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Abstract

Thoracic aorta is the first portion of the main artery of the systemic cir-
culation, i.e., the aorta, supplying oxygenated blood to main organs of our
body. For this reason, it is evident that an impairment of its function can have
dramatic impact on the overall circulation. Among the aortic diseases, arte-
riosclerotic (degenerative) disease represents the most common cause of tho-
racic aneurysms. A detailed comprehension of the local hemodynamic change
and of the effects of vascular walls modification on the flow could be very use-
ful in predicting the disease progression. The development of Computational
Fluid Dynamics (CFD), also due to the increasing in the power of electronic
computers and algorithms, has contributed to a significant improvement in
vascular research. In this context, CFD simulations are less invasive than in
vivo experiments and potentially more accurate and flexible than in vitro ones.
CFD simulations can be performed by solving all the length scales of motion,
i.e. Direct Numerical Simulation (DNS), or using alternative, but corrobo-
rated, approaches, like Reynolds Averaged Navier-Stokes (RANS) equations or
Large-Eddy Simulation (LES). Due to the moderate/large Reynolds number
and complex geometries, DNS could be significantly computationally expen-
sive in aneurysmatic aortic simulations. Several studies demonstrated that LES
models are promising candidates for hemodynamic problems, with high effi-
ciency and accuracy. In three-dimensional (3D) CFD simulations the treatment
of boundary conditions still represents a critical aspect. Recently, a widely used
choice consists in the prescription of particular lumped parameter (or 0D) mod-
els, leading to the coupled 3D-0D models. These lumped parameter models al-
low to prescribe patient-specific boundary conditions, by tuning the parameter
values according to the available measurements of patients. The enforcement
of lumped parameters models as boundary conditions of 3D ones corresponds
to the prescription of Neumann boundary conditions. However, it is known
that Neumann boundary condition is more prone to numerical instabilities. In
particular, Neumann outlet boundary conditions in presence of flow reversal at
the outlets lead to the so called backflow instability. The goal of this work is to
provide a set of tools and a clear workflow aiming at performing accurate and
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efficient CFD simulations with acceptable computational cost on both healthy
and diseased patients. First, we derive, implement, and assess some particular
lumped parameter models, useful for coupling to more sophisticated 3D mod-
els. Then, a patient-specific 3D-0D model is studied to investigate the impact
of the transcatheter aortic root procedure on coronary perfusion. Moreover,
a comparison between the coupled 3D-0D model and the full 0D model is
addressed. Another prominent aim of this work consists in proving that a par-
ticular LES model, i.e. the Smagorinsky model, provides an accurate solution
for patient-specific simulations, and controls the occurrence of backflow insta-
bility by a proper selection of the Smagorinsky coefficient. The application of
CFD in other vascular regions is presented as well; we focus on a case study
concerning the intra-stent thrombotic apposition that occurred in two patients
undergoing endovascular treatment for popliteal arterial aneurysm.
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Chapter 1

Introduction

Cardiovascular diseases are the leading cause of death in the Western world
[1]. In particular, one person dies every 36 seconds in the United States from
cardiovascular disease [2]. Cardiovascular diseases include heart and blood ves-
sel diseases, such as stroke, aortic aneurysms, and peripheral artery disease.
The aorta is the main artery in the human body, originating from the left
ventricle of the heart and extending down to the abdomen, where it splits into
two smaller arteries (the common iliac arteries). The aorta could be anatom-
ically divided into a thoracic section and an abdominal section: the thoracic
aorta goes from heart to diaphragm, the abdominal aorta extends from di-
aphragm to the aortic bifurcations. The most common thoracic aortic diseases
are aneurysm and dissection. A thoracic aortic aneurysm is a permanent, local-
ized, congenital or acquired dilatation of the thoracic aorta. An aortic dissec-
tion is a disruption of the medial layer of the aorta resulting in the separation
of the layers of the aortic wall.

Recently, the development of Computational Fluid Dynamics (CFD) as well
as the advances in electronics and mathematical algorithms have produced a
significant improvement in vascular research. A detailed comprehension of the
local hemodynamic change, of the effects of vascular wall modification on the
flow pattern, of the gradual adaptation of the global system as a result of
surgery, is possible with the use of sophisticated computer simulations and
could be extremely useful to accurately set up therapeutic and/or surgical
treatments [3].

The first and simplest model simulating the cardiovascular system was de-
veloped by Frank in 1899 [4] and was called lumped parameter model (or 0D
model). By exploiting the analogy between hydraulic and electric circuits, it
includes a peripheral resistance and a compliance, in order to represent the
arterial system as a single elastic chamber. However, this first model does not
allow to describe the phenomenon of pulse wave propagation throughout the

1



2

arterial tree, and flow rate and pressure waveforms at different districts of the
circulatory system. This model has been refined several times over the years
(Jager et al. [5], Westerhof et al. [6], Avolio [7], Schumacher et al. [8],...) in
order to provide more reliable results. For example, Avolio [7] proved a good
agreement with experimental measurements, by implementing a lumped pa-
rameter model with 128 segments corresponding to the central vessels and
major peripheral arteries. Nowadays, the most widely used lumped parameter
models allow to provide simulations of large parts of the systemic circula-
tion, including systemic dynamics, such as feedback mechanisms [9], at low
computational cost. However, the straightforward interpretation of the results
risks being too little detailed, especially in the pathological cases. To overcome
this drawback, the lumped parameter models have been coupled with more
sophisticated three-dimensional (3D) ones, arising the so-called geometrical
multiscale approach.

The geometrical multiscale approach includes dimensionally heterogeneous
models, in order to represent the interactions between local and systemic hemo-
dynamics [3]. The term multiscale does not only refer to the coupled 3D-0D
models, but also to those coupled with the one-dimensional (1D) ones, i.e. 3D-
1D or 3D-1D-0D. This approach calls 3D models only in those regions where a
detailed knowledge of the hemodynamic is required, while 1D and 0D models
are applied to represent the remainder of the vascular tree [10]. The present
thesis does not deal with 1D models, except to provide a rigorous derivation
of lumped parameter models. Several groups successfully performed 3D-0D
blood flow simulations [11]-[15]. However, CFD simulations involving 3D-0D
models are still critical for two main reasons, i.e. the computational cost and
the treatment of boundary conditions.

Direct Numerical Simulations (DNS) are the most widely used in CFD sim-
ulations featured by laminar flow and low Reynolds number. However, in aortic
simulations, DNS may require high computational cost to solve the smallest
significant scales of flow, especially in aortic diseased simulations in which flow
could become turbulent. For example, such computational cost is not compat-
ible with a large number of patients, like in a computer-aided clinical trial.
Reynolds-Averaged Navier-Stokes (RANS) equations and Large-Eddy Simula-
tions (LES) represent alternative approaches to DNS. RANS models reduce
significantly the computational cost compared to both DNS and LES, yet they
decrease the accuracy [16]. LES models have been proved to be more suitable
on modeling the disturbed nature of flow [17]. Therefore, in Chapter 5 we will
consider a LES model to describe turbulent flows.

Another challenge in modern CFD simulations is represented by the treat-
ment of boundary conditions. Typically, we do not have all data we need for the
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correct statement of the mathematical problem. As matter of fact, for either
practical or ethical reasons, three scalar data on each point of the boundary
are seldom (or never) available. Also, available data are affected by noise and
measurement errors and, sometimes, inconsistencies. Surrogate models must be
advocated to replace the missing data, yet introducing arbitrary choices result-
ing in additional errors. In Chapters 3 and 5, we impose Neumann boundary
conditions, in order to prescribe the pressure at the outlet of the 3D model and
at the inlet of the 0D one, since velocity boundary data are mostly inacces-
sible in patient-specific setting. However, the prescription of Neumann outlet
boundary conditions in presence of flow reversal at the outlets leads to a nu-
merical instability, called backflow instability. This numerical problem occurs
due to the energy injection caused by the convective term of the Navier-Stokes
equations. Xu et al. [18] proved theoretically and numerically that a particu-
lar deconvolution-based LES model is able to suppress the occurrence of the
backflow instability. Given such encouraging outcomes, in Chapter 5 we will
use a LES model, i.e. the Smagorinsky model, already implemented in the
commercial software Ansys Fluent, to prove that it provides accurate results,
comparing with the DNS, and controls the backflow instability, thanks to a
reasonable selection of the LES parameter.

Finally, we present two clinical cases concerning the intra-stent throm-
botic apposition occurring after endovascular treatment for popliteal arterial
aneurysm (PAA) [19]. Intra-stent thrombosis is one of the major failure models
of endovascular repair to treat PAA. In Appendix, we will perform patient-
specific CFD analyses of popliteal stenting assuming different boundary con-
ditions and assessing the impact of leg bending [20].

Overall, this framework aims at providing a basis for performing accurate
and efficient patient-specific simulations that can help clinical research in rea-
sonable computational time. All the aspects just described find a place in this
thesis, which is structured as follows:

• Chapter 2 focuses on the derivation and some applications of lumped pa-
rameter models. First, it provides the derivation of 1D models from the
3D ones, thanks to conservation principles. Then, the lumped parameter
models are retrieved from the 1D model, by an averaging procedure and
applying some approximations. Moreover, it introduces some example
of lumped parameter models that could be useful in clinical research,
such as a 0D describing the entire systemic circulation, one the periph-
eral circulation (i.e. the three-element Windkessel model), and one the
circulation of coronary arteries.

• Chapter 3 illustrates a coupled 3D-0D model of aneurysmatic ascending
aorta including the coronary ostia. DNS simulations were performed in
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order to investigate the impact of a particular endovascular procedure
on the coronary circulation. This study was conducted in collaboration
with Cardiocentro Ticino, Lugano.

• Chapter 4 presents the main properties of LES models and a brief review
of the most common LES models found in literature. In particular, more
details about the Smagorinsky model are discussed, since it is used in
Chapter 5 to perform patient-specific simulations.

• Chapter 5 deals with a LES model, i.e. the Smagorinsky model, for tho-
racic aortic aneurysms. The parameter estimation of the LES model is
not trivial, in particular with high Reynolds number and complex geom-
etry. This calibration could be very useful in each engineering application
dealing with CFD simulations and turbulence models. The main purpose
of this section is to prove that the Smagorinsky model both provides ac-
curate results and stabilizes the backflow instability, by a proper selection
of the Smagorinsky coefficient. Qualitative and quantitative analyses are
conducted from the results of the patient-specific simulations related to
three patients with aortic aneurysm. This study started during my re-
search period abroad (September-December, 2019) at Emory University
under the supervision of Prof. A. Veneziani.

• Chapter 7 draws the conclusions of this thesis, focusing on the ideal
framework to perform the most accurate and efficient patient-specific
simulations. Future developments are also discussed.

• Appendix 1 introduces CFD simulations based on two patients undergo-
ing endovascular treatment for popliteal arterial aneurysm. This study
is part of the PERFEKT project led by Dr. B. Pane, Dr. G. Salsano
(San Martino Hospital, Genova) and Prof. M. Conti, and funded by the
Italian Ministry of Health.

• Appendix 2 reports all the lumped parameter values estimated in the
present thesis.



Chapter 2

Lumped parameter models

CFD simulations are usually based on three-dimensional models, described
by the Navier-Stokes equations, which govern fluid mechanics. However, the
high computational cost, the difficult modeling of the circulatory system through
different length scales, required to represent the blood flow from the large aorta
to the smaller blood vessels, have led to the development of reductive models.
The latter models can provide reliable results even if they are simplified with
respect to the local physiology.

As many reductive models can be considered, at the beginning of the first
year of PhD program we focused on derivation and implementation of lumped
parameter (or 0D) models describing the systemic circulation.

2.1 Derivation of lumped parameter models
In the next section, 1D models will be derived from the 3D Navier-Stokes

equations, directly using the conservation principles. Then, we will obtain the
equations representing the lumped parameter model from the 1D equations
(see section 2.1.2). Some applications will also be introduced.

2.1.1 From 3D to 1D models

1D models are such models in which the space dependence is reduced only
to the axial coordinate. We assume that the fluid is incompressible, Newtonian,
and with constant viscosity. Then, the Navier-Stokes equations write:

ρ
∂u

∂t
+ (u · ∇)u− div(T) = ρf b

∇ · u = 0

5
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where u(x, t) =
(
u1(x, y, z, t), u2(x, y, z, t), u3(x, y, z, t)

)
is the velocity field, T

the Cauchy stress tensor, and f b denotes the body forces.
There are (at least) two ways to derive 1D models:

• assuming cylindrical symmetry and integrating the Navier-Stokes equa-
tions on a generic section (L. Formaggia et al. [21]);

• using the conservation principles (L. Formaggia et al. [3]).

Here we follow the second approach, since it is more general and does not
require simplifying assumptions on the geometry of the vessel section.

We consider a simple compliant tube as a model of the artery, with volume
Vt, boundary ∂Vt = ∂Vt,w ∪S1 ∪S2, and outer normal n. S1 (fixed), S2 (fixed),
S are assumed normal to the x-axis. The axis of the vessel is rectilinear and
coincides with the x-axis (see Figure 2.1).

Figure 2.1: Notation used to describe a simple compliant tube [3].

Before deriving the equations of the 1D model, we recall the Reynolds’
transport theorem and some useful definitions.

Theorem (Reynolds’ transport theorem)
Let f = f(x, t) be a continuous function, then

d

dt

∫
Vt

f dV =

∫
Vt

∂f

∂t
dV +

∫
∂Vt

f ub · n dσ, (2.1.1)

where x = (x, y, z) and ub is the velocity of the boundary of Vt.

From the previous assumptions:

ub · n = 0 on S1, S2

ub = uw on ∂Vt
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The relative velocity between the arterial wall and the fluid at the lumen is
defined as w = uw − u. Then, we can write the second term on the right in
equation (2.1.1) as:∫

∂Vt

f ub · n dσ =

∫
∂Vt,w

f uw · n dσ

=

∫
∂Vt,w

f w · n dσ +

∫
∂Vt,w

f u · n dσ.

We introduce the area-averaged value of f , given by

f =
1

A

∫
S

f dσ, where A =

∫
S

dσ. (2.1.2)

where A = A(x, t) =
∫
S
dσ is the area of the section S. Using equation (2.1.2),

then ∫
Vt

f dV =

∫ x2

x1

(∫
S

f dσ

)
dx =

∫ x2

x1

Af dx,

and the left hand side of the equation of the Reynolds’ transport theorem
becomes:

d

dt

∫
Vt

f dV =
d

dt

(∫ x2

x1

Af dx

)
=

∫ x2

x1

∂

∂t
(Af) dx,

since x1 and x2 are independent of time. Focusing on the right hand side of
the equation (2.1.1), we observe that∫

∂Vt,w

f u · n dσ =

∫
∂Vt

f u · n dσ −
∫
S1

f u · n dσ −
∫
S2

f u · n dσ

=

∫
∂Vt

f u · n dσ +

∫
S1

fu1 dσ −
∫
S2

fu1 dσ.

Thanks to the Gauss’ theorem and using the area-averaged quantity, we obtain∫
∂Vt,w

f u · n dσ =

∫
∂Vt

f u · n dσ +

∫
S1

fu1 dσ −
∫
S2

fu1 dσ

=

∫
Vt

∇ · (fu) dV −
∫ x2

x1

∂

∂x

(
A(fu1)

)
dx.
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The final form of the one-dimensional Reynolds’ transport theorem is∫ x2

x1

∂

∂t
(Af) dx =

∫
Vt

∂f

∂t
dV +

∫
∂Vt,w

f w · n dσ +

∫
∂Vt,w

f u · n dσ

=

∫
Vt

∂f

∂t
dV +

∫
∂Vt,w

f w · n dσ −
∫ x2

x1

∂

∂x

(
A(fu1)

)
dx

+

∫
Vt

∇ · (fu) dV

=

∫ x2

x1

(∫
S

∂f

∂t
dσ

)
dx+

∫ x2

x1

(∫
∂S

f w · n dγ
)
dx+

+

∫ x2

x1

(∫
S

∇ · (fu) dσ

)
dx−

∫ x2

x1

∂

∂x

(
A(fu1)

)
dx.

Since it is true for any values of x1 and x2, then the one-dimensional Reynolds’
transport theorem reads:

∂

∂t
(Af) +

∂

∂x

(
A(fu1)

)
=

∫
S

(
∂f

∂t
+∇ · (fu)

)
dσ +

∫
∂S

fw · n dγ.

Starting from the latter equation, we use the conservation principles, i.e. con-
servation of mass and balance of momentum, to derive the equations repre-
senting the 1D model. Concerning the conservation of mass, we consider f = 1,
then

∂A

∂t
+

∂

∂x
(Aū1) =

∫
∂S

w · n dγ,

recalling that we are assuming incompressible fluids (i.e., ∇ · u = 0). For the
balance of momentum, taking f = u1, we get

∂

∂t
(Aū1) +

∂

∂x

(
Au2

1

)
=

∫
S

(
∂u1

∂t
+ u · ∇u1

)
dσ +

∫
∂S

u1w · n dγ, (2.1.3)

thanks to the property: ∇ · (uu1) = u · ∇u1 + u1∇ · u = u · ∇u1. Using the
material derivative ( D

Dt
= ∂

∂t
+ u · ∇), then equation (2.1.3) becomes:

∂

∂t
(Aū1) +

∂

∂x

(
Au2

1

)
=

∫
S

Du1

Dt
dσ +

∫
∂S

u1w · n dγ. (2.1.4)

In order to calculate the first term on the right in equation (2.1.4), we recall
the balance of momentum for a generic volume Vt :∫

Vt

D

Dt
(ρu) dV = Fv + Fs

=

∫
Vt

ρf b dV +

∫
∂Vt

Tn dσ,
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where f b is the body force. Dividing by ρ and using the divergence theorem we
obtain ∫

Vt

Du

Dt
dV =

∫
Vt

f b dV +
1

ρ

∫
Vt

∇ ·T dV.

Invoking the constitutive equation for the fluid, i.e. T = −pI + D (p is the
pressure, I the identity tensor, D the tensor of deviatoric stresses), and setting
∇ ·D = d, then∫ x2

x1

(∫
S

Du

Dt
dσ

)
dx =

∫ x2

x1

[∫
S

(
f b +

1

ρ
(−∇p+ d)

)
dσ

]
dx. (2.1.5)

Since x1 and x2 can be arbitrarily chosen, we could write the x-component of
the latter equation (2.1.5) as∫

S

Du1

Dt
dσ =

∫
S

(
f b1 +

1

ρ

(
−∂p
∂x

+ d1

))
dσ. (2.1.6)

Substituting (2.1.6) in the previous equation (2.1.4) gives

∂

∂t
(Aū1) +

∂

∂x

(
Au2

1

)
=

∫
S

(
f b1 +

1

ρ

(
−∂p
∂x

+ d1

))
dσ +

∫
∂S

u1w · n dγ

=
A

ρ

(
ρf̄ b1 −

∂p̄

∂x
+ d̄1

)
+

∫
∂S

u1w · n dγ. (2.1.7)

The term u2
1 in this equation is handled by defining a momentum-flux correc-

tion coefficient α (sometimes called the Coriolis coefficient), which is a function
of the velocity profile, as

u2
1 =

1

A

∫
S

u2
1 dσ = αū2

1. (2.1.8)

The term representing the viscous forces d̄1 is taken to be a linear function of
ū1 of the form:

A

ρ
d̄1 = −kRū1, (2.1.9)

where kR denotes the viscous resistance of the flow per unit length of the
tube. Therefore, using equations (2.1.8) and (2.1.9), the balance of momentum
(2.1.7) reads:

∂

∂t
(Aū1) +

∂

∂x

(
Aαū2

1

)
= Af̄ b1 −

A

ρ

∂p̄

∂x
− kRū1 +

∫
∂S

u1w · n dγ.

This latter equation can be further simplified assuming that the lumen is im-
permeable, i.e. w · n = 0, and the body forces are negligible, i.e. f̄ b1 = 0.
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Moreover, simplifying the notation by denoting u = ū1 and p = p̄ and defining
the mass flux across a section as Q = Au =

∫
S
u1 dσ, we obtain the final form

of the 1D model:

∂A

∂t
+
∂Q

∂x
= 0 (2.1.10)

∂Q

∂t
+

∂

∂x

(
α
Q2

A

)
+
A

ρ

∂p

∂x
+ kR

Q

A
= 0 (2.1.11)

Since the number of unknowns (A, Q, and p) of the system (2.1.10)-(2.1.11)
exceeds the number of equations, a common way to close the system is to
introduce a relation between the pressure p and the vessel area A. In particular,
an algebraic relationship can be derived by assuming static equilibrium in the
radial direction of a cylindrical tube, i.e.,

p = Pext + β
(√

A−
√
A0

)
,

where Pext is the external pressure (assumed constant), A0 = A0(x) the sec-
tional area of the vessel, and

β =

√
πh0E

(1− ν2)A0

. (2.1.12)

In equation (2.1.12), h0 denotes the vessel thickness, E the Young modulus,
and ν the Poisson ratio.

2.1.2 From 1D to 0D models

Lumped parameter models are models in which the space dependence is
discretised, by splitting the cardiovascular system into a set of compartments.
They are often represented in terms of hydraulic or electric networks.

We consider a single artery Ω as our domain, with length ` = |x2−x1|. The
0D model is derived from the 1D model by an averaging procedure. Firstly, we
define the following mean quantities:

• mean flow rate over the artery

Q̂ =
1

`

∫ x2

x1

Q(x) dx, (2.1.13)

• mean pressure over the artery

p̂ =
1

`

∫ x2

x1

p dx,
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• mean area over the artery

Â =
1

`

∫ x2

x1

Adx.

Starting from equations (2.1.10) and (2.1.11), we integrate the continuity equa-
tion along the axial direction (x1 ≤ x ≤ x2) to obtain

`
dÂ

dt
+Q2 −Q1 = 0, (2.1.14)

where Q1(t) = Q(t, x1) and Q2(t) = Q(t, x2).
In considering the conservation of momentum, we add two further assump-

tions:

• the convective term ∂
∂x

(
αQ

2

A

)
can be neglected;

• the variation of A with respect to x is small compared to that of p and
Q; thus, A can be replaced with a constant value A0.

The first assumption is a good approximation to represent the peripheral cir-
culation, where blood flow is quite slow. The second assumption is reasonable
when the axial average is carried out over short segments [3]. Averaging over
x of the equation representing the balance of momentum of the 1D model
(2.1.11), we get∫ x2

x1

∂Q

∂t
dx+

A0

ρ

∫ x2

x1

∂p

∂x
dx+ kR

∫ x2

x1

Q

A0

dx = 0.

Using the definition of the mean flow rate (2.1.13) and multiplying by ρ/A0,
we obtain

ρ`

A0

dQ̂

dt
+
ρkR`

A2
0

Q̂+ P2 − P1 = 0, (2.1.15)

where P1(t) = P (t, x1), P2(t) = P (t, x2). Combining the equations (2.1.14) and
(2.1.15), the 0D model is described by:

`
dÂ

dt
+Q2 −Q1 = 0 (2.1.16)

ρ`

A0

dQ̂

dt
+
ρkR`

A2
0

Q̂+ P2 − P1 = 0 (2.1.17)
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Since the latter system has more unknowns than the number of equations, a
common way to close the system is to introduce a relation between the pressure
and the area, i.e.:

dÂ

dt
= k1

dp̂

dt
, (2.1.18)

where k1 is a constant depending on the geometry and the material property
[3]. Substituting (2.1.18) into the continuity equation (2.1.16) we obtain:

k1`
dp̂

dt
+Q2 −Q1 = 0 (2.1.19)

that, together with the momentum equation (2.1.17), represents the lumped
parameter model for a vessel.

Before the introduction of performance computers, early simulations of flow
for the cardiovascular system were based on the analogy between hydraulic and
electric circuits. Indeed, the flow rate can be seen as a current, the pressure as
voltage, blood viscosity as a resistance, and the wall compliance as a capac-
itance (see Table 2.1). Using this electrical analogy, we recast the system of

Hydraulic Electric
Pressure Voltage
Flow rate Current

Blood viscosity Resistance R
Blood inertia Inductance L

Wall compliance Capacitance C

Table 2.1: Analogy between hydraulic and electric networks.

equations (2.1.19) and (2.1.17) as:

C
dp̂

dt
+Q2 −Q1 = 0 (2.1.20)

L
dQ̂

dt
+RQ̂+ P2 − P1 = 0 (2.1.21)

where R = ρkR`
A2

0
represents the resistance induced to the flow by the blood

viscosity, L = ρ`
A0

the inductance of the flow, C = k1` the mass storage term
in the mass conservation law, due to the compliance of the vessel. Again, the
system of equations (2.1.20) and (2.1.21) has more unknowns than the number
of equations; thus, boundary conditions and further assumptions are needed in
order to close the system. For instance, the following four assumptions could
be used to close the system:
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1. given Q1, P2 and approximating p̂ ≈ P1, Q̂ ≈ Q2 (reasonable for a short
pipe), then the system becomes

C
dP1

dt
+Q2 = Q1 (2.1.22)

L
dQ2

dt
+RQ2 − P1 = −P2 (2.1.23)

which corresponds to the so called L-network (see Figure 2.2 (1));

2. given P1, Q2 and approximating p̂ ≈ P2, Q̂ ≈ Q1 (reasonable for a short
pipe), then the system becomes

C
dP2

dt
−Q1 = −Q2 (2.1.24)

L
dQ1

dt
+RQ1 + P2 = P1 (2.1.25)

which corresponds to the so called L-inverted network (see Figure 2.2
(2));

3. given P1, P2, then the system becomes

dP

dt
− 1

C
Q1 +

1

C
Q2 = 0 (2.1.26)

dQ1

dt
+

2

L
P +

R

L
Q1 =

2

L
P1 (2.1.27)

dQ2

dt
− 2

L
P +

R

L
Q2 = − 2

L
P2 (2.1.28)

which corresponds to the so called T-network (see Figure 2.2 (3));

4. given Q1, Q2, then the system becomes

dP1

dt
+

2

C
Q =

2

C
Q1 (2.1.29)

dQ

dt
− 1

L
P1 +

R

L
Q+

1

L
P2 = 0 (2.1.30)

dP2

dt
− 2

C
Q = − 2

C
Q2 (2.1.31)

which corresponds to the so called π-network (see Figure 2.2 (4)).
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Figure 2.2: (1) L-network; (2) L-inverted network; (3) T-network; (4) π-
network.

2.2 0D model of systemic circulation: the West-
erhof model

At the beginning of the first year of PhD program, we focused on the
derivation and implementation of a lumped parameter model describing the
systemic arterial tree, starting from the work written by N. Westerhof et al.
in 1969 [6]. The main idea consists in representing the human arterial vas-
cular tree by a finite number of cylindrical segments, modeled by electrical
components (see Figure 2.3). In particular, each box illustrated in Figure 2.3
corresponds to a portion of the human arterial tree, whose dimensions, wall
and hemodynamic properties have been useful in the parameter estimation
involved in the whole electric circuit and in the type of the electric network
used to represent each compartment. Indeed, the parameter values of the sym-
metrical π-networks, used to model each segment, have been tuned according
to the radius, the length, the wall thickness, and the Young’s modulus of the
corresponding compartment, i.e.:

Rn =
8πη

S2
n∆z, Ln =

ρ

S

1

2n− 1
∆z, C =

3πr2(a+ 1)2

E(2a+ 1)
∆z, (2.2.1)

where η denotes the viscosity of the blood, S = πr2 the section considered,
∆z the length of the arterial segment, ρ the density of the blood, r the ra-
dius of the arterial segment, h the wall thickness, a = r/h the ratio of the
radius and the wall thickness, E the Young’s modulus of the vessel wall, and
n = 1, ..., 5 depending on the radius. The values of radii and wall thickness used
by Westerhof et al. [6] in their electric circuit were taken from Noordergraaf
[22] and referred to a subject with a mass of 75 kg and a height of 175 cm.
The blood density and viscosity assumed by Westerhof et al. was 1.05 g cm−3

and 0.03 P , respectively, according to Noordergraaf et al. [23]. Notice that
the networks used to describe the segments are symmetrical π-networks, in
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Figure 2.3: Left: scheme of electrical model of the human systemic arterial
tree divided into 121 blocks, as represented in Westerhof et al. [6]. Right, top:
electrical representation of a segment of artery corresponding to a block of
the entire electrical model illustrated on the left. Right, bottom: pressure and
flow rate waveforms obtained from the lumped parameter model reproduced
in Simulink, corresponding to the segments of ascending aorta, thoracic aorta,
abdominal aorta, and femoral artery.

order to reduce errors introduced by lumping at higher frequencies, with addi-
tional correction networks. This correction network, including the resistances
R2,..., Rn and the inductances L2,..., Ln represented in Figure 2.3, stems for
the so called sleeve effects, i.e. the phenomena given by the interactions be-
tween viscous and inertial forces induced by the pulsatility of blood flow [5].
The value of n can reach at most 5, depending on the radius of the specific
segment, i.e. how the pulsatility impact on the hemodynamic in the arterial
compartment under consideration. For example, n = 5 in the segments near
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the heart corresponding to the ascending aorta up to the abdominal aorta,
then its value decreases until n = 3 in the peripheral arteries, such as tibial
and radial arteries. The total number of arterial segments in which the electric
network has been composed by Westerhof et al. is 121. Moreover, the model
includes peripheral resistances for each of the terminal segments, represented
by potentiometers and illustrated by rectangles with arrows in Figure 2.3. The
pumping action of the left heart is represented by a waveform synthesizer. The
original electric circuit built by Westerhof et al. operates at one thousand the
real frequencies, i.e. 103 Hz, which means that the time and all the values of
inductance and capacitance correspond to 10−3 the real ones. This was done in
order to avoid impractically and expensive large capacitance and inductance
values.

While Westerhof et al. [6] built a real electric network to simulate the sys-
temic arterial circulation, our goal is to reproduce this same model exploiting
the new technology by using Simulink. We maintain the same data reported
by Westerhof et al. for the parameter estimation of the model and the same
frequencies. The transient inlet flow rate waveform taken from Westerhof et
al. has been prescribed at the inlet. In particular, instead of using a waveform
synthesizer, we extract the values of the flow rate waveform, using the soft-
ware WebPlotDigitizer 4.4 (WebPlotDigitizer). Then, the data obtained by the
literature waveform are interpolated using the software Matlab R2018a (The
Mathworks Inc.). The resulting transient inflow waveform, shown in Figure
2.4, is imposed at the inlet of the lumped parameter model implemented in
Simulink. A critical step is represented by the parameter estimation of the

Figure 2.4: Inflow waveform taken from Westerhof et al. [6] and set at the inlet
of the lumped parameter model implemented in Simulink.

peripheral resistances. Since Westerhof et al. omitted the value of the periph-
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eral resistances and we have no theoretical background for a specific choice,
a constant value of 25000 g cm−4 s−1 has been set empirically, in order to
obtain a reliable amplitude of the pressure waveforms. We run the 0D simula-
tion in Simulink performing 10 cardiac cycles to guarantee the repeatability of
solution. Figure 2.3 on the right shows the pressure and flow rate waveforms
corresponding to the ascending aorta, thoracic aorta, abdominal aorta, and
femoral artery segments. The results obtained in Simulink are consistent with
physiological data [24]. In particular, the pulsatile pressure is progressively
attenuated by the wall elasticity of arterioles and by resistances of small ar-
teries and arterioles, in such a way that capillary flow results stationary. The
blood flow decreases from aorta to small arteries. In conclusion, this simplified
model allows to reproduce reliable physiological characteristics and hemody-
namic quantities with low computational cost than three-dimensional models.
Moreover, the Westerhof model reproduced in Simulink could be used as a
useful tool for multiscale 3D-0D simulations both in the parameter estimation
of the lumped parameter model, selected as boundary condition, and as a first
hemodynamic assessment (see Chapter 3).

2.3 Applications
Since 1970s, lumped parameter models have been widely treated to de-

scribe the entire cardiovascular system ([25]-[28]) or a portion of it ([29]-[31]).
Burattini et al. [26] compared the behavior of two lumped parameter models,
taken from literature [25], [6], representing the entire systemic arterial circula-
tion. Authors obtained a good agreement regarding human physiology for both
the models under investigation, even tough the limited number of experiments
did not allow to reach a general conclusion about their validity. Canuto et al.
[29] coupled 0D models of the heart, pulmonary vasculature, and peripheral
vasculature to 1D models of the major systemic arteries. The multiscale model
was integrated with a feedback model of the baroreflex in order to simulate the
autonomic response. Kim et al. [11] implemented a lumped parameter heart
model as an inflow boundary condition for 3D simulations of aortic blood flow
and vessel wall dynamics. Authors proved the utility of their method by per-
forming patient-specific simulation of an aortic coarctation.

One of the most simpler and common lumped parameter model adopted in
literature is the Windkessel model.
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2.3.1 0D model of peripheral circulation: the three-element
Windkessel model

TheWindkessel model was introduced by Otto Frank in 1899 [32] to provide
a quite accurate representation of the terminal vessels. The original model
includes a peripheral resistance and a compliance (see Figure 2.5), which get
the following value of the impedance:

ζ(ω) =
R

1 +
√
−1ωRC

.

This model was further improved with the introduction of a second resistance

Figure 2.5: Original Windkessel model.

(see Figure 2.6), in order to better match the experimental results [6], [33].
Thus, the so called three-element Windkessel model includes two resistances,

Figure 2.6: Three-element Windkessel model.

for dissipation due to viscosity of fluid motion, and a capacity, for vessel com-
pliance. The corresponding value of the impedance is:

ζ(ω) =
R1 +R2 +

√
−1ωR1R2C

1 +
√
−1ωR2C

.

The corresponding differential system to the three-elementWindkessel model
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illustrated in Figure 2.6 is the following:

P = R1Q+ P2 (2.3.1)
Q = Q1 +Q2 (2.3.2)
P2 = R2Q2 (2.3.3)

Q1 = C
dP2

dt
(2.3.4)

Combining equations (2.3.1-2.3.3) into equation (2.3.4), this latter equation
can be rewritten as:

Q− P2

R2

= C
d(P −R1Q)

dt
.

Then, using equation (2.3.1), the proximal pressure becomes:

P = R1Q+R2Q− CR2
dP

dt
+R1R2C

dQ

dt
. (2.3.5)

Using backward Euler:

dP

dt
=
Pn+1 − Pn

∆t
,

dQ

dt
=
Qn+1 −Qn

∆t
,

into equation (2.3.5) yields to:

Pn+1 = R1Qn+1 +R2Qn+1 − CR2
Pn+1 − Pn

∆t
+R1R2C

Qn+1 −Qn

∆t
. (2.3.6)

Rearranging the terms in the last equation (2.3.6), we obtain the following
expression for the proximal pressure:

Pn+1 =
(R1 +R2 +R1β)Qn+1 −R1βQn + βPn

1 + β
, where β =

CR2

∆t
, (2.3.7)

that can be used in numerical simulations to prescribe Neumann boundary con-
ditions. We recall that Qn and Pn refer to the flow and pressure, respectively,
computed in the previous time-step.

2.3.2 0D model of coronary arteries

Recently, the three-elements Windkessel model is commonly used as bound-
ary condition for the supra-aortic branches and the thoracic/abdominal outlet
in CFD aortic simulations. When the 3D computational domain includes also
the coronary arteries, a particular lumped parameter model could be coupled
to the 3D model in order to reproduce the coronary circulation [31], [34]. In
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particular, we will introduce this specific coupled 3D-0D model in Chapter 3.
This coronary model consists of three resistances (R1, R2, R3), two capaci-
tances (C1, C2), and a voltage source (see Figure 2.7). In hydraulic analog, left
ventricular pressure corresponds to the voltage source, in order to represent
the intramyocardial pressure Pim. The corresponding differential system to the

Figure 2.7: Lumped parameter coronary model.

coronary lumped parameter model is the following (see Figure 2.7):

P = R1Q+ P2 + P3 (2.3.8)
Q = Q1 +Q2 (2.3.9)

Q1 = C1
d(P2 + P3)

dt
(2.3.10)

P2 = R2Q2 (2.3.11)
Q2 = Q3 +Q4 (2.3.12)

Q4 = C2
d(P3 − Pim)

dt
(2.3.13)

P3 = R3Q3 (2.3.14)

Combining equations (2.3.8), (2.3.9), (2.3.11) into equation (2.3.10), this latter
equation can be rewritten as:

P = R1Q+ P3 +R2Q−R2C1
dP

dt
+ C1R1R2

dQ

dt
. (2.3.15)

Analogously, rearranging equations (2.3.8), (2.3.11), (2.3.12), (2.3.14) and sub-
stituting into equation (2.3.13):

R2Q−R2C1
dP

dt
+ C1R1R2

dQ

dt
=
R2

R3

P3 +R2C2
d(P3 − Pim)

dt
. (2.3.16)

Using backward Euler:
dP

dt
=
Pn+1 − Pn

∆t
,

dQ

dt
=
Qn+1 −Qn

∆t
,

dP3

dt
=
P n+1

3 − P n
3

∆t
,

dPim
dt

=
P n+1
im − P n

im

∆t
,



2.3#1 21

into equations (2.3.15), (2.3.16) yields to:

Pn+1 =R1Qn+1 + P n+1
3 +R2Qn+1 −R2C1

Pn+1 − Pn
∆t

+

+ C1R1R2
Qn+1 −Qn

∆t
(2.3.17)

R2Qn+1 −R2C1
Pn+1 − Pn

∆t
+ C1R1R2

Qn+1 −Qn

∆t
=
R2

R3

P n+1
3 +

+
R2C2

∆t
P n+1

3 − R2C2

∆t
P n

3 −
R2C2

∆t
P n+1
im +

R2C2

∆t
P n
im (2.3.18)

After some algebraic manipulation, these latter equations (2.3.17), (2.3.18)
become:

P n+1
3 =

γ

α + γ + β
1+β

P n
3 +

γ

α + γ + β
1+β

P n+1
im − γ

α + γ + β
1+β

P n
im+

+
1

α + γ + β
1+β

(
η − β(R1 + η)

1 + β

)
Qn+1+

+
1

α + γ + β
1+β

(
R1β

2

1 + β
−R1β

)
Qn+

+
1

α + γ + β
1+β

(
β − β2

1 + β

)
Pn, (2.3.19)

Pn+1 =
β

1 + β
Pn +

R1 +R2 +R1β

1 + β
Qn+1 −

R1β

1 + β
Qn +

1

1 + β
P n+1

3 , (2.3.20)

where

α =
R2

R3

, β =
R2C1

∆t
, γ =

R2C2

∆t
, η = R2 +R1β.

Equations (2.3.19) and (2.3.20) allow to prescribe Neumann boundary condi-
tions at the outlets corresponding to coronary arteries.

2.3.3 3D-0D vs 0D model of thoracic aorta

In the field of aortic simulations, the refined Westerhof model implemented
in Simulink could be used both as a first tool for a preliminary knowledge of the
main hemodynamic features and for optimization of the parameter estimation
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of the 0D models imposed as boundary conditions. For instance, we are inter-
esting in implementing a lumped parameter model corresponding to a thoracic
aorta, including the coronary arteries. We prove that the refined Westerhof
model (illustrated at the center of Figure 2.8) provides reliable results com-
paring them to the solution of the corresponding coupled 3D-0D simulation
(see the 3D-0D model in Figure 2.9). In particular, we consider the patient-

Figure 2.8: Left: computational fluid dynamics domain including a flow exten-
sion at the ascending aorta and the transient inflow wave set in the simula-
tion. Center: lumped parameter model implementation of the pre-procedural
geometry in the MATLAB toolbox Simulink. Right: electric circuit inside each
block of the lumped parameter model shown in the middle. AA: ascending
aorta; BCT: brachiocephalic trunk; DAo: descending aorta; LCA: left coro-
nary artery; LCCA: left common carotid artery; LSA: left subclavian artery;
RCA: right coronary artery.

specific geometry represented in Figure 2.9. We divide the 3D geometry into 14
zones, using Paraview, corresponding to the volume between the cross sections
shown in Figure 2.10. In each zone the measurements of the diameter and the
longitudinal length are taken in Paraview (see Figure 2.10) and used to com-
pute the parameter values of the 0D model (see Figure 8.2 in Appendix 2),
according to the equations written in (2.2.1), except for the parameter values
relating to the boundary conditions. Therefore, we implement in Simulink 14
blocks corresponding to the zones selected from the 3D geometry (see Figure
2.8). Each block represents an electric network according to Westerhof et al.
[6] (see Figure 2.8 on the right). The lumped parameter model described in the
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Figure 2.9: The coupled 3D-0D domain: lumped parameter models are attached
to the outflow sections of the 3D computational model. Transient velocity
waveform is set at the inlet.

previous section is imposed as boundary condition for the left and right coro-
nary arteries and is included in both the blocks denoted with RCA and LCA
in Figure 2.8. We maintain the same assumptions made by Westerhof et al.
[6]. However, peripheral resistances were substituted by three-elements Wind-
kessel models, used as boundary conditions for the supra-aortic branches and
descending aorta (see Figure 2.8). As a preliminary test, we prescribe the inlet
velocity taken from Xu et al. [18] and then rescaled (see Figure 2.8) in order to
obtain a low peak Reynolds number, i.e. Re = 424, and avoid consequently the
occurrence of numerical instabilities (see Chapter 5). The parameter values of
the three-element Windkessel models (see Table 2.2) and the lumped parame-
ter coronary model (see Table 2.3) are taken from Xu et al. [18] and Conti et al.
[31], respectively. Blood is assumed as an incompressible and Newtonian fluid,
with 1060 kg/m3 density and 0.0035 Pa s viscosity [35]. We perform two simu-
lations, one using the lumped parameter model implemented in Simulink and
the other one the coupled 3D-0D model written in the open source software
Fenics. In the coupled 3D-0D model, the 0D model corresponds to the bound-
ary conditions prescribed at the outlets, i.e. three-elements Windkessel model
at the supra-aortic branches and descending aorta, and the lumped coronary
artery model at the left and right coronary arteries (see Figure 2.9). The equa-
tions (2.3.7) and (2.3.19)-(2.3.20), derived in the previous section, were used
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Figure 2.10: Left: computational fluid dynamics domain divided into 14 zones,
i.e. the regions between the cross sections S1, ..., S10 and the zones correspond-
ing to the brachiocephalic trunk (BCT), left common carotid artery (LCCA),
left common carotid artery (LSA), left coronary artery (LCA), and right coro-
nary artery (RCA). Right: measure of the length and averaged diameter of
each zone in which the aorta is divided.

to impose the boundary conditions at the outlets in Fenics. The parameter
values involved in the 3D-0D simulation are the same of the 0D simulation,
reported in Tables 2.2 and 2.3. A constant time-step size is set to 0.001 ms
and 0.001 s in the 0D and 3D-0D simulation, respectively, since the Westerhof
model operates at one thousand the real frequency. Six cardiac cycles were
performed in both the simulations to guarantee the repeatability of solution.

We compare the flow rate and pressure waveforms at the outlets obtained
from Simulink and Fenics. Figure 2.11 shows the flow rate and pressure wave-
forms at the supra-aortic branches and descending aorta. Figure 2.12 illustrates
the flow rate and pressure waveforms at the left and right coronary arteries.
We can note a good agreement with the results of the two models. In both
the models, the left coronary flow rate waveform has a first peak during the
early systole, then decreases to raise up again towards a second higher peak in
diastole (see Figure 2.12), because the intramyocardial pressure is elevated in
systole. Vice-versa, right coronary flow is higher in systole and lower in dias-
tole, according to literature data [36]. However, we recall that all the values of
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R1 R2 C
BCT 0.78 2.03 0.93
LCCA 3.80 4.50 0.34
LSA 1.39 3.20 0.58
DAo 0.13 0.15 10.90

Table 2.2: Windkessel parameters taken from Xu et al. [18]. The unit of R1

and R2 values are in 103 g cm−4 s−1 and the unit of C values are in 10−7 g−1

cm4 s2. AA: ascending aorta; BCT: brachiocephalic trunk; LCCA: left common
carotid artery; LSA: left subclavian artery; DAo: descending aorta.

R1 R2 R3 C1 C2

RCA 38.798 63.045 193.98 0.028 0.223
LCA 16.899 27.462 8.450 0.030 0.220

Table 2.3: Parameter values of the lumped parameter model of the coronary
outlets. The unit of the resistance values are in 103 g cm−4 s−1 and the unit
of the capacitance values are in 10−7 g−1 cm4 s2. RCA: right coronary artery;
LCA: left coronary artery.

pressure and flow rate of the two models are not physiological, since we have
considered lower values in the prescribed inflow than the physiological one,
in order to avoid numerical instabilities. An acceptable mismatch is shown in
both the Figures 2.11 and 2.12 in the amplitude of the curves. In particular, the
amplitude of the waveforms given from Simulink appears slightly greater than
the one obtained from Fenics. Possible reasons of this mismatch could be er-
rors introduced during the measurements of the diameter and the longitudinal
length of each zone in which the geometry is subdivided, and approximations
assumed in the 0D model (i.e. considering the computational domain divided
into a finite number of compartments is also an approximation). Moreover,
while in Simulink we impose the flow rate at inlet, as the result of the same
inlet velocity, used for the 3D-0D simulation, times the inlet area computed
in Paraview from the 3D geometry, in the 3D-0D simulation all the flow rate
curves depend on the mesh size.

The qualitative comparison between the results of 0D and 3D-0D models
proved the consistency of the 0D model. Indeed, the lumped parameter model
provides reliable results by both an accurate selection of the various segments,
in which the original 3D computational domain should be divided, and a proper
parameter estimations.
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Figure 2.11: Results of 0D (in blue) and coupled 3D-0D (in red) simulations.
The flow rate and pressure waveforms refer to the sixth cardiac cycle. AA: as-
cending aorta; BCT: brachiocephalic trunk; LCCA: left common carotid artery;
LSA: left subclavian artery; DAo: descending aorta.
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Figure 2.12: Results of 0D (in blue) and coupled 3D-0D (in red) simulations.
The flow rate and pressure waveforms refer to the sixth cardiac cycle. RCA:
right coronary artery; LCA: left coronary artery.



Chapter 3

3D-0D Models of Thoracic Aorta

In this Chapter, we analyze a particular coupled 3D-0D model of diseased
thoracic aorta treated with transcatheter aortic root repair (TARR) [31]. The
aim is to set-up a computational model of TARR in order to explore the
impact of the endovascular procedure on the coronary circulation, supported
by chimney grafts.

3.1 Case Study: Patient-specific Aorta Includ-
ing Coronary Arteries

Transcatheter aortic valve replacement (TAVR) is a consolidated alterna-
tive to surgical aortic valve replacement for high-risk patients, valve-in-valve
procedures and, recently, also for low-risk patients [37], while transcatheter
endovascular arch replacement, supported by the development of new devices
featuring chimneys, branches, etc. [38], is performed in very few cases, mostly
when surgical treatment is highly risky [39].

In many cases, such as the presence of a degenerated bicuspid aortic valve,
there is a need of replacing both the native valve and the ascending aorta,
which is often dilated increasing the risk of rupture or dissection [40]. As stated
earlier, both alternatives are available as separate endovascular treatments,
but a transcatheter device that includes a combined replacement of the aortic
valve, the root and the ascending aorta has not yet been proposed. Some of
the challenges of such a procedure are the high pulsatility of the ascending
portion of the aorta, its angulated anatomy and the need to keep the coronary
perfusion.

Recent studies showed a high level of success of off-label use of endovascular
devices in the treatment of ascending aortic diseases [41]. However, the outcome
of endovascular repair can also be evaluated through virtual simulation tech-

28
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niques. As an example, Romarowski et al. [42] proved that tailor-made devices
performed much better than off-the-shelf endoprosthesis that were adapted for
their use in the ascending aorta. However, these studies remained limited to
the repair of the ascending aorta and did not include the replacement of the
aortic root. To the best of our knowledge, only two studies have analysed the
simultaneous endovascular repair of ascending aorta and aortic root. Gaia et al.
[43] described the endovascular management of a patient that was considered
inoperable after conventional aortic valve replacement. A customized stent at-
tached to a transcatheter valve was deployed, thus being the first-in-human
case of what they called, the Endo-Bentall procedure. The patient did not have
any sign of myocardial infarction at a 4-month follow-up. Previous work of our
group presented a preliminary test of a TARR [44] using computed tomog-
raphy (CT) scan-derived 3-dimensional (3D) printed root model [45] (Figure
3.1). In particular, the authors proposed the feasibility of using chimney grafts
as a way to perfuse the coronary ostia in a very simplified haemodynamic
model. Given such encouraging outcomes, the goal of the present study is to
set-up a proof-of-concept computational model of TARR to explore the im-
pact of the endovascular procedure on the coronary circulation. To this aim, a
patient-specific model of an aneurysmatic ascending aorta including the coro-
nary ostia is derived from CT angiography. Computational fluid dynamics
(CFD) simulation of the preprocedural cardiovascular model is performed to
define a reference for the evaluation of post-procedural configuration obtained
by the simulation of the TARR procedure.

Figure 3.1: In vitro deployment of a device combining an ascending aorta
endograft with a temporary valve and 2 coronary chimney grafts. Left: sketch
of the considered device. Right: deployment within a 3-dimensional printed
model (patient-specific aortic root).
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3.1.1 Medical imaging analysis and processing

CT images of a patient with dilated aortic root and ascending aorta were
used for this study and informed consent for use of anonymized data was pro-
vided. A patient-specific 3D model of the preprocedural ascending aorta was
obtained by image segmentation of contrast-enhanced CT scan. The model
included the aortic root, coronary ostia, aortic arch and epiaortic branches
(Figure 3.2 a)). The segmentation was performed using the open-source soft-
ware ITK-Snap (http://www.itksnap.org).

Figure 3.2: Three-dimensional model of the aortic root, ascending aorta and
aortic arch. a) Pre-procedural model as derived from medical image segmen-
tation; b) CAD elaboration to insert coronary chimney grafts; c) CAD elabo-
ration to insert aortic endograft; d) final CAD post-procedural transcatheter
aortic root repair model including the main endograft and the chimney grafts;
e) computational grid (mesh) for computational fluid dynamics analysis, the
image depicts the mesh in the zone of the model highlighted in d). CAD:
computer-aided design.

3.1.2 TARR procedure and post-procedural aortic model

The proposed TARR procedure described in our previous work [44] implies
the transcatheter deployment of one main endograft within the aortic root (28
mm diameter) and two 6-mm-diameter 10-cm-long coronary chimney grafts.
The main graft features a temporary non-biologic aortic valve at its proximal
side that impedes ventricular dilatation after the deployment. After completion
of the TARR procedure, a commercially available low- profile TAVR valve is
inserted in the main graft at the level of the temporary aortic valve.

Given these indications, we have modified the preprocedural reconstruction
of the vascular model to include these devices using computer-aided design
(CAD) software (Autodesk Inventor Professional 2017). For this study, the
temporary aortic valve was not included in the computational model.

http://www.itksnap.org
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The model of the root endograft was drawn on the base of the aortic centre-
line extracted by the VMTK library (http://www.vmtk.org). In particular,
the aortic centreline was used to mimic the longitudinal axis of the endograft,
while various planes normal to the centreline were used in the lofting to define
the cross sectional profile of the endograft. The first of these planes was placed
at the level of the left ventricular outflow tract. The downstream planes were
placed following the orientation imposed by the aortic centreline up to the end
of the ascending aorta, immediately before the ostium of the brachiocephalic
trunk. Using section lofting, the cylindrical solid model of the root endograft
with a thickness of 1 mm was created; this model is tapered with a proximal
diameter of 22 mm at the left ventricular outflow tract and a distal diameter
of 36 mm at the end of the ascending aorta.

Similarly, the models of the coronary chimney grafts were drawn: (i) the
intra-coronary part is sketched by inserting a flow extension (15 mm length)
of the native coronary ostia to let the flow develop and avoid boundary effects
from the numerical simulation [46] (Figure 3.2 b)) and (ii) the path of each
graft inside the aortic root and ascending aorta were designed based on the
visual inspection of the in vitro model proposed in Ferrari et al. [44] (Figure
3.2 c)). The 3D preoperative model of the aorta, the CAD model of the root
endograft and the 2 models of the coronary chimney grafts were merged using
CAD Boolean operations with Netfabb software (Autodesk, San Rafael, CA,
USA) (Figure 3.2 d)); the resulting model describes the luminal surface of the
post-TARR aorta and it was used to create a computational grid suitable for
CFD as shown in Figure 3.2 e)).

3.1.3 Computational fluid dynamics analysis

CFD simulations were performed in both pre- and post- procedural geome-
tries using the solver SimVascular [47] in a computing node with 2 Intel Xeon
Gold 6148 processors and 192 GB di RAM totalizing 40 cores. Meshes were
also created in SimVascular with an element length based on the local radius.
As a result, the preoperative mesh featured 1.8M elements whereas the post-
procedural mesh had 2.7M elements accounting for the radius-based meshing
technique. Blood flow was considered laminar, homogeneous and Newtonian
with a density of 1060 kg/m3 and a viscosity of 0.0035 Pa s. Given the lack
of patient-specific boundary flow conditions, we used a pulsatile inflow wave
extracted from Xu et al. [18] at the origin of the ascending aorta featuring a
duration of 1 s each heart cycle discretized into 1000 time-steps. Such a pul-
satile blood flow, with a peak in systole and almost no flow in diastole, imitates
the inflow behaviour right after the aortic valve.

The goal of our study requires particular attention to the modelling of the

http://www. vmtk.org
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coronary circulation. For this reason, we have adopted a 3D-0D modelling ap-
proach (Figure 3.3) where the 3-dimensional domain of the aorta is coupled
with 0D models accounting for the peripheral circulation at the outlets of the
supra-aortic branches, the descending aorta, and the coronary circulation. In

Figure 3.3: Left: computational fluid dynamics domain including a flow exten-
sion at the ascending aorta and the transient inflow wave set in the simulations
taken from Xu et al. [18]. Center: lumped parameter model implementation of
the pre-procedural geometry in the MATLAB toolbox Simulink. Right: elec-
tric circuit inside each block of the lumped parameter model shown in the
middle. AA: ascending aorta; BCT: brachiocephalic trunk; DAo: descending
aorta; LCA: left coronary artery; LCCA: left common carotid artery; LSA: left
subclavian artery; RCA: right coronary artery.

the supra-aortic vessels and the descending aortic outlet, three-element Wind-
kessel lumped circuits were attached to mimic the downstream vasculature
[18]. In the coronary outlets, a lumped parameter model was used following
the work by Sankaran et al. [48]. The details of parameter estimation are de-
scribed in the next section.

3.1.4 Parameter Estimation for Lumped-parameter Mod-
els

As we mentioned before, we are using a coupled 3D-0D model, in which
the three-dimensional domain is represented by the aorta, while the surrogate
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0D model (or lumped-parameter model) accounts for the peripheral circula-
tion at the aortic outlets (i.e., supra-aortic branches and the descending aorta)
and the coronary circulation. In particular, we adopted a three-element Wind-
kessel model to simulate the downstream circulation at the aortic outlets and
a lumped-parameter model, including four resistances and two capacitances to
model the coronary circulation.

A critical step when using such surrogate models is the calibration of the
parameters. Regarding the three-element Windkessel model, many calibration
procedures have been widely dealt with in literature [46], [49], while for the
coronary model less studies are present. In particular, the main challenge in the
calibration of 0D models for coronary circulation consists in modeling the out-
of-phase nature of coronary flow due to the influence of ventricular contraction.
Recently, lumped-parameter models have been used to simulate the coronary
flow [48], [50]; however, to the best of our knowledge, there is no study in
the literature that systematically addresses the procedure for estimating the
parameters of lumped vascular models when the coronary circulation and the
part of the peripheral aortic circulation are both present, as in our case.

Figure 3.4: Comparison between flow and pressure waveforms taken from liter-
ature [18] (3D-0D model), computed in Simulink (0D model), and in SimVas-
cular (3D-0D model) for both pre- and post-procedural TARR configuration.
Brachiocephalic Trunk (BCT); Left Common Carotid Artery (LCCA); Left
Subclavian Artery (LSA); Descending Aorta (DAo).
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We have faced this problem using a lumped-parameter model representing
the coronary circulation and also the aorta in order to calibrate the whole
parameter set without the need of simulating the 3D aortic domain during
this phase. The parameters estimated by this 0D representation have been
used later in our 3D-0D model and the consistency with the two models has
been proved in Figures 3.4 and 3.5.

Figure 3.5: Comparison between coronary flow and pressure waveforms taken
from literature [11] (3D-0D model), computed in Simulink (0D model), and in
SimVascular (3D-0D model) for both pre- and post-procedural TARR config-
uration. Right Coronary Artery (RCA); Left Coronary Artery (LCA).

The 0D model was implemented in the Matlab toolbox Simulink R2018a
(The MathWorks, Natick, MA, USA). Each cylindrical segment includes a fi-
nite number of resistances, inductances, and capacitances, which values are
computed according to the Westerhof et al. [6]. In particular, our lumped-
parameter model is obtained by dividing the geometry into 16 segments, and
then adding three-element Windkessel models as boundary conditions on the
supra-aortic and descending aorta outlets (Figure 3.2); the values of the pa-
rameters for such models are set according to Xu et al. [18].

The lumped parameter model associated to the boundary conditions on
the coronary arteries, consists of four resistances (i.e., coronary arterial re-
sistance Ra, coronary arterial microcirculation resistance Ra−micro, coronary
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venous microcirculation resistance Rv−micro, coronary venous resistance Rv),
two capacitances (i.e., coronary arterial compliance Ca and myocardial compli-
ance Cim) and intramyocardial pressure Pim(t), as described in Kim et al. [11].
Left ventricular pressure is used to represent the intramyocardial pressure.

We compute the values of the resistances and compliances according to
Sankaran et al. [48]. In particular, the estimation procedure can be summarized
as follows:

1. Calculation of total resistance Rtot for all the outlets according to the
following relation

Rtot =
Pmean
Q

(3.1.1)

where Pmean and Q are known and denote the mean pressure and the
cardiac output, respectively.

2. Prescription of the average flow split between the coronaries and the
aorta

Qcor = βQbr (3.1.2)

assuming β = 0.04 [48], denoting by Qcor the coronary flow, and by Qbr

the systemic flow in the remaining outlets.

3. Recalling
1

Rtot

=
1

Rcor

+
1

Rbr

(3.1.3)

and using equation (3.1.2), the coronary resistance is

Rcor =
1 + β

β
Rtot (3.1.4)

4. Flow splitting between left and right coronaries

Qleft
cor = γQright

cor (3.1.5)

considering the flow split γ = 7/3 [48] (i.e., 70-30% flow split between
the left and right coronary artery [51]).

5. Using equation (3.1.5), the left and right coronary arteries resistances
are respectively

Rleft
cor =

1 + γ

γ
Rcor (3.1.6)

Rright
cor = (1 + γ)Rcor (3.1.7)
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6. Recalling that for both left and right coronary resistances and dealing
only with the left one, for the sake of simplicity,

Rleft
cor = Ra +Ra−micro +Rv−micro +Rv (3.1.8)

we choose

Ra = 0.32Rleft
cor (3.1.9)

Ra−micro = 0.52Rleft
cor (3.1.10)

Rv−micro +Rv = 0.16Rleft
cor (3.1.11)

according to Sankaran et al. [48].

7. Calculation of the left coronary compliances

Ca = 0.11C left
cor (3.1.12)

Cim = 0.89C left
cor (3.1.13)

prescribing the total coronary compliance Ctot
cor = C left

cor +Cright
cor and recall-

ing that C left
cor = Ca + Cim, Cright

cor = Ca + Cim. We compute analogously
the right coronary compliances, assuming the total left coronary compli-
ance C left

cor = 3.6 10−5cm5/dyne and the total right coronary compliance
Cright
cor = 2.5 10−5cm5/dyne, according to Wilson et al. [52].

The computed parameter values are listed in Table 2.3, where Ra, Ra−micro,
and (Rv +Rv−micro) have been renamed with R1, R2 and R3, respectively, and
analogously Ca and Cim with C1 and C2, respectively. The resistance value
Rv−micro + Rv was tuned to achieve physiological coronary flow waveforms
according to literature data [50].

We simulated six cardiac cycles to achieve periodic solutions; analogously
to the multiscale model implemented in SimVascular, the viscosity and the
density of blood are assumed to be 0.0035 Pa/s and 1060 kg/m3, respectively.

In these simulations, we study flow rate and pressure waveforms at the
outlets. The aim is to prove that flow rate and pressure waveforms on the
boundaries given by the lumped-parameter model are physiologic and consis-
tent with the results obtained by the coupling of 3D-0D model, and with data
taken by literature. We report herein the results related only to the sixth car-
diac cycle to ensure the convergence of the numerical simulation (Romarowski
et al. [46]).

Figure 3.4 shows comparison between flow rate and pressure curves at the
supra-aortic vessels outlet and descending aorta in the simulations performed
in Simulink with 0D model, in SimVascular with 3D-0D model (for both pre-
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and post-procedural configuration), and with 3D-0D model taken by Xu et al.
[18].

All the computed waveforms are realistic; we can note a negligible dif-
ference between the curves in Xu et al. [18] and the results obtained using
the proposed models due to the different computational domain: indeed, the
lumped-parameter model has been built tuning the parameter values in order
to represent the patient-specific three-dimensional domain used in the simula-
tions performed in SimVascular (Figure 3.2). Figure 3.5 represents comparison
between flow rate and pressure curves at the coronary outlets in the simulations
performed in Simulink with 0D model, in SimVascular with 3D-0D model (for
both pre- and post-procedural configuration), and with 3D-0D model taken by
Kim et al. [50].

In each model, the left coronary flow rate curve has a first peak during the
early systole, then decreases to raise up again towards a second higher peak
in diastole, because the intramyocardial pressure is elevated in systole; vice-
versa, right coronary flow is higher in systole and lower in diastole, according
to literature data [36]. The total coronary flow represents a 3% of the cardiac
output, according to Nauta et al. [53]; in particular, the left coronary and right
flow represent the 83% and 17% of total coronary flow, respectively. This result
deviates from the prescribed 70/30 flow split due to fine tuning of resistance
value Rv−micro +Rv.

The curves obtained by the proposed models (full 0D and 3D-0D) are close
to each other, consequently we were able to obtain realistic coronary flow
and pressure waveforms with the lumped-parameter model implemented in
Simulink and a consistent outcome with those performed using the coupling
of 3D-0D models in SimVascular.

However, our results showed an acceptable mismatch with the data reported
by Kim et al. [50]; such a difference can be related to the inflow rate used as
boundary conditions, since we have implemented the inflow curve proposed by
Xu et al. [18].

3.1.5 Post-processing

Five instants of the last cardiac cycle were considered from the inflow
curve: the beginning of the systole (t = 0s), maximum systolic accelera-
tion (t = 0.06s), systolic peak (t = 0.18s), maximum systolic deceleration
(t = 0.32s) and beginning of diastole (t = 0.4s). The velocity field along the
aorta was analysed by inspecting the streamlines using Paraview 5.8.0 (Kit-
ware Inc., Clifton Park, NY, rates at all the outlets were compared between
the pre- and post-procedural simulations, as well as coronary flow, split to
quantify the differences caused by the intervention. Qualitative and quantita-
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tive analyses of the bulk flow were treated in both pre- and post-procedural
configuration. We expect that the TARR procedure to maintain the same bulk
flow features of the preprocedural configuration. Qualitatively, we compute the
local normalized helicity (LNH), which corresponds to the cosine of the angle
formed between the vorticity vector and the velocity vector. It is a measure
of the alignment/misalignment of the local velocity and vorticity vectors. It
ranges from -1 to 1 and its sign is useful to understand the direction of helical
structures. Quantitatively, we compute the h2 helicity index, which is a bulk
flow descriptor given by time-averaging the absolute value of the helicity [101],
i.e.:

h2 =
1

TV

∫
T

∫
V

|u · (∇× u)| dV dt. (3.1.14)

The h2 helicity index denotes the helicity intensity in the fluid domain. Re-
calling that the helicity is defined by the spatial integral of the scalar product
of the velocity and vorticity, the h2 index assumes major values in the fluid
domain in which velocity and vorticity vectors are aligned. The h2 index was
computed by integration over 3 volumetric fluid domains, i.e. the segment of
the right coronary artery, the segment of left coronary artery (LCA) and the
whole fluid domain.

Finally, as an indicator of the influence of the chimney grafts in the coro-
nary blood supply, we estimated the pressure drop from the origin of the aorta
(i.e. aortic annulus) to the distal section of the coronaries. There is also an
acceleration during the systole as compared to the preprocedural geometry
that can be attributed to the narrowing in the lumen caused by the new endo-
prosthesis. Figure 3.6 also reports a jump of 4 mmHg in the ascending aorta
pressure after the TARR procedure which can also be a consequence of the
presence of the endograft.

3.1.6 Numerical Results

Figure 3.7 illustrates the streamlines along the aorta during the selected five
instants in both preprocedural and post-procedural TARR configuration. The
major difference after the intervention is seen during t1 and t2 in the ascending
portion of the aorta. Flow becomes more organized and less recirculation is
seen at the point where the aneurysm was present.

There is also an acceleration during the systole as compared to the pre-
procedural geometry that can be attributed to the narrowing in the lumen
caused by the new endoprosthesis. Figure 3.6 also reports a jump of 4 mmHg
in the ascending aorta pressure after the TARR procedure which can also be
a consequence of the presence of the endograft.
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Figure 3.6: Pressure at the selected 5 instants along the cardiac cycles in the
AA and coronary outlets together with the pressure jump between points.
AA: ascending aorta; LCA: left coronary artery; RCA: right coronary artery;
TARR: transcatheter aortic root repair.

Figure 3.7: Results of computational fluid dynamics simulations. Streamlines of
pre- and post-procedural transcatheter aortic root repair configurations along
the selected 5 instants of cardiac cycle. The source of the streamlines is located
at the aortic annulus.
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Figure 3.8: Results of computational fluid dynamics simulations. Streamlines
of post-procedural configuration at systolic peak (t2) and early diastole (t4).
The source of the streamlines is located at the outflow sections of the RCA and
LCA in order to highlight the pattern of the coronary flow LCA: left coronary
artery; RCA: right coronary artery.

Figure 3.8 depicts the velocity streamlines at t2 and t4 inside the coronary
arteries after the procedure. We can observe that there are no recirculation
zones at the connection to the body of the main graft. In Figure 3.9, the su-
perposition of the flow waves in the supra-aortic vessels as well as the coronaries
is shown. Negligible differences are present in the brachiocephalic trunk, left
common carotid artery, left subclavian artery and descending aorta, ensuring
that the systemic circulation has not been compromised with the implantation
of the TARR devices.

Differences in the output flow in the coronary arteries showed negligible
differences as reported in Figure 3.9. The inlet aortic flow rate was 5.43 l/min
and was kept equal for both pre- and post-procedural TARR simulations. In
the preprocedural configuration, the right coronary artery flow rate was 28.93
ml/min (corresponding to the 0.53% of the total aortic inflow) while the LCA
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Figure 3.9: Results of computational fluid dynamics simulations. The flow
rate curves at the model outlets along the cardiac cycle are reported for pre-
and post-procedural transcatheter aortic root repair configurations. BCT: bra-
chiocephalic trunk; DAo: descending aorta; LCA: left coronary artery; LCCA:
left common carotid artery; LSA: left subclavian artery; RCA: right coronary
artery.

flow rate was 136.94 ml/min (which correspond to the 2.52% of the total aortic
inflow), totalizing a coronary supply of 3.05% of the aortic inflow. After the
virtual TARR procedure, there was a very limited decrease in coronary flow
circulation corresponding to RCA flow: 0.53%, LCA flow: 2.45% and a total
coronary flow: 2.98% of the aortic inflow.

Regarding the bulk flow, Figure 3.10 represents helical structures given by
considering LNH values with a threshold of ±0.8. The LNH was computed at
the systolic peak (t2), at maximum systolic deceleration (t3) and beginning of
diastole (t4). The h2 values computed in the total volume of both the config-
urations (hPRE2 = 5.1 m/s2 and hPOST2 = 7.6 m/s2, where hPRE2 and hPOST2

denote the values of h2 computed in the pre- and post-procedural configuration,
respectively) are in good agreement with the values reported by Morbiducci
et al. [54]. Despite the value of h2 related to the total volume is very simi-
lar in both the pre- and post-procedural configurations, significant differences
characterize the coronary arteries, in particular the h2 values related to the
LCA (hPRE,RC2 = 1.3 m/s2, hPOST,RC2 = 0.052 m/s2, hPRE,LC2 = 24.0 m/s2,
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Figure 3.10: Results of computational fluid dynamics simulations. Isosurfaces
of high threshold values of LNH (±0.8) at systolic peak (t2), maximum decel-
eration (t3) and early diastole (t4), in pre- and post-procedural configurations.
LNH: local normalized helicity.

hPOST,LC = 6.8 m/s2, where hPRE,RC2 and hPOST,RC2 denote the values of h2

computed in the right coronary arteries in the pre- and post-procedural config-
uration, respectively, and hPRE,LC2 and hPOST,LC2 are the values of h2 computed
in the left coronary arteries in the pre- and post-procedural configuration, re-
spectively).

In Figure 3.6 we have reported the differences in pressure values between
the coronary ostia (either the native ostia in the preprocedural geometry or
the distal section of the graft in the post-procedural TARR model) and the
aortic inflow section. The highest difference in the pressure jumps was found
during t1 of the post-procedural configuration, where both coronaries had an
8 mmHg difference with the aortic inlet. Conversely, this jump was negligible
in the preprocedural model. From Figure 3.6, we can see that this jump was
caused by the concomitant increase in the aortic input and a decrease in the
coronary outflow.
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3.1.7 Hemodynamic and Clinical Assessment

The present study proposes a patient-specific computational fluid dynamic
analysis of a new TARR technology, an endovascular procedure consisting of
the simultaneous replacement of the aortic valve, the aortic root and the prox-
imal part of the ascending aorta. To the best of our knowledge, this study is
the first computational study in this emerging field; indeed, literature only re-
calls a proof-of-concept experimental test of TARR proposed by Ferrari et al.
[44], who used a CT-based 3D-printed root model to deploy the TARR com-
ponents (endografts). In our previous article, we proved that the deployment
of the endografts is feasible and also analysed the coronary flow, although in a
very simplistic in vitro setting using water and neglecting coronary circulation
and coronary resistances. In the present study, the coronary perfusion is im-
plemented by the coupling of the 3D model of the aortic root, coronary ostia,
ascending aorta and supra-aortic branches with a lumped parameter model
(0D) of the coronary circulation [11]. The modelling of the coronary flow is
of paramount importance for the development of any new TARR technology
and we need reliable bench-test models to guarantee interpretable results when
tests on coronary perfusion are performed. Our simulation results show that
there is a negligible difference between preprocedural and post-procedural coro-
nary perfusion, encouraging further analysis of the proposed TARR procedure
towards its clinical implementation. However, at the same time, our results
indicate an increase of the pressure drop between the coronary ostia and the
aortic inflow section; we can attribute such an increase to the hydraulic resis-
tance induced by the long chimney graft used in the post-procedural TARR
configuration, in concomitance with the pressure increase at the aortic inlet,
due to the reshaping of the aortic root and ascending aorta determined by the
presence of the main endograft.

The increase in pressure can be interpreted as a downside of the interven-
tion that has already been described as increasing post-procedural afterload in
patients undergoing thoracic endovascular aortic repair [55]. Even though our
simulation was performed within a rigid wall model, the native aorta becomes
stiffer due to the higher rigidity of the stent graft compared to the native tissue
[56]. Recent literature analysing the haemodynamics in chimney grafts asso-
ciated high pressure drops to mid-term failure of the intervention in both the
thoracic and the abdominal aorta [57], [58]. However, being this study he first
in its type and without postoperative data of the patient, we cannot conclude
whether the pressure jump that was found in the simulations is predictive of
the failure of the coronary grafts.

The post-procedural reshaping of the dilated root and dilated ascending
aorta produced, in our simulations, a flow that is more organized when com-
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pared with the preprocedural one. This result confirms the phenomenon, al-
ready reported in patients with an aneurysm in the ascending aorta, where the
postoperative configuration features less flow recirculation, which is known to
be a factor triggering aneurysmal growth [59].

It is worth noting that our model proposes an idealization of the inlet
cross-sectional sections of the chimney grafts, which can be elliptical due to
compression induced by the main endograft, as shown in Figure 3.1 depicting
the in vitro model. Moreover, we are neglecting gutters, which can be present
between chimney grafts and the main endograft as long as the circumference
of the main endograft is linear [60]. Nevertheless, this issue can be addressed
using a pre-shaped main aortic endograft that presents the opposite incisures
at the distal side that partially inglobe the chimney coronary grafts. As we
mentioned earlier, the ascending aorta is a hostile environment in terms of
biomechanics and future studies may require extending the distal part of the
endograft to improve fixation. If that would be the case, the analysis of cerebral
perfusion should be reconsidered to ensure that there are no deficits.

Regarding the study of helicity, Figure 3.10 highlights positive (in red) and
negative (in blue) LNH values, corresponding to left- handed and right-handed
rotating fluid structures along the flow direction in both the configurations, re-
spectively. Therefore, even if the post-TARR configuration shows more helical
structures than the pre-TARR configuration, the rotating flow structure has
been maintained. The good agreement of the h2 values between the two config-
urations, when considering the total volume, denotes that the post-procedural
aortic model slightly affects the bulk flow, as we expected it. However, the gap
obtained in coronary arteries should be analysed and studied in the next work,
in which we will investigate more cases with different sizes and lengths of the
grafts. Moreover, to the best of our knowledge, a comparison of the values of
h2 with a pre-operative and post-operative configuration in a patient-specific
aorta is still missing in literature.

The last point to be mentioned, the model did not present a virtual aortic
valve within the proximal portion of the main endograft. However, we believe
that the valve does not interfere in the coronary bloodstream during TARR
because the coronary inflows are displaced from the Valsalva Sinuses to the
distal ascending aorta. Nevertheless, the presence of a temporary or a definitive
aortic valve has to be taken into consideration in further simulations, in vitro
or in vivo studies.

Limitations

Our results should be interpreted in the context of some limitations. First,
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the results of our simulations should be validated against an in vitro model
to test whether the results are comparable to reality. A further step could
be a validation against post-procedural imaging [e.g. phase-contrast magnetic
resonance imaging (MRI)] [61] if the TARR procedure with chimney grafts
will be executed in animals or a real patient. Furthermore, this study has
been conceived as a proof-of-concept to evaluate the feasibility of TARR using
computational tools and therefore cannot be extrapolated to a wider popu-
lation. To this aim, at least a retrospective study using more patients would
be required. Secondly, the choice of the configuration of the main body of the
prosthesis and the coronary grafts was fixed to follow our previous work [44].
Further work may include variations in the design suited for every single pa-
tient as well as different materials to modulate the rigidity of the grafts. This
would avoid kinking that may compromise perfusion in the long term.

Thirdly, we assumed that the wall compliance is negligible, thus imposing
a rigid wall condition according to Auricchio et al. [39] and Sankaran et al.
[48]. In particular, Mendez et al. [62] proved that a stiff aneurysmal wall in
the ascending aorta reduces differences in the shear stress predictions between
a fluid structure interaction analysis and a CFD simulation.

In fourth place, a well-known limitation of such retrospective studies is the
lack of patient-specific preoperative flow in the aorta to be used as boundary
conditions. Having such data (i.e. extracted from PC-MRI) would enrich the
simulation set-up and give more reliable results for each patient.

Finally, we are not accounting for long-term cardiac remodelling that can
occur after endovascular aortic repair as we are using the same haemodynamic
boundary conditions for pre- and post-procedural configuration; this aspect
can be investigated in future developments of the present study implementing
a lumped-parameter heart model calibrated with the pre- and post-TEVAR
(thoracic endovascular repair) data as proposed by van Bakel et al. [34].

3.1.8 Clinical Message

Endovascular repair of the aortic root is certainly a challenging technolog-
ical aim and has been addressed only by few authors. The focus of the work
was to quantify with various haemodynamic indicators the impact on coronary
circulation. With the proposed CAD modeling embedded into a reconstruc-
tion patient-specific dilation of the ascending aorta, we can conclude that the
configuration proposed in our work does not significantly affect the coronary
perfusion. A validation step has yet to be addressed as well as a less idealized
representation of the coronary grafts. In particular, an in vivo study should
be performed to confirm our in-silico results and provide clinically relevant
conclusions.



Chapter 4

Turbulence Models: A Focus on
Large-Eddy Simulation Models

Direct Numerical Simulation (DNS) is a simulation in the field of CFD
in which the Navier-Stokes equations are numerically solved without any tur-
bulence model, i.e. without averaging or approximating other than numerical
discretizations, whose errors can be estimated and controlled [63]. In DNS
the whole range of spatial and temporal scales of all of the motions must be
resolved, from the smallest scale (Kolmogorov scale) up to the integral one,
associated to the physical domain or the largest turbulent eddy. Such simula-
tions require a certain number of mesh points, depending on Reynolds number,
and growing very fast by Reynolds number increasing. Moreover, the time-step
must be set small enough in order to satisfy the Courant number [63]. There-
fore, the computational cost of a DNS is very high when considering turbulent
flow (i.e. large Reynolds number flows over complex geometry). An alterna-
tive approach is called Large-Eddy Simulation (LES), in which the large scale
motions are computed directly, while the small ones are modeled via low-pass
filtering. LES models allow one to use coarser mesh and larger times-step sizes,
resulting in a significance reduction in computational cost compared to DNS.
The main idea of LES models arises from the following two considerations:

• the turbulent structures of intermediate scales are generated by the non-
linear instability of large structures, they are also unstable, as character-
ized by still relatively high Reynolds numbers, they have the function of
transferring the produced turbulent kinetic energy to small vortices, and
received, by the large ones;

• small-scale turbulent structures arise from non-linear interactions be-
tween large and intermediate ones, are stable since they are character-
ized by low Reynolds numbers (of the order of unity), have a dissipative

46
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nature and convert into heat, through viscosity, the turbulent kinetic
energy transmitted to them by the intermediate eddies, have a much
shorter average life than the other eddies and decay with an exponential
law, have very short characteristic times and consequently a dynamics
practically independent from that of large eddies and average motion,
have relative dimensions compared to those of the large eddies which
depend almost exclusively on the Reynolds number of the current.

For these reasons, LES models differentiate from RANS, in which there is no
distinction between small and large scales and, hence, the effects of the entire
spectrum of the spatial dimensions of turbulent scales, which could not be
universal because they depend on geometry, should be simulated.

4.1 Definition and Properties of LES Filter
We consider, for the sake of simplicity, isotropic filters, i.e. filters applied to

an unbounded domain with a constant and identical in all directions of space
cutoff scale. The filtering is represented in physical space as a convolution
product. The resolved part φ̄(x, t) of a space-time variable φ(x, t) is defined
by the relation:

φ̄(x, t) =

∫ +∞

−∞

∫ +∞

−∞
φ(ξ, t′)G(x− ξ, t− t′) dt′d3ξ,

where G is the convolution kernel, which is characteristic of the filtered used
and associated with the cutoff scales in space and time, ∆̄ and τ̄c, respec-
tively. The dual definition in the Fourier space is obtained by multiplying the
spectrum φ̂(k, ω) of φ(x, t) by the spectrum Ĝ(k, ω) of the kernel G(x, t):

¯̂
φ(k, ω) = φ̂(k, ω)Ĝ(k, ω), (4.1.1)

where k and ω are the spatial wave number (i.e. the number of waves per
unit distance) and time frequency, respectively. The function Ĝ is the transfer
function associated with the kernel G. The unresolved part of φ(x, t), denoted
by φ′(x, t), is defined as:

φ′(x, t) = φ(x, t)− φ̄(x, t)

= φ(x, t)−
∫ +∞

−∞

∫ +∞

−∞
φ(ξ, t′)G(x− ξ, t− t′) dt′d3ξ.

Using equation (4.1.1), the corresponding form in spectral space is:

φ̂′(k, ω) = φ̂(k, ω)− ¯̂
φ(k, ω) =

(
1− Ĝ(k, ω)

)
φ̂(k, ω).
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In order to write the Navier-Stokes equations, after applying a filter, we
need the following properties associated to the filter:

1. Conservation of constants:

ā = a ⇐⇒
∫ +∞

−∞

∫ +∞

−∞
G(ξ, t′) d3ξdt′ = 1.

2. Linearity:
φ+ ψ = φ̄+ ψ̄.

3. Commutation with derivation:

∂φ

∂s
=
∂φ̄

∂s
, s = x, t.

We can now define the differential filters, which are realized by solving
suitable partial differential equations linked to the physics of the problem.
The name differential filter stresses the differences with the standard LES
filtering, already described, which is made by space-averaging. More precisely,
these filters are such that the kernel G is the Green’s function associated to
an inverse linear differential operator F:

φ = F (φ̄) = φ̄+ θ
∂φ̄

∂t
+ ∆l

∂φ̄

∂xl
+ ∆lm

∂2φ̄

∂xl∂xm
+ ...,

where θ and ∆l are some time and space scales, respectively. A filter is said
to be elliptic (resp. parabolic or hyperbolic) if F is an elliptic (resp. parabolic,
hyperbolic) operator. An elliptic filter is given by:

φ = φ̄−∆
2 ∂φ̄

∂x2
l

.

This particular filter depends only on space. The convolutional integral form
is:

φ̄ =
1

4π∆
2

∫
φ(ξ, t)

|x− ξ|
exp

(
−x− ξ

∆

)
dξ,

which satisfies the three basic properties described before.
Three classical filters for LES are the box (or top-hat), the Gaussian, and

the spectral (or sharp cutoff) filter. We present only the filter used in Ansys
Fluent for running the simulations, i.e. the box filter. In the mono-dimensional
case, for a cutoff length ∆, the box filter is defined as:

G(x− ξ) =

{
1
∆

if |x− ξ| ≤ ∆
2

0 otherwise
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Ĝ(k) =
sin(k∆/2)

k∆/2
.

Figure 4.1 represents the convolution kernel G (on the left) and the transfer
function Ĝ (on the right).

Figure 4.1: Box filter. Left: Convolution kernel in the physical space normalized
by ∆. Right: Associated transfer function.

4.1.1 Filtered Navier-Stokes Equations

Firstly, we recall the incompressible Navier-Stokes equations, governing the
motion of an incompressible Newtonian fluid. In the physical space, they are
written as:

∂ui
∂t

+
∂(uiuj)

∂xj
= − ∂p

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
, i = 1, 2, 3, (4.1.2)

∂ui
∂xi

= 0, (4.1.3)

where u = (u1, u2, u3) is the velocity field expressed in a reference Cartesian
coordinate system x = (x1, x2, x3), p = P/ρ is the static pressure, ρ the density,
and ν the uniform kinematic viscosity. Applying a filter to equations (4.1.2)
and (4.1.3), and recalling the commutation with derivation, then:

∂ūi
∂t

+
∂(uiuj)

∂xj
= − ∂p̄

∂xi
+ ν

∂

∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

)
, i = 1, 2, 3, (4.1.4)

∂ūi
∂xi

= 0, (4.1.5)
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where p̄ is the filtered pressure. In order to solve the system, we have to express
the non-linear term uiuj as a function of the unknowns u and u′, where:

u′ = u− u.

Leonard [76] decomposed the non-linear term in the following summation:

uiuj = (ūi + u′i)(ūj + u′j)

= ūiūj + ūiu′j + u′iūj + u′iu
′
j.

Using Leonard’s decomposition and defining the subgrid tensor as:

τij = uiuj − ūiūj (4.1.6)

= ūiu′j + u′iūj + u′iu
′
j,

we can write the filtered momentum equation (equation 4.1.4) as:

∂ūi
∂t

+
∂(ūiūj)

∂xj
= − ∂p̄

∂xi
+ ν

∂

∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ∂τij
∂xj

, i = 1, 2, 3. (4.1.7)

In particular, the subgrid scale can be expressed as:

τij = (ūiu′j + u′iūj) + u′iu
′
j

= Cij +Rij,

where the cross-stress tensor Cij = ūiu′j + u′iūj represents the interactions
between large and small scales, and the Reynolds subgrid tensor Rij = u′iu

′
j

the interactions between subgrid scales. Since the term ūiūj can not be calcu-
lated directly, because it requires a second application of the filter, Leonard
introduced a second decomposition:

ūiūj = (ūiūj − ūiūj) + ūiūj

= Lij + ūiūj (4.1.8)

by adding and subtracting the term ūiūj. The Leonard stress tensor L repre-
sents the interactions among large scales. Including the Leonard stress tensor
in the definition of the subgrid tensor τ , the latter takes the following form:

τij = Lij + Cij +Rij (4.1.9)
(4.1.6)

= Lij + uiuj − ūiūj
= ūiūj − ūiūj + uiuj − ūiūj
= uiuj − ūiūj.
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Using equations (4.1.8) and (4.1.9), the filtered momentum equation (4.1.7)
becomes:

∂ūi
∂t

+
∂(ūiūj)

∂xj
= − ∂p̄

∂xi
+ ν

∂

∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ∂τij
∂xj

, i = 1, 2, 3.

Therefore, the final form of the filtering governing equations for an incompress-
ible fluid can be written as:

∂ūi
∂t

+
∂(ūiūj)

∂xj
= − ∂p̄

∂xi
+ ν

∂

∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ∂τij
∂xj

, i = 1, 2, 3,

(4.1.10)
∂ūi
∂xi

= 0. (4.1.11)

Using the first decomposition in equation (4.1.6), the equation for the resolved
kinetic energy q2

r = 1
2
ūiūi (multiplying the filtered momentum equation by ūi)

is:

∂q2
r

∂t
= ūiūj

∂ūi
∂xj︸ ︷︷ ︸
I

+ τij
∂ūi
∂xj︸ ︷︷ ︸
II

− ν ∂ūi
∂xj

∂ūi
∂xj︸ ︷︷ ︸

III

− ∂(ūip̄)

∂xi︸ ︷︷ ︸
IV

+
∂

∂xi

(
ν
∂q2

r

∂xi

)
︸ ︷︷ ︸

V

− ∂

∂xj
(ūiūiūj)︸ ︷︷ ︸
V I

− ∂(ūiτij)

∂xj︸ ︷︷ ︸
V II

.

Each term involves the exchange of kinetic energy at the resolved scales:

• I: production

• II: subgrid dissipation

• III: dissipation by viscous effects

• IV : diffusion by pressure effect

• V : diffusion by viscous effects

• V I: diffusion by interaction among resolved scales

• V II: diffusion by interaction with subgrid tensor.

The subgrid kinetic energy q2
gsgs is defined as the half-trace of the subgrid

tensor:
q2
gsgs =

1

2
τkk =

1

2
u′iu
′
i + ūiu′i
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Notice that, if the filter is not positive, can admit negative values locally.
As we have already pointed out, in order to reduce the complexity of the

solution in space and time, LES resolves directly the large scales, while the
small ones have been modeled. In particular, the terms involving the small
scales, i.e. u′ in the physical space and (1− Ĝ) in the spectral one, can not be
calculated directly and all the information concerning the small scales is lost.
The subgrid modeling is performed by approximation of the terms, starting
from the information contained in the resolved scales. Moreover, it must take
into consideration the physical (i.e. conservation of Galilean invariance, asymp-
totic behaviors,...) and numerical constraints (i.e. acceptable algorithmic cost,
no destabilization of the numerical simulation,...). The subgrid modeling can
be grouped in two modeling strategies [66]:

1. Structural modeling of the subgrid term, which consists in making the
best approximation of the tensor τ by constructing it from an evaluation
of u or a formal series expansion. This strategy consider a relation of
the form u′ = H(u) or τ = H(u). The knowledge of the nature of the
inter-scale interaction is not require; however, a drawback consists in a
sufficient knowledge of the structure of the small scales of the solution
in order to be able to determine one of the relations u′ = H(u) or
τ = H(u).

2. Functional modeling, which consists in modeling the action of the subgrid
terms on the quantity u and not the tensor τ itself, i.e. introducing a
dissipative or dispersive term. This approach uses a relation of the form
∇ · τ = H(u).

In the present work we focus only on the functional modeling, and, in partic-
ular, on the subgrid scale models.

The subgrid scale models consists in considering information directly re-
lated to the subgrid scales. Thanks to the Boussinesq hypothesis [67], the
subgrid scale models compute the subgrid-scale turbulent stresses from:

τij −
1

3
τkkδij = −2νsgsSij. (4.1.12)

The term Sij is the rate-of-strain tensor for the resolved scale defined by:

Sij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
. (4.1.13)

The isotropic part of the subgrid-scale stresses τkk is not modeled, but added to
the filtered static pressure term, i.e. p̄∗ = p̄+ 1

3
τkkδij. Then, equations (4.1.12)

and (4.1.13), and the particular subgrid scale model selected lead to the closure
problem. In the next section we introduce the most common subgrid models.
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4.2 Common LES models
As many subgrid models can be found in literature, we briefly describe the

main used subgrid models:

• Smagorinsky-Lilly model: It is the model that we adopt to perform
aortic patient-specific simulations (see Chapter 5). A detailed description
is reported in the next section.

• Wall-Adapting Local Eddy Viscosity (WALE) model: Developed
by Ducrous et al. [68], it allows to incorporate the appropriate behavior
near the wall into the eddy viscosity expression, i.e.

νsgs = (CW∇)2DW ,

where the differential operator DW is defined as

(SdijS
d
ij)

3/2

(SijSij)5/2 + (SdijS
d
ij)

5/4
,

and

Sdij =
1

2
(g2
ij + g2

ji)−
1

3
δijg

2
kk, gij =

∂ūi
∂xj

, g2
ij = gikgkj.

Typical value of CW set in literature is CW = 0.325 [69], [70]. This
model is also well suited for LES in complex geometries because only
local information is required to build the eddy-viscosity.

• Algebraic Wall-Modeled LES (WMLES) model: In this model,
presented by Piomelli et al. [71], the grid spacing is chosen to scale with
the local boundary-layer thickness. The eddy viscosity is modeled as

νsgs = (Csmag∇)2S

(
1− exp

(
−
(
y+

25

)3
))

,

where
∇ = min(max(Cwdw;Cwhmax, hwn);hmax),

dw denotes the wall distance, Cw = 0.15 and Csmag = 0.2 constants, y+

the normal to the wall inner scaling, hmax the maximum edge length for
a rectilinear hexahedral cell, and hwn the wall normal grid spacing.
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• σ model: Including a constant, Cσ ≈ 3
2
it was introduced by Toda et al.

[72]. The eddy viscosity is modeled as

νsgs = (Cσ∇)2Dσ,

where Dσ is a differential operator incorporating the suitable wall be-
havior and some other related effects, i.e.

Dσ =
σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

.

σ1 ≥ σ2 ≥ σ3 ≥ 0 are the singular values of the gradient tensor [72].

• Dynamic Kinetic Energy Transport (KET) model: It was pro-
posed by Yoshizawa and Horiuti [73], in order to account for the subgrid-
scale kinetic energy kSGS in the expression for the eddy viscosity, instead
of some differential operator function, i.e.

νsgs = Ck∇k1/2
SGS,

where
kSGS =

1

2
(uiui − ūiūi)

is the subgrid-scale kinetic energy. In particular, the kinetic subgrid-scale
energy can be computed from the transport equation:

∂kSGS
∂t

+ ūj
∂kSGS
∂xj

= −τij
∂ūi
∂xj
− Cε

k
3/2
SGS

∇
+

∂

∂xj

(
νT
σ

∂kSGS
∂xj

)
,

where σ = 1. Ck and Cε can be implemented as two constants or with a
dynamic computation.

4.2.1 The Smagorinsky model

The Smagorinsky model was developed firstly by Smagorinsky in 1963 [74],
and then by Lilly [75] and Leonard [76]. Deardorff used this model for the
first time in numerical CFD simulations at large Reynolds numbers [77, 78].
The Smagorinsky model is characterized by a length scale term, a differential
operator, and a dimensionless contstant CS, called Smagorinsky coefficient. As
for the length scale term, the idea is to related it with the filter cutoff scale ∆
and to represent it by applying some function of the mesh size as the general
length scale term. A widely applied choice [79] consists in considering:

∆ = V
1/d
cell ,
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where Vcell denotes the area/volume of a computational cell or element, and
d corresponds to the geometrical dimension of the problem. The differential
operator involved in the Smagorinsky model is the magnitude of the strain
rate tensor, computed as:

|S(x, t)| =
√

(2SijSij).

Then, the subgrid viscosity derived by dimensional arguments results in:

νsgs = (CS∆)2|S(x, t)|,

Therefore, the model produces less sub-grid scale turbulent viscosity as the
mesh gets finer, approaching to a DNS. The Smagorisky coefficient CS can be
interpreted as a scaling factor of the turbulent eddies. In literature a rather
wide range of recommended values for CS can be found, often obtained by
calibrating the model by comparison with solutions given by DNS. Reasonable
values ranges from 0.065 (Moin et al. [65]), 0.1 (Deardorff [77]), 0.15 (Pope
[80]), 0.17 (McMillan et al. [81] and Lilly [75]), to 0.185 and 0.23 (Lilly [82]).
The default value of CS set in Ansys Fluent is 0.1.

The Smagorinsky model is the oldest and simplest LES model; for this
reason it was widely used in literature. In particular, Tan et al. [83] and Pal
et al. [84] proved that this stable and robust LES model provides a good
agreement to DNS, by comparing the results given by the CFD simulations of
an idealized stenotic blood vessel. For these reasons we use the Smagorinsky
model to perform CFD simulations in the next Chapter.

However, the Smagorinsky model has some drawbacks, that are summarized
as follows:

• The value of the Smagorinsky coefficient needs to be calibrated, since it
is not universal but depends on the spatial discretization, on the type of
the filter used, and on the flow under consideration.

• The Smagorinsky model becomes too dissipative near the wall due to a
large value of turbulence viscosity arising from the mean shear [65].

• Since CS is a strictly positive constant, the eddy viscosity does not van-
ish for a laminar flow, and so the model damps the growth of small
perturbation.

In order to reduce the excessive dissipation of the model, Ansys Fluent adopts
the mixing length for subgrid scales LS, defined as:

LS = min(kd, CS∆),
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where k denotes the von Karman constant, and d the distance to the closest
wall. Using this mixing length scale, the subgrid viscosity computed by Ansys
Fluent becomes:

νsgs = L2
S|S(x, t)|.



Chapter 5

Large-Eddy Simulation Models for
Aortic Diseases

Aneurysm and dissections are the principal aortic diseases [85]. In partic-
ular, a thoracic aortic aneurysm is a permanent, localized dilatation of the
thoracic aorta (see Figure 5.1). Detailed information and comprehension of
the local hemodynamic is possible with computational fluid dynamic (CFD)
simulations, which could facilitate the understanding of the disease progression
for such aortic diseases.

Figure 5.1: Sketch of a healthy (on the left) and aneurysmatic (on the right)
thoracic aorta [86].

Aortic simulations are characterized by disturbed nature of the blood flow,
induced by moderate/large values of Reynolds number and complex geome-
tries, also caused by pathologies. The Reynolds number is a dimensionless
number, depending on the density ρ, the diameter of the vessel D, the mean

57



58

blood velocity u, and the dynamic viscosity µ of the blood:

Re =
ρDu

µ
.

In a straight pipe, the flow remains stable and is called laminar if it is at most
of the order of 2300, transient if it ranges between 2300 and 4000, turbulent
if it exceeds the order of 4000 [87]. In general, the diameter of the human
ascending aorta is about 25 mm, while typical values of blood velocity at
the systolic peak and the corresponding Reynolds number are 1.0 cm/s and
4000, respectively [3]. Therefore, turbulent flow may occur at the exit of the
aortic valve in correspondence to the systolic peak and when departing from
physiological conditions due to physical exercise or some pathologies.

Patient-specific aortic simulations are particularly challenging for two main
reasons. Firstly, DNS requires to solve in the computational mesh all the scales
of motion, from the smallest dissipative scales, called Kolmogorov scales:

η =

(
ν3

ε

)1/4

(5.0.1)

up to the largest ones, called integral scales, L, containing most of the kinetic
energy. In equation (5.0.1), ν is the kinematic viscosity and ε the rate of
kinetic energy dissipation. Since the rate of kinetic energy dissipation can be
approximated as ε ∝ u3/L [88], the Kolmogorov scale becomes:

η =

(
ν3

ε

)1/4

∝
(
ν3L

u3

)1/4

= L

(
ν3

L3u3

)1/4

= LRe−3/4. (5.0.2)

Using this latter equation (5.0.2), the number of points along to a spatial
direction should be:

N∆x =
L

η
∝ Re3/4.

Hence, the computational cost of a DNS grows very fast with the increasing
value of the Reynolds number. For example, if we consider typical values of
diameter and peak velocity reported before, a common (three-dimensional)
aortic DNS should require a number of mesh points of the order of 3000000,
with standard values of blood density and viscosity. Therefore, aortic sim-
ulations are significantly expensive also for performing clusters. Alternative
approaches are represented by RANS equations and LES. RANS models re-
duce significantly the computational cost compared to DNS and LES but also
decrease the solution accuracy. Catalano et al. [89] investigated the viability



59

and accuracy of both LES and RANS simulations of the flow around a cylin-
der at high Reynolds numbers. Despite of the good agreement at the bound-
ary layer, the LES solution was significantly more accurate than the RANS
results. The same conclusion was achieved by Johari et al. [90], who simu-
lated the disturbed flow in a patient-based stenosed carotid artery bifurcation.
RANS-based SST-Tran model agree well with LES and experimental results
at low and moderate Reynolds number; however, more accurate results were
obtained with the LES model especially when the Reynolds number exceeded
2000. Therefore, in the present work we select a LES model to perform patient-
specific aortic simulations. In particular, we adopt the Smagorinsky model for
the advantages explained in the previous section, i.e. more simple and robust
than the others LES models. However, the choice of a LES model implies a
further challenge, i.e. the parameter estimation involved in the selected LES
model. In particular, focusing on the Smagorinsky model, this latter requires
the calibration of the Smagorinsky coefficient CS in order to obtain accurate
and stable solution. Meyers et al. [91] presented a theoretical analysis on the
dependence of the Smagorinsky coefficient on the ratio of the LES filter width
to the Kolmogorov scale ∆/ν, the ratio of the integral length scale to the LES
filter width L/∆, and the type of the LES filter. Moreover, they introduced
the following estimate of the Smagorinsky coefficient:

C∗S =
CS,∞
γ

√
max

{
1−

( γη

CS,∞∆

)4/3

, 0

}
where CS,∞ ≈ 0.17 denotes the Smagorinsky coefficient estimated by Lilly [75],
and γ is a factor depending on the type of the filter. In particular, γ is defined
as:

γ =

(
4
3

∫∞
0
k1/3

(
G(k)

)2
dk
)3/4

π/∆
.

However, the estimate C∗S does not take into account the choice of the boundary
conditions enforced.

Proper boundary conditions should be considered in patient-specific CFD
simulations to get reliable results. Dirichlet boundary conditions are usually
affected by noise and are rarely available. In the last few years, Neumann
boundary conditions are commonly adopted at the outlets with traction or
pressure data, that are often derived from surrogate models. These surrogate
models, such as the three-element Windkessel model [98], are tuned with pa-
tients’ data and allow to get patient-specific values of flow and pressure at the
boundaries. However, Neumann boundary conditions could induce numerical
instability in presence of reverse flow, i.e. backflows or incoming flow. The re-
verse flow occurs when the blood flow is decelerating and together with the
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prescription of Neumann boundary conditions leads to the so called backflows
instabilities, due to the energy injection caused by the convective term in the
energy estimate. The suppression of the backflows instabilities is particularly
challenging, despite the use of very fine meshes. Xu et al. [18] proved theo-
retically and numerically, with idealized geometries and a single realistic case,
that a particular deconvolution-based LES model, i.e. the Leray model with
an Evolve-Filter-Relax scheme, implemented in open-source codes, is able to
control the occurrence of the backflow instability. However, at the best of our
knowledge, there is no study investigating on the suppression of the backflow
instabilities with more classical LES models by tuning the LES parameters
and using commercial software.

5.1 Large-Eddy Simulations for Thoracic Aortic
Aneurysms

In literature, only few recently studies can be found on patient-specific sim-
ulations for thoracic aorta using LES models (Lantz et al. [92], Lantz et al.
[17], Andersson et al. [93], Zakaria et al. [94], Xu et al. [18], and Manchester
et al. [69], see Table 5.1). In particular, both the works of Lantz et al. [92] and
Zakaria et al. [94] retrieved the geometry used in the simulations from the CT
scan of healthy thoracic aorta, characterized by less complex geometry and
less disturbed nature of flow. Moreover, unrealistic outlet boundary conditions
with relative static pressure of 0 Pa at all four outlets were imposed in the
study of Zakaria et al. [94]. Focusing on the simulations for thoracic aortic
diseases, in the further study of Lantz et al. [17] the flow features in a thoracic
aortic coarctation were analyzed, using the WALE model in the simulations.
Dirichlet boundary conditions were imposed in all the outlets, excepts for the
one corresponding to the descending aorta, in which a Neumann boundary
condition was prescribed, thus restricting the possible occurence of backflow
instabilities. A further step has been performed by Andersson et al. [93] only
on the investigation of the properties of a new parameter, called transverse
wall shear stress, computed accounting for the phase-average component of
the wall shear stress (WSS) and the wall normal and time-average wall shear
stress (TAWSS) direction. The same decomposition of the WSS into the phase-
average and fluctuating component has been adopted by Manchester et al. [69].
The authors analyzed the turbulence effects in an aortic valve stenosis perform-
ing the simulations with the open source software OpenFoam. Patient-specific
boundary conditions have been imposed at all the outlets by a proper esti-
mation of the three-element Windkessel parameters. However, the parameter
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ID Protocol
Lantz et al.
[92]

AIM: Investigation on the WSS in a human thoracic aorta using a LES
turbulence model and measured velocity profiles as boundary condi-
tions. METHODS: MRI acquisition was performed on a young healthy
male. 4.8 million cells mesh was used in the simulations. Physiological
inlet boundary condition; mass flow rates were specified on each of the
three arteries in the aortic arch; in the descending aorta a three-element
Windkessel model was imposed. The subgrid-scale eddy viscosity was
modeled with the wall-adapted local eddy-viscosity (WALE) LES model
(CWALE = 0.5). The simulations were performed with ANSYS CFX
13.0, using a time-step of 1e-4 s.

Lantz et al.
[17]

AIM: Study of the flow features in a thoracic aortic coarctation, and
comparison on the kinetic and turbulent kinetic energy obtained in the
numerical simulations to MRI measurements. METHODS: The simula-
tions were carried out using ANSYS CFX 14.0, with the WALE model.
velocity profiles measured by MRI were prescribed in the ascending
aorta; measured mass flow rates were specified in the two vessels leaving
the aortic arch; a pressure boundary condition was set in the descend-
ing aorta. The mesh sizes were on the order of 7 million anisotropic
hexahedral cells.

Andersson et
al. [93]

AIM: Investigation on the transverse wall shear stress (transWSS) prop-
erties in flows subjected to different pathological turbulent flow condi-
tions, governed by a patient-specific model of a thoracic aortic coarc-
tation pre and post balloon angioplasty. METHODS: The equations
were solved in ANSYS CFX using a central difference and second-order
backward Euler scheme for the spatial and temporal gradients. WALE
subgrid model was used. The inflow of the ascending aorta was set by
the 2D PC-MRI blood flow measurement, whereas a square law gov-
erned the vessels in the aortic arch.

Zakaria et al.
[94]

AIM: Analyses of the blood clot potential in the patient specific aorta,
through LES formulation on open source software OpenFOAM. METH-
ODS: The CT scan of the thoracic aorta was obtained from the anatom-
ical model of a healthy male 71 year old Malaysian subject. Transient
inlet velocity waveform, and relative static pressure of 0 Pa at all 4
outlets. LES k − ω eddy viscosity model was used.

Xu et al. [18] AIM: Provide a proof on both idealized and realistic cases that a par-
ticular LES model implicitly stabilizes the backflow instability. METH-
ODS: A patient-specific aorta with an abdominal aneurysm is consid-
ered. Patient inlet velocity waveform, and 3-element Windkessel model
for the outlets. The software LifeV was used for computation.

Manchester et
al. [69]

AIM: Detailed analysis of turbulence effects in aortic valve stenosis.
METHODS: Numerical simulations were performed using OpenFOAM,
with WALE model (C = 0.325). 3-element Windkessel model was im-
posed at the three branch and descending thoracic aorta outlets. Mesh
with 7.4 million cells was generated.

Table 5.1: Literature review on LES simulations for patient-specific thoracic
aortic simulations.
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estimation of the LES model was not motivated and investigated in correlation
to the flow features and the fine mesh size adopted (7.4 million cells). Xu et
al. [18] proved that a particular LES model, based on the Evolve-Filter-Relax
scheme, implicitly stabilizes the backflow instability with a judicious selection
of the parameters. A single patient with thoracic aortic aneurysm has been
involved for the simulations performed using LifeV.

The aim of this work is to prove that the Smagorinsky model both provides
accurate solution and stabilizes the backflow instability, even with relatively
coarse meshes, thanks to a proper selection of the Smagorinsky coefficient.
Note that decreasing the mesh size, also reduces the computational cost. In
order to reach this goal, we consider three patient-specific geometries of aortic
aneurysms, we impose boundary conditions using patients’ data, and we vary
the mesh size and the value of the corresponding Smagorinsky coefficient. In
Figure 5.2 is represented the workflow of the present study. Due to the high
computational cost, a DNS is performed only for the simplest and stablest case,
in order to assess by comparison the results obtained by LES simulations.

Figure 5.2: Block diagram corresponding to the workflow adopted for the
present study.
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5.1.1 Patient-Specific Geometries and CFD Setting

Data Acquisition
Three patients with an aneurysm in the vicinity of the aortic arch were

selected from the framework of a Computer-Aided Clinical Trial, called iCar-
dioCloud [95, 96]. The iCardioCloud project was developed thanks to a collab-
oration between the University of Pavia, the medical research hospital IRCCS
Policlinico San Donato of Milan and the Department of Mathematics and Com-
puter Science of Emory University. The trail collects 21 patients with different
aortic diseases, such as thoracic aortic aneurysm, dissection, and coarctation.
The computational domains, represented in Figure 5.3, were retrieved from the
previous study of Romarowski et al. [46], who performed a level-set segmenta-
tion procedure using the software VMTK [97] from the contrast enhanced CT
images. Moreover, flow extensions were added by the Authors to the computa-
tional domains at both the inlet and outlets, using VMTK. According to the
label used in Figure 5.3, from now on we call Patient 1 the patient with the
simplest geometry involved also to perform the DNS, Patient 2 the one with
the most complex geometry and Patient 3 the remaining one.

Figure 5.3: Computational domains used for the simulations in three aneurys-
matic patients: left, patient 1; center, patient 2; and right, patient 3.

Spatial and Temporal Discretization
We generate three tetrahedral meshes (two for LES simulations and one for

the DNS) related to Patient 1, and two tetrahedral meshes for both Patients
2 and 3. The meshes are generated using the software Netgen and ranges from
775996 to 2705272 elements. In Table 5.2 we report the number of elements of
each mesh.

A time-step sensitivity analysis was conducted only on the coarsest mesh
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Mesh Patient 1 Patient 2 Patient 3
C1 M1 F1 C2 M2 C3 M3

# nodes 136231 289827 468278 149206 341340 152084 319771
# tetrahedra 775996 1667209 2705272 806069 1962122 865365 1835887

Table 5.2: Details of the meshes used for Patient 1, 2, and 3. In particular C1,
C2, C3 denote the coarsest mesh generated for LES simulations corresponding
to Patient 1, 2, and 3, respectively. M1, M2, M3 are the finest mesh generated
for LES simulations corresponding to Patient 1, 2, and 3, respectively. F1

indicates the mesh used for the DNS corresponding to Patient 1.

of Patient 2 and two time-steps of 1e − 3 and 1e − 4 were considered. We
found that the time-step 1e − 3 is suitable, with errors less than 1% relative
to the smallest time-step. Concerning the other meshes, we maintain the same
fix time-step of 1e− 3 after computing throughout the cardiac cycle the mean
Courant-Friedrichs-Lewy (CFL) number, ensuring that this latter is less than
1.

Computational Model and Numerical Method
We report for clarity the spatially filtered Navier-Stokes equations for an in-

compressible fluid derived in the previous section (equations (4.1.10), (4.1.11)):

∂ūi
∂t

+
∂(ūiūj)

∂xj
= − ∂p̄

∂xi
+ ν

∂

∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ∂τij
∂xj

, i = 1, 2, 3,

∂ūi
∂xi

= 0.

To close the problem we select the Smagorinsky model, then

νsgs = L2
S|S(x, t)|,

where LS is defined in Ansys Fluent as LS = min(kd, CS∆). The Smagorinsky
coefficient CS was tuned for each simulation according to the mesh size and the
amount of reverse flow (see Section 5.1.4. for more details). The transient CFD
simulations were performed using Intel Xeon W-2123 computing workstation
(3.6 GHz, 32 GB RAM) with the commercial software FLUENT (v.2020 R2,
ANSYS Academic Research). We assume blood as an incompressible and New-
tonian fluid, with a density of 1060 kg/m3 and a dynamic viscosity of 0.0035 Pa
s. Semi-implicit method for pressure linked equations (SIMPLE) was used to
solve the Navier-Stokes equations. Second order scheme for both pressure and
momentum spatial discretization were adopted. We performed the simulations
until the sixth cardiac cycle, in order to achieve periodic solutions.
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Figure 5.4: Inlet velocity waveforms over a cardiac cycle imposed in the simu-
lations at the inlet of the patients: left, Patient 1; center, Patient 2; and right,
Patient 3.

Transient inlet velocity waveform extracted from PC-MRI of each patient
was imposed at the corresponding ascending aorta by writing a user defined
function (UDF) to be interpreted in Ansys Fluent. The inlet velocity waveforms
used in the simulations are shown in Figure 5.4. The peak Reynolds number
at the ascending aorta is 4295, 4578, 4772 in Patient 1, 2, and 3, respectively.
A three-element Windkessel model [98] was imposed at the three supra-aortic
branches and descending thoracic aorta outlet. The values of the Windkessel
parameters were taken from Romarowski et al. [46], who tuned the model
parameters with patients’ data (i.e. the same patients enrolled in this study).
The parameter values set for each patient are summarized in Table 5.3. In
particular, R1 and R2 represent the viscous dissipation in the proximal and
distal region of the outflow, and C denotes the deformation of the arteries.
Assuming rigid the vessel wall, the no-slip boundary condition was enforced at
the wall.

Patient 1 Patient 2 Patient 3
R1 R2 C R1 R2 C R1 R2 C

BCT 430 8930 1.06 841 22736 1.02 1091 12017 0.67
LCCA 4390 46736 0.15 3767 40660 0.39 3475 57727 0.16
LSA 1556 34083 0.42 1311 33240 3.39 701 27431 0.47
DA 73 1158 9.72 142 1423 11.95 43 1767 8.59

Table 5.3: Three-element Windkessel parameter values for each patient applied
at the outlets: BCT, brachiocephalic trunk; DA, descending aorta; LCCA, left
common carotid artery; LSA, left subclavian artery; DA descending aorta.
The unit of the resistance values are in dynes s/cm5, while the unit of the
capacitance values are in 10−4 cm5/dynes.
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Post-processing For Patient 1, we perform both a qualitative and quanti-
tative analysis comparing the results obtained from DNS and LES simula-
tions. Qualitatively, velocity streamlines, velocity contours and vectors, flow
rate and pressure waveforms at the boundaries, TAWSS, and oscillatory shear
stress (OSI) are evaluated. In particular, velocity streamlines, contours and
vectors are analyzed from the inlet velocity waveform in two instants of the
last cardiac cycle, corresponding to: the systolic peak velocity (tpeak = 0.140s,
tpeak = 0.143s, and tpeak = 0.115s for Patient 1, 2, and 3, respectively), and
the minimum velocity (tmin = 1.198s, tmin = 0.143s, and tmin = 0.009s for
Patient 1, 2, and 3, respectively). TAWSS represents the shear load over time
that is subjected to the arterial wall, while OSI describes the changes of WSS
over a cardiac cycle. TAWSS and OSI are computed, respectively, according
to the following definitions:

TAWSS =
1

T

∫ T

0

|WSS| dt (5.1.1)

OSI = 0.5

(
1−
|
∫ T

0
WSS dt|∫ T

0
|WSS| dt

)
(5.1.2)

where T is the cardiac period and |WSS| the norm of the WSS vector. In
particular, we compute the WSS by the meaning of the tangential component
of the normal stress, i.e.:

WSS = w − (w · n)n, (5.1.3)

where the normal stress for a Newtonian fluid is

w = pn− µ
(
∇u +∇uT

)
· n. (5.1.4)

For a DNS, µ in equation (5.1.4) denotes, as written before, the dynamic viscos-
ity; however, in LES simulations the turbulent viscosity, µturb, plays a pivotal
role, that we should account also in the calculation of the WSS. Therefore,
for LES simulations we analyze the WSS computed both using the equation
(5.1.3) and including the turbulent viscosity, i.e.:

wturb = pn− (µ+ µturb)
(
∇u +∇uT

)
· n, (5.1.5)

WSSturb = wturb − (wturb · n)n. (5.1.6)

WSS and WSSturb are calculated with ParaView, an open-source visualization
framework [99]. Ansys Fluent allows to export the WSS computed during the
simulation, but it calculates the WSS in two ways, depending on the size of
the mesh considered, i.e.:

w = µ
u

y
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if the mesh is fine enough to resolve the laminar sublayer [100], otherwise

w = ρ

 u k

ln
(
Eρ
√

w/ρ y

µ

)


2

,

where y is the wall-normal distance calculated at the cell centers and E =
9.793 an empirical constant obtained for the surface roughness and the flat
wall surfaces. Therefore, in order to perform a consistent comparison between
DNS and LES simulations, we compute the WSS in ParaView using equations
(5.1.3) and (5.1.6) for each simulation. Quantitatively, the percentage area
of high OSI (> 0.3), the h2 index, and the percentage area of low (< 25th

percentile) and high TAWSS (> 75th percentile) are compared between the
results obtained from DNS and LES simulations. In particular, the h2 index
is a measure concerning the bulk flow, given by time-averaging the absolute
value of the helicity [101]:

h2 =
1

TV

∫
T

∫
V

|u · (∇× u)| dV dt,

where V is the arterial volume. The h2 index expresses the helicity intensity in
the fluid domain, irrespective of direction. In order to facilitate the comparison
and to evaluate the impact of the LES model in specific regions, the compu-
tational domain is divided into 5 zones (see Figure 5.5): (1) ascending aorta,
(2) aortic arch, (3) aneurysm, (4) thoracic aorta, and (5) descending aorta.

Figure 5.5: Thoracic aorta of Patient 1 colored according to the five zones
under investigation: ascending aorta, aortic arch, aneurysm, thoracic aorta,
descending aorta.
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Concerning Patients 2 and 3, we assess the results of the LES simulations
focusing on the calibration of the Smagorinsky coefficient and the flow fea-
tures, in order to understand how they correlates. We calculate the velocity
vectors at the outlets, the amount of antegrade/retrograde flow, and the ejec-
tion fraction (EF) at the corresponding inlet and outlets. Reverse flow is a
physiologic phenomenon occurring at relative large branches, i.e. the supra-
aortic branches [102] and descending abdominal aorta [103], in both healthy
and diseased subjects. It is present often during blood flow deceleration, at late
systole and early diastole. Therefore, reproducing reverse flow, by suppressing
the backflow instabilities, is fundamental for realistic simulations. The ejection
fraction is a measurement of the percentage of blood ejected from a chamber
with each heartbeat. In particular, in the present study it is computed both at
the inlet and the outlets, as an indicator of the amount of blood flow incom-
ing into the ascending aorta and outgoing the supra-aortic branches and the
descending aorta, respectively. It is defined as:

EF [%] =
Antegrade flow

Total flow
× 100,

thus, an ejection fraction of 100% means that no reversal flow occurs at the
considered inlet/outlet.

5.1.2 Numerical results

Comparison Between DNS and LES simulations in Patient 1
In order to evaluate and prove the accuracy of the solution given by LES

simulations, we first compare the results obtained from DNS with those from
LES simulations performed with Patient 1. Figures 5.6 and 5.7 show the veloc-
ity streamlines along the aorta (top), velocity contours and vectors (bottom)
at the time instant corresponding to the peak systole, tpeak, and the minimum
velocity, tmin, respectively. We report the results relating to the two outlets
where more reverse flow occurs and more differences can be noted, i.e. left
common carotid and left subclavian arteries. At the systolic peak the stabi-
lized velocity from all the simulations are qualitatively consistent, even if the
results obtained with the fine mesh match better the results given by the DNS,
especially at the left common carotid artery. At the time instant correspond-
ing to the minimum velocity, the results from all the simulations capture the
reverse flow at the left common carotid and left subclavian arteries. However,
the velocity magnitude is more uniform in the simulation performed with the
coarse mesh.

Figure 5.8 represents the TAWSS and OSI, both computed according to
equations ((5.1.1)-(5.1.4)). The distribution of the magnitude of TAWSS ob-
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Figure 5.6: Qualitative comparison of velocity streamlines (top), contours, and
vectors (bottom) with the two LES simulations and the DNS at the peak
systole. The velocity contours and vectors illustrated corresponds to the plane
in the left common carotid artery (LCCA) and left subclavian artery (LSA).

tained from the coarse mesh appears underestimated compared to the DNS,
while the magnitude of TAWSS with the fine mesh agrees well with the DNS
one. Analogously, the distribution of OSI in the Fine LES simulation is more
consistent with the DNS results than in the Coarse LES one, in which OSI as-
sumes lower values. Figure 5.9 illustrates the TAWSS and OSI computed taking
into account the turbulent viscosity, according to equations (5.1.5-5.1.6). The
magnitude of TAWSS is overestimated in both Coarse LES and Fine LES re-
spect to the DNS. Conversely, the distribution of OSI is underestimated than
the one of DNS.

Qualitative and quantitative comparison of the area exposed to low (< 25th

percentile of DNS) and high (> 75th percentile of DNS) TAWSS, computed
without accounting the turbulent viscosity, is shown in Figure 5.10. Qualita-
tively, the area exposed to low/high TAWSS in the Fine LES is consistent to
the DNS; on the contrary, the results of the Coarse LES do not match the
distribution of the DNS. The luminal surface exposed to low TAWSS in the
Coarse LES is greater than the one of the DNS, while the area exposed to
high TAWSS is almost absent. These latter considerations are corroborated
by the quantitative analysis. The percentage area exposed to high TAWSS is
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Figure 5.7: Qualitative comparison of velocity streamlines (top), contours, and
vectors (bottom) with the two LES simulations and the DNS at late dias-
tole, corresponding to Patient 1. The velocity contours and vectors illustrated
corresponds to the plane in the left common carotid artery (LCCA) and left
subclavian artery (LSA).

significantly lower in the Coarse LES, in which appears only in the zones cor-
responding to the thoracic and descending aorta (area of high TAWSS is 0.05%
and 0.11% in thoracic and descending aorta, respectively). The surface exposed
to low TAWSS is grater than the DNS results in each zone, with a maximum
difference of +40.3% in the region of aneurysm. Qualitative and quantitative
comparison of the area exposed to low (< 25th percentile) and high (> 75th

percentile) TAWSS including the turbulent viscosity is represented in Figure
5.11. The results are qualitatively and quantitatively consistent, even if the
area exposed to high TAWSS is greater in the zones corresponding to the tho-
racic and descending aorta respect to the DNS. Moreover, the distribution of
the area exposed to low TAWSS is more uniform in the Coarse LES and Fine
LES than the DNS. Figure 5.12 reports the area exposed to high OSI (>
0.3), computed without taking into account the turbulent viscosity, and the
h2 index corresponding to each zone into which the aorta has been divided.
Both the LES simulations well agree with the results of the DNS; in particu-
lar, a better matching can be noted for the Fine LES to the DNS. Figure 5.13
shows the area exposed to high OSI (> 0.3), computed with TAWSSturb, in
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Figure 5.8: Qualitative comparison of TAWSS (top) and OSI (bottom) with
the two LES simulations and the DNS, corresponding to Patient 1. TAWSS
and OSI are computed in Paraview according to equations ((5.1.1)-(5.1.4)).

each zone. More differences are highlighted in the zones corresponding to the
aneurysm, thoracic and descending aorta, in which the area exposed to high
OSI is significantly lower in both the LES simulations than the one given by
the DNS.

5.1.3 Hemodynamic and Clinical Assessment

The main purpose of the present study is to compare the performed LES
simulations, corresponding to Patient 1, with: (1) the DNS, in order to prove
that the LES model allows to obtain accurate results with lower computa-
tional cost; and (2) other LES simulations, corresponding to two aneurysmatic
patients, in order to demonstrate that with a proper selection of the param-
eter value CS, depending on the mesh size and the flow features, all the LES
simulations performed well controls the numerical instabilities.

We assess the first comparison with the DNS by computing the velocity
streamlines and vectors, TAWSS, and OSI. The parameter selection is then in-
vestigated by focusing on the flow features of the three patients, i.e. calculating
the amount of antegrade/retrograde flow, the velocity vectors at the outlets,
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and the ejection fraction.

Velocity streamlines, contours, and vectors
At systolic peak, fairly organized flow patterns occur in the whole com-

putational domain (see Figure 5.6). In Figure 5.6, the velocity streamlines,
contours, and vectors appear in good agreement especially with the fine mesh
and the DNS. Few differences can be captured with the coarse mesh at left
common carotid artery, in which a lower and more uniform velocity results.
This inconsistency could be due to an excessive dissipation introduced by the
LES model and/or the mesh size, not fine enough to guarantee the accuracy
of the solution. Analogue pattern, but less evident than the previous one at
the left common carotid artery, occurs at the left subclavian artery with the
coarse mesh. Indeed, focusing on the velocity contours, the velocity magnitude
obtained with the coarse mesh appears slightly lower in the center of the outlet
than the others.

At the late systole, the blood flow is decelerating and consequently results
in a combination of helical and recirculating secondary flows, especially in the
aneurysmatic zones, according to literature [18], [104]. Concerning Patient 1,

Figure 5.9: Qualitative comparison of TAWSS (top) and OSI (bottom) with
the two LES simulations and the DNS, corresponding to Patient 1. TAWSS
and OSI are computed in Paraview according to equations (5.1.5-5.1.6).
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Figure 5.10: Top: qualitative comparison of the area exposed to low (< 25th

percentile of DNS) and high (> 75th percentile of DNS) TAWSS, computed
according to equations ((5.1.1), (5.1.3)-(5.1.4)), with the two LES simulations
and the DNS, corresponding to Patient 1. Bottom: bar plots of the percentage
area exposed to low and high TAWSS in the five zone under investigation
(ascending aorta, aortic arch, aneurysm, thoracic aorta, descending aorta) of
Patient 1.

this vortical flow pattern remains also during diastole in the whole computa-
tional domain (see the velocity streamlines at the top of Figure 5.7). Retrograde
flow occurs both at left common carotid and left subclavian arteries (see Figure
5.7). In particular, at the time instant corresponding to the minimum velocity,
the flow is completely retrograde with all the meshes at the left subclavian
artery, looking for the velocity vectors in Figure 5.7. Low antegrade flow is
present only at the center of the section corresponding to the left common
carotid artery with the fine and DNS meshes, while with the coarsest one no
antegrade flow occurs. Focusing on the velocity contours represented in Figure
5.7), the velocity appears increasingly lower as the mesh size decreases, com-
pared to that obtained from the DNS at both the outlets illustrated in Figure
5.7). Moreover, the velocity is more uniform with the coarse mesh, resulting
almost zero at the whole section corresponding to the left common carotid
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artery. A more uniform velocity was observed at the brachiocephalic trunk
also by Xu et al. [18], who argued that the more uniform velocity field than
the expected physiological one [105]-[107] is due to an excessive stabilization,
like an effect of the penalization on the velocity gradient introduced at the
boundary.

Time-Averaged Wall Shear Stress
TAWSS is one of the quantities of clinical relevance in understanding the

arterial disease progression [108]. According to Malek et al. [109], the area ex-
posed to low TAWSS (i.e. ascending aorta and aneurysm) is more prone to
atherosclerosis, while high level of TAWSS (i.e. present in descending aorta)
could be induced endothelial quiescence and an atheroprotective gene expres-
sion profile. Figure 5.8 (at the top) shows the TAWSS distributions, computed
without accounting to the turbulent viscosity, for the three simulations. Low

Figure 5.11: Top: qualitative comparison of the area exposed to low (< 25th

percentile of DNS) and high (> 75th percentile of DNS) TAWSS, computed
according to equations (5.1.5-5.1.6), with the two LES simulations and the
DNS, corresponding to Patient 1. Bottom: bar plots of the percentage area
exposed to low and high TAWSS in the five zone under investigation (ascending
aorta, aortic arch, aneurysm, thoracic aorta, descending aorta) of Patient 1.
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Figure 5.12: Top: qualitative comparison of the area exposed to high OSI (>
0.3), computed according to equations ((5.1.2)-(5.1.4)), with the two LES
simulations and the DNS, corresponding to Patient 1. Bottom: bar plots of
the percentage area exposed to high OSI (left) and helicity (h2 index) in the
five zone under investigation (ascending aorta, aortic arch, aneurysm, thoracic
aorta, descending aorta) of Patient 1.

TAWSS occurs in the zones corresponding to the ascending aorta, supra-aortic
branches, and aneurysm. Viceversa, higher values of TAWSS result in the de-
scending aorta region. Comparing the magnitude of TAWSS computed from
the three simulations, the distribution of TAWSS is qualitatively consistent.
However, lower values of TAWSS are observed along the aorta with the coars-
est mesh. The same distribution of TAWSS but with different intensities, ex-
cept for the DNS, is highlighted in Figure 5.9 at the top, in which TAWSS is
computed also taking into account the subgrid viscosity. Indeed, the TAWSS
computed from the coarse and fine meshes is characterized from significantly
higher values than the ones represented in Figure 5.8, due to the additional
subgrid viscosity in the TAWSS calculation (equation (5.1.6)). The TAWSS
obtained from the DNS corresponds to that one shown in Figure 5.8, since a
DNS is not affected to the turbulent viscosity.

In order to quantify the low/high values of TAWSS and provide a clinical
message, the percentage area exposed to TAWSS lower than the 25th percentile
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and higher than 75th percentile of the TAWSS magnitude, given by the DNS,
is calculated. Firstly, we compare the percentage area exposed to low/high
TAWSS computed without the turbulent viscosity (see Figure 5.10) from the
three simulations. The results given by the three simulations show a predomi-
nant area exposed to low TAWSS in the zones corresponding to the ascending
aorta, aortic arch, and aneurysm. However, while with the coarse mesh the
area exposed to high TAWSS is almost absent in the entire aortic wall, Figure
5.10 shows zones with high TAWSS especially at descending aorta with the
fine and DNS meshes. In particular, comparing to the DNS, the area exposed
to low TAWSS is overestimated with the coarse mesh but consistent with the
fine mesh. The maximum difference between the percentage area exposed to
low TAWSS in the DNS and the other two simulations is 40.3% in the zone
corresponding to the aneurysm in the coarse mesh and 9.6% in the region
corresponding to the ascending aorta of the fine mesh. Viceversa, the area ex-

Figure 5.13: Top: qualitative comparison of the area exposed to high OSI (>
0.3), computed according to equations (5.1.2, 5.1.5-5.1.6), with the two LES
simulations and the DNS, corresponding to Patient 1. Bottom: bar plot of
the percentage area exposed to high OSI in the five zone under investigation
(ascending aorta, aortic arch, aneurysm, thoracic aorta, descending aorta) of
Patient 1.
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posed to high TAWSS is underestimated by the LES simulations comparing
to the DNS; the difference is more evident with the coarse mesh. Indeed, the
maximum difference between the percentage area exposed to high TAWSS in
the DNS and the other two simulations is 36.0% in the coarse mesh and 20.1%
with the fine mesh, referring both to the zone corresponding to the descending
aorta.

Analogously, we compare the area exposed low/high TAWSS computed
taking into account the turbulent viscosity (see Figure 5.11). Calculating the
25th and 75th percentile of the TAWSS magnitude for each simulation, the
results are more consistent to the previous ones, computed without turbulent
viscosity and using the 25th and 75th percentile of the DNS as the threshold for
the LES results. In particular, the maximum difference between the percentage
area exposed to low TAWSS in the DNS and the other two simulations is 5.1%
in the zone corresponding to the ascending aorta in the coarse mesh and 5.2%
in the region corresponding to the aneurysm of the fine mesh, respectively.
Focusing on the high TAWSS, the maximum difference between the percentage
area exposed to high TAWSS in the DNS and the other two simulations is
16.0% in the zone corresponding to the descending aorta in the coarse mesh
and 12.81% in the region corresponding to the thoracic aorta of the fine mesh.
Therefore, the 25th and 75th percentile, computed from the TAWSS magnitude
of each LES simulation and used as a threshold to quantify the area exposed
to low/high TAWSS, provides consistent results comparing to the DNS ones.

Oscillatory Shear Index
OSI is a relevant index of the temporal oscillations of the WSS. Ranging

between 0 and 0.5, it denotes the sites where the direction of the WSS vector
changes from the main blood flow direction during a cardiac cycle [108]. There-
fore, the greater the OSI values are, the more the WSS oscillates in relation to
the predominant direction.

Figure 5.8 (at the bottom) shows the qualitative comparison of OSI, com-
puted without the turbulent viscosity, with the two LES simulations and the
DNS. The results of the LES simulations are in good agreement with the OSI
obtained from the DNS. However, lower values of OSI can be captured in
the coarse mesh, especially in the zones corresponding to the aortic arch and
descending aorta.

High OSI values occur at the outer wall of the ascending aorta and in
some localized areas of the left subclavian artery, aneurysm, and descending
aorta in each simulation, because of the oscillation of the flow direction and
the WSS vector during the cardiac cycle. Note that these zones characterized
by high OSI values corresponds to the areas exposed to low TAWSS and low
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velocities (see Figures 5.6 and 5.8). Low WSS distribution associated with low
velocity and high OSI was found in literature to be a useful index to quantify
the hemodynamics alterations and predict the disease progression [110], [111],
[112], [113], [114]. The two latter studies [113], Zhu et al. [114] argue that
the regions with high values of OSI and low values of WSS are more prone
to rupture. In particular, Alimohamadi et al. [113] proved the rupture risk of
aneurysm highlighting the interaction of two vortices counter-rotating in their
results.

Focusing on the quantitative analysis (see Figure 5.12), the area exposed
mostly to high values of OSI is localized at the wall of ascending aorta (13.9%
obtained from the DNS), while the area exposed to lower values of OSI occurs
at the wall of the thoracic aorta (2.8% obtained from the DNS). The results
given by the LES simulations are consistent with the ones of the DNS. In
particular, LES results agree better with the DNS with mesh refining, except
in the zone corresponding to the aneurysm, in which the difference between
the percentage area exposed to low TAWSS in the DNS and the other two
simulations is lower with the coarse mesh (2.8% and 3.6% with the coarse and
fine mesh, respectively). The maximum difference between the percentage area
exposed to high OSI in the DNS and the other two simulations is 4.2% in the
zone corresponding to the descending aorta in the coarse mesh.

Helicity
As for the characterization and quantification of helical flow, the h2 index is

computed in each zone in which we subdivided the aorta (see Figure 5.5). Fig-
ure 5.12, at the bottom, shows the results obtained from the three simulations.
The h2 index computed from the LES results is consistent with the DNS ones,
denoting a maximum difference of 0.9 m/s2 with the coarse mesh in the zone
corresponding to the aneurysm. This latter zone represents the region with the
higher values of the h2 index, i.e. about 2% respect to 1% at the aortic arch,
thoracic, and descending aorta, and 0.5% at the ascending aorta. Since the h2

index indicates the total amount of helical flow in the fluid domain without
considering the direction of the rotation of the fluid structures [115], we argue
that the aneurysmatic zone is the region characterized mostly by helical flow,
according to literature [116].

5.1.4 Parameter Estimation of the LES model

After discussing the comparison between DNS and LES, now we focus on
the second aim of this work, consisting in proving with three patient-specific
geometries that the Smagorinsky model is able to suppress the backflows in-
stabilities. In particular, we demonstrate that the Smagorinsky model well
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controls the backflows instabilities by a proper selection of the Smagorinsky
coefficient, even involving coarser meshes than the one necessary for DNS.

To the best of our knowledge, no study investigated the parameter esti-
mation of the Smagorinsky model in relation to the mesh size, the Reynolds
number, and the flow features, when Neumann boundary condition are impos-
ing. Indeed, among the studies cited in the state of the art at the beginning of
the chapter, the values of the LES coefficient is not reported [17], or patient-
specific Neumann boundary conditions are not prescribed [17], [94], or the the
default value of the LES parameter is used with very fine meshes, without an-
alyzing the flow features [69], [93]. Only Xu et al. [18] performed an extensive
sensitivity analysis of the role of the LES parameter; however, the authors used
a particular LES scheme (i.e. Evolve-Filter-Relax scheme with deconvolution
filter), implemented in the open-source software LifeV and not included in the
commercial one Ansys Fluent.

Since a sensitivity analysis on the parameter estimation of the Smagorinsky
coefficient is missing in literature, we need to consider an empirical calibra-
tion. In Patient 1, we first set the default value in Ansys Fluent (i.e. CS =
0.1) and then we increase its value until reaching the solution convergence for
both the meshes used in the LES simulations. Table 5.4 reports the minimum
value of the Smagorinsky coefficient found in each LES simulation, in order to
guarantee the convergence of the solution. Note that in Patient 1 the value of

CS

Coarse mesh Fine mesh
Patient 1 0.20 0.20
Patient 2 0.34 0.39
Patient 3 0.36 0.40

Table 5.4: Minimum values of the Smagorinsky coefficient to attain stability
in each patient-specific simulation with coarse and fine mesh.

the Smagorinsky coefficient with both the meshes is lower than the other two
patients (i.e. differs by 0.14 and 0.16 with the coarse mesh, and by 0.19 and
0.2 with the fine mesh for Patients 2 and 3, respectively). Moreover, while in
Patient 1 the Smagorinsky coefficient remains constant in both the meshes, in
Patients 2 and 3 it increases by refining the mesh. We try to find a relation
between the flow characteristics and the value of the Smagorinsky coefficient
in order to explain the differences found in the Smagorinsky parameter esti-
mation obtained. Figure 5.14 shows the flow rate in each inlet and outlet of
the three patients considered, highlighting the amount of antegrade and ret-
rograde flow, the computed ejection fraction and the peak backflow. Patient 1
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is characterized by very few backflows at the inlet and in all the outlets (the
largest amount of retrograde flow is 0.58 ml in the outlet corresponding to
the descending aorta), and thus a high ejection fraction (the lowest is 95.3%
in the outlet corresponding to the left subclavian artery). Patient 2 presents
backflows only in two outlets (i.e. brachiocephalic trunk and left subclavian
artery); however in these two outlets the ejection fraction is particularly low,
reaching 74% in the left subclavian artery. In Patient 3, retrograde flow occurs
at the inlet and all the outlets; in particular, the amount of retrograde flow
corresponds to 11.21 ml with the ejection fraction of 87% at the descending
aorta. Thus, lower ejection fraction occurs in Patient 2 and lower retrograde
flow in Patient 3. Therefore, from the comparison between the Smagorinsky
coefficient estimation and the flow features of the patients considered, it seems
that the more backflows there are, the more it is necessary to increase the value
of the Smagorinsky coefficient to obtain the solution convergence. In partic-
ular, the amount of retrograde flow seems more relevant in the choice of the
Smagorinsky coefficient with respect to the ejection fraction. Finally, looking
at differences between the meshes of each patient, the Smagorinsky coefficient
becomes more sensitive to the mesh size when a large amount of retrograde
flow occurs.

Figure 5.14: Comparison of the computed flow rate at each inflow and outflow
boundary over time. The amount of antegrade (in blue) and retrograde flow
(in red), the computed ejection fraction (EF) and the peak backflow (PB) are
reported.
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5.1.5 Conclusions

In this study we analyze the advantages brought by a LES model, i.e.
the Smagorinsky model, in patient-specific aortic simulations, comparing it
with the DNS and studying how to calibrate the coefficient in relation to the
flow rate and the mesh size. In particular, we consider 3 patients with aor-
tic aneurysms: one with aortic arch aneurysm (i.e. Patient 1), the other two
with thoracic aneurysms (i.e. Patient 2 and 3). We chose Patient 1, charac-
terized by a simpler geometry and a more organized flow, to perform both
the DNS and LES simulations (using two coarser meshes than the one used
for the DNS). From the qualitative and quantitative analysis, we observe that
the LES model provides accurate results with coarser meshes and therefore
with lower computational costs. Indeed, the LES takes about 3 and 7 days to
calculate the solution with the coarse and fine mesh, respectively, compared to
the 14 days of the DNS. Moreover, by a proper calibration of the Smagorinsky
coefficient, the LES model is able to control the numerical instabilities that
can be generated when Neumann boundary conditions are imposed in pres-
ence of backflows. To the best of our knowledge, this is the first study that
provides instructions for both performing accurate patient-specific simulations
and stabilizing the backflow instabilities, using coarser meshes than DNS and
the Smagorinsky model implemented in the simple commercial software An-
sys Fluent setting. In particular, no study has analyzed how to estimate the
Smagorinsky coefficient in relation to the flow rate and the mesh size. Com-
paring the flow features of the three patients considered and the values of the
Smagorinsky coefficient obtained to achieve convergence, we noticed that the
value of the Smagorinsky coefficient must be set with higher values in such pa-
tients with a significant amount of retrograde flow in ascending aorta and/or
at the supra-aortic branches and/or descending aorta (i.e. the inlet and out-
lets of the computational domain). Moreover, in presence of a large amount of
retrograde flow, the value of the Smagorinsky coefficient must be increased by
about 0.5 in the fine mesh than the coarse one adopted for the same patient
under consideration. Conversely, the results obtained with Patient 1, charac-
terized by low amount of retrograde flow and high value of ejection fraction
(> 95%) on the inlet and all the outlets, suggest that the Smagorinsky coef-
ficient is less sensitive to the size of the mesh. Indeed, the same value of the
Smagorinsky coefficient, CS = 0.2, has been found to achieve convergence for
both the meshes adopted for Patient 1.



Chapter 6

Conclusions and Future Research

In the last two decades mathematical and numerical modeling of cardiovas-
cular system has been progressively developed and used in medical investiga-
tion, thanks to high performance computing hardware and a better accuracy of
mathematical models and numerical methods. The use of sophisticated simu-
lations provide support for both basic medical research and clinical practice in
the preliminary phase of therapeutic and/or surgical treatment. For example,
they could be extremely useful in predicting aneurysm progression and its risk
of rupture, helping the understanding of local hemodynamic, and optimizing
the design of a stent or a particular implant. Moreover, numerical simulations
are less invasive than in vivo experiments and potentially more accurate and
flexible than in vitro ones.

In this context, the aim of this thesis consists in providing a set of tools and
a clear workflow to perform accurate and efficient simulations with acceptable
computational cost on healthy and especially diseased aortic patients, in which
higher Reynolds number occurs.

In the following, specific conclusions are drawn for each presented chapter,
except for Chapter 4 that is mainly theoretical.

Chapter 2 focuses on the study, implementation, and validation of lumped
parameter models, particularly useful to impose reliable boundary conditions,
coupling it with 3D models. Moreover, they could be used as a first tool to
assess the parameter estimation of a 0D model, selected, for example, as bound-
ary condition of a 3D model. The qualitative comparison between the results
of 0D and 3D-0D models proved the consistency of the 0D model. Indeed,
the lumped parameter models provide reliable results with an accurate selec-
tion and parameter estimations of the various segments in which the original
3D computational domain should be divided. The main advantage of the 0D
models is the lower computational cost than 3D models.

Chapter 3 treats a coupled 3D-0D model of thoracic aorta, including coro-
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nary arteries, to investigate the impact of transcatheter aortic root repair pro-
cedure on coronary perfusion. To the best of our knowledge, this work is the
first computational study on a new endovascular procedure consisting of the
simultaneous replacement of the aortic valve, the aortic root and the proximal
part of the ascending aorta. We both proved that the deployment of the en-
dografts is feasible and also analyzed the coronary flow, concluding that the
proposed configuration does not significantly affect the coronary perfusion.

Chapter 5 is based on an application of the coupled 3D-0D and LES model
to patient-specific thoracic aortic simulations. The main novelty consists in
providing the instructions for both performing accurate patient-specific sim-
ulations and stabilizing the backflow instabilities, using coarser meshes, and
consequently lower computational cost, than DNS. In particular, the LES sim-
ulation takes about 3 and 7 days to calculate the solution with the coarse
and fine mesh, respectively, compared to the 14 days of the DNS. Concern-
ing the LES parameter estimation, the Smagorinsky coefficient must be set
with higher values in such patients with a significant amount of retrograde
flow at the computational inlet and/or outlets. Moreover, in order to control
the backflow instability and achieve numerical convergence, our results suggest
that: (i) the value of the Smagorinsky coefficient must be increased by about
0.5 in the fine mesh with respect to the coarse one adopted for the same pa-
tient under consideration, in presence of a large amount of retrograde flow; (ii)
the Smagorinsky coefficient is less sensitive to the size of the mesh, when low
amount of retrograde flow and high value of ejection fraction (> 95%) occur.
In the latter case, a value of CS = 0.2 seems to be sufficient to suppress the
numerical instabilities.

Appendix 1 concerns a further application of CFD simulations for popliteal
arterial aneurysms in order to evaluate the impact of leg bending and geomet-
rical features on the local hemodynamic of two patients treated with endovas-
cular stent-graft placement. The results suggest that the overlapping of the
stent-grafts induces a severe discontinuity of lumen diameter, dividing the re-
gion treated with endovascular stent-graft into two zones. The first one, i.e. the
proximal part, where thrombosis is located, is characterized by low tortuosity,
low velocity, low helicity, low TAWSS, and high OSI. The second one, i.e. the
distal part, presents higher tortuosity, higher velocity, higher helicity, higher
TAWSS, and lower OSI. Leg bending induces significant hemodynamic differ-
ences compared to the straight leg configuration for both the patients under
consideration. In particular, our results show a significant variation of tortuos-
ity between the two configurations, accentuated in the distal stent zone, where
the tortuosity is greater in the bent-leg configuration. Finally, the helical form
of intra-stent thrombosis suggests the involvement of flow helicity in the onset
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and progression of thrombosis.

6.1 Future Work
The main future developments for the present work consist in the imple-

mentation of more accurate boundary conditions for the coupled 3D-0D models
and a deeper investigation on the best LES model to adopt. In particular, a
lumped parameter model able to simulate the cardiac injection flow from the
heart to ascending aorta could be implemented and imposed as inlet bound-
ary condition of coupled 3D-0D model. According to Bakel et al. [38], the
heart model should include diodes and inductors to represent the mitral and
the aortic valves, a pressure source representing the left atrial pressure, and a
volume-tracking pressure chamber representing the left ventricle. For example,
by imposing this 0D model instead of Dirichlet velocity boundary condition at
the inlet, we no longer need the MRI data of the specific patient.

Finally, a large cohort of patients should be involved in order to validate
our conclusions. In particular, we are interesting in finding the relation that
links the model parameters of LES together with the mesh size, the Reynolds
number, and the amount of retrograde flow.



Chapter 7

Appendix 1

We now focus on a particular application of CFD simulations, not related to
multiscale models, but of clinical relevance. Indeed, it is part of the PERFEKT
project led by Dr. B. Pane, Dr. G. Salsano (San Martino Hospital, Genova)
and Prof. M. Conti, and funded by the Italian Ministry of Health. The study
deals with intra-stent thrombotic apposition that can occur during follow-up
in patients undergoing endovascular treatment for popliteal arterial aneurysm.

7.1 CFD simulations for popliteal arterial aneurysms
Popliteal arterial aneurysms (PAA) are common peripheral aneurysms. Al-

though in the last few years endovascular treatment of the femoro-popliteal
artery (FPA) has become a valuable therapeutic option, its efficacy remains
controversial due to the relatively high rate of complications, such as stent
occlusion, intra-stent thrombosis or even stent fracture [118]. All these draw-
backs could be related to the intrinsic morphology of the FPA segment that
presents unique characteristics in terms of extreme mobility and biomechan-
ical forces and severe loading conditions due to repetitive leg flexion during
daily activities [119]. If on the one hand the stent fracture can be traced back
almost exclusively to repeated bending of the stented leg, on the other the
mechanisms that lead to intra-stent thrombosis are not fully understood even
if hemodynamics is suspected of playing an important role in this process [120].

Computational fluid dynamics (CFD) analyses are increasingly exploited
to quantify the blood flow inside the FPA and evaluate the changes on hemo-
dynamic patterns due to the combination of endovascular stenting and leg
movements. Blood flow patterns, and in particular low shear stress, promi-
nent secondary flows or huge variations of arterial wall shear stress (WSS) are
indeed known to correlate with pathological conditions [121]-[123], as briefly
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resumed in the following.
First studies investigating flow patterns in patient-specific superficial femoral

arteries date back to 2006 by Wood et al. [123], who combined magnetic res-
onance imaging and CFD to assess the relation between curvature and tortu-
osity of superficial femoral arteries and flow patterns as function of sex and
age. More recently, the study of Desyatova et al. [124], who investigated the
effects of aging on mechanical stresses, deformations, and hemodynamics, has
identified the popliteal artery as the location with greatest intramural stresses
along the leg arteries. Moreover, the association of vessel restenosis with hemo-
dynamical markers derived from blood flow has been investigated by Gogkol et
al. [120], in patients undergoing endovascular treatment for peripheral artery
diseases (PAD). However, the proposed work was based on vessel geometries
reconstructed from 2D angiographic images thus idealizing the lumen cross-
sections. This limitation was overcome by Colombo et al. [125], who presented
a fully patient-specific computational framework based on geometric recon-
structions from Computed Tomography (CT) images and boundary conditions
taken from Doppler ultrasound images. However, despite the proposed innova-
tions, only the straight-leg configuration has been studied, thus neglecting the
analysis of the effects of leg bending on the geometry and hemodynamics of the
stented area. In a more recent study led by Colombo et al. [126], knee flexion
and complete movement of walking have been assessed in an idealized model
of FPA. Finally, the impact of leg bending on geometrical and hemodynamic
features have been investigated in our previous work, where patient-specific
CFD simulations have been performed on a single patient, using literature
boundary conditions [19] and Newtonian model for blood rheology. Although
it is known that blood is a non-Newtonian fluid [127], literature review about
CFD modeling of the actual rheology of blood is controversial. While the as-
sumption of treating blood as a Newtonian fluid is widely accepted [128], it
still represents a pivotal issue in case of small or mid arteries. Moreover, while
some studies highlighted the importance of the non-Newtonian rheology [129],
others found that the use of a Newtonian blood model represents a good ap-
proximation [130], [131]. In particular, focusing on modeling of the FPA, most
of the studies [120], [123], [35] assumed a constant viscosity, even if Colombo et
al. [125] adopted the Carreau model to describe the non-Newtonian viscosity
of blood.

According to the literature, CFD provides a useful tool for understanding
and predicting disease progression and hemodynamic-related post-stent com-
plications. However, literature studies about patient specific CFD of popliteal
stenting are scarce; in particular, many of them involve idealized geometry
[120], [126] and literature boundary conditions [120], [19], without any infor-
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mation regarding the follow-up intra-stent thrombosis. Moreover, morpholog-
ical variations during knee flexion in the FPA could significantly influence the
local hemodynamic [126], [19]. To the best of our knowledge, a complete com-
putational study including all these aspects is still missing.

Based on such considerations, we performed patient- specific CFD simu-
lations in order to assess the impact of leg bending and the interplay among
geometrical features on the local hemodynamic of two patients treated with en-
dovascular stent-graft placement for PAA, experiencing intra-stent thrombosis.
Moreover, we deepened and improved our previous study [19] by investigating
the impact of the different inlet boundary conditions on the solution (in a sim-
ilar way to Hua et al. [132]), and assessing the hypothesis of non-Newtonian
behavior of blood (using the Carreau model), in comparison with the usual
approximation of blood as a Newtonian fluid.

7.2 Patient-Specific Geometries and CFD Set-
ting

Signed informed consent was obtained from the patients and all procedures
were performed in accordance with the Declaration of Helsinki and submitted
to the local institutional medical ethics committee. Two patients with PAA and
endovascularly treated at Vascular and Endovascular Surgery Unit of Univer-
sity Hospital of Genoa were enrolled for an imaging study with double CT
acquisition at straight- and bent-leg. More details of the imaging acquisition
protocol were provided in a previous study [147].

A 78-year old man (Patient 1) with PAA in the left leg was successfully
treated with two Viabahn devices (W.L. Gore & Associates, Flagstaff, AZ,
USA) sized 9 mm × 150 mm (proximal stent) and 7 mm × 150 mm (distal
stent). At 12 months follow-up, post-operative CT showed partial stent throm-
bosis in the transition zone between the two partially overlapped devices. The
second enrolled patient (Patient 2) was a 68 year-old man treated in the left
leg for PAA with two Viabahn devices sized 10 mm×100 mm (proximal stent)
and 9 mm × 150 mm (distal stent). In this patient, intra-stent thrombosis was
revealed already by 1 month follow-up CT scan.

Postoperative CT images were anonymized and transferred to a worksta-
tion for image processing. Segmentation of the vessel lumen from the femoral
artery bifurcation to the popliteal artery bifurcation, intra-stent thrombosis,
leg bones, and the implanted stent-graft(s) was performed by means of Vas-
cular Modeling ToolKit (VMTK) libraries [134]. A surrogate pre-thrombotic
model of the lumen was derived by virtually removing the thrombosis during
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the image segmentation in order to correlate hemodynamic with thrombosis
onset. Rigid registration of bent-leg structures on their corresponding straight
counterparts was automatically performed by means of the Iterative Closest
Point algorithm implemented in VMTK. Centerline vessel was automatically
extracted, smoothed and resampled by 0.5 mm by means of VMTK libraries
[135]. Centerline tortuosity was then computed: it represents an important
factor in different cardiovascular diseases, i.e., atherosclerosis, abdominal aor-
tic aneurysm, and, in particular, in thrombus initiation [136]. Tortuosity T is
measured as follows: given the centerline length (L) and the shortest distance
between the two centerline endpoints (ED), T = L/ED − 1; therefore, with
this definition, the tortuosity of a straight line is 0.

Transient CFD analyses were performed using Intel Xeon W-2123 comput-
ing workstation (3.6 GHz, 32 GB RAM) with the commercial software FLU-
ENT (v.19.2, ANSYS Academic Research). We considered the two patients in
both straight- and bent-leg configurations in order to assess the effects of leg
bending and the impact of inlet boundary condition on the flow solution. Uni-
form meshes were generated using VMTK, ranging from 648879 and 1471373
number of tetrahedral elements, according to the previously performed mesh
sensitivity analysis. In particular, the mesh was refined until the difference
in the luminal area exposed to TAWSS < 0.62 Pa between successive grids
was < 1%. Geometry and boundary conditions are the main features affect-
ing the CFD simulations in hemodynamics. We evaluated the impact of the
inlet boundary conditions on the numerical solution by considering two litera-
ture waveforms (boundary conditions A and B) with three different scenarios,
i.e., with or without flow extension and varying the velocity profile (flat or
parabolic). In particular, the flow extensions that we used in the simulations
have been chosen in order to reduce the effect of the arbitrary choice of the
velocity profile. They were modeled using VMTK, with a length corresponding
to 3.5 times the dimension of the inlet diameter, according to Colombo et al.
[125]. The following inlet boundary conditions were tested:

• A1: velocity inlet waveform taken from Wood et al. [123] (see Figure 7.1)
with a flat velocity profile.

• A2: equivalent to the boundary condition A1with the flat velocity profile
set at the flow extension of the inlet of the patient-specific models (see
Figure 7.2).

• A3: equivalent to the boundary condition A2 with a parabolic velocity
profile set at the inlet of the flow extension.

• B1: inflow waveform taken from Nichols et al. [36] (see Figure 7.1) with
a flat velocity profile.
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• B2: equivalent to the boundary condition B1 but with the flat velocity
profile set at the inlet of the flow extension.

• B3: equivalent to the boundary condition B2 but with a parabolic velocity
profile set at the inlet of the flow extension.

Figure 7.1: Inlet velocity waveforms in m/s colored according to: the literature
inlet velocity taken from Wood et al. [123] and imposed at the inlet boundary
in scenario A1 (and analogously in A2, A3); the inlet velocity computed from
the literature inflow taken from Nichols et al. [36] and used in scenario B1 (and
analogously in B2, B3).

Hence, we are imposing the same velocity waveform when using the bound-
ary conditions A1, A2, and A3, while the same inflow waveform when adopting
the boundary conditions B1, B2, and B3, thus implying slightly different inlet
velocity waveforms according to the inlet radius of our computational domain.
For example, in Figure 7.1 the velocity waveforms corresponding to the bound-
ary conditions A1 (equivalent to A2, A3) and B1 for Patient 1 in straight-leg
configuration are represented. In particular, we extracted the values of the ve-
locity waveform, taken from [123] (and analogously for the inflow waveform
[36]), using the software WebPlotDigitizer 4.4 (WebPlotDigitizer). Then, the
data obtained by the literature waveform were interpolated with an 8th order
Fourier series by using the Curve Fitting App, given by the software Matlab
R2018a (The Mathworks Inc.). The transient inlet velocity waveform was de-
fined in FLUENT by the meaning of a user defined function (UDF). Therefore,
the inlet boundary conditions with a flat velocity profile (i.e., scenarios A1, A2,
B1, B2) were given by

uflat = a0 +
8∑
i=1

[ai cos(iωt) + bi sin(iωt)], (7.2.1)
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Infinite shear rate Zero shear rate Time constant λ (s) Power low
viscosity (kg/m s) viscosity (kg/m s)) index n

Value 0.0035 0.056 3.313 0.3568

Table 7.1: Fundamental frequency used in UDF inlet waveform - equation
(7.2.1); parameters of the Carreau model - equation (7.2.2).

where ω is the fundamental frequency, t the simulation time, and a0, ai, bi
for i = 1, 2, ..., 8, the values of the Fourier parameters given by the Curve
Fitting App. The inlet boundary conditions with a parabolic velocity profile
(i.e., scenarios A3 and B3) were prescribed as

uparabolic = 2uflat

[
1−

(
r

R

2
)]

,

where r denotes the distance between a point on the constrained surface and
the center of the surface, and R is the radius of the constrained surface.

The proposed six boundary conditions were imposed on the patient-specific
model of the two patients for both straight- and bent-leg configurations, there-
fore we performed 24 simulations (six boundary conditions for two patients for
two leg configurations).

Firstly, blood was assumed as an incompressible and Newtonian fluid, with
1060 kg/m3 density and 0.0035 Pa s viscosity [35]. Then, in order to evaluate
the impact of the non-Newtonian behavior of blood, we chose the boundary
conditions A1 and B1, i.e., two velocity waveforms with a flat velocity profile,
running 8 simulations (two boundary conditions per two patients per two leg
configurations). The viscosity was modeled using the Carreau model described
in the following equation:

η = η∞ + (η0 − η∞)(1 + λ2γ̇2)
n−1
2 , (7.2.2)

where η is the effective viscosity, η∞ the infinite shear rate viscosity, η0 the
zero shear rate viscosity, λ the natural time, γ̇ the shear rate, and n the power
law index. The parameter values were set according to Quanyu et al. [137]
and listed in Figure 7.1. In each simulation we prescribed the no-slip condition
on the wall of the artery. Regarding the outlets, the following flow splits were
assigned as percentages of the FPA output, according to Crawford et al. [138]:
the anterior tibial artery 20%, posterior tibial artery 40%, and peroneal artery
40%. The flow was assumed in laminar regime since the maximum Reynolds
number among all the simulations was 1328 at systolic peak (occurring with
A1, A2, and A3 conditions). Semi-implicit method for pressure linked equa-
tions (SIMPLE) was used to solve the Navier-Stokes equations. Second order
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Figure 7.2: Femoro-popliteal artery of the two patients considered in the CFD
simulations in the straight-leg configuration. Both are colored according to
the flow extension, added to our computational domains in scenarios A2, A3,
B2, B3, and to the three zones under investigation (proximal artery, proximal
stent, and distal stent). Moreover, the sections considered in the post process-
ing S0,S1,...,S4 are represented. The region marked with asterisk denotes the
overlapping zone of the two stents in both the patients.

scheme for both pressure and momentum spatial discretization was adopted.
After a sensitivity analysis, a constant time-step size was set to 0.001 s and
three cardiac cycles were performed for each simulation to guarantee the re-
peatability of solution.

In order to evaluate the impact leg bending on the local hemodynamics of
FPA, with a focus on the stented and thrombotic regions, the FPA segments
of both the patients were divided into 3 zones (see Figure 7.2): (1) proxi-
mal artery, i.e., lumen of the artery above the proximal end of the proximal
stent (excluding the flow extension); (2) proximal stent, i.e., the lumen of the
proximal stent, excluding the overlapping zone; (3) distal stent, i.e., the lu-
men of the distal stent including the overlapping zone. We performed both a
qualitative and quantitative analysis comparing the results of the two patients
in straight- and bent-leg configurations obtained from the CFD simulations.
Firstly, to evaluate the impact of boundary conditions, we focused on the veloc-
ity streamlines, the vectors of velocity magnitude, and the velocity profiles at
the following cross sections corresponding to: the flow extension inlet, S0; FPA
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inlet, S1; proximal stent inlet, S2; distal stent inlet, S3; distal stent outlet, S4

(see Figure 7.2). The velocity streamlines, the vectors of velocity magnitude,
and the velocity profiles were reported at the systolic peak.

We computed the time-averaged wall shear stress (TAWSS) and oscillatory
shear index (OSI), regarding the near wall flow features, and local normalized
helicity (LNH) and helicity intensity (h2 index), relating to the bulk flow.
TAWSS and OSI were computed as follow:

TAWSS =
1

T

∫ T

0

|WSS| dt,

OSI = 0.5

(
1−
|
∫ T

0
WSS dt|∫ T

0
|WSS| dt

)
,

where T is the cardiac period and |WSS| the norm of the WSS vector. WSS
is defined as follows

WSS = σn− [(σn) · n]n,

where σ is the Cauchy stress tensor and n the normal vector to the surface.
In particular, in an incompressible fluid, the Cauchy stress tensor is defined as
follow

σ = η(∇u +∇uT )− pI,

where u is the velocity vector, p the pressure, and I the identity matrix. TAWSS
plays a pivotal role in the development of arterial stenosis and in prediction
of the risk of wall rupture and thrombus deposition. According to Malek et
al. [109], we calculated the luminal surface exposed to low and high values of
TAWSS, i.e., ranging between 0 and 0.4 Pa and above 1.5 Pa, respectively.
OSI measures the temporal oscillations of the WSS. In particular, high values
of OSI denote sites where the WSS deviates from the main flow direction in
a large fraction of the cardiac cycle [139]. According to Gokgol et al. [120],
luminal area exposed to high OSI (> 0.3) was computed. Regarding the bulk
flow, qualitatively, we computed the LNH, which corresponds to the cosine of
the angle formed between the vorticity vector and the velocity vector

LNH =
(∇× u) · u
|∇ × u| · |u|

= cosα,

where α is the angle formed between the vorticity vector (∇×u) and velocity
vector u. It is a measure of the alignment/misalignment of the local velocity
and vorticity vectors. LNH ranges from -1 to +1, and its sign indicates the
direction of helical structures. Quantitatively, we computed the h2 helicity,
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that is an index regarding the bulk flow: it is given by time-averaging the
absolute value of the helicity [140]:

h2 =
1

TV

∫
T

∫
V

|u · (∇× u)| dV dt,

where V is the arterial volume. The h2 helicity index expresses the helicity
intensity in the fluid domain, irrespective of direction. Recalling that the he-
licity is defined by the spatial integral of the scalar product of the velocity and
vorticity, we assume h2 index has higher values in the fluid domain in which
velocity and vorticity vectors are aligned.

7.3 Numerical results
Firstly, we reported the results obtained by the 24 simulations performed

with constant viscosity. Figures 7.3 and 7.4 show the results of CFD simula-
tions for the straight- and bent-leg configurations of both the patients in the six
scenarios that have been tested (A1, A2, A3 and B1, B2, B3 in Figures 3 and
4, respectively), reporting streamlines, velocity profiles, and velocity vectors
colored according to the velocity magnitude at the systolic peak. These two
figures prove that only the imposed waveform at the inlet (taken from Wood
et al. [123] or Nichols et al. [36]) significantly affects the solution. Indeed, each
scenario has similar velocity profiles and contours in the cross-sections of the
stented regions, by fixing the inlet waveform. Therefore, from now on we con-
sider only the results relating to the scenarios A1 and B1 for both the patients
in straight- and bent-leg configurations. However, the figures including all the
scenarios relating to the Newtonian model are contained in the Supplementary
Materials and Methods section.

Figure 7.5 highlights the arterial lumen colored according to low (ranging
from 0 to 0.4 Pa) and high TAWSS (higher than 1.5 Pa). The results suggest
that the distal part of the artery is exposed to high TAWSS in both straight-
and bent-leg configuration with a limited influence of inflow boundary condi-
tions; such a result is particularly evident in the case of Patient 1, while for
Patient 2 the B1 scenario is resulting in physiological TAWSS in most of the
whole artery for both configurations. Figure 7.6 shows the arterial lumen col-
ored according to high OSI (> 0.3) is represented. High OSI are located for
all the cases under considerations in the proximal part of artery irrespective
to the adopted boundary conditions.

Helical blood flow structures developing into the endoprostheses are rep-
resented in Figure 7.7 using iso-surfaces of LNH at the systolic peak with a
threshold of ± 0.25, according to Colombo et al. [125], for both the patients in
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Figure 7.3: Streamlines, contours, and velocity vectors colored according to
velocity magnitude at systolic peak, corresponding to the scenarios A1, A2
and A3, in both straight- and bent-leg configurations of the two patients.

straight-leg configuration, relating to the scenario A1. The results show that
the bulk flow in the artery for both patients is characterized by two counter-
rotating helical structures and in particular the helical shape of the thrombosis
seems to flow the path of the negative LNH region.

Figure 7.8 reports the bar-plots of the value of h2 index, tortuosity, and
the percentage of luminal surface exposed to low and high TAWSS, and high
OSI corresponding to each zone (proximal artery, proximal stent, and distal
stent) for both the patients in straight- and bent-leg configurations. The results
show that leg bending induces a difference of the computed hemodynamics
indices for Patient 1 with both A1 and B1 boundary conditions. Indeed, a
percentage difference above 50% between the two configurations is present
for each hemodynamic quantity that we computed in all the tested scenarios,
except for the percentage difference relating to the luminal area exposed to
high OSI in Patient 2 (with a maximum percentage difference of 24% in the
distal stent region). In particular, our results show a significant variation of
tortuosity between the two configurations, accentuated in the distal stent zone,
where the tortuosity is greater in the bent-leg configuration.

Finally, we treated the blood as a non-Newtonian fluid and we assessed
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the results, comparing them with the previous analyses, obtained using the
Newtonian model. Figure 7.9 shows the arterial lumen of both patients colored
according to TAWSS magnitude, low (ranging from 0 to 0.4 Pa) and high
TAWSS (higher than 1.5 Pa), based on both the Carreau (non-Newtonian)
and Newtonian models. Figure 7.9 represents only the results relating to the
scenario B1, which provides greater differences between the two models under
consideration and allows us a wider discussion, as we will introduce in the
next section. Figures 7.10 and 7.11 represent the bar-plots of the value of h2

index, and the percentage of luminal surface exposed to low and high TAWSS,
and high OSI corresponding to each zone (proximal artery, proximal stent,
and distal stent) for both the patients. In particular, Figure 7.10 refers to the
straight-leg configuration, while Figure 7.11 to the bent-leg one.

7.4 Hemodynamic and Clinical Assessment
In this study, we have evaluated the local hemodynamic and the interplay

among geometric features in two patients endovascularly treated for PAA,

Figure 7.4: Streamlines, contours, and velocity vectors colored according to
velocity magnitude at systolic peak, corresponding to the scenarios B1, B2,
and B3 in both straight- and bent-leg configurations of the two patients.
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Figure 7.5: Arterial lumen colored according to low (< 0.4 Pa) and high (> 1.5
Pa) TAWSS in both straight- and bent-leg configurations of the two patients

who experienced intra-stent thrombosis during follow-up. In particular, the
role of leg bending on the local hemodynamic was elucidated by modeling both
straight- and bent-leg configurations. Focusing on the velocity magnitude, Fig-
ures 7.3 and 7.4 show a higher flow velocity in the distal stent region than to
the proximal one, due to the luminal narrowing given by the overlapping of the
two stents-grafts. As we already pointed out, the results suggest that the differ-
ent inlet velocity profiles used in the simulations slightly affect the numerical
solution, conversely to the determinant role of the prescribed inlet waveform.
In order to obtain reliable results of clinical significance, patient-specific inflow
waveforms would be very useful in understanding the hemodynamic behavior.
However, our geometrical study shows velocity sensitivity, i.e., velocity magni-
tude variations between the two patients occur along the two FPAs by fixing
a velocity inlet (i.e., scenario A or B). Although the behavior of stented FPAs
has already been investigated in the literature [125], to date there is still no in-
formation on the different response between the various portions of the stented
artery itself. Figure 7.8 suggests that the overlapping of the stent grafts seems
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to induce a severe discontinuity of lumen diameter, dividing the region treated
with endovascular stent-graft in two zones: (1) the proximal part, where throm-
bosis is located, it is characterized by low tortuosity, low velocity, low helicity,
low TAWSS, and high OSI; (2) the distal part that presents higher tortuos-
ity, promoting higher velocity, higher helicity, higher TAWSS, and lower OSI.
In particular, by focusing on the tortuosity of the vessel (see Figure 7.8 at
the bottom), the stented FPA respects the behavior that we would have ex-
pected, when considered in its entirety, i.e., increased tortuosity values with leg
bending. Analyzing the stented area by portions, we have found that in both
patients the tortuosity increases from the proximal artery region to the distal
one; this result matches the findings of Wood et al. [123], who performed CFD
simulations in the superficial femoral artery of 9 healthy men and 9 healthy
women, showing that tortuosity was significantly greater for men than women,
but the highest values were found in the most distal segment, regardless of
sex. Then, when considering the comparison between straight- and bent- leg
configuration, we observed that in both patients proximal vessel and distal

Figure 7.6: Arterial lumen colored according to high OSI (> 0.3) in both
straight- and bent-leg configurations of the two patients.
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Figure 7.7: Femoro-popliteal artery and three zoom views of the lumen (rotat-
ing clockwise) of both the patients in straight-leg configuration: the area where
the thrombosis is localized is highlighted by a black box. Moreover, blood flow
helicity is represented: in blue the flow with negative LNH and in red the flow
with positive LNH.

stent segments tortuosity increases with leg bending. However, the proximal
stent, characterized by its larger diameter, slow velocity, low TAWSS, and low
helicity, straightens with leg flexion. This area is also the one in which throm-
bosis was found in both patients, confirming that the formation of thrombosis
is linked to a combination of both hemodynamic and geometric factors. Hence
the importance of conducting the analyses by investigating the stented FPA
not only in its entirety but by dividing it into the various portions, in order to
be able to identify areas more at risk of thrombosis. The role of low TAWSS in
thrombotic regions has been previously corroborated in literature. Boyd et al.
[141] showed a correlation between regions of low WSS, where flow recircula-
tion predominated, and thrombus deposition, by performing CFD simulations
in 7 abdominal aortic aneurysms. The luminal area exposed to low TAWSS
and high OSI in the proximal zone is greater in Patient 1 than in Patient 2 (see
Figure 7.8), suggesting that patient-specific geometrical features also affect the
near wall flow features.

Regarding the bulk flow, our results suggest that intra-stent thrombosis is
located in the region where the intensity of helicity is low (see Figure 7.8). The
fundamental role of helical (or swirling flow) in the prevention of thrombosis
and disease progression has been confirmed in many literature studies [142]-
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[144]. In particular, Morbiducci et al. [143] also presented an inverse relation
between helical flow and OSI evaluating four bypass geometries in ascending
aorta, according to our results. Moreover, our results denote that the spiral
shape of thrombosis matches the path of the negative LNH region; this is more
evident in Patient 1 (Figure 7.7). Figure 7.7 refers only to scenario A1, but
an analogous pattern of the LNH was found using the boundary condition B1.
It is hard to formulate a conclusion to explain this result; given the limited
number of analysed patients, further analysis involving a cohort of patients
should be investigated in order to provide more information to elucidate this
observation.

From our results we found that the study in both straight- and bent-leg

Figure 7.8: Bar plot of tortuosity, helicity (h2 index), and percentage of luminal
area exposed to both low (< 0.4 Pa) and high (> 1.5 Pa) TAWSS, respectively,
and high OSI (> 0.3). The data are reported for the three zones under inves-
tigation (proximal artery, proximal stent, and distal stent) of the two patients
in both leg configurations, corresponding to scenarios A1 and B1.
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Figure 7.9: Arterial lumen colored according to the TAWSS magnitude, low
(< 0.4 Pa) and high TAWSS (> 1.5 Pa) in both straight- and bent-leg con-
figurations of the two patients. The TAWSS values represented refers to the
scenario B1.

configurations is crucial in understanding and assessing the numerical results
in stented arteries, given the increase of the tortuosity of the distal part of
the artery due to the leg bending. Our findings match with Wensing et al.
[145], who highlighted the importance of considering the impact of knee flexion
in femoral and popliteal arteries, showing increasing tortuosity in bent-leg
configuration of 22 healthy volunteers. Moreover, the increase of tortuosity in
leg bending implies a reduction of the blood velocity in each scenario that we
assumed for both patients (see velocity streamlines and contours represented
in Figures 7.3 and 7.4).

The alternate bending of the legs is known to influence the mechanical
solicitation of the stent [146], the shape of the artery [147], and the local
hemodynamics [126] but its role in the thrombosis onset and progression is
still unknown. From our results, it is evident that leg bending increases the
tortuosity of the distal stent segment, which combined with an overall blood
flow velocity, exacerbate the difference between the distal and proximal part of
the stented region, with the latter more exposed to the risk of thrombosis (i.e.,
lower velocity, wider area of low wall shear stress, higher oscillatory shear stress,
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and lower helicity). Such considerations are however hardly generalizable with
data proposed by the present paper, which deals with only two patients, but,
at the same time, call for future developments focused on such hypotheses.

Focusing on the qualitative comparison between the Newtonian and non-
Newtonian model, Figure 7.9 shows an optimal agreement on the distribution
of the TAWSS magnitude between the two models. These results reproduce the
assumptions discussed by Liu et al. [117], who introduced that the blood vis-
cosity properties do not affect the spatial pattern of the TAWSS qualitatively.
However, looking at the luminal surface exposed to low and high TAWSS, the
area with low TAWSS is greater in the Newtonian model for both the patients,
while no significant difference occurs between the surfaces with high TAWSS.
Our findings are in agreement with Soulis et al. [131] and Liu et al. [117],
who proved an underestimated WSS given by the Newtonian model, when the
magnitude of WSS is relatively small (< 1 N/m2). Analogously, we found sim-
ilar results using the scenario A1, but with less marked differences, since the

Figure 7.10: Comparison between results considering Newtonian and non-
Newtonian behavior: bar plot of helicity (h2 index), and percentage of luminal
area exposed to both low (< 0.4 Pa) and high (> 1.5 Pa) TAWSS, respectively,
and high OSI (> 0.3). The data are reported for the three zones under inves-
tigation (proximal artery, proximal stent, and distal stent) of the two patients
in the straight-leg configuration, corresponding to scenarios A1 and B1.
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Figure 7.11: Comparison between results considering Newtonian and non-
Newtonian behavior: bar plot of tortuosity, helicity (h2 index), and percentage
of luminal area exposed to both low (< 0.4 Pa) and high (> 1.5 Pa) TAWSS,
respectively, and high OSI (> 0.3). The data are reported for the three zones
under investigation (proximal artery, proximal stent, and distal stent) of the
two patients in the bent-leg configuration, corresponding to scenarios A1 and
B1.

surface exposed to low TAWSS is very small even in the Newtonian model. For
this reason we chose to omit the qualitative analysis given by the scenario A1.

Figures 7.10 and 7.11 allow deepening the comparison between the Newto-
nian and non-Newtonian models. Significant differences based on the luminal
surfaces exposed to low TAWSS are highlighted (with a maximum decrease in
the proximal artery zone, compared to the non-Newtonian model, of 8.7% and
8.5% for Patients 1 and 2, respectively, in the straight-leg configuration and
in the scenario B1), a good agreement occurs for the other analyzed outcomes
(with a maximum OSI decrease in the proximal artery zone, compared to the
non-Newtonian model, of 3.2% for patient 2 in the straight-leg configuration
and in the scenario B1). In particular, as we mentioned before, the scenario B1,
in which the inlet average velocity is lower and also low TAWSS values occur,
provides major differences. As the velocity increases (see the results given by
the scenario A1 in Figure 7.10), the Newtonian and non-Newtonian models
become more similar, according to Liu et al. [117].
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7.4.1 Limitations

The present work, based on the analysis of only two cases, represents a
proof-of-concept study, aimed at linking post-stent geometry, hemodynamics,
and thrombosis in endovascular repair of popliteal aneurysms. Further ana-
lyzes should be performed in order to obtain statistically and clinically rel-
evant conclusions. We have already discussed the importance of considering
patient-specific inlet boundary condition; therefore, in future studies inflow
data elaborated by echo doppler measurements will be set at the inlet of the
computational domain.

The computational domains considered in the simulations represent sur-
rogate geometrical models of the lumen of each patient prior to thrombosis
by virtually removing the thrombus during the segmentation process. Such a
limitation could be overcome by analyzing the CT scans performed at different
time instants, from early post-operative to annual follow-up exams.

In the present study we dealt with thrombosis only from a fluid dynamic
point of view. However, further analysis should include the role of hemody-
namic stress in the platelet activation [148], recently proved to be associated
with aortic thrombus formation [53].

Finally, according to previous studies [120], [125], we did not take into
account the stent struts; however, further developments will include this aspect,
since Al-Hakim et al. [149] showed that stent struts have an effect on WSS.

7.4.2 Conclusions

The present study suggests that the overlapping of the stent-grafts seems
to induce a severe discontinuity of lumen diameter, dividing the region treated
with endovascular stent-graft into two zones: the proximal part, where throm-
bosis is located, it is characterized by low tortuosity, low velocity, low helicity,
low TAWSS, and high OSI; the distal part that presents higher tortuosity, pro-
moting higher velocity, higher helicity, higher TAWSS, and lower OSI. Since
this analysis is limited to two cases, a further study with a cohort of pa-
tients should be investigated in order to generalize and validate our results.
Boundary conditions affect the solution only when considering different ve-
locity waveforms, dependent on time; different inlet velocity profiles and the
use of flow extension do not provide significant variations. Accounting for ac-
tual flow rate is essential for accurate and reliable results. The Newtonian and
non-Newtonian blood treatments provide similar results in both the patients,
except when the magnitude of the TAWSS is relatively small (< 0.4 Pa). In
this latter case the Newtonian model gives lower values of TAWSS than the
non-Newtonian one. However, the Newtonian blood treatment should be a
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good choice in all cases in which the analysis of WSS is not necessary. Leg
bending induces significant hemodynamic differences compared to the straight
leg configuration in each of the scenarios we studied for both patients. The
helical form of intra-stent thrombosis suggests an implication of flow helicity
in the onset and progression of thrombosis. However, further studies should be
considered to investigate this aspect.



Chapter 8

Appendix 2

In this Appendix we report all the lumped parameter values estimated in
the present thesis. In particular, the parameter values set in the Westerhof
model are listed in Figure 8.1. Figure 8.2 reports the parameter values used in
the thoracic aorta model (see Chapter 2).
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Figure 8.1: Parameter values set in the arterial segments of the Westerhof
model. The notation of the arterial segments is consistent with that in the
Figure 2.3.
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Figure 8.2: Parameter values set in the arterial segments of the thoracic aorta
model. The notation of the arterial segments is consistent with that in the
Figure 2.10.
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