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ABSTRACT

Explainable AI in Fintech and Insurtech

Alex Gramegna

The growing application of black-box Artificial Intelligence algorithms in many

real-world application is raising the importance of understanding how models

make their decision. The research field that aims to look into the inner work-

ings of the black-box and to make predictions more interpretable is referred to

as eXplainable Artificial Intelligence (XAI). Over the recent years, the research

domain of XAI has seen important contributions and continuous developments,

achieving great results with theoretically sound applied methodologies. These

achievements enable both industry and regulators to improve on existing models

and their supervision; this is done in term of explainability, which is the main

purpose of these models, but it also brings new possibilities, namely the employ-

ment of eXplainable AI models and their outputs as an intermediate step to new

applications, greatly expanding their usefulness beyond explainability of model

decisions.

This thesis is composed of six chapters: an introduction and a conclusion plus

four self contained sections reporting the corresponding papers. Chapter 1 pro-

poses the use of Shapley values in similarity networks and clustering models in

order to bring out new pieces of information, useful for classification and analysis

of the customer base, in an insurtech setting. In chapter 2 a comparison be-

tween SHAP and LIME, two of the most important XAI models, evaluating their

parameters attribution methodologies and the information they are capable of

include thereof, in italian Small and Medium Enterprises’ Probability of Default

(PD) estimation, with balance sheet data as inputs. Chapter 3 introduces the

use of Shapley values in feature selection techniques, with the analysis of wrapper
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and embedded feature selection algorithms and their ability to select relevant fea-

tures with both raw data and their Shapley values, again in the setting of SME

PD estimation. In chapter 4, a new methodology of model selection based on

Lorenz Zoonoid is introduced, highlighting similarities with the game-theoretical

concept of Shapley values and their variability decomposition attribution to in-

dependent variables as well as some advantages in terms of model comparability

and standardization. These properties are explored through both a simulated

example and the application to a real world dataset, provided by EU-certified

rating agency Modefinance.
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Chapter 1

General Introduction

Artificial Intelligence, in its broad definition and meaning, is becoming an inte-

gral part of many real-world application. The main reasons for its spread are

the exponential increase in availability and amount of data to be processed, the

improvements in computing resources (e.g. GPUs, TPUs, cloud computing, etc)

and the development of more complex algorithms. Nowadays, application of

Artificial Intelligence affects numerous decision making processes, ranging from

finance, medicine, robotics, agriculture, security and many more. In this ever-

evolving environment and with the expansion of applications to new fields, the

understanding of how these so called ”black-box” models make their decision be-

comes crucial role. The research field that aims to ”open” the black-box and to

make the predictions more interpretable is referred to as eXplainable Artificial

Intelligence (XAI). From a legal point of view, the introduction of regulation such

as the European General Data Protection Regulation (GDPR) and the American

Algorithmic Accountability Act, raised the concern of having a set of mandatory

tools to make the models as transparent as possible to the customers, clearly

stating any possible drawback and excluding any possibility of bias. From an

ethical point of view, applications such as medical screening or security raised

the problem of understanding the drivers of models’ predictions so to avoid any

kind of discrimination and possible social inequalities. Finally, aside from legal

and ethic issues, a better knowledge of how models make their decision clearly

has the added value for any users to leverage the information and to increase the

performances. Explainability techniques can be classified according to several

criteria:
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• Intrinsic or post-hoc: distinction whether interpretability is achieved by

restricting the complexity of the model (intrinsic) or by applying methods

that analyze the model after training (post hoc). Example of intrinsic mod-

els are machine learning algorithms that are considered interpretable due to

their simple structure, such as linear regression family (OLS, regularized,

GLM) or decision trees. Post hoc techniques examples are Permutation

Features Importance or Shapley values.

• Feature summary statistic: methods which provide summary statistics for

each variable. Some methods return a single number per feature, such as

feature importance, or a more complex result, such as the pairwise feature

interaction strengths, which consist of a number for each feature pair.

• Feature summary visualization: feature summary statistics can be visu-

alized. Some feature summaries are actually only meaningful if they are

visualized and a table would be a wrong choice, such as for the partial

dependence plot which are curves that show a feature and the average pre-

dicted outcome.

• Data point: this category includes all methods that return data points (al-

ready existing or newly created) to make a model interpretable. For exam-

ple, counterfactual explanations explains the prediction of a data instance

finding a similar data point by changing some of the features for which the

predicted outcome changes in a relevant way.

• Approximation: black-box models can be approximated (globally or locally)

with a more interpretable model. For example LIME locally approximates

data points by fitting a regularized linear model such as LASSO.

• Model-specific or model-agnostic: model-specific interpretation techniques

are limited to specific model classes. For example, the interpretation of

regression coefficients in a linear model. Model-agnostic methods can be
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used with regards to any model and are applied after the model has been

trained (post hoc). These agnostic methods usually work by analyzing

feature input and output pairs only. Shapley values are model- agnostic

tools.

• Local or global:this class entails the concept whether the interpretation

method explain an individual prediction or the entire model behaviour. For

a more complete overview please refer to (Islam et al., 2021, Molnar, 2019).

The importance of having solid and well-researched XAI models will become

paramount in the years to come, as the development and the spreading of Ma-

chine Learning and AI application looks increasingly clear. Other than this very

desirable point, it is worth noting that eXplainable AI models themselves and

their outputs can sometimes gauge different informations with respect to the ones

picked up by regular models, and there is room to exploit this feature to improve

the understanding of a specific problem or the modeling phase itself, much in the

way GANs are used. This opens up many possibilities and spur us on develop-

ing better methodologies to solve old problems, improving in understandability,

robustness and performance.



Chapter 2

Why to buy insurance? An explainable artificial

intelligence approach

2.1 Introduction

The performance of the insurance sector is undergoing a transformation. While

life insurance products are performing well in term of market penetration, non-

life products are lagging behind. This may be detrimental to society, as the aim

of the insurance industry is, in its essence, a protective one, serving as an hedge

against the risk of contingent or uncertain losses, generating efficiency.

The gap of the non-life insurance sector may be the manifestation of the

inability of traditional insurance companies to successfully complete the so-called

”last mile”: the effective communication to the final users of the importance of

covering risks, either because they are not using the right tools or simply because

they can not offer the protection the customers need. To close the gap, customers

need to be understood, and effective communication is needed.

Technology based insurance (Insurtech), dependent on the application of Ar-

tificial Intelligence methods to data retrieved from users’ engagement electronic

devices, can close the gap between non-life insurance providers and customers,

thereby improving the protection and the resilience of our societies. The ad-

vantage of using AI applications are, in a nutshell, the capability for insurance

companies to better understand customer needs, listening to their preferences, as

expressed by interaction generated data; and the possibility for insurance sub-

scribers to receive an insurance coverage that well fit their needs.

The application of Artificial Intelligence to insurance is relatively recent.
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Bernardino[1] provides an up-to-date review of the application of AI to the insur-

ance sector, and of the related opportunities. Being the insurance sector highly

regulated, Artificial intelligence applications, to be trustworthy, must be accurate

and explainable: see, for example European Commission (2020) [2].

We propose to apply to the non-life insurance industry an accurate and ex-

plainable machine learning algorithm, based on Shapley values (see [3] and [4]),

which helps us turn ”black box” unexplainable algorithms into something closer

to a white box. The application of Shapley values can shift perspective and gain

insights into customers’ needs and behavior, building relevant profiles and going

more towards prescriptive analytics.

We show the advantages of our proposal within two case-studies, the first

aimed at estimating the probability of buying, the second the probability of

churning, a specific non-life insurance product. We then show the utility of the

proposed model to highlight customers who are at risk of churn. In both cases

we are able to estimate the amount of opportunity/risk both at the individual

and at the overall level, while analysing the factors that are responsible for it.
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2.2 Methodology

2.2.1 Building a predictive classifier

The first step of our proposal is to select a highly accurate predictive model.

The research literature shows that ensemble methods, consisting in the combina-

tion of several different learners to obtain low variation and low bias predictors

are particularly suited for this kind of problems (see e.g. Breiman (2000) [5]).

Ensembles made up of classification trees, which natively capture interactions

and non linearities, are particularly suited for predictive classification problems.

Among the family of ensemble tree learners, we employ Extreme Gradient Boost-

ing. This algorithm consistently scores better against its peers, and implements a

gradient boosting algorithm which penalises trees with a proportional shrinking

of the leaf nodes (Chen and Guestrin, (2016)[6]).

However, algorithms like the Extreme Gradient Boosting (XGBoost), which

aggregate a series of learner into one output, are hardly interpretable, particularly

by customers and regulators: the most it can be gained in terms of interpretability

are scores about variables’ importance, often extrapolated from aggregated cal-

culations. That is why these algorithms are usually classified as ”black boxes”.

This limitation counterbalances some of the advantages of being a better classi-

fier. To overcome the issue of interpretability, we propose the use of explainable

AI models for the output of Extreme Gradient Boosting, in the next subsection.

2.2.2 Explaining model predictions

In line with the request that AI applications must be trustworthy, researchers

have recently proposed explainable machine learning models (for a review see e.g.

Guidotti (2018) [7] and Molnar (2019) [8]).

Among explainable models, the Shapley value approach, proposed in Shapley

(1952) [9] and operationalised by Lundberg (2017) [10] and Strumbelj (2010)[11],

has many attractive properties. In particular, in the Shapley framework, the
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variability of the predictions is divided among the available covariates. In this

way, the contribution of each explanatory variable to each point prediction can

be assessed regardless of the underlying model (Joseph (2019)[4]), in a model

agnostic manner.

From a computational perspective, the SHAP framework (short for SHap-

ley Additive exPlanation) returns Shapley values expressing model predictions

as linear combinations of binary variables that describe whether each covari-

ate is present in the model or not. With a specific implementation developed

for tree-based algorithms, it is possible to overcome some limitations encoun-

tered with kernel-based SHAP estimation, due to long computing time (Lundberg,

(2018)[12]).

More formally, the SHAP algorithm approximates each prediction f(x) with

g(x′), a linear function of the binary variables z′ ∈ {0, 1}M and of the quantities

ϕi ∈ R, defined as follows:

g(z′) = ϕ0 +
M∑
i=1

ϕiz
′
i, (2.1)

where M is the number of explanatory variables.

Lundberg, (2018) [12] has shown that the only additive method that satisfies

the properties of local accuracy, missingness and consistency is obtained attribut-

ing to each variable x′
i an effect ϕi (the Shapley value), defined by:

ϕi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z

′)− fx(z
′ \ i)] (2.2)

where f is the model, x are the available variables, and x′ are the selected vari-

ables. The quantity fx(z
′) − fx(z

′ \ i) expresses, for each single prediction, the

deviation of Shapley values from their mean: the contribution of the i-th variable.

Intuitively, Shapley values are an explanatory model that locally approximate

the original model, for a given variable value x (local accuracy); with the property

that, whenever a variable is equal to zero, so is the Shapley value (missingness);
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and that if in a different model the contribution of a variable is higher, so will be

the corresponding Shapley value (consistency).

2.2.3 Clustering the explained predictions

On top of being able to interpret and compare any model with the same frame-

work, the Shapley values can be employed for further elaborations, fostering a

new range of possibilities and perspectives to understand and communicate the

characteristics of customers and their interaction with insurance products.

From a statistical viewpoint, this means we can search for patterns and reg-

ularities by putting in relation feature vectors with similar Shapley values, for

example explaining similarity between customers in their determinants, with re-

spect to the target variable. To this end, we employ similarity networks, to

understand similarity between customers based on the standardized Euclidean

distance between each pair (xi,xj) of predictors. More formally, we define the

pairwise distance di,j as:

di,j = (xi − xj)∆
−1(xi − xj)

′ (2.3)

where ∆ is a diagonal matrix whose i-th diagonal element contains the stan-

dard deviation. The distances can be represented by a N×N dissimilarity matrix

D such that the closer two customers i, j are in the Euclidean space, the lower the

entry di,j. The matrix D may be highly dimensional, and consequently difficult

to deal with. To simplify its structure, we employ K-means clustering, defined

by MacQueen (1967) [13], to find whether consumers can be merged into groups

that represent common behavioral characteristics.
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2.3 Application

2.3.1 Data

The data with which we test our proposal is provided by the insurtech company

Neosurance, based in Italy, and concern the purchasing of instant and micro-

policies in the sports and travel domain. We will investigate two different user

behaviours: the propensity to buy and customer’s churn. Even though the data is

the same, the actual dimensionality of the dataset is different as the propensity to

buy includes users who became customers as well as users that have not purchased

anything yet, while the definition of churn requires the existence of a purchasing

history. We therefore have 3778 users to estimate the propensity to buy, and

1689 users to estimate customer churn. As explanatory variables we have some

demographic information (mostly gender, age, approximative location, device

used) and information regarding purchasing history and behavior, use of the

application, user experience.

The target variable is a binary variable: the ”buy” event in the propensity

to buy case and the ”leave” event in the churn case. The proportion of positive

class for the propensity study is 27.5%, while for the churn study is 53.3%.

2.3.2 Results

The propensity study dataset is split in a 80% training and a 20% testing set.

After adequate optimization of the hyperparameters, the XGBoost model on the

training set is tested to obtain the relevant curves and metrics. In Figure 2.1

below we compare the performance of the XGBoost method with a benchmark

logistic regression, obtained from a classic stepwise model selection.

Figure 1 shows the better predictive performance of the XGBoost method over

the logistic regression. Indeed, the Area Under the Curve is 0.7715 for the logistic

regression models and 0.9018 for the XGBoost model.
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Figure 2.1: ROC curves comparison

We now interpret the output of the XGBoost method by means of the SHAP

values approach, for each explanatory feature available. This can be done with

the TreeSHAP implementation, whose computational complexity reduces from

O(T ∗L∗2M) to O(T ∗L∗D2), where T is the number of trees, L is the maximum

number of leaves in a tree and D the maximal depth of a tree. Figure 2 below

contains the SHAP summary plot from TreeSHAP, which shows the contribution

of each variable by representing its Shapley value averaged across all customers.

In the figure, all observations are plotted row wise, separately for each explanatory

variable. In each row, the color indicates the magnitude of each observation in

terms of that variable: from low (colour blue), to high (colour red).
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Figure 2.2: SHAP summary plot

From Figure 2.2 note that the most important variable to predict propensity

to buy is the number of days since the last buy, followed by the number of bought

items. In both cases, the impact on model output varies considerably among all

observations (days since last) and especially for those with large values (number

of bought items. Note also the effects of seasonality, in terms of weekdays and

seasons.

The third part of the analysis involves using the shap values vectors corre-

sponding to each user, calculated from the classification model, and look for the

presence of structures which cluster together similar potential buyers. To this

aim we employ a K-means clustering algorithm [14]. By plotting the within sum

of squares against the number of clusters, we obtain that the optimal number of

clusters is four.

We can thus plot, in Figure 3, the scatterplot of the first two principal compo-

nents of the SHAP values, assigning each customers to one of the four clusters. In
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the Figure, the four cluster means are indicated with bolder nodes, and positive

events (customers that buy) are coloured in red.

Figure 2.3: Clustering of Shapley values

From Figure 2.3 it can be noticed that one cluster is positioned in an area with

virtually no red points (the black centroid), the two purple centroids are somewhat

in-between and the cluster denoted by the yellow centroid is in an area where

many users have high propensity to buy. Checking the proportion of positive

classes with respect to each cluster, it turns out that the black cluster scores a

0.002 proportion (among the 1518 units contained in the cluster), the two purple

clusters 0.09 and 0.093 (with 314 and 546 units in the clusters, respectively),

while the yellow one shows a much larger 0.701, with 1400 units in the cluster.

It seems reasonable to group the two intermediate clusters into a new one,

leaving us with three final clusters. Thhis way, we operate an effective segmenta-
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tion among users, with probability of buying ranging from 0.02% to 9% to 70%.

The three clusters can be labeled, respectively, ”unlikely”, ”less likely” and ”very

likely”.

The obtained results are roughly consistent with what could be obtained ap-

plying the K-means algorithm directly on the data, before XGboost and SHAP.

In this case, the three probabilities, for the same clusters of individuals, are: 6%,

34% and 70%. This reveals, as expected, the improved discriminatory capacity

of the SHAP-XGBoost model over a pure empirical model, which does not filter

any noise.

In addition, it can be shown that the three clusters that are obtained from

the application of our proposal are well balanced, as we have 1495 users in the

”unlikely” cluster, 866 users in the ”less likely” cluster and 1417 in the ”very

likely” one. Conversely, if we apply the K-mean clustering to the raw data, we

obtain a cluster of 951 units, with a 0.0641 proportion of events; two similar

clusters with cumulatively 2807 units and a proportion of events of about 0.34

and a cluster with only 20 units and a 0.7 proportion: a rather unbalanced result.

This shows further the advanage of our proposal, not only in terms of predictive

accuracy and interpretability, but also in terms of profiling.

In a similar fashion, we can apply our proposal for the customer churn prob-

lem. The AUROC value is equal to 0.91 against 0.75 for the selected stepwise

logistic regression model. The application of the K-means clustering to the SHAP

values leads to clusters that better separated then in the buying behaviour case,

as Figure 2.4 below shows.
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(a) (b)

Figure 2.4: (a) Clustering of Shapley values with K = 4; (b) Propensity to buy:
Precision/Recall curve (Area Under the ROC Curve = 0.91)

Figure 2.4 shows a clear separation in four clusters which can be again reduced

to three, combining clusters 1 and 2. This leads to 222 users in the ”unlikely”

cluster, 803 in the ”less likely” and 664 in the ”very likely” one. We summarize

the three clusters, reporting the proportion of y and mean probability of churn

for each cluster in Table 2.1.

Table 2.1: Mean by cluster
cluster mean y mean churn probability
unlikely 0.117117 0.104915
less likely 0.313823 0.317958
very likely 0.936747 0.933060

We finally remark that also for this case we have compared the K-means

results with SHAP vaues and the K-means results with the raw data and, again,

the obtained clusters are better differentiated and balanced in the former case,

confirming the advantage of using our proposed method.
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2.4 Conclusions

To improve the understanding of consumers’ needs with respect to non-life in-

surance products, we have proposed a novel methodology that can be embedded

within a technological insurance service (Insurtech). The methodology, based on

the combination of a highly accurate predictive method (XGBoost) with a model

agnostic interpretability tool (Shapley Values), leads to a powerful segmentation

of customers’ profiles, both in terms of purchasing and churning behaviours.

Our approach brings several advantages and, in particular, the ability to per-

form behavioral segmentation based on the behavioural similarity existing be-

tween customers.The research suggests that explainable machine learning models

can effectively improve our understanding of customers’ behaviour. To further

investigate this claim, future research may involve the application of the model

to other situations arising in the insurance industry, which may gain from the

application of artificial intelligence technologies, such as underwriting and claims

management.

Our approach can also be extended to other financial technology applications,

such as peer to peer lending (Bussmann et al. (2020)[15]) and financial pricing

(Giudici and Raffinetti (2020)[16]).

Another line of research would be to extend our approach considering the

Mean Absolute Shapley Values instead of the SHAP values, as in Lundberg et al.

(2020)[17].



Chapter 3

SHAP & LIME: an evaluation of discriminative power in

credit risk

3.1 Introduction

Probability of default (PD) estimation is an issue which banks and other financial

institutions have been confronting with since the dawn of credit. Systems and

methodologies evolved as knowledge and technology did, but it wasn’t until re-

cently that the incredible steps forward made by IT gave a real shake to the way it

was performed through the industry. At first, incumbents institutions resisted the

application of new paradigms, which favored the emergence of a growing number

of Fintech startups which purpose is to provide an estimation of the creditwor-

thiness of people and firms alike, and make it so that this estimation is as precise

as possible.

To be able to give such estimation, these firms of course leverage new and

diverse sources of data, take advantage of innovations in regulatory framework

concerning financial data (e.g. European PSD2 [18]) and exploit the far higher

predictive power that some of the newly implemented algorithms offer with re-

spect to traditional methods. The increase in prediction power of new algorithms,

though, takes a toll on explainability, since the models are now so complex that

it is close to impossible to establish clear links between the inner workings of the

model and the given output. This surely represents a problem and hinders their

diffusion, other than raising a series of ethical and regulamentary problems, which

are starting to be addressed (see, for example European Commission (2020) [2].
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To solve this trade-off, the concept of eXplainable AI (XAI) emerged, intro-

ducing a suite of machine learning (ML) techniques that produce models that

offer an acceptable trade-off between explainability as well as predictive utility

and enables humans to understand, trust and manage the emerging generations

of AI models. Among the emerging techniques, two frameworks have been widely

recognized as the state-of-the-art in eXplainable AI and those are:

• the LIME framework, introduced by Ribeiro et al. in 2016 ([19])

• SHAP framework, introduced by Lundberg et al. in 2017 ([10]).

In finance, interpretability is especially important because the reliance of the

model on the correct features must be guaranteed; yet, there aren’t many stud-

ies focusing on the application of XAI in this specific context. Bussman et al.

(2020) [20] propose a XAI model based on Shapley values applied in the context

of loan decisions regarding SME seeking for financing through P2P platforms,

whereas the research by Ariza-Garzòn et al. (2020) [21] aims to assess the pre-

dictive capacity of several ML models in the context of P2P lending platforms’

credit scoring, then applying the Shapley algorithm to provide explainability to

the prediction. The most interesting precedent is perhaps the research of Misheva

et al. (2021) [22], where the authors explore the utility of both SHAP and LIME

frameworks in the context of credit risk management, outlining the practical hur-

dles in applying these techniques to several different kinds of ML algorithms, as

well as proposing solutions to the challenges faced.

Our study aims to compare the SHAP and LIME frameworks by evaluating their

ability to define distinct groups of observations, employing the weights assigned

to features by their local interpretability algorithm as input space for an unsu-

pervised approach and a supervised one. We do this building our approach on

one of the best performing, and more complex, supervised learning algorithm,

XGBoost, [6] employed to predict the probability of default of italian Small and

Medium Enterprises.
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3.2 Methodology

3.2.1 LIME

Locally Interpretable Model Agnostic Explanations is a post-hoc model-agnostic

explanation technique which aims to approximate any black box machine learning

model with a local, interpretable model to explain each individual prediction[19].

The authors suggest the model can be used for explaining any classifier, irre-

spective of the algorithm used for predictions, as LIME is independent from the

original classifier. Ultimately, LIME works locally which means that it’s observa-

tion specific and, just like SHAP, it will provide explanations for the prediction

relative to each observation. What LIME does is trying to fit a local model using

sample data points that are similar to the observation being explained. The local

model can be selected from the class of interpretable models such as linear mod-

els, decision trees, etc. The explanations provided by LIME for each observation

x is obtained as follows:

Φ(x) = argming∈GL(f, g, πx) +Ω(g) (3.1)

where G is the class of potentially interpretable models such as linear models and

decision trees,

g ∈ G: An explanation considered as a model

f : Rd → R.

πx(z) : Proximity measure of an instance z from x

Ω(g): A measure of complexity of the explanation g ∈ G

The goal is to minimize the locality aware loss L without making any assump-

tions about f , since a key property of LIME is that it is model agnostic. L is the

measure of how unfaithful g is in approximating f in the locality defined by π(x).
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3.2.2 SHAP

The SHAP framework, proposed by Lundberg (2017) [10] adapting a concept

coming from game theory Shapley (1952) [9], has many attractive properties. In

this framework, the variability of the predictions is divided among the available

covariates; this way, the contribution of each explanatory variable to each point

prediction can be assessed regardless of the underlying model (Joseph (2019)[4]).

From a computational perspective, SHAP (short for SHapley Additive exPlana-

tion) returns Shapley values expressing model predictions as linear combinations

of binary variables that describe whether each covariate is present in the model

or not.

More formally, the SHAP algorithm approximates each prediction f(x) with

g(x′), a linear function of the binary variables z′ ∈ {0, 1}M and of the quantities

ϕi ∈ R, defined as follows:

g(z′) = ϕ0 +
M∑
i=1

ϕiz
′
i, (3.2)

where M is the number of explanatory variables.

Lundberg, (2018) [12] has shown that the only additive method that satisfies the

properties of local accuracy, missingness and consistency is obtained attributing

to each variable x′
i an effect ϕi (the Shapley value), defined by:

ϕi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z

′)− fx(z
′ \ i)] (3.3)

where f is the model, x are the available variables, and x′ are the selected vari-

ables. The quantity fx(z
′) − fx(z

′ \ i) expresses, for each single prediction, the

deviation of Shapley values from their mean: the contribution of the i-th variable.

Intuitively, Shapley values are an explanatory model that locally approximate

the original model, for a given variable value x (local accuracy); with the property

that, whenever a variable is equal to zero, so is the Shapley value (missingness);

and that if in a different model the contribution of a variable is higher, so will be
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the corresponding Shapley value (consistency).

3.2.3 Evaluation approaches

While LIME and SHAP have similar behaviour in that they both obtain param-

eters for feature contribution to the prediction at the level of the observation

(local explanation), they do differ in the algorithm which leads to such outcome.

In order to see which approach is better in detecting variables’ contribution at

the local level, we attempt an unsupervised approach and verify if it is possible

to cluster observation employing a dissimilarity matrix built on LIME weights

and SHAP values, employing standardized Euclidean distance as the basis for

clustering.

More formally, we define the pairwise distance di,j as:

di,j = (xi − xj)∆
−1(xi − xj)

′ (3.4)

where ∆ is a diagonal matrix whose i-th diagonal element contains the stan-

dard deviation. The distances can be represented by a N×N dissimilarity matrix

D such that the closer two observations i, j are in the Euclidean space, the lower

the entry di,j.

On the similarity matrix we perform a classical K-means clustering (as defined

by MacQueen (1967) [13]) and, to represent a different clustering approach and

not limit ourselves to the convex clusters originated by K-means, we also run a

spectral clustering algorithm, as outlined in Ng et al. (2001) [23]. This is done

for dissimilarity matrices computed on both LIME weights and SHAP values. We

then look for the best number of clusters K using measures that assess clusters’

internal cohesion and external separation, namely the Silhouette [24] and the

Davies–Bouldin index [25]. Other than using unsupervised tool to devise groups

out of XAI models parameters, we run a supervised learning algorithm (Random

Forest, as in Breiman (2001) [5]) on XAI parameters to see how they perform

as input in predicting default, which was the problem we started the analysis
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with. We compare the two predictive models, one for LIME weights and one for

SHAP values, through AUROC (Bradley, 1997 ) [26]. This way, we have a thor-

ough perspective on the discriminative power of eXplainable AI-assigned feature

weights.

3.3 Application

3.3.1 Data

Data on italian SME is obtained through the Bureau van Dijk database, which

sources data directly from Italian chamber of commerce. We employed some

techniques to deal with the strongly unbalanced classes (e.g. Lin et al. (2017)

approach) [27] and to remove time-specific factors. More specifically, we worked

on data encompassing the last 6 years, comprising more than 2 millions SME

observations, we kept all the defaulted cases and, for the not-defaulted ones, we

randomly sampled a group of observation to maintain as they were (about 10000

for each year), while with the remaining we built 5000 clusters per year and em-

ployed the medoids as input observations. This brought down class imbalance

from about 100 : 1 to 5 : 1, allowing the model to better frame risk patterns and

give more amplitude to probability estimation.

The above procedure led us to a dataset with about 139000 observations, with

27200 defaults. We split the dataset assigning 70% of observation to the trainig

set and 30% to the test set using stratified partitioning, run the chosen supervised

algorithm (XGBoost), then apply LIME and SHAP to the test set to get the re-

spective parameters; these are extracted for both methods as linear combinations

of variables contributions’, therefore are similar in magnitude and behaviour and

thus comparable through our methodology.

3.3.2 Results

To select the number of clusters K we examine the silhouette plot [24] of both

generated dataset, for K from 2 to 9. Either for SHAP or LIME, the number of
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clusters which maximizes the silhouette score is two, coherently with the problem

at hand (default prediction); we can see this by looking at the silhouette scores

represented by the vertical red dashed line, which is higher for the plot with two

clusters, and also from the part of the clusters who enter the X axis negative

score, which increase as we increase the number of clusters. We show in figure

3.1 the silhouette graph for LIME data clustering in the graph below, with the

one for SHAP being basically identical, albeit with a higher average silhouette

score, as we show in the following lines.

Figure 3.1: Silhouette plot for LIME data clustering

We then perform K-means clustering and Spectral clustering on the two sets of

values, with the aim of evaluating the goodness of fit of the clustering approach on

XAI parameters through Silhouette score and Davies–Bouldin index (DBI). Here,

the higher the Silhouette score, the better externally separated and internally

cohese are the clusters, while the reverse is true for Davies-Bouldin index.

In the table below, we can see the results of both tests on each of the clustering

techniques, for LIME weights and SHAP values respectively. Both techniques

assign a score to represent internal clusters cohesion and external distance from

one another: the silhouette scores tells us the clusters are better defined as its

value increases, whereas for the Davies-Bouldin index dispersion is lower (and

therefore clusters are better) the lower is the score.
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Table 3.1: Clustering evaluation results
Method LIME SHAP

K-means Silhouette 0.143 0.370
Spectral clustering Silhouette 0.141 0.370

K-means DBI 2.325 1.126
Spectral Clustering DBI 2.329 1.106

As it turns out, SHAP values seem to constitute an input space more suitable

to be divided into clusters, with a clear advantage in discriminative power in this

unsupervised setting. The measures we employed for this evaluation take into

consideration the entire numerosity of dimensions, which in this case is 46 since

we have one parameter for each of the original feature, whereas with a scatterplot

we can only evaluate two dimensions at a time.

For reference, we report one bidimensional plots for each case, where we can see

how spectral clustering assigned each data point to the respective clusters by

looking at the different colors; here, of course, we can only see this division across

two dimensions, but we can already notice how SHAP value clustering seem to

better divide the two clusters in space.

(a) (b)

Figure 3.2: (a) LIME Spectral Clustering ; (b) SHAP Spectral Clustering

Having established the superiority of SHAP values in the unsupervised envi-

ronment, we can now test the predictive power of both families of parameters.

To this end, we run several Random Forest algorithms [5] with optimized hyper-

parameters and compare the means of the Area under the Curve (AUC) [26]. We
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employ Random Forests to evaluate parameters’ preditive power because it has

less hyperparameters to optimize with respect to other ensemble algorithms, it

better handles multicollinearity and it’s better parallelizable, thus allowing us to

increase the number of runs significantly. Furthermore, we don’t need to select

a specific supervised learning algorithm to evaluate our problem, we just need it

to be the same for both the sets of XAI parameters.

Figure 3.3: LIME and SHAP ROC curves

With a mean AUC of 0.864 for SHAP versus one of 0.839 for LIME and 50

repetitions, we find that the difference in means is statistically significant with a

p-value of 0.0035.

Therefore, SHAP values appear to be better than LIME weights in assignign

explanatory values to the dynamics of credit default as they are picked up by the

XGBoost algorithm, through which we looked for discriminative power, that is

the purpose of this paper.

3.4 Conclusions

The estimation of Probability of Default is a key element in the economic life of

modern societies, and we now have the instruments and technologies to improve
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it significantly and lead away from the simplistic assumptions we used to follow

in order to avoid undetected risks. This concretizes in an improved adherence to

reality, were we have more dimensions available regarding the entity we want to

evaluate and at the same time we are more capable and correct in such evalua-

tion. We have already seen in the aforementioned works that the methodology

based on a highly accurate predictive model combined with an interpretability

tool allows us to reap the benefit of this improved precision without sacrificing

explainability; our approach shows that some XAI models may be better than

others and, furthermore, that elements coming from eXplainable AI models can

be used to further improve methodologies and add value to data.

Some other works are already moving in this direction: see for instance Bussman

et al. (2021) [20] or Gramegna and Giudici (2020) [28] on the use of Shapley

values to enrich the analysis and improve methods, but also Giudici et al. (2020)

[29] and Giudici and Raffinetti (2020) [16], with some innovative methodologies

that combine well with XAI models.

Further research could find new ways to leverage the power of explanatory pa-

rameters and use them to deal with other issues concerning the Machine Learning

pipeline, as well as extend the approach to other domains.
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Shapley Feature Selection

4.1 Introduction

Feature selection is an area of research of great importance in machine learning.

At the end of the last century, when a special issue on relevance including several

papers on variable and feature selection was published [30], very few domains

used more than 40 features in their models ([31]). The situation has changed

drastically over the years, due to the increased capability to collect more data

and to process multidimensional data. The problem with these developments

is that, with so many dimensions, we also introduce many irrelevant or redun-

dant features and often we have comparably few training examples. This hinders

the ability of the model to generalize predictions [32] and, also, it increases its

complexity, therefore its cost. Furthermore, there are many potential advantages

in performing an effective feature selection: easier data visualization and expla-

nation, lower requirements for measuring and storing data, lower training and

utilization time, more easily performed sensitivity analysis. Moreover, feature

selection helps to reduce the risk of incurring in overfitting due to the curse of

dimensionality, and this increases performance and robustness.

In the available literature, there are a variety of methods which perform fea-

ture selection but there is no single method which is appropriate for all types

of problems. The main directions that have been taken to tackle the issue orig-

inally divide into wrappers, filters and embedded methods (see Stanczyk, 2015

[33]), up to more innovative approaches like Swarm Intelligence (see for instance

Brezočnik et al. [34]) and similarity classifier used in combination with a new
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fuzzy entropy measure in signal processing (see Tran, Elsisi, Liu[35]). Wrappers

utilize the chosen machine learning model to score many different subsets of vari-

ables according to their predictive power, in an often greedy and computationally

intensive approach; filters select the variables of interest as a pre-processing step,

independently of the chosen predictor; embedded methods are peculiar to certain

kinds of models which perform variable selection in the process of training. Each

of these approaches has its strengths and weaknesses, which make them more or

less suitable for a specific problem. Many algorithms have been developed, es-

pecially in the wrapper field, to improve selection robustness and relevance, but

the increase in complexity of such algorithms limits the effectiveness of proposals.

What would be interesting, instead, is looking for an integrated approach, and see

if a contamination of methods can actually bring some benefit and improvements

to feature selection.

Our contribution with this paper is to try and improve feature selection by

combining the Shapley value framework (SHAP for brevity) with different feature

selection approaches. We do this in order to take advantage of SHAP’s many

desirable properties (Lundberg et al., 2017 [10]): local accuracy, missingness and

consistency in a linear space, in their role of indicators of variables importance,

adding to the literature that employs Shapley values a post-processing phase (see

for instance Bussman et al., 2020 [20] and Gramegna and Giudici, 2020 [28]).

We show that SHAP can indeed extract futher information from the nexus data-

predictive model, and that such information can be useful in selecting relevant

features.

Our proposal will be tested on a real dataset, provided by the fintech company

MonAI, which among other things provides eXplainable credit scores to SMEs

and professionals, using both traditional and alternative data. The aim of the

application is to be able to select an adequate number of features, so to have a

model which is both well explainable and performing, in the setting of probability

of default prediction for the considered companies.
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The remainder of the paper is organized as follows. The “Data and methods”

section provides an overview of the data employed and of the tested methods. The

“Results” section presents our results. Finally, conclusions and future research

directions are indicated in “Conclusion and future work” section.

4.2 Methods

4.2.1 Data

The data we use to test our methodology is quite traditional, being balance sheet

data from the last six years belonging to italian SMEs. We can find all the clas-

sical balance sheet entries, together with some composite indexes (e.g., leverage,

Return on Sales - these will be masked with the letter V and numbers from 1

to 30). In a pre processing step, we have eliminated some linear combinations

inherently present in the data (as done in filter methods). As a result, we have

49 features.

We then employed statistical tools to deal with strongly unbalanced classes

(e.g., Lin et al. (2017) [27]), since defaults were slightly more than 1%, and to

remove time-specific factors. More specifically, we employed data encompassing

five years (2015 to 2019), comprising more than two millions of SME observations,

keeping all the defaulted cases and randomly sampling a group of non-defaulted

firms equal to about 10000 for each year. With the remaining observations we

build 5000 clusters per year and employ the cluster medoids as input observations

(the same way we did it in Gramegna and Giudici, 2021 [36]). This brought down

class imbalance from about 100:1 to 5:1, allowing the model to better frame

risk patterns and give more amplitude to probability estimation. The above

procedure has led us to a training dataset of about 139,000 observations, with

27,200 defaults; the entire year 2020 was left out from pre processing in order

to have a clean, validation set to test our proposed methods. We performed

stratified sampling for training and testing set to maintain the balance for the

positive and negative class of the Y variable.
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4.2.2 Models

LightGBM

To learn the default pattern from the data and be able to provide a probabilistic

estimate for each observation, we use an improved implementation of XGBoost

(Chen and Guestrin, 2016 [6]), called LightGBM. This is a gradient boosted tree

model very similar to XGBoost, which features the suggestions of Ke G., Finley

T., et al. [37] which strongly increase efficiency and scalability, greatly improving

the standard gradient boosting tree model (by about 20 times). LightGBM, on

the top of featuring a light and fast implementation, differs from other gradi-

ent boosted tree models in that while other algorithms grow trees horizontally,

LightGBM algorithm grows them vertically, meaning it grows leaf-wise while

other algorithms of the family grow level-wise. LightGBM chooses the leaf with

the largest loss as start to grow the next tree: in doing so, it can lower loss more

than a level wise algorithm, since it originates less redundant leaves. It also em-

ploys binarization of continuous variables, which reduces computation time a lot

because there is no need to evaluate the entire range of the continuous variables

and to run dispendious sorting algorithms. This way of working also makes it less

suitable for small datasets, where it can easily overfit due to its sensitivity. All

the above elements make lightGBM suitable to us, as we need to run the model

multiple times, and on a rather big dataset.

SHAP

The SHAP framework has been proposed by Lundberg, 2017 [10] adapting a con-

cept from game theory (Shapley (1952) [9]), and has many attractive properties.

With SHAP, the variability of the predictions is divided among the available

features; in this way, the contribution of each explanatory variable to each point

prediction can be assessed regardless of the underlying model (Joseph (2019) [4]).

From a computational perspective, the SHAP framework returns Shapley values

which express model predictions as linear combinations of binary variables that
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describe whether each covariate is present in the model or not.

More formally, the SHAP algorithm approximates each prediction f(x) with

g(x′), a linear function of the binary variables z′ ∈ {0, 1}M and of the quantities

ϕi ∈ R, defined as follows:

g(z′) = ϕ0 +
M∑
i=1

ϕiz
′
i, (4.1)

where M is the number of explanatory variables.

Lundberg, (2018) [12] has shown that the only additive method that satisfies

the properties of local accuracy, missingness and consistency is obtained attribut-

ing to each variable x′
i an effect ϕi (the Shapley value), defined by:

ϕi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z

′)− fx(z
′ \ i)] (4.2)

where f is the model, x are the available variables, and x′ are the selected vari-

ables. The quantity fx(z
′) − fx(z

′ \ i) expresses, for each single prediction, the

deviation of Shapley values from their mean: the contribution of the i-th variable.

We will use SHAP values as transformed data input to feed to feature selection

methods and see how it compares with feature selections made on the original

data values.

4.2.3 Feature Selection

Stepwise Feature Selection

It is a wrapper algorithm well-known in the statistical and data science commu-

nities. It performs a classical greedy approach which tests the predictive perfor-

mance of different subsets of variables in a stepwise fashion, using some metric to

sort variables and add or remove them from the subset to test. This because op-

timisation methods based on best subset selection quickly become intractable and

prone to overfitting when p is large. Unlike best subset selection, which involves
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fitting 2p models, forward stepwise selection involves fitting one null model, along

with p − k models in the kth iteration, for k = 0,..., p − 1. This amounts to a

total of 1 + p(p + 1)/2 models. This is a substantial difference: when p = 20,

best subset selection requires fitting 1,048,576 models, whereas forward stepwise

selection requires fitting only 211 models.

Here we use an adaptation of the stepwise approach which evaluates the fea-

ture covariates in terms of predictive performance and is allowed to go in both

directions when sequentially adding the variables. Basically, after adding each

new variable, the method may also remove any variables that no longer provide

an improvement to the model fit. Such an approach attempts to more closely

mimic best subset selection while retaining the computational advantages of for-

ward and backward stepwise selection. The details of the algorithm are described

in Introduction to Statistical Learning, by James, Witten, Hastie and Tibshirani

[38]. This feature selection method, being a wrapper, has the benefit of being

“supervised”, in the sense that we evaluate the performance of the variables di-

rectly on the output, so it is generally quite effective in identifying the most

important variables. The cons are of course the computation cost which, though

not as high as for best subset selection, is still something to consider; another

downside of the method is that, differently from best subset selection, you are

not guaranteed to select the best possible variables in term of predictive power,

since this depends on the starting point and gradual inclusion of the variables,

though parallel progressive exclusion of newly redundant variables does help in

minimizing the problem.

LASSO

The Lasso method, short for Least Absolute Shrinkage and Selection Operator,

is a linear model proposed by Tibshirani in 1995. It minimizes the residual sum

of squares subject to the sum of the absolute value of the coefficients being less

than a constant; because of the nature of this constraint it tends to produce some
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coefficients that are set exactly to 0 and therefore gives interpretable models.

More formally, lasso regression adds “absolute value of magnitude” (L1 penalty)

of coefficient as penalty term to the loss function, as we can see at the end of the

below equation
n∑

i=1

(yi −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj|. (4.3)

On the contrary, ridge regression, as a shrinkage method, adds “squared mag-

nitude” of coefficients as a penalty term to the loss function (L2 penalty)

n∑
i=1

(yi −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

β2
j (4.4)

Tibshirani’s simulation studies suggest that the lasso enjoys some of the

favourable properties of both ridge regression and subset selection [39], mak-

ing it an important example of embedded feature selection, which we will use in

our application. LASSO has the advantage of having a low computation cost,

since it is the cost of estimating regression parameters subject to penalty term;

furthermore, it builds parsimonious models. On the other hand, it doesn’t neces-

sarilty select the most informative features and sometimes the variables selected

are just too few.

BORUTA

The last feature selection methods we will employ is of particular interest be-

cause, in the implementation we will use, it already uses SHAP values within

its algorithm to evaluate the importance of features. Boruta is a wrapper built

around the random forest algorithm [5], based on two main ideas. The first is to

generate “shadow features” by perturbing the original features to create a ran-

domized version of them. These shadow features are then added to the model as

further covariates and the threshold for significant variable importance becomes

the highest ranked of these shadow features, according to the intuition that a

feature is useful only if it is capable of doing better than the best randomized
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feature. The second idea is to iterate the outlined process n times and use the

binomial distribution to evaluate the significance of the feature in a probabilistic

manner; that is, a t-test (see Kursa et al., 2010 [40]).

Using SHAP instead of classical metrics of feature importance, such as gain,

split count and permutation, can be e a nice improvement because SHAP values

have proprieties, as we have seen, that allow to assess variable importance in a

more thorough and consistent way.

Thanks to the above processes, Boruta is a wrapper with a somewhat different

flavour with respect to other wrapper feature selection algorithms. The idea of

the shadow features, combined with SHAP importance as feature score, allows it

to be very effective in selecting relevant variables. Nevertheless, it’s computation

cost is high, since it is the cost of running the base model, estimating SHAP values

and then iterate n times to perform the t-test. It also does not build parsimonious

models, since it will select variables which deliver every bit of information. It is

great if your goal is to eliminate noise.

4.3 Results

To compare the three proposed feature selection methods, we have applied them

both to the regular dataset, with actual observations for each variable, and to

a dataset made up of the SHAP values corresponding to each observation. The

dimension of the data is the same in both cases.

We have then obtained the selected features under each of the three methods

and for both versions of the dataset, then used a LightGBM model to assess the

predictive power of the subsets.

Before comparing the performance of the 3 × 2 considered feature selection

models, we remark that the performance of the LightGBM model with all the

available 49 features, as measured by the Area Under the Curve (AUC) calculated

on the test set, is equal to AUC = 0.8706, with an F1 score of 0.5451. We highlight

that we used the mean default probability as cutoff value to binarize the target
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variable for simplicity of comparison; there may be some other threshold that

better maximise F1 score.

In the Table 4.1 we can see the Area Under the Curve (AUC) values for each

of our proposed feature selection algorithms.

Table 4.1: Predictive performance of the compared feature selection methods
Method n. of Features AUC F1 Score

LASSO Regular 7 0.8047 0.5156
LASSO SHAP 15 0.8625 0.5571

Bi-directional feature selection Regular 27 0.8674 0.5496
Bi-directional feature selection SHAP 33 0.8689 0.5569

Boruta Regular 26 0.8699 0.5581
Boruta SHAP 45 0.8721 0.5589

The above table empirically shows the well known trade off between explain-

ability (better for models with fewer features) and predictive accuracy (better for

models with more features). For instance, the model with only seven features

selected is easier to explain but performs worse than the others. Indeed, LASSO

applied to the original data is the model that leads to only seven features. This is

due to the fact that it is the most parsimonious and that the marginal improve-

ment in performance of adding a feature is lower than with other methods, as

features that contribute the most are selected first.

The Lasso method applied to the SHAP dataset looks more appealing: it

selects fifteen features, much less than the original 49, and with a performance

that is almost as good as that obtained with the full dataset. In addition, we can

take advantage of its computational speed, due to its belonging to the embedded

family.

Figure 4.1 compares the ROC curves obtained with the two LASSO methods:

that on the original data, and that based on Shapley values.

ROC curve comparison in figure 1 reinforce the previous comment: the LASSO

on the SHAP values performs better than that on the original data.

We now move to stepwise feature selection, which compares the performances

of adding/deleting a variable feature, trying to reduce the search space. The
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previous table shows that the selected number of features is quite similar with

both datasets, with number of variables selected from the SHAP data being

slightly higher than those selected on the original data (33 against 27). The

performances are also quite similar, as we expect dealing with this kind of data

and with a relatively high number of selected variables.

Figure 4.2 compares the AUC performance of the stepwise method, for either

datasets (original or SHAP), as the number of variables increase.

From Figure 4.2 we can see that the stepwise method on the SHAP data is

quicker in achieving a high performance.

Figure 4.1: Performance of columns selected with LASSO.

We now consider the third feature selection method, Boruta. From the previ-

ous table, the number of features selected is quite different for the two considered

datasets (original and SHAP). In particular, the feature selection made on the

SHAP dataset leads to a model which is almost the same as the full set. Precisely,

it has four less variables (45 vs. 49) and, therefore, it manages to remove some

noise; nevertheless, it performs very little selection. The same cannot be said for
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the selection made on the regular original set, where we see basically the same

predictive performance as with all variables with just twenty six features. The

apparent disadvantage of using SHAP values, which appears only for the Boruta

method, can be explained by the fact that Boruta already uses SHAP and, there-

fore, using it twice is not of advantage since, as we said in the description of

Boruta feature selection algorithm, this method is capable of picking up even the

slightest bit of information from a variable, and the transformed SHAP dataset

is made in a way that virtually every variable carry some more information with

respect to base dataset.

We also consider the variables which were effectively selected by different

methods by making a comparison between the overall most selected variables and

overall least selected ones in figure 4.3. The methods were generally consistent

in their selection, meaning that the more parsimonious methods chose variables

that were also selected by more permissive algorithms, thus without overthrowing

the underlying logic.

(a) (b)

Figure 4.2: (a) Feature selection on regular set; (b) feature selection on SHAP
set

(a) (b)

Figure 4.3: (a) Frequently selected variables; (b) Less considered variables



47

We find some expected variables among the most selected ones, such as CASH

(availability of liquid resources), EBTA (EBIDTA) and PLAT (Profit and Loss

After Taxes); we may have expected a more involved role for debt variables

(DEBT, LTDB and CULI), but this could be explained by the fact that we

plugged in many balance sheet variables, together with some indexes (V1 to

V12 variables), and relevant information is probably provided by complementary

measures and/or ratios. This makes sense since overall debt taken as stand-alone

measure does not necessarily imply a bad situation; it only has meaning when

compared to other entries such as turnover, current assets and so on.

We finally remark that so far we have been comparing models on the test set,

which comes from the same data preprocessing we used for the training set. To

fully assess the usefulness of SHAP as a contributor to feature selection methods,

we should compare the performance of all feature selection models, against that

of the full model, on new, unprocessed data. We present this comparison in the

next Table 4.2, using the clean data from 2020.

Table 4.2: Predictive performance on unseen data
Method n. of Features AUC F1 Score
Full model 49 0.8137 0.5167

LASSO Regular 7 0.8012 0.5088
LASSO SHAP 15 0.8466 0.5364

Bi-directional feature selection Regular 27 0.8294 0.5188
Bi-directional feature selection SHAP 33 0.8519 0.5407

Boruta Regular 26 0.8480 0.5413
Boruta SHAP 45 0.8447 0.5430

From Table 4.2 we can see that relative performances on the 2020 data change

with respect to what obtained in Table 4.1. The advantage of SHAP feature

selection, for both LASSO and stepwise methods, is more evident than before.

Whereas the previous caveats for the Boruta method continue to apply.
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4.4 Conclusions and Future Works

In the paper, we have suggested to apply feature selection methods on the data

transformed into Shapley values. Our findings show that this does improve model

performance and can also reduce computational costs.

The findings also show that the best trade-off between parsimony and pre-

dictive power is obtained with a LASSO feature selection method applied to the

SHAP-transformed dataset.

Future works should continue to build and investigate the possibility of in-

tegrating Shapley values with statistical model selection, as recently seen in the

literature of network models (Giudici et al., 2020 [29]), and on stochastic ordering

(Giudici and Raffinetti, 2020 [16]). It would be interesting to test the approach

in different domains and within other feature selection algorithms, for instance

in the medical domain (see Baysal et al., 2020 [41]) or in remote sensing (see

Janowski et al, 2022 [42]).



Chapter 5

Machine learning classification model comparison

5.1 Introduction

Machine learning models are boosting Artificial Intelligence (AI) applications in

many domains, such as automotive, finance and health care. This is mainly

due to their advantage, in terms of predictive accuracy, with respect to “classic”

statistical models. However, while complex machine learning models can reach

high predictive performance, they have an intrinsic black-box nature.

This is a problem in regulated industries, as authorities aimed at monitoring

the risks arising from the application of Artificial Intelligence (AI) methods may

not validate them (see, e.g. Joseph, A. [43]). For example, the application of

AI to finance may lead to automated decisions that can, for example, classify

a company at risk of default, without explaining the underlying rationale and,

therefore, impeding remedial actions.

The need to “explain” AI has become very important in recent years, following

the increasing application of AI methods that impact the daily life of individuals

and societies. At the institutional level, explanations can answer different kinds

of questions about a model’s operations depending on the stakeholder they are

addressed to (see, e.g. [44]): developers, managers, model checkers, regulators.

In general, to be explainable, AI methods have to provide details or reasons

clarifying their functioning.

The explainability requirement is fulfilled “by design” when classic statistical

models, such as logistic and linear regression, are employed within AI applications.

However, in complex data analysis problems, classical statistical models may be



50

improved by using “black-box” machine learning models, such as neural networks

and random forests.

From the previous discussion, it emerges the need to empower highly predic-

tive machine learning models with statistical tools that can “explain” them.

Recent attempts in this direction are based on the work of Shapley (see Shap-

ley, 1952 [9]) who proposed to assign a score to each candidate explanatory vari-

able based on its additional contribution to each prediction. The application of

Shapley’s work has led to the development of a very promising research, espe-

cially in the field of computer science (see, e.g. [43] and [8]). One of the first

applications of Shapley’s work to finance is due by [15], who proposed to apply

correlation networks (see, e.g. [45]) to the Shapley scores and, then, cluster them

into rating classes.

Shapley values have the advantage of being agnostic: independent on the

underlying model with which classifications and predictions are computed; but

have the disadvantage of not being normalised and, therefore, difficult to be used

in comparisons outside the specific application.

Interpretability and explainability appear more relevant in complex appli-

cations, where model comparison is necessary to select a model which, main-

taining accuracy, becomes parsimonious and understandable. In the traditional

paradigm, a statistical model is chosen through a sequence of pairwise compar-

isons, based on the ratio of the likelihoods (or of the posterior probabilities) of

the models being compared. Unfortunately, these criteria are generally not ap-

plicable to machine learning models such as neural networks and random forests,

which do not necessarily have an underlying probabilistic model.

The previous consideration explains why the last few years have witnessed the

growing importance of model selection methods based on the comparison between

the predicted and the actually observed cases. In these methods, the data is split

in two sets, with a “training” set used to fit a model and a “validation” set used

to compare the predictions made by the fitted model with the actual observed
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values.

In this paper, we contribute to the literature on model selection for machine

learning models with a model comparison criterion based on the extension of

Shapley values. Specifically, rather than evaluating the additional contribution

of each variable to the point values of the predictions (as in the Shapley’s ap-

proach), we propose to evaluate the additional contribution of each variable to

the predictive accuracy of the predictions. To achieve this aim, we implement the

Lorenz Zonoid tool, introduced by [46] for all types of response variables, for a

binary response, exploiting its general decomposition property to derive specific

criteria to compare classification models.

Indeed, to develop our approach, we extend the available likelihood model

comparison procedures, applicable only to machine learning models that have

a probabilistic background, to a predictive accuracy comparison framework, ap-

plicable to all possible machine learning models. To achieve this goal, we also

propose a statistical test to assess the significance of the additional contribution

to predictive accuracy deriving from the inclusion of an extra explanatory vari-

able in the model. This allows to overcome the main drawbacks of the BIC and

the AIC, which require a probabilistic model specification to derive the likelihood

of the data. When this is missing, as in complex machine learning models, model

selection needs to be reformulated in terms of descriptive statistics of the distri-

butions of the residuals (see, e.g. [47] for a discussion), for which statistical tests

for variable importance can be derived only under specific conditions. This is

the case for the Diebold-Mariano test, based on the Mean Squared Error of the

residuals (see [48]).

To derive our proposed model comparison procedure, we will adapt to the

binary response case the work of [49], who have shown the advantage of com-

bining Lorenz Zonoids with Shapley values to select machine learning models.

We will show how to build a model comparison methodology which can be used

to order variables in terms of their contribution to predictive accuracy. Doing
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so, we provide a methodology that is able to simultaneously achieve the goals of

predictive accuracy and explainability, rather than one after the other, as done

in the explainable AI literature (see, e.g. [15]).

We will test our methodology in two different contexts: a simulated study,

aimed at assessing the comparative properties of our method; and a real study,

that concerns the prediction of financial default by means of a large set of highly

correlated company performance variables, taken from balance sheets.

The paper is organized as follows: the next section illustrates the methodol-

ogy: its background, the notion of Lorenz Zonoid predictive accuracy, and the

proposed Lorenz Zonoid model comparison test; Section 5.3 introduces a simula-

tion study to assess the performance of the methodology in the model selection

context; Section 5.4 discusses the empirical findings obtained applying our pro-

posal to the available financial data; finally, Section 5.5 contains some concluding

remarks.

5.2 Methodology

To meet the requirement of a reliable risk measurement, in this section we spe-

cialise the Lorenz Zonoid decomposition approach illustrated by [?] to the binary

classification context. Our proposal derives from the combination of two research

streams. The first one concerns the development of predictive machine learning

methods for classification problems. The second one concerns the development of

explainable methods to understand the contribution of the explanatory variables

to the predictive accuracy of machine learning models. The result is a new metric

which is, at the same time, predictively accurate and interpretable.

5.2.1 Background

Let Y be a binary response variable, which can, for example and without loss of

generality, express whether a company defaults (Y = 1) or not (Y = 0), as in a

typical credit scoring problem. A popular model for credit scoring is the logistic



53

regression model (see, e.g. [?]).

Given K explanatory variables X1, . . . , XK , a linear logistic regression model

for Y can be specified as follows:

ln

(
πi

1− πi

)
= β0 +

K∑
k=1

βkxki = ηi,

where i = 1, . . . , n; ηi = β0 +
∑K

k=1 βkxki; πi represents the probability of

the event for the i-th observation (company); xi = (x1i, . . . , xKi) points out the

K-dimensional vector reporting the values taken by the K explanatory variables

referred to the i-th observation; β0 and βk (k = 1, . . . , K) are the parameters

representing the intercept and the k-th regression coefficient, respectively.

By means of the maximum likelihood estimation method, the parameters β0

and βk can be estimated leading to derive the predicted probability of default as:

π̂i =
eη̂i

1 + eη̂i
,

which can be employed to attach to the i-th observation a “score”: a num-

ber between zero and one which can be interpreted to signal, for example, the

creditworthiness of a company: the higher the score the lower the trust. A classifi-

cation of each company can then follow, comparing the score with an appropriate

threshold, chosen on an experiential basis.

On one hand, resorting to logistic regression models for the analysis of credit

scoring seems appropriate, as logistic regression models belong to a class of models

which appear highly interpretable by default. On the other hand, these models

sometimes provide a limited predictive accuracy. To improve predictive accuracy,

more complex machine learning models may be considered, such as neural network

models and XGBoost models. The requirement of high predictive accuracy is

fundamental, particularly in the field of credit risk classification (see, e.g., [50],

[51] and [52], among others). A wide literature review on the use of AI methods

in credit risk can be found in [53].
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Neural network models were developed to mimic the structure of the human

brain. The idea is to treat the brain as made up of highly interconnected elements

(neurons) that work together to solve specific problems. Neural network models

can be described by a graph organised according to different levels: the input,

the hidden and the output layers, as displayed in Figure 5.1.

Figure 5.1: Structure of a neural network model

While the input layers receive information from the external environment and

each neuron in it usually corresponds to a predictor, the output layers provides

the final result to be sent outside of the system. The hidden layers define the

complexity of the neural network as they contain some intermediate computa-

tional neurons, whose role is to increase the model fit. Data allow to learn the

weights of the different connections between the neurons of the network.

More formally, a generic neuron j receives n input signals x = [x1, x2, . . . , xn]

from the neurons it is connected to in the previous layer. Each signal has an

importance weight: wj = [w1j, w2j, . . . , wnj]. Then, the same neuron elaborates

the input signals through a combination function which gives rise to a value,

called “potential”, computed as:

Pj =
n∑

j=1

(xiwij − θj),

where θj is a threshold which is activated only above a certain value: a cut-

off point. The output of the j-th neuron, denoted with yj, derives from the

application of a function, called activation function, to the potential Pj:
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yj = f(x,wj) = f(Pj) = f

(
n∑

j=1

xiwij − θj

)
.

Ensemble models aim to combine the predictions derived from alternative

machine learning models, thereby improving generalisation and robustness (see,

e.g. [54] and the references therein).

The eXtreme Gradient Boosting (XGBoost) is one of the most popular en-

semble models, particularly in credit scoring, as discussed by [?]. The XGBoost

is a supervised model involving the combination of tree models with a Gradient

Boosting Machine (GBM), which combines distinct decision trees’ predictions to

obtain “average” final predictions. In each decision tree, the nodes are built on

a different subset of the features, implying that the trees are all different from

each other and can catch distinct information from the data. At each step of the

procedure, a new tree is built, learning from the errors generated by the previous

trees. The XGBoost method shares the same functioning of the GBM, but it

is faster and more advanced, in the sense that it provides specific regularization

techniques that reduce under-fitting and over-fitting of the model, increasing its

performance. A mathematical formalisation of the XGBoost is illustrated in [55].

5.2.2 Lorenz Zonoid predictive accuracy

Lorenz Zonoids were introduced in [56] as a generalisation of the ROC curve in

a multidimensional setting. They were further developed by [?] who proposed a

Lorenz Zonoid decomposition approach that can be employed for model compar-

ison purposes. The Lorenz Zonoid is based on a measure of mutual variability

and can be exploited to develop partial dependence measures that allow to detect

the additional contribution of a new predictor into an existing model.

The key benefit related to the employment of the Lorenz Zonoid tool is the

possibility of evaluating the contribution associated with any additional explana-

tory variable to the whole model prediction with a normalised measure that can

be used to assess the importance of each variable.



56

Given a variable Y and n observations, the Lorenz Zonoid can be defined by:

the Lorenz and the dual Lorenz curves (see, e.g. [57]).

The Lorenz curve for a variable Y , denoted with LY and obtained by re-

ordering the Y values in non-decreasing sense, has points whose coordinates can

be specified as (i/n,
∑i

j=1 yrj/(nȳ)), for i = 1, . . . , n, where r and ȳ indicate the

(non-decreasing) ranks of Y and the Y mean value, respectively. Similarly, the

dual Lorenz curve of Y , indicated as L
′
Y and obtained by re-ordering the Y values

in a non-increasing sense, has points with coordinates (i/n,
∑i

j=1 ydj/(nȳ)), for

i = 1, . . . , n, where d indicates the (non-increasing) ranks of Y . The area lying

between the LY and L
′
Y curves corresponds to the Lorenz Zonoid, whose graphical

representation in the case of a binary response variable Y = {0, 1} is displayed

in Figure 5.2 (a).

It is worth mentioning that the Lorenz Zonoid fulfills some relevant properties.

An important one is the “inclusion” of the Lorenz Zonoid built on the predicted

values Ŷ into the Lorenz Zonoid of the response variable Y , graphically depicted

in Figure 5.2 (b).

[(a)] [(b)]
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Figure 5.2: [(a)] The Lorenz curve (LY ) and the dual Lorenz curve (L
′
Y ) in the

binary case; [(b)] The inclusion property LZ(Ŷ ) ⊂ LZ(Y ) in the binary case

As shown in [?], given a set of K explanatory variables, and denoting with

ŶX′∪Xk
and ŶX′ , respectively, the predicted values obtained from a model which

includes a covariate Xk, and the predicted values provided by a reduced model

(which excludes covariateXk), the additional contribution related to the inclusion
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of a covariate Xk can be expressed in terms of the Partial Gini Contribution

(PGC) measure as:

PGCY,Xk|X′ =
LZ(ŶX′∪Xk

)− LZ(ŶX′ )

LZ(Y )− LZ(ŶX′ )
, (5.1)

where LZ(ŶX′∪Xk
), LZ(ŶX′ ) and LZ(Y ) define: the Lorenz Zonoids computed

on the predicted values provided by the model, including also covariate Xk; the

Lorenz Zonoids computed on the predicted values provided by the model, includ-

ing the X
′
covariates but excluding covariate Xk; the Lorenz Zonoid computed

on the Y target variable values.

Note that the PGC measure can be interpreted within a game theoretical

context, expressing the pay-off function in terms of the numerator of the PGC

measure in equation (5.1). More precisely, for a set of statistical units (i =

1, . . . , n), the pay-off in terms of the Lorenz Zonoids (LZ(·)) is given by:

pay-off (Xk) = LZ(ŶX′∪Xk
)− LZ(ŶX′ ), (5.2)

where LZ(ŶX′∪Xk
) and LZ(ŶX′ ) describe the (mutual) variability of the re-

sponse variable Y explained by the models which, respectively, include theX
′∪Xk

predictors and only the X
′
predictors.

When the response variable is binary, Y = {0, 1}, the terms ŶX′∪Xk
and ŶX′ , in

equations (5.1) and (5.2) can be re-written as the predicted probabilities of default

π̂X′∪Xk
and π̂X′ , using a model that includes also the explanatory variable Xk, or

a model that does not include the explanatory variable Xk. Thus, equations in

(5.1) and (5.2) become

PGCY,Xk|X′ =
LZ(π̂X′∪Xk

)− LZ(π̂X′ )

LZ(Y )− LZ(π̂X′ )
(5.3)

and

pay-off (Xk) = LZ(π̂X′∪Xk
)− LZ(π̂X′ ). (5.4)
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The pay-off in equation (5.4) measures a predictive gain, that is, the contri-

bution to the explanation of the response variable due to each additional predic-

tor included into the model. This result derives from the decomposition of the

Lorenz Zonoid, which can be expressed as the sum of a component related to the

explanatory variables X
′
, and of a further component, function of the additional

explanatory variable Xk.

The previously mentioned decomposition specialises what proved by [46], in

the case of a continuous response, to the binary case. More precisely, in [46]

the Authors prove that the overall contribution provided by K covariates to the

explanation of a continuous response variable depends on the single contributions

according to the following formula:

MGC(Y |X1,...,XK) =
K∑
j=1

PGCY,Xj |Xi<j
(1−MGCY |X1,...,Xj−1

), (5.5)

where MGC(Y |X1,...,XK) denotes the overall response variable variability ex-

plained by all the explanatory variables (i.e., LZ(ŶX1,...,XK
)); PGCY,Xj |Xi<j

is

the contribution associated with the j-th explanatory variable included into the

model and MGCY |X1,...,Xj−1
is the overall contribution provided by the remaining

(j − 1)-th explanatory variables (i.e., LZ(ŶX1,...,Xj−1
)), with j = 1, . . . , K.

Note that the previous decomposition parallels the well known decomposition

of the goodness of fit coefficient R2 for linear models:

R2
Y,X1,...,XK

=
K∑
j=1

r2Y,Xj |Xi<j
(1−R2

Y,X1,...,Xj−1
), (5.6)

where R2
Y,X1,...,XK

represents the determination coefficient of the linear model

built on the K explanatory variables, R2
Y,X1,...,Xj−1

denotes the coefficient of mul-

tiple correlation between Y and the fitted plane determined by the explanatory

variables X1, . . . , Xj−1, and rY,Xj |Xi<j
denotes the coefficient of partial correlation

between Y and Xj, conditional on the explanatory variables previously included

into the model.
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The analogy with the R2 decomposition can be exploited to derive a decom-

position of the Lorenz Zonoid for binary response variables. To achieve this goal,

we need to define goodness of fit for a binary response variable. A contribution

in this direction can be found in [58], which shows that, in the binary case

R2 =
V ar(π̂)

V ar(π̂) +
∑n

i=1 π̂i(1− π̂i)/n
, (5.7)

where V ar(π̂i) is the sample variance (see, e.g. [59]).

Suppose to consider, for the sake of simplicity, only two explanatory variables

X1 and X2 (i.e., K = 2). Equation (5.6) can then be expressed as:

R2
X1,X2

=
V ar(π̂X1)

V ar(π̂X1) +
∑n

i=1 π̂X1i
(1− π̂X1i

)/n

+
V ar(π̂X1∪X2)− V ar(π̂X1)∑n

i=1 π̂X1i
(1− π̂X1i

)/n

+

[
1− V ar(π̂X1)

V ar(π̂X1) +
∑n

i=1 π̂X1i
(1− π̂X1i

)/n

]
. (5.8)

And the decomposition in equation (5.5) can be expressed as:

MGC(Y |X1,X2) = MGCY |X1 + PGCY,X2|X1 ·

(1−MGCY |X1) =
LZ(π̂X1)

LZ(Y )

+
LZ(π̂X1∪X2)− LZ(π̂X1)

LZ(Y )− LZ(π̂X1)

[
1− LZ(π̂X1)

LZ(Y )

]
, (5.9)

where
LZ(π̂X1∪X2

)

LZ(Y )
= MGC(Y |X1,X2) represents the response variability share ex-

plained by the two jointly considered explanatory variablesX1 andX2;
LZ(π̂X1∪X2

)−LZ(π̂X1
)

LZ(Y )−LZ(π̂X1
)

=

PGCY,X2|X1 measures the partial contribution provided by the inclusion of the

explanatory variable X2 in the model;
[
1 − LZ(π̂X1

)

LZ(Y )

]
denotes the variability not

explained by X1.

We remark that the relation in equation (5.9) can be derived using the proof

of Result 5 in [?]. It can also be shown that, when used in a stepwise model
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selection procedure, the path selected by the Lorenz Zonoid has a monotonicity

property. More precisely, following the inclusion property, The Lorenz Zonoids

of the predictions generated by a more complex model is an area which is greater

than that associated with a simpler model, implying that the explained variation

of Y monotonically increases with the number of predictors included into the

model.

The Lorenz Zonoids LZ(π̂X′∪Xk
) and LZ(π̂X′ ) can also be expressed using

ordinary covariance operators (see, e.g. [60]), i.e.,

LZ(π̂X′∪Xk
) =

2Cov(π̂X′∪Xk
, r(π̂X′∪Xk

))

nE(π̂X′∪Xk
)

and

LZ(π̂X′ ) =
2Cov(π̂X′ , r(π̂X′ ))

nE(π̂X′ )
, (5.10)

where r(π̂X′∪Xk
) and r(π̂X′ ) are the rank scores of π̂X′∪Xk

and π̂X′ ; n is the sample

size; E(π̂X′∪Xk
) and E(π̂X′ ) are the expected values of π̂X′∪Xk

and π̂X′ .

5.2.3 Lorenz Zonoid model comparison

We now move to the model comparison framework.

A stepwise model comparison procedure can be implemented considering the

Lorenz Zonoid tool and, more precisely, the term LZ(π̂X′∪Xk
)−LZ(π̂X′ ) in equa-

tion (5.4). The procedure starts building K models, each one depending on one

of the K predictors, and then by computing the Lorenz Zonoids of the predicted

values derived from any single model.

When resorting to a forward stepwise algorithm the predictor providing the

highest Lorenz Zonoid value has to be chosen as the first variable to be included

into the model. Otherwise, if a backward stepwise algorithm is applied, the

predictor with the lowest Lorenz Zonoid value has to be chosen as the first variable

to be removed from the full model.

In the former case, the procedure continues by fitting, at each step, a more

complex model by including the predictor which provides the highest contribution
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measured by the difference in equation (5.4). In the latter case, the procedure

continues by fitting, at each step, a simpler model by deleting the predictor

characterised by the lowest contribution, which is measured by the same difference

in equation (5.4).

To evaluate the statistical contribution of a single variable, we need to derive

the distribution of the difference LZ(π̂X′∪Xk
) − LZ(π̂X′ ), where π̂X′∪Xk

are the

predicted values generated by the most complex model (involving the additional

Xk variable) and π̂X′ are the predicted values generated by the simplest model

(without the Xk variable), has to be derived.

To this aim, based on equation (5.10), the difference in equation (5.4) can be

expressed as:

LZ(π̂X′∪Xk
)− LZ(π̂X′ ) =

Cov(π̂X′∪Xk
, r(π̂X′∪Xk

))

nE(π̂X′∪Xk
)

− Cov(π̂X′ , r(π̂X′ ))

nE(π̂X′ )
. (5.11)

As r(·)/n is the empirical transformation of the cumulative distribution func-

tion F (·), the terms in equation (5.11) can be re-expressed as:

LZ(π̂X′∪Xk
)− LZ(π̂X′ ) =

Cov(π̂X′∪Xk
, F (π̂X′∪Xk

))

E(π̂X′∪Xk
)

− Cov(π̂X′ , F (π̂X′ ))

E(π̂X′ )
, (5.12)

where F (π̂X′∪Xk
) and F (π̂X′ ) are the cumulative distribution functions of

π̂X′∪Xk
and π̂X′ , respectively.

In the case of linear regression, the mean of the predicted response values

is always equal to the mean of the original target values, implying that E(Y ) =

E(Ŷ ). For more general models, the aforementioned condition does not fully hold,

implying that E(π̂X′∪Xk
) = E(π̂X′ ) = µ becomes a reasonable approximation.
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Assuming such approximation, equation (5.12), which describes the marginal

contribution (MC) provided by Xk, can be simplified as follows:

MC =
Cov(π̂X′∪Xk

, F (π̂X′∪Xk
))

µ
− Cov(π̂X′ , F (π̂X′ ))

µ
. (5.13)

In line with the previous mathematical derivations, we propose γ as an ad-

justed version of equation (5.13), i.e.

γ = µ ·MC = Cov(π̂X′∪Xk
, F (π̂X′∪Xk

))− Cov(π̂X′ , F (π̂X′ )). (5.14)

By denoting the covariances Cov(π̂X′∪Xk
, F (π̂X′∪Xk

)) = ξ(π̂X′∪Xk
) and Cov(π̂X′ , F (π̂X′ )) =

ξ(π̂X′ ), γ in (5.14) can be re-written as:

γ = ξ(π̂X
′∪Xk

)− ξ(π̂X′ ). (5.15)

A test for the equality of the two Lorenz Zonoids, assuming the continuity of

the π̂ distribution, can thus be developed by setting the following hypotheses

H0 : ξ(π̂X′∪Xk
) = ξ(π̂X′ ) vs H1 : ξ(π̂X′∪Xk

) ̸= ξ(π̂X′ ).

To proceed with the test, ξ(π̂X′∪Xk
) can be derived in terms of a U -statistic,

U1, which estimates Cov(π̂X′∪Xk
,

F (π̂X′∪Xk
)). The estimator is defined as:

ξ̂(π̂X
′∪Xk

) = U1 =
1

4
(
n
2

) n∑
i=1

(2i− 1− n)π̂X′∪Xk(i)
,

where π̂X′∪Xk(i)
is the i-th order statistic of π̂X′∪Xk1

, . . . ,

π̂X′∪Xkn
.

Similarly, the estimator of ξ(π̂X′ ) is U2, specified as:
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ξ̂(π̂X′ ) = U2 =
1

4
(
n
2

) n∑
i=1

(2i− 1− n)π̂X
′
(i)
,

where π̂X
′
(i)

is the i-th order statistic of π̂X
′
1
, . . . ,

π̂X′
n
.

An estimator of γ = ξ(π̂X′∪Xk
) − ξ(π̂X′ ) can then be provided as a function

of two dependent U -statistics:

γ̂ = ξ̂(π̂X
′∪Xk

)− ξ̂(π̂X
′ ) = U1 − U2. (5.16)

Based on [61], a function of several dependent U -statistics has, after appropri-

ate normalisation, an asymptotically normal distribution. As suggested by [62],

a way to estimate the variance is to resort to the jackknife method. Specifically,

the n values of γ̂, pointed out with γ̂(−i) (where i = 1, . . . , n), are calculated by

omitting one pair (π̂X′∪Xk
, π̂X′ ) at a time and the estimated variance is

V ar(γ̂) =
n− 1

n

n∑
i=1

(γ̂(−i) − γ̄),

where γ̄ is the average of γ̂(−i), for i = 1, . . . , n.

Following the previous derivations, the null hypothesis H0 : ξ(π̂X′∪Xk
) =

ξ(π̂X′ ) can be tested by the test statistic:

Z =
γ̂√

V ar(γ̂)
→ N(0, 1) (5.17)

and, for a given selected significance level α, a rejection region for the null

hypothesis H0 can be defined as |Z| ≥ zα
2
.

5.3 Simulation study

In this section we present a simulation study aimed at examining the performance

of the proposed model comparison procedure based on the Lorenz Zonoids.

The simulation design is illustrated in Subsection 5.3.1, whereas the corre-
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sponding results are reported and commented in Subsection 5.3.2.

5.3.1 Simulation design

We consider a vector of seven random variables, including a response variable

Y and six explanatory variables X1, . . . , X6. We then generate two samples,

one with 1,000 and one with 10,000 observations, both from a seven-dimensional

normal distribution, with a correlation matrix specified as in Table 5.1.

Table 5.1: Correlation matrix
Y X1 X2 X3 X4 X5 X6

Y 1 0.8 0.5 0.3 0.1 0 0
X1 1 0.2 0.7 0.3 0 0
X2 1 0.05 0.1 0 0
X3 1 0.5 0 0
X4 1 0 0
X5 1 0
X6 1

Table 5.1 assumes that:

- Y is highly correlated with X1: ρ = 0.8;

- Y is correlated with X2: ρ = 0.5;

- Y has a low correlation with X3: ρ = 0.3;

- Y has a very low correlation with X4: ρ = 0.1;

- Y is not correlated with X5 and X6: ρ = 0.

- Variables X5 and X6 are not correlated with the other four explanatory

variables X1, X2, X3 and X4.

In agreement with the rest of the paper, the response Y variable is binarised

assigning values equal to 1 and 0 when the Y values are, respectively, greater

or equal than the average. We apply our procedure to compare different logistic

regression models, explainable by design and, consequently, simpler to be under-

stood.
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The whole dataset is then split into a training set, composed of 80% of the

observations, and a test set, composed of the remaining 20% of the observations.

A forward stepwise procedure is implemented by first fitting a logistic regression

model on the training set and, then, including the explanatory variables which

progressively provide the highest marginal contribution, as measured by the pay-

off based on the Lorenz Zonoids, computed on the test set. For comparison

purposes, we also consider stepwise model selections based on the AUROC and

the AIC, recalling that the latter is, differently from the others, calculated on the

training set. The procedure stops when the additional contribution provided by

a new included predictor is not significant, using the proposed test to compare

Lorenz Zonoids and the DeLong test to compare ROC curves (see, e..g. [63]).

5.3.2 Simulation results

The results for model comparison are displayed in Figures 5.3 and 5.4. Figure

5.3 refers to the generating data process with 1,000 observations, while Figure

5.4 refers to the case of 10,000 observations.

At each step of the stepwise procedure, the significance of the contribution

given by an additional explanatory variable is assessed through the Lorenz Zonoid

and DeLong tests, whose results are reported in Figures 5.3 and 5.4 (a) and (b)

in terms of the corresponding p-values.

Figure 5.3 orders the six considred explanatory variables in terms of their

marginal Lorenz Zonoids, AUROC and AIC. When the marginal Lorenz Zonoid

are used (Figure 5.3 (a)), the ordering is consistent with the assumed correlations

between the X variables and the response variable. When the AUROC is applied

(Figure 5.3 (b)), the ordering changes with X6 (not correlated with Y ) taking

the place of variable X4 (correlated with Y ). Finally, the application of the

AIC measure (Figure 5.3 (c)) reveals a behaviour similar to that of the marginal

Lorenz Zonoids.

Figures 5.3 (a) and (b) also report the p-values that correspond to the progres-
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Figure 5.3: Variables’ selection with different methods, n = 1000

sive tests of variable inclusion. Figure 5.3 (a) indicates that a stepwise selection

based on the Lorenz Zonoid tests stops with a model that contains (X1, X2, X3),

the most correlated variables. Figure 5.3 (b) indicate similar results when the

stepwise selection is based on the DeLong tests for the AUROC.

Figure 5.4 replicates the previous analysis using a larger sample of 10,000

observations.

p−value<0.001

p−value<0.001

p−value=0.046 p−value>0.10 p−value>0.10

0.0

0.1

0.2

0.3

0.4

X1 X2 X3 X4 X5 X6

Variables

p
a
y
_
o
ff

Pay−off (Lorenz Zonoid) − number of generated observations: 10,000

(a)

p−value<0.001

p−value<0.001

p−value=0.05

p−value>0.10

p−value=0.05

0.900

0.925

0.950

X1 X2 X3 X4 X6 X5

fct_inorder(Variables)

A
U

R
O

C

AUROC − number of generated observations: 10,000

(b)

4000

4500

5000

5500

6000

X1 X2 X3 X4 X6 X5

fct_inorder(Variables)

A
IC

AIC − number of generated observations: 10,000

(c)

Figure 5.4: Variables’ selection with different methods, n = 10000

The p-values in Figure 5.4 (a) indicate that, with the Lorenz Zonoid procedure,
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variable X4 becomes significant, reflecting the large sample size, which allows to

recognise all assumed non zero correlations. On the other hand, the procedure

based on the AUROC fails to recognise the correct model, as it selects, besides

X1, X2, X3, X4 also variable X6. Last, the AIC procedure confirms the model

selected with 1, 000 variables. In summary, it seems that our proposal is the best

performer, as it recognises the correct correlation structure, taking sample size

into account.

5.4 Application

5.4.1 Data

In this section we apply our proposed method to data supplied by Modefinance, a

European Credit Assessment Institution (ECAI) that specializes in credit scoring

for P2P platforms focused on SME commercial lending. The whole dataset is de-

scribed by [29] to which we refer for further details. Here we focus on the twelve

explanatory variables selected by the Authors: Total Assets/Total Liabilities

(X1); Current Assets/Current Liabilities (X2); (Profit or Loss before tax+Interest

paid)/Total Assets (X3); Return on Equity (X4); Operating Revenues/Total As-

sets (X5); Interest paid/(Profit before taxes+Interest paid) (X6); EBITDA/Inter-

est paid (X7); EBITDA/Operating Revenues (X8); EBITDA/Sales (X9); Trade

Receivables/Operating Revenues (X10); Inventories/Operating Revenues (X11);

Turnover (X12).

The data on the above mentioned explanatory variables is extracted from the

balance-sheets of 15,045 SMEs, mostly based in Southern Europe, for the year

2015. The data on the response variable is obtained from information about the

status (0 = active, 1 = defaulted) of each SME one year later (2016), as collected

from the official registers of bankruptcy. Note that the observed proportion of

defaulted companies is equal to 10.9%.
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5.4.2 Results

With the same data, [?] have constructed logistic regression scoring models that

aim at estimating the probability of default of each company, using the available

explanatory data and, in addition, network centrality measures that are obtained

from similarity networks.

To improve the predictive performance of the model, [15] have applied the

Gradient Boosting (XGBoost) tree algorithm, and obtained a substantial increase

in predictive performance: the Area Under the ROC Curve (AUROC) increases

from a value of 0.81 obtained with the application of the logistic regression, to a

value of 0.93, obtained with the Gradient Boosting method.

The same Authors identify the variables X1 and X3 as the variables that rank

highest in terms of the Shapley value explanation of the probability of default,

a result that is quite consistent with most credit scoring models, that typically

include, among the explanatory variables of credit default, a measure of financial

leverage (such as variable X1) and a measure of profitability (such as variable

X3).

We consider the same data, and the same twelve explanatory variables as in

[15], on which we apply a logistic regression model after the data is randomly split

in a training set (80%) and a test set (20%). We then calculate, on the test set, the

contribution of each of the explanatory variables to the estimate of the probability

of default, using our proposed Lorenz Zonoid based approach. Additionally to

what Shapley values can do, we provide contributions that are normalised in

the [0, 1] interval, and whose additional value can be assessed in terms of its

statistical significance. Doing so, we show how a model comparison procedure

based on the Lorenz Zonoids can improve the explainability of a machine learning

model, choosing a parsimonious set of explanatory variables while maintaining a

high predictive accuracy.

The implementation of our proposed model comparison procedure starts by

computing the marginal contribution of each single explanatory variable Xj, for
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j = 1, . . . , 12, to the explanation of the probability of default. The marginal

contributions are determined by building twelve simple logistic regression mod-

els, each of them involving only one of the twelve predictors, and calculating

the Lorenz Zonoid value LZ(Xj) for each of them. This leads to a ranking of

the explanatory variables, to be used in the stepwise procedure. In the forward

perspective, the variable with the highest LZ(Xj) value is selected as the first

variable to be included in the model. Then, progressively, more complex models

are implemented by introducing at each step an additional variable, according to

the obtained variable ranking. Conversely, in the backward perspective, the vari-

able with the lowest LZ(Xj) value is selected as the first variable to be removed

from the full model and, then, progressively, simpler models are implemented by

deleting at each step according to the reversed variable ranking.

The marginal contributions of each considered explanatory variable, measured

in terms of LZ(Xj), along with the corresponding value of the AUROC, for

comparison purposes, are displayed in Figure 5.5 (a) and (b), respectively.
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Figure 5.5: Variables’ marginal contribution - Logistic regression model

From Figure 5.5 (a), the variables that contribute the most are variables X1

and X3, as in [?], followed by X9 and, then, the others. The least important

results to be X11. Differently, from Figure 5.5 (b), the most important variable

is X7, followed by X1, X4 and the others. The least important results to be X11.

We have then implemented a Lorenz Zonoid and an AUROC forward stepwise

procedure starting from X1 and, then, progressively adding the other variables,

up to the full model. At each step, the additional contribution of the new added

variable is measured by pay-off (Xk). For the sake of completeness, we also report
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the F1 accuracy index, a standard practice as the AUROC, in the seventh column

of Table 5.2. To decide when to stop the procedure at a certain step, we apply the

statistical test proposed in Subsection 5.2.3 and, thus, continue the process until

the additional contribution is significantly different from zero. In this way the

selected model represents a good trade-off between predictive accuracy (which

increases with model complexity) and explainability (which decreases with model

complexity).

The results of the procedure, based on the Lorenz Zonoid pay-offs, are illus-

trated in Table 5.2.

Table 5.2: Logistic regression model (forward stepwise) - Marginal contributions
(LZ(ŶXj

)); additional contributions (pay-off (Xk)); significance (p-value) of the
additional contributions; F1 metric. Legend: TA/TL=Total assets/Total Liabil-
ities; (PLBT+IP)/TA=(Profit or Loss before tax+Interest paid)/Total Assets;
EBITDA/S=EBITDA/Sales; TO=Turnover.

ID Variable LZ(ŶXj
) ID of the

included
variables

pay-off (Xk)p-
value

F1

1 TA/TL 0.3943 1 - - -
3 (PLBT+IP)/TA0.3714 1, 3 0.0544 <

0.001
0.3844

9 EBITDA/S 0.3244 1, 3, 9 0.0081 <
0.001

0.3865

12 TO 0.3061 1, 3, 9, 12 0.0002 0.2069 0.3865

Looking at Table 5.2 and, in particular, at the p-values of the test, reported

in the sixth column, we obtain that the best model includes three explanatory

variables: X1, X3, as in the reference literature (see, e.g. [?]), and also variable

X9. For comparison purposes, Table 5.3 highlights the results of the procedure

based on the AUROC differences.

Table 5.3: Logistic regression model (forward stepwise) - Marginal con-
tributions (AUROC); additional contributions (difference of AUROC); sig-
nificance (p-value) of the additional contributions; F1 metric. Legend:
EBITDA/IP=EBITDA/Interest paid; TA/TL=Total assets/Total Liabilities.

ID Variable AUROCXj
ID of
the in-
cluded
vari-
ables

pay-off (Xk)p-
value

F1

7 EBITDA/IP 0.7753 7 - - -
1 TA/TL 0.4113 7, 1 0.0016 0.9050 0.2942

In agreement with Figure 5.5 (b), Table 5.3 shows that the best model contains
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variable X7 (EBITDA/Interest paid). In addition, the DeLong test indicates to

stop at that point, leading to a very parsimonious model, with only one variable.

We remark that the result of the AUROC based procedure is not in line with the

literature, as it includes in the model a measure of profitabilty but not a measure

of financial leverage.

We also remark that, for robustness purposes, we have implemented a back-

ward stepwise procedure, for both the Lorenz Zonoid pay-off and the AUROC.

The results have confirmed the significance of the variables contained in the mod-

els selected with the forward procedure.

We also remark that a very important aspect of our proposal is its general-

ity: it allows to extend the same model comparison procedure to more complex

frameworks, which do not necessarily have a probabilistic background, such as

those based on the employment of neural networks and on tree models such as

XGBoost models.

We now report the results of model comparison, for a neural network model

built (without loss of generality) with five neurons in the hidden layer. The

behaviour of the LZ(Xj) and of the AUROC for each explanatory variable is

shown in Figures 5.6 (a) and (b), respectively.
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Figure 5.6: Variables’ marginal contribution - Neural network model

From Figure 5.6 (a), the variables that contribute the most are variableX7 and

X1, and similarly in Figure 5.6 (b), although in a reversed order. Additionally,

Figure 5.6 (b) indicates a high importance also for variable X6. In both cases,

the least important results to be X11.

The results of the stepwise procedure for the neural network models are re-
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ported, respectively, in Table 5.4, for the LZ(Xj) measure; and in Table 5.5, for

the AUROC measure.

Table 5.4: Neural network model (forward stepwise) - Marginal contribu-
tions (LZ(ŶXj

)); additional contributions (pay-off (Xk)); significance (p-value)
of the additional contributions; F1 metric. Legend: TA/TL=Total assets/To-
tal Liabilities; IP/(PBT+IP)=Interest paid/(Profit before taxes+Interest paid);
EBITDA/IP=EBITDA/Interest paid.

ID Variable LZ(ŶXj
) ID of

the in-
cluded
vari-
ables

pay-off (Xk)p-
value

F1

1 TA/TL 0.5343 1 - - -
6 IP/(PBT+IP) 0.4684 1, 6 0.0212 <

0.001
0.4154

7 EBITDA/IP 0.4574 1, 6, 7 0.0009 0.7806 0.400

Table 5.5: Neural network model (forward stepwise) - Marginal contribu-
tions (AUROC); additional contributions in terms of AUROC difference;
significance (p-value) of the additional contribution; F1 metric. Legend:
TA/TL=Total assets/Total Liabilities; EBITDA/IP=EBITDA/Interest paid;
IP/(PBT+IP)=Interest paid/(Profit before taxes+Interest paid).

ID Variable AUROCXj
ID of
the in-
cluded
vari-
ables

pay-off (Xk)p-
value

F1

1 TA/TL 0.7809 1 - - -
7 EBITDA/IP 0.7752 1, 7 0.0219 0.0426 0.4366
6 IP/(PBT+IP) 0.7665 1, 7, 6 0.0013 0.8348 0.4000

From Table 5.4 we obtain that, similarly from what occurs for logistic regres-

sion models, the neural network procedure selects two variables, and one is X1.

However, the second variable is X6 and not X3. From a financial viewpoint, the

results are indeed similar, as both X3 and X6 measure profitability, whereas X1

indicates financial leverage.

Similar conclusions can be derived when the AUROC metric is employed in

place of the Lorenz Zonoid pay-off. Table 5.5 shows that, again, two explanatory

variables are included in the selected model. While the first one is confirmed to be

X1, the second is X7, instead of X6: another function of the profitability. These

results are confirmed when a backward selection procedure is implemented, for

robustness.

In summary, the application of the procedure to neural networks shows that
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both the Lorenz Zonoid and the AUROC model selection lead to choose a model

with two variables (one measuring leverage and one measuring profitability),

which represents a very good trade-off between explainability and accuracy. On

one hand, the model is more explainable than the full model, as the response

depends significantly only on two variables, and we know which ones (whereas

a full neural network model is a black box); on the other hand, the model is

accurate as its predictive accuracy is not significantly improved making it more

complex (adding more variables).

We can apply our procedure, in the same way, to another type of machine

learning model: the XGBoost, which belongs to the class of tree models. The

results are illustrated, from a graphical view point, in Figure 5.7 (a) and (b); and

are specified with numerical details in Tables 5.6 and 5.7.
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Figure 5.7: Variables’ marginal contribution - Extreme gradient boosting model

Table 5.6: XGBoost model (forward stepwise)- Marginal contribution in terms
of each single explanatory variable (LZ(ŶXj

)); marginal contribution in terms
of any additional explanatory variable (pay-off (Xk)); the marginal contribution
significance (p-value); F1 metric. Legend: TA/TL=Total assets/Total Liabili-
ties; EBITDA/IP=EBITDA/Interest paid; IP/(PBT+IP)=Interest paid/(Profit
before taxes+Interest paid); ROE=Return on Equity.

ID Variable LZ(ŶXj
) ID of

the in-
cluded
vari-
ables

pay-off (Xk)p-
value

F1

1 TA/TL 0.5565 1 - - -
7 EBITDA/IP 0.5496 1, 7 0.0747 <0.001 0.4170
6 IP/(PBT+IP) 0.5212 1, 7, 6 0.0052 <0.001 0.4386
4 ROE 0.5210 1, 7, 6,

4
0.0035 0.0758 0.4390

Figure 5.7 (a) shows that variables X1 and X7, followed by X6, are the factors

with the highest impact on the probability of default. Figure 5.6 (b) shows a
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Table 5.7: XGBoost model (forward stepwise) - Marginal contributions
(AUROC); additional contributions in terms of AUROC difference; sig-
nificance (p-value) of the additional contribution; F1 metric. Legend:
EBITDA/IP=EBITDA/Interest paid; TA/TL=Total assets/Total Liabilities;
ROE=Return on Equity.

ID Variable LZ(ŶXj
) ID of

the in-
cluded
vari-
ables

pay-off (Xk)p-
value

F1

7 EBITDA/IP 0.7710 7 - - -
1 TA/TL 0.7672 7, 1 0.0362 <

0.001
0.4170

4 ROE 0.5210 7, 1, 4 0.0068 0.1282 0.4105

similar results, swapping X1 with X7 and replacing X6 with X4.

In terms of model selection, both procedures lead to select a model that

contains X1 and X7. Additionally, the Lorenz Zonoid based procedure includes

also X6, leading to a more complex model, with three significant contributions.

We remark that also in this case, the backward model search confirms the selected

variables.

The conclusions that can be drawn from the XGBoost model selection proce-

dure are in line with those from the neural network model. Overall, the empirical

findings from our analysis can be summarised with the conclusion that the pro-

posed model selection procedure, based on the Lorenz Zonoids, is able to simplify

a black box machine learning model into an explainable model.

From a financial viewpoint, all models indicate that the most important vari-

ables for credit scoring are: a measure of financial leverage and a measure of

profitability, confirming the previous analysis of [15] and [22] on the same data.

A natural question that arises is: which of the three model champions is the

best model overall, both in absolute terms (predictive accuracy) and in relative

terms, with respect to the full model (explainability)? To answer this question,

the logistic regression, neural network and XGBoost models selected with the

Lorenz Zonoid approach are compared in terms of the predictive accuracy of their

full model and selected model. To achieve an “external” evaluation, predictive

accuracy is evaluated using the AUROC measure. The results can be found in
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Table 5.8.

Table 5.8: Predictive accuracy of the selected and full models
AUROC
selected
model

AUROC
full model

Logistic regression model 0.8037 0.8045
Neural network model 0.7800 0.7810
XGBoost 0.8110 0.8557

From Table 5.8 note that the best machine learning model, in terms of pre-

dictive accuracy, is the XGBoost model, with an AUROC of 0.8110; whereas the

neural network model is the worst one, with an AUROC of 0.78. On the other

hand, the XGboost model is the least explainable model: differently from what

occurs for the logistic regression and neural networks, the AUROC of the full

model reduces substantially and in a significant way (p-value greater than 0.05)

moving to the reduced model.

5.5 Concluding remarks

The paper proposes to improve machine learning models by means of a model

selection methodology, based on the Lorenz Zonoids, which allows to maintain a

high predictive accuracy, explaining the predictions with a parsimonious set of

explanatory variables.

The proposal is quite general and can be applied to any machine learning

model, whether based on a probabilistic framework or not. In the case of a binary

response, the approach is also consistent with the results that can be obtained

applying the well known AUROC accuracy measure.

Further advantages of our proposed procedure are: its generality (in the paper

we have considered a binary response, but the same tool can be applied for

ordinal or continuous response, differently from what occurs for the AUROC); its

computational efficiency (we do not need to calculate the Lorenz Zonoids of all

models, but only of those considered in the stepwise path, differently from what

occurs with the Shapley value approach to explainability).

The application of the proposal to a simulated data has shown that it is
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capable to select the correct model, and to take into account the sample size.

The application of the proposal to a real credit scoring database has shown its

capability to identify, as relevant variables, those that concern the profitability

and the financial leverage of the companies asking for credit.

We believe that the proposed method could be employed as a use case to

improve the compliance of Artificial Intelligence applications in finance to prin-

ciples such as Sustainability, Accuracy, Fairness and Explainability, leading to a

S.A.F.E. approach to AI which can be desumed, for example, from the European

AI act (artificialintelligenceact.eu).

Further research may focus on the application of the methodology to other

machine learning applications, that involve different type of variables: ordinal or

continuous. The generality of the proposed measure allows to do so, differently

from what occurs with available metrics such as the AUROC and the MSE.

artificialintelligenceact.eu)


Chapter 6

Concluding Remarks

6.1 Summary

The motivation of this thesis is due to the growing attention to explainability in

Machine Learning and Artificial Intelligence applications. In these contexts, the

understanding of how these so called ”black-box” models make their decision has

a crucial role. Other than regulatory and ethical issues, exploring what causes a

model to output a particular prediction, as well as which are the most important

global predictors for a specific problem, can increase model performances and

give useful insights on which features should be leveraged. In this thesis, these

concepts are brought one step further: we research the ability of eXplainable AI

models of framing and exploiting new pieces of information, information which is

already there, within the predictive models and the data matrix, but emerges from

another perspective and makes a useful addendum to traditional data modeling.

In fact, we show how to use XAI model outputs not only for analysis, which is still

a primary feature of these models, but as transformed inputs as well, employing

them in predictive models, clustering, feature and model selection.

In chapter 2, we explore the behaviour of customer interacting with insur-

ance policies in a new, digital way. We modeled behaviours of customer churn

and propensity to buy with state-of-the-art, powerful classifiers, in order to focus

then on interpretability, which we used to build a model for customer segmen-

tation which is different from traditional ones. Results suggest that explainable

machine learning models can effectively improve our understanding of customers’

behaviour, and that further investigation may involve the application of the model
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to other situations arising in the insurance industry, which may gain from the

application of artificial intelligence technologies, as well as extension to other

industries and case studies.

In chapter 3 we focus on the analysis of two of the most accredited XAI

models, specifically Local Interpretable Model-agnostic Explanations (LIME) and

SHapley Additive exPlanations (SHAP). These models are compared through

the case study of Probability of Default (PD) estimation for italian Small and

Medium Enterprises. Needless to say, it is important to understand which factors

impact complex models predictions and are relevant for increasing or lowering

the predicted PD. We therefore look at these XAI models in order to see how

consistent their parameters attribution are across the whole set of data, with

SHAP coming out as the best comparable method, due to its very desirable

properties.

In chapter 4, we look for ways to leverage values attributed to the feature-

observation pair by explainable model. We use a dataset made up of these values

to test how different feature selection models fare with respect to their applica-

tion to original data. Our findings confirm the validity of the approach, obtaining

a balanced model capable of satisfying both parsimony and predictive accuracy,

beating traditional feature selection methodologies. This finding is important be-

cause in an environment ever-growing with features and data, appropriate feature

selection serves the purpose of increasing robustness and generalization of models

while keeping computational cost low.

In chapter 5 we propose a methodology to improve machine learning models

through a model selection procedure based on the Lorenz Zonoids. This is based

on the idea of calculating the marginal contribution of variables to the model as

a whole, together with the provision of a path to perform model selection and a

statistical test of significance. We show that, in case of binary target variable,

the approach is consistent with the results provided by the well known AUROC

accuracy measure. Further advantages are generality (the tool can can be applied
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for ordinal or continuous response contrary to what happens with AUROC; plus,

it can be applied to any machine learning model, whether probabilistic or not),

computational efficiency (it is easy to calculate the Lorenz Zonoids of the models

considered in the stepwise path, differently from what happens with the Shapley

value approach to explainability) and statistical validity. We applied the pro-

posed methodology to both simulated data, to show its behaviour in a controlled

environment, and on real data provided by a rating agency.

All the outlined works show it is possible to fruitfully employ this new layer

of models, the eXplainable ones, synergistically with predictive and clustering

models, to achieve a higher level of understanding of problems and ultimately

improve the benefits that Machine Learning and Artifical Intelligence can bring

to the world.
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APPENDICES

A Appendix A Title

Table A.1: Variables’ description

Variable Name Description

day of week The weekday of the event
days since last Days passed since last interaction with user
device Type of device
models Device model
models Other Catch-all label for low frequency device models
month Month where the event occurs
n afternoon Cumulative number of interactions occurred this moment of the day
n autumn Cumulative number of interactions occurred this season
n Friday Cumulative number of interactions occurred this day
n morning Cumulative number of interactions occurred this moment of the day
n on demand Cumulative number of requested policy quotes
n push notification Cumulative number of notification pushed on device
n Saturday Cumulative number of interactions occurred this day
n spring Cumulative number of interactions occurred this season
n summer Cumulative number of interactions occurred this season
n Tuesady Cumulative number of interactions occurred this day
n Wednesday Cumulative number of interactions occurred this day
n winter Cumulative number of interactions occurred this season
number bought Number of bought policies
number pushed Number of times the insurance quote has been sent
os Android Flag to represent device OS Android
os iOS Flag to represent device OS iOS
season Season where the event occurs
time of day Moment of the day where the event occurs
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