UNIVERSITÀ DEGLI STUDI DI PAVIA

DOTTORATO IN SCIENZE CHIMICHE E FARMACEUTICHE E INNOVAZIONE INDUSTRIALE
 (XXXVI Ciclo)

Coordinatore: Chiar.mo Prof. Giorgio Colombo

4H-Dewar Pyridines: Dearomative approach towards programmable piperidine isosteres

Tesi di Dottorato di
Jan Petrovčič

AA 2022/2023

Tutor
Chiar.mo Prof. David Sarlah
D. table

Abstract

Piperidine is the most frequently encountered aliphatic heterocycle in medicinal chemistry. Despite its prevalence, there is a constant demand for improvement of ADME (absorption, distribution, metabolism, excretion) properties of piperidine-containing drugs and drug candidates. 2azabicyclo[2.2.0]hexanes present an exciting class of more rigid and structurally programmable piperidine isosteres. EVA (exit vector analysis) of the most frequently employed piperidine isosteres and 2-azabicyclo[2.2.0]hexanes is presented, and a side-by-side comparison is made. This dissertation describes our endeavors towards the expansion of accessible 2-azabicyclo[2.2.0]hex-5-ene chemical space, our exploration of 2-azabicyclo[2.2.0]hex-5-ene scaffold reactivity in olefin functionalization reactions and installation of synthetically useful handles. The malleability and practicality of 2 azabicyclo[2.2.0]hexane core is demonstrated by preparation of several isosteres of piperidinecontaining drugs and lead compounds. A general blueprint for functionalized 2azabicyclo[2.2.0]hexanes is devised. Special attention is devoted to "pseudoaxial" C5-substituted-2azabicyclo[2.2.0]hexanes, which could serve as piperidine isosteres in their thermodynamically unfavorable axial conformations without the need to introduce additional carbon atoms.

La piperidina è l'eterociclo alifatico più frequente nella chimica farmaceutica (medicinal chemistry). Nonostante la sua prevalenza, c'è una costante domanda for il miglioramento delle proprietà ADME (assorbimento, distribuzione, metabolismo, escrezione) di farmaci e candidati farmaci contenenti strutture piperidiniche. Gli 2-azabiciclo[2.2.0]esani rappresentano un'interessante classe di isosteri della piperidina più rigidi e programmabili strutturalmente. L'EVA (exit vector analysis, analisi di vettore di uscita) degli isosteri della piperidina più frequentemente utilizzati e di 2azabiciclo[2.2.0]esani viene mostrata, ed è stata eseguita una comparazione tra loro. Questa tesi descrive i nostri sforzi verso l’espansione di spazio chimico accessibile dei 2-azabiciclo[2.2.0]es-2-eni, la nostra esplorazione della reattività della struttura di tipo 2 -azabiciclo[2.2.0]es-2-ene nelle reazioni di funzionalizzazione delle olefine e l'installazione di appigli sinteticamente utili. La malleabilità e praticabilità del nucleo di tipo 2-azabiciclo[2.2.0]es-2-ene è dimostrata dalla preparazione di diversi isosteri di farmaci e composti guida, contenenti strutture piperidiniche. Un progetto generale per la funzionalizzazione di 2 -azabiciclo[2.2.0]es-2-eni è stato elaborato. Un'attenzione particolare è stata riservata ai 2 -azabiciclo[2.2.0]es-2-eni con sostituenti sul C5 "psuedoassiali", che possono servire come isosteri di piperidine nella loro conformazione assiale termodinamicamente sfavorevole, senza la necessità di introdurre atomi di carbonio addizionali.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, prof. dr. David Šarlah, for giving me the opportunity to visit his laboratories at UIUC as an intern and subsequently offering me a PhD position at the University of Pavia. I am also grateful to him for devising original project ideas as well as providing me with advice, guidance, and motivation throughout my studies. I would like to extend my sincere gratitude to my committee members, prof. dr. Scott E. Denmark and prof. dr. Manuel Orlandi, for their comments and constructive feedback during the preparation of my thesis. The completion of my thesis would not have been possible without the assistance and contributions from the following list of my superiors, colleagues, friends, organizations and companies. I am deeply indebted to:

- prof. dr. Giuseppe Zanoni for helping me with documentation, securing funding, navigating the Italian educational system, and advising me in Dave's absence,
- dr. Yaroslav D. Boyko for experimental help during early stages of the project, discussing future project directions and for establishing a collaboration with Merck,
- Alexander S. Shved for determining crystal structures and performing calculations,
- dr. Quentin Lefebvre and dr. Christophe Salome for helpful discussions and preliminary computational studies,
- prof. dr. Alessio Porta for sharing office space, instrument repair and maintenance,
- dr. Elisa Angelini for obtaining a significant part of HRMS data,
- dr. Paolo Piacentini for translating the abstract,
- David Ryffel, Jonathan Maturano and Chris W. Davis for proofreading my thesis,
- dr. Chad N. Ungarean for writing a review article with me and assisting me with transitions to the US and to Italy,
- Giovanni Lenardon for his help with experimental work and product characterization,
- present and former Sarlah Lab and B2 Lab members, with whom I had the pleasure to work with, for putting up with me, and for keeping me company,
- UIUC NMR Laboratory staff for training and structure elucidation,
- UIUC Mass Spectrometry lab for HRMS measurements,
- Merck \& Co. for supplying building blocks, reagents, and catalysts, compound purification, product characterization, and performing biological assays,
- SpiroChem for generous financial support.

Last but not least, I am very grateful to my family, Leonida, Janko and Job, for their care, patience, encouragement and their unwavering moral and emotional support.

CONTENTS

1. List of abbreviations 6
2. Introduction 8
2.1. (Bio)isosterism 12
2.2. 1-azaspiro[3.3]heptanes 14
2.3. 2-azaspiro[3.3]heptanes 15
2.4. 3-azabicyclo[3.2.0]heptanes 17
2.5. 2-azabicyclo[3.2.0]heptanes 20
2.6. 2-azabicyclo[2.1.1]hexanes 20
2.7. 2-azabicyclo[3.1.1]heptanes 21
2.8. 3-azabicyclo[3.1.1]heptanes 22
2.9. 3-cyclobutylazetidines 23
2.10. 3-azabicyclo[3.1.0]hexanes 23
2.11. 2-azabicyclo[3.3.0]octanes 28
2.12. 3-azabicyclo[3.3.0]octanes 29
2.13. 2-azabicyclo[2.2.0]hexanes 30
3. 4H-Dewar Pyridines: Dearomative approach towards programmable piperidine isosteres 34
3.1. Exit vector analysis (EVA) 34
3.2. Optimization of 4π-electrocyclization 37
3.3. Scope of dearomatization / 4π-electrocyclization sequence 38
3.4. Limitations 43
4. Olefin functionalization and skeletal editing 45
4.1. Hydrogenation 45
4.2. Hydroboration 45
4.3. Hydroarylation 48
4.4. Hydroazidation 48
4.5. Hydroamination 49
4.6. Aziridination 50
4.7. Epoxidation 51
4.8. Reductive olefin coupling 52
5. Functional handle introduction and $C-C / C-X$ couplings 54
5.1. Dual photo/nickel catalysis for $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ coupling 54
5.2. Deprotections and amide bond formation 55
5.3. Synthesis of unnatural amino acids and diamine linkers 59
5.4. N-arylation 62
5.5. Carbonyl chemistry 62
5.6. Suzuki coupling 64
5.7. Synthesis of electrophiles 65
5.8. C1 functional groups 67
6. Isostere synthesis 69
6.1. Thioridazine isostere 69
6.2. Selective muscarinic acetylcholine receptor agonist isosteres. 69
6.3. Moperone isostere 70
6.4. Nociceptin receptor ligand isosteres 70
6.5. GluN2B/NMDAR ligand isosteres 71
6.6. $\quad \beta$-tryptase inhibitor isosteres 72
6.7. Fentanyl fragment isosteres 73
6.8. $\mathrm{h} 5-\mathrm{HT}_{2 \mathrm{~A}}$ antagonist isostere 74
7. Overview of explored 2-azabicyclo[2.2.0]hexane chemical space 76
8. Variable temperature NMR study 78
9. Conclusions 80
10. Experimental section 81
11. Acknowledgement of Contributions 169
12. References 170

1. LIST OF ABBREVIATIONS

9BBN acac	9-borabicyclo(3.3.1)nonane acetylacetone
ADME	absorption, distribution, metabolism, and excretion
Alloc	allyloxycarbonyl
Ar	aryl
$\mathrm{Boc}_{2} \mathrm{O}$	di-tert-butyl dicarbonate
Cbz	benzyloxycarbonyl
COD	1,5-cyclooctadiene
CDI	carbonyldiimidazole
CYP450	cytochrome P450
DBU	1,8-diazabicyclo(5.4.0)undec-7-ene
DCC	N, N-dicyclohexylcarbodiimide
DCM	dichloromethane
DEAD	diethyl azodicarboxylate
DIAD	diisopropyl azodicarboxylate
DIBALH	diisobutylaluminium hydride
diglyme	bis(2-methoxyethyl) ether
DIPEA	N, N-diisopropylethylamine
DMAD	dimethyl acetylenedicarboxylate
DMAP	4-dimethylaminopyridine
DME	dimethoxyethane
DMF	dimethylformamide
DMP	Dess-Martin periodinane
DMSO	dimethyl sulfoxide
dpm	2,2,6,6-tetramethyl-3,5-heptanedione
DPPA	diphenylphosphoryl azide
DTBP	di-tert-butyl peroxide
dtbpy	4,4'-di-tert-butyl-2,2'-dipyridyl
EDC	1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
EtOAc	ethyl acetate
EVA	exit vector analysis
FDA	Food and Drug Administration

FMO	flavin-containing monooxygenase
HAT	hydrogen atom transfer
HbF	fetal hemoglobin
hERG	human Ether-à-go-go-Related Gene
HOAt	1-hydroxy-7-azabenzotriazole
HWE	Horner-Wadsworth-Emmons reaction
KHMDS	potassium bis(trimethylsilyl)amide
LAH	lithium aluminum hydride
LED	light-emitting diode
MAO	monoamine oxidase
$m C P B A$	3-chloroperbenzoic acid
MHAT	metal-hydride hydrogen atom transfer
NHP	N-hydroxyphthalimide
NMDAR	N-methyl-D-aspartate receptor
NMO	N-methylmorpholine N-oxide
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
PARPi	poly(ADP-ribose) polymerase inhibitors
PG	protecting group
PIDA	(diacetoxyiodo)benzene
ppy	2-phenylpyridiyl
RPM	revolutions per minute
SAR	structure-activity relationship
SET	single electron transfer
SOS1	son of sevenless homologue 1
TBS	tert-butyldimethylsilyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
TMANO	trimethylamine N-oxide
TMEDA	tetramethylethylenediamine
TMS	trimethylsilyl
TPAP	tetrapropylammonium perruthenate
Troc	2,2,2-trichloroethoxycarbonyl
Ts	tosyl

2. INTRODUCTION

A 2014 study from Njardarson et al. highlighted the importance of nitrogen heterocycles as structural components of pharmaceuticals. ${ }^{1}$ Out of 1086 analyzed unique small molecule drugs, 273 contained a nonaromatic six-membered nitrogen heterocycle, and 72 of those drugs contained a piperidine core. Taken together, piperidine turned out to be the most common heterocycle present in FDA-approved drugs, followed by pyridine and piperazine (Figure 1).

Figure 1: Nitrogen heterocycles in FDA approved drugs (until 2014).
Since 2014, 29 new small-molecule drugs or small-molecule drug mixtures containing piperidine cores have been approved by the aforementioned agency (excluding tetrahydroquinolines and tetrahydroisoquinolines and other annulated piperidine cores). ${ }^{2}$ This equals a 40% increase in total number in less than a decade. Their structures are depicted in the following figures (Figure 2, Figure $3)$.

Figure 2: New FDA approved piperidine containing small molecule drugs (2015-2022).

lasmiditan
(2019)

atogepant
(2021)

 (2020)

avacopan
(2021)
onafarnib
(2020)

dexmethylphenidate
(2021)

(2023)

Figure 3: New FDA approved piperidine containing small molecule drugs (2015-2022), continued.
According to the 2014 analysis, 86% (62/72) of unique small molecule FDA approved piperidine containing drugs had a substituent on the nitrogen atom (N1), and 58% of them (42/72) had a
substituent at the C4 position. The majority of these drugs (61\%) were disubstituted. Examples of mono-, tri- tetra-, and even penta-substituted piperidines are identified below (Figure 4).

Figure 4: Substitution pattern analysis of FDA-approved piperidine containing small molecule drugs (before 2014) and relevant examples.

Out of 29 new small molecule piperidine-containing drugs, approved since 2014, 18 contain a substituent at the C4 position (62\%), which is consistent with the trend from the past (

Figure 5).

Position	Before 2014	After 2014
N1	86%	83%
C3	33%	28%
C4	19%	17%
C5	58%	62%
C6	7%	10%

Figure 5: Substitution pattern analysis of FDA-approved piperidine containing small molecule drugs (after 2014).
These findings further justify the recognition of 4 -substituted (hetero)arylpiperidines as privileged fragments in drug discovery. ${ }^{3}$ This motif is ubiquitous in drug leads across major therapeutic areas and modalities (Figure 6). ${ }^{4-7}$

Figure 6: Different modalities of piperidine containing drugs.
These modalities include, but are not limited to, cyclic peptides, antibody-drug conjugates, small molecule drugs, and targeted protein degraders. In these cases, piperidine can play two different roles. It either acts as a primary pharmacophore (interacting with the target) or as a linker with predictable exit vectors and acceptable physiochemical properties. If, however, liabilities related to the piperidine core prevent candidate progression into preclinical development, or if fine-tuning of ADME (absorption, distribution, metabolism, excretion) profile is needed, bioisosteric replacement can be utilized.

2.1. (Bio)isosterism

The term "isostere" was coined by Langmuir in 1919 to describe molecules and ions with the same number and arrangement of electrons. ${ }^{8}$ Since his pioneering work, the definition of isosteres changed throughout the following years (Table 1).

Table 1: Definitions of (bio)isosteres over time.

Author	Year	Definition
I. Langmuir	1919	Comolecules are isosteric if they contain the same number and arrangement of electrons.
H. G. Grimm	1925	Grimm's hydride displacement law: The addition of hydrogen to an atom will result in a pseudoatom with similar properties to the atom of the next highest atomic number.
F. Erlenmeyer	1932	Isosteres are elements, molecules or ions in which the peripheral layers of electrons may be considered identical.
H. L. Friedman	1951	Bioisosteres fit the broadest definition of isosteres and have the same type of biological activity.
C. W. Thornber	1979	Bioisosteres are groups or molecules which have chemical and physical similarities producing broadly similar biological properties.
A. Burger	1991	Bioisosteres are compounds or groups that possess near-equal molecular shapes and volumes, approximately the same distribution of electrons, and which exhibit similar physicochemical properties.

Given the breadth of the latter definitions, the substitution of mono-, di-, tri- and tetra-substituted atoms, groups or even entire rings can be considered as a bioisosteric replacement. These substitutions can lead to profound changes in molecular structure (molecular size, bond angles), receptor interactions, pharmacokinetics, and metabolism.

Several notable examples of effective piperidine bioisosterism in drug discovery are presented below (Figure 7).

Figure 7: Selected examples of successful piperidine bioisosteres.
The Achilles heel of the piperidine substructure is the tertiary amine, which can be oxidatively metabolized by CYP450 enzymes, peroxidases, FMOs and MAOs. ${ }^{9}$ Oxidation events (SET and HAT) give rise to iminium intermediates, which can be further hydrolyzed to give dealkylated products or be trapped by adventitious nucleophiles (Figure 8).

Figure 8: Oxidative metabolism of tertiary amines.
In the first example (Figure 7, far left), metabolism of the serotonin-4 partial agonists $\mathbf{1}$ and $\mathbf{2}$ shifted primarily from piperidine oxidation in 1 to oxazoline oxidation in azetidine isostere $2 .{ }^{9}$ This result was rationalized with the help of computational studies, which revealed that in the azetidine case, the energy barrier for hydrogen atom abstraction at the α-position is higher than in the piperidine case.

The same metabolic hotspot in the β-tryptase inhibitor 3 was blocked by the introduction of tropane bioisostere 4 (Figure 7, middle left). ${ }^{10}$ This simple bioisosteric replacement led to significantly slower microsomal degradation (percentage of degraded compound after 20 min incubation with liver microsome fractions). This result was attributed to the increased rigidity of tropane scaffold and decreased chance of binding to the active sites of metabolic enzymes.

Cocrystal structure of piperidine 5 with SOS1 revealed that 4 -amino substituent resides in axial position. ${ }^{11}$ This conformation was computed to be $34 \mathrm{kcal} / \mathrm{mol}$ higher energy than the ground state conformation (Figure 7, middle right). To reduce this entropic penalty of binding, isostere 6 was introduced, which resulted in a 10-fold increase in potency.

Last but not least, the case of orexin receptor agonist 7 convincingly demonstrates the importance of reducing the conformational flexibility of piperidines and addressing the problematic dilution of bioactive conformation for achieving high potency (Figure 7, far right). ${ }^{12}$ Introduction of a single methyl group to the piperidine core led to bioisostere 8, which has 505-times greater potency than its progenitor. Both NOE and X-ray analyses of relevant analogues revealed the preference for trans-
diaxial conformation, which is necessary for optimal binding to the target and which explains the origin of "the magic methyl effect" . ${ }^{13}$

However, in none of examples of successful piperidine replacements is the carbon atom number conserved. Increased molecular weight, molecule surface area and lipophilicity can lead to off target toxicity. ${ }^{14}$ An ideal piperidine bioisostere should therefore have the same number of carbon atoms. Since geometrical requirements vary from target to target, SAR studies are routinely performed during medicinal chemistry campaigns, and many piperidine isosteres are explored. While structurally most simplistic piperidine bioisosteres are azetidines, pyrrolidines and azepines, one can also envision more rigid and complex scaffolds like 2-azaspiro[3.3]heptanes, 3-azabicyclo[3.1.0]hexanes, 3azabicyclo[3.2.0]heptanes, 2-azabicyclo[2.2.0]hexanes, etc. From a synthetic perspective, these scaffolds present different challenges, evident from the number of steps required for their preparation and the complexity/availability of their respective starting materials. Selected synthetic approaches towards these scaffolds and some uses in medicinal chemistry settings are presented in the following paragraphs.

2.2. 1-azaspiro[3.3]heptanes

Carreira's group established access to unsubstituted 1-azaspiro[3.3]heptane 9 in 5 steps from commercially available cyclobutanone 10 (Scheme 1). ${ }^{15}$ HWE olefination gave unsaturated ester $\mathbf{1 1}$ in 82% yield. Aza-Michael addition of benzylamine yielded secondary amine 12. The protected amino alcohol 13 from LAH reduction step was sufficiently pure to be directly subjected to Appel reaction conditions without further purification. Upon completion, potassium carbonate was added to the reaction mixture, furnishing the final product 9 in 72% yield over two steps.

Scheme 1: Carreira's approach towards 1-azaspiro[3.3]heptanes.
Mykhailiuk's group recently explored the scope of [2+2] cycloaddition between methylenecyclobutanes 14 and chlorosulfonyl isocyanate for the synthesis of substituted 1azaspiro[3.3]heptanes 15 (Scheme 2). ${ }^{16}$ The majority of requisite substituted methylenecyclobutanes 14 were prepared via Witting olefination from the corresponding cyclobutanones 16 . Thermal [2+2] cycloaddition intermediates 17 were not isolated but were directly treated with sodium sulfite and sodium bicarbonate to give lactams 18 in $42-89 \%$ yields as $1: 1$ to $1: 1.7$ mixtures of diastereoisomers. Out of all reducing reagents tested, alane proved to be the best for reducing the the β-lactam moiety to furnish substituted 1-azaspiro[3.3]heptanes 15 as free amines. The substrate scope for this sequence of transformation $\left(R_{1} \& R_{2}\right)$ features aliphatic and aromatic side chains as well as spirocycles. Esters and nitriles were reduced in the process to the corresponding alcohols and amines.

Scheme 2: Mykhailiuk's approach towards 1-azaspiro[3.3]heptanes.
The 1-azaspiro[3.3]heptane moiety was examined in an SAR campaign dedicated to improving highaffinity poly(ADP-ribose) polymerase inhibitors (PARPi's) without DNA damaging properties. ${ }^{17}$ In the
aforementioned case, FDA-approved Olaparib was chosen as a benchmark for assessing properties of synthesized bioisosteres.

2.3. 2-azaspiro[3.3]heptanes

The SAR campaign described above also included the 2-azaspiro[3.3]heptane scaffold. ${ }^{17}$ Additionally, it was shown to be a superior linker with increased metabolic stability for making orally bioavailable fetal hemoglobin (HbF) inducers intended for treating sickle cell disease. ${ }^{18}$

6-substituted 2-azaspiro[3.3]heptanes can be synthesized from commercially available 2,2-bis(bromomethyl)-1,3-propanediol 19 in 8 steps (Scheme 3). ${ }^{19}$ Protection of both primary alcohols with benzaldehyde in the form of an acetal (20) is followed by double alkylation with diisopropyl malonate to give diester 21. Deprotection with palladium on carbon and hydrogen gives diol 22, which is mesylated to yield bis-mesylate 23. The latter is treated with p-toluenesulfonamide and potassium carbonate to give 2-azaspiro[3.3]heptane 24. Saponification and decarboxylation yield carboxylic acid 25 in 87% yield over two steps. Amino acid 26 can be prepared via sulfonamide deprotection using sodium amalgam.

Scheme 3: Grygorenko's approach towards 2-azaspiro[3.3]heptanes.
A conceptually very similar approach was disclosed by Meyers et al. (Scheme 4). ${ }^{20}$ Their synthesis starts with epibromohydrin 27. Reaction with benzyl bromide in the presence of HgCl_{2} gives dibromide $\mathbf{2 8}$, which is used as an alkylating agent for ethyl cyanoacetate. Reduction of ester $\mathbf{2 9}$ with NaBH_{4} gives alcohol 30, which is then reacted with p-toluenesulfonyl chloride and $\mathrm{Et}_{3} \mathrm{~N}$. When tosylate 31 is treated with LAH, a cascade of nitrile reduction and intramolecular N-alkylation occurs. Addition of $\mathrm{Boc}_{2} \mathrm{O}$ to the reaction mixture gives carbamate 32 in 82% yield over three steps. Removal of the benzyl protecting group using Pearlman's catalyst and 1,4-cyclohexadiene as a hydrogen source gives alcohol 33, which is then finally oxidized with DMP to give the final ketone 34.

Scheme 4: Meyers' approach towards 2-azaspiro[3.3]heptanes.

The same group also reported a shorter, three-step route to the same ketone $\mathbf{3 4}$ (Scheme 5). Starting from N-Boc-azetidine-3-one 35, Wittig olefination gives exocyclic olefin 36 , which is then exposed to in situ generated dichloroketene. Thermal [2+2] cycloaddition gives gem-dichloride 37, which is finally reduced with zinc and acetic acid to produce spirocyclic ketone 34 in 40% yield over two steps.

Scheme 5: A shorter route to 2-azaspiro[3.3]heptanes by Meyers.
An angular analogue of carboxylic acid $\mathbf{2 6}$ was prepared using Trost's cyclopropyldiphenylsulfonium ylide and subsequent rearrangement (Scheme 6). ${ }^{21,22}$ Initial cyclopropanation of cyclobutanone 38 gives oxaspiropentane 39, which can be converted to the final 2-azaspiro[3.3]heptane 40 with lithium iodide. This rearrangement can also be performed in one pot, albeit in a slightly lower yield. Three more steps involving ketone homologation, hydrolysis and oxidation are required to convert ketone 40 into carboxylic acid 41.

Scheme 6: Carreira's approach towards 2-azaspiro[3.3]heptanes.
Introduction of substituents at C1 position of the 2-azaspiro[3.3]heptane scaffold requires de novo synthesis from cyclobutanecarboxylic acid 42 (Scheme 7). ${ }^{23}$ The acid is first converted into ketene 43 and then treated with N-silylated imines 44 (prepared in one step from aliphatic or aromatic aldehydes and KHMDS). Thermal [2+2] cycloaddition yields spirocyclic β-lactams 45, which are finally reduced with alane to give the desired products 46 . The overall yields are fair to excellent despite the limited stability of ketene 43 and imines 44. If an additional substituent at $C 6$ position is desired, cyclobutanecarboxylic acid 42 can be replaced with its derivative 47 to give 2-azaspiro[3.3]heptanes 48 with two functional handles (amine and ketal moieties).

Scheme 7: Mykhailiuk's approach towards 2-azaspiro[3.3]heptanes.
Enantioselective entry to 2-azaspiro[3.3]heptane bioisosteres was developed by Reddy et al. ${ }^{24}$ In situ deprotonation of ester 49 and a 1,2-addition into N-tert-butanesulfinyl aldimines $\mathbf{5 0}$ gives alkylated esters 51 with drs > $9: 1$, which are subsequently reduced with LAH to the corresponding alcohols 52 (Scheme 8). Tosylation followed by intramolecular N-alkylation gives spirocyclic products 53 in good to excellent yields. Ellman's auxiliary can be removed afterward using HCl solution in dioxane to furnish the optically enriched 2-azaspiro[3.3]heptanes 54. The substrate scope for these transformations is broad and, like the example above, aromatic aldehydes with different electronic properties are tolerated. A single example of an aliphatic aldehyde is disclosed as well.

Scheme 8: Reddy's approach towards 2-azaspiro[3.3]heptanes.

2.4. 3-azabicyclo[3.2.0]heptanes

Mykhailiuk et al. used benzophenone as a photosensitizer to effect an intramolecular photochemical [2+2] cycloaddition and to synthesize 3-azabicyclo[3.2.0]heptane piperidine bioisosteres. ${ }^{25}$ Their synthesis begins with reductive amination between allylamine and benzophenone to give secondary amine $\mathbf{5 5}$ (Scheme 9). Its acylation with cinnamic acid-derived acyl chloride yielded tertiary amide 56, which was transformed into the desired bicyclic product 57 in 89% yield with UV irradiation. LAH reduction and palladium-catalyzed hydrogenolysis yielded synthetically tractable amine 58. The authors showed that various cinnamic acid derivatives could be coupled with amine 55 and then transformed into the corresponding 3 -azabicyclo[3.2.0]heptanes in good yields (61-89\%). Additionally, access to optically pure 3-azabicyclo[3.2.0]heptanes was established by performing photochemical [$2+2$] cycloaddition with optically pure 1-phenylethylamine derived tertiary amide 59. Diastereomeric products 60 and 61 were separated using conventional column chromatography and then following the same sequence of transformations converted to optically pure amines (R) - 58 and (S)-58 (not drawn explicitly).

Scheme 9: Mykhailiuk's approach towards 3-azabicyclo[3.2.0]heptanes.
The groups of Cibulka and Yoon published similar photochemical [2+2] cycloadditions to access related products using flavine and $\left[\operatorname{Ir}\left({ }^{\mathrm{F} p p y}\right) 2(t \mathrm{Bubpy})\right] \mathrm{PF}_{6}$ photocatalysts, respectively. ${ }^{26,27}$

To prepare 2-substituted-3-azabicyclo[3.2.0]heptane derivatives with a carboxylic acid functional handle, Bach et al. commenced their synthesis with amino acid methionine 62 (Scheme 10). ${ }^{28}$ Fischer esterification and subsequent N-alkylation with cinnamyl bromide yielded amine $\mathbf{6 3}$, which was then protected with CbzCl to give carbamate 64 . The methyl sulfide moiety was oxidized with sodium periodate to give sulfoxide 65 in quantitative yield. Vacuum thermolysis was challenging as it gave only a modest yield of the required diene 66 due to competing olefin isomerization. Finally, acetophenone sensitized photochemical [2+2] cycloaddition afforded a 2 : 1 mixture of diastereoisomers 67 and 68.

Scheme 10: Bach's approach towards 3-azabicyclo[3.2.0]heptanes.
In their recent publication, Burns' group demonstrated that diallylamines 69 could undergo photochemical [2+2] cycloaddition with catalytic amounts of CuSO_{4} in aqueous media using a 254 nm light source (Scheme 11). ${ }^{29}$ Various groups on the nitrogen atom (alkyl, acyl, sulfonyl) are tolerated under these conditions and yields are consistently high (>71\%). Furthermore, even free diallylamine $69(\mathrm{R}=\mathrm{H})$ undergoes a successful [2+2] cycloaddition in 82% yield. Instead of bringing in substituents with their cyclization precursors 69, the authors decided to introduce them at a later stage. Thus, unprotected 3 -azabicyclo[3.2.0]heptane (70) was exposed to Seidel's α-functionalization conditions to diastereoselectively install a phenyl group at the C2-position (bicycle 71) in 48% yield. Alternatively, the C2-position could be formally alkylated via a [3+2] cycloaddition between methyl crotonate and the respective nitrone (not shown) to give tricycle 72.

Scheme 11: Burns' approach towards 3-azabicyclo[3.2.0]heptanes.
An alternative disconnection for making 3-azabicyclo[3.2.0]heptanes, which relies on an intramolecular [2+2] cycloaddition rather than an intermolecular [2+2] cycloaddition, can also be envisioned. Wanner et al. utilized maleic anhydride and N-(trifluoroacetyl)-3-pyrroline (73), which reacted under photochemical conditions with acetophenone as a photosensitizer to give tricycle $\mathbf{7 4}$ in 43% yield (Scheme 12). ${ }^{30}$ Subsequent treatment with methanol and oxalyl chloride in the presence of DMF furnished acyl chloride 75. The latter was immediately subjected to the Barton decarboxylation protocol to yield methyl ester 76 in 69\% yield over three steps.

Scheme 12: Wanner's approach towards 3-azabicyclo[3.2.0]heptanes.
By replacing maleic anhydride with N-benzylmaleimide, 3-pyrroline 73 with vinylboronic acid pinacol esters (77) and acetophenone with benzophenone, the Grygorenko's group gained access to 3-azabicyclo[3.2.0]heptanes with a boronic ester functional handle at the C6-position (compounds 78
and 79 , Scheme 13 , right)..31 While the synthetic potential of the aforementioned functional handle is large, the substrate scope of vinylboronic acid esters 77 is substantial and yields of the [2+2] photocycloaddition are generally modest to excellent, this methodology is plagued by poor diastereoselectivity as mixtures of difficult-to-separate exo-(78) and endo-isomers (79) are formed.

The use of an iridium photocatalyst $\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}(\mathrm{phpzpy}) \mathrm{PF}_{6}$ allowed Liu et at. to shift the photosensitized [2+2] cycloaddition with the N-benzyl maleimide from the ultraviolet to visible region (Scheme 13, left). ${ }^{32} \mathrm{~A}$ broad range of olefins 80 was tolerated in this transformation, which gave rise to a library of substituted 3-azabicyclo[3.2.0]heptanes. Specifically, acrylamides, acrylates, enones, styrenes, enamides, vinyl sulfides, enol ethers, enol acetates, vinyl and allyl silanes all gave excellent yields of the desired products 81 and 82. However, just like in Grygorenko's case, the diastereoselectivity of this transformation is generally poor, with the exo-isomer $\mathbf{8 1}$ being the major one.

Scheme 13: Liu's (left) and Grygorenko's (right) approaches towards 3-azabicyclo[3.2.0]heptanes.
Photochemical [2+2] cycloadditions are not the only way to access 3 -azabicyclo[3.2.0]heptanes as 1,3dipolar cycloaddition can be used instead (Scheme 14). ${ }^{33}$ Starting from commercially available cyclobutanecarboxylic acid 42, a sequence of chlorination, Hell-Volhard-Zelinsky reaction and n-butyl ester formation gives α-bromoester 83 in 85% yield over 3 steps. DBU mediated elimination yields unsaturated ester 84 in 64% yield. The required intermediate azomethine ylide (not shown) is formed in situ via the reaction between hemiaminal 85 and TFA, which then reacts with the unsaturated ester 84 to yield the desired product 86 in 77% yield. A two-step deprotection sequence consisting of palladium-catalyzed hydrogenolysis and acid-catalyzed ester hydrolysis yields the hydrochloride salt of unnatural amino acid 87.

Scheme 14: Grygorenko's 1,3-dipolar cycloaddition approach towards 3-azabicyclo[3.2.0]heptanes.
The aforementioned 1,3-dipolar cycloaddition can also be performed in an enantioselective fashion by using catalytic amounts of $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$ and (R)-Fesulphos ligand (Scheme 15). ${ }^{34}$ The requisite enone $\mathbf{8 8}$ for the cycloaddition is prepared in two steps from phenylacetylene via thermal [2+2] cycloaddition with dichloroketene (yielding gem-dichloride 89), followed by zinc-mediated dechlorination in 16% yield over two steps. The dipolar cycloaddition then gives good to excellent yields of desired products 90, regardless of specific glycine imines 91 used and with perfect diastereoselectivity. Enantiomeric access is uniformly high ($72-97 \%$ ee) in these cases, and the products 90 have, besides the ester functionality, an additional ketone functional handle at C6position.

Scheme 15: Adrio's and Carretero's asymmetric 1,3-dipolar cycloaddition approach towards 3-azabicyclo[3.2.0]heptanes.
Derivatives of the 3-azabicyclo[3.2.0]heptane skeleton were shown to be both competent ligands for dopaminergic receptors ${ }^{35}$ as well as having morphine-like analgesic activity ${ }^{36}$.

2.5. 2-azabicyclo[3.2.0]heptanes

2-azabicyclo[3.2.0]heptanes are synthesized using the same retrosynthetic logic (Scheme 16). ${ }^{37}$ First, a variety of aryl methyl ketones 92 are condensed with homoallyl amine. A judicious choice of base is then required to prepare protected enamides 93 without competing electrophilic substitution with trifluoroacetic anhydride. Photochemical [2+2] head-to-head cycloaddition in the presence of benzophenone then furnishes desired products 94 in 65-93\% yields. Since only aryl methyl ketones 92 were shown to be competent substrates for the described sequence of transformations, 1-furan-2-yl substituted 2-azabicyclo[3.2.0]heptane 95 was transformed into amino acid 96 via amine acylation, ruthenium tetroxide furane oxidation, and amide hydrolysis in 47% yield over three steps.

Scheme 16: Mykhailiuk's approach towards 2-azabicyclo[3.2.0]heptanes.
The use of 2-azabicyclo[3.2.0]heptanes in a medicinal chemistry setting for synthesizing modulators of cystic fibrosis transmembrane conductance regulators is described in patents. ${ }^{38}$

2.6. 2-azabicyclo[2.1.1]hexanes

When allylamine is used instead of homoallyl amine in combination with methyl aryl ketones 92 or isopropyl aryl ketones 97 for the preparation of enecarbamates 98 and 99 , the ensuing photochemical [2+2] cycloaddition proceeds in a head-to-tail fashion, yielding 2-azabicyclo[2.1.1]hexanes ($\mathbf{1 0 0}$ and 101) instead (Scheme 17). ${ }^{39}$ The reported yields are in the $21-68 \%$ range. Although both electron-rich and electron-deficient aryl methyl ketones can be used, the final products offer little opportunities for further derivatization of the core.

Scheme 17: Piotrowski's approach towards 2-azabicyclo[2.1.1]hexanes.
It was later discovered that ethyl pyruvate can be used instead of aryl methyl ketones $92 .{ }^{40} \mathrm{~A}$ similar sequence of transformations to those described above gave 2-azabicyclo[2.1.1]hexane $\mathbf{1 0 0}$ with a carboxyethyl functional handle ($\mathrm{R}=$ COOEt; NCOPh instead of NCOOEt). This compound served as a
precursor to novel nicotinic acetylcholine receptor ligands, which, however, proved to display incompetent binding. ${ }^{41}$

2.7. 2-azabicyclo[3.1.1]heptanes

Stevens et al. build their 2-azabicyclo[3.1.1]heptane isosteres from homoallyl chloride (Scheme 18). ${ }^{42}$ Thermal [2+2] cycloaddition with in situ generated dichloroketene yielded cyclobutanone 102, which was dechlorinated with zinc in acetic acid to give cyclization precursor 103 in 67% yield over two steps. The latter was exposed to a variety of primary amines $\left(\mathrm{RNH}_{2}\right)$ as well as triethylamine and acetone cyanohydrin as the cyanide source to effect a tandem Strecker-intramolecular cyclization reaction and to give bicycles 104. The nitrile group was then hydrolyzed with hydrochloric acid to give protected amino acids 105 in excellent yields. While only aliphatic amines are tolerated in their key step, the use of benzylamine allowed for final amine deprotection ($\mathrm{R}=\mathrm{Bn}$) under hydrogenolytic conditions (not shown).

Scheme 18: Stevens' approach towards 2-azabicyclo[3.1.1]heptanes.
The 2-azabicyclo[3.1.1]heptane derivative with a carboxylic acid at C5-position 106 was prepared from 3 -oxocyclobutane-1-carbonitrile 107 in 8 steps (Scheme 19). ${ }^{43}$ Reductive amination between ketone 107 and benzylamine gave a mixture of amines 108 with $5: 1 d r$. A second reductive amination with chloroacetaldehyde gave primary chloride 109, which underwent intramolecular cyclization with KHMDS to give nitrile 110. The 2-azabicyclo[3.1.1]heptane core was thus built in four steps. Four additional steps focused on protecting group manipulations and redox adjustments. Specifically, the benzyl protecting group was removed with hydrogen and palladium on carbon and replaced with a tert-butyl carbamate 111 in 58% yield over three steps. DIBALH was used to reduce the nitrile group to the aldehyde 112, which was reoxidized back to carboxylic acid 113 under Pinnick conditions. Final deprotection of tert-butyloxycarbonyl group was achieved with hydrochloric acid in 91% yield.

Scheme 19: He's approach towards 2-azabicyclo[3.1.1]heptanes.
The use of 2-azabicyclo[3.1.1]heptane derivatives as agonists of orexin-1/2 receptors has been patented. ${ }^{44}$

2.8. 3-azabicyclo[3.1.1]heptanes

A symmetry-inspired approach to 3-azabicyclo[3.1.1]heptanes is depicted in the next scheme (Scheme 20). ${ }^{45}$ Dibromide 114 is reacted with diisopropyl malonate to give diester 115 in 53% yield. Dimethyl ketal is hydrolyzed with hydrochloric acid to give ketone 116, which is then subjected to HWE olefination to yield unsaturated triester 117. The double bond is afterwards hydrogenated with palladium on carbon and hydrogen to yield fully saturated triester 118. Selective saponification with potassium hydroxide gives carboxylic acid 119, which is then transformed into tert-butyl carbamate 120 in 88% yield by utilizing the venerable Curtius rearrangement. A two-step process consisting of carbamate deprotection and intramolecular lactamization is then carried out to give the 3azabicyclo[3.1.1]heptane core 121. Global reduction with borane dimethyl sulfide complex reduced both the isopropyl ester and the lactam to give, after amine reprotection, alcohol 122 in 67% yield. DMP oxidation then furnished aldehyde 123, which itself can serve as a useful building block. The aldehyde was immediately oxidized under Pinnick conditions to yield acid $\mathbf{1 2 4}$ in 63% yield over 2 steps. Final deprotection with hydrochloric acid gives amino acid 125 as a hydrochloride salt.

Scheme 20: Mykhailiuk's approach towards 3-azabicyclo[3.1.1]heptanes.
A significantly shorter route to 3-azabicyclo[3.1.1]heptanes was discovered serendipitously (Scheme 21). ${ }^{46}$ When LAH reduction of nitrile 126 was attempted, none of the desired amine 127 was obtained. Instead, hydroxymethylene substituted 3-azabicyclo[3.1.1]heptane $\mathbf{1 2 8}$ was formed (isolated as the corresponding hydrochloride salt in 69% yield). Nitrile reduction could also be accomplished with $\mathrm{NaBH}_{4}-\mathrm{CoCl}_{2}$ system, albeit in a slightly lower yield. Nitrile 126 was obtained in two steps from commercially available tribromide 129 via intramolecular Williamson etherification and isolable oxetane 130, which was subsequently used to alkylate benzyl cyanide. The same sequence of transformations could be repeated with a wide range of nitriles with a general formula of $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{CN}$, where R is aryl, alkyl or a carboxylic acid derivative with yields in 35-89\% range.

Scheme 21: A more concise approach towards 3-azabicyclo[3.1.1]heptanes by Mykhailiuk et al.
Higher oxidation state derivatives of 3-azabicyclo[3.1.1]heptane were successfully tested in vitro as inhibitors of human placental aromatase. ${ }^{47}$

2.9. 3-cyclobutylazetidines

3-cyclobutylazetidines represent a unique class of elongated piperidine isosteres, and their synthesis is depicted in the following scheme (Scheme 22). ${ }^{48}$ Mesylation of commercially available alcohol 131 furnished mesylate 132 in an almost quantitative yield. The mesylate was then displaced with diethyl malonate anion to give diester 133. Both ester groups were reduced with LAH in a single operation to give diol 134 in 78% yield. A two-step protecting group exchange maneuver with hydrogenolysis and carbamate installation furnished tert-butyl carbamate 135 in 69% yield. Double Appel reaction gave dibromide 136, which was used to alkylate deprotonated diethyl malonate and establish the 3cyclobutylazetidine core (diester 137). Ester saponification gave diacid 138 quantitatively, which underwent thermal decarboxylation in the presence of pyridine to yield a useful building block 139 in 89% yield, albeit as a 1:1 mixture of diastereoisomers.

Scheme 22: Grygorenko's approach towards 3-cyclobutylazetidines
Literature describing the pharmacokinetic properties of 3-cyclobutylazetidine-containing drugs and drug candidates is limited, presumably due to their relative novelty as piperidine isosteres. However, examples can be found in patents. ${ }^{49}$

2.10. 3-azabicyclo[3.1.0]hexanes

Fair to excellent yields of 3-azabicyclo[3.1.0]hexanes can be obtained via copper-catalyzed ($2+1$) annulation between aryl methyl ketones 92 and N-methylmaleimide with di-tert-butylperoxide (DTBP) acting as the terminal oxidant (Scheme 23). ${ }^{50} \mathrm{~A}$ limited range of substituents on the aryl ring is tolerated (halides, esters, nitro groups, nitriles). The proposed reaction mechanism starts with the oxidation of [Cu'] to [Cu"]OtBu species, which subsequently oxidizes ketone 92 to α-acyl radical 140. This then adds across the double bond of N-methylmaleimide, giving rise to intermediate 141, which is intercepted with [Cu"]OtBu species to give [Cu"I] species 142. After enolization and ligand exchange intermediate 143 is formed, which, after reductive elimination, collapses to the final product 144 while
regenerating [Cu'] species. Global reduction of ketone 144 with LAH furnishes amino alcohol 145 in 75% yield.

Scheme 23: Antonchick's approach towards 3-azabicyclo[3.1.0]hexanes.
Another (2+1) annulation with N-tert-butylmaleimide was developed to access racemic 3 azabicyclo[3.1.0]hexanes (Scheme 24). ${ }^{51}$ A wide range of tosylhydrazones 146 derived from aromatic ketones was reacted with N-tert-butylmaleimide in the presence of catalytic amounts of palladium(II) acetate and superstoichiometric amounts of potassium carbonate as a base. Aromatic ketones bearing substituents like halides, esters, nitro groups, methyl ethers, thioethers, and trifluoromethyl groups are all well accommodated. Diazo compounds 147 , which are formed in situ, react with palladium(II) acetate to form palladium carbenoid species 148. Afterwards, a 4-membered palladacycle 149 with the larger substituent $R_{\llcorner }$pointing away from the maleimide moiety forms preferentially. Reductive elimination then gives final products $\mathbf{1 5 0}$. The obtained yields are in the $30-88 \%$ range and diastereoselectivities vary from $60: 40$ to $94: 6$.

Scheme 24: Wu and Jiang's approach towards 3-azabicyclo[3.1.0]hexanes.
Asymmetric synthesis of 3 -azabicyclo[3.1.0]hexanes was made possible by the development of copper-catalyzed [3+2] cycloaddition between cyclopropenes 151 and glycine imine derived azomethine ylide precursors 91 using Ph-phosferrox as a ligand (Scheme 25). ${ }^{52}$ While yields and enantioselectivities are excellent regardless of the R group of glycine imines 91 , the reaction scope is limited to symmetrical substrates. Cyclopropenes 151 were synthesized from diphenylacetylene 152 and then converted to 3 -azabicyclo[3.1.0]hexanes 153 equipped with two alkoxylcarbonyl functional handles.

Scheme 25: Yang and Deng's asymmetric approach towards 3-azabicyclo[3.1.0]hexanes.
Li et al. developed a linear approach for synthesizing the 3-azabicyclo[3.1.0]hexane core (Scheme 26). ${ }^{53}$ Firstly, substituted allyl amines 154 are protected with a variety of sulfonyl chlorides $\left(\mathrm{R}_{1} \mathrm{SO}_{2} \mathrm{Cl}\right)$ to yield sulfonamides 155 . Secondly, a copper-catalyzed oxidative coupling with terminal alkynes $\left(R_{2} \mathrm{CCH}\right)$ is performed to access ynamides 156. Substrates bearing ester or ketone moieties $\left(R_{2}=\right.$ COOEt, COMe, COPh) can also be prepared, although a different synthetic approach is required. Thirdly, these ynamides are cyclized in the presence of IMesAuCl complex, silver tetrafluoroborate, and pyridine N-oxide to give final products in $26-99 \%$ yields. According to the authors, the most probable mechanism for the last step involves the coordination of active gold species to the alkyne moiety of the substrate to form complex 157, which is then attacked by pyridine N-oxide to give intermediate 158. Subsequent 6-endo-trig cyclization forms carbocation 159, which is intercepted by the carbon-gold bond to give the desired product 160, thereby releasing the active gold species. The same transformation can also be catalyzed with copper, rhodium, or an organic photocatalyst. ${ }^{54-56}$

Scheme 26: Li's approach towards 3-azabicyclo[3.1.0]hexanes.
Gold catalysis can also be used to prepare 3-azabicyclo[3.1.0]hexanes with a similar substitution pattern from alkylated N-tosylpropiolamides 161 (Scheme 27)..57 These can be prepared in a two-step, one-pot operation from the corresponding propiolic acids 162 via alkylation of intermediate N tosylpropiolamides 163.4-acetylpyridine- N-oxide is used as the terminal oxidant in the final cyclization step, which yields 3-azabicyclo[3.1.0]hexanes 164 in $46-81 \%$ yields. Propiolic acids adorned with electron deficient arenes do not seem to be tolerated. The proposed mechanism starts with the attack of the aforementioned N-oxide to the gold-coordinated substrate 165 to give intermediate 166. Electron donation from gold results in the expulsion of 4-acetylpyridine. Finally, α-oxo gold carbenoid species 167 undergoes intramolecular cyclopropanation to furnish the desired products while closing the catalytic cycle.

Scheme 27: Zhang's approach towards 3-azabicyclo[3.1.0]hexanes.
Protected allyl-propargyl-amines 168 can be transformed into 3-azabicyclo[3.1.0]hexanes enantioselectively (Scheme 28). ${ }^{58}$ Starting with allyl alcohol, a Heck reaction is used to install aryl substituents $\left(\mathrm{R}_{1}\right)$ at the C2-position of alcohols 169. Mitsunobu reaction with N-tosylpropargylamine yields sulfonamides $\mathbf{1 7 0}$. Terminal acetylenes are deprotonated with n-BuLi and added into acetone to give tertiary alcohols 171. Hydroxy groups are acylated under standard reaction conditions with acetic anhydride and triethylamine to give the cyclization precursors 168. Cyclization then occurs in the presence of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, Norphos ligand, Hünig's base, and a hydride source $\left(\mathrm{R}_{2}=\mathrm{H}\right)$ or an alkyne. Silanes seem to be the most effective hydride source in this specific transformation. The reaction starts with a $\mathrm{Pd}(0)$ species undergoing oxidative addition to give intermediate 172. Migratory insertion results in the formation of neopentylic alkyl palladium(II) species 173, which undergoes a second migratory insertion to give the 3 -azabicyclo[3.1.0]hexane intermediate 174. Final reductive elimination with a hydride or acetylide gives the desired products 175 in 65-81\% yields and 88-99\% ee with silanes and $68-85 \%$ yields and $50-93 \%$ ee with alkynes. Instead of using palladium, this reaction can also be performed with superstoichiometric amounts of $\mathrm{TiCl}_{4}\left(\mathrm{R}_{2}=\mathrm{Cl}\right)$ or catalytically with calcium or ruthenium catalysts on related free tertiary alcohols in a racemic fashion (not shown). ${ }^{59,60}$

Scheme 28: Zhou's asymmetric approach towards 3-azabicyclo[3.1.0]hexanes.
Rhodium-catalyzed cyclopropanation of suitable hydrazone precursors 176 presents a convenient way of synthesizing racemic 3 -azabicyclo[3.1.0]hexanes (Scheme 29). ${ }^{61}$ The synthesis of the precursors mentioned above starts from 2-bromoacetaldehyde diethyl acetal 177. Alkylation with ptoluenesulfonamide gives N-alkylated sulfonamide 178. A variety of different allylic chlorides (179) can then be used in the following alkylation that gives penultimate precursors 180. Acetal hydrolysis and condensation with trisylhydrazide gives trisylhydrazones 176. These were shown to be superior to all other tested hydrazones. The proposed mechanism for this reaction begins with the formation
of diazo species 181 , which is then transformed into rhodium carbenoid 182 , which does the intramolecular cyclopropanation and furnishes the final products 183. While the yields for the synthesis of cyclization precursors are not reported, the yields for the subsequent rhodium catalyzed cyclopropanation lie in 73-91\% range. Chiral rhodium catalysts that were evaluated gave synthetically impractical enantioselectivities up to 43% ee.

Scheme 29: Wang and Zhou's rhodium catalyzed approach towards 3-azabicyclo[3.1.0]hexanes.
Aggarwal's group developed a transition metal-free synthesis of 3-azabicyclo[3.1.0]hexanes with an electron-withdrawing group attached at the C6-position from commercially available sulfonium salt 184 and electron-deficient allylic amines 185 (Scheme 30)..62 These were in turn prepared from allylic amines 186 and electron-deficient olefins 187 with cross metathesis or from amino acid derived α aminoaldehydes 188 and phosphonium salts 189 with the Masamune-Roush modification of the HWE reaction. The cyclization reaction presumably begins by elimination of hydrogen bromide from the sulfonium salt 184 to give Michael acceptor 185. The latter is attacked by allylic amines 185 . Sulfonium ylides 186 thus formed undergo intramolecular Michael addition. Stabilized anion 187 then displaces diphenyl sulfide to give the final products 188. Esters, nitriles, ketones and Weinreb amides are all tolerated, yielding the desired products in $43-71 \%$ yields and with perfect diastereoselectivity. Substrates derived from optically pure starting materials also give enantioenriched products without significant racemization.

Scheme 30: Aggarwal's approach towards 3-azabicyclo[3.1.0]hexanes.
3-azabicyclo[3.1.0]hexanes are also valuable to medicinal chemists. For example, compound DOV 21,947 (later named Amitifadine, not shown) bearing a 3-azabicyclo[3.1.0]hexane core reached clinical trials as an antidepressant with a unique therapeutic profile. ${ }^{63} 3$-azabicyclo[3.1.0]hexane-2,4-dione
derivatives proved to be more potent inhibitors of human placental aromatase than their piperidine counterparts. ${ }^{47}$

2.11. 2-azabicyclo[3.3.0]octanes

2-azabicyclo[3.3.0]octane with a carboxylic acid functional handle 189 can be synthesized in 3 steps from easily accessible starting materials (Scheme 31). ${ }^{64}$ Specifically, triethylamine-mediated alkylation of cyclopentanone-derived enamine 190 with serine-derived chloride 191 gives amino acid 192 in 85\% yield. Due to the facile elimination of hydrogen chloride from the former under the reaction conditions, amino acid 192 is obtained in a racemic form. Upon refluxing it in 2 M HCl , amide and ester functionalities are hydrolyzed and a cyclization to imino acid 193 occurs. The latter can be directly isolated after solvent removal. Final reduction with palladium on carbon in the presence of hydrogen furnishes the bicycle 189, although the yield for this transformation was not reported.

Scheme 31: Teetz's approach towards 2-azabicyclo[3.3.0]octanes.
In its enantiopure form, amino acid 189 constitutes an important part of drug Ramipril, which is an ACE inhibitor for managing hypertension. ${ }^{65}$

The 2-azabicyclo[3.3.0]octane scaffold can be synthesized enantioselectively from optically pure phenylglycinol 194 (Scheme 32). ${ }^{66}$ Its condensation with ester 195 provides tricyclic lactam 196 in 83\% yield. Global reduction with borane gives amino alcohol 197 in 91% yield. Finally, hydrogenolytic conditions employing ammonium formate as a hydrogen source are used to remove the auxiliary to give 2-azabicyclo[3.3.0]octane 198 in 77\% yield.

Scheme 32: Ennis' asymmetric approach towards 2-azabicyclo[3.3.0]octanes.
N-protected pyrrolidinone 199 can serve as a suitable starting material for the preparation of 5-oxo-2-azabicyclo[3.3.0]octane 200 (Scheme 33). ${ }^{67}$ Deprotonation of the pyrrolidinone with LDA and alkylation with iodide $\mathbf{2 0 1}$ gives, after workup, alkylated pyrrolidinone $\mathbf{2 0 2}$ in 67% yield. The lactam moiety is then protected with either methyl or ethyl cyanoformate, giving protected lactams 203 in $71-90 \%$ yields. Reduction with sodium borohydride in ethanol gives allyl silanes 204 in 60-80\% yields. Intramolecular Hosomi-Sakurai-type allylation gives penultimate bicyclic carbamates 205 with an exocyclic methylene group, which is ultimately cleaved with ozone to give final products $\mathbf{2 0 0}$ in $\mathbf{4 8 \%}$ yield over two steps.

Scheme 33: Remuson's approach towards 2-azabicyclo[3.3.0]octanes.
If an amine substituent at C6-positon is desired, 2-azabicyclo[3.3.0]octanes 206 and 207 can be prepared in 3 steps from amine $\mathbf{2 0 8}$ (Scheme 34). ${ }^{68}$ Intramolecular iodoamination of endocyclic olefin gives a mixture of diastereoisomeric iodides 209 and 210, which can be displaced with sodium azide and subsequently separated via column chromatography. Mild hydrogenolysis conditions allow for selective reduction of azides to corresponding amines 206 and 207 without cleaving the benzylic $\mathrm{C}-\mathrm{N}$ bond.

Scheme 34: Cohen's asymmetric approach towards 2-azabicyclo[3.3.0]octanes.

2.12. 3-azabicyclo[3.3.0]octanes

A symmetrical 3-azabicyclo[3.3.0]octane scaffold with a synthetically tractable carbonyl group at the C7-position is synthesized in three steps from allylpropargylamine $\mathbf{2 1 1}$ (Scheme 35). ${ }^{69}$ Boc protection gives carbamate 212 in 97% yield. The corresponding hexacarbonyldicobalt complex $\mathbf{2 1 3}$ is isolated via column chromatography after treatment of carbamate 212 with $\mathrm{Co}_{2}(\mathrm{CO})_{8}(73 \%$ yield). The complex is then adsorbed on silica and heated in inert atmosphere to effect a reductive Pauson-Khand cyclization and to yield the desired ketone 214.

Scheme 35: Becker's approach towards 3-azabicyclo[3.3.0]octanes.
3-azabicyclo[3.3.0]octanes arylated at the bridgehead position were prepared from bicyclic lactone 215 in three steps (Scheme 36). ${ }^{70}$ The authors described excellent yields for palladium-catalyzed α arylation, although exact values were not reported. Arylated lactones 216 were then opened with lithium alkyl amides to give the corresponding alcohols 217. Final borane reduction of the amide moiety and intramolecular N -alkylation with MsCl furnished the desired 3-azabicyclo[3.3.0]octanes 218.

Scheme 36: Shao's approach towards 3-azabicyclo[3.3.0]octanes.
Gliclazide (not shown) is an example of an anti-diabetic medication that features the 3azabicyclo[3.3.0]octane skeleton. ${ }^{71}$

2.13. 2-azabicyclo[2.2.0]hexanes

Dewar benzene is a famous valence isomer of benzene (Scheme 37, right). Its nitrogen-containing counterpart, Dewar pyridine (219), was prepared for the first time in 1970 by Wilzbach and Rausch by photoisomerization of pyridine in liquid phase (Scheme 37, left). ${ }^{72} 219$ has a half-life of 2 minutes at $25^{\circ} \mathrm{C}$, meaning that sufficient quantities for NMR analysis could only be prepared by irradiation at reduced temperatures $\left(0^{\circ} \mathrm{C}\right)$. If the irradiation was conducted in aqueous NaBH_{4} solution, 2 H -Dewar pyridine or 2-azabicyclo[2.2.0]hex-5-ene (220) was formed.

Scheme 37: Synthesis of Dewar pyridine and its reduction with sodium borohydride.
Further reduction would formally give 4H-Dewar pyridine or 2-azabicyclo[2.2.0]hexane (221). 4HDewar pyridines will be referred to as 2-azabicyclo[2.2.0]hexanes in the rest of the thesis.

In 1971, Fowler published a procedure for the reductive dearomatization of pyridine in the presence of methyl chloroformate that yielded a mixture of 1,4-(222) and 1,2-dihydropyridines (223) and indicated the possibility of transforming the 1,2-dihydropyridine $\mathbf{2 2 3}$ into an 2-azabicyclo[2.2.0]hex-5-ene system 224 under photochemical conditions (Scheme 38). ${ }^{73}$

Scheme 38: Fowler's synthesis and electrocyclization of dihydropyridine 223.
While dearomatization worked well in various solvents, THF was initially identified as the optimal one. However, if the reaction was run at or below $10^{\circ} \mathrm{C}$, a mixture of 1,2- and 1,4-dihydropyridines (223 and 222) was obtained, which could be separated by leveraging the difference in their reactivity towards dienophiles. A significant improvement was made with the discovery that at cryogenic temperatures and with methanol as a solvent, 1,2-dihydropyridine 223 can be obtained almost exclusively ($2-4 \%$ of 1,4 -isomer 222 remained). Although the exact yield was not reported, the experimental setup for preparation of bicyclic structure $\mathbf{2 2 4}$ was disclosed.

Since the initial discovery, Tsuchiya's group followed up on Fowler's work. 4-substituted pyridines bearing phenyl and methyl substituents 225 were dearomatized with sodium borohydride or phenylmagnesium bromide (Scheme 39). ${ }^{44}$ The corresponding 1,2-dihydropyridines 226 were irradiated with a high-pressure mercury lamp to give 2-azabicyclo[2.2.0]hex-5-enes 227 in 20-30\%
yields over two steps. However, the authors did not explore these scaffolds as piperidine isosteres but instead used them as intermediates en route to azepine derivatives $228\left(X=\mathrm{CH}_{2}, \mathrm{O}, \mathrm{S}, \mathrm{NCOOEt}\right)$.

Scheme 39: Tsuchiya's expansion of pyridine dearomatization / 4π-electrocyclization scope.
Two years later, the same group published a similar study towards fully unsaturated azepine derivatives 229 (Scheme 40). ${ }^{75}$ The authors showed that disubstituted 3,4-lutidine could be dearomatized to give the corresponding 1,2-dihydropyridine 230, which was, without isolation, exposed to ultraviolet irradiation to give 2-azabicyclo[2.2.0]hex-5-ene $\mathbf{2 3 1}$ in 24% yields over two steps. This was the first example of a trisubstituted 2-azabicyclo[2.2.0]hex-5-ene, although the synthetic utility of methyl substituents is limited.

Scheme 40: First successful dearomatization of a disubstituted pyridine.
Almost 30 years after Fowler's seminal work, two studies were published by Krow et al., in which they utilized state-of-the-art chemical transformations of the time for the preparation of epibatidine analogues based on 2-azabicyclo[2.2.0]hexane system. Epibatidine $\mathbf{2 3 2}$ is a highly potent agonist at nicotinic acetylcholine receptors, making it an appealing candidate for the treatment of neurological disorders. However, it causes considerable side effects like hypertension, neuromuscular paralysis, and seizures. Several epibatidine bioisosteres 233-236 were synthesized and evaluated (Figure 9). ${ }^{76}$

232

233

234

235

236

Figure 9: Structures of epibatidine (232) and its isosteres.
Starting from 2-azabicyclo[2.2.0]hex-5-ene 224, reductive Heck coupling with 2-chloro-5-iodopyridine gave a separable mixture of 5-exo $\mathbf{2 3 7}$ and 6-exo $\mathbf{2 3 8}$ isomers in what seemed to be temperature dependent yields (Scheme 41). Stereochemical inversion at the benzylic position was required and both isomers were taken forward separately. 5-exo-isomer $\mathbf{2 3 7}$ was brominated under Wohl-Ziegler conditions and then subjected to DBU-mediated elimination to give styrene 239. Olefin reduction using catalytic amounts of Adams' catalyst and carbamate deprotection with MeLi furnished 5-endoepibatidine bioisostere $\mathbf{2 4 0}$ in 17\% yield over 4 steps. Similarly, 6-exo-isomer $\mathbf{2 3 8}$ was brominated with NBS and AIBN to give benzylic bromide 241 in 58\% yield. Since elimination could not be performed, radical debromination with supersilane was employed. MeLi deprotection then gave 6-endoepibatidine isostere $\mathbf{2 4 2}$ in 14% yield over two steps. Out of two possible exo-epibatidine bioisosteres only 6-exo-isomer $\mathbf{2 4 3}$ was prepared from $\mathbf{2 3 8}$ by treatment with MeLi in 44% yield. Biological assays
revealed that none of the prepared bioisosteres were as active as epibatidine. This result was rationalized by the lack of a bridged ring structure, which is important for epibatidine's activity.

Scheme 41: Krow's synthesis of epibatidine isosteres based on 2-azabicyclo[2.2.0]hexane skeleton.
ABT-594 (244) is a nicotinic acetylcholine receptor (nAChR) modulator that was developed in search for epibatidine (232) analogues with better therapeutic profiles. As a part of advanced SAR studies, bioisostere 245 was synthesized and its activity was evaluated (Scheme 42). ${ }^{77}$ Dearomatization of pyridine with Grignard reagent $i \mathrm{PrOSiMe}_{2} \mathrm{CH}_{2} \mathrm{MgCl}$ and methyl chloroformate gave 1,2dihydropyridine 246 in quantitative yield. The crude 246 was oxidized under Fleming-Tamao conditions to the alcohol 247, which was then immediately irradiated with ultraviolet light to furnish 2-azabicyclo[2.2.0]hex-5-ene 248 in 19% yield over three steps. Olefin saturation with hydrogen and palladium on carbon yielded saturated alcohol 249. Mitsunobu etherification with 5-chloro-2hydroxypyridine yielded ether 250 in 51% yield. Final carbamate deprotection with MeLi gave the desired bicyclic ABT-594 bioisostere 245.

Scheme 42: Krow's synthesis of ABT-594 isosteres.
Its "pseudoaxial" isomer 251 was prepared from 4-(hydroxymethyl)pyridine (Scheme 43). Dearomatization under Fowler's conditions yielded 1,2-dihydropyridine 252 and subsequent photochemical electrocyclization furnished 2-azabicyclo[2.2.0]hex-5-ene 253 with a hydroxymethyl functional handle in 17% yield over two steps. Following the same endgame plan, alcohol 253 was transformed into ABT-594 isostere 251 in a 3-step sequence consisting of catalytic hydrogenation, Mitsunobu etherification and MeLi carbamate deprotection in an overall 18\% yield.

Scheme 43: Krow's synthesis of ABT-594 isosteres, continued.
Shifting away from epibatidine bioisosteres, Krow et. al. explored the possibility of transforming 2-azabicyclo[2.2.0]hex-5-ene scaffolds 254 into functionalized 2-azabicyclo[2.1.1]hexanes $\mathbf{2 5 5}$ in a series of publications (Scheme 44, left). ${ }^{78-84}$

Scheme 44: Miscellaneous uses of 2-azabicyclo[2.2.0]hex-5-enes.
Arakawa's group utilized 2-azabicyclo[2.2.0]hex-5-ene $\mathbf{2 2 4}$ to access azetidine-cis-2,3-dicarboxylic acid (256) in 5 steps (Scheme 44, middle). ${ }^{85}$

A review article highlighting the research of 2-azabicyclo[2.2.0]hex-5-ene chemistry from Krow's, Arakawa's, Tsuchiya's groups, and others was published in $2004 .{ }^{86}$ Since then, Nelson's group was interested in ring-opening polymerization of 2-azabicyclo[2.2.0]hex-5-enes $\mathbf{2 5 7}$ to arrive at polyazetidines 258 (Scheme 44, right). ${ }^{87}$

From this brief overview of several existing methodologies for constructing piperidine bioisosteres it is obvious that, in most cases, lengthy syntheses of linear precursors are required. If additional functionality is desired, the whole sequence must be repeated with suitably functionalized precursors, which can significantly impede SAR studies. Catalysis with precious transition metals and reactions with poor atom economy are difficult to avoid. The remaining modular approaches are often plagued with the formation of mixtures of diastereoisomers, which are difficult to separate or give products in higher oxidation states, which must be subsequently adjusted. Hence, the search for malleable piperidine isosteres, which not only overcome these challenges but are also convenient and inexpensive to synthesize and allow for programmable functional group installation, is incomplete. We hypothesized that 2-azabicyclo[2.2.0]hexanes, on the other hand, might offer a solution to these problems. They can be synthesized in 3 steps from commercially available pyridines without relying on precious metal catalysis. However, our literature survey revealed that development and use of this intriguing scaffold remained mainly stagnant since Krow's work 20 years ago. It became obvious to us that its chemistry did not age well with the development of more modern reactions. Therefore, we took it upon ourselves to further gauge the potential of 2-azabicyclo[2.2.0]hexane core and evaluate its suitability for inclusion in SAR studies and related medicinal chemistry campaigns as a potential piperidine bioisostere.

3. 4H-DEWAR PYRIDINES: DEAROMATIVE APPROACH TOWARDS PROGRAMMABLE PIPERIDINE ISOSTERES

3.1. Exit vector analysis (EVA)

We began our work by selecting a handful of the most represented piperidine bioisosters and performing exit vector analysis on their thermodynamically most favorable conformers. Azetidine, pyrrolidine, 3-azabicyclo[3.1.0]hexane, 3-azabicyclo[3.2.0]heptane and 2-azaspiro[3.3]heptane were chosen. Given the prevalence of 1,4-disubstituted piperidines in FDA-approved drugs, two exit vectors were placed on each piperidine isostere. The first was placed on the nitrogen atom and the second was placed intuitively on the carbon skeleton so that the overlap with 1,4-disubstituted piperidine would be the greatest. To reduce computational time, methyl groups were selected as the simplest exit vectors. Conformational search followed by energy minimization resulted in the following geometries A-F (Figure 10).
A

B

C

D

E
F

Figure 10: Optimized geometries of 1,2-disubstituted piperidine and its isosteres.
Four parameters were then evaluated (Figure 11):

- Distance between the exit vector bearing nitrogen and carbon atoms $\mathrm{d}(\mathrm{N}-\mathrm{C})$,
- Dihedral angle $\theta(\mathrm{Me}-\mathrm{N}-\mathrm{C}-\mathrm{Me})$,
- Torsional angle $\phi_{1}(\mathrm{Me}-\mathrm{N}-\mathrm{C})$,
- Torsional angle $\phi_{2}(\mathrm{~N}-\mathrm{C}-\mathrm{Me})$.

The $\mathrm{N}-\mathrm{C}$ distance and dihedral angle in 3-azabicyclo[3.1.0]hexane isostere (B) match well with the respective values for piperidine (A). However, this isostere has a 22° smaller torsional angle ϕ_{1} than the reference value. The azetidine isostere (\mathbf{C}) has the shortest $N-C$ distance ($2.1 \AA$) out of all isosteres evaluated. Additionally, its exit vectors point in opposite ways compared to piperidine $\mathbf{A}\left(\Delta \theta=180^{\circ}\right)$. The same conclusion can be made for pyrrolidine isostere \mathbf{D}, although the $\mathrm{N}-\mathrm{C}$ distance difference is not as large ($\Delta \mathrm{d}=0.5 \AA$). 2-azaspiro[3.3]heptane (\mathbf{E}) can be considered as an elongated piperidine isostere, since its $\mathrm{N}-\mathrm{C}$ distance is $1.2 \AA$ longer compared to the one found in parent piperidine \mathbf{A}. Finally, the $\mathrm{N}-\mathrm{C}$ distance in 3 -azabicyclo[3.2.0]heptane isostere \mathbf{F} matches almost perfectly with the reference value. However, the dihedral angle θ and torsional angle ϕ_{2} differ considerably (103° and 11° difference, respectively.)

	d [Å]	$\theta\left[{ }^{\circ}\right]$	$\phi_{1}\left[^{\circ}\right]$	$\phi_{2}\left[{ }^{\circ}\right]$
A	2.9	180	158	151
B	3.2	180	136	161
C	2.1	0	147	145
D	2.4	23	154	146
E	4.2	121	153	151
F	3.0	77	162	162

Figure 11: EVA of piperidine and its isosteres.
Next, the same analysis was performed on the "pseudoequatorial" 2-azabicyclo[2.2.0]hexane isostere (G) (Figure 12).

G

A

	$\mathbf{d}[\AA \AA]$	$\boldsymbol{\theta}\left[{ }^{\circ}\right]$	$\left.\boldsymbol{\phi}_{1}{ }^{\circ}{ }^{\circ}\right]$	$\left.\boldsymbol{\phi}_{\mathbf{2}}{ }^{\circ}{ }^{\circ}\right]$
\mathbf{A}	2.9	180	158	151
\mathbf{G}	2.8	-56	169	164

Figure 12: EVA comparison between "pseudoequatorially" substituted 2-azabicyclo[2.2.0]hexane (G) and 1,4-disubstituted piperidine with $\mathrm{C4}$-substituent in axial position (A).

It compares very similarly to 3-azabicyclo[3.2.0]heptane isostere \mathbf{F}. The $\mathbf{N}-\mathrm{C}$ distance in \mathbf{G} is about 0.1 \AA A shorter compared to that of piperidine A. Torsional angles ϕ_{1} and ϕ_{2} are 11° and 13° larger than desired values. Despite the seemingly large difference between dihedral angles ($\Delta \theta=124^{\circ}$), the computed structures of \mathbf{G} and \mathbf{A} overlap reasonably well (Figure 13).

Figure 13: Structural overlap between computed structures \boldsymbol{A} and \mathbf{G}.
Finally, the EVA was used to compare "pseudoaxial" 2-azabicyclo[2.2.0]hexane (H) with its piperidine counterpart, that is, 4 -substituted piperidine scaffold with its substituent locked in axial position (I) (Figure 14).

H

I

	$\mathbf{d}[\AA ̊]$	$\boldsymbol{\theta}\left[{ }^{\circ}\right]$	$\left.\boldsymbol{\phi}_{1}{ }^{\circ}{ }^{\circ}\right]$	$\left.\boldsymbol{\phi}_{\mathbf{2}}{ }^{\circ}{ }^{\circ}\right]$
\mathbf{H}	2.9	0	159	112
\mathbf{I}	3.1	62	122	119

Figure 14: EVA comparison between "pseudoaxially" substituted 2-azabicyclo[2.2.0]hexane (H) and 1,4-disubstituted piperidine with C4-substituent in axial position (I).

With only 0.2 A longer $\mathrm{N}-\mathrm{C}$ distance and 7° larger torsional angle ϕ_{2}, the "pseudoaxial" 2azabicyclo[2.2.0]hexane (H) differs mostly in θ and ϕ_{1} values (62° and 37°, respectively). The structural overlap between \mathbf{H} and \mathbf{I} was again satisfactory (Figure 15).

Figure 15: Structural overlap between computed structures \boldsymbol{H} and \boldsymbol{I}.
With these results in hand, our focus shifted towards optimizing the electrocyclization step, which is usually the lowest yielding step in the literature and exploring the full substrate scope of 4π electrocyclization.

3.2. Optimization of 4π-electrocyclization

Literature protocols usually describe photolysis of unpurified 1,2-dihydropyridines in DCM or acetone. Besides setting up a control experiment with 1,2-dihydropyridine $\mathbf{2 2 3}$ in DCM, we screened additional solvents and tried to study the effects of added benzophenone and changing the reaction concentration (Table 2). Yields were determined with ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixtures in the presence of 1,3,5-trimethoxybenzene as an internal standard.

Table 2: $\mathbf{2 2 3} 4 \pi$-electrocyclization optimization

Entry	Solvent	Concentration [M]	Additive	224 NMR yield [\%]
1	DCM	0.1	-	34
2	DCM	0.2	-	19
3	DCM	0.5	-	n.d.
4	DCM	0.1	10 mol\% benzophenone	18
5	$\mathrm{Et}_{2} \mathrm{O}$	0.1	-	36
6	EtOAC	0.1	-	37^{*}
7	MeCN	0.1	-	24^{*}
8	MeOH	0.1	-	10

Reactions performed on 0.2 mmol scale. *Average of 2 runs
Increasing the reaction concentration had a detrimental effect on the reaction yield (Table 2, entries $1-3$) as did the addition of benzophenone (Table 2, entry 4). Diethyl ether and ethyl acetate gave slightly better results than DCM (Table 2, entries 5 and 6). The reaction still occurred in acetonitrile
and methanol, albeit with lower efficiency (Table 2, entries 7 and 8). Side reactivity was observed in methanol as unidentified side products were formed.

From a practical perspective, higher concentrations were employed on larger scales to facilitate material throughput. Even though ethyl acetate seems to be the best solvent for the $4 \pi-$ electrocyclization, acetone was also used for preparation of 2-azabicyclo[2.2.0]hex-5-enes due to its ability to solubilize decomposition products. While in most cases, both 310 nm and 350 nm wavelength could be used for the 4π-electrocyclization, shorter reaction times could be achieved with 310 nm irradiation. Likewise, reactions performed in borosilicate glassware were slower than their counterparts run in quartz reaction vessels.

3.3. Scope of dearomatization / 4π-electrocyclization sequence

Routine 4π-electrocyclizations of 1,2-dihydropyridine 223 in acetone as a solvent gave the desired product 224 in 19-35\% yield range. Replacing acetone with ethyl acetate as the reaction solvent increased the reaction yield to 58%, consistent with the solvent optimization study described above. By using CbzCl instead of MeOCOCl , dearomatization of pyridine proceeded in 77% yield. Subsequent 4π-electrocyclization gave Cbz protected 2-azabicyclo[2.2.0]hex-5-ene 259 in 43\% yield (Scheme 45).

Scheme 45: The scope for dearomatization / 4π-electrocyclization sequence.
Dearomatization of C2-substituted pyridines was challenging (chapter 3.4). C3-substituted pyridines, on the other hand, successfully underwent dearomatization with NaBH_{4} and MeOCOCl to give the corresponding 1,2-dihydropyridines, which were immediately subjected to electrocyclization conditions with minimal purification. While dearomatization yields for these substrates were fair to good (50-81\%), the subsequent electrocyclization yields were poor (9-18\%). C4-substituted 2-azabicyclo[2.2.0]hex-5-enes, bearing fluoro- (260), chloro- (261), bromo- (262) and protected
hydroxymethylene group (263) were thus synthesized for the first time. The latter can serve as a precursor to an unnatural amino acid (chapter 5.3).

Dearomatization yields for C4-substituted pyridines were on par with C3-substituted pyridines (68$81 \%)$. We were delighted, however, to find that subsequent electrocyclization yields for the former were far superior (35-77\%). In this manner, C5-substituted 2-azabicyclo[2.2.0]hex-5-enes, bearing phenyl- (264), bromo- (265), methoxy- (266), phenylmethylene- (267), protected amine (268) and protected hydroxymethylene group (269) were prepared.

2-azabicyclo[2.2.0]hex-5-ene bearing a TBS-protected hydroxymethylene group (269) was accessed in 44% yield over two steps from commercially available 4-hydroxymethylpyridine, which presents a 27% increase in yield compared to the intermediate in Krow's synthesis of ABT-594 bioisostere (Scheme 43). Like its constitutional isomer $\mathbf{2 6 3}$, this substrate can also be transformed into an unnatural amino acid derivative or a diamine linker. The latter can also be synthesized from enimide $\mathbf{2 6 8}$ (chapter 5.3), which itself was prepared in 56% yield over 2 steps.

Consistent with the observation from Tsuchiya et al. that disubstituted pyridines are tolerated in the reductive dearomatization / 4π-electrocyclization sequence, disubstituted 2-azabicyclo[2.2.0]hex-5enes bearing synthetically useful hydroxymethylene 270 and aminomethylene groups 271 were synthesized. ${ }^{75}$ The requisite pyridines $\mathbf{2 7 4}$ and $\mathbf{2 7 6}$ were prepared from commercially available starting materials in 3 and 4 steps, respectively (Scheme 46).

Scheme 46: Synthesis of disubstituted pyridines 274 and 276.
Deprotonation and lithiation of commercially available 4-bromopyridinium chloride followed by addition of DMF yielded unstable aldehyde $\mathbf{2 7 2}$ in 63% yield, which was immediately reduced to the significantly more stable benzylic alcohol 273. The material obtained after reduction step was sufficiently pure to be directly subjected to TBSCl / imidazole protection conditions to give disubstituted pyridine 274 in $\mathbf{7 5 \%}$ yield over 2 steps. Alternatively, the subjection of the benzylic alcohol $\mathbf{2 7 3}$ to thionyl chloride afforded benzylic chloride $\mathbf{2 7 5}$ as a hydrochloride salt, which was then used to alkylate pyrrolidine to give tertiary amine 276 in 61% over 3 steps.

While dearomatization of protected (4-bromopyridin-3-yl)methanol 274 was reproducible and uneventful, the dearomatization of 4-bromo-3-(pyrrolidin-1-ylmethyl)pyridine $\mathbf{2 7 6}$ proved to be more challenging. Careful temperature control was required to achieve synthetically useful yields of the desired 1,2-dihydropyridine (277) (Scheme 47).

Scheme 47: Dearomatization of 276 and unexpected side reactivity.
If the reaction mixture was left at cryogenic temperatures $\left(-78^{\circ} \mathrm{C}\right)$ and was not allowed to warm up, only partial consumption of starting material 276 was observed, regardless of the excess of reagents used. If, however, the reaction was left to warm above $-15{ }^{\circ} \mathrm{C}$, the desired reaction product 277 reacted further with excess MeOCOCl and MeOH to give side product 278. Although the exact mechanism of this transformation was not elucidated, one can envision chloroformate-mediated amine dealkylation followed by direct (paths a and b) or indirect methanol trapping (path c).

Next, with synthetic utility in mind, we explored the scope of nucleophiles that can be used in the dearomatization step instead of NaBH_{4}. We confirmed that products of dearomatization prepared with certain silyl ketene acetals, Grignard reagents and allyltributystannane can undergo subsequent 4π-electrocyclization, giving rise to C3-substituted 2-azabicyclo[2.2.0]hex-5-enes.

Silyl ketene acetals are soft nucleophiles, which prefer to attack activated pyridinium species $\mathbf{2 7 9}$ in a 1,4-fashion (Scheme 48) to give 1,4-dihydropyridines $\mathbf{2 8 0}$. Similarly, organozincs and organocuprates prefer 1,4-addition to 1,2-addition. Conversely, Grignard reagents, organotin, and organocadmium compounds give higher selectivity for 1,2-addition and the corresponding 1,2-dihydropyridines 281. Selectivity of the addition also depends on the size of activating group, with larger R groups favoring 1,4 -addition. The reaction solvent selection influences reaction outcome as well. ${ }^{88}$

Scheme 48: Factors influencing regioselectivity of nucleophilic addition to pyridinium species 279.
By blocking the C4 position one can achieve C2-selective pyridine dearomatization with soft nucleophiles. Thus, 4-methylpyridine was dearomatized using methyl trimethylsilyl dimethylketene acetal in the presence of Troc- Cl as the activating reagent in 36% yield. 4π-electrocyclization of the crude dihydropyridine could only be performed using 310 nm lamps, and 34% yield of the desired ester 282 was obtained (Scheme 45). Longer wavelengths led to nonspecific decomposition.

Attempts at accessing 2-azabicyclo[2.2.0]hex-5-ene 283 without a methyl group at C5-position by using pyridine instead of 4-methylpyridine were unsuccessful as 1,4-addition (284) occurred exclusively. None of the desired 1,2-dihydropyiridne (285) was observed, regardless of the solvent and activating group used (DCM, $\left.\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}, \mathrm{MeOH} ; \mathrm{MeOCOCl}\right)$ (Scheme 49).

Scheme 49: Attempts at synthesizing 283.
Silyl ketene acetal 286 was used to dearomatize 4-phenylpyridine in the presence of Troc- Cl (Scheme 50). 4π-electrocyclization of ester 287 was not successful, presumably due to competing 6π electrocyclization. We hypothesized that if the ester moiety was reduced, the desired reactivity would be restored and 4π-electrocyclization would become the prevailing pathway. Ester $\mathbf{2 8 7}$ was therefore saponified with LiOH in methanol and the resulting carboxylic acid (not shown) was reduced via the corresponding mixed anhydride with NaBH_{4}. Finally, a cyclization reaction was effected with NaH to give bicycle 288 in 16% yield over 4 steps. Our hypothesis turned out to be correct, as irradiation with 310 nm lamp provided the desired 4-4-6-tricycle 289 in 18% yield (30% BRSM).

Scheme 50: Synthesis of tricycle 289.
Dearomatization of pyridine with allylmagnesium chloride in the presence of MeOCOCl was low yielding (16\%). Literature search revealed that allyltributylstannane is a superior nucleophile for this transformation. ${ }^{89}$ Thus, we were able to obtain 79% yield of the desired 1,2-dihydropyridine (290, not shown), which was then immediately subjected to 310 nm irradiation to give C3 substituted 2-azabicyclo[2.2.0]hex-5-ene (291) with a synthetically tractable allyl group, albeit in 18% yield (Scheme 45). Vinyl Grignard reagent performed significantly better than its allylic counterpart and gave 1,2dihydropyridine 292 in 71\% yield (Scheme 51).

Scheme 51: Dearomatization / 4π-electrocyclization sequence with vinylmagnesium bromide as a nucleophile.
To our surprise, however, 1,2-dihydroypridine 292 did not undergo productive 4π-electrocyclization but instead gave us a complex mixture of products (presumably due to 6π electrocyclic ring opening and olefin isomerization. Terminal olefin in 292 was then subjected to oxidative hydroboration with 9BBN and sodium perborate tetrahydrate to give alcohol 293 in 73% yield over 2 steps. By functionalizing the terminal olefin 4π-electrocyclization proceeded as expected and yielded the desired 2-azabicyclo[2.2.0]hex-5-ene 294 in 26\% yield (Scheme 51).

The stereochemistry of C3 substituted products was assigned based on similarity to Krow's work in which he and his coauthors explained the complete torquoselectivity (exclusive formation of endo
products) in 1,2-dihydropyridine 4π-electrocyclizations as a consequence of the least nuclear motion pathway principle. ${ }^{81}$

Finally, the protecting group substrate scope was explored. Methyloxycarbonyl group was initially chosen to facilitate substrate purification and characterization. 2-azabicyclo[2.2.0]hex-5-ene products bearing Cbz (295), Alloc (296) or Troc groups (297, not shown) could be prepared as well (Scheme 45). The differences in dearomatization yields are negligible ($80-89 \%$; average $86 \% \pm 6 \%$). However, $4 \pi-$ electrocyclization yields differed considerably with methyloxycarbonyl protected substrate giving the highest yield (269, 55\%), followed by Alloc- (296, 43\%), Cbz- (295, 31\%) and Troc- (297, 14\%) protected substrates.

A trend became apparent after examining the scope of pyridines that undergo dearomatization and the scope of 1,2-dihydropyridines that undergo olefin 4π-electrocyclization. By only considering substrates with the same nitrogen protecting group (methyloxycarbonyl), the following table of results was obtained (Table 3).

Table 3: 4л-electrocyclization yields based on 1,2-dihydropyridine substitution pattern.

1,2-dihydropyridine substitution pattern	Electrocyclization yield range [\%]	Average yield [\%]
C2	$18-26$	22
C3	$9-18$	14
C4	$35-77$	60
C3 + C4	$24-35$	30

4π-electrocyclizations of C4-substituted 1,2-dihydropyridines gave the highest yields, followed by C2and finally by C3-sustituited 1,2-dihydropyridines. The average 4π-electrocyclization yield of C3, C4disubstituted 1,2-dihydropyridines lies in between the average yields for C3- and C4monosubsitituited 1,2-dihydropyridines. The origins of these trends warrant further investigation.

Admittedly, electrocyclization yields for several substrates are poor. This drawback of 2-azabicyclo[2.2.0]hex-5-ene synthesis is ameliorated by the following points:

- there are little practical limitations to dearomatization and electrocyclization scale-ups,
- all starting materials are commercially available and affordable.
- reaction economy is high.
- unique chemical space is accessed in two steps.
- in most cases only one chromatographic purification is needed,
- no precious transition metals are required.

Despite these facts, our goal is to improve electrocyclization yields across the board. We surmise that 1,2-dihydropyridine decomposition is outcompeting the desired electrocyclization. Our hypothesis will be tested by performing the electrocyclization step in a flow chemistry setting. While dearomatization of unsubstituted pyridine with NaBH_{4} in the presence of MeOCOCl proceeds in 69% yield, the same transformation can be accomplished with commercially available 1 M DIBALH solution in DCM (Scheme 52).

Scheme 52: Dearomatization of pyridine under homogenous conditions.
This ensures the homogeneity of the reaction mixture throughout the process and gives the desired 1,2-dihydropyridine 223 in a comparable 59\% yield and almost perfect chemoselectivity (6\% of the 1,4-dihydropyridine formed as well). This solution could be hypothetically irradiated in a flow system to streamline the production of $\mathbf{2 2 4}$ even further.

3.4. Limitations

Dearomatization of several examined pyridines failed. Additionally, a few of the synthesized 1,2dihydropyridines did not undergo productive 4π-electrocyclization. An overview of unsuccessful substrates is shown in the following figure (Figure 16).

Low yield

No reactivity

Chemoselectivity issues

Chemoselectivity issues

Chemoselectivity issues

Figure 16: Pyridine dearomatization limitations.
When subjected to dearomatization conditions, C2-substituted pyridines either returned starting material (as in the case of 2-trimethylsilylpyridne) or dearomatization yields were poor (2-picoline; $\leq 13 \%$), which precluded us from accessing C1-substituted 2-azabicyclo[2.2.0]hex-5-enes directly. C3substituted pyridines with electron-withdrawing groups like 3-trifluoromethylpyridine or nicotinonitrile suffered from chemoselectivity issues, consistent with findings of Sundberg et al. ${ }^{90}$ The same problem was observed for 3-bromo-5-methylpyridine.

As alluded to earlier, 1,2-dihydropyridines bearing a $\mathrm{CH}_{2} \mathrm{COOMe}$ or a vinyl group (287 and 292) at C2 position gave complex mixtures, presumably due to preferential 6π-electrocyclic ring opening. Not surprisingly, a substrate with a phenyl group at the aforementioned position (298) behaved analogously (vide infra). All these substrates have an sp^{2} hybridized carbon (tautomer form for ester 287) at the C2-position in common. During the course of our studies, a report corroborating our results was published independently by Williams et al. (Scheme 53). ${ }^{91}$ In their case, 1,2-dihydropyridine 292 underwent photochemical 6π-electrocyclic ring opening to give Z, E-azatetraene 299, which isomerized to Z, Z-azatetraene $\mathbf{3 0 0}$. Subsequent 8π-electrocyclization gave dihydroazocine $\mathbf{3 0 1}$, which underwent 4π-electrocyclization to yield the final product 302. Their work, however, focused only on 1,2-dihydropyridine $\mathbf{2 9 2}$ and the scope of the aforementioned cascade was not explored.

Scheme 53: Ring opening of 292 under photochemical conditions by Williams et al.
A complete list of failed substrates is shown in the next figure (Figure 17). Observation of electrocyclic ring opening with enepivalamide $\mathbf{3 0 3}$ was puzzling, indicating that perhaps only certain types of protecting groups lead to the desired products. Dihydropyridine 304, derived from pyridine, DMAD
and methyl pyruvate was left unchanged, regardless of the wavelength used (310 nm or 254 nm). Irradiation of nicotinic acid-derived 1,2-dihydropyridines (305 and 306) lead to nonspecific degradation products. 1,2-dihydropyridines bearing sp^{2} or sp hybridized substituents at the C3postion ($\mathbf{3 0 7}$ and 308) were not affected by ultraviolet light as their extended π-system completely shut down reactivity. 4-aminopyridine-derived 1,2-dihydropyridines 309 and 310 gave us a complex mixture and rearomatization, respectively, presumably due to their poor solubility in commonly used organic solvents. These results demonstrate the importance of selecting an appropriate protecting group for the 4 -amino substituent for successful product formation (compare with $\mathbf{2 6 8}$, Scheme 45). Finally, our excitement about the possibility of accessing 1,2-dihydropyridines 311 and 312 bearing synthetically versatile -BPin and medicinally interesting - CF_{3} groups was short-lived as both electrocyclization attempts were unsuccessful, leading to decomposition and complex mixture of products, respectively.

292
6π-electrocyclization

305
Chemoselectivity issues

298
6π-electrocyclization

306
Chemoselectivity
issues

310 Rearomatization

287
6π-electrocyclization

307
No reaction

311
Decomposition

303
6π-electrocyclization

304
No reaction
 309 Chemoselectivity issues

Figure 17: 4π-electrocyclization limitations.

4. OLEFIN FUNCTIONALIZATION AND SKELETAL EDITING

Having explored the scope of substituted pyridines amenable to dearomatization/4 $\pi-$ electrocyclization sequence, we thought of functionalizing 2-azabicyclo[2.2.0]hex-5-enes even further to demonstrate their suitability as piperidine isosteres. To achieve this goal, we wanted to exploit the inherent ring strain of 2-azabicyclo[2.2.0]hex-5-ene scaffold and test more modern olefin functionalization methodologies. A comprehensible but not exhaustive roadmap of olefin functionalization reactions is presented in the following scheme (Scheme 54).

Scheme 54: Functionalization of 224 and skeletal editing of the 2-azabicyclo[2.2.0]hex-5-ene scaffold (major isomers depicted). (a) $9 \mathrm{~mol} \% \mathrm{PtO}_{2}, 1 \mathrm{~atm} \mathrm{H}_{2}, \mathrm{MeOH}, \mathrm{RT}, 1 \mathrm{~h}, 78 \%$, b) $1.25 \mathrm{~mol} \%(\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl})_{2}, 2.5 \mathrm{~mol} \%$ xantphos, 1.2 eq . HBPin, THF, $R T, o / n, 92 \%$, r.r. $=1.7: 1, c) 1.5$ eq. morpholine, $5 \mathrm{~mol} \% \mathrm{Ni}(D M E) \mathrm{Cl}_{2}, 1 \mathrm{~mol} \%\left(\operatorname{Ir}\left[d F\left(C F_{3}\right) p p y\right]_{2}(d t b p y)\right) P F_{6}, 5 \mathrm{~mol} \% \mathrm{dtbbpy}$, DMF, blue LEDs, RT, 2 h, see experimental section for r.r., d) $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 10 \mathrm{~mol} \%$ xantphos, 2 eq. Arl, 2 eq. HCOOH, 3 eq. piperidine, $30^{\circ} \mathrm{C}$ or $50{ }^{\circ} \mathrm{C}$, e) 2 eq . $\mathrm{Fe}_{2}(\mathrm{ox})_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 6.4 \mathrm{eq} . \mathrm{NaBH}_{4}, 3$ eq. $\mathrm{NaN}_{3}, \mathrm{O}^{\circ} \mathrm{C}, 35 \mathrm{~min}, 52 \%$, r.r. $\left.=2.0: 1, f\right) 18 \mathrm{~mol} \%$ $\mathrm{PtO}_{2}, 1 \mathrm{~atm} \mathrm{H}_{2}, \mathrm{MeOH}, \mathrm{RT}, \mathrm{o} / \mathrm{n}$, quant. g) 3 eq. EtOOCNHONs, $21 \mathrm{~mol} \% \mathrm{BnEt}_{3} \mathrm{NCl}, 6$ eq. $\mathrm{NaHCO}_{3}, \mathrm{DCM} / \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to $\mathrm{RT}, 4 \mathrm{~h}$, 44% over 2 cycles, h) $10 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{C}, 1 \mathrm{~atm} \mathrm{H}_{2}, \mathrm{MeOH}, \mathrm{RT}, \mathrm{o} / \mathrm{n}, 72 \%$, i) 3 eq. " 100% " mCPBA, 6 eq. $\mathrm{NaHCO}_{3}, \mathrm{O}^{\circ} \mathrm{C}$ to RT , o/n, 67\%, j) $10 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{C}, 1 \mathrm{~atm} \mathrm{H}_{2}, \mathrm{MeOH}, ~ R T, 2 \mathrm{~h}, 73 \%$.

4.1. Hydrogenation

Olefin in 224 could be most conveniently reduced with Adams' catalyst in the presence of hydrogen (1 atmosphere) to yield, after simple filtration, 2-azabicyclo[2.2.0]hexane 313 in 78% yield (Scheme 54).

4.2. Hydroboration

If uncatalyzed hydroboration with borane THF complex was performed on olefin 259, three products were isolated after oxidation with sodium perborate (Scheme 55). Analysis of their 1D and 2D NMR spectra revealed that, besides the expected alcohols 314 and iso-314, the third product formed was ring-opened alcohol 315.

Scheme 55: Uncatalyzed oxidative hydroboration of 259.
Since only the more medicinal chemistry-relevant C5-alcohol 314 was desired, this route provided insufficient material throughput. We tried to salvage some of the starting material by recycling the less desired C6-alcohol iso-314 in two steps (Scheme 56).

Scheme 56: Recycling of the less desired oxidative hydroboration isomer.
Tosylation was unsuccessful, but under similar reaction conditions mesylation of the secondary alcohol furnished mesylate iso-316 in quantitative yield. Subsequent elimination was most readily achieved with KOtBu in anhydrous tert-butanol as the solvent to give back the olefin 259. Other elimination conditions and base-solvent combinations like DBU/toluene, KOtBu/DMSO, $\mathrm{Tf}_{2} \mathrm{O} / \mathrm{DBU}$, $\mathrm{SOCl}_{2}, \mathrm{DEAD} / \mathrm{PPh}_{3}$, and Burgess' reagent gave inferior results.

Still unsatisfied with poor selectivity and laborious recycling of starting material, we explored transition metal-catalyzed hydroboration. Fortunately, no ring opening was observed with rhodiumcatalyzed hydroboration, however, this reaction still required some optimization (Table 4). Methyloxycarbonyl protected 2-azabicyclo[2.2.0]hex-5-ene (224) was chosen as a model substrate to facilitate reaction mixture analysis. An initial hit was observed with catalytic amounts of Wilkinson's catalyst at room temperature. 38\% yield of 1: 1.8 mixture of boronic acid pinacol esters 317 and iso317 was obtained (Table 4, entry 1). Subsequently, a small library of mono- and bidentate phosphine ligands was evaluated in combination with $\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2}\right.$ as the rhodium source (Table 4, entries $2-$ 11). While neither of boronic acid pinacol esters could be obtained selectively, xantphos gave us a 1.7 : 1 mixture, favoring the desired isomer 317 (Table 4, entry 2). DPEphos, on the other hand, gave us a 1 : 2.4 mixture, favoring the less desired isomer iso-317 (Table 4, entry 7). The use of a cationic rhodium precatalyst, an iridium precatalyst, different solvents, nitrogen protecting groups and reaction temperatures were additionally tested (Table 4, entries 12-23). To our dismay, the constitutional isomer ratio could not be swayed further in either direction.

Table 4: Optimization of transition metal-catalyzed hydroboration

Entry	Temp.	Solvent	Metal source		Yield [\%]	317/iso-317
1	RT	THF	[$\left.\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}\right]$	/	38	1 : 1.8
2	RT	THF	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	xantphos	60	1.7 : 1
3	RT	THF	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	BINAP	45	1.4 : 1
4	RT	THF	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	$\mathrm{P}(\mathrm{o} \text {-tol })_{3}$	64	1.1 : 1
5	RT	THF	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	dppe	39	1.2 : 1
6	RT	THF	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	dppf	52	1 : 1.7
7	RT	THF	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	DPEphos	63	1 : 2.4
8	RT	THF	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	dppb	51	$1: 1.5$
9	RT	THF	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	CyDPEphos	51	1.1 : 1
10	RT	THF	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	sphos	26	1.2 : 1
11	RT	THF	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	CyJohnphos	27	1:1.2
12	RT	PhMe	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	xantphos	28	1.6 : 1
13	RT	DCM	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	xantphos	N.R.	N.R.
14	RT	$\mathrm{Et}_{2} \mathrm{O}$	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	xantphos	27	1.9 : 1
15	RT	dioxane	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	xantphos	20	1.5 : 1
16	RT	MeCN	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	xantphos	N.R.	N.R.
17	RT	THF	[$\left.\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}$	xantphos	63	1.2 : 1
18	RT	THF	[$\left.\mathrm{Rh}(\mathrm{COD})(\mathrm{MeCN})_{2}\right] \mathrm{BF}_{4}$	xantphos	69	1:1
19	RT	THF	$[\operatorname{lr}(\mathrm{COD}) \mathrm{Cl}]_{2}$	xantphos	N.R.	N.R.
20	RT	THF	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	xantphos	33	1.6 : $1^{* *}$
21	$0^{\circ} \mathrm{C}$	THF	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	xantphos	N.D.	1.3 : 1*
22	$0^{\circ} \mathrm{C}$	$\mathrm{Et}_{2} \mathrm{O}$	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	xantphos	60	1:1*
23	$60^{\circ} \mathrm{C}$	THF	$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$	xantphos	60	1.6 : 1^{*}

N.R. = no reaction, N.D. = not determined. ${ }^{*}$ Determined with ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture. ** 259 (Cbz) was used instead of 224 (COOMe).

The final improvement of the yield was achieved after realizing the limited stability of boronic acid pinacol esters 317 and iso-317 towards silica gel column chromatography. By increasing the polarity of mobile phase used and hence by reducing their residence time on the column, boronic acid pinacol esters $\mathbf{3 1 7}$ and iso- $\mathbf{3 1 7}$ were routinely isolated in 78-92\% yields.

Cationic rhodium precatalyst $\left[\mathrm{Rh}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}$ in combination with dppb was chosen for hydroboration of styrenyl olefins 264 and 318. The use of HBpin led to, after oxidation with $\mathrm{Me}_{3} \mathrm{NO}$, a mixture of
alcohols (Table 5). HBCat, on the other hand, gave the desired tertiary alcohols $\mathbf{3 1 9}$ and $\mathbf{3 2 0}$ in 55\% yield over 2 steps. These results are in accord with the observation of Crudden et al. that increased steric hindrance of HBPin compared to HBCat results in lower selectivity for branched products of hydroboration. ${ }^{92}$

Table 5: Rhodium catalyzed oxidative hydroboration of styrenyl olefins

It is worth noting that rhodium-catalyzed oxidative hydroboration was uniquely suited for our purposes since alternative strategies for accessing 319, like Mukaiyama hydration and epoxidation/reductive epoxide opening were not successful.

4.3. Hydroarylation

Hydroarylation products could be prepared directly from olefin $\mathbf{2 2 4}$ via reductive Heck reactions. Krow's conditions or Jeffery's conditions were quickly abandoned with the discovery that, by substituting triphenylphosphine with xantphos, higher yields of desired products (321-326) and their C6 isomers (iso-321-iso-326) could be obtained reproducibly. ${ }^{76,93}$ Besides heteroaryl bromides, aryl iodides could also be employed in the reductive Heck reaction. While reactions with heteroaryl bromides required elevated temperatures $\left(70^{\circ} \mathrm{C}\right)$, aryl iodides reacted at temperatures between 30 and $50{ }^{\circ} \mathrm{C}$. 3 -haloindole substrates with different protecting groups (acetyl, free indole, tertbutyloxycarbonyl) and leaving groups (Br, I) (327-330) were not tolerated in this transformation (Figure 18).

327

328

329

330

Figure 18: Unsuccessful electrophiles for palladium-catalyzed hydroarlyation

4.4. Hydroazidation

Hydroazidation of olefin $\mathbf{2 2 4}$ could be achieved using two different protocols (Table 6). Xu's conditions gave us 60% yield of azides, favoring the C6-azide iso-331 (Table 6, entry 1). ${ }^{94}$ Slightly lower yield (52\%) was obtained with Boger's conditions, but the selectivity was reversed in this case, with the C5-azide 331 forming preferentially (Table 6, entry 2). ${ }^{95}$

Entry	R	Substrate	Conditions	Yield [\%]	Products	C5/C6 ratio
1	Me	$\mathbf{2 2 4}$	ref. 94	60	$331 /$ iso-331	$1: 2.1$
2	Me	$\mathbf{2 2 4}$	ref. 95	52	$331 /$ iso-331	$2.0: 1$
3	$t \mathrm{Bu}$	$\mathbf{3 3 2}$	ref. 94	71	333/iso-333	$*$

*Product ratio could not be determined with ${ }^{1} \mathrm{H}$ NMR due to signal overlap.
tert-butyloxycarbonyl protected olefin 332 gave a 71% combined yield of azides 333 and iso-333, although their ratio could not be determined with ${ }^{1} \mathrm{H}$ NMR due to signal overlap (Table 6, entry 3).

While azides 331 and iso- 331 could not be readily separated using conventional column chromatography, their reduced amine derivatives 334 and iso- 334 could (Table 7). Azide reduction was facile either using Staudinger reduction conditions (Table 7, entry 1) or hydrogenolysis with catalytic amounts of Adams' catalyst (Table 7, entry 2).

Table 7: Reduction of azide mixtures.

Xu et al. reported that styrenes are not tolerated under their hydroazidation conditions. Boger's hydroazidation scope, on the other hand, includes styrenyl substrates. The latter protocol allowed us to access a tertiary azide 335 in 43% yield (Scheme 57). Stereochemistry was determined based on NOE analysis.

Scheme 57: Hydroazidation of styrene 264 and subsequent reduction.
Staudinger reduction of azide 335 was sluggish, but it gave us a serviceable yield of the desired amine 336 (44\%).

4.5. Hydroamination

Baran's conditions for olefin hydroamination with nitroarenes were also tested on olefin 224. ${ }^{96}$ We were hoping to establish a more streamlined access to hydroamination products. The unmodified
procedure gave only traces of the desired hydroaminated product 337. To improve the yield, phenysilane was substituted with Shenvi's silane, because it was shown to give superior hydroamination yields. ${ }^{97}$ Additionally, given that nitrosoarenes (formed in situ) are postulated to be the actual species that capture alkyl radicals, nitrosobenzene was employed instead of nitrobenzene. Reaction stoichiometry, catalyst loading, concentration and solvent were systematically screened (Table 8). Optimal conditions consisting of limiting olefin 224, 4.5 equivalents of Shenvi's silane, 2 equivalents of nitrosobenzene, $3 \mathrm{~mol} \% \mathrm{Fe}(\mathrm{acac})_{3}$ in a $1: 1$ mixture of isopropanol and ethyl acetate at 0.2 M concentration at room temperature yielded 25% yield of C5-constitutional isomer 337 (Table 8, entry 1). C6-isomer iso-337, on the other hand, was not observed. Deviating from optimal reaction conditions by performing the reaction under argon (Table 8, entry 2), by using a large excess of nitrosobenzene (Table 8, entry 3), by increasing catalyst loading (Table 8, entry 4), by changing reaction concentration (Table 8, entries 5 and 9), by changing solvent ratio (Table 8, entry 8), by using stoichiometric amounts of nitrosobenzene (Table 8, entry 10) or by replacing ethyl acetate with hexane (Table 8, entry 11) all lead to inferior yields or even arrested product formation. Fluorinated alcohols were shown to give superior yields for MHAT reactions. ${ }^{98}$ In our case, however, replacing isopropanol with fluorinated alcohols (Table 8, entries 6 and 7) led to inferior results.

Table 8: Optimization of hydroamination conditions.

		$\begin{gathered} \mathrm{Fe}(\mathrm{acac})_{3}{ }_{3} \mathrm{PhSiH}_{2} \mathrm{OH} \mathrm{r} \\ \mathrm{PhNO} \end{gathered}$					
Entry	Olefin [eq.]	Silane [eq.]	PhNO [eq.]	$\begin{gathered} \mathrm{Fe}(\mathrm{acac})_{3} \\ {[\mathrm{~mol} \%]} \end{gathered}$	Conc. [M]	Solvent mixture	Yield [\%]
1	1	4.5	2	3	0.2	EtOAc/iPrOH 1:1	25
2	1	4.5	2	3	0.2	EtOAc/iPrOH 1:1	16*
3	1	4.5	5	3	0.2	EtOAc/iPrOH 1:1	/
4	1	4.5	2	15	0.2	EtOAc/iPrOH 1:1	25
5	3	2	1	5	0.5	EtOAc/iPrOH 1:1	Traces
6	1	2	1	5	0.5	EtOAc/TFE 1:1	Traces
7	1	2	1	5	0.5	EtOAc/HFIP 1:1	/
8	1	2	1	5	0.5	EtOAc/iPrOH 19:1	Traces
9	1	2	1	5	0.1	EtOAc/iPrOH 1:1	Traces
10	1	4	1	5	0.5	EtOAc/iPrOH 1:1	17
11	1	2	1	5	0.5	hexane/iPrOH 1:1	12

* Reaction conducted under argon atmosphere

4.6. Aziridination

Aziridination was the most challenging transformation as literature conditions furnished only 35\% yield of the 3-4-4 tricycle 338 along with 54% yield of recovered starting material 224 (Scheme 58, left). Resubjecting the recovered starting material to the same conditions furnished, after pooling material together, 44% yield of the desired product 338. Triethylamine as a homogenous base was
completely ineffective in this case. Kürti's aziridination was also attempted without success. ${ }^{99}$ Evans' conditions with catalytic amounts of $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{OTf}$ and stoichiometric amounts of PhINTs allowed us to access the desired tricycle $\mathbf{3 3 9}$ with a different nitrogen protecting group, albeit in 34% yield (Scheme 58, right). ${ }^{100}$

Scheme 58: Aziridination attempts.
With tricycles 338 and 339 in hand, we wanted to explore the possibility of reductive aziridine opening, which would hypothetically lead to protected amines $\mathbf{3 4 0}$ and iso-340 (Scheme 59).

Scheme 59: Attempts at reductive aziridine opening.
To our surprise, catalytic hydrogenation of $\mathbf{3 3 8}$ yielded bicycle $\mathbf{3 4 1}$ in 72% yield (Scheme 54), as a result of the cleavage of C5-C6 carbon-carbon bond instead. The nitrogen protecting group plays an important role as sulfonamide $\mathbf{3 3 9}$ was left unreacted under identical hydrogenation conditions (Scheme 59, right).

We were intrigued by the structure of bicycle 341, which could serve as an elongated piperazine isostere. The literature search revealed that protected 3,6-diazabicyclo[3.2.0]heptanes (342) can be accessed from a mixture of protected diols 343 through a series of reactions consisting of double alcohol mesylation, substitution of a primary mesylate with an azide nucleophile, azide reduction, protection of the resulting primary amine and final intramolecular alkylation (Scheme 60, left). ${ }^{101}$ Starting with protected 2-azabicyclo[2.2.0]hex-5-enes 224, 259 or 332, aziridination and hydrogenation would give the same product in only 2 steps (Scheme 60, right).

Scheme 60: Comparison of two routes towards potential piperazine isosteres 342.

4.7. Epoxidation

The next logical step was to test the serendipitously discovered reaction on the corresponding epoxide 344 to get to the morpholine isostere $\mathbf{3 4 5}$ (Table 9). mCPBA epoxidation was sluggish despite the large excess used. By purifying commercially available m CPBA according to the procedure from Aggarwal et al. ${ }^{102}$ we were able to achieve full consumption of starting material and 64% yield of the desired epoxide 344. Gratifyingly, exposure of the epoxide $\mathbf{3 4 4}$ to catalytic hydrogenation conditions yielded the desired 3-oxa-6-azabicyclo[3.2.0]heptane scaffold $\mathbf{3 4 5}$ in 73% yield.

Table 9: Epoxidation of 224 and reductive epoxide opening.

mCBPA quality	Outcome $/ \mathbf{3 4 4}$ Yield [\%]
Commercial $(\approx 75 \%)$	Starting material : product $=1: 2.6$
Purified $(\approx 100 \%)$	Full consumption of starting material; 64%

Purified m CPBA could also be used to epoxidize C5-substituted 2-azabicyclo[2.2.0]hex-5-ene $\mathbf{2 6 4}$ to give epoxide 346 in 67% yield (Scheme 61).

Scheme 61: Epoxidation of styrene 264.

4.8. Reductive olefin coupling

Hydrofunctionalization reactions were also tested on C5-substituted 2-azabicyclo[2.2.0]hex-5-enes. In order to obtain a quaternary carbon atom at C5, Baran's reductive olefin coupling with Shenvi's silane and methyl acrylate was employed (Scheme 62). ${ }^{97,103} 2$-azabicyclo[2.2.0]hex-5-ene with protected hydroxymethylene group at C5-position 269 gave the desired ester 347 in 47% yield at room temperature. Reductive olefin coupling of styrenyl olefin 264 was more challenging. The combination of stoichiometric amounts of $\mathrm{Fe}(\mathrm{acac})_{3}$, superstoichiometric amounts of methyl acrylate and Shenvi's silane at elevated temperature was required to obtain 39% yield of the desired product 348 . In both cases, NOE analysis revealed that the coupling occurred on the convex face of the 2-azabicyclo[2.2.0]hex-5-ene scaffold.

Scheme 62: Reductive olefin coupling between tertiary olefins 269 and 264 and methyl acrylate.
As the aryl group ended up on the concave face of the 2-azabicyclo[2.2.0]hexane scaffold with reductive olefin coupling protocol (as in 348), we envisioned that by employing Shenvi's hydroarylation protocol for accessing quaternary stereocenters we could prepare 2azabicyclo[2.2.0]hexane bearing a quaternary carbon atom at C5 position and with the aryl group on the convex face (Scheme 63). ${ }^{104}$ Upon exposure of 269 to NiBr_{2} (diglyme), $\mathrm{Fe}(\mathrm{dpm})_{3}$, manganese,
manganese dioxide, Shenvi's silane and 4-iodoacetophenone, hydroarylated product 349 could be obtained in 28% yield. While the NOE correlation analysis suggests that the aryl group is on the convex face of the bicycle, an unexpected reduction occurred as well. We propose that after the first MHAT, species 350 undergoes β-elimination to yield olefin 351. The second MHAT would then give species 352, which is arylated to give the final product 349.

Scheme 63: Dual nickel/iron catalyzed hydroarylation attempts.

5. FUNCTIONAL HANDLE INTRODUCTION AND C-C/C-X COUPLINGS

Having explored a variety of olefin (hydro)functionalization reactions, our focus shifted towards functional group interconversions and $C-C / C-X$ couplings. Given the accessibility of 2-azabicyclo[2.2.0]hex-5-ene scaffold, we sought to demonstrate that there were numerous synthetic advantages which our approach afforded. Between the readily tunable oxidation states available and the variety of functional handles we could access, we sought to demonstrate the seamless incorporation of this scaffold into drugs and drug candidates as piperidine isosteres.

5.1. Dual photo/nickel catalysis for $C\left(s p^{2}\right)-C\left(s p^{3}\right)$ coupling

By employing conditions for $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ coupling reactions between boronic acid pinacol esters and aryl halides from Maier et al., we were able to transform the mixture of hydroboration products 317 and iso-317 into products of formal hydroarylation 324-326 (Scheme 54). ${ }^{105}$ Irradiation of DMF
 acid pinacol esters 317 and iso- $\mathbf{3 1 7}$ with blue LEDs gave us hydrorylation products (324,325 and 326 as mixtures with their constitutional isosteres iso-324, iso-325 and iso-326) in 40-83\% yields. However, in contrast to the original report, only selected electron-deficient heteroaryl bromides could be used in our case. A list of unsuccessful coupling partners is shown in Figure 19.

357

353

354

355

356

358

359

360

361

Figure 19: List of unsuccessful coupling partners for dual photo/nickel catalyzed cross-coupling.
The list includes indoles with different protecting groups (tert-butyloxycarbonyl (353), tosyl (354) and aryl (357)), free indoles with different leaving groups (bromide (355), chloride (356)), a sulfonamide (358), 5-bromoindole (359), caffeine derivative (360) and 4-bromoquinoline (361). The major side reactivity channel in these cases was unproductive protodebromination, regardless of catalyst loading, reaction concentration, and irradiation time.

A comparison between palladium-catalyzed hydroarylation and dual photo/nickel catalyzed crosscoupling is showcased in the following table (Table 10).

Table 10: Comparison of reductive Heck and dual photo/nickel catalyzed cross-coupling for synthesis of hydroarylated 2azabicyclo[2.2.0]hexanes.

		$\mathrm{Ni} /$ Ir cat. cross-coupling		Pd cat. hydroarlyation	
Entry	Products	Yield [\%]	Ratio	Yield [\%]	Ratio
1	$\mathbf{3 2 4}$, iso-324	40	$*$	62	$*$
2	325, iso-325	70	$1.8: 1$	98	$1: 1$
3	326, iso-326	83	$1.1: 1$	quant.	$1: 1$

*Ratio could not be determined due to NMR signal overlap
Neither of the two methods allowed us to use halogenated indoles as electrophilic coupling partners. While palladium-catalyzed hydroarylation generally gave higher yields and proceeded directly from olefin 224, a mixture of boronic acid pinacol esters 317 and iso-317 had to be isolated before photo/nickel coupling, adding an extra step to the overall sequence.

5.2. Deprotections and amide bond formation

In 2014, amide bond formation was the most frequently employed reaction in medicinal chemistry. ${ }^{106}$ We wanted to demonstrate that 2-azabicyclo[2.2.0]hexanes and 2-azabicyclo[2.2.0]hex-5-enes are competent partners in amide bond formation reactions. To this end, tert-butyloxycarbonyl protected 2-azabicyclo[2.2.0]hexane (362) was prepared in two steps (Scheme 64).

Scheme 64: Carbamate protecting group exchange, deprotection and amide bond formation.
First, methoxycarbonyl protecting group in $\mathbf{2 2 4}$ was exchanged with tert-butyloxycarbonyl protecting group in $\mathbf{3 3 2}$ with potassium tert-butoxide in anhydrous THF in 72% yield. Subsequent hydrogenation in the presence of Adams' catalyst gave saturated derivative 362, which was deprotected with TFA. Finally, EDC-mediated amide coupling with different carboxylic acids furnished amides 363-365 in 61$77 \%$ yields over three steps. Atom connectivity in 363 was confirmed via an X-ray analysis of a single crystal (Figure 20).

Figure 20: Crystal structure of 363.
In the Journal of Medicinal Chemistry in 2014, tert-butyloxycarbonyl protecting group installation and removal were the third most frequent transformations reported. ${ }^{106}$ Together with the ease of its removal from the 2-azabicyclo[2.2.0]hexane scaffold, we explored the possibility of introducing this protecting group before the 4π-electrocyclization step and directly accessing valuable building block 332. However, tert-butyl chloroformate is unstable at room temperature and needs to be prepared from toxic phosgene immediately before use. Unaware of reports from Sundberg et al., protecting group exchange was attempted on methyloxycarbonyl protected 1,2-dihydropyridine 223 using potassium tert-butoxide at room temperature (Table 11). ${ }^{107}$

Table 11: Identification of suitable conditions for 1,2-dihydropyridine carbamate protecting group exchange.

Entry	R	Substrate	Temperature	Result
1	Me	$\mathbf{2 2 3}$	RT	67% of $\mathbf{3 6 6}$
2	Me	$\mathbf{2 2 3}$	$-78^{\circ} \mathrm{C} \rightarrow-30^{\circ} \mathrm{C}$	mixture
3	Ph	$\mathbf{3 6 7}$	$-78^{\circ} \mathrm{C}$	96% of $\mathbf{3 6 8}$

Under these conditions (Table 11, entry 1), protecting group exchange was complete, however 1,2dihydropyridine isomerized to 1,4-dihydropyridine completely to yield 366 in 67% yield. The reaction was repeated at cryogenic temperatures (Table 11, entry 2). Monitoring the reaction at various temperatures between $-78{ }^{\circ} \mathrm{C}$ and $-30^{\circ} \mathrm{C}$ revealed that protecting group exchange and olefin isomerization occur at similar rates. Thus, a mixture of products was isolated. Ultimately, we decided to prepare phenyloxycarbonyl protected 1,2-dihydropyridine 367 according to the literature procedure. ${ }^{108}$ Protecting group exchange with this substrate occurred readily at $-78{ }^{\circ} \mathrm{C}$. At this temperature, the rate of olefin isomerization was negligible and the desired tert-butyloxycarbonyl protected 1,2-dihydropyridine 368 was obtained in 96% yield (Table 11, entry 3). Subsequent $4 \pi-$ electrocyclization was uneventful, yielding the tert-butyloxycarbonyl protected 2-azabicyclo[2.2.0]hex-5-ene 332 in 29\% yield.

For the majority of substrates in this study, the transformation of the methyloxycarbonyl protecting group into tert-butyloxycarbonyl protecting group with potassium tert-butoxide prior to amide bond formation provided higher overall yields, due to the subsequent TFA deprotection having much cleaner reaction profile. Substrates like 321 were cleanly transformed into the corresponding Bocderivatives (e.g. 369), however, substrates like iso-321 displayed nonnegligible side reactivity (Scheme 65). Besides isolating 59% yield of the desired tert-butyloxycarbonyl protected product iso-369, cyclobutene 370 was also isolated in 15% yield.

Scheme 65: Unexpected side product formation upon carbamate protecting group exchange.
The Cbz group is a convenient nitrogen protecting group, since it can usually be removed chemoselectively with mild hydrogenolysis. However, catalytic hydrogenation conditions were not suitable for all 2-azabicyclo[2.2.0]hexane substrates (Scheme 66).

Scheme 66: Attempts at deprotecting benzyloxycarbonyl protecting group.
For example, if alcohol 314 was subjected to classic catalytic hydrogenation conditions with palladium on carbon in methanol, piperidine 371 was the only reaction product. This product arises from overreduction and cleavage of the central C1-C4 carbon-carbon bond. However, if alcohol 314 was protected with a bulky protecting group such as in $\mathbf{3 7 2}$, then the same conditions furnished the desired amine 373 in almost quantitative yield (98\%). Our current hypothesis is that the bulky TIPS group shields the central C1-C4 carbon-carbon bond from interacting with the active catalyst.

Due to sensitivity of carbamate-protected 2-azabicyclo[2.2.0]hex-5-enes to strong acids, compound 269 had to be deprotected with MeLi. ${ }^{109}$ The resulting amine intermediate (not shown) was immediately treated with desired activated carboxylic acid derivatives in the presence of triethylamine and catalytic amounts of DMAP to give desired amides 374 and 375 in 55% and 48% yield, respectively (Scheme 67).

Scheme 67: Deprotection of carbamate protected 2-azabicyclo[2.2.0]hex-5-enes and amide bond formation.
Besides aromatic carboxylic acids, aliphatic carboxylic acids like 4,4,4-trifluorobutyric and 5,5,5trifluoropentanoic acid readily coupled with 2-azabicyclo[2.2.0]hexanes to give amides 376, 377 and iso-377 (Scheme 68).

Scheme 68: Carbamate removal and coupling with aliphatic carboxylic acids.
By employing MeLi, methyloxycarbonyl protecting group in 378 could be removed in one step prior to amide bond formation to yield free amine 379, albeit resulting in a lower yield over 2 steps. TFA deprotections of tert-butyl carbamates $\mathbf{3 6 0}$ and iso- $\mathbf{3 6 0}$ yielded ammonium salts $\mathbf{3 8 0}$ and iso-380, which were without purification, coupled with 4,4,4-trifluorobutyric acid to yield fluorinated amides 377 and iso-377 in 69\% and 29\% yields, respectively.

During the course of our study on amidations, an interesting rearrangement was observed. Deprotection of TBS protected allylic alcohols 374 and 375 under acidic conditions was desired. However, upon treatment of amides 374 and 375 with p-toluenesulfonic acid in methanol, rearranged products 381 and 382 were obtained in almost quantitative yields (94% and 97%, respectively) (Scheme 69).

Scheme 69: Unexpected rearrangement under tert-butyldimethylsilyl group deprotection conditions.
Initially mistaken for amides with a quaternary carbon atom, a closer look at NMR spectral data of these products revealed that their carbonyl ${ }^{13} \mathrm{C}$ NMR resonance shifts were inconsistent with structurally relevant compounds. The work of Nicolau et al. was instructive as he and his coworkers encountered a similar structural elucidation conundrum (Table 12). ${ }^{110}$

Table 12: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts comparison between N -acylazetidine (384) and dihydrooxazine (383).

Chemical shift \backslash Compound	$\mathbf{3 8 4}$	$\mathbf{3 8 3}$	$\mathbf{3 8 1}$
$\delta_{\text {Me }}$ in ${ }^{1} \mathrm{H}$ NMR $[\mathrm{ppm}]$	1.85	1.85	1.91
$\delta_{\text {carbonyl }}$ in ${ }^{13} \mathrm{C}$ NMR $[\mathrm{ppm}]$	170.4	157.4	158.2

${ }^{13} \mathrm{C}$ NMR chemical shift of the carbonyl group carbon atom in the rearranged product $\mathbf{3 8 1}$ is nearly identical to the ${ }^{13} \mathrm{C}$ NMR chemical shift corresponding carbon atom in the dihydrooxazine 383 ($\Delta \delta=$ $0.8 \mathrm{ppm})$. Carbonyl group carbon atom in N-acetylazetidine (384) resonates at $170.4 \mathrm{ppm}(\Delta \delta=12.2$ $\mathrm{ppm})$.

5.3. Synthesis of unnatural amino acids and diamine linkers

Unnatural amino acids are invaluable building blocks for the synthesis of complex molecules and peptidomimetic drugs. They can also be incorporated into SAR campaigns or serve as potential drugs themselves. ${ }^{111}$ Given their utility, we wanted to synthesize amino acids with a 2 azabicyclo[2.2.0]hexane core. This was readily accomplished from 2-azabicyclo[2.2.0]hex-5-ene $\mathbf{2 6 9}$ bearing a protected hydroxymethylene side chain (Scheme 70). Diimide reduction of $\mathbf{2 6 9}$ yielded saturated derivative $\mathbf{3 7 8}$ with complete control of diastereoselectivity. Deprotection of the TBS group with p-tolueneulfonic acid furnished primary alcohol 385 in almost quantitative yield (98\%). Oxidation of the aforementioned alcohol was most readily achieved with $10 \mathrm{~mol} \%$ TPAP in the presence of large excess of NMO. The coveted amino acid 386 was obtained in 97% yield. The same sequence of operations could be performed on amide 376. TBS deprotection was just as facile and alcohol $\mathbf{3 8 7}$ was oxidized to the corresponding acid 388 in 82% yield.

\downarrow See Scheme 68

Scheme 70: Synthesis of carboxylic acids 386 and 388.
In 2014, 59% of all FDA-approved small molecule drugs contained a nitrogen heterocycle. ${ }^{1}$ Carboxylic acids can serve as convenient precursors for heterocycle synthesis. To illustrate this, carboxylic acid $\mathbf{3 8 8}$ was condensed with amidoxime $\mathbf{3 8 9}{ }^{112}$ to give a $1: 2.3$ mixture of $1,2,4$-oxadiazoles $\mathbf{3 9 0}$ and $\mathbf{3 9 1}$ in 59% combined yield (Scheme 71). While epimerization at C5 was unexpected, our goal of demonstrating the utility of carboxylic acid as a functional handle for heterocycle synthesis was accomplished. While unexpected, this epimerization does facilitate rapid access to both C5 diastereomers, which could prove fruitful in SAR studies in a drug discovery setting. Additional work is required to identify reaction conditions for epimerization-free coupling and condensation.

Scheme 71: Heterocycle formation via condensation with amidoxime 389.
Next, we explored the venerable Curtius rearrangement on carboxylic acid 386 as we wanted to synthesize a diamine linker based on 2-azabicyclo[2.2.0]hexane scaffold (Scheme 72).

Scheme 72: Curtius rearrangement and removal of tert-butyloxycarbonyl group.
The highest yields of bis-carbamate 392 were obtained by refluxing carboxylic acid 386 with DPPA and $\mathrm{Et}_{3} \mathrm{~N}$ in a mixture of tert-butanol and CCl_{4}. The tert-butyloxycarbonyl group was then removed with TFA and the resulting ammonium salt (not shown) was freebased by passing the crude product through a column of silica with aqueous ammonia-containing mobile phase to yield the desired monoprotected diamine 393 in 45% yield over two steps.

Since three steps are required to synthesize carboxylic acid 386 from 2-azabicyclo[2.2.0]hex-5-ene 269, a shorter route towards the diamine above 392 was sought (Scheme 73). We envisioned first, activation of an installed alcohol followed by substitution with a sufficient nitrogen nucleophile. One pot oxidative hydroboration of $\mathbf{2 2 4}$ yielded a mixture of alcohols 394 and iso-394 in 90\% combined yield. Alcohols 394 and iso- 394 were separated using conventional column chromatography and separately subjected to Mitsunobu inversion and Staudinger reduction conditions. C5-alcohol 394 gave us 61% yield of the desired amine 393 over 2 steps. Its constitutional isomer iso-393, prepared from C6-alcohol iso-394, was synthesized in 86% yield over 2 steps.

Scheme 73: Divergent synthesis of amines 393 and iso-393.
The fastest route to the C5-monoprotected diamine 393 was established from 2-azabicyclo[2.2.0]hex-$5-e n e 268$ by screening reduction and deprotection conditions (Scheme 74Scheme 73). Reduction attempts of $\mathbf{2 6 8}$ with diimide (generated either from hydrazine or from potassium azodicarboxylate) gave complex mixtures. The same result was obtained with catalytic hydrogenation by using rhodium on carbon, rhodium on alumina, or Adams' catalyst in methanol. Gratifyingly, the use of Adams' catalyst in ethyl acetate as a solvent resulted in a clean formation of the desired succinimide 395 in 80% yield as a single constitutional isomer. Succinimide deprotection was then attempted with ethylene diamine and anhydrous hydrazine. Only by using an excess amount of anhydrous hydrazine in refluxing methanol were we able to obtain the desired monoprotected diamine 393 in 58% yield. The uniqueness of these conditions to effect the desired transformation is emphasized by the fact that heating succinimide 395 in neat ethylene diamine at $90^{\circ} \mathrm{C}$ did not result in desired deprotection.

Scheme 74: A two-step synthesis of amine 393.
Constitutional isomers of amino acids and diamines at C4-position were targeted next (Scheme 75). Starting from C4-substituted 2-azabicyclo[2.2.0]hex-5-ene 263 with a benzyl protected hydroxymethylene group, debenzylation under catalytic hydrogenolysis conditions yielded saturated alcohol 396 in 94% yield. The latter could be directly transformed into protected amino acid 397 in 95% yield under Ley-Griffith oxidation conditions. Since all our Curtius rearrangement attempts were unsuccessful, Hofmann rearrangement was chosen as an alternative. Towards this goal, amino acid 397 had to be transformed into the corresponding carboxamide 398. This seemingly simple task was not straightforward and had to be performed stepwise. All our attempts to activate the amino acid 397 and couple it with ammonia as a nucleophile were low yielding. Fortunately, a two-step protocol consisting of methylation with TMSCHN_{2} and ammonolysis with saturated methanolic ammonia yielded the desired carboxamide 398 in 71% yield. Finally, Hofmann rearrangement with PIDA and potassium hydroxide proceeded uneventfully to give doubly protected diamine 399 in 54\% yield. Our protecting group strategy needs to be adjusted in the future to obtain a synthetically more valuable diamine linker with orthogonal protecting groups, allowing its users to deprotect primary and secondary amine moieties in a controlled and stepwise manner.

Scheme 75: Synthesis of carboxylic acid 397 and Hofmann rearrangement.
Baran's nickel catalyzed one pot Barton decarboxylation and Giese addition reaction was briefly explored with amino acid 397 (Scheme 76). ${ }^{113}$

Scheme 76: Thermal nickel catalyzed Barton decarboxylation and Giese addition.
We isolated the two-carbon homologated ester 400, albeit in only 20% yield. Since this reaction was also plagued by low reproducibility, more efforts will be put forward to address the source of these issues.

After developing routes to 5 different (protected) amino-2-azabicyclo[2.2.0]hexanes 334, iso-334, 393, iso-393 and 399, we then turned towards exploring suitable N-arylation protocols.

5.4. N-arylation

Initial attempts to arylate amines $\mathbf{3 3 4}$ and iso- $\mathbf{3 3 4}$ under Chan-Lam conditions were unsuccessful, as low mass balances were obtained and the corresponding products were contaminated with side products or excess reagents. Buchwald's N -arylation protocol with ethylene glycol as a ligand (at elevated temperatures) was examined next. ${ }^{114}$ To our surprise, the main reaction pathway was ligand arylation. A closer look at the literature revealed that room temperature N-arylation is possible by employing copper catalysis with 1,3-diketones as ligands. ${ }^{115}$ Gratifyingly, application of Buchwald's room temperature conditions cleanly furnished arylated amines 337 and iso- $\mathbf{3 3 7}$ in 87% and 89% yield, respectively (Scheme 77).

Scheme 77: Room temperature N-arylation of amines 334 and iso-334 under Buchwald's copper-catalyzed conditions.
These conditions also performed well on the C5-substituted 2-azabicyclo[2.2.0]hexane with the amino group on the concave face 393. The corresponding arylated product 401 was isolated in 67% yield (Scheme 78).

Scheme 78: Room temperature N-arylation of amins 393 under Buchwald's copper-catalyzed conditions.

5.5. Carbonyl chemistry

We were next interested in exploring the synthetic utility of methyl vinyl ether 266. Hydrolysis of this product could lead to the more synthetically useful ketone 402 (Scheme 79). Unfortunately, our hydrolysis attempts were unsuccessful as they led to decomposition, attributed to the instability of the desired ketone 402 (vide infra). Similarly, Rubottom-type oxidation attempts to access a higher oxidation state derivative 403 were also met with failure. Further studies on hydrolysis and oxidation of methyl ether 266 are warranted.

Scheme 79: Attempted oxidation and hydrolysis of methyl vinyl ether 266.
Inspiration for another route to the desired ketone 402 came from Herzon's group. ${ }^{116}$ When HAT hydration of vinyl bromide (265) was attempted, complete consumption of starting material was observed. The desired ketone $\mathbf{4 0 2}$ could be detected with TLC and ${ }^{1} \mathrm{H}$ NMR analysis; however, its
instability towards column chromatography prevented us from isolating it in synthetically useful yields.

As a workaround to these challenges, a new route to the benzyloxycarbonyl protected ketone 404, relying on oxidation of the C5-alcohol 314, was envisioned (Scheme 80). While Parikh-Doering oxidation led to decomposition, Dess-Martin oxidation of alcohol 314 with DMP gave the desired ketone 404 in 95% yield (Scheme 80). A slight modification of the extraction- and column chromatography-free workup procedure from Yao et al. was crucial for obtaining ketone 404 in high yield. ${ }^{117}$ The limited stability of the ketone 404 manifested itself in the following modest yielding Grignard addition step as well.

Scheme 80: Synthetic workflow for accessing tertiary alcohols 405-407.
4-chlorophenylmagensium bromide was selected as our Grignard reagent of choice for 1,2-addition optimization. Careful temperature control was required as letting the reaction mixture warm up above cryogenic temperatures led to decomposition. By quenching the reaction mixture at $-78{ }^{\circ} \mathrm{C}, 35 \%$ NMR yield of the desired product ($405, \mathrm{R}=\mathrm{Cl}$) was obtained (Table 13, entry 1). According to Inamoto et al.'s original report, adding anhydrous CeCl_{3} slightly improved the reaction yield (Table 13, entry 2). ${ }^{118}$ To improve reaction homogeneity, Knochel's system with added LiCl was evaluated. ${ }^{119}$ Lewis acid equivalents (1 or 2.5) and the order of reagent addition were examined next (Table 13, entries 3-6). As excess of $\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}$ was detrimental to the reaction yield, we settled upon adding 1 equivalent of the Lewis acid to the ketone $\mathbf{4 0 4}$ (normal order of addition).

Table 13: Optimization of 1,2-Grignard addition.

Entry	Additive	Additive eq.	Order of addition	405 NMR yield [\%]
1	$/$	$/$	$/$	35
2	CeCl_{3}	1	Inverse	44
3	$\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}$	1	Normal	47
4	$\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}$	1	Inverse	35
5	$\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}$	2.5	Normal	34
6	$\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}$	2.5	Inverse	39

With optimized reaction conditions in hand, two additional aryl Grignard reagents were evaluated (Table 14, entries 1-3). As ketone 404 purification was generally avoided, yields are reported over two steps from alcohol 314.

Table 14: Overall yields for alcohol oxidation and 1,2-Grignard addition.

Entry	R	Product	Yield over 2 steps [\%]	Yield average [\%]
1	Cl	$\mathbf{4 0 5}$	$30-61$	40
2	Me	406	$24-43$	33
3	H	$\mathbf{4 0 7}$	53	53

Ketone 404 could also be reduced with sodium borohydride to access the "pseudoaxial" C5-alcohol 408, albeit in only 32% yield (unoptimized) (Scheme 81).

Scheme 81: Reduction of ketone 404.

5.6. Suzuki coupling

On the other hand, vinyl bromide (265) could be successfully employed in Suzuki-Miyaura coupling reactions (Scheme 82). This building block, conveniently prepared in two steps from commercially available starting materials, serves as a synthetic equivalent to vinyl triflate 409. This triflate, derived from 4-piperidone 410, has historically presented a gateway to the privileged class of 4-(hetero)aryl substituted piperidine drugs.

Scheme 82: Synthetic workflow for preparation of arylated 2-azabicyclo[2.2.0]hexanes with aryl substituents in the "pseudoaxial" position. *3 mol\% Pd-CataCXium A-G3, 1.1 eq. ArBNeo, 1.5 eq. TMSOK, 3 eq. B(OMe) 3

Following reports from the Denmark lab, we were drawn towards potassium trimethylsilanoate as a convenient and homogenous base for Suzuki-Miyaura cross-couplings. ${ }^{120}$ In combination with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, various aryboronic acid pinacol esters could be coupled with vinyl bromide 265 to yield styrenes 411-413 (not shown) in 77-85\% yields. After diimide reduction, 2-azabicyclo[2.2.0]hexanes bearing phenyl (414), 3-indolyl (415) or 3-((2,2,2-trifluoroacetamido)methyl)phenyl (416) substituents at C5-positions were obtained with perfect diastereoselectivity in $72-96 \%$ yields (Scheme 82). This sequence of transformations ensures that aryl substituents end up on the concave face of the bicycle and is therefore complimentary to reductive Heck and dual photo/nickel catalyzed cross-couplings, which install aryl groups on the convex face. Due to challenges associated with several heteroaryl boronic acid derivatives in palladium-catalyzed reactions, the combination of pyrimidine-5-boronic acid neopentylgycol ester, trimethylborate and Pd-CataCXium A-G3 had to be employed to access pyrimidine 417. ${ }^{121}$

5.7. Synthesis of electrophiles

Besides being competent coupling partners for dual photo/nickel catalyzed cross-coupling, boronic acid pinacol esters 317 and iso- $\mathbf{3 1 7}$ could be homologated under Matteson's conditions. Treating a solution of the esters 317, iso-317, and bromochloromethane with $1.6 \mathrm{M} n$-BuLi solution and warming it up from $-78{ }^{\circ} \mathrm{C}$ to room temperature led to, after silica plug filtration, a mixture of homologated boronic acid pinacol esters 418 and iso-418 in 94% yield (Scheme 83). Their separation was not attempted. They could be oxidized to the corresponding alcohols 419 and iso-419. Since the isolation of the aforementioned alcohols was complicated by the presence of pinacol, we isolated the corresponding tosylates 420 and iso-420 or bromides 421 and iso-421 instead.

Scheme 83: Matteson homologation, oxidation with $\mathrm{Me}_{3} \mathrm{NO}$ and synthesis of electrophiles.
With the mixtures of tosylates (420 and iso-420) and bromides (421 and iso-421) in hand, we wanted to synthesize 2-azabicyclo[2.2.0]hexanes $\mathbf{4 2 2}$ and iso- $\mathbf{4 2 2}$ with phenylmethylene substituents. Two strategies were evaluated, depicted in Scheme 84. The mixture of tosylates 420 and iso-420 was exposed to phenylmagnesium bromide in the presence of copper(I) iodide. The desired products were obtained in 34% combined yield. Hayashi's protocol with 5 mol\% $\mathrm{Fe}(\mathrm{acac})_{3}$ in refluxing $\mathrm{Et}_{2} \mathrm{O}$ gave inferior results. ${ }^{122}$ The mixture of bromides 421 and iso-421, on the other hand, was engaged in Weix's cross-electrophile coupling with bromobenzene in the presence of pyridine, sodium iodide, zinc, nickel(II) iodide and 4,4'-dimethoxyl-2, 2^{\prime}-dipyridyl. ${ }^{123}$ The desired products 422 and iso-422 were obtained in 21% combined yield.

Scheme 84: Nucleophilic displacement and cross electrophile coupling attempts for accessing 422 and iso-422.
Given the low yields of cuprate nucleophilic substitution and cross-electrophile coupling, the dual photo/nickel catalyzed cross-coupling between homologated boronic acid esters 418 and iso-418 and bromobenzene (Scheme 85) was explored next. We decided to use excess of bromobenzene because
the homologated esters were more precious to us. Despite this deviation from reported conditions, the reaction still performed adequately. Surprisingly, the desired 2-azabicyclo[2.2.0]hexane 422 was isolated alongside azetidine 423. The proposed mechanism for its formation starts by an N-centered radical cleaving the C-B bond and generating primary radical 424 and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)morpholine byproduct. The former undergoes strain-release-promoted ring opening to afford stabilized secondary α-amino radical 425 . This radical is then intercepted by the nickel species and gives, after reductive elimination, the unexpected product (423). The transrelationship between phenyl and ally substituents was determined based on the small value of the coupling constant between adjacent protons ($J=4.5 \mathrm{~Hz}$).

Scheme 85: Dual photo/nickel catalyzed cross-coupling between homologated boronic acid pinacol esters and bromo benzene.

Having established concise routes to various 2-azabicyclo[2.2.0]hexanes bearing hydroxyl groups, we wanted to exploit those groups for the preparation of 2-azabicyclo[2.2.0]hexanes with halogen substituents, as these could be useful electrophiles for amine alkylation and other nucleophilic substitution reactions. Under Appel conditions with catalytic tetrabutylammonium bromide, C5alcohol 314 was transformed into bromide 426 in 58% yield (Scheme 86). The same conditions could not be directly applied to C6-alcohol iso-314, instead requiring elevated temperatures to react. However, the bromide 427 that formed in 30% yield was not the expected product. A rearrangement of the 2-azabicyclo[2.2.0]hexane scaffold occurred. Presumably, the neighboring carbamate displaces the activated alcohol in intermediate 428. The bromide anion then attacks the resulting cationic species 429 to give the 2-azabicyclo[2.1.1]hexane scaffold 427 . When carbon tetrabromide was replaced with iodine, the corresponding iodide $\mathbf{4 3 0}$ was formed in 34% yield. These observations are consistent with Krow's work, and our spectral data matches closely with reported values for related products. ${ }^{124}$

Scheme 86: Reactivity of alcohols 314 and iso-314 under Appel conditions.
Alcohol 385, depicted in Scheme 87, was converted into the corresponding bromide 431 and iodide 432 in 76% and 88% yields, respectively. For the installation of iodide 432, toluene afforded a cleaner
reaction profile and higher yield, compared to DCM. When the same transformation was attempted on ethyloxycarbonyl protected alcohol 433, only 54% yield of the desired iodide 434 was obtained. Some of the remaining mass balance could be accounted for by isolation of diiodide 435 side product, which formed in 15% yield. Whether this side reactivity is a consequence of a different nitrogen protecting group or imperfect replication of initial reaction conditions cannot be ascertained as more data points are required.

Scheme 87: Synthesis of bromides and iodides.
N-alkylation of piperidine was chosen to showcase the utility of bromide 431 and iodide 432 as competent alkylating reagents (Scheme 88).

Scheme 88: Piperidine alkylation with bromide 431 and iodide 432.
Stirring iodide 432 with excess of piperidine and potassium carbonate at room temperature afforded 56% yield of the desired amine 436. By adding sodium iodide and increasing the reaction temperature, bromide 431 was engaged in the alkylation as well and afforded 83% yield of tertiary amine 436.

5.8. C 1 functional groups

Given the failure of C6-substituted 1,2-dihydropyridines to undergo 4π-electrocyclization and produce C1-substituted 2-azabicyclo[2.2.0]hex-5-enes, we attempted to install C1 functionality after the $4 \pi-$ electrocyclization step. We were drawn towards the work of Hodgson et al. on directed lithiation of protected azetidines. ${ }^{125}$ Thioamide 437 was prepared from tert-butyloxycarbonyl protected 2azabicyclo[2.2.0]hexane 362 in 3 steps. (Scheme 89).

Scheme 89: Synthesis of thioamide 437 and directed lithiation / electrophile trapping attempts.
Tert-butyloxycarbonyl group was removed with TFA and the resulting trifluoroacetate salt (not shown) was acylated with pivaloyl chloride and excess triethylamine to yield amide 438 in 65% yield over 2 steps. Heating amide 438 with diphosphorus pentasulfide and pyridine gave, after aqueous workup and column chromatography, the desired thioamide 437 in 84% yield. Directed lithiation with sec-BuLi and TMEDA furnished, after quenching with methyl iodide, an inseparable mixture of C1 and C3methylated 2-azabicyclo[2.2.0]hexanes 439 and 440 in 1:1 ratio and in 34% combined yield. Since methyl groups are of little synthetic utility, trapping of the putative lithiated species (not shown) with Mander's reagent was attempted. Despite several attempts to optimize the yield of this transformation, no more than 18% isolated yield of the desired amino acid derivative 441 could be obtained (Table 15). These attempts included shortening lithiation time to 5 min (Table 15, entry 1), performing a gradual warmup of the reaction mixture (Table 15, entry 2), extending lithiation time to 1 h (Table 15, entry 3), using a large excess of sec-Buli, TMEDA and Mander's reagent (entry 4), allowing the lithiation step to warm up to $-30^{\circ} \mathrm{C}$ before adding the electrophile at $-78{ }^{\circ} \mathrm{C}$ (Table 15 , entry 5), performing lithiation at $-100^{\circ} \mathrm{C}$ (Table 15, entry 6) and using methyl chloroformate instead of Mander's reagent (Table 15, entry 7).

Table 15: Optimization of directed lithiation / electrophile trapping sequence.

Entry	Deviation from standard conditions	441 NMR Yield [\%]
1	Lithiation for 5 min	14
2	Slow warmup with electrophile	16
3	Lithiation for 60 min	21
4	Excess sec-BuLi, TMEDA, Mander's reagent	27
5	Lithiation warm-up to $-30^{\circ} \mathrm{C}$	26
7	Lithiation at $-100^{\circ} \mathrm{C}$	18

[^0]
6. ISOSTERE SYNTHESIS

By extensively studying the reactivity of 2-azabicyclo[2.2.0]hex-5-enes and their saturated counterparts, we became confident that we could apply our knowledge of their behavior to the synthesis of piperidine containing drugs and drug candidate isosteres.

6.1. Thioridazine isostere

Thioridazine 442 is an antipsychotic drug for the treatment of generalized anxiety disorder and schizophrenia. Its 2-azabicyclo[2.2.0]hexane isostere was prepared from alcohol 294 in 4 steps (Scheme 90). Diimide reduction followed by chlorination with thionyl chloride furnished primary chloride 443 in 54% yield over 2 steps. 2-methylthiophenothiazine 444 was deprotonated with sodium amide in refluxing toluene and then used to substitute the primary chloride 443 . Final LAH reduction of carbamate 445 (not shown) furnished thioridazine isostere 446 in 63% yield over 2 steps.

Scheme 90: Synthesis of thioridazine isostere 446.

6.2. Selective muscarinic acetylcholine receptor agonist isosteres

Compound 447, an N-alkylated oxindole, was an initial lead compound in search of new antipsychotics to treat schizophrenia with a new mode of action and fewer side effects. ${ }^{126}$ It acts as a selective muscarinic acetylcholine receptor agonist for M_{1} and M_{4} receptors. Its uniqueness stems from the ethyl carbamate moiety, which serves as a pharmacophore. Its isostere was prepared from primary iodide 434 in one step (Scheme 91). Alkylation of piperidine 448 in the presence of potassium carbonate yielded the desired tertiary amine 449 in 34% yield.

Scheme 91: Synthesis of "pseudoaxial" muscarinic acetylcholine receptor agonist isostere. Proposed synthesis of "pseudoequatorial" muscarinic acetylcholine receptor agonist isosteres.

Isostere 449 has N-(4-piperidinyl)oxindole moiety on the concave face of the 2azabicyclo[2.2.0]hexane scaffold. Its "pseudoequatorial" isosteres 450 and iso-450 with the aforementioned moiety on the convex face of the bicycle could be theoretically prepared from the mixture of primary iodides 451 and iso-451.

6.3. Moperone isostere

Moperone (452) is a neuroleptic drug from the family of butyrophenones (Scheme 92). ${ }^{127}$ Securing access to Grignard addition product 406 was instrumental for preparing Moperone isostere 453. Benzyloxycarbonyl deprotection with palladium on carbon and hydrogen gave, after filtration, crude amino alcohol 454. This material was immediately subjected to reductive amination conditions without further purification. In the presence of aldehyde $455{ }^{128}$ and sodium cyanoborohydride, tertiary amine 456 was obtained in 70% yield over 2 steps. Final ketal deprotection with aqueous HCl in THF afforded the desired isostere 453 in 61\% yield.

Scheme 92: Synthesis of Moperone isostere 453.
A synthetic plan for accessing Moperone isostere with a hydroxyl group on the concave face of the bicycle (457) was also envisioned (Scheme 93).

Scheme 93: Envisioned synthetic plan for synthesizing Moperone isostere 457 with 4-methylphenyl substituent on the concave face.

Starting from vinyl bromide 265, Suzuki coupling with 4-methylphenylboronic acid pinacol ester would give styrene 458. Next, rhodium-catalyzed hydroboration and one pot oxidation would then give tertiary alcohol 459. Finally, methyloxycarbonyl group deprotection, reductive amination with aldehyde 455, and ketal hydrolysis would give the desired compound 457.

6.4. Nociceptin receptor ligand isosteres

The nociceptin opioid receptor was identified to be implicated in a variety of biological functions including: coughing, anxiety, pain, stress, feeding, learning, substance abuse, and has even been linked to Parkinson's disease. ${ }^{129} \mathrm{~N}$-benzhydryl substituted 4 -hydroxy-4-phenylpiperidine 460 was explored as a nociceptin receptor ligand; however, the tendency of 4-aryl-4-hydroxypiperidines to be metabolized to potentially neurotoxic 4-arylpyridinium species 461 had to be addressed (Scheme 94,
left). To this end, SAR studies led to compounds 462 and 463 , with improved affinity for nociceptin receptor (Scheme 94, right).

Scheme 94: Metabolic fate of nociceptin receptor ligand 460 and structures of its improved bioisosteres 462 and 463.
Both compounds 462 and 463 have more carbon atoms than their progenitor 460 . We envisioned that we could potentially tackle the metabolic stability issues while retaining the number of carbon atoms by isosteric replacement of the piperidine core with a 2-azabicyclo[2.2.0]hexane core.

Isostere 464 with the hydroxyl group on the concave side of the bicycle was prepared from Grignard addition product 407 in 2 steps (Scheme 95). The benzyloxycarbonyl protecting group was removed under catalytic hydrogenolysis conditions. Crude amino alcohol 465 was subjected to N-alkylation conditions without further purification. The combination of potassium carbonate and freshly recrystallized bromodiphenylmethane yielded the desired isostere 464 in 32% yield over 2 steps.

Scheme 95: Synthesis of nociceptin receptor ligand isostere 464 with the phenyl substituent on the convex face of the bicycle.
Conversely, isostere 466 with the hydroxyl group on the convex side of the bicycle, was prepared from the formal cationic rhodium-catalyzed oxidative hydroboration product 320 in 2 steps (Scheme 96). The tert-butyloxycarbonyl group was removed with TFA to yield trifluoroacetate salt 467, which was used in the following step without purification. A large excess of potassium carbonate was used in the presence of freshly recrystallized bromodiphenylmethane to neutralize TFA and HBr byproducts and yield the desired isostere 466 in 54\% yield over two steps.

Scheme 96: Synthesis of nociceptin receptor ligand isostere 464 with the phenyl substituent on the concave face of the bicycle.

6.5. GluN2B/NMDAR ligand isosteres

Overstimulation of the N -methyl-D-aspartate receptors (NMDARs) leads to the activation of excitotoxic pathways and the induction of neuronal death. ${ }^{130}$ These receptors are implicated in various neurodegenerative processes and the development of antagonists could give rise to new drugs for the treatment of brain injuries, Alzheimer's, and Parkinson's diseases. Piperidine 468 was identified as a potential agonist of the NMDAR GluN2B subunit (Scheme 97). Its 2-azabicyclo[2.2.0]hexane isosteres were synthesized from building blocks 267 and 422.

The "pseudoaxial" isostere 469 was prepared in a four step sequence via tert-butyloxycarbonyl protected 470, which was deprotected and alkylated with α-chloroketone 471 (64% over 2 steps) (Scheme 97, top).

Scheme 97: GluN2B/NMDAR ligand and its 2-azabicyclo[2.2.0]hexane-isosteres 469 and 472.
The "pseudoequatorial" isostere 472 was prepared analogously (Scheme 97, bottom). Protecting group exchange could be performed in 82% yield to give tert-butyloxycarbonyl protected derivative 473. The subsequent deprotection and alkylation steps gave 472 in 50% overall yield.

6.6. β-tryptase inhibitor isosteres

The tropanylamide isostere 474 of β-tryptase inhibitor 475 was designed to increase the overall rigidity of the drug while limiting off-target binding to the hERG potassium channel or to cytochrome P450 enzymes. ${ }^{10}$ We prepared three isosteres based on the 2-azabicyclo[2.2.0]hexane scaffold with the same goal in mind. Compared to tropanylamide 474, these isosteres have two fewer carbon atoms (Scheme 98).

474

477

479

Scheme 98: 6-tryptase inhibitor and its "pseudoequatorial" isosteres 476 and iso-476.
The synthesis of "pseudoequatorial" isosteres 476 and iso-476 commenced with palladium-catalyzed hydroarylation on tert-butyloxycarbonyl protected 2-azabicyclo[2.2.0]hex-5-ene 332. 2,2,2-trifluoroN -(3-iodobenzyl)acetamide 477 was chosen as the electrophilic coupling partner. In the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$, xantphos, piperidine and formic acid, hydroarylated product 478 and iso-478 were formed in a combined yield of 79%. Their ratio could not be determined from ${ }^{1} \mathrm{H}$ NMR analysis of the crude
reaction mixture due to signal overlap. These products were taken forward together because we were planning on separating the final compounds at the end. TFA deprotection of tert-butyloxycarbonyl protecting group and EDC-mediated coupling with thiophenecarboxylic acid 479 in the presence of HOAt and DIPEA furnished the desired mixture of amides 480 and iso-480. These were again taken forward as a crude mixture. The final deprotection of the trifluoroacetamide protecting group furnished the targeted amines $\mathbf{4 7 6}$ and iso-476 in 77% yield over 3 steps.

Suzuki-Miyaura cross-coupling was chosen for the preparation of "pseudoaxial" isostere 481. Toward this goal we required access to tert-butyloxycarbonyl protected vinyl bromide 482 and boronic acid pinacol ester 483, derived from the corresponding iodide 477 (Scheme 99). To our delight, the treatment of methyloxycarbonyl protected vinyl bromide (265) with excess of potassium tert-butoxide in THF furnished the desired product $\mathbf{4 8 2}$ in 70% yield. Miyaura borylation was employed to prepare boronic acid pinacol ester $\mathbf{4 8 3}$ from iodide 477 in a single step (89% yield). The fragments were then coupled together with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and potassium timethylsilanoate as a homogenous base. The Suzuki coupling proceeded in 80% yield to give styrene 484. Diimide reduction was uneventful and furnished 2-azabicyclo[2.2.0]hexane 485 in 69% yield. Like in the "pseudoequatorially" substituted compounds 478 and iso-478, the final three steps were performed with only one chromatographic purification. The tert-butyloxycarbonyl group was removed with TFA and acid 479 was coupled onto the resulting trifluoroacetate salt (not shown). Trifluoroacetamide deprotection of 486 with potassium carbonate in methanol furnished the desired "pseudoaxial" isostere 481 in 72% yield over three steps.

Scheme 99: Synthesis of "pseudoaxial" B-tryptase inhibitor isostere 481.

6.7. Fentanyl fragment isosteres

Fentanyl 487 is a small molecule drug opioid analgesic that is used for anesthesia and pain management. Since we could arylate various amino substituted 2 -azabicyclo[2.2.0]hexanes, we thought we could readily access several new fentanyl isosteres. However, due to fentanyl's potency, we decided not to pursue the synthesis of final compounds 488 and 489 . This could, however, be achieved theoretically by deprotecting compounds 490 and 491 and installing the phenylethylene group on the nitrogen atom (Figure 21).

Figure 21: Structures of fentanyl (487), its 2-azabicyclo[2.2.0] isosteres (488 \& 489) and fragments 490 \& 491.
The requisite anilines 337 and $\mathbf{3 9 3}$ were acylated with propionyl chloride and triethylamine (Scheme 100). The "pseudoequatorial" aniline 337 furnished the desired amide 490 in 71% yield. The "pseudoaxial" aniline $\mathbf{3 9 3}$ gave a higher (88%) yield of the crystalline amide 491 , the structure of which was confirmed by single crystal X-ray analysis (Figure 22).

Scheme 100: Synthesis of fentanyl isostere fragments 490 and 491.

Figure 22: Crystal structure of fentanyl isostere fragment 491.

6.8. $\quad h 5-\mathrm{HT}_{2 \mathrm{~A}}$ antagonist isostere

In the year 2000, selective $\mathrm{h} 5-\mathrm{HT}_{2 \mathrm{~A}}$ antagonists were sought with the aim of identifying antipsychotics for the treatment of negative symptoms of schizophrenia. ${ }^{131}$ Towards this end, an SAR campaign elucidated two 2-phenyltryptamine derivatives with improved affinity and bioavailability based on piperidine and tropane scaffolds 492 and 493 (Scheme 101).

Scheme 101: h5-HT $T_{2 A}$ antagonists 492 \& 493 and their 2-azabicyclo[2.2.0]hexane isostere 495.

Our studies towards 2-azabicyclo[2.2.0]hexane isosteres of the aforementioned 2-phenyltryptamine derivatives began with tert-butyloxycarbonyl protected indole 415. Attempted protecting group exchange on methyl carbamate led unexpectedly to free indole 494 in 74% yield. We then resorted to MeLi, which was able to remove methoxycarbonyl protecting group. The crude amine (not shown) was immediately alkylated with (2-bromoethyl)benzene to yield the "pseudoaxial" isostere 495 in 48\% yield over two steps. Due to our inability to engage 3-haloindoles in palladium-catalyzed hydroarylation or dual photo/nickel catalyzed coupling reactions (vide supra), an alternative set of conditions or an alternative route will have to be identified to access the corresponding "pseudoequatorial" isostere (not shown).

7. OVERVIEW OF EXPLORED 2-AZABICYCLO[2.2.0]HEXANE CHEMICAL SPACE

An overview of substituents and functional groups that we could install individually or in combination with others on the 2-azabicyclo[2.2.0]hexane scaffold is shown in the following figure (Figure 23). Synthetically tractable amine, carboxylic acid, halogen, boronic acid pinacol ester and azide functional groups could be used to adorn the 2-azabicyclo[2.2.0]hexane scaffold. These groups were amenable to subsequent transformations like oxidations, condensations, $C-C$ couplings, $C-X$ couplings, and nucleophilic substitutions. Several arylated 2-azabicyclo[2.2.0]hexanes, regardless of the electronic nature or substitution pattern of their aryl groups, could be accessed. All these reactions could be performed with different groups on the nitrogen atom, making it a part of carbamate, amide and tertiary amine moieties.

Figure 23: The explored chemical space of substituted 2-azabicyclo[2.2.0]hexanes.
Most notable are functional groups in the H section of Figure 23. These are located on the concave face of the [2.2.0] bicycle and map onto the R_{2} groups of the privileged 1,4-disubstituted piperidines
in the thermodynamically less favorable axial conformation (Figure 24). As alluded to in the Introduction, these can be, in some instances, crucial for binding to the targeted receptor. However, due to facile ring flip and entropic penalty associated with it, the bioactive conformation's effective concentration is low, resulting in lower binding affinity and diminished efficacy.

Figure 24: Energy diagrams for (hypothetical) ring flips of 1,4-disubstituted piperidines and their 2-azabicyclo[2.2.0]hexane isosteres.

A similar ring flip of the 2-azabicyclo[2.2.0]hexane scaffold would, on the other hand, require scission of the central C1-C4 carbon bond. Therefore, 2-azabicyclo[2.2.0]hexanes could be hypothetically used as programmable piperidine isosteres in special cases, where the axial conformer is preferred by the targeted receptor. By selecting appropriately substituted pyridines or carefully choreographing the sequence of transformations, we were able to install azide, amine, alcohol, bromide, carboxylic acid, hydroxymethylene, bromomethylene, and iodomethylene functional groups on the concave face of the bicycle. Additionally, electron-rich and electron-deficient 5-membered, 6-membered and fused heterocycles could be installed at the aforementioned position.

8. VARIABLE TEMPERATURE NMR STUDY

Carbamates of 2-azabicyclo[2.2.0]hex-5-enes and their saturated derivatives exhibit doubled signals in their NMR spectra due to the fact that they exist as mixtures of rotamers in solution. To prove that doubled signals are indeed a consequence of rotamerism, a variable temperature NMR study was performed on the prototypical methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224) in deuterated DMSO as a solvent. Sample temperature was determined with neat ethylene glycol sample according to the following equation:

$$
T=\frac{(4.637-\Delta)}{0.009967}
$$

where Δ is the shift difference (ppm) between $\mathrm{CH}_{2} \& \mathrm{OH}$ peaks. The results are gathered in the following table (Table 16).

Table 16: Temperature calculation for variable temperature NMR study.

Set temperature $\left[{ }^{\circ} \mathrm{C}\right]$	Actual temperature $\left[{ }^{\circ} \mathrm{C}\right]$
40.0	43.9
60.0	64.0
80.0	85.4

Expansions of the ${ }^{1} \mathrm{H}$ NMR spectra of 224 obtained at different temperatures are shown in the following figures (Figure 25, Figure 26). The first figure shows olefinic protons at the C5 and C6 positions. The second figure shows aliphatic protons at C1, C3 and C4 positions. NMR resonance splitting is best visible at $85^{\circ} \mathrm{C}$. At this temperature, the apparent multiplicities of olefinic proton resonances become triplets (presumably doublet of doublets with similar J-values). The multiplicities of the aliphatic proton resonances became triplet, doublet of quartets, and doublet, respectively (reported from low field to high field).

PJ1672no2DMSO_RT

Figure 25: ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 2 4}$ at different temperatures.

Figure 26: ${ }^{1} H$ NMR spectra of 224 at different temperatures, continued.

9. CONCLUSIONS

Our extension of Njardarson's study from 2014 to 2023 further established the importance of the piperidine scaffold and its isosteres in medicinal chemistry. A short overview of the most commonly used piperidine isosteres is presented and their reported syntheses are outlined. It exposes several drawbacks of preparing these isosteres, such as lengthy and laborious synthetic procedures, the necessity to use precious transition metal catalysts, limited possibilities for introduction of functional groups for further elaboration, and poor atom economy. As a workaround to these issues, we evaluated the potential of 2-azabicyclo[2.2.0]hexane scaffold to serve as a malleable, easily accessible and programmable piperidine isostere. EVA was performed to compare the overlap between 1,4disubstituted piperidines and their isosteres as well as to compare piperidine isosteres among themselves.

The substrate scope of the dearomatization / 4π-electrocyclization sequence was expanded considerably, allowing us to use commercially available pyridines to yield 2-azabicyclo[2.2.0]hex-5enes with functional groups already attached. These include synthetically tractable vinyl bromide, vinyl enol ether, enimide and hydroxymethylene moieties. Two disubstituted pyridines were also amenable to the dearomatization / 4π-electrocyclization sequence and gave rise to the corresponding disubstituted 2-azabicyclo[2.2.0]hex-5-enes. By performing at least one of the two steps in a flow chemistry setting, the improvement of overall yields will be attempted in our future studies.

The promiscuity of modern olefin chemistry was challenged against the strained olefin of the 2-azabicyclo[2.2.0]hex-5-ene system and several formal hydrofunctionalizations were performed. These include rhodium-catalyzed hydroboration, palladium-catalyzed hydroarylation, iron-catalyzed hydroazidation, and reductive olefin coupling. The products of classic olefin transformations like hydrogenation, epoxidation, and aziridination were isolated and fully characterized. Skeletal editing via hydrogenation of the epoxide and aziridine products gave us straightforward access to 3-oxa-6azabicyclo[3.2.0]heptane and 3,6-diazabicyclo[3.2.0]heptane systems.

2-azabicyclo[2.2.0]hex-5-enes and their "hydrofunctionalization" products were further elaborated by performing dual photo/nickel catalyzed cross-coupling, Ullmann coupling, and Suzuki-Miyaura coupling. It was demonstrated that various carbamate protecting groups could be removed, revealing free amines, which could be transformed into various amides or alkylamines. By performing redox manipulations and functional group interconversions, 2-azabicyclo[2.2.0]hexanes with carboxylic acid, amine, alcohol, halide and ketone moieties were synthesized.

A general blueprint of currently accessible functionality at each of the 9 positions of the 2azabicyclo[2.2.0]hexane scaffold was devised and then employed for making drug (Thioridazine \& Moperone) and lead compound isosteres. Biological assays and stability studies of these compounds are currently ongoing in our laboratories.

10. EXPERIMENTAL SECTION

All chemicals were purchased from commercial suppliers (Sigma, Alfa, Acros, Merck, Oakwood, Ambeed, TCI, Fluorochem, BLD, AA Blocks, etc.) and used as received, unless otherwise noted. 4bromonicotinaldehyde 272 was prepared according to literature procedure ${ }^{132}$, with a slight modification of using 4 -bromopyridine hydrochloride and 2.5 eq. LDA instead of 4 -bromopyridne. (3-bromo-pyridin-4-yl)-methanol $\mathbf{2 7 3}$ was prepared according to literature procedure. ${ }^{133}$ 4-bromo-3-(((tert-butyldimethylsilyl)oxy)methyl)pyridine $\mathbf{2 7 4}$ was prepared according to literature procedure ${ }^{134}$, with a slight modification of using DCM instead of DMF.

Diethyl ether (ACS grade), dichloromethane (ACS grade), tetrahydrofuran (HPLC grade), acetonitrile (HPLC grade), and toluene (ACS grade) were dried for reactions using the MB-SPS solvent purification system containing activated alumina manufactured by MBRAUN. Reaction temperatures correspond to the external temperature of the reaction vessel unless otherwise noted. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel $60 \mathrm{~F}_{254}$ glass sheets. Visualization was accomplished with UV light, cerium molybdate and/or potassium permanganate (KMnO_{4}). Retention factor $\left(R_{f}\right)$ values reported were measured in triplicate using $10 \times 2 \mathrm{~cm}$ TLC plates in a developing chamber containing the solvent system described. Silicycle SiliaFlash ${ }^{\circledR}$ P60 ($\mathrm{SiO}_{2}, 40-63 \mu \mathrm{~m}$ particle size, 230-400 mesh), aluminum oxide activated, basic, Brockmann I ($\mathrm{Al}_{2} \mathrm{O}_{3}, \sim 60 \mathrm{Mesh}$) or aluminum oxide 90 , neutral, were used for flash column chromatography. Alternatively, compounds were purified using Biotage ${ }^{\circledR}$ Isolera ${ }^{\text {™ }}$ One (AQ C18 column spherical; $20-35 \mu \mathrm{~m} ; 100$ Å) or at Merck separation facilities.
${ }^{1} \mathrm{H}$ NMR spectra were obtained at $400 \mathrm{MHz}, 500 \mathrm{MHz}$ or 600 MHz . ${ }^{13} \mathrm{C}$ NMR were obtained at 100 MHz , 126 MHz or 151 MHz . ${ }^{19} \mathrm{~F}$ NMR spectra were obtained at 471 MHz or 565 MHz . ${ }^{11} \mathrm{~B}$ NMR spectra were obtained at 160 MHz or 193 MHz . NMR spectra were recorded using a Bruker Avance III 400 MHz spectrometer, a Bruker CAB AV4 500 MHz spectrometer equipped with wide-band BBO probe, a Bruker Avance III 500 MHz spectrometer equipped with BB CryoProbe or a Bruker NEO NMR 600 MHz spectrometer equipped with BBO prodigy probe and were referenced to residual chloroform (7.26 ppm, ${ }^{1} \mathrm{H}$), residual DMSO ($2.50 \mathrm{ppm},{ }^{1} \mathrm{H}$), solvent chloroform-d ($77.16 \mathrm{ppm},{ }^{13} \mathrm{C}$), solvent DMSO- d_{6} ($39.52 \mathrm{ppm},{ }^{13} \mathrm{C}$) or internal $\mathrm{PhCF}_{3}\left(-62.61 \mathrm{ppm},{ }^{19} \mathrm{~F}\right.$). Chemical shifts are reported in parts per million (ppm) and multiplicities are indicated as: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet), and br (broad). Coupling constants, J, are reported in hertz.

Mass spectrometry (MS) was performed at the University of Illinois Mass Spectrometry Laboratory. Electrospray ionization (ESI+) spectra were performed using Waters Synapt G2-Si time-of flight (TOF) mass analyzer. Data is reported in the form of m / z. Infrared (IR) spectra of neat samples were measured on a Perkin-Elmer Spectrum Two FT-IR ATR spectrometer. Peaks are reported in cm^{-1} with indicated relative intensities: s(strong, $0-33 \% \mathrm{~T}$); m (medium, $34-66 \% \mathrm{~T}$), w (weak, $67-100 \% \mathrm{~T}$), and br (broad). Photochemical reactions were performed in Pyrex or quartz reaction vessels placed in the center of a Rayonet RPR-100 photochemical reactor equipped with 12 G8T5E UV lamps (310 nm) or 16 F8T5BL UV lamps (350 nm) (Figure 27).

Figure 27: Photochemical set-up for small scale (left) and large scale (right) 4π-electrocyclizations.

Computational studies

The structures were parsed from ChemDraw CDXML files using in-house scripts. Explicit hydrogen atoms were added, and the structures were subjected to MMFF94 forcefield minimization, as implemented in OpenBabel 3.1.0. ${ }^{135}$ Obtained structures were subjected to CREST ${ }^{136} /$ GFNFF 137 conformer generation with the iMTD-GC ${ }^{138}$ workflow. The conformers were subjected to DFT minimization as obtained. Some of the conformers converged to the same structure after DFT optimization and the duplicate structures were discarded.

All DFT calculations were performed with ORCA 5.0.3 release version. ${ }^{139-141}$ RKS B3LYP/def2-TZVP with the following input:

```
!rks b3lyp def2-tzvp opt freq tightopt tightscf noprintmos miniprint
```

The stationary state nature of the structures reported was verified by absence of imaginary frequencies in the diagonalized Hessian matrix obtained by analytical frequency calculations. Boltzmann weights were calculated with the Gibbs function values using unscaled ZPVE contributions and ideal gas finite temperature corrections at 298.15 K and 1 atm pressure.

General procedure for optimization of 4π-electrocyclization

223
224

A tall quartz culture tube was charged with crude 1,2-dihydropyridine 223 ($13.9 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ eq.), additive and the specified amount of solvent. The resulting solution was degassed by sparging with argon for 2 minutes in an ultrasonic bath and then irradiated in a Rayonet photoreactor equipped with 310 nm lamps for 24 hours. Solvent was removed and internal standard 1,3,5-trimethoxybenzene ($16.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ eq.) was added. The resulting mixture was dissolved in $\mathrm{CDCl}_{3}(0.7 \mathrm{~mL}$) and transferred into an NMR tube. The reaction yield was determined by integrating product and internal standard signals.

Following a slightly modified procedure ${ }^{73}$, a flame dried two-neck round bottom flask was charged with (substituted) pyridine, NaBH_{4} and anhydrous $\mathrm{Et}_{2} \mathrm{O}$ (or DCM) under nitrogen atmosphere. Reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ in an acetone/dry ice cooling bath and MeOH was added slowly. The chloroformate of choice was then added dropwise to the resulting suspension, which was either stirred at $-78{ }^{\circ} \mathrm{C}$ or left to warm up to the final temperature. Afterwards, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and quenched with water. The organic phase was separated from the aqueous phase, washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. Crude product was purified by passing through a short plug of basic alumina (activated, Brockmann I) with $\mathrm{Et}_{2} \mathrm{O}$ to yield the corresponding 1,2-dihydropyridine. Its solution in an appropriate solvent was first degassed by sparging with argon for 2-3 minutes in an ultrasonic bath and then irradiated in a quartz culture tube inside a Rayonet photoreactor. The solvent was removed, and crude 2-azabicyclo[2.2.0]hex-5-ene was directly loaded onto a column. Gradient elution afforded the desired product.

Synthesis of methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224)

	Following the general procedure, pyridine was dearomatized in 69% yield. After irradiation, methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224, $2.13 \mathrm{~g}, 58 \%)$ was isolated via flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes : EtOAc = 100 : 30) as a slightly yellow clear oil.					
Scale	MeOCOCl	NaBH_{4}	MeOH	$\mathrm{Et}_{2} \mathrm{O}$	T, t	Irradiation
40 mmol	1.0 eq.	1.0 eq.	15 mL	5 mL	$-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$	EtOAc, $0.5 \mathrm{M}, 310 \mathrm{~nm}, 6 \mathrm{~d}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 296 \mathrm{~K}$, rotamers) $\delta 6.61-6.35(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{bs}, 1 \mathrm{H}), 3.66(\mathrm{~s}$, $3 \mathrm{H}), 3.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{1} \mathrm{H}$ NMR (499 MHz, DMSO- $\left.\mathrm{d}_{6}, 358 \mathrm{~K}\right) \delta 6.59(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{td}, \mathrm{J}=3.2$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{dq}, J=7.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers, RT) $\delta 157.8,143.4,143.2,140.9,140.5,65.8,65.3,52.3,50.2$, 49.4, 38.4.
$\mathbf{R}_{\mathbf{f}}=0.37$ (hexanes : EtOAc $=3: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm^{-1}): 2955 (w), 1706 (s$), 1448$ (s$), 1368$ (s$), 1195$ (m), 1154 (m), 1112 (m), 761 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{2}+\mathrm{H}^{+}: 140.0712$, found: 140.0711 .
Spectral data matches previously reported values. ${ }^{74}$

先		Following the general procedure, pyridine was dearomatized in 77% yield. After irradiation, benzyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (259, $1.60 \mathrm{~g}, 32 \%)$ was isolated via flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes : EtOAc = 100:20 \rightarrow 100:30) as a slightly yellow clear oil.				
Scale	CbzCl	NaBH_{4}	MeOH	$\mathrm{Et}_{2} \mathrm{O}$	T, t	Irradiation
30 mmol	1.1 eq.	1.2 eq .	15 mL	5 mL	$-78{ }^{\circ} \mathrm{C} \rightarrow-20^{\circ} \mathrm{C}$	EtOAc, $0.5 \mathrm{M}, 310 \mathrm{~nm}, 7 \mathrm{~d}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 6.61-6.36(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{~m}, 1 \mathrm{H})$, $3.98(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H})$.

Spectral data matches previously reported values. ${ }^{74}$

Synthesis of methyl 5-bromo-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (265)

	Following the general procedure, 4-bromopyridinium chloride was dearomatized in 69% yield. After irradiation, methyl 5-bromo-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($265,0.337 \mathrm{~g}, 46 \%$) was isolated via flash column chromatography (SiO_{2}, hexanes : $\mathrm{EtOAc}=100: 10 \rightarrow 100: 20$) as a slightly yellow clear oil.			
Scale MeOCOCl	$\mathrm{NaBH}_{4} \quad \mathrm{MeOH}$	$\mathrm{Et}_{2} \mathrm{O}$	T, t	Irradiation (pyrex glassware)
5 mmol 1.1 eq .	2.2 eq. $\quad 15 \mathrm{~mL}$	5 mL	$-78{ }^{\circ} \mathrm{C} \rightarrow-5^{\circ} \mathrm{C}$	$\mathrm{Me}_{2} \mathrm{CO}, 0.07 \mathrm{M}, 350 \mathrm{~nm}, 7 \mathrm{~d}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.58(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{bs}, 1 \mathrm{H}), 3.89(\mathrm{bs}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~m}$, 1H), 3.52 ($\mathrm{m}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 157.6,157.5,140.7,140.3,127.0,126.6,63.9,63.4,52.5,49.2$, 48.4, 44.9.
$\mathbf{R}_{\mathbf{f}}=0.62$ (hexanes: EtOAc = $3: \mathbf{2} ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2954 (w), 2887 (w), 1702 (s), 1555 (w), 1445 (s), 1360 (s), 1261 (w), 1199 (m), 1154 (m), 972 (w), 921 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{Br}+\mathrm{H}^{+}$: 217.9817, found: 217.9817 .

Synthesis of methyl 5-methoxy-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (266)

	Following the reported procedure ${ }^{142}$, 4-methoxypyridine was dearomatized in 81% yield. After irradiation, methyl 5 -methoxy-2- azabicyclo[2.2.0]hex-5-ene-2-carboxylate $(266,2.4 \mathrm{~g}, 71 \%)$ was isolated via filtration (basic $\left.\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Et}_{2} \mathrm{O}\right)$ as a slightly yellow clear oil. Further purification by gradient elution with hexanes : EtOAc $=100: 10 \rightarrow 100: 20$ on a neutral alumina column afforded analytically pure sample.

Scale	MeOCOCl	NaBH_{4}	MeOH	$\mathrm{Et}_{2} \mathrm{O}$	T, t	Irradiation
18 mmol	1.3 eq.	1.3 eq.	40 mL	6 mL	$-78{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}$	$\mathrm{Me}_{2} \mathrm{CO}, 0.25 \mathrm{M}, 310 \mathrm{~nm}, 48 \mathrm{~h}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 5.12(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{bs}, 1 \mathrm{H}), 3.65(\mathrm{bs}, 6 \mathrm{H}), 3.56(\mathrm{~m}$, 1 H), 3.41 (dq, J=5.4, 2.7 Hz, 1H).
${ }^{13}$ C NMR (126 MHz, CDCl_{3}, rotamers) $\delta 160.9,160.7,158.0,101.8,101.5,57.3,56.6,56.3,52.3,48.4$, 47.6, 39.0.
$\mathbf{R}_{\mathbf{f}}=0.40$ (hexanes : $\mathrm{EtOAc}=4: 1 ; \mathrm{KMnO}_{4}$, alumina)
IR (KBr discs, cm^{-1}): 2956 (w), 1705 (s$), 1614$ (s$), 1447$ (m), 1370 (m), 1339 (s), 1227 (w), 1154 (w), 769 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{3}+\mathrm{H}^{+}: 170.0817$, found 170.0816.

Synthesis of methyl 5-(2,5-dioxopyrrolidin-1-yl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (268)

Following the general procedure, 1-(pyridin-4-yl)pyrrolidine-2,5-dione was dearomatized in 76\% yield. After irradiation, methyl 5-(2,5-dioxopyrrolidin-1-yl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (268, $130.2 \mathrm{mg}, 74 \%$) was isolated via flash column chromatography ($\mathrm{SiO}_{2}, \mathrm{EtOAc}$) as a colorless clear oil.

Scale	MeOCOCl	NaBH_{4}	MeOH	DCM	T, t	Irradiation
0.9 mmol	1.1 eq.	1.1 eq.	3 mL	6 mL	$-78{ }^{\circ} \mathrm{C} \rightarrow 0^{\circ} \mathrm{C}$	$\mathrm{DCM}, 0.1 \mathrm{M}, 310 \mathrm{~nm}, 26 \mathrm{~h}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.32(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{bs}, 1 \mathrm{H}), 3.94(\mathrm{bs}, 1 \mathrm{H}), 3.70-$ $3.56(\mathrm{~m}, 4 \mathrm{H}), 2.76(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 174.6,157.7,157.6,137.5,122.3,121.8,63.4,62.7,52.4,49.6$, 48.8, 39.5, 28.4.
$\mathbf{R}_{\mathbf{f}}=0.45$ (EtOAc; KMnO_{4})
IR (KBr discs, cm^{-1}): 2956 (m), 2890(w), 1711 (s), 1698 (s), 1608 (m), 1448 (m), 1362 (s), 1173 (s), 1139 (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}^{+}: 237.0875$, found 237.0876 .

Synthesis of methyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2carboxylate (269)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.32(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~s}), 4.22(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H})$, 3.65 (broad s, 3H), $3.50(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 157.8,155.9,155.7,132.3,131.9,62.3,61.7,60.2,52.30,49.7$, 48.8, 37.0, 25.9, 18.5, -5.3, -5.3.
$\mathbf{R}_{\mathrm{f}}=0.44$ (hexanes : $\mathrm{EtOAc}=4: 1 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 2955 (m), 2930 (w), 2886 (w), 2857 (w), 1712 (s), 1447 (m), 1363 (m), 1094 (m), 838 (s), 776 (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Si}+\mathrm{H}^{+}: 284.1682$, found 284.1671 .

Synthesis of methyl 4-fluoro-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (260)

		Following the general procedure, 4-fluoropyridine was dearomatized in 50\% yield. After irradiation, methyl 4-fluoro-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($\mathbf{2 6 0}, 0.172 \mathrm{~g}, \mathbf{1 3 \%}$) was isolated via flash column chromatography (SiO_{2}, hexanes : $\mathrm{EtOAc}=100: 10 \rightarrow 100: 30$) as a slightly yellow clear oil.				
Scale	MeOCOCl	NaBH_{4}	MeOH	$\mathrm{Et}_{2} \mathrm{O}$	T, t	Irradiation
17.6 mmol	1.2 eq .	1.1 eq.	6 mL	2 mL	$-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$	Me $2 \mathrm{CO}, 0.2 \mathrm{M}, 310 \mathrm{~nm}, 24 \mathrm{~h}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.50(\mathrm{q}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{bs}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=16.5,9.7 \mathrm{~Hz}$, 1 H), $3.88(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 156.7,156.7,140.2,140.0,138.6,93.2,91.1,72.2,55.8,52.7$.
${ }^{19}$ F NMR (471 MHz, CDCl_{3}) δ-159.9.
$\mathbf{R}_{\mathbf{f}}=0.53$ (hexanes: EtOAc $=2: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm^{-1}): 2955 (w), 1708 (s), 1448 (s), 1368 (s), 1315 (w) 1223 (w), 1195 (w), 1156 (w), 1117 (w), 1070 (w), 785 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{~F}+\mathrm{H}^{+}: 158.0617$, found: 158.0617.

Synthesis of methyl 4-chloro-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (261)

		Following the general procedure, 3-chloropyridine was dearomatized in 60% yield. After irradiation, methyl 4-chloro-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($\mathbf{2 6 1}, 48 \mathrm{mg}, 9 \%$) was isolated via flash column chromatography (SiO_{2}, hexanes : $\mathrm{EtOAc}=100: 10 \rightarrow 100: 25$) as a slightly yellow clear oil.				
Scale	MeOCOCl	NaBH_{4}	MeOH	$\mathrm{Et}_{2} \mathrm{O}$	T, t	Irradiation
4.9 mmol	1.0 eq.	1.1 eq.	3 mL	1 mL	$-78{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$	Me2CO, $0.06 \mathrm{M}, 350 \mathrm{~nm}, 7 \mathrm{~d}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.48(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{bs}, 1 \mathrm{H}), 4.12(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, \mathrm{~J}=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.68 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}, rotamers) $\delta 156.8,143.3,138.4,138.1,72.8,72.4,61.2,60.0,59.3,52.7$.
$\mathbf{R}_{\mathbf{f}}=0.74$ (hexanes: EtOAc = $2: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2955 (w), 2885 (w), 1712 (s), 1447 (s), 1367 (s), 1291 (w), 1152 (m), 1105 (m), 783 (w), 769 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{Cl}+\mathrm{H}^{+}: 174.0322$, found: 174.0322 .

Synthesis of methyl 4-bromo-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (262)

	ооме	Following the general procedure, 3-bromopyridine was dearomatized in 67% yield. After irradiation, methyl 4-bromo-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($\mathbf{2 6 2}, 0.229 \mathrm{~g}, \mathbf{1 7 \%}$) was isolated via flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes : $\left.\mathrm{EtOAc}=100: 10 \rightarrow 100: 20\right)$ as a slightly yellow clear oil.				
Scale	MeOCOCl	NaBH_{4}	MeOH	$\mathrm{Et}_{2} \mathrm{O}$	T, t	Irradiation
9.6 mmol	1.1 eq.	1.1 eq.	7.5 mL	2.5 mL	$-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$	Me ${ }_{2} \mathrm{CO}, 0.13 \mathrm{M}, 350 \mathrm{~nm}, 7 \mathrm{~d}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.52(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, \mathrm{~J}=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}, rotamers) $\delta 156.8,144.4,138.4,138.0,73.0,72.7,60.9,60.3,52.7,49.4$.
$\mathbf{R}_{\mathbf{f}}=0.51$ (hexanes: EtOAc = $3: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2954 (w), 2884 (w), 1710 (s), 1446 (s), 1362 (s), 1286 (w), 1147 (m), 1107 (m), 782 (w), 768 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{Br}+\mathrm{H}^{+}$: 217.9817, found: 217.911 .

Synthesis of methyl 4-((benzyloxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (263)

	Ооме	Following the general procedure, 3-((benzyloxy)methyl)pyridine was dearomatized in 69\% yield. After irradiation, methyl 4-((benzyloxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($263,0.173 \mathrm{~g}, 18 \%$) was isolated via flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes : $\mathrm{EtOAc}=100: 10 \rightarrow 100$: 30) as a slightly yellow clear oil.				
Scale	MeOCOCl	NaBH_{4}	MeOH	$\mathrm{Et}_{2} \mathrm{O}$	T, t	Irradiation
15 mmol	1.1 eq.	1.1 eq.	6 mL	2 mL	$-78{ }^{\circ} \mathrm{C} \rightarrow-20^{\circ} \mathrm{C}$	Me2CO, $0.2 \mathrm{M}, 310 \mathrm{~nm}, 36 \mathrm{~h}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.57-6.36(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.57(\mathrm{~m}, 1 \mathrm{H})$, $4.55(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 157.6,143.7,139.6,139.05,138.1,128.6,127.9,127.7,73.4$, 69.39, 66.3, 65.7, 52.4, 51.9, 51.1, 49.8.
$\mathbf{R}_{\mathrm{f}}=0.74$ (hexanes: EtOAc = 1:1; KMnO_{4})
IR (KBr discs, cm^{-1}): 2952 (w), 2879 (w), 2858 (w), 1704 (s), 1449 (m), 1359 (m), 1085 (m), 783 (w), 765 (w), 738 (w), 699 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}+\mathrm{Na}^{+}$: 282.1101, found: 282.1098 .

Synthesis of methyl 5-bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2carboxylate (270)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.58(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~m}$, 1H), 0.87 (s, 9H), 0.05 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 157.6,138.9,138.4,128.1,127.8,64.9,64.4,60.5,56.4,52.5$, 49.5, 48.8, 25.9, 18.3, -5.3, -5.3.
$\mathbf{R}_{\mathbf{f}}=0.34$ (hexanes : EtOAc = $5: 1 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 2954 (m), 2930 (m), 2885 (w), 2857 (m), 1716 (s), 1558 (w), 1447 (s), 1364 (s), 1111 (m), 838 (s$), 777$ (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{BrSi}+\mathrm{H}^{+}: 362.0787$, found 362.0783 .

4-bromonicotinaldehyde 272 ($1.324 \mathrm{~g}, 7.12 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(36 \mathrm{~mL})$ and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$. Small portions of NaBH_{4} were added until TLC analysis indicated complete consumption of starting material. The reaction mixture was then quenched with 10% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). Combined organic layers were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The resulting crude alcohol 273 was dissolved in DCM (28 mL) and $\mathrm{SOCl}_{2}(1.25 \mathrm{~mL}, 1.640 \mathrm{~g} / \mathrm{mL}, 17.1$) was added in one portion. After 30 minutes of stirring at room temperature, the resulting suspension was filtered, and the solid residue was washed with $\mathrm{Et}_{2} \mathrm{O}$. Filtration and washing with $\mathrm{Et}_{2} \mathrm{O}$ were repeated until more product crashed out of the filtrate. The combined solid chloride 275 was suspended in $\mathrm{MeCN}(28 \mathrm{~mL})$ and $\mathrm{NaI}(1.279 \mathrm{~g}, 8.5 \mathrm{mmol})$, $\mathrm{K}_{2} \mathrm{CO}_{3}(3.146 \mathrm{~g}, 22.8 \mathrm{mmol})$ and pyrrolidine ($940 \mu \mathrm{~L}, 0.866 \mathrm{~g} / \mathrm{mL}, 11.4 \mathrm{mmol}$) were added sequentially in one portion. The resulting suspension was stirred vigorously overnight and then partitioned between 100 mL of EtOAc and 100 mL of water. The organic phase was separated, and the aqueous phase extracted two more times with the same amount of EtOAc. Combined organic phases were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure to yield 4-bromo-3-(pyrrolidin-1-ylmethyl)pyridine ($\mathbf{2 7 6}, 0.837 \mathrm{~g}, 3.47 \mathrm{mmol}, 49 \%$ over 3 steps) as a viscous brown oil. The resulting product could be further purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM}\right.$: $\mathrm{MeOH}=100$ $: 2 \rightarrow 100: 10\left(+1 \%\right.$ saturated aqueous $\left.\mathrm{NH}_{3}\right)$).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H})$, 2.61 (bs, 4H), 1.81 (bs, 4H).

Methyl 4-bromo-6-methoxy-3-methylene-3,6-dihydropyridine-1(2H)-carboxylate (278)

The title compound formed during reductive dearomatization of 4-bromo-3-(pyrrolidin-1-ylmethyl)pyridine (278) if the temperature was not rigorously controlled.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.30(\mathrm{~m}, 1 \mathrm{H}), 5.68-5.37(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{~m}, 1 \mathrm{H})$, 4.05 - $3.87(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) δ 155.9, 155.4, 136.4, 136.3, 129.0, 128.4, 125.2, 124.6, 118.1 , 117.5, 81.4, 56.0, 55.6, 53.16, 43.1, 42.8.

HRMS (ESI-TOF) calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Br}+\mathrm{H}^{+}-\mathrm{MeOH}: 229.9817$, found: 229.9818.

Synthesis of methyl 5-bromo-4-(pyrrolidin-1-ylmethyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (271)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.56(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{bs}$, $1 \mathrm{H}), 2.90(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.44(\mathrm{~m}, 4 \mathrm{H}), 1.76(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, CDCl_{3}, rotamers) $\delta 157.8,157.6,138.2,137.8,123.0,129.5,66.7,66.2,55.9,55.15$, 54.8, 52.6, 50.6, 49.9, 23.8.
$\mathbf{R}_{\mathbf{f}}=0.41\left(\mathrm{EtOAc} ; \mathrm{KMnO}_{4}\right)$
IR (KBr discs, cm^{-1}): 2955 (m), 2909 (w), 2879 (w), 2791 (m), 1712 (s), 1558 (w), 1446 (s), 1364 (s), 1212 (m), 1154 (w), 915 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}+\mathrm{H}^{+}: 301.0552$, found 301.0555 .

Synthesis of 2,2,2-trichloroethyl 3-(1-methoxy-2-methyl-1-oxopropan-2-yl)-5-methyl-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (282)

A flame dried 100 mL two neck round bottom flask was charged with 4-methylpyridine ($240 \mu \mathrm{~L}, 0.957$ $\mathrm{g} / \mathrm{mL}, 2.47 \mathrm{mmol}, 1.0$ eq.) and anhydrous DCM ($25 \mathrm{~mL}, 0.1 \mathrm{M}$) under nitrogen atmosphere. The resulting solution was cooled to $-78^{\circ} \mathrm{C}$ in an acetone/dry ice bath. $\operatorname{TrocCl}(350 \mu \mathrm{~L}, 1.539 \mathrm{~g} / \mathrm{mL}, 2.54$ $\mathrm{mmol}, 1.0$ eq.) was added dropwise via syringe. Methyl trimethylsilyl dimethylketene acetal (1.0 mL , $0.858 \mathrm{~g} / \mathrm{mL}, 5.0 \mathrm{mmol}, 2.0$ eq.) was then added in one portion via syringe. The resulting mixture was left to warm up slowly to room temperature overnight (cooling bath was not removed). Solvent was removed under reduced pressure and the residue directly loaded onto a column. Gradient elution with hexanes : EtOAc = 100:1 \rightarrow 100:3 afforded the corresponding 1,2-dihydropyridine (0.329 g , $0.886 \mathrm{mmol}, 36 \%$) as a colorless clear oil.

DCM solution ($3.5 \mathrm{~mL}, 0.14 \mathrm{M}$) of the crude 1,2-dihydropyridine ($261.2 \mathrm{mg}, 0.705 \mathrm{mmol}$) in a quartz test tube was degassed by sparging with argon for 3 minutes in an ultrasonic bath. Degassed solution was then irradiated in a Rayonet photoreactor equipped with 310 nm lamps overnight. Solvent was removed and crude product was directly loaded onto a column. Gradient elution with hexanes : $\mathrm{Et}_{2} \mathrm{O}$ $=100: 5 \rightarrow 100: 30$ afforded 2,2,2-trichloroethyl 3-(1-methoxy-2-methyl-1-oxopropan-2-yl)-5-
methyl-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (282, $95.7 \mathrm{mg}, 0.285 \mathrm{mmol}, 37 \%$) as a slightly yellow clear oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.14(\mathrm{bs}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.68-4.54(\mathrm{~m}, 2 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}, rotamers) δ 177.2, 153.8, 151.1, 134.2, 96.1, 74.3, 65.2, 59.38, 52.1, 44.7, 44.4, 24.1, 22.2, 17.5.
$\mathbf{R}_{\mathbf{f}}=0.64$ (hexanes : EtOAc = $4: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2987 (w), 2950 (w), 2916 (w), 1720 (s), 1617 (w), 1391 (m), 1340 (m), 1274 (m), 1123 (s), 819 (w), 714 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{Cl}_{3}+\mathrm{H}^{+}: 370.0380$, found: 370.0375 .

Synthesis of benzyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2carboxylate (295)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.33(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~m}$, $1 \mathrm{H}), 4.23(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=6.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, 0.07 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 157.2,155.9,155.7,136.9,132.3,131.9,128.5,128.04,128.0$, $66.6,62.4,61.8,60.2,60.1,49.7,49.0,37.0,25.9,18.5$.
$\mathbf{R}_{\mathbf{f}}=0.24$ (hexanes : EtOAc = $10: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2954 (w), 2929 (w), 2887 (w), 2856 (w), 1705 (s), 1401 (m), 1345 (m), 1138 (w), 1091 (s), 835 (s), 775 (m), 731 (w), 697 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}^{+}+\mathrm{H}^{+}: 360.1995$, found: 360.1995 .

Synthesis of allyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (296)

TBSO	V -Alloc	Following the general procedure, 4-(()tertbutyldimethylsilyl)oxy)methyl)pyridine was dearomatized in 89% yield. After irradiation, allyl 5-(((tert-butyldimethylsily))oxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (296, $0.211 \mathrm{~g}, \mathbf{4 3 \%}$) was isolated via flash column chromatography (SiO_{2}, hexanes : $\mathrm{EtOAc}=100: 10 \rightarrow 100$: 40) as a slightly yellow clear oil.					
Scale	AllocCl	NaBH_{4}	MeOH	$\mathrm{Et}_{2} \mathrm{O}$	T, t		
1.8 mmol	1.1 eq.	1.1 eq.	3 mL	1 mL	$-78{ }^{\circ} \mathrm{C} \rightarrow-10^{\circ} \mathrm{C}$	Me $2 \mathrm{CO}, 0.1$	$0 \mathrm{~nm}, 36 \mathrm{~h}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 6.34(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.29-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.06-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 1 \mathrm{H}), 3.43-3.32(\mathrm{~m}$, 1H), 0.89 (s, 9H), 0.06 (s, 6H).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 157.0,156.0,155.7,133.2,132.4,131.9,117.5,65.6,62.3,61.7$, $60.3,60.2,49.7,48.9,37.0,25.9,18.5,-5.3,-5.3$.
$\mathbf{R}_{\mathrm{f}}=0.30$ (hexanes : EtOAc $=10: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2954 (w), 2888 (w), 2857 (w), 1711 (s$), 1398$ (m), 1337 (m), 1257 (w), 1140 (m), 1093 (s), 838 (s), 776 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Si}^{+} \mathrm{H}^{+}: 310.1838$, found: 310.1833.

Synthesis of 2,2,2-trichloroethyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (297)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.37(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.56(\mathrm{~m}, 3 \mathrm{H}), 4.30-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 3.60$ (m, 1H), 3.40 (dd, J = 6.8, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 0.89 (s, 6H), 0.06 ($\mathrm{s}, 4 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) δ 156.1, 155.1, 155.0, 132.1, 132.0, 95.8, 74.6, 74.5, 62.7, 62.0, $60.2,60.1,49.9,49.2,37.3,37.2,25.9,18.5,-5.2,-5.3$.
$\mathbf{R}_{\mathrm{f}}=0.36$ (hexanes : EtOAc $=10: 1 ; \mathrm{KMnO}_{4}$)

IR (ATR-FTIR, cm^{-1}): 2954 (w), 2930 (w), 2887 (w), 2857 (w), 1723 (s), 1399 (m), 1139 (w), 1117 (m), 1097 (w), 836 (s), 776 (m), 717 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{Cl}_{3} \mathrm{Si}+\mathrm{H}^{+}$: 400.0669, found: 400.0660.

Synthesis of methyl 5-benzyl-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (267)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.34-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.29-6.05(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.59(\mathrm{~m}, 1 \mathrm{H})$, $3.89-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.38-3.25(\mathrm{~m}, 2 \mathrm{H})$.

Synthesis of methyl 5-phenyl-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (264)

	Following the general procedure, 4-phenylpyridine was dearomatized in 92\% yield. After irradiation, methyl 5-phenyl-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($\mathbf{2 6 4}, 0.182 \mathrm{~g}, 35 \%$) was isolated via flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes : EtOAc $\left.=100: 20 \rightarrow 100: 40\right)$ as a slightly yellow liquid that solidified upon storage in freezer.				
Scale MeOCOCl	NaBH_{4}	MeOH	$\mathrm{Et}_{2} \mathrm{O}$	T, t	Irradiation
3 mmol 1.1 eq .	1.1 eq.	5 mL	10 mL	$-78{ }^{\circ} \mathrm{C} \rightarrow 5^{\circ} \mathrm{C}$	EtOAc, $0.08 \mathrm{M}, 310 \mathrm{~nm}, 41 \mathrm{~h}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.70(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ - 3.62 (m, 4H), 3.57 (d, J = 8.5 Hz, 1H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 157.9,153.0,152.8,132.7,129.8,129.3,129.1,128.75,125.3$, 61.6, 61.0, 52.4, 50.1, 49.3, 36.5.
$\mathbf{R}_{\mathbf{f}}=0.39$ (hexanes : $\mathrm{Et}_{2} \mathrm{O}=1: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 3056 (w), 2953 (w), 2884 (w), 1704 (s), 1447 (s), 1364(s), 1114 (m), 759 (w), 693 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2}+\mathrm{H}^{+}$: 216.1025 , found: 216.1024.

The title compound (colorless oil) was formed as the major product when dearomatization of pyridine with trimethylsilyl dimethylketene acetal in the presence of methyl chloroformate was attempted.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.98-6.74(\mathrm{~m}, 2 \mathrm{H}), 4.85-4.68(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, 3 H), 3.35 (m, 1H), 1.13 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 177.5,152.0,124.9,124.6,106.3,106.0,53.6,52.0,47.4,40.6$, 21.7, 21.5.

Synthesis of 6-phenyl-4,4a-dihydro-1H,3H-pyrido[1,2-c][1,3]oxazin-1-one (288)

A flame dried 100 mL two neck round bottom flask was charged with 4-phenylpyridine ($465 \mathrm{mg}, 3.0$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.) and anhydrous $\mathrm{DCM}(30 \mathrm{~mL}, 0.1 \mathrm{M})$ under nitrogen atmosphere. The resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. $\operatorname{TrocCl}(420 \mu \mathrm{~L}, 1.539 \mathrm{~g} / \mathrm{mL}, 5.9 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added dropwise via syringe and the resulting mixture was stirred for 30 min at the same temperature and then cooled to $-78{ }^{\circ} \mathrm{C}$. Tert-butyl((1-methoxyvinyl)oxy)dimethylsilane ($\left.286,1.3 \mathrm{~mL}, 0.854 \mathrm{~g} / \mathrm{mL}, 5.0 \mathrm{mmol}, 2.0 \mathrm{eq}.\right)$ was then added in one portion via syringe. Without removing the cooling bath, the resulting mixture was left to warm up slowly to room temperature overnight. Solvent was removed under reduced pressure and the residue directly loaded onto a column. Isocratic elution with hexanes : EtOAc = 100 : 10 afforded the corresponding 1,2-dihydropyridine 287.

1,2-dihydroypridine 287 was dissolved in a mixture of THF (25 mL) and $\mathrm{MeOH}(12.5 \mathrm{~mL}$) under nitrogen atmosphere. LiOH ($750 \mathrm{mg}, 31.3 \mathrm{mmol}$) was added in one portion and the resulting solution was heated to $50^{\circ} \mathrm{C}$. After 1 h TLC analysis revealed full consumption of starting material. After cooling to room temperature, the reaction mixture was partitioned between EtOAc and 1 M HCl . The organic phase was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to give the corresponding acid.

The crude acid was dissolved in THF (11 mL) and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. Iso-butyl chloroformate ($540 \mu \mathrm{~L}, 1.040 \mathrm{~g} / \mathrm{mL}, 4.1 \mathrm{mmol}$) and triethylamine ($590 \mu \mathrm{~L}, 0.726 \mathrm{~g} / \mathrm{mL}, 4.2 \mathrm{mmol}$) were added. The reaction mixture was brought to room temperature and then filtered to remove ammonium salts. The filtrate was concentrated under reduced pressure, cooled to $0{ }^{\circ} \mathrm{C}$ and redissolved in $\mathrm{MeOH}(11 \mathrm{~mL}) . \mathrm{NaBH}_{4}(318 \mathrm{mg}, 8.4 \mathrm{mmol})$ was added, and the resulting mixture was brought to room temperature. After completion, the reaction mixture was quenched with water and extracted with EtOAc. The organic phase was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification via flash column chromatography (SiO_{2}, gradient elution, hexanes : EtOAc = 100:50 \rightarrow 100:70) yielded the desired alcohol.

The crude alcohol was dissolved in THF (5.2 mL), and the resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. NaH ($66 \mathrm{mg}, 60 \% \mathrm{w} / \mathrm{w}$ in mineral oil) was added to the resulting solution in one portion. The ice bath was removed, and the reaction mixture was allowed to warm up to room temperature. When TLC analysis showed complete consumption of starting material, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification via flash column chromatography (SiO_{2}, gradient elution, hexanes : $\mathrm{EtOAc}=100: 50 \rightarrow 100: 100$) yielded the desired dihydropyridine ($\mathbf{2 8 8}, 108 \mathrm{mg}, 0.47 \mathrm{mmol}, 16 \%$ over 4 steps).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.51(\mathrm{~s}, 1 \mathrm{H}), 4.67$ (ddd, $J=11.0,4.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.28(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.22(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 150.8,137.9,136.4,128.7,128.5,128.2,125.7,116.8,109.8,66.0,53.3$, 27.4.

MS (ESI-Q) calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}+\mathrm{H}^{+}: 228$, found: 228.

Synthesis of 4-phenyl-9-oxa-1-azatricyclo[4.4.0.0 ${ }^{2,5}$]dec-3-en-10-one (289)

DCM solution ($2.2 \mathrm{~mL}, 0.2 \mathrm{M}$) of the 1,2-dihydropyridine $\mathbf{2 8 8}$ ($100 \mathrm{mg}, 0.44 \mathrm{mmol}$) in a quartz test tube was degassed by sparging with argon for 2 minutes in an ultrasonic bath. Degassed solution was then irradiated in a Rayonet photoreactor equipped with 310 nm lamps for 38 h . Solvent was removed and crude product was directly loaded onto a column. Gradient elution with hexanes : EtOAc =100:80 \rightarrow 100 : 180 afforded 39.4 mg of recovered starting material and the desired 4-phenyl-9-oxa-1azatricyclo[4.4.0.0 ${ }^{2,5}$] dec-3-en-10-one (289, $18.4 \mathrm{mg}, 0.08 \mathrm{mmol}, 18 \%, 30 \%$ BRSM).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (ddd, $J=11.1,4.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{td}, J=12.0,11.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{ddd}, J=11.7,4.9,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.18 (ddt, $J=13.4,4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(q d, J=12.8,4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.1,152.7,132.3,129.9,129.4,128.8,125.4,67.3,65.0,60.8,46.0$, 27.0.

Synthesis of 3-allyl-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (291)

Following the reported procedure ${ }^{143}$, a flame dried 50 mL two-neck round bottom flask was charged with pyridine ($180 \mu \mathrm{~L}, 0.978 \mathrm{~g} / \mathrm{mL}, 2.23 \mathrm{mmol}, 1.1$ eq.), allyltributylstannane ($630 \mu \mathrm{~L}, 1.068 \mathrm{~g} / \mathrm{mL}, 2.03$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.$) and anhydrous DCM (4 \mathrm{~mL}, 0.6 \mathrm{M}$) under nitrogen atmosphere. Reaction mixture was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and methyl chloroformate ($200 \mu \mathrm{~L}, 1.220 \mathrm{~g} / \mathrm{mL}, 2.58 \mathrm{mmol}, 1.3 \mathrm{eq}$.) was then added dropwise. After the addition was complete, the ice bath was removed, and the reaction
mixture was left to warm up to room temperature. Afterwards, the reaction mixture was stirred for 2 hours. Solvent was removed and the residue was directly loaded onto a column. Gradient elution with hexanes : EtOAc = 100:1 \rightarrow 100:8 afforded the corresponding 1,2-dihydropyridine ($288.7 \mathrm{mg}, 1.61$ mmol, 79\%).

Acetone solution ($16 \mathrm{~mL}, 0.2 \mathrm{M}$) of the 1,2-dihydropyridine ($560.5 \mathrm{mg}, 3.13 \mathrm{mmol}$) in a quartz test tube was degassed by sparging with argon for 3 minutes in an ultrasonic bath. Degassed solution was then irradiated in a Rayonet photoreactor equipped with 310 nm lamps for 40 hours. Solvent was removed and crude product was directly loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 10 \rightarrow 100: 40$ afforded methyl 3-allyl-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (291, 102.1 $\mathrm{mg}, 0.57 \mathrm{mmol}, 18 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.53(\mathrm{bs}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 5.79-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.00(\mathrm{~m}$, $2 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.21(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 157.0,156.1,142.4,140.6,133.4,117.2,63.4,62.5,59.6,59.0$, 52.1, 42.6, 42.3, 35.2, 34.5.
$\mathbf{R}_{\mathbf{f}}=0.45$ (hexanes : EtOAc = $4: 1 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 2992 (w), 2953 (w), 1704 (s), 1558 (w), 1450 m), 1382 (m), 1193 (w), 1159 (w), 1126 (w), 768 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}+\mathrm{H}^{+}: 180.1025$, found 180.1026 .

Synthesis of methyl 3-(2-hydroxyethyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (294)

A 100 mL flame dried two necked round bottom flask was charged with pyridine ($2.5 \mathrm{~mL}, 31 \mathrm{mmol}$, $0.982 \mathrm{~g} / \mathrm{mL}, 1.6 \mathrm{eq}$.) and anhydrous THF ($30 \mathrm{~mL}, 0.1 \mathrm{M}$). The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ and vinyl magnesium bromide ($20 \mathrm{~mL}, 1.0 \mathrm{M}, 20 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added in one portion. Methyl chloroformate ($1.6 \mathrm{~mL}, 21 \mathrm{mmol} .1 .220 \mathrm{~g} / \mathrm{mL}, 1.0 \mathrm{eq}$.) was added dropwise and the resulting mixture was left stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min . Afterwards, it was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic phase was separated from the aqueous phase, washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. Crude product was purified by filtration through a plug of silica with hexanes : EtOAc = 100:10 to yield methyl 2-vinylpyridine-1(2H)carboxylate (292, $2.36 \mathrm{~g}, 14.3 \mathrm{mmol}, 71 \%$) as a colorless clear oil.

A 100 mL flame dried two necked round bottom flask was charged with methyl 2-vinylpyridine-1(2H)carboxylate ($\mathbf{2 9 2}, 2.36 \mathrm{~g}, 14.3 \mathrm{mmol}, 1 \mathrm{eq}$). The flask was evacuated and filled with nitrogen three times. The flask was cooled to $0^{\circ} \mathrm{C}$. $9 \mathrm{BBN}(29 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in THF, $14.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added and the resulting solution was left to warm to room temperature and stirred overnight under nitrogen atmosphere. The reaction mixture was again cooled to $0{ }^{\circ} \mathrm{C}$ and 30 mL of water followed by sodium perborate tetrahydrate ($6.787 \mathrm{~g}, 42.9 \mathrm{mmol}, 3.0 \mathrm{eq}$.) were added sequentially. The ice bath was removed, and the resulting suspension was allowed to warm to room temperature with vigorous stirring. A small exotherm was observed and the temperature was controlled with the ice bath. After stirring for 2 hours at room temperature, the reaction mixture was filtered through cotton wool and
partitioned between EtOAc and brine (50 mL each). The organic phase was separated from the aqueous phase. The latter was extracted with another portion of EtOAc (50 mL). Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes: EtOAc $=100: 100 \rightarrow 100: 200$ afforded the corresponding alcohol (293, $1.928 \mathrm{~g}, 10.5 \mathrm{mmol}, 73 \%$) as a colorless oil.

Acetone solution ($53 \mathrm{~mL}, 0.2 \mathrm{M}$) of the alcohol 293 ($1.928 \mathrm{~g}, 10.5 \mathrm{mmol}$) was degassed by sparging with argon for 3 minutes in an ultrasonic bath. The degassed solution was then irradiated in a Rayonet photoreactor equipped with 310 nm lamps for 1 week. Solvent was removed and crude product was directly loaded onto a column. Gradient elution with hexanes : EtOAc =100:100 \rightarrow 100:200 afforded methyl 3-(2-hydroxyethyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (294, $0.506 \mathrm{~g}, 2.76 \mathrm{mmol}, 26 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{t}, \mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{t}, \mathrm{J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ - $4.27(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 5 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.79(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 158.4,142.4,141.5,64.5,60.1,58.7,52.54,43.1,35.5$.
$\mathbf{R}_{\mathrm{f}}=0.35$ (hexanes: EtOAc = $1: 2 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 3431 (bs), 2954 (w), 2878 (w), 1681 (s), 1456 (s), 1388 (m), 1194 (w), 1160 (w), 1138 (w), 1110 (w), 1055 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{3}+\mathrm{Na}^{+}$: 206.0788, found: 206.0786.

Dearomatization of pyridine under homogenous conditions

Following the reported procedure ${ }^{90}$, a 50 mL flame fried round bottom flask was charged with pyridine ($200 \mu \mathrm{~L}, 0.982 \mathrm{~g} / \mathrm{mL}, 2.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and DCM (5.0 mL). The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ in an acetone/dry ice bath. MeOCOCl ($220 \mu \mathrm{~L}, 1.220 \mathrm{~g} / \mathrm{mL}, 2.8 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) was slowly added and$ the resulting mixture was left stirring for 30 minutes at the same temperature. DIBALH (1M in DCM, $5.2 \mathrm{~mL}, 5.2 \mathrm{mmol}, 2.1$ eq.) was slowly added. Dry ice was removed, and the reaction mixture was allowed to slowly warm up to room temperature. The reaction mixture was quenched with water and saturated Rochelle's salt solution was added. The resulting mixture was vigorously stirred until most of the solid dissolved. Layers were separated and the aqueous phase extracted two more times with DCM ($3 \times 20 \mathrm{~mL}$ in total). Combined organic phases were dried over MgSO_{4}, passed through a neutral alumina plug and concentrated under reduced pressure to yield 1,2-dihydropyiridne (223, $203 \mathrm{mg}, 1.5$ $\mathrm{mmol}, 59 \%$ yield) as a clear colorless oil.

Synthesis of methyl 2-azabicyclo[2.2.0]hexane-2-carboxylate (313)

A 4 mL vial was charged with methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224, $50.0 \mathrm{mg}, 0.359$ $\mathrm{mmol}, 1.0$ eq.), $\mathrm{MeOH}\left(2.6 \mathrm{~mL}, 0.14 \mathrm{M}\right.$) and PtO_{2} hydrate ($8.2 \mathrm{mg}, 0.065 \mathrm{mmol}, 9 \mathrm{~mol} \%$). The resulting suspension was purged with hydrogen for 1 minute and left stirring for 1 hour under hydrogen atmosphere (balloon). The suspension was filtered through a pad of celite to yield methyl 2-azabicyclo[2.2.0]hexane-2-carboxylate ($313,39.7 \mathrm{mg}, 0.281 \mathrm{mmol}, 78 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.58(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ $(\mathrm{s}, 3 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 156.6,156.2,64.2,63.8,58.5,57.6,52.1,31.5,29.2,28.9,26.3$.
$\mathbf{R}_{\mathbf{f}}=0.36$ (hexanes : EtOAc $=3: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm^{-1}): 2953 (m), 1704 (s), 1449 (m), 1382 (s), 1197 (m), 1127 (m), 769 (w), 731 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2}+\mathrm{H}^{+}$: 142.0868, found: 142.0867.

Oxidative hydroboration of benzyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (259) with borane

A flame dried 50 mL two-neck round bottom flask was charged with benzyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($\mathbf{2 5 9}, 750 \mathrm{mg}, 3.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and anhydrous THF (14 \mathrm{~mL}$) under nitrogen atmosphere. The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ in an acetone/dry ice bath). $\mathrm{BH}_{3} \cdot \mathrm{THF}$ complex ($1 \mathrm{M}, 3.8 \mathrm{~mL}, 3.8 \mathrm{mmol}, 1.1$ eq.) was slowly added. The reaction mixture was left to warm up to $0{ }^{\circ} \mathrm{C}$ when TLC analysis showed complete consumption of starting material. Water (14 mL) and $\mathrm{NaBO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ were added sequentially in one portion. With vigorous stirring, the resulting suspension was brought to room temperature and left stirring for 2 h . Afterwards, it was filtered through cotton wool and partitioned between EtOAc (50 mL) and water (50 mL). The aqueous layer was separated and extracted with EtOAc two more times. Combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified via flash column chromatography. Gradient elution with hexanes : EtOAc $=100: 80 \rightarrow 100: 200$ afforded benzyl 5-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (314, $295 \mathrm{mg}, 1.3 \mathrm{mmol}, 36 \%$), benzyl 6-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-314, $321 \mathrm{mg}, 1.4 \mathrm{mmol}, 39 \%$) and benzyl ((2hydroxycyclobutyl)methyl)carbamate ($315,149 \mathrm{mg}, 0.6 \mathrm{mmol}, 18 \%$) as a clear colorless oils.

Benzyl 5-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (314)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{bs}, 2 \mathrm{H}), 4.65-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.26 \mathrm{~m}$, 1H), $3.94(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.9,136.8,128.6,128.2,128.1,73.4,66.7,59.4,58.9,54.3,53.3,41.6$, 41.3, 41.1.
$\mathbf{R}_{\mathrm{f}}=0.50$ (hexanes: EtOAc $=1: 2 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 3400 (bs), 2955 (w), 2883 (w), 1686 (s), 1421 (s), 1357 (m), 1100 (m), 698 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}+\mathrm{Na}^{+}: \mathbf{2 5 6 . 0 9 4 4}$, found: 256.0942.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.34(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H})$, $3.90(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.14(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 155.7,155.6,136.8,136.6,73.3,72.6,70.5,70.0,66.8,66.7$, 57.2, 56.3, 37.1, 36.3, 27.4, 27.1.
$\mathbf{R}_{\mathbf{f}}=0.51$ (hexanes: EtOAc $=1: 3 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 3400 (bs), 2955 (w), 2881 (w), 1686 (s$), 1421$ (s$), 1356$ (m), 1091 (m), 698 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}+\mathrm{Na}^{+}: \mathbf{2 5 6 . 0 9 4 4}$, found: 256.0941 .

Benzyl ((2-hydroxycyclobutyl)methyl)carbamate (315)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.28(\mathrm{bs}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59$ $-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{bs}, 1 \mathrm{H}), 2.24(\mathrm{dq}, J=12.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{tt}, J=12.1,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.81-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{tt}, J=10.4,5.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 157.3,136.5,128.7,128.3,128.3,67.9,67,0,41.9,40.5,29.7,18.2$.

Mesylation and elimination

A 4 mL vial was charged with benzyl 6-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-314, 42.3 $\mathrm{mg}, 0.181 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathrm{DCM}(2.0 \mathrm{~mL}, 0.09 \mathrm{M})$. The resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and $\mathrm{Et}_{3} \mathrm{~N}(53 \mu \mathrm{~L}, 0.726 \mathrm{~g} / \mathrm{mol}, 0.38 \mathrm{mmol}, 2.1 \mathrm{eq})$ and $\mathrm{MsCl}(28 \mu \mathrm{~L}, 1.470 \mathrm{~g} / \mathrm{mL}, 0.36 \mathrm{mmol}, 2.0$ eq.) were added via syringe in one portion. The ice bath was removed, and the reaction mixture was left to warm to room temperature. After TLC analysis indicated full consumption of starting material, the reaction mixture was partitioned between $\mathrm{DCM}(20 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The organic phase was separated, and the aqueous phase was extracted two more times with DCM (20 mL each). Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 50 \rightarrow 10: 75$ afforded benzyl 6-((methylsulfonyl)oxy)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-316, $56.4 \mathrm{mg}, 0.181 \mathrm{mmol}$, 100\%) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.21-4.92(\mathrm{~m}, 3 \mathrm{H}), 4.66(\mathrm{bs}, 1 \mathrm{H}), 4.38-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.97$ (d, J = 8.7 Hz, 1H), $3.12(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.62(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR (101 MHz, CDCl 3 , rotamers) $\delta 155.3,154.9,136.3,136.0,128.7,128.6,128.5,128.39,128.2$, $79.4,79.0,68.3,67.8,67.5,67.1,57.1,56.2,38.0,37.8,35.7,35.5,28.1,27.8$.
$\mathbf{R}_{\mathrm{f}}=0.69$ (hexanes: EtOAc = 1:2; KMnO_{4})
IR (KBr discs, cm^{-1}): 3028 (w), 2956 (w), 2887 (w), 1707(s), 1603 (m), 1417 (m), 1357 (m), 1178 (m), 1123 (w), 970 (m), 900 (w), 823 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}^{+} \mathrm{Na}^{+}: 334.0720$, found: 334.0719.

In an argon filled glovebox, a 4 mL vial was charged with benzyl 6-((methylsulfonyl)oxy)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-316, $44.5 \mathrm{mg}, 0.143 \mathrm{mmol}, 1.0$ eq.) and KOtBu (18.2 mg , $0.162 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) . The vial was taken outside of the glovebox and anhydrous tert-BuOH (1.0 \mathrm{~mL}$, 0.1 M) was added. The resulting solution was stirred for 3 h at $70^{\circ} \mathrm{C}$ under argon atmosphere. Afterwards, the reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and water (50 mL). The organic phase was separated, washed with brine, dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc =100:10 \rightarrow 10:30 afforded benzyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($259,18.2 \mathrm{mg}, 0.085 \mathrm{mmol}, 59 \%$) as a colorless oil, the spectroscopic data of which matched reported values from the literature. ${ }^{74}$

General procedure for the transition metal catalyzed hydroboration screening

A 4 mL vial was charged with rhodium source ($2.5 \mathrm{~mol} \%$) and ligand ($5 \mathrm{~mol} \%$; $10 \mathrm{~mol} \%$ for monodentate ligands) in an argon filled glovebox. The vial was taken outside the glovebox and anhydrous solvent (0.5 M total concentration) was added. The resulting mixture was stirred for 1 minute. Substrate stock solution (224, 1.0 M) and HBpin (1.1 eq.) were added sequentially via syringe. The resulting mixture was stirred for 3 hours under argon atmosphere. The solvent was removed, and the residue was loaded onto a column. Gradient elution with hexanes : EtOAc =100:15 $\rightarrow 100: 20$ afforded a mixture of methyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (317) and methyl 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-317) as a colorless film. Isomer ratio was determined with ${ }^{1} \mathrm{H}$ NMR analysis.

Synthesis of 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (317) and 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-317)

A flame dried 4 mL vial was charged with $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(12.7 \mathrm{mg}, 0.026 \mathrm{mmol}, 1.4 \mathrm{~mol} \%)$ and xantphos $(29.5 \mathrm{mg}, 0.051 \mathrm{mmol}, 2.8 \mathrm{~mol} \%)$ in a nitrogen filled glovebox. The vial was taken outside the glovebox and THF (0.5 mL) was added. The resulting mixture was stirred for 5 minutes at room temperature. Afterwards, THF (0.5 mL) solution of methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224, 0.250 g , $1.80 \mathrm{mmol}, 1.0$ eq.) and HBPin ($350 \mu \mathrm{~L}, 0.882 \mathrm{~g} / \mathrm{mL}, 2.41 \mathrm{mmol}, 1.3 \mathrm{eq}$.) were added in one portion via syringe. The resulting reaction mixture was stirred at room temperature overnight, the solvent was removed, and the residue loaded onto a column. Isocratic elution with hexanes : EtOAc = 100:50 afforded a 1.7 : 1 mixture of methyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-
azabicyclo[2.2.0]hexane-2-carboxylate (317) and methyl 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-317, $0.439 \mathrm{~g}, 1.64 \mathrm{mmol}, 92 \%$ combined yield) as a colorless clear oil. For characterization purposes, the constitutional isomers were separated using Sepiatec preparative chiral SFC (IG $21 \times 250 \mathrm{~mm}$ column, $70 \mathrm{~mL} / \mathrm{min}$ flow rate, $10 \% \mathrm{MeOH} \& 0.1 \%$ $\mathrm{NH}_{4} \mathrm{OH}$ modifiers, 215 nm UV detection).

6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-317)
${ }^{1} \mathrm{H}$ NMR ($499 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}$, $4 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 138.0,137.3,83.5,64.6,57.6,52.1,31.3,28.0,25.9,24.8$.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.9.
$\mathbf{R}_{\mathrm{f}}=0.55$ (hexanes: EtOAc $=3: \mathbf{2} ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2977 (w), 2878 (w), 1705 (s), 1449 (m), 1373 (s), 1320 (w), 1142 (s), 983 (w), 769 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~B}+\mathrm{H}^{+}$: 268.1720, found: 248.1719.

5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (317)
${ }^{1} \mathrm{H}$ NMR (499 MHz, CDCl 3 , rotamers) $\delta 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.81$ - $2.76(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 156.5,156.2,83.5,63.9,63.4,59.7,58.7,52.0,32.6,30.6,30.3$, 24.7, 22.7.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.5$.
$\mathbf{R}_{\mathbf{f}}=0.55$ (hexanes: EtOAc = $3: 2 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2977 (w), 2878 (w), 1705 (s), 1449 (m), 1373 (s), 1320 (w), 1142 (s), 983 (w), 769 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~B}+\mathrm{H}^{+}$: 268.1720, found: 248.1719 .

Synthesis of methyl 5-(pyridin-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (324) and methyl 6-(pyridin-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-324) via dual photo/nickel catalyzed cross-coupling

Following the reported procedure ${ }^{105}$, a 4 mL vial was charged with $\mathrm{Ni}(\mathrm{DME}) \mathrm{Cl}_{2}(5.5 \mathrm{mg}, 0.025 \mathrm{mmol}$, $)$ and dtbbpy ($6.7 \mathrm{mg}, 0.025 \mathrm{mmol}$) in a nitrogen filed glovebox. The vial was taken outside the glovebox and DMF (2.5 mL) was added. The resulting suspension was sonicated for 30 seconds and afterwards heated with a heat gun until a clear green solution was obtained. A second 4 mL vial was charged with
$\left(\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}(\mathrm{dtbpy})\right) \mathrm{PF}_{6}(2.0 \mathrm{mg}, 0.002 \mathrm{mmol}, 3 \mathrm{~mol} \%)$, 2-bromopyridine $(5 \mu \mathrm{~L}, 1.66 \mathrm{~g} / \mathrm{mL}, 0.05$ mmol, 1.0 eq.), a 1.7 : 1 mixture of methyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (317) and methyl 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-317) ($26.7 \mathrm{mg}, 0.10 \mathrm{mmol}, 2.0 \mathrm{eq}$.), morpholine ($8 \mu \mathrm{~L}$, $1.030 \mathrm{~g} / \mathrm{mL}, 0.2 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and DMF (0.25 mL). 0.25 mL of [Ni] stock solution was added and the resulting mixture was irradiated using blue LEDs for 3 hours. Solvent was removed under high vacuum and the residue loaded onto a column. Gradient elution with hexanes : EtOAc $=1: 1 \rightarrow$ pure EtOAc afforded a mixture of methyl 5-(pyridin-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate and methyl 6-(pyridin-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (324) methyl 6-(pyridin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-324) ($4.2 \mathrm{mg}, 0.019 \mathrm{mmol}, 40 \%$ combined yield) as a colorless film. Spectroscopic data matched the products of the reductive Heck reaction with 2bromopyridine. Constitutional isomer ratio of the products could not be determined with ${ }^{1} \mathrm{H} N M R$ due to signal overlap.

Synthesis of methyl 5-(pyridin-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (324) and methyl 6-(pyridin-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-324) via reductive Heck

A 4 mL vial was charged with methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224, $70 \mathrm{mg}, 0.50$ mmol, 1.0 eq.), DMF ($2.5 \mathrm{~mL}, 0.2 \mathrm{M}$), 2-bromopyridine ($100 \mu \mathrm{~L}, 1.657 \mathrm{~g} / \mathrm{mL} 1.05 \mathrm{mmol}, 2.0 \mathrm{eq}$.$) ,$ piperidine ($150 \mu \mathrm{~L}, 0.862 \mathrm{~g} / \mathrm{mL}, 1.52 \mathrm{mmol}, 3.0$ eq.), formic acid ($40 \mu \mathrm{~L}, 1.220 \mathrm{~g} / \mathrm{mL}, 1.1 \mathrm{mmol}, 2.1$ eq.), $\mathrm{Pd}(\mathrm{OAc})_{2}(6.0 \mathrm{mg}, 0.027 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and xantphos ($29.0 \mathrm{mg}, 0.050 \mathrm{mmol} 10 \mathrm{~mol} \%$). The resulting mixture was sealed with a septum and degassed by sparging with argon for 5 minutes. After stirring at $70^{\circ} \mathrm{C}$ for 8 hours, the volatiles were removed under high vacuum and the residue loaded onto a column. Isocratic elution with EtOAc followed by further purification with reverse phase liquid chromatography afforded a mixture of methyl 5-(pyridin-2-yl)-2-azabicyclo[2.2.0]hexane-2carboxylate and (324) methyl 6-(pyridin-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-324) as a colorless clear oil ($68 \mathrm{mg}, 0.31 \mathrm{mmol}, 62 \%$ combined yield). Constitutional isomer ratio of the products could not be determined with ${ }^{1} H$ NMR due to signal overlap. For characterization purposes, the constitutional isomers were separated using Sepiatec preparative SFC (IB-N $21 \times 250 \mathrm{~mm}$ column, 70 $\mathrm{mL} / \mathrm{min}$ flow rate, $20 \% \mathrm{iPrOH} \& 0.1 \% \mathrm{NH}_{4} \mathrm{OH}$ modifiers, 215 nm UV detection).

Methyl 6-(pyridin-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-324)
${ }^{1} \mathrm{H}$ NMR (499 MHz, CDCl ${ }_{3}$, rotamers) $\delta 8.54(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.57(\mathrm{~m}$, $1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.17-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.49(\mathrm{~m}$, 2 H).

[^1]$\mathbf{R}_{\mathbf{f}}=0.31$ (EtOAc; UV)
IR (ATR-FTIR, cm^{-1}): 2953 (w), 2879 (w), 1702 (s), 1589 (8), 1450 (s), 1382 (s), 1195 (m), 1152 (m), 1129 (m), 770 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}^{+}$: 219.1134, found: 219.1134 .

Methyl 5-(pyridin-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (324)
${ }^{1} \mathrm{H}$ NMR (499 MHz, CDCl_{3}, rotamers) $\delta 8.64-8.51(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~m}$, $1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{dm}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 162.0,161.8,156.4,156.1,149.6,149.5,136.6,122.7,122.2$, $121.6,68.4,68.0,58.0,57.0,52.3,52.2,49.0,48.3,32.0,31.8,29.1$.
$\mathbf{R}_{\mathbf{f}}=0.31$ (EtOAc; UV)
IR (ATR-FTIR, cm ${ }^{-1}$): 2953 (w), 2879 (w), 1702 (s), 1589 (8), 1450 (s), 1382 (s), 1195 (m), 1152 (m), 1129 (m), 770 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}^{+}$: 219.1134, found: 219.1134 .

Synthesis of methyl 5-(pyridin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (325) and methyl 6-(pyridin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-325) via dual photo/nickel catalyzed cross-coupling

Following the reported procedure ${ }^{105}$, a 4 mL vial was charged with $\mathrm{Ni}(\mathrm{DME}) \mathrm{Cl}_{2}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 5$ $\mathrm{mol} \%$) and dtbbpy ($2.0 \mathrm{mg}, 0.007 \mathrm{mmol}, 7 \mathrm{~mol} \%$) in a nitrogen filed glovebox. The vial was taken outside the glovebox and DMF (0.5 mL) was added. The resulting suspension was sonicated for 30 seconds and afterwards heated with a heat gun until a clear green solution was obtained. A second 4 mL vial was charged with ($\operatorname{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}$ (dtbpy)) $\mathrm{PF}_{6}(1.1 \mathrm{mg}, 0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%)$, 3 -bromopyridine $(10 \mu \mathrm{~L}, 1.64 \mathrm{~g} / \mathrm{mL}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , a 1.7: 1$ mixture of methyl $5-(4,4,5,5$-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (317) and methyl 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-317) ($53.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ eq.), morpholine ($13 \mu \mathrm{~L}, 1.030 \mathrm{~g} / \mathrm{mL}, 0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and DMF (0.5 mL). Both solutions were thoroughly mixed and irradiated using blue LEDs for 2 hours. Solvent was removed under high vacuum and the residue loaded onto a column. Isocratic elution with $\mathrm{EtOAc}+1 \% \mathrm{Et}_{3} \mathrm{~N}$ afforded a $1.8: 1$ mixture of methyl 5-(pyridin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (325) and methyl 6-(pyridin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-325) ($15.9 \mathrm{mg}, 0.073 \mathrm{mmol}, 70 \%$ combined yield) as a colorless oil. Spectroscopic data matched the products of the reductive Heck reaction with 3iodopyridine.

Synthesis of methyl 5-(pyridin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (325) and methyl 6-(pyridin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-325) via reductive Heck

A 20 mL round bottom flask was charged with methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224, $97.3 \mathrm{mg}, 0.699 \mathrm{mmol}, 1.0 \mathrm{eq}$), DMF ($3.5 \mathrm{~mL}, 0.2 \mathrm{M}$), 3-iodopyridine ($287 \mathrm{mg}, 1.40 \mathrm{mmol}, 2.0$ eq.), piperidine ($210 \mu \mathrm{~L}, 0.862 \mathrm{~g} / \mathrm{mL}, 2.13 \mathrm{mmol}, 3.0$ eq.), formic acid ($56 \mu \mathrm{~L}, 1.220 \mathrm{~g} / \mathrm{mL}, 2.92 \mathrm{mmol}$, 2.0 eq.), $\mathrm{Pd}(\mathrm{OAc})_{2}(8.4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and xantphos ($40.6 \mathrm{mg}, 10 \mathrm{~mol} \%$). The resulting mixture was sealed with a septum and degassed by sparging with argon for 5 minutes. After stirring at $30{ }^{\circ} \mathrm{C}$ overnight, the reaction mixture was partitioned between EtOAc and brine (20 mL each). The organic phase was separated, and the aqueous phase extracted two more times with EtOAc (20 mL). Combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure Crude NMR analysis indicated the formation of a $1: 1$ mixture of constitutional isomers. The residue after solvent evaporation was loaded onto a column. Isocratic elution with $\mathrm{EtOAc}+1 \% \mathrm{Et}_{3} \mathrm{~N}$ yielded a mixture of methyl 6-(pyridin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-325) and methyl 5-(pyridin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (325) as a colorless clear oil ($149.5 \mathrm{mg}, 0.685 \mathrm{mmol}, 98 \%$ combined yield). For characterization purposes, the constitutional isomers were separated using Sepiatec preparative SFC (IZ $21 \times 250 \mathrm{~mm}$ column, $70 \mathrm{~mL} / \mathrm{min}$ flow rate, $20 \% \mathrm{iPrOH} \& 0.1 \% \mathrm{NH}_{4} \mathrm{OH}$ modifiers, 215 nm UV detection).

Methyl 6-(pyridin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-325)
${ }^{1} \mathrm{H}$ NMR ($499 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 8.48(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{t}, \mathrm{J}$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~ns}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{bs}$, 1H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 156.3,156.1,148.4,148.1,147.8,147.7,138.5,134.55,134.0$, 123.7, 69.2, 68.7, 58.0, 57.0, 52.4, 52.3, 45.1, 44.5, 33.0, 32.8, 28.8.
$\mathbf{R}_{\mathrm{f}}=0.27\left(\mathrm{EtOAc}+1 \% E t_{3} \mathrm{~N} ; \mathrm{UV}\right)$
IR (ATR-FTIR, cm^{-1}): 2954 (w), 2880 (w), 1702 (s$), 1450$ (s$), 1383$ (s$), 1198$ (m), 1131 (m), 715 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}^{+}$: 219.1134 , found: 219.1138 .

Methyl 5-(pyridin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (325)
${ }^{1} \mathrm{H}$ NMR (499 MHz, CDCl ${ }_{3}$, rotamers) $\delta 8.47(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H})$, $4.39(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{dm}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}, rotamers) $\delta 156.6,156.4,148.1,147.7,140.3,134.2,123.7,61.3,60.8,58.0$, 57.1, 52.3, 42.7, 38.4, 37.9, 37.6.
$\mathbf{R}_{\mathrm{f}}=0.27\left(\mathrm{EtOAc}+1 \% \mathrm{Et}_{3} \mathrm{~N} ; \mathrm{UV}\right)$
IR (ATR-FTIR, cm ${ }^{-1}$): 2954 (w), 2880 (w), 1702 (s), 1450 (s), 1383 (s), 1198 (m), 1131 (m), 715 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}^{+}$: 219.1134, found: 219.1138 .

Synthesis of methyl (5-(pyrimidin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (326) and methyl (6-(pyrimidin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-326) via dual photo/nickel catalyzed cross-coupling

Following the reported procedure ${ }^{105}$, a 4 mL vial was charged with $\mathrm{Ni}(\mathrm{DME}) \mathrm{Cl}_{2}$ ($2.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 5$ mol\%) and dtbbpy ($2.7 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in a nitrogen filed glovebox. The vial was taken outside the glovebox and DMF (1 mL) was added. The resulting suspension was sonicated for 30 seconds and afterwards heated with a heat gun until a clear green solution was obtained. A second 4
 bromopyrimidine ($31.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ eq.), a $1.7: 1$ mixture of methyl 5 -($4,4,5,5$-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (317) and methyl 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-317) (106.8 mg, $0.40 \mathrm{mmol}, 2.0 \mathrm{eq}$.), morpholine ($26 \mu \mathrm{~L}, 1.030 \mathrm{~g} / \mathrm{mL}, 0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and DMF (1 mL). Both solutions were thoroughly mixed and irradiated using blue LEDs for 2 hours. Solvent was removed under high vacuum and the residue loaded onto a column. Isocratic elution with hexanes : acetone = $1: 1+1 \% \mathrm{Et}_{3} \mathrm{~N}$ afforded a 1.1:1 mixture of methyl (5-(pyrimidin-3-yl)-2-azabicyclo[2.2.0]hexane-2carboxylate (326) and methyl (6-(pyrimidin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-326) ($36.4 \mathrm{mg}, 0.166 \mathrm{mmol}, 83 \%$ combined yield) as a colorless oil. Spectroscopic data matched the products of the reductive Heck reaction with 5-bromopyrimidine.

Synthesis of methyl (5-(pyrimidin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (326) and methyl (6-(pyrimidin-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-326) via reductive Heck

A 4 mL vial was charged with methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224, $70 \mathrm{mg}, 0.50$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.), DMF ($2.5 \mathrm{~mL}, 0.2 \mathrm{M}$), 5-bromopyrimidine ($159 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.0 \mathrm{eq}$.), piperidine (150 $\mu \mathrm{L}, 0.862 \mathrm{~g} / \mathrm{mL}, 1.52 \mathrm{mmol}, 3.0 \mathrm{eq}$.$) , formic acid (40 \mu \mathrm{~L}, 1.220 \mathrm{~g} / \mathrm{mL}, 1.1 \mathrm{mmol}, 2.1 \mathrm{eq}.), \mathrm{Pd}(\mathrm{OAc})_{2}(6.0$ $\mathrm{mg}, 0.027 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and xantphos ($29.0 \mathrm{mg}, 0.050 \mathrm{mmol} 10 \mathrm{~mol} \%$). The resulting mixture was sealed with a septum and degassed by sparging with argon for 5 minutes. After heating at $70^{\circ} \mathrm{C}$ for 2 hours, the volatiles were removed under high vacuum and the residue loaded onto a column. Isocratic elution with $\mathrm{EtOAc}+1 \% \mathrm{Et}_{3} \mathrm{~N}$ afforded a $1: 1$ mixture of methyl 6 -(pyrimidin-5-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate and (iso-326) methyl 5-(pyrimidin-5-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (326) as a colorless clear oil (113 mg, 0.51 mmol , quant. combined yield). For characterization purposes, the constitutional isomers were separated using Sepiatec preparative SFC (IB-N $21 \times 250 \mathrm{~mm}$ column, $70 \mathrm{~mL} / \mathrm{min}$ flow rate, $20 \% \mathrm{MeOH} \& 0.1 \% \mathrm{NH}_{4} \mathrm{OH}$ modifiers, 215 nm UV detection).

Methyl 6-(pyrimidin-5-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-326)
${ }^{1} \mathrm{H}$ NMR $\left(499 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 9.11(\mathrm{~s}, 1 \mathrm{H}), 8.66(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$, rotamers) $\delta 157.2,156.1,155.4,136.0,68.7,68.2,68.2,58.1,57.1,52.6$, 52.5, 43.0, 42.3, 32.9, 32.4, 29.0.
$\mathbf{R}_{\mathrm{f}}=0.46$ (DCM : MeOH = $1: 1 ; \mathrm{UV}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2954 (w), 2881 (w), 1697 (s), 1557 (m), 1448 (s), 1412 (w), 1380 (s), 1195 (w), 1129 (m), 769 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}^{+}$: 220.1086, found: 220.1087.

Methyl 5-(pyrimidin-5-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (326)
${ }^{1} \mathrm{H}$ NMR (499 MHz, CDCl 3 , rotamers) $\delta 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, \mathrm{J}=$ $8.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{td}, \mathrm{J}=8.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.14-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.68$ - $2.54(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 157.3,156.4,155.3,137.8,61.2,60.8,58.0,57.0,52.4,40.6$, 40.5, 38.2, 37.8, 37.5.
$\mathbf{R}_{\mathrm{f}}=0.46$ (DCM : $\left.\mathrm{MeOH}=1: 1 ; \mathrm{UV}\right)$
IR (ATR-FTIR, cm ${ }^{-1}$): 2954 (w), 2881 (w), 1697 (s), 1557 (m), 1448 (s), 1412 (w), 1380 (s), 1195 (w), 1129 (m), 769 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}^{+}$: 220.1086, found: 220.1087.

Synthesis of methyl (5-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (321) and methyl (6-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-321) via reductive Heck

A 50 mL round bottom flask was charged with methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224, $0.200 \mathrm{~g}, 1.437 \mathrm{mmol}, 1.0 \mathrm{eq}$.), DMF ($14 \mathrm{~mL}, 0.1 \mathrm{M}$), iodobenzene ($400 \mu \mathrm{~L}, 3.59 \mathrm{mmol}, 2.5 \mathrm{eq}$., $1.830 \mathrm{~g} / \mathrm{mL}$), piperidine ($430 \mu \mathrm{~L}, 4.35 \mathrm{mmol}, 3.0$ eq., $0.862 \mathrm{~g} / \mathrm{mL}$), formic acid ($110 \mu \mathrm{~L}, 2.92 \mathrm{mmol}, 2.0$ eq., $1.220 \mathrm{~g} / \mathrm{mL}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(16.1 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and xantphos ($83.2 \mathrm{mg}, 10 \mathrm{~mol} \%$). The resulting mixture was sealed with a septum and degassed by sparging with argon for 5 minutes. After heating at $70{ }^{\circ} \mathrm{C}$ overnight, the reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and water (50 mL each). The aqueous phase was separated, and the organic phase was washed again with water and brine. The organic phase was dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 10 \rightarrow 100: 15$ afforded a $1: 1$ mixture of methyl 5-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (321) and methyl 6-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-321) ($0.297 \mathrm{~g}, 1.366 \mathrm{mmol}, 95 \%$) as a slightly yellow clear oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 4.68$ (broad s, 1 H$), 4.39(\mathrm{dd}, \mathrm{J}=8.7$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{td}, J=7.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) \mathrm{z}, 3.01(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~m}$, 1H), 2.59 (m, 1H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, rotamers) $\delta 156.6,145.1,128.7,126.5,126.5,61.4,60.9,58.0,57.1,52.3$, 45.3, 38.7, 38.1, 37.8.
$\mathbf{R}_{\mathbf{f}}=0.53$ (hexanes : $\mathrm{EtOAc}=1: 1 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 2953 (w), 2879 (w), 1706 (s), 1450 (m), 1384 (m), 1128 (w), 1129 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{Na}^{+}: \mathbf{2 4 0 . 0 9 9 5}$, found: 240.0840

Methyl (6-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-321)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $7.28(\mathrm{~m}, 5 \mathrm{H}), 4.54$ (broad s, 1 H$), 4.38(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl 3 , rotamers) $\delta 156.5,156.1,143.2,128.7,126.6,126.4,69.7,69.3,57.9,57.1$, 52.3, 47.4, 46.9, 33.1, 28.8.
$\mathbf{R}_{\mathbf{f}}=0.59$ (hexanes : EtOAc $=1: 1 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 2953 (w), 2879 (w), 1706 (s), 1449 (m), 1383 (m), 1197 (w), 700 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{Na}^{+}: \mathbf{2 4 0 . 0 9 9 5}$, found: 240.0993

Synthesis of methyl 5-(thiophen-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (322) and methyl 6-(thiophen-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-322) via reductive Heck

A 20 mL round bottom flask was charged with methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224, $97.3 \mathrm{mg}, 0.699 \mathrm{mmol}, 1.0 \mathrm{eq}$.), DMF ($3.5 \mathrm{~mL}, 0.2 \mathrm{M}$), 2-iodothiophene ($160 \mu \mathrm{~L}, 1.902 \mathrm{~g} / \mathrm{mL}, 1.40$ mmol, 2.0 eq.), piperidine ($210 \mu \mathrm{~L}, 0.862 \mathrm{~g} / \mathrm{mL}, 2.13 \mathrm{mmol}, 3.0$ eq.), formic acid ($56 \mu \mathrm{~L}, 1.220 \mathrm{~g} / \mathrm{mL}$, $1.5 \mathrm{mmol}, 2.0 \mathrm{eq}.), \mathrm{Pd}(\mathrm{OAc})_{2}(8.4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and xantphos ($40.6 \mathrm{mg}, 10 \mathrm{~mol} \%$). The resulting mixture was sealed with a septum and degassed by sparging with argon for 5 minutes. After heating at $30^{\circ} \mathrm{C}$ overnight, the reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and brine (20 mL each). The organic phase was separated, and the aqueous phase extracted two more times with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. Combined organic phases were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. Crude NMR analysis indicated the formation of a $1: 1.2$ mixture of constitutional isomers. The residue after solvent evaporation was loaded onto a column. Gradient elution with hexanes: EtOAc = 100:15 \rightarrow 100:30 afforded a mixture of methyl 5-(thiophen-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (322) and methyl 6-(thiophen-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate as a colorless clear oil (iso-322) ($154.5 \mathrm{mg}, 0.692 \mathrm{mmol}, 99 \%$).
${ }^{1} \mathrm{H}$ NMR (499 MHz, CDCl 3 , rotamers) $\delta 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.80(\mathrm{~m}, 1 \mathrm{H})$, $4.67(\mathrm{bs}, 1 \mathrm{H}), 4.45-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~m}$, $2 \mathrm{H}), 2.63(\mathrm{dt}, J=13.1,6.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 156.5,149.0,127.0,123.6,123.1,61.2,60.7,57.7,56.7,52.3$, 40.7, 40.4, 39.3, 39.1.
$\mathbf{R}_{\mathbf{f}}=0.27$ (hexanes: EtOAc = $5: 1$; UV)
IR (ATR-FTIR, cm ${ }^{-1}$): 2953 (w), 2880 (w), 1704 (s), 1449 (s), 1382 (s), 1198 (m), 1128 (m), 768 (w), 698 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}+\mathrm{H}^{+}: \mathbf{2 2 4 . 0 7 4 5}$, found: 224.0746 .

Methyl 6-(thiophen-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-322)
${ }^{1} \mathbf{H}$ NMR (499 MHz, CDCl 3 , rotamers) $\delta 7.17(\mathrm{bs}, 1 \mathrm{H}), 6.96(\mathrm{bs}, 1 \mathrm{H}), 6.88(\mathrm{bs}, 1 \mathrm{H}), 4.51(\mathrm{bs}, 1 \mathrm{H}), 4.34(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{bs}, 1 \mathrm{H}), 2.81-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.56(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 156.4,146.9,127.1,123.6,123.2,70.3,69.9,57.8,56.9,52.3$, 43.0, 42.4, 35.4, 34.9, 28.8.
$\mathbf{R}_{\mathrm{f}}=0.27$ (hexanes: EtOAc = $5: 1$; UV)
IR (ATR-FTIR, cm ${ }^{-1}$): 2953 (w), 2880 (w), 1704 (s), 1449 (s), 1382 (s), 1198 (m), 1128 (m), 768 (w), 698 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}+\mathrm{H}^{+}: \mathbf{2 2 4 . 0 7 4 5}$, found: 224.0746 .

Synthesis of methyl 5-(3-((2,2,2-trifluoroacetamido)methyl)phenyl)-2-azabicyclo[2.2.0]hexane-2carboxylate (323) and methyl 6-(3-((2,2,2-trifluoroacetamido)methyl)phenyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-323)

A 4 mL screw cap septum vial was charged with methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224, $13.9 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , DMF (0.5 \mathrm{~mL}, 0.2 \mathrm{M}$), 2,2,2-trifluoro- N -(3-iodobenzyl)acetamide ($477,65.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0 \mathrm{eq}$.), piperidine ($30 \mu \mathrm{~L}, 0.862 \mathrm{~g} / \mathrm{mL}, 0.30 \mathrm{mmol}, 3.0 \mathrm{eq}$.), formic acid (8 $\mu \mathrm{L}, 1.220 \mathrm{~g} / \mathrm{mL}, 0.20 \mathrm{mmol}, 2.0 \mathrm{eq}$.), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.2 \mathrm{mg}, 5 \mathrm{~mol} \%$) and xantphos ($5.8 \mathrm{mg}, 10 \mathrm{~mol} \%$). The resulting mixture was degassed by sparging with argon for 3 minutes and then heated to $50^{\circ} \mathrm{C}$ for 2 h in a heating block. The reaction mixture was cooled to room temperature, partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and brine (20 mL each). The organic phase was separated, and the aqueous phase extracted two more times with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. Combined organic phases were washed with brine, dried over MgSO_{4}, concentrated under reduced pressure, and loaded onto a column. Gradient elution with hexanes :

EtOAc $=100: 25 \rightarrow 100: 100$ afforded a mixture of methyl $5-(3-((2,2,2-$ trifluoroacetamido)methyl)phenyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (323) and methyl 6-(3-((2,2,2-trifluoroacetamido)methyl)phenyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-323) (29.0 $\mathrm{mg}, 0.08 \mathrm{mmol}, 85 \%)$ as a slightly yellow clear oil. Constitutional isomer ratio of the products could not be determined with ${ }^{1} \mathrm{H}$ NMR due to signal overlap.

MS (ESI-Q) calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}^{+}$: 343 , found: 343.

Synthesis of methyl 5-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (331) methyl 6-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-331) under Boger's conditions

Following the reported procedure ${ }^{95}$, a 20 mL round bottom flask was charged with iron(III) oxalate hexahydrate ($96.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and water (4 mL). The resulting suspension was left stirring for 2 hours until completely homogenous. The solution was then cooled to $0{ }^{\circ} \mathrm{C}$ and degassed by sparging with argon for 10 minutes. $\mathrm{NaN}_{3}(19.2 \mathrm{mg}, 0.3 \mathrm{mmol}, 3.0 \mathrm{eq}$.$) and \mathrm{EtOH}(2 \mathrm{~mL})$ were added sequentially in one portion. Ethanol solution ($2 \mathrm{~mL}, 0.05 \mathrm{M}$) of methyl 2 -azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($224,13.9 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added with a pipette. $\mathrm{NaBH}_{4}(12.0 \mathrm{mg}, 0.32 \mathrm{mmol}$, 3.2 eq.) was added in one portion and the resulting mixture was left stirring for 5 minutes. Another portion of NaBH_{4} was added and the resulting mixture was left stirring for 30 minutes. The reaction mixture was quenched by adding saturated aqueous ammonia (1.0 mL) and extracted with DCM : $\mathrm{MeOH}=10: 1$ mixture ($3 \times 20 \mathrm{~mL}$). Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Isocratic elution with hexanes : EtOAc = 100:40 afforded a 2.0:1 mixture of methyl 5-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (331) and methyl 6-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-331) ($9.4 \mathrm{mg}, 0.05 \mathrm{mmol}, 52 \%$ combined yield) as a colorless film.

Synthesis of methyl 5-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (331) methyl 6-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-331) under Xu's conditions

Following the reported procedure ${ }^{94}$, a flame dried 4 mL vial was charged with methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($224,99.7 \mathrm{mg}, 0.716 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , 1-hydroxy-1 \lambda^{3}$ -benzo[d][1,2]iodaoxol-3(1H)-one ($27.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 14 \mathrm{~mol} \%$) and anhydrous DCM (0.2 mL) under nitrogen atmosphere. Water ($18 \mu \mathrm{~L}, 1.000 \mathrm{~g} / \mathrm{mL}, 1.0 \mathrm{mmol}, 1.4 \mathrm{eq}$.) and TMSN $\mathrm{T}_{3}(240 \mu \mathrm{~L}, 0.868 \mathrm{~g} / \mathrm{mL}$, $1.8 \mathrm{mmol}, 2.5 \mathrm{eq}$.) were added sequentially in one portion. The resulting mixture was stirred vigorously for 5 hours at room temperature. The reaction was quenched with saturated NaHCO_{3} and extracted with DCM ($3 \times 20 \mathrm{~mL}$). Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 30 \rightarrow 100: 40$
afforded a 1 : 2.1 mixture of methyl 5-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (331) and methyl 6-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-331) ($77.7 \mathrm{mg}, 0.427 \mathrm{mmol}, 60 \%$) as a colorless clear oil.

Methyl 6-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-331)
${ }^{1} \mathrm{H}$ NMR (499 MHz, CDCl 3 , rotamers) $\delta 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.00-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 156.0,68.1,67.6,61.3,60.7,57.6,56.6,52.6,34.1,33.6,28.4$.
$\mathbf{R}_{\mathbf{f}}=0.63$ (hexanes : EtOAc $=3: 2 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2956 (w), 2885 (w), 2096 (s), 1705 (s), 1449 (m), 1382 (m), 1246 (w), 1199 (w), 1131 (w), 769 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{H}^{+}$: 183.0882 , found: 183.0886 .

Methyl 5-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (331)
${ }^{1} \mathrm{H}$ NMR ($499 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.44(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, \mathrm{~J}=22.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=9.9,7.8 \mathrm{~Hz}, 0 \mathrm{H}), 3.83-3.69(\mathrm{~m}, 1 \mathrm{H})$, $3.69-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.20-2.90(\mathrm{~m}, 1 \mathrm{H})$.
$\delta 4.59(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{dd}, \mathrm{J}=9.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{dd}, \mathrm{J}=9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{dt}, J=13.3,5.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 156.3,60.7,60.1,59.6,55.3,54.4,52.4,38.8,37.7,37.4$.
$\mathbf{R}_{\mathbf{f}}=0.63$ (hexanes : EtOAc = $3: 2 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2956 (w), 2885 (w), 2096 (s), 1705 (s), 1449 (m), 1382 (m), 1246 (w), 1199 (w), 1131 (w), 769 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{H}^{+}: 183.0882$, found: 183.0886 .

Synthesis of tert-butyl 5-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (333) tert-butyl 6-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-333) under Xu's conditions

Following the reported procedure ${ }^{94}$, a flame dried 4 mL vial was charged with tert-butyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (332, $34.5 \mathrm{mg}, 0.19 \mathrm{mmol}$), 1-hydroxy-1 λ^{3} -benzo[d][1,2]iodaoxol-3(1H)-one ($27.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 54 \mathrm{~mol} \%$) and anhydrous DCM (0.2 mL) under nitrogen atmosphere. Water ($18 \mu \mathrm{~L}, 1.000 \mathrm{~g} / \mathrm{mL}, 1.0 \mathrm{mmol}, 5.2$ eq.) and TMSN ${ }_{3}(240 \mu \mathrm{~L}, 0.868 \mathrm{~g} / \mathrm{mL}$, $1.8 \mathrm{mmol}, 9.5 \mathrm{eq}$.) were added sequentially in one portion. The resulting mixture was stirred vigorously for 5 hours at room temperature. The reaction was quenched with saturated NaHCO_{3} and extracted
with DCM ($3 \times 20 \mathrm{~mL}$). Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes: EtOAc $=100: 30 \rightarrow 100: 40$ afforded a mixture of tert-butyl 5-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (333) and tert-butyl 6-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-333) ($30.5 \mathrm{mg}, 0.14 \mathrm{mmol}, 70 \%$) as a colorless clear oil. Constitutional isomer ratio of the products could not be determined with ${ }^{1} \mathrm{H}$ NMR due to signal overlap.

Synthesis of methyl 5-azido-5-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (335)

Following the reported procedure ${ }^{95}$, a 20 mL round bottom flask was charged with iron(III) oxalate hexahydrate ($96 \mathrm{mg}, 0.20 \mathrm{mmol}, 3.2$ eq.) and water (4 mL). The resulting suspension was left stirring for 2 hours until completely homogenous. The solution was then cooled to $0{ }^{\circ} \mathrm{C}$ and degassed by sparging with argon for 10 minutes. $\mathrm{NaN}_{3}(19.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 4.8$ eq.) and $\mathrm{EtOH}(5 \mathrm{~mL})$ were added sequentially in one portion. Ethanol solution ($2 \mathrm{~mL}, 0.05 \mathrm{M}$) of methyl 5-phenyl-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($264,13.3 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added with a pipette. NaBH_{4} ($13 \mathrm{mg}, 0.63 \mathrm{mmol}, 3.2$ eq.) was added in one portion and the resulting mixture was left stirring for 5 minutes. Another portion of NaBH_{4} was added and the resulting mixture was left stirring for 30 minutes. The reaction mixture was quenched by adding saturated aqueous ammonia (1.0 mL) and extracted with DCM : MeOH = 10:1 mixture ($3 \times 20 \mathrm{~mL}$). Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc =100:25 \rightarrow 100:75 afforded methyl 5-azido-5-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate ($335,6.9 \mathrm{mg}, 0.03 \mathrm{mmol}, 43 \%$) as a colorless film.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{bs}, 2 \mathrm{H})$, $4.71(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.56(\mathrm{~m}, 3 \mathrm{H}), 3.34-3.27(\mathrm{bs}, 1 \mathrm{H}), 3.20-2.90$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 156.3,138.1,129.2,128.6,126.5,69.4,69.2,57.3,56.8,52.4$, 51.5, 41.4, 40.9, 40.8.
$\mathbf{R}_{\mathbf{f}}=0.48$ (hexanes: EtOAc $=3: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2955 (w), 2102 (s), 1704 (s$), 1447$ (s), 1378 (s), 1233 (m), 1200 (m), 1131 (m), 705 (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}+\mathrm{H}^{+}$: 259.1195, found: 259.1195 .

Synthesis of methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (334) and methyl 6-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-334) via Staudinger reduction

A 10 mL round-bottom flask wash charged with a 1 : 1.9 mixture of methyl 5-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (331) and methyl 6-azido-2-azabicyclo[2.2.0]hexane-2carboxylate (iso-331) ($63.6 \mathrm{mg}, 0.349 \mathrm{mmol}, 1.0 \mathrm{eq}.), \mathrm{PPh}_{3}(109.4 \mathrm{mg}, 0.417 \mathrm{mmol}, 1.2 \mathrm{eq}),$. THF (3.5 $\mathrm{mL}, 0.1 \mathrm{M}$) and water ($100 \mu \mathrm{~L}, 5.55 \mathrm{mmol}, 15.9$ eq.). Reaction mixture was stirred at $65^{\circ} \mathrm{C}$ overnight. Solvent was removed under reduced pressure and crude product was directly loaded onto a column. Gradient elution with $\mathrm{DCM}: \mathrm{MeOH}=100: 4 \rightarrow 100: 11$ afforded methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (334) and methyl 6-amino-2-azabicyclo[2.2.0]hexane-2carboxylate (iso-334) ($45.1 \mathrm{mg}, 0.289 \mathrm{mmol}, 83 \%$ combined yield) as colorless clear oils.

Synthesis of methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (334) and methyl 6-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-334) via catalytic hydrogenation

A 4 mL vial was charged with a $1: 1.9$ mixture of methyl 5 -azido-2-azabicyclo[2.2.0]hexane-2carboxylate (331) and methyl 6-azido-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-331) ($42 \mathrm{mg}, 0.23$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.$) , \mathrm{MeOH}\left(1.0 \mathrm{~mL}, 0.2 \mathrm{M}\right.$) and PtO_{2} hydrate ($9 \mathrm{mg}, 0.04 \mathrm{mmol}, 18 \mathrm{~mol} \%$). The resulting suspension was purged with hydrogen for 1 minute and left stirring overnight under hydrogen atmosphere (balloon). The suspension was filtered through a PTFE filter and loaded onto a column. Gradient elution with $\mathrm{DCM}: \mathrm{MeOH}=100: 2 \rightarrow 100: 10$ afforded methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (334) and methyl 6-amino-2-azabicyclo[2.2.0]hexane-2carboxylate (iso-334) ($37 \mathrm{mg}, 0.23 \mathrm{mmol}$, quant. combined yield) as colorless clear oils.

Methyl 6-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-334)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.27-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.60(\mathrm{~m}, 4 \mathrm{H})$, $2.84(\mathrm{qd}, \mathrm{J}=7.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{ddd}, J=13.4,6.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{bs}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, rotamers) $\delta 156.3,156.1,70.9,70.2,57.3,56.4,54.7,54.1,52.2,36.5,36.3$, 27.2.
$\mathbf{R}_{\mathbf{f}}=0.39\left(\mathrm{DCM}: \mathrm{MeOH}=10: 1 ; \mathrm{KMnO}_{4}\right)$
IR (KBr discs, cm^{-1}): 3353 (bs), 2956 (m), 2881 (w), 1695 (s), 1456 (s), 1389 (s), 1200 (w), 1161 (w), 1128 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+}$: 179.0791, found: 179.0792.

Methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (334)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.54(\mathrm{bs}, 1 \mathrm{H}), 4.27-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~m}$, 1H), $3.66(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{bs}, 1 \mathrm{H}), 2.21(\mathrm{bs}, 2 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, rotamers) $\delta 156.6,156.5,59.5,59.0,55.5,54.6,53.7,52.3,41.6,40.7,40.5$.
$\mathbf{R}_{\mathrm{f}}=0.19\left(\mathrm{DCM}: \mathrm{MeOH}=10: 1 ; \mathrm{KMnO}_{4}\right)$

IR (KBr discs, cm ${ }^{-1}$): 3351 (bs), 2958 (m), 2883 (w), 1691 (s$), 1458$ (m), 1388 (m), 1199 (w), 1133 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+}: 179.0971$, found: 179.0792.

Synthesis of methyl 5-amino-5-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (336)

A 4 mL vial was charged with methyl 5 -azido-5-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (335, $9.8 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathrm{PPh}_{3}(19.9 \mathrm{mg}, 0.08 \mathrm{mmol}, 2.0 \mathrm{eq}$.$) , THF (0.4 \mathrm{~mL}$) and water ($40 \mu \mathrm{~L}$). Reaction mixture was stirred at $70^{\circ} \mathrm{C}$ overnight. Solvent was removed under reduced pressure and crude product was directly loaded onto a column. Gradient elution with DCM : MeOH =100:2 $\rightarrow 100$: 10 afforded methyl 5-amino-5-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate ($336,3.9 \mathrm{mg}, 0.01$ mmol, 44\%) as colorless film.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~m}$, $1 \mathrm{H}), 3.76-3.55(\mathrm{~m}, 4 \mathrm{H}), 3.19-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{bs}, 2 \mathrm{H})$.

General procedure for hydroamination

A 4 mL vial was charged with methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224, $13.9 \mathrm{mg}, 0.1$ $\mathrm{mmol}, 1.0$ eq.), $\mathrm{Fe}(\mathrm{acac})_{3}(3-15 \mathrm{~mol})$), nitrosobenzene ($1-5 \mathrm{eq}$.) and solvent mixture ($0.2-1 \mathrm{~mL}, 0.1-$ 0.5 M). Isopropoxy(phenylsilane) ($2-4.5$ eq.) was added in one portion and the resulting mixture was stirred at room temperature overnight. The solvent mixture was removed under reduced pressure and the residue was loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 10 \rightarrow 100$: 40 afforded methyl 5-(phenylamino)-2-azabicyclo[2.2.0]hexane-2-carboxylate 337 as a colorless film.

Synthesis of 3-ethyl 6-methyl 3,6-diazatricyclo[3.2.0.0 ${ }^{2,4}$]heptane-3,6-dicarboxylate (338)

A 20 mL vial was charged with methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224, 100.0 mg , $0.719 \mathrm{mmol}, 1.0$ eq.), $\mathrm{DCM}(1.4 \mathrm{~mL}), \mathrm{BnEt}_{3} \mathrm{NCl}(34.0 \mathrm{mg}, 0.150 \mathrm{mmol}, 21 \mathrm{~mol} \%)$ and ethyl (($(4-$ nitrophenyl)sulfonyl)oxy)carbamate ($625.1 \mathrm{mg}, 2.15 \mathrm{mmol}, 3.0$ eq.). The stirring rate was set to 1000 rpm . The resulting solution was cooled to $0^{\circ} \mathrm{C}$. Aqueous solution (4.2 mL) of $\mathrm{NaHCO}_{3}(364.0 \mathrm{mg}, 4.33$ $\mathrm{mmol}, 6.0$ eq.) was added dropwise with a syringe pump over 4 hours at $0^{\circ} \mathrm{C}$. Cooling bath was removed, and the resulting mixture was left to slowly warm to room temperature. The reaction mixture was then partitioned between $\operatorname{DCM}(20 \mathrm{ml})$ and saturated aqueous NaHCO_{3}. The organic
phase was separated, and the aqueous phase was extracted with DCM two more times (20 mL each). Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : toluene : EtOAc $=75: 25: 40 \rightarrow 75: 25: 60$ afforded 3-ethyl 6-methyl 3,6-diazatricyclo[3.2.0.02,4]heptane-3,6-dicarboxylate (338, $57.4 \mathrm{mg}, 0.254 \mathrm{mmol}$) and 54.1 mg recovered starting material. The latter was resubjected to the same reaction conditions to give 3-ethyl 6-methyl 3,6-diazatricyclo[3.2.0.0 ${ }^{2,4}$]heptane-3,6-dicarboxylate as a slightly yellow viscous oil (SI-2, $72.3 \mathrm{mg}, 0.320 \mathrm{mmol}, 44 \%, 2$ cycles).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.48(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.12(\mathrm{~m}, 3 \mathrm{H}), 3.94(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.71$ (s, 3H), $3.62(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=3.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}, rotamers) $\delta 159.7,156.5,66.1,65.7,62.8,52.6,50.0,49.3,49.3,40.7,40.0$, 39.9, 37.7, 14.6.
$\mathbf{R}_{\mathbf{f}}=0.49$ (hexanes : EtOAc = $1: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm^{-1}): 2982 (m), 2892 (w), 1711 (s$), 1452$ (m), 1372 (s$), 1271$ (m), 1186 (m), 1154 (w), 769 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}^{+}$: 227.1032 , found: 227.1033 .

Synthesis of methyl 3-tosyl-3,6-diazatricyclo[3.2.0.0 ${ }^{2,4}$]heptane-6-carboxylate (339)

A 4 mL vial was charged with methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224, $51.5 \mathrm{mg}, 0.37$ mmol, 1.0 eq.) and PhINTs ($138.2 \mathrm{mg}, 0.37 \mathrm{mmol}, 1.0$ eq.). The vial was evacuated and refilled with nitrogen 3 times. Dry MeCN ($0.4 \mathrm{~mL}, 0.9 \mathrm{M}$) and $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{OTf}(37.7 \mathrm{mg}, 0.10 \mathrm{mmol}, 27 \mathrm{~mol} \%$). Were added in one portion and the resulting mixture was left stirring overnight. The mixture was then filtered through a pad of silica with ethyl acetate. The filtrate was concentrated under reduced pressure and the residue was loaded onto a column. Gradient elution with hexanes : EtOAc = 100:20 $\rightarrow 100$: 70 afforded methyl 3-tosyl-3,6-diazatricyclo[3.2.0.0 ${ }^{2,4}$]heptane-6-carboxylate (339, 38.4 mg , $0.13 \mathrm{mmol}, 34 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{bs}, 1 \mathrm{H})$, $4.17-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}$, 3 H).

Synthesis of 3-ethyl 6-methyl-3,6-diazabicyclo[3.2.0]heptane-3,6-dicarboxylate (341)

To a stirred solution of 3-ethyl 6-methyl 3,6-diazatricyclo[3.2.0.0 ${ }^{2,4}$]heptane-3,6-dicarboxylate (338, $15.0 \mathrm{mg}, 0.066 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{MeOH}(1.5 \mathrm{~mL}, 0.04 \mathrm{M})$ was added palladium on carbon ($10 \% \mathrm{w} / \mathrm{w}$, $15.0 \mathrm{mg}, 10 \mathrm{~mol} \%)$. The suspension was purged with hydrogen gas for 1 minute and left stirring for 16 hours under hydrogen atmosphere (balloon). The reaction mixture was filtered through a pad of celite
and concentrated under reduced pressure to afford 3-ethyl 6-methyl nahco33,6-diazabicyclo[3.2.0]heptane-3,6-dicarboxylate ($\mathbf{3 4 1}, 10.9 \mathrm{mg}, 0.048 \mathrm{mmol}, 72 \%$) as a colorless film.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.70(\mathrm{bs}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.84(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dd}, \mathrm{J}=11.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}, rotamers) $\delta 155.9,66.1,65.6,65.2,61.5,54.0,53.2,52.3,51.0,50.3,33.8$, 32.9, 14.8.
$\mathbf{R}_{\mathbf{f}}=0.45$ ($\mathrm{EtOAc} ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2957 (w), 2883 (w), 1698 (s$), 1451$ (m), 1427 (w), 1383 (m), 1235 (w), 1135 (w), 1027 (w), 770 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}^{+}$: 229.1188, found: 229.1190 .

Synthesis of methyl 3-oxa-6-azatricyclo[3.2.0.02,4]heptane-6-carboxylate (344)

A 4 mL vial was charged with methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (224, $55.6 \mathrm{mg}, 0.400$ mmol, 1.0 eq.), DCM ($2.0 \mathrm{~mL}, 0.2 \mathrm{M}$) and NaHCO_{3} ($201.6 \mathrm{mg}, 2.40 \mathrm{mmol}, 6.0 \mathrm{eq}$.). The resulting suspension was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and purified $m C^{\prime}$ CPA 102 ($207.2 \mathrm{mg}, 1.20 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added in one portion. The ice bath was removed and the resulting mixture left stirring for 16 hours at room temperature, during which the mixture solidified. The mixture was filtered through a pad of celite, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : toluene : EtOAc $=75: 25: 30 \rightarrow 75: 25: 50$ afforded methyl 3-oxa-6-azatricyclo[3.2.0.0 ${ }^{2,4}$]heptane6 -carboxylate (344, $41.4 \mathrm{mg}, 0.267 \mathrm{mmol}, 67 \%$) as a colorless clear oil.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers $) \delta 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~d}, \mathrm{~J}=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}), 3.11-2.80(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}, rotamers) $\delta 156.8,156.7,68.0,67.6,56.0,55.9,52.6,48.6,47.9,40.0$.
$\mathbf{R}_{\mathrm{f}}=0.47$ (hexanes : EtOAc = $1: 1$; cerium molybdate)
IR (ATR-FTIR, cm ${ }^{-1}$): 2958 (w), 2891(w), 1706 (s), 1453 (s), 1386 (s), 1201 (w), 1121 (m), 981 (m), 771 (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{3}+\mathrm{H}^{+}: 156.0661$, found: 156.0662 .

Synthesis of methyl 3-oxa-6-azabicyclo[3.2.0]heptane-6-carboxylate (345)

A 4 mL vial was charged with methyl 3-oxa-6-azatricyclo[3.2.0.0 $0^{2,4}$]heptane-6-carboxylate (344, 41.4 $\mathrm{mg}, 0.267 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , \mathrm{MeOH}(2.5 \mathrm{~mL}, 0.11 \mathrm{M}$) and palladium on carbon ($26.6 \mathrm{mg}, 10 \% \mathrm{w} / \mathrm{w}$). The
resulting suspension was purged with hydrogen for 2 minutes and left stirring under hydrogen atmosphere (balloon) for 2 hours. The reaction mixture was filtered through a pad of celite and solvent was removed under reduced pressure to yield methyl 3 -oxa-6-azabicyclo[3.2.0]heptane-6-carboxylate ($345,30.6 \mathrm{mg}, 0.195 \mathrm{mmol}, 73 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.75(\mathrm{dm}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 4 \mathrm{H}), 3.47$ (dd, $J=9.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{p}, J=5.9,5.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 155.7,71.9,71.8,71.4,66.8,66.2,53.5,52.5,52.2,34.7$.
$\mathbf{R}_{\mathrm{f}}=0.47$ (EtOAc; KMnO_{4})
IR (ATR-FTIR, cm^{-1}): 2957 (m), 2854 (w), 1707 (s), 1452 (s$), 1388$ (s$), 1364$ (w), 1190 (w), 1077 (w), 912 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{3}+\mathrm{H}^{+}$: 158.0817 , found: 158.0819 .

Synthesis of methyl 2-phenyl-3-oxa-6-azatricyclo[3.2.0.0 ${ }^{2,4}$]heptane-6-carboxylate (346)

A 4 mL vial was charged with methyl 5 -phenyl-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (264, 21.8 $\mathrm{mg}, 0.10 \mathrm{mmol}, \mathrm{DCM}(2.0 \mathrm{~mL}, 0.2 \mathrm{M})$ and $\mathrm{NaHCO}_{3}(50.4 \mathrm{mg}, 0.60 \mathrm{mmol}, 6.0 \mathrm{eq}$.). The resulting suspension was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and purified m CPBA 102 ($51.8 \mathrm{mg}, 0.30 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added in one portion. The ice bath was removed and the resulting mixture left stirring overnight, during which the mixture solidified. The mixture was loaded onto a column. Gradient elution with hexanes: $\operatorname{EtOAc}=100: 20 \rightarrow 100: 40$ afforded methyl 3 -oxa-6-azatricyclo[3.2.0.0 $0^{2,4}$]heptane-6carboxylate ($\mathbf{3 4 6}, 15.4 \mathrm{mg}, 0.07 \mathrm{mmol}, 66 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.37(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~m}$, 1H), 4.02 (bs, 1H), $3.76-3.65(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of methyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-5-(3-methoxy-3-oxopropyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (347)

A 4 mL vial was charged with methyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($269,28.3 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , \mathrm{Fe}(\mathrm{acac})_{3}(5.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 15 \mathrm{~mol} \%$), isopropanol (0.32 mL), EtOAc (0.32 mL), methyl acrylate ($25 \mu \mathrm{~L}, 0.950 \mathrm{~g} / \mathrm{mL}, 0.28 \mathrm{mmol}, 2.8 \mathrm{eq}$.) and isopropoxy(phenyl)silane ($100 \mu \mathrm{~L}, 0.926 \mathrm{~g} / \mathrm{mL}, 0.56 \mathrm{mmol}, 5.6$ eq.). The resulting mixture was stirred at room temperature overnight. Water (50 mL) and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ were added, and phases were separated. The organic phase was washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified via flash column chromatography. Gradient elution with
hexanes : EtOAc = 100:10 \rightarrow 100:50 afforded 5-(((tert-butyldimethylsilyl)oxy)methyl)-5-(3-methoxy-3-oxopropyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (347, $17.5 \mathrm{mg}, 0.047 \mathrm{mmol}, 47 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.51(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{bs}$, $6 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{dm}$, 6 H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 174.3,156.4,156.1,63.8,63.7,58.7,58.3,52.2,52.0,51.8$, 51.0, 42.0, 41.9, 37.6, 36.9, 36.3, 33.0, 28.8, 25.9, 18.3, -5.4.
$\mathbf{R}_{\mathrm{f}}=0.64$ (hexanes : EtOAc $=3: 2 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2954 (m), 2930 (m), 2888 (w), 2857 (m), 1739 (s), 1708 (s), 1449 (s), 1380 (s), 1091 (s), 936 (s), 774 (s).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{Si}+\mathrm{H}^{+}$: 372.2206, found: 372.2203.

Synthesis of methyl 5-(3-methoxy-3-oxopropyl)-5-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (348)

A 4 mL vial was charged with methyl 5-phenyl-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (264, 21.2 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , Fe(acac) { }_{3}(35.3 \mathrm{mg}, 0.10 \mathrm{mmol}, 1 \mathrm{eq}$.$) , isopropanol (0.5 \mathrm{~mL}$), EtOAc (0.5 mL), methyl acrylate ($100 \mu \mathrm{~L}, 0.950 \mathrm{~g} / \mathrm{mL}, 1.1 \mathrm{mmol}, 11.2 \mathrm{eq}$.) and isopropoxy(phenyl) silane ($100 \mu \mathrm{~L}, 0.926$ $\mathrm{g} / \mathrm{mL}, 0.56 \mathrm{mmol}, 5.6 \mathrm{eq}$.). The resulting mixture was stirred 4 h at room temperature then 1 h at 40 ${ }^{\circ} \mathrm{C}$ and finally at $60{ }^{\circ} \mathrm{C}$ overnight. After cooling to room temperature, the reaction solvent was removed, and the residue was purified via flash column chromatography. Gradient elution with hexanes : EtOAc = 100:25 \rightarrow 100:100 afforded methyl 5-(3-methoxy-3-oxopropyl)-5-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (348, $11.5 \mathrm{mg}, 0.038 \mathrm{mmol}, 38 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.37-7.30(\mathrm{bs}, 2 \mathrm{H}), 7.21(\mathrm{bs}, 1 \mathrm{H}), 6.97(\mathrm{bs}, 2 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H})$, $4.13(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 6 \mathrm{H}), 3.06(\mathrm{bs}, 1 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=42.1,13.4 \mathrm{~Hz}$, 1H), $2.56(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.91(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}{ }^{1}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 173.9,156.3,156.2,143.3,143.1,128.6,126.8,126.7,126.4$, $57.6,57.0,52.7,52.3,52.2,51.9,51.8,46.8,46.6,40.3,39.9,39.6,39.3,29.2$.
$\mathbf{R}_{\mathrm{f}}=0.50$ (hexanes : EtOAc = $1: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2953 (w), 1736 (s), 1706 (s), 1447 (s), 1377 (s), 1199 (s), 764 (s), 705 (s).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO} 4+\mathrm{H}^{+}$: 304.1549, found: 304.1548.

Following the reported procedure ${ }^{104}$, an oven dried 4 mL vial was charged with methyl 5 -(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($269,28.3 \mathrm{mg}, 0.10 \mathrm{mmol}$, 1.0 eq.), $\mathrm{Fe}(\mathrm{dpm})_{3}(18.2 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$), manganese powder ($5.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ NiBr_{2} (diglyme) ($3.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and 4-iodoacetophenone ($39.0 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.6 \mathrm{eq}$.). The reaction mixture was placed under nitrogen and DCE (0.5 mL) and NMP (0.5 mL) were added. After 1.5 h of stirring at room temperature, $\mathrm{MnO}_{2}(17.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added in one portion. Yellow needle was inserted through the vial cap septum and the first portion of isopropoxyphenylsilane ($20 \mu \mathrm{~L}, 0.926 \mathrm{~g} / \mathrm{mL}, 0.11 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added. The resulting mixture was stirred for 1 h and then the second portion of silane was added. The reaction mixture was stirred for 2 days at room temperature, filtered through a pad of celite with EtOAc and partitioned between 50 mL of EtOAc and 50 mL of water. The organic layer was separated and washed with water two more times, washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified via flash column chromatography. Gradient elution with hexanes : EtOAc = 100:50 \rightarrow 100 : 200 afforded methyl 5-(4-acetylphenyl)-5-methyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (349, $7.7 \mathrm{mg}, 0.03 \mathrm{mmol}, 28 \%$) as a slightly yellow film.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H})$, $4.38-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{bs}, 3 \mathrm{H}), 3.22-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR (126 MHz, CDCl_{3}) $\delta 197.8,156.6,156.4,135.1,128.8,125.7,59.2,58.8,52.3,51.5,43.5,43.2$, 42.8, 40.6, 27.5, 26.7.

MS (ESI-Q) calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}+\mathrm{H}^{+}: 274$, found: 274.

Synthesis of tert-butyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (332)

A flame dried 50 mL two-neck round bottom flask was charged with methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($\mathbf{2 2 4}, 505 \mathrm{mg}, 3.6 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and THF (14 mL). The resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. KOtBu solution ($4.0 \mathrm{~mL}, 1 \mathrm{M}$ in THF, $4.0 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was canulated to the substrate solution. After the addition was complete, the ice bath was removed, and the resulting brown solution was stirred at room temperature overnight. The reaction mixture was quenched with 10% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the product was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). Combined organic phases were washed with brine, dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Isocratic elution with hexanes : EtOAc = 100:15 afforded tert-butyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($\mathbf{3 3 2}, 247.3 \mathrm{mg}, 2.6 \mathrm{mmol}, 72 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.45(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{bs}, 1 \mathrm{H}), 3.43(\mathrm{bs}, 1 \mathrm{H}), 3.34(\mathrm{~m}$, 1H) $1.43(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}, rotamers) δ 157.1, 143.3, 143.0, 141.0, 140.2, 79.4, 65.9, 65.0, 50.4, 49.3, 28.5.
$\mathbf{R}_{\mathbf{f}}=0.71$ (hexanes : EtOAc = $4: 1 ; \mathrm{KMnO}_{4}$)

HRMS (ESI-TOF) calculated for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{Na}^{+}$: 204.1000, found: 204.0999.

Synthesis of amides (363-365)

A 20 mL vial was charged with tert-butyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($332,153.9 \mathrm{mg}$, $0.85 \mathrm{mmol}, 1.0$ eq.), $\mathrm{MeOH}\left(8.6 \mathrm{~mL}, 0.1 \mathrm{M}\right.$) and PtO_{2} hydrate ($19.4 \mathrm{mg}, 0.085 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The resulting suspension was purged with hydrogen for 1 minute and left stirring for 1 hour under hydrogen atmosphere (balloon). The suspension was then filtered through a pad of celite, concentrated under reduced pressure and redissolved in DCM (3.6 mL). The resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and degassed by sparging with argon for 2 minutes. TFA ($0.9 \mathrm{~mL}, 1.490$ $\mathrm{g} / \mathrm{mL}, 11.7 \mathrm{mmol}, 14$ eq.) was added via syringe in one portion. The cooling bath was removed, and the reaction mixture was stirred for 15 minutes at room temperature. Solvent was removed under reduced pressure. Excess TFA was azeotropically removed with MeOH and DCM. Crude residue was redissolved in DMF (2.1 mL). A 4 mL vial was charged with 0.7 mL of the DMF substrate stock solution, carboxylic acid ($0.31 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) , HOB hydrate (53.4 \mathrm{mg}, 0.312 \mathrm{mmol}$), DIPEA ($170 \mu \mathrm{~L}, 0.742 \mathrm{~g} / \mathrm{mL}$, $0.976 \mathrm{mmol})$ and additional DMF $(0.7 \mathrm{~mL})$. The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath and EC $\cdot \mathrm{HCl}(60.0 \mathrm{mg}, 0.313 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) was added in one portion. The cooling bath was removed, and$ the reaction mixture was stirred at room temperature overnight. The reaction mixture was then diluted with EtOAc (50 mL), washed with 1 M aqueous $\mathrm{HCl}(50 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(50$ mL) and brine (50 mL), dried over MgSO_{4} and loaded onto a column. Gradient elution with hexanes : EtOAc = $100: 100 \rightarrow$ pure EtOAc afforded the corresponding amides (363-365).

363

Prepared from 70.8 mg ferrocenecarboxylic acid.
$50.1 \mathrm{mg}, 0.17 \mathrm{mmol}, 61 \%$ yield over 3 steps, orange oil that solidified on standing.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.90(\mathrm{dm} 1 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.12(\mathrm{~m}, 10 \mathrm{H}), 3.01(\mathrm{bs}, 1 \mathrm{H})$, 2.78 - $2.62(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 70.6,70.6,70.4,70.3,70.0,69.8,69.7,69.6,69.5,68.9,65.7$, 63.7, 61.4, 57.2, 31.6, 31.5, 30.2, 28.9, 26.5, 25.6. Carbonyl carbon peak was not observed.
$\mathbf{R}_{\mathbf{f}}=0.32$ (EtOAc; UV)

IR (ATR-FTIR, cm ${ }^{-1}$): 3093 (w), 2937 (w), 2872 (w), 1611(s), 1475 (m), 1462 (s), 1407 (s), 1368 (w), 1106 (w), 762 (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NOFe}+\mathrm{H}^{+}: 296.0738$, found: 296.0744 .

Prepared from 61.9 mg 4-bromobenzoic acid.
$57.7 \mathrm{mg}, 0.22 \mathrm{mmol}, 77 \%$ yield over 3 steps, white solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 7.57-7.44(\mathrm{~m}, 4 \mathrm{H}), 4.83(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}$, 1H), $3.09-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.19(\mathrm{~m}, 1 \mathrm{H})$.

MS (ESI-Q) calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NOBr}+\mathrm{H}^{+}: 266$, found: 266.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 8.27(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.51(\mathrm{~m}, 1 \mathrm{H})$, $4.28(\mathrm{~m}, 1 \mathrm{H}), 3.12-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H})$.

MS (ESI-Q) calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}^{+}$: 233, found: 233.

Alternative synthesis of tert-butyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (332)

A flame dried 50 mL two-neck round bottom flask was charged with phenyl pyridine-1(2H)-carboxylate ($367,500 \mathrm{mg}, 2.48 \mathrm{mmol}, 1.0 \mathrm{eq}.)^{108}$ and anhydrous THF (4.0 mL) under nitrogen atmosphere. The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ using an acetone/dry ice bath. KOtBu solution (1.0 M in THF, $7.5 \mathrm{~mL}, 7.50 \mathrm{mmol}, 3.0$ eq.) was slowly added and the resulting mixture was stirred for 1.5 hours at $78^{\circ} \mathrm{C}$. The reaction mixture was quenched at the same temperature with 10% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the product was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic phase was separated, washed with brine, dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc = 100:10 \rightarrow 100:15 afforded tert-butyl pyridine-1(2H)-carboxylate (368, 430 mg , 2.37 mmol, 96%) as a colorless clear oil.

Acetone solution ($24 \mathrm{~mL}, 0.1 \mathrm{M}$) of tert-butyl pyridine-1 2 H)-carboxylate ($368,430 \mathrm{mg}, 2.37 \mathrm{mmol}$) was degassed by sparging with argon for 2 minutes in an ultrasonic bath. Degassed solution was then
irradiated in a Rayonet photoreactor equipped with 350 nm lamps for 4 days. Solvent was removed and crude product was directly loaded onto a column. Gradient elution with hexanes : EtOAc = 100 : $10 \rightarrow 100: 15$ afforded methyl tert-butyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (332, 127 mg , $0.70 \mathrm{mmol}, 29 \%$) as a colorless clear oil. The spectral data matches the product from the reaction between 224 and KOtBu.

Characterization data for tert-butyl pyridine-1(4H)-carboxylate (366)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.68(\mathrm{~m}, 2 \mathrm{H}), 4.94-4.71(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{tt}, \mathrm{J}=3.5,1.8 \mathrm{~Hz}, 2 \mathrm{H})$, 1.49 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 150.4,124.2,123.7,105.7,105.0,81.7,28.3,22.6$.

Synthesis of tert-butyl 5-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (369)

A 20 mL vial was charged with methyl 5-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (321, 97.2 $\mathrm{mg}, 0.447 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and THF (1.3 mL) under nitrogen atmosphere. The resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and KOtBu solution ($0.90 \mathrm{~mL}, 1.0 \mathrm{M}, 0.900 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added in one portion via syringe. The ice bath was removed, and the reaction mixture was left stirring overnight at room temperature. The reaction mixture was partitioned between 10% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was separated, dried over MgSO_{4}, concentrated under reduced pressure, and loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 10 \rightarrow 100: 20$ afforded tert-butyl 5-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate ($369,87.9 \mathrm{mg}, 0.339 \mathrm{mmol}, 76 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~m}$, $1 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 155.9,145.4,128.7,126.56,126.4,79.5,61.2,60.5,58.2,56.7$, 45.4, 38.4, 37.9, 28.7.
$\mathbf{R}_{\mathbf{f}}=0.63$ (hexanes : EtOAc = $4: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2975 (w), 2934 (w), 2879 (w), 1698 (s), 1391 (s), 1180 (w), 1151 (m), 1128 (m), 871 (w), 773 (w), 752 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}+\mathrm{Na}^{+}$: 282.1470 , found: 282.1482 .

Synthesis of tert-butyl 6-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-369)

A 20 mL vial was charged with methyl 6-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-321, $129.7 \mathrm{mg}, 0.597 \mathrm{mmol}, 1.0$ eq.) and THF (1.8 mL) under nitrogen atmosphere. The resulting solution
was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and KOtBu solution ($1.20 \mathrm{~mL}, 1.0 \mathrm{M}, 1.20 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added in one portion via syringe. The ice bath was removed, and the reaction mixture was left stirring overnight at room temperature. The reaction mixture was partitioned between 10% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was separated, dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 5 \rightarrow 100: 15$ afforded tertbutyl 6-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-369, $91.4 \mathrm{mg}, 0.352 \mathrm{mmol}, 59 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.39-7.19(\mathrm{~m}, 5 \mathrm{H}), 4.54-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.28(\mathrm{~m}, 1 \mathrm{H})$, $4.16-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.75(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 155.6,143.4,128.7,128.6,126.5,126.4,79.6,69.9,69.2,58.0$, 56.7, 47.3, 46.8, 32.8, 32.6, 28.7, 28.3, 28.1.
$\mathbf{R}_{\mathbf{f}}=0.64$ (hexanes : EtOAc $=4: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2974 (w), 2936 (w), 2879 (w), 1695 (s), 1388 (s), 1365 (m), 748 (w), 699 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}+\mathrm{Na}^{+}$: 282.1470, found: 282.1472 .

Methyl ((3-phenylcyclobut-2-en-1-yl)methyl)carbamate (370)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{bs}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.40$ (ddt, $J=25.3,13.0,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.06-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=13.1 \mathrm{~Hz}$, $1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס 157.4, 146.7, 134.4, 128.5, 128.1, 127.8, 124.7, 52.2, 44.6, 38.6, 32.2.

Benzyloxycarbonyl deprotection attempts

A 4 mL vial was charged with benzyl 5-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (314, 10.0 mg , $0.04 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , \mathrm{MeOH}(0.5 \mathrm{~mL}, 0.1 \mathrm{M}$) and $\mathrm{Pd} / \mathrm{C}(10.0 \mathrm{mg}, 10 \% \mathrm{w} / \mathrm{w}, 0.01 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The resulting suspension was purged with hydrogen for 1 minute and left stirring overnight under hydrogen atmosphere (balloon). The suspension was filtered through a PTFE filter and concentrated under reduced pressure. ${ }^{1} \mathrm{H}$ NMR analysis of the residue showed exclusive formation of piperidin-4-ol (371).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.68(\mathrm{tt}, J=9.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.62$ (ddd, $J=13.2,10.4$, $3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.44$ (dddd, $J=13.2,10.4,9.3,4.0 \mathrm{~Hz}, 2 \mathrm{H}$).

Successful benzyloxycarbonyl deprotection

A 4 mL vial was charged with benzyl 5-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (314, 100.0 $\mathrm{mg}, 0.43 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , DCM (2 \mathrm{~mL}, 0.2 \mathrm{M}$), imidazole ($59.0 \mathrm{mg}, 0.87 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and TIPSCl (190 $\mu \mathrm{L}, 0.901 \mathrm{~g} / \mathrm{mL} 0.89 \mathrm{mmol}, 2.1 \mathrm{eq}$.$) . The resulting mixture was left stirring overnight, quenched with$ saturated NaHCO_{3} and extracted with $\operatorname{DCM}(3 \times 20 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc = $100: 4 \rightarrow 100: 8$ afforded benzyl 5-((triisopropylsilyl)oxy)-2-azabicyclo[2.2.0]hexane-2-carboxylate (372, $148.1 \mathrm{mg}, 89 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{bs}, 1 \mathrm{H}), 4.58(\mathrm{td}, \mathrm{J}=5.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{dd}, \mathrm{J}$ $=9.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 1.16-0.92(\mathrm{~m}, 21 \mathrm{H})$.

A 4 mL vial was charged with benzyl 5-((triisopropylsilyl)oxy)-2-azabicyclo[2.2.0]hexane-2-carboxylate $(372,10.0 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , \mathrm{MeOH}(0.5 \mathrm{~mL}, 0.1 \mathrm{M})$ and $\mathrm{Pd} / \mathrm{C}(10.0 \mathrm{mg}, 10 \% \mathrm{w} / \mathrm{w}, 0.01 \mathrm{mmol}$, $27 \mathrm{~mol} \%)$. The resulting suspension was purged with hydrogen for 1 minute and left stirring overnight under hydrogen atmosphere (balloon). The suspension was filtered through a PTFE filter and concentrated under reduced pressure to yield 5-((triisopropylsilyl)oxy)-2-azabicyclo[2.2.0]hexane (373, $9.0 \mathrm{mg}, 0.03 \mathrm{mmol}$, quant.)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.57(\mathrm{bs}, 1 \mathrm{H}), 4.76(\mathrm{bs}, 1 \mathrm{H}), 4.55(\mathrm{bs}, 1 \mathrm{H}), 4.28(\mathrm{bs}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.31$ - $3.23(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{bs}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~m}, 21 \mathrm{H})$.

Synthesis of 1-(5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-en-2-yl)ethan-1-one 374)

A flame dried 50 mL two-neck round bottom flask was charged with methyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($\mathbf{2 6 9}, 100 \mathrm{mg}, 0.35 \mathrm{mmol}$, 1.0 eq.) and anhydrous THF ($3.5 \mathrm{~mL}, 0.1 \mathrm{M}$) under nitrogen atmosphere. The resulting solution was cooled to $-20^{\circ} \mathrm{C}$ and MeLi solution ($0.75 \mathrm{~mL}, 1.6 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 1.2 \mathrm{mmol}, 3.4$ eq.) was slowly added. The resulting mixture was warmed up to $-10^{\circ} \mathrm{C}$ and left stirring for 15 minutes at the same temperature. Afterwards, it was quenched with water and extracted with EtOAc (50 mL). The organic phase was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was redissolved in DCM (3.5 mL) and the resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Triethylamine ($100 \mu \mathrm{~L}, 0.742 \mathrm{~g} / \mathrm{mL}, 0.73 \mathrm{mmol}, 2.1 \mathrm{eq}$.$) , acetic anhydride (70 \mu \mathrm{~L}, 1.082 \mathrm{~g} / \mathrm{mL}, 0.74$ mmol, 2.1 eq. and 1 crystal of DMAP were added sequentially in one portion. The ice bath was removed, and the resulting mixture was left to warm up to room temperature. Afterwards, 50 mL saturated aqueous NaHCO_{3} were added, and the aqueous phase was extracted with DCM ($3 \times 20 \mathrm{~mL}$). Combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and loaded
onto a column. Gradient elution with hexanes : EtOAc = 100:100 \rightarrow pure EtOAc afforded 1-(5-(()tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-en-2-yl)ethan-1-one (374, $52.3 \mathrm{mg}, 55 \%$ over 2 steps).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.35(\mathrm{~m}, 1 \mathrm{H}), 4.97-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H})$, $3.66-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.35(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$.

Synthesis of 1-(5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-en-2-yl)butan-1-one (375)

A flame dried 50 mL two-neck round bottom flask was charged with methyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($\mathbf{2 6 9}, 100 \mathrm{mg}, 0.35 \mathrm{mmol}$, 1.0 eq.) and anhydrous THF ($3.5 \mathrm{~mL}, 0.1 \mathrm{M}$) under nitrogen atmosphere. The resulting solution was cooled to $-20^{\circ} \mathrm{C}$ and MeLi solution ($0.75 \mathrm{~mL}, 1.6 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 1.2 \mathrm{mmol}, 3.4 \mathrm{eq}$.) was slowly added. The resulting mixture was warmed up to $-10^{\circ} \mathrm{C}$ and left stirring for 15 minutes at the same temperature. Afterwards, it was quenched with water and extracted with EtOAc (50 mL). The organic phase was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was redissolved in DCM (3.5 mL) and the resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Triethylamine ($100 \mu \mathrm{~L}, 0.742 \mathrm{~g} / \mathrm{mL}, 0.73 \mathrm{mmol}, 2.1 \mathrm{eq}$.) and butyryl chloride ($70 \mu \mathrm{~L}, 1.0 \mathrm{~g} / \mathrm{mL}, 0.74$ $\mathrm{mmol}, 1.9 \mathrm{eq}$.$) . The ice bath was removed, and the resulting mixture was left to warm up to room$ temperature. Afterwards, 50 mL saturated aqueous NaHCO_{3} were added, and the aqueous phase was extracted with DCM ($3 \times 20 \mathrm{~mL}$). Combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc = 100:50 \rightarrow 100:1001-(5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-en-2-yl)butan-1-one (375, $49.8 \mathrm{mg}, 48 \%$ over 2 steps).

Synthesis of 1-(5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hexan-2-yl)-5,5,5-trifluoropentan-1-one (376)

A flame dried 50 mL two-neck round bottom flask was charged with methyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate ($\mathbf{3 7 8}, 200 \mathrm{mg}, 0.7 \mathrm{mmol}, 1.0$ eq.) and anhydrous THF ($7 \mathrm{~mL}, 0.1 \mathrm{M}$) under nitrogen atmosphere. The resulting solution was cooled to $-20^{\circ} \mathrm{C}$ and MeLi solution ($1.5 \mathrm{~mL}, 1.6 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 2.4 \mathrm{mmol}, 3.4 \mathrm{eq}$.) was slowly added. The resulting mixture was warmed up to $-10^{\circ} \mathrm{C}$ and left stirring for 15 minutes at the same temperature. Afterwards, it was quenched with water and extracted with EtOAc (50 mL). The organic phase was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to yield crude amine 379.

A 25 mL round bottom flask was charged with 5,5,5-trifluoropentanoic acid ($90 \mu \mathrm{~L}, 1.293 \mathrm{~g} / \mathrm{mL}, 0.75$ $\mathrm{mol}, 1.1 \mathrm{eq}$.) and DCM (3 mL). The resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. HOBt hydrate ($117.8 \mathrm{mg}, 0.77 \mathrm{mmol}, 1.1 \mathrm{eq}$.), DIPEA ($130 \mu \mathrm{~L}, 0.742 \mathrm{~g} / \mathrm{mL}, 0.77 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and EDC (147.6 mg , $0.77 \mathrm{mmol}, 1.1 \mathrm{eq}$.) were added sequentially in one portion. After stirring for 20 minutes at $0^{\circ} \mathrm{C}$, solution of crude amine 379 in DCM (4 mL) was added as well as another portion of DIPEA ($130 \mu \mathrm{~L}$, $0.742 \mathrm{~g} / \mathrm{mL}, 0.77 \mathrm{mmol}, 1.1$ eq.). The ice bath was removed, and the reaction mixture was left stirring overnight. The reaction mixture was partitioned between EtOAc (50 mL) and 0.5 M aqueous $\mathrm{HCl}(50$ mL). The organic phase was separated, washed with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified flash column chromatography. Gradient elution with hexanes : EtOAc $=100: 20 \rightarrow 100: 60$ afforded 1-(5-()(tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hexan-2-yl)-5,5,5-trifluoropentan-1-one
(376, $112.2 \mathrm{mg}, 0.31 \mathrm{mmol}, 44 \%$ over 2 steps) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.68-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.71(\mathrm{~m}, 2 \mathrm{H})$, $3.10-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.22-1.82(\mathrm{~m}, 7 \mathrm{H}), 0.86(\mathrm{dm}, 9 \mathrm{H}), 0.04(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 171.1,170.7,127.2$ ($\mathrm{q}, \mathrm{J}=276.5 \mathrm{~Hz}$), $63.1,63.0,60.6,59.4,52.0$, $49.5,35.6,35.4,33.1(q, J=28.1 \mathrm{~Hz}), 32.1,32.0,31.9,31.0,30.0,29.8,26.0,18.4,17.4(\mathrm{~m}),-5.17,-$ 5.22, -5.26.
${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta-66.0(\mathrm{~m})$.
$\mathbf{R}_{\mathrm{f}}=0.50$ (hexanes : $\mathrm{EtOAc}=1: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2932 (m), 2858 (w), 1651 (s$), 1443$ (m), 1256 (s$), 1134$ (s$), 1098$ (s$), 836$ (s$), 777$ (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{SiF}_{3}+\mathrm{H}^{+}: 366.2076$, found: 366.2071.

Synthesis of 4,4,4-trifluoro-1-(5-phenyl-2-azabicyclo[2.2.0]hexan-2-yl)butan-1-one (377)

A 4 mL vial was charged with tert-butyl 5 -phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (360, 80.5 $\mathrm{mg}, 0.310 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and DCM (1.2 mL). The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath and degassed by purging with argon for 1 minute. TFA ($300 \mu \mathrm{~L}, 1.490 \mathrm{~g} / \mathrm{mL}, 3.92 \mathrm{mmol}, 12.6 \mathrm{eq}$.) was added in one portion. The ice bath was removed, and the resulting mixture was left stirring at room temperature for 15 minutes. Solvent was removed under reduced pressure. Excess TFA was azeotropically removed with MeOH and DCM (1 mL each). The crude ammonium salt 380 was redissolved in DMF (1.5 mL) and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. DIPEA ($190 \mu \mathrm{~L}, 0.742 \mathrm{~g} / \mathrm{mL}$, $1.09 \mathrm{mmol}, 3.5$ eq.), HOBt hydrate ($55.3 \mathrm{mg}, 0.323 \mathrm{mmol}, 1.0$ eq.), $4,4,4$-trifluorobutyric acid (51.2 mg , $0.360 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) and EDC.HCl (69.0 \mathrm{mg}, 0.360 \mathrm{mmol}, 1.2$ eq.) were added sequentially in one portion. The ice bath was removed, and the resulting mixture was left stirring overnight at room temperature. The reaction mixture was diluted with $\mathrm{EtOAc}(50 \mathrm{~mL})$ and quenched with $0.5 \mathrm{M} \mathrm{HCl}(50$ mL). The organic phase was separated, washed with saturated NaHCO_{3}, washed with brine, dried over MgSO_{4}, concentrated under reduced pressure and purified with automated reverse phase liquid chromatography. Gradient elution with $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN}=50: 50 \rightarrow 0: 100$ afforded 4,4,4-trifluoro-1-(5-
phenyl-2-azabicyclo[2.2.0]hexan-2-yl)butan-1-one (377, $59.5 \mathrm{mg}, 0.210 \mathrm{mmol}, 68 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.18(\mathrm{~m}$, $2 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.25(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) δ 169.9, 169.6, 144.7, 144.4, 128.8, 128.8, 126.7, 126.7, 126.5, 126.5, 61.3, 60.2, 58.5, 56.4, 45.5, 45.1, 38.3, 38.0, 37.5, 29.2 (q, J = 29.7 Hz), 29.2 (q, J = 29.6 Hz), 24.5 ($q, J=2.9 \mathrm{~Hz}), 24.2(q, J=3.0 \mathrm{~Hz})$
${ }^{19}$ F NMR (471 MHz, CDCl_{3}) δ-66.7 (m).
$\mathbf{R}_{\mathbf{f}}=0.54$ (hexanes : EtOAc = $1: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm${ }^{-1}$): 2946 (w), 2878 (w), 1652 (s), 1446 (s$), 1383$ (m), 1251 (w), 1136 (m), 1106 (m), 979 (w), 753 (w), 700 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NOF}_{3}+\mathrm{H}^{+}$: 284.1262, found: 284.1264.

Synthesis of 4,4,4-trifluoro-1-(6-phenyl-2-azabicyclo[2.2.0]hexan-2-yl)butan-1-one (iso-377)

A 4 mL vial was charged with tert-butyl 6-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-360, $78.1 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.0$ eq.) and DCM (1.2 mL). The resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and degassed by purging with argon for 1 minute. TFA ($300 \mu \mathrm{~L}, 1.490 \mathrm{~g} / \mathrm{mL}, 3.92 \mathrm{mmol}, 13.0 \mathrm{eq}$.) was added in one portion. The ice bath was removed, and the resulting mixture was left stirring at room temperature for 15 minutes. Solvent was removed under reduced pressure. Excess TFA was azeotropically removed with MeOH and DCM (1 mL each). The crude ammonium salt iso- $\mathbf{3 8 0}$ was redissolved in DMF (1.5 mL) and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. DIPEA ($190 \mu \mathrm{~L}, 0.742 \mathrm{~g} / \mathrm{mL}$, $1.09 \mathrm{mmol}, 3.6 \mathrm{eq}$.), HOBt hydrate ($55.3 \mathrm{mg}, 0.323 \mathrm{mmol}, 1.1 \mathrm{eq}$.), 4,4,4-trifluorobutyric acid (51.2 mg , $0.360 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) and EDC. \mathrm{HCl}(69.0 \mathrm{mg}, 0.360 \mathrm{mmol}, 1.2 \mathrm{eq}$.) were added sequentially in one portion. The ice bath was removed, and the resulting mixture was left stirring overnight at room temperature. The reaction mixture was diluted with EtOAc (50 mL) and quenched with $0.5 \mathrm{M} \mathrm{HCl}(50$ mL). The organic phase was separated, washed with saturated NaHCO_{3}, washed with brine, dried over MgSO_{4}, concentrated under reduced pressure and purified with automated reverse phase liquid chromatography. Gradient elution with $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN}=50: 50 \rightarrow 0: 100$ afforded 4,4,4-trifluoro-1-(6-phenyl-2-azabicyclo[2.2.0]hexan-2-yl)butan-1-one (iso-377, $24.5 \mathrm{mg}, 0.087 \mathrm{mmol}, 29 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.36-7.12(\mathrm{~m}, 5 \mathrm{H}), 4.58(\mathrm{dd}, J=17.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.28$ $(\mathrm{m}, 1 \mathrm{H}), 4.20-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.17(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 169.6,169.1,142.8,142.6,129.1,128.7,127.1,126.6,126.5$, $126.4,69.6,68.6,58.3,56.2,48.1,46.7,33.9,33.2,29.2(q, J=29.4 \mathrm{~Hz}), 29.1(q, J=29.6 \mathrm{~Hz}), 29.0$, 28.8, 28.77, 28.5, 28.3, 24.4 (q, J = 2.9 Hz), 24.3 ($q, J=2.9 H z)$.
$\mathbf{R}_{\mathbf{f}}=0.54$ (hexanes: EtOAc = $1: 1 ; \mathrm{KMnO}_{4}$)

IR (ATR-FTIR, cm ${ }^{-1}$): 2944 (w), 2878 (w), 1651 (s), 1444 (s), 1383 (m), 1251 (w), 1135 (m), 1105 (m), 978 (w), 753 (w), 700 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NOF}_{3}+\mathrm{H}^{+}: \mathbf{2 8 4 . 1 2 6 2}$, found: 284.1264.

Synthesis of 1-(((tert-butyldimethylsilyl)oxy)methyl)-3-methyl-2-oxa-4-azabicyclo[4.2.0]octa-3,7diene (381)

A 4 mL vial was charged with 1-(5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-en-2-yl)ethan-1-one ($374,42.8 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathrm{MeOH}(1.6 \mathrm{~mL}, 0.1 \mathrm{M}$). p-toluenesulfonic acid ($24.4 \mathrm{mg}, 0.13 \mathrm{mmol}, 0.8$ eq.) was added in one portion. TLC analysis showed instantaneous consumption of starting material. The reaction mixture was quenched with minimal amount of saturated aqueous NaHCO_{3}, and solvent was removed under vacuum. The residue was taken up in DCM and filtered through cotton wool. Solvent evaporation afforded 1-(()tert-butyldimethylsilyl)oxy)methyl)-3-methyl-2-oxa-4-azabicyclo[4.2.0]octa-3,7-diene (381, 40.4 mg , 94\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.32(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 7 \mathrm{H}), 0.05(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 7 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.2,141.6,134.8,82.2,66.0,45.0,44.7,25.9,22.0,-5.1,-5.2$.

Synthesis of 1-(((tert-butyldimethylsilyl)oxy)methyl)-3-propyl-2-oxa-4-azabicyclo[4.2.0]octa-3,7diene (382)

A 4 mL vial was charged with 1-(5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-en-2-yl)butan-1-one ($375,51.2 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathrm{MeOH}(1.7 \mathrm{~mL}, 0.1 \mathrm{M}$). p-toluenesulfonic acid $(25.7 \mathrm{mg}, 0.14 \mathrm{mmol}, 0.8 \mathrm{eq}$.) was added in one portion. TLC analysis showed instantaneous consumption of starting material. The reaction mixture was quenched with minimal amount of saturated aqueous NaHCO_{3}, and solvent was removed under vacuum. The residue was taken up in DCM and filtered through cotton wool. Solvent evaporation afforded 1-(()tert-butyldimethylsilyl)oxy)methyl)-3-propyl-2-oxa-4-azabicyclo[4.2.0]octa-3,7-diene (382, $49.7 \mathrm{mg}, 97 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.30(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.73(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=14.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.21-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~m}, 12 \mathrm{H}), 0.04(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 6 \mathrm{H})$.

Synthesis of 2-(methoxycarbonyl)-2-azabicyclo[2.2.0]hexane-5-carboxylic acid (386)

To stirred solution of methyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2carboxylate ($\mathbf{2 6 9}, 1.371 \mathrm{~g}, 4.84 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and hydrazine hydrate ($950 \mu \mathrm{~L}, 19.4 \mathrm{mmol}, 1.021 \mathrm{~g} / \mathrm{mL}$, 4.0 eq.) in DCM (5.0 mL) at room temperature was added solution of (diacetoxyiodo)benzene (2.34 g , $7.26 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in DCM (24 mL) over 3 hours using a syringe pump. Afterwards, the reaction mixture was stirred at room temperature until complete, as judged by TLC and LCMS analyses. 50 mL of saturated aqueous NaHCO_{3} was added and organic phase was separated. The aqueous phase was extracted two more times with 50 mL of DCM. Combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified via flash column chromatography. Gradient elution with hexanes : EtOAc $=100: 10 \rightarrow 100: 30$ afforded methyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (378, $1.268 \mathrm{~g}, 4.44$ mmol, 92% yield) as a slightly yellow clear oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, \mathrm{J}=9.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}$, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=10.4,6.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.65($ broad $\mathrm{s}, 3 \mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~h}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.52(\mathrm{td}, \mathrm{J}=12.3,11.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 1 \mathrm{H}), 0.04(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, rotamers) $\delta 156.3,156.0,63.1,60.7,60.3,52.2,51.5,50.4,35.6,35.5,32.6$, 31.7, 31.0, 26.0, 18.4, -5.2, -5.2.
$\mathbf{R}_{\mathrm{f}}=0.44$ (hexanes : EtOAc $=4: 1 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 2954 (s$), 2931$ (m), 2887 (w), 2857 (w), 1712 (s$), 1449$ (m), 1381 (s), 1095 (m), 837 (s), 776 (m).

HRMS (ESI-TOF) (ESI-TOF) calculated for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Si}+\mathrm{Na}^{+}$: 308.1652, found 308.1649.

To a stirred solution of methyl 5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hexane-2carboxylate ($378,0.200 \mathrm{~g}, 0.701 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{MeOH}(7.0 \mathrm{~mL}, 0.1 \mathrm{M}$), was added p-toluenesulfonic acid monohydrate ($0.130 \mathrm{~g}, 0.624 \mathrm{mmol}, 0.9 \mathrm{eq}$.) in one portion at room temperature. The resulting mixture was stirred for 5 minutes when TLC analysis showed complete consumption of starting material. Excess solid NaHCO_{3} was added, and solvent was removed under reduced pressure. The crude mixture was directly loaded onto a column. Gradient elution with DCM : MeOH =100:2 $\boldsymbol{2} 100$: 8 afforded methyl 5-(hydroxymethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (385, $0.117 \mathrm{~g}, 0.685$ mmol, 98\%) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.55(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=10.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (dd, J = 10.8, 6.4 Hz, 1H), $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.57$ (dddd, J = 13.5, 11.2, 5.4, 1.0 $\mathrm{Hz}, 1 \mathrm{H})$, 2.57, 1.97 (m, 1H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, rotamers) $\delta 156.3,156.0,62.7,60.8,60.4,52.2,51.4,50.4,35.3,35.2,32.3$, 31.8, 31.3.
$\mathbf{R}_{\mathbf{f}}=0.30\left(\mathrm{EtOAc} ; \mathrm{KMnO}_{4}\right)$

IR (KBr discs, cm ${ }^{-1}$): 3419 (bs), 2958 (m), 2934 (m), 2888 (m), 1685 (bs), 1457 (m), 1391 (m), 1200 (m), 1140 (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}+\mathrm{H}^{+}: 172.0968$, found 172.0967.

A 20 mL vial was charged with methyl 5-(hydroxymethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate ($385,0.127 \mathrm{~g}, 0.742 \mathrm{mmol}, 1.0 \mathrm{eq}$.), MeCN ($7.0 \mathrm{~mL}, 0.1 \mathrm{M}$), NMO hydrate ($0.463 \mathrm{~g}, 3.43 \mathrm{mmol}, 4.6 \mathrm{eq}$. and TPAP ($24.2 \mathrm{mg}, 0.069 \mathrm{mmol}, 9 \mathrm{~mol} \%$). The resulting mixture was stirred for 1 hour at room temperature. Isopropanol was added (2.2 mL) and volatiles were removed under reduced pressure. The residue was redissolved in $\mathrm{EtOAc}+1 \% \mathrm{AcOH}(60.6 \mathrm{~mL})$ and passed through a silica plug. The filtrate was concentrated under reduced pressure and excess AcOH was removed azeotropically with toluene to yield 2-(methoxycarbonyl)-2-azabicyclo[2.2.0]hexane-5-carboxylic acid (386, $0.133 \mathrm{~g}, 0.716 \mathrm{mmol}$, $97 \%)$ as a colorless clear oil that solidified on standing in a freezer.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 10.48(\mathrm{bs}, 1 \mathrm{H}), 4.56(\mathrm{dm}, 1 \mathrm{H}), 4.27(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.64-$ $3.54(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{td}, \mathrm{J}=11.4,9.8,4.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 178.0,177.1,156.4,156.1,60.2,59.7,53.4,52.7,52.6,52.5$, 38.2, 38.1, 33.7, 31.9, 31.5.
$\mathbf{R}_{\mathbf{f}}=0.43$ (hexanes : EtOAc $=1: 2+1 \% \mathrm{AcOH} ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm^{-1}): 2959 (w), 2892 (w), 1702 (s), 1678 (s), 1461 (m), 1392 (m), 1197 (m), 852 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{4}+\mathrm{H}^{+}: 186.0766$, found: 186.0767.

Synthesis of 2-(5,5,5-trifluoropentanoyl)-2-azabicyclo[2.2.0]hexane-5-carboxylic acid (388)

To a stirred solution of 1-(5-(((tert-butyldimethylsilyl)oxy)methyl)-2-azabicyclo[2.2.0]hexan-2-yl)-5,5,5-trifluoropentan-1-one ($376,45.9 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{MeOH}(1.3 \mathrm{~mL}, 0.1 \mathrm{M}$), was added p-toluenesulfonic acid monohydrate ($21.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.8 \mathrm{eq}$.) in one portion at room temperature. The resulting mixture was stirred for 5 minutes when TLC analysis showed complete starting material consumption. Excess solid NaHCO_{3} was added, and volatiles were removed under reduced pressure. The crude mixture was directly loaded onto a column. Gradient elution with DCM : $\mathrm{MeOH}=100: 3 \rightarrow 100: 9$ afforded 5,5,5-trifluoro-1-(5-(hydroxymethyl)-2-azabicyclo[2.2.0]hexan-2$\mathrm{yl})$ pentan-1-one ($387,29.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 92 \%$) as a colorless clear oil.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 4.64(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.13-$ $3.01(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.23-1.81(\mathrm{~m}, 7 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 171.3,170.9,127.2$ (q, $J=276.4 \mathrm{~Hz}$), $62.8,62.5,60.7,59.6,52.1$, $49.5,35.4,35.1,33.1(q, J=28.6 \mathrm{~Hz}), 32.1,31.9,31.7,31.1,30.0,29.8,17.3(\mathrm{~m})$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) δ-65.89--65.99 (m).
$\mathbf{R}_{\mathbf{f}}=0.28\left(\mathrm{DCM}: \mathrm{MeOH}=20: 1 ; \mathrm{KMnO}_{4}\right)$
$\mathbf{R}_{\mathrm{f}}=0.63\left(\mathrm{DCM}: \mathrm{MeOH}=10: 1 ; \mathrm{KMnO}_{4}\right)$
IR (ATR-FTIR, cm ${ }^{-1}$): 3392 (b), 2938 (w), 2879 (w), 1627 (s), 1678 (s), 1456 (m), 1334 (w), 1249 (m), 1133 (s$), 1007(\mathrm{~m})$.

HRMS (ESI-TOF) calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~F}_{3}+\mathrm{H}^{+}: 252.1211$, found: 252.1211 .

A 4 mL vial was charged with 5,5,5-trifluoro-1-(5-(hydroxymethyl)-2-azabicyclo[2.2.0]hexan-2-yl)pentan-1-one ($387,52.7 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , MeCN (2.5 \mathrm{~mL}, 0.08 \mathrm{M}$), NMO hydrate (141.8 mg , $1.05 \mathrm{mmol}, 5.0 \mathrm{eq}$.) and TPAP ($7.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The resulting mixture was stirred for 1 hour at room temperature. Isopropanol was added $(0.75 \mathrm{~mL})$ and solvent was removed under reduced pressure. The residue was redissolved in EtOAc $+1 \% \mathrm{AcOH}$ and passed through a silica plug (110 mL total). The filtrate was concentrated under reduced pressure and excess AcOH was removed azeotropically with benzene to yield of 2-(5,5,5-trifluoropentanoyl)-2-azabicyclo[2.2.0]hexane-5carboxylic acid ($\mathbf{3 8 8}, 45.5 \mathrm{mg}, 0.16 \mathrm{mmol}, 82 \%$) as a colorless clear oil, which was used in the next step without further purification.

Synthesis of 5,5,5-trifluoro-1-(5-(3-(thiazol-2-yl)-1,2,4-oxadiazol-5-yl)-2-azabicyclo[2.2.0]hexan-2-yl)pentan-1-one diastereoisomers 390 and 391

A 4 mL vial was charged with 2-(5,5,5-trifluoropentanoyl)-2-azabicyclo[2.2.0]hexane-5-carboxylic acid ($388,38.0 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , \mathrm{MeCN}(0.7 \mathrm{~mL}, 0.2 \mathrm{M}$) and CDI ($27.8 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ eq.). The resulting mixture was stirred for 30 min at room temperature. N^{\prime}-hydroxythiazole-2carboximidamide ${ }^{112}$ ($389,24.6 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ eq.) and DBU ($40 \mu \mathrm{~L}, 0.53 \mathrm{mmol}, 1.010 \mathrm{~g} / \mathrm{mL}, 1.9$ eq.) were added in one portion and the resulting mixture was heated at $70{ }^{\circ} \mathrm{C}$ overnight. Solvent was removed under reduced pressure and residue loaded onto a column. Isocratic elution with EtOAc afforded 5,5,5-trifluoro-1-(5-(3-(thiazol-2-yl)-1,2,4-oxadiazol-5-yl)-2-azabicyclo[2.2.0]hexan-2-yl)pentan-1-one diastereoisomers 390 and 391 in a $1: 2.3$ ratio ($31.4 \mathrm{mg}, 0.08 \mathrm{mmol}, 59 \%$) as colorless clear oils.

Exo isomer (major product, 391)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 8.07(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}$, $1 \mathrm{H}), 4.17-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.10(\mathrm{~m}, 4 \mathrm{H}), 1.99-1.89(\mathrm{~m}$, $2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 181.9,181.8,171.7,171.5,164.3,164.3,153.8,153.7,145.1$, 127.2 (q, J = 276.6 Hz), 122.7, 122.7, 61.6, 60.5, 57.9, 55.7, 36.5, 36.4, 36.1, 36.0, 35.4, 34.9, 33.0 (q, J $=28.6 \mathrm{~Hz}), 30.0,29.8,17.3$ ($q, J=3.1 \mathrm{~Hz}$), 17.2 ($q, J=3.1 \mathrm{~Hz}$).
${ }^{19}$ F NMR (471 MHz, CDCl 3 , rotamers) δ-65.80--65.92 (m).
$\mathbf{R}_{\mathbf{f}}=0.33\left(\mathrm{EtOAc} ; \mathrm{KMnO}_{4}\right)$

IR (KBr discs, cm^{-1}): 3084 (w), 2951 (w), 2881 (w), 1647 (s$), 1573$ (m), 1453 (s$), 1314$ (m), 1248 (m), 1133 (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}+\mathrm{Na}^{+}$: 395.0760, found: 395.0756.

Endo isomer (minor product, 390)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 8.08(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.06(\mathrm{~m}, 3 \mathrm{H})$, $3.61-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 180.2,179.6,171.1,170.9,164.3,164.3,127.2$ ($q, J=276.4 \mathrm{~Hz}$), $60.5,59.6,53.1,5.0,34.4,34.1,33.9,33.3,33.1(q, J=28.6 \mathrm{~Hz}), 33.1(q, J=28.5 \mathrm{~Hz}), 31.7,31.6,30.1$, $29.8,17.27(q, J=3.0 \mathrm{~Hz}), 17.14(q, J=3.2 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta-65.81--65.99(\mathrm{~m})$.
$\mathbf{R}_{\mathbf{f}}=0.18$ (EtOAc; KMnO_{4})
IR (KBr discs, cm^{-1}): 2952 (w), 1645 (s$), 1572$ (m), 1453 (s$), 1312$ (m), 1247 (m), 1132 (m), 766 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}+\mathrm{Na}^{+}$: 395.0760, found: 395.0756.

Synthesis of methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (393) via Curtius rearrangement

A 20 mL vial was charged with 2-(methoxycarbonyl)-2-azabicyclo[2.2.0]hexane-5-carboxylic acid (386, $168.9 \mathrm{mg}, 0.91 \mathrm{mmol}, 1.0$ eq.). The vial was evacuated and refilled with nitrogen 3 times. Anhydrous $\mathrm{CCl}_{4}(4.5 \mathrm{~mL}, 0.2 \mathrm{M})$, DPPA ($240 \mu \mathrm{~L}, 1.280 \mathrm{~g} / \mathrm{m}, 1.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and $\mathrm{Et}_{3} \mathrm{~N}(150 \mu \mathrm{~L}, 0.726 \mathrm{~g} / \mathrm{mL}, 1.10$ mmol, 1.2 eq,) were added sequentially via syringe in one portion. The resulting mixture was refluxed for 1.5 h under nitrogen atmosphere and then cooled to room temperature. Tert-butanol (4.5 mL) was added, and the resulting mixture refluxed overnight. After cooling to room temperature, the solvent was removed under reduced pressure and the residue directly loaded onto a column. Gradient elution with hexanes : EtOAc = 100:75 \rightarrow 100: 100 afforded methyl 5-((tert-butoxycarbonyl)amino)-2-azabicyclo[2.2.0]hexane-2-carboxylate ($392,136.7 \mathrm{mg}, 0.53 \mathrm{mmol}, 58 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=35.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 7 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 156.3,156.0,155.1,79.9,58.8,58.2,52.3,50.0,49.1,44.4$, 44.2, 37.3, 36.9, 36.2, 28.5.
$\mathbf{R}_{\mathbf{f}}=0.39$ (hexanes: EtOAc $=2: 1 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 3335 (bs), 2978 (w), 1692 (s), 1516 (m), 1453 (m), 1388 (m), 1171 (m).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+}:$279.1321, found: 279.1323.

A 25 mL round bottom flask was charged with 5-((tert-butoxycarbonyl)amino)-2-azabicyclo[2.2.0]hexane-2-carboxylate ($392,136.7 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.0$ eq.) and DCM ($4.0 \mathrm{~mL}, 0.11 \mathrm{M}$). The resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and TFA ($1.0 \mathrm{~m}, 1.490 \mathrm{~g} / \mathrm{mL}, 13 \mathrm{mmol}, 24 \mathrm{eq}$.) was slowly added. After 15 minutes, TLC analysis showed full consumption of starting material. Solvent was removed under reduced pressure and the residue directly loaded onto a column. Gradient elution with $\mathrm{DCM}: \mathrm{MeOH}=100: 10 \rightarrow 100: 20(+1 \%$ concentrated aqueous ammonia) yielded methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (393, $64.1 \mathrm{mg}, 0.41 \mathrm{mmol}, 77 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.30(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{bs}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.10-$ $3.02(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.79(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{bs}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 156.3,155.9,57.6,57.2,52.2,48.8,47.9,46.0,40.5,40.2,37.1$, 36.9.
$\mathbf{R}_{\mathbf{f}}=0.45\left(\mathrm{DCM}: \mathrm{MeOH}=10: 1+1 \%\right.$ aqueous ammonia; $\left.\mathrm{KMnO}_{4}\right)$
IR (ATR-FTIR, cm ${ }^{-1}$): 3365 (w), 2957 (w), 2886 (w), 1695 (s), 1452 (s), 1382 (s), 1197 (m), 1125 (m), 768 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}^{+}$: 157.0977, found: 157.0978 .

Synthesis of methyl 5-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (394) and methyl 6-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-394)

A flame dried 4 mL vial was charged with $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(25.4 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.2 \mathrm{~mol} \%)$ and xantphos ($59 \mathrm{mg}, 0.12 \mathrm{mmol}, 2.6 \mathrm{~mol} \%$) in a nitrogen filled glovebox. The vial was taken outside the glovebox and THF (2 mL) was added. The resulting mixture was stirred for 5 minutes at room temperature. Afterwards, methyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($224,500 \mathrm{mg}, 3.60 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and HBPin ($700 \mu \mathrm{~L}, 0.882 \mathrm{~g} / \mathrm{mL}, 4.8 \mathrm{mmol}, 1.3 \mathrm{eq}$.) were added sequentially in one portion via syringe. The resulting reaction mixture was stirred at room temperature overnight. ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture revealed that all starting material was consumed and that the constitutional isomer ratio was $1: 1.6$. Half of the final solution was transferred into a flame dried 50 mL round bottom flask charged with $\mathrm{Me}_{3} \mathrm{NO}$ ($500 \mathrm{mg}, 6.7 \mathrm{mmol}, 3.7$ eq.) and anhydrous THF (19 mL). The resulting mixture was heated to $65^{\circ} \mathrm{C}$ for 1 hour. Volatiles were removed under reduced pressure, and the residue was directly loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 300 \rightarrow$ pure EtOAc afforded methyl 5-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (394) and methyl 6-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-394) ($215.5 \mathrm{mg}, 1.4 \mathrm{mmol}, 76 \%$) as clear colorless oils.

Alternative synthesis of methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (393) via Mitsunobu inversion and reduction

A 20 mL vial was charged with methyl 5-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (394, 139.9 $\mathrm{mg}, 0.890 \mathrm{mmol}, 1.0$ eq.) and $\mathrm{PPh}_{3}(260.0 \mathrm{mg}, 0.991 \mathrm{mmol}, 1.1 \mathrm{eq}$.). The vial was evacuated and refilled with nitrogen 3 times. Anhydrous THF ($9 \mathrm{~mL}, 0.1 \mathrm{M}$), DIAD ($200 \mu \mathrm{~L}, 1.040 \mathrm{~g} / \mathrm{mL}, 1.03 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and DPPA ($220 \mu \mathrm{~L}, 1.227 \mathrm{~g} / \mathrm{mL}, 0.981 \mathrm{mmol}, 1.1$ eq.) were added sequentially via syringe in one portion. The resulting mixture was left stirring overnight at room temperature. Water (0.9 mL) and $\mathrm{PPh}_{3}\left(466.9 \mathrm{mg} 1.78 \mathrm{mmol}, 2.0 \mathrm{eq}\right.$.) were added, and the resulting mixture was heated to $70{ }^{\circ} \mathrm{C}$ for 2 hours. Volatiles were removed under reduced pressure and the residue loaded onto a column. Gradient elution with $\mathrm{DCM}: \mathrm{MeOH}=10: 1 \rightarrow 10: 2$ (+ 1\% aqueous ammonia) afforded methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (393, $84.3 \mathrm{mg}, 0.540 \mathrm{mmol}, 61 \%$ over 2 steps) as a clear colorless oil. The spectral data matched the product obtained from Curtius rearrangement and deprotection.

Synthesis of methyl 6-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-393) via Mitsunobu inversion and reduction

A 20 mL vial was charged with methyl 6-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-394, $60.6 \mathrm{mg}, 0.389 \mathrm{mmol}, 1.0$ eq.) and $\mathrm{PPh}_{3}(125.4 \mathrm{mg}, 0.478 \mathrm{mmol}, 1.2 \mathrm{eq}$.). The vial was evacuated and refilled with nitrogen 3 times. Anhydrous THF ($4.5 \mathrm{~mL}, 0.1 \mathrm{M}$), DIAD ($100 \mu \mathrm{~L}, 1.040 \mathrm{~g} / \mathrm{mL}, 0.514 \mathrm{mmol}$, 1.3 eq.) and DPPA ($110 \mu \mathrm{~L}, 1.227 \mathrm{~g} / \mathrm{mL}, 0.478 \mathrm{mmol}, 1.3 \mathrm{eq}$.) were added sequentially via syringe in one portion. The resulting mixture was left stirring overnight at room temperature. Water (0.45 mL) and PPh_{3} ($225.6 \mathrm{mg}, 0.860 \mathrm{mmol}, 2.2$ eq.) were added and the resulting mixture was heated at $70^{\circ} \mathrm{C}$ for 2 hours. Volatiles were removed under reduced pressure and the residue loaded onto a column. Gradient elution with DCM : MeOH = 100:10 \rightarrow 100:15 (+ 1\% aqueous ammonia) afforded methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-393, $57.7 \mathrm{mg}, 0.369 \mathrm{mmol}, 96 \%$ over 2 steps) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.68(\mathrm{bs}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.77$ ($q, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.49(\mathrm{~s}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR (151 MHz, CDCl_{3}, rotamers) $\delta 157.87,70.03,69.56,59.30,58.56,52.44,50.39,37.51,37.15$, 24.26, 24.10.
$\mathbf{R}_{\mathrm{f}}=0.53\left(\mathrm{DCM}: \mathrm{MeOH}=10: 1+1 \%\right.$ aqueous ammonia; KMnO_{4})
IR (ATR-FTIR, cm^{-1}): 3373 (w), 2955 (w), 2879 (w), 1694 (s$), 1450$ (s$), 1382$ (s), 1193 (m), 1152 (m), 1128 (m), 768 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}^{+}$: 157.0977, found: 157.0977 .

Alternative synthesis of methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (393) via reduction and deprotection

A 4 mL vial was charged with methyl 5-(2,5-dioxopyrrolidin-1-yl)-2-azabicyclo[2.2.0]hex-5-ene-2carboxylate ($\mathbf{2 6 8}, 62.1 \mathrm{mg}, 0.263 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , EtOAc (5.2 \mathrm{~mL}, 0.05 \mathrm{M}$) and PtO_{2} hydrate (12.8 mg , $0.052 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The resulting suspension was purged with hydrogen for 1 minute and left stirring for 1 hour under hydrogen atmosphere (balloon). The suspension was filtered through a PTFE filter to yield, after solvent removal, methyl 5-(2,5-dioxopyrrolidin-1-yl)-2-azabicyclo[2.2.0]hexane-2carboxylate ($395,50.1 \mathrm{mg}, 0.210 \mathrm{mmol}, 80 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 4.69-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.67$ (m, 3H), 3.47 (m, 2H), 3.22 (m, 1H), 3.08 - 2.93 (m, 1H), $2.70(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 177.6,177.5,156.5,156.0,58.9,58.1,52.4,51.8,50.8,46.4$, $46.2,36.6,36.0,33.6,32.5,28.5$.
$\mathbf{R}_{\mathbf{f}}=0.26\left(\mathrm{EtOAc} ; \mathrm{KMnO}_{4}\right)$
IR (ATR-FTIR, cm^{-1}): 2956 (w), 1697 (s$), 1450$ (m), 1371 (m), 1215 (m), 1128 (m).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}^{+}$: 239.1032, found: 239.1031 .

A 4 mL vial was charged with methyl 5-(2,5-dioxopyrrolidin-1-yl)-2-azabicyclo[2.2.0]hexane-2carboxylate ($395,25.7 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$) , anhydrous hydrazine ($100 \mu \mathrm{~L}, 1.021 \mathrm{~g} / \mathrm{mL}, 3.19 \mathrm{mmol}$, 30 eq.) and $\mathrm{MeOH}(1 \mathrm{~mL}, 0.1 \mathrm{M})$. The resulting solution was heated to $60^{\circ} \mathrm{C}$ and left stirring overnight. Volatiles were removed under high vacuum. Crude NMR analysis indicated that reaction was not complete. Deuterated solvent was removed and the residue resubjected to the same reaction conditions except that the temperature was raised to $70{ }^{\circ} \mathrm{C}$. The same workup and purification via flash column chromatography (gradient elution; DCM : MeOH = 100:10 \rightarrow 100:20 + 1\% conc. aqueous NH_{3}) afforded methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (393, $9.7 \mathrm{mg}, 0.062$ mmol, 58%) as a colorless film.

Synthesis of 2-(methoxycarbonyl)-2-azabicyclo[2.2.0]hexane-4-carboxylic acid (397)

To a stirred solution of methyl 4-((benzyloxy)methyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($263,0.437 \mathrm{~g}, 1.69 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{MeOH}(8.5 \mathrm{~mL}, 0.2 \mathrm{M}$) was added palladium on carbon ($10 \% \mathrm{w} / \mathrm{w}$, $0.180 \mathrm{~g}, 10 \mathrm{~mol} \%)$. The resulting suspension was purged with hydrogen gas for 1 minute and left
stirring under hydrogen atmosphere until TLC showed complete consumption of starting material. The reaction mixture was filtered through a pad of celite and concentrated under reduced pressure to afford methyl 4-(hydroxymethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (396, $0.271 \mathrm{~g}, 1.59 \mathrm{mmol}$, 94\%) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.45(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.69-3.65(\mathrm{~m}, 5 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 3 \mathrm{H}), 1.77(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, rotamers) δ 156.5, 64.1, 63.1, 58.5, 52.3, 43.3, 27.4, 26.3.
$\mathbf{R}_{\mathbf{f}}=0.28$ (hexanes: EtOAc $=1: 2 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm ${ }^{-1}$): 3430 (bs), 2944 (w), 2877 (w), 1685 (s), 1458 (s), 1395 (s), 1199 (w), 1125 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}+\mathrm{Na}^{+}$: 194.0788, found: 194.0788.

A 20 mL vial was charged methyl 4-(hydroxymethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (396, $0.100 \mathrm{~g}, 0.58 \mathrm{mmol}, 1.0 \mathrm{eq}$) , $\mathrm{MeCN}(5.5 \mathrm{~mL}, 0.1 \mathrm{M}$), NMO hydrate ($0.393 \mathrm{~g}, 3.43 \mathrm{mmol}, 4.6 \mathrm{eq}$.) and TPAP ($19.9 \mathrm{mg}, 0.06 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The resulting mixture was stirred for 45 minutes at room temperature. Isopropanol was added $(2.0 \mathrm{~mL})$ and volatiles were removed under reduced pressure. The residue was purified via flash column chromatography. Gradient elution with hexanes : EtOAc = $100: 50 \rightarrow 100: 125$ (+1\% AcOH) afforded 2-(methoxycarbonyl)-2-azabicyclo[2.2.0]hexane-4carboxylic acid (397, $0.102 \mathrm{~g}, 0.55 \mathrm{mmol}, 95 \%)$ as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 11.0(\mathrm{bs}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 2.87-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of methyl 4-((methoxycarbonyl)amino)-2-azabicyclo[2.2.0]hexane-2-carboxylate (399)

A 25 mL round bottom flask was charged with 2-(methoxycarbonyl)-2-azabicyclo[2.2.0]hexane-4carboxylic acid ($397,54.0 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathrm{MeOH}(0.7 \mathrm{~mL}$) and benzene (2.1 mL). The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. TMSCHN_{2} solution (0.70 mL 0.6 M in hexanes) was added slowly. The ice bath was removed, and the yellow reaction mixture was left stirring at room temperature for 2 h . Afterwards, neat acetic acid was added dropwise until the reaction mixture became colorless. Volatiles were removed under reduced pressure and the residue loaded onto a column. Gradient elution with hexanes : EtOAc = 100:20 \rightarrow 100:40 afforded dimethyl 2-azabicyclo[2.2.0]hexane-2,4-dicarboxylate ($47.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 81 \%$) yield as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.56-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.66$ $(\mathrm{s}, 3 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, rotamers) $\delta 171.8,156.2,155.9,66.0,65.6,59.2,58.3,52.3,42.9,27.7$, 27.1, 26.7.

A 4 mL vial was charged with dimethyl 2-azabicyclo[2.2.0]hexane-2,4-dicarboxylate ($40.3 \mathrm{mg}, 0.20$ $\mathrm{mmol}, 1.0$ eq.) and 2 mL of saturated methanolic ammonia ($\sim 12 \mathrm{M}$). The vial was sealed and placed into a preheated heating block at $60^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature, the solvent was removed under reduced pressure to yield methyl 4-((aminooxy)carbonyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate ($398,38.3 \mathrm{mg}, 0.19 \mathrm{mmol}, 95 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.43-6.04(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.66$ $(\mathrm{s}, 3 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H})$.

To a stirred solution of methyl 4-carbamoyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (398, 9.0 mg , $0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and potassium hydroxide (6.6 \mathrm{mg}, 0.12 \mathrm{mmol}, 2.4 \mathrm{eq}$.) in methanol ($400 \mu \mathrm{~L}, 0.12$ M) at $0{ }^{\circ} \mathrm{C}$ was added (diacetoxyiodo)benzene ($15.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in one portion. The reaction mixture was brought to room temperature and left stirring overnight. The reaction mixture was partitioned between DCM and water (20 mL each). The organic phase was separated, and the aqueous phase extracted two more times with 20 mL DCM. Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc = $100: 50 \rightarrow 100: 200$ afforded methyl 4-((methoxycarbonyl)amino)-2-azabicyclo[2.2.0]hexane-2-carboxylate (399, $5.7 \mathrm{mg}, 0.03 \mathrm{mmol}, 54 \%$) as a colorless clear film.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 5.13(\mathrm{bs}, 1 \mathrm{H}), 4.74(\mathrm{bs}, 1 \mathrm{H}), 4.22(\mathrm{bs}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 2.60-$ $2.40(\mathrm{~m}, 3 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, rotamers) $\delta 156.3,156.0,155.4,67.5,67.0,62.5,61.6,52.5,52.4,32.2$, 25.0, 24.7.
$\mathbf{R}_{\mathrm{f}}=0.49$ (hexanes: $\mathrm{EtOAc}=1: 2 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 3309 (m), 2953 (w), 1689 (s$), 1527$ (m), 1457 (m), 1393 (m), 1268 (m).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}^{+}$: 237.0846 , found: 237.0843 .

Synthesis of methyl 4-(3-ethoxy-3-oxopropyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (400)

Following the one-pot activation / decarboxylation / Giese addition protocol from the literature ${ }^{113}$, a 4 mL vial was charged with 2-(methoxycarbonyl)-2-azabicyclo[2.2.0]hexane-4-carboxylic acid (397, $33.0 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , anhydrous DCM (1 \mathrm{~mL}$), NHPI ($32.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and DCC (33 $\mu \mathrm{L}, 1.325 \mathrm{~g} / \mathrm{mL}, 0.21 \mathrm{mmol}, 1.1 \mathrm{eq}$. .). The resulting mixture was stirred at room temperature until TLC analysis showed full consumption of starting material. All volatiles were removed under high vacuum. Zinc powder ($51.4 \mathrm{mg}, 0.79 \mathrm{mmol}, 4.4 \mathrm{eq}$.), $\mathrm{LiCl}\left(24.4 \mathrm{mg}, 0.58 \mathrm{mmol}, 3.2 \mathrm{eq}\right.$.) and $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(36.8$ $\mathrm{mg}, 0.14 \mathrm{mmol}, 80 \mathrm{~mol} \%)$ were added to the residue. The resulting mixture was placed under argon atmosphere and ethyl acrylate ($40 \mu \mathrm{~L}, 0.940 \mathrm{~g} / \mathrm{mL}, 0.38 \mathrm{mmol}, 2.1 \mathrm{eq}$.) and $\mathrm{MeCN}(450 \mu \mathrm{~L}$) were added sequentially in one portion. The resulting suspension was stirred overnight, quenched with water and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic phase was separated,
washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 10 \rightarrow 100: 25$ afforded methyl 4-(3-ethoxy-3-oxopropyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (400, $8.8 \mathrm{mg}, 0.04 \mathrm{mmol}, 20 \%$) as a colorless film.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.32(\mathrm{bs}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.96(\mathrm{dd}, \mathrm{J}=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.06(\mathrm{~m}, 6 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.

Synthesis of methyl 5-(phenylamino)-2-azabicyclo[2.2.0]hexane-2-carboxylate (337)

Following the reported procedure ${ }^{115}$, a 4 mL vial was charged with methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate ($334,17.7 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($650 \mathrm{mg}, 2.0 \mathrm{mmol}$, 17.6 eq.) and Cul ($21.2 \mathrm{mg}, 0.11 \mathrm{mmol} 1.0 \mathrm{eq}$.). The vial was evacuated and filled with nitrogen three times. Anhydrous DMF (0.5 mL), iodobenzene ($110 \mu \mathrm{~L}, 1.830 \mathrm{~g} / \mathrm{mL}, 1.0 \mathrm{mmol} .8 .7 \mathrm{eq}$.$) , and 2-$ acetylcyclohexanone ($50 \mu \mathrm{~L}, 1.078 \mathrm{~g} / \mathrm{mL}, 0.38 \mathrm{mmol}, 3.4 \mathrm{eq}$.) were added sequentially via syringe. The resulting suspension was stirred 3 h at room temperature. Volatiles were removed under high vacuum and the crude mixture loaded directly onto a column. Gradient elution with hexanes : EtOAc = 100 : $20 \rightarrow 100: 60$ afforded methyl 5-(phenylamino)-2-azabicyclo[2.2.0]hexane-2-carboxylate (337, 22.8 $\mathrm{mg}, 0.10 \mathrm{mmol}, 87 \%)$ as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.23-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.55-6.36(\mathrm{~m}, 2 \mathrm{H})$, $4.64(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{bs}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.80(\mathrm{~m}$, $1 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 156.5,146.4,129.5,118.3,113.4,60.3,59.8,55.2,54.6,54.6$, 54.3, 52.3, 39.1, 38.5, 38.1.
$\mathbf{R}_{\mathrm{f}}=0.41$ (hexanes: EtOAc = $3: 2 ; \mathrm{UV}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 3359 (b), 2954 (w), 2877 (w), 1688 (s), 1602 (s), 1503 (m), 1451 (s), 1385 (s), 1198 (m), 1124 (m), 750 (m), 694 (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}^{+}$: 233.1290, found: 233.1288 .

Synthesis of methyl 6-(phenylamino)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-337)

Following the reported procedure ${ }^{115}$, a 4 mL vial was charged with methyl 6-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-334, $43.6 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($650 \mathrm{mg}, 2.0$ $\mathrm{mmol}, 7.5 \mathrm{eq}$.) and Cul ($11.2 \mathrm{mg}, 0.06 \mathrm{mmol}, 19 \mathrm{~mol} \%$). The vial was evacuated and filled with nitrogen
three times. Anhydrous DMF (0.5 mL), iodobenzene ($110 \mu \mathrm{~L}, 1.830 \mathrm{~g} / \mathrm{mL}, 1.0 \mathrm{mmol} .3 .5 \mathrm{eq}$.$) , and 2-$ acetylcyclohexanone ($29 \mu \mathrm{~L}, 1.078 \mathrm{~g} / \mathrm{mL}, 0.22 \mathrm{mmol}, 80 \mathrm{~mol} \%$) were added sequentially via syringe. The resulting suspension was stirred 3 h at room temperature. Volatiles were removed under high vacuum and the crude mixture loaded directly onto a column. Gradient elution with hexanes : EtOAc $=100: 20 \rightarrow 100: 60$ afforded methyl 6-(phenylamino)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso$337,58.0 \mathrm{mg}, 0.25 \mathrm{mmol}, 89 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 7.20(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.28(\mathrm{~m}, 2 \mathrm{H})$ $4.08(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{dm}, 1 \mathrm{H}) 3.85(\mathrm{bs}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{bs}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}, rotamers) $\delta 156.1,146.4,129.4,129.3,118.2,113.6,113.5,67.9,67.0,57.5$, 56.5, 55.7, 55.1, 52.3, 34.9, 34.8, 28.2.

Synthesis of pseudoaxial methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate (401)

Following the reported procedure ${ }^{115}$, a 4 mL vial was charged with methyl 5-amino-2-azabicyclo[2.2.0]hexane-2-carboxylate ($393,64.1 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(650 \mathrm{mg}, 2.0 \mathrm{mmol}$, 4.9 eq.) and Cul ($20.0 \mathrm{mg}, 0.11 \mathrm{mmol}, 26 \mathrm{~mol} \%$). The vial was evacuated and filled with nitrogen three times. Anhydrous DMF (0.5 mL), iodobenzene ($110 \mu \mathrm{~L}, 1.830 \mathrm{~g} / \mathrm{mL}, 1.0 \mathrm{mmol} .2 .4 \mathrm{eq}$.), and 2acetylcyclohexanone ($64 \mu \mathrm{~L}, 1.078 \mathrm{~g} / \mathrm{mL}, 0.49 \mathrm{mmol}, 1.2$ eq.) were added sequentially via syringe. The resulting suspension was stirred 3 h at room temperature. Volatiles were removed under high vacuum and the crude mixture loaded directly onto a column. Gradient elution with hexanes : EtOAc = 100 : $60 \rightarrow 100: 100$ afforded methyl 5-(phenylamino)-2-azabicyclo[2.2.0]hexane-2-carboxylate (401, 64.3 $\mathrm{mg}, 0.27 \mathrm{mmol}, 67 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.17(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~m}$, $1 \mathrm{H}), 4.18(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{bs}, 1 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.10(\mathrm{~m}$, $1 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR (151 MHz, CDCl_{3}, rotamers) $\delta 156.2,156.0,146.9,146.6,129.5,118.1,112.8,58.8,58.5,52.3$, 49.7, 48.8, 47.4, 47.0, 37.5, 37.0, 35.7, 35.6.
$\mathbf{R}_{\mathbf{f}}=0.40$ (hexanes: EtOAc = $3: 2 ; \mathrm{UV}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 3362 (b), 2954 (w), 1693 (s$), 1603$ (m), 1503 (m), 1452 (s), 1387 (s), 1192 (m), 1128 (m), 751 (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}^{+}$: 233.1290, found: 233.1286 .

Synthesis of benzyl 5-oxo-2-azabicyclo[2.2.0]hexane-2-carboxylate (404) and 1,2-Grignard addition products (405-407)

A flame dried 4 mL vial was charged with $\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2}(25.4 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.2 \mathrm{~mol} \%\right.$) and xantphos ($59 \mathrm{mg}, 0.12 \mathrm{mmol}, 2.6 \mathrm{~mol} \%$) in a nitrogen filled glovebox. The vial was taken outside the glovebox and THF (2 mL) was added. The resulting mixture was stirred for 5 minutes at room temperature. Afterwards, benzyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($259,869 \mathrm{mg}, 4.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and HBPin ($700 \mu \mathrm{~L}, 0.882 \mathrm{~g} / \mathrm{mL}, 4.8 \mathrm{mmol}, 1.2$ eq.) were added in one portion via syringe. The resulting reaction mixture was stirred at room temperature overnight. ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture revealed that all starting material was consumed and that the product constitutional isomer ratio was $1.7: 1$. The final solution was transferred into a flame dried 100 mL round bottom flask charged with $\mathrm{Me}_{3} \mathrm{NO}$ ($901 \mathrm{mg}, 12.0 \mathrm{mmol}, 3.0$ eq.) and anhydrous THF (40 mL). The resulting mixture was heated to $65{ }^{\circ} \mathrm{C}$ for 1 hour. The solvent was removed under reduced pressure, and the residue was directly loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 200 \rightarrow$ pure EtOAc afforded benzyl 5 -hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (314) and benzyl 6 -hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-314) ($847 \mathrm{mg}, 3.6 \mathrm{mmol}, 90 \%$ over 2 steps) as clear colorless oils. Their spectral data matches the product obtained from uncatalyzed hydroboration / oxidation sequence.

A 20 mL vial was charged benzyl 5 -hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (314, 99.5 mg , $0.43 \mathrm{mmol}, 1.0 \mathrm{eq}$.), DCM $4 \mathrm{~mL}, 0.1 \mathrm{M}$) and $\mathrm{NaHCO}_{3}(71.7 \mathrm{mg}, 0.85 \mathrm{mmol}, 2.0 \mathrm{eq}$.). The resulting suspension was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and DMP ($199.0 \mathrm{mg}, 0.47 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added in one portion. After stirring for 30 minutes at the same temperature, TLC analysis showed full consumption of starting material. The reaction mixture was quenched with $100 \mu \mathrm{~L}$ isopropanol and diluted with 20 mL of 4:1 mixture of hexanes and EtOAc. The resulting suspension was stirred for 10 minutes at $0^{\circ} \mathrm{C}$ and then filtered through a neutral alumina plug. Evaporation of solvent under reduced pressure furnished benzyl 5-oxo-2-azabicyclo[2.2.0]hexane-2-carboxylate (404, $92.2 \mathrm{mg}, 0.40 \mathrm{mmol}$, 94%) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.33(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{bs}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}$ $1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.35(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) δ 205.5, 205.1, 155.5, 155.4, 136.3, 128.6, 128.3, 128.1, 67.0, $56.6,56.3,56.0,54.0,53.4,50.2,49.1$.

General procedure for 1,2-Grignard addition additive screen
A 4 mL vial was charged with benzyl 5-oxo-2-azabicyclo[2.2.0]hexane-2-carboxylate (404, 1.0 eq., normal addition) or 4-chlorophenylmagneisum bromide ($1 \mathrm{M}, 1.0$ eq. or 2.5 eq., inverse order of addition) and anhydrous THF. The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and additive ($\mathrm{LaCl} 3_{3} \cdot 2 \mathrm{LiCl}$ or CeCl_{3}) was added. The resulting mixture was stirred for 1 hour at the same temperature before 4chlorophenylmagnesium bromide ($1 \mathrm{M}, 1.0 \mathrm{eq}$. or 2.5 eq , normal order of addition) or THF solution of benzyl 5-oxo-2-azabicyclo[2.2.0]hexane-2-carboxylate (404, 1.0 eq., inverse order of addition) was
added. Stirring was continued for 1 h at the same temperature. The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$, quenched with half saturated aqueous ammonium chloride solution, extracted in $\mathrm{Et}_{2} \mathrm{O}$ (50 mL), washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was redissolved in deuterated chloroform and product yield was determined with ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture in the presence of trichloroethylene (1.0 eq.) as an internal standard.

General procedure for oxidation / 1,2-Grignard addition sequence

A 20 mL vial was charged benzyl 5-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (404, 1.0 eq.), DCM (0.1 M) and NaHCO_{3} (4.0 eq.). The resulting suspension was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath and DMP (2.0 eq.) was added in one portion followed by the addition of water ($0.9-1.4$ eq.). The ice bath was removed, and the reaction was left to warm up to room temperature. After TLC analysis indicated full consumption of starting material, the reaction mixture was quenched with isopropanol, diluted with a mixture of hexanes and $\operatorname{EtOAc}(4: 1-3: 1)$, filtered through a plug of neutral alumina and concentrated under reduced pressure. The residue was transferred into a flame dried 50 mL 2 neck round bottom flask and dissolved in anhydrous THF (0.1 M). The resulting solution was cooled to -78 ${ }^{\circ} \mathrm{C}$ and $\mathrm{LaCl}_{3} \cdot 2 \mathrm{LiCl}(0.6 \mathrm{M}$ solution in THF, 1.0 eq ,) was slowly added. The resulting mixture was stirred for 1 h at the same temperature before Grignard reagent solution ($1-1.5 \mathrm{eq}$.) was added. Stirring was continued at the same temperature for 1 h before the reaction was quenched with 10% aqueous ammonium chloride and diluted with EtOAc. Saturated Rochelle's salt solution was added and stirring was continued at room temperature until most of the precipitate dissolved. The layers were separated, and the organic phase was washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified via flash column chromatography. Gradient elution with hexanes : EtOAc afforded the desired tertiary alcohol product.

405

Prepared with 4-chlorophenylmagnesium bromide.
$90.9 \mathrm{mg}, 31 \%$ yield over 2 steps on 0.85 mmol scale. Gradient elution with hexanes : EtOAc $=100: 60 \rightarrow 10: 60$.

Colorless viscous oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.12(\mathrm{bs}, 2 \mathrm{H}), 4.68(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{bs}, 1 \mathrm{H}), 4.28(\mathrm{~m}$, $1 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 155.9,145.6,136.8,133.4,128.9,128.6,128.2,128.1,126.1$, 73.5, 66.8, 55.5, 55.1, 50.5, 49.6, 46.5, 45.9, 42.8, 42.5.
$\mathbf{R}_{\mathrm{f}}=0.67$ (hexanes : EtOAc = $1: 1 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 3400 (bs), 2953 (w), 2878 (w), 1685 (s), 1492 (w), 1423 (m), 1355 (m), 1126 (m), 1012 (w), 833 (w), 735 (w), 697 (w).

406

Prepared with 4-methylphenylmagnesium bromide.
$52.5 \mathrm{mg}, 43 \%$ yield over 2 steps on 0.38 mmol scale. Gradient elution with hexanes : EtOAc $=100: 20 \rightarrow 100: 80$. Colorless viscous oil.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.33 \mathrm{~m}, 6 \mathrm{H}$), $7.19(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{bs}, 1 \mathrm{H}), 4.47-$ $4.42(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{dm}, 1 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 155.9,155.8,144.1,137.3,136.9,129.4,128.6,128.1,128.0$, $124.6,73.7,73.5,66.7,55.5,55.0,50.5,49.6,46.1,45.5,42.5,42.3,21.1$.
$\mathbf{R}_{\mathrm{f}}=0.63$ (hexanes: EtOAc $=4: 3 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 3405 (bs), 2950 (w), 1684 (s), 1421 (s), 1355 (s), 1124 (s), 697 (m).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3}+\mathrm{Na}^{+}: 346.1419$, found: 346.1420 .

407

Prepared with phenylmagnesium bromide.
$78.4 \mathrm{mg}, 53 \%$ yield over 2 steps on 0.48 mmol scale.
Gradient elution with hexanes : EtOAc $=100: 60 \rightarrow 100: 80$.
Colorless viscous oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.51-7.25(\mathrm{~m}, 9 \mathrm{H}), 5.14(\mathrm{bs}, 2 \mathrm{H}), 4.72(\mathrm{bs}, 1 \mathrm{H}), 4.48(\mathrm{bs}, 1 \mathrm{H})$, 4.29 (bs, 1H), 3.33 (bs, 1H), $3.05(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{bs}, 1 \mathrm{H}), 2.59-2.30(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of pseudoaxial benzyl 5-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (408)

A 4 mL vial was charged with benzyl 5-oxo-2-azabicyclo[2.2.0]hexane-2-carboxylate (404, 10.0 mg , $0.04 \mathrm{mmol}, 1.0$ eq.) and $\mathrm{MeOH}-d_{4}(0.75 \mathrm{~mL}, 0.06 \mathrm{M}) . \mathrm{NaBH}_{4}(6.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 4.0 \mathrm{eq})$ was added to the resulting solution at $0{ }^{\circ} \mathrm{C}$ in two portions. NMR analysis indicated full consumption of starting material and the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted in EtOAc (50 mL), washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified via flash column chromatography. Gradient elution with hexanes : EtOAc = 100:50 \rightarrow 100 : 150 afforded pseudoaxial benzyl 5-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (408, 3.2 $\mathrm{mg}, 0.01 \mathrm{mmol}, 32 \%)$ as a colorless film.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.40-7.29(\mathrm{bs}, 5 \mathrm{H}), 5.11(\mathrm{bs}, 2 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H})$, $4.16(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.20(\mathrm{~m}, 1 \mathrm{H})$.

General procedure for Suzuki coupling
A 4 mL vial was charged with vinyl bromide ($\mathbf{2 6 5}$ or $\mathbf{4 8 2}$, 1.0 eq.), boronic acid pinacol ester (1.2-2.0 eq.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ under nitrogen atmosphere. Anhydrous THF ($0.1-0.2 \mathrm{M}$) was added and the resulting solution was warmed up to $45^{\circ} \mathrm{C}$ in a heating block. TMSOK (1 M solution in THF, 0.9 eq.) was added and the resulting mixture was stirred for an hour. Afterwards, a second portion of TMSOK (1 M solution in THF, 0.6 eq.; 1.5 eq. in total) was added and the resulting mixture was stirred for an additional hour at the same temperature. The reaction mixture was cooled to room temperature,
volatiles were removed under reduced pressure, and the residue was purified via flash column chromatography to yield the desired styrene product.

Following the general procedure for Suzuki coupling (0.42 mmol scale), $\mathbf{2 6 4}$ was isolated by flash column chromatography (isocratic elution with hexanes : EtOAc = $100: 100$) as a colorless clear oil that solidified on standing in a freezer ($77.6 \mathrm{mg}, 85 \%$ yield).

Spectral data matches the product obtained from dearomatization / 4π-electrocyclization sequence on 4-phenylpyridine.

Following the general procedure for Suzuki coupling (0.05 mmol scale), 411 was isolated by flash column chromatography (gradient elution with hexanes : EtOAc $=100: 10 \rightarrow 100: 40$) as a colorless film ($14.1 \mathrm{mg}, 71 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 8.30(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{bs}, 1 \mathrm{H}), 7.47-7.28(\mathrm{~m}, 7 \mathrm{H}), 6.60(\mathrm{~m}, 1 \mathrm{H})$, $4.68(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.57(\mathrm{~m}, 3 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{bs}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H})$.

Following the general procedure for Suzuki coupling (0.05 mmol scale), $\mathbf{4 1 2}$ was isolated by flash column chromatography (gradient elution with hexanes : EtOAc =100:50 \rightarrow 100:100) as a colorless film ($13.2 \mathrm{mg}, 85 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.46-7.24(\mathrm{~m}, 4 \mathrm{H}), 6.75(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 2 \mathrm{H})$, $4.12(\mathrm{bs}, 1 \mathrm{H}), 3.76-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of methyl 5-(pyrimidin-5-yl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (413)

Following the reported procedure ${ }^{121}$, a 4 ml vial was charged with methyl 5-bromo-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($265,21.8 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , Pd-CataCXium A-G3$ $(2.5 \mathrm{mg}, 0.003 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ and freshly resublimed 5-(5,5-dimethyl-1,3,2-dioxaborinan-2yl)pyrimidine ($21.1 \mathrm{mg}, 0.110 \mathrm{mmol}, 1.1 \mathrm{eq}$.). The vial was evacuated and refilled with argon 3 times. Anhydrous DME $(350 \mu \mathrm{~L}, 0.29 \mathrm{M})$ and $\mathrm{B}(\mathrm{OMe})_{3}(34 \mu \mathrm{~L}, 0.932 \mathrm{~g} / \mathrm{mL}, 0.300 \mathrm{mmol}, 3.0 \mathrm{eq}$.) were added via syringe in one portion. The resulting mixture was warmed up to $85^{\circ} \mathrm{C}$ in a heating block. TMSOK solution in DME ($1.0 \mathrm{M}, 120 \mu \mathrm{~L}, 0.120 \mathrm{mmol}, 1.2$ eq.) was added and the resulting mixture stirred for

1 hour at $80^{\circ} \mathrm{C}$. After cooling to room temperature, volatiles were removed under reduced pressure and the remaining residue was directly loaded onto a column. Isocratic elution with EtOAc $+1 \% \mathrm{Et}_{3} \mathrm{~N}$ methyl 5-(pyrimidin-5-yl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (413, $13.5 \mathrm{mg}, 0.062 \mathrm{mmol}$, 62\%) as a colorless film.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.79 (ddd, $J=7.1,5.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (bs, 3 H), 3.58 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}{ }^{2}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 158.5,157.6,153.6,146.7,135.0,134.5,126.4,62.5,619,52.5$, 49.8, 49.0, 36.7.
$\mathbf{R}_{\mathbf{f}}=0.30\left(\mathrm{EtOAc}+1 \% \mathrm{Et}_{3} \mathrm{~N} ; \mathrm{KMnO}_{4}\right)$
IR (ATR-FTIR, cm ${ }^{-1}$): 2955 (w), 1706 (s$), 1550$ (w), 1448 (m), 1407 (w), 1367(s), 1196 (m), 1157 (m), 974 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}^{+}$: 218.0930, found: 218.0928.

General procedure for diimide reduction

Following the reported procedure ${ }^{144}$, a 4 mL vial was charged with substrate (1.0 eq .), DCM (1 M) and hydrazine hydrate (4.0 eq.). PIDA (1.5 eq., 0.3 M in DCM) was added dropwise over 3 hours using a syringe pump. Afterwards, the reaction mixture was left stirring overnight, quenched with saturated aqueous NaHCO_{3} and extracted in DCM ($3 \times 20 \mathrm{~mL}$). Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Flash column chromatography afforded the desired reduced product.

Following the general procedure for diimide reduction $(0.07 \mathrm{mmol}$ scale), 414 was isolated by flash column chromatography (isocratic elution with hexanes : $\mathrm{Et}_{2} \mathrm{O}=100: 50$) as a colorless film (14.8 mg , 96% yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{bs}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{t}, \mathrm{J}$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, \mathrm{J}=30.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{bs}, 1 \mathrm{H}), 2.94(\mathrm{t}, \mathrm{J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-$ $2.49(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR (151 MHz, CDCl_{3}, rotamers) $\delta 156.3,156.1,141.0,140.7,128.6,127.4,126.4,126.3,59.9$, 59.4, 52.3, 52.2, 51.8, 50.9, 38.6, 38.1, 35.5, 35.4, 33.9, 33.2.
$\mathbf{R}_{\mathrm{f}}=0.41$ (hexanes : EtOAc $=2: 1 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 2954 (w), 2885 (w), 1703 (s), 1448 (m), 1380 (s), 1196 (w), 1127 (m), 757 (w), 700 (w).

HRMS (ESI-TOF) (ESI-TOF) calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}^{+}$: 218.1181, found 218.1187.
Following the general procedure for dimide reduction (0.03 mmol
scale), 415 was isolated by flash column chromatography (gradient
elution with hexanes: EtOAc $=100: 20 \rightarrow 100: 50$) as a colorless
film ($12.5 \mathrm{mg}, 88 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 8.29(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.23(\mathrm{~m}, 8 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H})$, $3.93(m, 1 H), 3.77(m, 1 H), 3.62(m, 2 H), 3.13(n, 1 H), 2.90-2.72(m, 1 H), 2.46(d n, 1 H), 1.25(\mathrm{~s}, 9 H)$.

Following the general procedure for diimide reduction (0.04 mmol scale), 416 was isolated by flash column chromatography (gradient elution with hexanes : EtOAc =100:50 \rightarrow 100:100) as a colorless film ($9.6 \mathrm{mg}, 72 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 7.36(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~m}$, $1 \mathrm{H}), 4.51(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 3 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.58(\mathrm{~m}$, 1H).

Following the general procedure for diimide reduction (0.05 mmol scale), 417 was isolated by flash column chromatography (gradient elution with $\mathrm{DCM}: \mathrm{MeOH}=100: 1 \rightarrow 100: 5$) as a colorless film (5.9 $\mathrm{mg}, 57 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.07$ (bs, 1H), 3.79 (bs, 1H), 3.67 (bs, 3H), 3.41 (bs, 1H), 3.04 (td, J = 13.2, 5.1 Hz, 2H), 2.71 (m, 1H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 157.2,156.2$ (overlapping signals), $133.8,60.4,60.0,52.4,51.5$, 50.7, 35.2, 34.5, 34.3, 33.6, 33.0.
$\mathbf{R}_{\mathrm{f}}=0.66(\mathrm{DCM}: \mathrm{MeOH}=10: 1 ; \mathrm{UV})$
IR (KBr discs, cm^{-1}): 2954 (w), 1702 (s), 1558 (w), 1450 (m), 1412 (w), 1380 (m), 1196 (w), 1129 (w).
HRMS (ESI-TOF) (ESI-TOF) calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}^{+}$: 220.1086, found 220.1084.

Matteson homologation and oxidation

A 50 mL flame dried round bottom flash was charged with a $1.5: 1$ mixture of methyl $5-(4,4,5,5-$ tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (317) and methyl 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-317) (549 $\mathrm{mg}, 2.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) anhydrous THF ($20 \mathrm{~mL}, 0.1 \mathrm{M}$) and bromochloromethane ($340 \mu \mathrm{~L}, 1.990 \mathrm{~g} / \mathrm{mL}$, 2.5 eq.). The resulting solution was cooled to $-78^{\circ} \mathrm{C}$ in an acetone/dry ice bath. n - $\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $2.7 \mathrm{~mL}, 4.3 \mathrm{mmol}, 2.1$ eq.) was slowly added. After stirring for 5 minutes at the same temperature, dry ice was removed, and the resulting mixture was left to warm up to room temperature. After 26 hours of stirring at room temperature, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a silica plug. Volatiles were removed under reduced pressure to yield a mixture of methyl 5-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (418) and methyl 6-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-418) ($512 \mathrm{mg}, 1.8 \mathrm{mmol}, 90 \%$) as a slightly yellow oil. Constitutional isomer ratio of the products could not be determined with ${ }^{1} \mathrm{H}$ NMR due to signal overlap.

MS (ESI-Q) calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{BNO}_{4}+\mathrm{H}^{+}: 282$, found: 282.

A 50 mL round bottom flask was charged with a mixture of methyl $5-((4,4,5,5$-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (418) and methyl 6-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-418) (512 $\mathrm{mg}, 1.8 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , anhydrous THF (20 \mathrm{~mL}, 0.1 \mathrm{M}$) and anhydrous $\mathrm{Me}_{3} \mathrm{NO}(473 \mathrm{mg}, 6.3 \mathrm{mmol}, 3.1$ eq.) The resulting suspension was heated to $70{ }^{\circ} \mathrm{C}$ in a heating block until all starting material was consumed. After cooling to room temperature, volatiles were removed under reduced pressure and the residue loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 400 \rightarrow$ pure EtOAc afforded a mixture of alcohols, which were taken forward to the next step.

Synthesis of methyl 5-((tosyloxy)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (420) and methyl 6-((tosyloxy)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-420)

One half of the mixture of alcohols from the previous step was dissolved in DCM (5 mL) and triethylamine ($560 \mu \mathrm{~L}, 0.726 \mathrm{~g} / \mathrm{mL}, 4.0 \mathrm{mmol}$), $\mathrm{TsCl}(763 \mathrm{mg}, 4.0 \mathrm{mmol}$) and DMAP ($13.9 \mathrm{mg}, 11 \mathrm{~mol} \%$) were added sequentially in one portion. The resulting mixture was stirred overnight. TLC analysis revealed incomplete consumption of starting material. Another portion of DMAP ($123 \mathrm{mg}, 1 \mathrm{mmol}$, 1.0 eq.) was added and the resulting mixture was left stirring overnight. Volatiles were removed under reduced pressure and the residue was purified via flash column chromatography. Gradient elution with hexanes : EtOAc 100:100 \rightarrow pure EtOAc afforded a mixture of methyl 5-((tosyloxy)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (420) and methyl 6-((tosyloxy)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-420) ($138 \mathrm{mg}, 0.42 \mathrm{mmol}, 42 \%$ over 3 steps) as a clear colorless oil. Constitutional isomer ratio of the products could not be determined with ${ }^{1} \mathrm{H}$ NMR due to signal overlap.

Synthesis of methyl 5-(bromomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (421) and methyl 6-(bromomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-421)

A 50 ml round bottom flask was charged with a half of the mixture of alcohols from the oxidation step, $\mathrm{PPh}_{3}(315 \mathrm{mg}, 1.2 \mathrm{mmol})$ and $\mathrm{TBABr}(32 \mathrm{mg}, 0.1 \mathrm{mmol})$ under nitrogen atmosphere. Anhydrous THF $(10 \mathrm{~mL})$ and CBr_{4} ($398 \mathrm{mg}, 1.2 \mathrm{mmol}$) were added sequentially in one portion. The resulting mixture was left stirring overnight. The reaction mixture was then partitioned between DCM and water. The phases were separated, and the aqueous phase was extracted two more times with DCM. Brine was added to the aqueous phase, which was then extracted 3 more times with EtOAc. Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc $100: 25 \rightarrow 100: 100$ afforded a mixture of methyl 5-(bromomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (421) and methyl 6-(bromomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-421) ($94 \mathrm{mg}, 0.4 \mathrm{mmol}, 40 \%$ over 3 steps) as a clear colorless oil. Constitutional isomer ratio of the products could not be determined with ${ }^{1} \mathrm{H} N M R$ due to signal overlap.

MS (ESI-Q) calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{BrNO}_{2}+\mathrm{H}^{+}: 234$, found: 234.

Synthesis of methyl 5-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (422) and methyl 6-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-422) via substitution

A 4 mL vial was charged with a mixture of methyl 5-((tosyloxy)methyl)-2-azabicyclo[2.2.0]hexane-2carboxylate (420) and methyl 6-((tosyloxy)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-420) ($19.2 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathrm{Cul}(16.4 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) under nitrogen atmosphere.$ Anhydrous THF ($0.6 \mathrm{~mL}, 0.1 \mathrm{M}$) was added, and the resulting suspension was cooled to $-78{ }^{\circ} \mathrm{C}$ in an acetone/dry ice bath. $\mathrm{PhMgBr}\left(3 \mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}, 120 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 6.1\right.$ eq.) was slowly added. After stirring for 30 minutes at the same temperature, dry ice was removed, and the reaction mixture was slowly brought to room temperature. After 7 hours at room temperature, the reaction was quenched with 10% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic phase was separated, washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified via flash column chromatography. Gradient elution with hexanes : EtOAc 100:25 \rightarrow 100:100 afforded a mixture of methyl 5-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (422) and methyl 6-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-422) ($4.7 \mathrm{mg}, 0.02 \mathrm{mmol}, 34 \%$) as a colorless film. Constitutional isomer ratio of the products could not be determined with ${ }^{1} \mathrm{H}$ NMR due to signal overlap.

MS (ESI-Q) calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}^{+}: 232$, found: 232.

Synthesis of methyl 5-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (422) and methyl 6-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-422) via cross electrophile coupling

Following the reported procedure ${ }^{123}$, a 4 mL vial was charged with a mixture of methyl 5-(bromomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (421) and methyl 6-(bromomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-421) ($23.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathrm{Nil}_{2},(22.8 \mathrm{mg}, 0.07$ mmol, $73 \mathrm{~mol} \%$), zinc powder ($65 \mathrm{mg}, 1.0 \mathrm{mmol}, 10 \mathrm{eq}$.), sodium iodide ($14.3 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $4,4^{\prime}$-dimethoxy-2, 2^{\prime}-bipyridyl ($10.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 49 \mathrm{~mol} \%$) in a nitrogen filled glovebox. The vial was taken outside and anhydrous DMPU ($2 \mathrm{~mL}, 0.05 \mathrm{M}$), bromobenzene ($56 \mu \mathrm{~L}, 1.491 \mathrm{~g} / \mathrm{mL}, 0.53$ mmol, 5.3 eq.) and pyridine ($2 \mu \mathrm{~L}, 0.978 \mathrm{~g} / \mathrm{mL}, 0.02 \mathrm{mmol}, 20 \mathrm{~mol} \%$) were added via syringe. The resulting mixture was stirred for 5 minutes at room temperature and then heated to $60^{\circ} \mathrm{C}$ in a metal heating block. When the mixture turned black, it was cooled to room temperature and partitioned between $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and water (50 mL). The organic phase was separated, washed two more times with water, washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified via flash column chromatography. Gradient elution with hexanes : EtOAc 100 : $20 \rightarrow 100: 30$ afforded a mixture of methyl 5-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (422) and methyl 6-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-422) ($4.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 21 \%$) as a colorless film. Constitutional isomer ratio of the products could not be determined with ${ }^{1} \mathrm{H}$ NMR due to signal overlap.

MS (ESI-Q) calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}^{+}$: 232, found: 232.

Synthesis of methyl 5-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (422) via dual photo/nickel catalyzed cross-coupling

Following the reported procedure ${ }^{105}$, a 4 mL vial was charged with $\mathrm{Ni}\left(\mathrm{DME}^{2}\right) \mathrm{Cl}_{2}$ ($7.4 \mathrm{mg}, 0.034 \mathrm{mmol}$, $5 \mathrm{~mol} \%$) and dtbbpy ($9.4 \mathrm{mg}, 0.034 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in a nitrogen filed glovebox. The vial was taken outside the glovebox and DMF (3.3 mL) was added. The resulting suspension was sonicated for 30 seconds and afterwards heated with a heat gun until a clear green solution was obtained. A second 4 mL vial was charged with ($\mathrm{Ir}\left[\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right]_{2}$ (dtbpy)) $\mathrm{PF}_{6}(7.4 \mathrm{mg}, 0.01 \mathrm{mmol}, 1 \mathrm{~mol} \%)$, a mixture of methyl 5-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate
(418) and methyl 6-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-418) ($188.3 \mathrm{mg}, 0.67 \mathrm{mmol}, 2.0 \mathrm{eq}$.), bromobenzene ($150 \mu \mathrm{~L}, 1.491 \mathrm{~g} / \mathrm{mL}, 2.1 \mathrm{eq}$.), morpholine ($100 \mu \mathrm{~L}, 1.030 \mathrm{~g} / \mathrm{mL}, 1.2 \mathrm{mmol}, 1.7 \mathrm{eq}$.) and DMF (3.3 mL). Both solutions were thoroughly mixed, and the resulting mixture was irradiated using blue LEDs for 4.5 hours. Afterwards, it was partitioned between EtOAc (50 mL) and water (50 mL). The organic phase was separated, washed with water two more times, washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified via flash column chromatography. Gradient elution with hexanes :

EtOAc 100:20 \rightarrow 100:30 afforded methyl 3-allyl-2-phenylazetidine-1-carboxylate (423) and methyl 5-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate ($422,68.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 44 \%$ based on total mass of starting material) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.32-7.12(\mathrm{~m}, 5 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{bs}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.74(\mathrm{~m}, 3 \mathrm{H}), 2.65(\mathrm{bs}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 156.6,156.3,139.8,139.8,128.6,128.5,126.2,61.1,60.6,57.4$, 56.5, 52.1, 42.4, 41.3, 41.1, 36.1, 35.7, 35.4.

Side product methyl 3-allyl-2-phenylazetidine-1-carboxylate (423)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.72$ (ddt, $\left.J=16.6,10.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.10-5.03(\mathrm{~m}$, $2 \mathrm{H}), 4.86(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{bs}, 3 \mathrm{H}), 2.44(\mathrm{~m}$, 3 H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9,141.7,134.7,128.8,127.7,125.9,117.3,69.9,52.4,52.2,39.2$, 38.2 .

MS (ESI-Q) calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}^{+}: 232$, found: 232.

Synthesis of benzyl 5-bromo-2-azabicyclo[2.2.0]hexane-2-carboxylate (426)

A 4 ml vial was charged with benzyl 5-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate ($314,46.7 \mathrm{mg}$, 0.20 mmol), PPh_{3} ($63.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and $\operatorname{TBABr}(6.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) under nitrogen atmosphere. Anhydrous THF ($2 \mathrm{~mL}, 0.1 \mathrm{M}$) and $\mathrm{CBr}_{4}(79.6 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.) were added sequentially in one portion. The resulting mixture was left stirring overnight. The reaction solvent was removed under reduced pressure and the residue loaded directly onto a column. Gradient elution with hexanes : EtOAc 100:20 \rightarrow 100: 40 afforded benzyl 5-bromo-2-azabicyclo[2.2.0]hexane-2carboxylate ($426,34.4 \mathrm{mg}, 0.12 \mathrm{mmol}, 58 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 5.21-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.52(\mathrm{~m}$, 2 H), 4.33 (qm, 1H), $3.35-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of benzyl 5-bromo-2-azabicyclo[2.1.1]hexane-2-carboxylate (429)

A 4 ml vial was charged with benzyl 6-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-314, 10.0 $\mathrm{mg}, 0.04 \mathrm{mmol}$), $\mathrm{PPh}_{3}(13.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and imidazole ($3.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.2 \mathrm{eq}$.) under nitrogen atmosphere. Anhydrous toluene ($0.4 \mathrm{~mL}, 0.1 \mathrm{M}$) and $\mathrm{CBr}_{4}(17.1 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.2 \mathrm{eq}$.) were added sequentially in one portion. The resulting mixture was heated to $110^{\circ} \mathrm{C}$ for 1 hour. The reaction
solvent was removed under reduced pressure and the residue loaded directly onto a column. Isocratic elution with hexanes : EtOAc 100 : 20 afforded benzyl 5-bromo-2-azabicyclo[2.1.1]hexane-2carboxylate ($429,3.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 30 \%$) as a clear colorless film. The spectral data matched closely to related compounds. ${ }^{124}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.39-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.16(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ $(\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.08-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis of benzyl 5-iodo-2-azabicyclo[2.1.1]hexane-2-carboxylate (430)

A 10 ml two neck round bottom flask was charged with benzyl 6-hydroxy-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-314, $60.0 \mathrm{mg}, 0.26 \mathrm{mmol}$), $\mathrm{PPh}_{3}(80.9 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and imidazole (21.0 $\mathrm{mg}, 0.31 \mathrm{mmol}, 1.2 \mathrm{eq}$.) under nitrogen atmosphere. Anhydrous toluene ($2.6 \mathrm{~mL}, 0.1 \mathrm{M}$) and $\mathrm{I}_{2}(78.3$ $\mathrm{mg}, 0.31 \mathrm{mmol}, 1.2 \mathrm{eq}$.) were added sequentially in one portion. The resulting mixture was heated to $110{ }^{\circ} \mathrm{C}$ for 1 hour. Afterwards, it was partitioned between EtOAc (50 mL) and $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$. The organic phase was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified via flash column chromatography. Gradient elution with hexanes : EtOAc $100: 3 \rightarrow 100: 50$ afforded benzyl 5-bromo-2-azabicyclo[2.1.1]hexane-2-carboxylate ($430,29.7 \mathrm{mg}, 0.08 \mathrm{mmol}, 34 \%$) as a clear colorless oil. The spectral data matched closely to related compounds. ${ }^{124}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.16(\mathrm{n}, 2 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=7.0$ Hz, 1H), 1.68 - 1.62 (m, 1H).
${ }^{13}$ C NMR (101 MHz, C CDCl 3 , rotamers) $\delta 155.6,136.7,128.7,128.3,128.1,67.2,65.5,48.8,46.6,40.5$, 29.0.

Synthesis of methyl 5-(bromomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (431)

A 4 ml vial was charged with methyl 5-(hydroxymethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (385, $24.9 \mathrm{mg}, 0.14 \mathrm{mmol}$), PPh_{3} ($45.6 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and $\operatorname{TBABr}(4.7 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) under nitrogen atmosphere. Anhydrous THF ($1.4 \mathrm{~mL}, 0.1 \mathrm{M}$) and $\mathrm{CBr}_{4}(57.7 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2 \mathrm{eq}$.) were added sequentially in one portion. The resulting mixture was left stirring overnight. The reaction solvent was removed under reduced pressure and the residue loaded directly onto a column. Gradient elution with hexanes : EtOAc $100: 10 \rightarrow 100: 25$ afforded methyl 5-(bromomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (431, $25.7 \mathrm{mg}, 0.11 \mathrm{mmol}, 76 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.52(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 5 \mathrm{H}), 3.10-3.01(\mathrm{~m}$, 2H), $2.67(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of methyl 5-(iodomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (432)

A 4 ml vial was charged with methyl 5-(hydroxymethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (385, $17.1 \mathrm{mg}, 0.10 \mathrm{mmol}$), PPh_{3} ($31.5 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$), imidazole ($9.2 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.4 \mathrm{eq}$.) and anhydrous toluene ($1.0 \mathrm{~mL}, 0.1 \mathrm{M}$) under nitrogen atmosphere. The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath and I_{2} ($30.5 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added in one portion. The ice bath was removed, and the resulting mixture was left stirring overnight. The reaction solvent was removed under reduced pressure and the residue loaded directly onto a column. Gradient elution with hexanes : EtOAc 100:10 \rightarrow 100:30 afforded methyl 5-(iodomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate ($432,24.7 \mathrm{mg}, 0.09 \mathrm{mmol}, 88 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.48(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 3.38$ $(\mathrm{m}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 156.2,155.9,58.1,57.6,52.3,50.3,49.4,36.7,36.3,35.9,34.2$, 7.0).

Synthesis of ethyl 5-(iodomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (434)

A 4 ml vial was charged with ethyl 5-(hydroxymethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (433, $37.4 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{PPh}_{3}(63.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.), imidazole ($15.8 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and anhydrous toluene ($2.0 \mathrm{~mL}, 0.1 \mathrm{M}$) under nitrogen atmosphere. The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath and $\mathrm{I}_{2}(66.9 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added in one portion. The ice bath was removed, and the resulting mixture was left stirring overnight. The reaction mixture was partitioned between DCM (20 mL) and 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. The organic phase was separated, and the aqueous phase was extracted two more times with DCM. Combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The residue was loaded onto a column. Gradient elution with hexanes : EtOAc 100:15 \rightarrow 100: 20 afforded ethyl 5-(iodomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (434, $32.3 \mathrm{mg}, 0.11 \mathrm{mmol}, 54 \%$ and ethyl 2,3bis(iodomethyl)cyclobutyl)carbamate ($435 ; 12.6 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \%$) as a clear colorless oils.

Ethyl 5-(iodomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (434)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~m}$, $1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{bs}$, $3 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 155.9,155.6,61.0,58.0,57.5,50.2,49.3,36.7,36.2,35.9,34.2$, 14.9, 7.1 .
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.80(\mathrm{bs}, 1 \mathrm{H}), 4.22-4.04(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{dd}, \mathrm{J}=9.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.05$ $(\mathrm{m}, 4 \mathrm{H}), 2.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{ddt}, J=12.5,7.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.0,61.3,46.1,44.9,36.7,35.7,14.8,6.4,-1.6$.
MS (ESI-Q) calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{I}_{2}+\mathrm{H}^{+}$: 424, found: 424.

Synthesis of methyl 5-(piperidin-1-ylmethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (436) from bromide (431)

A 4 mL vial was charged with methyl 5-(bromomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (431, $25.7 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , \mathrm{MeCN}$ ($1.1 \mathrm{~mL}, 0.1 \mathrm{M}$), $\mathrm{NaI}(33.3 \mathrm{mg}, 0.22 \mathrm{mmol}, 2.0 \mathrm{eq}),. \mathrm{K}_{2} \mathrm{CO}_{3}(60.8$ $\mathrm{mg}, 0.44 \mathrm{mmol}, 4.0 \mathrm{eq}$.) and piperidine ($34 \mu \mathrm{~L}, 0.862 \mathrm{~g} / \mathrm{mL}, 0.34 \mathrm{mmol}, 3.1 \mathrm{eq}$.) The resulting suspension was heated to $80{ }^{\circ} \mathrm{C}$ in a heating block for 1 h when LCMS analysis indicated full consumption of starting material. The reaction mixture was cooled to room temperature, volatiles were removed under reduced pressure and the residue was loaded onto a column. Gradient elution with DCM : MeOH $100: 2 \rightarrow 100: 8$ afforded methyl 5-(piperidin-1-ylmethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (436, $21.6 \mathrm{mg}, 0.09 \mathrm{mmol}, 83 \%$) as a slightly yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.51(\mathrm{bs}, 1 \mathrm{H}), 4.28-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.43(\mathrm{~m}$, 1H), $3.35(\mathrm{~m}, 1 \mathrm{H}), 3.24-2.92(\mathrm{~m}, 6 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 5 \mathrm{H}), 1.67(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 156.2,60.4,59.7,58.7,53.6,52.4,51.3,50.2,35.3,35.0,33.9$, 29.4, 22.9, 22.1.

MS (ESI-Q) calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}^{+}: 239$, found: 239.

Synthesis of methyl 5-(piperidin-1-ylmethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (436) from iodide (432)

A 4 mL vial was charged with methyl 5-(iodomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (432, $22.0 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathrm{MeCN}(0.8 \mathrm{~mL}, 0.1 \mathrm{M}), \mathrm{K}_{2} \mathrm{CO}_{3}(43.2 \mathrm{mg}, 0.31 \mathrm{mmol}, 4.0 \mathrm{eq}$.$) and$ piperidine ($24 \mu \mathrm{~L}, 0.862 \mathrm{~g} / \mathrm{mL}, 0.24 \mathrm{mmol}, 3.1 \mathrm{eq}$.) The resulting suspension was left stirring at room temperature and 1400 RPM overnight. Volatiles were removed under reduced pressure and the residue loaded onto a column. Gradient elution with DCM : MeOH 100:2 $\rightarrow 100: 10$ afforded methyl 5-(piperidin-1-ylmethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (436, $10.4 \mathrm{mg}, 0.04 \mathrm{mmol}, 56 \%$) as a slightly yellow oil. Its spectral data matches the product obtained from bromide (431).

Synthesis of 1-(2-azabicyclo[2.2.0]hexan-2-yl)-2,2-dimethylpropane-1-thione (437)

A 4 mL vial was charged with tert-butyl 2-azabicyclo[2.2.0]hexane-2-carboxylate (362, $59.3 \mathrm{mg}, 0.324$ mmol) and DCM ($1.5 \mathrm{~mL}, 0.2 \mathrm{M}$). The resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and purged with argon for 1 minute. TFA ($300 \mu \mathrm{~L}, 1.490 \mathrm{~g} / \mathrm{mL}, 3.92 \mathrm{mmol}, 12 \mathrm{eq}$.) was added via syringe in one portion. The cooling bath was removed, and the reaction mixture stirred for 15 minutes at room temperature. Volatiles were removed under reduced pressure. Excess TFA was azeotropically removed with MeOH and DCM . Crude residue was redissolved in $\operatorname{DCM}(1.5 \mathrm{~mL})$ and the resulting solution was cooled to $0^{\circ} \mathrm{C} \ln$ an ice bath. $\mathrm{Et}_{3} \mathrm{~N}(150 \mu \mathrm{~L}, 0.726 \mathrm{~g} / \mathrm{mL}, 1.08 \mathrm{mmol}, 3.3$ eq.) and pivaloyl chloride were added sequentially via syringe in one portion. The cooling bath was removed, and the reaction mixture was left stirring overnight at room temperature. Volatiles were removed and the residue loaded onto a column. Gradient elution with hexanes : EtOAc =100:50 \rightarrow 100:200 afforded 1-(2-azabicyclo[2.2.0]hexan-2-yl)-2,2-dimethylpropan-1-one (438, $35.1 \mathrm{mg}, 0.210 \mathrm{mmol}, 65 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 4.78(\mathrm{~m}, 1 \mathrm{H}), 4.67-3.99(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.05(\mathrm{~m}$, $4 \mathrm{H}), 1.18$ (m, 9H).
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}, rotamers) $\delta 178.1,177.3,66.4,63.9,62.4,57.4,38.6,38.5,31.2,31.0,30.9$, 28.8, 27.7, 27.1, 26.4, 25.0.
$\mathbf{R}_{\mathbf{f}}=0.50$ (hexanes : $\mathrm{EtOAc}=1: 2 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2959 (m), 2875 (w), 1623(s), 1481 (w), 1410 (s), 1363 (w), 1179 (w).
HRMS (ESI-TOF) calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}^{+}: 168.1388$, found: 168.1393.

A 4 mL vial was charged with 1-(2-azabicyclo[2.2.0]hexan-2-yl)-2,2-dimethylpropan-1-one (438, 28.8 $\mathrm{mg}, 0.172 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , pyridine (600 \mu \mathrm{~L}$) and $\mathrm{P}_{2} \mathrm{~S}_{5}(50.1 \mathrm{mg}, 0.225 \mathrm{mmol}, 1.3 \mathrm{eq}$.$) . The resulting$ mixture was stirred for 6 hours at $75{ }^{\circ} \mathrm{C}$ and then partitioned between aqueous $\mathrm{HCl}(1 \mathrm{M})$ and DCM $(20 \mathrm{~mL})$. The organic phase was separated, and the aqueous phase extracted two more times with DCM (20 mL). Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc =100:5 \rightarrow 100:15 afforded 1-(2-azabicyclo[2.2.0]hexan-2-yl)-2,2-dimethylpropane-1-thione (437, $26.6 \mathrm{mg}, 0.145 \mathrm{mmol}$, $84 \%)$ as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 5.02(\mathrm{~b}, 1 \mathrm{H}), 4.86-4.29(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.07(\mathrm{~m}$, 4H), 1.33 ($\mathrm{m}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl 3 , rotamers) $\delta 209.5,209.1,69.7,69.4,66.7,64.1,43.5,43.1,30.5,30.2,29.6$, 29.6, 29.5, 27.07, 25.9, 24.2.
$\mathbf{R}_{\mathrm{f}}=0.51$ (hexanes: EtOAc = $5: 1$; UV)
IR (ATR-FTIR, cm ${ }^{-1}$): 2965 (m), 2939 (m), 2865 (w), 1459 (s$), 1446$ (s$), 1429$ (s$), 1362$ (w), 1253 (m), 1005 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NS}+\mathrm{H}^{+}: 184.1160$, found: 184.1162 .

Synthesis of 2,2-dimethyl-1-(1-methyl-2-azabicyclo[2.2.0]hexan-2-yl)propane-1-thione (439) and 2,2-dimethyl-1-(3-methyl-2-azabicyclo[2.2.0]hexan-2-yl)propane-1-thione (440)

Following the reported procedure ${ }^{125}, 4 \mathrm{~mL}$ vial was charged with 1-(2-azabicyclo[2.2.0]hexan-2-yl)-2,2-dimethylpropane-1-thione ($437,9.7 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and anhydrous THF ($300 \mu \mathrm{~L}, 0.14 \mathrm{M}$) under nitrogen atmosphere. The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ in an acetone/dry ice bath. TMEDA ($20 \mu \mathrm{~L}, 0.775 \mathrm{~g} / \mathrm{mL}, 0.13 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and sec-BuLi (1.3 M in cyclohexane, $0.07 \mathrm{mmol}, 1.2$ eq.) were added sequentially via syringe. The resulting mixture was stirred for 30 minutes at the same temperature before $\mathrm{Mel}(10 \mu \mathrm{~L}, 2.270 \mathrm{~g} / \mathrm{mL}, 0.16 \mathrm{mmol}, 3.0 \mathrm{eq}$.$) was added in one portion. The cooling$ bath was removed, and the resulting mixture was left stirring for 30 minutes at room temperature before it was quenched with 1 M aqueous HCl . The aqueous phase was extracted with EtOAc (3×20 mL). Combined organic phases were washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was loaded onto a column. Gradient elution with hexanes : EtOAc 100 $: 2 \rightarrow 100: 8$ afforded a $1: 1$ mixture of 2,2-dimethyl-1-(1-methyl-2-azabicyclo[2.2.0]hexan-2-yl)propane-1-thione (439) and 2,2-dimethyl-1-(3-methyl-2-azabicyclo[2.2.0]hexan-2-yl)propane-1thione (440) ($3.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 34 \%$ combined yield) as a colorless film.

2,2-dimethyl-1-(1-methyl-2-azabicyclo[2.2.0]hexan-2-yl)propane-1-thione (439)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.85(\mathrm{dd}, J=10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04$ (ddd, J $=14.0,9.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 1 \mathrm{H})$, 1.79 ($\mathrm{s}, 3 \mathrm{H}$), 1.35 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 209.2,79.1,66.4,43.5,34.0,30.1,29.5,23.6,20.6$.
MS (ESI-Q) calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NS}+\mathrm{H}^{+}$: 198, found: 198.

2,2-dimethyl-1-(3-methyl-2-azabicyclo[2.2.0]hexan-2-yl)propane-1-thione (440)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 5.07(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{qd}, \mathrm{J}=6.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{tt}, J=13.0,6.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{tt}, \mathrm{J}=13.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~d}, \mathrm{~J}=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 211.0,72.9,68.5,44.4,36.5,31.0,30.8,23.6,17.2$.
MS (ESI-Q) calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NS}+\mathrm{H}^{+}$: 198, found: 198.

General procedure for directed lithiation / electrophile trapping

A 4 mL vial was charged with 1-(2-azabicyclo[2.2.0]hexan-2-yl)-2,2-dimethylpropane-1-thione (437, $18.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ eq.) and anhydrous THF ($600 \mu \mathrm{~L}, 0.14 \mathrm{M}$) under nitrogen atmosphere. The resulting solution was cooled to the specified temperature. TMEDA (2.7-5.4 eq.) and sec-BuLi (1.3 M in cyclohexane, 1.3-2.6 eq.) were added sequentially via syringe. The resulting mixture was stirred for the specified amount of time before the electrophile (3.1-6.1 eq.) was added in one portion. The resulting mixture was left stirring for the specified amount of time at the specified temperature before it was quenched with 10% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). Combined organic phases were washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was dissolved in deuterated chloroform. Reaction yield was determined by performing ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture in the presence of trichloroethylene as an internal standard.

Following the general procedure for directed lithiation / electrophile trapping (0.1 mmol scale, Mander's reagent), 441 was isolated by flash column chromatography (gradient elution with hexanes : $\mathrm{Et}_{2} \mathrm{O}=$ $100: 50 \rightarrow 100: 100$) as a colorless film ($4.3 \mathrm{mg}, 18 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.97-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{td}, J=12.8$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 2.65-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{tt}, J=12.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{q}, J=10.8,10.1 \mathrm{~Hz}$, 1H), 1.38 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 209.8,168.3,75.2,66.1,52.5,42.9,32.8,29.5,26.0,23.9$.
$\mathbf{R}_{\mathrm{f}}=0.75$ (hexanes: EtOAc = $3: 2 ; \mathrm{KMnO}_{4}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2950 (m), 1737 (s), 1425 (s), 1395 (w), 1364 (w), 1317 (w), 1252 (w), 1227 (w), 1196 (w), 1181 (w), 1141 (w), 1113 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}+\mathrm{H}^{+}: \mathbf{2 5 2 . 1 2 1 5}$, found: 242.1215 .

Synthesis of thioridazine isostere (446)

To stirred solution of methyl 3-(2-hydroxyethyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (294, $0.283 \mathrm{~g}, 1.54 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and PIDA ($0.746 \mathrm{~g}, 2.32 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in DCM ($7.7 \mathrm{~mL}, 0.2 \mathrm{M}$) at room temperature was added hydrazine hydrate ($450 \mu \mathrm{~L}, 9.18 \mathrm{mmol}, 1.021 \mathrm{~g} / \mathrm{mL}, 6.0 \mathrm{eq}$.$) in one portion.$ The reaction mixture was stirred at room temperature overnight. 50 mL of saturated aqueous NaHCO_{3} was added and organic phase was separated. The aqueous phase was extracted two more times with

20 mL of DCM. Combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified via flash column chromatography. Gradient elution with hexanes : EtOAc $=100: 50 \rightarrow 100: 150$ afforded methyl 3-(2-hydroxyethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate ($0.241 \mathrm{~g}, 1.30 \mathrm{mmol}, 84 \%$ yield) as a slightly yellow clear oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 4.61$ (ddd, $J=8.8,7.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.50(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ $-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.88(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) δ 158.7, 64.13, 62.59, 60.37, 52.44, 35.61, 34.72, 29.63, 19.21.
$\mathbf{R}_{\mathrm{f}}=0.38$ (hexanes : $\mathrm{EtOAc}=1: 2 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 3434 (bs), 2953 (m), 2878 (w), 1683 (s), 1456 (s), 1384 (s), 1195 (w), 1144 (w), 1100 (w), 1608 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}+\mathrm{Na}^{\dagger}: 208.0944$, found: 208.0944.

A 4 mL vial was charged with methyl 3-(2-hydroxyethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate ($40.0 \mathrm{mg}, 0.216 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL}, 0.1 \mathrm{M}$) and thionyl chloride ($50 \mu \mathrm{~L}, 0.69 \mathrm{mmol}, 3.2 \mathrm{eq}$.). The resulting mixture was heated to $65{ }^{\circ} \mathrm{C}$ for 30 min in a heating block. Afterwards, the reaction mixture was concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 5 \rightarrow 100: 15$ afforded methyl 3-(2-chloroethyl)-2-azabicyclo[2.2.0]hexane-2carboxylate ($443,28.0 \mathrm{mg}, 0.137 \mathrm{mmol}, 64 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 4.59(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 5 \mathrm{H}), 3.00(\mathrm{dp}, \mathrm{J}=$ $7.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.11(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) δ 157.0, 63.3, 62.1, 52.0, 41.8, 35.3, 33.0, 29.5, 19.1.
$\mathbf{R}_{\mathrm{f}}=0.56$ (hexanes : $\mathrm{EtOAc}=3: 1 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 2987 (w), 2954 (w$), 1703(\mathrm{~s}), 1449(\mathrm{~m}), 1375(\mathrm{~m}), 1304(\mathrm{~m}), 1194(\mathrm{w}), 1137(\mathrm{w})$, 1100 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{Cl}+\mathrm{H}^{+}: 204.0786$, found: 204.0788
HRMS (ESI-TOF) calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{Cl}+\mathrm{Na}^{+}: \mathbf{2 2 6 . 0 6 0 5}$, found: 226.0602

A 4 mL vial was charged with 2-(methylthio)-10H-phenothiazine ($444,16.9 \mathrm{mg}, 0.069 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and sodium amide ($3.3 \mathrm{mg}, 0.085 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in an argon filled glovebox. The vial was taken outside the glovebox and anhydrous toluene (0.3 mL) was added. The resulting suspension was stirred at 110 ${ }^{\circ} \mathrm{C}$ for 2 hours under nitrogen atmosphere. Toluene solution (0.3 mL) of methyl 3 -(2-chloroethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate ($443,14.0 \mathrm{mg}, 0.069 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added via syringe and the resulting mixture was continued stirring at the same temperature for 3 h . The reaction was cooled to room temperature, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure, and loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 3 \rightarrow 100: 25$ afforded methyl 3-(2-(2-(methylthio)-10H-phenothiazin-10-yl)ethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (445, 24.3 mg , $0.060 \mathrm{mmol}, 86 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.20-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~m}, 1 \mathrm{H}), 6.82$ $(\mathrm{m}, 2 \mathrm{H}), 4.57(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{tt}, J=7.7,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.58-2.34(\mathrm{~m}, 6 \mathrm{H}), 2.17-2.01(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, rotamers) $\delta 157.2,145.8,145.1,137.7,127.7,127.6,127.4,125.63,122.8$, $121.0,115.9,114.7,64.3,62.3,52.0,44.5,35.7,29.5,27.5,19.2,16.5$.
$\mathbf{R}_{\mathrm{f}}=0.75$ (hexanes : EtOAc = $1: 1 ; \mathrm{KMnO}_{4}$)
IR (KBr discs, cm^{-1}): 2982 (w), 2950 (w), 2864 (w), 1698 (s), 1566 (w), 1455 (s), 1376 (m), 1143 (m), 1112 (m), 802 (w), 732 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}+\mathrm{Na}^{+}$: 435.1171 , found: 435.1171.

A 4 mL vial was charged with methyl (2-(2-(methylthio)-10H-phenothiazin-10-yl)ethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate ($445,59.2 \mathrm{mg}, 0.143 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) . The vial was evacuated$ and refilled with nitrogen 3 times. Anhydrous THF ($1.4 \mathrm{~mL}, 0.1 \mathrm{M}$) was added, and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. LAH solution in THF ($250 \mu \mathrm{~L}, 2.4 \mathrm{M}$ in THF, 4.2 eq.) was added and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 3 h . Excess LAH was quenched at $0^{\circ} \mathrm{C}$ with saturated Rochelle's salt solution. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{EtOAc}(20 \mathrm{~mL}$ each). Combined organic phases were washed with brine, dried over MgSO_{4}, concentrated under reduced pressure, and loaded onto a column. Gradient elution with DCM : $\mathrm{MeOH}=100: 2 \rightarrow 100: 10$ afforded 10-(2-(2-methyl-2-azabicyclo[2.2.0]hexan-3-yl)ethyl)-2-(methylthio)-10H-phenothiazine $(446,30.0 \mathrm{mg}, 0.081 \mathrm{mmol}, 58 \%)$ as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-$ $6.78(\mathrm{~m}, 2 \mathrm{H}), 4.08-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{bs}, 1 \mathrm{H}), 3.02-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.43-$ $2.29(\mathrm{~m}, 8 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}{ }^{1}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.6,144.9,138.0,127.7,127.6,127.6,125.7,123.0,122.5,121.1,116.1$, $114.7,69.8,68.1,43.8,43.6,34.8,29.0,26.9,19.9,16.5$.
$\mathbf{R}_{\mathbf{f}}=0.59\left(\mathrm{DCM}: \mathrm{MeOH}=10: 1 ; \mathrm{KMnO}_{4}\right)$
IR (KBr discs, cm ${ }^{-1}$): 2924 (m), 2850 (w), 2749 (w), 1566 (m), 1458 (s), 1404 (w), 1250 (m), 750 (m), 731 (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{2}+\mathrm{H}^{+}: 369.1454$, found: 369.1451 .

Synthesis of muscarinic acetylcholine receptor agonist isostere (449)

A 4 mL vial was charged with ethyl 5-(iodomethyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (451, 37.4 $\mathrm{mg}, 0.13 \mathrm{mmol}, 1.2 \mathrm{eq}$.), $\mathrm{MeCN}(1.1 \mathrm{~mL}, 0.1 \mathrm{M}), \mathrm{K}_{2} \mathrm{CO}_{3}(60.8 \mathrm{mg}, 0.44 \mathrm{mmol}, 4.1 \mathrm{eq}$.) and 1-(piperidin4 -yl)indolin-2-one ${ }^{145}\left(448,23.0 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0 \mathrm{eq}\right.$.). The resulting suspension was heated to $80^{\circ} \mathrm{C}$ in a heating block overnight. After cooling to room temperature, the reaction solvent was removed under reduced pressure and the residue loaded onto a column. Gradient elution with $\mathrm{DCM}: \mathrm{MeOH}$ $100: 2 \rightarrow 100: 6$ afforded ethyl 5-((4-(2-oxoindolin-1-yl)piperidin-1-yl)methyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (449, $13.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 34 \%$) as a slightly yellow film.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}$, $2 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.06-2.80(\mathrm{~m}, 5 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.36$ $(\mathrm{m}, 2 \mathrm{H}), 2.21-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 175.0,156.1,155.7,143.9,127.7,125.0,124.7,122.0,110.4$, $60.9,60.7,60.2,59.4,53.9,53.0,51.4,50.4,50.0,36.0,34.6,34.3,33.6,31.7,31.6,28.2,28.1,15.0$.
$\mathbf{R}_{\mathbf{f}}=0.66\left(\mathrm{DCM}: \mathrm{MeOH}=10: 1 ; \mathrm{KMnO}_{4}\right)$
IR (ATR-FTIR, cm ${ }^{-1}$): 2930 (m), 1703 (s), 1612 (w), 1484 (w), 1466 (s), 1346 (m), 1233 (w), 1121 (w), 750 (w).

MS (ESI-Q) calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}^{+}: 384$, found: 384 .

Synthesis of Moperone isostere (452)

A 4 mL vial was charged with benzyl 5-hydroxy-5-(p-tolyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate $(406,41.7 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathrm{MeOH}(2.5 \mathrm{~mL}, 0.05 \mathrm{M}$) and palladium on carbon ($13.7 \mathrm{mg}, 10 \%$ $\mathrm{w} / \mathrm{w}, 0.13 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The resulting suspension was purged with hydrogen for 2 minutes and left stirring under hydrogen atmosphere (balloon) for 1 hour. The reaction mixture was filtered through a PTFE filter and solvent was removed under reduced pressure. The crude amine 454 was redissolved in $\mathrm{MeOH}(0.7 \mathrm{~mL})$ and 3-(2-(4-fluorophenyl)-1,3-dioxolan-2-yl)propanal ${ }^{128}$ ($455,34.7 \mathrm{mg}, 0.16 \mathrm{mmol}$, 1.2 eq.) and $\mathrm{NaBH}_{3} \mathrm{CN}(24.2 \mathrm{mg}, 0.39 \mathrm{mmol}, 3.0 \mathrm{eq}$.) were added sequentially in one portion. The resulting mixture was left stirring for 2 days. The reaction solvent was removed, and the residue was loaded onto a column. Gradient elution with DCM : MeOH 100:4 \rightarrow 100: 10 afforded 2-(3-(2-(4-fluorophenyl)-1,3-dioxolan-2-yl)propyl)-5-(p-tolyl)-2-azabicyclo[2.2.0]hexan-5-ol (456, $35.6 \mathrm{mg}, 0.09$ $\mathrm{mmol}, 70 \%$ over 2 steps) as a white foam.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{dd}, \mathrm{J}=8.6,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.00(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.81-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{t}, \mathrm{J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.99$ $(\mathrm{m}, 2 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dt}, J=10.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.05$ (ddd, J=15.6, 6.7, 2.4 Hz, 1H), 2.31 (s, 3H), $1.92(\mathrm{td}, J=7.2,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{dq}, \mathrm{J}=15.2,6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 0.52 ($\mathrm{m}, 1 \mathrm{H}$).
${ }^{13}{ }^{2}$ NMR (151 MHz, CDCl ${ }_{3}$) $\delta 162.7(\mathrm{~d}, \mathrm{~J}=246.4 \mathrm{~Hz}), 141.9,137.9,137.8(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 129.6,127.6$ (d, $J=8.2 \mathrm{~Hz}), 124.6,115.3(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 109.4,73.0,64.7,60.2,54.2,52.5,42.7,39.7,36.7,21.1,18.6$.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.0(\mathrm{tt}, J=8.5,5.4 \mathrm{~Hz})$.
$\mathbf{R}_{\mathbf{f}}=0.35\left(\mathrm{DCM}: \mathrm{MeOH}=20: 1 ; \mathrm{KMnO}_{4}\right)$
IR (ATR-FTIR, cm ${ }^{-1}$): 3426 (bs), 2957 (w), 2892 (w), 2335 (s), 2172 (m), 1605 (m), 1507 (s), 1220 (s), 1121 (m), 840 (m), 818 (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~F}+\mathrm{H}^{+}: 398.2131$, found: 398.2128 .

A 4 mL vial was charged with 2-(3-(2-(4-fluorophenyl)-1,3-dioxolan-2-yl)propyl)-5-(p-tolyl)-2-azabicyclo[2.2.0]hexan-5-ol ($456,35.6 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , THF (1.2 \mathrm{~mL}$) and $1 \mathrm{M} \mathrm{HCl}(0.6 \mathrm{~mL})$. The resulting mixture was left stirring overnight at room temperature. After LCMS analysis of the crude reaction mixture indicated full consumption of starting material, the reaction mixture was partitioned between $1 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$ and $\mathrm{DCM}: \mathrm{MeOH}=5: 1$ mixture. The organic phase was separated, and the aqueous phase extracted 4 more times with the same mixture of solvents. Combined organic extracts were dried over MgSO_{4}, concentrated under reduced pressure, and loaded onto a column. Isocratic elution with DCM : MeOH $100: 10$ (+1\% saturated aqueous NH_{3}) afforded 1-(4-fluorophenyl)-4-(5-hydroxy-5-(p-tolyl)-2-azabicyclo[2.2.0]hexan-2-yl)butan-1-one (452, $19.2 \mathrm{mg}, 0.05 \mathrm{mmol}, 61 \%$) as a white amorphous solid.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{dd}, J=8.9,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.12(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{dd}, J=8.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{td}, J=5.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=8.4,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.30-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{bs}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{dd}, J=13.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-$ $2.57(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{p}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.5,165.8(\mathrm{~d}, J=254.4 \mathrm{~Hz}), 144.0,137.0,133.6(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 130.8(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}), 129.3,124.7,115.8(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz}), 74.1,56.8,53.2,52.4,43.6,39.4,36.3,22.0,21.1$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-105.5$ (ddd, $J=13.8,8.3,5.5 \mathrm{~Hz}$).
$\mathbf{R}_{\mathrm{f}}=0.32\left(\mathrm{DCM}: \mathrm{MeOH}=20: 1+1 \%\right.$ saturated aqueous $\left.\mathrm{NH}_{3} ; \mathrm{UV}\right)$
$\mathbf{R}_{\mathbf{f}}=0.69$ (DCM : $\mathrm{MeOH}=10: 1+1 \%$ saturated aqueous $\mathrm{NH}_{3} ; \mathrm{UV}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 3357 (bs), 2939 (m), 1685 (s$), 1598$ (s$), 1506$ (m), 1227 (s), 1210 (s), 835 (m), 818 (m).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~F}+\mathrm{H}^{+}: 354.1896$, found: 354.1871 .

Synthesis of nociceptin receptor ligand isosteres 464 and 466

A 4 mL vial was charged with 5-phenyl-2-azabicyclo[2.2.0]hexan-5-ol (407, $78.4 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ eq.), $\mathrm{MeOH}(2.5 \mathrm{~mL}, 0.1 \mathrm{M}$) and palladium on carbon ($27.0 \mathrm{mg}, 10 \% \mathrm{w} / \mathrm{w}, 0.03 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The resulting suspension was purged with hydrogen for 1 minute and left stirring under hydrogen atmosphere (balloon) overnight. The reaction mixture was filtered through a PTFE filter and solvent was removed under reduced pressure. The crude amine 465 was redissolved in DMF (2.5 mL) and freshly recrystallized bromodiphenylmethane ($68.0 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(38.0 \mathrm{mg}, 0.28$ mmol, 1.1 eq.) were added sequentially in one portion. The resulting mixture was left stirring for 1.5 h. The reaction solvent was removed under high vacuum and the residue was loaded onto a column. Gradient elution with DCM : MeOH 100:2 \rightarrow 100:3(+1\% Et $\mathrm{H}_{3} \mathrm{~N}$) afforded 2-benzhydryl-5-phenyl-2-azabicyclo[2.2.0]hexan-5-ol (464, $26.1 \mathrm{mg}, 0.08 \mathrm{mmol}, 30 \%$ over 2 steps) as orange amorphous solid.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 6 \mathrm{H})$, $7.23-7.16(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=8.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ - 3.26 (m, 1H), $2.95-2.90(m, 1 H), 2.52$ (ddd, $J=13.7,5.4,2.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.8,142.0,141.8,128.7,128.6,128.6,127.9,127.7,127.3,127.3,124.7$, 74.5, 71.9, 56.3, 52.6, 42.8, 40.2.

MS (ESI-Q) calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}+\mathrm{H}^{+}: 342$, found: 342 .

A 4 mL vial was charged with tert-butyl 5-hydroxy-5-phenyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (320, $55.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , DCM (0.8 \mathrm{~mL}$) and TFA ($200 \mu \mathrm{~L}, 1.490 \mathrm{~g} / \mathrm{mL}, 2.6 \mathrm{mmol}, 13.0 \mathrm{eq}$.) The resulting mixture was left stirring at room temperature for 15 minutes. Solvent was removed under reduced pressure. Excess TFA was azeotropically removed with MeCN. The crude ammonium salt 467 was redissolved in $\mathrm{MeCN}(2.0 \mathrm{~mL}$). Freshly recrystallized bromodiphenylmethane (59.3 mg , $0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) and \mathrm{K}_{2} \mathrm{CO}_{3}(99.5 \mathrm{mg}, 0.72 \mathrm{mmol}, 3.6 \mathrm{eq}$.) were added sequentially in one portion. The resulting mixture was left stirring for 1.5 h . The reaction solvent was removed under high vacuum and the residue was loaded onto a column. Gradient elution with DCM : MeOH $100: 2 \rightarrow 100: 5$ afforded 2-benzhydryl-5-phenyl-2-azabicyclo[2.2.0]hexan-5-ol (466, $36.6 \mathrm{mg}, 0.11 \mathrm{mmol}, 54 \%$ over 2 steps) as an orange amorphous solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.14(\mathrm{~m}, 15 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{td}, \mathrm{J}=5.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.59$ $(\mathrm{m}, 1 \mathrm{H}), 3.41-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{dt}, J=7.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=9.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{ddd}, J=$ $13.9,5.9,3.3 \mathrm{~Hz}, 1 \mathrm{H})$.

MS (ESI-Q) calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}+\mathrm{H}^{+}: 342$, found: 342 .

To stirred solution of methyl 5-benzyl-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (267, $0.600 \mathrm{~g}, 2.6$ $\mathrm{mmol}, 1.0$ eq.) and hydrazine hydrate ($510 \mu \mathrm{~L}, 1.021 \mathrm{~g} / \mathrm{mL}, 10.4 \mathrm{mmol}, 1.0$ eq.) in DCM ($2.6 \mathrm{~mL}, 1.0$ M) was added PIDA ($1.270 \mathrm{~g}, 3.9 \mathrm{mmol}, 1.5$ eq. in 13 mL DCM) dropwise via a syringe pump at room temperature over 3 hours. The reaction mixture was stirred at room temperature overnight. 50 mL of saturated aqueous NaHCO_{3} was added and organic phase was separated. The aqueous phase was extracted two more times with 20 mL of DCM. Combined organic phases were dried over MgSO_{4} and concentrated under reduced pressure. ${ }^{1} \mathrm{H}$ NMR analysis indicated that reduction was not complete. The residue was redissolved in $\mathrm{MeOH}(13 \mathrm{~mL}, 0.2 \mathrm{M})$ and PtO_{2} hydrate ($29.5 \mathrm{mg}, 0.13 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was added. The resulting suspension was purged with hydrogen for 1 minute and then left stirring under hydrogen atmosphere (balloon). When LCMS analysis showed complete consumption of starting material, the reaction mixture was filtered through a pad of celite and concentrated under reduced pressure. The crude product was purified via flash column chromatography. Gradient elution with hexanes : EtOAc $=100: 20 \rightarrow 100: 60$ afforded methyl 5-benzyl-2-azabicyclo[2.2.0]hexane-2carboxylate ($0.573 \mathrm{~g}, 2.5 \mathrm{mmol}, 95 \%$ yield) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~m} \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ $(\mathrm{m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 3 \mathrm{H}), 2.98(\mathrm{~m}, 4 \mathrm{H}), 2.66(\mathrm{bs}, 1 \mathrm{H}), 2.17-1.99(\mathrm{~m}, 1 \mathrm{H})$.

MS (ESI-Q) calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}^{+}: 232$, found: 232.

A 4 mL vial was charged with methyl 5-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate ($92.4 \mathrm{mg}, 0.40$ mmol, 1.0 eq.) and THF (2.0 mL). The resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. KOtBu solution ($480 \mu \mathrm{~L}, 1 \mathrm{M}$ in THF, $0.48 \mathrm{mmol}, 1.2$ eq.) was canulated to the substrate solution. After the addition was complete, the ice bath was removed, and the resulting brown solution was stirred at room temperature overnight. The reaction solvent was removed under reduced pressure and the residue loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 10 \rightarrow 100: 30$ afforded tert-butyl 5-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (470, $94.2 \mathrm{mg}, 0.34 \mathrm{mmol}, 86 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 4.41-$ $4.29(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{bs}, 4 \mathrm{H}), 2.71-2.60(\mathrm{bs}, 1 \mathrm{H}), 2.20-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~m}, \mathrm{~J}=14.8 \mathrm{~Hz}$, 9H).

A 4 mL vial was charged with tert-butyl 5-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (470, 14.6 $\mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , DCM (0.4 \mathrm{~mL}$) and TFA ($100 \mu \mathrm{~L}, 1.490 \mathrm{~g} / \mathrm{mL}, 1.3 \mathrm{mmol}, 24 \mathrm{eq}$.) The resulting mixture was left stirring at room temperature for 15 minutes. Solvent was removed under reduced pressure. Excess TFA was azeotropically removed with MeCN. The crude ammonium salt was redissolved in MeCN (0.5 mL). 2-chloro-1-(1H-indol-3-yl)ethan-1-one ${ }^{146}$ ($468,10.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ eq.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 3.7 \mathrm{eq}$.) were added sequentially in one portion. The resulting
mixture was left stirring for 1 h . The reaction solvent was removed under reduced pressure and the residue was loaded onto a column. Gradient elution with DCM : MeOH $100: 5 \rightarrow 100: 15(+1 \%$ saturated aqueous NH_{3}) afforded 2-(5-benzyl-2-azabicyclo[2.2.0]hexan-2-yl)-1-(1H-indol-3-yl)ethan-1one (471, $11.2 \mathrm{mg}, 0.03 \mathrm{mmol}, 64 \%$ over 2 steps) as an orange amorphous solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.67(\mathrm{bs}, 1 \mathrm{H}), 8.12-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.20$ $-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{bs}, 1 \mathrm{H}), 4.11-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H})$, $3.00(\mathrm{bs}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 3 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}{ }^{1}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.4,139.9,136.6,133.1,128.7,128.5,126.2,125.4,123.8,122.9,121.8$, 115.1, 112.4, 63.4, 57.8, 55.0, 36.5, 35.6, 35.4, 28.3.

MS (ESI-Q) calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}^{+}: 331$, found: 331.

KOtBu solution ($1.4 \mathrm{~mL}, 1 \mathrm{M}$ in THF, $1.4 \mathrm{mmol}, 4.7 \mathrm{eq}$.) was canulated to methyl 5-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (422, $68.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0 \mathrm{eq}$.) at $0{ }^{\circ} \mathrm{C}$. After the addition was complete, the ice bath was removed, and the resulting brown solution was stirred at room temperature overnight. The reaction solvent was removed under reduced pressure and the residue was loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 10 \rightarrow 100: 20$ afforded tertbutyl 5-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate ($473,66.3 \mathrm{mg}, 0.24 \mathrm{mmol}, 82 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{tm}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H})$, $4.20(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.85(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{bs}, 9 \mathrm{H})$.

A 4 mL vial was charged with tert-butyl 5-benzyl-2-azabicyclo[2.2.0]hexane-2-carboxylate (473, 66.3 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.0 \mathrm{eq}$.), DCM (1.0 mL) and TFA ($250 \mu \mathrm{~L}, 1.490 \mathrm{~g} / \mathrm{mL}, 3.3 \mathrm{mmol}, 13 \mathrm{eq}$.) The resulting mixture was left stirring at room temperature for 15 minutes. Solvent was removed under reduced pressure. Excess TFA was azeotropically removed with MeCN. The crude ammonium salt was redissolved in MeCN (2.4 mL). 2-chloro-1-(1H-indol-3-yl)ethan-1-one ${ }^{146}$ ($471,49.3 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.0$ eq.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(132.3 \mathrm{mg}, 0.96 \mathrm{mmol}, 4.0 \mathrm{eq}$.) were added sequentially in one portion. The resulting mixture was left stirring for 4 h . The reaction solvent was removed under reduced pressure and the residue was loaded onto a column. Gradient elution with DCM : MeOH $100: 5 \rightarrow 100: 10(+1 \%$ saturated aqueous NH_{3}) afforded 2-(5-benzyl-2-azabicyclo[2.2.0]hexan-2-yl)-1-(1H-indol-3-yl)ethan-1one ($472,40.4 \mathrm{mg}, 0.12 \mathrm{mmol}, 50 \%$ over 2 steps) as an orange amorphous solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.76(\mathrm{bs}, 1 \mathrm{H}), 8.37-8.33(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.33$ $-7.15(\mathrm{~m}, 7 \mathrm{H}), 4.30-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=8.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{dd}, J=8.6,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83-2.65(\mathrm{~m}, 5 \mathrm{H}), 1.92(\mathrm{dt}, \mathrm{J}=12.5,5.6 \mathrm{~Hz}, 1 \mathrm{H})$.

MS (ESI-Q) calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}^{+}: 331$, found: 331.

Synthesis of β-tryptase inhibitor isosteres 476 , iso-476 and 481

A 4 mL vial was charged with tert-butyl 2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($332,90.5 \mathrm{mg}, 0.50$ mmol, 1.0 eq.), DMF ($2.5 \mathrm{~mL}, 0.2 \mathrm{M}$), 2,2,2-trifluoro- N -(3-iodobenzy) acetamide ${ }^{147}$ ($477,246.8 \mathrm{mg}$, $0.75 \mathrm{mmol}, 1.5$ eq.), piperidine ($150 \mu \mathrm{~L}, 0.862 \mathrm{~g} / \mathrm{mL}, 1.5 \mathrm{mmol}, 3.0$ eq.), formic acid ($40 \mu \mathrm{~L}, 1.220 \mathrm{~g} / \mathrm{mL}$, $1.1 \mathrm{mmol}, 2.1 \mathrm{eq}$.$) , \mathrm{Pd}(\mathrm{OAc})_{2}(6.0 \mathrm{mg}, 0.03 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and xantphos ($29.0 \mathrm{mg}, 0.05 \mathrm{mmol}, 10$ mol\%). The resulting mixture was degassed by sparging with argon for 3 minutes and then heated to $50^{\circ} \mathrm{C}$ for 2 h in a heating block. The reaction mixture was cooled to room temperature and the solvent was removed under high vacuum. The residue was loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 20 \rightarrow 100: 80$ afforded a mixture of tert-butyl 5-(3-((2,2,2-trifluoroacetamido)methyl)phenyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (489) and tert-butyl 6-(3-((2,2,2-trifluoroacetamido)methyl)phenyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-478) ($151.0 \mathrm{mg}, 0.39 \mathrm{mmol}, 79 \%$) as a slightly yellow clear oil. Constitutional isomer ratio of the products could not be determined with ${ }^{1} \mathrm{H}$ NMR due to signal overlap.

A 4 mL vial was charged with a mixture of tert-butyl 5-(3-((2,2,2-trifluoroacetamido)methyl)phenyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (478) and tert-butyl 6-(3-((2,2,2-trifluoroacetamido)methyl)phenyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (iso-478) (151.0 mg , $0.39 \mathrm{mmol}, 79 \%)$, DCM (1.6 mL) and TFA ($0.4 \mathrm{~mL}, 1.490 \mathrm{~g} / \mathrm{mL}, 5.2 \mathrm{mmol}, 13 \mathrm{eq}$.). The resulting mixture was stirred for 15 minutes at room temperature. Solvent was removed under reduced pressure. Crude residue was redissolved in DMF (4.0 mL), and the resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Thiophene carboxylic acid $479^{148}(113.2 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.0 \mathrm{eq}$.), HOAt ($67.0 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.3 \mathrm{eq}$.), DIPEA ($260 \mu \mathrm{~L}, 0.742 \mathrm{~g} / \mathrm{mL}, 1.5 \mathrm{mmol}, 3.8 \mathrm{eq}$.) and EDC ($94.3 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.3$ eq.) were added sequentially in one portion. The cooling bath was removed, and the reaction mixture was stirred at room temperature overnight. The reaction mixture was then diluted with EtOAc (50 mL), washed with 1 M aqueous $\mathrm{HCl}(50 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, brine (50 mL) and then dried over MgSO_{4}. Solvent was removed under reduced pressure to yield a crude mixture of amides $\mathbf{4 8 0}$ and iso480, which was used in the next step without further purification.

MS (ESI-Q) calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}+\mathrm{H}^{+}: 545$, found: 545.

A 25 mL round bottom flask was charged with a crude mixture of amides $\mathbf{4 8 0}$ and iso-480, MeOH (3.5 mL) and water (0.7 mL). $\mathrm{K}_{2} \mathrm{CO}_{3}(283.3 \mathrm{mg}$) was added to the resulting mixture in one portion. After stirring for 8 h at room temperature, volatiles were removed under reduced pressure and the residue was directly loaded onto a column. Gradient elution with DCM : $\mathrm{MeOH}=100: 10 \rightarrow 100: 40(+1 \%$
aqueous saturated NH_{3}) afforded a mixture of (5-(3-(aminomethyl)phenyl)-2-azabicyclo[2.2.0]hexan-2-yl)(4-bromo-3-methyl-5-propoxythiophen-2-yl)methanone (476) and (6-(3-(aminomethyl)phenyl)-2-azabicyclo[2.2.0]hexan-2-yl)(4-bromo-3-methyl-5-propoxythiophen-2-yl)methanone (iso-476) ($135.7 \mathrm{mg}, 0.30 \mathrm{mmol}, 77 \%$ yield over 3 steps) as a slightly yellow viscous oil. Constitutional isomer ratio of the products could not be determined with ${ }^{1} \mathrm{H}$ NMR due to signal overlap.

MS (ESI-Q) calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}^{+}$: 331, found: 331 .

Synthesis of 2,2,2-trifluoro- N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)acetamide (483)

Following the reported procedure, a 4 mL vial was charged with 2,2,2-trifluoro- N -(3iodobenzyl)acetamide ${ }^{147}$ ($\left.477,131.6 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.0 \mathrm{eq}.\right)$, KOAc ($\left.96.4 \mathrm{mg}, 0.982 \mathrm{mmol}, 2-5 \mathrm{eq}.\right)$, $\mathrm{B}_{2} \mathrm{Pin}_{2}$ ($111.6 \mathrm{mg}, 0.440 \mathrm{mmol}, 1.1 \mathrm{eq}$.), $\mathrm{PdCl}_{2}(\mathrm{dppf})(13.6 \mathrm{mg}, 0.019 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and anhydrous DMSO ($2.4 \mathrm{~mL}, 0.17 \mathrm{M}$). The resulting mixture was heated to $80{ }^{\circ} \mathrm{C}$ overnight, cooled to room temperature and partitioned between $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and water (50 mL). The organic phase was separated, washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by RPLC (gradient elution, $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN}=65: 35 \rightarrow 0: 100$) to give 2,2,2-trifluoro-N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)acetamide (483, $116.8 \mathrm{mg}, 0.355 \mathrm{mmol}$, $89 \%)$ as a colorless clear oil. Its spectral data matches previously reported values. ${ }^{149}$

A 4 mL vial was charged with methyl 5-bromo-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (265, 87.2 $\mathrm{mg}, 0.40 \mathrm{mmol}, 1.0$ eq.) and THF ($1.6 \mathrm{~mL}, 0.2 \mathrm{M}$). The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. KOtBu solution ($480 \mu \mathrm{~L}, 1 \mathrm{M}$ in THF, $0.48 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was canulated to the substrate solution. After the addition was complete, the ice bath was removed, and the resulting brown solution was stirred at room temperature overnight. The reaction solvent was removed under reduced pressure and the residue was loaded onto a column. Gradient elution with hexanes : $\mathrm{Et}_{2} \mathrm{O}=100: 10 \rightarrow 100: 40$ afforded tert-butyl 5-bromo-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate ($482,72.4 \mathrm{mg}, 0.28 \mathrm{mmol}$, 70%) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 6.75-6.45(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.43(\mathrm{~m}$, 2H), 1.44 ($\mathrm{s}, 9 \mathrm{H}$).

A 4 mL vial was charged with tert-butyl 5-bromo-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (482, $72.4 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.0$ eq.), 2,2,2-trifluoro- N -(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzyl)acetamide ($483,117.1 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.3 \mathrm{eq}$.) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(16.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ under nitrogen atmosphere. Anhydrous THF ($0.9 \mathrm{~mL}, 0.2 \mathrm{M}$) was added, and the resulting solution was warmed up to $45^{\circ} \mathrm{C}$ in a heating block. TMSOK ($250 \mu \mathrm{~L}, 1 \mathrm{M}$ solution in THF, 1.0 eq.) was added and the resulting mixture was stirred for 1.5 h . Afterwards, a second portion of TMSOK ($140 \mu \mathrm{~L}, 1 \mathrm{M}$ solution in THF, 0.5 eq.; 1.5 eq. in total) was added and the resulting mixture was stirred for an additional 1.5 h at the same temperature. The reaction mixture was cooled to room temperature, solvent was removed under reduced pressure, and the residue was purified via flash column chromatography. Gradient elution with hexanes : EtOAc $=100: 20 \rightarrow 100: 80$ afforded tert-butyl 5-(3-((2,2,2-trifluoroacetamido)methyl)phenyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (484, 84.9 $\mathrm{mg}, 0.22 \mathrm{mmol}, 80 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.41-7.24(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{bs}, 1 \mathrm{H}), 6.71(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~m}, 1 \mathrm{H})$, $4.53(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{bs}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 9 \mathrm{H})$.

Following the reported procedure ${ }^{144}$, a 4 mL vial was charged with tert-butyl 5-(3-((2,2,2-trifluoroacetamido)methyl)phenyl)-2-azabicyclo[2.2.0]hex-5-ene-2-carboxylate (484, $84.9 \mathrm{mg}, 0.22$ $\mathrm{mmol}, 1.0$ eq.), DCM (0.4 mL) and hydrazine hydrate ($80 \mu \mathrm{~L}, 1.029 \mathrm{~g} / \mathrm{mL}, 12.0 \mathrm{eq}$.). PIDA (193.2 mg , $0.60 \mathrm{mmol}, 2.7$ eq. in 2 mL DCM) was added dropwise over 3 hours using a syringe pump. Afterwards, the reaction mixture was left stirring overnight, quenched with saturated aqueous NaHCO_{3} and extracted in DCM ($3 \times 20 \mathrm{~mL}$). Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure and loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 40 \rightarrow 100$: 80 afforded tert-butyl 5-(3-((2,2,2-trifluoroacetamido)methyl)phenyl)-2-azabicyclo[2.2.0]hexane-2carboxylate (485, $59.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 69 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.36(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.37(\mathrm{~m}$, $3 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{bs}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}$, $9 \mathrm{H})$.

A 4 mL vial was charged with tert-butyl 5-(3-((2,2,2-trifluoroacetamido)methyl)phenyl)-2-azabicyclo[2.2.0]hexane-2-carboxylate ($485,59.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0 \mathrm{eq}$), DCM (0.6 mL) and TFA (0.15 $\mathrm{mL}, 1.490 \mathrm{~g} / \mathrm{mL}, 2.0 \mathrm{mmol}, 13 \mathrm{eq}$.$) . The resulting mixture was stirred for 15$ minutes at room temperature. Solvent was removed under reduced pressure. Crude residue was redissolved in DMF $(1.5 \mathrm{~mL})$, and the resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Acid $479(44.2 \mathrm{mg}, 0.16 \mathrm{mmol}$, 1.0 eq.), HOAt ($26.2 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.3$ eq.), DIPEA ($100 \mu \mathrm{~L}, 0.742 \mathrm{~g} / \mathrm{mL}, 0.57 \mathrm{mmol}, 3.7$ eq.) and EDC ($36.8 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.3 \mathrm{eq}$.) were added sequentially in one portion. The cooling bath was removed, and the reaction mixture was stirred at room temperature overnight. The reaction mixture was then diluted with EtOAc (50 mL), washed with 1 M aqueous $\mathrm{HCl}(50 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(50$ mL) and brine (50 mL), dried over MgSO_{4}. Solvent was removed to yield crude amide 486 which was used in the next step without further purification.

MS (ESI-Q) calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}+\mathrm{H}^{+}$: 545 , found: 545.

A 4 mL vial was charged with crude amide $486, \mathrm{MeOH}(1250 \mu \mathrm{~L})$ and water ($250 \mu \mathrm{~L}$). $\mathrm{K}_{2} \mathrm{CO}_{3}(103.7 \mathrm{mg})$ was added to the resulting mixture in one portion. After stirring for 9 h at room temperature, solvent
was removed under reduced pressure and the residue was directly loaded onto a column. Gradient elution with $\mathrm{DCM}: \mathrm{MeOH}=100: 5 \rightarrow 100: 20\left(+1 \%\right.$ aqueous saturated NH_{3}) afforded (5-(3-(aminomethyl)phenyl)-2-azabicyclo[2.2.0]hexan-2-yl)(4-bromo-3-methyl-5-propoxythiophen-2$\mathrm{yl})$ methanone ($481,49.7 \mathrm{mg}, 0.11 \mathrm{mmol}, 72 \%$ yield over 3 steps) as a slightly yellow viscous oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{bs}$, $1 \mathrm{H}), 4.27(\mathrm{bs}, 1 \mathrm{H}), 4.07(\mathrm{bs}, 4 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.47-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.74(\mathrm{bs}, 1 \mathrm{H})$, $2.65(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{bs}, 3 \mathrm{H})$.

MS (ESI-Q) calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}^{+}: 331$, found: 331 .

Synthesis of fentanyl fragment isosteres 490 and 491

A 4 mL vial was charged with methyl 5-(phenylamino)-2-azabicyclo[2.2.0]hexane-2-carboxylate (337, $24.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and DCM ($1.0 \mathrm{~mL}, 0.1 \mathrm{M}$). The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. $\mathrm{Et}_{3} \mathrm{~N}(30 \mu \mathrm{~L}, 0.726 \mathrm{~g} / \mathrm{mL}, 0.22 \mathrm{mmol}, 2.1$ eq.) and propionyl chloride ($18 \mu \mathrm{~L}, 1.059 \mathrm{~g} / \mathrm{mL}, 0.21$ $\mathrm{mmol}, 2.0 \mathrm{eq}$.) were added sequentially in one portion. The resulting mixture was left stirring for 1 h at the same temperature, quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{DCM}(3 \times 20$ mL). Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure, and loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 100 \rightarrow$ pure EtOAc afforded methyl 5-(N-phenylpropionamido)-2-azabicyclo[2.2.0]hexane-2-carboxylate (490, $21.0 \mathrm{mg}, 0.07$ $\mathrm{mmol}, 71 \%$) as a colorless clear oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rotamers) $\delta 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{t}, \mathrm{J}$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{bs}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 3 \mathrm{H}), 2.94(\mathrm{bs}, 1 \mathrm{H}), 2.71-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.22$ $(\mathrm{m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR (151 MHz, CDCl_{3}, rotamers) $\delta 174.1,156.5,140.5,140.2,129.9,129.5,128.5,60.0,59.4,58.5$, $58.2,56.6,55.6,52.2,39.4,39.3,35.7,35.0,28.7,9.4$.
$\mathbf{R}_{f}=0.43$ (hexanes: EtOAc = $1: 2 ; U V$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2954 (w), 2881 (w), 1705 (s), 1658 (m), 1484 (w), 1451 (m), 1384 (s), 1266 (w), 1122 (w), 768 (w), 705 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}^{+}$: 289.1552, found: 289.1547 .

A 4 mL vial was charged with methyl 5-(phenylamino)-2-azabicyclo[2.2.0]hexane-2-carboxylate (393, $63.4 \mathrm{mg}, 0.27 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and DCM ($2.7 \mathrm{~mL}, 0.1 \mathrm{M}$). The resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. $\mathrm{Et}_{3} \mathrm{~N}(150 \mu \mathrm{~L}, 0.726 \mathrm{~g} / \mathrm{mL}, 1.1 \mathrm{mmol}, 4.0$ eq.) and propionyl chloride ($100 \mu \mathrm{~L}, 1.059 \mathrm{~g} / \mathrm{mL}, 1.1$
mmol, 4.0 eq.) were added sequentially in one portion. The cooling bath was removed, and the resulting mixture was left stirring for 1 h at room temperature. Afterwards, it was quenched with saturated aqueous NaHCO_{3} and extracted with DCM ($4 \times 20 \mathrm{~mL}$). Combined organic phases were dried over MgSO_{4}, concentrated under reduced pressure, and loaded onto a column. Gradient elution with hexanes : EtOAc = $100: 100 \rightarrow 100: 300$ afforded methyl 5-(N-phenylpropionamido)-2-azabicyclo[2.2.0]hexane-2-carboxylate ($491,68.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 88 \%$) as a clear colorless oil that solidifies on standing.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.05(\mathrm{~m}, 2 \mathrm{H}), 4.78-4.70(\mathrm{~m}$, $1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 3 \mathrm{H}), 3.52-3.46(\mathrm{bs}, 1 \mathrm{H}), 2.52-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~m}$, $1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 174.5,156.3,155.9,140.2,129.8,129.3,128.3,128.3,58.3$, $57.7,52.5,52.3,52.2,51.0,50.2,36.4,33.1,32.6,28.3,9.4$.
$\mathbf{R}_{\mathrm{f}}=0.40$ (hexanes: EtOAc = $1: 2 ; \mathrm{UV}$)
IR (ATR-FTIR, cm ${ }^{-1}$): 2953 (w), 1703 (s$), 1655$ (s$), 1484$ (w), 1493 (m), 1379 (s$), 1263$ (w), 1125 (m), 768 (w), 703 (w).

HRMS (ESI-TOF) calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}^{+}$: 289.1552, found: 289.1548 .

Synthesis of h5-HT 2 A antagonist isostere 495

A 4 mL vial was charged with tert-butyl 3-(2-(methoxycarbonyl)-2-azabicyclo[2.2.0]hexan-5-yl)-2-phenyl-1H-indole-1-carboxylate ($415,12.5 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.0$ eq.) and anhydrous THF ($150 \mu \mathrm{~L}$) under nitrogen atmosphere. The resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. KOtBu solution ($60 \mu \mathrm{~L}$, 0.6 M in THF, $0.03 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was canulated to the substrate solution. After the addition was complete, the ice bath was removed, and the resulting brown solution was stirred at room temperature for 5 h . The reaction solvent was removed under reduced pressure and the residue loaded onto a column. Gradient elution with hexanes : EtOAc $=100: 20 \rightarrow 100: 60$ afforded methyl (5-(2-phenyl-1H-indol-3-yl)-2-azabicyclo[2.2.0]hexane-2-carboxylate (494, 7.1, $0.02 \mathrm{mmol}, 74 \%$) as a colorless film.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 7.11$ $(\mathrm{m}, 1 \mathrm{H}), 4.64-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 4.04-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H})$, $3.06(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H})$.

MS (ESI-Q) calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}^{+}: 333$, found: 333 .

A 4 mL vial was charged with metyl (5-(2-phenyl-1H-indol-3-yl)-2-azabicyclo[2.2.0]hexane-2carboxylate ($494,7.1 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.0$ eq.) and anhydrous THF ($0.2 \mathrm{~mL}, 0.1 \mathrm{M}$) under nitrogen atmosphere. The resulting solution was cooled to $-10^{\circ} \mathrm{C}$ and MeLi solution ($100 \mu \mathrm{~L}, 1.6 \mathrm{M}$ in Et ${ }_{2} \mathrm{O}, 7.5$
eq.) was slowly added. The resulting mixture was warmed up to $-5^{\circ} \mathrm{C}$ and left stirring for 20 minutes. Afterwards, it was quenched with water and extracted with EtOAc $(50 \mathrm{~mL})$. The organic phase was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to yield crude amine, which was taken forward without further purification.

MS (ESI-Q) calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2}+\mathrm{H}^{+}: 275$, found: 275.

A 4 mL vial was charged with the crude amine from the step above, DMF (0.2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(5.5 \mathrm{mg}, 0.04$ $\mathrm{mmol}, 1.9$ eq.) and (2 -bromoethyl)benzene ($6 \mu \mathrm{~L}, 1.360 \mathrm{~g} / \mathrm{mL}, 0.04 \mathrm{mmol}, 2.0$ eq.). The resulting suspension was stirred at room temperature overnight. The reaction solvent was removed under high vacuum and the residue directly loaded onto a column. Gradient elution with DCM : $\mathrm{MeOH}=100: 2$ \rightarrow 100 : 8 afforded 3-(2-phenethyl-2-azabicyclo[2.2.0]hexan-5-yl)-2-phenyl-1H-indole (495, 3.8 mg , $0.01 \mathrm{mmol}, 47 \%$ yield over two steps) as a colorless film.

MS (ESI-Q) calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2}+\mathrm{H}^{+}: 379$, found: 379.

Crystallographic data

Single crystals of $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FeNO}$ (363, CCDC 2257526) were crystallized by vapor diffusion of hexanes into a solution of 363 in ethyl acetate. A suitable crystal was selected and mounted using Paratone-N oil (Exxon) on a Cryo-Loop (Hampton research) with (151) face roughly perpendicular to the spindle axis on a Bruker APEX-II CCD diffractometer. The crystal was kept at 100.00 K during data collection. Using Olex 2^{150}, the structure was solved with the XT^{151} structure solution program using Intrinsic Phasing and refined with the XL^{152} refinement package using Least Squares minimization.

Identification code	CCDC 2257526
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FeNO}$
Formula weight	295.15
Temperature/K	100.00
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a/Å	9.8978(3)
b/Å	13.1247(3)
c/Å	9.7456(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	91.3690(10)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ \AA^{3}	1265.65(6)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.549

μ / mm^{-1}	1.181
$\mathrm{~F}(000)$	616.0
Crystal size $/ \mathrm{mm}^{3}$	$0.273 \times 0.159 \times 0.1$
Radiation	MoK $\alpha(\lambda=0.71073)$
2 range for data collection/ $^{\circ}$	5.156 to 56.656
Index ranges	$-13 \leq \mathrm{h} \leq 13,-17 \leq \mathrm{k} \leq 17,-13 \leq \mathrm{I} \leq 13$
Reflections collected	35537
Independent reflections	$3151\left[\mathrm{R}_{\text {int }}=0.0420, \mathrm{R}_{\text {sigma }}=0.0174\right]$
Data/restraints/parameters	1.042
Goodness-of-fit on F^{2}	$\mathrm{R}_{1}=0.0233, \mathrm{wR} \mathrm{R}_{2}=0.0577$
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0261, \mathrm{wR} \mathrm{R}_{2}=0.0597$
Final R indexes [all data]	$0.40 /-0.27$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	

Single crystals of $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ (491, CCDC 2257525) were crystallized by vapor diffusion of hexanes into the ethyl acetate solution of 491. A suitable crystal was selected and mounted using Paratone-N oil (Exxon) on a Cryo-Loop (Hampton research) with (-1 35) face roughly perpendicular to the spindle axis on a Bruker APEX-II CCD diffractometer. The crystal was kept at 100.00 K during data collection. Using Olex2 [1], the structure was solved with the XT [2] structure solution program using Intrinsic Phasing and refined with the XL [3] refinement package using Least Squares minimisation.

Identification code	CCDC 2257525
Empirical formula	C16H20N2O3
Formula weight	288.34
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	$7.6371(2)$
b/Å	$8.8000(2)$
c/A	$11.9968(3)$
$\alpha /{ }^{\circ}$	$93.2950(10)$
$\gamma /{ }^{\circ}$	$101.9880(10)$
Volume/Å3	$107.4030(10)$
Z	$746.37(3)$
	2

pcalcg/cm3	1.283
$\mu / \mathrm{mm}-1$	0.089
F(000)	308
Crystal size/mm3	$0.408 \times 0.353 \times 0.351$
Radiation	MoK α ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	5.638 to 56.69
Index ranges	$-10 \leq h \leq 10,-11 \leq k \leq 11,-16 \leq 1 \leq 16$
Reflections collected	52260
Independent reflections	3708 [Rint $=0.0242$, Rsigma $=0.0139$]
Data/restraints/parameters	3708/0/192
Goodness-of-fit on F2	1.03
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R} 1=0.0365, \mathrm{wR} 2=0.0958$
Final R indexes [all data]	$\mathrm{R} 1=0.0376, w R 2=0.0967$
Largest diff. peak/hole / e Å-3	0.30/-0.19

11. ACKNOWLEDGEMENT OF CONTRIBUTIONS

Alexander S. Shved performed computational studies (i.e. conformational analysis and thermochemistry calculations) and single crystal X-ray analysis. Dr. Yaroslav D. Boyko and Jan Petrovčič explored the reactivity of 2-azabicyclo[2.2.0]hex-5-enes and their "hydrofunctionalized" derivatives. Separation of constitutional isomers was performed by Merck separation team. The rest of synthetic work, reaction optimization, isostere synthesis, characterization, structure elucidation and computational data analysis was done by Jan Petrovčič. Giovanni Lenardon's help is acknowledged for providing experimental set-up pictures, reaction scale-ups, workups, purifications and characterizations.

12. REFERENCES

(1) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved
Pharmaceuticals. J. Med. Chem. 2014, 57 (24), 10257-10274.
https://doi.org/10.1021/jm501100b.
(2) New Drugs at FDA: CDER's New Molecular Entities and New Therapeutic Biological Products. https://www.fda.gov/drugs/development-approval-process-drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products (accessed 2019-08-17).
(3) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Privileged Scaffolds for Library Design and Drug Discovery. Curr. Opin. Chem. Biol. 2010, 14 (3), 347-361.
https://doi.org/10.1016/j.cbpa.2010.02.018.
(4) Han, X.; Zhao, L.; Xiang, W.; Qin, C.; Miao, B.; Xu, T.; Wang, M.; Yang, C. Y.; Chinnaswamy, K.; Stuckey, J.; Wang, S. Discovery of Highly Potent and Efficient PROTAC Degraders of Androgen Receptor (AR) by Employing Weak Binding Affinity VHL E3 Ligase Ligands. J. Med. Chem. 2019, 62 (24), 11218-11231. https://doi.org/10.1021/acs.jmedchem.9b01393.
(5) Marsilje, T. H.; Pei, W.; Chen, B.; Lu, W.; Uno, T.; Jin, Y.; Jiang, T.; Kim, S.; Li, N.; Warmuth, M.; Sarkisova, Y.; Sun, F.; Steffy, A.; Pferdekamper, A. C.; Li, A. G.; Joseph, S. B.; Kim, Y.; Liu, B.;
Tuntland, T.; Cui, X.; Gray, N. S.; Steensma, R.; Wan, Y.; Jiang, J.; Chopiuk, G.; Li, J.; Gordon, W. P.; Richmond, W.; Johnson, K.; Chang, J.; Groessl, T.; He, Y. Q.; Phimister, A.; Aycinena, A.; Lee, C. C.; Bursulaya, B.; Karanewsky, D. S.; Seidel, H. M.; Harris, J. L.; Michellys, P. Y. Synthesis, Structure-Activity Relationships, and in Vivo Efficacy of the Novel Potent and Selective Anaplastic Lymphoma Kinase (ALK) Inhibitor 5-Chloro-N2-(2-Isopropoxy-5-Methyl-4-(Piperidin-4-YI)Phenyl)-N4-(2-(Isopropylsulfonyl)Phenyl)Pyrimidine-2,4-Diam. J. Med. Chem. 2013, 56 (14), 5675-5690. https://doi.org/10.1021/jm400402q.
(6) Drake, P. M.; Carlson, A.; Mcfarland, J. M.; Bañas, S.; Barfield, R. M.; Zmolek, W.; Kim, Y. C.; Huang, B. C. B.; Kudirka, R.; Rabuka, D. CAT-02-106, a Site-Specifically Conjugated Anti-CD22 Antibody Bearing an MDR1-Resistant Maytansine Payload Yields Excellent Efficacy and Safety in Preclinical Models. Mol. Cancer Ther. 2018, 17 (1), 161-168. https://doi.org/10.1158/1535-7163.MCT-17-0776.
(7) Brown, G.; Congreve, M.; Scully, C.; Paul, R.; Bortolato, A. Cyclohexapeptides as Selective Somatostatin SST5 Receptor Agonists. WO2020074926A1, 2020.
(8) Brown, N. Bioisosteres in Medicinal Chemistry; Wiley Blackwell, 2012. https://doi.org/10.1002/9783527654307.
(9) Obach, R. S.; LaChapelle, E. A.; Brodney, M. A.; Vanase-Frawley, M.; Kauffman, G. W.; SawantBasak, A. Strategies toward Optimization of the Metabolism of a Series of Serotonin-4 Partial Agonists: Investigation of Azetidines as Piperidine Isosteres. Xenobiotica 2016, 46 (12), 11121121. https://doi.org/10.3109/00498254.2016.1152522.
(10) Liang, G.; Choi-Sledeski, Y. M.; Shum, P.; Chen, X.; Poli, G. B.; Kumar, V.; Minnich, A.; Wang, Q.; Tsay, J.; Sides, K.; Kang, J.; Zhang, Y. A β-Tryptase Inhibitor with a Tropanylamide Scaffold to Improve in Vitro Stability and to Lower HERG Channel Binding Affinity. Bioorg. Med. Chem. Lett. 2012, 22 (4), 1606-1610.
(11) Abbott, J. R.; Hodges, T. R.; Daniels, R. N.; Patel, P. A.; Kennedy, J. P.; Howes, J. E.; Akan, D. T.; Burns, M. C.; Sai, J.; Sobolik, T.; Beesetty, Y.; Lee, T.; Rossanese, O. W.; Phan, J.; Waterson, A.
G.; Fesik, S. W. Discovery of Aminopiperidine Indoles That Activate the Guanine Nucleotide Exchange Factor SOS1 and Modulate RAS Signaling. J. Med. Chem. 2018, 61 (14), 6002-6017. https://doi.org/10.1021/acs.jmedchem.8b00360.
(12) Coleman, P. J.; Schreier, J. D.; Cox, C. D.; Breslin, M. J.; Whitman, D. B.; Bogusky, M. J.; McGaughey, G. B.; Bednar, R. A.; Lemaire, W.; Doran, S. M.; Fox, S. V.; Garson, S. L.; Gotter, A. L.; Harrell, C. M.; Reiss, D. R.; Cabalu, T. D.; Cui, D.; Prueksaritanont, T.; Stevens, J.; Tannenbaum, P. L.; Ball, R. G.; Stellabott, J.; Young, S. D.; Hartman, G. D.; Winrow, C. J.; Renger, J. J. Discovery of [(2R,5R)-5-\{[(5-Fluoropyridin-2-YI)Oxy]Methyl\}-2-Methylpiperidin-1-YI][5-Methyl-2-(Pyrimidin-2-YI)Phenyl]Methanone (MK-6096): A Dual Orexin Receptor Antagonist with Potent Sleep-Promoting Properties. ChemMedChem 2012, 7 (3), 415-424. https://doi.org/10.1002/cmdc. 201200025.
(13) Schçnherr, H.; Cernak, T.; Cernak, T.; Schçnherr, H. Profound Methyl Effects in Drug Discovery and a Call for New C-H Methylation Reactions. Angew. Chem. Int. Ed. 2013, 52 (47), 1225612267. https://doi.org/10.1002/anie. 201303207.
(14) Meanwell, N. A. Improving Drug Design: An Update on Recent Applications of Efficiency Metrics, Strategies for Replacing Problematic Elements, and Compounds in Nontraditional Drug Space. Chem. Res. Toxicol. 2016, 29 (4), 564-616.
https://doi.org/10.1021/acs.chemrestox.6b00043.
(15) Burkhard, J. A.; Guérot, C.; Knust, H.; Rogers-Evans, M.; Carreira, E. M. Synthesis and Structural Analysis of a New Class of Azaspiro[3.3]Heptanes as Building Blocks for Medicinal Chemistry. Org. Lett. 2010, 12 (9), 1944-1947. https://doi.org/10.1021/ol1003302.
(16) Kirichok, A. A.; Tkachuk, H.; Kozyriev, Y.; Shablykin, O.; Datsenko, O.; Granat, D.; Yegorova, T.; Bas, Y. P.; Semirenko, V.; Pishel, I.; Kubyshkin, V.; Lesyk, D.; Klymenko-Ulianov, O.; Mykhailiuk, P. K. Bicyclic Bioisosteres of Piperidine: Version 2.0. 2023.
https://doi.org/10.26434/CHEMRXIV-2023-RPJLD.
(17) Reilly, S. W.; Puentes, L. N.; Wilson, K.; Hsieh, C. J.; Weng, C. C.; Makvandi, M.; Mach, R. H. Examination of Diazaspiro Cores as Piperazine Bioisosteres in the Olaparib Framework Shows Reduced DNA Damage and Cytotoxicity. J. Med. Chem. 2018, 61 (12), 5367-5379. https://doi.org/10.1021/acs.jmedchem.8b00576.
(18) Katayama, K.; Tsunemi, T.; Miyazaki, K.; Uoto, K.; Yoshioka, R.; Terashima, H.; Terakawa, M.; Yamashiro, K.; Haruyama, M.; Maeda, H.; Makino, T. Design, Synthesis, and Optimization of a Series of 2-Azaspiro[3.3]Heptane Derivatives as Orally Bioavailable Fetal Hemoglobin Inducers. Bioorg. Med. Chem. Lett. 2020, 30 (19), 127425.
https://doi.org/10.1016/J.BMCL.2020.127425.
(19) Radchenko, D. S.; Pavlenko, S. O.; Grygorenko, O. O.; Volochnyuk, D. M.; Shishkina, S. V.; Shishkin, O. V.; Komarov, I. V. Cyclobutane-Derived Diamines: Synthesis and Molecular Structure. J. Org. Chem. 2010, 75 (17), 5941-5952. https://doi.org/10.1021/jo101271h.
(20) Meyers, M. J.; Muizebelt, I.; Van Wiltenburg, J.; Brown, D. L.; Thorarensen, A. Synthesis of Tert-Butyl 6-Oxo-2-Azaspiro[3.3]Heptane-2-Carboxylate. Org. Lett. 2009, 11 (16), 3523-3525. https://doi.org/10.1021/ol901325S.
(21) Trost, B. M.; Bogdanowicz, M. J. New Synthetic Reactions. A Versatile Cyclobutanone (Spiroannelation) and 「-Butyrolactone (Lactone Annelation) Synthesis. J. Am. Chem. Soc. 1973, 95 (16), 5321-5334. https://doi.org/10.1021/ja00797a037.
(22) Guérot, C.; Tchitchanov, B. H.; Knust, H.; Carreira, E. M. Synthesis of Novel Angular Spirocyclic Azetidines. Org. Lett. 2011, 13 (4), 780-783. https://doi.org/10.1021/ol103050c.
(23) Kirichok, A. A.; Shton, I.; Kliachyna, M.; Pishel, I.; Mykhailiuk, P. K. 1-Substituted 2Azaspiro[3.3]Heptanes: Overlooked Motifs for Drug Discovery. Angew. Chem. Int. Ed. 2017, 56 (30), 8865-8869. https://doi.org/10.1002/anie.201703801.
(24) Reddy, L. R.; Waman, Y.; Kallure, P.; Nalivela, K. S.; Begum, Z.; Divya, T.; Kotturi, S. Asymmetric Synthesis of 1-Substituted 2-Azaspiro[3.3]Heptanes: Important Motifs for Modern Drug Discovery. Chem. Commun. 2019, 55 (35), 5068-5070. https://doi.org/10.1039/C9CC00863B.
(25) Denisenko, A. V.; Druzhenko, T.; Skalenko, Y.; Samoilenko, M.; Grygorenko, O. O.; Zozulya, S.; Mykhailiuk, P. K. Photochemical Synthesis of 3-Azabicyclo[3.2.0]Heptanes: Advanced Building Blocks for Drug Discovery. J. Org. Chem. 2017, 82 (18), 9627-9636. https://doi.org/10.1021/acs.joc.7b01678.
(26) Jirásek, M.; Straková, K.; Neveselý, T.; Svobodová, E.; Rottnerová, Z.; Cibulka, R. FlavinMediated Visible-Light [2+2] Photocycloaddition of Nitrogen- and Sulfur-Containing Dienes. European J. Org. Chem. 2017, 2017 (15), 2139-2146. https://doi.org/10.1002/ejoc. 201601377.
(27) Hurtley, A. E.; Lu, Z.; Yoon, T. P. [2+2] Cycloaddition of 1,3-Dienes by Visible Light Photocatalysis. Angew. Chem. Int. Ed. 2014, 53 (34), 8991-8994. https://doi.org/10.1002/anie.201405359.
(28) Bach, T.; Krüger, C.; Harms, K. The Stereoselective Synthesis of 2-Substituted 3Azabicyclo[3.2.0]Heptanes by Intramolecular [2+2]-Photocycloaddition Reactions. Synthesis (Stuttg). 2000, 2000 (02), 305-320. https://doi.org/10.1055/S-2000-6261.
(29) Mansson, C. M. F.; Burns, N. Z. Aqueous Amine-Tolerant [2+2] Photocycloadditions of Unactivated Olefins. J. Am. Chem. Soc. 2022, 144 (43), 19689-19694. https://doi.org/10.1021/jacs.2c08778.
(30) Petz, S.; Wanner, K. T. Synthesis of 3-Azabicyclo[3.2.0]Heptane Derivatives as γ-Aminobutyric Acid Analogues through Intermolecular [2+2] Photo-cycloaddition. European J. Org. Chem. 2013, 2013 (19), 4017-4025. https://doi.org/10.1002/ejoc. 201201723.
(31) Demchuk, O. P.; Hryshchuk, O. V.; Vashchenko, B. V.; Kozytskiy, A. V.; Tymtsunik, A. V.; Komarov, I. V.; Grygorenko, O. O. Photochemical [2 + 2] Cycloaddition of Alkenyl Boronic Derivatives: An Entry into 3-Azabicyclo[3.2.0]Heptane Scaffold. J. Org. Chem. 2020, 85 (9), 5927-5940. https://doi.org/10.1021/acs.joc.0c00265.
(32) He, J.; Liu, Q.; Liu, Q.; Author, C. Highly Efficient Visible-Light-Driven [2+2] Cycloaddition of Maleimides to Alkenes and Alkynes for the Synthesis of 3-Aza-bicyclo[3.2.0]Heptane-Fused Scaffolds. Synthesis (Stuttg). 2022, 54 (04), 925-942. https://doi.org/10.1055/A-1480-3215.
(33) Homon, A. A.; Hryshchuk, O. V.; Trofymchuk, S.; Michurin, O.; Kuchkovska, Y.; Radchenko, D. S.; Grygorenko, O. O. Synthesis of 3-Azabicyclo[3.2.0]Heptane-Derived Building Blocks via [3+2] Cycloaddition. European J. Org. Chem. 2018, 2018 (40), 5596-5604. https://doi.org/10.1002/ejoc. 201800972.
(34) Corpas, J.; Ponce, A.; Adrio, J.; Carretero, J. C. Cul-Catalyzed Asymmetric [3 + 2] Cycloaddition of Azomethine Ylides with Cyclobutenones. Org. Lett. 2018, 20 (11), 3179-3182.
https://doi.org/10.1021/acs.orglett.8b00936.
(35) Reinart-Okugbeni, R.; Ausmees, K.; Kriis, K.; Werner, F.; Rinken, A.; Kanger, T. Chemoenzymatic Synthesis and Evaluation of 3-Azabicyclo[3.2.0]Heptane Derivatives as Dopaminergic Ligands. Eur. J. Med. Chem. 2012, 55, 255-261.
https://doi.org/10.1016/j.ejmech.2012.07.025.
(36) McKenzie, T. C.; Epstein, J. W.; Fanshawe, W. J.; Dixon, J. S.; Osterberg, A. C.; Wennogle, L. P.; Regan, B. A.; Abel, M. S.; Meyerson, L. R. 5-Aryl-3-Azabicyclo[3.2.0]Heptan-6-One Ketals, Compounds with Morphine-like Analgesic Activity. J. Med. Chem. 1984, 27 (5), 628-632. https://doi.org/10.1021/jm00371a012.
(37) Druzhenko, T.; Skalenko, Y.; Samoilenko, M.; Denisenko, A.; Zozulya, S.; Borysko, P. O.; Sokolenko, M. I.; Tarasov, A.; Mykhailiuk, P. K. Photochemical Synthesis of 2Azabicyclo[3.2.0]Heptanes: Advanced Building Blocks for Drug Discovery. Synthesis of 2,3Ethanoproline. J. Org. Chem. 2018, 83 (3), 1394-1401.
https://doi.org/10.1021/acs.joc.7b02910.
(38) Jason, M.; Russell Abela, A.; Abraham, S.; Don Anderson, C.; Arumugam, V.; Chau, J.; Clemens, J.; Cleveland, T.; Coon, T. R.; Dwight, T. A.; Fanning, L. T. D.; Frieman, B. A.; Gulevich, A. V.; Ruah, S. S. H.; Ishihara, Y.; Khatuya, H.; Krenitsky, P.; Melillo, V.; Miller, M. T.; Paraselli, P.; Pierre, F.; Silina, A.; Tran, J. A.; Uy, J.; Valdez, L.; Vickers, T.; Jinglan, Z.; Grootenhuis, P. Modulators of Cystic Fibrosis Transmembrane Conductance Regulator. WO2022076622A2, October 6, 2021.
(39) Piotrowski, D. W. A Concise Route to Novel 1-Aryl and 1-Pyridyl-2-Azabicyclo[2.1.1]Hexanes. Synlett 1999, 1999 (7), 1091-1093. https://doi.org/10.1055/S-1999-2775/BIB.
(40) Malpass, J. R.; Patel, A. B.; Davies, J. W.; Fulford, S. Y. Modification of 1-Substituents in the 2Azabicyclo[2.1.1]Hexane Ring System; Approaches to Potential Nicotinic Acetylcholine Receptor Ligands from 2,4-Methanoproline Derivatives. J. Org. Chem. 2003, 68 (24), 93489355. https://doi.org/10.1021/jo035199n.
(41) Patel, A. B.; Malpass, J. R. Potential Nicotinic Acetylcholine Receptor Ligands from 2,4Methanoproline Derivatives. J. Med. Chem. 2008, 51 (21), 7005-7009. https://doi.org/10.1021/jm800537a.
(42) De Blieck, A.; Stevens, C. V. Synthesis of a Variety of 2-Alkyl-2-Azabicyclo[31.1]Heptane-1Carbonitriles via a Dynamic Addition-Intramolecular Substitution Sequence. Synlett 2011, 2011 (12), 1748-1752. https://doi.org/10.1055/S-0030-1260811/ID/8/BIB.
(43) He, S.; Hao, J.; Ashley, E. R.; Chobanian, H. R.; Pio, B.; Colletti, S. L.; Miller, M. Synthesis of Novel 2-Azabicyclo[3.1.1]Heptane-5-Carboxylic Acid. Tetrahedron Lett. 2016, 57 (11), 12681269. https://doi.org/10.1016/j.tetlet.2016.02.024.
(44) Micheli, F.; Cremonesi, S.; Semeraro, T.; Tarsi, L.; Gibson, K. R. 2-Azabicyclo[3.1.1] Derivatives as Antagonists of the Orexin-1 and Orexin-2 Receptors. WO2019081939A1, 2018.
(45) Tymtsunik, A. V.; Bilenko, V. A.; Grygorenko, O. O.; Komarov, I. V. Gram-Scale Synthesis of 3,5-Methanonipecotic Acid, a Nonchiral Bicyclic β-Amino Acid. Synlett 2014, 25 (3), 355-358. https://doi.org/10.1055/S-0033-1340322/ID/JR000-3001/BIB.
(46) Dibchak, D.; Snisarenko, M.; Mishuk, A.; Shablykin, O.; Bortnichuk, L.; Klymenko-Ulianov, O.; Kheylik, Y.; Sadkova, I. V.; Rzepa, H. S.; Mykhailiuk, P. K. General Synthesis of 3Azabicyclo[3.1.1]Heptanes and Evaluation of Their Properties as Saturated Isosteres. Angew. Chem. Int. Ed. 2023, e202304246. https://doi.org/10.1002/anie.202304246.
(47) Stanek, J.; Bhatnagar, A. S.; Häusler, A.; Schieweck, K.; Alder, A.; Bellus, D. Synthesis and Aromatase Inhibitory Activity of Novel 1-(4-Aminophenyl)-3-Azabicyclo[3.1.0]Hexane- and -[3.1.1]Heptane-2,4-Diones. J. Med. Chem. 1991, 34 (4), 1329-1334. https://doi.org/10.1021/jm00108a013.
(48) Feskov, I. O.; Chernykh, A. V.; Kuchkovska, Y. O.; Daniliuc, C. G.; Kondratov, I. S.; Grygorenko, O. O. 3-((Hetera)Cyclobutyl)Azetidines, "Stretched" Analogues of Piperidine, Piperazine, and Morpholine: Advanced Building Blocks for Drug Discovery. J. Org. Chem. 2019, 84 (3), 13631371. https://doi.org/10.1021/acs.joc.8B02822.
(49) Bartlett, M. J.; Chin, G. F.; Clarke, M. O.; Cosman, J. L.; Ensan, D.; Goyal, B.; Ho, S.; Hui, H. C.; Mackman, R. L.; Mish, M. R.; Schroeder, Scott D. Shapiro, N.; Siegel, D. S.; Yang, H.; Tang, D. T. Cd73 Inhibiting 2,4-Dioxopyrimidine Compounds. WO2021222522.
(50) Manna, S.; Antonchick, A. P. Copper-Catalyzed (2+1) Annulation of Acetophenones with Maleimides: Direct Synthesis of Cyclopropanes. Angew. Chem. Int. Ed. 2015, 54 (49), 1484514848. https://doi.org/10.1002/anie.201502872.
(51) Chen, P.; Zhu, C.; Zhu, R.; Lin, Z.; Wu, W.; Jiang, H. Synthesis of 3-Azabicyclo[3.1.0]Hexane Derivatives via Palladium-Catalyzed Cyclopropanation of Maleimides with N-Tosylhydrazones: Practical and Facile Access to CP-866,087. Org. Biomol. Chem. 2017, 15 (5), 1228-1235. https://doi.org/10.1039/C6OB02137A.
(52) Deng, H.; Yang, W. L.; Tian, F.; Tang, W.; Deng, W. P. Asymmetric Construction of 3Azabicyclo[3.1.0]Hexane Skeleton with Five Contiguous Stereogenic Centers by Cu-Catalyzed 1,3-Dipolar Cycloaddition of Trisubstituted Cyclopropenes. Org. Lett. 2018, 20 (13), 41214125. https://doi.org/10.1021/acs.orglett.8b01686.
(53) Wang, K. B.; Ran, R. Q.; Xiu, S. D.; Li, C. Y. Synthesis of 3-Aza-Bicyclo[3.1.0]Hexan-2-One Derivatives via Gold-Catalyzed Oxidative Cyclopropanation of N -Allylynamides. Org. Lett. 2013, 15 (10), 2374-2377. https://doi.org/10.1021/ol4007629.
(54) Shen, W. B.; Tang, X. T.; Zhang, T. T.; Lv, D. C.; Zhao, D.; Su, T. F.; Meng, L. Copper(I)-Catalyzed Enyne Oxidation/Cyclopropanation: Divergent and Enantioselective Synthesis of Cyclopropanes. Org. Lett. 2021, 23 (4), 1285-1290. https://doi.org/10.1021/acs.orglett.0c04268.
(55) Liu, R.; Winston-Mcpherson, G. N.; Yang, Z. Y.; Zhou, X.; Song, W.; Guzei, I. A.; Xu, X.; Tang, W. Generation of Rhodium(I) Carbenes from Ynamides and Their Reactions with Alkynes and Alkenes. J. Am. Chem. Soc. 2013, 135 (22), 8201-8204. https://doi.org/10.1021/ja4047069.
(56) Deng, Y.; Zhang, J.; Bankhead, B.; Markham, J. P.; Zeller, M. Photoinduced Oxidative Cyclopropanation of Ene-Ynamides: Synthesis of 3-Aza[n.1.0]Bicycles via Vinyl Radicals. Chem. Commun. 2021, 57 (43), 5254-5257. https://doi.org/10.1039/D1CC02016A.
(57) Qian, D.; Zhang, J. A Gold(I)-Catalyzed Intramolecular Oxidation-Cyclopropanation Sequence of 1,6-Enynes: A Convenient Access to [n.1.0]Bicycloalkanes. Chem. Commun. 2011, 47 (39), 11152-11154. https://doi.org/10.1039/C1CC14788A.
(58) Huang, X.; Nguyen, M. H.; Pu, M.; Zhang, L.; Chi, Y. R.; Wu, Y. D.; Zhou, J. S. Asymmetric Reductive and Alkynylative Heck Bicyclization of Enynes to Access Conformationally Restricted Aza[3.1.0]Bicycles. Angew. Chem. Int. Ed. 2020, 59 (27), 10814-10818. https://doi.org/10.1002/anie. 202000859.
(59) Zhang, Z.; Shi, M. Titanium(IV) Chloride-Mediated Carbocyclization of 1,6-Enynes: Selective Synthesis of 3-Azabicyclo[3.1.0]Hexanes and Functionalized Allenes by Controlling the Reaction Temperature. European J. Org. Chem. 2011, 2011 (14), 2610-2614. https://doi.org/10.1002/ejoc. 201100129.
(60) Haven, T.; Kubik, G.; Haubenreisser, S.; Niggemann, M. Calcium-Catalyzed Cyclopropanation. Angew. Chem. Int. Ed. 2013, 52 (14), 4016-4019. https://doi.org/10.1002/anie. 201209053.
(61) Fu, Z.; Wang, C.; Zhou, C. Y. Alkylcarbene Mediated Intramolecular Alkene Cyclopropanation to Construct Aza[3.1.0] Bicycles. Org. Chem. Front. 2023, 10 (3), 699-704.
https://doi.org/10.1039/D2Q001532C.
(62) Fritz, S. P.; Matlock, J. V.; McGarrigle, E. M.; Aggarwal, V. K. Efficient Synthesis of Cyclopropane-Fused Heterocycles with Bromoethylsulfonium Salt. Chem. - A Eur. J. 2013, 19 (33), 10827-10831. https://doi.org/10.1002/chem. 201302081.
(63) Skolnick, P.; Popik, P.; Janowsky, A.; Beer, B.; Lippa, A. S. Antidepressant-like Actions of DOV 21,947: A "Triple" Reuptake Inhibitor. Eur. J. Pharmacol. 2003, 461 (2-3), 99-104. https://doi.org/10.1016/S0014-2999(03)01310-4.
(64) Teetz, V.; Geiger, R.; Gaul, H. Synthesis of Unnatural Amino Acids: (S,S,S)-2-

Azabicyclo[3.3.0]Octane-3-Carboxylic Acid. Tetrahedron Lett. 1984, 25 (40), 4479-4482. https://doi.org/10.1016/S0040-4039(01)81471-4.
(65) Ramipril: Uses, Interactions, Mechanism of Action | DrugBank Online. https://go.drugbank.com/drugs/DB00178 (accessed 2023-08-26).
(66) Ennis, M. D.; Hoffman, R. L.; Ghazal, N. B.; Old, D. W.; Mooney, P. A. Asymmetric Synthesis of Cis-Fused Bicyclic Pyrrolidines and Pyrrolidinones via Chiral Polycyclic Lactams. J. Org. Chem. 1996, 61 (17), 5813-5817. https://doi.org/10.1021/jo960185I.
(67) Gramain, J. C.; Remuson, R. Cyclization of Allyl Silanes - A Novel Approach to 2Azabicyclo[3.3.0]Octanes. Heterocycles 1989, 29 (7), 1263-1273. https://doi.org/10.3987/COM-89-4910.
(68) Cohen, F.; Alicke, B.; Elliott, L. O.; Flygare, J. A.; Goncharov, T.; Keteltas, S. F.; Franklin, M. C.; Frankovitz, S.; Stephan, J. P.; Tsui, V.; Vucic, D.; Wong, H.; Fairbrother, W. J. Orally Bioavailable Antagonists of Inhibitor of Apoptosis Proteins Based on an Azabicyclooctane Scaffold. J. Med. Chem. 2009, 52 (6), 1723-1730. https://doi.org/10.1021/jm801450c.
(69) Becker, D. P.; Flynn, D. L. Synthesis of N-BOC-3-Azabicyclo[3.3.0]Octan-7-One via Reductive Pauson-Khand Cyclization and Subsequent Conversion to a Novel Diazatricyclic Ring System. Tetrahedron 1993, 49 (23), 5047-5054. https://doi.org/10.1016/S0040-4020(01)81870-6.
(70) Shao, L.; Hewitt, M. C.; Malcolm, S. C.; Wang, F.; Ma, J.; Campbell, U. C.; Spicer, N. A.; Engel, S. R.; Hardy, L. W.; Jiang, Z. D.; Schreiber, R.; Spear, K. L.; Varney, M. A. Synthesis and Pharmacological Characterization of Bicyclic Triple Reuptake Inhibitor 3-Aryl Octahydrocyclopenta[c]Pyrrole Analogues. J. Med. Chem. 2011, 54 (15), 5283-5295. https://doi.org/10.1021/jm101312a.
(71) Gliclazide: Uses, Interactions, Mechanism of Action | DrugBank Online. https://go.drugbank.com/drugs/DB01120 (accessed 2023-08-26).
(72) Wilzbach, K. E.; Rausch, D. J. Photochemistry of Nitrogen Heterocycles. Dewar Pyridine and Its Intermediacy in Photoreduction and Photohydration of Pyridine. J. Am. Chem. Soc. 1970, 92 (7), 2178-2179. https://doi.org/10.1021/ja00710a088.
(73) Fowler, F. W. Synthesis of 1,2- and 1,4-Dihydropyridines. J. Org. Chem. 1972, 37 (9), 13211323. https://doi.org/10.1021/jo00974a009.
(74) Kurita, J.; Iwata, K.; Sakai, H.; Tsuchiya, T. Studies on Diazepines. XXII. Synthesis of Monocyclic 1, 4-Dihetero Seven-Membered Ring Compounds Using Thermal Valence Bond Isomerization of Tricyclo [4.1.0.02.5] Heptane Systems. Chem. Pharm. Bull. 1985, 33 (10), 4572-4580. https://doi.org/10.1248/CPB.33.4572.
(75) Kurita, J.; Iwata, K.; Tsuchiya, T. Studies on Diazepines. XXV. Syntheses of Fully Unsaturated 1, 4-Oxazepines and 1H-1, 4-Diazepines Using Photochemical Valence Isomerization of Tricycloheptene Systems. Chem. Pharm. Bull. 1987, 35 (8), 3166-3174. https://doi.org/10.1248/CPB.35.3166.
(76) Krow, G. R.; Yuan, J.; Huang, Q.; Meyer, M. D.; Anderson, D. J.; Campbell, J. E.; Carroll, P. J. Synthesis of 5-and 6-(6-Chloro-3-Pyridyl)-2-Azabicyclo[2.2.0]Hexanes. Epibatidine Analogs. Tetrahedron 2000, 56 (47), 9233-9239. https://doi.org/10.1016/S0040-4020(00)00896-6.
(77) Krow, G. R.; Yuan, J.; Fang, Y.; Meyer, M. D.; Anderson, D. J.; Campbell, J. E.; Carroll, P. J. Synthesis of 3- and 5-Endo-(6-Chloro-3-Pyridoxy)-Methyl-2-Azabicyclo[2.2.0]Hexane and 3-Endo-(6-Chloro-3-Pyridoxy)-Methyl-2-Azabicyclo[2.2.0]Hex-5-Ene. ABT-594 Analogs. Tetrahedron 2000, 56 (47), 9227-9232. https://doi.org/10.1016/S0040-4020(00)00897-8.
(78) Krow, G. R.; Lester, W. S.; Liu, N.; Yuan, J.; Hiller, A.; Duo, J.; Herzon, S. B.; Nguyen, Y.; Cannon, K. Synthesis of Novel 2-Azabicyclo[2.2.0]- and [2.1.1]Hexanols. J. Org. Chem. 2001, 66 (5), 1811-1817. https://doi.org/10.1021/jo001558s.
(79) Krow, G. R.; Yuan, J.; Lin, G.; Sonnet, P. E. The Rearrangement Route to 3-CH2X-2Azabicyclo[2.1.1]Hexanes. Substituent Control of Neighboring Group Participation. Org. Lett. 2002, 4 (8), 1259-1262. https://doi.org/10.1021/ol020007g.
(80) Krow, G. R.; Lin, G.; Yu, F.; Sonnet, P. E. Second-Chance Rearrangement Route to Novel 5(6)-Syn,Anti-Difunctional 2-Azabicyclo[2.1.1]Hexanes. Org. Lett. 2003, 5 (15), 2739-2741. https://doi.org/10.1021/ol0349662.
(81) Krow, G. R.; Lee, Y. B.; Lester, W. S.; Liu, N.; Yuan, J.; Duo, J.; Herzon, S. B.; Nguyen, Y.; Zacharias, D. 2-Azabicyclo[2.1.1]Hexanes. 2. Substituent Effects on the Bromine-Mediated Rearrangement of 2-Azabicyclo[2.2.0]Hex-5-Enes. J. Org. Chem. 2001, 66 (5), 1805-1810. https://doi.org/10.1021/jo0015570.
(82) Krow, G. R.; Lin, G.; Rapolu, D.; Fang, Y.; Lester, W. S.; Herzon, S. B.; Sonnet, P. E. The Rearrangement Route to 2-Azabicyclo[2.1.1]Hexanes. Solvent and Electrophile Control of Neighboring Group Participation. J. Org. Chem. 2003, 68 (13), 5292-5299.
https://doi.org/10.1021/jo034394z.
(83) Krow, G. R.; Lee, Y. B.; Lester, W. S.; Christian, H.; Shaw, D. A.; Yuan, J. A Novel Synthesis of 2Azabicyclo[2.1.1]Hexane from Pyridine. J. Org. Chem. 1998, 63 (23), 8558-8560. https://doi.org/10.1021/jo9808472.
(84) Krow, G. R.; Lin, G.; Moore, K. P.; Thomas, A. M.; DeBbrosse, C.; Ross, C. W.; Ramjit, H. G. Novel Selectfluor and Deoxo-Fluor-Mediated Rearrangements. New 5(6)-Methyl and Phenyl Methanopyrrolidine Alcohols and Fluorides. Org. Lett. 2004, 6 (10), 1669-1672. https://doi.org/10.1021/ol0494818.
(85) Arakawa, Y.; Murakami, T.; Arakawa, Y.; Yoshifuji, S. Stereospecific Synthesis of Azetidine-Cis-2,3-Dicarboxylic Acid. Chem. Pharm. Bull. 2003, 51 (1), 96-97. https://doi.org/10.1248/CPB.51.96.
(86) Krow, G. R.; Cannon, K. C. 2-Azabicyclo[2.2.0]Hex-5-Enes and 2-Azabicyclo[2.2.0]Hexanes. A Review. Heterocycles 2004, 64, 577-603. https://doi.org/10.3987/REV-04-SR(P)2.
(87) Nistanaki, S. K.; Nelson, H. M. Dewar Heterocycles as Versatile Monomers for Ring-Opening Metathesis Polymerization. ACS Macro Lett. 2020, 9 (5), 731-735. https://doi.org/10.1021/acsmacrolett.0c00227.
(88) Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. Synthesis of Pyridine and

Dihydropyridine Derivatives by Regio- and Stereoselective Addition to n -Activated Pyridines. Chem. Rev. 2012, 112 (5), 2642-2713. https://doi.org/10.1021/cr200251d.
(89) Yamaguchi, R.; Moriyasu, M.; Yoshioka, M.; Kawanisi, M. Highly Regioselective α-Allylation of N-(Alkoxycarbonyl)Pyridinium Salts by Means of Allyltin Reagents. J. Org. Chem. 1985, 50 (2), 287-288. https://doi.org/10.1021/jo00202a031.
(90) Sundberg, R. J.; Hamilton, G.; Trindle, C. Synthesis and Diels-Alder Reactions of NCarbalkoxydihydropyridines. Substituent Effects on the Regiochemistry of Reduction of NCarbalkoxypyridinium lons. J. Org. Chem. 1986, 51 (19), 3672-3679.
https://doi.org/10.1021/jo00369a021.
(91) Fahrenhorst-Jones, T.; Savage, G. P.; Williams, C. M.; Fahrenhorst-Jones, T.; Savage, G. P.; Williams, C. M. Photochemical Generation of the 2-Azabicyclo[4.2.0]Octa-4,7-Diene Skeleton. Aust. J. Chem. 2022, 884-887. https://doi.org/10.1071/CH22139.
(92) Crudden, C. M.; Hleba, Y. B.; Chen, A. C. Regio- and Enantiocontrol in the Room-Temperature Hydroboration of Vinyl Arenes with Pinacol Borane. J. Am. Chem. Soc. 2004, 126 (30), 92009201. https://doi.org/10.1021/ja049761i.
(93) Larock, R. C.; Johnson, P. L. Palladium-Catalysed Intermolecular Arylation and Alkenylation of Bicylic Alkenes. J. Chem. Soc. Chem. Commun. 1989, 9 (18), 1368-1370.
https://doi.org/10.1039/C39890001368.
(94) Li, H.; Shen, S. J.; Zhu, C. L.; Xu, H. Direct Intermolecular Anti-Markovnikov Hydroazidation of Unactivated Olefins. J. Am. Chem. Soc. 2019, 141 (23), 9415-9421.
https://doi.org/10.1021/jacs.9b04381.
(95) Leggans, E. K.; Barker, T. J.; Duncan, K. K.; Boger, D. L. Iron(III)/NaBH4-Mediated Additions to Unactivated Alkenes: Synthesis of Novel 20'-Vinblastine Analogues. Org. Lett. 2012, 14 (6), 1428-1431. https://doi.org/https://doi.org/10.1021/ol300173v.
(96) Gui, J.; Pan, C. M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.; Darvatkar, N.; Natarajan, S. R.; Baran, P. S. Practical Olefin Hydroamination with Nitroarenes. Science 2015, 348 (6237), 886-891.
https://doi.org/10.1126/science.aab0245.
(97) Obradors, C.; Martinez, R. M.; Shenvi, R. A. Ph(i-PrO)SiH2: An Exceptional Reductant for Metal-Catalyzed Hydrogen Atom Transfers. J. Am. Chem. Soc. 2016, 138 (14), 4962-4971. https://doi.org/10.1021/jacs.6b02032.
(98) Lusi, R. F.; Sennari, G.; Sarpong, R. Strategy Evolution in a Skeletal Remodeling and C-H Functionalization-Based Synthesis of the Longiborneol Sesquiterpenoids. J. Am. Chem. Soc. 2022, 144 (37), 17277-17294. https://doi.org/10.1021/jacs.2c08136.
(99) Ma, Z.; Zhou, Z.; Kürti, L. Direct and Stereospecific Synthesis of N-H and N-Alkyl Aziridines from Unactivated Olefins Using Hydroxylamine-O-Sulfonic Acids. Angew. Chem. Int. Ed. 2017, 56 (33), 9886-9890. https://doi.org/10.1002/anie. 201705530.
(100) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. Copper-Catalyzed Aziridination of Olefins by (N-(pToluenesulfonyl)Imino)Phenyliodinane. J. Org. Chem. 1991, 56 (24), 6744-6746. https://doi.org/10.1021/jo00024A008.
(101) Jacquet, J. P.; Bouzard, D.; Kiechel, J. R.; Remuzon, P. Synthesis of a New Bridged Diamine 3,6Diazabicyclo [3.2.0] Heptane: Applications to the Synthesis of Quinolone Antibacterials. Tetrahedron Lett. 1991, 32 (12), 1565-1568. https://doi.org/10.1016/S0040-4039(00)742730.
(102) Aggarwal, V. K.; Gültekin, Z.; Grainger, R. S.; Adams, H.; Spargo, P. L. (1R,3R)-2-Methylene-1,3Dithiolane 1,3-Dioxide: A Highly Reactive and Highly Selective Chiral Ketene Equivalent in Cycloaddition Reactions with a Broad Range of Dienes. J. Chem. Soc. Perkin Trans. 1 1998, No. 17, 2771-2782. https://doi.org/10.1039/A804607G.
(103) Lo, J. C.; Yabe, Y.; Baran, P. S. A Practical and Catalytic Reductive Olefin Coupling. J. Am. Chem. Soc. 2014, 136 (4), 1304-1307. https://doi.org/10.1021/ja4117632.
(104) Green, S. A.; Vásquez-Céspedes, S.; Shenvi, R. A. Iron-Nickel Dual-Catalysis: A New Engine for Olefin Functionalization and the Formation of Quaternary Centers. J. Am. Chem. Soc. 2018, 140 (36), 11317-11324. https://doi.org/10.1021/jacs.8b05868.
(105) Speckmeier, E.; Maier, T. C. ART-An Amino Radical Transfer Strategy for C(Sp2)-C(Sp3) Coupling Reactions, Enabled by Dual Photo/Nickel Catalysis. J. Am. Chem. Soc. 2022, 144 (22), 9997-10005. https://doi.org/10.1021/jacs.2c03220.
(106) Brown, D. G.; Boström, J. Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? J. Med. Chem. 2016, 59 (10), 44434458. https://doi.org/10.1021/acs.jmedchem.5b01409.
(107) Sundberg, R. J.; Bloom, J. D. Diels-Alder Adducts of I-Benzenesulfonylindole-2-Acrylates and 1 -(Alkoxycarbonyl)- 1,2-Dihydropyridines. Intermediates for Synthesis of Iboga Alkaloid Analogues. J. Org. Chem. 1981, 46 (24), 4836-4842. https://doi.org/10.1021/jo00337a003.
(108) Hatano, M.; Goto, Y.; Izumiseki, A.; Akakura, M.; Ishihara, K. Boron Tribromide-Assisted Chiral Phosphoric Acid Catalyst for a Highly Enantioselective Diels-Alder Reaction of 1,2-
Dihydropyridines. J. Am. Chem. Soc. 2015, 137 (42), 13472-13475.
https://doi.org/10.1021/jacs.5b08693.
(109) Paul, B.; Bonflglio, J. N.; Iltifat, H.; Piwinski, J. J.; Barry, W.; Zollo, K. A.; Fowler, F. W. Synthesis and Study of N-Substituted 1,2-Dihydropyridines. J. Am. Chem. Soc. 1979, 101 (22), 66776682. https://doi.org/10.1021/ja00516a032.
(110) Nicolaou, K. C.; Chakraborty, T. K.; Ogawa, Y.; Daines, R. A.; Simpkins, N. S.; Furst, G. T. Chemistry of Amphotericin B. Degradation Studies and Preparation of Amphoteronolide B. J. Am. Chem. Soc. 1988, 110 (14), 4660-4672. https://doi.org/10.1021/ja00222a027.
(111) Blaskovich, M. A. T. Unusual Amino Acids in Medicinal Chemistry. J. Med. Chem. 2016, 59 (24), 10807-10836. https://doi.org/10.1021/acs.jmedchem.6b00319.
(112) Zhang, H.; He, X.; Wang, X.; Yu, B.; Zhao, S.; Jiao, P.; Jin, H.; Liu, Z.; Wang, K. W.; Zhang, L.; Zhang, L. Design, Synthesis and Biological Activities of Piperidine-Spirooxadiazole Derivatives as A7 Nicotinic Receptor Antagonists. Eur. J. Med. Chem. 2020, 207, 112774. https://doi.org/10.1016/J.EJMECH.2020.112774.
(113) Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran, P. S. Nickel-Catalyzed Barton Decarboxylation and Giese Reactions: A Practical Take on Classic Transforms. Angew. Chem. Int. Ed. 2017, 56 (1), 260-265. https://doi.org/10.1002/anie.201609662.
(114) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Copper-Catalyzed Coupling of Alkylamines and Aryl lodides: An Efficient System Even in an Air Atmosphere. Org. Lett. 2002, 4 (4), 581-584. https://doi.org/10.1021/ol0171867.
(115) Shafir, A.; Buchwald, S. L. Highly Selective Room-Temperature Copper-Catalyzed C-N Coupling Reactions. J. Am. Chem. Soc. 2006, 128 (27), 8742-8743. https://doi.org/10.1021/ja063063b.
(116) Ma, X.; Herzon, S. B. Synthesis of Ketones and Esters from Heteroatom-Functionalized Alkenes by Cobalt-Mediated Hydrogen Atom Transfer. J. Org. Chem. 2016, 81 (19), 86738695. https://doi.org/10.1021/acs.joc.6b01709.
(117) Ge, H. M.; Zhang, L. De; Tan, R. X.; Yao, Z. J. Protecting Group-Free Total Synthesis of (-)Lannotinidine B. J. Am. Chem. Soc. 2012, 134 (30), 12323-12325.
https://doi.org/10.1021/ja305261h.
(118) Imamoto, T.; Sugiura, Y.; Takiyama, N. Organocerium Reagents. Nucleophilic Addition to Easily Enolizable Ketones. Tetrahedron Lett. 1984, 25 (38), 4233-4236.
https://doi.org/10.1016/S0040-4039(01)81404-0.
(119) Krasovskiy, A.; Kopp, F.; Knochel, P.; Krasovskiy, [A; Kopp, D.-C. F.; Knochel, P. Soluble Lanthanide Salts ($\mathrm{LnCl} 3 \cdot 2 \mathrm{LiCl}$) for the Improved Addition of Organomagnesium Reagents to Carbonyl Compounds. Angew. Chem. Int. Ed. 2006, 45 (3), 497-500. https://doi.org/10.1002/anie.200502485.
(120) Delaney, C. P.; Kassel, V. M.; Denmark, S. E. Potassium Trimethylsilanolate Enables Rapid, Homogeneous Suzuki-Miyaura Cross-Coupling of Boronic Esters. ACS Catal. 2020, 10 (1), 7380. https://doi.org/10.1021/acscatal.9b04353.
(121) Kassel, V. M.; Hanneman, C. M.; Delaney, C. P.; Denmark, S. E. Heteroaryl-Heteroaryl, SuzukiMiyaura, Anhydrous Cross-Coupling Reactions Enabled by Trimethyl Borate. J. Am. Chem. Soc. 2021, 143 (34), 13845-13853. https://doi.org/https://doi.org/10.1021/jacs.1c06419.
(122) Nagano, T.; Hayashi, T. Iron-Catalyzed Grignard Cross-Coupling with Alkyl Halides Possessing β-Hydrogens. Org. Lett. 2004, 6 (8), 1297-1299. https://doi.org/10.1021/ol049779y.
(123) Everson, D. A.; Jones, B. A.; Weix, D. J. Replacing Conventional Carbon Nucleophiles with Electrophiles: Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides. J. Am. Chem. Soc. 2012, 134 (14), 6146-6159. https://doi.org/10.1021/ja301769r.
(124) Krow, G. R.; Huang, Q.; Lin, G.; Centafont, R. A.; Thomas, A. M.; Gandla, D.; DeBrosse, C.; Carroll, P. J. 5-Carboxy-2-Azabicyclo[2.1.1]Hexanes as Precursors of 5-Halo, Amino, Phenyl, and 2-Methoxycarbonylethyl Methanopyrrolidines. J. Org. Chem. 2006, 71 (5), 2090-2098. https://doi.org/10.1021/jo052506b.
(125) Hodgson, D. M.; Kloesges, J. Lithiation-Electrophilic Substitution of N-Thiopivaloylazetidine. Angew. Chem. Int. Ed. 2010, 49 (16), 2900-2903. https://doi.org/10.1002/anie. 201000058.
(126) Sumiyoshi, T.; Enomoto, T.; Takai, K.; Takahashi, Y.; Konishi, Y.; Uruno, Y.; Tojo, K.; Suwa, A.; Matsuda, H.; Nakako, T.; Sakai, M.; Kitamura, A.; Uematsu, Y.; Kiyoshi, A. Discovery of Novel N-Substituted Oxindoles as Selective M1 and M4 Muscarinic Acetylcholine Receptors Partial Agonists. ACS Med. Chem. Lett. 2013, 4 (2), 244-248. https://doi.org/10.1021/ml300372f.
(127) Gross, H.; Kaltenbäck, E. The Clinical Position of Moperone among the Butyrophenones. Nord. J. Psychiatry 2009, 23 (1), 4-9. https://doi.org/10.3109/08039486909132154.
(128) Anjaiah, S.; Chandrasekhar, S.; Grée, R. Stetter Reaction in Room Temperature Ionic Liquids and Application to the Synthesis of Haloperidol. Adv. Synth. Catal. 2004, 346 (11), 1329-1334. https://doi.org/10.1002/adsc. 200404123.
(129) Ho, G. D.; Anthes, J.; Bercovici, A.; Caldwell, J. P.; Cheng, K. C.; Cui, X.; Fawzi, A.; Fernandez, X.; Greenlee, W. J.; Hey, J.; Korfmacher, W.; Lu, S. X.; McLeod, R. L.; Ng, F.; Torhan, A. S.; Tan, Z.; Tulshian, D.; Varty, G. B.; Xu, X.; Zhang, H. The Discovery of Tropane Derivatives as Nociceptin Receptor Ligands for the Management of Cough and Anxiety. Bioorg. Med. Chem. Lett. 2009, 19 (9), 2519-2523. https://doi.org/10.1016/J.BMCL.2009.03.031.
(130) Gitto, R.; De Luca, L.; Ferro, S.; Russo, E.; De Sarro, G.; Chisari, M.; Ciranna, L.; Alvarez-Builla, J.; Alajarin, R.; Buemi, M. R.; Chimirri, A. Synthesis, Modelling and Biological Characterization of 3-Substituted-1H-Indoles as Ligands of GluN2B-Containing N-Methyl-d-Aspartate Receptors. Bioorg. Med. Chem. 2014, 22 (3), 1040-1048. https://doi.org/10.1016/J.BMC.2013.12.040.
(131) Crawforth, J.; Goodacre, S.; Maxey, R.; Bourrain, S.; Patel, S.; Marwood, R.; O'Connor, D.; Herbert, R.; Hutson, P.; Rowley, M. 3-(4-Piperidinyl)- and 3-(8-Aza-Bicyclo[3.2.1]Oct-3-YI)-2-Phenyl-1H-Indoles as Bioavailable H5-HT2A Antagonists. Bioorg. Med. Chem. Lett. 2000, 10 (24), 2701-2703. https://doi.org/10.1016/S0960-894X(00)00559-X.
(132) Ucar, S.; Dastan, A. One-Pot Homo- and Cross-Coupling of Diazanaphthalenes via C-H Substitution: Synthesis of Bis- and Tris-Diazanaphthalenes. J. Heterocycl. Chem. 2020, 57 (11), 4013-4022. https://doi.org/10.1002/JHET.4111.
(133) Carson, M. W.; Giese, M. W.; Coghlan, M. J. An Intra/Intermolecular Suzuki Sequence to Benzopyridyloxepines Containing Geometrically Pure Exocyclic Tetrasubstituted Alkenes. Org. Lett. 2008, 10 (13), 2701-2704. https://doi.org/10.1021/ol800834q.
(134) Michels, T. D.; Michelle, K.; Nidhi, A.; Rowbottom, M. W.; Coburn, C. A. WO2022109492A1 Pyrrolopyridazine compounds as kinase inhibitors.
https://patents.google.com/patent/WO2022109492A1/en?oq=WO2022109492+A1 (accessed 2023-08-25).
(135) O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3 (10), 1-14.
https://doi.org/10.1186/1758-2946-3-33/TABLES/2.
(136) Pracht, P.; Bohle, F.; Grimme, S. Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. Phys. Chem. Chem. Phys. 2020, 22 (14), 7169-7192. https://doi.org/10.1039/C9CP06869D.
(137) Spicher, S.; Grimme, S. Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems. Angew. Chem. Int. Ed. 2020, 59 (36), 15665-15673. https://doi.org/10.1002/ANIE. 202004239.
(138) Grimme, S. Exploration of Chemical Compound, Conformer, and Reaction Space with MetaDynamics Simulations Based on Tight-Binding Quantum Chemical Calculations. J. Chem. Theory Comput. 2019, 15 (5), 2847-2862. https://doi.org/10.1021/acs.jctc.9b00143.
(139) Neese, F. Software Update: The ORCA Program System—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12 (5), e1606. https://doi.org/10.1002/WCMS.1606.
(140) Neese, F. Software Update: The ORCA Program System, Version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8 (1), e1327. https://doi.org/10.1002/WCMS.1327.
(141) Neese, F.; Wiley, J. The ORCA Program System. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2 (1), 73-78. https://doi.org/10.1002/WCMS.81.
(142) Raucher, S.; Macdonald, J. E. Synthesis of 4-Alkoxy-N-Carboalkoxy-1,2-Dihydropyridines. Synth. Commun. 2006, 10 (4), 325-331. https://doi.org/10.1080/00397918008062757.
(143) Yamaguchi, R.; Moriyasu, M.; Yoshioka, M.; Kawanisi, M. Reaction of Allylic Tin Reagents with Nitrogen Heteroaromatics Activated by Alkyl Chloroformates: Regioselective Synthesis of α Allylated 1,2-Dihydropyridines and Change of the Regioselectivity Depending on Methyl Substituents at the Allylic Moiety. J. Org. Chem. 1988, 53 (15), 3507-3512.
https://doi.org/10.1021/jo00250a018.
(144) Moriarty, R. M.; Vaid, R. K.; Duncan, M. P. Hypervalent lodine Oxidation of Hydrazine Hydrate in Dichloromethane. A New Method for Diimide Generation. Synth. Commun. 2006, 17 (6), 703-708. https://doi.org/10.1080/00397918708075744.
(145) Ireland, P. G. 1-(1-Hydrocarbyl-4-Piperdyl)-2-Indolinone. 3,325,499, 1967. https://patents.google.com/patent/US3325499A/en?oq=US3325499A.
(146) Roy, S.; Haque, S.; Gribble, G. W. Synthesis of Novel Oxazolyl-Indoles. Synthesis (Stuttg). 2006, 2006 (23), 3948-3954. https://doi.org/10.1055/S-2006-950318.
(147) Yan, Y. H.; Ding, H. S.; Zhu, K. R.; Mu, B. S.; Zheng, Y.; Huang, M. Y.; Zhou, C.; Li, W. F.; Wang, Z.; Wu, Y.; Li, G. B. Metal Binding Pharmacophore Click-Derived Discovery of New BroadSpectrum Metallo- β-Lactamase Inhibitors. Eur. J. Med. Chem. 2023, 257, 115473. https://doi.org/10.1016/J.EJMECH.2023.115473.
(148) Ayers, T. A.; Gelormini, A. M.; Shay, John, J. J.; Sledeski, A. W.; Yu, Y. Regio-Selective Ullmann Synthesis of 4-Bromo-3-Methyl-5-Propoxy-Thiophene-2-Carboxylic Acid. WO2008109786A2, 2008.
(149) Davis, H. J.; Genov, G. R.; Phipps, R. J. Meta-Selective C-H Borylation of Benzylamine-, Phenethylamine-, and Phenylpropylamine-Derived Amides Enabled by a Single Anionic Ligand. Angew. Chem. Int. Ed. 2017, 56 (43), 13351-13355.
https://doi.org/10.1002/anie.201708967.
(150) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42 (2), 339-341. https://doi.org/10.1107/S0021889808042726.
(151) Sheldrick, G. M. SHELXT - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A 2015, 71 (1), 3-8. https://doi.org/10.1107/S2053273314026370.
(152) Sheldrick, G. M.; IUCr. A Short History of SHELX. Acta Crystallogr. Sect. A 2007, 64 (1), 112122. https://doi.org/10.1107/S0108767307043930.

[^0]: * Isolated yield

[^1]: ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}, rotamers) $\delta 163.3,161.9,161.7,156.6,156.3,149.5,149.4,136.5,122.6$, $122.1,121.8,121.5,68.3,68.0,61.6,61.0,57.9,57.0,56.9,52.3,52.1,48.9,48.2,46.8,37.5,36.3,36.0$, 31.9, 31.7, 29.0.

