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Abstract  

This doctoral thesis presents a comprehensive study on the application 

of deep learning for a variety of vision tasks, with a focus on disease 

detection. The research covers developing and evaluating various deep 

learning architectures, ranging from ResNets to Vision Transformers, as 

well as traditional machine learning methods such as support vector 

machines and random forests. These approaches were applied to detect 

diverse diseases, including SARS-CoV-2, skin cancer, and brain cancer. 

This doctoral thesis aims to deliver novel approaches for personalised 

medicine and human-sensible applications. A human-sensible application is 

designed to be easily understandable and interpretable by humans, allowing 

for more informed decision-making and improved communication between 

humans and machine learning systems. 

The study's results demonstrate the potential of deep learning methods to 

achieve state-of-the-art performance in SARS-CoV-2 detection, epidermal 

lesions screening, and the assessment of brain cancer contours. In addition 

to developing these methods, this doctoral thesis also investigates the use 

of high-performance computing technologies to accelerate their 

implementation, including custom CUDA/C code. Real-time 

implementations of deep learning architectures for skin cancer and brain 

cancer were also developed and presented in this thesis. 

The research presented in this thesis significantly contributes to artificial 

intelligence and deep learning for vision tasks. The development and 

evaluation of a wide range of deep learning architectures and the 

investigation of high-performance computing technologies provide 

valuable insights into the capabilities and limitations of these approaches. 

The real-time implementations developed in this study have the potential to 

significantly impact the speed and accuracy of disease detection in a 

clinical setting. Overall, the results of this research demonstrate the 

potential of deep learning and high-performance computing technologies to 

enable accurate and efficient disease detection for personalised medicine 

and human-sensible applications. 
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FID FRECHÈT INCEPTION DISTANCE 

FNRC FALSE NEGATIVE RATE PER CLASS 



 VIII 

FOV FIELD OF VIEW 

GA GENETIC ALGORITHM 

GANS GENERATIVE ADVERSARIAL NETWORKS 

GB GLIOBLASTOMA 

GPU GRAPHICS PROCESSING UNIT 

GUI GRAPHICAL USER INTERFACE 

HELICOID HYPERSPECTRAL IMAGING CANCER DETECTION 

HPC HIGH-PERFORMANCE COMPUTING 

HS HYPERSPECTRAL 

HSI HYPERSPECTRAL IMAGING 

ICCAS INNOVATION CENTER COMPUTER-ASSISTED SURGERY 

ICU INTENSIVE CARE UNIT 

IDE INTEGRATED DEVELOPMENT ENVIRONMENT 

IGS IMAGE GUIDED STEREOTACTIC 

IMRI INTRAOPERATIVE MAGNETIC RESONANCE IMAGING 

IOT INVASIVE VENTILATION 

IOU INTERSECTION OVER UNION 

IRCCS ISTITUTO DI RICOVERO E CURA A CARATTERE SCIENTIFICO 

KNN K-NEAREST NEIGHBOURS 

LDA LINEAR DISCRIMINANT ANALYSIS 

LUS LUNG ULTRASOUND 

LWIR LONG WAVE INFRARED 

MBFS MEAN BOUNDARY-F1 SCORE 

MDP MARKOV DECISION PROCESS 

ME MALIGNANT EPITHELIAL 

ML MACHINE LEARNING 

MLP MULTI-LAYER PERCEPTRON 

MM MALIGNANT MELANOMA 

MRI MAGNETIC RESONANCE IMAGING 

MSA MULTI-HEAD SELF ATTENTION 

MSC MELANOMA SKIN CANCER 

MSE MEAN SQUARE ERROR 

NIR NEAR INFRARED 

NLP NATURAL LANGUAGE PROCESSING 



 

 IX 

NMSC NON-MELANOMA SKIN CANCER 

NNS NEURAL NETWORKS 

NPS NASOPHARYNGEAL SWABS 

NRES NATIONAL RESEARCH ETHICS SERVICE 

PCA PRINCIPAL COMPONENT ANALYSIS 

PSLS PIGMENTED SKIN LESIONS 

PTX PARALLEL THREAD EXECUTION 

PWM PULSE WIDTH MODULATION 

QTH QUARTZ-TUNGSTEN HALOGEN 

RBF RADIAL BASIS FUNCTION 

RELUS RECTIFIED LINEAR UNITS 

RFS RANDOM FORESTS 

RGB RED GREEN AND BLUE 

RNNS RECURRENT NEURAL NETWORKS 

ROC-AUC 
RECEIVER OPERATING CHARACTERISTIC AREA UNDER THE 

CURVE 

RT-PCR REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTIONS 

SAM SPECTRAL ANGLE MAPPER 

SCC SQUAMOUS CELL CARCINOMA 

SMS STREAMING MULTIPROCESSORS 

SSL SELF-SUPERVISED LEARNING 

SVMS SUPPORT VECTOR MACHINES 

SWIR SHORT WAVE INFRARED 

TL TRANSFER LEARNING 

US ULTRASOUND 

VIT VISION TRANSFORMERS 

VNIR VISIBLE NEAR INFRARED 

WHO WORLD HEALTH ORGANIZATION 



 10 

Chapter 1 

1 Introduction 

Nowadays, researchers all over the globe would undoubtedly agree on 

defining Artificial Intelligence (AI) as the buzzword of the last decades. 

This expression progressively flooded scientific journals, leading to 

technological advancements in various contexts and impressive 

experimental outcomes1. Academics started to conceive the mathematical 

models behind AI in the 40s, and its first definition only came in 1956 from 

John McCarthy. During those years, Alan Turing proposed the question: 

can machines think? Although we probably can still not answer, we refer to 

AI as the set of algorithms and models inspired by the human brain to 

mimic its intelligence1–6. We can offer two very well-known statements. 

The first, coined by Arthur Samuel, defines AI as the field of study that 

allows computers to learn without being explicitly programmed . Tom 

Mitchell provides a more modern and formal interpretation where A 

computer program is said to learn from experience E concerning some 

class of tasks T and performance measure P if its performance at tasks in 

T, as measured by P, improves with experience E2. Currently, as Figure 1 

reports, by mentioning AI, we might refer either to Machine Learning (ML) 

or Deep Learning (DL), depending on the specific algorithm or 

mathematical model involved in accomplishing the desired task. 
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Figure 1. Definitions of Artificial Intelligence (AI), Machine Learning 

(ML) and Deep Learning (DL) 

Among the various research fields to which academic authors tried to 

apply AI, scientific investigators early identified medicine as one of the 

most promising. Its community has been taking advantage of these 

extraordinary developments. Indeed, researchers started designing AI 

applications that get the most out of medical images and clinical data, 

automating different healthcare steps to support clinical decisions1,3–6. 

Looking back at the 1970s, scientists first developed rule-based approaches 

to interpret medical imaging, diagnose diseases, and choose appropriate 

treatments aiming to assist physicians in generating diagnostic hypotheses 

in complex patient cases. Nevertheless, rule-based systems are costly to 

build and might present flaws, as they require an explicit definition of 

decision laws and human-computer interactions. Also, it was challenging to 

encode higher-order interactions among different pieces of knowledge 

authored by different experts, and the explainability of prior medical 

knowledge constrained the performance of the systems7–10.  

In recent decades, AI applications have experienced unprecedented 

breakthroughs, especially in computer vision, namely the field of artificial 

intelligence researching how to teach a machine to interpret and 

comprehend the visual world2. Notably, starting from any kind of imaging, 

we want to teach computers to identify visual patterns from data and react 

to what they see. In medicine, this translates to interpreting the visual data 

gathered from radiology examinations such as X-rays, ultrasound, and 

Computed Tomography (CT)1,3,4,6. Unlike the first generation of AI 

systems, which relied on the translation of medical knowledge into robust 

algorithmic rules by experts, recent AI research has leveraged machine and 
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deep learning methods, which can account for complex interactions and 

identify patterns from the data1,3. The ongoing crucial technological 

development supports this innovation. Healthcare research requires 

hardware capable of elaborating enormous amounts of data and 

mathematical models in real-time to comply with surgical operations or 

provide fast answers to patients to treat them according to the highest 

standards3,11. High-Performance Computing (HPC) technologies, namely 

systems comprising multi and many-core processors to spread the 

computational load and reduce elaboration times, play a significant role in 

this sense11–13. Indeed, it enables academic investigators and scientists to 

change how we think about medicine, designing the so-called human-

sensible applications for personalized medicine11. Indeed, as Figure 2 

reports, the number of scientific publications concerning AI projects in 

medicine astoundingly increased across the years thanks to the HPC 

advancements sustaining the complex computational elaborations 

required1,5. The researchers aim to design perceptive systems to diagnose 

diseases in real-time to provide specific therapies that better suit different 

patients11,12.  

 

 

Figure 2. Number of publications from 2010 to 2020 containing keywords 

related to AI, ML or DL methods1 

More recently, the pandemic further stressed the need for AI-based 

diagnostic systems and intelligent medical devices, accelerating the 

technological advances we all experience. Indeed, the SARS-CoV-2 (i.e., 

Covid-19) outbreak in 2020 challenged health systems worldwide, eliciting 

an urgent need for effective and highly reliable diagnostic instruments to 

help medical personnel. Researchers designed and developed different 

solutions ranging from Covid-19 positivity assessment to imaging analytics 

to evaluate patients' conditions14–17.  

Nonetheless, the data science process, from data collection to model 

deployment on HPC hardware, needs a rigid structure to allow AI 

instruments' fast-paced design, development, and release. Figure 3 reports 
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the process as composed of steps requiring diverse professional figures. 

Indeed, data engineers and analysts collect, clean, and explore the data to 

enable researchers in the pipeline to design different models later deployed 

on HPC hardware. The HPC hardware might also be embedded to fit better 

the ingenious devices supported with AI11,18,19.  

 

Figure 3. The basic steps of a data science project: from data collection to 

model deployment 

The educational path reviewed in this doctoral thesis describes a 

collection of works following the data science process reported in Figure 3. 

Namely, we will address projects concerning different data types and 

sources, ranging from the HypErspectraL Imaging Cancer Detection 

(HELICoiD) brain cancer images11,12 to the clinical and radiology data 

related to the SARS-CoV-2 disease15. We will describe how the data were 

first collected, cleaned, and explored to gather knowledge to support 

decisions. Then, we will understand how to enlarge the statistical variance 

of the information at our disposal, envisioning either standard data 

augmentation techniques or generative models that make AI systems 

robust, enabling disturbance rejection to adversarial attacks. The European 

Commission laid down harmonised rules on artificial intelligence, defining 

the so-called AI act. The AI act declares that cybersecurity is essential in 

guaranteeing that AI applications are resilient against endeavours to alter 

their service, behaviour, and performance or compromise their safety 

properties by malicious third players manipulating the system's 

vulnerabilities. Cyberattacks against AI systems can leverage AI-specific 

assets, such as trained models introducing adversarial attacks, which 

provide the optimised architecture with slightly different input and 

confound its behaviour. Accordingly, suitable measures should be taken by 

the providers of high-risk AI systems, considering the underlying 

infrastructure as appropriate, to ensure a level of cybersecurity appropriate 

to the risks. In this context, data augmentation is crucial since it prevents 

adversarial attacks on input data as much as possible. 

This doctoral thesis analyses a collection of machine and deep learning 

models trained on various datasets using different algorithms and 

architectures. To determine their strengths and weaknesses, we will assess 

these models according to specific performance metrics, such as accuracy, 

precision, recall, and F1 score. We will also compare the results of these 

models with traditional machine learning models to gain a better 
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understanding of the benefits and limitations of deep learning. As we move 

forward, we'll also consider the importance of GPUs, especially during 

deep learning models' training and inference stages, as they are critical for 

their performance. With many cores that perform parallel computations, 

GPUs allow for faster training and inference times than a CPU alone, 

which is particularly important when dealing with large datasets and 

complex models that can take days or even weeks to train on a CPU. 

Additionally, in medical contexts where policies are in place to ensure 

the privacy of patients, using a GPU or multi-GPU system is better than 

using cloud clusters. One of the main advantages of using a local GPU 

system is the ability to store and process patient data on-site, eliminating 

the need to transfer sensitive patient data to a cloud server. Furthermore, 

using a local GPU system is often more cost-effective than cloud clusters, 

especially when working with limited research budgets. Finally, in surgical 

scenarios where researchers must meet real-time constraints, using a local 

GPU system is critical, as latencies associated with data transfers can be 

detrimental to the outcome of the surgery. Using a local GPU system 

allows researchers to perform real-time analysis and make decisions 

quickly, which is crucial, for instance, to address the investigations in the 

brain cancer section of this doctoral thesis11,13,18.  

Medical AI applications, as they mature, face many challenges3,5. First, 

clinical contexts often offer poor datasets to work with, making it hard to 

exploit complex DL architectures. Not only do these architectures require 

vast amounts of data to extract functional patterns, but they also need HPC 

hardware. Indeed, the more complex the model, namely presenting larger 

structures with many parameters, the more we need to employ performing 

hardware to carry out computations. Likewise, medical data present 

challenges specific to its domain. For example, different experts may 

deliver contrasting opinions regarding a diagnosis. Consequently, we must 

set hierarchically structured and standardized evaluations to enable AI-

based diagnosis. Finally, from a regulatory perspective, clinical AI systems 

must be certified before large-scale deployment3,5,6. Therefore, the 

manuscript proposes contemporary model deployment approaches 

employing hardware, Nvidia GPUs, and programming frameworks to 

accelerate the algorithms and allow the design of blueprints. Modern AI 

must translate to blueprints for regulatory entities such as the Food and 

Drug Administration (FDA) or the European Commission to evaluate to 

meet certifications currently under investigation in AI acts, including time-

sensitive and performance criteria. Regulators have struggled to interpret 

existing frameworks concerning perceptive algorithms, whose functioning 

can change with ongoing training and optimization and whose output we 

often cannot clearly explain3,6. Many clinical applications of AI are seeking 

regulatory approval. For instance, a deep-learning system for diagnosing 

cardiovascular diseases using cardiac MRI images was approved by the 

FDA in 20181,3–6. The government's new interpretation is a substantial step 

toward rules that protect patients without inhibiting innovation. These 
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represent only a few challenges we will encounter in this manuscript and 

proposed solutions. 

This doctoral thesis addresses artificial intelligence applied to various 

medical data, especially Hyperspectral Images (HSIs), and matured around 

the state of the art. Notably, deep learning novel approaches were designed 

when literature only proposed standard machine learning processes. Not 

only was a robust artificial intelligence methodology applied to the medical 

context, but novel GPU approaches and frameworks were also engineered 

and implemented to embed or simply accelerate the designed models (i.e., 

HPC), complying with the time-sensitive criteria required for industry 

translation (e.g., real-time requirements). The work presented in this 

manuscript was carried out thanks to tight and robust collaborations outside 

the academy, particularly with the Fondazione IRCCS Policlinico San 

Matteo of Pavia, the University of Las Palmas de Gran Canaria and the 

Innovation Center Computer-Assisted Surgery (ICCAS) of the University 

of Leipzig. 

Chapter 2 addresses medical imaging and the data types employed in 

this doctoral research. Furthermore, in Chapter 3, we explore artificial 

intelligence fundamentals, from the fundamental building blocks toward 

the architectures and frameworks used during the doctoral school. Chapter 

4 presents the HPC technologies' relevance in developing the algorithms 

designed and employed to produce accelerated algorithms embedded into 

novel medical instruments. Specifically, we will address the description of 

hardware devices and the CUDA language together with its library 

extensions, providing syntax definitions and some examples. Finally, 

Chapters 5, 6 and 7 will go through the AI studies, grouped by disease type. 

Namely, we address studies to counteract SARS-CoV-2 in Chapter 5, 

epidermal tumours assessment in Chapter 6 and brain cancer contours 

delineation in Chapter 7. Finally, the thesis drives the conclusions from the 

works described in this manuscript and their comprehensive discussion. 
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Chapter 2  

2 Healthcare applications: medical 
imaging and clinical data 

AI lately re-emerged into public consciousness and applied science 

corporations and researchers revealed breakthroughs and new technologies 

at an extremely high rate1,3,5,6. Despite its science-fictional characteristics, 

AI is a branch of computer science attempting to understand and design 

perceptive entities written as software programs3. The booming growth of 

image classifiers has contributed to the recent renewal of AI since 2012, 

gradually transforming the geography of healthcare and biomedical 

research. Despite AI's progress during these years, it sorrowed from 

varying definitions. People in the 70s and 90s considered automated route 

planners and interpretations for electrocardiograms (ECGs) as examples of 

advanced AI1,3. Yet, they are so everywhere that most people would be 

surprised to think of them as true AI. Applications of medical-image 

diagnostic systems have expanded the frontiers of AI into areas previously 

mastered only by human experts. This boundary continues to expand into 

other areas of medicine, such as clinical practice and biomedical 

research1,3,5.  

Automated medical-image diagnosis is arguably the most flourishing 

discipline of healthcare AI. Many specialities, including radiology, 

ophthalmology, and dermatology, rely on image-based diagnoses. Notably, 

the radiological practice leans primarily on imaging for diagnosis and thus 

fits AI techniques, as images comprise the information needed to arrive at 

the proper treatment description of hardware devices and the CUDA 

language with syntax and some examples  1,3–6.  

This chapter will go through the various data types addressed in this 

doctoral thesis. Indeed, data curation and exploration are the first steps 

toward the invention of AI technologies in healthcare. Chapter 2 will 

describe the data source, what application this manuscript used it for, how 

we interpreted the information, and the dataset gathered from its collection. 
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2.1. Lung UltraSound 

An ultrasound (US), also known as a sonogram, is an imaging 

examination that operates sound waves to assemble a picture of organs and 

tissues. Ultrasound does not imply the presence of radiations compared 

to x-rays and can also show moving body parts, such as a beating heart20. 

In this thesis, we focus on the diagnostic ultrasound15,20. Namely, the 

examination physicians use to collect knowledge about internal body 

regions, including the heart, blood vessels, liver, bladder, kidneys, and 

lungs.  

During the last decade, Lung US dramatically increased its popularity. 

Physicians routinely perform it at the patient's bedside, especially in the 

hospitals' emergency departments (EDs) and in intensive care units (ICUs) 

15,20. Radiation-free lung ultrasound (LUS) requires high expertise, and it 

is, therefore, underutilised. Indeed, it requires formal training, which 

radiology residence education does not often include. It demonstrated a 

strong correlation with CT scan results and high reliability in pneumonia 

detection, even in the early stages. Therefore, the diagnostic radiologist 

should be fluent in LUS execution and understanding  15,20. 

Lung US is radiation-free, low-cost, fast, and portable, allowing real-

time investigation of pulmonary regions. Data analyses indicate that it has 

higher sensitivity and similar specificity for detecting miscellaneous 

complications such as pneumonia and infections compared with chest 

radiography 15,20. It is increasingly operated in the ICUs and EDs to detect 

these diseases. Critical care providers have adopted the bedside lung US 

protocol as a standardised approach to assessing patients quickly21,22. 

Indeed, many practitioners advocated for the regular use of LUS to 

decrease chest radiography employment, which is associated with increased 

cost and nontrivial cumulative radiation exposure, especially in pediatric 

patients. Lung US also has a well-established role in guiding interventional 

processes, especially in paediatrics where it is employed for the enhanced 

visualisation of irregularities in the thorax due to the small chest diameters 

of children and the absence of ionising radiation to assemble diagnostic 

imaging outcomes20,21.  

Concerning LUS's general functioning, it comprises several 

limitations20,21,23: 

 It is operator-dependent, and its quality and interpretation vary 

by expertise. Indeed, advanced technical skills and clinical 

understanding increase the diagnostic yield. Nonetheless, studies 

have shown that healthcare providers can learn the essentials of 

the modality with relative ease 

 Lung ultrasound requires up to 20 minutes to perform the 

examination, whereas physicians can complete chest radiography 

in fewer minutes 
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 Lung US bears artefact-based interpretation, and its findings, 

namely A-lines, B-lines, and consolidations can be observed in 

various conditions (Figure 4) 

 

Figure 4. Artefacts derived from lung ultrasound (LUS) examination. From 

left to right we observe complete lung aeration towards no aeration20,21,23  

Complete lung US involves examining each hemithorax in the anterior, 

lateral, and posterior lung zones (Figure 5)23. Physicians should also 

investigate all lung fields in transverse and longitudinal directions to avoid 

missed abnormalities. In this setting, patients can receive the examination 

both in the supine and upright positions.  
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Figure 5. Hemitorax division into ParaSternal Line (PSL), Anterior Axillary 

Line (AAL) and Posterior Axillary Line (AAP)23  

Proper technique is crucial to provide acceptable imaging, and since 

LUS is artefact-based, investigators must hold the probe on the skin to 

ensure perpendicular orientation to the pleural line to collect them for 

interpretation20,21,23. Indeed, chest ultrasound is unique among other US 

examinations because it generates artefacts instead of direct anatomy 

observation20,21,23. Most ultrasound waves are reflected at the pleura in an 

air-filled lung owing to the acoustic impedance mismatch at the air and 

soft-tissue interface, resulting in a hyperechoic pleural line. Consequently, 

observers can report A-lines for interpretation, namely horizontal 

reverberations of the hyperechoic pleural line reflected from the air-filled 

lung (Figure 4). The lung interstitium might present thickening, for 

instance, due to pulmonary oedema, interstitial inflammation, or infection 

20,21,23. In this case, B-lines, hyperechoic vertical lines traversing the 

imaging field below the pleural line, replace the normal A-lines (Figure 4). 

Lung collapse or consolidation removes the A-lines and allows for direct 

visualisation of the parenchyma (Figure 4). Physicians can also directly 

report pleural effusions, both complex and straightforward. Regardless, if a 
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pulmonary irregularity does not touch the pleural line, it does not generate 

artefacts due to the acoustic impedance mismatch between the air and soft -

tissue interface. Fortunately, most clinically significant anomalies, 

especially life-threatening ones, border the pleural line, allowing its 

detection. 

2.2. Lung UltraSound in the SARS-CoV-2 pandemic  

SARS-CoV-2 (Covid-19) originated in China and has abruptly scattered 

in Europe since February 202015,24,25. It rapidly dispersed worldwide and 

still challenges health systems. It manifests after a long incubation period 

and a high contagion rate, thus necessitating the development of fast and 

cheap diagnostic tools to detect infected subjects15,16,23. Moreover, it can 

cause bilateral multifocal interstitial pneumonia, rapidly evolving 

into acute respiratory distress syndrome (ARDS), responsible for 

generating hundreds of thousands of deaths worldwide26. Subjects infected 

by SARS-CoV-2 may present an evolving clinical picture ranging from 

focal to multifocal interstitial pulmonary involvement that LUS may 

visualise in the so-called white lung pattern, as well as by bilateral 

submantellar-subpleural consolidations. The high contagion rate adds a 

further level of complexity because patient care, according to the 

highest healthcare standards, must be combined with strict pandemic 

protocols that healthcare professionals must follow for their safety14,26. 

Currently, the main diagnostic tools for detecting infected people 

comprise reverse transcription-polymerase chain reactions (RT-PCR) 

in nasopharyngeal swabs (NPS) and IgM-IgG integrated antibody tests. 

However, both these tools present drawbacks24,27,28. The first does not 

reach a 100% sensitivity, introducing false-negative outcomes, one of the 

causes of the inaccurate partition of patient streams in hospitals. Likewise, 

it is time-consuming, and when the number of infected subjects increases, 

unavoidable shortages in reagents and other laboratory reserves occur, 

precluding test completion. IgM-IgG tests not only exhibit the same poor 

sensitivity, with a slight increase only after a specific duration following 

symptom manifestation but also may result in false negatives in the early 

phases of the infection. Covid-19 forms with mild or no manifestations but 

can rapidly transform into highly critical conditions with possibly fatal 

consequences due to multi-organ failure. Therefore, it is vital to promptly 

and reliably detect infected subjects to apply the appropriate treatments 

early and prevent the virus from spreading. Moreover, no swab tests can 

describe the presence or severity of lung engagement14,26,29.  

First-line diagnosis of pneumonia comprises chest X-rays (CXR) for 

first-aid treatment of patients exhibiting symptoms of pneumonia30. 

Potential alternatives to CXR include computed tomography (CT) scans 

and lung ultrasound (LUS)20,21,23. Breakdowns concerning these procedures 

state that LUS and CT scans are significantly better first-line diagnostic 

tools than CXR, whose main drawback is poor sensitivity. However, 

https://www.sciencedirect.com/topics/medicine-and-dentistry/idiopathic-interstitial-pneumonia
https://www.sciencedirect.com/topics/medicine-and-dentistry/acute-respiratory-distress-syndrome
https://www.sciencedirect.com/topics/medicine-and-dentistry/healthcare-standard
https://www.sciencedirect.com/topics/medicine-and-dentistry/nasopharyngeal-swab
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although ultrasonography is a cost-effective, radiation-free, and promising 

tool, highly skilled radiographers must perform it to achieve accurate 

results. LUS effectively performed at the bedside in approximately 13 min 

yielding a higher sensitivity than CXR. Thus, it is comparable to but 

cheaper than CT imaging tools. Moreover, LUS is easier to disinfect and 

can be repeated even with short time intervals between two observations, 

while the same is not true for the other methodologies20,21,23. However, it 

has certain drawbacks, such as operator dependency and high expertise 

requirements, resulting in underutilisation, and it may not be useful for 

Covid-19 asymptomatic patients. 

In the following, Chapter 2 analyses the main patterns arising from LUS 

examination, especially in conditions such as SARS-CoV-220,21,23: 

 The A-line artefact in healthy air-filled lungs: as Figure 4 

reports, the pleural line is continuous and regular, and A-lines 

arise as horizontal artefacts owing to the high reflectance of the 

aerated lung surface. Hence, multiple reflections appear between 

the probe and the lung surface. In addition, during respiration, the 

sliding visceral and parietal pleura causes the shimmering motion 

of the pleural line, referred to as lung sliding. However, 

pathologic conditions like asthma and pulmonary embolism with 

air-filled lungs also have A-line artefacts. In addition, a 

pulmonary infarct appears as a consolidation abutting the pleural 

surface  

 Interstitial Thickening: when the pulmonary interstitium 

thickens, B-lines replace the normal A-lines, consisting of well-

defined, laserlike, vertical, echogenic beams arising from the 

pleural line and extending to the bottom of the image. Scattered 

B-lines, namely fewer than two per intercostal space, can be 

present in healthy lungs. The number of B-lines directly 

correlates to disease severity 

 Infection: LUS is excellent for assessing suspected pulmonary 

disease. Indeed, pneumonia has several imaging formations 

depending on the consolidation area or interstitial involvement. 

For instance, a thoroughly consolidated lung emulates the solid 

appearance of a liver (Figure 4). In a consolidation, fluids fill the 

alveoli, removing the normal A-lines. Therefore, observers report 

lungs characterised by dense and broadly extended white lung 

areas with grand coalitions. Physicians report this severity level 

when the lung presents tissue-like patterns, namely wide, thick, 

and dark consolidations  

During the SARS-CoV-2 pandemic, healthcare professionals reported B-

line artefacts of varying severity, consolidations, and pleural irregularities 

in Covid-19 infection (Figure 4). In areas of focal ground-glass 

opaqueness, diffuse B-lines arise with a casualty of A-lines. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/echography
https://www.sciencedirect.com/topics/medicine-and-dentistry/radiographer
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2.3. The LUS SARS-CoV-2 database 

Since March 2020, the Fondazione IRCCS San Matteo Hospital's ED of 

Pavia has been collecting LUS data to assess patients affected by Covid-19. 

The personnel utilised the ultrasound machine Aloka Arietta V70 (Hitachi 

Medical Systems), providing convex and linear probes at 5 MHz and 12 

MHz. They standardised the acquisition process through abdominal 

settings, focusing on the pleural line, reaching a depth of 10 cm with the 

convex probe. Moreover, they accommodated the gain to acquire the best 

possible imaging of the pleura, vertical artefacts, and peripheral 

consolidations with or without air bronchograms. Physicians performed 

complete longitudinal and transversal scans to explore the entire pleural 

length, disabling all harmonics and artefact-erasing options15,23. 

Physicians performed LUS on people with clear clinical circumstances 

due to the RT-PCR test introducing many false negatives. Namely, the 

artefacts comprised either pulmonary oedema or non-cardiac causes of 

interstitial syndromes15,23. Although many people presented a negative RT-

PCR test, subjects manifesting lung involvement are highly likely to be 

Covid-19 positive. Physicians are used to differentiating suspicious from 

healthy subjects following a triaging procedure involving LUS 

investigation. 

Hereafter, we define a clip as the result of an LUS examination. It 

consists of frames (i.e., images) that this doctoral thesis operated. The 

proposed definition grant continuity regarding observations in other similar 

works15. 

Table 1. Lung UltraSound scores description15,23,31 

Severity Score LUS Score 

Score 0 A-lines with at most two B-lines 

Score 0* 
A-lines, and at most two B-lines, with a slightly irregular 

pleural line 

Score 1 Artefacts occupy at most 50% of the pleura 

Score 1* 
Artefacts occupy at most 50% of the pleura and present a 

damaged pleural line 

Score 2 
Artefacts occupy more than 50% of the pleura, while 

consolidated areas may be visible 

Score 2* 

Artefacts occupy more than 50% of the pleura, while 

consolidated areas may be visible. The pleura is either 

damaged or irregular 

Score 3 Tissue-like pattern 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/false-negative-result
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The hospital's medical personnel collected 12 clips for each patient, all 

assigned with a standardised LUS score (Table 1), one for each chest 

portion, as depicted in Figure 5. The ED collected data from 450 patients, 

whose clinical information is in Table 2, and were treated in Pavia, and 

gathered 5400 clips. Table 2 lists the subjects split into Covid-19 positive 

and negative, and the clinical data through median and 25 th–75th percentile 

values. The LUS Score entry indicates the sum of the values collected for 

each patient who received 12 examinations15,23,31. 

Table 2. Fondazione IRCCS Hospital patients' clinical information15,17 

 
Negative (172) Positive (278) Total (450) 

 
Median 25 - 75 P Median 25 - 75 P Median 25 - 75 P 

Age (years) 54 
37.0–

67.5 
63 

51.0–

75.0 
60 

47.0–

73.0 

Systolic blood pressure 

(mmHg) 
135 

125.0–

150.0 
130 

115.5–

144.0 
130 

120.0–

145.0 

Diastolic blood pressure 

(mmHg) 
80 

70.0–

90.0 
80 

70.0–

85.8 
80 

70.0–

90.0 

Respiratory rate 20 
16.0–

22.0 
20 

16.0–

26.0 
20 

16.0–

24.0 

Oxygen saturation (%) 97 
94.0–

98.0 
94 

90.0–

97.0 
95 

91.0–

98.0 

Body temperature (°C) 36.7 
36.2–

37.6 
37.1 

36.5–

38.0 
37 

36.3–

37.9 

Hemoglobin (g/dL) 13.5 
12.2–

14.9 
13.9 

12.8–

14.9 
13.7 

12.6–

14.9 

White blood cell (10∧9/L) 8.2 6.3–11.5 6.3 4.8–8.1 6.92 5.1–9.2 

Lymphocytes (10∧9/L) 1.555 0.9–2.2 0.8 0.6–1.1 1 0.7–1.6 

Platelets (10∧9/L) 224.5 
179.5–

272.5 
184 

146.0–

239.0 
204 

157.0–

256.7 

C-reactive protein (mg/dL) 1.325 0.1–10.5 7.97 2.6–15.2 5.29 0.9–14.4 

Lactate dehydrogenase 

(U/L) 
222 

182.0–

290.0 
326 

243.5–

428.0 
286 

211.2–

399.7 

Creatine phosphokinase 

(U/L) 
86 

51.0–

143.0 
113 

68.0–

293.5 
99 

62.0–

217.7 

PH 7.4 7.4–7.4 7.4 7.4–7.4 7.44 7.4–7.4 

PaO2/FiO2 392.1 
317.5–

462.9 
299.5 

226.4–

352.7 
323.8 

256.0–

405.8 

Alveolar-arterial gradient 

of O2 (mmHg) 
22.4 9.5–42.5 47.3 

33.6–

93.1 
40.4 

20.8–

60.8 

LUS Score 2 0.0–7.5 11 6.0–16.0 7 2.0–13.0 

 

First, physicians assigned a clip with Score 0 when the pleural line was 

continuous and regular, and A-lines were present as horizontal artefacts due 

to the high reflectance of the aerated lung surface. Hence, multiple 

reflections appeared between the probe and the lung surface.  
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Next, the personnel defined Score 0* as any clip evaluated as Score 0 

but with an irregular or slightly damaged pleural line. 

Furthermore, the severity level increased when either vertical areas of 

white or consolidations were visible (Score 1). These white regions are due 

to local alterations in the acoustic properties of the lung. Namely, the lung 

volume, previously aerated and healthy, transformed into a tissue or water-

like entity. This process demonstrates the formation of perpendicular 

artefacts. The physicians ranked the clip with a Score of 1 when observing 

these artefacts for less than 50% of the pleura. 

In addition to the introduction of Score 0*, they defined Score 1* as a 

recording that would have typically been assigned Score 1 but had an 

irregular or shattered pleural line. Clearly, the higher the score, the greater 

the injury detected upon pleural investigation. 

Furthermore, specialists generally estimate a patient's lung as Score 2 if 

more significant consolidated areas (i.e., dark portions) appear along 

associated regions of white below solidifications. This pattern typically 

leads to the white lung20,21,26,31. Dark and dense partitions suggest a shift in 

the tissue and its acoustic characteristics toward a situation commonly 

reported when scanning soft tissue. Regardless, the formation of white and 

large zones indicates a not fully ventilated lung: air is still present but 

embedded in tissue-like compounds. The medical personnel marked a 

recording with this score when the artefacts scattered on more than 50% of 

the pleura, and they observed both small and bounded consolidations, 

demonstrating a more acute stage of the infection. 

Similarly, the specialists designated a Score 2* when the pleura was 

either irregular or injured in a lung that would have typically received a 

Score 2. 

Finally, lungs characterised by dense and vast developed white lung 

regions with abundant consolidations received a Score of 3. This severity 

level describes lungs presenting tissue-like patterns, namely widely thick 

and dark consolidations. 

Nevertheless, not all clips obtained an LUS score from the same medical 

practitioner. Therefore, we further reviewed the collection to validate the 

classifications and avoid incorrect severity-scoring problems. This process 

was mandatory to ensure that each clip had a standardised LUS score and 

that there were no discrepancies in the scores assigned to different clips, 

which are problems stressed in other studies15. 

Fondazione IRCCS Policlinico San Matteo ED's physicians observed the 

methodological procedure and ensured that the labelling was correct. 

During the first part of the collection and annotation process, they manually 

selected all clips from each patient, assessed the quality of each clip, and 

proceeded to evaluate it according to the aforementioned scoring. They 

reviewed each clip to assign a score and verify that SARS-CoV-2 

pneumonia patterns were present. 

 

 

https://www.sciencedirect.com/topics/medicine-and-dentistry/visceral-pleura


Healthcare applications: medical imaging and clinical data 

 

 26 

2.4. Hyperspectral images 

 
 Hyperspectral imaging (HSI) is a non-invasive, non-ionising and 

label-free technique conceived originally for remote-sensing and military 

intents32–34. Thanks to technical refinements, HSIs evolved in applications 

in different fields such as archaeology and aerospace. At first, only a few 

corporations and academic institutes operated HSIs because acquisition 

equipment and computational systems were costly. Contemporary 

technological progress allowed the widespread use of hyperspectral images 

in many fields, becoming popular, especially in medicine, for cancer 

detection33–36. Hyperspectral (HS) images measure the reflected and 

transmitted light, gathering light-matter relations values associated with 

several bands (i.e., wavelengths) of the electromagnetic spectrum13. 

 

Figure 6. The difference between the information richness in a hypercube 

and an RGB image37  

Multiple shots aligned in neighbouring narrow wavelengths form the HS 

image, constituting a reflectance spectrum of all the pixels37. Therefore, the 

outcome is the HS cube in Figure 6 retaining both the spatial and spectral 

information of the analysed sample. Several studies discussed tumour cells 

exhibiting unique molecular spectral signatures and reflectance 

values32,34,37,38. Researchers exploit the light-matter physical interaction, 

causing each material or tissue to react differently to the beam radiation on 

its surface, owing to its molecular structure, allowing the discrimination 

between healthy and tumour tissue. Therefore, the hyperspectral image, 

also known as a hypercube, is a three-dimensional dataset having a two-

dimensional image at each wavelength. Researchers appreciate the light-

matter reaction in the pixel electromagnetic spectrum, which provides 

detailed information concerning the observed area represented by the 

pixel34.  
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Figure 7. Examples of spectral signatures. The image on the left displays an 

epidermal lesion whose coloured squares relate to the average spectral 

signatures in the right plot. The mean curves are calculated based on all 

pixels in each region37 

HS cubes differ from classical Red, Green and Blue (RGB) images due 

to the higher number of bands characterising them. Indeed, RGB 

photographs present only three bands, whilst hypercubes comprise 

hundreds of bands per pixel. Figure 7 highlights their differences in 

evaluating the reflectance curve (i.e., spectral signature)11.  

During the last decade, machine and deep learning (ML, DL) solutions 

emerged as a tool to analyse and cluster different cancer types in HSIs. 

Academics hardly interpret HSIs as they are structured, so researchers 

usually carry out hyperspectral image analysis via ML approaches. Among 

the medical subjects concerning ML and HSIs, literature focused on brain, 

skin, colon, and oesophageal cancer11,13,32,34,39. This chapter explores why 

this procedure presents medical advantages, especially for cancer detection. 

Namely, biochemical and morphological changes associated with lesions 

modify the optical characteristics of tissues, such as light absorption, 

scattering and fluorescence, providing valuable diagnostic information and 

allowing automatic cancer detection through HSIs. Despite the presence of 

other imaging techniques, such as optical spectroscopy, hyperspectral 

cameras can capture larger areas and deliver more accurate results in 

detecting cancers in the cervix, breast, skin, and brain cancer11,13,18. The 

different techniques mainly differ in the acquisition system setup, the 

nature of the samples, whether they are in-vivo, ex-vivo or in-vitro, the 

considered disease, and the classification algorithm. 

2.5. Hyperspectral cameras 

A spectrometer is an instrument that measures the electromagnetic field, 

namely an object that divides the collected light into a spectrum. 

Hyperspectral imaging uses a spectrometer to collect spectral information, 

and this device is called a hyperspectral camera.  
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Figure 8. Typical spectral imaging approaches. (a) Whiskbroom. 

(b) Pushbroom. (c) Staring. (d) Snapshot40  

These cameras collect information concerning hundreds of spectral 

bands with continuity over the entire spectrum of interest. Various 

acquisition techniques exist to obtain a hyperspectral image, and the most 

used are whiskbroom, pushbroom, staring and snapshot. 

The whiskbroom mode, used initially for satellites and known as the 

point scanning method, allows the reflected light's guidance through 

rotating mirrors towards a group of detector sensors. As shown in Figure 

8.a, the single point is scanned along the X or Y direction by moving the 

sample or detector, a prism scatters the reflected light, and a linear array 

detector records the spectrum. The hypercube (X, Y, λ) originates by 

acquiring the scene in the X and Y dimensions while collecting the 

wavelength domain (λ). Since it involves separate image acquisition along 

the two spatial dimensions, the whiskbroom technique requires a complex 

hardware configuration and a high scanning time. 

The pushbroom method, also known as line scanning, allows the 

grouping of no longer a single point but a line, with one spatial and one 

spectral dimension at a time. In this technique, light gathers through a 

collimated slit, then scatters on a 2D matrix detector, displaying spatial 

information along one axis and wavelength information along the other 

(Figure 8.b). The 3D data cube forms by moving the sample or the camera 

by scanning along the other spatial direction: the relative movement must 

be synchronous with the acquisition rate of the detector frames to produce a 

uniform image. A Pushbroom scanner can fetch more light than a 

whiskbroom, owing to its stay in a precise area for a longer time, providing 

an extended exposure on the array detector, hence higher spectral 

resolution. 
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The staring mode (Figure 8.c), also known as the band sequential 

method, uses filters instead of a prism in front of a detector matrix to gather 

a single-band 2D grayscale image with spatial information X and Y at 

once. After passing through focusing optics, a filter splits light to collect a 

small narrow band segment of the spectrum at a time. The 3D hypercube 

originates from defining the filter's wavelength as a function of time. 

Unlike the whiskbrooms and pushbrooms, the camera collects the scene 

from a spatial point of view, but one spectral band at a time, and the 

operator can freely select the number of bands to capture. 

Finally, the snapshot mode allows spatial and spectral information 

recording with a single exposure without scanning. This technique, as 

shown in Figure 8.d, allows the acquisition of the complete 3D datacube in 

a single integration time thanks to pixels remapping and the simultaneous 

scattering of the corresponding light through a prism on a detector. The 

great advantage is acquiring the entire scene in a single shot in terms of 

spectral and spatial resolution since the total number of pixels on the CCD 

detector limits the latter. 

Hyperspectral cameras also feature different sensors and detectors which 

characterise the wavelengths to which they are sensitive.  

Literature divides HS cameras into40,41: 

 VNIR (Visible Near Infrared): wavelengths from 400 nm to 

1000 nm 

 NIR (Near Infrared): wavelengths from 900 nm to 1700 nm 

 SWIR (Short Wave Infrared): wavelengths from 1000 nm to 

2500 nm 

 LWIR (Long Wave Infrared): wavelengths from 8000 nm to 

12000 nm 

2.6. Skin cancer detection via hyperspectral 
imaging 

Skin cancer affects the body's largest organ, thus representing one of the 

most frequent malignancies42,43. Physicians usually divide epidermal 

lesions into melanoma and non-melanoma skin cancer (MSC - NMSC). 
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Figure 9. Epidermal layers descriptions and schema44 

Most skin cancers begin in the epidermis (Figure 9) and can affect three 

enclosures: squamous cells, basal cells, or melanocytes. The MSC 

originates from any cell capable of forming melanin and comprises three 

subtypes: superficial extension, lentigo maligna, and nodular18,42,44,45. Some 

types of skin cancer present genetic modifications that, if left untreated, 

grow, and spread over the body, yielding potentially metastasising 

outcomes. 

Although MSC is the rarest skin tumour, it causes the highest mortality 

rates because it lacks adequate early detection. NMSC lesions represent 

more than 98% of the known skin lesions in the United States of America, 

of which 75–80% are basal cell carcinoma (BCC), 15–20% are squamous 

cell carcinoma (SCC), and around 1.6% is MSC, the most lethal type of 

cancer18. Regardless, healthcare professionals must consider BCC and SCC 

malignant as they might degenerate and induce death18,19,45,46. Therefore, 

sorting epidermal tumours into benign and malignant categories is more 

accurate. Currently, a person has a 4% chance of developing melanoma, 

which is responsible for 75% of all skin cancer-related deaths 18,37,42,43. 
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Dermatologists visually inspect melanocytic tumours to determine the 

presence of malignancies during routine clinical practice. They operate a 

handheld instrument incorporating magnifying lenses and constant 

polarised illumination. The process relies upon the so-called ABCDE rule, 

where A stands for asymmetry, B for border irregularity, C for colour,  D 

for diameter, and E for evolution37,45,47. Nevertheless, this procedure 

introduces false positives, namely benign lesions classified as malignant. 

Consequently, the gold standard is a biopsy with surgical lesion excision 

and histopathological assessment. Nevertheless, this process is painful, 

time-consuming, slow, and expensive18,45,47. The worldwide incidence of 

skin cancer is rapidly rising, bearing heavy health and economic 

commitment for diagnosis and treatment. Early skin cancer detection 

effectively enhances the 5-year survival rate and is correlated with 99% of 

the overall healing likelihood42,43. Hence, the escalating rate of skin cancers 

and the lack of adequate expertise and innovative methodologies present an 

immediate demand for systems based on artificial intelligence (AI) and 

novel optical technologies to assist clinicians in this domain18. 

Researchers investigate hyperspectral imaging for cancer detection in 

this context thanks to recent specialised advancements.  

Chromophores, such as melanin and haemoglobin, are organic molecules 

that characterise epidermal lesions' spectral properties and vary among skin 

lesions of diverse etiologies. Consequently, HSI systems should capture 

such information, enabling AI algorithms to automatically detect and 

cluster tumours of various categories18,19,44. Traditional imaging techniques 

are limited to the visible light spectrum, leading to limited diagnostic 

results. However, HS images set the stage for broadband information 

acquisition, overcoming inter-class similarities and intra-class 

dissimilarities of various diseases considered in the visual domain34,37,48. 

Researchers strived to develop AI solutions to detect skin cancer early on 

and strengthen current diagnostic performances, whose efficacy leans 

heavily on healthcare professionals' expertise33,34.  

Likewise, research should not be limited to the learning methodology 

but also to conceiving an instrument to overcome existing challenges, such 

as data availability, interpretability, computational power, operating recent 

algorithms and real-world clinical scenario applicability. Although present 

AI algorithms are still in the very early phases of clinical application and 

are not always ready to aid clinicians, they can be scalable to multiple 

devices, transforming them into modern medical tools3,49. Such novel 

devices will also store the acquired data, overcoming the data availability 

issues. 
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2.7. HS dermatologic acquisition system and 
database 

In this doctoral thesis, we exploited a database of HS images acquired 

via the custom solution in Figure 1038. The system comprises a snapshot 

camera (Cubert UHD 185, Cubert GmbH, Ulm, Germany) capable of 

capturing the visual and near-infrared (VNIR) spectrum. The spectral range 

covered 450 to 950 nm, resulting in a spectral resolution of 8 nm and a 

spatial resolution of 50 ×  50 pixels, whose pixel size was 240 × 240 𝜇𝑚2. 

The camera has a Cinegon 1.9/10 lens (Schneider Optics Inc., Hauppauge, 

NY, USA) with a 10.4 nm focal length. The acquisition system employed a 

Dolan-Jenner halogen source light (Dolan-Jenner, Boxborough, MA, USA) 

and the lamp employed was a 150 watts quartz-tungsten bulb. A fibre optic 

ring light guides the HS camera to illuminate the skin surface with cold 

light, avoiding the high temperature of a halogen lamp on the subject's 

skin38. The authors embedded a dermoscopic lens with a human skin 

refraction index in a 3D-printed contact structure and attached it to the 

system. The system allows HS image capturing in 250 ms when controlled 

by the acquisition software38. 

 

Figure 10. University of Las Palmas’ HS dermatologic acquisition system. 

(a) HS snapshot camera; (b) QTH (Quartz-Tungsten Halogen) source light; 

(c) Fiber optic ring light guide; (d) 3D printed customized dermoscopic 

contact structure attached to the ring light; (e) Acquisition software 

installed onto a laptop; (f) System employed during a data acquisition 

campaign38 

The data acquisition campaign occurred from March 2018 to June 2019 

at the Hospital Universitario de Gran Canaria Doctor Negrín (Canary 

Islands, Spain) and the Complejo Hospitalario Universitario Insular-

Materno Infantíl (Canary Islands, Spain). The database comprises 76 HS 

images, 40 benign and 36 malignant skin lesions, from 61 subjects38. 

Pathologists and dermatologists diagnosed suspected malignant lesions 
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through biopsy-proven histological assessment to evaluate the tumour 

aetiology, categorising each lesion in the taxonomy described in Figure 11.  

 

Figure 11. Skin cancer aetiologies 

Figure 12, instead, describes the dataset in detail. As depicted in Figure 

11, we arranged the dataset in a tree structure with two root nodes 

representing benign and malignant lesions. This thesis considers only one 

other level except for the primary root. Remarkably, the root node splits 

into melanocytic and epidermal tumours. This taxonomy represents a trade-

off between other classification approaches, introduced as medically 

relevant, complete, and well-suited to ML classifiers18. Figure 11's 

taxonomy is well-suited to treat patients according to the highest healthcare 

standards. The first validation approach uses the primary layer nodes and 

represents the broadest partition. On the other hand, the children layer 

represents disease classes sharing similar clinical treatment strategies. 

Consequently, dermatologists can diagnose more severe lesions earlier and 

improve patient survival rates. Pathologists and dermatologists diagnosed 

suspected malignant lesions through biopsy-proven histological assessment 

to evaluate the tumour aetiology. They assigned each epidermal lesion a 

category from the taxonomy proposed. They also produced a mask 

highlighting the tumour borders by visually inspecting the synthetic RGB 

images generated from the HS cubes18,19,38. 
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Figure 12. Bar charts of epidermal lesions distributions in the dataset38 

2.8. Brain cancer contour delineation via 
hyperspectral imaging 

Brain cancer denotes the most common central nervous system 

malignancy, causing subjects' death and morbidity. It forms directly in the 

brain or the spinal cord. Healthcare professionals usually cluster nervous 

system tumours into primary, if cancer arises in the brain, and secondary, 

or metastasis, if it begins elsewhere in the body, flaring up to the brain42,50. 

Doctors rank brain tumours depending on their nature, source, rate of 

growth and progression stage. First, they can be either benign or malignant 

lesions. The harmless cells rarely intrude on neighbouring healthy ones, 

show distinct borders, and have a slow progression rate. On the other hand, 

malignant cells readily attack adjacent ones in the brain or spinal cord, 

presenting fuzzy contours and a rapid progress pace11,41,50. The World 

Health Organization categorises brain tumours into four grades (I, II, III 

and IV)11,41,50. The higher the grade, the faster the rate of growth. 

Physicians characterise brain tumours according to their progression stages, 

from 0 to 4. Stage 0 refers to irregular cancerous biological structures that 

do not distribute to nearby compartments. Stages 1, 2 and 3 denote 

cancerous cells spreading rapidly. In Stage 4, cancer extends throughout 

the body39,50–52. Glioblastoma (GB - grade IV) is the deadliest brain tumour 

retaining a 5.5 % 5-year survival rate11,42,50. Early and total resection of 

grade-II increases the overall 5-year survival rate to 81%. Medical 

practitioners could preserve numerous lives if they detected cancer early 

via prompt, cost-effective diagnosis procedures. Still, it is challenging to 

treat cancer at higher stages11,39,50,52.  
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Brain cancer diagnosis can be either invasive or non-invasive. The gold-

standard biopsy is an invasive strategy. Namely, it is the histopathological 

examination of a tissue specimen to confirm the malignancy. On the other 

hand, non-invasive approaches comprise a body and brain scanning. The 

modalities include computed tomography (CT) and magnetic resonance 

imaging (MRI) of the brain. These imaging procedures help radiologists 

uncover brain diseases, monitor disease advancement, and prepare for 

surgery. Nevertheless, these modalities exhibit inter-reader variability and 

accuracy owing to the physicians' proficiency11,12,39.  

Meningiomas represent the non-malignant primary tumour, whose 

resection can discourage further disease progression, improving the 

survival probabilities. Nonetheless, complete resection is not always 

feasible and might lead to neurological damage. Consequently, surgeons 

must balance tumour reduction and neurological conditions11,12.  

At present, neurosurgeons operate several intraoperative guidance tools 

for cancer resection assistance. Namely, they broadly employ Image 

Guided Stereotactic (IGS) neuronavigation, Magnetic Resonance Imaging 

(iMRI), or fluorescent tumour markers like 5-aminolevulinic acid (5-

ALA)11. However, these medical procedures indicate limitations, namely 

cost and time, and do not outline precisely lesions borders. Undoubtedly, 

the procedure course must be reduced as much as possible, being the 

patient operated on with an open craniotomy. Furthermore, craniotomy and 

brain shift alter the tumour volume in the intraoperative imaging-guided 

tools. Therefore, there is a demand to research new imaging modalities that 

could overcome such limitations11,41,50.  

Hence, hyperspectral imaging plays a significant function in this 

scenario, and during the last decade, machine and deep learning (ML, DL) 

solutions emerged as a tool to analyse and cluster different cancer types 

using HSI32,34.  

2.9. The HELICoiD database of glioblastoma 
images 

Concerning intraoperative glioblastoma segmentation of HS images, 

research mainly emerged within the European project HELICoiD 

(HypErspectraL Imaging Cancer Detection)39. Researchers gathered an in 

vivo human-brain HS database during surgical procedures in open 

craniotomy. The main challenge is retrieving a target ground truth to 

supervise the ML algorithms. Neurosurgeons can only partially identify the 

tumour and its boundaries when diagnosing them with traditional imaging 

systems. Therefore, HELICoiD-based ML studies comprised unsupervised 

algorithms to overcome this problem and automatically segment the 

intraoperative-captured HSIs11,12,39.  

The HELICoiD intraoperative HS acquisition system comprised a VNIR 

pushbroom camera (Hyperspec® VNIR A-Series, Headwall Photonics Inc., 
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Fitchburg, MA, USA) to collect data11,12,39. It captured HS images ranging 

from 400 to 1000 nm in 826 spectral bands and a spatial resolution of 1004 

pixels. The HS camera acquired via the push-broom method explained in 

Section 2.5, which provided high spectral and relatively high spatial 

resolution. Nonetheless, the sensor only captures one spatial dimension of 

the scene while still capturing its entire spectral signature. Hence, the 

authors designed a spatial scanning to obtain the complete HS cube with a 

maximum image size of 1004 ×  1787  pixels ( 129 ×  230 𝑚𝑚 ). The 

system also included an illumination device capable of emitting cold light 

between 400 and 2200 nm11,12,39. The engineers combined a Quartz 

Tungsten Halogen (QTH) lamp to the cold light emitter via a fibre optic 

cable to avoid brain surface vulnerability to high temperatures11,12,39. The 

University Hospital Doctor Negrin of Las Palmas de Gran Canaria (Spain) 

and the University Hospital of Southampton (UK) installed the 

intraoperative HS acquisition system. Both the Comité Ético de 

Investigación Clínica- Comité de Ética en la Investigación (CEIC/CEI) of 

the University Hospital Doctor Negrin and the National Research Ethics 

Service (NRES) Committee South Central-Oxford C for the University 

Hospital of Southampton approved the study and its consent procedures 

signed by all participating patients11,12,39.  

 

Figure 13. Intraoperative glioblastoma ground truth taxonomy11,12,39 

Physicians provided each HS pixel with a class concerning Figure 13's 

taxonomy. The intraoperative GB images present black rubber ring markers 

employed for the pathological assessment of the image labelling in 

correspondence with either healthy or tumour tissue. In the latter case, a 

histopathological biopsy reevaluation confirmed cancer's presence. During 

the classification, the investigations assigned the markers to the 
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background class11,12,39. Researchers recorded the tumours located in a 

deeper brain layer after superficial resection.  

 

Figure 14. A is the initial ground truth derived from the Neurosurgeon with 

SAM labelling. B is the HELICoiD ML pipeline result, whilst C is it 

cleaned version11,12,39 

Hence, the HELICoiD processing pipeline begins with the Spectral 

Angle Mapper (SAM)11,12,39 to segment the entire intraoperative GB 

hypercube (Figure 14.A). Neurosurgeons operated the SAM to form the 

initial segmentation dataset. They selected reference pixels from healthy 

and tumour classes inside the circular markers. Accordingly, pixels having 

a similar spectrum to the reference pixels received the same categories. 

Neurosurgeons labelled tumour pixels depending on the histopathological 

assessment. Likewise, physicians labelled healthy tissue, blood vessels and 

background by visual inspection according to their experience.  

Figure 14.A is the initial ground truth derived from the Neurosurgeon 

with SAM labelling. Figure 14.B is the HELICoiD ML pipeline result, 

whilst Figure 14.C represents the cleaned version via filtering and 

thresholding.  

Once the first SAM step ended, the HELICoiD ML pipeline produced 

the result in Figure 14.B. Since the ML pipeline produced spurious results, 

we cleaned the segmentation maps via adequate thresholding and filtering, 

obtaining the smooth mask depicted in Figure 14.C.  

The original in-vivo human-brain HS database consists of twenty-six 

images from sixteen adult patients11,12,39,52. Nine patients had 

histopathologically verified Grade IV glioblastoma, while the remaining 

seven were affected by other types of tumours or other pathologies 

requiring a craniotomy. Regardless, this thesis operated on only fifteen 
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among the original twenty-six images because these offered the required 

ground truth quality obtained from the HELICoiD ML pipeline. 

2.10. Medical data beyond images  

Moving beyond image classification, deep learning models can learn 

from diverse input sources, including time series, tabular, text or even 

combinations of input types. Healthcare data is intrinsically multimodal, 

and all information produced during a patient’s lifespan retains relevant 

knowledge to provide personalised healthcare3,5,6. Data sources such as 

blood analyses, ECGs, handwritten notes, and histopathological and 

radiological images inform a physician’s therapy judgment. Nevertheless, 

most medical machine-learning applications focus on a single data source. 

It is especially true in radiology, whose information complexity, 

accessibility, and computational interpretability, constitute the core 

attraction of artificial intelligence applications in medicine3,5. In the future, 

Computer-Assisted Diagnostic (CAD) architectures should process and 

interpret multimodal information, thereby emulating physicians’ 

reasoning.  

2.11. SARS-CoV-2 clinical dataset 

This doctoral thesis focused on machine learning applications to 

counteract the Covid-19 pandemic, discussed in Section 2.2, which elicited 

an urgent need for reliable diagnostic tools to minimise viral spreading15 to 

avoid cross-contamination between subjects and detect their disease 

positivity to cluster them by prognosis and manage the emergency 

department’s resources. Fondazione IRCCS Policlinico San Matteo 

Hospital’s ED of Pavia let us evaluate the exploitation of machine learning 

algorithms on a clinical dataset gathered from laboratory-confirmed rRT-

PCR test patients, collected from March 1st to June 30th, 202017. Doctors 

evaluated routine blood tests, clinical history, symptoms, Arterial Blood 

Gas (ABG) investigation, and lung ultrasound quantitative examination. 

The personnel collected the ABG samples from the Radiometer ABL 825 

(Radiometer Medical ApS, Åkandevej 21, DK-2700, Brønshøj, Denmark). 

We designed two diagnostic AI-based instruments for Covid-19 detection 

and oxygen therapy prediction: the need for ventilation support due to lung 

involvement15,17. 

The main goal was to quickly stratify patients and employ cross-

contamination procedures, avoiding extensive swab testing and leveraging 

physicians’ workload. The investigations on the dataset relied on gathering 

patients’ data based on two primary principles. First, we engaged features 

readily available in every ED triage, such as anamnesis, symptoms, and 

vital signs. Moreover, physicians collected data concerning patients’ 

respiratory failures, routine blood tests, arterial blood gas (ABG) analysis, 
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and lung ultrasound quantitative evaluations16,17. Fondazione IRCCS 

Policlinico San Matteo’s Emergency Department of Pavia specified a 

stringent protocol during triage functions to assess patients whom SARS-

CoV-2 might have potentially contaminated. The procedure stratified 

people and avoided cross-contamination during daily clinical operations. 

This thesis mainly scrutinised clinical characteristics available in any ED 

triage, such as history taking, symptoms, and vital signs, to apply ML and 

aid physicians during the pandemic. Furthermore, physicians collected 

knowledge associated with patients’ respiratory malfunctions that satisfied 

the constraint of being promptly available and cheap, such as routine blood 

tests, ABG examination, and lung ultrasound quantitative evaluation15,17,53. 

They gathered information from people complaining about probable SARS-

CoV-2 symptoms, whom the physicians swabbed for diagnosis.  

Eventually, the clinical dataset comprised the list of features shown in 

Figure 15 for 1355 patients, of which we illustrated the clinical information 

in Section 2.3’s Table 2, where there is the correlation coefficient between 

each element and the outcome to be predicted, namely both Covid-19 

positivity assessment and oxygen therapy potential need. 
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Figure 15. SARS-COV-2 clinical dataset examined features and their 

correlation with targets17 
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2.12. Challenges and opportunities  

Even though AI vows to change medical practice completely, many 

technological challenges lie ahead3,6,11. Artificial intelligence leans heavily 

on the availability of high-quality large-sized training data. Hence, 

academic researchers must care about data collection and its 

representativeness of the target patient population. Different data sourced 

from various healthcare environments might yield bias and noise, causing 

generalisation failure on a separate dataset. Likewise, diagnostic tasks with 

an imperfect inter-expert likelihood exist, and the literature reports 

consensus diagnoses improving the performance of the machine-learning 

models1,3–6. Hence, good data curation is essential for addressing 

heterogeneous information. Clinicians must review their notes to allow 

Natural Language Processing (NLP) procedures, and researchers must 

focus on artificial intelligence explainability to enable AI in clinical 

environments. Consequently, it is not yet straightforward to communicate 

intuitive notions explaining the models’ outcomes, to determine model 

weaknesses, or to extract biological insights from these so-called black 

boxes3,5,6.  

Implementing a computing domain for collecting, storing, and sharing 

sensitive health data is necessary. Hence, privacy-preserving methods that 

can permit secure data sharing are one of the challenges AI in healthcare 

presents researchers with. Also, smooth data integration across healthcare 

applications and locations is complex and slow3,5.  

Since most of the medical applications of artificial intelligence concern 

retrospective data collected for research and proof of concepts, academics 

should validate the real-world utility of medical AI systems. Furthermore, 

as clinical AI approaches evolve, there will be an inevitable increase in 

their clinical use and deployment, which will lead to new social, economic, 

and legal issues3,5. AI will likely enhance healthcare quality, reducing 

human error and physician fatigue from everyday clinical duties. Careful 

design of these clinical applications and their implementation is necessary. 

Regulator entities, such as the FDA or the European Commission, must 

certify AI systems before large-scale deployment. Accordingly, the FDA 

should foresee increasing approval submissions: it should evaluate the 

safety and effectiveness of medical instruments that present a potential and 

unreasonable risk of illness or injury. Policymakers must set specific 

criteria for demonstrating the validation process and the quality and 

representativeness of the validation data3,5.  

Furthermore, research should not be limited to the learning system but 

also to designing a device to overcome current challenges, such as data 

availability, interpretability, and computational power, employing recent 

algorithms, HPC hardware, and having real-world clinical scenario 

applicability. Indeed, although current AI algorithms are still at the very 

early stages of clinical application and not always ready to aid clinicians, 

they can be scalable to multiple devices, transforming them into modern 
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medical instruments11,18. Such novel devices will also store the acquired 

data, overcoming the data availability issues. Both the hardware-software 

challenges will lead to economic investments and specialised personnel that 

will help overcome the challenges mentioned above. 
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Chapter 3   

3 Fundamentals of Artificial Intelligence 

Artificial intelligence is a common buzzword in scientific contexts, born 

as the consequence of technological advances and experimental results, 

notably in image analysis and processing. Researchers seized considerable 

effort and opportunity to deploy AI in medicine, specifically in specialities 

where images are central, like radiology, pathology and oncology, and the 

key to safe and efficient use of clinical AI applications relies on informed 

practitioners1,3–5. Despite AI's fast evolution, several central concepts have 

settled for good. Hereafter, we present AI's building blocks, which are 

extensively described in well-known books, focusing on medical imaging1–

5. This chapter aims to define and describe AI's fundamental pillars, state-

of-the-art machine and deep learning methods and models, and their 

application to medical imaging. Specifically, we describe the fundamental 

AI reasoning operated in this doctoral thesis concerning the miscellaneous 

data described in the previous chapter, but this doctoral thesis leaves the 

description of advanced topics to their dedicated chapters. In the end, we 

discuss the new future research directions.  

3.1. Artificial intelligence, machine learning, and 
deep learning  

AI extensively refers to any method or algorithm mimicking human 

behaviour and cognitive processes. Historically, academics approached AI 

from two directions: computationalism and connectionism1. The former 

emulates formal reasoning and logic directly, regardless of its biological 

designs, operating hardcoded axioms and rules combined to deduce new 

conclusions. Computationalism is comparable to computers, which store 

and process symbols.  

On the other hand, connectionism observes a bottom-up strategy, 

starting from models of large networks of interconnected biological 

neurons, from which intelligence emerges as learning from experience.  

Expert systems from the 80s are classic examples of computationalism. 

Nonetheless, their bottleneck concerns the complex process of gathering 

the required knowledge formulated as production rules. Consequently, 
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interest in computationalism-based algorithms has faded since the 90s in 

favour of connectionism-based systems1–5.  

Connectionism and learning-based approaches rely on data concerning 

performance and information exhaustiveness instead of humans, who might 

be poorly available in specific world areas or error-prone and biased. Data 

abundance enhances learning techniques in this scenario, specifically 

regarding medical images. The scientific community focused on two nested 

subfamilies of artificial intelligence: Machine Learning and Deep 

Learning. 

Data drive ML approaches which can learn from it, extracting patterns 

and structured information without explicit programming. ML operates in 

two stages: training and inference. The former allows pattern extraction in 

previously collected and usually unstructured data. In contrast, inference 

compares these patterns to new data to make predictions or aid decision-

making. Artificial intelligence algorithms, better known as maximum 

likelihood estimators in the 90s, have continuously matured and improved 

thanks to high-performance computing enhancements, evolving into more 

sophisticated hierarchical structures and giving birth to DL. Researchers 

first used deep learning in the 2000s, referring to a subset of hierarchically 

structured ML algorithms arranged on multiple levels1,3,4. Hence, deep 

concerns about the high number of levels these structures base on to 

automatically extract meaningful features from data. Hereafter we will 

often use the term feature, as a unique, measurable characteristic of an 

event or information. For instance, borders, shapes and colours are features 

of images1–5. 

Although ML encloses DL, the latter is usually opposed to classical 

shallow ML, which instead relies on algorithms with flatter architectures 

and depends on previously engineered features to extract patterns. This 

antagonism reflects the evolution from ML to DL, from detailed feature 

engineering to generic feature extraction1–5. On the one hand, human 

experts have always taken part in ML algorithm design, adding domain 

knowledge and expertise to define relevant features. On the other hand, DL 

entangles generic, trainable features. Therefore, despite the modelling 

capability of ML, implementation is limited by the hand-picked features. 

Alternatively, DL replaces the technical characteristics chosen by human 

experts with generic, trainable, low-level features involved in the learning 

procedure, which offer better performance capabilities. Deep learning 

achieves complex structures, hence better pattern extraction, by stacking 

layers of shallow features, leading to a hierarchical model network. 

Academics often refer to DL as an end-to-end method since it involves 

low-level features and higher-level model training1–5.  

Nowadays, DL models' diagnostic performance has proven to be 

equivalent to that of healthcare professionals for specific applications, such 

as skin cancer or breast cancer detection1–5,14,15,18,45. 
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3.2. Learning frameworks and strategies  

We can split machine learning and deep learning into two 

complementary categories, namely supervised and unsupervised, which 

derive from human learning (Table 3).  

Table 3. The table displays diverse learning approaches with some of their 

popular algorithms, as well as a few examples of common applications in 

medicine. The table is divided in three parts: the basic learning frameworks 

(supervised, unsupervised and reinforcement learning), the hybrid learning 

frameworks, and common learning strategies that solve consecutive 

learning problems or combine several models together1 

Learning approach Typical algorithms Use cases 

Standard Frameworks 

Supervised 

Learning 

Linear or logistic regression 

Decision trees and random forests 

Support vector machines 

Convolutional neural networks 

Recurrent neural networks 

 

Cancer diagnosis 

Organ segmentation 

Conversion between 

image modalities 

Unsupervised 

Learning 

(Variational) Auto encoders 

Dimensionality reduction (e.g., Principal 

component analysis) 

Clustering (e.g., K-means) 

Classification of patient 

groups 

Image reconstruction 

 

Reinforcement 

Learning 

Q-learning 

Markov Decision Processes 

Tumor segmentation 

Image reconstruction  

Treatment planning 

 

Hybrid Frameworks 

Semi-Supervised 

Learning 
Generative Adversarial Networks 

Tumor classification  

Organ segmentation 

Synthetic image 

generation 

Self-Supervised 

Learning 

Pretext task: distortion (e.g., rotation), 

color- or intensity- based, patch extraction 

Image classification or 

segmentation 

Learning Strategies 

Transfer Learning 

Inductive 

Transductive 

Unsupervised 

Adaptation to different 

clinical practices 

Improving model 

generalization 
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Ensemble Learning 

Bagging - Bootstrap AGGregatING - (e.g., 

random forests) 

Boosting (e.g., AdaBoost, gradient 

boosting) 

 

Estimation of uncertainty  

Stratification of patients 

 

 

Supervised learning is the most straightforward method, providing a 

tight framework with the highest guarantees of success. The term 

supervision refers to the training stage formalisation: training data consists 

of labelled input and output pairs, and the model is optimised to yield the 

desired output (i.e., a diagnosis or numerical estimation) when presented 

with a specific input. On the other hand, we operate unsupervised learning 

when we deal with unlabelled data, also known as self-organisation, aiming 

to discover data patterns (Figure 16)1–5. Typical supervised tasks comprise 

function approximation, like regression and classification. Classification, 

like pathology presence assessment in radiology, can be binary or address 

multiple classes, as in determining a particular pathology among several 

labels. When classification does not concern the whole image but each 

pixel, we refer to image segmentation1–5. Table 3 contains detailed 

examples and definitions of different learning methodologies. 

 

Figure 16. Supervised, semi-supervised, and unsupervised learning1  

Instead, unsupervised tasks convey probability density estimation, 

finding separated groups of similar data items, also known as clustering, 

anomaly detection, and dimensionality reduction, among others. 

Regardless, unsupervised learning utilisation has been more limited than its 

supervised counterpart due to the higher complexity involved in the 

algorithms. Table 3 also offers the main unsupervised ML methods and 

descriptions.  

Apart from supervised and unsupervised approaches, other 

methodologies enable continuous feature extraction and deep pattern 

understanding. Accordingly, the third we overlook in this chapter is called 
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semi-supervised. It is a hybrid framework comprising supervised and 

unsupervised characteristics involving partially labelled data. The 

unsupervised part identifies clusters which represent possible class labels 

(Figure 16). Examples of clinical semi-supervised learning retain the 

generation or translation of images from a specific class to another (e.g., 

generation of synthetic CTs from MR images), and segmentation or 

classification of images1–5,54–56.  

So far, supervision has been the most used framework for medical 

imaging, as it is straightforward to use. Regardless, medical data labelling 

is highly time-consuming and subject to inspection by human experts, who 

at worst might only sometimes agree on the same diagnosis. Consequently, 

researchers are now transitioning to semi-supervised learning strategies 

because they represent an excellent alternative to complement small sets of 

carefully labelled data with large amounts of cheap unlabelled data 

collected automatically. Indeed, the current limitations of artificial 

intelligence algorithms come from labelled data. Namely, we might find 

labelling errors and limited-size databases1–5,54–56.  

The fourth variety of learning is called reinforcement and involves an 

agent interacting with an environment where an agent gets feedback from 

its actions over time and the problem is defined as a Markov Decision 

Process (MDP)2,57. The environment can either reward or punish the agent 

who has then to best predict the longer-term outcomes of future actions in a 

trial-and-error manner. Reinforcement learning usage in medicine is not 

ubiquitous yet but has recently increased, with promising applications 

concerning physicians' behaviour mimicking for typical tasks such as 

treatment design (Table 3)1–5.  

On top of these essential frameworks, other strategies enable us to reuse 

previously trained models (transfer learning) or combine models (ensemble 

learning). Transfer learning reuses blocks and layers from a pre-trained 

model with some data for a specific task and fine-tunes it to pursue 

different data or tasks. The best common practice is using architectures pre-

trained on similar domains to overcome small-sized dataset problems and 

poor classification performances. For example, a classification model pre-

trained on ImageNet58, which is an extensive collection of natural images, 

can be partly reused and fine-tuned for medical imaging applications, such 

as organ segmentation or treatment outcome prediction. Transfer learning 

allows us to exploit knowledge from different but related domains, 

mitigating the necessity of an extensive dataset for the target task, and 

improving the model performance1–5,59–61. Accordingly, academics proved 

that deep architectures always learn similar simple features in their most 

shallow layers, forming the complex ensembled feature in a deeper one3,59. 

Consequently, pre-trained models offer the same shallow features but come 

from a different, more comprehensive dataset. For instance, shallow 

features comprise shape recognition.  

Ensemble learning also improves a model's overall performance and 

stability by combining the output of multiple models or algorithms to 

perform a task1,57.  
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Finally, self-supervised learning is a contemporary hybrid framework 

embodying the state-of-the-art mostly in Natural Language Processing 

(NLP) and heavily researched in vision applications, including medical 

imaging. It could be essential in future research directions for medical 

computer-aided diagnosis applications. Self-supervision is a variant of the 

unsupervised framework because it operates with unlabelled data. 

Regardless, the scheme exploits free labels that come for the data, namely, 

those we can extract from the data structure itself. Generally, self-

supervised algorithms function in two stages. First, the model is pre-trained 

to solve a pretext task that aims to obtain the data's supervisory signals 

(i.e., the free labels). Secondly, we transfer the acquired knowledge and 

fine-tune the model to unravel the main task1–5. Literature on self-

supervision for medical imaging is still inadequate, mainly due to the 

variety of challenges we already mentioned in this doctoral thesis in 

Section 2.12. The existence of hybrid-learning frameworks reveals that the 

borders between supervised and unsupervised learning have progressively 

blurred to accommodate mixed approaches (Table 3), which can address 

real-world scenarios and datasets consistently (Figure 17). 

 

Figure 17. Trade-off between the degree of supervision and the time 

required for it1  

3.3. Typical AI-based medical imaging analysis 
workflow 

AI literature reports the presence of standard stages in most workflows 

for medical imaging processing (Figure 18)1,3. Data drives ML and 

preliminary steps comprise relevant feature extraction and selection. 
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Consequently, predictive models like classifiers or regressors operate this 

information to perform a specific task. 

 

Figure 18. General ML pipeline for supervised learning1,3,5 

3.4. Feature engineering, extraction, and selection  

Before deep end-to-end learning was born, critical steps towards 

channelling data into AI comprised: feature engineering, extraction, and 

selection. Feature engineering crafts features by hand. Concerning skin 

cancer, before academics researched deep architectures to classify images 

directly, feature engineering comprised characteristics extraction to 

resemble the ABCD rule: colour, contours, shape, and dimension 

measurements45. Indeed, researchers often classify image features in low-

level or high-level features: the former refers to a specific small group of 

pixels, whilst the latter characterises the full image.  

Alternatively, we can extract higher-level features in a more data-driven 

form by operating dimensionality reduction. Methods like Principal 

Component Analysis (PCA), Linear Discriminant Analysis (LDA)57 can 

reduce the number of input variables (i.e., features) according to specific 

criterions. While dimensionality reduction might improve the predictor's 

performance, they strongly reduce data interpretation and explainability 

due to the translation to other geometrical spaces. In this chapter, we will 

overlook similarities in computer vision algorithms. Specifically, the 

convolutional filters involved in convolutional networks bear similarity 

with the feature engineering above: they extract local characteristics from 

data later stacked together to allow global higher-level features to emerge1–

5.  

It might happen to manage redundant or irrelevant features, and feature 

selection addresses this issue: we can discard some of those to focus on a 

reduced set of components. Usually, the optimisation process involves 
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terms in the cost function that handles this issue directly. This approach is 

called regularisation and involves each feature having weights associated 

with it which, if set to 0 or 1, perform the selection process. Indeed, 

features' weights regularisation (i.e., L1 or L2 norm regularisation) can 

prefer sparse configurations, where irrelevant features get null weights1–

3,57.  

3.5. Predictive models 

We can generally divide AI everyday tasks into regression or 

classification. The former retains models estimating continuous values, like 

a dosage, whilst the latter predicts class probabilities, such as pathology 

assessment into benign and malignant aetiologies57. This section describes 

the models' main methodological aspects and the state-of-the-art examples. 

 

Figure 19. Brief recap on artificial neural networks: (a) The formal neuron, 

processing several dendritic inputs through a nonlinear activation to 

produce its actional output; (b) The neurons can form a network in a feed-

forward fashion, and specific activation functions can deliver the output to 

achieve regression or classification. (c) Examples of nonlinear activation 

functions1 
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Regression represents the most generic task in supervised learning, and 

comprises well-known statistical approaches like linear regression, but 

other mathematical approaches exist involving exponential or polynomial 

functions. ML generalises this concept to universal approximators that can 

fit data sampled from almost any smooth function and possibly many input 

and output variables. Artificial neural networks (NNs) are universal 

approximators (Figure 19)1. They consist of interconnected formal 

mathematical models of neurons, a cell combining several dendritic inputs 

into a weighted sum that triggers an axonal output through a non-linear 

activation function. Examples of activation functions comprise step, 

sigmoid, or special functions like Rectified Linear Units (ReLUs). The 

universal approximation theorem states that when a NN possesses at least a 

hidden layer of neurons with non-linear activation functions, the model can 

fit any input-to-output mapping2. Regardless, the more neurons the hidden 

layer counts, the more complex functions we can resemble. This capacity is 

roughly proportional to the number of synaptic weights in the NN and 

resembles the polynomial order of a regression. As we mentioned, the term 

deep of the learning process refers to the high number of hidden layers 

present in a NN, which makes it a universal approximator. Interest in deep 

NN lies in trading the width of a single hidden layer for depth. As we stack 

hidden layers, we enable hierarchical processing and higher generic and 

complex feature ensembling starting from the shallow ones of earlier 

layers1,2.  

Most NNs are feed-forward, meaning data flows unidirectionally from 

inputs to outputs. Recurrent NNs (RNNs) add feedback loops, namely 

memories, allow sequential data processing (i.e., text, videos)1,2.  

Independently from the learning framework, the AI model's training 

consists of minimising a loss function between the target output and the 

one the NN predicts in its current parameter configuration. The 

minimisation process produces partial derivatives, namely the gradient, of 

the loss function concerning these parameters, indicating the direction in 

which tuning the parameters is likely to decrease the loss. In a feed-forward 

NN, this gradient information flows back from layer to layer towards the 

input, yielding the backpropagation algorithm1,2.  

Typical loss functions depend on the problem to be solved (i.e., 

regression or classification). They comprise the mean square error (MSE), 

the Cross-Entropy and general logit-based functions. Also, different 

optimisation techniques exist to perform backpropagation concerning the 

memorisation of past directions yielded by the gradients. The learning rate 

is a very important hyperparameter because it determines the learning 

speed of the network. Indeed, the learning rate scales the gradient before 

the weights update. Besides the gradient descent algorithm, other weights 

update algorithms were born over the years: RMSprop, Adam, AdaDelta, 

AdaMax, Adagrad, and Nadam. Each of them has advantages and 

disadvantages1,2.  
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3.6. State-of-the-art AI methods 

In the last decade, research attention has moved from ML methods such 

as Support Vector Machines (SVMs) and Random Forests (RFs) to vision 

architectures such as Convolutional Neural Networks (CNNs) (Figure 2, 

right). Furthermore, since 2018 the exploitation of other more complex DL 

methods, including Generative Adversarial Networks (GANs), is rapidly 

advancing1,2.  

The following sections briefly review all the fundamental models and 

strategies employed in this doctoral thesis, whilst we leave mentioning 

more advanced topics to their dedicated chapters that will appear later in 

the manuscript. 

3.7. Random forests (RFs)  

 

Figure 20. Decision Tree and Random Forest1 

Random Forest is an ensemble learning methodology that achieves 

classification by designing a cluster of decision trees throughout the 

training (Figure 20)1,2,57. Each decision tree defines a base model, namely a 

binary classifier, with its respective decision. The assortment of such 

decisions leads to the final output. RFs meet ensembling using internal 

feature selection and voting. The RFs algorithm extracts many low-level 

feature representations and uses the selection mechanism earlier described 

to find the most informative ones. After extraction, a majority vote on 

selected classifiers yields the final decision1,2.  

The hyperparameters describing an RF algorithm are the number of 

estimators composing the forest, the tree's maximum depth, the highest 

number of levels we let each tree reach, and the estimator's minimum 

number of data points placed in a node before splitting it. Likewise, 
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academics usually tune the maximum number of features to be considered 

for splitting a node and the minimum number of data points allowed in a 

leaf. Eventually, we also choose whether to bootstrap our data, namely 

resampling it. Data scientists usually recommend exploiting bootstrap when 

the dataset size is small. 

RFs are easy to implement and less computationally expensive than 

CNNs. Accordingly, they can work on regular CPUs. Consequently, they 

still play an essential role in the ML toolbox for medical applications1,2.  

3.8. Support Vector Machines (SVMs) 

 

Figure 21. Principles of the linear Support Vector Machines1 

SVM also conveys a supervised learning methodology, denoting one of 

the most robust prediction algorithms (Figure 21). An SVM acts by 

projecting the features in a p-dimensional space and dividing them such 

that exists a hyperplane clustering the points. The gap between the 

hyperplane and the data points belonging to each class must be the 

widest1,2,57. There exist fewer hyperparameters compared to the RF 

algorithm. First, the kernel function is the non-linear function that maps the 

data into the p-dimensional space, enabling us to fit the maximum-margin 

hyperplane. Data points could not be linearly separable. Accordingly, we 

alter them through a kernel function acting as a degree of closeness, 

mapping the data into another feature space. One of the most used 

functions is the Radial Basis Function (RBF), featuring the hyperparameter 

γ. The hyperparameter γ controls the distance of influence of each training 
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point. The lower its value, the higher the similarity radius, resulting in 

more points grouped. Likewise, it exists also for different kernels1,2,57. 

Moreover, we choose the C hyperparameter, a penalty we assign for 

each misclassified data point. The minor C, the lower the error penalty. 

Typically, we look for γ ⊂ [1e-4,10] and C ⊂ [1e-1, 100]. 

3.9. Convolutional Neural Networks (CNNs)  

We already mentioned neural networks as computational models with a 

layered structure composed of interconnected nodes in Section 3.5.  

 

Figure 22. Pixel unrolling (content provided by Udacity Inc. Creative 

Common License) 

Before convolutional neural networks were born, academics processed 

images by performing pixel unrolling (Figure 22). Instead, CNNs take 

inspiration from the human visual system and exploit the spatial 

arrangement of data within images. Namely, we no longer have Figure 22's 

redundant connections, but we arrange neurons in kernels (Figure 23). 

Their unique ability to glimpse hierarchical data representations has made 

CNNs the most popular architecture for existing medical image processing 

applications. 
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Figure 23. Typical architecture of a Convolutional Neural Network (CNN)1 

CNNs are feed-forward architectures whose information propagates in 

only one direction: it starts from the input layer, flows along the hidden 

layers, and comes out of the output layer, providing the final estimate. The 

architecture of a CNN can vary considerably depending on the task it is 

required to perform, but in general, it receives an input image to be 

classified, and the central part comprises convolution and pooling layers 

organised in blocks1,2,57. These, stacked on top of each other, contribute to 

the network's depth expansion. Fully-connected layers occur at the stack's 

end, and the last has as many neurons as the number of classes to be 

identified. The network returns a label at the output, referring to the class 

to which the image under analysis belongs (Figure 23)1,2,57. 

CNNs vary according to layer types and their arrangement into a 

topology. Hereafter, this chapter describes the most common layers 

building up CNNs: 

 Convolutional layer 

 Batch normalisation layer 

 Pooling layer 

 Transposed convolution layer 

 Dropout layer 

 Fully-connected layer 

The convolutional layer is the fundamental building block of a CNN, 

and scientists named it after the mathematical operation. It extracts input 

images' fundamental characteristics and can appear immediately after the 

input layer or after the previous convolutional layer's output. The first 

convolutional layers identify specific features, such as image edges and 

corners, while deeper ones can identify more complex features up to 

accurate object recognition1,2,57.  

The convolutional neurons organise in feature maps (e.g., matrices), 

each having a receptive field related by weights to neighbouring neurons 



Fundamentals of Artificial Intelligence 

 

 56 

positioned in the previous layers. The weights linking different 

convolutional layers' neurons constitute a kernel or filter matrix.  

This layer performs the convolution operation shown in Equation 1, 

returning a new feature map: 

 

𝒁 = < 𝒘, 𝒙 > +𝒃   Equation 1 

 

Z is the output of the convolution, 𝑤 is the weights matrix, 𝑥 is the input 

matrix, and 𝑏 is the bias. 

The convolution operation consists of the scalar product (i.e., point-by-

point multiplication and overall sum) between the input matrix and the 

kernel. The stride drives the filter scrolling over the input matrix. In some 

cases, we might add a frame of zeros to the input matrix (padding) or 

expand the kernel size by introducing a parameter called dilatation. 

Therefore, convolution down-samples the input image, producing an output 

image smaller than the original one (Figure 23). Equation 2 displays the 
convolution output size. 

 

𝑶𝒖𝒕𝒑𝒖𝒕𝑺𝒊𝒛𝒆 =  (𝑰𝒏𝒑𝒖𝒕𝑺𝒊𝒛𝒆 −  𝟏) ∙  𝑺𝒕𝒓𝒊𝒅𝒆 +  𝑭𝒊𝒍𝒕𝒆𝒓𝑺𝒊𝒛𝒆 −  𝟐 ∙  𝑷𝒂𝒅𝒅𝒊𝒏𝒈 Equation 2 

 

The convolution output is then passed to a non-linear activation 

function, as shown in Figure 19, to extract the data's non-linear 

characteristics. Traditionally, the activation functions from Figure 19 are 

the most used due to the increased performance in the learning process 

after their usage. Additionally, researchers also employ the Tanh, and 

Leaky ReLU1,2,57.  

Besides convolution, batch normalisation makes the network faster and 

more stable by normalising the data it receives from the kernels. Equation 3 

defines the normalisation: 

 

�̂�𝒊 =
𝒙𝒊 − 𝝁𝑩

√𝝈𝑩
𝟐 + 𝝐

 
Equation 3 

 
𝑥𝑖 is the input mini-batch, 𝜇𝐵 and 𝜎𝐵 are the mean and variance vectors 

over the entire mini-batch, respectively, and 𝜀  is a factor that improves 

numerical stability.  

A mini-batch is a limited sample of input data. There may need to be 

more to CNNs than normalisation to make the data optimal for further 

processing. For this reason, Equation 4 introduces a further variation in the 

data where the parameters 𝛾 and 𝛽 are defined as scale and offset, 

respectively 1,2,57. 

 

𝒚𝒊 = 𝜸�̂�𝒊 − 𝜷 Equation 4 

 

Afterwards, academics usually introduce pooling layers between 

successive convolutional layers. It aims to reduce feature maps' spatial 

resolution and achieve spatial invariance to input scale changes and offsets. 
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Pooling partitions the input image or features coming from deeper layers 

into non-overlapping sub-regions, and for each region, it computes an 

output value according to specific rules. The two most used pooling 

techniques are max pooling, which calculates the maximum value of each 

sub-region, and average pooling, which calculates the average value of 

each sub-region (Figure 24)1,2,57. 

 

Figure 24. Average and Max Pooling operations62 

The output of a pooling layer has dimensions calculated by referring to 

Equation 5. 

 

𝑶𝒖𝒕𝒑𝒖𝒕𝑺𝒊𝒛𝒆 =  𝟏 +
𝑰𝒏𝒑𝒖𝒕𝑺𝒊𝒛𝒆 +  𝟐 ∙  𝑷𝒂𝒅𝒅𝒊𝒏𝒈 −  𝑾𝒊𝒏𝒅𝒐𝒘𝑫𝒊𝒎

𝑷𝒐𝒐𝒍𝒊𝒏𝒈𝑺𝒕𝒓𝒊𝒅𝒆
 Equation 5 

 
On the other hand, transposed convolution up-samples the input's spatial 

resolution. It operates in the same way as a convolution layer but by 

making changes to the input feature map. It is necessary to follow the steps 

listed in Equation 6 to build a transposed convolution layer: given an input 

image, a kernel, a padding value (𝑝) and a stride value (𝑠), we can compute 

the new parameters 𝑧 and 𝑝′, then the input image is modified by spacing 

each row and column with many zeros equal to the 𝑧 dimension. This way, 
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the input image size increases, and we can compute the standard 

convolution between the modified image and the kernel1,2,57. The result of 

the transposed convolution is given by Equation 6: 

 

𝑶𝒖𝒕𝒑𝒖𝒕𝑺𝒊𝒛𝒆 =  (𝑰𝒏𝒑𝒖𝒕𝑺𝒊𝒛𝒆 −  𝟏)  ∙  𝑺𝒕𝒓𝒊𝒅𝒆 +  𝑭𝒊𝒍𝒕𝒆𝒓𝑺𝒊𝒛𝒆 −  𝟐 ∙  𝑷𝒂𝒅𝒅𝒊𝒏𝒈 Equation 6 

 

The dropout layer makes the network more robust in the classification 

task and is only active during the training phase. It randomly selects precise 

activations belonging to a specific network layer and temporarily removes 

them from the model, setting them equal to zero (Figure 25)63.  

Each node remains in the network with a specific and arbitrarily chosen 

probability. By doing so, one trains the network whose model varies 

slightly between iterations of the training process and obtains a 

generalisable result1,2,57,63.  

 

 

Figure 25. Dropout example, before and after63 

Eventually, a fully-connected layer consists of neurons connected to all 

activations of the previous layer. When placed at the network's dropout, it 

has as many neurons as the number of existing classes. For classification, it 

operates the softmax function given in Equation 7: 

 

𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝒛𝒊) =
𝒆𝒛𝒊

∑ 𝒆𝒛𝒋𝑲
𝒋=𝟏

 Equation 7 

 
𝐾 equals the number of classes, and the Softmax operator transforms the 

output of the fully connected layer into a vector of elements with values 

between 0 and 1, representing the probability referring to each class. In the 

case of binary classification, the fully connected layer instead operates the 

sigmoid function1,2,57. 

In conclusion, CNNs stack layers of convolutions and down-sampling 

and fully connected layers towards the output (Figure 23). Sequential 
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applications of multiple convolutions enable the network to pull first 

shallow features, like edges, in the earlier layers, which are next combined 

and refined into richer, more elaborated, hierarchical features, like whole 

organs1,2,57.  

We mentioned how each convolutional layer has a feature saliency 

determined by scanning a fixed-size convolution kernel (typically 3x3 ) 

over the input to yield a map. This procedure authorises parameters 

economy called weight sharing and more accessible training. 

Downsampling layers are inserted between convolutional layers to reduce 

the size of feature maps by applying pooling operations. Consecutive 

pooling allows for shift invariance concerning image content, as the salient 

maximum or average from the pooling might originate from anywhere in 

the block. Downsampling trades resolution for number, as more 

convolution filters operate smaller maps within the identical memory 

footprint. Eventually, fully connected layers generate the outputs, where all 

neurons are interconnected1,2,57.  

The following sections analyse the specific CNN architectures employed 

in this thesis. 

3.10. CNNs topologies 

Due to their ability to represent abstractly complex concepts such as 

images and words, CNNs affect many fields and have experienced a natural 

evolution. Indeed, since 2012 academics have researched many variants of 

these networks, and we can group them into four different categories, each 

including multiple models with more assorted characteristics1,2,57.  

 

Figure 26. Examples of CNNs’ tasks64 

CNNs grouping relies on the tasks each network can perform (Figure 

26). Accordingly, we have: 

 Networks for image recognition predict a label that is 

representative of the class to which the image belongs 

 Networks for image segmentation, also called semantic 

segmentation networks, deal with the assignment of a label for 
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the classification of each image pixel, resulting in an image of 

the same size as the source image, known as a mask 

 Object detection networks assign a label to the objects in the 

image and identify their position through bounding boxes that 

delimit the object. 

 Instance segmentation networks, they simultaneously perform the 

detection and segmentation of the objects in an image 

Each of the groups aforementioned contains real families of network 

architectures whose evolution over time is documented64. The description 

of all the possible types of Convolutional Neural Networks that exist is 

beyond the scope of this doctoral thesis work, which focuses on specific 

image recognition and segmentation models, which concern the following 

paragraphs. 

3.11. Training phase 

To meet the desired network output, CNNs use learning algorithms to 

adjust network weights and parameters. The Backpropagation algorithm is 

the most used for this purpose. It relies on the Gradient Descent Method to 

find the minimum error made by the loss function with respect to various 

weights and parameters. Likewise, the most popular loss function is the 

Cross-Entropy (CE). 

The training begins with the pseudo-random initialisation of network’s 

weights and biases. Consequently, during the feed-forward phase, each 

node in the network calculates its own activation function and its respective 

derivative, the former is propagated forward, whilst the latter stays in 

memory. When the data flow reaches the end of the network, the loss 

function (i.e., the cross-entropy) is calculated. At this point, starting from 

the error committed and measured by the CE, we retrace the network in the 

opposite direction and calculate the gradient of the loss function with 

respect to the weights and biases, at each level 𝑙, using the chain rule, as 

shown in Equation 8 and Equation 9 where 𝑖 and 𝑗 are the dimensions of 

the matrix of weights and bias vector belonging to the layer 𝑙. 
 

𝝏𝑳

𝝏𝒘𝒊𝒋
[𝒍]
= 

𝝏𝑳

𝝏𝒛𝒊
[𝒍]
×
𝝏𝒛𝒊

[𝒍]

𝝏𝒘𝒊𝒋
[𝒍]

 
Equation 8 

𝝏𝑳

𝝏𝒃𝒊
[𝒍]
= 

𝝏𝑳

𝝏𝒛𝒊
[𝒍]
×
𝝏𝒛𝒊

[𝒍]

𝝏𝒃𝒊
[𝒍]

 
Equation 9 

 

Equation 10 and Equation 11 can then be used to update the weights 

where 𝑙 is the reference level and 𝛼 is a hyperparameter called learning 

rate, appropriately chosen. 

 

𝒘[𝒍] = 𝒘[𝒍] − 𝜶
𝝏𝑳

𝝏𝐰[𝒍]
 Equation 10 
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𝒃[𝒍] = 𝒃[𝒍] − 𝜶
𝝏𝑳

𝝏𝒃[𝒍]
 Equation 11 

 

The cycle repeats until a certain number of iterations are reached or 

when the loss function stabilises. 

Finally, the batch size is a number of samples processed before the 

model is updated. The number of epochs is the number of complete passes 

through the training dataset. The size of a batch must be more than or equal 

to one and less than or equal to the number of samples in the training 

dataset. 

3.12. Data augmentation 

Data augmentation in data analysis is a technique that enlarges the 

amount of available information by adding slightly modified copies of 

existing data or synthetic data created from scratch using methodologies 

similar to the ones we will encounter in Section 3.19 of this chapter. It acts 

as a regulator and helps reduce overfitting during the training of a machine 

learning model. It is closely related to oversampling in data analysis15. 

The augmentation process helps neural networks focus on meaningful 

information, hence providing disturbance rejection to the adversarial 

attacks we mentioned in the introduction of this doctoral thesis. Standard 

augmentation procedure comprises geometric, filtering, random centre 

cropping, and colour transformations to the training instances. This method 

produces effective results in DL classification tasks, significantly reducing 

overfitting65. Furthermore, researchers usually add salt-and-pepper white 

noise to enlarge the training set. Accordingly, handling RGB enables 

colour augmentations.  

Data augmentation numerically modifies the training images, 

introducing statistically diverse samples, and allowing the architectures to 

robustly classify new data: moving the point of interest in the image and 

slightly modifying its shape or colour together with noise, prepares the 

architectures not to perceive relevant features always in the same place. 

Consequently, the models learn to reject disturbances such as probe sensor 

movements or measurement errors15.  

Table 4 contains a list of augmentations. The recursive application of 

each Table 4’s entry broadens the training set exponentially. 
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Table 4. Data augmentation operations used during the investigations. We 

list both the augmentations names and descriptions15 

Augmentation Name Augmentation Description 

Image noise Adds salt-and-pepper noise to image. 

Namely, random pixels get randomly 

coloured towards white. Spreading power of 

modified pixels can be set by a parameter; 

hence, different augmentations can be 

considered as being more or less noisy. 

Colour jittering Adjusts the colour of RGB image I with a 

randomly selected value of hue, saturation, 

brightness, and contrast from the HSV colour 

space. Specify the range of each type of 

adjustment using name-value pair arguments. 

Four augmentations can be retrieved. 

Flip Images are flipped either from left to right or 

upside down. 

Centre cropping  Images are centre cropped using a 150 × 150 

window to ensure that image patterns are 

selected during operation. 

3.13. Train-test split, k-fold cross-validation and 
evaluation metrics 

Cross-validation is a resampling procedure to evaluate AI models having 

limited data samples. It is a statistical approach whose outcomes in metrics 

estimations offer lower bias than other procedures. Researchers usually 

adopt performance evaluation in unique measurements such as ROC-AUC, 

Accuracy, Precision, Recall and F1 Score (Equation 12 to Equation 18).  

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑷 + 𝑵
 Equation 12 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 Equation 13 

 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑻𝑵

𝑻𝑵+ 𝑭𝑷
 Equation 14 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝑷𝑷𝑽 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 Equation 15 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 =
𝟐 ∙ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∙ 𝑹𝒆𝒄𝒂𝒍𝒍 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 Equation 16 

𝑰𝑶𝑼 =
|𝑨 ∩  𝑩|

|𝑨 ∪  𝑩|
 Equation 17 

𝑫𝑰𝑪𝑬 =
𝟐 ∙ |𝑨 ∩  𝑩|

|𝑨 ∪  𝑩|
 Equation 18 

 

Cross-validation has a single parameter called k, which refers to the 

number of groups in which we split the dataset. When k is as big as the data 
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sample size, the procedure is called leave-one-out cross-validation. As 

such, the method is named k-fold cross-validation1,2,57.  

Cross-validation is primarily used in applied ML to estimate the 

performance of a model on unseen data not used during the training stage.  

This doctoral thesis operated K-fold cross-validation in two ways. 

Indeed, each model was trained k times, recording its estimate for each test 

set. Then, we could either evaluate the metrics mentioned above (Equation 

12 to Equation 18) on the aggregated group of predictions, namely the 

union of each k-fold test set or on each separate group detecting statistical 

variation in each measurement (mean, variance, or percentiles). 

Besides cross-validation, data scientists usually perform one-time 

standard train-test-validation splits with data split percentages varying 

depending on the dataset size1,2,57. 

3.14. Models hyperparameters 

Every model we encounter in this Chapter exploits hyperparameters to 

classify the data. Hence, researchers usually adopt hyperparameter tuning 

procedures to boost classification performance, evaluated in well-known 

metrics (Equation 12 to Equation 18)1,2,57. 

The first procedure is the grid search cross-validation. We list the values 

of the hyperparameters which we would like to test our models with, and 

we evaluate every combination. At the end of the process, we choose the 

values attaining the best classification performance on the K-fold cross-

validation.  

The second one is called random search cross-validation. The process is 

like the grid search. Nonetheless, we pick the hyperparameters utilising a 

heuristic search over random values. 

The hyperparameter tuning processes rely upon pseudo-random number 

generation, such as selecting the data points belonging to training and test 

sets or the K-fold cross-validation. Hence, scientists are used to setting the 

random seed to make the experiments reproducible and to look at the 

improvements derived from tuning the hyperparameters1,2,57.  
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3.15. Transfer learning 

 

Figure 27. The transfer learning process66 

Specific contexts, like medicine, present difficulties in collecting data in 

sufficient quantity to train a learning algorithm due to the need for more 

human experts or the time required. Transfer Learning (TL) overcomes 

these difficulties, starting from the assumption that the training data must 

be independent and identically distributed concerning the test data and 

belong to the same domain as the test data59,66. Thus, one can train a CNN 

in a given domain and reuse it in whole or part. Accordingly, we perform 

pre-trained structure and parameters transfer to a different domain. The 

result is a network retaining prior knowledge that, once fine-tuned, can 

learn new tasks efficiently. By domain, we mean both the type of data used 

(e.g., different image types) and the information in it, such as tissues 

belonging to different categories (e.g., brain, skin and lungs). This idea 

relies on the assumption that neural networks function similarly to the 

human brain, which continuously implements abstraction processes in 

different domains (Figure 27)1,2,57. Therefore, it is possible to find different 

open-source models of pre-trained neural networks in the literature, such as 

LeNet, AlexNet, VGG, Inception and ResNets, and adapt them to other 

domains2,67.  

TL was extensively adopted in this doctoral thesis to overcome small-

sized dataset challenges. 
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3.16. The ResNet architecture 

ResNets are deep CNNs that classify an image by returning a label as 

output. They owe their name to specific blocks that characterise their 

structure, consisting of residual connections. They were born to counteract 

the problem of vanishing gradient or explosion that occurs in the presence 

of many layers67. One speaks of gradient explosion when, during 

backpropagation, the gradient assumes values so large that the CPU cannot 

manage them, causing an overflow. The vanishing gradient is the opposite 

case, and the gradient assumes minimal values such that there is a 

slowdown in the training phase: one immediately reaches convergence 

without being able to advance in learning  67.  

 

 

Figure 28. Residual block67 

As shown in Figure 28, a residual block approximates the output H(x) 
by summing the identity function 𝑥  to that derived from the underlying 

layers F(x), using a skip-connection. In this way, during the 

backpropagation phase, the gradient propagates backwards no longer one 

layer at a time, but by travelling through the residual connections, it 

reaches the initial layers more efficiently and quickly, skipping the 

intermediate layers. It is possible to stack hundreds of blocks of residual 

connections and obtain ResNet with different depth levels67. 

This doctoral thesis adopted deep residual networks, among others, to 

achieve the best and most reliable classification performance, avoiding 

vanishing gradient problems and allowing for deeper architectures than the 

commonly used ones, which do not exploit residual connections. The 

manuscript introduced residual architectures and skip-connections in this 

chapter because they represented a breakthrough in AI. Researchers have 

described using already proven models as a more rational approach for 

initiating DL model development from scratch59,61,66. Remarkably, we 



Fundamentals of Artificial Intelligence 

 

 66 

selected two residual networks with 18 and 50 layers each and structured 

them as reported in the original paper67. Likewise, we extensively exploited 

transfer learning (Section 3.15) to significantly improve the classification 

results by exploiting features belonging to pre-trained networks. 

Accordingly, we selected ResNet-18 and ResNet-50 architectures, which 

had already undergone optimisation based on the ImageNet dataset58. 

Regardless, we made a few modifications to these networks before using 

them; we changed the last fully connected layers because they had as many 

neurons as the number of classes to be detected.  

 

Figure 29. Residual Network Structure Diagrams: plot of each ResNet 

employed together with their structure and exploited layers15 

Figure 29 displays the two architectures employed in this study. ResNet-

18 and ResNet-50 take input images undergoing a first step consisting of a 

7 ×  7 convolution with a feature size of 64 and a stride of 2, followed by a 

3 ×  3 max-pooling step with the same stride. Next, each of the following 

layers performs either 3 ×  3 or 1 ×  1 convolutions with a fixed feature 

map dimension for the first residual network, namely 𝐹𝑅𝑒𝑠𝑁𝑒𝑡−18 =
[64,128,256,512], and with an increasingly repeated pattern for the second 

residual network, that is, 𝐹𝑅𝑒𝑠𝑁𝑒𝑡−50 = [𝐹, 𝐹, 4𝐹] with 𝐹 following the fixed 
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feature map order mentioned above. The input is bypassed every two 

convolutions for ResNet-18 and every three convolutions for the other 

residual architecture15. Width and height remain constant throughout the 

section because padding and stride are equal to 1 during these operations, 

allowing the connection to skip. The residual models exploit batch 

normalisation to improve regularisation together with the pooling layers. 

ReLU is the activation function. Eventually, the 18-layers residual network 

has 11.174 M parameters, while the 50-layers network consists of 23.521 

M parameters. 

3.17. The U-net architecture 

The U-net is a CNN performing semantic segmentation, named after its 

peculiar U shape. The architecture comprises a contraction path, namely 

the encoder, which encrypts the input image by reducing it to a feature 

vector, and a symmetrical expansion path, the decoder, which decrypts the 

previously contracted information to restore its initial dimensions68. The 

contraction path consists of repeated blocks made up of two convolutions, 

each followed by a ReLU and a max pooling layer. At each down-sampling 

step, the number of feature-maps channels doubles. In the expansion path, 

each up-sampling step involves a transposed convolution halving the 

number of channels of the feature maps, and a skip-connection67 (i.e., 

residual connection) with the feature map of the symmetrical contraction 

step. Then, it has two convolutions, each followed by a ReLU. Following 

this path, from left to right, given an input image, we obtain in output a 

segmented image of the exact dimensions as the original (Figure 30)68. 

https://www.sciencedirect.com/topics/computer-science/batch-normalization
https://www.sciencedirect.com/topics/computer-science/batch-normalization
https://www.sciencedirect.com/topics/computer-science/regularization
https://www.sciencedirect.com/topics/computer-science/activation-function
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Figure 30. U-Net architecture68 

The U-net++ is an evolution of the U-net and is essentially a supervised 

encoder-decoder network in which the contraction and expansion parts 

bond through dense, nested skip-connection and convolutional paths 

(Figure 31.a)69. This dense network of connections optimises the network 

training process and enables the generation of segmented masks with a high 

level of detail accuracy, even in chaotic backgrounds. Academics compared 

U-net++ with U-nets of various sizes for the segmentation of different 

images in the medical field, and they reported that U-net++ provided better 

results than the basic model69. Skip connections between semantically 

similar feature maps enhance the semantic segmentation procedure, unlike 

U-nets, where high-resolution characteristics directly link from the encoder 

portion to the decoder portion. The idea is thus to bridge the semantic gap 

between the encoding and decoding portions to facilitate the 

backpropagation process. For example, as shown in Figure 31.b, the 

semantic gap between block 𝑥0,0  and block 𝑥0,4  is bridged by inserting 

three convolutional blocks (𝑥0,1, 𝑥0,2, 𝑥0,3). The graphs show in black the 

U-net that makes up the skeleton of the network, in green the dense 

convolutional blocks positioned on the path furrowed by the skip-

connections (blue lines), and in red the supervision. The red, green, and 

blue components differentiate the U-net++ from the U-net. Furthermore, in 

inference, the U-net++ can be reduced when trained with deep supervision 

(Figure 31.c)69. Deep supervision allows the model to operate in two 

ways69: 
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 In accurate mode, the final segmentation map is calculated as the 

average of the outputs of all branches 

 In fast mode, the final segmentation map is selected from a single 

segmentation branch. The branch choice determines the model's 

pruning extent and training speed 

 

Figure 31. U-Net++ architecture69 

3.18. The DeepLab architecture 

The DeepLab architecture comprises naïve decoder networks. This term 

describes the type of up-sampling used for feature map generation. The 

basic idea is to extract features by employing a convolutional encoding 

structure and then restore the original image's spatial resolution through 

bilinear interpolation70. In DeepLab networks, the segmented image is 

obtained by up-sampling the output of the last convolution layer and 

calculating the loss function for each pixel. The up-sampling occurs after 

the encoding phase, during which the resolution of the input image 

significantly decreases. Oversampling, namely the enlargement of the 

image's spatial resolution, is carried out through unique atrous convolutions 

derived from the French à trous (i.e., with holes). The atrous convolution 

makes it possible to enlarge the field of view of the filters without 

increasing the number of parameters or the computational cost (Figure 

32)70: zeros convey the space between kernel elements. 
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Figure 32. Generic filters featuring atrous convolutions70 

DeepLabs come in different versions: DeepLabV1, DeepLabV2, 

DeepLabV3, and DeepLabV3+. Each version represents an evolution of the 

previous model70–73.  

The DeepLabV1 network, compared to a traditional Deep Convolutional 

Neural Network, overcomes the problem of excessive feature resolution 

reduction, and improves segmentation accuracy. It takes an input image, 

passes it to a Deep Convolutional Neural Network, followed by one or two 

layers performing hole convolution, and obtains a coarse score map70. This 

map is subsequently over-sampled through bi-linear interpolation, resulting 

in an image larger than the original. In the end, a fully connected 

Conditional Random Field is applied to improve the segmentation results. 

This model can couple neighbouring nodes, favouring the assignment of 

the same label to pixels that are spatially close to each other (Figure 33)70. 

 

Figure 33. Steps followed by the DeepLabV1 network70 
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The DeepLabV2 network aims to improve the performance of the 

previous version and achieve a more robust segmentation. To this end, 

Atrous Spatial Pyramid Pooling occurs71: 

 Several hole convolutions occur in a feature map 

 Each atrous operation has a kernel that differently expands 

 The result derives from the merging of the two previous steps 

This method makes it possible to improve accuracy when several 

instances of an object in an image belong to the same class but with a 

different scale factor (Figure 34)71,72. 

 

 

Figure 34. Atrous Spatial Pyramid Pooling71,72 

DeepLabV3 further improves performance by attempting to delineate 

sharper object boundaries, especially in the presence of objects on multiple 

scales (Figure 35.a). It experiments with new encoder-decoder type 

architectures in which feature maps' size gradually decreases, capturing 

higher semantic information, and equally gradually, spatial information is 

recovered (Figure 35.b). It makes more extensive use of atrous 

convolutions, testing their operation both in cascade (Figure 35.c) and 

parallel (Figure 35.d)73. 
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Figure 35. DeepLabV3 architectures73 

Finally, the DeepLabV3+ extends the DeepLabV3: it retains the 

DeepLabV3's encoding module and adds a decoding module to refine 

segmentation results, especially along the edge of objects72,73. For this 

purpose, it employs the atrous depthwise separable convolutions that 

decompose a standard convolution into a depthwise convolution (Figure 

36.a) and a pointwise convolution (Figure 36.b). The former applies the 

same filter to each input channel, combining the outputs of the depthwise 

convolution across the various channels. In addition, depthwise 

convolution occurs through a perforated filter so that one can refer to it as 

atrous depthwise convolution (Figure 36.c). 

 

Figure 36. Atrous depthwise separable convolution73 

In contrast to DeepLabV3, in the encoding phase, atrous depthwise 

separable convolutions replace all max pooling operations, whilst in 

decoding, there are a series of fixes on some layers to obtain an output 

mask that had the exact spatial resolution as the input image (Figure 37)73. 
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Figure 37. DeepLab V3+ architecture73 

3.19. Generative Adversarial Networks (GANs)  

Generative adversarial networks (GANs) are famous architectures used 

for generative modelling. GANs consist of two networks: a generator (G) 

and a discriminator (D) (Figure 38)74.  

 

Figure 38. GAN standard structure56  

The intuition is that G iteratively tries to map a stochastic input 

distribution to a target data distribution to generate new data, which D 

assesses as real or fake. Depending on the feedback from D, G tends to 

minimise the loss between the two distributions, thus generating similar 

samples as input data. The goal is to trick D into classifying generated data 
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as real. Both networks train simultaneously to get better at their respective 

tasks: while G is learning to fool D, D is concurrently learning to 

distinguish better fake from real data. D and G are generally CNNs trained 

in an adversarial setup56,74.  

Unlike CNNs, adversarial learning is a relatively recent idea. 

Regardless, it rapidly spread in medical imaging to overcome the small-

sized dataset problems discussed in Section 2.12.  

The original GAN architecture suffered several disadvantages, such as 

irregular training74. Consequently, intensive research in computer vision 

brought substantial progress by either modifying the architecture of D and 

G or exploring new loss functions2,74,75. A manner to nicely handle the data 

generation process in GANs is to supply extra information about the 

desired output properties, such as examples of the desired target labels. 

This knowledge supply is known as conditional GANs (cGANs), and it 

represents a form of supervision since it demands aligned training 

pairs1,2,56,74,75. However, the real strength of GANs relies on their ability to 

learn semi-supervised or fully unsupervised. Mainly, where aligned and 

properly annotated image couples are rarely available in medical imaging, 

GANs play a crucial role.  

So far, in the medical imaging field, GANs have been chiefly applied to 

synthetic image generation for data augmentation75–77 and multi-modality 

image translation. Concerning data augmentation, literature believes that 

GAN-based models have the potential to better sample the whole data 

distribution and generate more natural images than traditional approaches 

(e.g., rotation and flipping), which may contribute to higher models 

generalizability and more efficient training1,3,54.  

The present doctoral thesis adopted the original GAN model proposed 

by Goodfellow et al. in 201474. The generator G inputs a latent space vector 

z from a standard Gaussian distribution and produces a sample G(z) 
representing the mapping from a latent space z to the actual data space.  

On the one hand, G trains to estimate the training data distribution and 

generate synthetic samples with the same real data distribution.  

On the other hand, discriminator D receives the synthetic data produced 

by G or a sample (x)  from the real dataset as input. D outputs the 

probability estimate concerning the input data source. Specifically, it 

estimates whether the sample came from the training data or G. G and D 

play a minimax game, where G tries to minimise the probability that D will 

predict its outputs as fake, whilst D tries to maximise its probability to 

discriminate between real and fake samples correctly2,74,75. 

Researchers proposed several network architectural topologies to 

implement G and D, including Vanilla GAN, BiGAN, infoGAN, variational 

autoencoder network GAN (VAEGAN), and deep convolutional GAN56. As 

we mentioned, deep convolutional neural networks have recently emerged 

as stable and affordable architecture for synthetic image generation56. This 

architecture adopts two convolutional networks, G and D. Remarkably, G 

consists of transposed convolutional layers, while D comprises standard 

convolutional layers. 
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Considering HS images, the conversion from z to the data space 

performed by G consists of creating synthetic HS images with the training 

images' exact spatial and spectral dimensions. Since we employed the skin 

cancer dataset described in Section 2.7 as a training set, G should generate 

an image whose sizes are 50 ×  50 ×  116 . Figure 39.a shows the G 

architecture and the sizes G adopted in this thesis. A batch normalisation 

and ReLU activation function follow the deconvolutional layers from 1 to 

6. Finally, the last deconvolutional layer adopts the Tanh activation 

function. 

 

Figure 39. Proposed generator (a) and discriminator (b) architectures56 

On the other hand, D receives as input an HS image with the same size, 

50 ×  50 ×  116, and performs a binary classification to determine if the 

input image is real or fake. For this reason, this network comprises standard 

convolutional layers. Figure 39.b depicts D's architecture detailing each 

convolutional layer's size. The leaky ReLU activation function 

characterises the first convolutional layer. The layers from 2 to 5 feature 

batch normalisation and leaky ReLU activation function. All the leaky 

ReLU functions adopt a negative slope equal to 0.2. The sigmoid function 

characterises the final convolutional layer56. 
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3.20. Concluding remarks 

This chapter provided an overview of AI focusing on medical imaging 

analysis, paying attention to the critical methodological concepts adopted 

in this doctoral work. All the models and methodologies suffer from the 

challenges described in Section 2.12 in medical environments.  

The following chapters will dive into the details of the works carried out 

during the educational path described in this manuscript, exploiting the 

algorithms and technological advancements described in this manuscript. 
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Chapter 4 

4 CUDA programming basics 

This chapter covers the basics of the CUDA Graphical Processing Unit 

(GPU) programming language and its main libraries, which took part in this 

doctoral thesis. CUDA is a programming language designed and developed 

by Nvidia engineers to provide access to a CUDA-capable GPU device's 

hardware to run general-purpose code that can utilise the massively parallel 

architecture to accelerate applications. The general term for this is GPGPU 

which stands for General Purpose Graphical Processing Unit to distinguish 

them from the types of operations that run on graphics cards, including 3D 

rendering and video decoding. 

The ongoing technological High-Performance Computing (HPC) 

growth, mainly concerning hardware like GPUs, drives traditional 

healthcare innovation and transformation into personalised medicine, 

capable of managing the big data and the models described in the previous 

chapters. The challenge involves experimenting with new approaches to 

gathering, managing, and transmitting data to deliver a renewed direction 

to medical research. In this innovative context, computational aspects are 

crucial since they concern every aspect of healthcare. For instance, 

simulators let patients better comprehend the surgery or the therapy they 

will face. They also provide surgeons with a more practical breakdown and 

operation preparation tool. Regardless, all the goals met by such settings 

are only possible thanks to the high-performance computing hardware 

provided with them11,12. 

Another example of the research supported by HPC stands in what we 

can consider another popular buzzword of the last decade besides AI, the 

digital twin. It consists of a detailed mathematical model allowing the real-

time simulation of its natural counterpart, which could consist of a living 

organ or an electrical machine for autonomous driving. In healthcare, the 

digital twin improves therapy personalisation and better data-driven 

decisions, precluding medical difficulties before they may occur11.  

Two main factors contribute to these substantial visionary systems' 

continuous design and development: fast data availability and technological 

infrastructure.  

GPU architectures comprise thousands of cores, spreading the workload 

among these processors that work in parallel. Researchers operate multi -

GPU systems or supercomputers to increase the number of available cores, 
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reducing elaboration time. This doctoral thesis extensively operated GPUs 

for model training and their embedded deployment onto low-power 

hardware78. 

4.1. Accelerated computing  

The number of AI medical applications leaning on more than a single 

processor's computational capacity and power is rising. Fast or even real-

time reaction is essential in healthcare, and AI computational complexity 

needs many cores architecture to grow and manage big data. This element 

leads to assessing efficient technologies to manage vast amounts of data in 

constrained computational times. Consequently, a different way of 

programming exists to transform a sequential into a parallel software 

program, where various threads cooperate to complete the elaboration 

rapidly. Two philosophies exploit parallel hardware: multi-core and many-

core. In multi-core programming, the processor elaborates both the code's 

serial and parallel parts. A single thread executes the former, whilst many-

core comprises several threads for elaboration. In the many-core 

philosophy, each core manages one thread since these technologies host 

hundreds or thousands of cores11.  

4.2. Comparison between CPU and GPU 

GPUs are many-core architectures, representing the dominant device for 

parallel computing. The first dedicated graphics chips were produced to 

output the 2D display and assist with bitmap rendering operations. This 

production coincided with the introduction of graphically driven operating 

systems of the late 80s and early 90s. Resolutions and colour palettes 

gradually improved with improved display technology. As hardware 

became powerful, companies produced dedicated 3D graphics workstations 

to spread in government, defence, scientific and technical industries, as 

well as producing visuals and special effects for the media and creative 

industries. By the mid-90s, consumer applications and games employing 3-

D graphics were becoming popular, and companies like Nvidia released 

their competing products around this time.  

The first standardised and platform-independent 3D graphics API, 

OpenGL (Open Graphics Language), was released in 1992 by Silicon 

Graphics. Developers no longer had to utilise different proprietary 

standards to support competing devices. Regardless, they could develop 

code obliging for one standard able to run on all compliant cards with a 

guaranteed set of features defined by the version compliance, with all 

graphics card manufacturers eventually supporting both DirectX and 

OpenGL. Eventually, as hardware became faster and more complex, the 

graphics devices moved from a fixed function pipeline to a more 

programmable pipeline that included components like pixel shaders and 
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vertex shaders, which allowed for greater versatility in 3D rendering 

techniques. Designers intended pixel shaders to work on textures in 3D 

coordinates, but developers soon found a way to harness the computational 

power of GPU for non-graphical algorithms. This process gave rise to the 

term GPGPU, short for the general-purpose graphical processing unit. 

Nvidia took notice of this, and the next evolutionary step on the way to full 

GPGPU was to deliver the programmable functionality and parallel 

computing power of the GPU. The company released a dedicated parallel 

computing API named CUDA, which allowed developers to utilise the 

GPU for computational work without going through the graphics API or 

being restricted to using textures for data. It also allowed arbitrary memory 

reads and writes and a full suite of debugging and profiling tools included 

in the software development kit. Applications of GPGPU include medical 

imaging, raytracing, fluid dynamics, cryptocurrencies, and AI. 

 

Figure 40. Nvidia ADA Lovelace Tera Floating Point Operations Per 

Second 

To better explain the computational capabilities of CUDA-

programmable GPUs and CPUs, Figure 40 shows the evolution of the peak 

double-precision floating-point operations per second (TOPS) on recent 

GPU architectures associated with power consumption. This graph is not an 

accurate performance comparison, but it is possible to appreciate how 

much the performance gap has grown over the years. This difference led 

developers to harness the GPUs' power to execute their programs' most 

computationally intensive parts11,78.  

Designers produced many GPU architectures over the years, 

representing one of the main reasons for the computational gap concerning 

CPUs (Figure 41). The CPU maximises sequential programs' performance 

and comprises a sophisticated control unit that distributes the workload to 



CUDA programming basics 

 

 80 

threads but maintains a serial aspect. Big cache memories ease the latency 

of memory and instruction accesses. Another difference for CPUs is 

backward compatibility with several operative systems, applications and 

I/O procedures. Since GPUs do not have to meet these constraints, their 

memory model is more straightforward. GPU developers increase memory 

bandwidth, speeding up data and instruction transfers, and most chip area is 

dedicated to several ALUs to maximise the computational throughput. 

Indeed, while CPUs optimise latency, namely the time required for 

operation completion, GPUs seek throughput, namely the number of 

operations completed concurrently11,78. This arrangement makes the control 

units and the cache memories smaller than the CPU ones (Figure 41). GPU 

architecture allows threads to elaborate data while others perform memory 

accesses, and several small-sized caches increase memory bandwidth. 

Although the GPUs optimise the computational performance, some tasks 

are more efficient if the CPU runs. For this reason, most applications use 

the CPU for the sequential part of the code and the GPUs for the most 

intensive parts.  

 

Figure 41. CPU and GPU architecture comparison78 

Nvidia equips different GPUs generations with hundreds of cores 

organised in the so-called Streaming Multiprocessors (SMs). They can be 

considered similar to a separate CPU core, with each SM having access to 

its local memory pool, cache and registers (Figure 42). Furthermore, SMs 

comprise several processing cores called CUDA cores under the control of 

several warp schedulers, which fetch instructions and execute them on the 

multiprocessor. Different graphics card models from the same family will 

often differ by the number of SM they contain. However, developers 

usually fix the number of CUDA cores in SMs for a given micro-

architecture. For example, Maxwell and Pascal families contain 128 CUDA 

cores per multiprocessor. Table 5 displays how the CUDA cores number 

has historically changed between different designs. For example, in the 
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previous Kepler architecture, the number of CUDA cores per 

multiprocessor was 192; on Fermi, before that, it was 48.  

Table 5. GPU architectures evolution across the years 

CUDA Architecture Codename Release year CUDA cores per SM 

Tesla 2006 8 

Fermi 2010 48 

Kepler 2012 192 

Maxwell 2014 128 

Pascal 2016 128 

Volta 2017 64 

Turing 2018 64 

 

Two types of memories characterise GPU architectures. The global 

memory can be accessed by a thread independently from its block and is 

used to exchange data between CPU and GPU through suitable CUDA 

functions. Since it takes a long time to access this memory due to the low 

access bandwidth, developers must design an efficient strategy during the 

data transfers between GPU and CPU. The on-chip memories, shared 

memory and registers have a low access latency and a high bandwidth. 

Registers are private to each thread, whilst shared memory is private to all 

block threads. The usage of the on-chip memories allows for reducing the 

high cost of accessing the global memory11,78.  

 

Figure 42. Most recent Nvidia Ada Lovelace’s Streaming Multiprocessors 

scheme 

 



CUDA programming basics 

 

 82 

4.3. Computer Unified Device Architecture (CUDA) 
basics 

CUDA is an acronym for Computer Unified Device Architecture, and 

Nvidia first introduced Version 1.0 of their proprietary CUDA C 

programming language with the Geforce 8 series of cards: the GTX 8800. It 

was the first graphics card released to be CUDA capable under a new 

micro-architecture called Tesla in June 2007 with a designated Compute 

Capability 1.0, which is different from the software version. Nvidia assigns 

a compute capability version number to each new micro-architecture it 

releases to designate the hardware features that the device supports. When 

Nvidia designed the CUDA language, it relied on the C language with some 

extensions. It should be easy to get started if one is familiar with the C or 

C++ languages. Developers designed CUDA so that someone with no prior 

knowledge of OpenGL or DirectX can tap into the GPGPU capabilities of 

the device directly without much extra effort. To run CUDA programs, it is 

necessary to have an Nvidia device installed as it is proprietary software78.  

CUDA remains widely used in industry and academia and has access to 

a wide array of Nvidia-developed and third-party libraries and applications 

written for it. New toolkits with new software features and hardware 

support have been added regularly since the first release, with the current 

version being CUDA SDK Version 12 as of the time of writing.  

 

Figure 43. CUDA execution model78 

The CUDA execution model (Figure 43) comprises a host, commonly 

the CPU, interacting with one or more devices, namely the GPUs, which 

speed up the software's computationally intensive parts. Therefore, a 

CUDA program's source code contains parts related to the host and the 



 

 83 

devices, which lean on the same language (C/C++ and others like Fortran 

or Python). The device parts extend the primary language with the CUDA 

functions and instructions that run on the GPU. Nonetheless, the host and 

the device access separate memories, so an explicit allocation and transfer 

between the two memories are necessary. 

 

Figure 44. Threads, Grids and Blocks organization78 

Developers define a kernel as a function working with parallel threads 

on the device's hardware. The CUDA program execution starts from the 

host that will invoke a kernel. At this point, the device generates many 

threads to exploit the parallelism. Threads organise in blocks which, in 

turn, form a grid (Figure 44). In parallel computing, a task's granularity (or 

grain size) measures the work (i.e., computation) performed by that task. 

Blocks, sequentially assigned to the various SMs, represent coarse-grained 

parallelism. Threads, instead, represent fine-grained parallelism. A thread 

can only belong to one block78. 

When a grid's threads end their execution, the software continues 

sequentially until the host invokes another kernel. On the other hand, when 

a kernel ends, it is essential to transfer its results from the device to the 

host memory and to release the GPU memory. Figure 43 displayed an 

example of the CUDA code execution model. This section mentioned 

execution passing from host to device when a kernel starts. In this process, 

the developer must perform a series of tasks. First, to allocate the memory 

on the device, the host uses the function cudaMalloc. This function has the 

following prototype: 
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 cudaError_t cudaMalloc (void** devPtr, size t size): devPtr is the 

pointer address and size the size in bytes to be allocated. 

cudaError_t is the function output that reports the presence of an 

error 

Once allocated the memory, it is possible to transfer elements from host 

to device using the cudaMemcpy function:  

 cudaError_t cudaMemcpy (void* dst, const void* src, size t 

count, enum CudaMemcpyKind kind): dst and src are the 

destination and the source memory addresses, respectively. The 

count is the elements’ size in bytes to copy, and the kind defines 

the transfer type, identifying the source and destination. The 

transfer direction can be host-host (cudaMemcpyHostToHost), 

host-device (cudaMemcpyHostToDevice), device-host 

(cudaMemcpyDeviceToHost) and device-device 

(cudaMemcpyDeviceToDevice)  

Once developers allocate memory and perform the data transfer, they 

invoke functions to execute computations on the data. Upon kernel 

activation, the scheduler cyclically assigns each grid block to an SM 

containing a specific number of architecture-dependent CUDA cores78. The 

scheduler will allocate unassigned blocks as soon as an SM terminates a 

block. As a result, blocks can be executed independently of each other so 

that no assumptions exist about their execution order. This feature of 

CUDA is called transparent scalability and is a massive advantage because 

the same code can be executed differently on hardware with different 

resources. All grid blocks must contain the same number of threads 

(maximum 1024 per block). Nvidia introduced this constraint to force 

developers to use more blocks and use the GPU's potential better. Blocks, 

however, are only conceptual units. The fundamental execution unit for the 

SM scheduler is the warp. The threads in each block are grouped into sets 

of 32 threads, called warps. Each warp is assigned to a core and can be 

executed independently of the others. When sizing blocks, it is a good 

practice to choose sizes multiples of 3278. 

Typically, when a kernel starts, data transfer from host to device and at 

the end of the kernel computation, data come back from the device to host. 

Once we initialise the device, we must also define the kernel's number of 

threads and blocks. CUDA provides variables to uniquely identify a block 

inside a grid using three-dimensional coordinates: blockIdx.x, blockIdx.y 

and blockIdx.z. Similarly, we can identify a thread in a block using 

threadIdx.x, threadIdx.y and threadIdx.z variables. It is possible to use only 

two dimensions in the thread identification, as shown in Figure 44. 

Furthermore, all blocks must have the same number of threads. Finally, 

blockDim and gridDim represent the blocks and grid dimensions. In the 2D 

scenario, developers may identify a single thread using the following 

Equation 19 and Equation 20: 
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𝐢 =  𝐛𝐥𝐨𝐜𝐤𝐈𝐝𝐱. 𝐲 ×  𝐛𝐥𝐨𝐜𝐤𝐃𝐢𝐦. 𝐲 +  𝐭𝐡𝐫𝐞𝐚𝐝𝐈𝐝𝐱. 𝐲 Equation 19 

𝐣 =  𝐛𝐥𝐨𝐜𝐤𝐈𝐝𝐱. 𝐱 ×  𝐛𝐥𝐨𝐜𝐤𝐃𝐢𝐦. 𝐱 +  𝐭𝐡𝐫𝐞𝐚𝐝𝐈𝐝𝐱. 𝐱 Equation 20 

  

If only one index has to be used to define a thread, it follows Equation 

21: 

  

𝐢𝐧𝐝𝐞𝐱 = 𝐢 ×  𝐠𝐫𝐢𝐝𝐃𝐢𝐦. 𝐱 ×  𝐛𝐥𝐨𝐜𝐤𝐃𝐢𝐦. 𝐱 + 𝐣 Equation 21 

 

Furthermore, engineers can synchronise threads activity in a block 

through the syncthreads function. This way, all the threads reaching the 

block's barrier wait for the others before continuing the execution. Since 

synchronisation only affects a block, the system can execute the blocks 

randomly. For example, Figure 45 demonstrates how the same code might 

run differently on two boards equipped with a different number of cores. 

This computational advantage is called automatic scalability78. 

 

Figure 45. Automatic scalability78 

At this stage of the program execution model, it is possible to invoke the 

kernel specifying the grid and the block dimensions:  
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 kernel <<<dim3 grid, dim3 block>>>(arg1, arg2, ...): (arg1, 

arg2,..., argN) are the function's parameters  

Once the host invokes a kernel, each SM can manage up to 16 blocks 

depending on its resources. Each block assigned to an SM splits into groups 

of 32 consecutive threads (i.e., the warps) for execution, which, as we 

mentioned, must be 1024 at maximum. The most substantial portion of a 

CUDA code resides in the kernel activation, whose execution takes place 

on the GPU and can be activated either by the host or by the device itself. 

The __global__ identifier precedes the first case, whilst the __device__ one 

foregoes the latter.  

Once the kernel execution completes, the result can be transferred from 

the device to the host by exploiting the cudaMemcpy function presented 

above, where the kind is cudaMemcpyDeviceToHost.  

At the end of the device code execution model, the developer must 

release GPU's memory by invoking the cudaFree function:  

 cudaError_t cudaFree(void* devPtr): devPtr indicates the device 

memory pointer to deallocate 

Once the host invokes a kernel, it has two options: it can wait for the 

device's results and only then continues the program execution, or it can 

continue the execution immediately after the kernel call. The former 

involves synchronising the host and the device activity, whilst the latter 

implies an asynchronous run and kernel takeoffs can overlap with the host 

function calls. However, the cudaMemcpy is a synchronous function. 

Hence, CUDA provides a tool to exploit the concurrency and the ability to 

perform the CUDA kernel, the memory transfers, and the host operations 

simultaneously. Hence, developers must use a different CUDA function to 

transfer data from host to device asynchronously and vice versa: the 

cudaMemcpyAsync. This function requires the host's memory allocation 

through the cudaMallocHost.  

The CUDA framework also offers streams for concurrent execution, 

enabling overlap of CUDA operations assigned to different streams. For 

instance, developers can overlap memory transfers with computation on the 

device or host to enhance performance. A cudaDeviceSynchronize function 

is used to block the host until the CUDA kernel completes and the results 

are returned when host needs the GPU computation result. As shown in 

Figure 46, streams can be used to overlap transfers and kernels in the 

sequence of host-to-device memory transfer, kernel execution and device-

to-host memory transfer78. 
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Figure 46. In serial execution, memory transfers and kernel are sequential. 

Streams allow to overlap tasks78 

In summary, we can say that a CUDA program consists of a series of 

specific steps involving the host and one or more devices: 

1. Declaration of variables and allocation of memory space on the 

device 

2. Data transfer from the host to the device 

3. Activation of the kernel 

4. Data transfer from device to host 

5. Deallocation of memory space on the device 

4.4. CUDA program compilation  

CUDA execution model provides the nvcc compiler to assemble a C-

CUDA program. The host code compiles through a standard compiler such 

as gcc, whilst the device code runs through either an assembly form called 

Parallel Thread eXecution (PTX) or a binary form. Developers set the 

parameter compute capability to point the GPU architecture to the 

compiler, which contains two numbers indicating the architecture and the 

version, respectively78.  
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4.5. CUDA example 

Algorithm 1 is an example of a simple kernel performing an addition 

between two-dimensional matrices parallelised with CUDA C. The number 

of blocks (1D) equals the number of rows in the matrix. On the other hand, 

the threads (1D) per block correspond to the columns count in the matrix. 

This choice yields an activation of several blocks equal to the number of 

columns and, thus, as many CUDA cores as possible. This selection aims to 

optimise the operation's performance as much as possible. 

 

Algorithm 1. CUDA kernel Matrix Addition 

1. __global__ void add_matrix(float* mat_dev_val1, float* mat_dev_val2, int rows, 

int columns) 

2. { 

3.   int index = blockIdx.x * (columns) + threadIdx.x; 

4.   if (threadIdx.x < columns && blockIdx.x < rows) 

5.   { 

6.       mat_dev_val1[index] = mat_dev_val1[index] + mat_dev_val2[index]; 

7.   } 

8. } 

 

 

As we can see, the add_matrix() function must be declared __global__ 

to run in parallel on the GPU. 

The function takes as input as parameters two float pointers to devices 

previously allocated with a cudaMalloc(), which are the matrices we wish 

to sum. The matrices were previously stored in memory as 

monodimensional arrays and thus with a contiguous row-by-row allocation 

(row-major order). One of the matrices (mat_dev_val1) also stores the 

result, thus already overwriting the data it possessed but sparing memory 

usage. 

The blocks and threads describe the matrix component's index, which we 

sum to exploit the GPU's parallelism fully. 

The call of the function in the host part takes place in this way: 

 add_matrix << <rows, columns >> > (mat1, mat2, rows, 

columns); 

This kernel writing enables blocks as the number of rows and threads for 

each block as the number of columns. Nonetheless, the number of columns 

is a multiple of 32 less than 1024. We will then obtain the result in mat1, 

which we allocated on the device. If we wanted to check the result, a 

cudaMemcpy() would have transferred it to the host. 
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4.6. cuDNN library 

As we previously mentioned, academics research solutions to complex 

and computationally heavy problems in healthcare. AI represents one of 

these, especially related to medical data, which comprise HSIs. Researchers 

must consider designing applications comprising big deep-learning models 

and data as complex as HSIs. These projects require hardware that delivers 

the highest throughput and lowest latency possible11,12,18.  

This doctoral thesis extensively adopted the cuDNN library, especially 

for embedding the designed models into low-power GPUs. The Nvidia 

CUDA Deep Neural Network library (cuDNN) is a GPU-accelerated library 

of primitives for deep neural networks. cuDNN provides highly tuned 

implementations for standard routines such as forward and backward 

convolution, pooling, normalisation, and activation layers. Deep learning 

researchers and framework developers worldwide rely on cuDNN for high-

performance GPU acceleration. It allows them to focus on training neural 

networks and developing software applications rather than spending time 

on low-level GPU performance tuning. cuDNN accelerates widely used 

deep learning frameworks, including MATLAB, PyTorch, and 

TensorFlow18,78,79.  

The library comprises functions optimised for GPU execution, behaving 

like standard kernels that have already been parallelised and optimised 

automatically. Their activation assumes developers follow the execution 

model mentioned in the earlier section, involving all the steps from 

memory allocation to deallocation. 

In addition, the functions of the cuDNN library receive specific types of 

parameters, the so-called descriptors, as input.  

The developer specifies a series of information about the data that the 

cuDNN kernel will process within the descriptor-type variables. This 

information consists primarily of tensors that, qualitatively speaking, 

consist of N-dimensional cubes. Therefore, before activating any cuDNN 

function, we must create and initialise the necessary descriptors that the 

corresponding kernels need to perform their operations correctly79. 

First of all, we must create a handle to use the library79. Accordingly, we 

declare: 

 cudnnHandle_t handle_name; 

 cudnnCreate(&handle_name); 

When we have finished using the library, we can delete this handle by 

calling: 

 cudnnDestroy(handle_name); 

The functions implemented within the cuDNN library require tensors as 

input, which are the pointers to the data we need to use to perform 

operations. Developers must allocate data contiguously in memory for 
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cuDNN to work because it is the only way to achieve maximum efficiency. 

Moreover, we must store it to respect a specific layout indicated by an 

enum data type called cudnnTensorFormat_t that we will use in the tensor 

descriptor itself79. CudnnTensorFormat_t, as far as tensors in 4D are 

concerned, may take the following values: 

 CUDNN_TENSOR_NCHW 

 CUDNN_TENSOR_NHWC 

 CUDNN_TENSOR_NCHW_VECT_C 

Assuming we are discussing images: 

 N denotes the number of different images in a batch of DL 

network training (Section 3.11)  

 C the number of tensor's channels of the tensor, which in the case 

of RGB images is equal to 3 

 H is the height of the tensor, namely the image height 

 W the width of the tensor, namely the image width 

To better understand how we should store these tensors in memory, we 

can refer to these examples (Figure 47 and Figure 48): 

 

Figure 47. cuDNN tensor representation example79 

Furthermore, Figure 48 contains the various possible layouts of the 

tensor in memory: 
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Figure 48. Tensors available memory layouts79 

4.7. cuDNN example: convolution 

In order to give a practical example of how the cuDNN library works, 

this section describes a step-by-step example of the development of a 

convolution layer in the inference phase. Therefore, we will encounter all 

the functionalities of the various tensors and descriptors expected by the 

input cuDNN kernels. 

 

Algorithm 2. cuDNN forward convolution descriptor  

1. cudnnConvolutionForward( 

2. cudnnHandle_t handle, 

3. const void *alpha, 

4. const cudnnTensorDescriptor_t xDesc, 

5. const void *x, 

6. const cudnnFilterDescriptor_t wDesc, 

7. const void *w, 

8. const cudnnConvolutionDescriptor_t convDesc, 

9. cudnnConvolutionFwdAlgo_t algo, 

10. void *workSpace, 

11. size_t workSpaceSizeInBytes, 

12. const void *beta, 

13. const cudnnTensorDescriptor_t yDesc, 

14. void *y) 

 

 

The kernel function written above receives different parameters as input: 
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 The handle to the cuDNN library we mentioned in the earlier 

section  

 The xDesc descriptor of the incoming feature map (see Section 

3.9) and its values, which we allocated and stored on the device, 

x 

 The wDesc descriptor of the filter and its values, which we 

allocated and stored on the device, w 

 The descriptor of the convolution operation convDesc 

 The algorithm (algo) adopted for the convolution calculation 

(i.e., atrous or standard) is a simple enum-type datum. 

Nonetheless, if the desired convolution does not exist in the 

library, a custom algorithm must be written 

 A pointer to the GPU memory workSpace of size workSpaceSize, 

which is necessary for the computation's execution  

 The descriptor of the tensor returned by the function. The kernel 

will store its values in the variable y, which the developer must 

allocate on the device 

 The parameters alpha and beta are scaling factors belonging to 

the host memory. We usually set them equal to 1 and 0, 

respectively. The beta is different from zero if we wish to add a 

bias, and the alpha is different from 1 if we wish to scale the 

result. They relate the calculated values (result) to the values of 

the previous layer (priorDstValue), storing the result in the 

destination tensor (dstValue), as expressed in 𝑑𝑠𝑡𝑉𝑎𝑙𝑢𝑒 = 𝛼 ∙
𝑟𝑒𝑠𝑢𝑙𝑡 + 𝛽 ∙ 𝑝𝑟𝑖𝑜𝑟𝐷𝑠𝑡𝑉𝑎𝑙𝑢𝑒 

Before using any function from the cuDNN library, the software 

developer must create and initialize all function tensors. First, we create the 

xDesc descriptor with the cudnnCreateTensorDecriptor() function, where 

tensorDesc points to the portion of memory in which we allocated the 

tensor. 

cudnnCreateTensorDescriptor(cudnnTensorDescriptor_t *tensorDesc) 

Then, we must tailor the tensor via the cudnnSetTensor4dDescriptor() 

function where tensorDesc references the previously created tensor and the 

format indicates the layout with which we organised the data in memory. In 

this doctoral thesis, we adopted the NCHW format for HS images.  

We then specify the data type. In this doctoral thesis, we adopted the 

float for the HS images and the dimensions of the 4-D tensor: number of 

batches (n), number of channels (c), height (h) and width (w). 
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Algorithm 3. cuDNN set-tensor descriptor  

1. cudnnSetTensor4dDescriptor( 

2.    cudnnTensorDescriptor_t tensorDesc, 

3.    cudnnTensorFormat_t format, 

4.    cudnnDataType_t dataType, 

5.    int n, 

6.    int c, 

7.    int h, 

8.    int w) 

 

 

We employ the same functions to create and configure the output tensor 

yDesc. Similarly, the filter descriptor wDesc is generated with the function 

cudnnCreateFilterDescriptor() and arranged with the function 

cudnnSetFilter4dDescriptor(). 

On the other hand, we create the convolution descriptor convDesc 

through the function cudnnCreateConvolutionDescriptor(). The prototype 

of its configuration function cudnnSetConvolutionNdDescriptor() is as 

follows. 

 

Algorithm 4. cuDNN set-convolution descriptor  

1. cudnnSetConvolutionNdDescriptor( 

2.    cudnnConvolutionDescriptor_t convDesc, 

3.    int arrayLength, 

4.    const int padA[], 

5.    const int filterStrideA[], 

6.    const int dilationA[], 

7.    cudnnConvolutionMode_t mode, 

8.    cudnnDataType_t datatype) 

 

The function receives as input: 

 The reference to the previously created convolution descriptor 

convDesc 

 The size of the convolution 

 The two-dimensional vectors containing the padding, stride and 

dilatation value along the x and y axes of the image 

 The convolution mode may be either CUDNN_CONVOLUTION 

or CUDNN_CROSS_CORRELATION 

 The data type, which, for the HS images this thesis operated, is 

float 

The variable algo, passed to the function cudnnConvolutionForward(), 

can take the following values, depending on the type of algorithm one 

decides to adopt: 
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 CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEM

M: expresses the convolution as a matrix product without 

explicitly forming the matrix containing the input tensor data 

 UDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECO

MP_GEMM: algorithm similar to the previous case but requires 

memory in the workspace to calculate specific indices in order to 

facilitate the calculations 

 CUDNN_CONVOLUTION_FWD_ALGO_GEMM: expresses 

convolution as an explicit matrix product and requires a 

significant amount of memory in the workspace 

 CUDNN_CONVOLUTION_FWD_ALGO_DIRECT: performs 

a direct convolution without performing the matrix product 

 CUDNN_CONVOLUTION_FWD_ALGO_FFT: uses the Fast-

Fourier Transform (FFT) approach to calculate the convolution 

and requires a lot of workspace memory 

 CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING: 

algorithm similar to the earlier case, but partitions the input into 

sub-regions during calculation 

 CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD: 

employs the Winograd Transform approach for convolution 

calculation 

 CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NO

NFUSED: algorithm similar to the previous case but requires 

more memory in the workspace 

On the other hand, the developer must fill the workSpaceSizeInBytes 

parameter of cudnnConvolutionForward() through the following function in 

which the input parameters are created and initialised earlier. 

 

Algorithm 5. cuDNN get convolution forward workspace size  

1. cudnnStatus_t cudnnGetConvolutionForwardWorkspaceSize( 

2. cudnnHandle_t   handle, 

3. const   cudnnTensorDescriptor_t         xDesc, 

4. const   cudnnFilterDescriptor_t         wDesc, 

5. const   cudnnConvolutionDescriptor_t    convDesc, 

6. const   cudnnTensorDescriptor_t         yDesc, 

7. cudnnConvolutionFwdAlgo_t               algo, 

8. size_t                                 *sizeInBytes) 

 

The sizeInBytes pointer stores the output size in bytes of the workspace 

we will use. 

At this point, we allocate the workspace with the sizes we just computed 

thanks to a cudaMalloc() which will run as follows so that we can also pass 

the actual workspace as a parameter to cudnnConvolutionForward() as 

required79. 
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cudaMalloc((void**)&workSpace, workSpaceSizeInBytes); 

The convolution outcome is a tensor whose dimensions result from the 

function cudnnGetConvolution2dForwardOutputDim() for 2D 

convolutions. It receives as input parameters the previously created 

convolution descriptor, the input descriptor (x) and the filter descriptor (w), 

and in turn, stores in the integer pointers n,c,h, and w, respectively, the 

dimensions of the output tensor79. 

 

Algorithm 6. cuDNN get convolution2d forward output dimension  

1. cudnnStatus_t cudnnGetConvolution2dForwardOutputDim( 

2.     const cudnnConvolutionDescriptor_t  convDesc, 

3.     const cudnnTensorDescriptor_t       inputTensorDesc, 

4.     const cudnnFilterDescriptor_t       filterDesc, 

5.     int                                *n, 

6.     int                                *c, 

7.     int                                *h, 

8.     int                                *w) 

 

Consequently, we obtained the last missing parameters (n,c,h,w) that we 

need to allocate with a cudaMalloc() the space for the result tensor of our 

convolution. Finally, we can invoke cudnnConvolutionForward() using 

what we have created and initialised as parameters. 

4.8. Test systems  

As for the applications presented in the following chapters, we conduct 

tests on two different systems whose characteristics are listed below.  

1. System 1 (TS1) comprises Intel-i9-9900X CPU, working at 3.5 

GHz, 128 GB of RAM, and two 2944 CUDA-cores Nvidia RTX 

2080 GPUs 

2. System 2 (TS2) is equipped with an Intel i7-3770 CPU, working 

at 3.4 GHz, with 8 GB of RAM and connected to an Nvidia Tesla 

K40 GPU (Kepler architecture). This device has 2880 cores, and 

12 GB of RAM and its working frequency is 875 MHz  

3. System 3 (TS3) is the Nvidia Jetson Nano™ Developer Kit. It 

comprises a 128 CUDA-cores Maxwell GPU, a Quad-core ARM 

A57 running at 1.43 GHz CPU and 4 GB 64-bit LPDDR4 RAM 
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Chapter 5 

5 The SARS-CoV-2 pandemic 

SARS-CoV-2 caused the Covid-19 pandemic, which originated in China 

and abruptly scattered within Europe since February 2020 and is still 

challenging the world's health systems. It manifests after incubation and 

yields a high contagion rate. Hospitals need fast and cheap diagnostic tools 

to detect infected subjects. Section 2.2 reported that subjects infected by 

SARS-CoV-2 might present a transforming clinical situation varying from 

focal to multifocal interstitial pulmonary involvement that LUS may 

visualise through the artefacts we described in Section 2.1. The high 

contagion rate accounts for further intricacy because physicians must 

merge patient care with strict safety protocols15. Currently, the main 

diagnostic tools for detecting and isolating infected people include real-

time reverse transcription-polymerase chain reactions (rRT-PCR) in 

nasopharyngeal swabs (NPS), and IgM-IgG combined antibody tests. 

However, both these tools have limitations. Both exhibit the same poor 

sensitivity, with a slight increase only after a specific duration following 

symptom manifestation. Regardless, IgM-IgG may result in false-negative 

results in the early phases of the infection. Covid-19 begins with mild or no 

symptoms and can rapidly transform, subjecting patients to highly critical 

conditions with possibly fatal consequences resulting from multi-organ 

failure15,26,29. 

First-line diagnosis of pneumonia might exploit chest X-rays (CXR) for 

first-aid treatment of patients exhibiting symptoms of pneumonia. Potential 

alternatives to CXR include computed tomography CT scans and LUS. The 

main conclusions from studies concerning these methodologies state that 

LUS and CT scans are significantly better first-line diagnostic tools than 

CXR, whose main drawback is poor sensitivity. Moreover, LUS is a cost-

effective, radiation-free, and promising tool, but a highly skilled 

radiographer must perform it to achieve accurate results. Furthermore, LUS 

effectively performed at the bedside in approximately 13 min yields higher 

sensitivity than CXR20,21,30. 

In respiratory diseases, arterial blood gas (ABG) and LUS quantitative 

examination play a crucial role16. They instruct the diagnosis and disease 

severity stratification, allowing adequate therapy. Two commonly used 

indices to assess the pathogenic mechanism of respiratory failure are the 

PaO2 / FiO2 ratio (P/F) and the alveolar-to-arterial oxygen difference 
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(AaDO2)16,80. While clinical practice operates the P/F as a simple measure 

of lung dysfunction in critically ill patients to predict disease outcome, the 

Berlin criteria in ARDS patients reports an elevated AaDO2 accompanied 

by hypoxemia indicating a ventilation-perfusion mismatch or intra-

pulmonary shunting16. Covid-19 pneumonia relates to increased shunting 

and altered oxygen alveolar–arteriolar barrier diffusion, which might be 

associated with increased AaDO2 and decreased P/F values. 

The Covid-19 pandemic has resulted in renewed attention to the studies 

mentioned above and led medical professionals to evaluate potential 

answers for the abovementioned challenges and procure fast, cheap, and 

efficient diagnostic mechanisms. SARS-CoV-2 necessitates specific 

binding and strict constraints to sidestep cross-contamination, such as 

infected staff or medical devices, and provide patients with the highest 

standard of healthcare, such as transferring patients for treatments or 

examinations and making diagnostic tools readily available to everyone. 

For example, these crucial necessities made it impossible to use a 

stethoscope during hospital operations in infectious disease departments 

owing to the use of personal protective equipment. Therefore, researchers 

concluded that both CT scans and LUS are promising diagnostic 

instruments that are capable of early SARS-CoV-2 pneumonia detection 

and present highly correlated patterns for different disease stages15,16,26,29. 

Although the former initially served a pivotal function during the 

pandemic, it exhibits some weaknesses in terms of the previously stated 

constraints, while the latter does not. Consequently, it has been beneficial 

to rely upon an international standardisation of LUS exploitation, providing 

a medical procedure and the scoring scale Section 2.3 described. 

Researchers have extensively reviewed machine and deep learning 

biomedical applications in this context, highlighting the challenges of using 

labelled datasets in medical contexts.  

This chapter will focus on the statistical and AI approaches this doctoral  

thesis researched to counteract SARS-CoV-2. The studies address the 

operation of specific diagnostic measurements, also used to collect the 

dataset described in Section 2.11, the classification of LUS clips and 

assessing patients for SARS-CoV-2 positivity through blood tests. Close 

collaboration with Fondazione IRCCS Policlinico San Matteo's Emergency 

Department (ED) of Pavia enabled the investigation of the research just 

mentioned15–17. 

In the following lines and sections, this chapter describes the state of the 

art methodologies and results applied to the problems addressed in this 

doctoral thesis. Then, for each of the works researched in the educational 

path described in this thesis, the chapter contains an exploratory data 

analysis, a section describing the materials and methods of the study and 

the concluding remarks. These address the discussion of the results, 

conclusions, and implications that advance the field based on current 

knowledge and our achievements. 
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5.1. AI-based state-of-the-art for pandemic 
management 

During the last decade, the number of research articles on artificial 

intelligence (AI) as a resource for all kinds of medical specialities highly 

increased, demonstrating machine learning (ML) algorithms to be 

successful1. Notably, AI-enabled support systems aid clinicians' decision-

making, especially during triage operations at the hospital. Indeed, most 

studies aim to develop models to schedule patients according to their triage 

acuity level, assessing the severity of their conditions and deciding upon 

hospital admission15,17. SARS-CoV-2 studies comprise algorithms 

exploiting computed tomography (CT), lung ultrasound (LUS), and X-ray 

imaging techniques to diagnose and examine evolving Covid-19 

patterns14,61. On the other hand, researchers exploited ML and AI-based 

techniques to tackle contact tracing, predicting and forecasting 

epidemiological measurements, and SARS-CoV-2 drug development81,82. 

During the first heavy pandemic waves, several countries limited swab 

testing due to the unfeasible number of them to be analysed. Research has 

also focused on machine learning algorithms to quickly assess patients for 

Covid-19 positivity and mortality ever since. The studies confirmed the 

feasibility of the statistical learning-based approach. Nonetheless, only 8% 

of the studies observed by literature reviews focused on blood test analyses. 

Researchers produced statistical models having different goals ranging 

from Covid-19 to mortality prediction, with classification results having 

sensitivity levels of approximately 80–89%17,81–83. 

On the other hand, literature documented AI as a good answer for 

overcoming the formerly stated issues concerning SARS-CoV-2 and 

introduces advantages, including diagnostic pace, trustworthiness, and 

support provision to physicians handling the emergency.  

Systematic surveys on DL applications for the coronavirus exposed that 

studies mainly concentrated on CT scans and X-rays. Less than half of the 

investigations operated on transfer learning, while none considered lung 

engagement severity. Physicians extensively employed LUS to estimate 

consequences in patients admitted to the emergency department (ED) and 

to detect Covid-19 pneumonia in subjects who presented a negative swab. 

Regardless, only a few studies have researched the application of DL 

algorithms to LUS data. These studies focused on detecting B-lines, 

artefacts appearing when patients suffer from pneumonia, or binary 

classifications of LUS frames into Covid-19 and non-Covid-1914,15,17. 

Accordingly, only a few researchers have exploited data from 

trustworthy hospital sources, indicating the need for a dedicated dataset. 

Several authors have described the inconsistent quality of their data and the 

need to rely on non-validated sources as limitations of their studies.  

Likewise, some researchers have worked with LUS from only one 

particular type of probe, thus needing more heterogeneous data to train the 
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neural networks, posing another limitation on the soundness of their 

conclusions and DL algorithm usage25,84–86.  

Only two studies have focused on DL systems to detect Covid-19 

pneumonia and assess the severity of lung engagement. The former 

exploited a spatial transform network developed in 2015, while the latter 

proposed an original neural network. However, both reported poor 

performance at frame-level scoring for assessing the severity of lung 

engagement, and neither used pre-trained or state-of-the-art architectures. 

Furthermore, the authors of the former study proposed a novel scoring 

methodology for validated and researched scales evaluating lung health 

status, which the latter adopted as well15.  

To the best of this doctoral thesis's knowledge, there has been no 

investigation on assessing and ranking the lung pleural line health 

conditions through the application of artificially intelligent systems to LUS 

data obtained from Covid-19 subjects at the time of writing. Moreover, all 

investigations regard frame classification without addressing the entire 

LUS clip. 

5.2. Alveolar-arterial difference and lung 
UltraSound to help the Covid-19 clinical decision-
making  

This first research aims to prove baseline AaDO2 capability, measured 

at ED admission, in predicting the need for oxygen support and survival 

expectations in patients affected by Covid-19.  

Furthermore, given the recognised role of LUS in assessing Covid-19 

presence, the secondary aim consists of evaluating the correlation between 

AaDO2 and LUS quantitative evaluation. Nonetheless, this research 

operated the LUS score as the sum of the twelve lung portion assessments 

(Section 2.2), and this explains why we will also encounter values above 3 

reading the following investigation. Proving such correlation is of utmost 

importance, especially in patients with typical P/F values. Indeed, these 

patients present higher risks of undertreatment and might subsequently 

experience fast health conditions worsening due to unexpected clinical 

transition.  

Healthcare practitioners have lived with these working conditions since 

the first pandemic waves, which elicited the need for simple prognostic 

indexes to better steer clinical decision-making and safe hospital discharge 

policies, especially in an overcrowded ED during contingency periods16. 

5.3. Materials and methods 

The investigation affects the data which Section 2.11 explained. The 

data inclusion requirements for collection and the final analysis included: 
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 RT-PCR test positive result  

 Written informed consent 

 Lung ultrasound quantitative examination associated with a 

suspect of Covid-19 presence 

 Complete blood count 

 Assessment of renal and liver function 

 Troponin I 

 serum electrolytes 

 C-reactive protein 

 lactate dehydrogenase 

 creatinine kinase 

 vital signs 

 symptoms 

 ABG  

 AaDO2, which relied on the mathematical formula in Equation 

22 

𝐀𝐚𝐃𝐎𝟐 

=  ((𝐅𝐢𝐎𝟐) (𝐀𝐭𝐦𝐨𝐬𝐩𝐡𝐞𝐫𝐢𝐜 𝐩𝐫𝐞𝐬𝐬𝐮𝐫𝐞 −  𝐇𝟐𝐎 𝐩𝐫𝐞𝐬𝐬𝐮𝐫𝐞) − (𝐏𝐚𝐂𝐎𝟐/𝐑))  

−  𝐏𝐚𝐎𝟐 

Equation 22 

 

We considered the same values for all patients listed for the terms listed 

in Table 6. Healthcare professionals consider typical AaDO2 values 

according to the following formula: 2.5 + 0.21 × age80. 

Table 6. Shared values in Equation 22 for all patients 

Atmospheric pressure 760 mmHg 

H2O pressure 47 mmHg 

Respiratory quotient (R) 0.8 

 

The acquisition protocol described in Section 2.3 reports healthcare 

professionals performing bedside LUS evaluation to patients waiting for 

the swab results. They explored the subjects' thorax in the supine or semi-

supine position, depending on the level of cooperation.  

The Fondazione IRCCS Policlinico Hospital complied with the 

American College of Emergency Physicians' ultrasonographic guidelines. 

Indeed, only experienced sonographers with more than ten examinations 

conducted per week and at least five years of experience performed the 

LUS tests.  

Physicians recorded the LUS clips operating Section 2.3's scores and 

twelve thorax windows, which this thesis investigated in subsequent 

research described in this chapter, to allow off-line re-evaluation.  

This research evaluated the relationship between LUS score and ABG 

respiratory parameters on the whole dataset and in a subset of patients 

whose P/F values were from 300 to 400.  
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We expressed continuous variables through median values, whilst 

categorical variables were as percentages. We considered p-values less than 

0.05 statistically significant.  

This investigation presents the results via scatter plots, regressions, ROC 

curves, and χ2 analyses57.  

5.4. Analysis of the results  

530 out of 820 patients admitted to ED during the observation period, 

reported in 2.11, had a SARS-CoV2 positive nasopharyngeal swab. Among 

those, 223 presented a complete LUS examination and an ABG satisfying 

the abovementioned requirements. Table 2 summarises the baseline 

features of the various clusters considered for examination.  

61.9% of subjects were males, and their median age was 61, ranging 

from 22 to 90 years. The most frequent symptom was fever (89.7%), 

followed by cough (48%) and dyspnoea (46.2%).  

Table 2 reports from 136 (61%) patients having at least one 

comorbidity: 10.3% with at least three pathologies, with hypertension the 

most observed (45%), followed by diabetes (14.4%), coronary artery 

disease (12.6%) and asthma (6.3%).  

The hospital admitted 7.6% of patients to the intensive care unit (ICU), 

45.3% in a general ward, whilst discharged 45.7% and 1.3% died in the 

ED. 23.3% of the 223 patients received higher-intensity care with 

continuous positive airway pressure (CPAP) or invasive ventilation (IOT). 

The Median overall LUS score was equal to 9, and only 16.1% of patients 

did not have lung involvement: 44.8% presented only vertical artefacts, and 

39.1% reported vertical artefacts and consolidations.  

Concerning the ABG analysis, whose median values are reported in 

Table 2, the reduction of P/F and pO2 values was related to the increasing 

severity of the clinical picture. Conversely, AaDO2 increased with 

worsening clinical conditions.  

Figure 49 displays the relationships between AaDO2 - P/F and AaDO2 - 

LUS scores. The distribution of AaDO2 values in patients with P/F values 

ranging from 300 to 400 demonstrated increased AaDO2 values with 

decreasing P/F16. 



 

 103 

 

Figure 49. (a) relationship between AaDO2 and P/F and (b) between 

AaDO2 and LUS16 

Before producing AI solutions for the ED, academia must focus on 

providing it with sufficient diagnostic measures. Accordingly, this research 
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analysed the AaDO2 to predict the need for an assisted high flow of oxygen 

and survival outcomes. 

 

Figure 50. ROC curves in whole cohort. (a) AaDO2 and Oxygen Therapy. 

(b) LUS score and Oxygen Therapy16 
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Figure 50 reports 83.6% sensitivity and 90.5% specificity in predicting 

the need for oxygen with AaDO2 higher than 39.4, whilst 46.9% sensitivity 

and 90.7% specificity in predicting death at 30 days for AaDO2 higher than 

57.2. The AUC values were 0.936 and 0.744, respectively.  

The research obtained similar results on the subgroup of patients with 

P/F values ranging from 300 to 400. In the first scenario, an AaDO2 value 

higher than 36.4 yields 78.6% sensitivity, 75.4% specificity and 0.831 

AUC.  

The research also estimated the subsequent need for oxygen support 

from LUS score overall evaluations higher than 6 with 89.7% sensitivity, 

75% specificity, and 0.896 AUC16. 

5.5. Final remarks and study limitations 

Based on an observational cohort of Covid-19 patients evaluated at the 

Fondazione IRCCS San Matteo University Hospital in Pavia (Italy), the 

present study shows as its main result that AaDO2 can be a valuable 

parameter to stratify the evolutionary risk of patients with Covid-1916. To 

the best of the research knowledge, this was the first investigation 

evaluating the function of AaDO2 measured at hospital admission from the 

ABG analysis to characterise Covid-19 patients better.  

ABG testing is readily available in the emergency setting, giving crucial 

information about pulmonary involvement and respiratory function. 

AaDO2 enables a more precise evaluation of the pathophysiological basis 

of hypoxemia than the P/F ratio. However, the latter reached a larger 

audience to measure pulmonary dysfunction in critically ill patients16,80.  

Furthermore, the combined use of LUS imaging findings and their 

scoring and AaDO2 allows a better understanding of the underlying 

pathophysiological mechanism. 

Hence, the present study evaluated the role of the alveolar-to-arterial 

oxygen difference, particularly in Covid-19 patients with P/F values 

ranging between 300 and 400. According to the literature, this range 

represents patients without significant acute lung injury. Nonetheless, this 

study proved the opposite. Indeed, although this subgroup of patients 

possessed typical P/F values, AaDO2 was higher than regular. Moreover, 

more than half of these patients subsequently required oxygen therapy 

support. 

Interestingly, patients who subsequently needed oxygen support had a 

more severe extent of lung involvement, as assessed by LUS, than those 

who did not. Indeed, literature reported that patients with Covid-19 

pneumonia often do not register dyspnoea, despite extreme hypoxemic 

values. Academia defined this clinical presentation as silent hypoxemia or 

happy hypoxia, with physical signs that may either overestimate or 

underestimate patient discomfort.  

In conclusion, patients might have presented with few clinical signs and 

symptoms, a chest X-ray not indicating the significance of lung 
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involvement, and P/F still within normal limits. Therefore, it is essential to 

obtain elements that predict the risk of subsequent clinical worsening16.  

This first research described the importance of the data collection, which 

produced Section 2.11's database. Physicians relied on the analysis this 

section described to gather data and LUS clips, which set the stage for the 

research described in this chapter's subsequent sections. 

Nevertheless, we should acknowledge some limitations of this study. 

The retrospective single-centred configuration leads to missing information 

and unavoidable biases in specifying and recruiting participants. 

Fondazione IRCCS Policlinico Hospital of Pavia gathered the data in 

contingency times concerning the SARS-CoV-2 pandemic, and the sample 

size was relatively small.  

Despite these limitations, the study reflects an actual world clinical 

scenario in the ED during a pandemic outbreak. The promising results open 

the doors for further validation in future multi-centred extensive 

prospective studies to consolidate LUS and AaDO2 assessments16. 

5.6. Machine-learning-based Covid-19 and 
dyspnoea prediction systems for the emergency 
department 

This chapter mentioned the crucial aspects of splitting a hospital's 

emergency department into clean and dirty areas during the SARS-CoV-2 

pandemic to preclude patient-to-patient spreading. The utmost priority is 

engineering fast and trustworthy tools to assess and manage patients' 

prognoses to optimise resource distribution. Therefore, AI-enabled support 

strategies might aid healthcare professionals in decision-making, 

particularly during ED triage17. 

Given the unfeasibility of continuous swab testing and its limitations 

imposed by governments, academia has also concentrated on machine 

learning algorithms to assess patients for Covid-19 positivity and mortality. 

Fondazione IRCCS Policlinico San Matteo Hospital's Emergency 

Department (ED) of Pavia allowed operating machine learning algorithms 

on the clinical dataset gathered from laboratory-confirmed rRT-PCR test 

patients we described in the earlier and 2.11th Section of this thesis.  

The main goal of the investigation we will describe was to quickly 

stratify patients and employ cross-contamination avoidance strategies, 

sidestepping comprehensive swab testing and leveraging healthcare 

professionals' workload17.  

We gathered patients' data according to what we described earlier. 

Indeed, the dataset, accurately described in Section 2.11 and investigated in 

the previous one, comprises comprehensive information concerning 

patients' respiratory failures, routine blood tests, arterial blood gas (ABG) 

analysis, and quantitative lung ultrasound evaluations. 
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On the one hand, the research proposed in the previous paragraphs 

explored the importance of specific clinical parameters to provide prompt 

and accurate methodologies for physicians engaged with the extreme 

working conditions settled by the SARS-CoV-2 pandemic. The research 

involved no AI methodology but straightforward statistical approaches. 

Nonetheless, it was essential to analyse the data collected and set the 

motivation for the present and the subsequent studies that this chapter 

presents. 

On the other hand, this section explores machine learning approaches to 

automate clinical decisions and provide innovative tools that leverage and 

assist physicians' workload. Indeed, this thesis adopted support vector 

machines (SVMs) and random forest (RF) algorithms (Sections 3.7 and 

3.8) to assess patients' Covid-19 positivity, operating section 2.11's dataset.  

Furthermore, this thesis researched estimation procedures concerning 

whether a subject would need oxygen therapy, such as continuous CPAP or 

IOT we explored in the earlier section. Indeed, one must organise and 

wisely engage limited resources during contingency times.  

The novelty of the designed approach, summarised in Figure 51, stands 

in the following passage: 

 

Figure 51. Summary of the machine learning approach: the data analysis 

workflow17 

 A careful clinical features collection: the thesis based the 

classifiers on the features that physicians employed during 

triaging and daily clinical operations, whose importance was 

stressed in the earlier section 

 Extensive and robust data analysis before ML clustering 

 Exploitation blood tests to assess patients rather than imaging 

data 

 Assessment of patients' need for oxygen therapy to carefully 

engage limited resources in contingency scenarios 
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 A quantitative lung involvement examination to produce robust 

results: studies report lung ultrasound examination as a fast, 

cheap, and agile tool to assess patients' lung involvement 

5.7. Methodological analysis 

Here, the thesis provides a detailed illustration of the data collection, 

cleaning processes and exploration. Furthermore, it describes the selection 

and the design of the machine learning methodologies to diagnose SARS-

CoV-2 and predict the need for assisted ventilation. 

5.8. Data cleaning and pre-processing 

Fondazione IRCCS Policlinico San Matteo's ED of Pavia appointed a 

strict protocol during triage to analyse patients whom SARS-CoV-2 might 

have potentially contaminated. 

We performed data cleaning and pre-processing operations to apply the 

ML methodologies described in Chapter 3 of this thesis and aid doctors 

during the pandemic. The methodology concerns translating categorical 

features into dummy variables, namely converting textual elements into 

discrete and numerical values. Moreover, it involved handling missing 

values, which could have been missing due to several causes.  

The first motivation is machinery malfunctioning: the devices 

performing the tests required might not have stored specific information 

pleasingly17.  

The second rationale concerns the physicians' workload rate. If a subject 

was undoubtedly affected by SARS-CoV-2, but there was not enough time 

to assist other people according to the highest healthcare norms and 

terminate the data acquisition protocol, the personnel interrupted the 

procedure to respect the hard time constraints demanded by the pandemic. 

Unfortunately, there is no straightforward manner to patch missing entries 

in a database17. 

Consequently, the study modified the dataset to 443 patients, excluding 

those whose entries were unavailable. 

In summary, this analysis divided 90% of the data into the training set 

and 10% into the test group. Professionals usually recommend a 70-30% 

split. Nonetheless, the dataset size was insufficient to keep relevant 

information for training at the end of the data-cleaning process. 

Accordingly, this research settled for the 90-10% subdivision. Similarly, to 

meet reliable results free from overfitting, the investigation involved 10-

fold cross-validation (Section 3.13). At each learning step, the process 

randomly split the training set into ten sub-groups, using the 10th to 

validate the data, whilst the remaining four optimised the models' weights. 

Chapter 3 mentioned K-fold cross-validation as a standard practice used by 

data scientists facing dataset size problems. 
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5.9. Data exploration 

The study occurred in the Fondazione IRCCS San Matteo's ED outline. 

Chapter 2 exhibited the statistical characteristics of the patients in the 

dataset to explain what features the research stands upon and compare the 

dataset to others17. The percentage of positive patients is 61.2%, slightly 

higher than the 48.4% registered in another study17. Concerning oxygen 

therapy, only 20.8% of subjects needed CPAP or invasive ventilation, 

whereas 79.2% of patients required either an oxygen mask, nasal cannula, 

or no oxygen therapy. Chapter 2 reported the correlation coefficients 

between each input feature and output targets to explore the characteristics 

and the machine learning models.  

Figure 52 displays the data exploration whose application helped to 

extract the clinical scenery of people impacted by Covid-19. We can cluster 

SARS-CoV-2 positive subjects by age and comorbidities, particularly 

hypertension, diabetes mellitus and cardiovascular disorders. They 

clinically present fever, dry cough, dyspnea, increased respiratory rate, and 

reduced haemoglobin and oxygen saturation17.  

Furthermore, Covid-19 relates to increased factors such as 

lymphopenias, white blood cell count, and C-reactive protein. Similarly, as 

we mentioned earlier, ABG test results present alterations, such as an 

elevated oxygen alveolar-arterial gradient and reduced pO2, pCO2 and P/F 

ratio16,17. 
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Figure 52. Scatter plot matrices for Covid-19 and oxygen therapy 

prediction. In the first image, orange points indicate positive patients, 

whereas blue points indicate negative ones. In the latter, orange points 

indicate patients who needed CPAP or invasive ventilation, whereas blue 

points indicate patients who needed either an oxygen mask, nasal cannula, 

or no oxygen therapy17 

Such clustering further complies with what the two features scatter plot 

matrice exhibit. The investigation studied the matrices concerning 

coronavirus positivity and subjects who needed ventilation support. For 

simplicity, the plots only expose some selected patterns in Figure 52. 

Overall, we can notice that no scatter plot establishes a transparent partition 

between people concerned by Covid-19 and those with other disorders, but 

only a smooth transition. Nonetheless, there are some recognisable 

patterns. Covid-19 patients with severe conditions are older than the ones 

presenting healthier patterns, have higher LUS scores and have lower P/F 

ratios. We observed the same but a more pronounced pattern comparing 
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patients who needed CPAP or invasive ventilation with those who did 

not17.  

To decide whether the study should consider all the features to cluster 

the patients for both classification scenarios, it comprised principal 

component analysis (PCA)1,57. Namely, the examination involved 

calculating the number of input values needed to maintain the dataset's 95% 

statistical variance. We report that to keep 95% of the information while 

reducing the number of input features, the study should retain 48 principal 

components instead of 58 (Figure 53). The reduction could have been more 

significant to explain a different level of intricacy. Accordingly, the ML 

models do not execute any feature selection process prior to prediction. 

Besides, physicians demanded a quick response. Hence, the investigation 

retained all the input features without a further pre-processing step besides 

the classical ones, which comprised feature rescaling and cleaning17. 

 

 

Figure 53. The number of components needed to explain 95% of statistical 

variance17 

5.10. Machine learning models 

We chose random forest (RF) and support vector machines (SVMs) to 

advance the state-of-the-art results. The exploration process we reported in 

the previous sections encouraged this choice. 

This section introduces the RF parameters, explained in Section 3.7, in 

Table 7, listed in the same order as in the Python Scikit-Learn library, 
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respectively: n_estimators, max-depth, min_samples_split, max_features, 

min_samples_leaf and bootstrap. 

Table 7. RF and SVM hyperparameters for each classification task 

Model Hyperparameter 
Covid-19 

Prediction 
Dyspnea Prediction 

RF. 

n_estimators 550 500 

max_depth 2 2 

min_samples_split 1 1 

max_features 50 None 

min_samples_leaf Auto Auto 

bootstrap True True 

SVM 

C 1 1 

γ 0.01 0.01 

kernel RBF Sigmoid 

 

Similarly, this section introduces the best-identified SVM 

hyperparameters in the same Table.  

Both models adopted the hyperparameter tuning procedures explained in 

Chapter 3. The hyperparameter tuning procedures lean upon pseudo-

random number generation. Hence, the investigation set the random seed 

on 19 to make experiments reproducible. Hence, we could examine the 

improvements derived from tuning the hyperparameters.  

This research operated the first test system described in Chapter 4. The 

research relied on Python code and the latest version of the Scikit-Learn 

library to attain the classification goals. 

5.11. Analysis of the results and overall discussion 

The literature highlighted AI-based medical instruments' significance 

and function in aiding physicians and to engage limited resources17,81,83. 

Engineers are designing methodologies to determine biomarkers and 

process signals, innovating how we address clinical tools.  

Here, we propose two diagnostic tools: Covid-19 detection and oxygen 

therapy need estimation due to lung involvement. The ML models selected 

for the two classification assignments steadily seized convergence 

throughout optimisation concerning the hyperparameters displayed in Table 

7. Results assessment evaluated standard metrics such as accuracy, 

precision, recall, and the F1-score (Section 3.13). The first metric informs 

the reader about how good we are at diagnosing the absence of SARS-CoV-

2. The latter is the degree of accuracy over an unbalanced dataset, 

measured by precision and recall. Indeed, the consequences of incorrectly 

diagnosing a patient as healthy are the inappropriate lack of treatments and 

cross-contamination among subjects presenting other pathologies. 
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Considering both clustering scenarios, Figure 54 and Figure 55 describe 

AUC levels exceeding 93%. At the same time, the investigation reports 

96% recall when considering Covid-19 detection. Furthermore, it reports an 

overall F1-score of 92% for the first task and 83% for the second one, and 

precision is continuously above 80% (Table 8). These results are 

particularly worthy of notice when compared to the rRT-PCR test. Indeed, 

the nasopharyngeal swab attains 73.3% sensitivity (95% CI 68.1–78.0%). 

 

 

Figure 54. ROC curve of the SVM model for oxygen therapy classification 

(on the left) and the ROC curve of the RF model for oxygen therapy 

classification (on the right)17 

 

Figure 55. ROC curve of the SVM model for Covid-19 classification (on 

the left) and ROC curve of the RF model for Covid-19 classification (on the 

right)17 

No metric exists to decide if the ED will require additional resources. 

Consequently, this investigation provided a valuable tool to wisely engage 
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the hospital's limited tools by predicting whether the considered patient 

will need high-intensive ventilation (i.e., CPAP or IOT – Chapter 2). 

Table 8. Test set classification results17 

Classification 

Task 

Model AUC Accuracy Precision Recall F1 

Score 

Covid-19 RF 93.0% 91.0% 89.0% 96.0% 92.0% 

SVM 95.0% 91.0% 89.0% 96.0% 92.0% 

Oxygen Therapy RF 96.0% 91.0% 83.0% 83.0% 83.0% 

SVM 93.0% 87.0% 80.0% 67.0% 73.0% 

 

Physicians usually determine by looking at the patients' continuous vital 

signs, whilst this research predicted forthcoming needs concerning a 

specific time, namely when the patient arrives at the ED. This process 

implies that the considered scenario could transform abruptly. The research 

reports 83% F1-score and ROC-AUC values above 90% (Figure 54). 

Table 8 yields this thesis' classification performance which we compare 

with other studies reported in Table 987–90. This thesis improved the state of 

the art while considering a more significant number of features and also 

handled a smaller and particularly unbalanced dataset. Concerning Covid-

19 detection, it reached 96% of recall, while others could exceed 90% only 

using a three-way model. Namely, a model abstains from prediction when 

the confidence score is below 75%87–90.  

Other researchers reached 95.9% sensitivity with 41.7% specificity. 

Their model represents a valuable screening tool to rule out Covid-19 

infection. Nevertheless, low specificity is dangerous in the presence of 

infectious diseases. Certainly, identifying positive patients and isolating 

them is more important than ruling out negative ones87–90. 

Table 9. State-of-the-art classification results87–90 

 Models Features Patients AUC. Accuracy Specificity Recall F1 

Score 

Cabitza et 

al. 

Knn, …, 

SVM 

72 1624 76.0% 78.0% 82.0% 74.0% - 

Goodman-

Meza et 

al. 

ANN, 

…, 

XGBoost 

12 1455 91.0% - 64.0% 93.0% - 

Plante et 

al. 

XGBoost 15 192779 91,0% - 42.0% 96.0% - 

 

On the one hand, the dataset we described in Chapter 2 contains features 

representing the doctors' daily clinical scenario. Namely, the thesis adopted 

the quantitative LUS examination together with blood and ABG tests, and 

this process allowed the robust classification performance obtained. On the 

other hand, the dataset is smaller than the others. Regardless, this research 
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managed to handle both its size and class imbalances, and the LUS 

examination requires trained personnel to be performed17. 

Finally, the investigation also comprised the graphical user interface 

(GUI) shown in Figure 56, targeting assistance to the medical personnel at 

the emergency department. The GUI presents five sections for each data 

group: anamnesis, vital signs, blood gas analyses (BGA), blood tests and 

LUS score. Completing them with the patient's data, we obtain the 

probability of being Covid-19-positive according to our ML model. 

 

Figure 56. Graphical user interface (GUI) 

5.12. Final remarks 

Concerning the data collected from the routine hospital operations 

between 1 March and 30 June 2020, the research proved the feasibility of 

developing reliable algorithms to diagnose SARS-CoV-2 with high 

classification performance. The research we examined in Section 5.2 

enabled this investigation as well.  

Furthermore, in addition to what other studies had already reported, it 

demonstrated how to estimate dangerous dyspneic scenarios. Namely, 

whether the subjects at the ED need CPAP or invasive aided ventilation, 

and this prediction is noteworthy to handle resources in contingency times. 

The close and stable collaboration with the IRCCS Policlinico San Matteo's 

ED of Pavia granted highly reliable clinical data for the study. It made it 
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possible to develop two artificially intelligent systems, one of which the 

personnel tested as a supporting decision-making device in a real-world 

clinical scenario after we equipped it with a GUI. 

5.13. Deep learning and Lung UltraSound for 
Covid-19 pneumonia detection and severity 
classification 

This investigation proposes an innovative artificial intelligence (AI) 

system based on pre-trained and state-of-the-art residual convolutional 

neural networks (Section 3.16) to detect SARS-CoV-2 pneumonia patterns 

in LUS frames and classify the severity of lung engagement. It improved 

on previously presented results by extensively tuning the architecture's 

hyperparameters. The close collaboration with Pavia's University San 

Matteo Hospital assessed the work quality. The Hospital's Ethics 

Committee granted access to LUS data from different probes obtained by 

several physicians during the pandemic. The personnel evaluated the clips 

using two assessment scales (Chapter 2). This study modified the one 

already established in the literature31 by adding information regarding the 

lung's pleural line health condition, which helps distinguish cardiogenic 

from non-cardiogenic causes of B-lines15,20,23.  

The developed AI-enabled assistant can operate both in emergency 

contexts and in-home monitoring of patients. Additionally, it can help 

detect patients with apparent Covid-19 symptoms whose RT-PCR or IgM-

IgG blood tests were negative. These AI methods can overcome challenges, 

such as inadequate available RT-PCR tests, high costs, and waiting time for 

test outcomes. 

5.14. LUS score, frames collection, ResNets and 
overall performance evaluation 

This section provides an in-depth description of the research settings 

concerning the theoretical aspects mentioned in Chapter 2 and 3. In 

particular, we focus on data augmentation, transfer learning, training 

options, and the hyperparameters used to train and fine-tune deep networks. 

Chapter 2 already illustrated the employed ranking scales to better 

highlight the results' trustworthiness and the deep architecture's proficiency 

in detecting Covid-19 pneumonia patterns. Regardless, other studies used a 

different one. Hence, Table 10 contains their comparison, revealing their 

differences. Doing so demonstrates the implications of the deep residual 

networks (Section 3.16). Furthermore, It highlights that manipulating and 

extending a different scoring method31 contributed to outperforming the 

state-of-the-art. 
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Table 10. Scoring comparison Soldati et al. (2020) and S. Mongodi et al. 

Modified Score15 

Severity Score Soldati et al.84,91 Modified Score 

Score 0 A-lines A-lines with at most two B-

lines 

Score 0* Not defined A-lines, and at most two B-

lines, with a slightly 

irregular pleural line 

Score 1 An irregular or damaged 

pleural line along with 

visible vertical artefacts 

Artefacts occupy at most 

50% of the pleura 

Score 1* Not defined Artefacts occupy at most 

50% of the pleura and 

present a damaged pleural 

line 

Score 2 Broken pleural line with 

either small or broad 

consolidated areas with 

wide vertical artefacts 

below (white lung) 

Artefacts occupy more than 

50% of the pleura, while 

consolidated areas may be 

visible 

Score 2* Not defined Artefacts occupy more than 

50% of the pleura, while 

consolidated areas may be 

visible. The pleura is either 

damaged or irregular 

Score 3 Dense and broadly visible 

white lung with or without 

larger consolidations 

Tissue-like pattern 

5.15. Data collection and annotation 

This research has also profited from the data collection process that 

occurred in March 2020 at the Fondazione IRCCS San Matteo Hospital's 

ED of Pavia, described in detail in Chapter 2 and the two experimentations 

mentioned earlier in the text. In particular, here we focus on the LUS clips 

data collection to assess the health conditions of those who contracted 

Covid-19. The medical personnel operated the ultrasound machine 

described in Chapter 2’s Section 2.3, equipped with both convex and linear 

probes. They standardised the medical practice and conducted longitudinal 

and transversal examinations to analyse the pleural length 

comprehensively, disabling all harmonics and artefact-erasing software. 

Despite delivering a negative RT-PCR test, subjects displaying lung 

involvement have a high chance of being affected by Covid-19. Doctors are 

used to discriminating dubious from healthy patients observing a triaging 

approach that comprises LUS examination. 

Hereafter, we will use the terms clip, frames, and images as reported in 

Chapter 2’s Section 2.3. The proposed definitions produce continuity 

regarding observations in similar studies. 
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The healthcare professionals collected and assigned all 12 clips for each 

patient with the standardised LUS scores (Table 10). The data comprises 

450 patients whose clinical information is presented in Table 2, treated in 

Pavia, assembling 5400 clips15.  

Physicians at Fondazione IRCCS Policlinico San Matteo ED manually 

selected all patient's clips, assessed each clip's quality, and assigned a 

score. They reviewed each clip to assign a score and verify that SARS-

CoV-2 pneumonia patterns, described in Section 2.3, were present. 

Accordingly, this research aims at frame scoring and not at an end-to-end 

clip classification. Therefore, they manually selected the ones containing 

such patterns among the many frames belonging to a clip. Other frames 

might be related either to a healthy lung's portion or noisy and blurred due 

to incorrect probe movements or respiration-induced dynamic motions. The 

personnel investigated an extracted clip and appointed frames in which 

SARS-CoV-2 patterns were visible in a blinded and random process to 

reject the hypothesis of biased results. The higher the score assigned, the 

fewer frames are available to classify a clip. For instance, a patient 

assigned a score of 1 might have only a few frames containing B-lines. 

Because DL architectures must optimise to detect and classify pneumonia 

patterns, doctors must identify and collect such patterns. The number of 

frames selected is different for each clip. The blind selection process avoids 

retrieving all clips from a patient with the same pattern in most lung 

portions while discarding clips exhibiting other manifestations15. 

Therefore, the number of patients from whom this research clipped the 

frames and the number of images used for each subject are unknown. Even 

though the data collection had been standardized23, it occurred during 

contingency times, causing not all subjects to undergo 12 assessments. 

Some might have received fewer than others because the severe lung 

engagement was visible in the early phases of the procedure. 

The complete annotation and collection procedure lasted longer than one 

month, resulting in 676 assembled clips based on 5400 starting clips. As 

physicians performed LUS investigations employing different probes with 

slightly different settings, clips were of different sizes in terms of pixels. 

Therefore, we resized all the clips, so each frame sized 224 × 224, which 

complies with the DL architectures' input15. 

The medical personnel had to meet the demanding and urgent pandemic 

requirements continuously, and the process mentioned above was 

demanding and time-consuming. Hence, the research considered the 

collection and labelling process completed when the DL architectures 

began yielding satisfying results for the validation and test sets, as 

described below, and the dataset was said to be well-balanced in terms of 

per-class appearance.  
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Figure 57. Percentage distribution of frames for each classification task. 

Left: four class scenario; right: seven class scenario. The percentage of 

images assigned to each score for both diagnostic tasks is depicted; pleural 

line involvement is highly likely and more severe when a frame is assigned 

a high score15 

Hence, starting with a smaller set of collected frames, the final setting 

comprised 2908 frames to train the CNNs from among more than 60000 

frames. Figure 57 shows the percentage of images assigned to each score 

for both diagnostic tasks. The pleural line engagement is highly probable in 

SARS-CoV-2 and more severe when an image is assigned a high score. It 

explains why most frames that belonged to the group with Score 2 belong 

to the group with Score 2*, while the same is not valid for lower values15. 

 

Figure 58. Examples of selected and rejected frames. We retained only the 

image in the middle of the figure15 

Figure 58 reports instances of the appointed and dumped frames. The 

first two represent a score of 3 and 2, but we refused the latter due to noise 

from probe motions during the bedside investigation. This methodology is 
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compulsory and time-consuming, as the first and third instances may seem 

significantly comparable to an inexperienced eye. The same is not valid for 

a neural network tested on the third and noisy frame. Because we did not 

assign any label to the discarded frames, the network would try to 

categorise them as belonging to one of the supposed groups. Nonetheless, it 

would result in a nearly slipshod scoring and is beyond the scope of this 

doctoral thesis, which aims to recognise and classify Covid-19 patterns in 

LUS frames15. 

Finally, we randomly split the data into training (75%), validation 

(15%), and test (10%) sets, adopting these percentages under standard DL 

methodologies and maintaining the training set size as small as possible to 

avoid overfitting problems.  

Furthermore, the research employed data augmentation techniques, as 

explained in Section 3.12. Finally, the collection comprises 17448, 436, 

and 291 images for the training, validation, and test sets. 

5.16. Residual architectures and training settings 

In this study, we adopted the deep residual networks described in 

Section 3.16. The literature reported operating verified architectures as a 

rational strategy for beginning AI model development from scratch66. 

Notably, this research appointed the two residual networks with 18 and 50 

layers each and structured them as declared in the original paper67. In 

addition, it extensively exploited transfer learning (Section 3.15) to 

enhance the classification outcomes by manipulating features belonging to 

pre-trained networks. The literature reported this methodology to improve 

Covid-19 detection61,92.  

Consequently, this investigation chose ResNet-18 and ResNet-50 

architectures, which had already experienced optimisation on the ImageNet 

dataset58. Regardless, the models encountered a few modifications in the 

last fully connected layers because these had as many neurons as the 

number of classes to detect. The classification problem to be solved 

involves detecting the lung patterns described in Section 2.3. This research 

conceived four different architectures, which are the two ResNets solving 

two queries: the first constitutes four categories, whereas the second seven, 

obtained by widening the first scale, delivering information regarding the 

pleural line integrity. 
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Table 11. Training Options and Hyperparameters15 

Options and Hyper-parameters 
Four Classes 

 

Seven Classes 

ResNet-18 ResNet-50 ResNet-18 ResNet-50 

Initial Learning Rate 0.0005 0.0001 0.0001 0.0001 

Learning Rate’s Drop Factor 0.05 0.05 0.05 0.05 

Learning Rate’s Drop Period 

(Epochs) 
2 3 3 3 

Batch Size 128 64 128 64 

L2 – Regularisation 0.4 0.75 0.3 0.3 

Epochs 15 12 15 12 

Environment Multi-GPU Multi-GPU Multi-GPU Multi-GPU 

Optimiser Adam Adam Adam Adam 

Loss Function 
Cross-

Entropy 

Cross-

Entropy 

Cross-

Entropy 

Cross-

Entropy 

 

Table 11 contains the training options and hyperparameters to address 

the two different detection problems solved in this analysis. The training 

process relies on the pseudo-random selection processes; hence, the random 

seed was set for all experiments. This setting enables reproducible 

experiments and the detection of improvements derived from the tuning 

procedure. 

Before describing the hyperparameter tuning, it is worth clarifying the 

rows we encounter in Table 11 whose names may be misleading 

considering the commonly encountered nomenclature in articles focusing 

on DL, such as L2-regularisation, number of epochs, and mini-batch. The 

drop factor implies that we steadily decreased the learning rate for each 

predetermined number of epochs in a piecewise manner - the learning rate 

decreases by multiplication with the dropping factor. Second, we selected 

Adam Gradient Descent93. During training, the research employed a 

validation set, indicating the robustness of the outcomes. 

First, the investigation setting heuristically picked the initial learning 

rate, enabling a desirable classification performance, evaluated over both 

the training and validation sets. Then, it selected the learning rate's drop 

factor similarly, encouraging the optimal reaching of the cost function's 

minimum with elapsing epochs from the training start. Additionally, it sets 

the number of epochs, after which the learning rate decreases. Reducing it 

too early may lead to almost no update to the networks' weights after a few 

iterations. Even with deferring too much, the weights will continuously 

leap near the cost function's minimum while never reaching it. Upon 

completing these steps, the investigation concentrated on L2-regularisation, 

batch size, and the number of training epochs (Section 3.11). Finally, we 

set the squared gradient and gradient decay factors to 0.999 and 0.98, 

respectively. Researchers commonly adopt this default decision for Adam 

optimisation. 

Once the tuning process ended, satisfying the classification 

performances for the test and validation sets, we turned the random seed off 

and repeated all experiments seven times to display all performance metrics 
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as a mean and standard deviation and to reject the hypothesis of biased 

results15. 

The investigation increased the training set's statistical assortment by 

adopting data augmentation techniques (section), which helped the 

networks focus on meaningful information. It applied geometric, filtering, 

random centre cropping, and colour transformations to the training frames. 

This method, proven to work when applied to Covid-19, produces effective 

results in DL classification tasks, significantly reducing overfitting65,94. 

Furthermore, we added salt-and-pepper white noise to enlarge the training 

set. Pre-trained architectures accept images of the size 224 × 224 × 3 . 

Therefore, we treated the grey-scale ultrasound frames as RGB images to 

avoid modifying the input layers and allow for colour augmentation. 

Therefore, we applied all augmentations to all training images, independent 

of the probe employed for the LUS investigation. 

The research recursively applied the augmentations in Table 4 to the 

training set. Hence, it created a new set by unifying the original and 

transformed images iteratively, which broadened the training set 

exponentially. 

 

Figure 59. Augmented training set images: augmentations described in this 

section have been applied to the training images and are shown in this 

figure15 

Figure 59 represents a set of 12 augmented examples: introducing such 

slight alterations into the training set allowed the CNN architectures to 
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develop invariance to translations, viewpoints, sizes, illumination, and 

noise, resulting in a more regularised training process15,65,94. The validation 

and test sets did not receive such augmentation processes to reject the 

hypothesis of biased results. 

To further assess the classification reliability, the research operated class 

activation mapping (CAM) and Grad-CAM techniques95. These processes 

concern AI model explainability. When applied to computer vision 

applications, they emphasise the assertive parts for assigning a label by the 

network through a heat map. DL models can focus on points the human eye 

may not glimpse, thus stressing novel biomarkers in medical contexts 

(Section 2.12). Consequently, emphasising what networks acknowledge 

may aid doctors' perceptions. Notably, this research assessed whether the 

networks correctly highlighted either B-lines or pleural line discontinuities 

and all other patterns described in Section 2.3. This pioneering idea allows 

for comparing different prototypes to determine the best one. 

Moreover, it is a cost-effective way to avoid increasing dataset 

preparation times by manually creating segmentations for detecting Covid-

19 pneumonia boundaries. Although we intend to highlight the presence of 

patterns, we focus on something other than exposing their detailed shapes. 

The literature attempted and validated this method by applying it to Covid-

19, achieving excellent results84,91. 

This research operated the first test system we described in Section 4.8. 

5.17. Evaluating performance 

When handling medical data, it is vital to reduce the number of false 

negatives to the maximum extent possible, particularly when treating an 

infectious disease such as Covid-19. Incorrectly diagnosing patients as 

Covid-19 negative introduces false negatives, causing improper care and 

lack of necessary treatment (i.e., cross-contamination among subjects who 

may have additional pathologies) and incorrect medications that may harm 

an infected person. Hence, this research measured the networks 

classification performance using the validation and test sets. It investigated 

accuracy, precision, recall, F1-score, and ROC-AUC (Section 3.13).  

Considering the importance of reducing false negatives in medical 

contexts, professionals particularly consider recall, also known as 

sensitivity. This parameter indicates the performance of evaluating a frame 

as not containing Covid-19 pneumonia patterns and belonging to either of 

the classes considered or not representative of a healthy lung. Regardless, 

precision describes the classification performance in detecting the 

considered patterns. Consequently, we regard the F1-score as a function of 

the two former metrics. In summary, investigations must consider recall 

and F1-score to minimise the false negatives while maintaining high 

precision15. 
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5.18. Results and discussion 

The residual architectures steadily approached optimisation convergence 

based on the hyperparameters and training options in Table 11. This 

research presents the metrics discussed in the earlier section regarding the 

average over the number of classes operated for each classification scenario 

in Table 10. The training process involved stochastically splitting the data 

into training, validation, and test sets. At the end of each epoch, the 

investigation exploited the validation set to assess the models' accuracies 

and losses. On the training process completion, the research evaluated the 

metrics mentioned above for the training, test, and validation sets. It 

considered the network weights at the end of each training, regardless of 

the number of epochs selected for optimisation. Notably, we should have 

double-checked a particular epoch exhibiting promising performances with 

the validation set during optimisation. However, all training series 

approached convergence steadily when each network's number of epochs 

elapsed. We repeated the process seven times for each classification 

scenario to reject the hypothesis of biased results. Consequently, Table 12 

contains the evaluation metrics through mean and standard deviation. 

Table 12. Classification Performance Results for Test and Validation Sets: 

Accuracy, Precision, Recall, F1-Score and ROC-AUC 

Metric 𝝁 ± 𝟐𝝈 % 

 

Four Classes Seven Classes 

ResNet-18 ResNet-50 ResNet-18 ResNet-50 

Training Accuracy 96.70 ±  0.01 98.32 ± 0.02 96.76 ± 0.01 98.72 ± 0.01 

Training Precision 96.27 ± 0.08 96.65 ± 0.20 96.82 ± 0.07 97.57 ± 0.12 

Training Recall 96.09 ± 0.07 97.23 ± 0.15 96.17 ± 0.08 98.62 ± 0.05 

Training F1-Score 96.19 ± 0.07 98.27 ± 0.04  95.43 ± 0.06 99.22 ± 0.02 

Training ROC-

AUC 

99.70 ± 0.01 99.95 ± 0.01 99.76 ± 0.01 99.97 ± 0.01 

Test Accuracy 97.64 ±  1.79 98.43 ±  1.38 99.33 ±  0.59 99.72 ±  0.26 

Test Precision 97.47 ±  1.99 98.59 ±  1.36 99.50 ±  0.43 99.41 ±  0.53 

Test Recall 97.36 ±  1.81 98.23 ±  1.44 98.51 ±  1.29 98.93 ±  0.98 

Test F1-Score 97.37 ±  1.92 98.45 ±  1.51 98.45 ±  1.49 98.94 ±  0.81 

Test ROC-AUC 97.72 ±  0.63 99.91 ±  0.07 99.94 ±  0.02 99.93 ±  0.03 

Test Accuracy 97.64 ±  1.79 98.43 ±  1.38 99.33 ±  0.59 99.72 ±  0.26 

Validation 

Accuracy 

97.18 ±  1.40 97.93 ±  1.20 99.37 ±  0.60 97.73 ±  1.46 

Validation 

Precision 

96.70 ±  1.80 97.82 ±  1.60 98.52 ±  1.40 94.71 ± 3.20 

Validation Recall 96.95 ±  1.61 97.52 ±  1.21 98.44 ±  1.41 94.16 ±  0.74 

Validation F1-

Score 

96.76 ±  1.82 97.66 ±  1.41 98.13 ±  1.80 93.73 ±  4.41 

Validation ROC-

AUC 

99.78 ±  0.20 99.81 ±  0.18 99.95 ±  0.03 99.78 ±  0.20 

 



The SARS-CoV-2 pandemic 

 

 126 

Furthermore, the investigation settings tuned each hyperparameter to 

convey recall and F1-score levels exceeding 90%, indicating a high and 

reliable balance over the precision and recall. It resulted in both networks 

behaving remarkably well in each scenario and with excellent results 

achieved by ResNet-50. In addition, the investigation setting meets recall 

levels of over 97% on average, thereby verifying the soundness of the 

classification performance. In summary, we highlight the reliability and 

validity of the results in Table 12 regarding the collected measurements15. 

 

Figure 60. Inference scalability: processing times [s] according to batch 

size15 

Furthermore, this study assessed network scalability during inference. 

Experiments comprised batch sizes ranging from 1 to 256 (i.e., each 

network classified between 1 and 256 images for the inference process). As 

expected, the inference times increased with the batch size (Figure 60). The 

only exception refers to the inference of a single image, which was more 

significant than others up to a batch size of 64. The reason is memory 

organisation: it is possible to group multiple images into a single tensor and 

adopt efficient computational routines to perform the inference. To recap, 

the inference times of ResNet-50 were greater than those of ResNet-18. As 

explained previously, ResNet-50 has a deeper and more complex structure 

than ResNet-18. 
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Figure 61. ResNet-50 Class Activation Mapping, seven class scenario: both 

severity scoring, B-lines and pleural line consolidations and irregularities 

are correctly highlighted along with tissue-like patterns for Score 315 

Furthermore, the research settings operated CAM and Grad-CAM 

methodologies for each experiment. The physicians evaluated whether the 

ResNets correctly highlighted B-lines, pleural line irregularities, or other 

patterns examined in Section 2.3 when ranking a frame, which is the 

procedure physicians usually operate to assess patients' health conditions. 

Figure 61 illustrates the behaviour of ResNet-50 in a scenario for which we 

also evaluated the pleural line. For simplicity and integrity, we present only 

the CAM and not the Grad-CAM assessments: Figure 61 contains the 

results starting from the lowest score, indicating that the considered subject 
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is healthy, and approaching the highest score, suggesting that we should 

urgently treat the patient. The residual architecture correctly and precisely 

outlines all patterns, namely A and B lines, small or broad consolidations, 

and damage to the pleural line. When assuming fewer classes, the statistical 

models do not evaluate the pleural line but use it to assess a subject's 

healthiness, specifically when analysing Score 0 instances and the reverb 

contained in its A-lines15. 

We have described the existing state-of-the-art studies in the 

introductory section of this chapter, highlighting their strengths and 

weaknesses. Nevertheless, this research compared its results mainly to 

three recent studies on applying DL methodologies to LUS data to diagnose 

Covid-19 pneumonia and evaluate the severity of lung engagement15. The 

first study84,91 concerns LUS comprising a severity score for frame-level 

classification that met F1-score ranging from 65.1% to 71.4%. The 

evaluations considered the test set results or the average value over three 

different settings: test set, test set with transition frames dropped, and inter-

doctor adjustments. Exploiting a spatial transform network developed in 

2015, the authors proposed a novel scoring methodology 84,91 concerning 

already validated and researched scales for evaluating lung health 

conditions31, which authors from the third study adopted as well. In all 

cases, we obtained a 27.15% performance improvement in the best average 

performance compared to our worst-case outline. 

In contrast, the authors of the second study proposed a shallow 

architecture developed from scratch to address binary Covid-19 detection 

and severity classification. They exploited the same ranking scale adopted 

by the authors in the first study. Regardless, the investigation proposed in 

this thesis exceeded their results concerning the first clustering problem 

they proposed and attained a performance improvement of more than 40% 

in the assessment of lung engagement. Finally, the authors from the third 

and last study compared a wide variety of documented architectures to 

confirm the accuracy of transfer learning applied to Covid-19 

heterogeneous data, specifically considering CT scans, ultrasound, and 

CXR15. Nonetheless, they focused on binary Covid-19 classification. 

Namely, they assessed whether it was present or not. Despite the 

favourable outcomes, the authors reported that their images were 

inconsistent. They based their study on non-validated data from public 

online repositories, and consequently, they did not assess the 

trustworthiness of the collected medical analyses. They accomplished 

excellent classification performances, which this study has been able to 

meet. Nonetheless, this research resulted in a more complex problem based 

on reliable data from Fondazione IRCCS Policlinico San Matteo. 

Accordingly, they obtained F1-score results ranging from 66% to 99% for 

the different architectures considered, which is analogous to what we 

researched, as listed in Table 12. Regardless, this thesis' metrics exceed 

97% in all cases. 

This research optimised the networks for several epochs, specifically 

between 12 and 15, depending on the specific experimentation. Having 
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fine-tuned pre-trained networks with CUDA in a multi-GPU environment, 

owing to the CNN libraries developed at Nvidia (Chapter 4), the process 

resulted in training times ranging between 17 and 89 min. Therefore, the 

number of epochs and the overall training time are considerably lower than 

those documented by different authors14,15,84,96. The calculations spread 

across two Nvidia RTX 2080, with 2994-cores each, resulting in a mini-

batch processing, or more, every second. 

In conclusion, previous studies on the application of DL in Covid-19 

detection have presented some drawbacks. Less than half of the studies still 

needed to exploit transfer learning. Moreover, although authors prefer 

already proven architectures, they have relied upon unreliable data sources 

of poor quality without an appraisal by a competent doctor. In addition, 

only a few studies have exploited LUS for diagnosing patients with Covid-

19. Only the three studies assessed illness severity or exploited transfer 

learning. The first two analyses concentrated on manipulating a novel 

scoring methodology without employing transfer learning: they assessed 

the lung health conditions and attempted to apply computer vision networks 

with minor tweaks to classify short clip pieces. Furthermore, the second 

work did not use newly collected LUS data from subjects who contracted 

Covid-19 but rather gathered clips retained at the Yale-New Haven 

Hospital since 2012. 

Here, this thesis proposed a straightforward yet practical process to 

address the application of DL to LUS data and Covid-19 assessment, 

operating already documented and pre-trained architectures in two 

configurations. In addition, it adopted an existing and validated ranking 

scale, which we extended to structure the labels to be detected 

hierarchically. It helps distinguish the cardiogenic from non-cardiogenic 

motivations of B-lines, and the prompt detection of ARDS pneumonia 

symptoms facilitates the timely treatment of patients. To the best of this 

research knowledge, a comprehensive scoring methodology has yet to be 

proposed for assessing the pleural line together with existing patterns, as 

this research did. Likewise, this research accepted the challenges faced by 

our colleagues regarding having several physicians perform the LUS 

examinations. Consequently, the hospital personnel involved in this 

investigation further reexamined the clips. We concentrated on data 

augmentation and hyperparameter tuning to exploit the advantages of 

transfer learning and obtain the results presented in this chapter. 

5.19. LUS frame assessment: ending remarks 

This third SARS-CoV-2-related research engineered a highly reliable 

diagnostic instrument to satisfy exhausted medical personnel's growing 

request for cheap and trustworthy detection systems. With close 

collaboration with Fondazione IRCCS Policlinico San Matteo's ED, the 

investigation leaned on validated LUS data. 
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The research comprised modern DL methodologies, data augmentation 

processes, and transfer learning to grade people's lungs operating 

documented scoring scales31, which the investigation extended with pleural 

line information. The investigation relieved the severe drawbacks of data 

heterogeneity (tolerable sensitivity causing lack of treatment for patients 

and cross-contamination) and enhanced currently accessible state-of-the-

art15 in Covid-19 detection employing LUS data. 

This study provides a strategy for sidestepping the dataset problems 

debated by other authors84 about the ranking inconsistencies between 

ultrasounds due to different doctors examining different lungs at the same 

disease stage. Notably, the Fondazione IRCCS Policlinico San Matteo ED 

inspected every test to homogeneously appoint lungs of the same disease 

stage with the same score. 

Ultrasound requires substantial expertise to reach diagnostic reliability – 

high sensitivity and overall accuracy. This research developed a DL-based 

system to automatically detect Covid-19 pneumonitis marks in LUS frames 

and rank them concerning two standardised scales with innovative, reliable, 

and revolutionary results. 

5.20. Main contributions summary 

Here, the thesis proposes a list of main contributions deriving from the 

pieces of study described in the earlier sections. 

 Alveolar-arterial difference and lung UltraSound to help the 

SARS-CoV-2 clinical decision-making 

o Addressed problem: SARS-COV-2 patients often require 

prompt diagnosis and risk stratification. Also, predict 

patients need for aided ventilation.  

o Proposed solution: Using A-a gradient and LUS to 

diagnose and stratify risk for pandemic management.  

o Advantages: A-a gradient and LUS can be obtained 

quickly and safely, provide valuable diagnostic and 

prognostic information, and combining them can improve 

diagnostic accuracy.  

o Disadvantages: A-a gradient may lack specificity for 

SARS-COV-2, LUS requires experienced operators, and 

small sample size limits generalizability.  

o Main contributions: A-a gradient and LUS can provide 

important information for diagnosing and risk stratifying 

SARS-COV-2 patients, especially in resource-limited 

settings. Study found the A-a gradient and LUS 

combination had 83.6% sensitivity and 90.5% specificity, 

with 90.7% positive predictive value (PPV) and 83.5% 

negative predictive value (NPV) in predicting the need for 

high flow of oxygen. 
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 Machine-learning-based SARS-CoV-2 and dyspnoea prediction 

systems for the emergency department  

o Addressed problem: Developing an accurate and reliable 

system to predict SARS-COV-2 and oxygen therapy 

requirement in emergency department patients.  

o Proposed solution: A machine-learning-based prediction 

system that uses a combination of clinical and laboratory 

data to predict SARS-COV-2 and oxygen therapy 

requirement. 

o Advantages: The model has an area under the curve 

exceeding 93%, recall for SARS-COV-2 detection of 

96%, F1-score for SARS-COV-2 detection of 92%, and 

F1-score for oxygen therapy prediction of 83%. The 

precision for SARS-COV-2 detection and oxygen therapy 

prediction is continuously above 80%. 

o Disadvantages: The study is limited to a single hospital 

and further testing is necessary to determine its 

generalizability to other hospitals or populations. It also 

requires access to laboratory data, which may not be 

available in all settings.  

o Main contributions: The model has improved results 

compared to existing models that use a smaller, 

unbalanced dataset and fewer features. It uses both 

clinical and laboratory data, which increases accuracy and 

reliability, and has the potential to aid clinical decision-

making in emergency departments. The machine-learning 

algorithm can also be easily updated as new data becomes 

available. 

 Deep learning and Lung UltraSound for SARS-CoV-2 pneumonia 

detection and severity classification 

o Addressed problem: Lack of reliable, accurate and 

prompt diagnostic tools for SARS-CoV-2 pneumonitis 

detection and severity classification using traditional 

methods.  

o Proposed solution: A deep learning-based model using 

Lung Ultrasound (LUS) images for pneumonia detection 

and severity classification. 

o Advantages: LUS is non-invasive and widely available, 

provides high accuracy and sensitivity, reduces exposure 

to ionizing radiation, enables comprehensive diagnosis of 

SARS-COV-2 pneumonia using LUS images, and allows 

for high accuracy in both pneumonia detection and 

severity classification, reducing diagnosis time. 

o Disadvantages: LUS requires substantial expertise and 

high-quality data, which may not be widely available in 

all clinical settings, particularly in resource-poor regions, 

although LUS is cheaper than other technologies. There is 
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also a lack of large-scale data for model training and a 

need for expert annotation of LUS images.  

o Main contributions: The use of LUS data improves the 

accuracy and efficiency of SARS-CoV-2 pneumonitis 

diagnosis and enhances the state-of-the-art SARS-CoV-2 

detection. The proposed model provides a comprehensive 

diagnosis of SARS-COV-2 pneumonia and outperforms 

traditional methods in accuracy and time efficiency. 
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Chapter 6   

6 Epidermal lesions assessment 
through deep learning, high-
performance computing and 
hyperspectral imaging 

As mentioned in Chapter 2, skin cancer is one of the most common in 

the world and comprises non-melanoma (NMSC) and melanoma (MSC) 

skin cancer. NMSC was the 5th most common form of cancer worldwide in 

2018, while melanoma was the 21st 42,43. Pigmented skin lesions (PSLs) 

derive from the excessive growth of melanocytes, and academia usually 

categorises them as benign or malignant45,46. Atypical moles, also known as 

dysplastic nevi, are benign PSLs associated with a high chance of evolving 

into melanoma.  

Hyperspectral imaging is an imaging spectroscopy technique producing 

three-dimensional images whose pixels illustrate the spectral content of a 

scene. This cube contains the fraction of incident electromagnetic radiation 

reflected from a surface. Each material presents a specific variation of 

reflectance values concerning wavelengths, called spectral signature, 

unique for each type of material, allowing precise discrimination33,48,49. 

HSI classification approaches seek to identify each pixel's material. The 

classification comprises several supervised and unsupervised algorithms 

whose elaboration could be computationally intensive.  

Recent technological advances facilitated the use of HS images in fields 

like medicine for cancer detection12,33,48,49. This technique is exploited, 

especially in tumour diagnosis, because it is non-invasive, non-contact and 

non-ionising, capable of obtaining spatial and spectral information. 

Besides, lesions modify the biochemical and morphological tissue 

structures, causing different optical characteristics concerning healthy 

tissues, such as absorption, scattering or fluorescence. Consequently, the 

divergences deliver valuable diagnostic information in the diagnostic and 

detection stages18, in which is crucial to meet fast or near real-time 

responses.  
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This chapter concentrates on the statistical, AI and high-performance 

computing approaches this doctoral thesis researched to counteract 

epidermal tumours from hyperspectral imaging. The studies concern 

machine and deep learning strategies, handling the dataset described in 

Section 2.7.  

Investigations started exploring standard ML to later dive into novel DL 

approaches, whose challenges concerning medical and small-sized datasets 

were described in Chapters 2 and 3.  

Nonetheless, investigations went beyond classical statistical testing and 

delivered the real-time embedded deployment onto the GPUs of some of 

the algorithms discussed in this chapter. 

Close collaboration with Universidad de Las Palmas de Gran Canaria, 

Hospital Materno Infantil, and Hospital Doctor Negrìn, enabled the 

research investigations just mentioned38. 

In the following lines and sections, this chapter describes the state of the 

art methodologies and results applied to the problems mentioned above. 

Afterwards, it contains a brief exploratory analysis concerning Chapter 2's 

dataset employed in all the projects contained in this chapter.  

Then, for each of the works researched in the educational path described 

in this thesis, the chapter contains a section describing the materials and 

methods of the study, the results, and the ending remarks. These address 

the discussion of the results, conclusions, and implications that advance the 

field based on current knowledge and our achievements. Accordingly, this 

chapter will cover investigations concerning all the theoretical aspects 

listed in Chapters 2, 3 and 4. 

6.1. AI and HPC state-of-the-art concerning 
epidermal tumours 

Concerning healthcare applications, academics have designed 

hyperspectral acquisition systems regarding skin, brain, and plastic 

samples11,38,97. The investigations present disadvantages related to most of 

the theoretical aspects we analysed in Chapters 2 and 3. Namely, camera 

type, sensor fusion elaborations or real-world relevance. Present designs 

differ mainly in the camera employed, their cost and weight, the materials 

and the existence of customised graphical user interfaces (GUIs). Among 

the considered investigations, the first employs a snapshot camera to image 

the region of interest, offering the lowest spatial and spectral resolution 

among the cameras38. The second comprises two pushbroom cameras to 

offer different wavelength sensitivities, thus delivering higher spatio-

spectral resolution but high processing duration, sensor fusion 

synchronisation and device weight-critical aspects11,12. Ultimately, 

although the latter comprises pushbroom cameras for plastic research 

discussing laboratory implementation, it suggests high-cost and 

implementation challenges97. 
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Researchers conceived some of the hyperspectral acquisition systems 

mentioned above to detect skin cancer at its early stages. Accordingly, they 

aimed to design AI applications to strengthen current diagnostic 

performance whose significance leans heavily upon dermatologist 

expertise18. Several reviews assessed learning-based investigations about 

skin cancer diagnosis, embracing several data types, including HS images, 

emphasising their strengths and shortcomings. Different systematic review 

articles concentrated on more than fifty investigations affecting different 

data types and learning methodologies, involving hundreds of 

dermatologists for direct comparison45,47,98. 

Likewise, the reviews stressed that research should consider the learning 

strategy and device development to overcome current challenges. These 

comprehend data availability, interpretability, and computational power, 

which operating recent DL algorithms and having real-world clinical 

scenario applicability could solve. Current AI algorithms are still in the 

very early stages of clinical application. They are only sometimes prepared 

to assist doctors, but they can be scalable to multiple devices, converting 

them into contemporary medical instruments3. Such novel devices will also 

accumulate data, overcoming the data availability aspects. 

State of the art examinations debate primarily in the architectures 

engaged, namely artificial neural networks (ANNs) and convolutional 

neural networks (CNNs), and the data for the training stage. Most 

investigations used CNNs and dermoscopic images to diagnose epidermal 

lesions since DL algorithms and high-quality data contribute to better 

performance. At first, experimenters manipulated ANNs to reproduce the 

ABCD rule with an accuracy between 70 and 90%. Regardless, small-

diameter lesions caused the diagnosis to be more challenging, introducing 

misclassifications45,47,98. Although CNN's introduction improved the 

solutions, the issues stay since lesions from different etiologies (Section 

2.7) have subtle visual divergences. Generally, the experimentations feature 

diagnostic performances comparable to skilled dermatologists, whose 

sensitivity, specificity, and accuracy concerning benign and malignant 

lesions are around 80, 75, and 70%. Board-certified dermatologist accuracy 

decreases to around 55% when more classes challenge the diagnostic 

task46. Consequently, multi-class classification scenarios worsen the 

diagnostic evaluation. 

Furthermore, studies show that researchers usually trade off low 

specificity for high sensitivity. Additionally, lesions already marked as 

suspicious prior to investigation typically biased the outcome metrics45–

47,98. Undoubtedly, results show that DL algorithm performance improved 

by over 90% only when researchers conducted experiments with an 

unconventional binary classification task, namely malignant melanoma 

(MM) and Basal Cell Carcinoma (BCC) or nevus.  

Other studies involved histopathological and clinical images, which 

exhibited comparable performance concerning dermoscopic data. 

Regardless, pathologists surgically extracted part of a suspicious mole and 
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applied labelling to perform diagnosis. Similarly, clinical images 

introduced worse diagnostic evaluations, even worsened when the 

researchers considered more than two etiologies45,47,98. 

Early investigations on skin cancer applied machine learning to identify 

PSL using HS in-vivo skin cancer data38,45,47,98,99. The authors used a 

genetic algorithm to optimise the supervised machine learning algorithms 

to identify four PSL types: nevus, BCC, MM, and other PSL types. Others 

proposed an HS classification strategy combining unsupervised and 

supervised algorithms to discriminate between malignant and benign PSLs. 

Other retail approaches, such as SIAscope/SIAscopy or MelaFind, use 

multispectral pictures to notice only melanoma lesions38,45,47,98,99. 

The literature generally concentrates on ML practices for medical HS 

image classification. In recent years, DL emerged as the ideal solution for 

end-to-end classification tasks38,45,47,98,99. On the other hand, DL algorithms 

mainly involve HSIs for remote sensing. Thus, at the time of writing, DL 

architectures should be investigated better for HS medical image 

classification. Among the different strategies, Vision Transformers (ViT) 

have recently appeared in the literature. These architectures lean on the 

self-attention mechanism, at first developed for Natural Language 

Processing (NLP), which retains a very high number of parameters100. 

Computing conveys a crucial aspect since most contexts require uniform 

real-time responses. Consequently, academia proposed several experiments 

manipulating parallel technologies for HSI classification11,12. Modern 

systems adopt a concurrent elaboration of the image pixels to reduce the 

processing time when feasible. Accordingly, parallel technologies are 

suitable for pixel-wise classification, where each processing core elaborates 

on a single pixel or a group of pixels. The literature leans on hybrid 

systems, including the multicore and the many-core devices we described 

in Chapter 4.  

Hybrid systems suit the processing chains' features that typically include 

algorithms with diverse tiers of intricacy1,13. The key idea is that each 

device manages the algorithm that best meets the processing requirements.  

Concerning skin cancer, the output of these classification systems is 

typically a thematic map, where researchers assign each pixel with a colour 

representing a specific tissue type or lesion condition. Nevertheless, 

systems exist that directly provide a diagnosis without any semantic map of 

the HS image. 

Although AI's first medical adoption occurred in the 1980s1, researchers 

have only recently offered solutions for clinical practice. Current sensors 

gather a broad mixture of knowledge and produce astounding data to train 

perceptive systems. 

AI algorithms deliver robust and reliable classification performance 

associated with statistically complete and labelled datasets. Indeed, ML 

performance is directly proportional to the training data available (Chapter 

3). Regardless, more than the available amount of labelled information is 

usually needed in healthcare, mainly when researchers evaluate DL 

architectures. Consequently, they focus on techniques to generate 
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statistically relevant synthetic data representative of real situations55,101. 

Different studies proposed architectures operating traditional RGB images, 

chest X-rays, electrocardiograms, or HS data for diagnostic purposes1,48,49. 

The authors exploited traditional ML algorithms in these works due to the 

poor dataset size. 

Synthetic HS data could originate from a mathematical model 

considering the interaction between light and matter. However, such a 

solution development is not feasible due to the physical uncertainties and 

computational complexity required to model physical light-matter 

interactions. 

The so-called data augmentation process (Section 3.12) refers to 

geometrical, colour-based, or additive statistical-based noise 

transformations. Consequently, the procedure transforms the images to 

yield new instances and increase the statistical variance of the knowledge 

contained in a dataset. Nevertheless, the size of the original population 

confines the augmentation usage. Indeed, it is only sometimes feasible to 

generate a reasonable number of new samples as both the dataset and the 

number of augmentations are finite. 

Researchers overcame such limitations by conceiving the generative 

adversarial networks (GANs) we described in Section 3.19. 

Concerning healthcare applications, authors have already adopted GANs 

in image denoising, segmentation, classification, and image synthesis56. 

Nonetheless, academia can consider the innovation that comes from 

applying GANs to hyperspectral imaging (HSI) since only a single study is 

available101. Undoubtedly, it only presents a proof of concept, 

demonstrating the capability of GANs to generate HS skin cancer images. 

The authors validated their results only by comparing the typical average 

spectral reflectance of real and synthetic data. Nonetheless, this research 

suffers several limitations101. Although the authors considered four 

different lesions (dysplastic nevus, melanoma in situ, malignant melanoma, 

and benign nevus), they conceived a final validation concerning a typical 

spectral reflectance without comparing the different lesions. Moreover, the 

authors do not provide the GAN-generated image with a class. 

6.2. In-vivo hyperspectral dermal database 

Chapter 2 mentioned the dermatological HSIs acquisition system, which 

generated a database of in-vivo HS skin lesions. The database was 

subjected to subsequent analyses to investigate the efficiency of HSIs in 

discriminating skin tumours. 

The data acquisition campaign occurred in the time interval between 

March 2018 and June 2019. Images of various skin lesions were acquired, 

located in different body parts, from 116 subjects at the Doctor Negrin 

University Hospital in Las Palmas de Gran Canaria and the Materno 

Infantil University Hospital Complex. The Comité Ético de Investigaciòn 
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Clínica-Comité de Ética en la Investigaciòn (CEIC/CEI) approved protocol 

and procedures. A preliminary analysis of the acquired data removed 55 

images from the database because these derived from critical areas (e.g., 

shoulders, nose, chin and other face parts) that made it challenging to 

acquire them under optimal conditions, preventing the complete lense 

contact with the skin surface. Hence, the final database comprises 76 

images referring to 61 subjects. Some images refer to the same patient but 

to skin lesions of different types positioned in various body parts38,99.  

If the dermatologist doubted an epidermal lesion, it was 

histopathologically removed for examination to obtain a definitive 

diagnosis. 

Professionals clustered the images in the database and assigned each 

pixel a specific label from one of the aetiologies described in Section 2.7’s 

Figure 11. The procedure yielded 15961 pixels for classification 

experiments using ML algorithms. Initially, lesions comprised benign, 

malignant, and atypical classes.  

The present thesis work carries out the analysis and classification of the 

HSIs from this database. Experts manually segmented the images, 

generating the ground truth, and labelled them to distinguish the categories 

we mentioned in Section 2.7. 

6.3. HS images pre-processing 

The data needs a pre-processing stage before classification to have 

homogeneous spectral signatures among the patients. In unbalanced 

databases, such as the one under study, this process helps limit the 

statistical variance of the spectral signature of the classes present with 

lower frequency. 

The pre-processing consists of four steps: 

1. Calibration 

2. Removal of bands at the extremes of the spectrum 

3. Noise filtering 

4. Normalisation 

Calibration allows the correction of any distortions, for example 

generated by non-uniform illumination, present in the raw HSI acquired 

(𝑌). Calibration comprises two reference images: the white image (𝑊), 

derived from a reference (𝑟𝑒𝑓) capable of reflecting 99% of the incident 

light, and the black image (𝐷𝑟𝑒𝑓) delivered with the camera shutter closed 

and the light off. The calibrated image (𝑌) originates from Equation 23: 

 

𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒂𝒏𝒄𝒆 =
𝒓𝒂𝒘 𝒊𝒎𝒂𝒈𝒆 −𝑾𝒓𝒆𝒇

𝑾𝒓𝒆𝒇 −𝑫𝒓𝒆𝒇
 Equation 23 
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Since the sensor has a low response to the bands at the spectrum's ends, 

the noisy bands removal occurs. Specifically, the first four and the last five 

wavelengths disappear, moving from an initial spectral resolution of 125 to 

a final spectral resolution of 116. 

Subsequently, we apply a moving average smooth filter to remove noise 

further. Consequently, the value of each pixel leaves a place for the average 

of the values of neighbouring pixels. Filtering leans on Equation 24 where 

𝑦 (𝑖) is the new value assigned to the pixel, 𝑁 is the number of 

neighbouring pixels considered, and 2𝑁 + 1 is the span. 

 
𝐲 (𝐢)  =  𝟏 (𝐲(𝐢 +  𝐍)  +  𝐲(𝐢 +  𝐍 −  𝟏)  + ⋯ +  𝐲(𝐢 −  𝐍)) Equation 24 

The following rules realise the filter:  

 The span must be odd  

 The filtered value must be in the centre of the span 

 The span must account for values that cannot satisfy the correct 

number of neighbours 

 The start and end values are not filtered, as a span cannot be 

defined 

Finally, we apply normalisation of the data between 0 and 1 to 

homogenise the reflectance values of the entire dataset38,99. 

6.4. In-vivo HS data exploration 

The Universidad de Las Palmas de Gran Canària gathered a database of 

in-vivo HSIs, containing 76 images in the form of 50x50x125 hyperspectral 

cubes. Each hypercube has a 50x50 ground truth, wherein physicians 

clustered each pixel through a specific skin or skin lesion label. Figure 62 

shows the ground truths of the entire database, with each type of label 

associated with a colour: black for skin, shades from yellow to red for 

malignant skin lesions and shades from green to blue for benign skin 

lesions. 

 

Figure 62. Ground truths of the entire epidermal database 

Benign Melanocytic 

 

Benign Epithelial 

 

Malignant Epithelial 

 

Malignant Melanocytic 
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We can distinguish four different labels, according to the convention 

shown in Figure 11.  

As none documented this database before, it was necessary to check its 

contents to get a general idea of the data distribution. 

 

Figure 63. Percentage distributions of skin lesions: benign-malignant 

distinction (left); multi-class distinction (right) 

First, this thesis investigated the skin lesions percentage distribution, as 

shown in Figure 63. This analysis showed that the database is reasonably 

balanced in the categorisation into benign and malignant: 53% of the 

lesions are benign, whilst 47% are malignant. Regarding the differentiation 

of tumour subclasses, the most prevalent classes are benign melanocytic 

(45%) and malignant epithelial (32%). However, the other two tumour 

classes have reduced frequency within the database. The distribution of 

lesions within the database broadly reflects the actual distribution of 

tumour forms in the population. 

Accordingly, the investigation measured the lesions' average areas, 

depending on the class considered. It yielded boxplots, graphic 

representations of the data highlighting their median value and the ranges 

of variation of the surfaces in percentage value. The aim was to verify to 

what extent the lesion size could give clues about its classification, 

reflecting the ABCD rule and confirming the validity of the database. 

Figure 64 shows, as an example, the percentage distribution of malignant 

tumour lesions’ area. Melanoma differs from other types of malignant skin 

tumours by its size.  
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Figure 64. Benign-Malignant areas comparison 

Finally, this section analyses the average spectra of the skin and the 

various skin tumour types, including standard deviation. It was thus 

possible to compare the spectral signatures associated with the various 

classes. Figure 65 shows the mean spectra of malignant and benign skin 

lesions with associated ranges of variability. Some signatures are pretty 

distinguishable, while others show non-negligible variability. Therefore, 

the average spectral information is insufficient for the classification of 

lesions. Accordingly, this doctoral thesis investigated CNNs and more 

sophisticated methodologies capable of autonomously extracting the 

relevant features during the discrimination process. 
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Figure 65. Average spectral signatures comparison for the epidermal HS 

dataset 

6.5. Hyperspectral imaging acquisition set-up for 
medical applications 

Here, the thesis introduces a breakdown to overcome the challenges 

mentioned in the literature review section, instructing a hyperspectral 

imaging blueprint designed to work with pushbroom sensors, one of the 

highest-quality detectors, to photograph a region of interest. It works in 

various contexts, and the investigation conceived it for dermatological or 

surgical procedures which interest a motionless subject. The system 

comprises inexpensive, open-source and consistent components. 

Consequently, it includes Python libraries, an Arduino UNO board, a 

Nema-17 stepper motor, its driver controller, and a recirculating ball screw 

for precise movement. Similarly, it offers a diode-based targeting 

procedure, hooked to a 3D-printed circular crown, to measure the right 

focusing span. The blueprint comprises a GUI to let healthcare 

professionals interact with the imaging system, move it with high accuracy, 

and gather diagnostic data.  

In summary, the investigation's main contribution is the proposal of an 

affordable hyperspectral imaging system and its detailed implementation 

report. Furthermore, not only does this chapter discuss its development 
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challenges and strategies, delivering a GUI to automatically stir the 

calibration and acquisition protocols and subsequent data storage, but also 

its validation to allow reproducibility. 

6.6. Acquisition set-up and building blocks  

One of the design's main goals is automatically imaging skin areas with 

pushbroom sensors with few settings. The only step needed is acquiring 

black and white reference images for successive calibration pre-processing. 

This section provides all the information concerning the system's design 

and building blocks in terms of hardware and software modules. Figure 66 

displays the hyperspectral imaging platform system.  

 

Figure 66. Hyperspectral imaging system presented blueprint 
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6.7. Specim FX-10e hyperspectral camera  

The blueprint addressed in this doctoral thesis operates with any Generic 

Interface for Cameras (GenICam) compliant pushbroom camera that can 

acquire only one strip of pixels at a time97. They require the movement of 

the target object or the camera to scan the entire scene. The camera used in 

this study is a Specim FX10e, and it is a VNIR camera, therefore sensitive 

to visible and near-infrared wavelengths between 400 nm and 1000 nm.  

Table 13 shows some relevant technical characteristics of the FX10e 

model. The camera's lens has a 1.7 F-number, which is the ratio between 

the focal distance f and the diameter of the lens. The Field Of View (FOV), 

the detector's sensitivity angle to electromagnetic radiation, is 38°, and we 

operated a 15 cm focusing distance. 

Table 13. Specim FX10e hyperspectral camera specifications 

Technical specifications FX10e 

Spectral range 400-1000 nm 

Detector type CMOS 

Slit width Physical width 42 μm. Projection on sensor 32 μm. 

Pixel pitch 16x8 μm 

# Spatial pixels 1024 

Binning (spectral x spatial) 2 x 1 

Spectral binning options 2x | 4x | 8x 

# Spectral bands covering the specified range 224 | 112 | 56 

Spectral sampling/pixel 2.7 nm | 5.4 nm | 10.8 nm 

Spectral resolution FWHM 5.5 nm (mean) 

SNR 600:1 

Frame rate (fps) full range (220bands) max 330 fps 

Frame rate (fps) MROI examples 20 bands = 2800 fps 

5 bands = 6500 fps 

Shutter Electromechanical shutter for dark background 

registration 

 

The pixel pitch is the pixel size at the sensor and is 16x8 μm. This 2x1 

ratio size means the camera gathers two spectral pixels for each spatial 

pixel. We can change the ratio between spectral and spatial pixels (i.e., 4x1 

or 8x1), but the spatial dimension of a detector's pixel does not vary and is 

8 μm. Regardless, the pixel size at the scene plane, called pixel size, is not 

8 μm. It depends on the FOV, the number of effective strip pixels, and the 

focusing distance from the lens. The third may vary if the first two 

parameters are determined (38 ° and 1024 pixels).  

In this thesis, we decided to operate continuously at a focusing distance 

of 15 cm. Accordingly, it was possible to calculate the size of a pixel at the 

scene plane with Equation 25:  

 
𝐏𝐢𝐱𝐞𝐥 𝐬𝐢𝐳𝐞 =  𝐭𝐚𝐧 ( 𝐅𝐎𝐕 𝟐 )  ×  𝟐𝐡 𝐍𝐩 Equation 25 
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In the equation above, h is the object's distance from the target, FOV is 

the angle described earlier, and Np is the number of strip pixels. Hence, 

employing our datasheet's values, the outcome is approximately 100 μm. 

The total imaged scene's width, also known as field dimension, depends on 

the following trigonometric formula in Equation 26: 

 
𝐅𝐢𝐞𝐥𝐝 𝐝𝐢𝐦𝐞𝐧𝐬𝐢𝐨𝐧 =  𝟐𝐡 ∙  𝐭𝐚𝐧 ( 𝐅𝐎𝐕 𝟐 ) Equation 26 

  

It corresponds to the pixel size multiplied by Np (i.e., 1024), which is 

approximately 10.3 cm. Figure 67 exhibits the computations just mentioned 

above. 

 

Figure 67. Hyperspectral camera optical schema for trigonometric equations 

 

The evaluations concerning the FX10e's optical characteristics are 

meaningful for design and functionalities, as we will see in the following 

paragraphs, concerning the camera's frame rate and motor's movement 

synchronisation.  

6.8. The motion system 

The motion structure comprises a recirculating linear ball screw guide, a 

stepper motor and a driver driven by an Arduino UNO board. This machine 

can collect the reflectance spectrum of any region of interest line by line40. 

Pushbroom cameras need a linear movement between the camera and the 

sample to entitle complete scanning by moving the camera or the sample at 

a steady and constant speed. The investigation designed a structure 

targeting skin cancer assessment where the camera moves while the target 
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is stationary. Accordingly, motion-acquisition synchronisation is crucial. 

Proper calculations concerning the previous section and the software 

interface design controlling the motor's motion facilitate such 

synchronisation. 

 

Figure 68. Recirculating ball screw drive 

The linear ball screw guide is made of aluminium and has a length of 

200 mm, a diameter of 12 mm and a pitch of 4 mm (Figure 68). The screw 

guides the Schneider Electric NEMA-17 stepper motor's shaft. If N is the 

number of motor expansions at each step, the motor moves by 𝜃 =  
360°

4𝑁
, 

controlling the angular position and speed by varying the steps' frequency. 

NEMA17 performs 1.8° of angular displacement at each step, taking 200 

steps to complete a revolution. It is driven in current by a TB6600 Driver 

(Figure 69), which controls its speed and direction. 
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Figure 69. Microstep-based motor driver 

The driver allows choosing between eight micro-steps (Figure 70), 

promoting the motor's angular step division into n substeps. Thirty-two 

micro-steps (Figure 70) correspond to a 0.05625° step angle, resulting in 

6400 steps for an entire revolution. The pitch of the screw resembles its 

linear motion and equals 4 mm. Consequently, the motor moves by 0.625 

μm at each micro-step. Correspondingly, the driver supplies 1.5 A to the 

motor, as the datasheet suggests. 

 

Figure 70. Motor driver's datasheet 
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An Arduino UNO board controls then the driver. We programmed the 

board via the Arduino IDE (Integrated Development Environment) during 

the investigation. The sketches are written in Wiring, similar to the C 

language, allowing flashing to the board. 

Figure 71 displays the wiring diagram of the motor, driver and board 

connections. We suitably positioned the power supply, driver, and board 

and fixed them inside a single container for electrical components 

measuring 190x140x70 mm, placed near the linear guide. 

 

Figure 71. Electrical configuration of the hyperspectral blueprint 

6.9. The illumination system  

In hyperspectral imaging, the scene's illumination is essential. Clearly, 

any camera measures the light beam reflected by the object of interest. 

Researchers must carefully choose the light source according to its 

sensitive wavelengths in hyperspectral applications40. Proper illumination 

features a continuous intensity spectrum without peaks and with a good 

intensity contribution in amplitude. Sunlight, is an excellent option for 

continuity and intensity spectrum at all wavelengths. Nonetheless, it is not 

easy to handle as it varies rapidly in direction, intensity and colour. 
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Figure 72. THORLABS OSL2BIR 150 W 3200 K intensity spectrum 

On the other hand, an artificial light source allows complete control 

regarding direction, intensity, and scattering and delivers repeatability in 

acquisition circumstances. This thesis sought illumination with a 

continuous spectrum and good intensity between 400 and 1000 nm, in 

which the Specim FX10e camera operates. To allow light sources 

differentiation among the available options, these beamed the white 

reference, and we visualised the reflectance using Specim LUMO software. 

Consequently, the illumination system operated in this work is the 

THORLABS OSL2BIR 150 W 3200 K, which has an aluminium-coated 

reflector for improved infrared performance. The specifications include the 

intensity spectrum shown in Figure 72. The illumination system comprises 

two bulbs mounted on two supports which the investigation arranged to be 

directed to the region of interest and granting distance regulation. 

6.10. Image calibration  

Several steps must happen to obtain a hyperspectral datacube with a 

pushbroom camera correctly. This chapter reported how optical variables, 

motion structure, synchronisation requirements, and correct illumination 

influence the data quality. Another crucial step is the image calibration 

process97. Hence, this investigation performed calibration following 

Equation 23 reported in Section 6.3. In the equation, the white reference is 

the image of a zenith polymer white calibration panel that is certified to 

reflect more than 95 per cent of the incident radiation in the range of 400 to 
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2500 nm. We placed the white reference panel at 15 cm. The dark 

reference, on the other hand, represents the minimum value that the sensor 

measures when no radiation hits it. We ultimately closed the camera length 

to obtain the black reference. 

6.11. Target centring and distancing  

The investigation faced two practical problems in obtaining images: 

correct focusing length measuring and target centring. Accordingly, the 

investigation devised a structure equipped with laser-emitting diodes. We 

mounted on a custom-made 3D-printed crown (Figure 73) two 5 mW - 5 V 

small red laser emitting diodes, both driven by the Arduino board. The 

emitters assemble at a precise distance of 15 cm, the focusing distance, at 

the centre of the lens. The diodes are only switched on in the moments 

immediately prior to the acquisition, we check the distancing and centring, 

and then the scanning process can start.  

 

Figure 73. Hyperspectral set-up targeting and distancing system 

6.12. Camera control, system synchronisation and 
image scanning  

The Specim FX10e camera's rear panel has two connectors: the 12 V DC 

power cable and a GigE connector. The GigE Vision protocol is an 

international interface standard for video transfer developed for high-

performance retail cameras and managing devices over Ethernet. Therefore, 

we developed software to acquire images in the laboratory using any 

GenICam-compliant hyperspectral camera using the gigabit ethernet 

interface97. The camera gathers and sends information via Ethernet when a 

trigger arrives, allowing the camera's image sensor exposure to start. It can 

be generated internally by the camera (free running) or by an external 

device (external trigger). The research adopted the external triggering mode 
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in this blueprint to synchronise the motor's motion and camera frame rate. 

It operated the python pyserial library to control the motor, facilitating 

software transmission with the Arduino's serial port. 

 

Figure 74. Motion-frames synchronisation 

Accurate motor speed and position control are essential to obtain a 

correct hypercube. Since the scanning result is closely related to the 

concepts of trigger and exposure time, the accuracy and smoothness of the 

camera movement directly affect it97. Along with pyserial, this thesis 

operated the harvester library, which guarantees image acquisitions under 

the GenICam standard97. Through the Harvester routines, we can perform 

the main camera control actions, such as starting and stopping the data 

flow, gathering the captured frames, storing them to disk, and configuring 

any acquisition-related parameter. The mixture of the functionalities 

provided by the harvester and pyserial libraries makes it feasible to control 

the camera and motor concurrently, enabling synchronisation.  

The investigation fulfilled motion-acquisition synchronisation by 

revising the control signals accordingly. The PWM signal generated by the 

Arduino board's pin regulates the movement, controlling the motor's steps. 

With each signal's positive edge, the motor takes one step. We can control 

the motor's direction by operating another board's pin. Hence the need to 

capture frames via external triggering. The camera performs a frame 

capture at each positive edge of the trigger signal, driven by the harvester 
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library. Concerning the optical evaluations carried out in Section 6.7, we 

should notice that the pixel size at the image level is approximately 100 

μm. Therefore, the laboratory blueprint must sample at least once every 

100 μm linear displacement to convey a complete image. The motor 

performs 2.5 μm of linear motion at each step in this manuscript's 

configuration. Accordingly, 40 motor steps are required to perform 100 μm. 

The investigation captured four frames every 100 μm and averaged them to 

avoid aliasing and noise (Figure 74). 

Consequently, the Arduino UNO board sends a pulse to the motor every 

ten steps and a pulse to the trigger pin simultaneously as the tenth motor 

pulse. This way, a scene frame is captured every ten motor steps. This 

configuration synchronises the signals and guarantees precise and fully 

controlled capturing. The choice of motor step optimised acquisition 

quality and time. In this mode, to acquire an area of 10x2 cm, the 

acquisition time is 40 seconds.  

6.13. The Graphical User Interface (GUI)  

This thesis designed the GUI using the PyQt5 python library (Figure 

75). The development employs a drag-and-drop strategy which encourages 

the interface creation process. It is necessary to determine the main 

window, divide it into frames, assign types and names to the various 

elements and position the buttons as wished. At the end of this step, the 

library generates the corresponding code in python, which we can modify. 

The various generated buttons can link to any custom routine. The interface 

considerably improves the system's usability, makes the button-action 

relationship performed immediately and facilitates the acquisition 

process97. 
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Figure 75. Hyperspectral set-up’s GUI 

The GUI (Graphical User Interface) implemented, as shown in Figure 

75, includes the following command buttons and text fields:  

 Patient ID: filling this text field stores the files referring to the 

acquisition performed with this identifier  

 Lesion Type: the acquired file is also assigned a preliminary 

classification based on the doctor's belief  

 Run Dark: the calibration of the black reference performs an 

image acquisition with the lens closed and stores a numpy file 

with which the system can perform the calibration later  

 Run White: the white reference calibration performs an image 

acquisition upon the white reference panel placed in front of the 

camera at 15 cm. It stores a numpy file with which the system 

can perform the calibration later.  

 Pointer On: turns on the laser diodes, to be used just before 

acquisition to centre the target  

 Pointer Off: turns off the laser pointer diodes  

 Move Up: moves the camera up and continues to move up until 

the button Stop is pressed  

 Move Down: Moves the camera downwards and continues to 

move down until the button Stop is pressed  

 Stop: Stops the motor  

 Start Acquisition: it starts the scanning process. The camera 

moves up 1 cm and then down 2 cm, capturing the scene's frames  

 Save: stores a series of files referring to the datacube npy, img, 

hdr and the RGB image in png format  
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At the end of an acquisition process, namely approximately 40 seconds 

after clicking on the Start Acquisition command, a synthetic RGB image 

(synthesised from three bands: Red = 700.47 nm, green = 546.09 nm and 

Blue = 435.79 nm, calculated within the 224 bands acquired between 400 

nm and 1000 nm) of the captured scene appears on the left panel in Figure 

75 to verify the success of the operation immediately. If the Patient ID and 

Lesion Type text fields are empty, a popup will remind it and ensure 

correct data storage.  

6.14. Acquisition set-up validation  

The thesis considered some crucial metrics to guarantee the system's 

repeatability. Consequently, the main objective of this analysis is to assess 

the system's ability to acquire the same scene under comparable conditions 

with similar results. This procedure guarantees that the tool is not heavily 

dependent on uncontrolled variables and that the information faithfully 

represents the scene's attributes at the capture time.  

The experimentations gathered images by repeating the capture 

procedure under the same lighting conditions. To be sure of acquiring the 

same spatial window, the procedure employed the reposition command, 

which is present within the GUI (Figure 76). When performing a traditional 

acquisition, once centred on the target, the system moves up 1 cm and then 

down by capturing 2 cm frames. In this way, ten images of the same target 

object were collected through repeated consecutive acquisitions, and from 

these were extrapolated specific indices and comparison graphs. 

 

Figure 76. Repeatability analysis through voxel plot 
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The graph displays the differences between these images in a scatter 

plot, in which all the volumetric picture element (i.e., voxels) values of 

each of the two hyperspectral images compared appear on the two axes. 

The voxel value represents the reflectance of light in each pixel of the 

hyperspectral image at a given wavelength38,99. A scatter plot can be an 

effective tool to visualise the degree of correlation between the two 

variables placed on the axes. Ideally, the scatter plot should be a bisector 

line between the positive half-axis of the abscissas and the positive half-

axis of the ordinates, which would indicate that each corresponding voxel 

pair between the two images contains the same information. The 

comparisons for all possible image combinations resulted in Figure 76's 

plot. The tendency of the points of the scatter plot, which identify the 

values assumed by the corresponding voxels of the two different images, 

along the bisector testifies to the high degree of correlation between two 

successive acquisitions and is, therefore, an index of repeatability 16. 

Another index is the Relative Percentage Difference (RPD), calculated as 

shown in the Equation 27 below: 

 

𝑹𝑷𝑫 (%) =  𝟐𝟎𝟎 ×
|𝑹𝟏 −  𝑹𝟐|

 𝑹𝟏 +  𝑹𝟐
 Equation 27 

  

R1 and R2 correspond to the compared HSIs and measure the percentage 

of how much one differs from the other. Lower values of RPD represent 

significant similarity. This manuscript compared all possible combinations 

and derived the average value. The calculated average RPD is 12.45%, 

again giving us a remarkable degree of repeatability38,97,99. The last 

measure considered is the Structural Similarity Index Method (SSIM). It is 

a well-known quality metric used to measure the resemblance between two 

images and is related to the quality perception of the human visual system 

(HVS). Instead of traditional error summation methods, SSIM models any 

image distortion as a combination of correlation loss, luminance distortion 

and contrast distortion97. The similarity index has a decimal value between 

0 and 1; value 1 indicates two identical images, and value 0 indicates no 

similarity. This investigation obtained an average SSIM of 0.8725.  

6.15. Ending remarks 

Here, we presented a hyperspectral acquisition system engineered to 

gather diagnostic clinical data concerning skin cancer. It is enhanced by a 

linear synchronous motion, an appropriate illumination system, a 3D-

printed circular crown containing targeting and distancing emitting diodes, 

and software modules supported by open-source packages. The 

hyperspectral system enables image collection with any GigE-compliant 

hyperspectral pushbroom camera. Furthermore, the investigation validated 

the architecture to check synchronisation between motor and camera frame 
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rate, calibration, and capturing repeatability. In the future, the research 

aims to collect an online database of clinical hyperspectral images. 

In conclusion, the main contribution of this work is to serve as a guide 

for any research group working on hyperspectral technologies. All the 

sections report details to accurately capture spectral information and 

techniques to validate the correct operation of the system. First, the whole 

system works with any GenICam protocol-compliant camera. Secondly, the 

thesis operated cheap and promptly available hardware and open-source 

software to enable research groups to work with hyperspectral systems 

most efficiently. Indeed, all software modules used in this development are 

open source, allowing high flexibility and representing a lower-cost 

approach compared to market solutions. 

6.16. Parallel classification pipelines for skin 
cancer detection exploiting hyperspectral imaging 
on hybrid systems 

The second investigation in this chapter concerns a parallel-computing 

implementation of an HS dermatologic classification framework based on 

K-means and SVM algorithms and snapshot HS cameras to achieve the first 

automatic and real-time in-situ PSL identification of this doctoral thesis. 

This research represented the starting point for evaluating DL architectures 

applied to HS images. 

Previous studies of groups who participated in the investigations of this 

doctoral thesis described the HS in-situ acquisition system38,99. The 

introductory analysis validated the hypothesis of HSI exploitation to 

differentiate between PSLs through pixel-wise supervised classification. 

Regardless, it consisted of a classification framework to differentiate 

between malignant and benign PSLs, but without considering the 

computational aspects of the proposed algorithm.  

This research presents a variation of the classification framework aiming 

to differentiate between malignant, benign, and atypical PSLs. 

Furthermore, it comprehensively reports the implementation and 

parallelisation to obtain real-time performance. This real-time diagnostic 

tool could assist dermatologists in differentiating PSLs during routine 

clinical practice, delivering more diagnostic information regarding NMSC 

than other retail systems that only discriminate between melanoma and 

non-melanoma. 
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6.17. Hyperspectral dermatologic classification 
framework 

 

Figure 77. Block diagram of the HS dermatologic classification framework 

(pre-processing, automatic segmentation, and supervised classification) and 

HS dermatologic acquisition system. HS dermatologic acquisition system is 

composed by: (a) HS snapshot camera; (b) QTH (Quartz-Tungsten 

Halogen) source light; (c) Fiber optic ring light guide; (d) Skin contact part 

attached to the ring light; (e) Laptop with the acquisition software installed. 

Spectral signature reference library is composed of six spectral signatures: 

benign, malignant, and atypical pigmented skin lesion spectral signatures in 

blue, red, and black colors respectively, and three different skin spectral 

signatures in green color  38,99 

The HS dermatologic classification framework constitutes three main 

steps: pre-processing, automatic PSL segmentation, and supervised 

classification. Figure 77 shows a block diagram of this framework. The 

pre-processing consists of what we reported in Section 6.3. After pre-

processing, the other steps in the chain automatically segment the resulting 

image, providing healthy and PSL pixel labelling. This discrimination 

operates a spectral signature reference library, which contains the 

following38,99: 

 Three spectral signatures of benign, malignant and atypical PSL 

This section highlighted those in blue, red and black colours, 

respectively, in Figure 77 

 Three skin spectral signatures, in green colour in Figure 77 

The spectral reference for each PSL class is the average of all the 

labelled spectral signatures. Furthermore, the K-means employed the 
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results using the Silhouette, Calinski Harabasz, and Davies Bouldin 

methods to compute the number of clusters38,99. The research split the 

normal class into three groups due to various skin types, particularly 

emphasised in the NIR (Section 2.5).  

Eventually, a supervised classifier categorises into benign, malignant, 

and atypical the pixels previously identified as a lesion. 

6.18. Pre-processing chain 

The pre-processing chain described in this chapter consists of four 

stages: calibration, wavelengths removal, noise filtering and normalisation. 

Algorithm 7 contains the pseudo-code of the pre-processing chain, where Y 

indicates an HS image with n pixels and b bands (i.e., wavelengths). 

 

Algorithm 7. Pre-processing chain19 

Input: Y  Hyperspectral image with n pixels and b bands 

      𝐷𝑟𝑒𝑓Dark reference 

      𝑊𝑟𝑒𝑓White reference 

      𝑁number of neighbours 

1. Hyperspectral image Y acquisition   

2. Stage 1.1: Image calibration 

3.  for i=0 to n-1 do: 

4.     for j=0 to b-1 do: 

5.        𝑌𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑(𝑖, 𝑗) =
𝑌(𝑖,𝑗)−𝐷𝑟𝑒𝑓

𝑊𝑟𝑒𝑓−𝐷𝑟𝑒𝑓
; 

6.     end 

7.  end 

8.  Stage 1.2: Extreme bands removal 

9.  Remove the first 4 and last 5 noisy bands 

10.  Stage 1.3: Smooth filtering 

11.  for i=0 to n-1 do: 

12.     for j=1 to b-N-1 do: 

13.        𝑠𝑢𝑚 = 0; 

14.        for x=0 to b-1 do: 

15.            𝑠𝑢𝑚+= 𝑌𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑(𝑖, 𝑗 + 𝑥); 

16.        end 

17.        𝑌𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑(𝑖, 𝑗) = 𝑠𝑢𝑚/𝑏; 

18.     end 

19.  end 

20.  Stage 1.4: Normalization 

21.  for i=0 to n-1 do: 

22.     Find the max and min values over the bands 

23.     for j=0 to b-1 do: 

24.        𝑌𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑(𝑖, 𝑗) =
 𝑌𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑(𝑖,𝑗)−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
; 

25.     end 

26.  end 

Output: 𝑌𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑(𝑖, 𝑗) 
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In Algorithm 7, lines from 3 to 7 perform the calibration stage. As 

described in Section 6.3, 𝑊𝑟𝑒𝑓 and 𝐷𝑟𝑒𝑓 derive from moments before data 

acquisition operating the same illumination conditions. The resulting 

calibrated image (𝑌𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑) results from the line 5’s equation. 

After the calibration stage, we remove the first four and last five bands 

due to the HS detector's inadequate response. Line 9 performs this 

procedure, and the final spectral signature consists of 116 wavelengths. 

Furthermore, the procedure reduced noise through smooth filtering. Line 11 

loop performs the filtering for each HS image pixel. Line 12 contains the 

loop declaration where N is the value of the neighbours previously chosen. 

For this experiment, N equals five. 

Finally, a normalisation process between 0 and 1 to each pixel 

homogenises spectral amplitudes. Lines 21 to 26 perform the normalisation 

process. 

6.19. Unsupervised PSL segmentation 

K-means and SAM algorithms automatically segment the pre-processed 

HS image into normal and PSL pixels. The K-means algorithm divides the 

hypercube into k different clusters, and the optimal k equals three. 

Nonetheless, after performing the three-way clustering, we generated a 

two-class segmentation map to identify the skin and the lesion. The SAM 

algorithm produces the two-classes segmentation map, which compares the 

centroid from each cluster with a spectral signature from the reference 

library. The library contains the six different spectral signatures earlier 

described. 

Algorithm 8 reports the unsupervised segmentation comprising K-means 

and SAM. Line 2 initialises the actual_centroids variable to select the 

centroids used by the K-means algorithm. This variable starts with k 

stochastic different HS pixels from the input image Y. The error variable in 

line 3 is the average of the absolute values of the difference between 

centroids. The error represents a constraint for algorithmic convergence. 

The algorithm's main loop from lines 6 to 13 computes the distances 

between a specific pixel and the centroids with an iterative procedure. The 

distance operates the Euclidean metric, and each pixel will belong to a 

particular cluster when it reaches the minimum distance. Using 

actual_centroids and previous_centroids variables allows for analysing the 

variation from the previous iteration. This loop finishes when the error 

becomes lower than the established threshold or after a maximum number 

of iterations. 

Eventually, the SAM algorithm compares each cluster with the reference 

library and returns the binary segmentation map. Lines from 14 to 20 

correspond to the similarity evaluation. 
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Algorithm 8. Automatic segmentation 19 

Input: Y, k, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅, HUGE_VAL 

1. Stage 2.1: K-means initialization 

2.  Randomly choose k pixels as actual_centroids 

3.  𝑒𝑟𝑟𝑜𝑟 = 𝐻𝑈𝐺𝐸_𝑉𝐴𝐿; 

4.  𝑖𝑡𝑒𝑟 = 0; 

5.  Stage 2.2: K-means clustering 

6.  while 𝑒𝑟𝑟𝑜𝑟 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 && 𝑖𝑡𝑒𝑟 < 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 do: 

7.     Compute the distance between pixels and centroids 

8.     Clusters update 

9.     𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 = 𝑎𝑐𝑡𝑢𝑎𝑙_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠; 

10.     Update actual_centroids 

11.     Compute error between actual_centroids and previous_centroids 

12.     𝑖𝑡𝑒𝑟 + +; 

13.  end 

14.  for i=0 to k-1 do: 

15.     for j=0 to nref-1 do: 

16.        dist(j) = compute SAM between actual_centroids(i) and ref(j) 

17.     end 

18.     h = find the index of the minimum value of dist 

19.     Assign to the i-th cluster the same class as ref(h) 

20.  end 

Output: PSL pixels 

6.20. Supervised classification 

This research operated an SVM to classify the pixels identified as PSL 

by the previous step. The SVM algorithm aims to find the best hyperplane 

to separate different data and compute the probability of belonging to each 

class of study57.  

This study selected the sigmoid kernel after comparing the performance 

results with others after hyperparameters optimisation. Algorithm 9 

illustrates the pseudo-code of the supervised classification where 

pix_no_skin contains the lesion pixels obtained from the previous stage. 

 

Algorithm 9. Supervised classification 19 

Input: pix_no_skin, npix_no_skin, class, nsv, sv, epsilon 

1. Stage 3.1: SVM data preparation   

2.  for i=0 to npix_no_skin-1 do: 

3.     Stage 3.2: SVM distance computation 

4.     for j=0 to nsv-1 do: 

5.        𝑝𝑟𝑜𝑑 = 𝑠𝑣(𝑗) ∗ 𝑝𝑖𝑥_𝑛𝑜_𝑠𝑘𝑖𝑛(𝑖); 

6.        𝑑𝑖𝑠𝑡(𝑗) = tanh (𝑠𝑙𝑜𝑝𝑒 ∗ 𝑝𝑟𝑜𝑑 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)  

7.     end 

8.     Stage 3.3: SVM binary classification 

9.     for j=0 to class-2 do: 

10.        for z=j to class-1 do: 

11.           Solve binary classification problem between class j and class z 
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12.        end  

13.     end 

14.     Stage 3.4: SVM multiclass probability 

15.     𝑃𝑐1 = ⋯ = 𝑃𝑐𝑐𝑙𝑎𝑠𝑠 =  
1

𝑐𝑙𝑎𝑠𝑠
; 

16.     Computing the matrix Qp using the binary probabilities 

17.     for z=0 to class-1 do: 

18.        for iter=0 to 99 do: 

19.           if Pcz – Pcz_prev < epsilon do: 

20.              break; 

21.           end 

22.        Update multiclass probability of the i-th pixel to belong to class z 

23.        end 

24.     end 

25.  Compute class with maximum probability for the i-th pixel 

26.  end 

27.  Update similarity evaluation labels with SVM results 

Output: Probabilities class. 

 

The pseudo-code comprises four main steps:  

1. Data preparation 

2. Distance computation 

3. Binary classification 

4. Multi-class probability 

The iterative procedure from lines 2 to 26 computes the probability of 

the i-th pixel belonging to a specific class. The kernel evaluates this 

probability, computing the distance. Line 5 multiplies the pixel by a 

support vector, and line 6 returns the distance using the kernel's 

parameters: slope and intercept.  

The next stage performs the binary classification based on the 

probability mentioned earlier. Ultimately, the multi-class probability comes 

from lines 15 to 24, utilising the probabilities obtained in the previous 

stage. This process ends when the value of the previous iteration is under a 

certain threshold or if the number of iterations reaches 100. When one of 

these two conditions takes place, we obtain the multi-class probabilities of 

the pixel. 

In summary, all the abovementioned steps feature high computational 

complexity, thus preventing real-time processing. Consequently, the 

exploration of parallel architectures is mandatory to provide an efficient 

instrument for clinical practice. 

6.21. Parallel classification pipelines 

In the following sections, this research explores various parallel 

strategies targeting multicore and many-core hardware to decrease the 

processing time of the serial pipeline.  



 

 163 

The first step comprised writing the classification framework (pre-

processing, K-means, and SVM) in C language. This serial code represents 

a basis for the parallel versions that integrate the OpenMP and the CUDA 

frameworks for the multicore and many-core philosophy, respectively. 

Hereafter, the thesis evaluates miscellaneous parallel classification 

pipelines partially written in OpenMP or CUDA78. 

6.22. OpenMP overview 

This section will briefly review the OpenMP framework which did not 

receive a dedicated chapter of the thesis since all investigations mainly 

concerned CUDA programming from the hardware acceleration 

perspective. 

OpenMP is a programming model and API for parallel programming in 

C, C++, and Fortran. It allows developers to specify parallel regions of 

code that can be executed concurrently on shared memory systems, such as 

multi-core processors or symmetric multiprocessor systems. 

One of the key features of OpenMP is the use of pragma directives to 

specify parallelism in the code. The omp for directive is used to specify a 

loop that should be executed in parallel. 

Here, are two examples of the omp for directive. The following code 

demonstrates how to parallelize a loop using the omp for directive: 

 

 

 

 

 

Algorithm 10. OpenMP first example 

1. #pragma omp parallel for 

2.  for (int i = 0; i<N; i++) 

3.  { 

4.     #loop body 

5.  } 

 

 

In Algorithm 10, the loop will be executed in parallel by multiple 

threads, with each thread responsible for iterating over a subset of the loop 

iterations. 

 

The following Algorithm 11 demonstrates how to specify a loop 

reduction using the omp for directive: 

 

Algorithm 11. OpenMP first example 

1. int sum = 0;  

2. #pragma omp parallel for reduction (+:sum) 

3.  for (int i = 0; i<N; i++) 
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4.  { 

5.     sum += data[i]; 

6.  } 

 

 

In this example, the reduction clause specifies that the loop variable sum 

should be reduced using the + operator. This means that the value of sum 

will be updated by each thread in a thread-safe manner, resulting in the 

final value being the sum of all iterations. 

6.23. Parallel pre-processing versions 

Serial code profiling reported filtering and normalisation as the most 

time-consuming phases of the pre-processing. Accordinlgy, this research 

accelerated only these two code portions. Each thread performs the filtering 

and normalisation of a single HS pixel. A for loop that iterates over the 

number of pixels, and the pragma omp parallel directive elaborates the 

iterations concurrently. We declared the loop variables private while we 

shared the HS image among all threads. 

The same parallelisation occurred in CUDA. After image calibration and 

band removal, data are allocated and transferred to the device's global 

memory. The transferred data also consists of the reduced image and the 

array storing groups of five contiguous wavelengths for each pixel to avoid 

data overwrite during the moving average algorithm. A CUDA kernel 

filters through a grid containing as many threads as the number of pixels. 

The grid includes blocks of 32 threads, which is the warp definition given 

by Nvidia (Section 4.3). If the number of pixels is not an integer multiple 

of 32, the last block will contain some threads that do not relate to a pixel. 

In this case, these threads do not perform any computation. These inactive 

threads do not slow down the computation because their number is 

negligible compared to the total number of pixels. Another kernel, with the 

same grid and block parameters, computes each pixel's maximum and 

minimum values across the bands. These values then take part in the 

normalisation step, performed by a different kernel. The normalised image 

overwrites the original, initially transferred to the device's global memory.  

The result of the pre-processing is transferred back to the host memory 

only if the K-means uses serial or OpenMP-accelerated processing. 

Otherwise, the result remains in the device's memory. The flowchart of the 

CUDA pre-processing is in Figure 78. 
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Figure 78. Parallel HS image pre-processing flowchart 19 

6.24. Parallel K-Means versions 

The K-means most time-consuming part is the distance computation 

between each pixel and each centroid. The number of iterations equals the 

number of pixels times the number of clusters.  

The other operations have a negligible computational cost when 

performed on a serial processor. Hence, the research parallelised only the 

distance computation using OpenMP and CUDA.  

The pragma omp parallel for directive exists before the for loop iterating 

over the pixels. Again, the loop variables are declared private, and the HS 

image is shared. Moreover, also the centroids are shared among the pixels.  

The CUDA version adopts a different strategy. Indeed, all the steps 

happen on the device to minimise data transfers between host and device 

memories. Figure 79 displays the flowchart of this parallel version.  

The first task the GPU performs is centroid initialisation, which consists 

of copying the values of the selected pixels into the centroids. A kernel 

whose threads number equals the number of clusters operates in this step.  

The error computation happens between the device and the host. At first, 

a kernel computes the difference between the actual and the previous 

centroids. Then, the cublasSasum function sums the absolute values of 

these differences. This function directly transfers the output to the host, 

where the division by the number of clusters operates a serial thread.  
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At this point, the iterative K-means process starts on the host. The 

following steps repeat until the error converges to a fixed threshold or they 

attain a maximum number of iterations.  

The first step concerns the distance computation performed on the 

device by a kernel, having as many threads as the number of pixels. In 

particular, each thread simultaneously computes the distance between the 

pixels and the centroids.  

Then, we update the clusters and the centroids with two different 

kernels. The former provides a pixel-wise parallelisation since each thread 

finds the nearest centroids for each pixel.  

The latter includes as many threads as the number of clusters to perform 

the update. At this point, we evaluate the error.  

Once the condition of the while loop is false, the flow continues with the 

similarity evaluation step, which assigns biological meaning to each 

cluster. 

The overall computation involves a restricted number of data, allowing 

efficient elaboration on the host device. 

 

Figure 79. K-means parallel execution flowchart  19  
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6.25. Parallel SVM versions 

The SVM algorithm has three main steps: distance and non-linear 

function evaluation, binary classification, and multi-class probabilities 

computation.  

The first phase is the most time-consuming part. We must stress that 

only a subset of the original HS image arrives at the SVM algorithm. The 

SVM training generated 9242 support vectors, which is higher than the 

number of pixels of each image. For this reason, the OpenMP version 

parallelised the for loop which iterates the support vectors. In particular, 

each thread performs the dot product between the assigned support vector 

and the pixel. Then, it applies the hyperbolic tangent to the product result 

after considering the slope and intercept values. In this case, the shared 

variables are the pixels to be classified and the support vectors, and the 

private variables are the loop indexes. 

 

Figure 80. SVM parallel execution first and second versions’ flowchart 19 
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The research developed three different CUDA versions to find the most 

efficient one. Figure 80 shows the first and second arrangements' 

flowcharts. 

The flow starts on the host, where we transfer the SVM model 

parameters and the pixels. The distance computation kernel computes the 

dot product between support vectors and pixels and evaluates the 

hyperbolic tangent. In this kernel, the number of threads is equal to the 

number of support vectors for the same reason explained in the OpenMP 

version. Again, each block contains 32 threads.  

A different kernel evaluates the binary probability. The kernel's grid 

dimension represents the difference between the first and second SVM 

CUDA versions. In the first case, the number of threads equals the number 

of support vectors, whilst there is a single thread in the latter. The main 

reason for this choice is that binary probability computation is a very 

efficient task to be processed sequentially. The idea is to reproduce serial 

processing on the device, avoiding further memory transfers, even if the 

GPU working frequency is lower than the CPU one. 

The last kernel computes the multi-class probabilities. In this case, the 

number of threads equals the number of classes: each thread evaluates the 

probability of each pixel belonging to a class. Then, the cublasIsamax 

function determines the class with the highest probability for each pixel. 

This function also transfers the output (i.e., the pixel labels) to the host.  

The third CUDA version relates to the fact that binary classification 

performs very efficiently on serial processors. Therefore, this computation 

has been moved to the host side to evaluate whether transferring back data, 

performing the elaboration on the host or if a serial kernel is the best 

solution. Figure 81 illustrates this version. The kernels related to the 

distance computation and the evaluation of multi-class probabilities did not 

change compared to the previous CUDA versions.  
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Figure 81. SVM parallel execution third version’s flowchart  19 

6.26. Complete classification system 

Table 14 presents the fifteen parallel versions developed in this work. 

The basic idea is to find the best configuration regarding processing time. 

The visual profiling reports that all the pre-processing versions provide 

equivalent performance, and we included all the versions for the final 

configuration assessment. In particular, even if the CUDA performance is 

similar to the serial one, it was decided to quantify if an initial data transfer 

can benefit the subsequent steps of the processing chain.  

Table 14. Different versions of the classification framework, integrating the 

serial (S), OpenMP (O), and CUDA (C) codes of the single algorithms. C1, 

C2, and C3 refer to the three SVM CUDA versions 19 

 Pre-processing K-means SVM 

S O C C S O C1 C2 C3 

V1 ×   × ×     

V2 ×   ×  ×    

V3 ×   ×   ×   



Epidermal lesions assessment through deep learning, high-performance 

computing and hyperspectral imaging 

 

 170 

V4 ×   ×    ×  

V5 ×   ×     × 

V6  ×  × ×     

V7  ×  ×  ×    

V8  ×  ×   ×   

V9  ×  ×    ×  

V10  ×  ×     × 

V11   × × ×     

V12   × ×  ×    

V13   × ×   ×   

V14   × ×    ×  

V15   × ×     × 

 

On the other hand, concerning the K-means clustering, only the CUDA 

version has been included in the different complete systems since it vastly 

outperforms the serial and OpenMP processing. Accordingly, the speedup 

of the multicore and many-core K-means versions, compared to the serial 

processing, are about 1.5× and 6×, respectively.  

Ultimately, all the SVM versions participate in the final system's 

integration. The research also developed a configuration (not included in 

Table 14) considering all the serial versions to compute the final speedup. 

 

Figure 82. Comprehensive parallelisation flowchart  19 
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Figure 82 illustrates the parallelisation flowcharts. The pre-processing 

happens on the CPU in the first ten versions. In all these cases, the pre-

processed image goes to the device before the K-means execution.  

6.27. Skin cancer classification performance 

The genetic algorithm (GA)57 operated the SVM's hyperparameters 

tuning. The methodology proposed a stratified patient assignment where 

the labelled data comprised three independent sets: training, validation, and 

test. The custom figure of merit (FoM) in Equation 28 evaluated the GA 

performance. 
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Equation 28 
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𝑃

 
Equation 29 

 

Eventually, the false negative rate per class (FNRc) assessed the results 

obtained for the optimised classifier. Equation 29 shows the mathematical 

expression of the FNRc, where FNi is the number of false negatives in the 

i-th class and P is the total number of positive samples. 

Figure 83 shows the FNRc results of each HS test image. These results 

indicate the necessity of increasing the HS skin database to include high 

inter-patient data variability.  

 

Figure 83. Classification FNRc results per each HS image obtained with the 

SVM Sigmoid classifier. (A) Validation classification results. (B) Test 

classification results. Below each patient ID, the correct diagnosis of the 

PSL is presented. B: Benign; A: Atypical; M: Malignant 19 
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Figure 84 shows the processing time of the complete HS dermatologic 

classification framework using the test set implemented in MATLAB. 

These outcomes come from an Intel i7-4790K with a working frequency of 

4.00 GHz and 8GB of RAM. 

 

Figure 84. Processing time (in seconds) of the MATLAB execution for each 

HS image 19 

6.28. Real-Time elaboration 

The acquisition system takes approximately one second to capture an 

image with 50 × 50 pixels and 125 bands. As we can appreciate from the 

results mentioned in the previous section, MATLAB implementation 

cannot always guarantee real-time processing.  

This research operated the first two test systems from Section 4.8 to 

assess the parallel code performance19. 

All the code versions have used Microsoft Visual Studio 2019 under 

Microsoft Windows 10. For all the versions, suitable compiler options 

generated an executable code optimised for processing speed.  

The processing times report the mean of five different executions. For 

the GPU versions, we also include the data transfer time. Figure 85 shows 

the processing times for the described test systems using each HS image of 

the test set. The figure reports that only some of the versions are real-time 

compliant.  
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(B) 

 

Figure 85. Processing times (in seconds) of the serial and parallel versions 

using the (A) TS1 and (B) TS2  19 

6.29. Comparison and discussion 

Concerning the parallel processing times, the time quantification results 

vary on two main factors: the number of K-means iterations and the 

number of pixels to be classified by the SVM. Remarkably, this last factor 

significantly changes among the images, and it is nothing but the lesion's 

area. 

Concerning the pre-processing step of all the images, the OpenMP 

elaboration consistently outperforms the CUDA on TS1. The same trend 

exists in most of the cases on TS2.  

Efficient parallelisation of the filtering and normalisation steps adopting 

a multicore approach is preferable to transferring the image to perform the 

pre-processing on a GPU device. Nonetheless, efficient pre-processing 

parallelisation only marginally impacts the final classification time. 

Since all the parallel versions include the K-means algorithm developed 

in CUDA, this section only discusses the impact of the different SVM 

versions on the total processing time.  

If we consider the TS1, whether the pre-processing happens by 

exploiting OpenMP (V6-V10) or CUDA (V11-V15), the best SVM version 

is the multicore one (V7 and V12). Nonetheless, the Intel i9 CPU 

classification, with twenty cores working at a high frequency, provides 

better performance than the elaboration on the device, which also requires a 

data transfer. Moreover, in this last case, the computational load is 

insufficient to exploit the GPU cores efficiently.  

On the other hand, if the pre-processing happens in serial, the V2 

version is the best solution. Finally, V2 and V7 are the two best solutions. 

However, only the V7 is always real-time compliant. 

Comparing the performance of the two test systems and considering the 

images where the SVM is not performed (P28_C1, P71_C1, P100_C1), 

TS2 is always faster than TS1. The Tesla K40 GPU features a lower 

processing time on the K-means clustering than the RTX 2080. The former 
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board does not manage the graphical context of the operating system and 

can use all the resources to perform the computation. The latter is a 

standard GPU that shares resources between graphical context management 

and computation19. 

6.30. Conclusions 

This research presented a parallel classification framework based on HSI 

exploiting the K-means and the SVM algorithms to perform an automatic 

in-situ PSL identification. The framework used an in-vivo dataset, and the 

algorithms' parameters tuning happened in MATLAB for later 

implementation of the processing framework on HPC platforms. 

Several parallel versions, exploiting multicore and many-core 

technologies, have been developed to ensure a real-time classification.  

This preliminary study demonstrated the potential use of HSI technology 

to assist dermatologists in the discrimination of different types of PSLs. 

However, additional research must occur to validate and improve the 

results obtained before being used during routine clinical practice using a 

real-time and non-invasive handheld device. Notably, a multicenter clinical 

trial with more patients and samples in the database will be necessary to 

validate the proposed approach further. 

6.31. Deep convolutional Generative Adversarial 
Networks to enhance Artificial Intelligence for skin 
cancer applications 

The third breakdown in this thesis proposes a deep convolutional GAN 

(DCGAN) to generate synthetic HS epidermal lesion images employing a 

small dataset. This investigation is crucial concerning the challenges 

highlighted in Chapters 2 and 3, and this chapter's literature review. 

The investigation assessed the GAN by operating the synthetic data to 

train a ResNet-18, which classifies the original training data. Furthermore, 

the research evaluated the performances regarding the Frechèt inception 

distance (FID)102, and the metrics mentioned in Section 3.13. 

In particular, the novel contributions proposed by this essay are as 

follows: 

1. A DCGAN architecture extended to generate synthetic 

hyperspectral medical images 

2. The adoption of state-of-the-art techniques such as transfer 

learning and label smoothing 

3. The modification of the proposed DCGAN into a conditional 

network 
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4. The use of a ResNet-18 network to evaluate the similarity 

between synthetic and real datasets 

This research employed the dataset, the pre-processing, and the 

taxonomy this thesis described in Chapter 2 concerning the hyperspectral 

skin cancer assessment. 

6.32. Deep convolutional Generative Adversarial 
Networks 

Goodfellow et al. proposed the original GAN in 201474, and it leans on 

two subnetworks: a generator (G) and a discriminator (D). Figure 38 from 

Chapter 3 depicted the fundamental concept behind a GAN. 

The generator G inputs a latent space vector z from a standard gaussian 

distribution and produces a sample G(z). This sample represents the 

mapping from the latent space z to the actual data space.  

On the one hand, G optimises to estimate the training data distribution 

and generate synthetic samples with the same real data distribution.  

On the other hand, discriminator D receives the synthetic data produced 

by G or a sample (x) from the real dataset as input. Accordingly, D 

estimates whether the sample came from the training data or G.  

G and D play a minimax game. G tries to minimise the probability that D 

will predict its outputs as fake, while D tries to maximise its probability of 

correctly discriminating between real and fake samples. 

Researchers proposed several network topologies to implement G and D 

and deep convolutional GANs55,56,74,103,104. Accordingly, deep CNNs 

emerged as stable and affordable architecture for synthetic image 

generation with promising results especially for medicine. Notably, G 

consists of transposed convolutional layers, whilst D addresses common 

convolutional layers. 

Considering HS images, the conversion from z to the data space 

performed by G consists of creating synthetic HS images with the training 

images' exact spatial and spectral dimensions. Since this thesis employed 

the skin cancer dataset described in Section 2.7 for training, G should 

generate an image whose sizes are 50 × 50 × 116.  

Figure 39.a from Chapter 3 displayed the G architecture and the sizes 

adopted in this work for G. The deconvolutional layers from 1 to 6 

anticipate a batch normalisation and the ReLU activation function. Finally, 

the last deconvolutional layer adopts the tanh as the activation function. 

On the other hand, D receives as input an HS image with the exact size, 

50 × 50 × 116, and performs a binary classification to determine if the 

input image is real or fake. For this reason, this network addresses 

convolutional layers, and Figure 39.b illustrated its architecture. All the 

leaky ReLU functions adopt a negative slope equal to 0.2, and the sigmoid 

function characterises the final convolutional layer. 
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6.33. Transfer learning in GANs 

Authors who proposed GANs architectures typically trained the 

framework adopting large datasets, such as ImageNet58, which include 

thousands or even millions of images. Those datasets' dimensionality is 

enormous compared to the 76 HS images considered in this doctoral thesis. 

This study addressed the curse of dimensionality to ensure the correct 

approximation of the original data distribution (Section 2.12).  

Researchers usually adopt transfer learning as the possible solution to 

overcome the issue. As described in Chapter 3 of this thesis, it consists of 

using a model previously optimised for a task whose dataset size was more 

significant. It becomes the starting point for tackling a new problem with 

smaller training sets. In this research, transfer learning consists of 

pretraining the GAN using RGB skin cancer images and using the obtained 

parameters as initialisation for the final model, which operates the HS 

dataset. Accordingly, we trained the initial model using the HAM10000 

dataset105, randomly selecting 5000 RGB images from the database. We 

resized the images to 50 ×  50 pixels to have the same HS dataset spatial 

dimension. Likewise, we modified the output layer of G and the input layer 

of D to address 3 channels instead of 116. 

We adopted the Adam93 optimisation method for the backpropagation 

algorithm, with a learning rate of 0.0002 for both networks and a batch size 

of 128. The training elapsed after 100 epochs. Finally, we exploited a label-

swapping technique to avoid discriminator overfitting, which would imply 

no learning for the generator network. Figure 86 displays some images 

taken for the original dataset and different images generated by the 

network. 

 

Figure 86. (A) Images taken from the training set. (B) Images generated by 

the architecture56 

We transferred the network weights retrieved at the end of this training 

process to the architectures described in Figure 39. Notably, the 
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investigation only modified G's output layer and D's input layer. 

Consequently, the values obtained by the training with the RGB dataset 

initialised the weights related to the channels associated with the green, 

red, and blue wavelengths among the 116 channels of an HS image. The 

investigation initialised the remaining values stochastically and reduced the 

batch size to 2. Moreover, we changed the G's output layer size from 116 to 

117. The additional channel generates the segmentation mask related to the 

synthetic image. The mask generation is of critical importance since it 

includes information that can be used in the training process of a generic 

deep segmentation network, highlighting the lesion contours. 

Eventually, the proposed architecture transformed into a conditional 

GAN (cGAN)106. It means that G receives as input, together with the 

random noise vector, the class label-smoothed value to which the synthetic 

image should belong. Namely, the G can alternatively generate fake data 

related to the benign or malignant classes. The architecture of the proposed 

cGAN is in Figure 87. 

 

Figure 87. The cGAN architecture56 

We trained the cGAN for 200 epochs. During training, different methods 

improved the quality of the synthetic images.  

First, the weights of each layer scaled by a factor c according to the 

equalised learning rate rule56 in Equation 30, where InputChannels 

represents the number of input channels to the considered layer. 

 

𝒄 =
√𝟐

√𝑰𝒏𝒑𝒖𝒕𝑪𝒉𝒂𝒏𝒏𝒆𝒍𝒔
  Equation 30 

 

Consequently, the investigation implemented the two-time-scale update 

rule (TTUR)75. Particularly, it assigned the two networks different learning 

rate values. The learning rate of G was lower than that assigned to D. Thus, 

the analysis updated the weights related to G with more steps than the ones 

assigned to D to enhance the quality of the synthetic images. 
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To avoid D learning to discriminate real from fake images in a few 

training iterations, we swapped the labels for a random 5 % of the training 

data. Indeed, we treated some fake images as real and vice versa. Finally, 

we adopted L2 regularisation at 10−5 to reduce overfitting. 

6.34. ResNet-18 classification 

The investigation operated a ResNet-18, which we described in Chapter 

3 of this manuscript, to measure real and synthetic HS data closeness. 

Namely, we trained the architecture only with synthetic HS images to 

classify the real epidermal lesions dataset. Therefore, we exploited 

overfitting as a measure to understand how well the synthetic data 

reproduces the real statistical distribution. This approach is innovative and 

not present in the literature and reveals if the synthetic dataset represents a 

significative description of the real dataset. In this case, overfitting should 

not be considered a negative effect. Indeed, overfitting on the synthetic 

dataset and obtaining good performance in the classification of the real 

dataset means that the GAN generalised the considered problem. Results 

reported in the subsequent sections highlight the trustworthiness of our 

generated HSIs. 

The proposed approach is in Figure 88, where the blue arrows indicate 

that the set trains the model, while the green arrow denotes that the dataset 

tests the classification. 
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Figure 88. The proposed methodology to evaluate the similarity of the 

datasets. The blue arrows indicate that a set was used to train a model. The 

green arrow indicates that the set is classified by the network56 

The ResNet-18 pre-trained on the ImageNet dataset, hence the input 

layer changed to consider an image of size 50 ×  50 ×  116. Consequently, 

we optimised the network with the Adam gradient descent method in 50 

epochs. The ResNet-18 was trained with 1000 synthetic images, while the 

test set included only authentic images. 

6.35. Evaluation metrics 

We employed several evaluation metrics to measure the performance of 

the developed generative framework. Frechèt inception distance (FID) is 

the state-of-the-art metric to assess the performance of a GAN in terms of 

the quality of the synthetic images74,75,102. The FID metric calculates the 

distance between the calculated feature vector for the authentic image and 

the generated image. Thus, a low value ensures that the two sets are 

similar. The FID is defined in Equation 31, where μ represents the mean 

value, Σ is the covariance matrix and Tr indicates the trace of a matrix. The 

subscripts 1 and 2 indicate the real and the synthetic images sets, 

respectively. 
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𝐅𝐈𝐃 = |𝝁𝟏 − 𝝁𝟐|

𝟐
𝟐 + 𝑻𝒓(𝚺𝟏 + 𝚺𝟐 + 𝟐 ×

√𝚺𝟏 × 𝚺𝟐    
Equation 31 

 

Concerning the ResNet-18 classification performance, we employed 

accuracy, precision, recall, and F1 score as described in Section 3.11 of this 

thesis.  

6.36. Experimental results 

The investigation assessed the synthetic dataset quality in two ways. On 

the one hand, we employed a gold standard metric in GANs, the FID102. On 

the other hand, we evaluated the accuracy, precision, recall, and F1 score of 

a ResNet-18, trained only with synthetic images, and then validated on the 

original dataset. Namely, we exploited overfitting to assess synthetic and 

authentic data distribution closeness. The generator produced a total of 

1000 synthetic HSIs of skin lesions for these tests, equally balanced 

between benign and malignant classes. 

6.37. Frechèt Inception Distance (FID) 

The synthetic HS dataset generated by G obtained an FID value of 

17.37. We computed the FID between the original data distribution and its 

augmented version to evaluate and compare different FID results. In 

particular, we simply horizontally flipped every HS image in the dataset. In 

this case, the investigation measured an 8.96 FID value. The two FIDs are 

close, thus indicating that the synthetic and the real data are similar. 

6.38. ResNet-18 classification performance 

We exploited the synthetic dataset to train a ResNet-18 tested on 

authentic HSIs. The ResNet-18 trained for 50 epochs with 1000 generated 

synthetic images. The network achieved 100% accuracy on the training set, 

thus overfitting it. Consequently, we used the architecture network to 

classify all the images in the real dataset. 

Table 15. ResNet18 real HS dataset classification performance56 

Metric Value [%] 

accuracy 84.21 

precision 81.57 

recall 86.11 

F1 score 83.77 
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We report the performance of the ResNet-18 in the classification of the 

real images in Table 15, which clearly shows that ResNet-18 can correctly 

classify most real images. Accordingly, these results indicate that the 

synthetic and the original dataset are comparable. Accuracy, precision, 

recall, and F1 score are 85.52%, 83.50%, 85.65%, and 92.77%, 

respectively. 

Nonetheless, it is worth noticing that the values should be kept distinct. 

The first results allow data leakage on purpose to assess the presence of 

overlap between the real and synthetic data distributions. On the other 

hand, the training on real data foresaw a train–test split to avoid the 

aforementioned data leakage and accurately assess generalisation 

capabilities of the model on new data. In conclusion, the difference 

between the metrics in the two training scenarios highlights that the 

synthetic data quality might be further increased before its usage to enlarge 

the training set. 

6.39. Spectral signature analysis 

The investigation also compared synthetic and original datasets through 

spectral signatures. Figure 89 compares the original and the synthetic 

spectral signatures of the skin, malignant and benign lesions. From a visual 

inspection of the average spectral signatures and their ranges of variation, 

we can observe that the synthetic data outlines the same distribution as the 

original dataset. 

 

Figure 89. Synthetic and authentic spectral signatures comparison56 
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Nonetheless, the investigation quantitatively compared the spectral 

signatures via the Jensen–Shannon divergence56, given by Equation 32, 

where v and w are the spectral signature to compare, and i represents the i-

th band. 

  

𝐉𝐒(𝐯,𝐰) =
𝟏

𝟐
 𝚺𝐢(𝐯𝐢𝐥𝐨𝐠(𝐯𝐢) + 𝐰𝐢𝐥𝐨𝐠(𝐰𝐢) − (𝐯 + 𝐰𝐢)𝐥𝐨𝐠(𝟏𝟐(𝐯 +𝐰𝐢)))    Equation 32 

 

The Jensen–Shannon divergence equals 0.6, 0.10, and 0.04 for the 

benign, malignant, and skin synthetic and real signatures, respectively. It is 

worth noticing that this metric is bounded by 1 for two distributions. Thus, 

the obtained values highlight the similarity between the real and synthetic 

signatures. 

6.40. Comparisons with the state-of-the-art 

Researchers widely explored GANs to generate synthetic images. 

However, the literature concentrated on generating synthetic data that 

typically is not HS images. Thus, a fair comparison can only happen with 

one work56,101,103, which considered HS images related to skin cancer. The 

work reported the results only in terms of the mean spectral signature of the 

whole synthetic dataset, and no metric such the FID exists between the real 

and the synthetic dataset. 

These considerations highlight that the proposed research describes and 

analyses, more broadly and comprehensively, a GAN architecture capable 

of generating hyperspectral synthetic data even if the training set contains a 

low number of examples. 

6.41. Limits of the investigation and future 
developments 

Data-centric applications strongly rely on the dataset size, influenced by 

subjects participating in clinical research and data acquisition campaigns. 

The data availability challenge appears in scenarios similar to the ones 

described in this thesis, where physicians employ a novel, non-

standardised, and unique technology in routine clinical practice. Notably, 

data security policies currently obstruct research data sharing. Accordingly, 

this research proposed synthetic data assembling to overcome these 

limitations, providing researchers with increased and anonymous data, and 

accelerating deep learning methodologies into general clinical practice3. 

Recently, synthetic data generation has attracted considerable attention in 

the medical field, enhancing existing AI with novel data augmentation 

methodologies. Nonetheless, experimenters must provide knowledge 

concerning synthetic and original data distributions1,3. Not only can the 
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synthetic data be evaluated through quantitative appraisal, but it could also 

be with qualitative assessment processes provided by medical experts1,56. 

This investigation engineered a proof-of-concept to produce synthetic 

data to enhance and accelerate the development of AI algorithms for a 

specific context, especially when scientists engage a limited HS dataset to 

engineer a decision support system to aid skin cancer diagnosis. It aims to 

pave the course for deep learning techniques in medicine when the number 

of labelled samples is limited. Nonetheless, investigators should carry out 

large data acquisition campaigns to include data from several subjects, 

including different skin lesion types and many clinical centres. 

Additionally, physicians should perform a rigorous clinical study to 

validate the usefulness of the offered solution. Dermatologists should 

evaluate whether the HS spatial information correlates with the 

morphological features belonging to the different skin lesions. Therefore, 

qualitative evaluations could assess the similarity between the original and 

synthetic epidermal tumour distributions through a heuristic blind 

evaluation test. Finally, scientists should evaluate several HS camera 

models to develop a generative instance capable of producing distinct data 

distributions. 

6.42. GANs for epidermal HS image generation 
final remarks 

Here, we proposed a convolutional DCGAN architecture to generate HS 

medical data, particularly for skin lesion analysis, by operating a small-

sized dataset to train the framework.  

We adopted the FID metric to evaluate the similarity between the real 

and the synthetic data. We measured a 17.37 FID, which indicates sound 

synthesis and similarity between the distributions of the two datasets.  

Additionally, a ResNet-18 trained only on synthetic data and tested on 

authentic images. The accuracy, precision, recall, and F1 score were all 

above 80%, demonstrating that the synthetic data and the authentic images 

are comparable. Finally, the investigators compared the spectral signatures 

qualitatively and quantitatively. 

The literature reports only one work considering GANs for medical HS 

data107. Nonetheless, this work validated the results only in terms of visual 

similarity between the mean spectral signature of original and generated 

images. 

Future research lines will investigate novel GAN architectures for 

medical HS images. Finally, the conditional GAN could produce different 

tumour etiologies besides benign and malignant ones. 



Epidermal lesions assessment through deep learning, high-performance 

computing and hyperspectral imaging 

 

 184 

6.43. Neural networks-based on-site dermatologic 
diagnosis through hyperspectral epidermal images 

The fourth research in this chapter regards a DL pipeline comprising 

eight different architectures for classifying and segmenting HS in-vivo skin 

lesion images (Figure 90). Enhanced by data augmentation, transfer 

learning, and extensive hyperparameter tuning, the analysis optimised the 

networks with the database we illustrated in Chapter 3. The study worked 

the database, pre-processing and taxonomy the manuscript illustrated in 

Section 6.2. 

 

 

Figure 90. Proposed experimental framework. (a) Taxonomy of the 

epidermal lesions included in the HS database, including number of 

subjects and images in each category; (b) Distribution of images for the 

binary (left) and multilabel (right) classification problems; (c) Different 

elements of the HS acquisition system; (d) HS cube characteristics; (e) HS 

dataset ground-truths; (f) Proposed processing framework based on a k-fold 

cross-validation, including data augmentation and aggregated model 

evaluation; (g) Low-power Nvidia Jetson GPU for algorithm deployment to 

reach real-time performance18 

Pathologists analysed the tumours through biopsy-proven histological 

assessment, ranking each lesion in the proposed taxonomy (Figure 90.a,b). 

Data originated from the customised HS acquisition system38,99 in Figure 
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90.c, and segmentation masks derived from the HS cubes (Figure 90.d) to 

delimit the lesion boundaries in the images (Figure 90.e).  

The ML algorithms described in the second research of this chapter 

yielded outcomes that encouraged the analysis of novel approaches 

comprising a set of CNNs to identify, segment, and classify epidermal 

lesions operating k-fold cross-validation (Section 3.11 - Figure 90.f).  

This research also provides a lesion-border segmentation map. 

Researchers highlighted the need for more semantic information delivered 

to physicians. Undoubtedly, lesion boundary identification could decrease 

the chances of lesion reoccurrence and increase the healing 

probability11,12,18.  

Furthermore, the investigation eventually deployed a semantic 

segmentation network in a portable device38,99 equipped with a low-power 

GPU (i.e., TS3 in Section 4.8), targeting daily clinical testing (Figure 90.g). 

It answered the market for an AI pipeline to serve a real-world medical 

scenario, which could assist dermatologists in scaling up skin cancer 

screening and early detection, reducing the number of false positives and 

negatives and, hence, the number of biopsies and histopathological 

evaluations45,47,98.  

Recent examinations1,3 reported encouraging developments of AI in 

various disciplines, again emphasising the demand for adequate computing 

power to process DL algorithms. The proposed architectures, targeting 

handheld medical instrument deployment, attained and enhanced the well-

known dermatologist human-level detection performances for both 

malignant-benign and multilabel classification tasks, as they were able to 

diagnose HS data considering real-time constraints for on-site diagnostic 

examinations 45,47,98. 

6.44. Deep learning methodology 

The research trained eight CNNs architectures to classify and segment 

the HS skin lesion images. On the one hand, ResNet-18, ResNet-50, 

ResNet-101, and a ResNet-50 variant, which exploits 3D convolutions, 

classified the images into the taxonomy presented in Section 2.7. On the 

other hand, U-Net, U-Net++, and two versions of the DeepLabV3+ 

architecture - one having as backbone structure a ResNet-18 and the other a 

ResNet-50 - performed semantic segmentation of the epidermal lesions. 

This doctoral thesis reported the detailed description of the 

abovementioned architectures’ fundamentals in Chapter 3.   

Furthermore, transfer learning (Section 3.13) improved the results of the 

learning-based architectures by exploiting features belonging to the 

previous training task. Consequently, all the listed architectures had already 

undergone optimisation based on the ImageNet dataset58. MATLAB offers 

the possibility of instantiating already-trained deep learning models that 

can be modified to accept different image sizes. 
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The training set statistical assortment increased through data 

augmentation using several diversifications, including geometric (i.e., 

rotation, mirroring, scaling, cropping), filtering, random centre cropping, 

colour transformations, and pixel substitutions. The research included 

either a linear combination of random pixels of tumours belonging to the 

same category or directly exchanged them. The same procedure occurred to 

skin pixels. Eventually, the dataset comprised approximately ten thousand 

images in the training set. 

Data augmentation produces effective results in computer vision tasks, 

significantly reducing overfitting65. Furthermore, we introduced salt-and-

pepper white noise in random image bands to enlarge the training set. The 

augmentation procedure was iterative. One of the data augmentation 

techniques took part in the training set, and a new data cluster originated by 

unifying the original and transformed images. Following this, a second 

technique participated in the new group. Finally, this procedure recursively 

happened to broaden the training set exponentially. The investigation did 

not apply such augmentation techniques to either the validation or the test 

sets to reject the hypothesis of biased results. 

All architectures receive input size 50 ×  50 ×  116, concerning height, 

width, and the number of wavelengths. We not only placed a dropout layer 

in each ResNet architecture, but we also introduced the L2 weights penalty 

in the loss function to additionally reduce overfitting. The semantic 

segmentation networks already met the requirement in their original design. 

Cross-entropy loss function and the Adam method93 participated in the 

training. The learning step decreased by multiplication by the dropping 

factor: it steadily and linearly decreased after each predetermined number 

of epochs. Batch size, number of epochs, learning rate, and drop factor 

period were 32, 10, 9×10−5, and 3, respectively, for all architectures. The 

drop factor and L2 penalty were 5×10−1 and 10−4, respectively, for the 

semantic segmentation models and 10−2 and 9×10−2, respectively, for the 

classification models. 

The investigation operated the first test system from Section 4.8 to train 

and test the DL pipeline. Accordingly, MathWorks’ MATLAB 2021b 

Release - Deep Learning Toolbox was used for the network design and 

implementation. 

6.45. K-fold cross-validation and aggregated 
testing 

This research adopted the cross-validation procedure described in 

Section 3.11. It randomly shuffled the original HS dataset comprising 76 

images and split it into ten groups. 

Next, each k-th unique group constituted the test data and the model 

trained on the remaining groups. Accordingly, data augmentation 

participated in the k-1 groups used for training. The researchers trained the 



 

 187 

model on the training set and evaluated it on the test set, retaining the 

prediction evaluated at each iteration and discarding the model. 

Accordingly, we trained the model k times and recorded its estimate for 

each test set. Consequently, the performance metrics for classification and 

semantic segmentation lean on the aggregated group of predictions, namely 

the union of each k-fold test set generated for each DL architecture through 

the procedure. 

6.46. Performance evaluation 

This research evaluated the DL architectures' performance operating the 

metrics in Section 3.11. This research assessed the pixel-based occurrences 

for semantic segmentation. The assessment computed the following 

metrics: accuracy, sensitivity, specificity, precision, Receiver Operating 

Characteristic Area Under the Curve (AUC), precision, and F1-Score2,57. 

For the segmentation task, it also computed the Mean Boundary-F1 Score 

(MBFS), the Intersection Over Union (IOU), and the DICE coefficient. 

These final set of evaluations comprised the join of the prediction set of 

each architecture conveyed through the k-fold cross-validation18.  

Similarly, the GPU accelerated-computing performance assessment 

comprised elapsed time, measured in seconds (s), and power dissipated, 

measured in Watts (W). 

6.47. Architecture selection for GPU deployment 

The investigation assessed each architecture's semantic segmentation 

performance. Consequently, the comparison yielded the model having the 

best predictive capabilities: the U-Net++. Consequently, the investigation 

produced a custom C/CUDA code in terms of both the architecture's weight 

and the HS epidermal lesion classification (Section 4.6). This first serial 

stage ended with image pre-processing, and the subsequent stage consisted 

of parallel semantic inference, exploiting the U-Net++ layers. The choice 

of a hybrid C/CUDA code proved valid concerning the real-time 

classification of skin cancer HS images described in the second research of 

this chapter (Section 6.16). U-Net++ was a 130 layer-wise network having 

130 M parameters. 

6.48. High-performance computing development 

Several literature reviews stated the challenge of engineering an AI 

pipeline to scale up the global accessibility of epidermal screening at an 

expert level1,3. The instrument should meet board-certified dermatologist 

diagnosis and feature a semantic segmentation to determine the tumour 

boundaries, thus improving remission and avoiding reoccurrence1,3,11,12. 
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Similarly, a GPU could play a crucial role in AI applications for 

healthcare. CNNs consist of millions of parameters arranged in a matrix 

manner across their layers. Their multiplication with input data lets neurons 

fire and highlight features to determine the diagnostic outcome. 

Accordingly, DL models can be computationally pricey. GPU deployment 

enables high-performance parallel computing and opens the possibility of 

deploying the diagnostic model on handheld devices (Chapter 4). 

Accordingly, this research addressed the CUDA extension to C language 

and a custom code to embed the U-Net++ inside a low-power Nvidia Jetson 

GPU (TS3 in Section 4.8). The Jetson board is a 128-core Maxwell 

architecture designed for embedded applications and equipped with a quad-

core ARM A57 running at 1.43 GHz. The board runs applications 

consuming 5 or 10 W, depending on the power budget mode set on the 

device.  

The investigation extensively operated the CUBLAS and cuDNN 

libraries, described in Chapter 4 of this thesis. They contain efficient 

routines for linear algebra concerning DL, such as convolutional and 

normalisation layers, activation functions, and feedforward inference. The 

CUDA kernels operate on tensors having the following shape: number of 

examples (N), number of channels (C), height (H), and width (W)79.  

The investigation compared the C/CUDA codes to the previously 

developed MATLAB script at each U-Net++ building stage. We assessed 

each intermediate result of the inference pipeline. 

 

Figure 91. CUDA execution logic and data transfer flow18 

Figure 91 shows the outcome of the custom development, whose 

execution starts on the CPU, the Host. We collect the HS epidermal lesion 

image and the neural network weights. Once we initialised all the necessary 
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elements and descriptors, we moved to the device memory, namely the 

GPU memory, the data needed from the U-Net++ for inference.  

Due to the limited memory of the Jetson GPU (TS3 in Section 4.8), we 

arranged the prediction to compute a layer output at that time. Remarkably, 

we allocated memory to each layer, acquired the previous dataflow 

outcome, executed the layer, produced the new result, and finally freed the 

memory.  

Once the loop ended, a segmented image originated from it, which we 

moved back to the Host, where the result was saved and displayed on the 

handheld device. The semantic segmentation of HS skin cancer images runs 

in less than a second. 

6.49. Classification of epidermal lesions 

The CNNs operated a small-sized dataset. We then evaluated the 

performance of the architectures, employing a 10-fold cross-validation 

methodology. Additionally, the taxonomy proposed in Figure 90.a and 

Figure 11 is a trade-off between being medically comprehensive, 

consistent, and to fit DL classifiers. Undoubtedly, the tree-structure 

categorisation is well-suited to treat patients according to the highest 

healthcare standards and provides the best classification performance108. 

Indeed, we propose coarse-grained malignant-benign classifications and 

fine-grained classifications, allowing expert professionals to differentiate 

between numerous severe conditions. 
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Figure 92. Performance of the epidermal lesion classification. (a,b), Binary 

and multilabel classification performance of the four different approaches, 

respectively18 
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Discrimination between benign and malignant lesions offered stable and 

robust measurements, meeting sensitivity and specificity above 80% 

(Figure 92.a). We observed the ResNet-3D achieving the best results (87% 

sensitivity and 88% specificity). Furthermore, we can determine through 

AUC outcomes that adequate thresholding could increase performance by 

over 90%. On the other hand, the multilabel classification retains an 

Malignant Melanocytic (MM), Benign Epithelial (BE), and Benign 

Melanocytic (BM) sensitivity performance below 80%. Regardless, the 

specificity for all classes is above 80% (Figure 92.b).  

Considering that having more groups induces each group to have fewer 

examples, the diminished number of images in the BE and Malignant 

Epithelial (ME) categories elicits sparse information regarding inter-patient 

variability. The multilabel classification scenario demonstrated the ResNet-

50 and the ResNet-3D as having the best performances.  

A drawback of considering an aggregated validation set, namely the 

union of each k-fold test set, is the risk of having inconsistent AUC results. 

Academic authors usually compute AUC over a single classifier whose 

prediction probability retains a classification. Aggregating the results 

means we unify possibly disharmonious likelihoods from different 

classifiers trained at each k-fold iteration. That is why we can appreciate 

acceptable classification metrics measurements related to low AUCs. 

6.50. Anatomical segmentation of epidermal 
lesions 

Tumour border detection is a crucial step towards patient healing and 

disease remission. This step is significant for skin cancer but also gains 

relevance when experts consider other tumour types, such as brain cancer. 

Indeed, the more complex the disease is to reach inside the human body, 

the better its boundary detection should be to sidestep its reoccurrence and 

enhance remission chances.  
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Figure 93. Performance of the epidermal lesion segmentation. (a,b), Binary 

and multilabel segmentation performance of the four different approaches, 

respectively. The acronyms have the following meanings: Skin (S), Benign 

(B), Malignant (M), Benign Epithelial (BE), Benign Melanocytic (BM), 

Malignant Epithelial (ME), and Malignant Melanocytic (MM)18 
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We trained the U-Net, the U-Net++, and two DeepLabV3+ versions, 

having ResNet-18 and ResNet-50, respectively, as the backbone structure, 

to answer the market for semantic information concerning the skin lesion 

boundaries. We evaluated each semantic architecture using some of Section 

3.11 metrics per class. These results also include the skin class in the 

results. Concerning binary segmentation (Figure 93.a), this thesis reports 

skin DICE and IOU higher than 0.9, apart from the DeepLabV3+ RN18 

architecture, which yielded a lower segmentation performance. 

Nonetheless, the investigation observed limited performance regarding 

benign and malignant classes - specifically, DICE measurements below 0.8 

and IOU under 0.6. The U-Net++ exhibited the best segmentation results 

over all the categories. 

Similarly, the U-Net++ offered the best outcomes concerning the 

multilabel segmentation scenario (Figure 93.b). Regardless, the IOU 

measurements for the ME and BE categories were lower than 0.4. The 

results might be due to the high inter and intra-patient variabilities 

concerning lesion etiologies and the few samples belonging to different 

groups.  

6.51. U-net++ results and rationale 

This investigation evaluated the U-Net++ for embedded deployment for 

two main reasons. First, it exhibited the best performance in multilabel and 

binary assignments (Figure 93). Similarly, the architecture presents the 

highest number of layers and parameters. In other words, satisfying real-

time constraints12 with such architecture firmly ensures that the same time 

limitation could exist with smaller CNNs. Researchers define a real-time 

constraint as a mandatory temporal deadline to carry out a task11,12,19. A 

reasonable time limit for skin cancer diagnosis can be arranged around a 

few minutes since its growth takes several weeks.  

This doctoral thesis chose U-Net++ as the network for embedded 

deployment and met a real-time constraint specified for epidermal lesion 

classification and segmentation: recording time stamps ranging from 0.230 

to 1.210 s concerning different GPU architectures, which we compared in 

terms of time and power consumption (Figure 93). 

6.52. U-net++ embedded deployment 

This research developed a custom code through the CUDA extension to 

C language78 to embed the U-Net++ inside a low-power Nvidia Jetson GPU 

(TS3 in Section 4.8).  
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Figure 94. Deployment performance. (a) Processing time and (b), power 

consumption comparisons of the different Nvidia GPUs considered in this 

study. Jetson Nano M1 and Jetson Nano M2 indicate the two possible 

power configurations of the Jetson Nano board, which are 10 and 5 W of 

power budget, respectively18 

It extensively used CUBLAS and cuDNN libraries and tested them on 

three different GPU boards produced by Nvidia (Chapter 4), namely the 

three test systems from Section 4.8. The three boards cover the range of 

products proposed by the vendor. The RTX 2080 is a consumer board 

featuring 2944 cores working at 1.8 GHz and equipped with 8 GB of DDR6 

memory. The Tesla K40 GPU is a board developed for computationally 

intensive applications and equips 2880 cores working at 750 MHz and 12 

GB of DDR5 memory. The Jetson Nano board is a low-power GPU 

featuring 128 cores at 1.6 GHz and 4 GB of DDR4 memory. The Tesla K40 

and RTX2080 obtained the best processing times (Figure 94.a), with 

elaborations ranging from 230 to 780 ms and power consumption of 250 W 

(Figure 94.b). 

On the other hand, the Jetson Nano board took from 1.14 s to 1.21 s to 

process the images, consuming 10 to 5 W (Figure 94.a,b).  

Eventually, all three boards yielded processing times that would fit the 

target application well. Additionally, the Jetson Nano board has a power 

consumption which enables the development of a portable and handheld 

diagnostic instrument, especially the M2 power configuration. 

6.53. Comparison with expert dermatologists 

Researchers believe it is difficult and not reasonably fair to compare 

studies due to different settings, from data employed to algorithm 
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structures and the proposed taxonomy. In general, HS images contain 

broader information different from classical RGB pictures. Several reviews 

evaluated more than fifty studies retaining the different settings discussed 

and whose research involved hundreds of expert dermatologists45–47,98,109. 

Consequently, this thesis can establish a well-known plateau of 

performance. Considering the proposed taxonomy, expert dermatologist 

sensitivity, specificity, and accuracy concerning benign and malignant 

lesions lie at approximately 80%, 75%, and 70–85%, respectively. We must 

highlight that we reported the highest measurements when expert 

professionals, rather than trainee dermatologists, participated in the 

experiments. 

Nonetheless, they reached around 55–60% accuracy when targeting 

more classes in taxonomy. Accuracy decreased to 40–45% when trainee 

dermatologists performed the same task45–47,98,109. Each mentioned 

performance evaluation does not belong to the same study, and we must 

stress that researchers traded off high sensitivity with low specificity in 

some scenarios.  

Accordingly, the AI-based pipeline proposed in this study met and 

exceeded the dermatologist-level classification of skin cancer, which does 

not usually include an automatic anatomical segmentation of the 

boundaries of the lesions. Undoubtedly, ResNet-3D achieved the best 

accuracy in the multilabel scenario, attaining peak performance at 92.10% 

for the MM class (Figure 92). 

6.54. Discussion and conclusions 

This doctoral thesis presented several critical matters. It designed an AI 

system to assist dermatologists in clustering epidermal tumours, despite the 

limitation of the small-sized HS dataset. Notably, it researched a consistent 

methodology to develop DL algorithms and cope with small-sized datasets 

to meet and improve the well-known dermatologist diagnostic performance 

plateau.  

Cursed by the absence of large datasets (Section 2.12), it took some time 

for HSI-based applications to become feasible in terms of tasks operating 

classical RGB or multispectral images. Accordingly, the studies considered 

by the authors of several systematic reviews consisted of databases with 

significant data, thus highlighting the diagnostic performance plateau 

reached. Consequently, classification techniques for HSI often exploit 

transfer learning and data augmentation to improve classification 

performances in different research fields45–47,98,109. Algorithms employing 

HS images usually comprise the classical pixel-wise models we mentioned 

in the second research of this chapter. Even though the algorithms only 

work with spectral and not spatial information, their sensitivity and 

specificity concerning MM and NMSC evaluated through leave-one-out lie 

around 80 and 77%, recently improved to 87.5 and 100%, respectively38,99. 
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This investigation responded to the market for AI clinical applications 

and the need for computational power to assist it in engineering a handheld 

instrument equipped with a low-power GPU. The tool should replace the 

expensive and time-consuming gold-standard diagnostic procedure to turn 

modern DL algorithms into medical equipment3.  

Recently published articles highlighted that the Food and Drug 

Administration (FDA) is moving towards approving AI-based medical 

devices3. It is a crucial turning point considering challenging historical 

periods, such as those raised due to the Covid-19 pandemic. AI-based 

medical instruments should aid professionals during challenging times and 

participate in frontline emergency clinics, remote places, or the developing 

world.  

This doctoral thesis conceived a blueprint dermatological instrument to 

improve the worldwide accessibility of epidermal screening at the 

professional level. Expert dermatologist classification accuracy of 

epidermal lesions usually depends on the number of classes considered. At 

most, it reaches 85% in a malignant-benign classification scenario. The 

gold-standard procedure implies clinical and dermoscopic inspection, 

followed by biopsy and histopathological examination. In other words, the 

subjective nature of the inspection biases the classification accuracy 

measurement of malignant lesions. Undoubtedly, physicians only diagnose 

lesions already marked as suspicious45–47,98,109.  

This doctoral path designed CNNs to attain and enhance well-known 

dermatologist human-level classification performance concerning 

specificity, sensitivity, and accuracy. To the best of the thesis' knowledge, 

no research exists yet concerning HS skin cancer image segmentation to 

produce a mask to inform doctors about lesion boundaries. Similarly, other 

studies mainly focused on producing high-end results considering 

classification scenarios with unessential clinical applicability45–47,98,109.  

This research improved the classification taxonomy and avoided 

scenarios such as MM compared against a specific lesion type. It developed 

an HS system containing much more information regarding RGB, 

multispectral, and other spectroscopy strategies. It used artificially 

intelligent architectures and algorithms to build on the existing literature 

concerning statistical approaches for spectral signature analysis45–47,98,109.  

This thesis was eager to respond to the demand for an AI-based pipeline 

to assist or replace the expensive and time-consuming gold-standard 

procedures. Accordingly, it deployed a semantic segmentation network on a 

low-power Nvidia Jetson GPU device targeting a portable instrument 

containing an HS camera. The designed proof-of-concept AI system can 

classify and segment epidermal lesions in, at most, 1.21 s, and expert 

professionals could use the future implementation in real-world clinical 

scenarios. 

Nonetheless, the study exhibits limitations. The main limitation is 

related to dataset size, which in turn produces others. Indeed, HS imaging 

is a powerful tool compared to classical RGB pictures. Chromophores 
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characterise skin's spectral properties and allow lesion clustering into 

different etiologies. HS imaging systems gather skin-reflected and 

transmitted light into several wavelengths ranges on the electromagnetic 

spectrum, enabling potential skin-lesion differentiation through machine 

and DL algorithms. Indeed, each pixel contains meaningful information 

concerning an object's properties. Not only are some lesions in the dataset 

transitioning from benign to malignant lesions, but lesions and skin 

signatures might differ slightly. 

 

Figure 95. Mean and standard deviation (std) of the spectral signatures of 

the HS dataset. (a) Spectral signatures of skin, Benign and Malignant; (b) 

Spectral signatures of benign epithelial and melanocytic and malignant 

epithelial and melanocytic. S: Skin, B: Benign; M: Malignant; BE: Benign 

epithelial; BM: Benign melanocytic; ME: Malignant epithelial; MM: 

Malignant melanocytic18 

Moreover, each patient has a unique skin signature which causes the test 

images to be very different from the training ones, increasing inter-patient 

variability. Figure 95.a represents the spectral signature means and 

standard deviations of normal skin (S), benign (B), and malignant (M) 

lesions. Notably, Figure 95.b reports each subtype lesion's spectral 

signature mean and standard deviation. Consequently, an extensive dataset 

should cope with this problem and allow CNNs to concentrate more on the 

insightful parts of the wavelengths, enhancing the semantic segmentation 

outcomes yielded in this thesis. Accordingly, future literature should focus 

more on algorithms that better exploit the massive amount of information 

in a single spectral cube to improve current classification and segmentation 

performance. 

6.55. Attention-based skin cancer classification 
through hyperspectral imaging 

This chapter's fifth and last research proposes a Vision Transformer 

(ViT)100 based classifier targeting HS skin cancer images. It represents a 
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leap forward concerning the investigation mentioned earlier in the text. 

While the transformer architecture represents the highest standard for tasks 

involving Natural Language Processing (NLP), its usage concerning 

Computer Vision (CV) remains limited, particularly with HSIs. The 

attention mechanism is the ground basis of transformers, and it either 

works in conjunction with CNNs or substitutes certain aspects of CNNs 

while keeping their entire composition intact100. 

The attention mechanism is the flexible control of limited computational 

resources: it enables sequence learners, namely neural networks working 

with time series, to understand better the relationship between different 

tokens in the sequences they are training on. For a given sequence, when a 

specific token attends to another, it means they are closely related and have 

an impact on each other in the context of the whole sequence. Transformers 

comprise multiple so-called self-attention layers, whose task is to weigh the 

significance of each input data part differentially100.  

The self-attention layer in ViT makes it possible to embed global 

information across the overall image. The model also learns from training 

data to encode the relative location of the image patches to reconstruct the 

structure of the image later. 

The analysis operated the database, pre-processing and taxonomy we 

illustrated in Section 6.2. 

6.56. Vision Transformers (ViT) for hyperspectral 
imaging  

Vision transformers (ViT) are DL architectures that lean on the self-

attention mechanism100. Figure 96 shows the structure of a ViT. Typically, 

a ViT receives as input a 1-D array. Consequently, N-D tensors such as HS 

images transform into 1-D arrays through original image division into 

patches of the same dimension. This partitioning occurs through a 

convolution operation. Let 𝑋 ∈  ℝH×W×C  be an HS image with a spatial 

dimension of H ×W and C spectral channels. We can define each patch 

with 𝑋𝑝 ∈  ℝ
H×P×P×C , where P × P  is the resolution of a single patch. 

Accordingly, the number of patches forming an image is N =
H×W

P2
.  
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Figure 96. Architecture of a Vision Transformer 

The ViT uses a Q-D array of latent variables to project the patches in a 

new space. Then, the architecture associates a class token to each patch, 

together with an array containing information about the relative position of 

each patch concerning the original image, the so-called position 

embedding. These data represent the input to the transformer encoder based 

on three main components: Multi-head Self Attention (MSA), Multi-Layer 

Perceptron (MLP) and normalisation. The architecture links these 

components, as shown in Figure 97.  

 

Figure 97. The architecture of a transformer encoder 
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In the self-attention mechanism, the architecture projects each input 

vector to generate three matrices: Key (K), Query (Q), and Value (V). For 

each input vector, we can retain the attention map according to Equation 

33100, where d stands for a scaling factor: 

  

𝐀𝐭𝐭𝐞𝐧𝐭𝐢𝐨𝐧(𝐐, 𝐊, 𝐕) = 𝐒𝐨𝐟𝐭𝐦𝐚𝐱(
𝐐×𝐊𝐓

√𝐝
) × 𝐕    Equation 33 

 

The Multi-head attention mechanism leans on Equation 33. The main 

difference is that the architecture linearly projects the Q, K and V vectors 

into a suitable space. Then, in parallel, it applies the attention mechanism 

to the new vectors. Consequently, we concatenate the attention values to 

obtain the output. Typically, L-concatenated MSA layers produce the input 

for the MLP that generates the final classification.  

HS images feature a higher number of channels than standard RGB 

images. Accordingly, the number of multiplications performed by the MSA 

layer is very high. This research solved this issue by introducing 

convolution operations before applying the patching procedures. 

Remarkably, this thesis proposes three convolutional layers, each featuring 

a 2-D CNN layer, a normalisation and a ReLU activation. Each 

convolutional layer comprises 3 × 3 filters. The number of filters is 58, 29 

and 14 for the first, the second and the last convolutional layer, 

respectively. 

These layers reduced the channels from 116 to 14. Therefore, the image 

size given as input to the ViT is 50 × 50 × 14. The proposed strategy 

reduces both the computational complexity and the memory occupancy of 

the ViT architecture compared to giving the original HS image as input.  

6.57. Performance metrics  

The investigation trained the ViT to classify the lesions into the four 

categories of the taxonomy in Section 2.7: malignant melanocytic (MM), 

benign melanocytic (BM), malignant epithelial (ME) and benign epithelial 

(BE).  

Likewise, this investigation also operated the 10-fold cross-validation as 

described in Section 3.11. We divided the original HS dataset comprising 

76 images into K groups. Next, each unique group tested the model, which 

instead trained on the remaining K-1 groups. Thus, we augmented the data 

in the training groups as described in Section 3.10. The model was fit on 

the training set and was evaluated on the test set, retaining the prediction 

evaluated at each iteration and discarding the model. Therefore, the model 

trained k times, and we stored the estimations for each k-th test set. 

Consequently, we assessed the performance metrics on the joined group of 

estimations. We assessed the classification in terms of accuracy, 

specificity, and False Negative Rate per class (FNRc) defined in Section 

3.11 and 6.27.  
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6.58. Experimental results 

This research developed the ViT architecture in MATLAB 2020a by 

writing custom scripts exploiting the Deep Learning Toolbox. The code 

runs on the first test system described in Section 4.8.  

 

Figure 98. Performance of the proposed ViT. Accuracy and Specificity are 

reported as percentages. BE, BM, ME and MM represent Benign Epithelia, 

Benign Melanocytic, Malignant Epithelial and Malignant Melanocytic, 

respectively 

Figure 98 reports the performance computed on the aggregated 

predictions of the 10-fold cross-validation technique. This chart shows that 

the proposed architecture can classify benign and malignant melanocytic 

lesions with high accuracy and specificity. On the other hand, considering 

the BE class, the network features a high specificity, but the accuracy is 

around 60 %. Therefore, the low number of images in the original database 

labelled as BE is insufficient to train the proposed network efficiently. At 

the time of writing, few works operated HS imaging for skin cancer 

detection, including the investigations described in this chapter. The works 

rely on the same processing chain exploiting K-Means clustering and SVM 

classification, and the classification taxonomy adopted in these works is 

different from the proposed research. Thus, a direct comparison is not fair 

and can be carried out only in terms of FNRc. The second investigation in 

this chapter computed the FNRc for 18 images, obtaining values up to 60%. 

In this study work, instead, the metric assesses the K-fold cross-validation, 

which is more robust and reliable than the values reported in the state-of-

the-art. The ViT obtained FNRc values ranging from 6% to 30%. 
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Therefore, the proposed attention-based network represents a thrilling and 

promising solution for skin cancer detection through HS images.  

This research also described the network's performance in terms of 

processing time, considering classifying 100 images and computing the 

mean and standard deviation. The mean processing time is equal to 65.2 

ms, with a standard deviation of 7.5 ms. The system proposed in the second 

investigation of this chapter, whose parallelisation was carried out in this 

thesis, takes varying processing times, ranging from 350.0 ms to 2.06 s. 

Consequently, the proposed work outperforms previous investigations in 

terms of processing speed.  

Additionally, this work's variability of the processing time featured is 

significantly lower than in previous investigations.  

Undoubtedly, the ViT architecture has a fixed number of layers that 

perform a fixed number of operations. On the other hand, the processing 

chain proposed in this thesis' second research includes the K-Means 

clustering, which iterates the operations based on the clustering error. Thus, 

the number of iterations performed by it is not deterministic and strictly 

depends on the initial values of cluster centroids.  

6.59. Final remarks 

This thesis proposed a novel attention-based network to classify skin 

cancer through HS images. The proposed network is designed and validated 

using a real HS dataset, adopting the K-fold cross-validation technique to 

produce robust results. Since the original dataset featured only 76 image, 

we applied data augmentations to the training data. Performed 

augmentations included geometrical transformations, filtering, random 

centre cropping, colour transformations, pixel substitution and random 

addition of gaussian white noise. The model was trained augmenting at 

runtime the training set and then performing the tests only on the real 

imaging, considering a number of folds equals to 10.  

The results emphasise that the attention-based mechanism is an 

interesting and promising solution for medical HS images classification, 

since the false negative rate is half compared to the state-of-the-art. 

Eventually, the classification times are significantly lower than the best 

solutions proposed in the literature. Finally, the proposed network adopts a 

fixed number of layers whose number of mathematical operations is 

deterministic, making the measured processing time more stable than the 

results reported in previous works.  

Future research will focus on improving the proposed network and 

evaluating different layers configurations. 
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6.60. Main contributions summary 

Here, the thesis proposes a list of main contributions deriving from the 

pieces of study described in the earlier sections. 

 Hyperspectral imaging acquisition set-up for medical 

applications  

o Addressed problem: There is a limited availability of 

efficient hyperspectral imaging systems for medical 

applications, which can limit the adoption and 

advancement of this technology for skin cancer diagnosis. 

Additionally, there is a limited availability of skin cancer 

hyperspectral dataset for research, which can limit the 

development and testing of new models.  

o Proposed solution: Hyperspectral acquisition system 

engineered to gather diagnostic clinical data concerning 

skin cancer.  

o Advantages: Using low-cost imaging techniques for skin 

cancer diagnosis can be more cost-efficient and 

accessible, as they rely on readily available hardware and 

open-source software.  

o Disadvantages: One limitation of using low-cost imaging 

techniques for skin cancer diagnosis is that they have not 

yet been extensively applied in a real-world scenario, 

where large and diverse datasets can be gathered. This can 

limit the ability of these techniques to generalize to a 

wider range of skin cancer cases and populations.  

o Main contributions: Enhanced efficiency, potential for 

more cost-efficient and widely accessible systems with 

respect to state of the art. 

 Parallel classification pipelines for skin cancer detection 

exploiting hyperspectral imaging on hybrid systems  

o Addressed problem: Lack of real-time and accurate 

diagnostic systems for skin cancer detection.  

o Proposed solution: A parallel classification framework 

based on HSI using K-means and SVM algorithms for 

automatic in-situ PSL identification. 

o Advantages: One advantage of using real-time 

classification for skin cancer diagnosis is that it can 

potentially assist dermatologists in identifying different 

types of pigmented skin lesions (PSLs) quickly and 

accurately. 

o Disadvantages: The study is limited to a single hospital 

and further testing is necessary to determine its 

generalizability to other hospitals or populations. It also 
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requires access to laboratory data, which may not be 

available in all settings.  

o Main contributions: Improved accuracy, potential for 

earlier diagnosis. 

 Deep convolutional Generative Adversarial Networks to enhance 

Artificial Intelligence for skin cancer applications 

o Addressed problem: Limited HS datasets available for 

skin cancer analysis.  

o Proposed solution: Convolutional DCGAN architecture 

to generate HS medical data. 

o Advantages: Federated learning can provide researchers 

with access to a large and diverse dataset while 

maintaining patient privacy through anonymous data. This 

can accelerate the development and application of deep 

learning methodologies in general clinical practice. 

o Disadvantages: The technology has the potential to 

improve clinical practice by accelerating deep learning 

methodologies and increasing access to anonymous data, 

but large-scale data acquisition campaigns are necessary 

to include diverse skin lesion types and clinical centers.  

o Main contributions: GAN architecture for generating 

hyperspectral synthetic data with low sample size, 

evaluated by FID metric and validated using resnet-18 

trained on synthetic data to classify real images. 

 Neural Networks-Based On-Site Dermatologic Diagnosis through 

Hyperspectral Epidermal Images   

o Addressed problem: End-to-end dermatologic diagnosis 

using HSIs.  

o Proposed solution: AI system to assist dermatologists in 

clustering epidermal tumors and improve classification 

taxonomy. 

o Advantages: Improves dermatologist's classification 

performance in specificity, sensitivity, and accuracy; 

achieved real-time classification on a low-power Nvidia 

Jetson GPU device using a semantic segmentation 

network for a portable instrument containing an HS 

camera. 

o Disadvantages: The main limitation is dataset size, 

leading to other limitations, including unique skin 

signatures for each patient and inter-patient variability in 

these signatures.  

o Main contributions: The study concentrates on 

developing deep learning algorithms for small datasets to 

improve dermatologist diagnostic performance. The future 

research should emphasize exploiting the vast amount of 
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information in a single spectral cube for better 

classification and segmentation performance. 

 Attention-based skin cancer classification through hyperspectral 

imaging  

o Addressed problem: The study proposes an end-to-end 

dermatologic diagnosis using HSIs and suggests 

exploiting the vast amount of information in a single 

spectral cube for better classification and segmentation 

performance.  

o Proposed solution: A novel attention-based network that 

utilizes data augmentations to classify skin cancer through 

HS images. 

o Advantages: The proposed solution shows a lower false-

negative rate than the state-of-the-art solutions and 

significantly reduces classification times compared to the 

best solutions in the literature. 

o Disadvantages: The proposed network was only tested on 

a dataset of 76 images, which may not be representative of 

all cases. Future research is required to enhance the 

network and assess different layer configurations.  

o Main contributions: The proposed network is an 

interesting and promising solution for medical HS images 

classification, especially due to the lower false-negative 

rate and lower classification times. The utilization of data 

augmentations and a fixed number of layers also provide 

more stable results compared to previous works. 
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Chapter 7 

7 Intraoperative brain cancer contours 
assessment through deep learning, 
high-performance computing and 
hyperspectral imaging 

In this doctoral thesis' Chapter 2, we mentioned that glioblastoma 

surgical resection is challenging for neurosurgeons. Tumour complete 

resection sweetens patients healing possibilities and prognosis, whilst 

disproportionate resection could lead to neurological deficits. Regardless, 

surgeons' eyesight hardly drafts the tumour's area and boundaries. 

Undoubtedly, most surgical processes result in subtotal resections. 

Histopathological testing might facilitate entire tumour elimination, though 

it is not feasible due to the time required for tissue breakdown.  

Several studies reported tumour cells having unique molecular 

signatures and properties, which the minimally-invasive hyperspectral 

imaging we described in Chapter 2 can seize, delivering information 

concerning the observed tissue at the molecular level.  

This chapter will address two pieces of research concerning 

glioblastoma targeting surgical contexts. The state of the art concerns the 

ML pipeline provided by the HELICoiD framework11,12,39, which consists 

of algorithms such as K-means clustering and SVMs like the research this 

thesis described in the previous chapter.  

First, this chapter describes research operating data augmentation and 

transfer learning to train the U-Net++ and the DeepLab-V3+ (Chapter 3). 

These models segment intraoperative glioblastoma HS images end-to-end, 

producing competitive processing times and segmentation results 

concerning the gold-standard procedure. Based on ground truths provided 

by the HELICoiD framework, it dramatically improved HSIs processing 

times, enabling the end-to-end segmentation of glioblastomas targeting the 

real-time processing to be employed during open craniotomy in surgery, 

thus improving the gold-standard ML pipeline. As we will acknowledge 

from this chapter's reading, the research measured competitive inference 

times concerning the standard CUDA environment offered by MATLAB 

2020a. The HELICoiD fastest parallel version took 1.68 s to elaborate the 
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most prominent image of the database, whilst this methodology performs 

segmentation inference in 0.29 ± 0.17 s, hence being real-time compliant 

concerning the 21 seconds constraint imposed on processing. Eventually, it 

evaluated segmentation results qualitatively and quantitatively regarding 

the ground truth produced by HELICoiD. 

Regardless, the first research presents limitations directly derived from 

the HELICoiD. First, not all pixels are histopathologically labelled; 

consequently, the pipeline-produced ground truth yields spurious results. 

Second, the HELICoiD ML pipeline contains unsupervised algorithms 

whose duration varies on the data, yielding an extended processing time 

which the previously mentioned research improved11,12.  

Brain tumour detection from HSI's immediate need is to extrapolate 

patterns and information to better highlight the tumour contours and aid 

surgeons. The partial supervision provided from the dataset limits 

supervised approaches. Furthermore, the first research proved that 

operating the gold-standard ground truth produced from the HELICoiD ML 

pipeline does not improve the results regarding segmentation performance 

but only concerning processing duration. 

Consequently, this chapter presents a second research, constituting the 

last of this doctoral manuscript, comprising a novel attention-based self-

supervised methodology to improve current research on hyperspectral 

medical imaging as a tool for computer-aided diagnosis. Namely, it 

describes the design of a novel architecture comprising the U-Net++ and 

the attention mechanism on the spectral domain, trained in a self-

supervised framework to exploit the contrastive learning capabilities and 

overcome the dataset size problems arising in medical scenarios.  

This research as well operated fifteen glioblastomas HS images from the 

HELICoiD dataset. Similarly, it applied extensive data augmentation and 

transferred learning to serve the end-to-end segmentation, achieving 

competitive segmentation results concerning the gold-standard procedure.  

This chapter concentrates on AI and high-performance computing 

approaches this doctoral thesis researched to aid brain tumour surgical 

resection from hyperspectral imaging. The studies concern deep learning 

strategies, handling the dataset described in Chapters 2 and 3.  

Close collaboration with Universidad de Las Palmas de Gran Canaria 

enabled the mentioned research investigations. 

All the investigations in this chapter concern the dataset we illustrated in 

Section 2.9, together with its acquisition system, pre-processing and 

calibration stages. Furthermore, all operated the first test system described 

in Section 4.8. 

In the following lines and sections, this chapter describes the 

methodologies found in the literature and the results applied to the 

problems mentioned above. Afterwards, it contains a brief exploratory 

analysis concerning Chapter 2's dataset from the HELICoiD European 

project employed in all the projects contained in this chapter.  
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The chapter describes the investigation strategies, the results with their 

discussion, and the ending remarks for all the investigations. These sections 

report the results, conclusions, and implications that advance the field 

based on current knowledge and our achievements. Accordingly, this 

chapter will cover investigations concerning all the theoretical aspects 

listed in chapters 2 to 4. 

7.1. AI and HPC literature review concerning 
intraoperative brain tumour resection 

AI solutions emerged as a tool to analyse and cluster different cancer 

types using HSI in recent years. Undoubtedly, HSIs could be more visually 

interpretable. Consequently, researchers usually carry out HS image 

analysis via AI approaches.  

Previous chapters of this thesis extensively mentioned the literature 

focus on brain, skin, colon and oesophageal cancer diagnosis through ML, 

DL and HSIs11,12,34,35,37,48,49.  

Concerning intraoperative glioblastoma segmentation of HS images, 

research mainly emerged within the European project HELICoiD 

(HypErspectraL Imaging Cancer Detection)39. Researchers gathered an in 

vivo human-brain HS database on which they developed several ML 

pipelines, comprising Support Vector Machines (SVMs), K-Nearest 

Neighbours (KNN), Principal Component Analysis (PCA), and K-Means 

Clustering as the supporting algorithms11,12. The main challenge is 

retrieving a target ground truth to supervise the ML algorithms.  

Neurosurgeons can only partially identify the tumour and its boundaries 

when diagnosing them with traditional imaging systems. Accordingly, 

HELICoiD-based ML studies comprised unsupervised algorithms to 

overcome this problem and automatically segment the intraoperative-

captured HSIs. 

7.2. AI-based segmentation of intraoperative 
glioblastoma hyperspectral images 

Here, the chapter investigates the feasibility of supervised deep learning 

architectures, namely U-Net++ and DeepLab-V3+ (Chapter 3), as proof-of-

concept to perform the automatic segmentation of fifteen intraoperative 

glioblastomas HS images retained from the HELICoiD database.  

The investigation operated the ground truths coming from the 

HELICoiD ML-based pipeline for algorithms supervision as it currently 

represents the gold-standard procedure to retrieve a segmentation map of 

brain cancer. Undoubtedly, this procedure represents the only feasible way 

to label medical data when ground truth is unavailable via pathology-

confirmed testing.  



Intraoperative brain cancer contours assessment through deep learning, high-

performance computing and hyperspectral imaging 

 

 210 

The main goal is to differentiate GB from healthy and other brain 

tissues, analysing the HSIs end-to-end to improve the time required to 

process differently supervised and unsupervised algorithms in a unique ML 

pipeline. 

7.3. Deep learning methodology in brain cancer 

This investigation trained three CNNs architectures to perform the 

semantic segmentation of the HS brain lesion images. It assessed the 

UNet++ and two versions of the DeepLabV3+ architecture, having as 

backbone structure a ResNet-50 but presenting alternatively 2D and 3D 

convolutions to perform semantic segmentation of the glioblastoma 

(Chapter 3). Likewise, it adopted the transfer learning strategy from 

Section 3.13 to improve the results of the learning-based architecture by 

exploiting features belonging to the previous training task. Consequently, 

all the listed architectures optimised on the HAM10000 dataset105. 

Furthermore, the study increased the training set statistical variability by 

applying the data augmentation procedure from Section 3.10 to the HS 

images. It used several methodologies, including geometric, filtering, 

colour transformations and pixel substitution. Notably, it either performed 

a linear combination of random pixels of tissues belonging to the same 

category or directly exchanged them. As we reported in this doctoral thesis' 

other investigations, data augmentation yields promising results in 

computer vision, significantly reducing overfitting65. 

Furthermore, it introduced salt-and-pepper white noise in random image 

bands to enlarge the training set. The augmentation procedure occurred 

iteratively and randomly. Namely, one of the data augmentation techniques 

was applied randomly to the training set with a certain probability. Each 

image, at maximum, received a predetermined number of augmentations. 

Such augmentation techniques did not apply to the test sets to reject the 

hypothesis of biased results.  

The research modified all architectures to input 384 × 384 × 128  HS 

images concerning height, width, and the number of wavelengths. It resized 

by cropping the HS GB images accordingly to fit the GPUs' RAM. It also 

introduced the L2 weights penalty in the loss function to reduce overfitting. 

Training settings included the cross-entropy loss function and the Adam 

method57,93. The learning step decrease by multiplication by the dropping 

factor, as we mentioned in the previous chapter's analyses. Training 

settings also included batch size, number of epochs, learning rate and drop 

factor period at 4, 200, 10−4, and 80, respectively, for all the architectures. 

For the semantic segmentation models, the drop factor and L2 penalty were 

0.75 and 5 × 10−3.  
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7.4. Aggregated k-fold cross-validation and 
performance assessment 

This research operated the cross-validation strategy described in Section 

3.11. The original in-vivo human-brain HS database consisted of twenty-

six images from sixteen adult patients11,12,39. Nine patients had 

histopathologically confirmed Grade IV glioblastoma, while the remaining 

seven patients were either affected by other types of tumours or other 

pathologies requiring a craniotomy. Regardless, only fifteen images offered 

the necessary ground truth quality obtained from the HELICoiD ML 

pipeline. Hence, the investigation randomly shuffled the original HS 

dataset comprising the 15 HS images and performed a leave-one-out cross-

validation. Therefore, it trained the model k times and recorded its estimate 

for each test set. Consequently, the performance metrics for classification 

and semantic segmentation assessed the aggregated group of predictions, 

namely the union of each K-fold test set, generated from each DL 

architecture through the procedure (Section 3.11).  

The investigation assessed the pixel-based classification performance. 

The assessment outcomes exploited accuracy, sensitivity, and specificity as 

described in Section 3.11. These metrics evaluated the joined prediction set 

of each architecture, which the investigation conveyed through the k-fold 

cross-validation strategy.  

Furthermore, the GPU accelerated computing performance concerned 

the elapsed time for each image inference to compare the researched end-

to-end methodology with the HELICoiD ML pipeline processing times. 

7.5. Performance evaluation and discussion 

The investigation trained and fine-tuned the three CNNs (Table 16) with 

a small-sized dataset and evaluated the architectures by employing leave-

one-out cross-validation.  
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Table 16. U-Net++ and DeepLab V3+ (DLV3 presented in two versions 

with either ResNet-50 or ResNet-50 3D as backbone structures) 

segmentation results in terms of pixel-wise Accuracy, Specificity and 

Sensitivity 

Metrics U-Net++ DLV3 RN50 DLV3 RN3D 

Accuracy Healthy Tissue 0.52 0.52 0.55 

Tumour Tissue 0.61 0.71 0.76 

Hypervascularized Tissue 0.26 0.45 0.42 

Background 0.28 0.36 0.33 

Specificity Healthy Tissue 0.74 0.74 0.73 

Tumour Tissue 0.72 0.85 0.83 

Hypervascularized Tissue 0.81 0.71 0.74 

Background 0.92 1.00 1.00 

Sensitivity Healthy Tissue 0.52 0.52 0.55 

Tumour Tissue 0.61 0.71 0.76 

Hypervascularized Tissue 0.26 0.45 0.42 

Background 0.28 0.36 0.33 

 

Likewise, it adopted the taxonomy proposed in Chapter 2's Figure 13 as 

a trade-off for a comprehensive and medically appropriate diagnosis, well-

suited for DL classifiers. The structure allows physicians to treat patients 

according to the highest healthcare criteria whilst retaining the best feasible 

segmentation performance.  

Discrimination between tumour tissue and the other classes of lesions 

offered fair measures, meeting specificity ranging from 71% to 92% across 

both architectures and the considered tissue types (Table 16).  

We report the DeepLab V3+ with ResNet-50 backbone structure 

achieving the best results in tumour tissue identification with 85% 

Specificity. Similarly, we report tumour tissue accuracy above 70% for 

both DeepLab V3+ architectures. 

On the other hand, the multilabel segmentation retains sensitivity 

performance below 80%. Considering four distinct group classes induces 

each set to have fewer examples, eliciting sparse information regarding the 

inter-patient variability. 

The research discussed in this chapter introduced a few essential 

matters. It designed an AI-based system to assist neurosurgeons in 

outlining the contours of glioblastomas during surgery, despite the 

limitation of the small-sized HS dataset. Notably, it explored a robust 

process to conceive DL algorithms and manage the small-sized dataset to 

answer the demand for a deep learning end-to-end pipeline to meet the real-

time constraints of the surgical procedure1,3,11,12.  

Undoubtedly, CNN architectures are mainly composed of matrix 

computations that effectively fit the high-performance computing hardware 

employed in the HELICoiD project. The HELICoiD ML pipeline 

comprised pre-processing, band selection, SVM, KNN and K-Means 

clustering. It worked on HS images whose size varied from 329 ×  377 
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towards 548 ×  459  pixels at most and 128 bands. The ML pipeline 

yielded processing times ranging from 1.68 s to 2.68 s concerning the same 

test system employed in this work, both in single and multi-GPUs 

environments11,12.  

On the other hand, this investigation performed inference in single GPU 

mode on hypercubes sized 384 ×  384 ×  128, concerning height, width, 

and the number of selected bands, to fit the GPU RAM. It repeated 

measurement 100 times and yielded an average time of 0.29 s with 0.17 s 

standard deviation.  

Consequently, this research proved the feasibility of the end-to-end 

methodology proposed to improve the gold-standard results. The 

unsupervised algorithms' non-deterministic processing times mainly limited 

the latter.  

The tool should replace the current gold-standard procedure that exploits 

supervised and unsupervised ML algorithms, with the latter representing 

the computational bottleneck, to turn the modern DL algorithms into 

medical equipment. In the future, the equipment must comply with what 

policymakers like the FDA are moving towards approving concerning AI-

based medical devices3.  

 

Figure 99. U-Net++ examples of semantic segmentation predictions 

compared to the cleaned HELICoiD ground truth. A) Synthetic RGB image. 

B) Cleaned HELICoiD ground truth. C) U-Net++ result 

This research designed a proof-of-concept whose results strongly depend 

on the target ground truth produced via the gold-standard HELICoiD 

procedure. Figure 99 depicts an example of the semantic segmentation 

produced by the U-Net++.  
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Other works evaluated the segmentation metrics on the SAM result 

(Figure 99.A). Nonetheless, supervised CNN architectures need the entire 

mask to allow the gradient descent algorithm to meet convergence. Hence, 

this investigation not only evaluated Section 3.11's metrics over the ground 

truth produced by the HELICoiD pipeline and not over a few sets of pixels, 

targeting a future whole mask generation, but also employed modern DL 

methodologies on the HELICoiD dataset. Consequently, measuring 

segmentation metrics below a safety threshold, usually above 90% in 

medical contexts, is not necessarily a red flag sign. Indeed, the HELICoiD 

ground truth only sometimes labels every HS pixel correctly. 

Nevertheless, the analysis reveals boundaries. The major one, which 

yields the others, concerns the dataset dimensions. Indeed, HS imaging is a 

powerful instrument compared to classical RGB pictures. Several studies 

highlighted that tumour cells present a unique molecular spectral signature 

and reflectance characteristics33,48,49. They allow the classification of pixels 

of tissues into different aetiologies. HS imaging systems gather brain-

reflected and transmitted light into several wavelength ranges of the 

electromagnetic spectrum, enabling potential glioblastoma lesion tracing 

through DL algorithms. Indeed, each pixel contains meaningful information 

concerning the captured tissue properties. Regardless, not only are some 

brain portions transitioning from healthy to malignant tissue, but cancer, 

healthy and hypervascularised signatures might differ slightly. Each patient 

possesses a unique tissue signature which causes the test images to be very 

different from the training ones, increasing inter-patient variability. 
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Figure 100. Average spectral signature and standard deviation of all brain 

HS images tissues and background 
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Figure 100 represents the spectral signature means and standard 

deviations of the investigated tissue classes concerning the labels assigned 

by the HELICoiD ML pipeline. Therefore, a broader dataset should cope 

with this issue and let CNNs concentrate more on the significant parts of 

the wavelengths, enhancing the segmentation outcomes of this work. 

7.6. Ending remarks 

Here, we discussed three DL architectures targeting the semantic 

segmentation of fifteen HS images belonging to the HELICoiD dataset. 

Modern DL methodologies allow the end-to-end segmentation of the HS 

images targeting the real-time processing to be employed during open 

craniotomy in surgery, thus improving the gold-standard ML pipeline. The 

investigation measured competitive inference times calculated with the 

standard CUDA environment offered by MATLAB 2020a, without a 

custom implementation, concerning the HELICoiD processing times. 

HELICoiD's fastest parallel version took 1.68 s to elaborate the most 

prominent image of the database, whilst the described methodology 

performs segmentation inference in 0.29 ± 0.17 s, thoroughly satisfying the 

real-time constraint, classifying the images in less than 21 seconds.  

Eventually, it compared segmentation results qualitatively and 

quantitatively with the ground truth produced by the HELICoiD project.  

7.7. Attention-based self-supervised U-net++ for 
the segmentation of intraoperative glioblastoma 
hyperspectral images 

This second investigation from this last chapter presents a novel 

attention-based self-supervised methodology to improve current research 

on hyperspectral medical imaging as a tool for computer-aided diagnosis.  

Namely, it concerns the design of a novel architecture comprising the U-

Net++ and the attention mechanism on the spectral domain, trained in a 

self-supervised framework to manipulate contrastive learning and 

overcome the dataset size problems arising in medical scenarios.  

As the previous research, it operated the fifteen glioblastomas HS 

images from the HELICoiD dataset. 

Lately, Self-Supervised Learning (SSL) is emerging as a framework to 

operate small-sized datasets with limited labelling1. SSL algorithms 

function by distilling representative characteristics from unlabelled and 

unstructured data. Accordingly, SSL-trained networks learn shared and 

distinct features in a contrastive manner, surpassing supervised 

architectures on many domains1. At the time of writing, no prior work 

exists concerning medical brain cancer HS images and SSL.  
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Self-supervised learning is a machine learning paradigm in which a 

model is trained to predict a property of the input data, without being 

explicitly labeled with the correct output. Instead, the model is given a set 

of unlabeled data and learns to predict some property of the data, using 

only the input data itself as supervision. 

For example, a self-supervised learning model might be trained to 

predict the position of a randomly masked word in a sentence, given the 

rest of the sentence as input. The model learns to predict the masked word 

based on its context within the sentence, without being given any explicit 

labels for the masked word. This type of self-supervised learning can be 

used to pre-train a model for downstream tasks, such as natural language 

processing or image classification. 

Self-supervised learning has become increasingly popular in recent years 

as a way to improve the performance of machine learning models, 

particularly in cases where labeled data is scarce or expensive to obtain. It 

has also been used to improve the generalization and robustness of models, 

by encouraging them to learn more about the structure and patterns of the 

data. 

Hence, here we will discuss the feasibility of a novel self-supervised 

deep learning architecture, an attention-based U-Net++, as a proof-of-

concept to perform the automatic end-to-end segmentation of fifteen 

intraoperative glioblastomas HS images retained from the HELICoiD 

database, and explained in detail in the previous investigation. 

7.8. Attention-based U-net++ and self-supervised 
STEGO framework 

This chapter proposes a novel deep learning architecture, namely the 

attention-based U-Net++, comprising the attention mechanism along the 

spectral dimension and the well-known U-Net++ architecture (Chapter 3) 

along the spatial frame.  

During the last years, transformer-based architectures have proven 

themself worthy of investigation in vision contexts100. Consequently, this 

investigation foresaw the alteration of the U-Net++ architecture, designing 

a parallel path analysing the spectral signatures of the HS cube after a first 

pooling step, set to reduce the networks' parameters (Figure 101.d.a). 

Hence, the novel architecture merged the attention-based neural path and 

the U-Net++ averaging their outcomes.  
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Figure 101. Data preparation, Self-Supervised STEGO framework, and 

inference result 

Furthermore, this investigation used the attention-based U-Net++ inside 

the STEGO (Self-supervised Transformer with Energy-based Graph 

Optimisation)110. This novel framework distils unsupervised features into 

high-quality discrete semantic labels. The training settings carefully 

modified the algorithmic structure, developed from scratch in MATLAB 

2020a, to accept the glioblastoma HS images.  

Regarding Figure 101, STEGO extracts the features from the backbone 

architecture, the U-Net++ path, and later retains the segmentation results 

corresponding to the selected image characteristics (Figure 101.b). By 

adopting a contrastive learning methodology, the network learns feature 

correspondences in an unsupervised fashion. At its core, STEGO yields a 

novel contrastive loss function (Figure 101.b) designed to encourage 

features to form compact clusters while preserving their relationships 

across the entire dataset during the training (Figure 101.c)110.  

The proposed methodology could enhance hyperspectral medical 

research, overcoming labelling and dataset size challenges. At the time of 

writing, it is the first time a self-supervised structure as the one proposed in 

this chapter operates with medical hyperspectral images.  

7.9. Discussion on performance 

The investigation evaluated the SSL quantitative and qualitative results 

concerning the SAM labelling retrieved from the HELICoiD dataset since it 

represents the safest and most honest way of performance assessment. 
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Figure 102. Self-Supervised Learning segmentation results 
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Figure 102 exhibits the set of evaluation metrics considered in this 

study. Although the attention-based U-Net++ retains high specificity, 

recall, and Accuracy concerning the tumour class, it yields yet optimal 

results for the healthy class. On the other hand, Figure 100 probably 

accurately explained the cause behind this misclassification. We report that 

the architecture misclassifies the healthy signatures for malignant ones, and 

the same happens for the background.  

Concerning the Hypervascularised tissue, the self-supervised 

architecture proposed in this study can precisely outline the class. It is 

worth noting that hypervascularised tissues represent areas full of blood 

that nourish brain tumours and could represent other risk zones. 

Furthermore, the investigation measured competitive inference times 

compared to the standard CUDA environment offered by MATLAB 2022a, 

without a custom implementation, concerning the HELICoiD processing 

times.  

As the previous research reported, HELICoiD's fastest parallel version 

took 1.68 s to elaborate the most prominent image of the database. On the 

other hand, STEGO SSL performs segmentation inference in 0.34 ± 0.25 s, 

thoroughly meeting the real-time requirement imposed by the HELICoiD 

European project, ranking the HSIs in less than 21 seconds. 

 

 

Figure 103. Visual comparison of the ground-truths derived from the 

algorithms considered (HELICoiD, SAM and SSL) 

Eventually, Figure 103 reports the visual comparison of the ground truth 

and estimated segmentation maps yielded by the diverse algorithms 

discussed in this doctoral manuscript. 
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7.10. SSL final remarks 

This last investigation addressed a novel DL methodology targeting the 

end-to-end semantic segmentation of fifteen HS images belonging to the 

HELICoiD dataset. Namely, it researched an SSL algorithm to train an 

innovative segmentation architecture.  

The investigation proposed methodologies to enable the end-to-end 

segmentation of the HS images targeting the real-time processing to be 

employed during open craniotomy in surgery, thus improving the gold-

standard ML pipeline. Additionally, it offered competitive results in terms 

of pixel-wise classification. We measured competitive inference results for 

identifying unhealthy tissue, exceeding 90% in Accuracy, specificity, and 

recall.  

The framework performs poorly when the architecture classifies healthy 

and background image portions as tumours. It is an open research topic 

which academia should aim to improve and clarify in the evolution of this 

algorithm. The proposed SSL methodology could improve medical 

hyperspectral image segmentation, thus improving the state of the art 

computer-aided diagnostic systems.  

At the time of writing, no prior work on SSL applied to medical 

hyperspectral images was carried out, but only on larger datasets 

concerning remote sensing applications. 

7.11. Main contributions summary 

Here, the thesis proposes a list of main contributions deriving from the 

pieces of study described in the earlier sections. 

 AI-based segmentation of intraoperative glioblastoma 

hyperspectral images  

o Addressed problem: Semantic segmentation of 

intraoperative glioblastoma hyperspectral images in real-

time.  

o Proposed solution: The study proposes three DL 

architectures for real-time processing of hyperspectral 

imaging to differentiate between tumor and healthy tissue 

based on spectral information. CNNs are utilized to 

classify hyperspectral images into tumor and non-tumor 

regions.  

o Advantages: The proposed method achieves competitive 

inference times and satisfies real-time constraints, 

providing end-to-end pixel-wise classification. It achieves 

85% specificity and 70% accuracy for the tumor tissue 

class.  



Intraoperative brain cancer contours assessment through deep learning, high-

performance computing and hyperspectral imaging 
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o Disadvantages: The method's performance is poor in 

classifying healthy and background image portions as 

tumors. It relies on hyperspectral imaging, which is not 

widely available in clinical settings, and its performance 

may be affected by the quality of the hyperspectral data.  

o Main contributions: Improved gold-standard ML 

pipeline form European HELICoiD project for 

intraoperative glioblastoma segmentation using 

hyperspectral images. 

 Attention-based self-supervised U-net++ for the segmentation of 

intraoperative glioblastoma hyperspectral images  

o Addressed problem: End-to-end semantic segmentation 

of intraoperative glioblastoma hyperspectral images in 

real-time.  

o Proposed solution: Innovative SSL algorithm to train a 

novel segmentation architecture. 

o Advantages: The proposed method achieves competitive 

pixel-wise classification results and competitive 

processing times. 

o Disadvantages: The method's performance is poor in 

classifying healthy and background image portions as 

tumors, as mentioned previously.  

o Main contributions: The study proposes a SSL 

methodology that could improve medical hyperspectral 

image segmentation, and it is the first work on SSL 

applied to medical hyperspectral images. 
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Chapter 8 

8 Conclusions 

Several aspects of the future of personalised medicine require 

compelling technologies able to elaborate vast amounts of data in real-time. 

This doctoral thesis demonstrated the crucial role that AI and HPC play in 

medical contexts with their ML and DL paradigms. 

The educational path reviewed in this manuscript described a collection 

of works following the data science process mentioned in the introduction 

(Figure 3). Namely, the thesis addressed projects concerning different data 

types and sources, ranging from the HypErspectraL Imaging Cancer 

Detection (HELICoiD) brain cancer images to the clinical and radiology 

data related to the SARS-CoV-2 disease.  

The document described the data collection, cleaning, and exploration 

strategies to gather knowledge and support decisions. Notably, it discussed 

state of the art AI and HPC methodologies. We understood how to enlarge 

the statistical variance of the information at our disposal, envisioning either 

standard data augmentation techniques or generative models that make AI 

systems robust, enabling disturbance rejection to adversarial attacks.  

The thesis operated a collection of machine and deep learning models 

evaluated according to specific performance metrics.  

Eventually, this doctoral thesis comprised a set of investigations 

addressing GPU deployment through contemporary CUDA libraries to 

meet the real-time constraints that medicine demands.  

Medical AI applications, as they mature, face many challenges: 

1. Clinical contexts often need better datasets, making it hard to 

exploit complex DL architectures. Not only do DL architectures 

require vast amounts of data to extract functional patterns, but 

they also need HPC hardware. Accordingly, the more complex 

the model, namely presenting larger structures with many 

parameters, the more we need to exploit performing hardware to 

carry out computations 

2. Medical data present challenges specific to its domain. For 

example, different experts may even give contrasting opinions 

regarding a diagnosis. Hence, we must set hierarchically 

structured and standardised evaluations to enable AI-based 

diagnosis 
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3. From a regulatory perspective, clinical AI systems must be 

certified before large-scale deployment 

Accordingly, the manuscript proposed model deployment approaches 

employing low-level hardware, Nvidia GPUs, and CUDA/C code 

development to accelerate the AI algorithms and allow the design of 

blueprints. Eventually, Modern AI should translate to blueprints for policy-

maker entities such as the Food and Drug Administration (FDA) or the 

European Commission to evaluate them concerning compliance with 

certifications currently under investigation (Artificial Intelligence Act), 

including time-sensitive and performance criteria. Regulators have 

struggled to interpret existing frameworks for oversight concerning 

perceptive algorithms, whose functioning can change with ongoing training 

and optimisation and whose output we often need help explaining. Many 

clinical applications of AI are seeking regulatory approval, and 

governments' new interpretation is a substantial step toward rules that 

protect patients without inhibiting innovation. This document described the 

same challenges encountered during the design and development of the 

projects accomplished in this PhD school. 

This doctoral thesis addressed artificial intelligence applied to diverse 

medical data, especially Hyperspectral Images (HSIs), and matured around 

state of the art. Notably, the investigations designed novel deep learning 

approaches when the literature only discussed standard machine learning 

processes. Not only was a robust artificial intelligence methodology 

applied to the medical context, but the investigations also engineered novel 

GPU approaches and frameworks to embed or accelerate the devised 

models, complying with the time-sensitive criteria required for industry 

translation. The work presented in this manuscript was carried out thanks to 

tight and robust collaborations outside the academy, particularly with the 

Fondazione IRCCS Policlinico San Matteo of Pavia, the University of Las 

Palmas de Gran Canaria and the Innovation Center Computer-Assisted 

Surgery (ICCAS) of the University of Leipzig. 

The thesis described three main groups of investigations: SARS-CoV-2, 

epidermal lesions assessment, and intraoperative glioblastoma tumour 

boundaries detection. 

The first group of investigations addressed the proposed solutions to 

counteract the SARS-CoV-2 pandemic, accounting for three investigations. 

Chapter 5 concentrated on the statistical and AI approaches to counteract 

SARS-CoV-2 spreading. The studies addressed the operation of specific 

diagnostic measurements, also used to collect the dataset described in 

Chapter 2, the classification of LUS clips and assessing patients for SARS-

CoV-2 positivity through blood tests.  

Based on an observational cohort of Covid-19 patients evaluated at the 

Fondazione IRCCS San Matteo University Hospital in Pavia (Italy), the 

first study demonstrated that AaDO2 is a valuable clinical parameter to 

stratify the evolutionary risk of patients with Covid-19. At the time of 

writing, it was the first investigation evaluating the function of AaDO2 
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measured at hospital admission from the ABG analysis to characterise 

Covid-19 patients better. ABG testing is readily available in the emergency 

setting, giving crucial information about pulmonary involvement and 

respiratory function. Hence, the study evaluated the role of the alveolar-to-

arterial oxygen difference, particularly in Covid-19 patients with P/F values 

ranging between 300 and 400. According to the literature, this range 

represents patients without significant acute lung injury. Nonetheless, this 

study proved the opposite. Indeed, although this subgroup of patients 

possessed typical P/F values, AaDO2 was higher than regular. Moreover, 

more than half of these patients subsequently required oxygen therapy 

support. 

Interestingly, patients who subsequently needed oxygen support had a 

more severe extent of lung involvement, as assessed by LUS, than those 

who did not. Indeed, literature reported that patients with Covid-19 

pneumonia often do not register dyspnoea, despite extreme hypoxemic 

values. Academia defined this clinical presentation as silent hypoxemia or 

happy hypoxia, with physical signs that may either overestimate or 

underestimate patient discomfort. 

In conclusion, patients might have presented with few clinical signs and 

symptoms, a chest X-ray not indicating the significance of lung 

involvement, and P/F still within normal limits. Consequently, it is 

essential to obtain elements that predict the risk of subsequent clinical 

worsening. This first research described the importance of the data 

collection, which produced Sections 2.3 and 2.11's database. Physicians 

relied on the analysis this section described to gather data and LUS clips, 

which set the stage for the research described in this chapter's subsequent 

sections.  

Nevertheless, we should acknowledge some limitations of this study. 

The retrospective single-centred configuration leads to missing information 

and unavoidable biases in specifying and recruiting participants. 

Fondazione IRCCS Policlinico Hospital of Pavia gathered the data in 

contingency times concerning the SARS-CoV-2 pandemic, and the sample 

size was relatively small. Despite these limitations, the study reflects an 

actual world clinical scenario in the ED during a pandemic outbreak. The 

promising results open the doors for further validation in future multi-

centred extensive prospective studies to consolidate LUS and AaDO2 

assessments. 

The second investigation leaned on the data collected from routine 

hospital operations between 1 March and 30 June 2020, featuring the 

confirmed clinical parameters crucial in the first research described. The 

research proved the feasibility of developing reliable algorithms to 

diagnose SARS-CoV-2 with high classification performance.  

Physicians examined routine blood tests, clinical history, symptoms, 

arterial blood gas analysis, and lung ultrasound quantitative examination. 

The investigation produced two diagnostic tools for Covid-19 detection and 

oxygen therapy prediction. In addition to what other studies had reported, it 

demonstrated how to estimate dangerous dyspneic scenarios. Namely, 
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whether the subjects at the ED need CPAP or invasive aided ventilation, 

and this prediction is noteworthy to handle resources in contingency times. 

It yielded promising classification results with F1 score levels meeting 92% 

and engineered a user-friendly interface for healthcare providers during 

daily screening operations. This research proved machine learning models 

as a potential screening methodology during contingency times. 

The close and stable collaboration with the IRCCS Policlinico San 

Matteo's ED of Pavia granted highly reliable clinical data for the study. It 

made it possible to develop two artificially intelligent systems, one of 

which the personnel tested as a supporting decision-making device in a 

real-world clinical scenario after we equipped it with a GUI. 

The novelty of the designed approach stood in the next passage: 

 A careful clinical features collection: this thesis’ classifiers 

operated on the features that physicians employed during triaging 

and daily clinical operations, whose importance was stressed in 

the first investigation related to SARS-CoV-2 

 Extensive and robust data analysis before ML clustering 

 Exploitation blood tests to assess patients rather than imaging 

data 

 Assessment of patients' need for oxygen therapy to carefully 

engage limited resources in contingency scenarios 

 A quantitative lung involvement examination to produce robust 

results: studies report lung ultrasound examination as a fast, 

cheap, and agile tool to assess patients' lung involvement 

The third and last investigation about Covid-19 concerns LUS frames 

classification to assess the severity of lung involvement. This third SARS-

CoV-2-related research engineered a highly reliable diagnostic instrument 

to satisfy exhausted medical personnel's growing request for cheap and 

trustworthy detection systems. With close collaboration with Fondazione 

IRCCS Policlinico San Matteo's ED, the investigation leaned on validated 

LUS data. 

The research comprised modern DL methodologies, data augmentation 

processes, and transfer learning to grade people's lungs operating 

documented scoring scales, which the investigation extended with pleural 

line information. The investigation relieved the severe drawbacks of data 

heterogeneity (tolerable sensitivity causing lack of treatment for patients 

and cross-contamination) and enhanced currently accessible state-of-the-art 

in Covid-19 detection employing LUS data. 

This study provided a method for sidestepping the AI challenges debated 

by the literature about the ranking inconsistencies between ultrasounds due 

to different doctors examining different lungs at the same disease stage. 

Notably, the Fondazione IRCCS Policlinico San Matteo ED inspected 

every test to homogeneously appoint lungs of the same disease stage with 

the same score. 
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Ultrasound requires substantial expertise to reach diagnostic reliability – 

high sensitivity and overall accuracy. This research developed a DL-based 

system to automatically detect Covid-19 pneumonitis marks in LUS frames 

and rank them concerning two standardised scales with innovative, reliable, 

and revolutionary results. Hence, employing methodological 

hyperparameter tuning, the thesis produced state-of-the-art results meeting 

F1 score levels, averaged over the number of classes considered, exceeding 

98%, and manifesting stable measurements over precision and recall. Also, 

the architectures ranked the LUS frames in less than one second, proving 

compliance with real-time requirements. 

The second group of investigations addressed epidermal tumour 

diagnosis, accounting for five AI and HPC applications. Chapter 6 

concentrated on AI and high-performance computing approaches this 

doctoral thesis researched to counteract epidermal tumours from 

hyperspectral imaging. The studies on machine and deep learning strategies 

handled the dataset presented in Section 2.7.  

The first of the five pieces of research presented a hyperspectral 

acquisition system engineered to gather diagnostic clinical data concerning 

skin cancer. It is enhanced by a linear synchronous motion, an appropriate 

illumination system, a 3D-printed circular crown containing targeting and 

distancing emitting diodes, and software modules supported by open-

source packages. The hyperspectral system enables image collection with 

any GigE-compliant hyperspectral pushbroom camera. Furthermore, the 

investigation validated the architecture to check synchronisation between 

motor and camera frame rate, calibration, and capturing repeatability. In 

the future, the research aims to collect an online database of clinical 

hyperspectral images. 

The main contribution of this work is to serve as a guide for any 

research group working on hyperspectral technologies. All the sections 

report details to accurately capture spectral information and techniques to 

validate the correct operation of the system. First, the whole system works 

with any GenICam protocol-compliant camera. Secondly, the thesis 

operated cheap and promptly available hardware and open-source software 

to enable research groups to work with hyperspectral systems most 

efficiently. Indeed, all software modules used in this development are open 

source, allowing high flexibility and representing a lower-cost approach 

compared to market solutions. 

The second research, instead, laid the foundations for the remaining 

three. This research presented a parallel classification framework based on 

HSI exploiting the K-means and the SVM algorithms to perform an 

automatic in-situ PSL identification. The framework used an in-vivo 

dataset, and the algorithms' parameters tuning happened in MATLAB for 

later implementation of the processing framework on HPC platforms. 

Several parallel versions, exploiting multicore and many-core 

technologies, have been developed to ensure a real-time classification.  

This preliminary study demonstrated the potential use of HSI technology 

to assist dermatologists in the discrimination of different types of PSLs. 
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However, additional research must occur to validate and improve the 

results obtained before being used during routine clinical practice using a 

real-time and non-invasive handheld device. Notably, a multicenter clinical 

trial with more patients and samples in the database will be necessary to 

validate the proposed approach further. 

Then, this thesis researched strategies to overcome AI challenges 

concerning dataset size. In this context, the doctoral activity proposed a 

convolutional DCGAN architecture to generate HS medical data, 

particularly for skin lesion analysis, by operating a small-sized dataset to 

train the framework. It adopted the FID metric to evaluate the similarity 

between the real and the synthetic data. Outcomes yielded a 17.37 FID, 

which indicates sound synthesis and similarity between the distributions of 

the two datasets. 

Additionally, a ResNet-18 was trained only on synthetic data and tested 

on authentic images. The accuracy, precision, recall, and F1 score were all 

above 80%, demonstrating that the synthetic data and the authentic images 

are comparable. Finally, the thesis compared the spectral signatures 

qualitatively and quantitatively. 

The literature reports only one work considering medical HS data. 

Regardless, this work validated the results only in terms of visual similarity 

between the mean spectral signature of original and generated images. 

Future research lines will investigate novel GAN architectures for 

medical HS images. Finally, the conditional GAN could produce different 

tumour etiologies besides benign and malignant ones. 

Eventually, the last two investigations, belonging to the second group of 

works analysing strategies to counteract and assess skin cancer from HSIs, 

concerned DL architectures and GPU deployment. 

Cursed by the absence of large datasets, it took some time for HSI-based 

applications to become feasible in terms of tasks employing classical RGB 

or multispectral images. Indeed, the studies considered by the authors of 

several systematic reviews consisted of databases with significant data, 

thus highlighting the diagnostic performance plateau reached. 

Consequently, classification techniques for HSI often exploit transfer 

learning and data augmentation to improve classification performances in 

different research fields. Algorithms employing HS images usually 

comprise the classical pixel-wise models we mentioned in the second 

research of this chapter. Even though the algorithms only work with 

spectral and not spatial information, their sensitivity and specificity 

concerning Malignant Melanoma (MM) and Non-Melanoma Skin Cancer 

(NMSC) evaluated through leave-one-out lie around 80% and 77%, 

recently improved to 87.5 and 100%, respectively. 

This investigation responded to the market for AI clinical applications 

and the need for computational power to assist it in engineering a handheld 

instrument equipped with a low-power GPU. The tool should replace the 

expensive and time-consuming gold-standard diagnostic procedure to turn 

modern DL algorithms into medical equipment.  
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This thesis conceived a blueprint dermatological device to improve the 

global accessibility of epidermal screening at the expert level. Expert 

dermatologist classification accuracy of epidermal lesions usually depends 

on the number of classes considered. At most, it reaches 85% in a 

malignant-benign classification scenario. The gold-standard procedure 

implies clinical and dermoscopic inspection, followed by biopsy and 

histopathological examination. In other words, the subjective nature of the 

inspection biases the classification accuracy measurement of malignant 

lesions. Undoubtedly, physicians only diagnose lesions already marked as 

suspicious.  

The fourth investigation of the second group designed CNNs to attain 

and enhance well-known dermatologist human-level classification 

performance concerning specificity, sensitivity, and accuracy. At the time 

of writing, no research existed yet concerning HS skin cancer image 

segmentation to produce a mask to inform doctors about lesion boundaries. 

Similarly, other studies mainly focused on producing high-end results 

considering classification scenarios with unessential clinical applicability.  

This thesis was eager to respond to the demand for an AI-based pipeline 

to assist or replace the expensive and time-consuming gold-standard 

procedures. Accordingly, it deployed a semantic segmentation network on a 

low-power Nvidia Jetson GPU device targeting a portable instrument 

containing an HS camera. The designed proof-of-concept AI system can 

classify and segment epidermal lesions in, at most, 1.21 s, and expert 

professionals could use the future implementation in real-world clinical 

scenarios. 

Nonetheless, the study exhibits limitations. The main limitation is 

related to dataset size, which in turn produces others. Indeed, HS imaging 

is a powerful tool compared to classical RGB pictures. Chromophores 

characterise skin's spectral properties and allow lesion clustering into 

different etiologies. HS imaging systems gather skin-reflected and 

transmitted light into several wavelengths ranges on the electromagnetic 

spectrum, enabling potential skin-lesion differentiation through machine 

and DL algorithms. Indeed, each pixel contains meaningful information 

concerning an object's properties. Not only are some lesions in the dataset 

transitioning from benign to malignant lesions, but lesions and skin 

signatures might differ slightly. 

Eventually, the second group's last research concerns a different learning 

strategy to overcome the abovementioned problems. Accordingly, this 

thesis addressed the attention mechanism and ViT to assess whether a more 

complex and perceptive learning mechanism could cope with dataset size 

challenges and deliver better pattern extraction. The proposed network is 

designed and validated using the skin HS dataset, adopting the K-fold 

cross-validation technique to produce robust results. The model was trained 

by augmenting the training set at runtime and then performing the tests 

only on the real images, considering the number of folds equal to 10.  

The results emphasise that the attention-based mechanism is an 

interesting and promising solution for medical HS classification, since the 
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false negative rate is half compared to the state-of-the-art. Eventually, the 

classification times are significantly lower than the best solutions proposed 

in the literature. Finally, the proposed network adopts a fixed number of 

layers whose number of mathematical operations is deterministic, making 

the measured processing time more stable than the results reported in 

previous works.  

Future research will focus on improving the proposed network and 

evaluating different layers configurations. 

Eventually, this doctoral thesis addressed the last group of two 

investigations targeting intraoperative HS glioblastoma images.  

The first study, and nineth of this thesis, discussed three DL 

architectures targeting the semantic segmentation of fifteen HS images 

belonging to the HELICoiD dataset. Modern DL methodologies allow the 

end-to-end segmentation of the HS images targeting the real-time 

processing to be employed during open craniotomy in surgery, thus 

improving the gold-standard ML pipeline. The investigation measured 

competitive inference times calculated with the standard CUDA 

environment offered by MATLAB 2020a, without a custom 

implementation, concerning the HELICoiD processing times. HELICoiD's 

fastest parallel version took 1.68 s to elaborate the most prominent image 

of the database, whilst the described methodology performs segmentation 

inference in 0.29 ± 0.17 s, thoroughly satisfying the real-time constraint, 

classifying the images in less than 21 seconds.  

The last investigation addressed in this doctoral path concerns a novel 

DL methodology targeting the end-to-end semantic segmentation of fifteen 

HS images belonging to the HELICoiD dataset. Namely, it researched a 

Self-Supervised Learning (SSL) algorithm to train an innovative 

segmentation architecture.  

The investigation proposed methodologies to enable the end-to-end 

segmentation of the HS images targeting the real-time processing to be 

employed during open craniotomy in surgery, thus improving the gold-

standard ML pipeline. Additionally, it offered competitive results in terms 

of pixel-wise classification. We measured competitive inference results for 

identifying unhealthy tissue, exceeding 90% in accuracy, specificity, and 

recall.  

The framework performs poorly when the architecture classifies healthy 

and background image portions as tumours. It is an open research topic 

which academia should aim to improve and clarify in the evolution of this 

algorithm. The proposed SSL methodology could improve medical 

hyperspectral image segmentation, thus improving the literature on 

computer-aided diagnostic systems.  

At the time of writing, no prior work on SSL applied to medical 

hyperspectral images was carried out, but only on larger datasets 

concerning remote sensing applications. 

In conclusion, this thesis has explored the use of high-performance 

computing solutions in artificial intelligence, specifically in the medical 

domain. It has been demonstrated that the increasing size of AI models 
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requires powerful computing resources to ensure real-time performance. 

Therefore, future research in this area must focus on developing low-power 

consumption solutions. 

Additionally, the thesis has presented diverse computer vision models 

for medical tasks, including skin cancer diagnosis, brain cancer contours 

delineation, and SARS-CoV-2 assessment and severity scoring. The state 

of the art AI techniques employed in these models have shown proficient 

diagnostic performance. However, it is essential to note that the variability 

of these models strictly depends on the training data available. The 

available data depends on the research budget and strategic planning. 

Therefore, the medical community must invest in data collection and 

annotation efforts to improve the performance of these models. 

Finally, this thesis has highlighted the importance of international 

collaborations in AI and medicine. The collaborations with international 

universities have allowed for sharing expertise and resources, resulting in 

the development of accurate and robust models. Table 17 summarizes the 

main contributions of this doctoral thesis. 

Table 17. Doctoral thesis summary of main contributions and detailed 

description of advantages, disadvantages of proposed solutions to specific 

problems. 

Research 

topic 

Addressed 

problem 

Proposed 

solution 

Advantages Disadvantage

s 

Improvemen

t concerning 

the state of 

the art 

State-of-the-

art review 

for SARS-

CoV-2 

pandemic 

managemen

t 

Lack of a 

reliable and 

accurate 

diagnostic tool 

to diagnose 

SARS-CoV-2 

and score its 

pneumonitis 

severity 

CT scan, 

PCR, IgM-

IgG 

bloodwork, 

and chest X-

ray 

CT scan 

radiation 

exposure and 

cross-

contaminatio

n, PCR false 

negatives in 

early 

infection, 

and low 

sensitivity of 

Chest X-Ray 

CT scan has 

high 

accuracy, 

PCR has 

high 

specificity, 

and Chest X-

ray is widely 

available 

None 

Alveolar-

arterial 

difference 

and lung 

UltraSound 

to help the 

SARS-CoV-

2 clinical 

decision-

making  

SARS-COV-2 

patients often 

require prompt 

diagnosis and 

risk 

stratification. 

Also, predict 

patients need 

for aided 

ventilation 

Using A-a 

gradient and 

LUS to 

diagnose 

and stratify 

risk for 

pandemic 

management 

A-a gradient 

and LUS can 

be obtained 

quickly and 

safely, 

provide 

valuable 

diagnostic 

and 

prognostic 

information, 

and 

A-a gradient 

may lack 

specificity 

for SARS-

COV-2, LUS 

requires 

experienced 

operators, 

and small 

sample size 

limits 

generalizabili

A-a gradient 

and LUS can 

provide 

important 

information 

for 

diagnosing 

and risk 

stratifying 

SARS-COV-

2 patients, 

especially in 
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combining 

them can 

improve 

diagnostic 

accuracy 

ty resource-

limited 

settings. 

Study found 

the A-a 

gradient and 

LUS 

combination 

had 83.6% 

sensitivity 

and 90.5% 

specificity, 

with 90.7% 

positive 

predictive 

value (PPV) 

and 83.5% 

negative 

predictive 

value (NPV) 

in predicting 

the need for 

high flow of 

oxygen  

Machine-

learning-

based 

SARS-CoV-

2 and 

dyspnoea 

prediction 

systems for 

the 

emergency 

department 

Developing an 

accurate and 

reliable system 

to predict 

SARS-COV-2 

and oxygen 

therapy 

requirement in 

emergency 

department 

patients 

A machine-

learning-

based 

prediction 

system that 

uses a 

combination 

of clinical 

and 

laboratory 

data to 

predict 

SARS-

COV-2 and 

oxygen 

therapy 

requirement 

The model 

has an area 

under the 

curve 

exceeding 

93%, recall 

for SARS-

COV-2 

detection of 

96%, F1-

score for 

SARS-COV-

2 detection 

of 92%, and 

F1-score for 

oxygen 

therapy 

prediction of 

83%. The 

precision for 

SARS-COV-

2 detection 

and oxygen 

therapy 

prediction is 

continuously 

above 80% 

The study is 

limited to a 

single 

hospital and 

further 

testing is 

needed to 

determine its 

generalizabili

ty to other 

hospitals or 

populations. 

It also 

requires 

access to 

laboratory 

data, which 

may not be 

available in 

all settings 

The model 

has 

improved 

results 

compared to 

existing 

models that 

use a 

smaller, 

unbalanced 

dataset and 

fewer 

features. It 

uses both 

clinical and 

laboratory 

data, which 

increases 

accuracy and 

reliability, 

and has the 

potential to 

aid clinical 

decision-

making in 

emergency 

departments. 

The 
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machine-

learning 

algorithm 

can also be 

easily 

updated as 

new data 

becomes 

available 

Deep 

learning 

and Lung 

UltraSound 

for SARS-

CoV-2 

pneumonia 

detection 

and severity 

classificatio

n 

Lack of 

reliable and 

accurate and 

prompt 

diagnostic 

tools for 

SARS-CoV-2 

pneumonitis 

detection and 

severity 

classification 

using 

traditional 

methods 

A deep 

learning-

based model 

using Lung 

Ultrasound 

(LUS) 

images for 

pneumonia 

detection 

and severity 

classificatio

n 

LUS is non-

invasive and 

widely 

available, 

provides 

high 

accuracy and 

sensitivity, 

reduces 

exposure to 

ionizing 

radiation, 

enables 

comprehensi

ve diagnosis 

of SARS-

COV-2 

pneumonia 

using LUS 

images, and 

allows for 

high 

accuracy in 

both 

pneumonia 

detection and 

severity 

classification

, reducing 

diagnosis 

time 

LUS requires 

substantial 

expertise and 

high-quality 

data, which 

may not be 

widely 

available in 

all clinical 

settings, 

particularly 

in resource-

poor regions, 

although 

LUS is 

cheaper than 

other 

technologies. 

There is also 

a lack of 

large-scale 

data for 

model 

training and 

a need for 

expert 

annotation of 

LUS images 

The use of 

LUS data 

improves the 

accuracy and 

efficiency of 

SARS-CoV-

2 

pneumonitis 

diagnosis 

and 

enhances the 

state-of-the-

art SARS-

CoV-2 

detection. 

The 

proposed 

model 

provides a 

comprehensi

ve diagnosis 

of SARS-

COV-2 

pneumonia 

and 

outperforms 

traditional 

methods in 

accuracy and 

time 

efficiency 

Review of 

Hyperspectr

al imaging 

in skin 

cancer 

detection 

Existing 

imaging 

techniques are 

insufficient in 

providing 

accurate 

diagnosis, and 

the gold 

standard 

ABCDE rule 

followed by 

histopathologi

The majority 

of 

techniques 

used for skin 

cancer 

diagnosis 

using 

hyperspectra

l imaging 

(HSI) 

involve 

machine 

Non-

invasive 

techniques 

for skin 

cancer 

diagnosis 

offer high 

accuracy, 

enhanced 

accuracy, 

and earlier 

and more 

Non-invasive 

techniques 

for skin 

cancer 

diagnosis can 

be costly, 

and further 

validation is 

needed since 

limited 

research is 

available. 

None 
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cal 

examination is 

time-

consuming and 

invasive 

learning 

pipelines. 

There is a 

small 

presence of 

convolution

al neural 

networks 

(CNNs) 

used for skin 

cancer 

diagnosis 

using HSIs. 

Early 

solutions 

attempted to 

reproduce 

the ABCD 

rule with 

shallow 

neural 

networks 

accurate 

diagnosis 

Additionally, 

there are 

only small 

datasets 

available, 

which can 

limit the 

accuracy and 

generalizabili

ty of the 

models 

Hyperspectr

al imaging 

acquisition 

set-up for 

medical 

applications 

There is a 

limited 

availability of 

efficient 

hyperspectral 

imaging 

systems for 

medical 

applications, 

which can 

limit the 

adoption and 

advancement 

of this 

technology for 

skin cancer 

diagnosis. 

Additionally, 

there is a 

limited 

availability of 

skin cancer 

hyperspectral 

dataset for 

research, 

which can 

limit the 

development 

and testing of 

new models 

Hyperspectr

al 

acquisition 

system 

engineered 

to gather 

diagnostic 

clinical data 

concerning 

skin cancer 

Using low-

cost imaging 

techniques 

for skin 

cancer 

diagnosis 

can be more 

cost-efficient 

and 

accessible, 

as they rely 

on readily 

available 

hardware 

and open-

source 

software 

One 

limitation of 

using low-

cost imaging 

techniques 

for skin 

cancer 

diagnosis is 

that they 

have not yet 

been 

extensively 

applied in a 

real-world 

scenario, 

where large 

and diverse 

datasets can 

be gathered. 

This can 

limit the 

ability of 

these 

techniques to 

generalize to 

a wider range 

of skin 

cancer cases 

and 

populations 

Enhanced 

efficiency, 

potential for 

more cost-

efficient and 

widely 

accessible 

systems with 

respect to 

state of the 

art 
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Parallel 

classificatio

n pipelines 

for skin 

cancer 

detection 

exploiting 

hyperspectr

al imaging 

on hybrid 

systems 

Lack of real-

time and 

accurate 

diagnostic 

systems for 

skin cancer 

detection 

A parallel 

classificatio

n framework 

based on 

HSI using 

K-means 

and SVM 

algorithms 

for 

automatic 

in-situ PSL 

identificatio

n 

One 

advantage of 

using real-

time 

classification 

for skin 

cancer 

diagnosis is 

that it can 

potentially 

assist 

dermatologis

ts in 

identifying 

different 

types of 

pigmented 

skin lesions 

(PSLs) 

quickly and 

accurately 

One 

limitation of 

using pixel-

wise analysis 

for skin 

cancer 

diagnosis is 

that it may 

require a 

large and 

diverse 

dataset to 

accurately 

train the 

model. 

Another 

limitation is 

that this 

approach 

analyzes 

each pixel 

separately, 

which may 

not capture 

the overall 

pattern and 

structure of 

the lesion 

Improved 

accuracy, 

potential for 

earlier 

diagnosis 

Deep 

convolution

al 

Generative 

Adversarial 

Networks to 

enhance 

Artificial 

Intelligence 

for skin 

cancer 

applications 

Limited HS 

datasets 

available for 

skin cancer 

analysis 

Convolution

al DCGAN 

architecture 

to generate 

HS medical 

data 

Federated 

learning can 

provide 

researchers 

with access 

to a large 

and diverse 

dataset while 

maintaining 

patient 

privacy 

through 

anonymous 

data. This 

can 

accelerate 

the 

development 

and 

application 

of deep 

learning 

methodologi

es in general 

The 

technology 

has the 

potential to 

improve 

clinical 

practice by 

accelerating 

deep learning 

methodologi

es and 

increasing 

access to 

anonymous 

data, but 

large-scale 

data 

acquisition 

campaigns 

are needed to 

include 

diverse skin 

lesion types 

and clinical 

GAN 

architecture 

for 

generating 

hyperspectra

l synthetic 

data with 

low sample 

size, 

evaluated by 

FID metric 

and 

validated 

using resnet-

18 trained on 

synthetic 

data to 

classify real 

images 
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clinical 

practice 

centers 

Neural 

Networks-

Based On-

Site 

Dermatolog

ic Diagnosis 

through 

Hyperspectr

al 

Epidermal 

Images 

End-to-end 

dermatologic 

diagnosis 

using HSIs 

AI system to 

assist 

dermatologi

sts in 

clustering 

epidermal 

tumors and 

improve 

classificatio

n taxonomy  

Improves 

dermatologis

t's 

classification 

performance 

in 

specificity, 

sensitivity, 

and 

accuracy; 

achieved 

real-time 

classification 

on a low-

power 

Nvidia 

Jetson GPU 

device using 

a semantic 

segmentation 

network for 

a portable 

instrument 

containing 

an HS 

camera 

The main 

limitation is 

dataset size, 

leading to 

other 

limitations, 

including 

unique skin 

signatures for 

each patient 

and inter-

patient 

variability in 

these 

signatures 

The study 

concentrates 

on 

developing 

deep 

learning 

algorithms 

for small 

datasets to 

improve 

dermatologis

t diagnostic 

performance. 

The future 

research 

should 

emphasize 

exploiting 

the vast 

amount of 

information 

in a single 

spectral cube 

for better 

classification 

and 

segmentation 

performance 

Attention-

based skin 

cancer 

classificatio

n through 

hyperspectr

al imaging 

The study 

proposes an 

end-to-end 

dermatologic 

diagnosis 

using HSIs 

and suggests 

exploiting the 

vast amount of 

information in 

a single 

spectral cube 

for better 

classification 

and 

segmentation 

performance 

A novel 

attention-

based 

network that 

utilizes data 

augmentatio

ns to 

classify skin 

cancer 

through HS 

images 

The 

proposed 

solution 

shows a 

lower false-

negative rate 

than the 

state-of-the-

art solutions 

and 

significantly 

reduces 

classification 

times 

compared to 

the best 

solutions in 

the literature 

The proposed 

network was 

only tested 

on a dataset 

of 76 images, 

which may 

not be 

representativ

e of all cases. 

Future 

research is 

required to 

enhance the 

network and 

assess 

different 

layer 

configuration

s 

The 

proposed 

network is 

an 

interesting 

and 

promising 

solution for 

medical HS 

images 

classification

, especially 

due to the 

lower false-

negative rate 

and lower 

classification 

times. The 

utilization of 

data 

augmentatio
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ns and a 

fixed 

number of 

layers also 

provide 

more stable 

results 

compared to 

previous 

works 

AI and HPC 

literature 

review 

concerning 

intraoperati

ve brain 

tumour 

resection 

Intraoperative 

glioblastoma 

segmentation 

of 

hyperspectral 

images: 

Accurate 

segmentation 

of 

glioblastoma 

during brain 

surgery is 

challenging 

due to its 

infiltrative 

nature and 

morphological 

similarity with 

surrounding 

healthy tissues 

ML 

pipelines 

mainly from 

the 

European 

HELICoiD 

project, 

including 

unsupervise

d algorithms 

The study 

introduces 

ML 

pipelines for 

intraoperativ

e 

glioblastoma 

segmentation 

using 

hyperspectra

l images, 

allowing 

real-time 

processing 

during open 

craniotomy 

with 

competitive 

processing 

times 

It is 

challenging 

to obtain the 

target ground 

truth for 

supervision. 

None 

AI-based 

segmentatio

n of 

intraoperati

ve 

glioblastom

a 

hyperspectr

al images 

Semantic 

segmentation 

of 

intraoperative 

glioblastoma 

hyperspectral 

images in real-

time 

The study 

proposes 

three DL 

architectures 

for real-time 

processing 

of 

hyperspectra

l imaging to 

differentiate 

between 

tumor and 

healthy 

tissue based 

on spectral 

information. 

CNNs are 

utilized to 

classify 

The 

proposed 

method 

achieves 

competitive 

inference 

times and 

satisfies real-

time 

constraints, 

providing 

end-to-end 

pixel-wise 

classification

. It achieves 

85% 

specificity 

and 70% 

accuracy for 

The method's 

performance 

is poor in 

classifying 

healthy and 

background 

image 

portions as 

tumors. It 

relies on 

hyperspectral 

imaging, 

which is not 

widely 

available in 

clinical 

settings, and 

its 

performance 

Improved 

gold-

standard ML 

pipeline 

form 

European 

HELICoiD 

project for 

intraoperativ

e 

glioblastoma 

segmentation 

using 

hyperspectra

l images 
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hyperspectra

l images into 

tumor and 

non-tumor 

regions 

the tumor 

tissue class 

may be 

affected by 

the quality of 

the 

hyperspectral 

data 

Attention-

based self-

supervised 

U-net++ for 

the 

segmentatio

n of 

intraoperati

ve 

glioblastom

a 

hyperspectr

al images 

End-to-end 

semantic 

segmentation 

of 

intraoperative 

glioblastoma 

hyperspectral 

images in real-

time 

Innovative 

SSL 

algorithm to 

train a novel 

segmentatio

n 

architecture 

The 

proposed 

method 

achieves 

competitive 

pixel-wise 

classification 

results and 

competitive 

processing 

times 

The method's 

performance 

is poor in 

classifying 

healthy and 

background 

image 

portions as 

tumors, as 

mentioned 

previously 

The study 

proposes a 

SSL 

methodology 

that could 

improve 

medical 

hyperspectra

l image 

segmentation

, and it is the 

first work on 

SSL applied 

to medical 

hyperspectra

l images 
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