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Abstract The performance of indoor positioning techniques
that use radio-frequency (RF) signals is usually degraded in
non-line-of-sight (NLOS) environments. In this paper, we
propose a technique for estimating NLOS biases and mea-
surement noise in distances under multidimensional scaling
(MDS) based positioning with fixed nodes. An ideal matrix
of pairwise distance measurements exhibits a symmetry that
allows to compute mobile node positions from those of fixed
ones, and then recompute exactly the fixed node positions
from the earlier computed mobile node positions. In a NLOS
environment, this symmetry is lost; fixed node positions can
not be reproduced exactly. This work exploits the error in
the recomputation of fixed node positions for the correc-
tion of NLOS biases and noise in the pairwise distances. A
constrained-optimization problem is formulated to estimate
biases for each measured distance and final mobile node po-
sitions under the MDS scheme. A supplementary approach
is presented for special cases where the number of mobile
nodes is less than 3. Experimental results show that position
errors can be reduced by up to 28% for a set up to 4 fixed
and 3 mobile nodes. Simulations are used to further validate
the results for larger deployments of nodes.
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1 Introduction

Under range-based radio positioning, the occurrence of mul-
tipath and attenuation effects caused by obstacles, occlu-
sions or interference in the deployment region of radio po-
sitioning nodes contribute negatively to the performance of
indoor positioning algorithms. A physical object lying be-
tween transmitter and receiver such that there is no clear vi-
sual line of sight between both will cause the transmitted
signal 1) to be attenuated or diffracted if the obstacle is not
completely blocking or 2) to travel a different path leading
to anomalies at the receiving end. This would often cause the
Received Signal Strength (RSS) to be weakened or cause the
Time of Flight (ToF) to take longer, making the estimated
distance to be longer than the actual length; these anoma-
lies are classified in this work as non-line-of-sight (NLOS)
effects. Figure 1 gives a pictorial description of a signal not
having clear line-of-sight between anchor and tag.

Positioning with Multidimensional Scaling (MDS) places
each node in a distance matrix into a 2 or 3 dimensional
space such that the distance information of the derived con-
figuration of nodes matches as closely possible the original
distance matrix. In [6], a formulation in which the notion
of anchors was included directly in the MDS algorithm was
presented. This formulation was further extended in [12] for
deployments where only pairwise distances between fixed
nodes and mobile nodes, and fixed node positions are known,
i.e., the distances between mobile nodes and their positions
are unknown. Examples of such deployments can be found
in scenarios such as:
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Fig. 1: NLOS effects from physical object lying between
anchor and tags, i.e., the two considered nodes. The picture
also shows examples of line-of-sight (LOS) situations.

1. localization schemes that use single/round-trip ToF be-
tween fixed and mobile nodes,

2. localization schemes where mobile nodes read Received
Signal Strength Indication (RSSI) for signal transmis-
sions from fixed nodes or the other way around.

Henceforth we will refer to mobile nodes as tags and fixed
nodes as anchors for the sake of brevity.

The advantage of such deployments with missing tag-
to-tag distances is, firstly, reduced architecture complexity
and time required to collect all the required distance mea-
surements in order to build a matrix (the matrix is sparse)
and secondly, the elimination of potential NLOS biases and
noise which may be present in the pairwise distances be-
tween tags (henceforth called tag within-sets distances). The
latter will later on be shown to be vital for the performance
of our proposed NLOS mitigation scheme.

In this work, we propose an NLOS mitigation technique
under the MDS scheme. MDS has the advantage of being
more scalable than other range-based localization methods
in that all positions are estimated simultaneously. In our case,
tag positions are computed given a matrix of pairwise dis-
tance measurements and known anchor positions. For a ma-
trix of NLOS and noise free pairwise distances, tag posi-
tions can be computed from those of anchors, and the an-
chor positions can be recomputed exactly from those tags
by swapping anchors with tags in the formulation proposed
in [12]. This symmetry in anchor-tag and tag-anchor estima-
tion applies for node deployments with at least 3 tags and
3 anchors, and a matrix of distance measurements free of
NLOS bias and measurement noise. In real life applications,
this is hardly the case, as distances are almost never accu-

rate. Moreover, since the aforementioned symmetry is lost,
tag positions estimated from the skewed matrix do not rep-
resent the exact tag positions. We provide an estimate on
the goodness of this skewed matrix by recomputing anchor
positions from the earlier computed tag positions, and tak-
ing the error with respect to the known anchor positions.
The error in the tentative anchor positions will be propor-
tional to the amount of noise and NLOS bias in the matrix
of distance measurements. We derive this error analytically
and we formulate a constrained optimization problem to find
bias values that yield the least error on tentative anchor po-
sitions. Since the tag within-sets distances are not available,
the support for computation of tentative anchor positions is
provided only by anchor-tag pairwise distances (henceforth
called between-sets distances), therefore making the error a
better reflection of between-sets NLOS biases and noise.

We verify the accuracy improvements of the proposed
approach by experiments which indicate significant reduc-
tions in positioning root-mean-square error (RMSE) by up
to 28% for a setup of 4 anchors and 3 tags. Simulations
are used to further demonstrate accuracy improvements for
deployments involving an area with larger dimensions, and
higher number of anchors and tags.

1.1 Organization of this paper

The remainder of this paper is organized as follows. An
overview of related works is provided in Section 2. Section 3
briefly introduces MDS and a formulation that includes the
notion of anchors in summarized mathematical details. In
section 4, the proposed NLOS removal technique is pre-
sented. Section 5 shows experimental results that demon-
strate the improved positioning accuracy of the proposed
technique while subsection 5.1 shows simulation results for
larger numbers of node deployments. And finally, Section 6
concludes the paper.

2 Related works

The complete removal of NLOS effects and measurement
noise may be impossible due to incomplete knowledge about
the environment and the nature of obstacles. However, the
removal of some amount of NLOS bias and noise from dis-
tance measurements has been investigated under various lo-
calization contexts that use RF. The more common NLOS
mitigation techniques [4,8–11,21,24,25] use the propaga-
tion channel model or channel statistics from historical data
to distinguish between LOS/NLOS signals, in which NLOS
ones are detected by identifying some anomalies in the sig-
nal property with differentiated values for direct and non-
direct paths. Other methods for distinguishing NLOS signals
from LOS ones examine the fitness of the various distance
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measurements under a specified cost function and may em-
ploy a priori probabilities about the distribution of NLOS-
prone nodes in the deployment area. Methods described in [22]
and [23] are applicable to localization algorithms that com-
pute positions on a per tag basis, unlike MDS that com-
putes all positions jointly. The work in [23] presented com-
prehensive approaches where new distances and bias val-
ues are estimated from the original distance measurements
via a minimization problem whose performance can be im-
proved by a priori probabilities. A Sequential Quadratic Pro-
gramming (SQP) based formulation and a Maximum Like-
lihood Estimation (MLE) where both introduced. Bias was
estimated on a per anchor basis with the advantage of re-
ducing the complexity of the minimization problem, and the
disadvantage of penalizing the accuracy of NLOS bias es-
timation. Moreover, the minimization problem was formu-
lated per tag, so that a separate minimization is performed
for each tag, leading to likely scaling issues. In a similar re-
lated work [18], the authors tune the elements of the covari-
ance matrix R of a Biased Extended Kalman Filter (BEKF)
with respect to NLOS identification; matrix elements are in-
creased if NLOS is detected or decreased otherwise. Since
their approach is used alongside trilateration, it also does
not scale well. Furthermore, their approach works consider-
ably better for setups with a few number of NLOS distances
compared to LOS ones. When NLOS measurements are rel-
atively large, a scarcity of LOS measurements may lead to
estimation failure.

This work expands on previous results obtained in [13]
where this constrained-optimization problem for mitigating
NLOS bias and noise under the MDS scheme using recom-
puted anchor positions was first proposed. This work adds
practical experiments in order to validate our earlier claims
in a real life scenario with a setup of nanoLoc [1] transmit-
ters and receivers that use round-trip time of flight (RT-ToF)
for ranging. The experiments present the advantage of test-
ing the proposed method in an uncontrolled environment to
allow a better understanding of the localization performance
gains and possible drawbacks. We improve on the earlier
proposed method by adding a per-distance NLOS bias and
noise estimation using SQP.

3 Node Positioning with Multidimensional Scaling

MDS is a non-linear dimensionality reduction technique for
visually expressing the similarity of objects in a dataset [3].
The dataset is a matrix of pairwise distances between the
objects and MDS places the objects in an embedding with
lower dimensions, usually 2 or 3 for effective visualization
purposes, assigning each object coordinates by which simi-
larities are easy to visualize while the pairwise-distances are
preserved. The original and derived distance matrices can
be used to formulate a cost function. If the cost is a residual

sum of squares, it is called stress, denoted with σ(XXX), where
XXX is the configuration of all node positions. The stress σ(XXX)

is defined by:

σ(XXX) = ∑
i< j≤n

wi j(di j(XXX)−δi j)
2 (1)

wi j =

{
1, if δi j is known
0, if δi j is missing

(2)

where di j(XXX) is the distance matrix for the derived con-
figuration, δi j is the original distance matrix and wi j are
weights that assign importance to individual distance mea-
surements. Alternative weighting schemes can be used as
long as wi j ≥ 0 [3] and typically, the weight matrix WWW is
symmetric and non-negative, and less often hollow.

In order to minimize the stress σ(XXX) in Equation 1, a
procedure called stress majorization is generally applied.
Moreover, since σ(XXX) can be an arbitrarily complicated func-
tion, a convex function τ which bounds σ from above and
touches its surface at a support point ZZZ can be minimized
in place of σ using an iterative procedure called Scaling by
MAjorizing a COmplicated Function (SMACOF) [14]. This
iterative minimization procedure terminates when the stress
value converges, i.e., the difference between values from the
previous and current iteration fall beneath a threshold ε . For-
mally, the convergence is verified by the following condi-
tion:

σ(XXX (k−1))−σ(XXX (k))< ε (3)

where configuration XXX is the parameter that minimizes the
function τ and is given by:

X̂XX = min
XXX

τ(XXX ,ZZZ) =VVV+BBB(XXX)ZZZ (4)

The SMACOF iterative procedure, which has been shown
to monotonically decrease the stress [14,16], can be rewrit-
ten as:

XXX (k) =VVV+BBB(XXX)(k−1)XXX (k−1) (5)

Equation 5 is known as the Guttman transform. The matrix
VVV+ is the Moore-Penrose pseudoinverse of matrix VVV which
is used since VVV is not full-rank, and the matrices VVV and BBB are
matrices with elements vi j and bi j defined by:

vi j =

{
−wi j i 6= j
−∑

N
j=1, j 6=i vi j i = j (6a)

bi j =


− wi jδi j

di j(XXX) di j(XXX) 6= 0, i 6= j

0 di j(XXX) = 0, i 6= j
−∑

N
j=1, j 6=i bi j i = j

(6b)

where N is the total number of nodes in the deployment re-
gion.
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3.1 MDS with Anchors

In previous MDS formulations, positions of anchors and tags
are computed, and then a post-alignment or roto-translation
is performed to adjust tag positions with respect to the known
anchor positions [19,20]. This approach works relatively well
when the configuration of computed anchor positions corre-
spond exactly to the known ones. Otherwise, small errors
are propagated to the tag positions by the subsequent roto-
translation. To eliminate these errors, [6] introduced a MDS
formulation with a SMACOF procedure in which tag posi-
tions XXX t ⊂ XXX are computed iteratively with respect to those
of anchors XXXa ⊂ XXX . Tag positions were derived analytically
as with Equation 5 by minimizing the function τ with re-
spect to tag positions only, yielding the following relation-
ship:

XXX t =VVV−1
11 (BBB11ZZZt +(BBB12−VVV 12)XXXa) (7)

where VVV 11, VVV 12, BBB11 and BBB12 are submatrices of the VVV and
BBB matrices and their sizes depend on the number of anchors
n and number of tags m.

3.2 MDS with Anchors and missing Tag interactions

In the previous formulation of SMACOF with anchors, an-
chor within-sets, anchor-tag between-sets and tag within-
sets distances are all assumed to be available. However, for
such cases where tag interactions are not available, [12] showed
that Equation 7 can be reduced to a more simplified form
that neglects tag within-sets distances. This simplified form
is given by:

XXX t =
BBB11ZZZt +(BBB12 +111111m,n)XXXa

n
(8)

where 111111m,n is a matrix of ones with shape m× n. The for-
mulation is similar to the original in that tag positions are
computed iteratively until a stationary support ZZZt is reached,
which overall corresponds to a convergence of the stress.

4 Mitigation of NLOS effects and measurement noise

In this section, we propose a heuristic for the removal of
NLOS in a matrix of pairwise distances. This heuristic is
based on the knowledge of the symmetric property of ideal
distance matrices, which allows to compute tag positions
from those of anchors, and recompute the same anchor po-
sitions from the earlier computed tag positions.

In the presence of NLOS effects, the symmetry of the
pairwise distance matrix is lost. However, the ensuing asym-
metry allows to mitigate NLOS effects by minimizing the
error on the recomputation of anchors. In Figure 2, we show

Fig. 2: Correlation between position errors for tags and re-
computed anchors.

how the errors on the recomputation of anchor positions
grows monotonically with increasing NLOS and measure-
ment noise. The data for the plots was generated from sim-
ulations where NLOS effects and measurement noise are
added to a distance matrix using the ToF error model de-
scribed in [2] and tag positions are computed using the skewed
distance matrix alongside anchor positions. The NLOS ef-
fects and noise were amplified using multiplicative factors,
with a factor of zero indicating zero NLOS effects and noise.
At each simulation, we take the sum of the errors on the
tag positions and sum of the errors on the recomputation
of anchors, using the earlier computed tags as anchors. The
median values and interquartile range (IQR) values for both
error sums are plotted. The plots indicate that tag position er-
rors are lower bounded by the anchor position errors, so that
all of the NLOS effects and measurement noise are not com-
pletely traceable from anchor recomputation errors. This con-
firms that complete removal of NLOS effects and measure-
ment noise is not possible, generally and under our proposed
scheme in particular. We observe that there are no errors on
anchor recomputation at zero NLOS and noise.

The tentative anchors positions X̃XXa are recomputed by
swapping anchors with tags in Equation 7, so that anchors
are now recomputed from tag positions XXX t using the anchor-
tag between-sets distances as support. This yields a new
equation of the following form:

X̃XXa =
BBB22ZZZa +(BBB21 +111111n,m)XXX t

m
(9)

From Equation 9, anchors positions are directly computable
from those of tags if the number of tags m≥ 3, where 3 is the
minimum number of fixed nodes sufficient for the computa-
tion of unique anchor positions. We present a supplementary
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approach in subsection 4.2 for special cases where the num-
ber of tags m = 1 and m = 2.

The error in the computation of the tentative anchor po-
sitions is the sum of the displacements between each recom-
puted position in the tentative anchor configuration X̃XXa and
its corresponding exact position in the known anchor con-
figuration XXXa. This error ea is expressed mathematically as:

ea =
n

∑
i=1
‖x̃xxa(i)− xxxa(i)‖ (10)

where x̃xxa(i) and xxxa(i) are the tentative and known positions of
the ith anchor respectively.

Since X̃XXa is computed from a non-ideal matrix of dis-
tance measurements containing some unknown NLOS bias
and measurement noise, then the equation for X̃XXa can be
rewritten as:

X̃XXa = MDS(XXX t , δδδ +bbb). (11)

where MDS indicates the MDS algorithm as a callable proce-
dure that takes parameters XXX t , δδδ , bbb and returns a configura-
tion of positions. We make no attempt to distinguish NLOS
effects from measurement noise in this work, so that both are
estimated jointly and cumulated in the matrix bbb. Henceforth,
we will refer to both NLOS bias and measurement noise as
simply NLOS bias.

Equation 11 allows to also rewrite the error ea as func-
tion of NLOS bias in a similar form:

ea =
n

∑
i=1
‖MDS(XXX t , bbb)(i)− xxxa(i)‖ (12)

where the matrix of measured distances δδδ has been dropped
since its elements are constant.

The optimization problem for finding tag positions and
NLOS bias values that minimize error ea is now written as:

θ̂θθ t = min
θθθ

ea(XXX t , bbb), θθθ = [XXX t bbb]T (13)

The tag positions XXX t are unconstrained since they are ex-
plicitly computed by Equation 8. However, the cumulated
NLOS bias bi j ∈ bbb are constrained so that their correspond-
ing values for any of the distances are finite and positive (or
zero). This condition can be formally expressed as:

bL ≤ bi j ≤ bU , ∀bi j ∈ bbbθ (14a)

bi j = 0, ∀bi j 6∈ bbbθ (14b)

where bbbθ ⊂ bbb is the set of all anchor-tag between-sets biases.
The lower bound bL can be set as bL = 0 for ideal distances

while the upper bound bU can be based on information re-
garding the geometrical layout of the deployment region, as
proposed in [23]. The values for anchor within-sets NLOS
biases are set to 0 since all anchor positions are known and
their pairwise distances are ideal while those for tag within-
sets are equally set to 0 since within-sets distances for tags
are not available.

4.1 Node deployments with at least 3 tags

When the number of tags is at least 3, i.e., m > 3, the tenta-
tive anchor positions can be computed by swapping anchors
with tags described in Equation 9. The error function ea is
nonlinear with respect to bbb (the partial BBB matrices BBB21 and
BBB22 are updated with δδδ +bbb instead of δδδ ), it is therefore also
non-linear with respect to the parameter vector θθθ .

We propose the application of Sequential Quadratic Pro-
gramming (SQP) to solve the constrained nonlinear prob-
lem. Due to the complexity of the SQP algorithm and the
positive semi-definiteness of the square matrix bbb, we intro-
duce a preprocessing algorithm (see Algorithm 1) to trim
a constant NLOS bias from the matrix bbb. The algorithm
mitigates a constant NLOS bias value bc if all biases bi j ∈
bbbθ satisfy the condition |bi j| ≥ |bc|. From Algorithm 1, the
bias value bc is initialized to zero and incremented with
step, repeating the computation of error ea at each iteration
until it no longer decreases. It is important to set a value
of step that is sufficiently small to allow the algorithm to
reach the minimum as close possible, without overshooting
too quickly. The algorithm performs most effectively when
all between-sets distances are affected by approximately the
same amount of NLOS bias. Otherwise, it will trim off small
measurement noise or return after the first iteration if any of
the distances is unbiased.

Regarding the complexity of the MDS-SMACOF invo-
cations applied in Algorithm 1, one of the ways we speed
up the convergence of SMACOF is to initialize only the first
computation for XXX (0)

t with a random array. Subsequent XXX (k)
t

computations are initialized with XXX (0)
t or XXX (k−1)

t . The same
applies to SMACOF computations for X̃XX (k)

a , which are ini-
tialized with XXXa or X̃XX (k−1)

a . These initializations generally
make SMACOF converge in constant time O(1).

The SQP algorithm as shown in Algorithm 2 is then
run on the constrained nonlinear problem defined by Equa-
tions 13 and 14. The implementation of the optimization al-
gorithm makes use of Python-SciPy’s SLSQP (Sequential
Least Squares Programming) solver. The solver applies the
Hans-Powell quasi-Newton method [17] for the derivative
of the Lagrangian associated with the minimization problem
in Equation 13 with a Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update. All the elements bi j of this matrix are ini-
tialized with the constant bias value bc. Afterwards, a matrix
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Algorithm 1 Trimming NLOS bias from distances

Input: XXXa, bU , step
Output: XXX t , bc

Initialization : bc→ 0
1: XXX (0)

t = MDS(XXXa, bc)

2: X̃XX (0)
a = MDS(XXX (0)

t , bc)

3: compute e(0)a
4: k→ 0
5: while k = 0 or e(k)a < e(k−1)

a do
6: bc = bc + step
7: k = k+1
8: if (bc ≥ bU ) then
9: break

10: end if
11: XXX (k)

t = MDS(XXXa, bc)

12: X̃XX (k)
a = MDS(XXX (k)

t , bc)

13: compute e(k)a
14: end while
15: bc = bc− step {reverse last update}
16: X̂XX t = MDS(XXXa, bc)

UUU composed by uniformly distributed values in [0,1) and
with the same dimensions as bbbθ is added to bbbθ . This is done
to apply small perturbations to the initial values, which is
known to provide better results than initializing all elements
with the same value. The function fe updates the value of ea
at each iteration within the SQP procedure while tol speci-
fies the tolerance of the stopping criterion.

Algorithm 2 NLOS bias mitigation by SQP
Input: XXXa, bc, tol
Output: XXX t , bbbθ

Initialization : bbb(0)
θ
→ bc +UUU [0,1)

1: XXX (0)
t = MDS(XXXa, bbb(0)

θ
)

2: bbbθ = SQP( fe, bbb(0)
θ

, XXX (0)
t , XXXa, tol)

3: X̂XX t = MDS(XXXa, bbbθ )

4.2 Node deployments with less than 3 tags

When the number of tags is m = 1 or m = 2, Equation 9
can not be applied directly for the computation of tentative
anchor positions since at least 3 fixed nodes are required in
order to produce unique solutions.

To overcome the lack of sufficient tags, the tag configu-
ration is padded with some anchors from the anchor config-
uration so the number of tags makes up to 3. For example, in
the case there are only two tags, we pad with one anchor. To
ensure that all anchors participate in the padding and an error
value can still be taken from tentative anchor positions, we
apply a modified form of the jackknifing technique adopted
in [15]. Anchors are sampled without replacements or order-
ing, taking 3−m anchors at each sampling step. Afterwards,

the sampled anchors are added to the tag configuration so
that the number of tags plus the anchor(s) becomes equal
to 3. Tentative positions for the anchors left in the config-
uration after the samples have been acquired are computed
using the augmented tag configuration. This process of sam-
pling/jackknifing and computing of tentative positions is re-
peated for all possible combinations of anchors in the anchor
configuration. Errors are computed and stored, and all the er-
rors are later summed into a final tentative anchor positions
error ea as described by the following equation:

ea =
s

∑
i=1

ea(i)(XXX
aug
t(i) , bbb) (15)

The ith augmented tag configuration XXXaug
t(i) is defined by:

XXXaug
t(i) =

[
XXXT

t |XXXT
a(i)

]T
(16)

where XXXa(i) is the ith anchor sample(s) of size (3−m)×2 for
2D or (3−m)×3 for 3D positioning. The number s appear-
ing in Equation 15 is the number of unordered combinations
without replacement possible with the given number of an-
chors and tags and is defined by:

s =
(

n
3−m

)
(17)

For instance, in a setup of 4 anchors and 1 tag, 6 anchor com-
binations are possible, allowing for 6 different augmented
tag configurations.

As with the previous scenario with at least 3 tags, NLOS
biases are first trimmed using Algorithm 1 after which the
final bias values are computed using Algorithm 2.

5 Experimental Results

The experiments were performed using nanoLoc transceiver
nodes in the laboratory environment shown in Figure 3b.
The environment was not adjusted whatsoever for the sake
of the localization exercise. This had the benefit of allowing
RF interference from the multiple wireless devices in the
environment and possible occlusions and reflections from
nearby walls and objects.

A nanoLoc node is shown in Figure 3a. The nodes use
RT-ToF for estimating the ranges that are collected by the
tags and sent via a base-station to a computer where, in turn,
the distance matrix is constructed and node positions are cal-
culated.

The nanoLoc nodes are mounted on tripods, as shown
in Figure 3b. There are 4 anchors and a varying number of
tags, from 1 to 4. The tags are kept stationary and an obstacle
(shown in yellow in Figure 3b) is placed directly in front of
anchor 3. This obstacle causes the distances between anchor
3 and all the tags to be approximately doubled. Variations
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(a) The nanoLoc node used in the experiments.

(b) Deployment of 4 anchors (blue) and 3 tags (red) with an artifical
obstacle (yellow).

Fig. 3: Localization setup in a laboratory setting.

in the tag positions in Figure 4b are directly explainable by
small perturbations in the distance measurements taken by
the transceivers leading to random hops within the MDS al-
gorithm. A technique for dampening these hops with respect
to the MDS scheme has been discussed in [7]. The method
takes into account the velocity of the nodes and applies MDS
over a number of distance matrices contiguous in time. Usu-
ally, the method is applied for 2 contiguous matrices.

Table 1 shows the mean and variance of RMSE values
for vanilla MDS and proposed method. The RMSEs at 2
tags and 3 tags are not correlated as a different version of the
NLOS mitigation technique was applied for both scenarios,
i.e., Algorithms 1 and 2 respectively. We notice that in Fig-
ure 5a, around RMSE values of 3m on the Y-axis, the NLOS
bias mitigation results are occasionally slightly worse than
the original. We believe this is due to approximation errors
in Algorithms 1 and/or 2 and can be corrected by setting
the step in Algorithm 1 to a smaller value or reducing the
tolerance value tol in Algorithm 2. Decreasing the value of
these parameters to provide fractional improvements in ac-
curacy increases the time it will take for both algorithms to
converge. The increase in RMSE in Figure 5a is due to a
shift of the barrier closer to anchor 3. Human movements
within the deployment region also create sudden spikes or
dips. The histogram and empirical cumulative distribution

(a)

(b)

Fig. 4: Positioning for 1 (a) and 3 (b) stationary nanoLoc
tags with 40 data points per tag.

Table 1: Mean and variance of RMSEs for different nanoLoc
tag counts.

No. of tags MDS MDS w/ NLOS mit.

mean/var. (m)

1 2.51/0.01 1.76/0.05
2 3.71/0.01 3.18/0.02
3 2.67/0.13 1.94/0.52
4 2.84/0.03 2.24/0.01

function (CDF) for the RMSEs are reported in Figures 5b
and 5c.

5.1 Further Simulations

To verify the performance of our proposed method com-
pared to vanilla MDS on a larger setup, simulations were
performed to allow scaling up of the number of nodes and
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(a)

(b)

(c)

Fig. 5: a) RMSEs; b) histogram of RMSEs; and c) CDF of
RMSEs for 4 nanoLoc anchors and 3 tags with≈ 1000 runs.

an expansion of the area of the deployment region. We ini-
tialize a rectangular 35m×25m simulated area with varying
number of anchors and tags at random positions. Distance
matrices with elements δi j are constructed from the pairwise
distance between all the nodes and then tag within-sets dis-
tances are marked as unknown. The simulation ranging dy-
namics were modeled according to range estimation accu-
racy data provided in [2,5], where NLOS bias is reported to
approximate an exponential distribution while the measure-
ment noise is modeled as a zero mean Gaussian distribution.
For ToF, the exponential distribution for NLOS bias bi j =

Exp(λ ) has scale λ = 0.08δi j and the noise ni j =N (0,σ2)

has a standard deviation σ = 0.02δi j [2]. These values al-
low to inject the original distance δi j with some randomized
NLOS and noise value so that the true distance di j is now
related to δi j by:

δi j = di j(XXX)+bi j +ni j (18)

Simulations were repeated for setups of 3 to 8 anchors
and 3 to 22 tags. NLOS/noise multipliers are set in the range
from 0 to 1. Anchors were placed at the four corners and
midway between the four corners of the simulated area and
tags were always initialized randomly within the rectangular
bounds defined by the anchors.

Figures 6a, 6b, and 6c show the results for the simula-
tions where nodes and ToF dynamics were randomly initial-
ized 500 times for each variation in the setup. The error in
the position estimates is given by the RMSE of the com-
puted tag positions with respect to the true tag positions.
The median and IQR values for the 500 runs at each simula-
tion are shown in the plots. From Figure 6a, the positioning
RMSEs decrease as more anchors are added to the setup;
tags were kept constant at 22 for this simulation set. This is
because increasing the number of anchors increases the av-
erage magnitude of the error of tentative anchor positions,
thereby allowing for a more robust inference on NLOS bi-
ases from the error. From Figure 6b, the number of anchors
is kept constant at 4 while the number of tags is varied. This
has the effect of increasing RMSE as tag count increases
since information is lost as only 4 tentative anchor positions
are reproduced from a relatively higher number of tags, with
the NLOS mitigation approach always having a lower me-
dian value. In Figure 6c, we multiply the randomized bi j and
ni j values by factors ranging from 0 to 1. Both the MDS and
MDS with NLOS mitigation approaches produce the precise
tag positions when the multiplying factor is 0. As the factor
is increased, the RMSE of our NLOS mitigation approach
grows at a rate 0.7 that of vanilla MDS.

6 Conclusion

This paper presented a NLOS mitigation technique under
the MDS scheme which is an extension of the work in [13]
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(a)

(b)

(c)

Fig. 6: Medians and IQRs for RMSEs under a) varying num-
ber of anchors; b) varying number of tags; and c) varying
NLOS and noise multipliers.

where the technique was first introduced. This formed the
basis for the more elaborate discussion on NLOS mitigation
using recomputed anchor positions. An ideal matrix of pair-
wise distances is known to exhibit a symmetry that allows
to recompute exact anchor positions from those tags using
MDS. In a NLOS environment, this symmetry does not hold
so that the ensuing asymmetry can be exploited, as done in
this work, to estimate NLOS bias values for each of the pair-
wise distances. We presented a minimization problem where
the error on anchor recomputation is presented as cost, and
tag positions and NLOS bias are parameters to be optimized.
An algorithm for the fast and global trimming of NLOS bi-
ases was first introduced, after which a SQP solution which
computes per distance NLOS bias values was presented. The
performance improvements of the proposed NLOS mitiga-
tion technique was validated by experiments with nanoLoc
anchors and tags, and further on with simulations allowing
for larger node deployments. Generally, results showed that
positioning RMSEs can be decreased by up to 28% for a
setup of 4 nanoLoc anchors and 3 tags.
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