The “best robust” corresponds to the best per-
formance in terms of false positive rate (model (1.18)).

the percentage of false positive drops significantly (from 23.6% to 6.7%), meaning that

the model is protected against type I error (Figures 3.3c-3.3d).

As far as it concerns the computational time, no significant di↵erence can be high-

lighted because they are all LP problems (see Table 3.2). In particular, each formulation

is solved on average in 9.55 seconds.

3.2.4 Model (2.20) validation

Since in this case we deal with multiclass classification, it is not correct to refer to positive

or negative observations. For this reason, we measure the performance of model (2.20)

only in terms of the accuracy. Specifically, for each fold s “ 1, . . . , kF and for each class

c “ 1, . . . , C, the quality of the solution has been measured by means of an in-class

accuracy, defined as:

As

c :“
number of testing points correctly classified in class c

number of testing points in class c
.
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In addition, for each fold s the overall performance of the classification process has

been validated through an aggregate accuracy measure, computed as:

As :“ number of testing points correctly classified

number of testing points
.

Finally, the results are averaged:

Accuracy for class c :“

kFÿ

s“1

As

c

kF
, Accuracy :“

kFÿ

s“1

As

kF
.

Since class 5 contains only 4 samples (see Table 3.1), we set kF “ 4. As in [116],

we normalize data such that the features locate in r0, 1s. We validate model (2.20) by

comparing the results with the One-Versus-Rest multiclass TWin Support Vector Machine

(OVR TWSVM) presented in [45]. The choice is motivated by the fact that both model

(2.20) and OVR TWSVM are one-versus-all approaches, considering each class one at

a time in the training process. For brevity’s sake, regularization parameters are set to

⌫c “ ⌫ and ↵c “ ↵ for all c “ 1, . . . , C and a grid search procedure is applied to tune their

values. Specifically, ↵ is selected from the set t2j |j “ ´5,´4, . . . , 4, 5u, and the value of

⌫{↵ is chosen from the set t0.1, 0.3, 0.5, 0.7, 0.9u. The degree of perturbation ⌘piq in the

uncertainty set (3.1) is assumed to be equal to ⌘ for all i “ 1, . . . ,m. In particular, we

consider ⌘ “ 0, i.e. no perturbation, and three increasing levels of uncertainty, namely

0.001, 0.01 and 0.1. The final decision function is given by equation (2.11).

The results of the simulations are shown in Table 3.3.

OVR TWSVM Deterministic model Robust model
[45] (2.20) (2.20)

⌘ 0 0 0.001 0.01 0.1
Accuracy for class 1 0.00% 0.00% 0.00% 0.00% 0.00%
Accuracy for class 2 40.42% 51.99% 45.61% 67.06% 61.82%
Accuracy for class 3 7.50% 5.95% 13.39% 0.00% 0.00%
Accuracy for class 4 73.84% 73.03% 69.63% 75.11% 77.46%
Accuracy for class 5 50.00% 50.00% 50.00% 0.00% 0.00%
Accuracy 44.39% 47.85% 45.98% 51.89% 51.05%
Time (s) 0.513 0.717 0.719 0.697 0.662

Table 3.3: Performance of model (2.20) on real-world data on fuel consumption (see [115]). For
each indicator, the best result is highlighted in bold.

First of all, we notice that our deterministic formulation (2.20) with ⌘ “ 0 outperforms

OVR TWSVM from [45] in terms of overall accuracy (47.85% vs 44.39%). Secondly, the

majority of the indicators benefit from including uncertainties in the proposed formu-
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lations. The overall accuracy across the di↵erent levels of perturbation is higher when

compared to the deterministic case (47.85%), with the best result (51.89%) attained at

⌘ “ 0.01. Nevertheless, due to the limited number of observations in classes 1 and 5 (see

Table 3.1), both models are no longer able to predict the correct smog rating score in these

classes. Specifically, class 5 does not gain additional accuracy improvement adding noise

to the data. This is to be expected since in these cases specific techniques for handling rare

events should be implemented (see [27, 67]). However, this is out of scope of the chapter.

When considering the confusion matrices, both deterministic formulations predict 60.0%

of the observations in class 1 to be in classes 3, 4 or 5, whereas the value decreases to

33.3% with the robust model (2.20) with ⌘ “ 0.01. From a practical perspective, since

class 1 is the most polluting, a robust approach may be suitable in order to protect the

model against this type of misclassification error.

With the aim of evaluating the performance of our model, we aggregate data with bad

smog rating (scores 3-5), and with good smog rating (scores 7-8). With this choice, the

dataset is partitioned into three main categories: class 1̃ (bad emissions), class 2̃ (medium

emissions), class 3̃ (good emissions). The corresponding distribution of observations in

each class is 37.97%, 22.19%, 39.84%, respectively.

The results of the computational experiments on the reduced dataset with 3 classes

are shown in Table 3.4.

OVR TWSVM Deterministic model Robust model
[45] (2.20) (2.20)

⌘ 0 0 0.001 0.01 0.1
Accuracy for class 1̃ 61.81% 54.43% 50.81% 64.90% 61.81%
Accuracy for class 2̃ 10.77% 26.73% 41.07% 9.58% 4.76%
Accuracy for class 3̃ 70.63% 76.49% 69.81% 73.83% 81.88%
Accuracy 54.01% 56.67% 56.17% 56.15% 57.21%
Time (s) 0.321 0.424 0.411 0.436 0.424

Table 3.4: Performance of model (2.20) in the case of 3 classes. For each indicator, the best result
is highlighted in bold.

The comparison between the results of OVR TWSVM from [45] and our formulation

leads to the same conclusion as in the case of 5 classes, having an overall accuracy of 56.67%

vs 54.01% in the deterministic case. Besides, the robust formulation allows to increase the

overall accuracy level to 57.21% when ⌘ “ 0.1. In addition, the predictive power of the

models with 3 classes is always higher than with 5 classes, meaning that unbalanced data

may disrupt the reliability of the solution. When including uncertainty, each class benefits

at di↵erent extents: classes 1̃ and 3̃ withstand strong degrees of uncertainty (⌘ “ 0.01 or

0.1), whereas class 2̃ takes advantages only with low perturbations (⌘ “ 0.001). It is
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worth noticing that, from a practical perspective, it is worse to misclassify a vehicle with

“bad emission”(class 1̃) than the other cases. Therefore, it is reasonable to consider a

strong robust model with ⌘ “ 0.01 or 0.1 which attains a good accuracy for class 1̃.

Consequently, a trade-o↵ between the performance of the model and its ability to protect

against uncertainty needs to be taken into account.

As far as it concerns timing, the OVR TWSVM has a faster learning speed when com-

pared to our formulation, but with a lower predictive power. Moreover, since both OVR

TWSVM and model (2.20) are one-versus-all approaches, requiring to solve C optimiza-

tion subproblems, the CPU time depends on the number of classes. Within our examples,

when passing from 3 to 5 classes, an average increase of 62% of the learning time occurs.

3.3 Conclusions

This chapter presents novel optimization approaches to classify vehicles in terms of smog

rating emissions under uncertainty as Support Vector Machine tasks. The techniques

proposed in Chapters 1 and 2 help decision makers to rank passenger cars in terms of their

pollution emissions. Given the uncertain nature of real-world data features, we formulate

robust optimization models with spherical uncertainty sets around samples. The numerical

results show the good performance of the proposed formulations, especially when including

uncertainty, both in synthetic and real-world datasets.
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4.1 Introduction

In recent years, the importance of sustainable waste management processes has been

recognized worldwide (see, for example, the new Circular Economy Action Plan [51]).

These practices involve decisions at di↵erent levels (strategical, tactical, and operational),

depending on the duration of the considered period (see [62] for a general survey), and

combine di↵erent aspects. Among them, the e�ciency of the waste collection operation

of recyclable materials is a problem that needs to be addressed (see [18]). Traditionally,

waste collection is based on static and pre-defined routes, based on average data about

bins filling rate and then executed on a regular basis regardless of actual bin filling (see

[42]). These practices may imply high rates of resources’ ine�ciencies, due to too early

collection of not filled bins, or to poor service level because of too late collections.

The great majority of the literature on waste collection models considers deterministic

formulations (see, for instance, [1, 42, 43]), where all the parameters are known when mak-

ing decisions. Nevertheless, this assumption may not be true in all cases, as uncertainties

exist namely on the traveling time as well as on the accumulation rate of waste in the bins

(see [42]). In such a complex framework, Stochastic Optimization techniques (see [19])

may help service providers to implement cost-e↵ective decision plans.

Motivated by the uncertain and dynamic nature of the waste accumulation, in this

chapter we formulate a multi-stage linear mixed-integer stochastic optimization model for

recyclable waste collection. The waste operator company is required to make decisions

at tactical level in a mid-term time horizon, regarding waste bins selection over time and

their combination into vehicle routes. The aim of the planning is to maximize the profit,

given by the di↵erence between the revenues from selling the collected waste and the

transportation costs.

This type of problems are among the most challenging in the literature, combining

stochasticity and discrete decisions. Exact solution methods are in general based on branch

and bound type algorithms or branch and price methods. Since the size of stochastic opti-

mization model grows exponentially with respect to the number of stages and of scenarios,

heuristic algorithms are needed. On this purpose, we adopt the rolling horizon approach

(see [32]), a classical heuristic for multi-stage stochastic problems. According to this tech-

nique, the model is decomposed into a sequence of subproblems defined over a reduced

time horizon. The model is solved starting from the first time period and the value of the

first-stage variables is captured. The procedure is then repeated starting from the second

stage and so on until the end of the time horizon.
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The proposed stochastic formulation is tested on instances of di↵erent sizes, based on

real data, and the results are validated by means of classical stochastic measures.

The main contributions of this chapter can be summarized as follows:

• To develop a multi-stage stochastic optimization model for the waste collection in-

ventory routing problem;

• To apply the rolling horizon approach to solve the model and to analyze its worst-

case performance;

• To provide numerical experiments with the aim of:

(1) validating the model in terms of in-sample stability (see [75]);

(2) measuring the impact of uncertainty and the quality of the deterministic solu-

tion in a stochastic setting;

(3) evaluating the performance of the rolling horizon approach in terms of optimal

objective function value and reduction of CPU time;

(4) testing the e↵ectiveness of the proposed methodology on a real case study.

The remainder of the chapter is organized as follows. Section 4.2 reviews the existing

literature on the problem. In Section 4.3, the waste collection problem is described and a

multi-stage stochastic programming model is formulated. Section 4.4 describes the rolling

horizon approach and provides a worst-case analysis on its performance. In Section 4.5,

the computational results are shown and the managerial insights are discussed. Finally,

Section 4.6 concludes the chapter.

4.2 Literature review

Waste collection problems are mostly modeled in the literature as Vehicle Routing Prob-

lems (VRPs), where a predefined set of bins to be collected is considered and routes are

defined accordingly, by minimizing, for instance, the total travelled distance (see [145] for

a comprehensive overview on VRPs). In recent years, such kind of problems have been

widely studied and extended, in order to include di↵erent features. In [54], a Capacitated

Vehicle Routing Problem (CVRP) in which garbage trucks have limited carrying capac-

ity is studied; in [3], a Periodic Vehicle Routing Problem (PVRP) is designed such that

visiting schedules on a given time horizon are associated with each container; in [127], a

Vehicle Routing Problem with Profits (VRPP) is developed, where the profit comes from

selling the collected waste to a recycling company.
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Inventory Routing Problem (IRP) is an extension of VRP because it integrates in-

ventory management and vehicle routing decisions over a medium or long-term planning

period. In the classical IRP, three di↵erent decisions have to be made: when to restock the

customers’ inventories, how much product to deliver, and how to combine customers into

vehicle routes. In the special case of waste collection, the flows are reversed because the

aim of visiting is collecting rather than delivering and the decision on how much to collect

is not important, because waste bins will always be fully emptied (see [109]). According

to [103], IRP models in reverse logistics are mostly motivated by real case studies, by con-

sidering the collection of specific waste products: paper and cardboard ([43]), paper and

glass ([21, 49]), white glass ([107]), waste vegetable oil ([1, 2, 25, 26]), infectious medical

waste ([113]), components from end-of-life vehicles ([83]).

In the classical IRP models, all the involved parameters are treated as determinis-

tic, i.e. they are assumed to be already known when taking decisions. Nevertheless,

stochasticity may corrupt routing problems at di↵erent levels ([61]): stochastic customers,

stochastic demand, and stochastic travel times. In the waste collection context, a high

degree of uncertainty may a↵ect waste production (i.e. the demand), that in general

disrupts the reliability of the solution made by service providers through deterministic

approaches. As an attempt to reduce uncertainty, in some areas waste containers are

equipped with volumetric sensors that communicate their waste level to the waste man-

ager. Basing on the transmitted real-time information, the collection is thus planned. In

[127], the Smart Waste Collection Routing Problem (SWCRP) is introduced, where the

sensors’ usage is combined with optimization procedures to guarantee the maximization

of the waste collected, at lowest transportation cost. In [55], a scheduling of weekly waste

collection activities for multiple types of waste is derived, by considering sensors both on

underground containers and inside garbage trucks. However, these contributions do not

include uncertainty directly in the optimization model. A comprehensive survey on oper-

ational research applied to solid waste management with specific focuses on uncertainty

can be found in [62].

Whenever the supplier has access to some information about the probability distri-

bution of customer’s demand, the IRP falls within the framework of Stochastic Inventory

Routing Problem (SIRP). The reader is referred to [37] and [111] for an exhaustive analysis

of the literature on IRP and particularly on SIRP. Stochastic programming, robust opti-

mization and chance-constrained optimization ([113, 139, 140]) are some of the paradigms

recently explored to cope with uncertainty in SIRP models. On the other hand, includ-

ing stochasticity in IRP models increases dramatically the computational tractability.
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Therefore, heuristic methods are needed, especially when solving large instances. In the

following, we limit our attention to heuristics applied to the waste collection problem

under uncertainty.

In [109], a simple heuristic is designed to identify containers that must be visited or may

be visited, and combined in an e�cient route. If it is convenient, additional containers are

added and therefore emptied. In [3], a tabu search for waste collection with intermediate

facilities is applied. Starting from an initial solution, in its neighborhood a new solution

minimizing a penalized cost function is searched. If it is feasible and attains a better

objective function value, then it is considered as the current best solution; otherwise, the

search continues until a stopping criterion is met. In [114], the authors describe the zoning

of a service territory as a stochastic periodic VRP with time windows, and they solve the

problem by a metaheuristic. In their work the stochasticity lies in the accumulation rate

of waste in each bin, and in the travel times. In [43], a dynamic approach to solve the

SWCRP is proposed, by applying a combination between the rolling horizon approach

and the relax-and-fix heuristic. Recently, in [42] a solution methodology for the SWCRP

with workload concerns is explored. Similarly as before, to tackle the complexity of the

model, a look-ahead heuristic in a first phase and either an optimisation-based approach

or a hybrid metaheuristic approach in a second phase are considered. In [107], historical

data and forecasting techniques are used to estimate the expected containers’ filling rate

over the planning horizon and to derive the distribution of the overflow probability. Then,

an Adaptive Large Neighborhood Search (ALNS), with search guiding principle based on

simulated annealing is applied, along with a rolling horizon approach.

In this work, we test the performance of a rolling horizon approach for the waste

collection problem within the paradigm of SIRP. This approach has been extensively used

in the literature (see [31] for a classified bibliography and [95] for the definition of rolling

horizon measures). Among its applications to general transportation problems, we mention

the works by [28, 97, 135]. In [12] a worst-case analysis of the rolling horizon approach

for a stochastic multi-stage fixed charge transportation problem is provided.

4.3 Problem description and formulation

A company is responsible for the collection of a recyclable type of waste in a set of N

locations (bins or containers) over a time horizon T “ t1, . . . , T u. The collection network

is represented as a complete directed graph, defined on a set of vertices I “ t0, 1, . . . , Nu
where 0 denotes the depot. Distances dij are associated with each arc pi, jq P I ˆ I in
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the graph. The company needs to determine at stage t “ 1 which waste bins have to be

visited and the visiting sequence for all stages t P T
2 “ t2, . . . , T u. The choice has to

be performed with the aim of maximizing the profit over the whole planning horizon T ,

defined as the di↵erence between the revenues from the selling of the collected waste and

the transportation costs. The waste is sold at unit price R and the travelling cost per

distance unit is fixed to C.

Each bin i P I
1 “ t1, . . . , Nu has a fixed capacity Ei and in the first stage (t “ 1) it is

supposed to be filled at Sinit

i
percent of its volume. If we assume that the accumulation

rate of waste taptq
i

uT
t“1 of bin i is a random parameter evolving as a discrete-time stochastic

process with support r0, 1s, then the information structure can be described in the form

of a scenario tree. At each stage t P T , there is an ordered set N t “ t1, . . . , n, . . . , ntu of

nodes where a specific realization of the uncertain accumulation rate takes place. At the

first stage it is associated a unique node N
1 “ t1u, i.e. the root, whereas the final nT

nodes are the leaves of the scenario tree. At stage t P T
2, each node n P N

t is connected

to a unique node at stage t ´ 1, which is called parent (or ancestor) node papnq. A path

through nodes from the root to a leaf is called scenario. At each stage t P T , each node

n P N
t has a probability ⇡n to occur, and

∞
nPN t ⇡n “ 1. We denote the accumulation

rate for bin i at node n P N
t, t P T

2 by an
i
.

At each stage t P T
1 “ t1, . . . , T ´ 1u, we define binary decision variables xt

ij
and yt

i
.

The former is related to the activation of the arc pi, jq in period t ` 1. Indeed, at each

stage the model plans for the next stage, by reflecting what happens in practice for the

scheduling of the resources in a waste collection company. If xt
ij

is equal to one, then

the arc pi, jq will be traversed by a vehicle, with finite capacity Q. All the variables xt
ij

are defined on the whole graph. Indeed, we assume that, in the collection period, the

vehicle starts at the depot, visits the selected bins and returns to the depot to discharge

the waste. As far as it concerns the decision variables yt
i
, if bin i P I

1 needs to be visited

in period t ` 1, then variable yt
i
is equal to one at stage t. After the realization of the

accumulation rate, the amount of waste collected at bin i is denoted by wn

i
, for n P N

t,

t P T
1. In Figure 4.1 we provide an example of a planning for an horizon of six days.

At stage t P T
1 and for nodes n P N

t, additional decision variables are fn

ij
representing

the waste flow shipped through arc pi, jq. We assume that the waste flow outgoing depot

is zero. Finally, for all the time periods, we denote by un
i
the accumulated amount of

waste at bin i. By avoiding partial collection, when bin i is visited, un
i
is null.
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Figure 4.1: Example of a collection plan with 5 bins. On the left: collection routes for day 2 (bins
1, 2) and day 5 (bins 5, 4, 3). On the right: table with active binary decision variables xt

ij
and yt

i

and corresponding visiting sequence.

Moreover, we define the following notation.

Sets:

I “ ti : i “ 0, 1, . . . , Nu: set of N waste bins and the depot, denoted by 0;

I
1 “ ti : i “ 1, . . . , Nu: set of N waste bins (depot excluded);

T “ tt : t “ 1, . . . , T u: set of stages;
T

1 “ tt : t “ 1, . . . , T ´ 1u: set of stages (last stage excluded);

T
2 “ tt : t “ 2, . . . , T u: set of stages (first stage excluded);

N
1 “ tn : n “ 1u: root node at stage 1;

N
t “ tn : n “ 1, . . . , ntu: set of ordered nodes of the tree at stage t P T .

Deterministic parameters:

C: travelling cost per distance unit;

R: selling price of a recyclable material;

Q: vehicle capacity;

B: waste density;

M : Big-M number, i.e. a suitable large constant value;

dij : distance between i P I and j P I;

Sinit

i
: percentage of waste on the total volume of bin i P I

1 at the first stage;

Ei: capacity of bin i P I
1;

papnq: parent of node n P N
t, t P T

2.

Stochastic parameters:

an
i
: uncertain accumulation rate of bin i P I

1 at node n P N
t, t P T

2 (percentage on the

total volume of the bin);

⇡n: probability of node n P N
t, t P T .

Decision variables:

xt
ij

P t0, 1u: binary variable indicating if arc pi, jq is visited at time t ` 1, with t P T
1 and

for i, j P I, i ‰ j;
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yt
i

P t0, 1u: binary variable indicating if waste bin i P I
1 is visited at time t ` 1, with

t P T
1;

fn

ij
P R`: nonnegative variable representing the flow between i P I

1 and j P I, i ‰ j, for

n P N
t, t P T

2;

wn

i
P R`: nonnegative variable representing the amount of waste collected at bin i P I

1,

for n P N
t, t P T

2;

un
i

P R`: nonnegative variable representing the amount of waste at bin i P I
1, for n P N

t,

t P T .

We propose the following stochastic multi-stage mixed integer linear programming

model M:

max R
ÿ

tPT 2

ÿ

nPN t

⇡n
ÿ

iPI1
wn

i
´ C

ÿ

tPT 1

ÿ

i,jPI
i‰j

dijx
t

ij
(4.1)

s.t.
ÿ

jPI
j‰i

fn

ij
´

ÿ

jPI1
j‰i

fn

ji
“ wn

i
i P I

1, n P N
t, t P T

2 (4.2)

fn

ij
§ pQ ´ EjBan

j
qxt´1

ij
i, j P I

1, i ‰ j, n P N
t, t P T

2 (4.3)

fn

i0 § Qxt´1
i0 i P I

1, n P N
t, t P T

2 (4.4)

fn

ij
§ Q ´ wn

j
i, j P I

1, i ‰ j, n P N
t, t P T

2 (4.5)

fn

ij
• wn

i
´ Mp1 ´ xt´1

ij
q i P I

1, j P I, i ‰ j, n P N
t, t P T

2 (4.6)
ÿ

jPI
j‰i

xt

ij
“ yt

i
i P I

1, t P T
1 (4.7)

ÿ

iPI
i‰j

xt

ij
“ yt

j
j P I

1, t P T
1 (4.8)

ÿ

iPI1
xt

i0 “
ÿ

jPI1
xt

0j t P T
1 (4.9)

wn

i
§ EiByt´1

i
i P I

1, n P N
t, t P T

2 (4.10)

un

i
§ Mp1 ´ yt´1

i
q i P I

1, n P N
t, t P T

2 (4.11)

un

i
“ EiBSinit

i
i P I

1, n P N
1 (4.12)

un

i
“ upapnq

i
` EiBan

i
´ wn

i
i P I

1, n P N
t, t P T

2 (4.13)

upapnq
i

§
`
1 ´ an

i

˘
EiB i P I

1, n P N
t, t P T

2 (4.14)

xt

ij
P t0, 1u i, j P I, i ‰ j, t P T

1 (4.15)

yt
i

P t0, 1u i P I
1, t P T

1 (4.16)

fn

ij
• 0 i P I

1, j P I, i ‰ j, n P N
t, t P T

2 (4.17)

wn

i
• 0 i P I

1, n P N
t, t P T

2 (4.18)

un

i
• 0 i P I

1, n P N
t, t P T (4.19)
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The objective function (4.1) is composed by the following terms: (i) the revenues

from selling the expected collected waste and (ii) the transportation cost, depending on

the routing plan and on the total travelled distance. Constraints (4.2) guarantee the flow

balance at each waste bin i, for every node n P N
t and for every period t P T

2. Constraints

(4.3) to (4.5) provide upper bounds on the flow variables fn

ij
, for each node n P N

t at stage

t P T
2. Specifically, constraints (4.3) guarantee that if bins i and j are not connected, then

the waste flow between them is zero; otherwise, its sum with the uncertain accumulation

amount of waste at j cannot exceed the vehicle capacity. Similarly for constraints (4.4) as

far as it concerns the flow between bin i and the depot, once the arc pi, 0q is activated: the
vehicle cannot transport to the depot more waste than its capacity. Finally, constraints

(4.5) ensure that the sum of the waste flow between bins i and j and the amount of waste

collected at bin j cannot exceed the vehicle capacity. Constraints (4.6) provide lower

bounds on the flow variable fn

ij
such that if the vehicle travels from bin i to bin j or from

bin i to the depot, with n P N
t and t P T

2, all of the accumulated amount of waste at bin

i should be collected. Constraints (4.7) and (4.8) link together the decision variables xt
ij

and yt
i
for each stage t P T

1 and ensure that, if bin i is visited, then there exists exactly

one route reaching and one route leaving i; on the other hand, no visits at bin i imply

no incoming edges to and no outgoing edges from i. Constraints (4.9) impose the depot’s

balance by enforcing that the numbers of incoming and outgoing edges are the same for

every period t P T
1. This means that, whether the vehicle performs a route starting from

the depot, then it must return to the depot. Constraints (4.10) ensure that the collection

amount wn

i
at bin i in node n P N

t, for t P T
2 must be zero, unless the bin is visited.

Constraints (4.11) guarantee that the amount of waste un
i
at bin i at node n P N

t and

stage t P T
2 must be zero if the bin is visited. Constraints (4.12) fix the initial amount

of waste un
i
at bin i at the root of the scenario tree. Constraints (4.13) update at every

node n P N
t and for every period t P T

2 the amount of waste un
i
at bin i by incorporating

the uncertain accumulated amount of waste and, potentially, by subtracting the amount

of collected waste wn

i
. Constraints (4.14) impose that no bins are allowed to overflow at

each node n P N
t, t P T

2. Finally, constraints from (4.15) to (4.19) define the decision

variables of the problem. We denote by z˚ the optimal expected profit of model M.

4.3.1 A two-commodity flow model

In model M, the distances between two locations are considered as asymmetric, i.e. in

general dij ‰ dji, for i, j P I. This assumption impacts not only the objective function

(4.1), but also both the constraints (4.2) and (4.4)-(4.6) related to the flow variables fn

ij
,
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and the degree constraints (4.7)-(4.9) on variables xt
ij
and yt

i
. This leads to an increase of

the size of the model, due to a considerable number of inequality constraints.

In practical cases, however, distance dij and dji may not be significantly di↵erent and

considering a symmetric distance matrix does not result in a considerable worsening of

the solution. For this reason, we design an alternative version of model M, denoted by

Msym, based on the two-commodity flow formulation proposed in [6] and applied to a

waste collection problem in [127]. Hence, a copy depot denoted by N ` 1 is introduced

and each route is defined according to two paths: one from depot 0 to depot N ` 1, with

variables fn

ij
representing the load of the vehicle, and one reversed, from depot N ` 1 to

depot 0, with variables fn

ji
denoting the empty space of the vehicle (see Figure 4.2 for an

illustrative example).

0
Real depot

5

1

4

6

Copy depot

3

2

f
n
05 “ 0

f
n
54 “ 3

f
n
43 “ 4

f
n
36 “ 7

f
n
50 “ 7

f
n
45 “ 4

f
n
34 “ 3

f
n
63 “ 0

Figure 4.2: Representation of the two-commodity flow formulation on the same network of Figure
4.1. A copy depot (vertex 6) is introduced, and the truck capacity Q is set to 7. The solid lines
represent the actual visiting sequence, starting from the real depot, with corresponding waste flows
fn

ij
. The dashed lines are associated with the reverse flows fn

ji
, related to the empty space in the

vehicle. Note that fn

ij
` fn

ji
“ Q.

Each edge is therefore counted twice and the objective function (4.1) needs to be

updated as:

max R
ÿ

tPT 2

ÿ

nPN t

⇡n
ÿ

iPI1
wn

i ´ C

2

ÿ

tPT 1

ÿ

i,jPI
i‰j

dijx
t

ij .

Constraints (4.2) are replaced by:

ÿ

jPI
j‰i

pfn

ij ´ fn

jiq “ 2wn

i i P I
1, n P N

t, t P T
2,
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since the two commodity flow formulation considers two flows passing through node i.

In addition, constraints (4.4)-(4.6) are substituted by:

ÿ

iPI1
fn

iN`1 “
ÿ

iPI1
wn

i n P N
t, t P T

2 (4.20)

and

fn

ij ` fn

ji “ Qxt´1
ij

i, j P I, i ‰ j, n P N
t, t P T

2. (4.21)

Constraints (4.20) ensure that the total inflow of the copy depot corresponds to the

total amount of collected waste, whereas constraints (4.21) impose that, whenever an edge

is traversed, the sum of the two traversing flows is equal to the capacity of the vehicle.

Finally, the degree constraints (4.7)-(4.9) reduce to:

ÿ

iPI
i‰j

xtij “ 2ytj j P I
1, t P T

1.

All the other constraints not mentioned remain unchanged when passing from model

M to Msym. For the sake of completeness, the entire model formulation Msym is reported

in the Appendix B.1.

4.3.2 A polynomially solvable case

The proposed SIRP formulation is clearly NP-hard, since it can be reduced to the well-

known NP-hard Travelling Salesman Problem (see [60]), whenever the time horizon is

T “ t1, 2u, the selling price is null, i.e. R “ 0, the capacity Q of the vehicle is infinite,

and all the containers need to be visited at day 2 in order to avoid overflow.

On the other hand, the waste collection problem admits a polynomially solvable case

whenever routing decisions are excluded from the problem. This will be addressed in the

following proposition.

Proposition 3. If C “ 0, then the optimal profit of model M is:

z˚ “ RB

" ÿ

iPI1
Ei

ˆ
Sinit

i `
ÿ

tPT 2
E

“
aptq
i

‰˙*
, (4.22)

where E
“
aptq
i

‰
is the expected accumulation rate of waste at time t P T

2 for bin i P I
1.

Proof. We prove the proposition by induction on the time horizon T .

• (Base case) We consider the case of a two-stage problem (T “ 2). Since C “ 0 and

101



T
2 “ t2u, profit (4.1) reduces to:

z “ R
ÿ

nPN 2

⇡n
ÿ

iPI1
wn

i .

From constraints (4.12)-(4.13), it holds that:

wn

i “ EiBSinit

i ` EiBani ´ uni i P I
1, n P N

2,

which, substituting in the objective function, gives:

z “ R
ÿ

nPN 2

⇡n
ÿ

iPI1
EiBSinit

i ` R
ÿ

nPN 2

⇡n
ÿ

iPI1
EiBani ´ R

ÿ

nPN 2

⇡n
ÿ

iPI1
uni

“ RB
ÿ

iPI1
EipSinit

i ` E
“
ap2q
i

‰
q ´ R

ÿ

nPN 2

⇡n
ÿ

iPI1
uni ,

where we have applied
∞

nPN 2 ⇡n “ 1 and
∞

nPN 2 ⇡nan
i

“ E
“
ap2q
i

‰
. Moreover, we note

that the objective function z is the di↵erence of two nonnegative quantities, where

the first one is constant. Thus:

max z “ RB
ÿ

iPI1
EipSinit

i ` E
“
ap2q
i

‰
q ´ minR

ÿ

nPN 2

⇡n
ÿ

iPI1
uni ,

where the minimum of the second term is reached at un
i

“ 0, for all n P N
2, i P I

1:

the thesis is verified.

• (Inductive step) We assume that the thesis holds for a model with time horizon

T ´ 1. We need to prove that the thesis is verified for a model with time horizon T ,

whose objective function is:

R
Tÿ

t“2

ÿ

nPN t

⇡n
ÿ

iPI1
wn

i “ R
T´1ÿ

t“2

ÿ

nPN t

⇡n
ÿ

iPI1
wn

i ` R
ÿ

nPNT

⇡n
ÿ

iPI1
wn

i .

Given the induction hypothesis, the optimal profit of the first addendum corresponds

to RB

"∞
iPI1 Ei

ˆ
Sinit

i
`∞

T´1
t“2 E

“
aptq
i

‰˙*
. At stage T , from constraints (4.13), wn

i
“

EiBan
i
, for all i P I

1, n P N
T , since upapnq

i
“ 0 for the induction hypothesis and

un
i

“ 0 for the same reasoning of the base case. Consequently, we get:

z˚ “ RB

" ÿ

iPI1
Ei

ˆ
Sinit

i `
T´1ÿ

t“2

E
“
aptq
i

‰˙*
` RB

ÿ

iPI1
EiE

“
apT q
i

‰
,
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which verifies the thesis.

We conclude that parameters R and C have di↵erent roles: when R “ 0 model M is

NP-hard, whereas if C “ 0 an optimal policy can be computed in OpT q time. For this

reason, given the computational complexity of the problem in the general case, heuristic

methods are required. To cope with this issue, in the next section we consider the rolling

horizon approach.

4.4 The rolling horizon approach and its worst-case analysis

One of the most classical heuristic algorithms for multi-stage stochastic programming

models is the rolling horizon approach (see [31]): the multi-stage stochastic problem is

decomposed in a sequence of subproblems with a fewer number W of consecutive periods

(see [28]). This leads to a reduced computational e↵ort because at each iteration of the

algorithm the number of nodes considered in the scenario tree is fewer than the ones in

the original multi-stage program. However, the quality of the solution may deteriorate

since the time horizon is reduced and the solution may be suboptimal (see [12]). In the

following we present the details of the approach.

First of all, we fix the reduced number W of consecutive period, with 1 § W † T ´ 1.

In the first iteration of the algorithm, the pW ` 1q-stage stochastic programming model

defined on t “ 1, . . . ,W ` 1 is solved, and the values of the first-stage decision variables

x1
ij

and y1
i
and the second-stage variables wn

i
and un

i
, for n P N

2, are stored. In the

second iteration, the value of the inventory levels un
i
for n P N

2 are fixed as the ones

deduced from the first iteration. This is needed to keep track of the evolution of the

process and to link two consecutive time periods. Then, the pW ` 1q-stage stochastic

programming model defined on t “ 2, . . . ,W ` 2 is solved and, as done before, the values

of the second-stage decision variables x2
ij
and y2

i
and the third-stage variables wn

i
and un

i
,

for n P N
3, are stored. This process is repeated until the last iteration defined on stages

t “ T ´ W, . . . , T is performed. Then, a W -stage stochastic programming model defined

on t “ T ´ W ` 1, . . . , T is solved and the same approach described above is applied.

Next, a pW ´ 1q-stage stochastic programming model defined on t “ T ´ W ` 2, . . . , T is

solved and the process is repeated until the last two-stage stochastic programming model

defined on t “ T ´ 1, T .

Once the T ´ 1 stochastic programming models have been solved, the variables xt
ij
, yt

i

for all t P T
1 and wn

i
for all n P N

t and t P T
2 are obtained. The corresponding value of

the objective function (4.1) is then computed, leading to zRH,W .
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Schematically, the algorithm can be represented as in Pseudocode 2.

Pseudocode 2 The rolling horizon approach for model M
Input: T , 1 § W † T ´ 1

1: k – 1, l – W ` 1

2: u`n˚
i

– u1
i
, n P N

t, t “ k

3: while k § T ´ W do

4: Solve pW ` 1q-stage SP on t “ k, . . . , l with u`n

i
– u`n˚

i
, n P N

t, t “ k

5: Store xt˚
ij
, yt˚

i
, t “ k and un˚

i
, wn˚

i
, n P N

t, t “ k ` 1

6: k – k ` 1, l – l ` 1

7: end while

8: j – 1

9: while k § T ´ 1 do

10: Solve pW ` 1 ´ jq-stage SP on t “ k, . . . , T with u`n

i
– u`n˚

i
, n P N

t, t “ k

11: Store xt˚
ij
, yt˚

i
, t “ k and un˚

i
, wn˚

i
, n P N

t, t “ k ` 1

12: k – k ` 1, j – j ` 1

13: end while

14: Return the corresponding value of the objective function (4.1).

We now perform a worst-case analysis of this approach. The following results hold

true:

Theorem 4. If C “ 0, then:
zRH,W

z˚ “ 1,

for every choice of W “ 1, . . . , T ´ 2.

Proof. Consider the case of W “ 1, where T ´ 1 two-stage stochastic optimization

models have to be solved. Since all the subproblems do not share any overlapping period,

denoting with zRH,1
t,t`1 the optimal objective value on time period t, t` 1, the optimal profit

is:

zRH,1 “ zRH,1
1,2 ` zRH,1

2,3 ` . . . ` zRH,1
T´1,T

“ RB

" ÿ

iPI1
Ei

ˆ
Sinit

i ` E
“
ap2q
i

‰
` E

“
ap3q
i

‰
` E

“
apT q
i

‰˙*
.

The previous expression coincides with (4.22), and so the thesis is verified.

When considering a value W ° 1, only the collecting variable wn

i
at the second stage

of each subproblem are stored, implying that exclusively the accumulation rates at that
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stage are considered in the optimal solution. This implies the thesis in a similar fashion

as W “ 1.

On the other hand, when R “ 0, the following result on the performance of the rolling

horizon approach with W “ 1 holds.

Theorem 5. There exists a class of instances such that zRH,1 “ ´8, even if model M is

feasible.

Proof. Consider the following class of instances: initial amount of waste Sinit

i
“ 0 for

all i P I
1; vehicle capacity Q ° ∞

iPI1 Ei; selling price R “ 0.

For all i P I
1, let ↵i P p0; 1q, "i P p0;↵iEis, and the accumulation rate an

i
be such that:

ani “

$
’’’’&

’’’’%

0 if n P N
t, t P T

1 Y tT ´ 2u

↵iEi if n P N
T´1

p1 ´ ↵iqEi ` "i if n P N
T .

(4.23)

The graph of an
i
is depicted in Figure 4.3.

Figure 4.3: Graph of the accumulation rate (4.23).

Let us apply the rolling horizon approach with W “ 1. This means that T ´ 1 two-

stage stochastic programming models have to be solved. In the first T ´ 3 programs, all

the decision variables are zero, since there is no waste to collect. Similarly for the model

defined on stages t “ T ´ 2, T ´ 1, with the exception of uT´1
i

which is equal to ↵iEi.

However, the last optimization model defined on stages t “ T ´ 1, T is infeasible because

each container i will incur into overflowing, by violating constraints (4.14). This implies

that zRH,1 “ ´8.

On the other hand, the optimal profit z˚ of the multi-stage stochastic optimization

model will be equal to ´C
∞

i,jPI
i‰j

dijx
T´1
ij

, deriving from a collection on day T .
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Making the appropriate changes, a similar performance of the rolling horizon approach

with W “ 1 also holds within model Msym.

4.5 Computational results

In this section, we first describe the instances on which we perform numerical simulations

(see Subsection 4.5.1). Subsection 4.5.2 compares the solutions of models M and Msym.

In Subsection 4.5.3, the validation of model M with standard stochastic measures is

provided, and the quality of the expected value solution is discussed. In Subsection 4.5.4,

the performance of the rolling horizon approach is assessed. Then, the results on a large

case study are presented in Subsection 4.5.5. Finally, managerial insights are provided in

Subsection 4.5.6.

All computational experiments are obtained using GAMS 38.3.0 and solver Gurobi 9.5

on an Intel(R) Core(TM) i5-8500 64-bit machine, with 8 GB RAM and 3.00 GigaHertz

processor. Unless otherwise specified, a runtime limit of 24h is imposed.

4.5.1 Data analysis

The data considered in this study are inspired by a real case problem provided by the

industrial partner ERSUC - Reśıduos Sólidos do Centro, S.A., one of the main waste

management companies in Portugal. The company operates in the Central Region of

Portugal and owns a homogeneous fleet of vehicles based at two di↵erent depots, one near

the city of Aveiro and the other close to Coimbra. The recyclables collection is performed

independently for each type of waste (glass, paper/cardboard and plastic/metal).

The case study described in the following focuses on the collection of plastic/metal

waste, related to packaging materials, around the suburban municipality of Condeixa-a-

Nova in the district of Coimbra. The simulations we perform are inspired by real data

provided by ERSUC on the filling rate of 121 waste bins between April and July 2019 (15

weeks). The data are gathered by the garbage collector only on the collection days (20

days in total). The working days of the company include all the days of a week, except

Sunday. Therefore, the time horizon is T “ t1, . . . , 6u.
We perform simulations on small and large instances. As far as it concerns the small

cases, we generate a set of thirty instances, randomly drawn from the entire dataset of

121 bins, with a reduced number of bins. For simplicity, we denote each small instance on

the basis of the coding scheme “inst draw numbins”, where draw is an integer between

1 and 10 associated with the random draw, and numbins is the number of selected bins
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(9, 10 or 11). In addition, we consider a large instance composed by 50 bins to simulate a

real case study of waste collection, since fifty is the average number of bins in a collection

route of the industrial partner.

The deterministic parameters of the model are shown in Table 4.1.

Parameter Value Source
C 1 e/km ERSUC
R 0.30 e/kg Sociedade Ponto Verde
Q 2000 kg ERSUC
B 30 kg/m3 ERSUC
M 105 -
dij , i, j P I Actual road distance between i and j ERSUC and OpenRouteService
Sinit

i
, i P I

1 Initial percentage of waste on the total volume of bin i ERSUC
Ei, i P I

1 2.5 m3 ERSUC

Table 4.1: Parameters values and sources.

As in [127], transportation cost C includes fuel consumption, maintenance of the ve-

hicle and drivers’ wages. The revenue parameter R is derived as follows: for each ton of

packaging collected and sorted, the Sociedade Ponto Verde (the packaging waste regulator

in Portugal) pays 545 e/ton to the waste collection company; since only the collection

activity is being considered in this work, which corresponds to approximately the 55% of

the total cost, the selling price R is adjusted to 0.30 e/kg.

We discuss now how we construct the random process taptq
i

uT
t“1 of the daily accumu-

lation rate, based on observations provided by the industrial partner. For each bin i, we

have the historical data of the filling rate on collection days, that we denote by tpptq
i

u20
t“1.

For all i P I
1, we set Sinit

i
equal to pp1q

i
. We assume that, if t1 and t2 are two consecutive

collection days, the increase (or decrease) of the filling rate of waste between t1 and t2 is

constant. Once the waste collector visits bin i at time t1, then she/he empties it. This

implies that the daily accumulation rate of waste in bin i can be calculated as:

aptq
i

“ ppt2q
i

´ ppt1q
i

t2 ´ t1
“ ppt2q

i

t2 ´ t1
, t “ t1 ` 1, . . . , t2.

By following this procedure, for each bin i P I
1, a complete trajectory of the stochastic

process taptq
i

uT
t“1 is obtained on a daily basis.

In the Appendix B.2 we report the scenario tree generation procedure we adopt, along

with an in-sample stability analysis on the number of scenarios to be considered in the

scenario tree (see the Appendix B.3). In the remainder of the chapter, we show the results

obtained on a tree with 32 scenarios and 63 nodes.
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4.5.2 A comparison of models M and Msym solutions

Solving either model M or model Msym to optimality on the whole dataset of 121 bins is

not possible on our machine, given the high number of variables and constraints (see Table

4.3). When considering reduced instances, in small cases composed by 9, 10 or 11 bins,

models M and Msym provide the same policy in terms of bin selection, visiting schedule,

routing and consequent weight of collected waste (see row 7 in Table 4.2). However, due

to the assumption on the symmetric distance matrix, the profit with model Msym is less

accurate. On the other hand, on the large instance with 50 bins model Msym outperforms

model M, since the optimality gap is much smaller (see Table 4.3). For this reason, in the

following we will show results obtained with model M on small instances, whereas larger

instances results rely on model Msym.

Number of bins 9 (M) 9 (Msym) 10 (M) 10 (Msym) 11 (M) 11 (Msym)
Binary variables 495 595 600 710 715 835
Continuous variables 6705 7263 8070 8690 9559 10241
Equality constraints 1220 8052 1355 9546 1490 11164
Inequality constraints 16182 6138 19840 7440 23870 8866
Profit (e) 18.16 18.45 34.37 34.67 41.25 41.40
Weight of collected waste (kg) 478.15 478.15 513.83 513.83 612.48 612.48
Travelled distance (km) 125.28 124.99 119.78 119.46 142.50 142.25
Ratio weight/distance (kg/km) 3.80 3.80 4.32 4.33 4.31 4.32
CPU time (s) 1434.00 15.60 1382.00 32.80 3259.40 37.50

Table 4.2: Average results from solving models M and Msym on small instances.

Number of bins 50 (M) 50 (Msym) 121 (M) 121 (Msym)
Binary variables 13000 13510 74415 75635
Continuous variables 164350 167450 930369 937871
Equality constraints 6755 170986 16340 946164
Inequality constraints 471200 161200 2738230 922746
Profit (e) 501.29 581.59 ´ ´
Weight of collected waste (kg) 2306.69 2585.16 ´ ´
Travelled distance (km) 190.72 193.96 ´ ´
Ratio weight/distance (kg/km) 12.09 13.33 ´ ´
CPU time (s) 86400 (20.82%) 86400 (2.77%) OOM OOM

Table 4.3: Average results from solving models M and Msym on large instances. When the time
limit is reached, the relative optimality gap in percentage is reported in brackets. OOM stands for
“Out-Of-Memory”.
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4.5.3 The impact of uncertainty and the quality of the deterministic

solution

The purpose of this section is twofold. Firstly, we discuss the importance of stochasticity

in model M by comparing the stochastic formulation (i.e. the Recourse Problem, (RP ))

with the perfect information case (the so-called Wait and See approach, (WS)) through

the Expected Value of Perfect Information (EV PI) (see [19]). Secondly, we show the

benefits of taking into account stochasticity in model M with respect to its deterministic

counterpart (the so-called Expected Value problem, (EV )), by considering the Value of

Stochastic Solution at stage t (V SSt), with t P T
1 (see [95]). In this direction, we specify

our analysis by including the Multi-stage Loss Using the Skeleton Solution until stage t

(MLUSSt) and the Multi-stage Loss of Upgrading the Deterministic Solution until stage

t (MLUDSt), with t P T
1 (see [95]).

In the perfect information case, the realization of the accumulation rate of waste in all

of the bins is known at the first stage. Then, the %EV PI is calculated according to the

formula:

%EV PI :“ pWS ´ RP q{RP.

Results are reported in the second column of Table 4.4, where we see that, on average,

the EV PI is 81% of the RP . This means that, for reaching perfect information on the

accumulation rate, the decision maker would be ready to pay at most 81% of the profit.

Detailed results for each instance are shown in the Appendix B.4.

Size %EV PI %V SSt, 1 § t § 5 %MLUSSt, 1 § t § 5 %MLUDS1 %MLUDSt, 2 § t § 4 %MLUDS5

9 bins 188% 8 8 8% 674% 681%
10 bins 36% 8 8 0% 175% 175%
11 bins 20% 8 8 0% 158% 158%
Average 81% 8 8 3% 336% 338%

Table 4.4: Summary results of stochastic measures %EV PI, %V SSt, %MLUSSt, %MLUDSt,
for 1 § t § 5, expressed in percentage gap to the corresponding RP problem.

Furthermore, in a simpler approach the decision maker may replace the accumulation

rate of waste by its expected value, and solve the deterministic EV program. In a multi-

stage context, the %V SSt measures the expected gain from solving the stochastic model

M rather than its deterministic counterpart up to stage t, and it is calculated as:

%V SSt :“ pRP ´ EEV tq{RP, t “ 1, . . . , T ´ 1.

EEV t is the Expected result of using the EV solution until stage t and denotes the

objective function value of the RP model where the decision variables xt
ij

and yt
i
on the
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routing until stage t are fixed at optimal values obtained by solving the EV problem. In the

great majority of the instances, the EEV t problems are infeasible, due to the violation

of the non-overflowing constraints (4.14). Thus, the corresponding %V SSt is infinite,

already at the first stage (see column 3 of Table 4.4). In fact, by taking the average on

the accumulation rate, in the EV problem the data do not support a collection at stage

2, by postponing it later in the planning horizon. On the other hand, the RP model may

require a collection, at least, on day 2, since the accumulation rate is significant for certain

bins, but this is clearly in contradiction with the previous condition. The results discussed

so far justify the adoption of a stochastic model compared to a deterministic setting when

dealing with a problem of waste collection.

In the following, we further investigate if the deterministic solution still carries useful

information for the stochastic case. To achieve this purpose, firstly we compute the Multi-

stage Expected Skeleton Solution Value at stage t (MESSV t), by solving the RP model

having fixed at zero all the routing variables xt
ij

and yt
i
that are zero in the EV problem

until stage t. This allows to test whether the deterministic model produces the correct non-

zero variables. Once the MESSV t is computed, it is compared with RP by introducing

the %Multi-stage Loss Using Skeleton Solution until stage t (MLUSSt), expressed as:

%MLUSSt :“ pRP ´ MESSV tq{RP, t “ 1, . . . , T ´ 1.

The results in Table 4.4 and in the Appendix B.4 show that %V SSt coincides with

%MLUSSt for all t “ 1, . . . , 5, both in the case of infiniteness and finiteness of %V SSt.

On one hand, whenever %V SSt is infinite already at stage 1, the EV problem is not able

to identify the overflowing bins at the first stage because average data do not support

collection, resulting in an infeasibility of the MESSV t problem. On the other hand, if

%V SSt is finite (see the Appendix B.4), the model correctly selects the overflowing bins,

and thus the great majority of xt
ij

variables are equal to zero at stage t. This implies

straightforwardly that there is only one possible choice for the vehicle to visit the selected

bins.

Finally, we carry out an analysis regarding the upgradeability of the expected value

solution to become good, or optimal, in the stochastic setting. Specifically, we consider

the EV solution x̄t
ij
, ȳt

i
until stage t as a starting point in the RP model, by adding

the constraints xt
ij

• x̄t
ij
, for all i, j P I, and yt

i
• ȳt

i
, for all i P I

1 up to stage t. The

corresponding optimal value is denoted as Multi-stage Expected Input Value until stage

t (MEIV t). From this measure, the %Multi-stage Loss of Upgrading the Deterministic
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Solution until stage t (%MLUDSt) is defined as follows:

%MLUDSt :“ pRP ´ MEIV tq{RP, t “ 1, . . . , T ´ 1.

As it is reported in Table 4.4, %MLUDS1 is close to zero on average. Indeed, only in

inst 4 9 (see the Appendix B.4) %MLUDS1 is strictly positive, whereas in all the other

instances it is zero. On one hand, this situation is due to a collection later than stage 2

in the EV solution, with conditions x1
ij

• 0, for all i, j P I, and y1
i

• 0, for all i P I
1,

automatically satisfied by constraints (4.15)-(4.16) in the MEIV 1 problem. On the other

hand, at stage 2 the EV problem imposes a collection on a subset of bins with respect

to the RP problem and, thus, constraints (4.16) are themselves satisfied in the MEIV 1

problem.

The large values of %MLUDSt, with t “ 2, . . . , 5, depend on the fact that the corre-

sponding MEIV t problems have collections at the two consecutive stages 1 and 2, due to

the additional constraints on the EV solution at stage 2. Given the non-significant weight

of waste in the bins because already emptied at the previous stage, the profits MEIV t

turn to be negative, and %MLUDSt very high.

From this analysis, it can be concluded that the deterministic solution may be taken

as input in the stochastic model only in the first stage, whereas in the next stages the EV

solution is no longer to be upgradeable.

4.5.4 Performance of the rolling horizon approach

In this section, we evaluate the performance of the rolling horizon approach described in

Section 4.4. Since model M is NP-hard and with large instances obtaining the optimal

solution may be challenging (see Table 4.3), we apply the rolling horizon approach over

a reduced time horizon. Instead of solving a T -stage stochastic program, this heuristic

algorithm requires to solve a sequence of T ´ 1 subproblems over a reduced number of

stages. In our case study, model M is a six-stage stochastic optimization program and,

thus, the reduced number of periods W is an integer between 1 and 4.

In Figure 4.4 we depict with vertical bars the average performance of the rolling horizon

approach in terms of percentage gap between the RP solution and the heuristic solution.

As highlighted in Section 4.4, whenW “ 1 the rolling horizon approach may be in principle

infinitely suboptimal: over the thirty instances, five of them exhibit infeasibility in the

first two-stage problem with W “ 1. On the other hand, when we consider the remaining

twenty-five instances for which there is no infeasibility, on average the profit gap is 29.53%
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Figure 4.4: Performance of the rolling horizon approach. The vertical bars represent the profit
percentage reduction when applying the rolling horizon approach (left-hand scale). The results
show the average over the thirty instances. When W “ 1, due to infeasibility, the reduction may
be infinite. The solid line refers to the CPU time percentage reduction to solve at optimality with
the rolling horizon approach, compared to the original six-stage program (right-hand scale).

when compared to the RP solution. Furthermore, we note that the result obtained with

W “ 2 and W “ 3 (29.76% in both cases) is very similar to the one obtained for W “ 1

when infeasibility does not occur. However, with W “ 2, 3 no infeasibility issues arise in

any instance. Finally, the performance improves when W “ 4, with an average profit gap

of 14.92%.

Regarding the computational time, we report as well in Figure 4.4 the results in terms

of percentage reduction with respect to the six-stage model. We notice that, as W in-

creases, the CPU time required to solve at optimality the five subproblems with the rolling

horizon approach increases too. Specifically, when W “ 1 and W “ 2 the average savings

are 97.94% and 90.13% of the computational time, respectively. If W “ 3, even in the face

of the same performance in terms of profit as W “ 2, the CPU time is much larger, with a

reduction of the 57.00%. Lastly, the great similarity of the profit between the RP model

and the case with W “ 4 requires a significant e↵ort to be reached, with an average CPU

time saving around 27.56%. Detailed results on the performance of the rolling horizon

approach are presented in the Appendix.

From the previous analysis, we conclude that the rolling horizon approach is e↵ective

for the proposed six-stage model. As expected, the performance of the algorithm strongly
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depends on the size of the reduced time horizon. If the decision maker requires a good

accuracy in a short time, W “ 2 is the best candidate. On the other hand, if she/he is

willing to wait, W “ 4 attains better results but with more computational time.

4.5.5 A real case study

In this section, we present the results of the simulations in a real case study. We consider

a large instance composed by 50 bins randomly chosen from the original set of 121 waste

containers.

Figure 4.5: Performance of the rolling horizon approach for the instance with 50 bins in terms of
profit reduction.

Given the high number of variables and of constraints (see Table 4.3), Gurobi is not

able to solve at optimality model M within the time limit of 86400 seconds (one day), with

a resulting relative optimality gap of 20.82%. However, when considering model Msym

with distances the average between dij and dji, the results are significantly better, with

an optimality gap of 2.77% (see Table 4.3).

For this reason, we consider model Msym for the study of the large real case instance.

Particularly, we investigate how the rolling horizon approach performs in this situation,

with a reduced time limit. Indeed, from a managerial perspective, the time limit of one

day is excessively high. Thus, we fix a time limit TL of 2, 4, 6, 12, 24 hours on the whole

algorithm and, then, we set a time limit TLsub for each of the corresponding subproblem,
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as TLsub “ TL

# subproblems
. Following the approach of [28], after solving a subproblem, if

some time is left, we add the remaining time to the following subproblem to be solved.

Figure 4.6: Performance of the rolling horizon approach for the instance with 50 bins in terms of
CPU time reduction.

Figure 4.5 displays the percentage profit reduction, when applying the rolling horizon

approach over a reduced time period W and with di↵erent time limits TL. The reduction

is with respect to the feasible value obtained when solving the RP model. On one hand,

we notice that, regardless of the time limit, the rolling horizon approach with W “ 1, 2, 3

does not improve its performance. Specifically, whenW “ 1 the profit reduction is 25.77%,

while for W “ 2 and W “ 3 the reduction is similar (8.68% and 9.24%, respectively). On

the other hand, when the time limit is enlarged, the rolling horizon approach with W “ 4

shows an enhancement on the results: from 58.02%, when the time limit is low (2 and 4

hours), to 8.07% with TL equal to 12 and 24 hours. In this case, the bad performances with

low time limits are due to the large size of the first two subproblems, defined respectively

on stages 1-5 and 2-6, which are di�cult to solve in a short time (24 or 48 minutes).

Similarly to the analysis carried out on the small instances, in Figure 4.6 we depict

the percentage CPU time reduction of the rolling horizon approach. When W “ 1, the

reduction is constant, independently of the time limit. Indeed, the five subproblems are

solved in less time than the time limit. Next, if W “ 2, the reduction is high with

a time limit of 2 hours (93.78%) and it reaches a minimum with TL “ 24 of 73.91%.

Finally, the situations with W “ 3 and W “ 4 show the same behaviour, which is almost
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linear. Indeed, in these cases, the time limit is always reached, because of the size of the

subproblems.

By combining all the previous results, we conclude that it is worth applying the rolling

horizon approach when solving large instances for the stochastic waste collection problem.

The performance depends on the reduced time horizon and on the time limit set by the

user, but the rolling horizon approach with W “ 2 and time limit 2 hours is a good trade-

o↵ between accuracy and time savings. In Figure 4.7 we depict the route obtained with

these choices of the parameters.

INE, Instituto Geográfico Nacional, Esri, HERE, Garmin, NGA, USGS
 1 mi 

 1 km 
INE, Instituto Geográfico Nacional, Esri, HERE, Garmin,

GeoTechnologies, Inc., Intermap, NGA, USGS
 1000 ft 

 200 m 

Figure 4.7: Route for the large case instance with 50 bins, obtained by applying the rolling horizon
approach with W “ 2 and runtime limit 2 hours. The route is performed on days 2 and 6 of
the planning period, by visiting all the bins. In the picture on the right, a zoom on the area of
Condeixa-a-Nova is depicted.

4.5.6 Managerial insights

We conclude our analysis by providing some managerial insights on the discussed problem.

First of all, from our previous analysis we note that the waste operator benefits from

the application of the rolling horizon approach for a waste collection problem on a large

instance because this technique provides accurate results in a short time. To support this
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consideration, we report in Table 4.5 some key performance indicators of the problem,

when considering a time limit of two hours for the rolling horizon approach.

W 1 2 3 4
Profit (e) 431.70 531.13 527.82 244.17
Total weight of collected waste (kg) 2573.31 2558.26 2564.08 1201.77
Total travelled distance (km) 340.29 236.35 241.41 116.36
Weight/distance (kg/km) 7.56 10.82 10.62 10.33
Profit reduction/CPU time reduction 0.262 0.093 0.102 0.643

Table 4.5: Key performance indicators for the real case instance of 50 bins, when applying the
rolling horizon approach with a time limit of 2 hours.

We notice that the highest value of both the profit and of the ratio between the total

weight of collected waste and the total travelled distance is reached in the case of W “ 2.

This implies that, from a managerial perspective, choosing a reduced time period of 2

leads to a more e�cient and cost-e↵ective planning when compared to the other cases. A

similar conclusion can be drawn when considering the ratio between the profit reduction

and the CPU time reduction, with respect to the original RP problem. Indeed, even in

this case, the best value is attained when W “ 2. The result confirms that this value

of the reduced time period is a good trade-o↵ between accuracy and time savings when

solving models M and Msym with the rolling horizon approach.

From a managerial point of view, one of the key feature of the model is the selection

of the bins to be visited. In Figure 4.7 the same route is performed on days 2 and 6 of the

planning period. All the bins are visited twice, but this is due to the very high distance

between the depot and the bins. In Figure 4.8 we depict the results of a simulation

applying the rolling horizon approach with W “ 2, where the bins are the same as in

the large instance described in Section 4.5.5, but with a closer depot. We notice that the

collection is performed on three days (days 2, 5 and 6), with a di↵erent selection of bins,

respectively 28, 9 and 47. The profit is increased by 15%, compared to the one reported in

the third column of Table 4.5, due to the decrease of the total travelled distance (151.62

km vs 236.35 km). The total weight of collected waste remains almost unchanged (2545.94

kg vs 2558.26 kg). The waste manager may benefit from these results because they suggest

that the opening of a new depot, closer to the bins, increases significantly the profit, since

the routes are more selective and accurate.
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INE, Instituto Geográfico Nacional, Esri, HERE, Garmin,

GeoTechnologies, Inc., Intermap, NGA, USGS
 0.5 mi 

 1 km 

(a) Day 2

INE, Instituto Geográfico Nacional, Esri, HERE, Garmin,

GeoTechnologies, Inc., Intermap, NGA, USGS
 0.5 mi 

 1 km 

(b) Day 5

INE, Instituto Geográfico Nacional, Esri, HERE, Garmin, NGA, USGS
 1 mi 

 1 km 

(c) Day 6

Figure 4.8: Routes performed on days 2, 5, 6 of the planning period, with a closer depot to the
fifty bins. The results are obtained by applying the rolling horizon approach with W “ 2 and time
limit 2 hours.

4.6 Conclusions

In this chapter, we have studied a Stochastic Inventory Routing Problem applied to waste

collection of recyclable materials. For this problem we have proposed a multi-stage mixed

integer stochastic programming formulation, with the aim of maximizing the total ex-

pected profit. Scenario trees of uncertain waste accumulation have been generated by

means of conditional density estimation and dynamic stochastic approximation techniques,

and validated in terms of in-sample stability. The impact of stochasticity in waste col-

lection optimization problem has been investigated through standard stochastic measure,

showing the benefits of the stochastic methodology when compared to the deterministic

framework. We have proposed the rolling horizon as an heuristic methodology to face

with the computational complexity of the model and performed a worst-case analysis.

Moreover, we have carried out computational experiments showing that considering the
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deterministic solution in a stochastic framework may be highly inappropriate. We have

tested the performance of the rolling horizon approach on instances of di↵erent sizes, based

on real data. We have found out that, if the reduced time horizon is properly chosen, the

rolling horizon approach provides good quality results with limited computational e↵ort.

Finally, we have drawn managerial insights.

Future works will consider a stochastic programming model with real-time information

provided by sensors installed in bins and/or in the garbage truck. In addition, the instances

to test the model should be enlarged. This would make the formulation very challenging

from a computational perspective. Thus, Benders’ decomposition and column generation

algorithms would be useful techniques to be tested.
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Chapter 5

Conclusions

In this thesis, we presented models and applications of optimization under uncertainty

approaches.

On the one hand, Robust Optimization (RO) techniques were applied to tackle prob-

lems of binary and multiclass classification through a Machine Learning (ML) perspective.

Specifically, we extended two approaches of Support Vector Machine (SVM) by assum-

ing that input data were plagued by uncertainties. The proposed RO models prevented

the worst-case realizations of the uncertain data across prescribed uncertainty sets. This

resulted in an increased predictive accuracy of the robust classifiers with respect to the

deterministic ones. The performance of the proposed formulations were validated on var-

ious ML datasets. Finally, the robust SVM approaches were applied to a vehicles smog

rating classification task.

On the other hand, Stochastic Optimization (SO) techniques were considered to han-

dle a waste collection problem where the accumulation rate in the waste containers was

assumed to be uncertain. To this extent, we formulated a multi-stage SO inventory rout-

ing problem with the aim of maximizing the total expected profit coming from collection

activities. We faced the computational complexity of the problem by means of the rolling

horizon heuristic. The impact of stochasticity on waste generation was analyzed through

stochastic measures and the performance of the rolling horizon approach was evaluated

on small and large instances inspired by a real case study.

Regarding future developments, several streams of research can originate from this

work.

Starting from the robust SVM framework, first of all extend the approaches to handle

uncertainties in the labels of input data. This should increase the generalization capability

of the models. Additionally, in this thesis we have followed the classic RO approach
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of including uncertainty during the training phase (see, for instance, [14]). It should

be noteworthy to consider perturbations both in the training and in the testing sets.

However, this choice would increase the complexity of the models and novel measures

to quantify the accuracy have to be devised, since it is not obvious how to classify a

whole uncertainty set in one class or another as opposed to the case of single data point.

Further techniques should be used to speed up the approaches, especially in the phase

of tuning parameters (see, for example, the Bayesian optimization in [138]). Finally,

di↵erent methodologies should be applied to further robustify the models. For instance,

Distributionally Robust Optimization (see [125]) with ambiguity sets defined by moments,

phi-divergences or Wasserstein distance merits further research too.

As far as it concerns waste collection problems under uncertainty, recent advanced

techniques deserve further study. To mention one, the Distributionally Robust Chance-

Constrained Capacitated Vehicle Routing Problem (see [63]). Within this approach, the

customer demand, i.e. the waste accumulation rate in the considered application, is as-

sumed to follow a probability distribution that it is only partially known, and it imposes

chance-constraints on the vehicle’s capacity. A similar approach can be employed in

treating other forms of uncertainty, for instance the travel time. Finally, to increase sus-

tainability a fleet of electric or hybrid vehicles can be considered for the waste collection

activity (see, for instance, [24, 108]). Compared to the case study analyzed in this thesis,

the computational complexity grows as the stochastic nature of the energy consumption

has to be taken into account.
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Appendix A

Appendix to Chapter 1

A.1 Supplementary proofs

We first recall a lemma that will be useful to prove Propositions 1-2.

Lemma 1 (Inequalities in `p-norm). Let x be a vector in Rn. If 1 § p § q § 8, then:

kxk
q

§ kxk
p

§ n
1
p

´ 1
q kxk

q
. (A.1)

Proof. We consider the two inequalities separately, starting from kxk
q

§ kxk
p
. First of

all, if x “ 0, then the inequality is obviously true. Otherwise, let y P Rn such that

yi :“ |xi| { kxk
q
for i “ 1, . . . , n. Therefore, 0 § yi § 1. Indeed:

kxkq
q

“
nÿ

i“1

|xi|
q • |xi|

q ,

for all i “ 1, . . . , n and thus |xi| { kxk
q

§ 1. The hypothesis p § q and the decreasing

property of the exponential function with basis lower than one imply that:

yp
i

• yq
i
, i “ 1, . . . , n.

By summing we have:

kyk
p

• kyk
q
.

Finally, by definition of y we derive that:

kxk
p

kxk
q

•
kxk

q

kxk
q

“ 1,

from which the thesis follows.
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On the other hand, to prove the second inequality we recall the Hölder inequality

(see, for instance, [128]). Let a and b be in Rn. If r and r1 are conjugate exponents, i.e.

1
r

` 1
r1 “ 1, with 1 § r, r1 § 8, then:

kabk1 § kak
r

¨ kbk
r1 ,

or, equivalently:
nÿ

i“1

|ai| |bi| §
ˆ nÿ

i“1

|ai|
r

˙1
r

¨
ˆ nÿ

i“1

|bi|
r

1
˙ 1

r1
. (A.2)

First of all, we rewrite the `p-norm of x as:

kxkp
p

“
nÿ

i“1

|xi|
p “

nÿ

i“1

|xi|
p ¨ 1.

In the Hölder inequality (A.2), let a “ x and b “ e and consider as conjugate exponents

r “ q

p
and r1 “ q

q´p
. Both r and r1 are greater than or equal to 1 because, by hypothesis,

p § q. Consequently, we can bound the `p-norm of x by:

kxkp
p

§
ˆ nÿ

i“1

`
|xi|

p
˘ q

p

˙p

q

¨
ˆ nÿ

i“1

1
q

q´p

˙1´ p

q

“
ˆ nÿ

i“1

|xi|
q

˙p

q

n
1´ p

q “ kxkp
q
n
1´ p

q .

Finally, the thesis follows by taking the p-th root of both sides of the inequality.

A graphical representation of inequality (A.1) is depicted in Figure A.1.

-1 10

-1

1

Figure A.1: Graphical representation of Lemma 1 in the case of p “ 1.3, q “ 2, n “ 2. The dashed
`2 unit ball lies between the `1.3 unit ball and the `1.3 ball with radius 2

1
1.3 ´ 1

2 « 1.205.
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As special cases, Lemma 1 implies that, whenever 1 § p § 2, then:

kxk2 § kxk
p
. (A.3)

Conversely, if p ° 2, then:

kxk2 § n
p´2
2p kxk

p
. (A.4)

Thus, combining these results, we can write:

kxk2 § C kxk
p
,

with:

C “ Cpn, pq “

$
’&

’%

1, 1 § p § 2

n
p´2
2p , p ° 2.

(A.5)

Proof of Proposition 1

Proof. The H-norm of the vector of perturbation ⇣piq in the feature space can be expanded

as:

���⇣piq
���
2

H

“
����pxq ´ �pxpiqq

���
2

H

“
����pxpiq ` �piqq ´ �pxpiqq

���
2

H

“ x�pxpiq ` �piqq ´ �pxpiqq,�pxpiq ` �piqq ´ �pxpiqqyH
“ x�pxpiq ` �piqq,�pxpiq ` �piqqyH ´ 2x�pxpiq ` �piqq,�pxpiqyH ` x�pxpiqq,�pxpiqqyH
“ kpxpiq ` �piq, xpiq ` �piqq ´ 2kpxpiq ` �piq, xpiqq ` kpxpiq, xpiqq.

(A.6)

By definition of the inhomogeneous polynomial kernel of degree d, the last right-hand

side of (A.6) becomes:

���⇣piq
���
2

H

“
ˆ ���xpiq ` �piq

���
2

2
` c

˙d

´ 2
`
xxpiq ` �piq, xpiqy ` c

˘d `
ˆ ���xpiq

���
2

2
` c

˙d

“
ˆ���xpiq

���
2

2
`
����piq

���
2

2
`2 x�piq, xpiqy ` c

˙d

´ 2

ˆ ���xpiq
���
2

2
` x�piq, xpiqy ` c

˙d

`
ˆ ���xpiq

���
2

2
` c

˙d

.

By applying the Cauchy-Schwarz inequality in Rn to the terms containing the dot product,

the previous expression simplifies further, leading to:

���⇣piq
���
2

H

§
�̂��xpiq

���
2

2
`
����piq

���
2

2
`2

����piq
���
2

���xpiq
���
2

` c

˙d

´ 2
�̂��xpiq

���
2

2
`
����piq

���
2

���xpiq
���
2̀

c

˙d

`
ˆ���xpiq

���
2

2̀
c

˙d

“
„ˆ ���xpiq

���
2

`
����piq

���
2

˙2

` c

⇢d
´ 2

„ ���xpiq
���
2

ˆ ���xpiq
���
2

`
����piq

���
2

˙
` c

⇢d
`

ˆ���xpiq
���
2

2
` c

˙d

.
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Applying the binomial expansion to three d-th powers implies that:

���⇣piq
���
2

H

§
dÿ

k“0

ˆ
d

k

˙
ck

ˆ ���xpiq
���
2

`
����piq

���
2

˙2pd´kq
´ 2

dÿ

k“0

ˆ
d

k

˙
ck

���xpiq
���
d´k

2

ˆ ���xpiq
���
2

`
����piq

���
2

˙d´k

`

`
dÿ

k“0

ˆ
d

k

˙
ck

���xpiq
���
2pd´kq

2
.

We now split all the three sums by considering separately the cases when k “ 0, k “ d

and, then, all the intermediate cases. Firstly, let us call a0 the addendum of the sum

corresponding to k “ 0. Therefore:

a0 “
ˆ ���xpiq

���
2

`
����piq

���
2

˙2d

´ 2
���xpiq

���
d

2

ˆ ���xpiq
���
2

`
����piq

���
2

˙
d

`
���xpiq

���
2d

2

“
„ˆ ���xpiq

���
2

`
����piq

���
2

˙
d

´
���xpiq

���
d

2

⇢2

“
„ dÿ

k“0

ˆ
d

k

˙ ���xpiq
���
d´k

2

����piq
���
k

2
´
���xpiq

���
d

2

⇢2

“
„ dÿ

k“1

ˆ
d

k

˙ ���xpiq
���
d´k

2

����piq
���
k

2
`
���xpiq

���
d

2
´
���xpiq

���
d

2

⇢2
“

„ dÿ

k“1

ˆ
d

k

˙ ���xpiq
���
d´k

2

����piq
���
k

2

⇢2
.

We notice that a0 is the only addendum of the sum that does not contain c. This implies

that a0 is related to the bound �piq
d,0 for the homogeneous polynomial kernel.

Secondly, if k “ d, we have no contribution because cd ´ 2cd ` cd “ 0. Before considering

the cases k “ 1, . . . , d ´ 1, we now investigate what happens when the degree d is equal

to 1. Here, the index k of the sums goes from 0 to 1, and therefore, as seen before:

���⇣piq
���
2

H

§
`
�piq
hom

˘2 “
`
C⌘piq˘2.

Hence, when d “ 1, then �piq
1,c “ C⌘piq. Conversely, when d ° 1, we have all the addenda

between k “ 1 and k “ d ´ 1. Thus, by combining all the three sums together we have:

���⇣piq
���
2

H

§a0 `
d´1ÿ

k“1

ˆ
d

k

˙
ck

„̂ ���xpiq
���
2

`
����piq

���
2

˙2pd´kq
´ 2

���xpiq
���
d´k

2

ˆ���xpiq
���
2

`
����piq

���
2

˙d´k

`
���xpiq

���
2pd´kq

2

⇢

“ a0 `
d´1ÿ

k“1

ˆ
d

k

˙
ck

„ˆ ���xpiq
���
2

`
����piq

���
2

˙d´k

´
���xpiq

���
d´k

2

⇢2
.

Again, by applying the binomial expansion to the pd´ kq-th power of
` ��xpiq��

2
`
���piq��

2

˘
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and by splitting the sum, we are able to simplify the last term. Hence:

���⇣piq
���
2

H

§ a0 `
d´1ÿ

k“1

ˆ
d

k

˙
ck

„ d´kÿ

j“0

ˆ
d ´ k

j

˙ ���xpiq
���
d´k´j

2

����piq
���
j

2
´
���xpiq

���
d´k

2

⇢2

“ a0 `
d´1ÿ

k“1

ˆ
d

k

˙
ck

„ d´kÿ

j“1

ˆ
d ´ k

j

˙ ���xpiq
���
d´k´j

2

����piq
���
j

2

⇢2
.

Therefore, by taking the square root:

���⇣piq
���
H

§

gffea0 `
d´1ÿ

k“1

ˆ
d

k

˙
ck

„ d´kÿ

j“1

ˆ
d ´ k

j

˙ ��xpiq��d´k´j

2

���piq��j
2

⇢2
.

According to inequalities (A.3)´(A.4) and to hypothesis
���piq��

p
§ ⌘piq, we obtain that:

����piq
���
2

§

$
’’’&

’’’%

���piq��
p

§ ⌘piq, 1 § p § 2

n
p´2
2p

���piq��
p

§ n
p´2
2p ⌘piq, p ° 2.

Finally, whenever 1 § p § 2, we have that:

a0 §
„ dÿ

k“1

ˆ
d

k

˙ ���xpiq
���
d´k

2

����piq
���
k

p

⇢2
§

„ dÿ

k“1

ˆ
d

k

˙ ���xpiq
���
d´k

2

`
⌘piq˘k

⇢2
“

`
�piq
d,0

˘2
,

and the second addendum in the square root can be bounded by:

d´1ÿ

k“1

ˆ
d

k

˙
ck

„ d´kÿ

j“1

ˆ
d ´ k

j

˙ ���xpiq
���
d´k´j

2

`
⌘piq˘j

⇢2
.

On the other hand, if p ° 2, then:

a0 §
„ dÿ

k“1

ˆ
d

k

˙ ���xpiq
���
d´k

2
n

kpp´2q
2p

����piq
���
k

p

⇢2
§

„ dÿ

k“1

ˆ
d

k

˙ ���xpiq
���
d´k

2

ˆ
n

p´2
2p ⌘piq

˙k⇢2
“

`
�piq
d,0

˘2
,

and similarly the second addendum in the square root is always less than or equal to:

d´1ÿ

k“1

ˆ
d

k

˙
ck

„ d´kÿ

j“1

ˆ
d ´ k

j

˙ ���xpiq
���
d´k´j

2

ˆ
n
p´2
2p ⌘piq

˙
j
⇢2
.
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Proof of Proposition 2

Proof. For all x in Rn, we have that kpx, xq “ 1 and, thus, equation (A.6) reduces to:

���⇣piq
���
2

H

“ 1 ´ 2 exp

ˆ
´

��xpiq ` �piq ´ xpiq��2
2

2↵2

˙
` 1 “ 2 ´ 2 exp

ˆ
´

���piq��2
2

2↵2

˙
.

Therefore:
���⇣piq

���
H

“

gffe
2 ´ 2 exp

ˆ
´

���piq��2
2

2↵2

˙
.

The thesis follows by applying inequalities (A.3)´(A.4) and by considering the mono-

tonicity of function gpxq “ ´ expp´x2q when x ° 0.
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A.2 Supplementary results

Dataset Data transformation Kernel
Hom. linear Hom. quadratic Hom. cubic Inhom. linear Inhom. quadratic Inhom. cubic Gaussian RBF

Arrhythmia

´ 21.94% ˘ 0.10 53.43% ˘ 0.20 ´ 21.88% ˘ 0.10 53.31% ˘ 0.20 ´ 20.47% ˘ 0.07
CPU time (s) 0.298 0.297 ´ 0.309 0.290 ´ 0.289

Min-max normalization ´ ´ ´ ´ ´ ´ ´
CPU time (s) ´ ´ ´ ´ ´ ´ ´
Standardization ´ ´ ´ ´ ´ ´ ´
CPU time (s) ´ ´ ´ ´ ´ ´ ´

Parkinson

´ 19.18% ˘ 0.10 21.35% ˘ 0.06 29.75% ˘ 0.15 55.99% ˘ 0.36 24.89% ˘ 0.12 33.57% ˘ 0.18 19.66% ˘ 0.03
CPU time (s) 3.698 3.661 4.402 3.713 3.762 4.259 3.702

Min-max normalization 13.19% ˘ 0.03 13.35% ˘ 0.04 13.95% ˘ 0.05 13.43% ˘ 0.05 14.34% ˘ 0.05 15.23% ˘ 0.04 13.91% ˘ 0.04
CPU time (s) 3.626 3.657 3.636 3.731 3.754 3.656 3.629

Standardization 14.47% ˘ 0.04 19.40% ˘ 0.06 15.95% ˘ 0.06 16.08% ˘ 0.06 13.43% ˘ 0.05 14.11% ˘ 0.05 16.02% ˘ 0.05
CPU time (s) 3.621 3.542 3.600 3.640 3.628 3.673 3.576

Heart Disease

´ 23.47% ˘ 0.09 27.79% ˘ 0.05 37.36% ˘ 0.08 35.28% ˘ 0.13 29.77% ˘ 0.08 40.37% ˘ 0.09 33.01% ˘ 0.05
CPU time (s) 12.102 12.646 13.050 12.296 12.391 12.755 12.333

Min-max normalization 18.57% ˘ 0.04 19.82% ˘ 0.04 22.75% ˘ 0.05 18.01% ˘ 0.04 19.75% ˘ 0.04 22.24% ˘ 0.05 31.84% ˘ 0.06
CPU time (s) 12.115 12.167 12.050 12.124 12.061 12.162 12.749

Standardization 19.00% ˘ 0.04 37.27% ˘ 0.06 23.56% ˘ 0.04 17.48% ˘ 0.04 27.48% ˘ 0.05 24.07% ˘ 0.04 47.49% ˘ 0.04
CPU time (s) 12.162 12.100 12.203 12.253 12.532 12.123 11.597

Dermatology

´ 5.41% ˘ 0.06 2.05% ˘ 0.01 3.03% ˘ 0.02 6.14% ˘ 0.07 1.64% ˘ 0.02 2.90% ˘ 0.02 7.81% ˘ 0.08
CPU time (s) 20.584 20.032 19.969 20.094 20.091 20.033 20.246

Min-max normalization 3.35% ˘ 0.03 2.84% ˘ 0.02 1.85% ˘ 0.01 3.34% ˘ 0.03 3.02% ˘ 0.02 1.95% ˘ 0.02 30.83% ˘ 0.01
CPU time (s) 20.253 20.329 20.173 20.102 20.178 20.132 20.548

Standardization 3.23% ˘ 0.03 5.59% ˘ 0.03 3.29% ˘ 0.02 3.86% ˘ 0.03 5.22% ˘ 0.03 3.35% ˘ 0.02 30.83% ˘ 0.01
CPU time (s) 20.050 20.118 20.290 20.073 20.127 20.230 20.349

Climate Model Crashes

´ 5.01% ˘ 0.02 6.04% ˘ 0.02 8.23% ˘ 0.02 5.25% ˘ 0.02 5.87% ˘ 0.02 7.64% ˘ 0.02 13.19% ˘ 0.03
CPU time (s) 68.069 67.104 65.726 66.070 65.745 66.235 66.383

Min-max normalization 5.08% ˘ 0.02 5.52% ˘ 0.02 7.78% ˘ 0.02 5.09% ˘ 0.02 5.87% ˘ 0.02 7.82% ˘ 0.03 13.50% ˘ 0.03
CPU time (s) 68.296 68.102 69.397 68.228 68.510 69.750 70.330

Standardization 5.20% ˘ 0.02 20.15% ˘ 0.03 11.54% ˘ 0.02 5.11% ˘ 0.02 15.73% ˘ 0.04 11.57% ˘ 0.03 13.81% ˘ 0.03
CPU time (s) 67.022 66.851 66.544 65.792 65.528 65.046 69.635

Breast Cancer Diagnostic

´ 10.69% ˘ 0.15 24.85% ˘ 0.22 ´ 16.06% ˘ 0.21 41.46% ˘ 0.23 ´ 8.58% ˘ 0.02
CPU time (s) 76.706 77.126 ´ 76.718 78.570 ´ 80.493

Min-max normalization 4.12% ˘ 0.03 3.15% ˘ 0.02 3.88% ˘ 0.02 4.39% ˘ 0.03 3.02% ˘ 0.02 5.80% ˘ 0.05 12.87% ˘ 0.05
CPU time (s) 76.340 76.476 76.106 76.350 77.786 78.282 77.690

Standardization 3.65% ˘ 0.02 17.72% ˘ 0.03 5.40% ˘ 0.02 3.88% ˘ 0.02 6.88% ˘ 0.02 4.92% ˘ 0.02 36.62% ˘ 0.01
CPU time (s) 78.100 78.279 77.534 76.813 76.041 76.715 77.248

Breast Cancer

´ 3.21% ˘ 0.01 7.02% ˘ 0.02 8.36% ˘ 0.07 3.39% ˘ 0.02 6.84% ˘ 0.02 11.58% ˘ 0.16 3.20% ˘ 0.01
CPU time (s) 133.833 132.231 133.750 134.134 134.697 135.338 133.728

Min-max normalization 4.06% ˘ 0.04 3.29% ˘ 0.01 4.20% ˘ 0.02 4.12% ˘ 0.02 4.43% ˘ 0.03 4.82% ˘ 0.02 3.20% ˘ 0.01
CPU time (s) 135.390 135.382 135.109 137.616 136.871 134.736 136.484

Standardization 3.17% ˘ 0.01 6.80% ˘ 0.03 5.88% ˘ 0.02 3.19% ˘ 0.01 6.21% ˘ 0.02 5.61% ˘ 0.02 3.88% ˘ 0.02
CPU time (s) 135.765 135.553 136.774 135.623 134.514 135.597 137.221

Blood Transfusion

´ 24.09% ˘ 0.01 26.57 ˘ 0.15 ´ 24.00% ˘ 0.01 27.35% ˘ 0.15 ´ 23.73% ˘ 0.01
CPU time (s) 170.744 176.855 ´ 174.407 176.929 ´ 174.808

Min-max normalization 23.82% ˘ 0.00 23.85% ˘ 0.01 23.73% ˘ 0.02 23.84% ˘ 0.00 23.92% ˘ 0.01 23.25% ˘ 0.01 23.53% ˘ 0.02
CPU time (s) 176.273 178.011 178.221 177.326 179.052 175.440 176.455

Standardization 23.85% ˘ 0.01 23.37% ˘ 0.01 22.00% ˘ 0.02 24.01% ˘ 0.01 20.97% ˘ 0.02 20.72% ˘ 0.02 21.09% ˘ 0.02
CPU time (s) 178.088 178.107 177.398 177.692 179.141 178.136 176.627

Mammographic Mass

´ 20.92% ˘ 0.07 15.85% ˘ 0.02 17.51% ˘ 0.05 17.12% ˘ 0.02 16.20% ˘ 0.02 28.47% ˘ 0.15 18.48% ˘ 0.02
CPU time (s) 240.550 239.300 241.644 241.607 242.298 242.582 239.141

Min-max normalization 26.22% ˘ 0.12 16.60% ˘ 0.02 16.09% ˘ 0.02 26.77% ˘ 0.13 16.04% ˘ 0.02 16.06% ˘ 0.02 17.25% ˘ 0.02
CPU time (s) 241.645 240.950 239.648 241.134 241.525 239.143 241.536

Standardization 19.49% ˘ 0.06 31.14% ˘ 0.05 18.82% ˘ 0.03 19.73% ˘ 0.08 15.71% ˘ 0.02 18.63% ˘ 0.02 18.29% ˘ 0.02
CPU time (s) 239.300 236.677 239.877 238.003 241.205 242.163 240.254

Table A.1: Detailed results of average out-of-sample testing errors and standard deviations over
96 runs of the deterministic model. Holdout: 75% training set-25% testing set.
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Dataset Data transformation Kernel
Hom. linear Hom. quadratic Hom. cubic Inhom. linear Inhom. quadratic Inhom. cubic Gaussian RBF

Arrhythmia

´ 23.90% ˘ 0.06 54.23% ˘ 0.02 ´ 24.08% ˘ 0.05 51.72% ˘ 0.21 ´ 23.59% ˘ 0.04
CPU time (s) 0.194 0.180 ´ 0.191 0.216 ´ 0.181

Min-max normalization ´ ´ ´ ´ ´ ´ ´
CPU time (s) ´ ´ ´ ´ ´ ´ ´
Standardization ´ ´ ´ ´ ´ ´ ´
CPU time (s) ´ ´ ´ ´ ´ ´ ´

Parkinson

´ 19.58% ˘ 0.11 25.10% ˘ 0.06 40.05% ˘ 0.22 46.88% ˘ 0.27 23.70% ˘ 0.07 32.07% ˘ 0.17 19.97% ˘ 0.05
CPU time (s) 1.283 1.230 1.290 1.211 1.330 1.382 1.264

Min-max normalization 15.54% ˘ 0.06 15.10% ˘ 0.04 16.02% ˘ 0.04 15.43% ˘ 0.04 16.26% ˘ 0.04 16.13% ˘ 0.04 18.38% ˘ 0.04
CPU time (s) 1.195 1.203 1.206 1.214 1.202 1.207 1.184

Standardization 15.79% ˘ 0.04 22.71% ˘ 0.06 17.74% ˘ 0.05 17.62% ˘ 0.04 17.98% ˘ 0.04 17.71% ˘ 0.05 19.33% ˘ 0.05
CPU time (s) 1.203 1.257 1.207 1.201 1.193 1.204 1.183

Heart Disease

´ 23.00% ˘ 0.08 28.55% ˘ 0.04 37.81% ˘ 0.07 31.07% ˘ 0.13 30.36% ˘ 0.07 42.13% ˘ 0.09 34.45% ˘ 0.04
CPU time (s) 4.132 4.199 4.732 4.193 4.223 4.821 4.045

Min-max normalization 20.00% ˘ 0.03 21.40% ˘ 0.03 22.87% ˘ 0.04 20.11% ˘ 0.06 20.82% ˘ 0.03 22.64% ˘ 0.03 32.07% ˘ 0.06
CPU time (s) 4.078 4.076 4.097 4.063 4.098 4.168 4.057

Standardization 19.05% ˘ 0.04 37.16% ˘ 0.04 23.97% ˘ 0.03 18.92% ˘ 0.03 26.82% ˘ 0.04 23.99% ˘ 0.04 46.01% ˘ 0.04
CPU time (s) 4.182 4.131 4.147 4.138 4.075 4.112 4.095

Dermatology

´ 8.90% ˘ 0.08 2.01% ˘ 0.01 3.17% ˘ 0.02 12.08% ˘ 0.11 1.96% ˘ 0.01 3.34% ˘ 0.02 8.82% ˘ 0.08
CPU time (s) 5.999 6.015 6.115 6.089 6.075 6.072 6.115

Min-max normalization 4.35% ˘ 0.05 3.45% ˘ 0.02 2.55% ˘ 0.02 4.82% ˘ 0.06 3.93% ˘ 0.02 2.42% ˘ 0.01 30.97% ˘ 0.00
CPU time (s) 6.019 6.159 6.049 6.077 6.090 6.021 6.137

Standardization 4.16% ˘ 0.03 7.16% ˘ 0.02 4.19% ˘ 0.02 4.78% ˘ 0.03 5.74% ˘ 0.02 4.14% ˘ 0.02 30.97% ˘ 0.00
CPU time (s) 6.092 6.127 6.258 6.137 6.146 6.101 6.101

Climate Model Crashes

´ 5.56% ˘ 0.01 7.01% ˘ 0.02 8.16% ˘ 0.02 5.35% ˘ 0.01 7.44% ˘ 0.02 8.23% ˘ 0.02 13.42% ˘ 0.02
CPU time (s) 20.032 20.018 20.056 20.035 20.051 20.145 19.856

Min-max normalization 5.57% ˘ 0.01 7.21% ˘ 0.02 8.24% ˘ 0.02 5.42% ˘ 0.01 7.17% ˘ 0.02 8.29% ˘ 0.02 13.57% ˘ 0.02
CPU time (s) 20.742 21.174 20.553 20.941 20.628 20.147 20.740

Standardization 5.82% ˘ 0.01 20.01% ˘ 0.03 11.77% ˘ 0.02 6.40% ˘ 0.02 15.21% ˘ 0.03 11.55% ˘ 0.03 13.14% ˘ 0.02
CPU time (s) 20.059 19.566 19.518 19.702 19.748 19.780 20.310

Breast Cancer Diagnostic

´ 13.53% ˘ 0.18 27.06% ˘ 0.24 ´ 16.94% ˘ 0.23 34.81% ˘ 0.23 ´ 9.26% ˘ 0.02
CPU time (s) 24.553 24.289 ´ 24.410 24.671 ´ 24.525

Min-max normalization 6.21% ˘ 0.06 3.87% ˘ 0.03 4.43% ˘ 0.01 5.99% ˘ 0.05 3.69% ˘ 0.02 5.19% ˘ 0.03 20.68% ˘ 0.08
CPU time (s) 24.449 24.405 24.600 24.671 24.237 24.634 23.636

Standardization 4.17% ˘ 0.02 19.01% ˘ 0.02 5.67% ˘ 0.02 4.45% ˘ 0.03 7.43% ˘ 0.02 5.22% ˘ 0.01 37.21% ˘ 0.00
CPU time (s) 24.472 24.526 24.855 24.664 22.988 23.080 23.791

Breast Cancer

´ 4.54% ˘ 0.04 6.47% ˘ 0.02 12.57% ˘ 0.11 3.61% ˘ 0.02 6.72% ˘ 0.01 26.05% ˘ 0.25 3.84% ˘ 0.01
CPU time (s) 39.279 39.238 40.161 38.794 40.341 39.618 39.730

Min-max normalization 5.71% ˘ 0.06 3.31% ˘ 0.01 4.52% ˘ 0.01 10.05% ˘ 0.11 4.37% ˘ 0.02 4.99% ˘ 0.01 3.62% ˘ 0.01
CPU time (s) 38.718 40.067 39.394 39.775 39.780 39.395 42.094

Standardization 3.37% ˘ 0.01 7.69% ˘ 0.02 6.13% ˘ 0.01 3.75% ˘ 0.01 6.43% ˘ 0.01 5.97% ˘ 0.01 5.08% ˘ 0.02
CPU time (s) 38.914 39.175 38.866 39.353 39.007 38.892 40.610

Blood Transfusion

´ 23.81% ˘ 0.01 22.99% ˘ 0.01 ´ 23.68% ˘ 0.00 31.60% ˘ 0.19 ´ 25.40% ˘ 0.09
CPU time (s) 49.452 50.652 ´ 51.609 54.469 ´ 51.579

Min-max normalization 23.85% ˘ 0.00 23.84% ˘ 0.01 23.69% ˘ 0.01 23.81% ˘ 0.00 23.77% ˘ 0.01 23.59% ˘ 0.01 23.38% ˘ 0.01
CPU time (s) 51.422 51.582 52.451 52.365 51.648 52.098 51.996

Standardization 23.77% ˘ 0.01 23.77% ˘ 0, 01 22.52% ˘ 0.01 23.69% ˘ 0.00 21.98% ˘ 0.01 21.86% ˘ 0.03 22.07% ˘ 0.01
CPU time (s) 51.396 52.654 53.843 52.609 52.676 52.658 52.006

Mammographic Mass

´ 24.02% ˘ 0.10 17.28% ˘ 0.05 35.66% ˘ 0.16 25.55% ˘ 0.11 40.95% ˘ 0.14 46.42% ˘ 0.09 19.84 ˘ 0.02
CPU time (s) 70.958 70.916 71.854 71.198 72.179 72.495 70.880

Min-max normalization 21.74% ˘ 0.09 17.72% ˘ 0.02 16.49% ˘ 0.02 23.36% ˘ 0.11 19.71% ˘ 0.08 18.62% ˘ 0.08 17.94% ˘ 0.01
CPU time (s) 71.468 71.291 71.426 71.415 71.274 73.143 71.589

Standardization 20.08% ˘ 0.06 32.87% ˘ 0.07 19.86% ˘ 0.02 20.25% ˘ 0.06 16.56% ˘ 0.01 19.54% ˘ 0.02 18.84% ˘ 0.02
CPU time (s) 70.693 72.523 72.951 71.156 71.861 71.803 71.269

Table A.2: Detailed results of average out-of-sample testing errors and standard deviations over
96 runs of the deterministic model. Holdout: 50% training set-50% testing set.
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Dataset Data transformation Kernel
Hom. linear Hom. quadratic Hom. cubic Inhom. linear Inhom. quadratic Inhom. cubic Gaussian RBF

Arrhythmia

´ 28.66% ˘ 0.07 53.45% ˘ 0.20 ´ 27.31% ˘ 0.07 53.84% ˘ 0.20 ´ 28.29% ˘ 0.02
CPU time (s) 0.142 0.165 ´ 0.144 0.148 ´ 0.153

Min-max normalization ´ ´ ´ ´ ´ ´ ´
CPU time (s) ´ ´ ´ ´ ´ ´ ´
Standardization ´ ´ ´ ´ ´ ´ ´
CPU time (s) ´ ´ ´ ´ ´ ´ ´

Parkinson

´ 26.58% ˘ 0.17 25.55% ˘ 0.05 45.19% ˘ 0.24 37.54% ˘ 0.25 25.85% ˘ 0.08 45.44% ˘ 0.25 21.48% ˘ 0.03
CPU time (s) 0.293 0.303 0.530 0.301 0.285 0.596 0.295

Min-max normalization 18.91% ˘ 0.05 18.49% ˘ 0.04 20.92% ˘ 0.05 19.98% ˘ 0.06 19.66% ˘ 0.07 21.08% ˘ 0.06 21.88% ˘ 0.04
CPU time (s) 0.311 0.286 0.281 0.291 0.294 0.301 0.291

Standardization 20.03% ˘ 0.04 30.18% ˘ 0.05 23.10% ˘ 0.06 19.73% ˘ 0.04 23.47% ˘ 0.06 22.85% ˘ 0.05 23.78% ˘ 0.05
CPU time (s) 0.286 0.292 0.278 0.277 0.289 0.301 0.289

Heart Disease

´ 25.58% ˘ 0.08 28.73% ˘ 0.04 42.38% ˘ 0.08 28.03% ˘ 0.10 29.50% ˘ 0.06 46.02% ˘ 0.08 36.61% ˘ 0.04
CPU time (s) 0.656 0.648 1.496 0.703 0.682 1.863 0.613

Min-max normalization 22.00% ˘ 0.05 23.18% ˘ 0.03 22.76% ˘ 0.03 21.85% ˘ 0.05 23.33% ˘ 0.04 23.07% ˘ 0.03 38.86% ˘ 0.07
CPU time (s) 0.638 0.640 0.663 0.625 0.628 0.640 0.634

Standardization 22.48% ˘ 0.04 39.13% ˘ 0.04 25.48% ˘ 0.04 22.94% ˘ 0.06 28.38% ˘ 0.03 25.67% ˘ 0.04 45.74% ˘ 0.03
CPU time (s) 0.640 0.653 0.701 0.637 0.629 0.623 0.629

Dermatology

´ 13.17% ˘ 0.11 3.13% ˘ 0.02 4.19% ˘ 0.03 13.88% ˘ 0.11 3.14% ˘ 0.02 4.18% ˘ 0.04 10.01% ˘ 0.04
CPU time (s) 0.971 0.981 0.963 0.956 0.951 0.965 0.974

Min-max normalization 10.32% ˘ 0.11 5.81% ˘ 0.05 3.65% ˘ 0.02 9.03% ˘ 0.10 5.66% ˘ 0.05 3.01% ˘ 0.02 30.97% ˘ 0.00
CPU time (s) 1.006 1.100 0.958 0.960 0.960 0.977 0.957

Standardization 6.74% ˘ 0.04 10.54% ˘ 0.03 7.35% ˘ 0.03 7.97% ˘ 0.05 9.52% ˘ 0.03 7.05% ˘ 0.03 30.97% ˘ 0.00
CPU time (s) 0.968 0.962 0.957 0.953 0.972 0.967 0.955

Climate Model Crashes

´ 7.28% ˘ 0.01 10.51% ˘ 0.02 10.47% ˘ 0.02 7.15% ˘ 0.01 10.59% ˘ 0.03 11.18% ˘ 0.03 14.34% ˘ 0.02
CPU time (s) 2.804 2.715 2.686 2.671 2.653 2.662 2.811

Min-max normalization 7.20% ˘ 0.01 10.54% ˘ 0.02 10.80% ˘ 0.03 7.27% ˘ 0.01 10.77% ˘ 0.03 10.66% ˘ 0.03 14.14% ˘ 0.02
CPU time (s) 2.847 2.827 2.840 2.848 2.865 2.856 2.839

Standardization 10.04% ˘ 0.03 19.74% ˘ 0.05 12.58% ˘ 0.04 9.99% ˘ 0.03 14.36% ˘ 0.04 12.53% ˘ 0.03 13.51% ˘ 0.02
CPU time (s) 2.874 2.823 2.759 2.844 2.853 2.814 2.827

Breast Cancer Diagnostic

´ 17.25% ˘ 0.19 39.75% ˘ 0.24 ´ 20.31% ˘ 0.23 28.03% ˘ 0.23 ´ 11.21% ˘ 0.04
CPU time (s) 3.498 3.515 ´ 3.256 3.419 ´ 3.376

Min-max normalization 8.62% ˘ 0.07 6.29% ˘ 0.05 5.98% ˘ 0.02 8.89% ˘ 0.08 5.87% ˘ 0.04 6.43% ˘ 0.03 33.15% ˘ 0.06
CPU time (s) 3.439 3.249 3.285 3.289 3.250 3.255 3.395

Standardization 5.11% ˘ 0.02 22.85% ˘ 0.03 6.37% ˘ 0.02 5.02% ˘ 0.02 10.49% ˘ 0.02 6.17% ˘ 0.02 37.32% ˘ 0.00
CPU time (s) 3.287 3.309 3.317 3.278 3.381 3.302 3.278

Breast Cancer

´ 7.05% ˘ 0.06 6.58% ˘ 0.02 21.30% ˘ 0.14 6.56% ˘ 0.06 6.73% ˘ 0.02 21.95% ˘ 0.20 5.00% ˘ 0.02
CPU time (s) 5.392 5.318 5.406 5.440 5.490 5.506 5.511

Min-max normalization 8.62% ˘ 0.09 4.47% ˘ 0.02 5.92% ˘ 0.02 11.70% ˘ 0.11 5.01% ˘ 0.04 5.83% ˘ 0.02 5.00% ˘ 0.02
CPU time (s) 5.507 5.536 5.574 5.420 5.463 5.522 5.505

Standardization 5.12% ˘ 0.05 9.45% ˘ 0.02 6.36% ˘ 0.02 4.64% ˘ 0.03 7.33% ˘ 0.02 6.18% ˘ 0.02 6.01% ˘ 0.02
CPU time (s) 5.526 5.423 5.399 5.413 5.418 5.422 5.565

Blood Transfusion

´ 23.69% ˘ 0.00 23.55% ˘ 0.01 ´ 23.69% ˘ 0.01 42.69% ˘ 0.25 ´ 23.96% ˘ 0.01
CPU time (s) 7.214 7.618 ´ 7.342 7.622 ´ 6.838

Min-max normalization 23.85% ˘ 0.01 23.75% ˘ 0.01 23.69% ˘ 0.01 23.77% ˘ 0.00 23.68% ˘ 0.00 23.68% ˘ 0.01 23.53% ˘ 0.01
CPU time (s) 7.319 7.430 7.141 7.398 7.122 7.144 6.665

Standardization 23.75% ˘ 0.01 23.63% ˘ 0.00 23.32% ˘ 0.01 23.72% ˘ 0.00 23.37% ˘ 0.05 26.03% ˘ 0.09 23.35% ˘ 0.01
CPU time (s) 7.357 7.145 7.222 7.183 7.084 7.344 6.737

Mammographic Mass

´ 28.35% ˘ 0.13 18.83% ˘ 0.05 37.40% ˘ 0.14 30.20% ˘ 0.14 36.33% ˘ 0.15 39.55% ˘ 0.15 22.21% ˘ 0.03
CPU time (s) 9.024 9.013 9.166 9.206 9.152 9.166 8.964

Min-max normalization 22.21% ˘ 0.09 19.02% ˘ 0.04 17.68% ˘ 0.02 24.31% ˘ 0.11 19.56% ˘ 0.05 20.38% ˘ 0.08 19.39% ˘ 0.02
CPU time (s) 9.068 9.086 9.116 9.019 9.009 9.021 8.953

Standardization 19.48% ˘ 0.04 32.89% ˘ 0.09 21.98% ˘ 0.04 21.02% ˘ 0.06 19.21% ˘ 0.04 24.04% ˘ 0.07 20.13% ˘ 0.02
CPU time (s) 9.114 9.125 9.184 9.101 9.152 9.250 9.114

Table A.3: Detailed results of average out-of-sample testing errors and standard deviations over
96 runs of the deterministic model. Holdout: 25% training set-75% testing set.
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Dataset Data transformation Kernel ⇢ Robust
p “ 1 p “ 2 p “ 8

Arrhythmia ´ Gaussian RBF

10´7 19.18% ˘ 0.07 19.42% ˘ 0.07 19.67% ˘ 0.07
10´6 19.30% ˘ 0.06 19.61% ˘ 0.07 20.40% ˘ 0.08
10´5 20.47% ˘ 0.07 19.91% ˘ 0.07 19.73% ˘ 0.06
10´4 20.10% ˘ 0.07 19.55% ˘ 0.07 19.61% ˘ 0.07
10´3 19.12% ˘ 0.08 19.30% ˘ 0.07 23.28% ˘ 0.06
10´2 19.30% ˘ 0.07 20.83% ˘ 0.08 29.41% ˘ 0.00
10´1 29.41% ˘ 0.00 29.41% ˘ 0.00 29.41% ˘ 0.00

CPU time (s) 0.290 0.288 0.295

Parkinson Min-max normalization Hom. linear

10´7 12.98% ˘ 0.03 12.87% ˘ 0.03 13.02% ˘ 0.04
10´6 13.50% ˘ 0.04 13.02% ˘ 0.04 12.80% ˘ 0.04
10´5 13.04% ˘ 0.04 13.28% ˘ 0.04 12.61% ˘ 0.04
10´4 13.93% ˘ 0.03 12.37% ˘ 0.03 12.72% ˘ 0.03
10´3 13.54% ˘ 0.03 13.32% ˘ 0.04 13.48% ˘ 0.04
10´2 12.98% ˘ 0.03 13.17% ˘ 0.04 15.15% ˘ 0.04
10´1 15.28% ˘ 0.03 15.58% ˘ 0.03 25.00% ˘ 0.00

CPU time (s) 3.421 3.454 3.418

Heart disease Standardization Inhom. linear

10´7 16.84% ˘ 0.04 17.53% ˘ 0.04 16.84% ˘ 0.04
10´6 17.53% ˘ 0.04 17.72% ˘ 0.04 17.53% ˘ 0.04
10´5 17.37% ˘ 0.04 18.26% ˘ 0.03 17.38% ˘ 0.04
10´4 17.75% ˘ 0.04 18.27% ˘ 0.04 17.64% ˘ 0.04
10´3 17.13% ˘ 0.04 18.43% ˘ 0.04 17.12% ˘ 0.04
10´2 17.10% ˘ 0.04 17.92% ˘ 0.04 16.36% ˘ 0.04
10´1 16.98% ˘ 0.04 17.53% ˘ 0.03 16.37% ˘ 0.04

CPU time (s) 11.602 11.477 11.417

Dermatology ´ Inhom. quadratic

10´7 1.65% ˘ 0.01 1.71% ˘ 0.01 1.72% ˘ 0.01
10´6 1.78% ˘ 0.01 1.80% ˘ 0.02 1.79% ˘ 0.01
10´5 1.73% ˘ 0.02 1.57% ˘ 0.01 1.76% ˘ 0.01
10´4 11.06% ˘ 0.04 0.39% ˘ 0.04 1.28% ˘ 0.01
10´3 30.93% ˘ 0.01 30.93% ˘ 0.01 0.55% ˘ 0.01
10´2 30.91% ˘ 0.01 30.86% ˘ 0.01 30.89% ˘ 0.01
10´1 38.06% ˘ 0.21 32.33% ˘ 0.10 30.92% ˘ 0.01

CPU time (s) 20.055 20.420 20.147

Climate Model Crashes ´ Hom. linear

10´7 4.74% ˘ 0.02 4.51% ˘ 0.01 4.60% ˘ 0.02
10´6 4.70% ˘ 0.02 4.88% ˘ 0.01 4.93% ˘ 0.02
10´5 4.52% ˘ 0.02 4.56% ˘ 0.01 4.71% ˘ 0.02
10´4 4.86% ˘ 0.02 4.78% ˘ 0.02 4.85% ˘ 0.01
10´3 4.47% ˘ 0.02 4.71% ˘ 0.01 4.34% ˘ 0.01
10´2 4.67% ˘ 0.01 4.50% ˘ 0.01 4.81% ˘ 0.02
10´1 8.46% ˘ 0.00 8.52% ˘ 0.00 8.47% ˘ 0.00

CPU time (s) 66.762 67.169 67.381

Table A.4: Average out-of-sample testing errors and standard deviations over 96 runs of the robust
model. Holdout: 75% training set-25% testing set.

130



Dataset Data transformation Kernel ⇢ Robust
p “ 1 p “ 2 p “ 8

Breast Cancer Diagnostic Min-max normalization Inhom. quadratic

10´7 2.80% ˘ 0.01 2.65% ˘ 0.01 2.80% ˘ 0.01
10´6 2.96% ˘ 0.02 2.70% ˘ 0.01 2.96% ˘ 0.02
10´5 2.63% ˘ 0.01 2.99% ˘ 0.01 2.66% ˘ 0.01
10´4 2.88% ˘ 0.01 2.88% ˘ 0.01 2.56% ˘ 0.01
10´3 2.91% ˘ 0.01 3.19% ˘ 0.01 9.76% ˘ 0.03
10´2 37.32% ˘ 0.00 37.32% ˘ 0.00 37.32% ˘ 0.00
10´1 37.32% ˘ 0.00 37.32% ˘ 0.00 37.32% ˘ 0.00

CPU time (s) 77.968 78.267 77.543

Breast Cancer Standardization Hom. linear

10´7 3.20% ˘ 0.01 3.24% ˘ 0.01 3.17% ˘ 0.01
10´6 3.16% ˘ 0.01 3.26% ˘ 0.01 3.17% ˘ 0.01
10´5 2.97% ˘ 0.01 3.32% ˘ 0.01 3.14% ˘ 0.01
10´4 3.23% ˘ 0.01 3.50% ˘ 0.01 3.20% ˘ 0.01
10´3 3.11% ˘ 0.01 3.07% ˘ 0.01 3.21% ˘ 0.01
10´2 3.33% ˘ 0.01 3.19% ˘ 0.01 3.08% ˘ 0.01
10´1 3.07% ˘ 0.01 3.32% ˘ 0.01 3.06% ˘ 0.01

CPU time (s) 135.651 137.039 136.286

Blood Transfusion Standardization Inhom. cubic

10´7 20.60% ˘ 0.02 20.55% ˘ 0.02 20.64% ˘ 0.02
10´6 20.72% ˘ 0.02 20.80% ˘ 0.02 20.77% ˘ 0.02
10´5 21.26% ˘ 0.02 20.97% ˘ 0.02 22.49% ˘ 0.02
10´4 23.88% ˘ 0.00 23.85% ˘ 0.00 23.79% ˘ 0.00
10´3 23.80% ˘ 0.00 24.57% ˘ 0.08 26.18% ˘ 0.13
10´2 26.19% ˘ 0.13 30.94% ˘ 0.22 38.88% ˘ 0.31
10´1 61.12% ˘ 0.38 57.13% ˘ 0.38 56.37% ˘ 0.38

CPU time (s) 178.751 179.682 180.083

Mammographic Mass Standardization Inhom. quadratic

10´7 15.71% ˘ 0.02 15.42% ˘ 0.02 15.54% ˘ 0.02
10´6 15.57% ˘ 0.02 15.46% ˘ 0.03 15.74% ˘ 0.03
10´5 15.49% ˘ 0.02 16.16% ˘ 0.03 15.66% ˘ 0.02
10´4 15.91% ˘ 0.02 16.16% ˘ 0.03 18.81% ˘ 0.02
10´3 48.54% ˘ 0.00 48.56% ˘ 0.00 48.56% ˘ 0.00
10´2 48.57% ˘ 0.00 48.53% ˘ 0.00 48.53% ˘ 0.00
10´1 48.56% ˘ 0.00 48.54% ˘ 0.00 48.54% ˘ 0.00

CPU time (s) 241.810 242.614 241.929

Table A.5: Average out-of-sample testing errors and standard deviations over 96 runs of the robust
model. Holdout: 75% training set-25% testing set (continued).
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Dataset Data transformation Kernel ⇢ Robust
p “ 1 p “ 2 p “ 8

Arrhythmia ´ Gaussian RBF

10´7 24.66% ˘ 0.04 23.99% ˘ 0.05 23.44% ˘ 0.04
10´6 24.11% ˘ 0.05 24.63% ˘ 0.04 23.77% ˘ 0.05
10´5 23.81% ˘ 0.05 24.08% ˘ 0.04 24.11% ˘ 0.05
10´4 23.77% ˘ 0.05 23.74% ˘ 0.05 24.33% ˘ 0.05
10´3 24.51% ˘ 0.04 24.60% ˘ 0.05 26.10% ˘ 0.04
10´2 24.36% ˘ 0.04 23.77% ˘ 0.05 29.41% ˘ 0.00
10´1 29.41% ˘ 0.00 29.41% ˘ 0.00 29.41% ˘ 0.00

CPU time (s) 0.191 0.195 0.196

Parkinson Min-max normalization Hom. quadratic

10´7 13.92% ˘ 0.03 14.89% ˘ 0.04 14.51% ˘ 0.03
10´6 14.85% ˘ 0.03 14.45% ˘ 0.03 14.25% ˘ 0.03
10´5 14.52% ˘ 0.03 14.45% ˘ 0.03 14.45% ˘ 0.03
10´4 14.28% ˘ 0.04 14.28% ˘ 0.03 14.33% ˘ 0.03
10´3 14.84% ˘ 0.03 14.41% ˘ 0.03 13.85% ˘ 0.03
10´2 13.84% ˘ 0.03 13.86% ˘ 0.03 15.01% ˘ 0.03
10´1 15.38% ˘ 0.02 15.70% ˘ 0.02 24.74% ˘ 0.00

CPU time (s) 1.195 1.217 1.224

Heart disease Standardization Inhom. linear

10´7 18.38% ˘ 0.03 18.21% ˘ 0.02 18.21% ˘ 0.02
10´6 18.18% ˘ 0.03 18.53% ˘ 0.03 18.53% ˘ 0.03
10´5 17.98% ˘ 0.03 18.17% ˘ 0.03 18.17% ˘ 0.03
10´4 18.29% ˘ 0.03 18.82% ˘ 0.03 18.78% ˘ 0.03
10´3 18.88% ˘ 0.03 18.19% ˘ 0.03 18.19% ˘ 0.03
10´2 18.92% ˘ 0.03 18.22% ˘ 0.03 18.05% ˘ 0.03
10´1 17.34% ˘ 0.02 17.65% ˘ 0.02 17.29% ˘ 0.02

CPU time (s) 3.686 3.795 3.766

Dermatology ´ Inhom. quadratic

10´7 1.97% ˘ 0.01 2.19% ˘ 0.01 1.97% ˘ 0.01
10´6 1.93% ˘ 0.01 1.96% ˘ 0.01 1.93% ˘ 0.01
10´5 1.98% ˘ 0.01 2.38% ˘ 0.01 1.94% ˘ 0.01
10´4 2.04% ˘ 0.01 2.12% ˘ 0.01 1.71% ˘ 0.01
10´3 1.55% ˘ 0.01 1.40% ˘ 0.01 0.73% ˘ 0.01
10´2 0.62% ˘ 0.01 0.51% ˘ 0.01 31.00% ˘ 0.00
10´1 31.02% ˘ 0.00 30.98% ˘ 0.00 31.02% ˘ 0.00

CPU time (s) 6.156 6.178 6.200

Climate Model Crashes ´ Inhom. linear

10´7 5.27% ˘ 0.01 5.23% ˘ 0.01 5.23% ˘ 0.01
10´6 5.23% ˘ 0.01 5.27% ˘ 0.01 5.27% ˘ 0.01
10´5 5.35% ˘ 0.01 5.35% ˘ 0.01 5.34% ˘ 0.01
10´4 5.46% ˘ 0.01 5.28% ˘ 0.01 5.23% ˘ 0.01
10´3 5.43% ˘ 0.01 5.21% ˘ 0.01 5.41% ˘ 0.01
10´2 5.46% ˘ 0.01 5.44% ˘ 0.01 6.30% ˘ 0.01
10´1 8.51% ˘ 0.00 8.52% ˘ 0.00 8.52% ˘ 0.00

CPU time (s) 19.874 20.420 19.868

Table A.6: Average out-of-sample testing errors and standard deviations over 96 runs of the robust
model. Holdout: 50% training set-50% testing set.
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Dataset Data transformation Kernel ⇢ Robust
p “ 1 p “ 2 p “ 8

Breast Cancer Diagnostic Min-max normalization Inhom. quadratic

10´7 3.06% ˘ 0.01 3.19% ˘ 0.01 3.06% ˘ 0.01
10´6 3.19% ˘ 0.01 3.19% ˘ 0.01 3.18% ˘ 0.01
10´5 2.87% ˘ 0.01 3.17% ˘ 0.01 2.86% ˘ 0.01
10´4 3.26% ˘ 0.01 2.99% ˘ 0.01 3.21% ˘ 0.01
10´3 2.90% ˘ 0.01 3.29% ˘ 0.01 5.67% ˘ 0.01
10´2 11.14% ˘ 0.03 10.74% ˘ 0.03 37.32% ˘ 0.00
10´1 37.32% ˘ 0.00 37.32% ˘ 0.00 37.32% ˘ 0.00

CPU time (s) 23.844 24.039 24.074

Breast Cancer Min-max normalization Hom. quadratic

10´7 3.32% ˘ 0.01 3.32% ˘ 0.01 3.32% ˘ 0.01
10´6 3.22% ˘ 0.01 3.22% ˘ 0.01 3.22% ˘ 0.01
10´5 3.36% ˘ 0.01 3.36% ˘ 0.01 3.36% ˘ 0.01
10´4 3.27% ˘ 0.01 3.27% ˘ 0.01 3.23% ˘ 0.01
10´3 3.29% ˘ 0.01 3.29% ˘ 0.01 3.26% ˘ 0.01
10´2 3.24% ˘ 0.01 3.24% ˘ 0.01 3.16% ˘ 0.01
10´1 3.09% ˘ 0.01 3.09% ˘ 0.01 2.91% ˘ 0.01

CPU time (s) 40.660 40.554 41.035

Blood Transfusion Standardization Inhom. cubic

10´7 21.61% ˘ 0.01 21.47% ˘ 0.01 21.46% ˘ 0.02
10´6 21.54% ˘ 0.02 21.48% ˘ 0.02 21.33% ˘ 0.02
10´5 21.63% ˘ 0.01 21.63% ˘ 0.01 22.09% ˘ 0.01
10´4 23.69% ˘ 0.00 23.67% ˘ 0.00 23.80% ˘ 0.00
10´3 23.80% ˘ 0.00 23.80% ˘ 0.00 23.80% ˘ 0.00
10´2 25.38% ˘ 0.11 25.38% ˘ 0.11 30.94% ˘ 0.22
10´1 47.61% ˘ 0.36 47.61% ˘ 0.36 52.37% ˘ 0.37

CPU time (s) 52.918 52.915 52.598

Mammographic Mass Min-max normalization Hom. cubic

10´7 16.58% ˘ 0.02 16.31% ˘ 0.02 16.58% ˘ 0.02
10´6 16.46% ˘ 0.01 16.15% ˘ 0.01 16.46% ˘ 0.01
10´5 16.51% ˘ 0.02 16.67% ˘ 0.01 16.54% ˘ 0.02
10´4 16.45% ˘ 0.02 16.39% ˘ 0.01 16.54% ˘ 0.01
10´3 17.34% ˘ 0.02 16.84% ˘ 0.02 17.86% ˘ 0.02
10´2 18.05% ˘ 0.02 18.30% ˘ 0.02 18.87% ˘ 0.02
10´1 19.86% ˘ 0.01 19.93% ˘ 0.01 19.50% ˘ 0.01

CPU time (s) 71.626 71.648 71.730

Table A.7: Average out-of-sample testing errors and standard deviations over 96 runs of the robust
model. Holdout: 50% training set-50% testing set (continued).
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Dataset Data transformation Kernel ⇢ Robust
p “ 1 p “ 2 p “ 8

Arrhythmia ´ Inhom. linear

10´7 26.70% ˘ 0.07 27.47% ˘ 0.06 28.82% ˘ 0.06
10´6 28.00% ˘ 0.06 27.21% ˘ 0.06 28.15% ˘ 0.07
10´5 28.66% ˘ 0.06 28.29% ˘ 0.06 28.10% ˘ 0.06
10´4 28.78% ˘ 0.06 28.04% ˘ 0.06 27.84% ˘ 0.07
10´3 27.41% ˘ 0.06 28.68% ˘ 0.07 32.29% ˘ 0.06
10´2 31.56% ˘ 0.07 30.43% ˘ 0.07 29.41% ˘ 0.00
10´1 29.45% ˘ 0.00 29.45% ˘ 0.00 29.41% ˘ 0.00

CPU time (s) 0.151 0.161 0.142

Parkinson Min-max normalization Hom. quadratic

10´7 18.87% ˘ 0.04 18.00% ˘ 0.04 17.73% ˘ 0.04
10´6 18.37% ˘ 0.04 17.23% ˘ 0.04 18.12% ˘ 0.04
10´5 18.77% ˘ 0.04 17.84% ˘ 0.04 18.15% ˘ 0.04
10´4 17.65% ˘ 0.04 17.18% ˘ 0.04 17.62% ˘ 0.04
10´3 17.43% ˘ 0.04 17.46% ˘ 0.04 17.93% ˘ 0.04
10´2 16.96% ˘ 0.04 17.18% ˘ 0.04 17.07% ˘ 0.03
10´1 17.04% ˘ 0.03 17.22% ˘ 0.03 24.66% ˘ 0.00

CPU time (s) 0.301 0.304 0.303

Heart disease Min-max normalization Inhom. linear

10´7 19.99% ˘ 0.03 20.39% ˘ 0.03 20.97% ˘ 0.03
10´6 20.93% ˘ 0.03 20.59% ˘ 0.03 21.17% ˘ 0.03
10´5 20.91% ˘ 0.03 20.88% ˘ 0.03 20.97% ˘ 0.03
10´4 20.51% ˘ 0.03 20.25% ˘ 0.03 20.49% ˘ 0.03
10´3 20.65% ˘ 0.03 20.51% ˘ 0.02 20.31% ˘ 0.02
10´2 21.08% ˘ 0.03 19.64% ˘ 0.03 19.75% ˘ 0.02
10´1 19.98% ˘ 0.02 19.89% ˘ 0.02 19.47% ˘ 0.02

CPU time (s) 0.643 0.640 0.649

Dermatology Min-max normalization Inhom. cubic

10´7 2.45% ˘ 0.02 2.31% ˘ 0.02 2.11% ˘ 0.02
10´6 2.06% ˘ 0.02 2.29% ˘ 0.02 2.19% ˘ 0.02
10´5 2.46% ˘ 0.02 2.32% ˘ 0.02 2.04% ˘ 0.01
10´4 2.46% ˘ 0.02 2.13% ˘ 0.01 2.12% ˘ 0.02
10´3 2.23% ˘ 0.02 2.30% ˘ 0.01 25.62% ˘ 0.08
10´2 30.97% ˘ 0.00 30.97% ˘ 0.00 30.97% ˘ 0.00
10´1 30.97% ˘ 0.00 30.97% ˘ 0.00 30.97% ˘ 0.00

CPU time (s) 1.015 1.028 1.050

Climate Model Crashes ´ Inhom. linear

10´7 7.15% ˘ 0.01 7.14% ˘ 0.01 7.40% ˘ 0.02
10´6 7.19% ˘ 0.01 7.20% ˘ 0.01 7.11% ˘ 0.01
10´5 7.27% ˘ 0.01 6.98% ˘ 0.01 7.15% ˘ 0.01
10´4 7.27% ˘ 0.01 7.16% ˘ 0.01 7.29% ˘ 0.01
10´3 7.10% ˘ 0.01 7.07% ˘ 0.01 6.98% ˘ 0.01
10´2 7.17% ˘ 0.01 7.12% ˘ 0.01 7.71% ˘ 0.01
10´1 8.50% ˘ 0.00 8.49% ˘ 0.00 8.52% ˘ 0.00

CPU time (s) 2.776 2.847 2.769

Table A.8: Average out-of-sample testing errors and standard deviations over 96 runs of the robust
model. Holdout: 25% training set-75% testing set.
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Dataset Data transformation Kernel ⇢ Robust
p “ 1 p “ 2 p “ 8

Breast Cancer Diagnostic Standardization Inhom. linear

10´7 4.78% ˘ 0.01 4.81% ˘ 0.01 4.60% ˘ 0.01
10´6 4.84% ˘ 0.01 4.74% ˘ 0.02 4.94% ˘ 0.01
10´5 4.65% ˘ 0.01 4.85% ˘ 0.01 4.76% ˘ 0.01
10´4 4.86% ˘ 0.01 4.86% ˘ 0.01 4.82% ˘ 0.01
10´3 4.89% ˘ 0.01 4.76% ˘ 0.01 4.79% ˘ 0.01
10´2 4.22% ˘ 0.01 4.72% ˘ 0.02 3.91% ˘ 0.01
10´1 3.68% ˘ 0.01 3.74% ˘ 0.01 4.91% ˘ 0.01

CPU time (s) 3.242 3.271 3.231

Breast Cancer Min-max normalization Hom. quadratic

10´7 3.81% ˘ 0.01 3.73% ˘ 0.01 3.59% ˘ 0.01
10´6 3.77% ˘ 0.01 3.83% ˘ 0.01 3.65% ˘ 0.01
10´5 3.63% ˘ 0.01 3.65% ˘ 0.01 3.66% ˘ 0.01
10´4 3.57% ˘ 0.01 3.69% ˘ 0.01 3.53% ˘ 0.01
10´3 3.84% ˘ 0.01 3.97% ˘ 0.01 3.76% ˘ 0.01
10´2 3.37% ˘ 0.01 3.46% ˘ 0.01 3.25% ˘ 0.01
10´1 3.18% ˘ 0.01 3.15% ˘ 0.01 2.90% ˘ 0.00

CPU time (s) 5.301 5362 5.309

Blood Transfusion Standardization Hom. cubic

10´7 23.21% ˘ 0.01 23.20% ˘ 0.02 23.25% ˘ 0.01
10´6 23.41% ˘ 0.01 23.28% ˘ 0.01 23.34% ˘ 0.01
10´5 23.36% ˘ 0.01 23.47% ˘ 0.02 23.19% ˘ 0.01
10´4 23.24% ˘ 0.01 23.45% ˘ 0.01 23.44% ˘ 0.01
10´3 23.08% ˘ 0.01 23.15% ˘ 0.01 23.12% ˘ 0.01
10´2 23.34% ˘ 0.01 23.26% ˘ 0.02 23.54% ˘ 0.00
10´1 23.61% ˘ 0.00 23.58% ˘ 0.00 23.69% ˘ 0.00

CPU time (s) 6.952 6.904 6.936

Mammographic Mass Min-max normalization Hom. cubic

10´7 17.62% ˘ 0.01 17.83% ˘ 0.02 17.84% ˘ 0.02
10´6 17.99% ˘ 0.01 17.61% ˘ 0.01 17.59% ˘ 0.01
10´5 17.62% ˘ 0.02 17.98% ˘ 0.01 17.97% ˘ 0.02
10´4 17.69% ˘ 0.01 17.62% ˘ 0.01 17.79% ˘ 0.02
10´3 17.83% ˘ 0.01 18.06% ˘ 0.01 18.22% ˘ 0.01
10´2 18.58% ˘ 0.01 18.60% ˘ 0.01 19.19% ˘ 0.01
10´1 19.82% ˘ 0.01 19.79% ˘ 0.01 19.64% ˘ 0.01

CPU time (s) 9.039 9.169 9.280

Table A.9: Average out-of-sample testing errors and standard deviations over 96 runs of the robust
model. Holdout: 25% training set-75% testing set (continued).
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Dataset Data transformation Mean value of features CV of features

Arrhythmia ´ Min 2.23 ˆ 102 0
Max 6.20 ˆ 102 5.29 ˆ 10´1

Parkinson Min-max normalization
Min 4.40 ˆ 10´5 7.71 ˆ 10´2

Max 1.97 ˆ 102 1.63 ˆ 100

Heart Disease Standardization
Min 1.45 ˆ 10´1 1.35 ˆ 10´1

Max 2.47 ˆ 102 2.43 ˆ 100

Dermatology ´ Min 1.06 ˆ 10´1 3.20 ˆ 10´1

Max 3.63 ˆ 101 4.29 ˆ 100

Climate Model Crashes ´ Min 5.00 ˆ 10´1 5.78 ˆ 10´1

Max 5.00 ˆ 10´1 5.78 ˆ 10´1

Breast Cancer Diagnostic Min-max normalization
Min 3.79 ˆ 10´3 1.12 ˆ 10´1

Max 8.81 ˆ 102 1.13 ˆ 100

Breast Cancer Standardization
Min 1.59 ˆ 100 6.41 ˆ 10´1

Max 4.39 ˆ 100 1.09 ˆ 100

Blood Transfusion Standardization
Min 5.51 ˆ 100 7.11 ˆ 10´1

Max 1.38 ˆ 103 1.06 ˆ 100

Mammographic Mass Standardization
Min 2.78 ˆ 100 1.59 ˆ 10´1

Max 5.58 ˆ 101 5.57 ˆ 10´1

Table A.10: Minimum and maximum values for the mean and the coe�cient of variation (CV)
computed feature-wise. The data transformation refers to the best choice when classifying the
holdout 75%-25% with the deterministic model.
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Appendix B

Appendix to Chapter 5

B.1 Multi-stage stochastic model Msym with a two-commodity

flow formulation

Sets:

I “ ti : i “ 0, 1, . . . , N,N ` 1u: set of N waste bins and the real depot 0 and the copy

depot N ` 1;

I
1 “ ti : i “ 1, . . . , Nu: set of N waste bins (depots excluded);

T “ tt : t “ 1, . . . , T u: set of stages;
T

1 “ tt : t “ 1, . . . , T ´ 1u: set of stages (last stage excluded);

T
2 “ tt : t “ 2, . . . , T u: set of stages (first stage excluded);

N
1 “ tn : n “ 1u: root node at stage 1;

N
t “ tn : n “ 1, . . . , ntu: set of ordered nodes of the tree at stage t P T .

Deterministic parameters:

C: travelling cost per distance unit;

R: selling price of a recyclable material;

Q: vehicle capacity;

B: waste density;

M : Big-M number;

dij : distance between i P I and j P I;

Sinit

i
: percentage of waste on the total volume of bin i P I

1 at the first stage;

Ei: capacity of bin i P I
1;

papnq: parent of node n P N
t, t P T

2.

Stochastic parameters:

an
i
: uncertain accumulation rate of bin i P I

1 at node n P N
t, t P T

2;
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⇡n: probability of node n P N
t, t P T .

Decision variables:

xt
ij

P t0, 1u: binary variable indicating if arc pi, jq is visited at time t ` 1, with t P T
1 and

for i, j P I, i ‰ j;

yt
i

P t0, 1u: binary variable indicating if waste bin i P I
1 is visited at time t ` 1, with

t P T
1;

fn

ij
P R`: nonnegative variable representing the flow between i P I

1 and j P I, i ‰ j, for

n P N
t, t P T

2;

wn

i
P R`: nonnegative variable representing the amount of waste collected at waste bin

i P I
1, for n P N

t, t P T
2;

un
i

P R`: nonnegative variable representing the amount of waste at waste bin i P I
1, for

n P N
t, t P T .

Model Msym:

max R
ÿ

tPT 2

ÿ

nPN t

⇡n
ÿ

iPI1
wn

i ´ C

2

ÿ

tPT 1

ÿ

i,jPI
i‰j

dijx
t

ij

s.t.
ÿ

jPI
j‰i

pfn

ij ´ fn

jiq “ 2wn

i i P I
1, n P N

t, t P T
2

ÿ

iPI1
fn

iN`1 “
ÿ

iPI1
wn

i n P N
t, t P T

2

fn

ij ` fn

ji “ Qxt´1
ij

i, j P I, i ‰ j, n P N
t, t P T

2

fn

ij § pQ ´ EjBanj qxt´1
ij

i, j P I
1, i ‰ j, n P N

t, t P T
2

ÿ

iPI
i‰j

xtij “ 2ytj j P I
1, t P T

1

wn

i § EiByt´1
i

i P I
1, n P N

t, t P T
2

uni § Mp1 ´ yt´1
i

q i P I
1, n P N

t, t P T
2

uni “ EiBSinit

i i P I
1, n P N

1

uni “ upapnq
i

` EiBani ´ wn

i i P I
1, n P N

t, t P T
2

upapnq
i

§
`
1 ´ ani

˘
EiB i P I

1, n P N
t, t P T

2

xtij P t0, 1u i, j P I, i ‰ j, t P T
1

yti P t0, 1u i P I
1, t P T

1

fn

ij • 0 i P I
1, j P I, i ‰ j, n P N

t, t P T
2

wn

i • 0 i P I
1, n P N

t, t P T
2

uni • 0 i P I
1, n P N

t, t P T
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B.2 Scenario tree generation

In this section, we discuss how to generate scenario trees to describe the problem uncer-

tainty. We adopt the methodology proposed by Kirui et al. in [81], which are based on

the works of Pflug and Pichler (see [121] for details).

Since only a limited number of trajectories of the accumulation rate is available from

historical data, new and additional samples are needed to be generated, even if the true

distribution of the accumulation rate is not known. However, it can be estimated by a

non-parametric kernel density technique discussed in the following.

Let
`
ap1q
i,o

, . . . , aptq
i,o
, . . . , apT q

i,o

˘
be the vector denoting the accumulation rate of bin i for

week of observation o, with o “ 1, . . . , No. Let kp¨q be a kernel function and
`
p1, . . . , po, . . . , pNo

˘

be a No-dimensional vector of positive weights such that
∞

No
o“1 po “ 1. Let ↵ be a random

number drawn from the uniform distribution U
`
0, 1

˘
. At stage t “ 1, . . . , T , a new sample

paptq
i

of the accumulation rate of bin i is given by:

paptq
i

“ aptq
i,o˚ ` hptq ¨ Kptq,

where:

• o˚ is an index between 1 and No such that
∞

o
˚´1

o“1 po † ↵ § ∞
o

˚
o“1 po;

• hptq is the bandwidth, computed according to the Silverman’s rule of thumb (see

[136]), namely hptq “ �ptq ¨ N
´ 1

mptq`4
o , being �ptq the standard deviation of data at

stage t and mptq the dimension of the process at stage t;

• Kptq is a random value sampled from the kernel distribution kp¨q at stage t.

Before computing a new sample at stage t` 1, each weight po is updated according to the

formula po ¨ phptqq´m
pt`1q ¨ k

` paptq
i ´a

ptq
i,o

hptq
˘
, and then normalized. Further, a random number ↵

is drawn anew.

Using this procedure, the conditional density gpt`1q
i

of the accumulation rate of bin i at

stage t ` 1, given pap1q
i

, . . . ,paptq
i
, can be estimated by:

pgpt`1q
i

`
papt`1q
i

ˇ̌
pap1q
i

, . . . ,paptq
i

˘
“

Noÿ

o“1

po ¨ phpNoqq´m
pt`1q ¨ k

ˆpapt`1q
i

´ apt`1q
i,o

hNo

˙
.

Within this approach, every new trajectory starts at pap1q
i

, and new samples papt`1q
i

are

generated according to the density pgpt`1q
i

, for t “ 1, . . . , T ´1. At the end of the procedure

at stage T , a new trajectory ppap1q
i

, . . . ,papT q
i

q has been generated from the initial data.
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We set ap1q
i,o

“ 0 “ pap1q
i

for all i “ 1, . . . , N , o “ 1, . . . , No because no increase of

waste at the first stage of the time horizon is assumed, and mptq “ N for all t “ 1, . . . , T

since, at each node, the dimension of the state corresponds to the total number of bins.

Furthermore, as suggested in [81], the kernel kp¨q is set to be logistic. Figure B.1 shows one

hundred trajectories of the accumulation rate in six di↵erent bins, generated according to

the conditional density estimation process described so far.

Secondly, we apply a dynamic stochastic approximation algorithm to generate a can-

didate scenario tree (see [121] for details). Starting from an initial guess of a tree with a

prescribed branching structure, at every iteration of the procedure a new sample path is

generated according to the conditional density estimation process discussed above. The

algorithm finds one possible sequence of nodes in the scenario tree whose distance between

the states of those nodes and the generated sample is minimal. Thus, the states of those

nodes are updated with the values of the generated sample and the others remain un-

changed. Then, the algorithm calculates the conditional probabilities to reach each node

of the tree starting from its root, and it stops when all the iterations, whose number is

decided in advance, have been performed.

The scenario tree generation procedure described so far has been implemented in Julia,

relying on the package ScenTrees.jl (see [82]). The number of iterations for the stochastic

approximation process has been set to 10000.
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Figure B.1: For each of the six bins, one hundred trajectories on the accumulation rate of waste
generated from historical data through the conditional density estimation process are depicted.
The stages are represented on the horizontal axis.
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B.3 In-sample stability

In this section, we carry out an in-sample stability analysis (see [75]).

In Table B.1 we report average results obtained by solving model M over five runs on

inst 9 1, with increasing size of the scenario tree. Box-plots of objective function and of

weight of collected waste are depicted in Figure B.2.

Scenarios Branching structure Profit (e) Weight of waste (kg) Distance (km) CPU time (s) Multistage distance
32 [1 2 2 2 2 2] 7.43 267.58 72.84 55.22 0.063
72 [1 3 3 2 2 2] 7.61 268.18 72.84 166.24 0.046
162 [1 3 3 3 3 2] 7.42 267.52 72.84 1165.00 0.034
324 [1 4 3 3 3 3] 7.63 268.22 72.84 7109.18 0.027
576 [1 4 4 4 3 3] 7.50 267.81 72.84 51928.64 0.020
1024 [1 4 4 4 4 4] Not solved to optimality within 24 hours 0.016

Table B.1: Average results on the in-sample stability analysis over five runs on scenario trees with
increasing size. The results are drawn from model M on inst 9 1.

Since various indicators (profit, weight of collected waste, total travelled distance) do

not vary significantly when increasing the size of the tree, we conclude that the method-

ology we applied to generate scenario trees is stable even with small trees. Besides, the

multistage distance (see the last column of Table B.1), is throughout close to zero, due to

the minimization of the distance in the dynamic stochastic approximation algorithm. On

the other hand, the computational time increases considerably, when increasing the size

of the tree.

Figure B.2: Box-plots of objective function value (below, left-hand scale) and of weight of collected
waste (above, right-hand scale) over 5 runs of scenario trees with increasing cardinality.
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For all of these reasons, we decide to consider a scenario tree of size S “ 32, with 63

nodes. In Figure B.3 we depict six binary scenario trees of six di↵erent bins with the corre-

sponding probability distributions generated from the dynamic stochastic approximation

algorithm.

Figure B.3: Examples of six-stages scenario trees of the accumulation rate of waste in six di↵erent
bins. The corresponding probability distribution is depicted on the right of each plot.
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B.4 Stochastic measures (detailed results for small instances)

inst 1 9 inst 2 9 inst 3 9 inst 4 9 inst 5 9 inst 6 9 inst 7 9 inst 8 9 inst 9 9 inst 10 9
RP 9.36 11.92 31.58 32.66 2.48 4.27 30.76 22.90 2.72 32.96
EV 23.79 14.43 38.23 38.58 17.24 18.10 36.85 45.80 18.60 42.82
WS 17.63 17.46 45.50 37.94 16.40 15.88 35.98 25.40 24.04 45.68
%EV PI 88% 46% 44% 16% 562% 272% 17% 11% 783% 39%
%V SS1 8 8 8 77% 8 8 8 8 8 8
%V SS2 8 8 8 77% 8 8 8 8 8 8
%V SS3 8 8 8 8 8 8 8 8 8 8
%V SS4 8 8 8 8 8 8 8 8 8 8
%V SS5 8 8 8 8 8 8 8 8 8 8
%MLUSS1 8 8 8 77% 8 8 8 8 8 8
%MLUSS2 8 8 8 77% 8 8 8 8 8 8
%MLUSS3 8 8 8 8 8 8 8 8 8 8
%MLUSS4 8 8 8 8 8 8 8 8 8 8
%MLUSS5 8 8 8 8 8 8 8 8 8 8
%MLUDS1 0% 0% 0% 77% 0% 0% 0% 0% 0% 0%
%MLUDS2 546% 500% 179% 77% 1992% 1131% 174% 235% 1760% 150%
%MLUDS3 546% 500% 179% 77% 1992% 1131% 174% 235% 1760% 150%
%MLUDS4 546% 500% 179% 77% 1992% 1131% 174% 235% 1760% 150%
%MLUDS5 546% 500% 179% 147% 1992% 1131% 174% 235% 1760% 150%

Table B.2: Detailed results of RP , EV , WS and of stochastic measures %EV PI, %V SSt,
%MLUSSt, %MLUDSt, for 1 § t § 5. The values in percentage denote the gap with respect to
the corresponding RP problem. The results refer to the instances with 9 bins.

inst 1 10 inst 2 10 inst 3 10 inst 4 10 inst 5 10 inst 6 10 inst 7 10 inst 8 10 inst 9 10 inst 10 10
RP 14.57 25.97 53.88 54.09 16.41 32.07 41.28 35.71 33.16 36.59
EV 32.06 28.48 53.88 58.82 22.50 32.07 48.12 40.65 40.45 36.59
WS 34.42 32.40 57.08 63.13 29.61 35.38 47.91 49.40 43.67 38.10
%EV PI 136% 25% 6% 17% 80% 10% 16% 38% 32% 4%
%V SS1 8 8 8 8 8 8 0% 8 8 8
%V SS2 8 8 8 8 8 8 55% 8 8 8
%V SS3 8 8 8 8 8 8 55% 8 8 8
%V SS4 8 8 8 8 8 8 8 8 8 8
%V SS5 8 8 8 8 8 8 8 8 8 8
%MLUSS1 8 8 8 8 8 8 0% 8 8 8
%MLUSS2 8 8 8 8 8 8 55% 8 8 8
%MLUSS3 8 8 8 8 8 8 55% 8 8 8
%MLUSS4 8 8 8 8 8 8 8 8 8 8
%MLUSS5 8 8 8 8 8 8 8 8 8 8
%MLUDS1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
%MLUDS2 316% 229% 95% 87% 348% 160% 55% 153% 157% 147%
%MLUDS3 316% 229% 95% 87% 348% 160% 55% 153% 157% 147%
%MLUDS4 316% 229% 95% 87% 348% 160% 55% 153% 157% 147%
%MLUDS5 316% 229% 95% 87% 348% 160% 55% 153% 157% 147%

Table B.3: Detailed results of RP , EV , WS and of stochastic measures %EV PI, %V SSt,
%MLUSSt, %MLUDSt, for 1 § t § 5. The values in percentage denote the gap with respect to
the corresponding RP problem. The results refer to the instances with 10 bins.
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inst 1 11 inst 2 11 inst 3 11 inst 4 11 inst 5 11 inst 6 11 inst 7 11 inst 8 11 inst 9 11 inst 10 11
RP 30.83 38.46 64.24 33.12 46.72 50.21 60.99 29.87 15.73 42.31
EV 32.38 41.03 66.18 33.12 49.84 53.15 61.94 34.10 26.57 52.39
WS 40.32 41.96 65.57 46.96 51.60 52.02 62.36 36.42 25.93 48.32
%EV PI 31% 9% 2% 42% 10% 4% 2% 22% 65% 14%
%V SS1 8 8 8 8 8 8 8 8 8 8
%V SS2 8 8 8 8 8 8 8 8 8 8
%V SS3 8 8 8 8 8 8 8 8 8 8
%V SS4 8 8 8 8 8 8 8 8 8 8
%V SS5 8 8 8 8 8 8 8 8 8 8
%MLUSS1 8 8 8 8 8 8 8 8 8 8
%MLUSS2 8 8 8 8 8 8 8 8 8 8
%MLUSS3 8 8 8 8 8 8 8 8 8 8
%MLUSS4 8 8 8 8 8 8 8 8 8 8
%MLUSS5 8 8 8 8 8 8 8 8 8 8
%MLUDS1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
%MLUDS2 200% 155% 100% 156% 129% 124% 93% 166% 326% 131%
%MLUDS3 200% 155% 100% 156% 129% 124% 93% 166% 326% 131%
%MLUDS4 200% 155% 100% 156% 129% 124% 93% 166% 326% 131%
%MLUDS5 200% 155% 100% 156% 129% 124% 93% 166% 326% 131%

Table B.4: Detailed results of RP , EV , WS and of stochastic measures %EV PI, %V SSt,
%MLUSSt, %MLUDSt, for 1 § t § 5. The values in percentage denote the gap with respect to
the corresponding RP problem. The results refer to the instances with 11 bins.

145



B.5 Performance of the rolling horizon approach (detailed

results for small instances)

inst 1 9 inst 2 9 inst 3 9 inst 4 9 inst 5 9 inst 6 9 inst 7 9 inst 8 9 inst 9 9 inst 10 9
W Profit reduction (%)
1 11% 8 37% 8% 74% 0% 32% 8 0% 7%
2 11% 95% 37% 8% 74% 0% 32% 54% 0% 7%
3 11% 95% 37% 8% 74% 0% 32% 54% 0% 7%
4 11% 0% 37% 8% 74% 0% 32% 0% 0% 7%
W Computational time reduction (%)
1 94% 99% 99% 94% 99% 99% 100% 95% 100% 100%
2 85% 76% 96% 81% 98% 98% 99% 79% 100% 97%
3 67% 49% 90% 49% 83% 96% 96% 49% 99% 91%
4 40% ´9% 75% 5% 85% 79% 94% ´36% 98% 67%

Table B.5: Detailed results on the performance of the rolling horizon approach, in terms of reduc-
tion of the profit and of the CPU time when compared to the RP problem. The results refer to
the instances with 9 bins.

inst 1 10 inst 2 10 inst 3 10 inst 4 10 inst 5 10 inst 6 10 inst 7 10 inst 8 10 inst 9 10 inst 10 10
W Profit reduction (%)
1 0% 8 59% 4% 68% 15% 8 26% 17% 8
2 0% 50% 20% 4% 68% 15% 55% 26% 17% 36%
3 0% 50% 20% 4% 68% 15% 55% 26% 17% 36%
4 0% 0% 0% 4% 68% 36% 0% 26% 17% 0%
W Computational time reduction (%)
1 99% 87% 100% 99% 99% 100% 100% 100% 99% 100%
2 95% 56% 97% 91% 97% 99% 97% 95% 94% 99%
3 89% 0% 91% 79% 86% 94% 89% 86% 84% 97%
4 78% ´82% 75% 41% 28% 37% 86% 42% ´151% 82%

Table B.6: Detailed results on the performance of the rolling horizon approach, in terms of reduc-
tion of the profit and of the CPU time when compared to the RP problem. The results refer to
the instances with 10 bins.

inst 1 11 inst 2 11 inst 3 11 inst 4 11 inst 5 11 inst 6 11 inst 7 11 inst 8 11 inst 9 11 inst 10 11
W Profit reduction (%)
1 49% 93% 28% 46% 11% 26% 54% 16% 48% 10%
2 49% 34% 28% 46% 11% 26% 15% 16% 48% 10%
3 49% 34% 28% 46% 11% 26% 15% 16% 48% 10%
4 0% 0% 0% 54% 0% 0% 0% 16% 48% 10%
W Computational time reduction (%)
1 100% 98% 98% 84% 100% 100% 100% 98% 99% 100%
2 99% 85% 84% 30% 96% 99% 96% 91% 97% 99%
3 95% ´490% 61% ´23% 91% 98% 69% 55% 93% 96%
4 82% ´141% ´36% ´161% 80% 93% 66% 10% 10% 90%

Table B.7: Detailed results on the performance of the rolling horizon approach, in terms of reduc-
tion of the profit and of the CPU time when compared to the RP problem. The results refer to
the instances with 11 bins.
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hensive survey on support vector machine classification: Applications, challenges

and trends. Neurocomputing, 408:189–215, 2020.

[30] F. F. Chamasemani and Y. P. Singh. Multi-class support vector machine (svm)

classifiers – an application in hypothyroid detection and classification. In 2011 Sixth

International Conference on Bio-Inspired Computing: Theories and Applications,

2011.

[31] S. Chand, V. Hsu, and S. Sethi. Forecast, solution, and rolling horizons in oper-

ations management problems: A classified bibliography. Manufacturing & Service

Operations Management, 4(1):25–43, 2002.

149



[32] S. Chand, V. N. Hsu, and S. Sethi. Forecast, solution, and rolling horizons in oper-

ations management problems: A classified bibliography. Manufacturing & Service

Operations Management, 4:25–43, 2002.

[33] S.-G. Chen and X. Wu. A new fuzzy twin support vector machine for pattern classifi-

cation. International Journal of Machine Learning and Cybernetics, 9(9):1553–1564,

2018.

[34] T. Y. Chen, T. H. Tse, and Y.-T. Yu. Proportional sampling strategy: a com-

pendium and some insights. The Journal of Systems and Software, 58(1):65–81,

2001.

[35] X. Chen, J. Yang, Q. Ye, and J. Liang. Recursive projection twin support vector

machine via within-class variance minimization. Pattern Recognition, 44(10):2643–

2655, 2011.

[36] Z.-Y. Chen, Z.-P. Fan, and M. Sun. A hierarchical multiple kernel support vector

machine for customer churn prediction using longitudinal behavioral data. European

Journal of Operational Research, 223(2):461–472, 2012.

[37] L. C. Coelho, J.-F. Cordeau, and G. Laporte. Thirty years of inventory routing.

Transportation Science, 48(1):1–19, 2014.

[38] C. Cortes and V. N. Vapnik. Support-vector networks. Machine Learning, 20:273–

297, 1995.

[39] K. W. De Bock, K. Coussement, A. D. Caigny, R. S lowiński, B. Baesens, R. N.
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