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Introduction and Summary 
 
Aviation draws people’s attention, not only because it is a dream of human race to fly or the 
association to vacations, but its role in our modern economies. It is, first of all, an incredible 
investment, such as airports1, aircrafts, lands, control systems…etc. There are great business 
opportunities as well as risks2. Moreover, the operation of airports3, airlines or aircraft 
manufacturing4 generate tremendous incomes and jobs, often vital to cities heavily relay on 
these business. Furthermore, politic issues, such as regulations, agreements, ownerships and 
business decisions in company level, are shaping the market. Last but not least, enhanced by 
aviation, the connectivity and attractiveness of city induce economic benefit in tourism, 
business and so on, are very seductive to governors hoping to exploit its economic potential. 
However, just like any aspect of economics, there are externalities, which is not always 
captured nor considered by decision makers.   
 
Externality is always the first question I ask. To quantify and internalize them will enhance 
market efficiency and the fairness of society. Furthermore, the trend, abnormality or 
unobserved factors are crucial in this uncertain world if we want to estimate the future. 
Focusing on econometrics, i.e. applying statistical tools on economic data to spot estimators 
and to set models; reference points for discussion or decision could be provided while 
arousing the awareness of less-acknowledged matters by including them in the models.  
 
Three papers are presented in this report. First of all, as the fastest growing transport mode, 
aviation sustainability and environmental costs are generally concerned. We tried to address 
the noise and emission of the global aircraft fleet and to argue the current technology 
progress is not vigorous enough, while examining the trade off of these externalities. We find 
a statistically significant impact of incremental technical progress on all environmental 
externalities. Substantial innovation is found to have positive effect on per-passenger 
externalities. These results point to the need for incentives in aviation technical progress. 
 
Secondly, the blooming of passenger traffic, particularly contributed by low cost carrier 
(LCC) across Europe is changing the landscape of aviation market: revitalizing airports, 
exploiting regulations and inducing policies. By observing the carbon dioxide footprint of 
flights departing from four airports in Lombardy region, we reveal determinants having direct 
impact on CO2 emissions in two dimensions: total emission and per available seat kilometer 
(emission efficiency). Also we show distinguished characteristics of LCC and try to capture 
the impact of air traffic policies of government and airlines.  
  
Last but not least, we are interested in a less studied area of aviation industry – air cargo 
activities. In the era of new economy, characterized by just in time manufacturing and 
express e-commerce, GDP as the classic indicator of air cargo should be verified since GDP 
is weighting more on service industries nowadays but less on air-cargo-related manufacturing 

																																																								
1 Construction cost of an airport can be up to billions, and sometimes involve land formation. Some example 
from “Airport construction mid-year review”, CAPA 2015. 
2 Delays of an airport opening can induce over-budget and harm business. The case of Berlin airport highlighted 
by “The farcical saga of Berlin's new airport”, The Telegraph 2017.   
3	Memphis, whose economy is driven by trucking and transportation, is the “America’s Distribution Hub” 
hosting FedEx headquarter.	
4	“Fears for 4,000 British jobs as Bombardier hit with 219pc US tariffs in subsidy dispute”, The Telegraph 2017. 
The dispute of USA (Boeing) and Canadian Bombardier may affect jobs in Belfast, Northern Ireland, where part 
of the aircraft is produced.	



industries. This is an attempt to estimate air cargo activities, which is an important 
component of the air transport industry and a strong driver of aviation development other 
than air passenger movement. We found that a country’s income level, online purchase 
activity and air cargo connectivity are all positive determinants of its air cargo level. 
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a b s t r a c t

This paper investigates the effects of incremental and substantial innovations on aviation
emissions and noise levels among aircraft/engine combinations belonging to the Boeing
B737 and the Airbus A320 families. We find a statistically significant impact of incremental
technical progress on all environmental externalities both at the flight level and the pas-
senger level. Although substantial innovation is found to have a limited impact at the flight
level, a noteworthy positive effect exists on per-passenger externalities. These results point
to the need for incentives in aviation technical progress in order to neutralize future neg-
ative environmental effects due to the expected traffic growth.

! 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Aviation continues to be a booming industry, with an annual growth rate that has often surpassed 4.6% in the past ten
years,1 which is 3.5% greater, on average, than advanced economies’ GDP growth.2 Such growth, boosted by the extension of
deregulation as well as an increasing level of competition brought about by the entrance of low-cost carriers (LCC), is expected
to continue for the next years. Although competition and development are beneficial since they have brought about lower fares
and greater mobility to the air transportation industry, both the public and policymakers are increasingly concerned about the
industry’s overall impact on the environment.

At the global level, the aviation industry accounts for 3.5% of global greenhouse gases (Lee et al., 2009), with a predicted
increase of 15% by 2050 (IPCC, 1999); however, at the local level, emissions and noise nuisance are the biggest concerns
because such factors may harm areas outside the airport (the human population, animals, plants, water, soil, etc.). Heavy
health impacts are related to both emissions (respiratory and brain diseases, as well as cancers) and noise nuisance (hearing
impairment, hypertension, ischemic heart disease, annoyance, sleep disturbance, stress).

As the public agrees that environmental externalities should be internalized into the cost of the industry, several environ-
mental standards and corresponding platforms have been introduced at global, regional, and local levels. On a global level,
the Kyoto Protocol (signed in 1997) aims at fighting global warming by reducing greenhouse gas concentrations in the atmo-
sphere. On a regional level, the European Union emission-trading scheme (started in 2005) was extended to airlines in 2012.

http://dx.doi.org/10.1016/j.tra.2017.05.022
0965-8564/! 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: gianmaria.martini@unibg.it (M. Grampella).

1 According to Statista, annual growth (2006–2014) in global air traffic passenger demand has always been greater than 4.6%, except in 2008 and 2009,
resulting in an average growth rate of 4.8% (Statista, 2015).

2 According to the IMF database, the GDP growth from 2006 to 2014 of advanced economies was +1.3% on average.
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On a local level, many European cities have applied curfew and emission and/or noise surcharges to incentivize operators to
reduce pollution.

As indicated by Chèze et al. (2011a), emissions in air transportation could be reduced by energy efficiency gains in (1) air
traffic management (ATM), (2) improvements in existing aircraft (incremental innovation), and (3) production of new air-
craft (substantial innovation). Different from driver (1), factors (2), and (3) are both related to technical progress. Moreover,
Leylekian et al. (2014) show that both incremental and substantive innovation can also contribute to noise reduction.

Despite the acknowledged importance of innovation in reducing aviation externalities, little is known about the ways that
advances in new technology are shaping the air transportation industry.3

This paper is an attempt to fill this gap. To this end, we build a data set composed of 270 different aircraft/engine com-
binations that belong to the B737 and A320 families and investigate the influence of technical progress (innovation) on (i)
noise, (ii) local pollutants, and (iii) global pollutants. Further, we look for the existence of a trade-off between noise and local
pollutants, as suggested by previous studies (e.g., Phleps and Hornung, 2013). Last, we investigate the relationship between
the size of newly designed aircraft and the per-passenger environmental impact. To the best of our knowledge, the current
study is one of the first attempts to measure the influence of technical progress in air transportation through an econometric
approach. We have not found many systematic statements in the literature on the effects of technological progress at both
the flight and the passenger levels (a rare example is Swan, 2010).4 Despite this lack of evidence, other than enhancing fuel
efficiency, the tendency of building bigger aircraft is also magnifying the environmental impact of a single flight. We pose the
questions: What is such an impact per single passenger transported? Would the marginal environmental cost of a single pas-
senger decrease even if the increasing marginal cost of the single flight is taken into account?

The structure of the paper is as follows. Section 2 summarizes the literature contributions on the relationship between
technological progress and the environmental impact of air transportation. Section 3 presents the aviation externalities con-
sidered in the analysis, the sources of technical progress, and the econometric model. Section 4 describes the data set used in
this study and the corresponding data mining procedures. Section 5 presents the empirical results. Section 6 concludes the
paper and highlights some possible policy implications.

2. Literature review

Previous literature on the environmental impact of air transportation has mainly focused on computing the amount of
emissions and noise produced by airports or particular aircraft types and converting such amounts into a monetary damage.

Schipper (2004) studies the impact of aircraft operations on air pollution and noise in a small group of European airports.
He focuses on some routes and calculates, by aggregating aircraft and routes factors, the annual monetary damages. A similar
approach is followed by Lu and Morrell (2006), but applied only at Heathrow, Gatwick, Stansted, Schipol, and Maastricht air-
ports. Several contributions carry out a quantification of monetary damages of emissions and noise. Morrell and Lu (2007)
calculate the environmental costs of hub-to-hub versus hub-bypass networks applying the methodology presented in Lu and
Morrell (2006) to a data set of eight large airports on different continents. Lu (2009) calculates the impact on air passenger
demand of the introduction of emission charges in airfares. Givoni and Rietveld (2010) compare the environmental costs of
using two different aircraft types (the narrow-body A320 and the wide-body B747) on two high-demand routes (London-
Amsterdam and Tokyo-Sapporo). Lu (2011) calculates the environmental costs at the Taiwan Taoyuan International Airport
following the approach of Lu and Morrell (2006). Miyoshi and Mason (2009) propose an aircraft-specific calculator for CO2

emissions applied to U.K. domestic routes, intra-Europe routes serving the U.K., and North Atlantic routes.
To the best of our knowledge, only a few contributions have estimated the effect of innovation on environmental impacts.

These studies mainly focus on fuel consumption and CO2. Macintosh andWallace (2009) provide an estimate of CO2 aviation
emissions from 2005 to 2025 using the following algorithm: Et ¼ RTKt " EIt , in which Et is the emission of CO2 in year t, RTKt

is the projected revenue tonne kilometers, and EIt is the emission intensity in aviation in year t. They assume a reduction in
emissions equal to 1.9% per year, in line with the IATA target. After deriving calibrations and running different scenarios, the
authors show that innovation is unlikely to offset the increase in CO2 emissions. Chèze et al. (2011a) also measure innovation
in terms of higher fuel efficiency, which leads to lower CO2 emissions. They provide a historical trend of technical progress in
aviation, both in terms of fuel consumption and CO2 emissions, and show that the amount of energy burnt by an aircraft
(measured in MJoule) per available seat kilometer (ASK) has improved by a factor of 3.5 between 1958 (when the Comet
4 aircraft model was issued) and 2011 (the introductory year of the A350-300). Moreover, using an algorithm similar to that
of Macintosh and Wallace (2009), they compute that innovation has improved energy efficiency by 2.88% per year in the
period 1983–2006. In order to obtain this result they assume an approximately 3% annual reduction in tonnes of jet fuel
by available tonne kilometer, but consider in their evaluation both technical progress and improvements in ATM. Chèze
et al. (2011b) extend this approach and analyze the impact of energy efficiency on aviation CO2 emissions by showing that
new aircraft are not necessarily more efficient than older ones. For instance, carbon intensity, measured as grams of CO2 per
revenue passenger kilometer (RPK), is higher for the new aircraft A380 (equal to 101.86 g CO2/RPK), than for the B777-300

3 Aircraft and engine manufacturers claim that newer aircraft burn less fuel, take off and land in shorter times, make less noise, and fly faster. Airport
managing companies guarantee that noise levels are under control through introducing monetary incentives (i.e., noise surcharges), thus encouraging airlines
to use younger aircraft.

4 Swan (2010) reports that large airplanes make 2–3 times the noise per seat as small airplanes.
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(launched in 1997, with 92.84 g CO2/RPK). Furthermore, Chèze et al. (2013) suggest that, if current trends in technological
progress in aviation continue, the projected annual increase in the amount of CO2 generated is equal to +0.1% at the world
level, and that the current innovation process (in fuel efficiency) is not outweighing the carbon emissions of the growing air
traffic. Brugnoli et al. (2015) examine the various forces influencing the development of environmentally beneficial technical
changes in commercial aircraft and find CO2 reductions of about 1.34% a year due to endogenous technical progress.

All previous contributions estimate that innovation effects on fuel consumption and CO2 emissions is approximately
#1.3%/#3% yearly, however, this amount is based on algorithms (with the exception of Brugnoli et al. (2015)). This implies
that ad hoc assumptions about future scenarios are required (e.g., future advances in technologies) and that any kind of sta-
tistical inference on the provided coefficients is not allowed. Moreover, the literature contributions do not include all of the
aviation externalities, since they focus mainly on CO2 and completely ignore the noise component.

We see the need for a study that investigates the effect of the aviation industry’s incremental and substantial technology
progress on both pollutant emissions and noise. Incremental innovation is given by the annual improvement in environmen-
tal performance—i.e., how much a younger technology improves—while substantial innovation refers to the introduction of
new aircraft models.

Additionally, Phleps and Hornung (2013) highlight the possible trade-off between emissions and noise in air transporta-
tion. They analyze the impact on airline costs through two innovations: the geared turbofan and the rotating open rotor tech-
nologies. A comparison is made with the status quo technology, given by the latest models of the B737 and A320 families.
They equate three possible scenarios: a ‘‘baseline” scenario that is similar to the current situation, a ‘‘green and growth” sce-
nario that balances the production of externalities and the growth of aviation, and a ‘‘rapid aviation growth” scenario paying
very little attention to environmental effects. They show that the open rotor aircraft may yield up to 9% higher fuel efficiency
compared to a geared turbofan technology (and better than the status quo), but that these gains may be completely offset due
to the implementation of higher noise standards (e.g., tighter ICAO future Annex chapters), pointing out that the technical
progress limiting fuel consumption (and in turn emissions) is not complementary with noise annoyance reductions.

We will encompass these algorithms/scenario-based analyses by comparing the magnitude with indications of the effects
of technical progress on emissions and noise levels from our estimated econometric model. Different indications would
imply the presence of the Phleps and Hornung (2013) trade-off.

3. The empirical strategy

Our empirical investigation explores the following issues. First, we identify the different aviation externalities—that is,
what externalities to investigate and how to quantify them. Second, we design an econometric model estimating the impact
of technical progress on such externalities, after having controlled for different factors that may introduce, if omitted, some
distortions in the estimates. Hence, in this section we first describe the types of externalities included in the analysis, and
then present the specifications of our econometric model.

3.1. Emissions and noise in aviation

To evaluate the aviation externalities, we focus on the amount of local and global pollutants emitted, as well as the noise
generated by different aircraft-engine combinations. This means that our reference point is purely a single flight and not an
airport with its total volume of operations. In this way, we can identify the effect of technology progress on a particular flight,
which could be regarded as a benchmark for regulation standards.

As shown extensively in Grampella et al. (2017), aviation emissions can be divided into landing and takeoff (LTO) emis-
sions,5 affecting mainly the local pollutant concentration, and global emissions, which affect climate change.

Dings et al. (2003) point out that LTO emissions are HC (hydrocarbon), CO (carbon monoxide), NOx (nitrogen oxides), SO2

(sulfur dioxide), and PM10 (particular matters), while global emissions are CO2 (carbon dioxide), H2O (moisture), contrails
and NOx. Dings et al. (2003) extensively discuss the relevance of these different emissions and highlight the following issues.
First, global emissions are mostly produced during the aircraft cruise; hence, the total amount of emissions depends upon
the stage length. This finding implies that some assumptions are needed to quantify the amount of global emissions. We con-
sider seven stage lengths: 125 nautical miles (nm), 250 nm, 500 nm, 750 nm, 1,000 nm, 1,500 nm, and 2,000 nm. Second, as
contrails only affect 10% of the cruise, we exclude them from the analysis. Third, while CO2 and H2O emissions are related to
fuel consumption, NOx global emissions are instead not related to fuel consumption, but depend upon combustion temper-
ature, which increases with engine power settings. We follow Sutkus et al. (2001), who provide factors of 3.155 kg CO2/kg
fuel, 1.237 kg H2O/kg fuel, as well as emission indices of NOx depending on the aircraft/engine combination and the cruise
altitude (we use a 9–13 km altitude). Fuel consumption for the seven different stage lengths is taken from the CORINAIR
database.6

5 Local emissions are mainly related to airport operations—i.e., aircrafts’ different phases composing the LTO-cycle: taxing-in and taxing-out, take-off,
climbing (up to 3000 ft) and final approach-landing.

6 CORINAIR does not differentiate engines but only aircraft models. Hence the amount of CO2 and H2O produced during cruise is based on aircraft model only,
independent of the engine installed. See the EMEP/CORINAIR Emission Inventory Guidebook for more information.
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After first considering each pollutant alone, we then multiply the total amount of each substance by the monetary value
of its cost of damage and obtain aggregate measures of both local pollution and global pollution. Such a cost quantifies, in
monetary terms, the negative health effects of a pollutant. A comprehensive survey on the different approaches and evidence
on pollutants’ monetary damages is provided by Dings et al. (2003), a paper that represents a benchmark for many studies on
aviation emissions (e.g., Givoni and Rietveld, 2010; Martini et al., 2013a, 2013b; Scotti et al., 2014; Grampella et al., 2017).
The benchmarking costs of damage of pollutants considered in this contribution are as follows: € 4/kg HC, € 9/kg NOx, € 6/kg
SO2, and € 150/kg PM10

7 for local emissions, and €4/kg NOx, € 0.03/kg CO2, and € 0.0083/kg H2O for global emissions.
The treatment of noise levels is more complex than that of emissions. On the one hand, noise can be measured linearly as

a modification of the sound pressure. On the other hand, noise creates annoyance at the local level—the units of measure are
respectively micro Pascal (lPa) and decibels (dB).8 Human beings can perceive variations in sound pressure produced by a
noise source if the sound occurs between 20 lPa (corresponding to a status quo level in which no noise is perceived) and
100 Pa (corresponding to the noise produced by an aircraft at maximum thrust power of its engines). The ratio of these two
extreme is greater than 1 million. Although the human ear responds to stimulus produced by noise in a nonlinear way, it does
follow a logarithmic scale. We consider both dimensions, as they are useful in different interpretations. According to ICAO cer-
tification data, noise is evaluated at three points: lateral, flyover, and take-off (climbing) during the LTO operations.

The literature regarding the cost of damage caused by noise is more limited than that regarding air pollution. Some con-
tributions (e.g. Schipper, 2004; Lu and Morrell, 2006) have presented estimates based on specific case studies; however,
these measures are airport-specific and cannot be easily generalized.9 As a result, we choose to analyze separately the impact
of innovation on noise from that on emissions. As previously mentioned, we would also like to determine if any trade-off exists
between noise and air pollution.

Employing the ICAO certification system, we obtain emissions and noise for each aircraft-engine combination, as shown
in Fig. 1, which also provides an overview of the externalities investigated in the analysis.

3.2. The econometric model

Our aim is to estimate the effect of technical progress on the amount of local air pollution, greenhouse gas (GHG) emis-
sions, and noise produced by aviation. Moreover, we are also interested in untangling the effect of technical progress
between per-flight externalities and per-passenger externalities. The former considers the amount of externalities generated
by a single flight, while the latter considers the costs and benefits of individual mobility, as shown by Swan (2010). Hence,
we have two measurement units of externalities as a dependent variable: (i) per-flight and (ii) per-seat.10

In the analysis of noise externalities, we consider the magnitude and the sign of technical progress in terms of the sound
pressure variation, as well as the noise-level variation as perceived by human ears (see Brüel and Kjær, 2000; Passchier-
Vermeer and Passchier, 2000). The former is linear, and thus the estimated coefficient describes the impact of technology
progress on noise levels under the same (linear) unit, while the latter is logarithmic and hence the estimated coefficient dis-
plays the impact on decibels. Thus, an annual reduction of 1 dB obtained through technical progress would not imply a unit
decrease in noise annoyance.11

Echoing to Chèze et al. (2011a, 2011b), we study both incremental and substantial innovation. Incremental technical pro-
gress is given by the annual variation in the aircraft/engine combinations’ age, embedding general technical progress in avi-
ation technology. Substantial innovation is given by the introduction of a new aircraft model.

As we are interested in estimating the annual percentage variation in aviation externalities in the presence of a unit
increase in the incremental innovation index and the introduction of a new aircraft model, we estimate a log-linear model.
The basic econometric model is therefore given by the following equation:

log EXTERi ¼ aþ b1 " INCREMi þ b2 " SUBSTANi þ
XL

l¼1

cl " CONTRli þ !i; ð1Þ

where EXTERi is the amount of externality produced by the aircraft/engine combination i (see Table 1 for the list of variables
and corresponding measurement units), INCREMi is the index of incremental innovation in combination i, SUBSTANi is the
index of substantial innovation in i, CONTRli is a set of L control variables, while !i is the error term.

7 The estimated health effects of CO produced during the LTO cycle are negligible and therefore not considered in the aggregate measure of local air pollution
costs.

8 Decibels (dB), a logarithmic scale is the universal measurement of perceived noise annoyance.
9 An exception is Grampella et al. (2017), in which Schipper’s (2004) two measures of monetary damages related to noise annoyance are adopted to quantify

the social cost of the noise generated by aircraft during the LTO cycle.
10 We consider the seats available on a typical aircraft/engine configuration. This means that we do not consider passenger load factors, which depend upon
airlines’ strategies (e.g., airfares, promotions, etc.). Hence, we do not focus on actual emissions in operating conditions (that will be a function of load factors,
which in turn, influences thrust power), but on emissions in certified conditions, which are homogenous for all combinations (in terms of thrust power) and
therefore feasible in comparing different models.
11 For instance, two noise sources of 50 dB that reaches the same person give rise to a noise annoyance equal to 53 dB—that is, a 3-dB increase represents a
double level of noise annoyance.

528 M. Grampella et al. / Transportation Research Part A 103 (2017) 525–540



The index representing incremental innovation is based on the first operating year of aircraft/engine combination i. There
is an issuing date on each ICAO certification, which has to be granted to every combination. Indeed, when a specific aircraft
model has a new engine installed, it has to obtain a new ICAO certificate before flying. YEARi indicates the age of the com-
bination i, computed as the difference between 2014, and the abovementioned date. Hence YEARi is our proxy for incremen-
tal technical progress—i.e., INCREMi = YEARi. The birthday or vintage year of aircraft/engine combination i is obtained through
the following multi-step procedure. First, various dates are collected: ‘‘Introduction year” (the first order by an airline com-
pany), ‘‘Maiden flight,” (the first flight of the aircraft—one of the last tests before certification) and ‘‘Entrance in service” (the
first delivery of that aircraft) dates are taken from the ordering history and delivery files on aircraft manufacturers’ web-
sites.12 Second, Type Certificate application date (the date from which the regulations to be applied is frozen for a given amount
of time to avoid the obligation to amend the design due to future introduction of new regulation) and issuance date (the date
from which the aircraft can fly or the engine can be used) are collected both for aircraft and engines from the official documen-
tation (the so-called ‘‘Type Certificate Data Sheets”) of the regulatory bodies—the Federal Aviation Administration (FAA) for the
U.S. and the European Aviation Safety Agency (EASA) for Europe. Third, in order to determine the year from which a specific
aircraft with a specific engine has entered into service (YEARi), we use the earlier between the two years between FAA and EASA
certification dates. These dates represent, for both agencies, the older year between the issuance year of the engine and the issu-
ance year of the aircraft model. Such a procedure appears reasonable given that (i) an aircraft cannot fly without receiving a

Fig. 1. Overview of aviation externalities.

Table 1
Dependent variables for the different specifications of Eq. (1).

Externality
dependent
variable

Description

HC HC/grams generated by combination i during LTO-cycle
CO CO/grams generated by combination i during LTO-cycle
NOx NOx/grams generated by combination i during LTO-cycle
SO2 SO2/grams generated by combination i during LTO-cycle
PM10 PM10/grams generated by combination i during LTO-cycle
LAP Total cost of local air pollution (LAP) generated by combination i during LTO-cycle in Euro (sum of HC + CO + NOx + SO2 + PM10)
CC125 Total cost of climate change pollution (CC) generated by combination i during cruise with stage length = 125 nm in Euro
CC250 Total cost of climate change pollution (CC) generated by combination i during cruise with stage length = 250 nm in Euro
CC500 Total cost of climate change pollution (CC) generated by combination i during cruise with stage length = 500 nm in Euro
CC750 Total cost of climate change pollution (CC) generated by combination i during cruise with stage length = 750 nm in Euro
CC1000 Total cost of climate change pollution (CC) generated by combination i during cruise with stage length = 1000 nm in Euro
CC1500 Total cost of climate change pollution (CC) generated by combination i during cruise with stage length = 1500 nm in Euro
CC2000 Total cost of climate change pollution (CC) generated by combination i during cruise with stage length = 2000 nm in Euro
NOISE_PRES Variation of sound pressure generated by combination i during LTO-cycle in lPa (micro pascal)
NOISE_DB Variation of noise annoyance generated by combination i during LTO-cycle in dB (decibel)

12 These dates are used to check the coherence of the variable YEAR.
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certification for both the engine and model, and (ii) as soon as one of the two agencies issues the necessary certificates, the
aircraft-engine combination is allowed to fly.13 As confirmation, notice that (i) no aircraft in the data set exhibit an entry into
service date antecedent to YEARi; and (ii) for each aircraft model, at least one observation has YEARi corresponding to the first
delivery date.

Substantial innovation is given by the introduction of a new aircraft model, which is represented by a dummy variable
that is equal to 1 for combination i. Hence the substantial innovation variable is given by a set of K – 1 dummy variables
(K is the total number aircraft models included in the analysis), and MODki representing combination i—i.e., b2 " SUBSTANi

becomes
PK#1

k¼1 bki "MODki.
The set of control variables is given by combination i’s size, expressed in maximum take-off weight, MTOWi, and two

dummy variables identifying two specific engine brands—i.e., CFMi and IAEi. The former is equal to 1 if the engine manufac-
turer is CFM International, while the latter is equal to 1 if the engine is produced by IAE (International Aero Engines). Hence, the
engine manufacturer baseline case is Pratt & Whitney, given that B737s and A320s have installed engines designed only by
CFM, IAE, or Pratt & Whitney. The resulting econometric model is as follows:

log EXTERi ¼ aþ b1 " YEARi þ
XK#1

k¼1

bki "MODki þ c1 "MTOWi þ c2 " CFMi þ c3 " IAEi þ !i: ð2Þ

Eq. (2) is estimated by OLS. Notice that normal error distribution and constant error variance have been tested. In the major-
ity of cases, errors are normally distributed, but with non-constant variance.14 To avoid problems of biased standard errors, in
the case of heteroskedasticity, we estimate robust regressions.15

Eq. (2) is estimated under different specifications given that different externalities act as the dependent variable. A list of
such variables with their respective short descriptions is shown in Table 1.16 Note that a single pollutant is identified by its
chemical abbreviation (such as HC for hydrocarbon and CO for carbon monoxide), while local air pollution (LAP) represents the
aggregate cost of damage produced by the joint effect of all the local pollutants generated by each aircraft/engine combination i
during the LTO cycle. An added ‘‘s” as a final letter (see Section 5) indicates the per-seat amount (e.g., HCs and LAPs indicate
respectively the per-seat amount of HC and LAP).17

4. Data

We build a data set that includes the most common aircraft models currently operating in short/medium-haul flights in
the worldwide aviation network: the B737 and A320 families. Therefore, we consider ten B737 models (from the B737-200,
with 1967 as the vintage year, to the B737-900ER, with 2007 as first operating year) and four A320 models (from the A320,
with the 1989 as vintage year, to the A318, with 2003 as introductory year). Table 2 displays all combinations for the two

Table 2
Aircraft/engine combinations in the data set.

Aircraft model Aircraft/engine combinations Introductory years of different combinations

B737-200 10 1967, 1968
B737-200ADV 14 1968, 1969
B737-300 5 1984, 1986
B737-400 3 1988
B737-500 4 1990
B737-600 21 1998, 2000, 2004, 2006, 2010
B737-700 48 1997, 1998, 2000, 2003, 2006, 2010
B737-800 41 1998, 2000, 2006, 2010
B737-900 26 2001, 2006, 2010
B737-900ER 16 2007, 2010
A320 21 1989, 1990, 1993, 1995, 1996, 2006
A319 23 1996, 1999, 2006
A321 30 1993, 1994, 1996, 1997, 2001, 2006
A318 8 2003, 2005, 2006
Total 270

13 In the few cases in which the two engines are different, the ‘‘younger” between them was considered.
14 Normality has been tested through the Shapiro-Wilk W test (and also graphically), while homoscedasticity through (i) the White’s test and (ii) the Breush-
Pagan test.
15 Notice that non-normality does not produce bias in the coefficient estimates, but problems related to standard errors. This is the reason we adopt robust
standard errors, which do not change OLS coefficient estimates, but do provide more accurate p-values.
16 Data for emissions and noise are taken from several databases: the EASA, the ICAO Emission Databank, and the FAA. The methodology is described in
Grampella et al. (2017). The noise levels are taken from certification data and are expressed in dB. The conversion into air pressure metrics—i.e., in micro Pascal
units—is implemented through the following formula: lPa ¼ 20" 10

dB
20 , obtained by inverting the formula dB ¼ 10" log10 x

20"lPa

! "
where 20 " lPa is the static

air pressure corresponding to no perception of noise.
17 Per-seat emissions and noise levels are computed by dividing the amount of externality a combination produces (during LTO and cruise for emissions, and
only during LTO for noise) by the number of seats according to a typical configuration of the aircraft model in combination i.
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families, which consists of 270 models out of 1460 in the current operating commercial fleet (i.e., about 20% of all aircraft/
engine combinations flying today). However, the B737 and A320 families represent a much higher percentage of operating
flights since the vast majority of airlines largely operate these aircraft models, especially low cost carriers (LCCs) (e.g., Rya-
nair only operates B737s and EasyJet A320s).18

Table 3 presents descriptive statistics of the emissions and noise regarding the 270 different combinations in the data set.
The average amount of HC emitted during the LTO cycle is equal to 1092 g, while that of CO is much higher, equal to 10,885 g.
The average amount of NOx, SO2, and PM10 are 9373 g, 671 g, and 168 g, respectively. The average total cost of local pollu-
tants during LTO is about €118, with a minimum of €78 and a maximum of €207192. The average climate costs range from
€247 for a cruise with a stage length of 125 nm to €1834 for a long-stage length equal to 2000 nm. Regarding noise, the aver-
age level of noise annoyance during the LTO cycle is 93.6 decibels, while the average sound pressure variation is 96,1166 lPa.

Concerning the distribution of the externality variables, PM10 and HC seem to be more concentrated, while HC, CO, and
NOx seem to resemble a normal distribution. Although the noise data also exhibit a certain degree of concentration (around
94 decibels), they are more dispersed.

Regarding incremental innovations, about 8% of the combinations are older than 40 years, while most of them are
younger than 20 years; 30% of the combinations are 6 years old, and about 17% are younger than 4 years. Lastly, Table 4 pre-
sents the descriptive statistics of the control variables. The average maximum take-off weight is about 70,000 tonnes, while
87% of all combinations have CFM engines, and 3% have IAE engines.

5. Results

In this section we present the results of our econometric model. We divide the analysis into (i) local pollution, (ii) climate
change, and (iii) noise, presenting first the evidence at the flight level and then at the per-seat level.

5.1. Results of the analysis at the flight level

5.1.1. Local air pollutants
Table 5 shows the OLS estimates of local emissions generated during the LTO cycle. Estimates of the amount of SO2 are

omitted since they are equal to those of PM10. In fact, both substances are directly related to fuel consumption and are there-
fore perfectly correlated. In addition, both SO2 and PM10 are incorporated into the LAP index weighted for their respective
costs of damage.

The estimated coefficient of incremental innovation (YEAR) is positive and statistically significant for all pollutants (with
the exception of CO) and for local total emissions (LAP). Hence, the older the aircraft/engine combination, the higher the
amount of pollutants emitted will be, and thus, the higher the cost of aggregate total pollution. Since Eq. (2) is log-
linear,19 a one-year older combination will have the following effect on the amount of emissions: +3.5% of HC (col. LTO_HC),

Table 3
Descriptive statistics of pollutant emissions and noise.

Variable Obs Mean Std. Dev. Min Max Unit

Local emissions during LTO-cycle
HCi 270 1,091.6 820.9 2 5,426 Grams
COi 270 10,884.7 3,457.8 3,312 22,468 Grams
NOxi 270 9,373.3 2,384.0 5,458 17,292 Grams
SO2i 270 670.9 65.1 532.8 827.2 Grams
PM10i 270 167.7 16.3 133.2 206.8 Grams

Total costs of local emissions – LAP
LAPCOSTi 270 117.9 22.8 77.5 191.9 Euro

Climate costs emissions
CC125i 270 247.13 20.4 206.6 311.1 Euro
CC250i 270 356.6 30.3 304.8 446.3 Euro
CC500i 270 552.7 61.1 441.1 689.8 Euro
CC750i 270 737.8 41.3 649.8 812.1 Euro
CC1000i 270 979.9 108.5 787.6 1,202.0 Euro
CC1500i 270 1,407.0 156.1 1,134.2 1,714.2 Euro
CC2000i 270 1,834.2 203.9 1,480.8 2,226.3 Euro

Noise levels during LTO-cycle
NOISE_DBi 270 93.6 1.2 90.5 96.2 dB
NOISE_PRESi 270 961,165.7 128,324.5 671,098.4 1,292,313 lPa

18 Due to space constraints, the list of all 270 aircraft/engine combinations (with the corresponding introductory year) is not reported in the paper, but it is
available upon request.
19 The expected percentage change in the dependent variable due to a one-unit change in the independent variable (continuous or dummy variable) is given
by 100 ⁄ [exp(b) # 1], where b is the coefficient of the variable.
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+1.1% of NOx (col. LTO_NOx), +0.4% of PM10 (col. LTO_PM10); and will have +1% (col. LTP_LAP) in the total cost of local pollution
(LAP). In short, we provide evidence that incremental innovation cuts the aviation emissions of local pollutants—that is, the
annual amount of the total cost of local emissions will decrease by 1% when a one-year younger technology is employed.

Table 5 also shows the estimated coefficients of the substantial innovations—i.e., the aircraft model dummies. All of the
aircraft model dummies make a reference to the B737-200 model—namely the oldest model in the data set, with 1967 as its
vintage year. Some substantial innovations exhibit a statistically significant impact on local air pollution. Regarding the PM10

emission, the introduction of the A319 has reduced the amount by 10.2%, while the launch of the A320 has decreased it by
9.6% (compared with the amount of PM10 generated by the B737-200 combinations). Moreover, we prove that all new mod-
els (with the exception of the B737-200ADV) have generated a relevant reduction in the amount of HC emissions during the
LTO cycle. Indeed, the average amount of HC produced by the B737-200 combinations is 1,862.4 kg (with a maximum value
of 5,426 kg), while, for instance, the amount produced by the A321 is 1,098.5 kg (maximum 1,782 kg) and the one produced
by the B737-900 is 623.1 kg (maximum 864 kg).

However, the introduction of new aircraft has also brought some negative impact. The B737-500 produces 41.3% more
NOx and 13.2% more PM10 (and SO2, given the correlation between PM10 and SO2). Note that the B737-500 is the only model

Table 4
Descriptive statistics of control variables.

Variable Obs Mean Std. Dev. Min Max Unit

MTOWi 270 70,438.6 9,349.8 48711.1 89,000 tonnes
CFMi 270 87%
IAEi 270 3%

Table 5
Incremental and substantial innovations in local emissions, OLS econometric estimates.

LTO_HC LTO_CO LTO_NOx LTO_PM10 LTO_LAP LTO (RC)

YEARi 0.034*** #0.005 0.011*** 0.004*** 0.010*** 0.009 ***

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)
B200ADVi 0.126 #0.001 #0.010 #0.011 #0.000 –

(0.27) (0.17) (0.06) (0.03) (0.05)
B300i #6.586*** 0.281 0.182 0.059 0.074 –

(0.28) (0.16) (0.15) (0.04) (0.11)
B400i #6.454*** 0.287 0.166 0.049 0.066 –

(0.29) (0.17) (0.16) (0.05) (0.12)
B500i #6.506*** 0.206 0.346** 0.125** 0.209* –

(0.30) (0.17) (0.16) (0.05) (0.12)
B600i #5.348*** 0.235 0.143 #0.031 0.086 –

(0.36) (0.21) (0.15) (0.05) (0.11)
B700i #5.502*** 0.246 0.246 0.024 0.169 –

(0.37) (0.21) (0.15) (0.05) (0.11)
B800i #5.468*** 0.308 0.168 #0.008 0.108 –

(0.39) (0.22) (0.16) (0.05) (0.12)
B900i #5.704*** 0.207 0.197 #0.008 0.119 –

(0.38) (0.22) (0.17) (0.05) (0.13)
B900ERi #5.592*** 0.216 0.176 #0.023 0.110 –

(0.41) (0.24) (0.18) (0.06) (0.13)
A318i #5.144*** 0.137 0.136 #0.072 0.077 –

(0.34) (0.20) (0.14) (0.04) (0.10)
A319i #5.488*** 0.054 0.100 #0.108* 0.027 –

(0.35) (0.20) (0.15) (0.05) (0.11)
A320i #5.374*** 0.169 0.067 #0.101* 0.011 –

(0.38) (0.22) (0.16) (0.05) (0.12)
A321i #5.158*** 0.297 0.234 #0.041 0.167 –

(0.42) (0.24) (0.19) (0.06) (0.14)
MTOWi #0.00002 #0.00001 0.00002*** 0.00001*** 0.00002*** 0.00002***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
CFMi 6.573*** 0.172*** #0.080 #0.166*** #0.039 0.004

(0.11) (0.04) (0.12) (0.03) (0.09) (0.04)
IAEi 3.712*** #0.471*** 0.112 #0.072* 0.085 0.090

(0.15) (0.09) (0.13) (0.03) (0.10) (0.05)
Constant 6.831*** 9.744*** 7.208*** 4.506*** 3.265*** 3.273***

(0.91) (0.54) (0.31) (0.11) (0.23) (0.09)
R2 0.763 0.352 0.661 0.711 0.673

* p < 0.05.
** p < 0.01.
*** p < 0.001.
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exhibiting the wrong direction, but has a statistically significant effect on the total cost of local pollution, which is increased
by 23.2% in comparison with the older B737-200. In general, no statistical significant evidence exists that substantial inno-
vations have, ceteris paribus, had an impact on the total cost of local emissions.

Regarding the control variables, aircraft size (MTOW) has a small but statistically significant effect on the emission of NOx,
PM10 (and SO2), and total local emission costs. A larger aircraft size (i.e., an increase of 1 tonne in MTOW) induces a +0.002%
increase in the amount of NOx, a +0.001% increase in that of PM10 (and of SO2), and a +0.002% in the total LAP cost. If the
engine is provided by the manufacturers CFM and IAE, we obtain estimates of 15.3% and 6.9% lower levels of PM10 respec-
tively, but higher HC levels, which leads to a non-significant aggregate effect at the LAP cost level. The goodness of fit (R2) is
rather high in all regressions.

The last column of Table 5 is included as a robustness check (RC) for the effect of incremental innovation. Both the sig-
nificance and the sign of YEAR are also confirmedwhen the dummies representing substantial innovations are excluded from
the model.20

To conclude, although the empirical analysis on local emissions provides robust evidence that an incremental innovation
effect exists, which is quantified in a#1% annual reduction, there is no evidence of a substantial innovation effect at the flight
level.

5.1.2. Global pollutants
Table 6 shows the estimates for climate change emissions. Again we find evidence of a positive effect of incremental inno-

vation (YEAR), regardless if such an effect tends to lose both significance and relevance as the cruise length increases and

Table 6
Incremental and substantial innovations in climate change emissions, OLS econometric estimates.

CC125 CC250 CC500 CC750 CC1000 CC1500 CC2000

YEARi 0.003*** 0.002*** 0.001** 0.001** 0.001* 0.001* 0.0005
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

B200ADVi #0.004 #0.003 #0.001 #0.001 0.000 0.000 0.001
(0.02) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00)

B300i 0.012 0.009 #0.038* 0.086*** #0.055*** #0.062*** #0.066***

(0.03) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)
B400i 0.006 0.004 0.027 0.083*** 0.020 0.017 0.015

(0.04) (0.03) (0.02) (0.01) (0.01) (0.01) (0.01)
B500i 0.060 0.042 #0.058** 0.103*** #0.091*** #0.104*** #0.111***

(0.03) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)
B600i #0.004 0.007 #0.108*** 0.106*** #0.125*** #0.132*** #0.136***

(0.04) (0.03) (0.02) (0.02) (0.01) (0.01) (0.01)
B700i 0.037 0.042 #0.076*** 0.130*** #0.099*** #0.108*** #0.113***

(0.04) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01)
B800i 0.019 0.032 0.033 0.130*** 0.031 0.030* 0.029*

(0.04) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01)
B900i 0.023 0.035 0.076** 0.131*** 0.078*** 0.078*** 0.079***

(0.04) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01)
B900ERi 0.015 0.029 0.070** 0.127*** 0.074*** 0.075*** 0.075***

(0.04) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)
A318i 0.006 0.087*** #0.167*** 0.026 #0.188*** #0.196*** #0.201***

(0.03) (0.03) (0.02) (0.02) (0.01) (0.01) (0.01)
A319i #0.004 0.085** #0.100*** 0.036* #0.108*** #0.111*** #0.113***

(0.04) (0.03) (0.02) (0.02) (0.01) (0.01) (0.01)
A320i 0.007 0.100*** #0.020 0.057** #0.018 #0.017 #0.016

(0.04) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01)
A321i 0.068 0.146*** 0.127*** 0.093*** 0.135*** 0.139*** 0.141***

(0.05) (0.04) (0.03) (0.02) (0.02) (0.02) (0.02)
MTOWi 0.000008*** 0.000006*** 0.000004*** 0.000003*** 0.000003*** 0.000002*** 0.000002***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
CFMi #0.068** #0.044** #0.034** #0.023** #0.019** #0.014** #0.010**

(0.02) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00)
IAEi #0.004 #0.001 #0.004 0.001 #0.002 #0.001 #0.000

(0.03) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)
Constant 4.961*** 5.431*** 6.035*** 6.274*** 6.699*** 7.097*** 7.381***

(0.09) (0.07) (0.05) (0.04) (0.04) (0.04) (0.03)

R2 0.749 0.859 0.954 0.877 0.973 0.979 0.981

* p < 0.05.
** p < 0.01.
*** p < 0.001.

20 We thank one of the referees for this suggestion. The same result is found for almost all the regressions with one of the single pollutants as a dependent
variable. The only exception is represented by LTO_CO where the sign is confirmed, but YEAR becomes significant.
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becomes statistically insignificant at the longest length (2000 nm). Further, climate change cost reductions range between
#0.3% for a 125-nm stage length and #0.1% for a 1500-nm stage length. This may be due to the fact that technical progress
mainly affects emissions produced at the ascent—namely, the phase generating the highest amount of pollution—and
reduces as the flight distance increases.

Unlike what is observed for local pollutants, substantial innovation significantly affects GHG emissions. Many models
have generated a reduction in global emissions: the B737-300 from a stage length of 500 nm (#3.7%) to a stage length of
2,000 nm (#6.4%); the B737-500 has a #5.7% for 500 nm, and #8.7% for 1000 nm; #9.9% for 1,500 nm and #10.5% for
2,000 nm. Similar reductions are observed for the B737-600 and the B737-700. The A318 has a reduction of 15.4% for a
500-nm stage length, a 17.2% reduction for 1000 nm, a 17.8% reduction for 1,500 nm, and a 18.2% reduction for 2,000 nm.
Similar (but lower) values are observed from the A319. However, we also find evidence of some positive signs regarding sub-
stantial innovation. That is, we notice that the positive signs seem to affect three models robustly (i.e., under different
hypotheses of flight length)—namely the B900, the B900ER, and the A321—while the other few cases are mainly related
to the specific flight distance of 750 nm, where the base case, i.e., the aircraft Boeing B200, exhibits a particularly good per-
formance compared to the other models (as demonstrated in Fig. 2, which shows the average cost of climate change per air-
craft model). Fig. 2 also clearly shows that the abovementioned B900, B900ER, and A321 are the models generating, on
average, the highest climate change costs. This seems to suggest that, unlike the other models, controlling for size is not suf-
ficient to eliminate such an effect—although it is important to keep in mind that part of the improvement is supposed to be
captured by YEAR (even if the same aircraft models can obviously be with different ages in the data set).

Regarding control variables, size has an expected negative effect, ranging from +0.001 for a 125-nm stage length to a pos-
itive but negligible effect for longer stage lengths. Among the engine manufacturers, CFM distinguishes itself by a green per-
formance as demonstrated by the effect ranging from #6.6% (125 nm) to#1% (2000 nm), despite a decreasing relevance with
the stage length. Again, R2 statistics are rather high in all regressions and the YEAR coefficient is found to be mostly robust to
the exclusion of the aircraft model variables.

5.1.3. Noise
Table 7 shows the empirical evidence regarding noise. The first column represents the noise annoyance levels measured

in decibels (NOISE_DB), and the third column represents the variation in sound pressure, measured in micro pascal (NOISE_-
PRES). Incremental innovation (YEAR) has an impact on both noise variables: +0.02% for noise annoyance and +0.2% for sound
pressure. The magnitude for sound pressure can be taken as a benchmark since NOISE_PRESS is a linear variable. This means
that incremental innovation generates an annual reduction of #0.2%, which is lower than the ones observed for both local
emissions (#1%) and global emissions at short stage lengths (#0.3%), but higher than that registered for longer stage lengths
(at most #0.1%). Hence, the improvements resulting from technical progress for noise do not seem to be higher than those
observed for air pollution. This is despite the fact that noise is the aviation externality that has brought awareness more than
any other environmental externality, as demonstrated by the many public complaints in towns surrounding airports. How-
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Fig. 2. Average climate change costs by aircraft model at different stage lengths.
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ever, many substantial innovations significantly reduce noise: almost all of the new aircraft models generate a reduction in
noise annoyance (from #0.8% of the B737-400 to almost #4% of the A318) and a high reduction in sound pressure (from #9%
of the B737-400 to #35% of the A318). Hence, the effort to reduce noise in aviation seem to be concentrated on substantial
innovation rather than on incremental ones.

Regarding control variables, size again exhibits a positive but very small negative effect, equal to +0.001% in the case of
sound pressure (even smaller for decibels). Both engine manufacturers (CFM and IAE) perform better in terms of noise in
comparison with other manufacturers in this aircraft market segment. R2 are about 0.86 and robustness checks (columns
2 and 4 of Table 7), thus confirming the results regarding incremental innovation.

5.2. Results of the analysis at the passenger level

5.2.1. Local air pollutants
We now analyze the impact of technical progress at a per-seat level. This allows us to obtain an estimate that may be

taken as a benchmark when comparing the costs and benefits of passenger mobility. Table 8 shows the results for Eq. (2)
in relation to local emissions.

Incremental innovations have a positive effect on per-seat local emissions since the estimated coefficient for the variable
YEAR is positive and statistically significant for all of the pollutants (again, with the exception of CO) and for the per-seat
local air pollution cost. The magnitude of the estimated coefficient varies from an annual reduction of #3.5% for per-seat
HC emissions, to #1.1% for per-seat NOx, and #0.4% for per-seat PM10. We derive an aggregate figure of #1% for the per-
seat local air pollution cost. Note that coefficients are similar to those obtained for emissions at a flight level and that the
effect is also found to be robust (see the last column of Table 8).

Table 7
Incremental and substantial innovations in noise levels, OLS econometric estimates.

NOISE_DB NOISE_DB (RC) NOISE_PRES NOISE_PRES (RC)

YEARi 0.0002** 0.001*** 0.002** 0.007 ***

(0.00) (0.00) (0.00) (0.00)
B200ADVi 0.000 – 0.000 –

(0.00) (0.02)
B300i #0.005 – #0.061 –

(0.00) (0.05)
B400i #0.008 – #0.094* –

(0.00) (0.05)
B500i #0.005 – #0.054 –

(0.01) (0.06)
B600i #0.027*** – #0.292*** –

(0.00) (0.05)
B700i #0.023*** – #0.254*** –

(0.00) (0.05)
B800i #0.027*** – #0.291*** –

(0.00) (0.05)
B900i #0.027*** – #0.291*** –

(0.00) (0.05)
B900ERi #0.029*** – #0.318*** –

(0.01) (0.06)
A318i #0.040*** – #0.435*** –

(0.00) (0.05)
A319i #0.040*** – #0.435*** –

(0.00) (0.05)
A320i #0.033*** – #0.364*** –

(0.00) (0.05)
A321i #0.025*** – #0.268*** –

(0.01) (0.06)
MTOWi 0.000001*** 0.000001* ** 0.00001*** 0.00001***

(0.00) (0.00) (0.00) (0.00)
CFMi #0.007* #0.017** #0.073* #0.180**

(0.00) (0.01) (0.04) (0.06)
IAEi #0.017*** #0.035*** #0.178*** #0.380***

(0.00) (0.00) (0.05) (0.05)
Constant 4.497*** 4.477*** 13.317*** 13.103***

(0.01) (0.01) (0.11) (0.08)

R2 0. 856 0.553 0. 856 0.556

* p < 0.05.
** p < 0.01.
*** p < 0.001.
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There is evidence of a higher impact of substantial innovations on per-seat local emissions compared with that obtained
for flight emissions, especially concerning PM10 and the total cost of LAP. The B737-400 has a #24% statistical significant
impact on PM10 and a #23% on total cost of local emissions. B737-600 has a #11% reduction in the production of PM10,
the B737-800 a #29% in PM10, and the B737-900 a reduction of #29% in PM10. The B737-900ER has a statistically significant
estimate of #40% reduction in PM10 and a #31% decrease in the total cost of local emissions. Regarding the A320 family, the
A319 has a statistically significant estimated coefficient equal to #16% for the production of PM10, the A320 a significant
coefficient equal to #32% for PM10 and equal to #24% for total emissions, the A321 has an estimate of #41% in PM10, and
#27% in per-seat total cost of local emissions. Interestingly, almost all of the models (the only exception is the A320) with
a significant reduction in terms of LAP cost—namely the B737-400, B737-900ER, and A321– exhibit an average seats/MTOW
ratio higher than that of the B737-200, which suggests that they benefit from an increased capacity per unit of weight.

Control variables perform as in the flight case. R2 statistics is rather high for all the regressions.

5.2.2. Global pollutants
Table 9 reports the evidence regarding per-seat global emissions that contribute to climate change. Incremental innova-

tion (YEAR) has a positive statistically significant impact on per-seat global emissions for all stage lengths, with the excep-
tion of the longest one (2,000 nm), where it has no effect. The magnitude of the estimated coefficients is decreasing with the
stage length: in the case of a flight with a stage length equal to 125 nm, incremental innovation has a#0.3% annual reduction
on global emissions, while this coefficient monotonically decreases and becomes #0.06% of the annual reduction for a 1,500
stage length. The estimates are similar to those obtained at a flight level. Note that the effect is invariantly robust to the
exclusion of the aircraft model dummies only for a stage length greater than 750 nm.21

Table 8
Incremental and substantial innovations in per-seat local emissions, OLS econometric estimates.

LTO_HCs LTO_COs LTO_NOxs LTO_PM10 s LTO_LAPs LTO_LAPs (RC)

YEARi 0.034*** #0.005 0.011*** 0.004*** 0.010*** 0.005***

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)
B200ADVi 0.126 #0.001 #0.010 #0.011 #0.000 –

(0.27) (0.17) (0.06) (0.03) (0.05)
B300i #6.678*** 0.190 0.091 #0.032 #0.018 –

(0.28) (0.16) (0.15) (0.04) (0.11)
B400i #6.778*** #0.036 #0.158 #0.275*** #0.257* –

(0.29) (0.17) (0.16) (0.05) (0.12)
B500i #6.535*** 0.177 0.317* 0.096* 0.180 –

(0.30) (0.17) (0.16) (0.05) (0.12)
B600i #5.439*** 0.143 0.051 #0.122** #0.005 –

(0.36) (0.21) (0.15) (0.05) (0.11)
B700i #5.593*** 0.155 0.155 #0.067 0.077 –

(0.37) (0.21) (0.15) (0.05) (0.11)
B800i #5.798*** #0.021 #0.161 #0.338*** #0.221 –

(0.39) (0.22) (0.16) (0.05) (0.12)
B900i #6.033*** #0.122 #0.132 #0.337*** #0.210 –

(0.38) (0.22) (0.17) (0.05) (0.13)
B900ERi #6.073*** #0.265 #0.305 #0.504*** #0.371** –

(0.41) (0.24) (0.18) (0.06) (0.13)
A318i #5.144*** 0.137 0.136 #0.072 0.077 –

(0.34) (0.20) (0.14) (0.04) (0.10)
A319i #5.552*** #0.010 0.036 #0.172*** #0.037 –

(0.35) (0.20) (0.15) (0.05) (0.11)
A320i #5.654*** #0.111 #0.213 #0.382*** #0.269* –

(0.38) (0.22) (0.16) (0.05) (0.12)
A321i #5.639*** #0.184 #0.247 #0.522*** #0.314* –

(0.42) (0.24) (0.19) (0.06) (0.14)
MTOWi #0.00002 #0.00001 0.00002*** 0.00001*** 0.00002*** 0.000001

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
CFMi 6.573*** 0.172*** #0.080 #0.166*** #0.039 #0.001

(0.11) (0.04) (0.12) (0.03) (0.09) (0.05)
IAEi 3.712*** #0.471*** 0.112 #0.072* 0.085 0.155***

(0.15) (0.09) (0.13) (0.03) (0.10) (0.06)
Constant 1.918* 4.832*** 2.295*** #0.406*** #1.648*** #0.483***

(0.91) (0.54) (0.31) (0.11) (0.23) (0.10)
R2 0.782 0.484 0.395 0.877 0.505 0.181

* p < 0.05.
** p < 0.01.
*** p < 0.001.

21 To detail, the signs and significance are simultaneously stable at 500, 1,000 and 1,500 nm. At 2,000 nm, the coefficient of YEARS (insignificant in the
complete model) becomes significant, thus keeping the positive sign.
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The higher impact at a per-seat level of substantial innovation is also confirmed for global emissions. All model dummy
variables are statistically significant and negative, with the only exception of the B737-200ADV, which is found to be
insignificant.22 The mean (computed on the different stage-length estimates) coefficient for the different models is equal to
#10% for the B737-300, #26% for the B737-400, #5% for the B737-500, #14% for the B737-600, #9% for the B737-700, #25%
for the B737-800, #23% for the B737-900, and #34% for the B737-990ER. Regarding the A320 family, the mean estimated coef-
ficients are #8% for the A318, #10% for the A319, #23% for the A320, and #30% for the A321. In general, the younger aircraft
models have a higher impact, as expected. Control variables confirm the effects found at the flight level. Interestingly, the esti-
mated coefficient of MTOW is positive and statistically significant, which suggests that larger aircraft tend to have higher per-
seat total cost of total local emissions, and confirms Swan’s (2010) findings. The R2 is always higher than 0.9.

5.2.3. Noise
Table 10 shows the per-seat estimates regarding the impact of technical progress on noise. Incremental innovation affects

both noise annoyance and sound pressure positively and significantly: according to our estimates, the annual reduction is
#0.24% in terms of sound pressure and #0.02% in terms of decibels. There is also robust evidence of a strong impact of sub-
stantial innovations (since all model dummies have negative estimated coefficients) and high magnitude with the exception
of the B737-200ADV (we remind readers that the B737-200 is the reference case model).

The estimated impact is higher for noise effect measured in per-seat sound pressure than for noise annoyance measured
in decibels: the former has a mean coefficient (computed as the average of all models’ statistically significant coefficients, as
shown in the third column of Table 10) equal to #41.7%, while the latter has a mean coefficient equal to #20%. Hence the

Table 9
Incremental and substantial innovations in per-seat climate change emissions, OLS econometric estimates.

CC125s CC250s CC500s CC750s CC1000s CC1500s CC2000s

YEARi 0.003*** 0.002*** 0.001** 0.001** 0.001* 0.001* 0.0005
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

B200ADVi #0.004 #0.003 #0.002 #0.001 #0.000 0.000 0.001
(0.02) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00)

B300i #0.079* #0.083*** #0.129*** #0.006 #0.147*** #0.154*** #0.157***

(0.03) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)
B400i #0.318*** #0.320*** #0.296*** #0.241*** #0.305*** #0.307*** #0.309***

(0.04) (0.03) (0.02) (0.01) (0.01) (0.01) (0.01)
B500i 0.031 0.013 #0.086*** 0.074*** #0.121*** #0.133*** #0.140***

(0.03) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)
B600i #0.096** #0.085** #0.199*** 0.015 #0.217*** #0.223*** #0.228***

(0.04) (0.03) (0.02) (0.02) (0.01) (0.01) (0.01)
B700i #0.054 #0.050 #0.167*** 0.039* #0.191*** #0.199*** #0.204***

(0.04) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01)
B800i #0.310*** #0.297*** #0.296*** #0.199*** #0.299*** #0.299*** #0.300***

(0.04) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01)
B900i #0.306*** #0.294*** #0.253*** #0.198*** #0.252*** #0.250*** #0.251***

(0.04) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01)
B900ERi #0.466*** #0.452*** #0.411*** #0.354*** #0.408*** #0.405*** #0.406***

(0.04) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)
A318i 0.006 0.087*** #0.167*** 0.026 #0.189*** #0.196*** #0.201***

(0.03) (0.03) (0.02) (0.02) (0.01) (0.01) (0.01)
A319i #0.068 0.021 #0.164*** #0.028 #0.173*** #0.175*** #0.177***

(0.04) (0.03) (0.02) (0.02) (0.01) (0.01) (0.01)
A320i #0.273*** #0.180*** #0.300*** #0.223*** #0.299*** #0.297*** #0.297***

(0.04) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01)
A321i #0.413*** #0.335*** #0.355*** #0.388*** #0.347*** #0.342*** #0.341***

(0.05) (0.04) (0.03) (0.02) (0.02) (0.02) (0.02)
MTOWi 0.00001*** 0.00001*** 0.000004*** 0.000003*** 0.000003*** 0.000002*** 0.000002***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
CFMi #0.068** #0.044** #0.036** #0.023** #0.019** #0.013** #0.010**

(0.02) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00)
IAEi #0.004 #0.001 #0.005 0.001 #0.001 #0.001 #0.000

(0.03) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)
Constant 0.048 0.518*** 1.121*** 1.361*** 1.786*** 2.185*** 2.468***

(0.09) (0.07) (0.05) (0.04) (0.04) (0.04) (0.03)
R2 0.901 0.945 0.938 0.977 0.961 0.968 0.971

* p < 0.05.
** p < 0.01.
*** p < 0.001.

22 Some models have statistically significant estimated coefficients for some stage lengths: for instance, the B737-500 has a +8% increase for 750-nm stage
length, the B737-700 a +4% increase for the same stage length, and the A318 a +9% increase for 250-nm stage length.
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average impact of a substantial innovation in the aviation industry is a reduction of about #42% in terms of per-seat sound
pressure, almost double than that observed in terms of decibels. These figures show that, in terms of noise, technical progress
has a stronger impact at a per-seat level rather than at a flight level, and the control variables behave the same as in the flight
case. Again the MTOW has a positive and statistically significant coefficient, with the R2 being close to 1. Interestingly, while
the effect of YEAR is robust when the noise pressure is investigated (column 2 of Table 10), such robustness is not found for
the noise measured in decibels (column 4 of Table 10).

5.3. Discussion

The flight and per-seat analyses have similarities and important differences. Similarities are observed mainly in incre-
mental innovations and for all of the externalities dimensions considered in this contribution. The annual impact of incre-
mental technical progress, which is #1% both for flight and per-seat local emission, is lower (between #0.3% and #0.1%) and
decreases with the stage length for global emissions if we consider a flight or a per-seat perspective. It is also equal to #0.24%
in the case of sound pressure generated by aircraft noise, and measured at #0.02% for decibels.

Relevant differences are observed for the substantial innovation case. The flight analysis has very few substantial effects
for local emissions and concentrates on PM10; more statistically significant positive impacts are observed for global emis-
sions, but there are also a number of negative effects (i.e., regressive innovations). Instead, a widespread significant positive
effect registers for noise reductions, which is equal on average, with all of the B737 and A320 models to a #2.8% reduction in
decibels for the introduction of a new model and a #26% reduction in sound pressure. We find that the per-seat analysis
presents a relevant effect of substantial innovation in terms of local emissions, as well as global emissions, and thus a much
higher impact in terms of noise levels. Hence substantial innovations, namely the introduction of a new aircraft model, seem
to be more effective in terms of passenger mobility rather than on a single flight. Such a result may be influenced by a general

Table 10
Incremental and substantial innovations in per-seat noise levels, OLS econometric estimates.

NOISE_PRESs NOISE_PRESs (RC) NOISE_DBs NOISE_DBs (RC)

YEAR 0.002** 0.003* 0.000** #0.003***

(0.00) (0.00) (0.00) (0.00)
B200ADV 0.000 – 0.000 –

(0.02) (0.00)
B300 #0.153** – #0.097*** –

(0.05) (0.00)
B400 #0.418*** – #0.332*** –

(0.05) (0.00)
B500 #0.083 – #0.034*** –

(0.06) (0.01)
B600 #0.383*** – #0.118*** –

(0.05) (0.00)
B700 #0.345*** – #0.114*** –

(0.05) (0.00)
B800 #0.620*** – #0.356*** –

(0.05) (0.00)
B900 #0.620*** – #0.356*** –

(0.05) (0.00)
B900ER #0.799*** – #0.510*** –

(0.06) (0.01)
A318 #0.435*** – #0.040*** –

(0.05) (0.00)
A319 #0.499*** – #0.104*** –

(0.05) (0.00)
A320 #0.644*** – #0.314*** –

(0.05) (0.00)
A321 #0.749*** – #0.505*** –

(0.06) (0.01)
MTOW 0.00001*** #0.00001*** 0.000001*** #0.00002***

(0.00) (0.00) (0.00) (0.00)
CFM #0.073* #0.185*** #0.007* #0.022

(0.04) (0.05) (0.00) (0.02)
IAE #0.178*** #0.314*** #0.017*** 0.030

(0.05) (0.05) (0.00) (0.03)
Constant 8.404*** 9.348*** #0.416*** 0.721***

(0.11) (0.08) (0.01) (0.05)
R2 0.922 0.713 0.999 0.822

* p < 0.05.
** p < 0.01.
*** p < 0.001.
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shift toward aircraft with a greater capacity. Note that in most of the cases, a new aircraft model is characterized by (1) a
reduced environmental impact (e.g., due to increased fuel efficiency), and (2) an increased capacity in terms of available
seats. Despite the correlation between capacity (seats) and size (MTOW), aircraft with the same MTOW provide different
capacities. In other words, the per-seat pollution incorporates the ability to transport a higher number of passengers with
a less-than-proportional increase in the weight (with respect to the previous technology). Our result suggests that this ‘‘ef-
ficiency” is often related to the introduction of a new aircraft model.

Last, we obtain very sparse evidence on the existence of a trade-off between emissions and noise. We find contrasting
effects on global emissions and noise levels only for some substantial innovations: the B737-400, the B737-800, the
B737-900, the B737-900ER and the A321 have all had a bad impact on global emissions in many stage lengths considered
here, although they show a robust reduction in noise levels. However, excluding these cases (and only for some stage
lengths), we do not observe a conflicting effect of both incremental and substantial technical progress between emissions
and noise, which is a different finding than that of Phleps and Hornung (2013).

6. Conclusions

This paper investigates a data set composed of 270 different aircraft/engine combinations belonging to the B737 and A320
families, with a twofold goal: (1) to provide econometric evidence of the impact of both incremental and substantial tech-
nical progress on aviation externalities (i.e., both local and global emissions) and noise; and (2) to analyze whether innova-
tion impacts in different ways flight externalities (i.e., the amount of pollution and noise generated by a flight operated by a
specific aircraft/engine combination) and per-passenger externalities.

Incremental technical progress is embedded in the age of an aircraft/engine combination, while substantial innovation
refers to the introduction of a new aircraft model (i.e., a new version of a B737; we consider 10 successive versions starting
from year 1967 to year 2010. Regarding the A320, we consider 4 successive versions from year 1996 to 2006).

Our results show a general statistically significant impact of incremental technical progress. A one-year younger aircraft/
engine combination leads to (i) #1% in terms of local pollution, (ii) a reduction ranging from #0.3% to #0.1% in terms of glo-
bal pollution (that diminishes as stage length increases), and (iii) #0.24% and #0.022%, respectively, in sound pressure and
decibels. Per-flight and per-passenger estimates are similar.

We also present some econometric evidence that although substantial innovation has a limited impact on local and global
flight emissions, it has a significant positive impact on noise level, with an average reduction of #26% of noise when a new
model is introduced. On the contrary, we find a widespread positive effect of substantial innovations on per-passenger exter-
nalities: many new models reduce local emissions (with an average estimated reduction equal to #24% on local totals),
almost all new models reduce global emissions (an average effect of about #20% for all investigated stage lengths), while
there is a strong significant effect of substantial innovations in terms of sound pressure reduction (the average effect is
#42%, a smaller effect equal to #20% in terms of noise annoyance measured in decibels). Hence, the stronger effects of inno-
vations are observed by looking at passenger mobility, while lower and less widespread effects are observed from the
amount of externalities generated by a flight. Such a result may be due to the combined effect of technology improvement
and increasing aircraft size/capacity over time. Indeed, a new model tends to have, on average, a greater size that may soften
the possible effect of technological progress on the flight level.

When the per-seat impact is investigated, negative externalities are not only computed at the passenger level, but they
also incorporate possible gains in terms of seat/weight (capacity/size) ratio. This seems to make the effect of substantial
innovation emerge more clearly. In this sense, it is noteworthy that the per-passenger environmental impact can be reduced
even when the per-flight impact is increased.

The above estimates are different from those found by previous contributions based on computational algorithms and ad
hoc development scenarios. For instance, Macintosh andWallace (2009) report a 1.9% per year improvement due to technical
progress regarding only CO2. Chèze et al. (2011a) present a #3% annual reduction in tonnes of jet fuel by available tonne
kilometers. Although our estimate is moderate, it is based purely on data and econometric evidence, which is different from
previous contributions that have focused on algorithms and simulations.

Our results underline the following policy implications. First, if we take into account the forecasts of an annual +4.5%
increase in passenger traffic up to the year 2025, as well as a +6.1% increase in cargo traffic (Khandelwal et al., 2013), it is
evident that a #1% yearly rate of reduction in emissions is not enough to outweigh the projected increased emissions and
corresponding damage to the environment. For instance, Chèze et al. (2013) show that a 4.7% annual increase in aviation
traffic yields a +1.9% per-year increase in CO2 emissions. When we take this value as reference, a +4.5% annual passenger
increase gives rise to a +1.8% increase in emissions that is not compensated by the #1% reduction in local emission due
to incremental technical progress. Hence, it is essential to introduce policies that may encourage innovation in the aviation
sector, so that technological progress happens at a faster pace compared to the current pace. A twice-faster pace of technical
progress would be enough to suppress the emissions of today’s trends. This confirms the argument by Chèze et al. (2013)
that current innovation process in aviation does not guarantee future better performances in terms of emissions.

Second, our estimates may be adopted as benchmarks in aviation charges related to both emission and noise. For instance,
emission surcharges may refer to a #1% reduction in local emissions, and, as such, tariffs may be created with penalties if
airlines do not meet such benchmarks. Similarly, the benchmark for a noise surcharge would be a #0.2% annual reduction.
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In the case of the more common decibels metric, the benchmark might be a #0.02% annual reduction. Regarding climate
change, emission trading schemes such as the one adopted in the EU may include a dynamic incentive: a #0.1% reduction
in global emissions.

This work may be scaled up by an analysis of the entire current commercial fleet, other types of substantial innovations
(e.g., the introduction of successive ICAO Annex Chapters), or nonlinear incremental technical progress. Moreover, it may be
interesting to develop a monetary value of noise damage cost that aggregates noise and emission externalities into a single
index, and thus to study the aggregate impact of technical progress on the total social cost of aviation. These extensions are
left for future research.
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A B S T R A C T

We study the determinants of aviation CO2 emissions by designing an econometric model applied to a panel data
set covering all flights departing from Lombardy, Italy over the 1997–2011 period. We consider two dimensions
of CO2 emissions: total and per available seat kilometer. The latter is a measure of emission efficiency. We focus
on different categories of determinants: technical progress; aircraft and network carrier management; policy/
business decisions that may not be oriented to limiting CO2, but may indirectly affect it by offsetting projected
outcomes of policies adopted to reduce emissions (e.g., the EU Emission Trading Scheme (ETS) or the ICAO
Carbon Offsetting and Reduction Scheme for International Aviation); and others. We find that although aircraft
size increases total emissions, it reduces emissions per available seat kilometers (ASK), while the route distance
increases total emissions and decreases emissions per ASK, implying that CO2 is less of a problem for long-haul
connections. Technical progress decreases CO2 emissions per ASK with an estimated elasticity equal to −0.06%.
Last, liberalization in the EU market has generated the development of low-cost carriers, which in turn have
lowered CO2 emission per ASK, that is, liberalization in Europe has brought the collateral effect of reducing the
CO2 externality per passenger.

1. Introduction

With an average growth of 5% annually (Vespermann and Wald,
2011), global aviation activities play a key role not only in industry
performance and economic development, but also in climate change.
Among other pollutants (i.e., NOx, SOx, H2O, soot, PM10, contrails and
cirrus), the amount of carbon dioxide (CO2) produced by commercial
aviation is substantial. In 2005, CO2 was estimated to be 1.6% of total
anthropogenic radiative forcing (Lee et al., 2009).

According to the Air Transportation Action Group (ATAG)1 the
global aviation industry, counting over 3 billion air passengers, pro-
duced 705 million tons of CO2 in 2013, accounting for 2% of the
human-induced CO2 emissions and 13% of total transportation-related
emissions. According to the 2016 European Aviation Environmental
Report by European Aviation Safety Agency (EASA), there were 80%
more European flights in 2014 compared with the number of flights in
1990. This environmental impact has increased regardless of possible
technology improvements: in 2014, there was +5% more aviation-

induced CO2 with respect to the level in 2005, and +44–53% more CO2

is estimated in 2035.
Politicians and regulators have agreed to limit CO2 emissions in

response to public pressure on the issue of climate change. For instance,
the 2015 Paris agreement established a temperature increase limit to
1.5&#x202F;°C above pre-industrial levels.2 In 1997, the Kyoto Pro-
tocol was signed, and the International Civil Aviation Organization
(ICAO) was assigned to lead the establishment of global aviation CO2

regulation. Reaction to this regulation varied among countries. New
Zealand and Australia initiated domestic aviation emission trading in
2010 and 2012 respectively, while the EU introduced the Aviation Di-
rective in 2012 on both intra-EU and extra-EU flights as an extension of
its already implemented Emission Trading Scheme (ETS) in other sec-
tors in 2005. Extra-EU flights were then waived after legal action had
been brought against the directive by some airlines and the Interna-
tional Air Transport Association (IATA)—the so-called “stop the clock”
decision that should have stayed enforced until 2016. However, to the
best of our knowledge, the directive is still in force today.
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After several meetings, during its 39th assembly, the ICAO approved
a global market-based measurement (GMBM) scheme, the Carbon
Offsetting and Reduction Scheme for International Aviation (CORSIA).
This type of scheme will be enforced through different phases starting
in 2020 (see Scheelhaase et al., 2018, for a detailed discussion).
CORSIA, which is different from the EU-ETS, will be applied to all
flights, not only flights in the European Economic Area.

Despite the ongoing, time-consuming negotiation process to limit
CO2 aviation emissions and reaching a path of environmentally sus-
tainable growth, little is still known about factors that affect the amount
of CO2 generated by this sector. For instance, Chèze et al. (2011a,
2011b) point out that air traffic management (ATM), incremental in-
novation in existing aircraft, and substantial innovation (i.e., new air-
craft) are the main drivers for reducing aviation emissions, including
CO2. Grampella et al. (2017a) show that a younger aircraft can generate
−1% of local emissions per year and −0.3% of global pollution.
However, to the best of our knowledge, research on econometric evi-
dence of the determinants of CO2 aviation emissions remains lacking.
Specifically, a measure of the average flight distance impact on CO2

emissions could provide the fundamentals for designing an ETS that is
based on flight distances rather than a general overall reduction in
annual airlines CO2 emissions (equal to 95% of the average historical
aviation emissions during the 2004–2006 period). This per-flight CO2

emissions regulation could provide incentives to airlines for better
aircraft management on different routes. For instance, such regulations
could provide incentives to operate an aircraft fitting current demands
on specific routes and thus avoid using aircraft flights with low load
factors on some routes. Thus, providing an econometric estimate of the
sign and magnitude of some factors regarding CO2 aviation emissions is
the first goal of this paper.

Moreover, it is necessary to take into account that CO2 emissions
comprise only one dimension in the air transportation sector, as emis-
sions interact with such factors as economic performance, political
motives, and regulations on market entry, among others. All of these
other components influence the possible outcomes of decisions adopted
to limit emissions. For instance, although liberalization may boost CO2

emissions by stimulating demand through lower fares, a company re-
structuring its network to recover profitability may lead to lower
emissions through more efficient ATM. In this paper we aim to consider
the impact of such non-emission specific decisions on the amount of
CO2 generated by aviation. This will provide, if proven, that these
factors should be included in a cost-benefit analysis that also covers the
environmental effects (direct and indirect) of a political or management
decision.

To accomplish this, we exploit three circumstances: (1) the impact
of regulation identified by the liberalization of the EU industry; (2) the
impact of political decisions, given by a traffic transfer Act that swaps
flights between two airports; and (3) the role of managerial decisions
such as de-hubbing to reshape the flight network and to recover prof-
itability.

We analyze these issues by exploring data on aviation activities and
aviation-related CO2 emissions in Italy. Specifically, we focus on
Lombardy in Northern Italy.3 We design an econometric model to
identify the impact of certain determinants of CO2 aviation emissions
and apply it to a new data set that spans from 1997 to 2011 and consists
of all scheduled flights departing from Lombardy airports in January of
each year. The per-flight CO2 emissions are based on the aircraft model
and the distance flown.

The effect of non-environment decisions is provided by the esti-
mated effect on CO2 emissions of the entry (deregulation) of low-cost
carriers (LCCs) when the national government decided in 1998 to im-
pose an aircraft-movement cap to one airport (Linate). The decision was
made to transfer flights to Malpensa in order to have a hub in Lombardy
(a political reason). In addition, in 2008, at the apex of one of its re-
current financial crisis, Alitalia decided to reshape its network and
concentrate flights at Rome Fiumicino in an attempt to recover profit-
ability (a managerial decision).

Each of these factors may have affected CO2 emissions in different
ways. For instance, some LCCs could have generated new flights (in-
creasing CO2), changing the pattern of air traffic by possibly focusing on
shorter routes (decreasing CO2 per passenger), divert passengers from
other CO2-intensive transportation modes (e.g. cars, buses, trucks for
freight), use younger aircraft and generate higher load factors than
traditional carriers, and hence lower CO2 emissions per passenger.4

Similar considerations could be developed for limiting Milan Malpensa
(e.g., reshaping both the flight network and the aircraft management)
and for Alitalia Malpensa's de-hubbing decision (LCCs may have re-
placed Alitalia flights with—if proven—connections using younger
aircraft).

Our period of observation covers 15 years, starting in 1997 and
ending in 2011. The beginning year allows us to consider the full im-
pact of some exogenous decisions (e.g., the 1998 swap from Linate to
Malpensa and the impact of liberalization that took place in the mid-
2000s). The last year is limited to 2011 for data availability. Although
we can look at the three-year period following the Malpensa de-hub-
bing to see the effects on CO2 emissions, such a review does not allow us
to consider both the impact of recent CO2 regulations such as the EU
ETS (begun in 2013) and of ICAO CORSIA (approved in 2016).

The paper is organized as follows. Section 2 describes the literature
review. Section 3 discusses our empirical strategy by computing the
per-flight CO2 emissions and presents the econometric model. Section 4
describes the available data sets, the data mining process, and de-
scriptive statistics in the econometric model variables. Section 5 pre-
sents our empirical results, while Section 6 concludes the paper and
highlights some possible policy implications. The Appendix contains
assumptions on aircraft models and a list of LCCs defined by the ICAO.

2. Literature review

Currently, two main streams of research on aviation externalities
exist. The first stream focuses on the impact of aviation externalities
(mainly emissions and noise) on airports’ vicinity, while the second
stream investigates the future impact of aviation emissions on climate
change using ad-hoc algorithms.

Regarding the first stream, Schipper (2004) conducted a landing/
take-off (LTO) cycle assessment and estimation on 1990 data. Vicinity
environmental costs of European aviation were computed from noise,
emissions, and accident risk, and then applied to a set of 36 European
markets (routes) in a week in 1990. Lu and Morrell (2006) performed a
similar study on four European airports and showed, after computing
an aviation externality, that a large part of such externality (noise in
this case) was omitted. Morrell and Lu (2007) compared hub-to-hub
and hub-bypass networks and found that the latter generated fewer
emissions than the former. Lu (2009) studied aviation emissions’ charge
effect on air transportation demand and provided some evidence that
environmental surcharges could reduce passenger demand, especially
in the case of LCCs, even if these carriers impose lower environmental
costs to passengers. Givoni and Rietveld (2010) investigated narrow-
body A320 and wide-body B747 in two routes (London-Amsterdam and
Tokyo-Sapporo) and showed that higher aircraft size and lower fre-
quency generates lower climate change costs but higher local pollution.

3 Lombardy is one of Europe's wealthiest regions and exceeded 10 million
habitants in 2016. Other than the exceptional tourism volume, Lombardy has
important commerce, banking, fashion and design sectors in Milan, as well as
strong industries and agriculture in Bergamo. Lombardy is one of the four
motors for Europe (with Baden-Württemberg (Germany), Catalonia (Spain),
and Auvergne-Rhone-Alpes (France) identified by the European Commission. 4 We are grateful to Martin Dresner for raising this point.
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However, the latter does not offset the benefit of the former—i.e., high
aircraft size produces lower overall (local plus global) emissions. Lu
(2011) calculated the environmental (social) costs and social benefits at
Taoyuan International Airport in Taiwan, providing evidence that even
considering the aviation externalities, the benefits of having an airport
are greater than the costs.

The papers belonging to this stream of research aim at the total
environmental cost or the best solution to limit externalities. They
provide solutions such as an optimum fleet mix, giving importance to
load factors, or to adopting newer, cleaner technologies. Moreover,
these papers usually only consider the LTO cycle and not the whole
flight journey. When vicinity environmental cost is studied, LTO is the
best approach, as aviation activity lower than 1-km altitude most affects
a neighborhood.5 When studies explore the issue of different emissions
and noise levels generated by various aircraft models and engine types,
they adopt a simplifying assumption of using some categories rather
than the specific aircraft/engine combination. An exception is
Grampella et al. (2017b), who used certificate data for each aircraft-
engine specification. They applied this approach to a data set on a
national airport system (Italy) and found that aircraft size-total ex-
ternality elasticity is +1.8%, aircraft movement elasticity is +1%, and
aircraft age elasticity is +0.69%. Again, as they focused on airport
vicinity effects, the LTO cycle emissions and noise were studied.

In this first stream of research, analyzing global emissions or CO2

emissions in particular, was not emphasized. However, according to the
IPCC6 (2007), “about 50% of a CO2 increase will be removed from the
atmosphere within 30 years, and a further 30% will be removed within
a few centuries. The remaining 20% may stay in the atmosphere for
many thousands of years.” Hence, this paper, by focusing on CO2

emissions, is an attempt to fill this literature gap.
The second group of papers focuses on forecasting CO2 emissions

mainly through computing fuel efficiency improvement. Hence, the
main difference in this second stream is not finding the determinants of
emissions, but rather using some algorithms based on the current and
projected technology status to compare future alternative scenarios.
Macintosh and Wallace (2009) developed an emissions projection (al-
gorithm) by projecting revenue tons kilometers (for aviation demand)
and global aviation emission intensity. Four scenarios were created
from 2005 to 2025 based on forecasts of traffic growth and projections
of technical progress aimed at reducing emissions. The scenarios
showed that the latter is unlikely to offset the increase in CO2 due to
traffic growth. Chèze et al. (2011a) forecasted the yearly growth of air
traffic flows until 2025, then converted the information into quantities
of jet fuel using a geographic zone-specific energy coefficient, which is
the amount of jet fuel required to power a unit of transportation. They
provided evidence of an annual reduction of 3% in CO2 emissions
through lower fuel consumption thanks to both technical progress and
better ATM. Chèze et al. (2011b) extended these results in which
forecasts of future CO2 emissions between international and domestic
flights were compared, with the latter generating more emissions than
the former, mainly due to a different (less environmental friendly) fleet
mix.

Clearly, the findings of the second stream of research papers
strongly depended upon ad-hoc assumptions of future demand and
performance. A certain year is studied and then different scenarios
based on hypothetical numbers of annual growth and improvements are
plugged in that predict the future. Although a base past year can be
carefully investigated, and the trend can then be calibrated, radical

improvements or temporal events discriminating the base year or vio-
lating the trend cannot be netted by this method. Our paper is closer to
the first stream of research, as we focus on finding some determinants
of CO2 emissions.

In addition to the two main research streams, there have been many
contributions closer to our approach. Miyoshi and Mason (2009) pro-
posed a bottom-up calculator for CO2 emissions by route, stage length,
aircraft type, number of seats on each aircraft, and the distance flown
on each route. They used 2006 data for domestic air traffic and 2004
data for North Atlantic air traffic and provided a methodological re-
ference for a part of our empirical research—namely, the computation
of a specific aircraft CO2 emissions during a specific route length.
Pejovic et al. (2008) provided the same methodological base using
samples from a day in 2004 to simulate the total annual CO2 emissions.
We follow these approaches, but use richer data and include several
airports in a region.

Some recent papers have published empirical evidence on some
determinants of CO2 growth rates in aviation. Scotti and Volta (2015)
found that European airlines grew 18.4% and 26.7% in terms of
available seat kilometers (ASK) and revenue passenger kilometers
(RPK) respectively from 2000 to 2010—i.e., airlines are carrying more
people for a longer distance and earning more than before. They
computed airline productivity in emission generation and identified the
factors affecting it, providing evidence that load factor and a combined
increase in stage length and aircraft size are determinants of increasing
emission productivity, while fuel efficiency is a determinant only in the
presence of a specific measure aimed at increasing CO2 productivity.
Brugnoli et al. (2015) examined CO2 emissions in Europe and found
that per-seat emissions were decreasing and suggested that the main
factors leading to this result are airlines’ effort to save on fuel costs, as
well as the endogenous technical progress of the manufacturing in-
dustry. Kharina and Rutherford (2015) pointed out that the average fuel
burn of new aircraft fell 45% from 1968 to 2014, and consequently CO2

emissions fell. They also identified industry technical progress as the
main determinant of this outcome.

However, even the recent contributions that are more related to our
paper have not evaluated the direct impact of policies and management
decisions not taken to reduce aviation environmental effects on total
CO2 emissions. This is possible in our paper, as we focus on airports in
one region experiencing forces from different angles. As such, we
consider the potential effect of business decisions made by Europe,
Italy, and the aviation industry on Lombardy's aviation CO2 emissions.
This would allow for the control of such factors that may even offset the
benefits that could come from, for instance, technical progress. Hence
our paper is the first attempt, to the best of our knowledge, to establish
the impact of decisions not intended to reduce CO2 emissions on the
amount of this externality generated by aviation. Thus, controlling for
these factors, we aim to obtain better estimates of the influence of some
determinants of CO2 emissions—e.g., technical progress.

3. Empirical strategy

As mentioned in the introduction, our main goal is to estimate the
signs and magnitude of some CO2 emission determinants generated by
aviation, and to assess how they are affected (or even counterbalanced)
by some non-environmental measures taken by regulators, politicians,
and industry managers.

As a first step in defining our empirical strategy to achieve such
goals, we establish our research questions. First, we consider some
determinants investigated by previous contributions (e.g., Scotti and
Volta, 2015) that are typical of the aviation sector—such as the price of
fuel—that may provide an incentive to reduce fuel consumption to save
costs and therefore lead to more environmentally friendly aircraft/en-
gine combinations. Hence, our first research hypothesis is as follows.

RH1. The price of fuel may be a negative determinant of aviation CO2

5 The LTO cycle refers to aircraft activity in altitudes below 3000 feet (915&
#x202F;m). Emissions during LTOs are a concern when studying local air
quality and health impacts.

6 The IPCC, Intergovernmental Panel on Climate Change, is a scientific body
focusing on human-induced climate change, formed in 1988 in the United
Nations.
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emissions.

Similarly, the amount of CO2 generated by a flight is strongly re-
lated to the route distance—i.e., the longer the stage length, the higher
the CO2. This argument is the basis of our second research hypothesis.

RH2. The route distance may be a positive determinant of CO2 total
emissions. However, we cannot make ex-ante predictions regarding the
effect of distance on per-seat CO2 emissions.

Moreover, the aircraft size has an impact on the thrust power and, in
turn, the amount of CO2 emissions. Hence we can investigate the issue
below.

RH3. The average aircraft size may be a positive determinant of CO2

total emissions. However, we are not able to make ex-ante predictions
regarding the effect of size on per-seat CO2 emissions.

Another typical determinant often considered in the air transpor-
tation literature is general technical industry progress (Grampella et al.,
2017b). This is given by the aggregation of incremental innovations
introduced in aircraft/engine combinations and in industry operations
(e.g., better ATMs) that may generate an annual reduction in the
amount of CO2 emissions. Hence, we specify a trend variable capturing
the impact of general technical progress.

RH4. : The technical industry progress is a negative determinant of
both aviation CO2 total emissions and per-seat emissions.

In addition to the abovementioned factors, we focus on some other
determinants that may indirectly affect CO2 and may offset the general
benefits provided, for instance, by technical progress. The first de-
terminant is related to aviation general regulation and in particular to
the EU liberalization of air transportation. The latter has two main ef-
fects: (1) the entrance of LCCs and (2) the increase of flights (and
routes).7 The distance flown is already captured by the increase in
flights and routes. The entrance of LCCs may instead reduce CO2

emissions because they use, for example, younger aircraft. Hence we
have our further research hypothesis.

RH5. LCCs may be a negative determinant of both total and per-seat
CO2 aviation emissions.

The second exogenous indirect determinant is given by Alitalia's de-
hubbing from Malpensa that occurred in April 2008 with the full effects
starting in 2009.8 This decision left several empty slots at Malpensa that
were used by other airlines in the following years. The situation then
created an entry opportunity, as well as the eventual establishment of a
network in Malpensa, with possibly new and different-sized aircraft.
Hence, the de-hubbing may have had the effect of reducing CO2 emis-
sions for flight limitations in the short run, which may have counter-
acted the entry effect over time. Moreover, the new airline networks
may have had a positive impact on per-seat CO2 emissions, for oper-
ating younger aircrafts and better ATM. This leads to the research hy-
pothesis below.

RH6. Alitalia's de-hubbing from Malpensa in 2008 may have an effect
on total and per-seat CO2 emissions.

Lastly, the Italian national government's decision to impose a cap on
flights at Milan Linate to help develop Milan Malpensa, which took
place in 1998 (with full effects during the following year), may have
generated a restructuring of the airline networks at both airports.9 If

Alitalia concentrated flights in Malpensa in an attempt to build a second
hub (Rome Fiumicino is Alitalia's first hub), as shown by Redondi
(2013), this may have increased the flight frequency and, in turn, the
CO2 emissions.10 Moreover, such a concentration may have increased
the aircraft size per movement, which could have reduced per-seat CO2

emissions. Regarding the other airlines, they may have restructured
their networks in both airports, thus affecting total and per-seat CO2

emissions. Hence, no a priori impact could be identified. Our last re-
search hypothesis is therefore the following.

RH7. The flight cap imposed on Milan Linate 1998 is a determinant of
both total and per-seat CO2 emissions.

In order to investigate these research questions, we first measured
the CO2 emissions generated by the sample of airports affected by the
abovementioned exogenous decisions. Second, we designed an econo-
metric model to provide some statistical evidence of the estimated
coefficients of the possible determinants.

The airports included in our analysis are the four located in
Lombardy, the region affected by the Italian government's decision, as
well as the de-hubbing by Alitalia's. The four airports in Lombardy in-
clude Milan Malpensa (MXP), Bergamo Orio al Serio (BGY), Milan
Linate (LIN), and Brescia Montichiari (VBS). We consider a 15-year time
period, from 1997 to 2011. At the beginning of this period, Malpensa
was the second-largest Italian airport with about 20 million passengers
annually and the first that carried freight. Linate was the third-largest
Italian airport with about 9 million passengers. Bergamo ranked six-
teenth with 1.2 million passengers annually, but was third in terms of
freight. Brescia was in the twenty-seventh position, with about 150,000
passengers annually, and no freight. At the end of the period, Malpensa
ranked second in Italy, with about 19 million passengers annually (a
reduction compared with the beginning figure, even though the sector
has expanded in Italy), and first in terms of freight, with strong growth
(+50% compared to the beginning of the year). Bergamo has had ex-
ponential growth; in 2011, there were 8.5 million passengers annually.
The airport was ranked fifth in Italy, and third in terms of cargo. In
2011, Linate had about 9 million passengers annually, as in the initial
year (1997). Brescia had almost no passengers in 2011 but significantly
in terms of freight, passing from zero movement in year 1997 to about
40 thousand annual tons in 2011, ranking sixth in Italy. Currently, al-
though Malpensa is still ranked second, in 2017, the airport grew to 22
million passengers annually and by far the first in terms of freight.
Bergamo is currently the third Italian airport with 12.3 million pas-
sengers and third in freight. Linate ranks fifth with 9.5 million pas-
sengers, and Brescia still has very few passengers but ranks sixth in
freight.11

We measured the amount of CO2 emissions generated by these four
airports during the observed period and then estimated the impact of
some determinants. We now show how we measure aviation CO2

emissions and subsequently present our econometric model.

7 This implies generally considering the effect of Ryanair entry into the
Bergamo airport in 2003, of easyJet's entry into the Malpensa airport in 2004
and of other LCCs such as Wizz Air and Flybe making smaller entries into
various airports (mainly Bergamo) in the observed period.

8 Seventy-six percent of departing flights were canceled and 17 daily inter-
continental flights shrank to 3 non-daily intercontinental flights.

9 This was based on the blueprint of a second Alitalia national hub in

(footnote continued)
Malpensa in the observed period. As such, a traffic distribution rule (TDR) was
put on Linate when a new terminal in Malpensa was completed in 1998. The
TDR, called Burlando Act (enacted by the Italian Minister of Transport and
Navigation in 1998), fixed the Linate quota to 34% of its capacity, meaning that
around 8.5 million of its 14.5 million passengers had to move from Linate to
Malpensa. Moreover, in 2000, with the Bersani Act (enacted by the succeeding
Minister), Linate was officially capped by a further TDR that limited the service
to European markets (e.g., only three and two daily returns to London
Heathrow and Frankfurt, respectively).

10 Redondi (2013) has explained how airlines fought back the TDR by mul-
tiple carrier codes or slot leases. Linate missed chance of 10% of growth as a
consequence of TDR.

11 Data was collected from Assaeroporti, an Italian airport association of the
36 companies managing the 38 airports in Italy, which was founded in 1967
and is affiliated with the Airport Council International.
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3.1. Measurement of aviation CO2 emissions

We considered departing flights from Lombardy in order to avoid
unnecessary definition challenges of other perspectives—that is, en-
tering flights, residency of passengers, airlines’ base, or kerosene sales.
In addition, only direct flights were considered; in cases of connecting
flight, only the first leg leaving Lombardy was included.

We analyzed two flight phases: (1) the LTO cycle; and (2) the climb,
cruise and descent cycle (CCD). These are divided, as fuel is burned in
different patterns and has different types of environmental impact. In
particular, during the LTO cycle, fuel flow can change with an engine's
rated output in power settings of corresponding activities such as
taxing, take-off, and climb out.

We considered an aircraft's total emissions on a particular journey.
With the aid of the small emitters tool (SET) by Eurocontrol,12 we ob-
tained the estimated total fuel consumption of a certain aircraft model
given the flight distance. SET takes the actual fuel consumption data of
each flight under the EU ETS initiative and then runs separate linear
regressions of each aircraft model, defining two parameters: the inter-
cept (at zero distance) and the slope (kg of fuel per nautical miles
flown). The overall fuel consumption is then translated into CO2 ac-
cording to the aircraft's engine type. In this study, we used the SET
version 5.05 dated 2015.12.26. When some aircraft models in the
sample could not be found in the SET, assumptions were made (See
Appendix I for conversion table.).

We computed two CO2 emissions indices: (1) the total amount and
(2) the emission efficiency given by the amount of CO2 generated by the
available seat kilometers (ASK). As the total CO2 emissions of a route is
principally proportional to distance and frequency, by employing the
second index, long-distance or high-frequency routes were not dis-
criminated. Utilizing available seats in the second index formation
further screened out the effect of varying aircraft sizes.

3.2. The econometric model

Our aim is to identify the determinants of total and per-ASK CO2

emissions generated by the four Lombardy airports during the
1997–2011 period. Hence, we developed an econometric model to es-
timate the elasticity of some determinants on CO2 emissions and to
provide empirical evidence of the possible effects of decisions that may
indirectly affect such emissions. Therefore, we used a log-linear model
in which some determinants were expressed in logarithms and others as
dummy variables. Airport dummy variables were also created as control
variables. In this log-linear model, the percentage impact on a depen-
dent variable when a dummy variable switches from 0 to 1 could be
computed by applying the following expression: −e100( 1)δ , where δ is
the coefficient for the dummy variable. In the presence of a continuous
variable as a regressor, given that the dependent variable is logged, its
elasticity is given by β —i.e., the estimated coefficient of the loga-
rithmic independent variable.

Our observation is given by the origin-destination (OD), the route
provided by an airline in year t. The triplet origin-destination-airline (or
the pair route-airline) is our “id” variable, with the label i. Hence we
have a panel data set composed by i&#x202F;=&#x202F;1, 2, …., and
I triplets origin-destination-airline during the period t&#x202F;=&
#x202F;1, 2, …, 15. Four hundred and thirty-five routes and 197 dif-
ferent airlines were observed in the period data set; however, since not
all routes operated every year, we had only 1082 route-airline pairs.
Hence we generated an unbalanced panel data set composed of 4164

observations.
We designed two econometric panel data models and then estimated

the models with random effects (RE) that are presented below (re-
spectively, the first equation estimates the determinants of total CO2

emissions while the second concerns the factors affecting per-seat-
kilometer CO2 emissions):
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where i is the pair route-airline, t is the year, and j is the index regarding
the three departing airports in Lombardy (Malpensa is the base airport).
The model is estimated to account for possible heteroskedasticity—i.e.,
the estimate coefficients have robust standard errors. The effect of
technology progress on CO2 emissions is captured by the variable TIME
given by each year in the dataset. Equation (2) has a dependent variable
given by an index of emission efficiency—that is, the amount of CO2

per-seat per kilometer of flight (CO2ASK). Furthermore, as our aim is
also to study the determinants of one-year variations in total CO2

emissions and per-seat-kilometer CO2 emissions, we estimated a panel
data model with a one-year difference in time-varying variables and
random effects given by the two following equations:
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where Eq. (3) is related to variations in total CO2, while Eq. (4) is for
per-seat-kilometer CO2,
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Table 1 illustrates the variable names and description.
The model presented in Eqs. (1)–(4) is applied to a data set de-

scribed in the section below.

4. Data

We built a data set that included all Lombardy passenger flights
from 1997 to 2011, all scheduled flights in January of each year de-
parting from Lombard airports: Malpensa (MXP), Linate (LIN), Bergamo
(BGY), and Brescia (VBS). The source of these data is the Official Airline
Guide (OAG) database. The airports have different destination (air-
ports), distances, carriers, frequencies, aircraft models, and available
seats. CO2 emissions are then estimated by feeding the aircraft model
and distance traveled into SET, the emission calculation tool. We col-
lected 4197 observations and some descriptive statistics on the ob-
served flights, and their CO2 emissions are shown in Table 2. The
average, annual amount of total CO2 generated by a route-airline pair is
about 800 thousand kilograms, while the per-seat-kilometers is only
97 g+

Table 3 presents descriptive statistics of the variables that may in-
directly affect emissions and the share of flights departing from the four

12 SET was approved by the European Commission via the Commission
Regulation (EU) No.606/2010 and is used by small emitters in fulfillment of
their obligations pursuant to Article 14(3) of the Directive 2003/87/EC (the EU
ETS Directive) and Part 4 of Annex XIV to Decision 2007/589/EC (monitoring
and reporting guidance).
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airports. It is interesting to note that the average share of LCC flights is
21% in our sample while the share of those with destinations in the EU
is 77%. Observations regarding the Malpensa airport comprise the
majority (62%), while those related to Brescia are only a small per-
centage (1%).

Concerning the destination composition, also seen in Fig. 1, the total

amount of EU ASK13 varies from about 0.5 billion in 1997 to about 1
billion in 2011, while the total amount of ASK ranges from about 1.5
billion to about 2.8. Last total Italy ASK14 increases from about 0.3
billion to about 0.5 billion. The ASK is growing in all levels with respect
to the 1997 level.

Fig. 2 shows the effects of the traffic transfer Act and of Alitalia's de-
hubbing on the level of ASK in Linate and Malpensa. The left-hand
graph displays the impact of the Italian government's decision to
transfer the traffic from Milan Linate to Milan Malpensa in 1998. It is
evident that there is a big ASK reduction in Linate and a corresponding
increase in Malpensa. The right-hand graph presents the impact of
Alitalia de-hubbing from Malpensa, which involved a huge reduction in
the ASK and no corresponding increased effect on Linate.

Fig. 3 reveals the share of aviation CO2 emissions among the four
airports in the data set. We show the total CO2 emissions in regards to
only departing flights in January of each year. The emission levels
would be scaled up if every month in a year was considered, or if the
incoming flight was also measured. The traffic distribution—that is, the
steered traffic from Linate to Malpensa—is obvious since Linate has a
sharp decrease of CO2 emissions in 1999, while Malpensa has a sharp
increase. Moreover, it is evident that the effect of Alitalia de-hubbing
from Malpensa in 2009, with a strong reduction in total CO2 emissions,
is not counteracted by any increase in the other four Lombardy airports.
Lastly, the development of LCCs in the Bergamo airport (mainly due to
Ryanair) generates a continuous increase in total CO2 emissions.

As we are interested in the technology progress reflected by the
emission efficiency variations given by CO2 per ASK (i.e., grams of CO2

produced by one available seat per kilometer), the latter is computed
for each flight. We can see the diverse LCC performances (red line in
Fig. 4) compared with all airlines (blue lines) and the index number of
flights departing from the four airports (Fig. 5). It is interesting to no-
tice that LCCs have a lower CO2 per ASK than traditional airlines.
Moreover, Bergamo had a significant improvement in 2003 when LCCs
began proliferating there. All airports or airlines have a decreasing
trend of CO2 per ASK, which could be a signal of environmentally
friendly technical progress; however, the total CO2, which we en-
countered before, has an increasing trend.

Finally, we present the indicator trends based on the 1997 value in
Fig. 6. From this graph, we confirm the questionable relation of total
CO2 and CO2 per ASK: the total CO2 is unevenly increasing while CO2

per ASK is steadily decreasing. ASK is confirmed to be correlated to CO2

but we question if the fuel price is significantly impacting the CO2 per
ASK.

The 30 most important airlines in our data set are listed in Table 4.
They are in ascending order of CO2 per ASK. The share of the total of

Table 1
Description of variables.

Variable Description

CO2 Total amount of CO2 emissions in kg of a particular route-airline i pair in year t
CO2ASK Grams of CO2 produced by flying one available seat per 1&#x202F;km in pair i and year t
FUEL Fuel price in January of year each in US cents
KM Distance of a route in km (variable since a route can involve flying to different airports at same destination)
SIZE Average aircraft size in the route-airline pair i in year t
TIME Year index starting from 0 and up to 15
DEHUB De-hubbing effect, starting at 2009, i.e. 1997–2008 as 0; and 2009 onward as 1
1998 Traffic distribution from LIN to MXP, i.e. 1997-98 as 0; and 1999 onward as 1
LCC A set of LCC airlines defined by ICAO definition (see Appendix II) as 1
EU Dummy variable&#x202F;=&#x202F;1 if destination is in Europe
AIRPORT Dummy variable of departing airports

Table 2
Descriptive statistics of observed routes.

Variable Mean St. Dev. Min Max

CO2 (kg) 821,386.4 1,203,953 2236 9,607,554
CO2ASK (g) 97.3 32.4 54.9 443.5
FUEL ($) 1.4 0.7 0.3 2.6
KM 6146.9 8554.9 64 133,800
SEAT 2016.2 2470.7 97 11,195
SIZE 154.6 67.78 19 546
ASK 9,104,834 1.30E+07 17,296 9.58E+07

Table 3
Descriptive statistics of independent variables.

Variable Mean St. Dev. Min Max

DEHUB 0.34 0.47 0 1
1998 0.96 0.19 0 1
LCC 0.21 0.41 0 1
EU 0.77 0.42 0 1
Bergamo 0.14 0.34 0 1
Brescia 0.01 0.09 0 1
Milan Linate 0.24 0.43 0 1
Milan Malpensa 0.62 0.49 0 1

Fig. 1. Annual ASK (billion) departing in January from Lombardy by destina-
tion.

13 We refer to the EU ASK as the available seat kilometers to an EU destina-
tion; i.e., an intra-EU flight.

14 IT ASK refers to the seat kilometers of a destination in Italy—i.e., a do-
mestic flight.
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these 30 airlines on the grand total of 197 airlines is reported, re-
presenting at least 80% of all dimensions including total CO2, total
frequency (movement), total km (distance) and total ASK. Total ASK is
also a proxy of air transportation supply. The average seat and average
km by movement could be interpreted as the median aircraft size and
median route distance, respectively, of each airline.

5. Results

In this section we present empirical evidence regarding the seven
previous research questions. We first show the estimated coefficients
regarding the model for total CO2 emissions (Eq. (1)), under two spe-
cifications: (1) with a dummy for all LCCs; and (2) with a dummy re-
garding only Ryanair and easyJet. The latter captures the impact on
CO2 emissions of the two most important LCCs in Europe with a strong
presence in Lombardy; moreover, these two LCCs also tend to have
younger aircraft.

The regressions outcome is shown in Table 5, with four models of
different settings. The dependent variable of the first two models is the
total amount of CO2, while that of the latter two models is CO2 per ASK.
Regarding the independent variables, most of them are statistically
significant, reflecting their impact on Lombardy aviation CO2 emissions
in an airline-specific route dimension by the corresponding coefficients’
sign and magnitude. LCC is tested by two different definitions: (i) a list
of LCCs by ICAO and (ii) only Ryanair and easyJet. In the (ii) case, the
magnitude of impact is always strengthened.

When all LCCs are considered, as expected, distance (KM) and size
(SIZE) have a positive impact on total CO2 aviation emissions. The es-
timated elasticity is respectively +0.63% and +0.41%. Unexpectedly,
the fuel price (FUEL) is also a positive determinant of total CO2 emis-
sions: the estimated elasticity is +0.11%. On the contrary, we do not
find any evidence of technical progress effect on total CO2. The exo-
genous policy and managerial variables also have no effects; however, if

Fig. 2. Annual January departure ASK (million) from Lombardy by airport.

Fig. 3. Annual January departure CO2 by airports in Lombardy.

Fig. 4. Annual January departure CO2 per ASK by LCCs.

Fig. 5. Annual January departure CO2 per ASK by airport.

Fig. 6. Trend of annual January departure indicators based on the year 1997.
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the destination is in a EU member country, the total CO2 is higher (the
estimated elasticity is about +0.32%). Bergamo makes much less total
CO2 than Malpensa, which might be explained by the fact that almost
all Bergamo flights are operated by LCCs, and this may explain why the

variable LCC has no significance. Linate makes more CO2 emissions
than Malpensa, possibly due to older aircraft (Alitalia operated the
Milan Linate-Rome Fiumicino routes that used a lot of old MD-80/81/
82 for many years). Interestingly, when Ryanair and easyJet are in-
cluded in the regression, the estimated effect is positive—i.e., they in-
crease the total CO2 emissions. In the case of Ryanair, the result may be
explained by the negative coefficient for the Bergamo airport. Malpensa
also makes less CO2 than Linate, which may capture part of the possible
negative effect from easyJet. This finding is confirmed by the results of
a regression (not shown) that does not include the airport dummies; in
this case, the LCC dummy is negative and significant.

Table 6 presents the results concerning emission efficiency—i.e., the
CO2 per ASK that is related to Eq. (2). The fuel price is not a determi-
nant of CO2 per ASK. Interestingly, the route distance and aircraft size
are negative determinants of emissions (in)efficiency, as they both
generate lower CO2 per ASK. The estimated elasticities are, respec-
tively, −0.14% and −0.28%. Moreover, there is a positive impact of
technical progress on emission efficiency: the estimated coefficient for
TIME is equal to −0.01, corresponding to a −0.06% annual im-
provement—a lower CO2 emission per ASK. De-hubbing and the
transfer traffic decision have no effect, while LCCs are producing less
CO2 per ASK than traditional carriers. These findings are confirmed and
slightly higher in magnitude when we consider only Ryanair and
easyJet. Flying to a EU destination yields a lower CO2 per ASK, which
may also be due to liberalization and airports charging pollution sur-
charges. Linate and Bergamo are more efficient than Malpensa.

We have also analyzed the impact of some possible determinants of
the one-year changes in the amount of CO2 generated per route-airline

Table 4
Listing of important airlines in Lombardy.

CODE CARRIER NAME Total CO2 (kt) Total Frequency Total SEAT
(thousand)

Total KM Total ASK
(million)

SEAT
(mean)

KM (mean) CO2 per ASK (g/
seat-km)

FR Ryanair 103.86 9063 1709.27 8,441,413 1591.68 188.60 931.41 65.25
GJ Eurofly 47.46 1078 215.34 2,711,191 643.06 199.76 2515.02 73.80
L4 Lauda Air 44.79 325 84.73 2,291,080 598.20 260.70 7049.48 74.88
U2 easyjet 72.95 6860 1069.81 6,185,361 964.38 155.95 901.66 75.64
LM Livingston 59.73 462 119.66 2,915,541 763.14 259.00 6310.69 78.28
IB Iberia 39.76 2924 489.92 2,935,138 499.86 167.55 1003.81 79.53
TP TAP Portugal 20.74 1224 157.70 1,993,140 258.93 128.84 1628.38 80.10
PE Air Europe 40.66 1749 266.70 2,447,032 500.77 152.48 1399.10 81.19
EK Emirates 37.95 353 110.81 1,509,276 464.46 313.91 4275.57 81.71
BV Blue Panorama

Airlines
33.82 447 84.3 1,986,810 409.28 188.59 4444.77 82.64

VA Volare Airlines 18.71 1207 201.99 1,213,669 219.82 167.35 1005.53 85.10
VE CAI Second 30.75 1886 302.42 2,014,763 360.67 160.35 1068.27 85.27
DL Delta Air Lines 79.55 620 131.57 4,259,775 904.45 212.20 6870.60 87.95
BA British Airways 57.61 4794 657.95 4,815,786 650.72 137.24 1004.54 88.53
KL KLM 20.53 2193 276.97 1,769,673 223.54 126.30 806.96 91.84
IG Meridiana 58.78 4932 776.69 3,755,284 635.78 157.48 761.41 92.46
AZ Alitalia 1483.26 76,657 10,053.92 87,571,292 15,786.57 131.15 1142.38 93.96
XM CAI First 29.64 2549 368.86 2,139,463 311.15 144.71 839.33 95.25
AF Air France 37.34 5370 654.29 2,952,033 384.38 121.84 549.73 97.14
CO Continental Airlines 54.89 398 86.79 2,559,836 558.21 218.07 6431.75 98.33
SK SAS Scandinavian

Airlines
29.36 1809 233.46 2,350,695 298.15 129.05 1299.44 98.49

AP Air One 105.28 13,205 1631.50 8,501,515 1060.45 123.55 643.81 99.28
SQ Singapore Airlines 40.57 260 72.28 1,442,418 400.99 278.00 5547.76 101.18
JL Japan Airlines

International
90.47 325 117.77 2,453,119 884.92 362.36 7548.06 102.23

RG Varig 67.90 382 96.623 2,628,354 662.19 252.94 6880.51 102.53
LH Lufthansa Airlines 65.64 10,479 1053.77 5,977,403 596.71 100.56 570.42 110.01
OS Austrian Airlines 12.40 1741 167.42 1,125,979 108.23 96.16 646.74 114.53
SN Brussels Airlines 16.68 1981 201.39 1,338,995 136.38 101.66 675.92 122.34
G7 Gandalf Airlines 6.70 2124 75.71 1,204,055 43.51 35.64 566.88 153.92
LX Swiss 6.10 1894 171.56 392,066 35.08 90.58 207.00 173.90

Sum (30) 2813.88
(82.26%)

159,291
(83.68%)

21,641.14
(84.53%)

173,882,155
(80.38%)

30,955.68
(82%)

135.86 1091.60 90.90

Total (197) 3420.92 190356 25600.396 216326034 37921.81 134.49 1136.43 90.21

Table 5
Regression results for total CO2 aviation emissions.

Variables Dependent variable: log of CO2

Estimated
coefficient

S.E. P-value Estimated
coefficient

S.E. P-value

log FUEL 0.109*** (0.036) 0.002 0.109*** (0.036) 0.002
log KM 0.628*** (0.063) 0.000 0.621*** (0.063) 0.000
log SIZE 0.406*** (0.066) 0.000 0.390*** (0.066) 0.000
TIME −0.015 (0.010) 0.123 −0.016 (0.010) 0.108
DEHUB −0.010 (0.043) 0.810 −0.013 (0.043) 0.762
1998 −0.007 (0.057) 0.900 −0.005 (0.057) 0.928
LCC 0.005 (0.070) 0.946
EU 0.279** (0.124) 0.024 0.233* (0.123) 0.058
Linate 0.188*** (0.072) 0.009 0.206*** (0.072) 0.004
Bergamo −0.436*** (0.083) 0.000 −0.505*** (0.077) 0.000
Brescia −0.089 (0.229) 0.696 −0.153 (0.236) 0.517
LCC_R_E 0.317*** (0.081) 0.000
Constant 12.520*** (0.513) 0.000 12.672*** (0.509) 0.000

Observations 4164 4164
R2 0.34 0.34

Robust standard errors in parentheses.
Legend: *** P-value < 0.01, ** P-value < 0.05, * P-value&#x202F;<&
#x202F;0.10.
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pair and on the CO2 per ASK using the model presented in Eqs. (3) and
(4). The results are shown in Table 7. The first three columns have the
logarithm of the total CO2 generated as the dependent variable (i.e., the
columns refer to Eq. (3)), while the last three columns give the results of
regressing Eq. (4), with the logarithm of the CO2 generated per ASK as
the dependent variable. Both the dependent and the independent
variables are the one-year difference, denoted as “d.”

One identified determinant of one-year changes on total CO2 is the
one-year variation in aircraft size. If the latter increases we observe an
increase in the variation of total CO2 from one year to the following
year. The estimated coefficient of the d.SIZE logarithm is equal to
+0.40 and is statistically significant. The other determinant is given by
the one-year variation in fuel price: the estimated coefficient is statis-
tically significant and equal to +0.08. One-year variations in the route
distance, the impact of Alitalia de-hubbing, as well as the 1998 Traffic
Transfer Act from Linate to Malpensa have no effect on the total CO2

one-year difference.
Table 7 shows that the only identified determinant of one-year

changes in CO2 per ASK is the one-year variation in aircraft size. The
estimated coefficient is −0.34, which implies that a one-year increase
in aircraft size yields a reduction in the one-year CO2 generated for
passengers (using seat kilometers as a proxy average). This is an in-
teresting result since it demonstrates that a marginal (i.e., in the fol-
lowing two years) increase in aircraft size can produce a marginal

decrease in the amount of CO2 generated per passenger. This finding
could signal a possible lower per-passenger impact of aviation on the
environment if we could progressively augment the per-route aircraft
size, keeping all other variables fixed (the sign and significance is the
same if we also include a one-year variation in the total ASK operated
on the route, after taking into account the total movements on that
route).

Hence, to sum up our insights regarding the research questions, we
can state the following. First, fuel price increases the total CO2, dif-
ferently from what we had expected. This suggests that airlines are not
pushing efficiency in fuel consumption, which has the secondary effect
of increasing emissions and might be explained by market power—that
is, airlines may be transferring higher fuel costs to consumers. We did
not find any effect on CO2 per ASK and on one-year variations. Second,
the route distance increases total emissions, and decreases emission per
ASK, thus we have higher efficiency with a longer flight distance, im-
plying that CO2 is less of a problem for long-haul connections. There is
no impact of distance on one-year variations. Third, although aircraft
size increases total emissions, it reduces emissions per ASK, as well as
one-year variations; therefore, it is a driver of emission efficiency.
Fourth, technical progress does not impact total emissions, but it does
decrease CO2 emissions per ASK in that the estimated elasticity is
−0.06%. Fifth, although LCCs have lower CO2 emissions per ASK, as
liberalization in Europe has brought a collateral effect of reducing CO2

externality per passenger, LLCs also contribute to higher total emis-
sions, probably due to their higher activity in the EU. Sixth, Alitalia de-
hubbing and the national government traffic transfer act from Linate to
Malpensa did not have any effect any on the investigated dimensions of
CO2 emissions, including one-year differences. This implies that man-
agerial and government decisions made for reasons not connected with
the environment did not generate an impact on CO2, which is different
from what was expected. In both cases, the airlines’ network re-
structuring could generate an effect, but this has not been identified.

6. Conclusion

This study is an attempt to fill a gap in the existing literature re-
garding the possible determinants of CO2 emissions generated by the
commercial air transportation sector. Previous contributions (e.g.,
Chèze et al., 2011a; Grampella et al., 2017b) have identified that
technical progress is a factor limiting emissions and we estimate an
annual improvement in the range of −1% and −0.3%. However, other
peculiar factors of the air transportation sector may influence CO2

emissions—for instance, route distance and aircraft size. Furthermore,
different institutions (ICAO, EU, and so forth) are involved in a lengthy
process of establishing a policy limiting aviation emissions, with the EU
ETS and the ICAO CORSIA framework as two examples. However, these
efforts interact with other forces such as economic and business per-
formance, political issues, and regulation on market entry. The latter
factor may affect possible outcomes of decisions adopted to limit
emissions. For instance, market liberalization may boost CO2 emissions
by stimulating demand through lower fares. Hence, in this contribution
we analyzed the determinants of CO2 aviation emissions that include
different components: technical progress, traffic management airline
decisions, and policies/business choices not oriented to the environ-
ment, but that can indirectly affect the level of emissions.

We studied emissions according to two dimensions: (1) the total CO2

generated on a specific route by a specific airline, and (2) the CO2 per
ASK on the same unit of observation. While the first dimension provide
insight into the determinants of global amounts of CO2, the second may
point out a relative measure of CO2 per passenger—i.e., the environ-
mental efficiency of air transportation.

In order to identify the determinants of CO2 aviation emissions we
designed an econometric model for panel data and applied it to a data
set concerning all the flights departing from Lombardy, Italy, over the
1997–2011 period. The amount of CO2 generated was computed by

Table 6
Regression results for total CO2 per ASK aviation emissions.

Variables Dependent variable: log of CO2 per ASK

Estimated
coefficient

S.E. P-value Estimated
coefficient

S.E. P-value

log FUEL −0.001 (0.009) 0.918 −0.000 (0.009) 0.977
log KM −0.140*** (0.016) 0.000 −0.142*** (0.016) 0.000
log SIZE −0.282*** (0.020) 0.000 −0.283*** (0.020) 0.000
TIME −0.006*** (0.002) 0.004 −0.007*** (0.002) 0.002
DEHUB −0.010 (0.010) 0.318 −0.007 (0.010) 0.478
1998 0.007 (0.015) 0.656 0.007 (0.015) 0.643
LCC −0.129*** (0.014) 0.000
EU −0.220*** (0.032) 0.000 −0.223*** (0.032) 0.000
Linate −0.048*** (0.014) 0.001 −0.046*** (0.014) 0.001
Bergamo −0.086*** (0.015) 0.000 −0.097*** (0.015) 0.000
Brescia −0.018 (0.048) 0.703 −0.005 (0.047) 0.919
LCC_R_E −0.168*** (0.014) 0.000
Constant 7.189*** (0.148) 0.000 7.201*** (0.149) 0.000

Observations 4164 4164
R2 0.53 0.53

Robust standard errors in parentheses.
Legend: *** P-value < 0.01, ** P-value < 0.05, * P-value&#x202F;<&
#x202F;0.10.

Table 7
Regression Results for one-year variation in total and per-seat CO2 emissions.

Variables Dep. var.: log of CO2 Dep. var.: log of CO2 x ASK

Est. Coef. S.E. P-value Est. Coef. S.E. P-value

log d.FUEL 0.080** (0.032) 0.012 0.0004 (0.009) 0.965
log d.KM 5.326 (7.807) 0.495 −0.164 (1.533) 0.915
log d.SIZE 0.400*** (0.075) 0.000 −0.342*** (0.038) 0.000
d.DEHUB −0.012 (0.046) 0.800 0.0001 (0.009) 0.992
d.1998 0.079 (0.050) 0.111 0.015 (0.015) 0.325
Constant −0.024* (0.012) 0.056 −0.006*** (0.002) 0.007

Observations 2930 2930
R2 0.03 0.20

Robust standard errors in parentheses.
Legend: *** P-value < 0.01, ** P-value < 0.05, * P-value&#x202F;<&
#x202F;0.10.
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taking into account the aircraft model chosen by the airline operating
on that route.

Our main results are as follows. First, the price of fuel is a positive
determinant of total CO2 emissions (RH1) but has no effect on per seat
emissions. Airlines seem not to react to price variations in setting their
schedule, maybe because the rebate the changes on higher ticket fares
(Scotti and Volta, 2018). Second, as expected route distance increases
total CO2 emissions and decreases emissions per ASK (RH2). The latter
outcome implies that there is higher emission efficiency for long-haul
connections. Third, aircraft size increases total emissions, but reduces
emissions per ASK (RH3); therefore, it is a second driver of emission
efficiency. These two factors indicate that airline fleet management
may be a sustainable growth path for commercial aviation. Fourth,
there is a positive effect of general technical progress on per seat CO2

emissions but not on total ones (RH4). Hence, differently from previous
studies, once that we focus on the route-airline pairing we find that
technical progress is not impacting total emissions, but it is decreasing
CO2 emissions per ASK. However, the estimated elasticity is lower than
previous figures (−0.06%) and, above all, much lower than the esti-
mated elasticities regarding aircraft management (the route elasticity is
−0.14%, the aircraft size elasticity is −0.28%). Fifth, we provided
mixed evidence regarding the indirect impact of policy/business deci-
sions (not oriented toward CO2) on emissions. On the one hand, the EU
market liberalization has an impact on CO2, and this may offset the
outcome of other policies (e.g., the EU ETS or the ICAO CORSIA)
adopted to limit pollution. In the observed period (1997–2011) liber-
alization has brought the entry and the development of LCCs into the
EU, and we find that they have high total emissions, but lower CO2

emission per ASK (RH5). The latter result implies that although liber-
alization has brought the collateral effect of reducing the CO2 ex-
ternality per passenger, it has also contributed to higher total emissions,
probably due to higher LCC activity in the EU. On the other hand, we
find that Alitalia de-hubbing from Malpensa in 2008 (RH6) and the
national government Traffic Transfer Act from Linate to Malpensa in
1998 do not affect either total or per ASK CO2 emissions (RH7). In both

cases the airlines’ network restructuring could have generated an effect,
but this has not been identified.

From the abovementioned insights we can draw some interesting
policy implications. First, aviation CO2 emissions could be reduced, or
emission efficiency could be increased through airline adoption of
better aircraft and network management. Aircraft size can reduce CO2,
thus environmental policy should provide incentives for increasing
aircraft size on different routes when demand allows for it, for instance,
by reshaping the EU ETS according to this dimension. A higher tax may
induce airlines to better aircraft management when possible, perhaps
with less frequency and higher load factors. Second, it is necessary to
provide an incentive to renovate aircraft fleets, since general technical
progress is a determinant of aviation emission efficiency. Last, LLCs also
increase emission efficiency, a further important consequence. This is
because LCCs may generate new flights (increasing CO2), divert pas-
sengers from other CO2-intensive transportation modes (e.g., cars,
buses, trucks for freights), use younger aircraft and generate higher
load factors than traditional carriers, hence achieving a overall lower
CO2 emissions per passenger.

Restricted by the availability of data and resources, there are some
limitations and drawbacks of this study. First and foremost is the under-
estimation of CO2 emissions through the following examples: when an
equivalent aircraft model (with a lower CO2 emission value) is used for
a badly defined aircraft model in our data set; when theoretical distance
is used instead of actual distance flown (which is possible if each flight
is monitored); when operation usage of fuel on the ground is neglected
(although this might be responsible for only a tiny part of fuel con-
sumption). A dedicated airport study should also take these factors into
account. Second, in this paper CO2 emissions are not an actual mea-
surement of each flight in this, but a proxy. We compute CO2 emissions
based on a regression of certain aircraft model records, which is, by its
nature, estimated. Third, no comparisons of different aircraft categories
were made in this study. Engines and airframes characterize small/
medium/large aircraft and thus fuel consumption. These topics are left
for future research.

Appendix IAircraft Model Conversion

OAG name OAG code SET code OAG name OAG code SET code

Airbus A300 Passenger AB3 A30B BAe 146–300 Passenger 143 B463
Airbus A300B2/B4/C4 AB4 A30B BAe Jetstream 32 J32 JS32
Airbus A300B4/A300C4/A300F4 ABX A30B Beechcraft 1900D Airliner BEH B190
Airbus A310 Freighter 31F A310 Boeing (douglas) DC10 (Freighter) D1F DC10
Airbus A310 Passenger 310 A310 Boeing (douglas) MD-11 (Freighter) M1F MD11
Airbus A310-300 Freighter 31Y A310 Boeing (douglas) MD-11 Mixed Config M1M MD11
Airbus A310-300 Passenger 313 A310 Boeing (douglas) MD-11 Passenger M11 MD11
Airbus A318 318 A318 Boeing (douglas) MD-80 M80 MD81
Airbus A318/319/320/321 32S A318 Boeing (douglas) MD-81 M81 MD81
Airbus A319 319 A319 Boeing (douglas) MD-82 M82 MD82
Airbus A320 320 A320 Boeing (douglas) MD-83 M83 MD83
Airbus A321 321 A321 Boeing (douglas) MD-87 M87 MD87
Airbus A330 330 A330 Boeing (douglas) MD-88 M88 MD88
Airbus A330-200 332 A332 Boeing (douglas) MD-90 M90 MD90
Airbus A330-200 Freighter 33X A332 Boeing 717-200 717 B712
Airbus A330-300 333 A333 Boeing 727 (Freighter) 72F B721
Airbus A340 340 A340 Boeing 727 Advanced all Series (Pax) 72S B721
Airbus A340-200 342 A342 Boeing 727-200 722 B722
Airbus A340-300 343 A343 Boeing 727-200 Advanced 72A B722
Airbus A340-500 345 A345 Boeing 737 (Freighter) 73F B732
Airbus A340-600 346 A346 Boeing 737 Advanced all Series 73S B732
ATR 42-500 AT5 AT45 Boeing 737 Passenger 737 B732
ATR 72 AT7 AT72 Boeing 737-200 (Mixed Configuration) 73M B732
ATR42/ATR72 ATR AT43 Boeing 737-200/200C/200QC (Pax) 732 B732
Avro RJ100 AR1 RJ1H Boeing 737-200/200C Advanced (Pax) 73A B732
Avro RJ70 AR7 RJ70 Boeing 737-300 (Freighter) 73Y B733
Avro RJ70/rj85/rj100 ARJ RJ70 Boeing 737-300 (winglets) Passenger 73C B733
Avro RJ85 AR8 RJ85 Boeing 737-300 Passenger 733 B733
BAe (BAC/ROMBAC) 1–11 500 B15 BA11 Boeing 737-400 Passenger 734 B734
BAe (BAC) 1-11 B11 BA11 Boeing 737-500 Passenger 735 B735
BAe 146 Passenger 146 B461 Boeing 737-600 Passenger 736 B736
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BAe 146-100 141 B461 Boeing 737-700 (winglets) Passenger 73W B737
BAe 146–200 Passenger 142 B462 Boeing 737-700 Passenger 73G B737
Boeing 737–800 (winglets) Passenger 73H B738 Embraer 120 Brasilia EM2 E120
Boeing 737–800 Passenger 738 B738 Embraer 170 E70 E170
Boeing 747 (Freighter) 74F B741 Embraer 170/195 EMJ E170
Boeing 747 all Series (Mixed Conf) 74M B74D Embraer 175 E75 E170
Boeing 747 all Series (Passenger) 747 B74D Embraer 190 E90 E190
Boeing 747-200 (Freighter) 74X B742 Embraer 195 E95 E190
Boeing 747–200B/200C (Passenger) 742 B742 Embraer RJ 135/140/145 ERJ E135
Boeing 747-300/747-100/200 Sud (Pax) 743 B741 Embraer RJ135 ER3 E135
Boeing 747-400 (Mixed Configuration) 74E B744 Embraer RJ145 ER4 E145
Boeing 747-400 (Passenger) 744 B744 Embraer RJ145 EM4 E145
Boeing 747–400F (Freighter) 74Y B744 Fairchild Dornier 328-100 D38 J328
Boeing 757 (Passenger) 757 B752 Fairchild Dornier 328jet FRJ J328
Boeing 757-200 (winglets) Passenger 75W B752 Fairchild Metroliner SWM SW4
Boeing 757–200 Passenger 752 B752 Fokker 100 100 F28
Boeing 757–200&#x202F;PF (Freighter) 75F B752 Fokker 50 F50 F50
Boeing 767 Freighter 76F B762 Fokker 70 F70 F70
Boeing 767 Passenger 767 B762 Fokker F27 Friendship/Fairchild F27 F27 F27
Boeing 767–200 Passenger 762 B762 Fokker F28 Fellowship all Series F28 F28
Boeing 767–300 Passenger 763 B763 Ilyushin IL-86 ILW IL86
Boeing 767–400 Passenger 764 B764 Ilyushin IL-96-300 IL9 IL96
Boeing 777 Passenger 777 B772 McD-Douglas DC10 all Series (Pax) D10 DC10
Boeing 777–200 Passenger 772 B772 McD-Douglas DC9 10/20 Series DC9 DC91
Boeing 777–300 Passenger 773 B773 McD-Douglas DC9 30/40/50 D9S DC93
Boeing 777–300&#x202F;ER Passenger 77W B773 McD-Douglas DC9-20 D92 DC92
Canadair Regional Jet CRJ CRJ1 McD-Douglas DC9-30 (Passenger) D93 DC93
Canadair Regional Jet 100 CR1 CRJ1 McD-Douglas DC9-40 D94 DC93
Canadair Regional Jet 200 CR2 CRJ2 McD-Douglas DC9-50 D95 DC95
Canadair Regional Jet 700 CR7 CRJ7 Saab 2000 S20 SB20
Canadair Regional Jet 900 CR9 CRJ9 Saab 340 SF3 SF34
De Havilland DHC-8 Dash 8 DH8 DH8A Tupolev TU134 TU3 T134
De Havilland DHC-8 Dash 8–400 Dash 8q DH4 DH8D Tupolev TU154 TU5 T154
De Havilland DHC-8-300 Dash 8/8q DH3 DH8C Yakovlev Yak-40 YK4 YK40

Appendix II. List of LCC by ICAO Definition

This is an extraction of LCC present in Lombardy in the observation period from the original document published by ICAO on their web site
http://www.icao.int/sustainability/Documents/LCC-List.pdf.

Name of LCC IATA Code Registered in Lombardy

Air Arabia Maroc 3O 2010
Air Europe PE 1999
Atlas Blue 8A 2007
Belle Air Europe L9 2011
Belle Air LZ 2007
Blue Air OB 2008
Blue Panorama BV 2011
Blue1 KF 2008
BMIBaby WW 2003
Buzz UK1 2001
Centralwings CO 2006
Clickair XG 2008
Condor Flugdienst DE 2000
easyJet U2 2004
Flybe BE 2008
Germanwings 4U 2003
GO GO 1999
ItAli Airlines 9X 2007
Jet2.com LS 2004
Jet4you 8J 2008
MyAir 8I 2006
Niki HG 2009
Norwegian Air Shuttle DY 2011
Ocean Air VC 2006
Ocean Air 7VC 2006
Pegasus Airlines H9 2011
Ryanair FR 2001
Sky Europe Airlines NE 2003
SkyEurope Hungary 5P 2004
Sterling NB 2003
Transavia.com HV 2002
TUIFly X3 2008
Virgin Express BQ 1997
Virgin Express TV 1997
Vueling VY 2005
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Wind Jet IV 2004
Wizz Air W6 2005
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Econometric Approach to Reveal Determinants of Air Cargo Volume of European Countries 
 

Abstract 
 
GDP has long been used as an indicator of air cargo level as they both reflect international 
trading activity from different angles. This was true and proofed when international trading 
was mainly composed by manufacturing outcome. However, in the era of new economy, 
characterized by just in time manufacturing and express e-commerce, while GDP is 
weighting more on service industries, the indicator of air cargo should be verified. This paper 
explores alternative economic measurements of a country, which may be possibly related to 
its air cargo volume. Data of European countries from 2007 to 2015 are collected. After 
testing some hypothesis with a set of econometric model, we found that a country’s income 
level, online purchase activity and air cargo connectivity are all positive determinants of its 
air cargo level. We also draw some policy implications in the conclusion according to the 
findings and our understanding of transport and economics.  
 
 
 

1. Introduction 

 

Transport, as a channel to move people and goods, is vital to an economy (Brugnoli et al. 

2018). In 2016, air transport supported 12.2 million jobs and $823 billion in European 

economic activity, which are expected to grow at 3.4% per year (ATAG1, 2018).  In the era 

of e-commerce and just-in-time manufacturing, high value international trading and global 

manufacturing were possibly initiated and developed wherever markets can be easily 

connected frequently and quickly. The benefit for air transportation to tourist flow is well-

studied, given the determinants of air passengers’ movement and its effect on the local 

economies; little is still instead known about the factors affecting air cargo activities, i.e., the 

volume of goods that are shipped by air transport.   

 

Air cargo revenue to an airport can be great enough to sustain a city. Memphis in the US is 

among the most extreme cases, having over 4 billion pounds of cargo enplaned in 2004 

resulting in $10 billion of associated revenue2. The economic value of air cargo was not fully 

investigated despite of ICAO (2015) stressing that “air cargo services are a tremendous 

enabler for economic progress in developing countries…”3. Only 38% cost-benefit analysis 

																																																								
1 Air Transport Action Group publish biennale report highlighting the industry outlook. 
2 Sparks Bureau of Business and Economic Research (2005) measured the benefits resulted from aviation 
related activities at Memphis International Airport.  
3 ICAO, International Civil Aviation Organization, highlighted the benefit to employment and economic growth 
by trading of electrical components, perishable products (food and flowers). 
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of airport, summarized by TRB4 (2009), quantified cargo benefit, the rest regarded such 

benefit hard-to-quantify or side-product of passenger transport.  

 

Comparing to measureable benefit generated by tourist, air cargo’s contribution was not 

properly captured perhaps due to its complex nature and less obvious relationship with other 

activities in the aviation business. Firstly, the beneficiaries may not be restricted to airlines, 

airport or forwarder, but also manufacturers demanding reliable transport or consumers 

enjoying the express services. Evidence of economic benefit of air cargo was shown in CBA 

of Rock County Airport by Wisconsin DOT (2000)5, where the potential losses of 

surrounding business during supply chain interruption is considered. Secondly, air freight has 

low volume share among all mode of freight transport. However, the value of goods transport 

by air is significantly important, especially to today’s new economies. Button (2000) proofed 

the impact on new economy employment of international air service. These are values 

beyond the yield of airports, carriers or integrators. Feng et al. (2015) summarized the main 

differences between air cargo and air passenger business as uncertainty (changing in booking 

or reservation in cargo business is very common), complexity (capacity forecast consists of 

parameter such as pivot weight, pivot volume, and center of gravity) and flexibility (air cargo 

can be transshipped more than one stop as long as it meets the delivery time). These could 

explain the challenge in capturing the practical reality of air cargo business.  

 

In 2014, as shown by Shepherd et al. (2016), 50 million tons of freight were carried by air 

accounting only for 1% by volume but 35% of values of world traded goods. There is a very 

wide range of goods favorable to air cargo, from fresh seafood and flowers to high value 

electronics and hazard chemicals. Therefore, there are specific handling requirement and thus 

specific players in the field. The boundaries between different category of service providers 

is blurring when integration and cooperation becoming more common, some extreme cases 

are express air cargo carrier providing extra door to door service in partnership or Amazon’s 

prime air in turn providing air cargo service when there is extra capacity from their core 

business. 

																																																								
4 Transportation Research Board, a division of the National Research Council of the United States. 
5 The airport analyse the constrained runway impact on cargo activity. The expansion was finally approved 
when economic efficiency of cargo was considered on top of transportation cost saving. It shows that potential 
economic efficiency of cargo accounts for 40 million USD of labour costs and revenue losses due to production 
slowdown. Potential job losses are also highlighted when production shutdown, shifting 23,000 workplaces to 
other regions or countries.  
 



	 3	

 

This paper is aiming at finding out some determinants of air cargo traffic at the country level, 

and at drawing some policy implications to airport or airline managers and governments, 

when a strategy will be needed to boost air cargo traffic, or where will be the right place to 

exploit air cargo traffic opportunities. We try to address these issues by building a data set 

regarding European countries (EU28 + Switzerland + Iceland) during the period of 2007-15 

and by designing a set of econometric model where possible determinants of air cargo levels 

are investigated. We used different econometric methods to verify the robustness of the 

model. We focus on some determinants that may explain the cargo levels in European 

countries, e.g., the e-commerce activity, the country’s air cargo connectivity and the 

country’s income. 

 

We show that, one percentage point growth in country wage leads to 0.5% or 0.8% growth in 

air cargo level, while one percentage point increase in online purchase activity of a country 

will impact positively 2% of air cargo level and lastly one additional route partner city may 

generate 1.3% increase in cargo level, such impact may vary depends on which continent this 

additional partner city is located. Hence, while the income effect confirms that air cargo is 

determined by economic levels, we provide some new evidences that e-commerce is one 

important driver of air cargo volumes. This has some interesting policy implications: for 

instance, e-commerce taxation may generate a decrease6 in cargo air transportation services 

with secondary effects on local employment and growth. On the contrary, the diffusion of 

fast broadband connections though investments in the country infrastructure may boost 

aviation activities at the local level through a secondary effect of e-commerce. 

 

The remainder of this paper is structured as follows: in Section 2 we summarize the outlook 

of air cargo industry in Europe, in Section 3 we discuss the literature review, in Section 4 we 

develop the econometric model, in Section 5 we present the data and some descriptive 

statistics, while in Section 6 we show our empirical evidence. Section 7 concludes the paper 

and draws some policy implications.  

 

																																																								
6 Burcu Kuzucu Yapar et al. (2015) discussed the impact of taxation on e-commerce in the absent of physical 
appearance and cross border trading among different business, consumer and government.	
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2. Air Cargo Industry in Europe 

 

In 2015, according to Boeing’s World Air Cargo Forecast 2016-2017, markets’ performance 

varies across regions. Below we highlight those numbers involving Europe. The three 

growing markets are intra-Europe market, Asia-Europe market and Middle East-Europe 

market, having traffic growth of, respectively, 3.9% since 2013, 6.4% since 1995 and 3,6% 

since 2006. Most importantly the Europe-Asia market comprises approximately 20.3% of the 

world’s air cargo traffic in tonne-kilometres and 10.5% in tonnage while the intra-Europe air 

cargo market comprises approximately 3.1% of the world’s air cargo tonnage, and 0.8% of 

the world’s tonne-kilometre. Express traffic averaged 7.6% growth per year during the past 

20 years in Intra-Europe market while documents and small packages averaged 6.2% annual 

growth in daily shipment count in both directions since 2000 in Asia-Europe market. 

Meanwhile trade with Europe represented 37.8% of the Middle East’s international air cargo 

market. 

From the same report of Boeing, weaker performance in other markets involving Europe was 

found. Concerning Europe-North America, although air trade expanded 7.9% in 2014 

and�4.2% in 2015 in the Europe-to-US direction, at 2.95 million tonnes in 2015 (3.0% of the 

world’s air cargo traffic in terms of tonne-kilometres and 1.8% in trade tonnage) the market 

was 10.6% smaller than its peak of 3.30 million tonnes in 2007. Market growth was not 

steady, for example 4.5% in 2014 and 1.8% in 2015. In the Latin America–Europe market, 

which represents approximately 3.0% of the world’s air cargo traffic in terms of tonne-

kilometres and 1.8% in trade tonnage, air cargo growth slowed from 2.8% in 2014 to 0.6% in 

2015. While in the Africa-Europe market, with the global economic downturn in 2008, Africa 

air exports to Europe continuously declined until 2013 while finally rebounded, to more than 

503,000 tonnes in both 2014 and 2015. 

In the industry, there are several categories of carrier providing air cargo service, namely 

passenger airlines, combination carriers, integrators and all-cargo airlines. The first use belly 

space of passenger flights, the second may carry air freight, express packages, and mail in the 

belly space of passenger aircraft or operate dedicated freight aircraft (Li et al., 2012). 

Integrators use air freighters while setting up distribution centres and ground fleet to provide 

express door-to-door service while all-cargo airlines fly between airports, being responsive to 

the demand and collaborating with freight forwarders. 
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Belly space capacity is increasing as air passenger demand grows globally, especially middle-

east hub carriers are expanding cargo capacity by using new aircraft with extra belly capacity, 

highlighted by Merkert & Ploix (2014). Pointed out by Kupfer et al. (2017), the relatively 

low price tag offered by belly operators resulted from its flexible cost allocation strategy 

make the air cargo business more competitive, leading to bankruptcies and capacity 

reductions in the all-cargo segment. Some combination carriers re-position their strategy. For 

example, Air France-KLM, Singapore Airlines and EVA Air reduce full freighter operations 

while switching to belly operations. According to IATA statistics, the share of all-cargo and 

combi traffic (in FTKs) is 50-50 from 2009 to 2014. Combi aircrafts, allowing changing set 

configuration and cargo compartment are also used by combination airlines to guarantee 

profitability of low or fluctuating passenger demand route. Integrators, such as UPS, FedEx 

(who acquired TNT in April 2015) and DHL are expanding by developing cargo hubs in 

European airports such as Paris Charles de Gaulle, Cologne Bonn and Leipzig Halle 

(Malighetti et al., 2018). Secondary hub of these integrators are spread across Europe, for 

example Milan Malpensa and London Stansted. They not only sell capacity to shippers but 

also sell excess capacity to freight forwarders (Feng et al., 2015). Cooperation between 

integrators and traditional airlines is not rare. At some airports, integrators are among the 

main customers of traditional airlines and vice versa (Kupfer et al., 2010). Beside the carriers, 

there are also other actors competing or enjoying the growing air cargo volume. They are 

forwarders, terminal operating companies, hinterland transport companies, custom brokers 

and cargo handlers who flourished around the area of cargo airports. 
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With data collected from Eurostat, we considered cargo level as freight and mail loaded and 

unloaded, representing the sum of cargo volume imported and exported by a country (instead 

of freight and mail on board which will double count transit volume). The following graph 

(figure 1) depicts cargo level of the top 9 countries, which account for 90% of total Europe 

cargo volume. All of these countries experienced a sudden drop in 2009 due to the global 

financial crisis hindering international trading. Then cargo volume picked up gradually 

afterward, highlighted by France’s exceptional expansion in 2014.  

A possible determinant of cargo activities is country income. Using data from Eurostat, it is 

possible to compare air cargo level with GDP. In figure 2, we show that cargo level’s trend is 

generally increasing except the sudden drop in 2019 resulted by the global financial crisis. 

The air cargo’s crest and trough seems to be driven by GDP. While in figure 3, this 

relationship is better illustrated in quarter on quarter growth from data until 2010. However, 

the magnitude of air cargo’s growth is apparently more volatile than that of GDP. While the 

fact that we do not see growth of air cargo driven by growth of GPD in 2011 and the 

irregularity of 2014 suggest that there may be other determinants to be discovered. In fact, 

Kupfer et al. (2011) concluded that merchandise exports seem to be a better indicator to 

relate economic activity to air freight. 
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3. Literature review 

 

There are two streams of research papers of various scopes related to our contribution: firstly, 

econometric analysis and secondly, operation research. Economic analysis aims at find out 

relationship of economic indicators with air cargo attributes. The first empirical attempt was 

made by Kasarda & Green (2005) to investigate air cargo’s relationship with other economic 

indicators. After indicating the predicting power (or correlation) of air cargo volume to GDP, 

they moved on the impact of liberalization, FDI, customs and corruption. Chang & Chang 

(2009) conduct a causality test of air cargo volume and GDP in Taiwan’s data from 1974 to 

2006, claiming that air cargo expansion plays a crucial role in promoting economic growth in 

Taiwan in a long run. Most recently, Button & Yuan (2012) found evidence of airfreight 

volume Granger causing growth in employment and income.  

 

Other scholars tried to model the demand of air freight in global, country or airport level. By 

applying a model of global air cargo demand by merchandise trade, share of manufacturing in 

trade, air yield and oil price, Kupfer et al. (2017) attempted to to predict the future 

development of global air fright levels in the future base on 2010-13 growth. Lakew & Tok 

(2015) study socioeconomic determinants of air cargo traffic in California by a 7-year panel 

data (2003-2009) of quarterly employment, wage, population, and traffic data. They show 

that the concentrations of service and manufacturing employment as well as wages play a 

significant role in determining air cargo movement. Hwang & Shiao (2011) develop a gravity 

model of air cargo flows observing Taiwan Taoyuan International Airport. The model is 

developed based on the panel data of air cargo services on scheduled routes at during the 

years 2004–2007. The results indicate that population, air freight rate and three dummy 

variables, including the regional economic bloc of the ‘‘Chinese Circle” (an informal 

partnership between Hong Kong, Macao, Taiwan and mainland China), the Open Sky 

Agreements and long established colonial links, are key determinants of international air 

cargo flows from/to Taiwan. 

 

The other stream of operation research aim at the behaviour of players and the possible 

optimal solution. For example, fleet routing (e.g. Doan & Ukkusuri, 2015), flight scheduling 

(e.g. Yan & Chen, 2008). Some researches focus on airport, Kupfer et al. (2016) conducted 

interviews and set up discrete choice model to understand the airline mangers’ choice on 

airport for cargo business while Nobert & Roy (1998), Ou et al. (2010) studies the impact of 
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manpower and truck scheduling in terminal operation, specifically Merkert & Ploix (2014) 

investigated the importance of belly-hold freight. Boonekamp & Guillaume (2017) rank 

airports by capturing all possible air freight connections by connectivity model base on 

distance, time and frequency of operations while Mayer R. (2016) tried to categorize airports 

by cluster analysis using the share of air cargo activity in different dimensions. There are also 

literature investigating the revenue of carriers, for example Kasilingam (1997), Chao & Li 

(2017), Lin et al. (2017). Additionally, Yuen et al. (2017) discussed about gateway and 

hinterland airport. They suggest that there is potential competition and also cooperation 

among airports considering the Pearl River Delta region in China. 

Contributions in both research streams have not explored yet the possible effect of some 

variables on cargo activity, such as the impact of e-commerce. Hence, our paper is a first 

attempt trying to fill this gap. 

4. Empirical Strategy 

 

As mentioned in the introduction, this paper is aiming at finding out the determinants of air 

cargo traffic at the country level, and aiming at drawing some policy implications. We define 

research questions to achieve such goal. Firstly, we consider determinants that may reflect 

consumption ability. Income level of a country may enhance the purchasing power and the 

total demand. Higher income of a country, which favor the fast but costly shipment reflected 

by air cargo level, may explain the relationship between white collar employment and 

demand of air cargo services. Hence, the following is our first research hypothesis. 

 

RH1: The income of a country may be a positive determinant of air cargo level 

 

Secondly, a strong growing element of air cargo industry is the express parcel carried as a 

result of booming e-commerce. Integrator will be more willing to invest in a country where 

local consumers are adapting such consumption mode quicker. Such purchasing pattern can 

be reflected by the percentage of population once purchased online in a country: for this 

reason, we investigate the following research hypothesis. 

 

RH2: Online purchase activity may be a positive determinant of air cargo level. 
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Thirdly, we consider the aviation industry by air cargo transport connectivity of a country to 

the rest of the world. When a country is well connected by air, having more routes and 

reaching more cities in different continents, such country will be more attractive to carrier as 

it has higher strategic value to the penetration and responsiveness of the network. 

Consequently, we have our third research hypothesis, shown below. 

 

RH3: The connectivity of a country may be a positive determinant of air cargo level 

 

Such connectivity index is represented in two scenarios, firstly the aggregated index towards 

the rest of the world and secondly the disaggregated one by continents. We will investigate 

these research questions by developing a proper econometric model and by building a data 

set that allows us to consider variations in country cargo activities and characteristics, and, in 

turn, to draw some consistent estimates. Below, we show how the data set is generated. 

 

4.1   Data mining 

 

In the following paragraphs, we describe how the data is collected and how variables are 

constructed for 30 European countries (EU28 + Switzerland + Iceland) from 2007 to 2015 

(36 quarters). Air cargo level is defined as air cargo volume (in tons) loaded and unloaded, 

representing the sum of cargo volume imported and exported by a country. This value is 

chosen instead of freight and mail on board because the later will double count transit 

volume. Quarterly data in country level is obtained from Eurostat. From the national account 

of same statistics body, we employed the quarterly income level of measured countries in 

2010 Euro value. Furthermore, e-commerce statistics is available in Eurostat, where we can 

find percentage of internet users who bought or ordered goods or services for private use in 

the previous 12 months. Figure 7 shows the strong growth in online shopping activity across 

Euroepan countries. 
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fig. 7 – Percentage of online shopper by country (percentage point in year 2008 and year 2015) 

 

Connectivity is computed from database of OAG, which contain details of all routes in city-

pairs level. We first screen all routes involving European countries with cargo volume 

recorded. Then aggregate the observed European country’s partner cities by continents. So 

that we have the quarterly count of connected cities in a continent, which is having cargo 

flow with the observed country. Repeating the same for each observed European country, we 

then have a matrix of air cargo origin/destination in each continent for each quarter. We 

present below, by country, the average yearly cargo level (fig. 8) and the average quarterly 

connectivity (fig. 9). 

 

 
fig. 8 – Average yearly cargo level 2007 – 2015 (million ton) 
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fig. 9 – Average quarterly connectivity 2007 - 2015 (O-D count) 

 

 
4.2   Econometric model 

 

Series of econometric models are constructed. These different econometric methods will be 

helpful to verify the robustness of the design. The first method employed is pooled OLS 

regression treating all data points, no matter of which country or of which year/quarter, in an 

unbiased manner. Meaning that there is no consideration of clustering any data point in the 

sample. The second method is panel data regression, deliberately taking into account the 

unobserved characteristics of a country and regard the data points in clusters according to the 

grouping, i.e. in our case the 30 European countries.  

 

The econometric model is based on three equations and the two methods mentioned above, 

pooled OLS and panel data regression. In both cases, we use the robust estimator of variance-

covariance matrix. Year and quarter are controlled in pooled OLS model while only year is 

controlled in panel data regression as the cluster is defined by country-quarter. We test RH1 

and RH2 in the following the equation (1):  

 
!"#$%&'(,* = 	- + /0×!"2345(,* + /6×758'"!9"5(,* + :(,*    (1) 

 

where lnCARGO is the logarithm of volume of air freight loaded and unloaded from country i 

at quarter t,  lnWAGE is the logarithm value of total wage of country i at quarter t, and 
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perOnline is the percentage of individual of country i making online purchase in the last 12 

months, yearly data is duplicated in the quarterly format.   

 

Then there is a second set of equations to test RH1, RH2 and RH3. Moreover, there are two 

specifications regarding connectivity. The first one includes a direct variable of general 

connectivity, that becomes equation (2). CONN is the count of partner cities among all routes 

of an observed country i in quarter t. Afterward, to further test the connectivity between 

observed countries and cities in different continents, namely Africa (AF), Asia (AS), Latin 

America (LA), Middle East (ME), North America (NA) and Europe (EU), we have the 

following extended equation (3). 

 
!"#$%&'(,* = 	- + /0×!"2345(,* + /6×758'"!9"5(,* + /;×#'<<(,* + :(,*   (2) 

 

!"#$%&'(,* = 	- + /0×!"2345(,* + /6×758'"!9"5(,* 
																												+		=0×$>(,* + =6×$?(,* + =;×@$(,* + =A×BC(,* + =D×<$(,* + 	=D×CE(,* + 	:(,*   (3) 

 

For the second method of setting up a panel data, Hausman test confirms that fixed effect 

model is appropriated by rejecting the unique errors (:(,*) are correlated with the regressors. 

The additional equations with variable in fixed effect panel date, -( (n=1….30) the unknown 

intercept for each country, are not reported for the reason of simplicity. For the same reason 

the control variables of time are not shown in above equations.  

 

Equations (1)-(3) present possible endogeneity problems, concentrated in the possible 

inverted causal relation between wage (the proxy for income) and cargo activity. In order to 

control for possible endogeneity we use a lagged variable for wage as instrument (presented 

as equation 2bis in the section 6). In this way we can check whether the previous year wage 

level in a specific country can determine the activity in air cargo in the current year. This 

should be enough to eliminate possible distortions arising from endogeneity. 
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5. Data 

 

We observe 30 European countries (EU28 + Switzerland + Iceland) quarterly from 2007 to 

2015 (36 quarters). Other than pool OLS model, unbalance panels are also set up. We have 

from all countries 1071 observation of air cargo level, per country ranges from 32 to 36 

(mean 35.7). In total 9 data points are missing. 8 data points missing in 2007, when Croatia 

and Sweden were not reporting in that year. Another data point is missing from Norway 

2008Q2. Furthermore, since e-commerce data of Switzerland is incomplete, leading to 

another 30 data point loss.  

 

While log value is used in the model for some variables such as cargo level and wage, we 

report integer value in the following tables for cargo level and wage. Online purchase is 

percentage point in the following tables while multiplied by 100 to form integer from 0 to 

100 in regression. For connectivity, both integer count is used in below table as well as 

regression.  

 

The first table shows the descriptive statistics of the data set. Cargo levels range from 141 

tons to 1,15 million tons with mean 0,124 million ton. Quarterly wages of observed countries 

vary from 497 million Euro to 385 billion Euro with mean 46 billion Euro. Online purchase 

user of European countries spread from 2% to 75% with mean 28.8%, of its population. 

Lastly, connectivity is lowest at 0 and highest at 180 per quarter per country, having a mean 

of 18.82 O-D (country-city) count.   

 

Variable Obs. Mean S.D. Min Max Unit of 
measure 

Cargo 1071 123992.5 221703.5 141 1145621 Tonne 

Wage 1072 46449.83 72206.28 497.45 385140 Million Euro 
(in 2010 value) 

PerOnline 1040 28.60 18.82 2 75 Percentage 
Connectivity 1072 18.82 47.15 0 180 O-D count 

Table 1 - Descriptive statistics of econometric model variables 
 

The second table report the correlation of each variable in the data set. Cargo, wage and 

connectivity exhibit greater than 0.9 correlation, while Online purchase percentage has lesser 

than 0.5 correlation with all of the others. 
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Variable Cargo Wage PerOnline Connectivity 

Cargo 1.0000    
Wage 0.9107 1.0000   

PerOnline 0.4895 0.4477 1.0000  
Connectivity 0.9085 0.9447 0.4211 1.0000 

Table 2 – Correlation table 
 

6. Results 

 

In this following section, we present the result of the empirical strategy. First, we show 

results related to equation (1) with the first model, pooled OLS regression, on the left: and 

with the second model, panel data regression, on the right. In these models we use cargo level 

as explained variable while log value of wage and percentage point of online purchase user as 

explaining variables. Quarter and year are controlled in OLS while year is controlled in panel 

data as quarterly panel is established. Then it follows the result from equation (2) having the 

additional variable connectivity. And lastly the result from equation (3) is presented when 

connectivity is broken down in continent level. 

 

Different from the above descriptive statistics presentation, log value is used in the model for 

some variables. They are cargo level and wage as their integer value is much greater than the 

other variables’. Thus log transformation will be considered, in any applicable case, when we 

discuss the results. From the pooled OLS regressions, we see strong significance in the 

variables that we are interested in. However, in panel data fixed effect regressions, those 

significance does not hold except wage. The strong fixed effect (or unobservable variable of 

each country) diminishes the explanatory power of the variables in such method. We tried 

running the estimation with only data from a quarter but the significance does not improve to 

a significant level. P-value is reported with * sigh according to its magnitude while t-ratio is 

reported in brackets under each coefficient.  
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 Dep. Variable: lnCargo Dep. Variable: lnCargo 
 Model 1 – pooled OLS regression Model 2 – panel data regression 

Variables Eq (1) Eq (2) Eq (2bis) Eq (3) Eq (1) Eq (2) Eq (2bis) Eq (3) 

Constant 88.8 67.2 97.8 80.4 -89.6 -87.5 -63.7 -89.4 
(2.64) (2.18) (3.82) (2.39) (-1.58) (-1.55) (-3.56) (-1.721) 

lnWage 0.858*** 0.508*** 0.530*** 0.511*** 0.688* 0.675* 0.678*** 0.673* 
(37.4) (19.6) (17.6) (19.5) (2.10) (2.08) (7.36) (2.11) 

PerOnline 0.0212*** 0.0193*** 0.0213*** 0.0217*** -0.00926 -0.00910 -0.00779 -0.00924 
(7.96) (7.86) (12.1) (6.56) (-0.92) (-0.91) (-2.37) (-1.00) 

Conn  0.0129*** 0.0118***   0.00234 0.00562  
 (17.6) (14.1)   (0.77) (3.07)  

AF    0.0339***    -0.00202 

   (8.81)    (-0.20) 

AS    0.0125*    -0.00589 

   (2.47)    (-0.27) 

LA    0.0118*    (omitted) 
   (2.25)    

ME    0.0106*    0.00967 

   (2.47)    (1.81) 

NA    -0.0111    -0.00451 

   (-1.25)    (-0.49) 

EU    (omitted)    0.0047 

      (0.42) 
R2 0.715 0.767 0.799 0.775 0.632 0.663 0.718 0.623 

legend: * p<.05; ** p<.01; *** p<.001 
Table 3 – Econometric evidence 

 
 
Wage is always significant in both methods of all equations, proofing the RH1, that the 

income of European countries is a positive determinant of air cargo level. The higher the 

income, or the more paid the workforce implying a higher percentage of white-collar, the 

more possible air cargo level will expand. 1 percentage point growth in wage leads to 0.86% 

or 0.69% growth in air cargo level according to pooled OLS model and panel data model 

respectively.  

 

Then when we focus only on pooled OLS regressions, we can draw also the following results. 

Online purchase percentage is positively impacting air cargo level. So we proofed RH2, 

Online purchase may be a positive determinant of air cargo level. One percentage point 

increase in online purchase activity of a country will impact positively 2% of air cargo level, 

which is hold in all three equations.  
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There are two indexes about connectivity, the first one includes numbers of city connected in 

one variable while the second one disaggregates these cities with respect to their continents. 

In general, one additional partner city may generate 1.3% increase in cargo level (result from 

equation 2 in pooled OLS regression), in particular, additional destination in Africa will lead 

to above average marginal effect of cargo level (result from equation 3 in pooled OLS 

regression), while that of Asia, Latin America, Middle East will bring below average positive 

marginal impact. Lastly, North America partner city count is not significant in this model. 

We proofed RH3, the connectivity of a country may be a positive determinant of air cargo 

level while we also provide insight of such effect given by additional route partner may vary 

across different continents. 

 

Since there is an inverted casual relationship between the level of cargo activities and the 

income (wage) at the country level, we control for this possible endogeneity by introducing a 

1-year lag variable of wage as instrumental variable. The results are shown in Table 4, 

regarding equation (2). It is evident that using the instrument and controlling for possible 

endogeneity does not change the results. P-value is reported with * sigh according to its 

magnitude while t-ratio is reported in brackets under each coefficient. 

 Model 1 –  
pooled OLS regression 

Model 2 –  
panel data regression 

Variables Eq (2bis) Eq (2bis) 

Constant 
97.8 -63.7 

(3.82) (-3.56) 

lnWaget-1 
0.530*** 0.678*** 

(17.6) (7.36) 

PerOnline 
0.0213*** -0.00779 

(12.1) (-2.37) 

Conn 
0.0118*** 0.00562 

(14.1) (3.07) 
R2 0.799 0.718 

legend: * p<.05; ** p<.01; *** p<.001 
Table 4 – Result of introducing 1-year lag variable of wage as instrumental variable 

We did also a check for multicollinearity by variance inflation factor of variables in the eq 

(2). Seen from table 5, we have the all VIF values of single variable and the mean VIF far 

lower than 10. None of them should be considered as a linear combination of other 

independent variables. 
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Variable VIF 1/VIF 

lnWAGE 3.01 0.332629 

CONN 2.76 0.362468 

perONLINE 1.31 0.760867 

Mean VIF 2.36  
Table 5 - Variance inflation factor of variables in the eg (2) 

 

To Sum up, the design of this model reveal some determinants of air cargo level among the 

European countries and during the period that we are observing. We also justify the 

hypotheses by applying the data set of European countries from 2007 to 2015 through this 

model. We show evidences that income, e-commerce activity and connectivity are positive 

determinants of air cargo level. Income estimated elasticity varies between +0.5% and 

+0.8%, while a +1% in the share of e-commerce gives rise to a +2% increase in cargo 

activity. Last a +1 route in country connectivity yields a +1.3% in cargo activity.  

 

7. Conclusion 

 

We would like to draw some policy implication and future research opportunity in below 

conclusion based on the above findings. First of all, the stimulation of online purchase, which 

principally relay on express shipment in the era of e-commerce, generates new demand of air 

cargo. This revolution mode of consumption reduces the commercial feasibility of traditional 

brick and mortar retail model which requires warehousing and extensive road transportation 

of goods. This may eventually reduce the demand and pollution from trucking. However, 

there may be trade off given by additional air freight traffic which will require a total analysis 

of possible scenarios.  

 

Besides, we provide new evidence that e-commerce is one important driver of air cargo 

volumes. A possible e-commerce taxation will hinder e-commerce development and limit the 

growth of air cargo transportation services with secondary effects on local employment and 

growth. Meanwhile, the diffusion of fast broadband connections enabling online users in 

every aspect of their life, though investments in the country infrastructure may boost also 

aviation activities at the local level as a secondary effect of e-commerce. 
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Furthermore, liberalization in air transport enhance the flexibility of network, lowering the 

barrier of carriers to reach out new destinations. The connectivity improvement will again 

contribute to the supply of capacity and lowering the cost. Such relationship was seen in 

passenger flow. In this research we highlight the importance of connectivity to air cargo level 

while a deeper understand of such dynamic and a complete data base of more detailed O-D 

information will better define also the relationship of air cargo volume and liberalization.  

 

Moreover, the result of this study can be useful to governors who may want to compete air 

cargo traffic share by facilitating e-commerce convenience and popularity, and to airline 

managers who may want to spot new cargo hub regarding the country’s income level. 

Concerning connectivity, we also hinted the different degree of impact given by additional 

route partner city in different continents. It will be very interesting to investigate also the type 

of good which is transported between these countries to better illustrate the dynamic of air 

cargo transportation and the interdependence among economies. This may also eventually 

guide airline managers to build up a long term strategy for the air cargo network.  

 

Last but not least, we would like to highlight the limitation and potential improvements of 

this paper. Income is the strongest indicator among the variables in the model while the rest 

of them are less significant in panel data. We agreed that there could be correlation or 

unobservable variable issues. A more elaborated data set may possible solve the issue when 

data about manufacturing goods movement by air, e-commerce trading path, air cargo 

movement by carrier category and route would be available. However, these are all privately 

ran business, therefore publication of such data is not strictly required by governments. To 

tackle unobserved variable in country level, future researches may move toward catchment 

area of air cargo airports, manufacturing activity, integrator presence or 

cooperation/competition with neighboring countries.  
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