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Abstract: 
This comprehensive thesis delves into the intricacies of the T cell immune response 
against human papillomavirus (HPV) 16 antigens (E6, E7, and L1) within both CD8 and 
CD4 T cell subsets. A particular emphasis is placed on exploring potential cross-
reactivity, extending the investigation to include HPV18. The evaluation of traditional 
vaccines, Cervarix and Gardasil, is crucial to understanding their efficacy. 

Utilizing advanced techniques such as AIM and LPA assays, the study meticulously 
analyzes T cell activation and proliferation. The research scope encompasses diverse 
participant groups, including HPV-vaccinated and non-vaccinated individuals, as well as 
those at different stages of HPV-induced cervical cancer. 

A focal point of the investigation is on CD4 T cells expressing CXCR5, known for their 
pivotal role in B cell antibody production. The study aims to deepen this understanding 
through experimental analyses and immunoinformatics, culminating in the design of a 
sophisticated multi-epitope vaccine. 

System immunology takes center stage, exploring gene expression changes in PBMCs 
before and after vaccination. Network analysis aims to identify key genes critical for an 
effective immune response. Additionally, drug design strategies, employing QSAR and 
pharmacophore modeling, seek to modulate the target gene, potentially enhancing 
vaccine efficacy. 

The study's multifaceted objectives encompass T cell responses, follicular T cell 
dynamics, HPV clade differences, immunoinformatics-based vaccine design, gene 
expression alterations, target gene drugability, and computational drug design. Key 
findings underscore the importance of vaccination regimen optimization, provide 
rationale for L1 antigen selection, elucidate the representative roles of HPV 16 and 18, 
refine antigenic focus, showcase multi-epitope vaccine development, and offer insights 
from immune system simulations and gene expression dynamics.
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Absorption, Distribution, Metabolism, And Excretion ADME 
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Toxicity 
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Activation-Induced Marker AIM 

Adenine A 

Alanine A Ala 
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Basic Local Alignment Search Tool BLAST 

Bayes Factors BF10 
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Introduction 

 
Human papillomavirus (HPV) stands as the prevailing sexually transmitted infection 
(STI) on a global scale, and it largely operates in a subclinical manner, often without 
symptomatic manifestation among infected individuals [1]. Nevertheless, when 
diagnosed, either through clinical tests or the presentation of symptoms, patients 
encounter multifaceted challenges, including not only the physical aspects of treatment 
but also the intricate psychosocial dimensions that accompany the condition. These 
psychosocial ramifications can profoundly impact the patient's well-being, often 
impeding both the monitoring of the disease's progression and the implementation of 
appropriate therapeutic interventions. 

To gauge the psychosocial effects of HPV comprehensively, researchers have employed 
tools such as the Psycho-Estampa Scale. This scale serves as a valuable instrument for 
quantifying the psychosocial burden associated with HPV infection. Notably, an 
escalation in Psycho-Estampa Scale scores correlates significantly with an increased 
likelihood of abnormal cell proliferation and the presence of cancer-associated HPV 
strains. Furthermore, it has been observed that individuals with elevated scores on the 
Psycho-Estampa Scale exhibit a higher tendency to discontinue follow-up examinations 
and treatments [2]. 

HPV demonstrates a remarkable capacity to infect both cutaneous and mucosal epithelial 
tissues, including the cervical and anogenital mucosae. The virus's replication cycle is 
intricately intertwined with the process of epithelial differentiation. On a global scale, the 
lifetime risk of HPV infection for both men and women stands at a staggering 50% [3]. 
Importantly, HPV infections tend to persist over extended periods, potentially giving rise 
to chronic lesions that can culminate in malignancy [4]. 

Among the spectrum of HPV-associated cancers, cervical cancer predominates as the 
most prevalent, constituting a substantial 84% of HPV-related cancer cases worldwide 
[5]. However, an intriguing trend has emerged in high-income countries, notably the 
United States, where the incidence of HPV-related head and neck squamous cell 
carcinoma (HNSCC) is on a marked upward trajectory relative to HPV-related cervical 
cancer [6]. Additionally, HPV has been linked to the development of anogenital cancers, 
including vulval, vaginal, and penile cancers [7]. Notably, a connection between HPV 
infection and breast cancer has also been suggested, with HPV prevalence observed in 
breast cancer patients ranging from 4% to 86%, with specific emphasis on the prevalence 
of HPV-16 and 18 exceeding 50% among Iranian women with breast cancer [8310]. 

The intricate interplay between the immune system and HPV infection is a pivotal 
determinant of disease outcome. An appropriately timed and targeted immune response 
can effectively mitigate post-infection sequelae, while impaired or overly aggressive 
immune responses can precipitate severe pathological consequences [11]. Furthermore, 
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HPV-related lesions and cancers exhibit heightened prevalence among 
immunocompromised individuals. Approximately 30% of women receiving 
immunosuppressive medications or grappling with autoimmune conditions harbor high-
risk HPV strains, particularly HPV-16 [12]. For instance, in the context of Crohn's disease 
management, the administration of gut-selective immunosuppressive agents, such as 
Vedolizumab, over an extended duration has been shown to foster HPV replication. 
Notably, a case study illuminated the progression from HPV-16 replication in a woman 
with Crohn's disease to severe vulvar intraepithelial neoplasia, with subsequent 
observations of intraepithelial neoplasia occurring in novel locations, including the cervix 
[13]. 

Moreover, individuals diagnosed with the human immunodeficiency virus (HIV) are at 
heightened susceptibility to HPV-related cervical cancers. The risk ratio for cervical 
cancer in HIV-infected patients exceeds six, with approximately 6% of cervical cancer 
cases in 2018 being HIV-positive [14]. 

In light of these complex interactions between HPV and the immune system, this 
comprehensive review endeavors to provide an overview of recent publications related to 
the immunology of HPV. Furthermore, it explores potential immunotherapeutic strategies 
that hold promise for enhancing the overall management of HPV-associated cancers, 
aiming to shed light on innovative approaches to combat this prevalent and impactful 
group of diseases. 

Structure of Human Papillomavirus (HPV) 

Human Papillomavirus (HPV) is a member of the Papillomaviridae family, characterized 
by a double-stranded, closed, circular DNA genome of approximately 8 kb and a 
nonenveloped icosahedral capsid [15]. The HPV genome comprises 8 protein-coding 
genes organized into three functional regions: the upstream regulatory region (URR), 
early (E), and late (L) regions. 

The URR, also known as the long control region (LCR), is situated between the L1 and 
E6 open reading frames (ORFs). It houses the early promoter and regulatory elements 
crucial for viral DNA replication and transcription. The early region encodes proteins E1, 
E2, E4, E5, E6, and E7, which are central to viral gene expression, replication, and 
survival. In contrast, the late region contains genes responsible for the viral envelope and 
the structural proteins of the capsid (L1 and L2). 

Methylation of the LCR plays a pivotal role in the expression of HPV genes. Analysis of 
cervical samples from HPV-16-infected patients, including those with cervical cancer, 
intraepithelial neoplasia, and asymptomatic individuals, underscores the significance of 
LCR methylation in regulating HPV-16 gene expression. Methylation events occurring 
on promoter and enhancer regions of HPV-16 genes hold clinical and pathological 
relevance. LCR methylation is prevalent in cervical carcinoma (over 80%) and 
asymptomatic patients (around 70%), with a prevalence of approximately 40% in 
intraepithelial neoplasia patients. Moreover, HPV-16 LCR CpG islands predominantly 
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exhibit methylation on gene promoters [16]. This methylation pattern can serve as a 
biomarker for monitoring the progression of HPV-16-associated cancer. 

The major viral oncoproteins, namely E5, E6, and E7, play pivotal roles in the initiation 
and progression of cancer by modulating cell cycle regulation [15]. The expression of E6 
and E7 proteins is closely associated with the integration of viral DNA into the host 
genome, driving malignant transformation and ultimately cancer development [17]. 
These oncoproteins, E6 and E7, are the primary agents responsible for viral 
transformation and possess the ability to evade immune responses by manipulating 
cytokine expression, thereby influencing cell proliferation and interferon responses [18]. 

HPVs are classified into five genera (³, ³, ́ , ¿, and À), with over 200 types identified [193
21]. Among these, the ³ group is the largest, comprising 64 HPVs, primarily infecting 
mucosal epithelia. A subset of 17 mucosal HPVs (16, 18, 23, 31, 33, 35, 39, 45, 51, 52, 
53, 56, 58, 66, 68, 73, and 82) is categorized as high-risk (HR) HPV types. Conversely, 
10 other HPV types (40, 42, 43, 44, 53, 54, 61, 72, 73, and 81) are classified as low-risk 
(LR) or non-oncogenic, typically causing benign lesions [22]. HR HPV types are 
implicated in various cancers, including those affecting the cervix, vagina, vulva, anus, 
penis, and a subset of head and neck cancers (HNCs), particularly oropharyngeal cancers 
[23, 24]. In contrast, LR HPV types are associated with anogenital warts (AGWs), certain 
cutaneous warts [25], and recurrent respiratory papillomatosis (RRP) [26]. 

The ³ group of HPVs mainly infects cutaneous epithelia and encompasses 50 
characterized types. HPVs from the remaining three groups (´, ¿, and À) typically induce 
benign diseases [21]. This diverse classification underscores the multifaceted nature of 
HPV infections and their significant impact on human health. 

HPV Life Cycle 

HPV exhibits a versatile life cycle, capable of infecting cutaneous epithelial cells or 
mucosal tissues, categorizing them into either cutaneous or mucosal types based on their 
tropism [27]. The journey of the viral particle begins as it reaches epithelial cells through 
micro-wounds in the tissue or by interacting with cell surface receptors, such as integrin 
³6, commonly found in basal cells and epithelial stem cells [28]. Subsequently, the viral 
protein L1 binds to cellular receptors, undergoing structural modifications that are 
essential for the endocytosis of the virion [29, 30]. During this transition along the 
endosomal pathway, L1 dissociates from the viral genome, and the protein L2 mediates 
the viral egress from the endosomes. This process guides HPV vesicles along 
microtubules into the nucleus. Once inside the dividing cells of the basal layer, viral early 
transcription is initiated, marked by the expression of the early proteins E1 and E2 [31]. 
The productive life cycle of HPV can be categorized into three distinct phases: 
establishment, maintenance replication, and vegetative or productive amplification [32]. 

The establishment phase revolves around viral transcription and genome amplification, 
following nuclear entry. Viral genomes remain episomal within host cells for extended 
periods. During this phase, early viral proteins E1, E2, and E4 play essential roles in 
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increasing viral genome replication. Simultaneously, E6 and E7 promote host cell 
proliferation while preventing apoptosis, as E2 limits the expression of E6 and E7. The 
loss of E2 repression function results in the deregulation of viral E6 and E7 oncogenes 
[33]. 

Following the establishment phase, the maintenance phase commences. In this phase, the 
virus works to maintain a constant number of viral genomes, establishing a persistent 
infection. Finally, the last step involves vegetative or productive viral replication, 
resulting in the production of progeny virions [34, 35]. During this stage, oncoproteins 
E6 and E7, expressed at relatively low levels in differentiated cells, play a crucial role. 
They inactivate tumor suppressor proteins like p53 and retinoblastoma protein (pRb) 
while activating signal transduction pathways, ensuring that infected cells remain active 
and progress to the S phase of the cell cycle. Moreover, vegetative amplification, beyond 
increasing HPV genome copy numbers, is accompanied by the expression of structural 
proteins L1 and L2, as depicted in Figure 1 . This multifaceted life cycle underscores the 
intricacies of HPV infection and its potential consequences: 

 
Figure 1 Illustrates the intricate HPV life cycle, showcasing the key stages and processes involved.  

Establishment Replication: This initial step of the HPV replication cycle focuses on the 
maintenance of a consistent number of episomal copies of the viral genome within host 
cells. To achieve this, a set of essential viral proteins including E1, E2, E6, and E7 come 
into play. They collaborate to ensure the stable episomal maintenance of HPV. 

Maintenance Phase: Following the establishment phase, the maintenance phase takes 
over. Here, the primary objective is to create conditions that sustain a constant number of 
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viral genomes within the nuclei of undifferentiated basal cells. This persistence 
contributes to the establishment of a long-lasting infection, a hallmark of HPV. 

Vegetative or Productive Viral Replication: The final phase marks the initiation of 
vegetative or productive viral replication, culminating in the generation of progeny 
virions. During this phase, the oncoproteins E6 and E7, expressed at relatively low levels 
in differentiated cells, assume a pivotal role. They are responsible for inactivating tumor 
suppressor proteins like p53 and retinoblastoma protein (pRb) while activating signal 
transduction pathways. This ensures that infected cells remain active and progress to the 
S phase of the cell cycle [36]. 

This comprehensive depiction of the HPV life cycle underscores the multifaceted nature 
of the virus's replication strategy, with each phase contributing to its persistence and 
potential impact on host cells. 

HPV Association with Cancers 

The role of Human Papillomavirus (HPV) in cancer development is a topic of critical 
importance, and this section provides an insightful overview. 

HPV Tropism: HPV exhibits the ability to infect both cutaneous epithelial cells and 
mucosal tissues, as highlighted in Table 1. The diversity in its infection sites yields 
varying clinical implications. 

Cutaneous ³-HPV Infections: Often contracted through skin-to-skin contact in young 
children, cutaneous ³-HPV types typically result in asymptomatic infections at cutaneous 
sites. However, they can occasionally lead to debilitating papillomatosis with an 
associated risk of cancer [37]. The precise role of cutaneous ³-HPV types in cancer 
development remains somewhat unclear [38]. 

Mucosal ³-HPV Infections: Mucosal infections, primarily associated with ³-HPV types, 
generally occur during the initial sexual exposures in early adulthood, although non-
sexual transmission is also possible [39, 40]. ³-HPV types are implicated in several forms 
of anogenital cancers, apart from cervical cancer. These include vulvar, penile, and anal 
cancers. However, it is noteworthy that the population-level impact of these cancers is 
relatively small when compared to cervical cancer [41]. 

Cervical Intraepithelial Neoplasia (CIN): High-risk HPVs (HR-HPVs) play a crucial 
role in the initiation and progression of cervical intraepithelial neoplasia (CIN) [44,45]. 
Interestingly, the majority of cervical HPV infections (>90%) are effectively resolved by 
the host immune system within 132 years, without resulting in chronic infection [42]. 
Nonetheless, a minority of HPV infections persist, significantly elevating the risk of 
developing epithelial cell abnormalities or cancer. Notably, the persistent and chronic 
infection of HR-HPV, particularly type 16, stands out as the principal risk factor for the 
initiation and development of squamous cell carcinoma [43]. 
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This section provides a comprehensive understanding of how HPV infections can lead to 
various cancers, shedding light on the intricate relationship between HPV types, 
transmission routes, and cancer development. 

 

Table 1 HPV Types and Their Associated Lesions 

HPV Risk Type HPV Types 

High-Risk (HR) 16, 18, 23, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 66, 68, 73, and 82 

Low-Risk (LR) 40, 42, 43, 44, 53, 54, 61, 72, 73, and 81 

Lesions Intraepithelial neoplasia and cervical cancer (HR) 

Intraepithelial neoplasia, genital or cutaneous warts (LR) 

 

 HPV and T Cells: A Complex Interaction 

The interplay between Human Papillomavirus (HPV) and T cells is a pivotal aspect of 
HPV-related cancers, and this section delves into its intricate dynamics. 

T Cells in HPV-Related Cancers: T cells emerge as critical players in HPV-related 
cancers. Approximately 80% of samples obtained from HPV-16-related cervical cancers 
exhibit T cell infiltration [44]. Additionally, an immunogenomic study involving 119 
HPV-positive head and neck squamous cell carcinoma (HNSCC) patients underscores 
the significance of T cell infiltration within the tumor microenvironment [45]. A case-
control study involving Egyptian women emphasizes the predictive value of CD4 and 
CD8 T cells in HPV-related cancers such as breast and head-neck carcinoma [46]. 
Interestingly, the absence of co-stimulatory receptors like CD28 on T cells can render 
HPV more aggressive, a phenomenon witnessed in patients with CD28-deficient T cells, 
leading to conditions like "tree-man syndrome" due to HPV-2 and HPV-4 infections. In 
individuals with normal CD28+ T cell frequencies, HPV-2 and HPV-4-related warts 
struggle to thrive, highlighting the importance of these receptors [47]. 

T Cell Subpopulations in Different HPV Infections: The composition of T cell 
subpopulations infiltrating cutaneous and mucosal tissues varies depending on the HPV-
infected organs. In HPV-16-infected cervical cancer patients, T CD8 cells predominate, 
with a concomitant decrease in CD4 T cell frequency [44]. Three subsets of T CD8 cells 
are active during HPV-related head-neck cancers, all expressing programmed cell death 
protein-1 (PD-1). These subsets exhibit distinct characteristics, including stem cell-like 
properties and varying responses to HPV antigens [48]. CD8 T cells expressing CD103 
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are found within the tumor microenvironment of HPV-related oropharyngeal squamous 
cell carcinoma (OSCC) and are vital for cancer cell eradication and patient surveillance 
[49]. Furthermore, stem-like memory CD8 T cells (Tscm) have demonstrated the ability 
to eliminate HPV-16-induced tumors in vivo and in vitro, displaying heightened 
responsiveness in the presence of CD40L activation [50]. 

T Cell Infiltration and HPV: In samples obtained from the epithelial layer, CD8 T cells 
predominate, while the stromal layer sees a higher frequency of CD4 T cells [51]. Cross-
talk between HPV-infected tissues, T cells, and other immune cells within the tumor 
microenvironment often favors tumor survival. Systematic reviews and meta-analyses 
have revealed a reduction in the number of T cell subtypes as HPV-infected tissues 
progress toward cancer, with T regulatory (Treg) cells becoming the predominant 
population. Treg cells exert their influence by suppressing CD8 T cells, with higher Treg 
populations observed in common HPV families such as HPV-16 and HPV-18 [46]. Cross-
talk between Tim+Treg cells and Galectin-9+ monocytes in HPV-related cervical cancer 
promotes the secretion of immunosuppressive factors while inhibiting key immune 
responses, ultimately enhancing tumor aggressiveness and mortality [52]. Strategies to 
counteract Treg effects include T-win technology, Treg cell receptor inhibitors, immune 
checkpoint blockers, and photodynamic therapy [53]. Moreover, a substantial portion of 
CD8 T cells in the infected area exhibit exhaustion, a challenge that can be mitigated by 
manipulating T cells with PD-1 blockers and Indoleamine 2,3-dioxygenase (IDO-1) 
inhibitors, thereby enhancing CD8 T cell cytotoxicity [44]. 

Peripheral T Cell Response: Peripheral T cell responses against HPV-related antigens 
require further exploration. A cohort study involving oral squamous cell carcinoma 
(OSCC) patients revealed a robust T central memory response against HPV16 L1 and E6 
proteins. However, the response against E7 was deficient due to overexpression of PD-
L1 induced by HPV16 E7. This deficiency in peripheral T cell activity against E7 
contributes to tumor escape mechanisms, highlighting the potential for new 
immunotherapeutic approaches The Role of Regulatory T Cells in Pathogenesis and 
Therapy of Human Papillomavirus-Related Diseases, Especially in Cancer  [53]. 

´· T Cells in HPV-Related Breast Cancer: In addition to conventional T cells, gamma 
delta T cells (´· T cells), particularly a rare subset that produces IL-17, play a pivotal role 
in the progression of HPV-related breast cancer. This specific population acts as a 
metastasis promoter by producing high levels of IL-17 [54]. 

This section unravels the intricate relationship between T cells and HPV-related cancers, 
shedding light on the diverse T cell subpopulations, their functions, and their impact on 
tumor progression, Figure 2. 
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Figure 2 This figure illustrates the key T cell subpopulations involved in HPV-related cancers, highlighting 

their distinct roles within the tumor microenvironment. CD8 T Cells: Predominantly located in the 
epithelial layer, CD8 T cells play a pivotal role in recognizing viral antigens presented by MHC-I on tumor 

cell surfaces. This recognition facilitates the eradication of tumor cells. However, tumor cells expressing 
PDL-1 receptors interact with PD-1 on CD8 T cells, compromising their function. CD4 T Cells: Found in 
the stromal layer, the majority of CD4 T cells are regulatory T cells (Treg cells). Treg cells promote tumor 
development by producing immunosuppressive cytokines, such as IL-10 and TGF-³, which induce tumor 
tolerance in other T cell types. ´δ T Cells: Unconventional ´δ T cells are prominent in the epithelial layer 
and are associated with tumor progression. These cells contribute to tumor advancement by producing IL-

17. For a comprehensive understanding of these T cell subsets and their roles in HPV-related cancers, refer 
to the main text. 

Immunoinformatics 

Immunoinformatics, a multidisciplinary field at the intersection of immunology and 
bioinformatics, plays a pivotal role in modern vaccine design and development. By 
utilizing computational approaches, immunoinformatics accelerates the identification, 
evaluation, and design of epitopes, which are the critical components of vaccines. It 
harnesses various tools and databases to discover epitopes, predict their compatibility 
with the human immune system, and evaluate their safety. Immunoinformatics 
significantly enhances the speed and accuracy of vaccine development, enabling 
researchers to create innovative, targeted, and effective vaccines against a wide range of 
pathogens, ultimately contributing to the advancement of public health by combating 
infectious diseases more efficiently [55]. 

Using traditional vaccine development methods, vaccines are typically designed with 
large proteins. However, using inappropriate antigens in vaccine formulations can 
increase the risk of allergic reactions. In contrast, a multi-epitope vaccine based on 
peptides containing short antigenic fragments, known as epitopes, has the potential to 
overcome these limitations. Epitopes represent the antigenic components of pathogens 
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that are recognized by the host immune system. Conventional approaches to vaccine 
development have historically relied on the use of large proteins as the primary antigenic 
components. These proteins, often derived from the targeted pathogen, serve as the 
cornerstone of vaccine formulations. While this traditional method has yielded numerous 
successful vaccines that have protected populations from a wide range of infectious 
diseases, it is not without its limitations and potential drawbacks. For example, Cervarix 
and Gardasil utilize the L1 antigen of HPV, which presents certain limitations. L1-based 
vaccines primarily target specific HPV strains (e.g., types 16 and 18). This limits their 
efficacy against a broader range of HPV strains, leaving individuals susceptible to non-
covered types [56]. Cross-protection against non-vaccine HPV types is limited, 
contributing to potential gaps in immunity [57].  

In recent years, there has been a growing interest in exploring alternative approaches to 
vaccine design. One such approach involves the use of peptide-based multi-epitope 
vaccines. These vaccines are distinct from traditional vaccines in that they contain short 
antigenic peptide fragments, known as epitopes. Epitopes are the minimal units of an 
antigen that can be recognized by the immune system. By utilizing epitopes, peptide-
based vaccines offer a unique set of advantages. Peptide-based vaccines have the potential 
to overcome some of the limitations associated with traditional vaccines. Their use of 
short, specific epitopes minimizes the risk of allergic reactions, as the immune response 
is directed towards well-defined molecular targets [58]. This precision in targeting 
reduces the likelihood of unwanted immune responses, making peptide-based vaccines a 
promising avenue for enhancing vaccine safety. Moreover, peptide-based vaccines are 
highly customizable. Vaccine developers can select epitopes that are unique to the 
pathogen while excluding those that may be associated with allergic responses. This level 
of control allows for the creation of safer and more tailored vaccines, reducing the 
potential for adverse reactions. Designing multi-epitope vaccines using 
immunoinformatics allows the inclusion of epitopes from various HPV proteins, 
expanding protection beyond L1. This strategy enhances cross-protection and addresses 
strain-specific limitations. Immunoinformatics enables in silico analysis to predict 
antigenic epitopes, assess binding affinities, and optimize vaccine formulations. This 
accelerates the identification of potential vaccine candidates with broader efficacy [59]. 

To increase the efficacy of multiepitope vaccines, an adjuvant part is added to main 
vaccine. For example adding a CpG DNA sequence for binding to TLR9. They play a 
crucial role in eliciting innate immunity and cell-mediated immune responses. The cell-
mediated immune response relies heavily on pattern recognition receptors that detect 
pathogen-associated molecular patterns (PAMPs) on the pathogen. Within the family of 
pattern recognition receptors, Toll-like receptors (TLRs) stand out as key players. There 
are eleven different TLR proteins, each with a unique ability to interact with various 
PAMPs. These receptors are expressed on the surface of cells and contribute to the 
detection of pathogens. For instance, Toll-like receptor 9 (TLR9) serves as a critical 
pattern recognition receptor primarily localized intracellularly within immune cells. Toll-
like receptor 9 (TLR9) plays a pivotal role in the realm of pattern recognition receptors, 
primarily occupying intracellular compartments within a diverse array of immune cells. 
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These immune sentinels include dendritic cells, macrophages, natural killer cells, and an 
assortment of antigen-presenting cells (APCs). The principal actors on TLR9's stage are 
the unmethylated cytidine phosphate guanosine (CpG) oligodeoxynucleotides (ODN). 
Upon encountering its agonists, TLR9 orchestrates an intricate symphony of molecular 
events, setting in motion a cascade of inflammatory responses. These responses serve as 
a powerful call to arms for the immune system, inciting a series of reactions with 
profound consequences. Among these consequences are heightened phagocytosis, a 
process by which cells engulf and consume invading microorganisms and malignant 
cancer cells. This increased phagocytic activity effectively bolsters the body's innate 
defenses, enhancing its ability to combat microbial intruders and suppress the growth and 
spread of cancerous cells. Yet, the influence of TLR9 extends beyond the innate immune 
system's immediate response. TLR9 activation serves as a critical trigger for the 
development of adaptive immune responses. This means that TLR9's role is not confined 
to the initial containment and destruction of threats but extends to the orchestration of 
long-term immunity [60]. 

The adaptive immune system, a powerful arm of the body's defense mechanisms, relies 
on memory and specificity to recognize and neutralize pathogens. TLR9, by virtue of its 
activation, contributes to the generation of adaptive immunity [60]. It assists in the 
formation of immunological memory, ensuring that the body can recognize and respond 
more effectively to the same threat upon subsequent encounters. This process is central 
to the development of vaccines and the body's ability to mount a swift and targeted 
defense against infections. Following infection, cytotoxic T-cell lymphocytes (CTLs) 
become activated and target and eliminate infected cells. This immune recognition is 
made possible by antigens bound to major histocompatibility complex (MHC) molecules, 
which are presented on the surface of infected cells. The MHC class I molecules display 
cytosolic peptide antigens from the infected cells, while MHC class II molecules present 
antigens from phagocytosed materials.CD4 + T cells are responsible for recognizing 
antigenic peptides displayed by class II MHC molecules, whereas cytotoxic T-cell 
lymphocytes (CTLs) interact with class I MHC-peptide complexes. Once activated, 
CD4 + T cells secrete cytokines that further activate B cells, leading to the production of 
specific antibodies. This orchestration of immune responses is critical for an effective 
defense against pathogens. Multiepitope vaccines play a crucial role in stimulating a 
robust immune response involving CD8+, CD4+ T cells, and B cells. These vaccines are 
designed to contain multiple epitopes, enhancing their effectiveness. Multiepitope 
vaccines include epitopes recognized by cytotoxic T-cell lymphocytes (CTLs) and 
engage CD4+ T cells, promoting their activation. Also, Multiepitope vaccines often 
include B-cell epitopes. In addition, CD4+ T cell activation, facilitated by the vaccine, 
supports B cell activation [61]. 

One of the key challenges associated with traditional vaccine design lies in the selection 
of appropriate antigens. The choice of antigens is a critical decision in vaccine 
development, as it directly influences the vaccine's effectiveness and safety. Inappropriate 
selection of antigens can lead to various issues, and one of the most concerning is the 
potential for allergic reactions. Allergies are immune responses that are hypersensitive 
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and exaggerated in nature. When a vaccine contains antigens that can trigger allergic 
responses in certain individuals, it poses a significant health risk [62]. These allergic 
reactions can range from mild discomfort to severe, life-threatening anaphylactic 
responses, making the safety of the vaccine a paramount concern. To mitigate the risk of 
allergic reactions, vaccine developers must carefully consider the antigens they choose 
for inclusion in their formulations. The goal is to identify antigens that are specific to the 
pathogen of interest, thus ensuring that the immune response is focused on the intended 
target. This specificity is crucial for an effective vaccine, as it enables the immune system 
to recognize and remember the pathogen, providing protection upon subsequent 
encounters. On the other hand, Immunoinformatics utilizes computational methods to 
analyze pathogen data and predict antigenic epitopes[63]. Also, advanced algorithms help 
identify non-allergenic and non-toxic epitopes, minimizing the risk of allergic reactions 
in vaccine recipients. Additionally, multiepitope vaccines incorporate multiple epitopes, 
providing broader coverage of pathogen variability. By including specific antigens 
relevant to the pathogen of interest, multiepitope vaccines promote a targeted immune 
response [64]. 

Thus, while traditional vaccine development has achieved remarkable successes in 
protecting against infectious diseases, the risk of allergic reactions due to inappropriate 
antigen selection remains a concern. Exploring alternative approaches, such as peptide-
based multi-epitope vaccines, holds the promise of mitigating this risk and enhancing 
vaccine safety. As the field of vaccinology continues to evolve, the quest for safer and 
more effective vaccines remains a critical priority in safeguarding public health. 

The integration of immunoinformatics into vaccine design not only expedites the 
discovery of novel epitopes but also facilitates the development of innovative, safe, and 
effective vaccines. By focusing on epitopes with the greatest potential for inducing 
protective immunity while minimizing the risk of adverse reactions, immunoinformatics 
is poised to revolutionize viral vaccination strategies. As the field continues to advance, 
the synergy between computational tools and experimental validation holds the promise 
of a new era in vaccine development, enhancing our ability to combat viral infections and 
safeguard global health. 

System immunology 

System immunology, the holistic study of the immune system and its complex 
interactions, holds profound importance in the quest to identify and develop targets for 
immune-based vaccines. The immune system is a dynamic network of cells, molecules, 
and pathways that collaboratively defend the body against pathogens, including viruses, 
bacteria, and cancer cells. By comprehensively understanding the system-level behavior 
of the immune system, researchers can pinpoint key components and mechanisms crucial 
for an effective immune response. System immunology allows us to explore the intricate 
interplay between innate and adaptive immunity, uncover patterns of immune activation 
and regulation, and elucidate the dynamics of immune cell populations. This deep insight 
enables the identification of specific antigens, epitopes, and immune-related molecules 



Introduction 

12 
 

that are essential for triggering protective immune responses [65]. Furthermore, system 
immunology helps in characterizing the diverse immune responses across individuals, 
taking into account factors like genetics, age, and health status. This personalized 
approach aids in tailoring immune-based vaccines to different population groups, 
enhancing their efficacy and safety. The field also plays a pivotal role in understanding 
the concept of immunological memory, which is fundamental in vaccine development. 
By dissecting the memory responses of the immune system, researchers can identify 
targets that induce long-lasting immunity, ensuring the durability of vaccine protection 
[66]. 

In the context of infectious diseases and emerging pathogens, system immunology 
provides a comprehensive framework to study host-pathogen interactions. It enables the 
identification of conserved and vulnerable points in the pathogen life cycle that can be 
targeted for vaccine development. System immunology sheds light on the complex 
interplay between the host and HPV, providing insights into the molecular mechanisms 
of infection and immune responses [67]. Also, systemic insights into how 
immunodeficiency conditions influence HPV infections contribute to understanding the 
broader context of pathogen-host interactions [68].  

Moreover, the field allows researchers to assess the immunodominance of specific 
antigens and prioritize them for vaccine candidates. This approach streamlines the 
selection of the most potent and relevant vaccine targets, expediting the vaccine 
development process. System immunology also facilitates the exploration of novel 
vaccine platforms and adjuvants. Understanding how the immune system responds to 
different delivery systems and adjuvants is critical for enhancing vaccine efficacy. By 
characterizing the immune responses triggered by these elements, researchers can fine-
tune their formulations to achieve the desired outcomes [69]. 

Additionally, the integration of 'omics' technologies, such as genomics, transcriptomics, 
proteomics, and metabolomics, into system immunology provides an unprecedented 
depth of information. These technologies allow for the profiling of immune responses at 
various molecular levels, offering insights into the underlying mechanisms of vaccine-
induced immunity. This high-dimensional data can be harnessed to identify biomarkers, 
predict vaccine responses, and optimize vaccine designs. System immunology plays a 
crucial role in the identification of key cytokine genes with pathological effects. 
Cytokines are signaling molecules that regulate immune responses, and their 
dysregulation can lead to various diseases. System immunology leverages comprehensive 
approaches to unravel the intricate interplay between immune cells, cytokines, and their 
downstream effects [70, 71]. Gene network analysis plays a crucial role in system 
immunology, offering insights into the complex interactions within the immune system.  
A study utilizes co-expression gene network analysis to uncover novel insights into 
system biology and transcriptomic analysis related to the immune system. It contributes 
to understanding the intricate regulatory networks governing immune responses [72]. 
Hernández-Gea and team employ co-expression gene network analysis to unravel novel 
insights into system biology and transcriptomic analysis in the realm of the immune 
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system. This study significantly contributes to unraveling the intricate regulatory 
networks governing immune responses, providing a deeper understanding of the 
underlying mechanisms at play [72]. Another work explores the intricate interplay 
between the immunome and disease-gene networks, shedding light on the dysregulation 
involved in immune-mediated inflammatory diseases. The study significantly contributes 
to unraveling the complex connections between the immune system and genetic factors, 
providing valuable insights for furthering our understanding of immune-related disorders 
[73]. 

Pharmacophore modeling, Quantitative Structure-Activity Relationship (QSAR) models, 
docking simulations, and molecular dynamics (MD) simulations are integral tools for 
targeting cytokines in drug discovery and development. They assist in understanding 
cytokine interactions, designing potential inhibitors or modulators, and predicting their 
behavior [74].  

Pharmacophore Modeling 

Pharmacophore modeling plays a vital role in various aspects of medical science. 
Pharmacophore modeling is extensively used in drug discovery. It enhances virtual 
screening performance, elucidates structure-property relationships, and derives 
pharmacophores for apo-protein sites, contributing to the development of new therapeutic 
agents [75]. Also, it is escribed as an innovative technology for exploring and extracting 
potential interactions between drugs or ligands and target proteins. This application is 
fundamental in understanding drug-target interactions in medical research [76]. The most 
common application of pharmacophore-based virtual screening is demonstrated in lead 
identification. This cherry-picking approach is a valuable strategy in drug discovery, 
aiding in the selection of potential drug candidates [77].  

Pharmacophore modeling is instrumental in discovering ligands for cytokines and 
immune proteins. A study employed pharmacophore modeling based on hot-spot residues 
of the interaction site between interleukin-6 (IL-6) and IL-6 receptor alpha (IL-6R³). This 
approach aids in identifying ligands targeting cytokine-receptor interactions [78]. Also, 
in a virtual screening strategy, including pharmacophore modeling, was employed to 
identify small molecules binding to human Inducible T-cell CO-Stimulator (ICOS). This 
approach aids in finding ligands relevant to immune response modulation [79]. Moreover, 
pharmacophore models were developed to describe molecular features and spatial 
arrangements of ligand-protein interactions, contributing to the discovery of novel Janus 
kinase (JAK) JAK1 inhibitors. This highlights the importance of pharmacophore 
modeling in immune-related drug development [80]. 

In the case of viral infection especially HPV vaccination, pharmacophore modeling is 
crucial in the development of effective vaccines for HPV. As HPV is a double-stranded 
DNA virus, understanding its genetic structure through pharmacophore modeling is 
necessary for designing effective vaccines [81]. Furthermore, Pharmacophore modeling 
and molecular docking studies are employed to identify potential inhibitors to the E6 
PBM-PDZ, PDZ(PSD-95/Dlg/ZO-1)-binding motif (PBM), interaction in HPV. This 
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approach aids in discovering compounds with inhibitory activity, contributing to vaccine 
development [82].  

Quantitative Structure-Activity Relationship (QSAR) Models 

Quantitative Structure-Activity Relationship (QSAR) models play a crucial role in 
immunology by aiding in the identification of the most effective compounds, molecules, 
or small proteins for various components of the immune system, including T cells, B 
cells, cytokines, complements, and other immune structures [83]. Also, in drug discovery 
for immunotherapies, QSAR models guide the lead optimization process. They help in 
refining the chemical structures of compounds to enhance their affinity and specificity 
for immune system targets, maximizing therapeutic efficacy [83]. Additionally, QSAR 
models can quantitatively predict binding parameters of small molecules to immune 
system components. This is valuable in understanding the thermodynamics and kinetics 
of interactions, providing insights into the mechanism of action [84]. With QSAR models, 
researchers can efficiently screen large databases of compounds to identify those with the 
desired immunomodulatory properties. This accelerates the process of discovering 
potential candidates for further experimental validation [85]. QSAR helps address 
knowledge gaps in immune response and immunotherapy by providing a quantitative 
understanding of the relationship between compound structure and immunomodulatory 
properties [86].  

For instance, Fukunishi et al. 2017 utilized QSAR models by employing protein-drug 
docking simulations. These models were applied to public affinity data to predict binding 
free energy and docking scores [87]. Also, another study conducted a QSAR investigation 
on a dataset of 224 compounds, including clinically installed molecules. The study aimed 
to understand the quantitative relationships between compound structures and their 
activities, facilitating the identification of compounds with immunomodulatory potential 
[88]. In the case of cancer immunotherapy, a group of researchers emphasized the use of 
molecular docking, dynamics, QSAR, and similarity searching in smart nanoparticles for 
cancer therapy. These computational approaches aid in identifying compounds suitable 
for cancer immunotherapy [89]. Furthermore, a multidisciplinary approach involving 
QSAR was employed in a study related to coronavirus disease. This approach utilized 
various computational methods to identify potential compounds for intervention [90]. 
QSAR was not only employed to cure Coronavirus. QSAR was employed to study the 
structure-activity relations of HPV6-E1 helicase ATPase inhibitors. This research 
investigated the inhibitory effects of compounds and their structural features, aiding in 
the design of potential HPV therapeutics [91].  

These examples underscore the diverse applications of QSAR models in identifying 
compounds for immune system manipulation, ranging from cancer therapy to addressing 
infectious diseases like COVID-19. QSAR's ability to predict and understand the 
relationships between compound structures and immunomodulatory activities contributes 
significantly to the discovery of novel therapeutic agents. 
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Molecular docking 

The field of drug discovery has witnessed a transformative shift with the advent of 
computational techniques, particularly molecular docking, offering unprecedented 
insights into ligand-protein interactions. This methodology has proven instrumental in 
accelerating drug development processes, with profound implications for both traditional 
drug discovery and emerging immunotherapies [92]. In drug discovery, molecular 
docking plays a pivotal role in predicting the binding affinity of small molecules to 
specific proteins or receptors, enabling the identification of potential drug candidates. 
This predictive capability significantly expedites the initial stages of drug development 
by narrowing down the pool of compounds for further experimental validation. As drug 
discovery increasingly leans towards precision medicine and targeted therapies, 
molecular docking emerges as a crucial tool in the arsenal, facilitating the design of drugs 
tailored to interact with specific biomolecular targets [93]. 

Immunotherapy, a revolutionary approach harnessing the body's immune system to 
combat diseases, has gained prominence in recent years. Molecular docking proves 
indispensable in this realm, facilitating the identification of potential immune targets. It 
allows for the exploration of ligand-protein interactions involved in modulating immune 
responses. Albumin/vaccine nanocomplexes designed through molecular docking have 
demonstrated improved assembly in vivo, showcasing the potential for enhanced vaccine 
delivery [94]. Notably, the potential targets for immunomodulation are as diverse as the 
components of the immune system itself, offering a myriad of possibilities for therapeutic 
intervention. The application of molecular docking in finding targets for cytokines, 
chemokines, and other immune system proteins constitutes a critical facet of 
immunotherapy research. Understanding the intricate interactions between these proteins 
and potential ligands enables the design of interventions that can finely tune immune 
responses. This targeted modulation holds the promise of developing therapies with 
enhanced specificity and reduced off-target effects [95]. For example, Docking analysis 
has been employed to study the binding affinity of vaccines with Toll-like Receptor 4 
(TLR-4) and Toll-like Receptor 8 (TLR-8), providing insights into the immunogenicity 
of vaccines [96]. To prevent the HPV-E6 antigen, molecular docking studies identified 
cidofovir and jaceosidin as potent inhibitors of the E6 protein of HPV. These compounds 
were selected based on high docking scores, showcasing the utility of molecular docking 
in screening for potential vaccine candidates [97]. Moreover, Autodock Vina and the 
Molecular Graphics Laboratory (MGL) tools were employed in docking studies to 
identify 28 candidate molecules for HPV16 E6 treatment. This approach resulted in the 
selection of three promising compounds, demonstrating the efficacy of molecular 
docking in the early stages of vaccine discovery [98]. Screening of small molecules for 
HPV-E6 by molecular docking, using the X-ray crystal structure of HPV-16 E6, aided in 
screening small molecular compounds. This approach contributes to the identification of 
potential vaccine candidates by understanding the interaction between compounds and 
viral proteins [99].  
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Looking forward, the future of immunotherapy lies in the continued refinement and 
advancement of computational techniques like molecular docking. With the increasing 
understanding of immune system complexities, the potential for discovering novel targets 
and designing tailored interventions expands. The integration of artificial intelligence, 
machine learning, and big data analytics into docking simulations opens avenues for more 
accurate predictions and the identification of subtle nuances in ligand-protein interactions 
[100]. In this case, the development of multi-epitope vaccines against diseases like cancer 
has benefited from molecular docking strategies, optimizing the interaction between 
vaccine components and immune receptors [101].  

As the field evolves, exploring the synergies between experimental and computational 
approaches will be paramount. Collaboration between computational biologists, 
immunologists, and experimental researchers will enhance the translational potential of 
findings, ultimately contributing to the development of more effective and personalized 
immunotherapies. The journey of molecular docking in drug discovery and 
immunotherapy is poised for exciting developments, holding the promise of 
revolutionizing therapeutic interventions in the years to come. 

Molecular Dynamics Simulations: 

Molecular dynamics plays a crucial role in elucidating the interactions between 
interleukins (ILs) and their target medications or small compounds. Understanding the 
dynamic motions of atoms in protein targets and their complexes is essential for drug 
discovery and design. The significance of molecular dynamics lies in its ability to provide 
insights into the stability, flexibility, and behavior of ILs during interactions with ligands. 
This computational technique allows researchers to simulate the movement of atoms over 
time, offering a dynamic perspective on the IL-target interactions [102]. 

Research studies have provided valuable insights into the interactions between 
Interleukin-6 (IL-6) and various ligands. Molecular docking analyses indicate 
comparable affinities for positively charged positions on the surface of IL-6 for two 
ligands [103]. 

A computational-experimental investigation delved into the mode of binding of the IL6-
piperine complex, utilizing experimental and computational molecular biophysical 
methods [104]. Another study aimed to discover IL-6 inhibitors based on protein-protein 
interactions with a novel camelid Fab fragment (68F2) within a crystal protein complex 
[105]. Furthermore, Structure-based 3D-pharmacophore modeling was employed to 
discover novel IL-6 inhibitors. Pharmacophore models were constructed based on key 
residues of IL-6, contributing to lead screening efforts [78]. 

Molecular dynamics analysis of the binding of human IL-6 with the IL-6 ³-receptor 
revealed an interplay of electrostatic, hydrophobic, hydrogen bonding, and aromatic 
stacking interactions, facilitating the formation of the hIL-6/IL-6R³ complex. A related 
study further explored the molecular dynamics analysis of this binding [106]. 
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By integrating system immunology with computational approaches, researchers can 
better understand the immune response in various diseases, identify critical cytokine 
targets, and design drug candidates that modulate the immune system for therapeutic 
purposes. This integrative approach accelerates the drug discovery process, increases the 
likelihood of success, and contributes to the development of novel immunotherapies and 
treatments for a wide range of conditions, including autoimmune diseases, cancer, and 
infectious diseases. Molecular Dynamics (MD) simulations play a pivotal role in 
unraveling the dynamic behavior of cytokine-receptor complexes over time, offering 
valuable insights into structural changes and the stability of binding. These simulations 
also delve into allosteric modulation, uncovering crucial allosteric sites and mechanisms 
that influence cytokine activity indirectly. Additionally, MD simulations consider solvent 
effects, providing a comprehensive understanding of molecule behavior in biologically 
relevant environments [107]. To have better vaccines for HPV, Molecular dynamics 
simulations and modeling were involved in predicting antigenic peptides from HPV E6 
and E7 proteins. This information aids in the design of vaccines targeting specific 
antigenic regions for effective immune response [108]. To understand the binding affinity 
of HPV vaccines, MD contributes to understanding the interactions between potential 
vaccine candidates and viral proteins, guiding the development of effective HPV vaccines 
[109]. To find better HPV vaccines, in silico screening and molecular dynamics 
simulations were employed to identify potential anti-HPV hits. The PubChem database 
screening, followed by ADMET predictions and molecular docking, enhances the 
selection of candidates for further vaccine development [97] 

These techniques are often intertwined for a more comprehensive approach. For instance, 
pharmacophore models guide compound selection for virtual screening, while docking 
simulations predict binding modes of selected compounds. Molecular dynamics 
simulations further refine and analyze these binding interactions. Quantitative Structure-
Activity Relationship (QSAR) models contribute insights into the structure-activity 
relationships of selected compounds [110]. 

Integrating system immunology with these methodologies significantly enhances drug 
discovery, particularly in developing immunotherapies and cytokine-based treatments. 
Through systematic data gathering and analysis in system immunology, researchers 
collect extensive immunological data, identifying key cytokines, receptors, and signaling 
pathways involved in immune responses. Utilizing insights from system immunology, 
pharmacophore models specific to identified cytokine targets are created, determining 
essential structural features and chemical properties for potential drug candidates. QSAR 
models, incorporating data from system immunology, predict the biological activity of 
potential drug candidates against target cytokines. Docking simulations, guided by 
system immunology insights, aid in predicting binding modes of drug candidates to 
cytokines, contributing to a more informed drug discovery process [111].  

In the pursuit of developing novel vaccines with heightened effectiveness, our research 
followed a multifaceted approach. We initiated our study by investigating the activation 
and proliferation of specific T cell subpopulations, including CD8, CD4, and follicular T 
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cells, in response to HPV virus antigens, such as E6, E7, and L1. Subsequently, we 
harnessed the power of immunoinformatics to design new epitopes, a crucial step in the 
creation of potential vaccines. To further our understanding and expand our focus, we 
conducted systematic investigations using publicly available gene expression data from 
the Gene Expression Omnibus (GEO) database, with an emphasis on post-vaccination 
alterations in gene expression within peripheral blood mononuclear cells (PBMCs). Upon 
identifying target genes, we employed pharmacophore and QSAR modeling techniques 
to discover suitable ligands. These ligands were then sourced from comprehensive 
databases, including ZINC and PubChem. In the final stages of our research, we 
conducted molecular docking and dynamics simulations to evaluate the interactions 
between our target genes and their respective ligands. This comprehensive approach 
integrates immunological, bioinformatics, and computational strategies to potentially 
pave the way for the development of innovative vaccine.
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Introduction 

Human papillomavirus (HPV) infections are a pressing global health concern, linked to 
the development of various cancers, including cervical cancer. Understanding the 
intricate interplay between the immune system and HPV is crucial for devising effective 
strategies to combat HPV-related diseases. This chapter delineates the primary aims and 
objectives of our study, which employed a multifaceted approach, incorporating 
Lymphocyte Proliferation Assay (LPA), Activated Induced Marker Assay (AIM). The 
study aimed to investigate T-cell activation, proliferation, and interferon-gamma (IFN-´) 
production in response to HPV antigens, specifically HPV early 6 (E6), early 7 (E7), and 
L1 proteins, across three distinct groups of women: those without vaccination, vaccinated 
individuals, and women infected with HPV. 

Rationale for the Study 

Human Papillomavirus (HPV) is an extremely common sexually transmitted infection 
that affects a large portion of the global population. It is responsible for a variety of health 
issues, including genital warts, but its most concerning association is with certain high-
risk HPV types that are strongly linked to the development of cervical cancer and other 
malignancies, such as anal, penile, and oreopharyngeal cancers. 

In the battle against HPV and its associated cancers, the immune system plays a crucial 
role, with T cells taking center stage. Among these T cells, CD4 and CD8 T cells are 
particularly vital components. They are instrumental in recognizing and eliminating cells 
in the body that have been infected by HPV. 

Understanding the mechanisms that govern T-cell activation and proliferation in response 
to HPV antigens is of paramount importance. Here's why: 

Host Immunity 

T cells are key players in the immune response. When they encounter HPV-infected cells, 
they are responsible for recognizing these infected cells as foreign invaders and mounting 
an immune response to eliminate them. Understanding how T cells respond to HPV is 
essential in deciphering the complex interplay between the virus and the immune system. 

Therapeutic Interventions  

Research into T-cell responses to HPV can lead to the development of novel therapeutic 
interventions. This includes immunotherapies that enhance the body's natural ability to 
target and destroy HPV-infected cells. By understanding the precise mechanisms 
involved, researchers can design more effective treatments that boost T-cell responses. 



Aim of study 

2 
 

Vaccine Development:  

Vaccines have been highly effective in preventing certain types of HPV infections. A 
deeper understanding of how T cells interact with HPV antigens can inform the 
development of more potent and targeted vaccines. This is critical for preventing HPV 
infections and, consequently, reducing the incidence of HPV-related cancers. 

In summary, unraveling the intricacies of T-cell activation and proliferation in response 
to HPV is essential for advancing our comprehension of how the immune system 
responds to this virus. This knowledge not only contributes to our understanding of host 
immunity to HPV but also guides the development of therapeutic strategies and vaccines 
that can better combat HPV infections and related malignancies, ultimately improving 
public health outcomes. 

Study Objectives 

Objective 1: Investigate and Compare T-Cell Activation and 
Proliferation in Response to HPV Antigens 

One of the primary goals of our study was to delve into the intricate world of T-cell 
responses to HPV antigens, specifically targeting the E6, E7, and L1 proteins. We set out 
to achieve the following: 

Comparison Across Three Distinct Groups: 

To comprehensively understand the immune response to HPV, we compared and 
contrasted the activation and proliferation of CD4 and CD8 T cells in three distinct groups 
of individuals. These groups represented different scenarios of HPV exposure and 
immune interaction: unvaccinated women, vaccinated women, and women who were 
actively infected with HPV. 

Participant Criteria for this Study 

To be eligible for participation in the HPV study, participants must meet specific criteria 
based on vaccination status and HPV infection. The criteria are as follows: 

Non-Vaccinated Participants: 

• Must not be infected with high-risk HPVs. 

• Should not have any type of HPV infection for the last ten years. 

• Must not have received any doses of HPV vaccines. 

Vaccinated Participants: 

• Must have received at least one dose of the following vaccines: 



Aim of study 

3 
 

• Gardasil 9-valent or 4-valent. 

• Cervarix. 

• Other commercially available vaccines containing L1. 

• Should not be currently infected with HPV. 

Early Stage Patients: 

• Must show abnormal cells in the cervix. 

• Abnormal cells should be localized to the cervix and not spread to other 
tissues [112]. 

 

Understanding T-Cell Behavior:  

By focusing on these critical subsets of T cells, we aimed to decipher how they behaved 
in response to the presence of HPV antigens. This knowledge was crucial in unraveling 
the nuances of the immune response, potentially shedding light on differences in immune 
defense mechanisms among the three groups. 

Specific Antigens:  

The choice of specific HPV antigens (E6, E7, and L1 proteins) was deliberate, as these 
are known to be central players in the immune recognition of HPV infection. Analyzing 
how T cells responded to these antigens provided insight into the immune system's ability 
to recognize and mount a defense against HPV. 

Objective 2: Immunoinformatics for Epitope Discovery: 

In this phase, our primary objective was to systematically explore and assess the 
immunogenicity of antigenic proteins for the identification of potential epitopes 
recognized by T cells and B cells. This also involved the evaluation of epitope binding to 
MHC class I and II molecules. Furthermore, we aimed to determine the antigenicity of 
protein sequences and assess their suitability as vaccine candidates. Specifically, we 
sought to: 

• Identify epitope regions within protein sequences and assess their immunogenic 
potential. 

• Predict and evaluate the binding of epitopes to MHC class I molecules, with a 
special focus on epitopes of varying lengths, including those with 9mer peptides 
and above. 
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• Utilize the resources to comprehensively explore epitope prediction for MHC 
class I and II molecules and B cell antigens. 

• Harness the capabilities of the immunomedicine group's antigen peptide 
prediction server for the identification and analysis of antigenic epitopes. 

• Extend our investigation to predict MHC class II epitopes and T cytotoxic cell 
epitopes, thus enabling a comprehensive epitope discovery for various immune 
responses. 

• Predict B cell antigen epitopes and analyze the tertiary structure of antigens 
targeted by B cells. 

Epitope Evaluation:  

In this stage of the study, we assessed the antigenicity and allergenicity of predicted 
epitopes to ensure the selection of safe and immunogenic epitopes. Additionally, our 
objectives included: 

• Determining the population coverage of identified epitopes and evaluating the 
percentage of the population exhibiting stimulated immune responses. 

• Generating 3D structures of epitopes to facilitate docking studies and assessing 
the solubility of proteins and epitopes. This step was essential to ensure the 
feasibility of these components in vaccine development. 

In Silico Cloning:  

A significant component of our study involved the in silico cloning of proteins. We 
achieved this by concatenating protein sequences with epitopes and adapting DNA 
sequences for expression in specific organisms. This process enabled the virtual 
production of proteins. 

Plasmid Creation:  

To support vaccine development, we created plasmids and explored a range of plasmid 
options and expression machinery in different organisms through. 

Overall, our study established a comprehensive immunoinformatics framework for 
epitope discovery, evaluation, and in silico cloning. Our objectives were realized, and 
this framework has the potential to facilitate the design of multi-epitope-based vaccines. 
By doing so, our research contributes to the advancement of immunological knowledge 
and the development of innovative vaccines. 
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Objective 3: Finding a key target gene through system immunology 

The primary objectives of this study were focused on employing a systems biology and 
systems immunology approach to investigate immune responses in women who had 
previously received HPV vaccines containing the L1 antigen. These investigations were 
carried out in comparison to a control group of women who had received a placebo 
(media) instead of the vaccine. The study placed specific emphasis on the following key 
objectives: 

Data Analysis: 

This objective entailed the retrieval and comprehensive analysis of gene expression data 
derived from peripheral blood mononuclear cells (PBMCs) of women who had 
undergone HPV vaccination, as well as control subjects. During this phase, our focus was 
on the following key actions: 

• Retrieving and scrutinizing gene expression data. 

• Filtering genes based on specific criteria, including adjusted p-values and 
fold change. 

Gene Network Construction:  

The study sought to construct gene networks using the STRING online tool, which 
facilitated the exploration of potential interactions and functional relationships among 
differentially expressed genes. 

Network Analysis: 

The analysis of these networks was conducted through the use of Cytoscape. Key aspects 
of this objective included: 

• Employing Cytoscape for network analysis. 

• Focusing on metrics such as centrality, betweenness, and degree to 
identify and emphasize genes within the network that played pivotal roles 
in the immune response. 

Modularity and Eigenvector Analysis:  

Gephi software was employed to delve deeper into the structural aspects of the network, 
particularly concentrating on modularity and Eigenvector centrality. This analysis was 
aimed at identifying gene clusters and influential nodes within the network structure. 

These objectives collectively formed the one core of our study, designed to provide 
insights into immune responses following HPV vaccination. Through our efforts, we 
aimed to advance our understanding of the intricate mechanisms involved in these 
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immune responses and contribute to the broader body of knowledge in the fields of 
systems biology and systems immunology. 

 

Objective 4: The objective of this part of study was to ascertain a unique 
ligand for the target protein. 

obtained from the system immunology section, by employing a combination of 
pharmacophore modeling and Quantitative Structure-Activity Relationship (QSAR) 
techniques. Furthermore, the research aimed to thoroughly evaluate the ligand's 
compatibility with the target protein through the application of docking procedures and 
molecular dynamics simulations. 

Data Retrieval and Analysis: The study began by collecting and analyzing gene 
expression data of the target protein, which was obtained from the system immunology 
section. The analysis involved filtering genes based on adjusted p-values (p < 0.05) and 
fold change (g 2.5). This initial step provided the foundation for further ligand discovery. 

Database Exploration:  

To explore potential ligands, the study delved into a range of databases, including but not 
limited to Clinical Trials.gov, STITCH database, KEGG pathways, KEGG disease, 
KEGG animal, BioCarta, Panther pathways, HGNC, Gene Expression Atlas, The Human 
Protein Atlas, OMIM, DisGeNet, dbGaP, DRUGBANK, Therapeutic Target Database, 
KEGG Drug Database, BRENDA-Enzyme database, Vector Alignment Search Tool, 
SwissADME, PubChem, ADMETlab, DGIdb, PockDrug, CASTp, CSmetaPred, 
COACH, and PHAROS. These resources were instrumental in exploring potential ligands 
and understanding their interactions, targets, and suitability. 

Ligand Screening and Analysis: 

 Once potential ligands were identified, the study employed software tools like pyrex, 
Binding DB, OpenBabel, PaDLe, SMLR, Chemoface, and Schrodinger for ligand 
screening, analysis, and modeling. This phase aimed to assess the ligand's characteristics, 
descriptors, and suitability for binding to the target protein. The study also employed 
screening and modeling techniques to predict ligand-protein interactions and structural 
compatibility. 

ADME Property Evaluation:  

In addition to ligand screening, the study delved into ADME (Absorption, Distribution, 
Metabolism, and Excretion) properties of the identified ligands. Utilizing tools like 
QikPro, the study analyzed the ligand's ADME characteristics to understand their 
potential for therapeutic applications. 
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Structure Building and Optimization: 

 The study also involved the use of software tools like Minerva Sketch and Chimera to 
create molecular structures based on the SMILE format. These tools allowed for the 
construction of ligand structures and subsequent minimization to refine their 
conformations. 

Overall, the study's aim was to comprehensively investigate potential ligands for the 
target protein by leveraging a wide array of bioinformatics tools, databases, and modeling 
techniques. This approach sought to identify a ligand with suitable characteristics for 
binding to the target protein, potentially paving the way for further research in drug 
development and therapeutic applications. 

Study Methods 

Lymphocyte Proliferation Assay (LPA): 

In our research, we utilized a comprehensive set of methodologies to investigate the 
immune response to HPV antigens among individuals from different groups. The 
Lymphocyte Proliferation Assay (LPA) played a pivotal role in this endeavor. This assay 
involved several key steps: 

Isolation and Characterization of CD4 and CD8 T cells:  

We first isolated and characterized CD4 and CD8 T cells from individuals representing 
three distinct groups. This step allowed us to obtain a clear picture of the T-cell 
populations within each group. 

Stimulation of T Cells with HPV Antigens:  

To evaluate the specific response of T cells to HPV, we exposed these isolated T cells to 
HPV antigens, specifically targeting the E6, E7, and L1 proteins. These proteins are 
known to be crucial in the immune response to HPV infection. 

Assessment of T-Cell Proliferation Responses: 

The primary focus of the LPA was to assess how T cells from different groups proliferated 
in response to HPV antigens. We paid particular attention to follicular and non-follicular 
CD4 T cells and CD8 T cells, as these subsets may exhibit distinct responses. 

Activated Induced Marker Assay (AIM): 

In addition to the LPA, we employed the Activated Induced Marker Assay (AIM) as 
another key research tool. This assay followed a similar approach: 

Isolation of T Cells:  

T cells were isolated from participants in each of the three groups under investigation. 
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Exposure to HPV Antigens:  

These isolated T cells were then exposed to HPV antigens to mimic the conditions of an 
HPV encounter in the body. 

Evaluation of T-Cell Activation Markers:  

The AIM assay allowed us to assess the activation status of T cells by examining specific 
markers. This provided valuable insights into how T cells responded to HPV antigens, 
complementing the data obtained through the LPA. 

Immunoinfromatics 

One of the primary objective of this research is to expedite the development of effective 
vaccines against a diverse range of pathogens by harnessing the power of 
immunoinformatics. This multidisciplinary field at the intersection of immunology and 
bioinformatics serves as the cornerstone for epitope discovery, design, and evaluation. 

Epitope Discovery and Evaluation: 

In pursuit of this aim, a comprehensive suite of online tools and databases was utilized to 
facilitate the identification and evaluation of epitopes. The selection of epitope databases 
and resources was guided by their potential to expedite vaccine development. 

• AntigenDB: Assisting in the analysis of antigenicity and epitope identification 
within protein sequences [113]. 

• VaxiJen: Determining the antigenic nature of given sequences [114]. 

• EMBOSS Antigenic: Identifying epitope regions within protein sequences along 
with associated scores [115]. 

• ProPred-I-MHC1: Predicting epitope interactions with MHC class I molecules 
[116]. 

• NetTepi 1.0 Server: Facilitating the identification of epitopes, particularly those 
of at least 9mer peptides [117]. 

• The Immune Epitope Database (IEDB): A valuable resource for locating epitopes 
for MHC class I and II and B cells [118]. 

• Net MHCIIpan 4.0: Dedicated to MHC class II epitope prediction [119]. 

• CTLPred: Predicting epitopes for T cytotoxic cells [120]. 

• NetCTL 1.2 Server: Predicting epitopes for various supertypes [121]. 

http://crdd.osdd.net/raghava/antigendb/
https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://www.bioinformatics.nl/cgi-bin/emboss/antigenic
http://crdd.osdd.net/raghava/propred1/
https://services.healthtech.dtu.dk/services/NetTepi-1.0/
https://www.iedb.org/
https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.0/
http://crdd.osdd.net/raghava/ctlpred/
https://services.healthtech.dtu.dk/services/NetCTL-1.2/
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• Bcepred: Focused on predicting B cell antigen epitopes [122]. 

• DiscoTop: Providing tertiary structure information for B cell antigens [123]. 

Epitope Evaluation: 

The next pivotal step in this endeavor involves the evaluation of epitopes for their 
compatibility and suitability. A careful selection of evaluation tools was conducted to 
ensure that only the most promising epitopes are considered. 

• VaxiJen: Employed for the assessment of epitope antigenicity. 

• AlgPred: Checking for the allergenicity of epitopes [124]. 

• AllerCatPro: Assessing the allergic potential of epitopes [125]. 

• The Immune Epitope Database (IEDB): Evaluating population coverage to 
estimate the percentage of the population that the epitopes may stimulate [118]. 

• Pepfold 4: Instrumental in generating 3D structures of epitopes for subsequent 
docking studies [126]. 

• ClusPro: Utilized for epitope-HLA docking [127]. 

• Scratch Protein Predictor: Aiding in the assessment of protein solubility [128]. 

Plasmid and Vaccine Design: 

Beyond epitope discovery and evaluation, the study also delves into plasmid design for 
vaccine development. This critical aspect is supported by resources such as Addgene for 
the exploration of various plasmids and their expression machinery in different 
organisms, as well as Benchling for the design of plasmids. 

This multifaceted approach, encompassing epitope discovery, evaluation, and plasmid 
design, is aimed at the accelerated development of effective vaccines targeting a diverse 
array of pathogens. 

Vaccine effects on immune system: 

In the simulations of the vaccine construct's impact on the immune system, it was 
observed that administering the vaccine through three injections had the potential to 
stimulate various immunoglobulins. The initial response manifested in an elevated level 
of IgM, while the subsequent response included increased levels of IgM + IgG, 
IgG1 + IgG2, IgG1, IgG2, and B-cell populations. Following three vaccine injections, 
there was a decline in antigen levels. Both T cell populations (CTL and HTL) exhibited 
an enhanced response, indicating the immunogenicity of T cell epitopes within the 

http://crdd.osdd.net/raghava/bcepred/
https://services.healthtech.dtu.dk/services/DiscoTope-2.0/
https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://crdd.osdd.net/raghava/algpred/
https://allercatpro.bii.a-star.edu.sg/
https://www.iedb.org/
https://mobyle2.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD4
https://cluspro.bu.edu/publications.php
https://scratch.proteomics.ics.uci.edu/
https://www.addgene.org/
https://benchling.com/signin/welcome?next=%2Fgetting-started
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vaccine construct. Each exposure led to heightened macrophage activity, with consistent 
NK cell activity throughout the period. Subsequent exposures resulted in a significant 
increase in IFN-gamma, IL-10, IL-23, and IL-12 levels. After 12 repeated vaccine 
injections at regular intervals, antigen levels peaked similarly, accompanied by a notable 
increase in IgM + IgG, IgG1 + IgG2 levels. Persistent elevation in memory cells for B and 
T cells was observed throughout the exposures, while IFN-gamma levels remained 
consistently high from the first to the last exposure. This indicates that the vaccine elicited 
a robust immune response in both short and subsequent repeated exposures. 

System Immunology: 

The study aimed to investigate immune responses in women who had received HPV 
vaccines containing the L1 antigen, in comparison to a control group of women who had 
received a placebo. The study followed a systematic method for achieving its key 
objectives: 

Data Analysis: 

Data Retrieval: The primary step involved the retrieval of gene expression data from 
peripheral blood mononuclear cells (PBMCs) of women who had undergone HPV 
vaccination and control subjects. Data was collected from repositories such as Gene 
Expression Omnibus (GEO) on the National Center for Biotechnology Information 
(NCBI) platform, which provided access to datasets with cel dataframes. 

Data Scrutiny: The collected data was meticulously scrutinized to ensure its quality and 
relevance. Any discrepancies or issues with the data were addressed to ensure the 
reliability of the subsequent analyses. 

Data Filtering: To identify differentially expressed genes, genes were filtered based on 
specific criteria, including adjusted p-values and fold change. This filtering process aimed 
to isolate genes that exhibited significant changes in expression following HPV 
vaccination. 

Gene Network Construction: 

Network Building: The study utilized the STRING online tool, a bioinformatics resource 
that facilitates the construction of protein-protein interaction networks. Gene symbols 
from the differentially expressed genes were input into STRING to create a gene network. 

Interaction Data: STRING provided information on potential interactions and functional 
relationships among the genes within the network. This data included confidence scores, 
which helped identify the strength of interactions. 

Network Analysis: 

Cytoscape Implementation: Cytoscape, a widely used software platform for visualizing 
and analyzing complex networks, was employed for in-depth network analysis. The 
constructed gene network was imported into Cytoscape for further investigation. 
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Metric Assessment: The analysis focused on key network metrics such as centrality, 
betweenness, and degree. These metrics were utilized to identify genes within the 
network that played pivotal roles in the immune response. Genes with high centrality, 
betweenness, and degree values were considered influential in the network. 

Modularity and Eigenvector Analysis: 

Gephi Software: Gephi, an open-source network analysis and visualization software, was 
used for modularity and Eigenvector centrality analysis. 

Modularity Assessment: The study concentrated on the modularity of the network, aiming 
to identify gene clusters with distinct functionalities or roles within the network structure. 
Modularity analysis provided insights into the organization of genes based on their 
interactions. 

Eigenvector Centrality: Eigenvector centrality analysis was conducted to identify 
influential nodes or genes within the network. Genes with high Eigenvector centrality 
values were considered central to the network structure. 

The study method encompassed data retrieval and analysis, network construction, 
network analysis, and modularity and Eigenvector analysis. These steps collectively 
formed a comprehensive approach to gain insights into immune responses following HPV 
vaccination. The study method was designed to advance the understanding of complex 
immune mechanisms within the context of systems biology and systems immunology, 
contributing to the broader body of knowledge in these fields. 

Ligand Discovery: 

The study employed a systematic approach to discover a unique ligand for the target 
protein obtained from the system immunology section. The method encompassed several 
key steps and utilized various bioinformatics tools and databases. The study's primary 
focus was on identifying a ligand with compatibility for the target protein. The method 
was divided into the following phases: 

Data Retrieval and Analysis: 

Data Collection: The study initiated by collecting gene expression data related to the 
target protein. This data was obtained from the system immunology section. 

Data Analysis: Gene expression data was subjected to comprehensive analysis. Genes 
were filtered based on specific criteria, including adjusted p-values (p < 0.05) and fold 
change (g 2.5). This analysis provided a foundation for further ligand discovery. 

Database Exploration: 

Exploration of Databases: A wide array of bioinformatics databases and resources were 
explored. This included databases such as Clinical Trials.gov, STITCH database, PhID 
database, KEGG pathways, KEGG disease, KEGG animal, BioCarta, Panther pathways, 
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HGNC, Gene Expression Atlas, The Human Protein Atlas, OMIM, DisGeNet, dbGaP, 
DRUGBANK, Therapeutic Target Database, KEGG Drug Database, BRENDA-Enzyme 
database, Vector Alignment Search Tool, SwissADME, PubChem, ADMETlab, DGIdb, 
PockDrug, CASTp, CSmetaPred, COACH, and PHAROS. 

Ligand Screening and Analysis, QSAR and pharmacophore modeling: 

Ligand Identification: Potential ligands were identified using various bioinformatics 
software tools, including pyrex, Binding DB, OpenBabel, PaDLe, SMLR, Chemoface, 
and Schrodinger. These tools facilitated the screening and analysis of potential ligands. 

Characteristics Assessment: Identified ligands were subjected to a detailed assessment of 
their characteristics and descriptors. This included evaluating their suitability for binding 
to the target protein. 

Prediction of Ligand-Protein Interactions: Screening and modeling techniques were 
employed to predict interactions between the identified ligands and the target protein. 
This phase aimed to assess the structural compatibility of the ligands. 

Unveiling Protein-Protein Interaction Dynamics 

My research employs a multifaceted strategy to unravel the complexities of protein-
protein interactions. Utilizing molecular docking, I visualize ligand binding affinities, 
identifying potential interaction hotspots. Complemented by 2D-QSAR modeling, the 
study predicts structure-activity relationships, enhancing the design of targeted 
interventions. This synergistic approach provides a comprehensive understanding of the 
molecular underpinnings of protein-protein interactions. 

The investigation extends to molecular dynamics simulations, offering a real-time 
dynamic perspective. By integrating docking, free energy calculations, and simulations, 
the study aims to unveil intricate interaction details, contributing valuable insights to 
high-impact journals and advancing our understanding of these vital biological processes. 

ADME Property Evaluation: 

ADME Analysis: ADME (Absorption, Distribution, Metabolism, and Excretion) 
properties of the identified ligands were examined. Tools such as QikPro were utilized to 
assess these characteristics, providing insights into the potential for therapeutic 
applications. 

 Structure Building and Optimization: 

Molecular Structure Construction: Molecular structures of the ligands were constructed 
based on the SMILE format. Software tools such as Minerva Sketch and Chimera were 
used for this purpose. 

Structure Refinement: The constructed molecular structures were subjected to a 
minimization process to refine their conformations, ensuring structural optimization. 
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The study method encompassed a systematic approach that combined data analysis, 
database exploration, ligand screening, ADME property evaluation, and structural 
optimization to identify a ligand with compatibility for the target protein. This method 
served as a comprehensive framework for ligand discovery, which could have significant 
implications for drug development and therapeutic applications. 

Expected Contributions 

Our study holds the promise of making substantial contributions to the field of HPV 
immunology and, by extension, the broader realm of infectious disease research. The 
anticipated contributions are as follows: 

Nuanced Understanding of T-Cell Dynamics:  

By meticulously investigating T-cell activation, proliferation, and cytokine production in 
response to HPV antigens across different clinical contexts, our study aims to provide a 
nuanced understanding. This nuanced insight is critical, as it delves beyond the surface-
level understanding of immune responses. By deciphering the intricate dance of immune 
cells in the presence of HPV, we anticipate revealing subtleties that could be pivotal in 
understanding how the immune system recognizes, responds to, and combats HPV 
infections. 

Insights into Host Immune Responses:  

Our research endeavors to offer deep insights into the dynamics of host immune responses 
concerning HPV. Understanding these responses at a granular level is invaluable, not 
only for HPV but also for similar infectious agents. By elucidating the complexities of T-
cell behavior, our study aims to contribute foundational knowledge that could be 
applicable to the study of other viral infections, potentially paving the way for broader 
advancements in immunological research. 

Guiding Targeted Therapeutic Interventions:  

One of the primary goals of our study is to identify key factors influencing T-cell-
mediated immunity in individuals with varying HPV exposures and vaccination histories. 
This understanding is instrumental in the development of targeted therapeutic 
interventions. Armed with this knowledge, researchers and healthcare professionals can 
design therapies that specifically enhance the immune response in individuals who might 
be at higher risk due to specific exposure scenarios. This targeted approach holds the 
potential to significantly improve the effectiveness of treatments, leading to better 
outcomes for patients. 

Influencing HPV Vaccine Development:  

The insights gleaned from our research could have a transformative impact on the 
development of HPV vaccines. By identifying the factors that enhance or hinder T-cell-
mediated immunity, our study may provide crucial data for refining existing vaccines or 
designing new, more effective ones. Understanding how different populations respond to 



Aim of study 

14 
 

HPV antigens can inform vaccine formulations, dosages, and administration strategies, 
ultimately bolstering the global effort to prevent HPV-related diseases. 

Improved Vaccine Development:  

Insights into immune responses can lead to more effective HPV vaccines, offering better 
protection against HPV infection and related diseases, such as cervical cancer. 

Enhanced Vaccine Safety: 

 Identification of potential adverse reactions or safety concerns associated with HPV 
vaccines can ensure the safety of patients who receive the vaccination. 

Identification of Biomarkers:  

Specific genes, such as IL6, can serve as biomarkers to assess vaccine effectiveness, 
enabling tailored vaccination strategies and improved outcomes for patients. 

Personalized Medicine:  

Understanding regulatory mechanisms in immune responses can pave the way for 
personalized vaccination approaches, considering the unique needs of patients. 

Treatment Strategies:  

Findings may influence the development of more effective therapies for HPV-related 
diseases, benefiting patients who are already infected with HPV. 

Public Health Impact: 

Improving vaccine efficacy and safety can lead to increased vaccination rates, reducing 
the prevalence of HPV-related diseases and their impact on public health. 

Patient Education: 

Study findings can contribute to patient education and informed decision-making about 
HPV vaccination, empowering patients to make well-informed choices about their health. 

In summary, our study’s expected contributions extend beyond the laboratory, potentially 
shaping the future landscape of HPV research, therapeutic interventions, and preventive 
strategies. By unraveling the complexities of the immune response to HPV, we aim to 
empower the scientific community with knowledge that can directly influence clinical 
practices, improve patient outcomes, and contribute to the global fight against HPV-
related illnesses.
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Materials and Methods: 
Activation-Induced Marker (AIM) Assay: 
Thawing and Preparation of PBMCs: 

In this critical initial phase of the experiment, we undertook a series of meticulous steps 
to ensure the viability and functionality of Peripheral Blood Mononuclear Cells 
(PBMCs): 

Thawing Process: 

• The process commenced with the careful thawing of the PBMCs, which were 
retrieved from deep freeze storage. These cells are exceptionally sensitive and 
preserving their integrity is paramount for the success of the experiment. 

• To initiate the revival of the PBMCs, they were thawed with precision and then 
carefully placed within a controlled Carbon Dioxide (CO2) incubator, Thermo 
Scientific™ Heracell™ 150i. This controlled environment is vital for 
maintaining the optimal conditions required for cellular activity. 

Overnight Incubation: 

• Throughout the night, the PBMCs were allowed to gradually acclimate to the 
incubator's controlled atmosphere. This extended incubation period played a 
crucial role in reactivating the cells and ensuring they were fully reanimated from 
their frozen state. 

Quantification and Concentration Determination: 

• The following morning marked a pivotal stage in the process. We meticulously 
quantified the PBMCs after centrifugation at 1800 for 5 minutes (Thermo 
Scientific™ Megafuge™ Series 16, TX-400 4 x 400ml Swinging Bucket Rotor-
75003629), employing a hemocytometer, a precise instrument designed for the 
enumeration of cells. 

• The hemocytometer enabled us to calculate the precise concentration of the 
PBMCs. This step was instrumental in ensuring that we had an accurate 
understanding of the number of cells at our disposal, enabling us to proceed with 
confidence. 

Resuspension in RPMI Medium: 

• Once the concentration was determined, we proceeded to resuspend the PBMCs 
in a specially formulated RPMI 1640 medium, Euroclone, Milano, Italy. This 
medium was meticulously prepared with the inclusion of 10% Fetal Calf Serum 
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(FCS), Sigma, St. Louis, MO, US), and 1% Penicillin-Streptomycin-Glutamine 
(PSG), Euroclone. 

• The RPMI medium served as the ideal environment to nurture and support the 
PBMCs during the ensuing experiments. It provided the necessary nutrients and 
growth factors required to maintain the cells' vitality and functionality. 

Achieving 100 µL per Well: 

• Ensuring consistency and precision in our experimental setup, we carefully 
measured and adjusted the volume of resuspended PBMCs to achieve a uniform 
100 µL for each well in the experiment. This standardization was crucial for 
accurate and reliable results across all aspects of the study. 

In summary, the thawing and preparation of PBMCs constituted a meticulous and 
critically important phase of the experiment. The careful steps taken during this process 
were geared towards reviving and optimizing the PBMCs' functionality, thereby laying a 
robust foundation for the subsequent stages of our investigation into T-cell responses to 
HPV peptides. 

Preparation of Stimuli: 

In this phase, the stimuli, which play a central role in stimulating the immune response, 
were prepared with precision and attention to detail: 

HPV Peptides (E6, E7, L1): 

• The specific HPV peptides used in this study, namely E6 (PepMixTM HPV16-E6, 
PM-HPV16-E6), E7 (PepMixTM HPV16-E7, PM-HPV16-E7), and L1 
(PepMixTM HPV16-L1, PM-HPV16-L1) bought from innovative peptide solution 
company , were pivotal components. They were employed at a meticulously 
determined concentration of 1 µg/mL, and each well was endowed with a final 
volume of 200 µL. 

• The careful choice of this concentration was based on prior research and 
knowledge of the peptides' potency in inducing a T-cell response. It was essential 
to strike a balance between providing a sufficient stimulus and avoiding 
overstimulation, ensuring that the immune responses observed were 
physiologically relevant. 

• To achieve this, stimuli were prepared at a concentration of 2 µg/mL. This 
concentration was meticulously calculated to deliver precisely 100 µL of the 
stimulus per well, achieving consistency and uniformity in our experimental 
setup. 
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Actin as the Negative Control: 

• As a crucial element of the experiment, Actin (15 mers, overlapping by 10 amino 
acids, Pepscan, Lelystad, The Netherlands), serving as the negative control, was 
handled with great care. Actin was initially stored at -20°C to maintain its 
stability and integrity. 

• Prior to use, Actin was prepared at a concentration of 2 µg/mL, aligning with the 
same concentration used for the HPV peptides. This careful standardization 
allowed Actin to serve as a baseline control, ensuring that any observed responses 
were specific to the HPV peptides and not due to other factors. 

Dilution in RPMI Medium with FCS and PSG: 

• To facilitate the precise delivery of these stimuli and maintain the cells in an 
optimal environment, the peptides, including the HPV peptides and Actin, were 
meticulously diluted. This dilution process was carried out in RPMI 1640 
medium enriched with 10% Fetal Calf Serum (FCS) and 1% Penicillin-
Streptomycin-Glutamine (PSG). 

• The choice of RPMI medium with FCS and PSG was strategic. It provided an 
ideal milieu, ensuring that the cells were nourished and supported during the 
experimental process. This medium not only promoted the survival of cells but 
also allowed for the accurate delivery of stimuli to each well. 

In summary, the preparation of stimuli involved the precise calculation and dilution of 
HPV peptides and the negative control Actin. These carefully prepared stimuli were 
essential components of the study, enabling us to probe the immune responses of T cells 
to HPV peptides with accuracy and consistency. 

Peptide Storage: 

The storage of HPV peptides, including E6, E7, and L1, is a critical aspect of maintaining 
the integrity and potency of these essential components throughout the course of the 
experiment. Here's a detailed account of how this storage was managed: 

Temperature Control: 

• To safeguard the stability and biological activity of the HPV peptides, a 
controlled temperature environment was maintained. The peptides were 
diligently stored at -20°C, a temperature that is well-suited for preserving the 
long-term viability of biomolecules. 

Use of Aliquots: 

• To minimize the risk of degradation and maintain the peptides in their pristine 
condition, a prudent approach was adopted. The peptides were divided into small, 
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manageable portions known as aliquots. Each aliquot contained precisely 10 µL 
of the peptide solution. 

• The use of aliquots is a standard practice in laboratory settings for several 
compelling reasons. Firstly, it prevents repeated freeze-thaw cycles, which can 
compromise the integrity of the peptides. Secondly, it minimizes the potential for 
contamination, ensuring that each aliquot remains uncontaminated and ready for 
use. 

• By dividing the peptides into aliquots, we ensured that only the required amount 
of the peptide solution was thawed and utilized for each experiment, preserving 
the quality and potency of the remaining peptide stock. 

Precision and Consistency: 

• The careful management of peptide storage, with the use of aliquots and 
adherence to a consistent storage temperature, guaranteed that the peptides 
retained their full biological activity. This precision and consistency were 
paramount, as even minor variations in storage conditions could impact the 
reliability and reproducibility of experimental results. 

In summary, the storage of HPV peptides (E6, E7, L1) was meticulously executed, with 
a focus on maintaining a controlled temperature environment and using aliquots to 
preserve the integrity and potency of these vital components. This ensured that the 
peptides remained in optimal condition for use in our experiments, enabling us to conduct 
our research with precision and confidence. 

Stimulation and Incubation: 

The stimulation and incubation phase is a crucial step in our experimental process. During 
this stage, we carefully initiated the interaction between Peripheral Blood Mononuclear 
Cells (PBMCs) and the stimuli, ensuring optimal conditions for cellular activation and 
observation: 

Stimuli and Co-Stimulation Molecules: 

• With precision, we added 100 µL of PBMCs and 100 µL of the prepared stimulus 
to each well of the experimental plate. This step initiated the immune response 
within the wells, as PBMCs began to interact with the HPV peptides (E6, E7, L1) 
or the negative control, Actin. 

• To enhance the cellular response, we introduced co-stimulation molecules, CD28 
(0.8 µL) and CD49d (0.8 µL). These molecules facilitated the activation of T 
cells, optimizing their responsiveness to the stimuli. 
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Verification of Cell Distribution: 

• To ensure uniformity across the wells, we carefully inspected the distribution of 
cells within each well under a microscope. This step confirmed that PBMCs were 
evenly dispersed throughout the well, minimizing experimental variability. 

Incubation Duration: 

• The experimental plate was placed in an incubator, providing a stable temperature 
and atmosphere conducive to cellular activity. 

• The incubation period lasted 20-24 hours, chosen precisely to allow for the 
activation of CD137, a critical marker of T-cell activation. 

• During this incubation period, PBMCs underwent complex immune responses 
driven by their interactions with HPV peptides or the negative control. These 
interactions were closely monitored, providing valuable insights into immune 
dynamics in response to HPV antigens. 

In summary, the stimulation and incubation phase were conducted meticulously, 
involving the addition of PBMCs, stimuli, and co-stimulation molecules, along with 
verification of uniform cell distribution. The incubation period enabled the activation of 
immune responses, setting the stage for subsequent stages of our investigation into T-cell 
behavior in response to HPV antigens. 

Staining: 

The staining phase is a pivotal step in our experimental protocol, where we prepare the 
cells for analysis and further investigation: 

Supernatant Collection for Cytokine Detection: 

• If required for specific analysis, we meticulously collected 100 µL of supernatant 
from each well after centrifugation. This supernatant contained valuable 
information about cytokine production by the cells and was preserved at a frigid 
temperature of -80°C to maintain its integrity for future assessment. 

Centrifugation at 1500 rpm for 2 Minutes: 

• To separate the cellular components from the surrounding liquid, we conducted 
centrifugation (Thermo Scientific™ Megafuge™ Series 16, M-20 Microplate 
Swinging Bucket Rotor-75003624) at 1500 rotations per minute (rpm) for a 
duration of 2 minutes. This step ensured that the cells were isolated and ready for 
further processing. 



Materials and methods 

6 
 

Washing of Cells with PBS Containing 2 mM EDTA: 

• Post-centrifugation, the cells were washed meticulously with 200 µL of a 
phosphate-buffered saline (PBS) solution containing 2 millimolars (mM) of 
ethylenediaminetetraacetic acid (EDTA), Euroclone. This step served a dual 
purpose - it helped remove any residual substances and prepared the cells for 
subsequent staining. 

Application of Violet Die Staining: 

• To visualize and label the cells, we introduced Violet Die ((Invitrogen, Waltham, 
Massachusetts, USA), which had been diluted to a specific concentration of 
1:1000 in PBS. This meticulously prepared staining solution was added to each 
well, with a precise volume of 100 µL. 

• The plate, now containing the stained cells, was maintained at a temperature of 
4°C for a carefully controlled duration of 30 minutes. During this incubation, the 
Violet Die interacted with the cells, allowing for their visualization and 
subsequent analysis. 

Final Centrifugation and PBS Wash: 

• Following the staining incubation, the plate was subjected to another round of 
centrifugation at 1500 rpm for 2 minutes. This step ensured that any excess 
staining solution was removed, leaving us with cells that had taken up the Violet 
Die and were ready for downstream analysis. 

• To conclude this phase, we washed the cells once more with PBS, ensuring that 
they were free of any residual staining solution and prepared for the final stages 
of our experimental analysis. 

In summary, the staining process was carried out meticulously to prepare the cells for 
analysis, with a focus on preserving and visualizing critical cellular characteristics for our 
investigation into T-cell behavior in response to HPV antigens. 

Antibody Mixing and Cell Preparation: 

This phase is pivotal in our experimental process, as it involves the precise preparation 
of the cells for flow cytometry analysis, enabling the assessment of T-cell activation and 
marker expression: 

Antibody Mix Preparation: 

• To initiate this step, we meticulously prepared an antibody mix within each well. 
This mix included PBS with 5% Fetal Calf Serum (FCS), creating a medium 
conducive to antibody interactions with the cells. Each well received 50 µL of 
this prepared medium, facilitating the subsequent steps. 
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CD4 Antibody Introduction: 

• For the identification and characterization of CD4-positive T cells, we introduced 
1.3 µL of CD4 APC Cy7 antibody into each well. 

• CD4 Antibody Information: 

• Supplier: BD Pharmingen 

• Type: Mouse anti-Human 

• Clone: RPA-T4 

• Catalog Number: 557871 

• Quantity: 100 tests 

• Volume: 0.5 ml 

• Concentration: 5 µL per test 

• Storage: 2-8°C 

CD8 Antibody Introduction: 

• To distinguish and assess CD8-positive T cells, we added 1.5 µL of CD8 V500 
antibody to each well. 

• CD8 Antibody Information: 

• Supplier: BD Horizon 

• Type: Mouse anti-Human 

• Clone: RPA-T8 

• Catalog Number: 560774 

• Quantity: 100 tests 

• Volume: 0.5 ml 

• Concentration: 5 µL per test 

• Concentration: 200 µg/ml 
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• Storage: 2-8°C 

CD137 Antibody Introduction: 

• To evaluate T-cell activation, we included 2.5 µL of CD137 PECY5 antibody in 
each well. 

• CD137 Antibody Information: 

• Supplier: BD Pharmingen 

• Type: Mouse anti-Human 

• Catalog Number: 551137 

• Quantity: 100 tests 

• Volume: 2 ml 

• Storage: 4°C 

Note: CD137, 4-1BB, is a member of the TNF superfamily and serves as an indicator of 
T-cell activation [129]. 

CD25 Antibody Introduction: 

• To monitor T-cell activation and immune responses, we introduced 1.3 µL of 
CD25 PECY7 antibody into each well. 

• CD25 Antibody Information: 

• Supplier: BD Pharmingen 

• Type: Mouse anti-Human 

• Catalog Number: 557741 

• Quantity: 100 tests 

• Volume: 0.5 ml 

• Storage: 4°C 

Note: CD25 expression serves as an indicator of T-cell activation [130]. 
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Uniform Mixing: 

• The antibody mix, now containing specific antibodies, was added to each well, 
ensuring a uniform distribution. A precise volume of 56.6 µL was added to each 
well. 

Incubation at 4°C: 

• Subsequently, the plate was maintained at a controlled temperature of 4°C for 30 
minutes. During this incubation, the antibodies bound to their respective markers 
on the T cells, facilitating their subsequent identification and analysis. 

In summary, the antibody mixing and cell preparation process was conducted 
meticulously, ensuring that the cells were labeled with specific antibodies and prepared 
for flow cytometry analysis. This phase played a pivotal role in enabling us to assess T-
cell activation and marker expression in response to HPV antigens, providing valuable 
insights into the immune dynamics under investigation. 

Final Steps: 

In the concluding phase of our experiment, we executed critical steps to prepare the cells 
for analysis and initiate the assessment of T-cell activation and marker expression: 

Cell Pelleting and Washing: 

• Initially, the cells were subjected to a process of pelleting, followed by a thorough 
wash with phosphate-buffered saline (PBS) enriched with 5% Fetal Calf Serum 
(FCS). This meticulous washing step ensured that any residual substances or 
contaminants were removed, leaving us with clean and well-prepared cells. 

Cell Resuspension in Paraformaldehyde (PF 1%): 

• Following the wash, the cells were resuspended in a solution of 1% 
paraformaldehyde (PF), Euroclone-31628.01 . This crucial step served to fix the 
cells in their current state, preserving their characteristics and preventing any 
further changes before analysis. 

Data Acquisition with Flow Cytometry: 

• The culmination of our experimental journey involved the data acquisition phase, 
where we utilized a flow cytometer (BD FACSLyric™ and BD FACSuite™ 
software) protocol designed specifically for the AIM-HPV assay. This advanced 
technology allowed us to perform precise and comprehensive analyses of the 
cells. 

• The ultimate goal of this data acquisition was to assess T-cell activation and 
marker expression. We meticulously recorded and analyzed the data generated 
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by the flow cytometer to gain insights into how T cells responded to HPV 
peptides and how various markers indicative of activation were expressed. 

This rigorous and systematic experimental procedure was adhered to with the utmost care 
and precision. It was meticulously followed to investigate T-cell responses to HPV 
peptides and to assess T-cell activation through AIM markers. By doing so, our research 
contributed significantly to the broader understanding of immune dynamics in the context 
of HPV exposure [131]. 

Lymphocyte proliferation Assay (LPR) 

 

Preparation a Day Before the Experiment: 

1. Ensured an adequate supply of LPR medium a day before the experiment. In case 
of insufficient quantity, LPR medium with 5% human serum was prepared in 
advance. 

2. Calculated the required amounts of antigens and reagent concentrations a day 
ahead and made a record for easy reference on the day of the experiment. 

3. Reviewed the protocol and visualized the experiment steps a day in advance to 
mentally prepare for the procedure. 

4. Considered potential challenges or issues that might arise during the experiment. 

On the Day of the Experiment: 

1. First, removed the LPR medium from storage and allowed the antigens to reach 
room temperature. 

Preparing medium used for plating the cells (Pmedium): 

To create the plating medium, also known as Pmedium, the following components were 
assembled: 

1. RPMI (without FCS): This was a basal medium providing essential nutrients and 
buffering capacity for cell growth. 

2. 1% PSG (Penicillin-Streptomycin-Glutamine): PSG was added to prevent 
bacterial and fungal contamination while also providing L-glutamine, which was 
vital for cell survival and growth. 

3. 10% Human serum: Human serum, Sigma, was rich in growth factors, hormones, 
and proteins, making it an essential component for supporting cell growth and 
proliferation. It provided the necessary nutrients and signaling molecules to 
sustain cells during the experiment. 
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4. 1% NaPyruvate: Sodium pyruvate (Gibco, Grand Island, NY, USA) was included 
to enhance the energy metabolism of the cells, as it could be readily converted 
into ATP, the cellular energy currency. 

5. 1% MEM (Minimum Essential Medium): MEM (Gibco, Grand Island, NY, 
USA) contained additional amino acids, vitamins, and minerals, which 
contributed to the overall nutritional support of the cells. 

6. 0.1% ³-mercaptoethanol: ³-mercaptoethanol (Gibco, Grand Island, NY, USA) 
acted as a reducing agent and helped maintain the reducing environment within 
the cell culture, which was important for the stability of cellular components. 

Preparing medium used for resuspending stimulating peptides or viral antigens 

(Smedium): 

For creating the resuspending medium, referred to as Smedium, the following 
components were gathered: 

1. RPMI (without FCS): This served as the base medium for resuspending and 
diluting the stimulating peptides or viral antigens. 

2. 1% PSG (Penicillin-Streptomycin-Glutamine): PSG was included to maintain a 
sterile environment and support the overall health of the cells during the 
experiment. 

3. 1% NaPyruvate: Sodium pyruvate was included to enhance cellular energy 
production and metabolism, which was crucial for maintaining cell viability and 
functionality. 

4. 1% MEM (Minimum Essential Medium): MEM provided additional nutrients 
and essential factors that helped sustain cell health and function. 

5. 0.1% ³-mercaptoethanol: ³-mercaptoethanol contributed to the stability of 
cellular components by maintaining a reducing environment within the cell 
culture. 

The distinguishing factor between Pmedium and Smedium was the presence of 10% 
human serum in Pmedium. To align both mediums, a single 5% human serum solution 
was prepared and used for both applications. This ensured consistency in the growth and 
stimulation conditions for the cells, allowing for meaningful and reproducible 
experimental results [132]. 

If the Cells were Stored in Liquid Nitrogen: 

When cells were stored in liquid nitrogen and needed preparation for an experiment, the 
following steps were meticulously followed: 
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1. Thawed the Cells Rapidly: The vial containing the frozen cells was swiftly 
thawed by placing it in a 37°C water bath. The warm water bath facilitated the 
quick thawing process, preventing potential cell damage that could occur during 
slow thawing. 

2. Incubated Cells Overnight: After thawing, the vial was transferred to the 
controlled environment of a CO2 incubator set at 37°C. The cells were left to 
incubate overnight. This extended incubation period helped the cells recover and 
adjust to their new environment, allowing them to regain their optimal 
physiological state. 

3. Cell Counting: Once the cells had ample time to recover, their concentration was 
determined through cell counting using a suitable method, aiming for a target of 
200,000 cells per well. Precise cell counting ensured consistent seeding and 
contributed to the reliability of experimental results. 

4. Resuspended Cells in Pmedium: To prepare the cells for plating, they were 
resuspended in the appropriate volume of Pmedium. Each well typically required 
100 µl of cell suspension. For instance, when seeding cells in 21 wells, the cells 
were calculated and resuspended in a total volume of 2100 µl of Pmedium. 
Ensuring the cells were properly suspended in the medium was crucial for their 
even distribution and successful culture in the experimental wells. 

By following these steps meticulously, the recovery and vitality of cells from liquid 
nitrogen storage were optimized, setting the stage for a successful lymphoproliferation 
assay (LPR) [131]. 

Preparing the HPV Antigens (E6, E7, and L1) or Stimuli: 

For accurate and effective preparation of HPV antigens or other stimuli, the following 
guidelines were followed: 

Stimuli Concentration:  

A consistent concentration of 0.1 µg in a final volume of 200 µl was maintained for the 
experiments. To achieve this precise concentration, the stimuli were initially prepared at 
a concentration of 0.2 µg/ml. This concentration was suitable for plating 100 µl per well, 
achieved by adding 1 µl of the peptide to every 100 µl of Smedium. 

Actin Concentration: 

 Actin, with an initial concentration of 810 µg/ml, was diluted to a final concentration of 
0.2 µg/ml. This concentration was optimal for the experimental requirements. 

By adhering to these concentration specifications, the stimuli and Actin were 
appropriately prepared for the lymphoproliferation assay (LPR). This precision in 
preparation ensured reliable and meaningful results in the experiments conducted. 
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Seeding the cells was conducted as follows: 

1. Each well was seeded with 100 µl of cells and 100 µl of peptide stimulus. 

2. To prevent evaporation, PBS was added around the empty wells. 

To mitigate the occurrence of the Edge-effect, wherein results from cells at the edges 
differ from those in the middle of the plate, phosphate buffer was added to the plate wells. 

1. The cells were meticulously examined under a microscope to ensure their even 
distribution within the wells. 

2. Subsequently, the plate was placed in an incubator set at 37°C for a duration of 7 
days [133, 134]. 

Staining: 
Preparation the Day Before Staining: 

1. A day before the experiment, the required quantities of antibodies were 
meticulously calculated. This involved determining the necessary amounts of 
both the medium and antibodies, and these calculations were meticulously 
documented for future reference. 

2. To ensure preparedness for the experiment on the following morning, the 
antibodies were systematically organized and placed in a separate rack. 

3. The availability of essential reagents, including PBS, PBS-FBS, PBS-EDTA, and 
others, was verified. In cases where quantities were found to be insufficient, the 
required preparations were made to ensure an adequate supply. 

4. In order to optimize the execution of the staining procedure, mental visualization 
was employed to anticipate potential issues that might arise during the 
experiment. This proactive approach helped to identify and address challenges in 
advance. 

On the Staining Day: 
Cell Examination: 

• Cells were examined under a microscope to detect cell aggregates, 
indicating potential cell proliferation. 

Centrifugation and Washing: 

• A centrifugation step at 1500 rpm for 2 minutes was performed. 

• Cells were washed with PBS containing 0.5 mM EDTA. 

Staining Initiation: 

• Cells were resuspended in 100 µl of PBS per well. 
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• Violet Dye (1:1000) was added, and cells were incubated at 4°C for 30 
minutes. 

• Following incubation, another washing step with PBS was performed. 

Antibody Master Mix Preparation: 

• Antibody master mix (1:160 µl of CXCR5) was prepared in 50 µl of PBS 
with 5% FCS per well. 

• Cells were incubated for an additional 20 minutes at room temperature. 

• Post-incubation, another thorough wash was carried out. 

Note: CXCR5, also known as CD185 or Burkitt lymphocyte receptor 1 (BLR1), is 
expressed on both CD4 and CD8 T cells, with particular prominence as a defining marker 
for T Follicular Helper (Tfh) cells [135] 

Second Antibody Master Mix: 

• Antibody master mix (Anti-IgG2b Biotin at 1:1000) was prepared in 100 
µl of PBS with 5% FCS per well. 

• Cells underwent a 20-minute incubation at room temperature. 

• Subsequently, they were washed again. 

Note: Anti-IgGb serves as a signal amplifier for fluorescent signals in various 
immunostaining applications. The technique involving Anti-IgGb, often associated with 
Tyramide Signal Amplification (TSA), enhances the sensitivity of detection, making it 
effective for identifying low-abundance target [136]. 

Antibody Characteristics: 

• Manufacturer: SouthernBiotech 

• Size: 2ml 

• Concentration: 0.5 mg/ml 

• Catalog Number (Cat): 1090-08 

• Type: Goat Anti-Mouse 

• Storage Conditions: Store at 2-8 °C. 

 

Final Antibody Mix: 

• Final antibody mix (Streptavidin Brilliant Violet 510 at 1:800) was 
prepared in 50 µl of PBS with 5% FCS per well. 
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 Streptavidin Characteristics: 

• Supplier: Biolegend 

• Catalog Number: 405233 

• Size: 100 ¿l 

• Concentration: 0.1 mg/ml 

• Storage: Store at 2-8°C. 

Note: Streptavidin serves as a signal amplifier for fluorescent signals , particularly 
beneficial for visualizing medium- and low-abundance targets [137]. 

• Antibodies Used: 

CD3 PerCP.Cy 5.5, CD25 PeCy7, CD4 APC Cy-7, CD8 FITC, CCR6 
APCR 700, ICOS APC, CXCR3 PE. 

CD3 PerCP.Cy 5.5 Characteristics: 

• Brand: BD Pharmingen 

• Type: Mouse Anti-Human 

• Clone: UCHT1 

• Catalog Number: 560835 

• Size: 50 Tests (5ul/test), 0.25 ml 

• Storage: 4 °C 

CD25 PeCy7 Characteristics: 

• Brand: BD Pharmingen 

• Type: Mouse Anti-Human 

• Clone: M-A251 

• Catalog Number: 557741 

• Size: 100 Tests, 0.5 ml 

• Storage: 4 °C 

CD4 APC Cy-7 Characteristics: 
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• Brand: BD Pharmingen 

• Type: Mouse Anti-Human 

• Clone: RPA-T4 

• Catalog Number: 557871 

• Size: 100 Tests, 0.5 ml 

• Volume per Test: 0.5 ¿l/test 

• Storage: 2-8 °C 

CD8 FITC Characteristics: 

• Brand: BD 

• Clone: SK1 

• Reference Number (REF): 345772 

• Size: 100 Tests, 20 ¿l 

• Storage: 2-8 °C 

CCR6 APCR 700 Characteristics: 

• Brand: BD Horizon 

• Clone: 11A9 

• Catalog Number (Cat): 565173 

• Size: 50 Tests, 0.25 ml 

• Volume per Test: 5 ¿l 

• Concentration: 200 ¿g/ml 

• Storage: 2-8 °C 

ICOS APC Characteristics: 

• Brand: Invitrogen, eBioscience 

• Catalog Number (REF): 17-9948-42 
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• Clone: ISA-3 

• Size: 100 Tests 

• Volume per Test: 5 ¿l or 0.125 ¿g 

• Storage: 4 °C 

CXCR3 PE Characteristics: 

• Brand: Biolegend 

• Clone: G025H7 

• Catalog Number (Cat): 353706 

• Size: 100 Tests 

• Volume per Test: 5 ¿l 

• Concentration: 100 ¿g/ml 

• Storage: 2-8 °C 

Note: Th17 cells predominantly express the CC chemokine receptor (CCR6) and produce 
its ligand, CCL20. This chemokine receptor plays a role in the migration and recruitment 
of Th17 cells to inflammatory and inflamed sites, indicating its significance in the 
immune response [138]. 

Note: ICOS, also known as 4IBB or CD278, is a member of the CD28 and CTLA-4 cell-
surface receptor family. ICOS is involved in immune responses and is required for the 
effective production of various cytokines, including IL-2, IL-4, IL-5, and IFN´, from 
activated T cells [139].  

Note: CXCR3, also known as GPR9/CD183, is a chemokine receptor expressed on Th1 
cells. Th1 cells are a subset of T helper cells that play a crucial role in cell-mediated 
immunity. The expression of CXCR3 on Th1 cells is associated with Th1-induced 
inflammatory conditions, and its role extends to skin inflammation and immune responses 
in various contexts [140]. 

Incubation and Final Steps: 
• Cells were incubated with the final antibody mix for 30 minutes. 

• Afterward, cells were washed with PBS containing 5% FCS. 

• Finally, cells were resuspended in 250 µl of PF%. 
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• This comprehensive flow cytometry staining protocol ensures accurate 
analysis of T cell subsets, including the expression of CXCR5 [131]. 

Statistical Analysis 

All statistical analyses were conducted using Python 3.13, employing a diverse set of 
libraries for various analytical aspects: 

Data Preparation and Import: 

• Utilized the pandas library for efficient data import and structuring, 
ensuring the dataset's readiness for subsequent analyses [141, 142]. 

Mathematical and Statistical Analysis: 

• Applied numpy, scipy.stats, and penguin libraries for mathematical and 
statistical analyses. These tools offered functions for hypothesis testing, 
effect size estimation, and Bayesian analysis, providing a 
comprehensive exploration of the dataset [143, 144]. 

Data Visualization: 

• Employed matplotlib [145] and seaborn [146] libraries for graphical 
representation, enabling the creation of informative visualizations such 
as graphs and plots. The seaborn library further enhanced visualizations 
through annotation capabilities [146]. 

Power Analysis and Effect Size Estimation: 

• Utilized the statsmodels.stats.power [147] and penguin libraries [148] 
for assessing statistical power and effect size. This approach facilitated 
a thorough evaluation of statistical significance and the magnitude of 
observed effects, with the interpretation of Bayes Factor (Bf10) guided 
by established guidelines Table 1,2. 
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Table 1 Bayes Factor Interpretation: 

Bf10 Interpretation 

> 100 Extreme evidence for H1 

30-100 Very strong evidence for H1 

10-30 Strong evidence for H1 

3-10 Moderate evidence for H1 

1-3 Anecdotal evidence for H1 

1 Equal evidence for H1 and H0 

1/3 - 1 Anecdotal evidence for H0 

1/10 - 1/3 Moderate evidence for H0 

1/30 - 1/10 Strong evidence for H0 

1/100 - 1/30 Very strong evidence for H0 

<1/100 Extreme evidence for H0 

 

Table 2 Effect Size Estimation (Cohen's d): 

Relative Size Effect Size % of the control group below the mean of the experimental 

group 

0.0 small 50 

0.2 Medium 58 
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0.5 Large 69 

0.8 Very Large 79 

1.4 Extremely large 92 

 

For parametric data in the AIM assay, the student-t-test was employed. Normality of data 
was assessed using the Shapiro-Wilk test and pp-plot. Non-parametric data, on the other 
hand, was analyzed using the Mann-Whitney test, ensuring robust statistical comparisons 
between the two groups. 

This comprehensive statistical approach allowed for a rigorous examination of the 
dataset, ensuring the validity and reliability of the study's findings. 

Calculation of Minimal Detectable Change (MDC) using Distribution-Based Method 

In the assessment of the Minimal Detectable Change (MDC), a distribution-based method 
was employed to quantify the smallest change in measurements that can be considered 
beyond the scope of random measurement error. This method involves the utilization of 
the Standard Error of Measurement (SEM), which is calculated as the standard deviation 
of the differences between repeated measurements divided by the square root of 2. The 
formula for MDC using the 95% confidence interval is expressed as: 

MDC=SEM×1.96 

Where: 

• SEM is the Standard Error of Measurement. 

This computation provides a threshold for change that surpasses the inherent variability 
in the measurements, offering a reliable indicator of meaningful alterations in the assessed 
parameter [149].  
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Immunoinformatics 

 

Retrieval and Comparative Analysis of Amino Acid Sequences 

HPV Genotype Classification: 

1. High-Risk Genotypes: HPV genotypes associated with a high risk of infection 
and potential carcinogenicity, including 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 
59, and 68. 

2. Probable High-Risk Genotypes: Genotypes with a likelihood of high risk, 
pending further research to confirm their role, comprise 26, 53, 66, 70, 73, and 
82. 

3. Low-Risk Genotypes: Genotypes considered low risk for infection and 
carcinogenicity encompass 6, 11, 40, 42, 43, 44, 54, 61, and 81. 

4. Unknown Risk Genotypes: Genotypes with uncertain risk profiles necessitating 
additional investigation include 62, 67, 83, and 89. 

Amino Acid Sequence Retrieval and Analysis: 

The research embarked on a comprehensive analysis of the genetic composition and 
evolutionary affinities of HPV proteins, specifically E6, E7, and L1. The following 
sources were instrumental in this endeavor: 

1. National Center for Biotechnology Information (NCBI): A prime repository of 
biological data, NCBI facilitated access to amino acid sequences of target 
proteins in FASTA format, ensuring compatibility with computational analyses 
[150]. 

2. UniProt: The Universal Protein Knowledgebase, known for its comprehensive 
and high-quality protein sequence information, played a crucial role. UniProt 
contributed essential protein sequences, enhancing the robustness of the analysis 
[151]. 

3. Papillomavirus Episteme (PaVE): Acknowledging the significance of specialized 
resources, PaVE, dedicated to papillomaviruses, provided vital sequences, 
aligning with the specific focus of the study [21]. 

Incorporating Evolutionary Perspective: 

To comprehensively explore evolutionary relationships, our study expanded the dataset 
to include amino acid sequences from diverse members of the papillomavirus family. 

Sequence Alignment and Conservancy Analysis: 

https://www.ncbi.nlm.nih.gov/gds
https://www.uniprot.org/uniprotkb/Q9NR96/entry
https://pave.niaid.nih.gov/index
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1. Tool Utilized: The Clustal Omega multiple sequence alignment tool 
played a pivotal role in our analysis. Renowned for its accuracy and 
efficiency, it facilitated a meticulous alignment of amino acid sequences 
[152]. 

2. Analysis Process: 

• Alignment Precision: Clustal Omega's capabilities enabled precise 
sequence alignment, uncovering both similarities and differences among 
the retrieved amino acid sequences. 

• Conserved Regions: The tool effectively highlighted conserved regions 
within the target proteins, offering insights into areas with retained 
structural and functional significance. 

• Variation Identification: Rigorous analysis unveiled variations within the 
target proteins, providing valuable information about regions subjected 
to evolutionary changes. 

3. Insights Gained: 

• Sequence Conservancy: The alignment process yielded a nuanced 
understanding of the sequence conservancy among the target proteins. 

• Functional Importance: Identification of conserved regions shed light on 
areas crucial for the functional aspects of the proteins. 

• Evolutionary Constraints: Variations within the sequences revealed 
regions subjected to evolutionary constraints, contributing to a 
comprehensive understanding of the proteins' evolution. 

Phylogenetic Analysis: 

To delve into the evolutionary relationships among the sequences, a phylogenetic 
analysis was executed. This analysis provided a phylogenetic tree that illustrated the 
evolutionary divergence and clustering of the target proteins.  

To perform this task, Tools Employed: 

• MEGA 11 

• Interactive Tree of Life (iTOL) Online Server 

Execution 

Process: The execution involved the construction of a phylogenetic tree, 
providing a visual representation of the evolutionary dynamics within the 
papillomavirus family. 

https://www.ebi.ac.uk/Tools/msa/clustalo
https://www.megasoftware.net/
https://itol.embl.de/
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Visualization: iTOL, a state-of-the-art online tool, enabled the visualization of 
the intricate evolutionary relationships among the target proteins [153]. 

Framework for Investigation 

Comprehensive Approach: 

• Sequence Retrieval: Diverse data sources were integrated to gather a 
comprehensive set of sequences for analysis. 

• Analysis: MEGA 11 [154] and iTOL were employed synergistically to 
analyze the sequences, ensuring a multifaceted exploration of 
evolutionary patterns. 

Research Foundation: This approach laid a robust foundation for our study, 
facilitating an in-depth investigation into the genetic underpinnings and 
evolutionary context of the target proteins. 

Contribution to Understanding: The integration of diverse data sources and 
cutting-edge bioinformatics tools elevated the depth and rigor of our research. 
This, in turn, fostered a profound understanding of papillomavirus biology and 
its broader implications. 

Physicochemical and Secondary Structural Analysis of Target HPV 
antigens 

In-depth characterization of the target HPV E6, E7, and L1 and newl0ey designed vaccine 
required a comprehensive assessment of their physicochemical attributes and secondary 
structural elements. This analytical endeavor was facilitated by utilizing specialized 
bioinformatics tools and adhering to stringent parameters for the derivation of meaningful 
results. 

Physicochemical Analysis: 

Tool Utilization: The Expasy Protparam tool (Expasy Protparam) was employed, 
renowned for its reliability. It calculated crucial parameters including molecular 
weight, theoretical isoelectric point (pI), instability index, aliphatic index, and 
GRAVY, collectively providing a comprehensive portrait of the antigens' 
physicochemical characteristics [155]. 

Antigenicity Assessment 

Importance: A pivotal aspect of the analysis was the determination of antigenicity 
for each protein, addressing immunological relevance and vaccine candidacy. 

Tool Utilization: The VaxiJen 2.0 server, known for proficiency in antigen 
prediction, was employed with a judiciously set antigenicity threshold of 0.4. 

http://web.expasy.org/protparam/
https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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This ensured a stringent assessment of antigenic potential, crucial for discerning 
immunological relevance [114]. 

Secondary Structural Prediction 

Task Complexity: Prediction of secondary structural elements (helices, sheets, 
turns, and coils) required precision. 

Tool Utilization: The SOPMA secondary structure analysis tool, distinguished 
for reliability and accuracy, was utilized. Parameters such as the number of 
conformational states, similarity threshold, and window width remained 
unaltered, ensuring standardized and rigorous analysis of secondary structural 
components [156]. 

Overall Impact 

Insights: Meticulous analysis of physicochemical attributes and secondary 
structural features provided a comprehensive understanding of intrinsic 
properties. This analysis played a pivotal role in evaluating the potential utility 
of viral antigens in immunogenicity and therapeutic development. 

Enrichment: The integration of these insights significantly enriched the 
investigation, offering a deeper comprehension of the structural and functional 
attributes of the target HPV antigens. 

Homology Modeling and Structural Validation 

A pivotal phase in this study involved the construction and validation of three-
dimensional (3D) structural models for the target E6, E7, and L1 antigens. This crucial 
task was executed with the aid of established homology modeling tools, characterized by 
their utility and reliability. The resultant models underwent rigorous scrutiny to ensure 
their quality, integrity, and suitability for subsequent investigations. 

Homology Modeling: 

1. Tool Utilization: Phyre 2, a widely acknowledged homology modeling tool, was 
employed to craft accurate 3D structures. It infers protein structures through 
sequence alignment with homologous proteins of known structures [157]. 

Structural Refinement 

2. Addressing Distortions: Resultant structural models underwent 
meticulous refinement using the 3Drefine tool. This tool, known for 
enhancing structural accuracy, was applied as needed based on the 
Ramachandran plot [158]. The refinement process aimed to ameliorate any 
distortions that may have arisen during the homology modeling process. 
It focused on optimizing models, aligning them with the inherent structural 
parameters and constraints of the target viral antigens. 

https://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
https://3drefine.mu.hekademeia.org/status.php?job_id=1699819126-179a6&job_name=vac
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Structural Validation 

3. Quality Assessment: Thorough validation of refined structural models was 
conducted using the PDBsum server, accessible at PDBsum [159]. 

4. Principle Utilized: The PROCHECK principle was integrated into the validation 
process, with a specific focus on the Ramachandran plot analysis. This plot 
assesses the stereochemical quality of protein structures, segregating Glycine and 
Proline residues [160]. 

Model Selection 

Optimal Results: Structural models demonstrating optimal results through 
rigorous analysis were thoughtfully selected for subsequent utilization. 

Impact of Integration: The meticulous integration of homology modeling and 
validation procedures significantly fortified the integrity of the structural models. 
This enhancement increased their potential utility in advancing investigative 
pursuits. 

Prediction of T Cell Epitopes, Including CTL Epitopes 

The identification and characterization of T cell epitopes, particularly cytotoxic T 
lymphocyte (CTL) epitopes, are fundamental components of this investigation. The 
prediction of these epitopes, which play a pivotal role in immune responses, was executed 
with precision and rigor. A stringent methodology, guided by recognized bioinformatics 
tools, ensured the comprehensive prediction of epitopes. 

CTL Epitope Prediction 

1. Objective: The investigation focuses on the identification and characterization of 
cytotoxic T lymphocyte (CTL) epitopes, crucial components of immune 
responses. 

2. Methodology: The NetCTL 1.2 server was employed for the precision prediction 
of 9-mer T cell epitopes. This prediction specifically targeted commonly 
occurring HLA Class I supertypes: HLA-A, HLA-B, HLA-C. 

3. Crucial Parameters: 

• Transporter Associated with Antigen Processing (TAP) transport 
efficiency threshold: 0.05 

• Proteasomal C-terminal cleavage threshold: 0.15 

• Epitope identification threshold: 0.75 These thresholds ensured a robust 
evaluation of epitope candidacy within the NetCTL 1.2 framework 
[121]. 

https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
https://services.healthtech.dtu.dk/services/NetCTL-1.2
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Expanding Epitope Coverage 

Inclusive Approach: In addition to the mentioned supertypes, the study extended 
epitope prediction to HLA Class I alleles: HLA-B07:02, HLA-C06:02, HLA-
C12:02, HLA-C12:03, HLA-A02:01, HLA-A11:01, HLA-A24:02, HLA-A68:01, 
HLA-B27:01, HLA-B57:01, HLA-B52:01, HLA-B58:01, HLA-C07:01, and 
HLA-C04:01. The Immune Epitope Database-Consensus (IEDB) method was 
strategically employed for this purpose [118]. 

Coverage Significance: Encompassing a diverse array of HLA Class I epitopes 
addressed immunological diversity globally, covering more than 90% of the 
population. 

Selection of Strong Binders 

Robust Criteria: Only peptides with a consensus score of f2 were considered 
strong binders for CTL epitopes, ensuring the selection of epitopes with the 
highest binding affinities. 

Significance: This stringent criterion played a crucial role in identifying epitopes 
with high binding affinities, emphasizing their potential significance in immune 
responses and vaccine development [161]. 

Comprehensive Understanding 

Meticulous Approach: The comprehensive epitope prediction process, driven by 
a judicious selection of parameters and a wide-ranging array of HLA Class I 
alleles, fortifies the study's capacity to unravel immunologically relevant 
epitopes. 

Contribution: This meticulous approach contributes to the identification of 
epitopes with high binding affinities, advancing our understanding of their 
potential roles in immune responses and immunotherapeutic applications. 

 

Prediction of Helper T Lymphocyte (HTL) Epitopes 

The meticulous prediction of HTL epitopes, specifically those of 15-mer length, is an 
indispensable component of this study, aimed at comprehensively understanding 
immunological responses. The prediction of these epitopes, pivotal for their role in the 
immune system, was conducted with a high degree of precision and adherence to 
established bioinformatics tools. 

https://www.iedb.org/
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HTL Epitope Prediction: 

Objective: The study prioritizes the meticulous prediction of 15-mer HTL 
epitopes, crucial for a comprehensive understanding of immunological 
responses and their role in the immune system. 

Tools Used: 

• Net MHC II pan 4.1 Server [119].  

• Immune Epitope Database (IEDB)  [118] 

HLA Class II DRB1 Alleles Considered: 

• 01:01, 03:01, 04:01, 07:01, 08:03, 10:01, 11:01, 12:01, 13:02, 14:01, 
15:01, HLA-DQB1*06:02 

Global Coverage:  

Alleles were carefully selected to ensure coverage of more than 95% of the global 
population, reflecting their prevalence across diverse human populations. 

Categorization of Epitopes 

Assessment Criteria: 

• Strong binders: Percentile rank of 2% or less 

• Intermediate binders: Percentile rank of 10% 

• Non-binders: Percentile rank greater than 10% 

Rigorous Evaluation: The stringent categorization allowed for a comprehensive 
evaluation of epitope candidacy within the study's scope, reflecting binding 
affinities and immunological relevance. 

Study Fortification: The comprehensive epitope prediction process, guided by 
the selection of a diverse set of HLA Class II DRB1 alleles and adherence to 
strict categorization criteria, fortifies the study's ability to identify epitopes with 
strong binding affinities. 

Significance in Vaccine Development 

Instrumental Epitopes: The resulting epitopes are instrumental in advancing our 
understanding of immune responses and hold potential applications in the 
context of immunology and vaccine development [162]. 

https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/
https://www.iedb.org/
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Identification of Promiscuous and Overlapping T Cell Epitopes 

Promiscuous Epitope Analysis 

Significance in Vaccine Design: Promiscuous T cell epitopes, capable of binding 
with high affinity to multiple Human Leukocyte Antigens (HLAs), are crucial in 
vaccine design. They play a pivotal role in generating robust and comprehensive 
immune responses, owing to their ability to interact with various allelic forms of 
HLAs. 

Identification Criteria: In this study, T cell epitopes from both HLA Class I and 
Class II were meticulously selected based on their high binding affinity to 
multiple HLAs. These epitopes, recognized for their promiscuity, were 
earmarked as pivotal candidates for further investigation in the context of 
immunogenicity and vaccine development [163]. 

Overlapping Epitope Assessment 

Special Interest in Overlapping Epitopes: Overlapping epitopes, activating both 
cytotoxic T cells (CTLs) and helper T cells (HTLs), were a focus due to their 
integral sequences comprising both CTL and HTL epitopes. HTL epitopes with 
high binding affinities were scrutinized for overlaps with strong binding affinity 
CTL epitopes. 

Unified Peptide Fragment: Identified overlaps were thoughtfully listed and 
amalgamated into a unified peptide fragment. This strategic merging of epitopes 
facilitated a more integrated and comprehensive understanding of their functional 
roles in immune responses and vaccine design [161]. 

Significance and Potential Impact 

Enriching Insights: The identification and categorization of promiscuous and 
overlapping T cell epitopes significantly enrich our insights into the nuanced 
dynamics of immunogenicity, paving the way for innovative vaccine strategies. 

Potential for Revolutionizing Vaccine Development: These epitopes, 
distinguished by their unique attributes, hold the potential to revolutionize 
vaccine development and therapeutic interventions[164]. 

Prediction of Peptide Immunogenicity 

VaxiJen v2.0 Tool: In this study, the antigenicity of predicted promiscuous 
epitopes was assessed using the VaxiJen v2.0 tool. This tool is renowned for its 
proficiency in antigenicity prediction, offering a comprehensive analysis of 
epitopes' potential to induce an immune response. 

Stringent Antigenicity Prediction Threshold: A crucial aspect of the analysis 
involved the meticulous setting of a stringent antigenicity prediction threshold at 

http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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0.4. This threshold served as a critical criterion for distinguishing epitopes with 
significant antigenic potential. The rigorous assessment ensured a comprehensive 
understanding of the immunological relevance of the predicted promiscuous 
epitopes. 

Immunological Insights and Vaccine Design 

Enriching Comprehension: The assessment of epitope antigenicity, facilitated by 
the VaxiJen v2.0 tool, significantly enriched the comprehension of the 
immunological attributes of the predicted promiscuous epitopes. This insight is 
instrumental in evaluating their suitability for vaccine development and 
understanding their potential roles in therapeutic interventions. 

The strategic use of the VaxiJen v2.0 tool, with a stringent threshold, contributes valuable 
insights for selecting epitopes with significant antigenic potential, enhancing their 
potential utility in vaccine design and therapeutic applications [114]. 

Identification of B Cell Epitopes: Linear and Conformational 

In this study, the comprehensive identification of B cell epitopes, including both linear 
and conformational epitopes, was an essential undertaking. These epitopes play a pivotal 
role in stimulating B cell lymphocytes, triggering their differentiation into memory B 
cells and plasma cells, thereby contributing to the overall immune response. 

Linear B Cell Epitope Identification: 

1. BCpred 2.0 and IEDB Servers: The study utilized BCpred 2.0 [165] and IEDB 
servers [118] to predict linear B cell epitopes within the antigen sequence. This 
involved a comprehensive analysis considering beta turn prediction, surface 
accessibility, flexibility, antigenicity, and hydrophilicity. These characteristics 
provided critical insights into the attributes and potential immunogenicity of the 
identified linear B cell epitopes . 

Conformational B Cell Epitope Prediction: 

2. IEDB-Ellipro Server: For predicting conformational B cell epitopes, the IEDB-
Ellipro server was employed. This server, chosen for its reliability, defined 
prediction parameters with a minimum score and maximum distance (measured 
in Angstroms) set at 0.7 and 6 Å, respectively. These parameters ensured precise 
identification of conformational epitopes and insights into their spatial 
distribution within the antigen structure [166]. 

Peptides Conservation Analysis and Population Coverage: 

IEDB Conservancy Analysis Tool: To assess epitope conservation, the Immune 
Epitope Database (IEDB) Conservancy Analysis tool was used. This tool is 
known for determining the extent of epitope conservation within a range of 

http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://services.healthtech.dtu.dk/services/BepiPred-2.0/
https://www.iedb.org/
http://tools.iedb.org/ellipro/
http://tools.iedb.org/ellipro/
http://tools.iedb.org/conservancy/
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protein sequences, identifying epitopes with 100% conservancy for further 
analysis [167]. 

IEDB Population Coverage Analysis Tool: The study evaluated population 
coverage using the IEDB Population Coverage Analysis tool. This tool estimated 
the fraction of individuals predicted to respond to the screened epitopes based on 
the frequencies of their Human Leukocyte Antigen (HLA) genotypes. This 
analysis provided critical insights into epitopes' capacity to elicit immune 
responses and their coverage within diverse human populations [168]. 

The dual analysis of epitope conservation and population coverage enriches our 
understanding of the immunological relevance and potential utility of these epitopes. It 
aids in identifying highly conserved epitopes with the potential to elicit immune 
responses across diverse human populations, contributing to the advancement of 
immunology and vaccine design. 

Characterization of Predicted Epitopes in Immunology and Vaccine 
Development 
Physicochemical Properties Analysis: 

Expasy Protparam Tool: The physicochemical properties of target HPV antigens 
were analyzed using the Expasy Protparam tool. This tool facilitated the 
calculation of crucial parameters, including molecular weight, theoretical 
isoelectric point (pI), instability index, aliphatic index, and grand average of 
hydropathicity (GRAVY). These parameters collectively provided a 
comprehensive perspective on the physicochemical characteristics of the target 
HPV antigens, enhancing our understanding of their structural and functional 
properties [155]. 

Autoimmunity Mitigation: 

BLASTP Search Against Human Proteome: To mitigate the risk of inducing 
autoimmunity, identified epitopes underwent a stringent BLASTP-NCBI search 
against the human proteome. This search aimed to identify any similarity 
between the epitopes and human proteins. Epitopes showing similarity to any 
human protein were meticulously eliminated from further consideration. This 
step ensures the safety of potential immunotherapeutic interventions by reducing 
the risk of triggering unwanted immune responses against host tissues [169]. 

The thorough characterization of predicted epitopes, encompassing physicochemical 
attributes and safety measures against autoimmunity, ensures a comprehensive 
assessment of their potential utility in immunological applications. This approach not 
only enriches our understanding of epitope properties but also contributes to the safe and 
effective design of immunotherapeutic interventions. 

 

http://tools.iedb.org/population/
http://web.expasy.org/protparam/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome


Materials and methods 

31 
 

Peptides and HLA Interaction Pattern Analysis: Modeling of Peptides 
and HLA Alleles 

Understanding the interaction patterns between peptides and Human Leukocyte Antigens 
(HLAs) is a pivotal aspect of this study, as it sheds light on the structural and functional 
aspects of epitope recognition. This analysis encompasses the modeling of peptide and 
HLA structures, enabling a comprehensive evaluation of their three-dimensional 
configurations and interaction dynamics. 

Peptide 3D Structure Generation: 

PEPFOLD 4 Server: The online accessible PEPFOLD 4 server was employed for 
generating 3D structures and PDB files of epitopes. This server is recognized for 
its efficacy in creating spatial representations, enhancing our understanding of 
epitope structural conformations and properties [126]. 

HLA Allele 3D Structure Retrieval: 

HLA Alleles: X-ray crystallographic structures of three common HLA alleles4
HLA-DQ, HLA-DRB115 (HLA Class II alleles), and HLA-A*02:01 (HLA Class 
I allele)4were retrieved from the Protein Data Bank (PDB) with PDB IDs: 
1S9V, 5V4M, and 7RTD, respectively. These structures served as foundational 
templates for subsequent analyses. 

Energy Minimization and Ligand Removal: 

Chimera 1.17.1 Software: An energy minimization process using Chimera 1.17.1 
software optimized the energy profiles of HLA alleles, removing any previously 
bound ligands. This ensured stable and energetically favorable configurations for 
the receptors, free from interfering ligands. 

Molecular Docking Analysis: 
HDOCK Server:  

For protein-protein interaction patterns, the Hdock server was utilized. It offers 
an integrated platform for efficient protein3protein docking, employing a hybrid 
algorithm for interaction prediction. Noteworthy features include support for 
amino acid sequences, a unique hybrid docking strategy, and compatibility with 
experimental information like protein3protein binding sites [170, 171]. 

Optimal Model and Visualization: 

Hydrophobic Environment: The docking analysis was conducted in a 
hydrophobic environment, ensuring a realistic representation of interaction 
conditions. 

PyMOL Molecular Graphics System: The optimal model, characterized by 
epitopes binding within the peptide binding groove of HLA alleles, was selected. 

https://mobyle2.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD4
https://www.rcsb.org/structure/1S9V
https://www.rcsb.org/structure/5V4M
https://www.rcsb.org/structure/7RTD
http://hdock.phys.hust.edu.cn/
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The resulting docked complex was visualized using the PyMOL Molecular 
Graphics System, Version 2.0 Schrödinger, LLC. 

This comprehensive analysis reveals binding affinities and interaction patterns between 
epitopes and HLA alleles, crucial for understanding the molecular basis of immune 
responses and informing the design of immunotherapeutic strategies. 

Toll-Like Receptor 9 (TLR-9) - Homology Modeling and Structure 
Validation 

Homology modeling and structure validation of Toll-Like Receptor 9 (TLR-9) play a 
pivotal role in understanding its three-dimensional conformation and functional 
attributes. The following methodology was employed for homology modeling using the 
Phyre2 [157] and SWISS-MODEL servers [172]: 

Amino Acid Sequence Retrieval: 

UniProt Database: The amino acid sequence of TLR-9 was retrieved from the 
UniProt database [151] using its specific identifiers - UniProt ID Q9NR96 and 
PDB ID 5ZLN. This sequence serves as the foundational blueprint for subsequent 
modeling [1]. 

Homology Modeling with SWISS-MODEL: 

User Input: SWISS-MODEL requires minimal user input, often only the amino 
acid sequence of the target protein . 

SWISS-MODEL Workspace:  

Each user is provided with a personal web-based workspace where protein 
homology models can be built, and results are stored . 

Homology Modeling:  

The server utilizes automated comparative modeling techniques to generate 
three-dimensional protein structures. 

Continuous Updates:  

SWISS-MODEL implements a continuous release mechanism, ensuring models 
are regularly updated based on the latest template information. 

Workspace Features:  

A personal web-based environment allows users to conduct multiple modeling 
projects simultaneously . 

http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
https://swissmodel.expasy.org/
https://www.uniprot.org/
https://www.uniprot.org/uniprotkb/Q9NR96/entry
https://www.rcsb.org/structure/5ZLN
https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
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In essence, the SWISS-MODEL server streamlines the homology modeling process, 
providing a user-friendly platform for inputting protein sequences and obtaining 3D 
structural models through automated comparative modeling [172]. 

HDOCK Server - Docking  

The HDOCK server is a computational platform specializing in protein-protein and 
protein-ligand docking. The following outlines the general methodology likely employed 
by HDOCK for docking simulations: 

Ligand and Receptor Preparation: 

• Ligand: Newly designed multi-epitope vaccine peptides are prepared in 
PDB or PDBQT format, considering atomic coordinates and necessary 
parameters. 

• Receptor: Target proteins, including antigenic proteins or specific 
receptors, undergo similar preparation, ensuring correct conformation 
and relevant details. 

Search and Sampling: 

• Global Search: HDOCK likely employs global search algorithms to 
explore the vast conformational space of ligand-receptor complexes, 
aiming to find the global energy minimum among potential binding 
poses. 

• Sampling Techniques: Techniques like Monte Carlo-based methods or 
genetic algorithms may be used for sampling various conformations and 
orientations of ligand and receptor molecules. 

Scoring Function: Energy Evaluation: 

• HDOCK evaluates binding energies using scoring functions, considering 
van der Waals interactions, electrostatic interactions, hydrogen bonding, 
and desolvation energies. The scoring function quantifies the fitness of 
each ligand-receptor complex. 

Clustering and Analysis: 

• Clustering: Generated docking solutions are clustered based on structural 
similarities, identifying distinct binding modes and ranking them by 
prevalence. 

• Analysis: Post-docking analysis tools are employed to analyze 
interactions, such as hydrogen bonds, hydrophobic contacts, and 
electrostatic interactions. Visualization tools aid in understanding 
binding poses and critical residues. 

https://swissmodel.expasy.org/
http://hdock.phys.hust.edu.cn/
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Ranking and Selection: 

• Ranking: Complexes are ranked based on binding energies or scores, 
where lower energies or more negative scores indicate more favorable 
binding interactions. 

• Selection: Best-docked complexes are chosen based on energy scores 
and structural feasibility, representing the most likely binding 
configurations between the designed multi-epitope vaccine peptides and 
target proteins. 

By employing these methodologies, the HDOCK server provides valuable insights into 
potential binding modes and interactions of newly designed multi-epitope vaccine 
peptides with their target proteins [170, 171]. 

Construction of the Multi-Epitope Vaccine Sequence 

In developing the final multi-epitope vaccine sequence, a meticulous process ensured 
efficacy and safety, focusing on critical immunogenic properties of Cytotoxic T 
Lymphocyte (CTL) and Helper T Lymphocyte (HTL). 

Epitope Selection: 

• Epitopes were selected based on key criteria: high promiscuity, ability to 
overlap, demonstrated immunogenicity, and proven lack of allergenicity. 

Linker Utilization: 

• AAY and GPGPG linkers were employed to fuse CTL and HTL 
epitopes, respectively. 

• AAY Linker: Acts as a proteasomal cleavage site, separating 
epitopes during antigen processing, influencing stability, and 
enhancing immunogenicity [161] . 

• GPGPG Linker: A flexible, glycine-rich spacer preventing steric 
hindrance, allowing independent epitope folding, optimizing 
exposure to the immune system [162, 173]. 

Adjuvant Integration: 

• CpG-containing oligodeoxynucleotides, recognized by Toll-Like 
Receptor 9 (TLR-9), were integrated to enhance immunogenicity. 

• K-type CpG-ODNs, prominent in human clinical trials, served 
as effective adjuvants [162]. 
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Connection with Linker: 

• An EAAAK linker facilitated the connection between the multi-epitope 
sequence and CpG-containing oligodeoxynucleotides, ensuring a 
cohesive and functional vaccine design. 

Immunological Approach: 

• The construction adhered to stringent criteria for a robust and safe 
immunization strategy. 

In summary, AAY and GPGPG linkers, along with strategically integrated CpG-
containing oligodeoxynucleotides, contribute to the overall effectiveness of multi-epitope 
vaccines. They influence protein stability, reduce immunogenicity issues, and ensure 
optimal spacing between epitopes for an enhanced immune response. 

Prediction of Antigenicity, Allergenicity, and Physicochemical 
Properties 

To ensure the efficacy and safety of the final vaccine construct, a comprehensive 
evaluation was conducted, encompassing various critical aspects. This analysis involved 
the prediction of antigenicity and allergenicity, as well as the assessment of several key 
physicochemical properties. 

Antigenicity Prediction: 

The antigenicity of the final vaccine construct was assessed using the VaxiJen v2.0 tool 
[114]. This tool, acknowledged for its accuracy, quantifies the likelihood of a protein or 
peptide to elicit an immune response. The threshold for antigenicity prediction was set 
at 0.4, ensuring that the vaccine construct possessed the necessary attributes to trigger 
an immune response effectively. 

Allergenicity Evaluation:  

To gauge the allergenic potential of the vaccine, the AlerCatPro server was employed 
[125]. This server specializes in predicting allergenic properties, which is a crucial 
consideration to mitigate potential allergic reactions among vaccine recipients. 

Physicochemical Parameter Analysis: 

The ProtParam server played a pivotal role in assessing a spectrum of physicochemical 
properties that contribute to the overall characteristics of the vaccine [155]. The 
parameters under scrutiny included the theoretical isoelectric point (pI), in vitro and in 
vivo half-life, amino acid composition, molecular weight, instability, aliphatic index, and 
the grand average of hydropathicity (GRAVY). These parameters collectively inform our 
understanding of the vaccine's stability, composition, and potential interactions within the 
biological system. 

https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://allercatpro.bii.a-star.edu.sg/allergy/index.html
https://web.expasy.org/protparam/
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By subjecting the vaccine construct to this meticulous evaluation, we ensure that it aligns 
with essential criteria for immunogenicity, safety, and physicochemical suitability, 
strengthening its potential as an effective and reliable vaccination strategy. 

 

Vaccine Structure Modeling, Refinement, and Validation 

In the quest for a resilient and dependable vaccine, a systematic approach was adopted, 
encompassing intricate processes of structural modeling, refinement, and stringent 
validation. 

Prediction of Secondary Structural Properties: 

The SOPMA server (SOPMA) was instrumental in evaluating the secondary structural 
properties of the final vaccine construct [156]. This critical analysis provided valuable 
insights into the organization of secondary structure elements within the vaccine, 
unveiling its conformational characteristics. 

3D Model Generation: 

The SwissModel, a specialized online server for homology modeling, skillfully crafted 
the three-dimensional model of the vaccine [172]. This process involved leveraging 
homologous structures to ensure compatibility with known protein structures, reinforcing 
the model's reliability. 

Model Refinement: 

To heighten the structural integrity and quality of the model, the SwissModel server 
employed a meticulous procedure. Identifying suitable template structures, aligning 
target protein sequences, and subsequently constructing a 3D model based on the 
template, the server then executed energy minimization and refinement. SwissModel's 
user-friendly interface and robust algorithms make it invaluable for researchers exploring 
protein structures and functions. 

Validation of Tertiary Structure: 

The tertiary structure of the vaccine underwent validation through ProSA-web, a 
prominent server evaluating overall 3D protein model quality. The assessment, expressed 
as a z-score, meticulously considered deviations from the characteristic range of native 
proteins, addressing any structural anomalies [174]. 

Ramachandran Plot Analysis: 

Integral to structural validation, the Ramachandran plot analysis, conducted via the 
PDBsum server, comprehensively evaluated the vaccine model's quality. Assessing the 
distribution of amino acid dihedral angles, it served as a critical indicator of structural 
soundness [159]. 

https://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
https://prosa.services.came.sbg.ac.at/prosa.php
https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
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These meticulous steps ensure the final vaccine construct adheres to the highest standards 
of structural integrity and quality. The outcome is a theoretically robust vaccine design, 
fortified by rigorous computational validation. 

Immunoinformatics Analysis for Vaccine Immunogenicity 

In our pursuit of understanding the vaccine's immunogenicity, I employed cutting-edge 
tools to predict epitopes within the vaccine construct: 

Linear B Cell Epitopes: 

Utilized BCpred 2.0 [165] and IEDB servers [118] for predicting linear or 
continuous B cell epitopes. 

These tools provided insights into specific antigenic regions within the vaccine. 

Conformational B Cell Epitopes: 

Leveraged IEDB-ElliPro server to identify conformational or discontinuous B 
cell epitopes. 

Crucial for understanding how the vaccine interacts with the immune system in 
a three-dimensional context. 

Holistic Immunological Perspective: 

The analyses collectively offered a holistic view of potential 
immunological interactions facilitated by the vaccine. 

This comprehensive approach contributes to a well-rounded assessment 
of the vaccine's immunogenic properties. 

This integration of advanced immunoinformatics tools provides valuable insights into the 
antigenic characteristics and potential efficacy of the vaccine. 

In Silico Cloning and Optimization 

In our meticulous journey to optimize the expression of the multi-epitope vaccine, we 
leveraged advanced computational tools. 

Java Codon Adaptation Tool (JCat): 

JCat played a crucial role by employing reverse translation and codon 
optimization. 

The strategic use of JCat ensured seamless integration of the vaccine into 
a suitable expression vector. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385272/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385272/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385272/
http://www.prodoric.de/JCat.
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Codon Adaptation Index (CAI) Optimization: 

JCat provided a comprehensive report, including the vital Codon 
Adaptation Index (CAI). 

Achieving an ideal CAI score above 0.8, potentially reaching 1.0, was 
imperative for optimizing protein expression. 

GC Content Assessment: 

JCat meticulously assessed the GC content of the genetic insert. 

Maintaining GC content within the recommended range of 30% to 70% 
was crucial for high-level protein expression [175]. 

Benchling Integration: 

The final optimized multi-epitope vaccine sequence was seamlessly 
assembled using Benchling server [176]. 

Benchling expertly integrated the optimized sequence into the pET-
28a(+) vector. 

pET-28a(+) Vector from Addgene: 

The pET-28a(+) vector for expression was sourced from Addgene server, 
Deposit lab: Andrew Millar (Plasmid #141289) [176]. 

This comprehensive approach, from codon optimization to vector integration, sets the 
stage for a successful expression process of the multi-epitope vaccine in Escherichia coli, 
specifically the K12 strain [177].  

Computational Immunology with C-ImmSim for the HPV Multi-Epitope 
Vaccine Design 

To unravel the intricate immunogenic profiles and immune responses induced by a multi-
epitope vaccine, we employed the C-ImmSim server (C-ImmSim). This powerful tool 
utilizes Position-specific scoring matrix (PSSM) and machine learning methodologies to 
predict immune epitopes and their interactions. 

Anatomical Replication: 

C-ImmSim replicates three vital anatomical domains of mammals: Bone 
marrow, Thymus, and tertiary lymphatic organs. This comprehensive 
simulation ensures a holistic understanding of the immune response. 

https://www.benchling.com/
https://www.addgene.org/browse/
https://kraken.iac.rm.cnr.it/C-IMMSIM
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Simulation Protocol: 

The immune simulation protocol involved three injections at four-week 
intervals. 

Each injection comprised 1000 vaccine molecules, providing a robust 
representation of the vaccine's impact. 

Essential Parameters: 

Standardized parameters included a random seed of 12,345, a simulation 
volume of 10 µl, and a simulation step of 1050. 

These parameters play a crucial role in determining the accuracy and 
reliability of the simulated immune responses. 

Temporal Sequence: 

Adhering to established research practices, a minimum four-week 
interval between injections was maintained. 

The temporal sequence for the three injections followed time steps of 1, 
84, and 168, where each time step represented an 8-hour interval in real-
life scenarios. 

By leveraging C-ImmSim with meticulous attention to these parameters, we gained 
valuable insights into the anticipated immunogenic profiles and temporal dynamics of the 
multi-epitope vaccine, contributing to informed vaccine design and development [1783
180]. 

System Immunology 

Unveiling Gene Expression Dynamics in PBMCs During HPV Vaccination: 

Our endeavor to comprehend the intricacies of immune responses in HPV-related cervical 
cancer patients led us through a systematic exploration of the Gene Expression Omnibus 
(GEO) database [181, 182]. Focused on human datasets, our aim was to uncover insights 
into gene expression changes in peripheral blood mononuclear cells (PBMCs) pre and 
post-human papillomavirus (HPV) vaccination. 

Database Exploration: 

Meticulous scrutiny of the GEO database for datasets relevant to our 
objectives. 

A quest for papers providing data on gene expression differences in 
PBMCs from individuals undergoing HPV vaccination. 

https://www.ncbi.nlm.nih.gov/geo/
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Format Preference: 

Specific interest in datasets available in CEL format for analytical 
purposes. 

Paper Selection: 

Careful screening of potential candidates based on alignment with 
research goals. 

Rigorous assessment leading to the selection of papers providing access 
to desired CEL format databases. 

Data Refinement: 

Extraction of genes with a minimum 2.5-fold change in expression, 
guided by the Log Fold Change (LogFC) metric. 

Focus on genes with statistical significance (p < 0.05), ensuring a robust 
selection process. 

Insights and Analyses: 

Identification of genes undergoing substantial expression alterations 
during cervical cancer vaccination. 

Meticulously curated genes forming the foundation for in-depth 
analyses, contributing invaluable insights into the complex interplay 
between HPV vaccination and immune responses within PBMCs. 

This methodical journey paved the way for a comprehensive understanding of gene 
expression dynamics during HPV vaccination, providing a solid foundation for 
subsequent analyses and furthering our insights into the intricate relationship between 
vaccination and immune responses [183]. 

Deciphering Functional Interactions in Differentially Expressed Genes 
through Network Analysis 

Our investigation into differentially expressed genes, marked by a substantial 2.5-fold 
increase and stringent statistical criteria, led us to unveil the intricate web of functional 
interactions among these genes. Employing the STRING website (STRING), we delved 
into a comprehensive exploration of protein-protein interactions, gaining insights into the 
complex relationships within our gene set. 

STRING Platform: 

Operates by amalgamating diverse biological knowledge sources, 
including experimental data, computational predictions, and text mining. 

https://string-db.org/
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Allows users to input a list of genes, initiating a thorough examination 
of known and predicted interactions. 

Network Visualization: 

STRING orchestrates the presentation of an intricate network diagram. 

Edges between nodes represent various interaction types, with thickness 
and color indicating the strength and reliability of interactions[184]. 

Functional Enrichments: 

Provides valuable insights into Gene Ontology terms and KEGG 
pathways (KEGG) [185]. 

Offers a broader understanding of the biological contexts in which the 
genes operate. 

Export to Cytoscape: 

Data generated in STRING was exported in a format compatible with 
Cytoscape software version 3.10.1. 

Cytoscape excels in visualizing and analyzing biological networks, 
allowing a deeper exploration of functional relationships and potential 
pathways among the genes. 

This meticulous approach sheds light on the intricate molecular mechanisms underlying 
the identified differential gene expressions in our study, providing a holistic 
understanding of the functional landscape [186]. 

Unraveling Key Genes through Topological Centrality Measures in 
Cytoscape 

In our quest to decipher the intricacies of gene interaction networks, Cytoscape emerged 
as an invaluable tool for comprehensive biological network analysis. Leveraging data 
from the STRING website (STRING), our focus was on identifying central genes within 
the network using a diverse set of topological centrality measures. 

Betweenness Centrality: 

Identifies genes crucial for network connectivity, serving as pivotal 
bridges facilitating efficient communication between components. 

Closeness Centrality: 

Assesses the proximity of genes to other network nodes, spotlighting 
those closely connected to a majority of components, indicating potential 
for rapid information transmission. 

https://www.genome.jp/kegg/pathway.html
https://string-db.org/
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Degree Centrality: 

Examines the number of direct connections a gene possesses, identifying 
hubs that interact directly with several other genes. 

Eigenvector Centrality: 

Considers both the number and quality of connections a gene has. Genes 
with high eigenvector centrality values are well-connected and linked to 
other well-connected genes. 

Implementation in Cytoscape involved adhering to the platform's manual and guidelines 
for network analysis. This meticulous approach allowed us to pinpoint central genes with 
pivotal roles in our study. These genes, strategically positioned within the network, not 
only exhibited strong connectivity but also revealed potential significance in the broader 
biological context of our investigation [187]. 

 

Advanced Network Analysis using Gephi 0.10 Software 

To delve deeper into our network of genes and explore their significance, we harnessed 
the power of Gephi 0.10, a powerful network analysis software. Gephi facilitated an 
extensive examination of key network metrics, including eigenvector centrality, 
modularity, and additional centrality measures, ultimately enabling the identification of 
pivotal genes in our study. 

Gephi operates through a structured workflow: 

Network Import:  

The software allows for the import of network data, where nodes represent genes and 
edges denote their interactions or relationships. In our case, the network was established 
based on the criteria of degree, closeness centrality, and betweenness centrality. 

Eigenvector Centrality Analysis:  

Gephi excels in the computation of eigenvector centrality, a crucial metric that 
determines the influence of a node in a network. This measure identifies genes 
with the highest centrality scores, signifying their significance within the 
network. 

Modularity Analysis:  

Modularity analysis is a fundamental step in understanding network organization. 
Gephi provides tools for assessing modularity, which aids in identifying distinct 
groups or modules within the network. This feature is particularly valuable for 
segregating genes with shared functionality or properties. 
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Visualization:  

Gephi offers interactive visualization, allowing researchers to explore the 
network graphically, facilitating a comprehensive understanding of gene 
interactions and centrality measures. 

The software's modularity analyzer, in particular, plays a vital role in dissecting the 
network into coherent subgroups, revealing intricate relationships among genes. By 
applying this approach, we not only uncovered genes with high eigenvector centrality, 
degree, closeness centrality, and betweenness centrality but also discerned their 
participation in distinct functional modules. 

The utilization of Gephi in our analysis allowed for a more in-depth investigation of the 
gene network's structure and dynamics. This method provided valuable insights into the 
interconnectedness of genes and identified key players within the network. Moreover, the 
software's user-friendly interface and detailed documentation make it accessible for 
reproducibility and further investigations in the realm of network biology [188]. 

Functional Enrichment Analysis in Enricher: Unraveling Biological 
Significance 

To shed light on the potential biological roles and pathways associated with the selected 
genes derived from our Gephi analysis, we embarked on a journey into the realm of 
functional enrichment analysis. This essential step was conducted utilizing the Enricher 
platform, an invaluable resource developed by Ma'ayan Laboratory for Systems 
Biology(Enricher) [189], renowned for its capability to elucidate the roles genes play in 
specific biological processes and pathways. 

The Enricher methodology hinges on leveraging an expansive knowledge base and an 
amalgamation of biological data resources. Users provide a list of genes of interest, such 
as the central genes identified in our study, with the aim of understanding their 
involvement in particular biological contexts. The platform operates through a series of 
steps: 

Gene Set Collection:  

Enricher harnesses a multitude of gene set databases, curating an extensive 
collection of gene sets related to biological pathways, functions, diseases, and 
more. 

Ranking Genes:  

The provided gene list is meticulously examined, with genes scored or ranked 
based on their relevance to specific biological processes. 

https://maayanlab.cloud/Enrichr/
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Statistical Analysis:  

Enricher employs statistical methods, such as hypergeometric testing, to discern 
if the genes in the input list are significantly overrepresented in any of the gene 
sets from the collection. 

Pathway Enrichment:  

This analysis provides insights into the biological pathways in which the selected 
genes are actively participating. 

Function Enrichment:  

The platform also uncovers the functional roles of the genes, linking them to 
specific biological processes, molecular functions, and cellular components. 

Visualization:  

Enricher offers an intuitive visualization of the results, typically presented in the 
form of enriched pathways, gene ontologies, and relevant statistical scores. 

By conducting functional enrichment analysis through the Enricher platform, we were 
able to unravel the biological significance of the selected genes. This method allowed us 
to explore their involvement in specific biological processes and pathways, contributing 
to a comprehensive understanding of the broader molecular context of our research. The 
reproducibility of this method enables other researchers to undertake similar 
investigations, providing valuable insights into the functional roles of genes within their 
own studies. 

Protein Structure Preparation Using UCSF Chimera 1.17.3 

Following the identification of our target protein via comprehensive system immunology 
analysis, we embarked on the crucial step of acquiring its three-dimensional structure 
from the Protein Data Bank (PDB) [190]. Our methodology for protein selection adhered 
to stringent criteria, focusing on models with a resolution of 2 angstroms or less. 
Additionally, we leveraged the R-work value, calculated as the resolution divided by 10, 
as a pivotal indicator for model selection, prioritizing lower R-work values indicative of 
higher model quality. 

Subsequently, we turned to UCSF Chimera software version 1.17.3 to meticulously 
prepare the obtained protein structure from the PDB. The following key steps were 
undertaken in this preparatory process: 

Removal of Ligands and Solvent Molecules:  

To ensure the fidelity of subsequent analyses, we meticulously removed ligands 
and solvent molecules from the protein structure. This step aimed to retain only 
the core protein structure for in-depth investigations. 

https://www.rcsb.org/structure/2R5I
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Refinement and Saving:  

The refined protein structure, purged of extraneous elements, was then saved. 
This preparatory step served as a pivotal foundation for further in-depth analysis 
and investigations into the target protein. 

This meticulous approach to protein structure preparation using UCSF Chimera 1.17.3 
was instrumental in ensuring the integrity and quality of the subsequent stages of our 
research [191]. 

 

Identification of Lead-like Compounds from Databases 

In the pursuit of identifying potential lead compounds, we conducted extensive searches 
in renowned databases, specifically ZINC [192] and PubChem [193]. The goal was to 
select substances that adhered to Lipinski's criteria for lead-like drugs. Lipinski's rules, a 
fundamental guideline for drug discovery, stipulate that selected compounds should have: 

1. A molecular weight of less than 350 g/mol, 

2. A calculated logP (partition coefficient) less than 3.5, 

3. A net charge ranging from -5 to +5, 

4. Fewer than five hydrogen bond donors and acceptors, 

5. A polar desolvation energy not exceeding 1 kcal/mol, 

6. An apolar desolvation energy of no more than 40 kcal/mol, and 

7. A polar surface area less than 200 Å². 

Following rigorous screening, all compounds meeting these criteria were meticulously 
saved in the Structure-Data File (SDF) format for further analysis. This meticulous 
process is pivotal in the initial stages of our research and lays the foundation for 
subsequent investigations [192]. 

Retrieval of Ligands Using BindingDB 

In the pursuit of identifying ligands for our target protein, we employed Binding Data 
Bank (BindingDB), a valuable resource for accessing binding data. The specific 
procedure we followed can be summarized as follows: 

Selection of IC50 Icon: Within the BindingDB platform, the IC50 icon was 
selected as the criterion for filtering ligands. This choice allowed us to prioritize 

https://zinc20.docking.org/
https://pubchem.ncbi.nlm.nih.gov/
https://www.bindingdb.org/rwd/bind/index.jsp
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compounds with the lowest IC50 values, indicative of their strong binding 
affinity. 

Search for the Target Protein: We initiated the ligand discovery process by 
searching for the specific protein of interest within the BindingDB database. 

Choosing an IC50 Threshold: To refine our search, we set an IC50 threshold of 
not more than 50 to narrow down the list of potential ligands, ensuring that the 
selected compounds met our desired criteria. 

Obtaining 3D SDF Files: We opted to retrieve 3D structure data files (SDF) for 
the selected ligands. These files are essential for further computational analysis 
using specialized software. 

Providing Authentication: For access to the requested data and files, we 
provided the necessary authentication by entering our email and password. 

SDF and TSV File Downloads: Subsequently, the SDF files were downloaded, 
enabling us to proceed with in-depth computational analysis. Additionally, tab-
separated values (TSV) files, which contain structured data, were also obtained 
for comprehensive record-keeping and analysis purposes. 

This meticulous process of data retrieval within the BindingDB platform served as a 
critical step in our research, facilitating the subsequent stages of ligand evaluation and 
analysis [194]. 

Generating SDF Files Using Marvin 23.14 Software 

In cases where we encountered difficulties in finding SDF files, we utilized Marvin 
software to draw and export structures as SDF files. Here's a detailed outline of the 
process: 

1. Begin by drawing the molecule using Marvin and save it in Simplified Molecular 
Input Line Entry System (SMILE) format. 

2. Open the saved SMILE format using word processing software, such as Word, 
and copy the SMILE format of the molecule. 

3. Proceed to Chimera: Tools - Build Structure - SMILES String. 

4. Paste the copied SMILE format using 'Ctrl-V.' 

5. Click 'Apply' (only once). 

6. To minimize the structure, access 'Tools - Minimize Structure - Minimize - OK - 
Amber - OK.' 
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7. Save the structure, ensuring the appropriate nomenclature is used to distinguish 
the generated structure. 

This method allowed us to create SDF files for molecules when the original files were 
not readily available, facilitating their integration into our computational analysis and 
drug discovery research [195]. 

Descriptor Analysis Using PaDEL-Descriptor 2.21 

In order to gain a comprehensive understanding of the ligands obtained from both the 
ZINC database and BindingDB, we employed PaDEL-Descriptor 2.21, a valuable 
software tool for calculating molecular descriptors. The method we followed, along with 
a brief explanation of the software's functionality, is elucidated below: 

Input SDF Files:  

The SDF files obtained from both ZINC and BindingDB served as the input for 
this analysis. These files contain the 3D structures of ligands, and it is vital to 
extract molecular descriptors from them. 

PaDEL-Descriptor 2.21 Software:  

PaDEL-Descriptor 2.21 is a versatile software designed for the calculation of a 
wide range of molecular descriptors. It accepts SDF files as input and generates 
output in the form of CSV and Excel files containing descriptor values. 

Descriptor Calculation:  

Once the SDF files were loaded into the software, PaDEL-Descriptor 2.21 
performed a thorough analysis of the chemical structures. The software 
calculated a multitude of descriptors, including but not limited to constitutional 
descriptors, topological descriptors, and 3D descriptors. These descriptors offer 
valuable insights into various molecular properties, such as size, shape, polarity, 
and electronic characteristics. 

CSV and Excel Outputs:  

After the descriptor calculations were completed, the software provided the 
results in the form of CSV and Excel files. These output files contain detailed 
information on each descriptor's value for every ligand in the dataset. 

Software Functionality:  

PaDEL-Descriptor 2.21 is a user-friendly and powerful tool for descriptor calculation. It 
leverages established algorithms and methodologies to compute a wide array of 
molecular descriptors. The software's extensive descriptor set aids in characterizing 
chemical compounds comprehensively, making it a valuable asset for ligand analysis in 
drug discovery and computational chemistry. 
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1. Launch the PaDEL-Descriptor 2.21 software. 

2. Load the input SDF files containing ligand structures. 

3. Initiate the descriptor calculation process. 

4. Once the analysis is complete, export the results in the form of CSV and Excel 
files for further examination and analysis. 

This method of descriptor analysis using PaDEL-Descriptor 2.21 significantly enhances 
our ability to evaluate the ligands retrieved from ZINC and BindingDB, providing critical 
insights into their molecular properties [196, 197]. 

Data Preprocessing for Descriptor Analysis with SMLR 1.1.0 

In our quest to identify the most relevant descriptors for further analysis, we employed 
the SMLR 1.1.0 software, which harnesses machine learning techniques. However, 
before we could utilize SMLR for this purpose, it was essential to prepare the descriptor 
outcomes obtained from PaDEL-Descriptor 2.2. Below, we outline the data preprocessing 
steps and the subsequent actions taken with SMLR 1.1.0: 

Column Name Adjustment:  

To distinguish between data obtained from BindingDB and ZINC12, the name of 
the first column was replaced with a numerical identifier. The respective 
identifiers for each dataset were saved in separate text files, allowing clear 
differentiation. 

Elimination of Zero Values:  

The second column was carefully examined, and if it contained only zero values, 
it was removed from the dataset. 

Handling the Last Column:  

Similar scrutiny was applied to the last column. If any non-numeric entries were 
present, they were removed, and zeros were added in their place. 

Blank Cell Treatment: 

1. Blank cells within the dataset were identified using the 'Find and Select' function 
and subsequently replaced with zeros. 

Conversion to Excel Format:  

The processed data was saved in Excel format, ensuring its compatibility with 
SMLR 1.1.0. 
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Data Pretreatment:  

The prepared data was then imported into the SMLR 1.1.0 software, facilitating 
data pretreatment. 

Alpha Value Application:  

The software allowed us to apply alpha values as part of the analysis process, 
which was essential for our study. 

Process Validation:  

We thoroughly validated the data and analysis parameters to ensure accuracy and 
reliability. 

Submission:  

Upon verification, the dataset was submitted for analysis. 

Result Assessment:  

After processing, we assessed the results. In cases where specific descriptors had 
values of zero in tests, we applied a minor adjustment by changing them to a very 
small number, typically 0.00001. 

This data preprocessing and analysis strategy, incorporating SMLR 1.1.0, was a crucial 
step in identifying the most informative descriptors for our ligand analysis. The machine 
learning capabilities of SMLR, combined with our data preparation, allowed us to extract 
valuable insights for our research in drug discovery and computational chemistry [198]. 

QSAR Analysis Using Chemoface 1.65 

In our pursuit of conducting Quantitative Structure-Activity Relationship (QSAR) 
analysis, we employed the Chemoface 1.65 software. The following is a detailed account 
of the procedure undertaken during our QSAR analysis: 

Selecting Descriptors from SMLR Results:  

We initiated the analysis by choosing descriptor rows derived from BindingDB 
data obtained through SMLR. These rows were copied without their headers. 

Data Import:  

In Chemoface, we navigated to 'File' and selected 'Paste X.' This step involved 
pasting the descriptor data obtained from SMLR. 
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Data Integrity Check: 

1.  We thoroughly examined the pasted data to ensure that no 'Non' values were 
present. If any were found, we replaced one of the numbers in the zero column 
with 0.09. 

Part 2: Data Preparation: 4. IC50- Data Selection:  

We returned to the TSV files previously saved from BindingDB. Specifically, we focused 
on the IC50- values for the descriptors selected from the SMLR results. These IC50- 
values were copied and pasted into a new Excel sheet. 

Log Transformation: To prepare the data, we calculated the logarithm (log) of 
the IC50- values for each descriptor using the formula = -log(a1:a21). In cases 
where a log was not computed, we assigned a value of 0.9. 

Data Copy and Paste: The log-transformed IC50- values were then copied and 
pasted into Chemoface under 'File' and 'Paste Y.' 

Part 3: Data Preprocessing: 7. Autoscaling:  

We proceeded to preprocess the data by selecting 'Pretreatment' and applying autoscaling. 

Test Set Selection:  

A test set consisting of 20% of the data was chosen, typically 4 from 20, for 
validation. This selection could be done manually or automatically using the 
software. 

Part 4: Partial Least Square Regression (PLS): 9. PLS Model Run: 

We conducted Partial Least Square Regression (PLS) analysis by running cross-
validation on the data. 

Visualization:  

We generated plots to visualize the analysis results, ensuring they provided 
meaningful insights into the data. 

Model Saving:  

To preserve the model generated, we selected 'File' and 'Save Model.' 

Part 5: Model Validation and Prediction: 

Model Validation:  

Having saved the model, we proceeded to test it by     introducing 
molecules without IC50- values. This allowed us to assess whether these 
molecules aligned with the regression line based on the model. 
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Data Import: 

 In this case, we returned to the SMLR results and copied and pasted the 
descriptors obtained from the ZINC dataset into Chemoface as 'Prediction.' 

Predictions: Using the same criteria, we conducted predictions by clicking on the 
'Predict' option in the last column. 

Our QSAR analysis workflow with Chemoface 1.65 enabled us to derive insights into the 
relationships between chemical structures and biological activities. The preparation and 
analysis of our data provided a foundation for our research in computational chemistry 
and drug discovery, ultimately contributing to the identification of promising candidate 
molecules [199, 200]. 

3D-QSAR Modeling Using Schrodinger-Maestro 2023.4 

In our endeavor to perform 3D-QSAR modeling, we employed Schrodinger-Maestro 
2023.4 software. Here is a detailed description of the steps undertaken during the 3D-
QSAR modeling process: 

Part 1: Ligand Preparation: 

1. Launch Schrodinger software. 

2. Task: Browse to 'Ligprep' and select 'List Structure Form.' 

3. Select 'File' and open the file containing Binding DB ligands. 

4. Set 'OPLS2005' as the force field. 

5. Initiate the process by selecting 'Neutralize.' 

6. Ensure 'Desalt' remains unchecked. 

7. Keep 'Generate Tautomers' unchecked. 

8. Set 'Generate at most' to 10. 

9. Ensure 'Maestro' is selected. 

10. Specify a job name, such as "Ligprep - Name of Protein Binding DB." 

11. Under 'Setting,' ensure the 'Job Setting' is set to yellow. 

12. Execute the job by clicking 'Run.' 

13. Wait for the process to finish and close the small window. 
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Part 2: Pharmacophore Hypothesis Generation: 

1. On the left menu, close the scroll-down menu. 

2. Click to turn it green. 

3. In the 'Ligand' section on the left menu, examine the ligand features, such as rings 
or ions. 

4. Return to the 'Task' and navigate to 'Browse-Phase-Develop Pharmacophore 
Hypothesis.' 

5. Select 'Multiple Ligands' and choose the relevant ligands. 

6. Define 'Show Family' (all). 

7. For 'Select IC50-,' designate 'Active' if the activity is below (1) and 'Inactive' if 
the activity is above (1). 

8. Click 'Apply' and then 'Ok.' 

9. Set 'Hypothesis Settings' to 'Hypothesis should match best (80%).' 

10. Specify the 'Number of Features in the Hypothesis' (4-5). 

11. Define 'Preferred Minimum Number of Features' as 4. 

12. Save the hypothesis. 

13. Examine the feature symbols in the 'Hypothesis Settings,' and modify them if 
necessary. 

14. Ensure 'Generate Conformers' remains unchecked. 

15. Set a job name like "Chase-Pharm-Name of Protein-Pharmacophore Modeling." 

16. Execute the job by clicking 'Run.' 

17. In the main window on the far left, the results will appear. Click the drop-down 
menu (blue circle) to view the pharmacophore model in the main black window. 

18. Right-click on each feature to view its dimensions in X, Y, and Z coordinates, 
and make note of them. 

19. If multiple models are available, click the 'Table' icon in the upper right to access 
a table displaying the survival rates, with the most significant model being the 
one with the highest rate. 
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20. Save your project at the end of this part: 'File-Save Project.' 

Part 3: Molecule Screening: 

1. Task: Navigate to 'Browse-Phase-Ligand and Database Screening.' 

2. Select 'File' and open the molecules you wish to screen (not from Binding DB). 

3. Add the pharmacophore hypothesis previously created. 

4. Under 'Screening Settings,' select 'Conformers,' and use existing conformers. 
Save these settings. 

5. Specify a job name, e.g., "Phase-Screen-Name of Dataset." 

6. Execute the job by clicking 'Run.' 

7. In the main window on the far left, click the molecules that match our model 
(checkmark icon). 

Part 4: Saving Fitting Molecules: 

1. If you reopen the 'Table' icon, you can view the molecules that fit the model in 
the table, and their names are listed in the last column. 

Part 5: ADME Property Analysis: 

1. Browse to 'ADME and Molecule Properties' and select 'Ligand-Based ADME.' 

2. Use 'QikPro' and import the structure file by selecting 'File-Browse the 
Molecules.' 

3. Specify a job name, such as "QikPro File Name." 

4. Execute the job by clicking 'Run.' 

5. Open the 'Table' icon to view the results in the table. 

This 3D-QSAR modeling process with Schrodinger-Maestro 2023.4 software equipped 
us to analyze ligands, generate pharmacophore hypotheses, screen molecules, and 
evaluate ADME properties, contributing significantly to our research in computational 
drug discovery and molecular design [201, 202]. 
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2D-QSAR Modeling of Protein-Ligand Interactions Using BIOVIA 
Studio Visualizer 

2D-QSAR Modeling: 

The protein structure was imported into BIOVIA Studio Visualizer to 
initiate the 2D-QSAR modeling process. 

Docking Model Analysis: 

Docked models obtained from PyRx software were imported into 
BIOVIA Studio Visualizer for in-depth analysis of interactions between 
the protein and ligands. 

Receptor-Ligand Interaction Exploration: 

Receptor-ligand interactions were established within BIOVIA Studio 
Visualizer, providing insights into the binding dynamics of the 
molecular complex. 

Selection of the Best Docking Model: 

The best docking model, characterized by the lowest affinity energy 
and RMSD for ligands, was chosen as the basis for further analysis. 

Receptor-Ligand Interaction Feature Utilization: 

Utilizing the Receptor-Ligand Interaction feature, the chosen protein 
was designated as the receptor, facilitating a detailed examination of 
ligand interactions. 

Incorporation of Hydrogen Bonds: 

Hydrogen bonds were incorporated into the analysis to understand the 
specific molecular interactions influencing binding. 

Amino Acid Identification and Labeling: 

Amino acids involved in the interactions were labeled for 
comprehensive identification and interpretation [203]. 

Comprehensive Molecular Dynamics Simulation Workflow for Ligand-
Protein Interaction Studies 

Topology Generation: 

The topology of ligand was generated using SwissParam, ensuring 
compatibility with the CHARMM all atoms force field [204, 205]. 
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Protein Topology Setup: 

The protein's topology was established using GROMACS utilities with 
the CHARMM27 all-atom force field, incorporating CHARMM22 plus 
CMAP for proteins. The water model was set to TIP 3-point [206]. 

System Configuration: 

The Ligand-protein complex structure was defined within a unit cell box 
under periodic boundary conditions. The box, with a triclinic shape, was 
filled with water, followed by neutralization using Cl- or Na+ counter 
ions [207]. 

Minimization and Equilibration: 

Steepest descent energy minimization was performed, and the system 
underwent equilibration under NVT conditions for 50 ns at 300 K. 
Subsequently, NPT simulation and MD run were conducted for 50 ns  
and 10 ns respectively [208]. 

Constraint Handling and Interaction Treatment: 

Covalent bonds were constrained using the LINCS algorithm, and 
electrostatic interactions were treated via the Particle Mesh Ewald 
(PME) method. Cut-off radii for Coulomb and van der Waals 
interactions were set to 10.0 and 14.0 Å, respectively [209]. 

Trajectory Analysis: 

Trajectories were analyzed for RMSD, RMSF, Rg, the number of H-
bonds, and SASA of the protein-ligand interaction, utilizing GROMACS 
utilities such as <gmx rms=, <gmx rmsf=, <gmx gyrate=, <gmx hbond=, 
and <gmx sasa= cammands [210].  

Ligand-Protein Stability Assessment: 

Ligand-protein stability was assessed by monitoring hydrogen bond 
dynamics over time. XMgrace was employed to prepare graphical 
representations. 

Screening of Ligand Potency: 

To screen the ligand's potency, compounds forming three or more 
hydrogen bonds with the protein were validated through a short 10 ns 
simulation run with consistent parameters [210]. 
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Results: 
AIM 

AIM Assay Results for CD4/CD8 T Cells and HPV-16 Antigens 

The AIM assay results for CD4/CD8 T cells targeting HPV-16 antigens (E6, E7, and L1) 
are presented in this section, providing insights into the immune response following 
vaccination. 

CD4 and CD8 T Cells Activation for HPV-E6 

Comparison between cases (vaccinated) and controls (non-vaccinated), demographic of 
the people participate in the study are shown in Table 2, reveals no significant difference 
in CD4 and CD8 T cell activation for HPV-E6, Figure a, b. 

CD4 and CD8 T Cells Activation for HPV-E7 
Only CD4 T cells show a significant activation for HPV-E7, as indicated by the asterisk 
(*) denoting significance. This observation is supported by statistical analysis: Th-E7 p-
value: 0.039058, CI95%: [-0.26, -0.01], Cohen-d: 2.248314, BF10: 2.96. 

CD4 and CD8 T Cells Activation for HPV-L1:  

The results for HPV-L1 (Figure 1 d, f) exhibit no significant difference in activation 
between CD4 and CD8 T cells. 

 

 
Figure 1 The graph illustrates the frequency of AIM assays for CD4/CD8 T cells responding to HPV antigens 
(E6, E7, and L1). Subfigures (a, b) compare vaccinated cases with non-vaccinated controls, showcasing CD4 
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and CD8 T cell activity for HPV-E6. Similarly, subfigures (c, d) demonstrate CD4 and CD8 T cell activation 
for HPV-EV, while (d, f) present results for HPV-L1. 

Table 1 summarizes the T cells' activation-inducing molecule assay for HPV-16 proteins 
(E6, E7, and L1), providing p-values, confidence intervals (CI95%), Cohen's d effect size, 
and Bayes Factors (BF10). T cells activity and corresponding statistical parameters 
including p-value, confidence interval (CI95%), Cohen's d, and Bayes Factor (BF10) for 
different HPV proteins (Th-E6, CTC-E6, Th-E7, CTC-E7, Th-L1, CTC-L1) are included 
in the table. 

Table 1 T Cells Activity and Statistical Parameters, confidence interval (CI95%), Cohen's d, and Bayes 
Factor (BF10) 

T cells activity p-value CI95% Cohen-d BF10 

Th-E6 0.38 [-0.2, 0.43] 0.699583 0.689 

CTC-E6 0.97 [-0.06, 0.06] 0.023603 0.532 

Th-E7 0.039058 [-0.26, -0.01] 2.248314 2.96 

CTC-E7 0.154991 [-0.12, 0.03] 1.639783 1.285 

Th-L1 0.171323 [-0.13, 0.54] 0.91118 1.056 

CTC-L1 0.1389 [-0.01, 0.07] 1.038533 1.096 

 

However, these findings highlight the selective activation of CD4 T cells in response to 
HPV-E7, underscoring the nuanced T cell responses to specific antigens. Notably, the 
relative T cell activity towards HPV-16 antigens (E6, E7, and L1) did not exhibit a notable 
increase when compared to T cell activity targeting actin.  

Actin served as a reference protein for assessing T cell activation, providing valuable 
insights into the nuanced and selective nature of T cell responses to specific HPV 
antigens. The use of Human Actin peptide as an irrelevant antigen control serves as a 
baseline or reference in the study. By including an irrelevant antigen like actin, 
researchers can distinguish specific immune responses to peptides derived from HPV 
antigens (E6 and E7) from non-specific reactions [211]. 

 

LPA Results for CD4/CD8 T Cells and HPV-16 Antigens 

 

In response to the limitations encountered in the initial Aim, the study strategically shifted 
focus to Lymphocyte Proliferation assay (LPA) analysis. To enhance the scope and depth 
of investigation, the participant pool was expanded to include vaccinated and non-
vaccinated individuals, along with patients in the early stages of cervical cancer. This 
comprehensive approach aimed to discern potential disparities in the proliferation of CD4 
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T helper cells and CD8 T cells among the diverse participant categories. The demographic 
table of the study participants includes three groups: non-vaccinated individuals (non-
vacs), patients in the first stage of HPV-related cervical cancer (patients), and vaccinated 
participants who received Gardasil and Cervarix (vacs). The study conducted descriptive 
analyses of the study population, Table 2.  

Table 2 The demographic table of the participants in this study. n: number, SD: standard deviation 
 

  Grouped by Samples 

 
  Missing Overall non-vacs patient vacs 

       

n   
 

48 14 20 14 

Age, mean (SD)   0 34.9 (10.5) 39.6 (2.5) 43.9 (11.2) 28.6 (1.8) 

Samples, n (%) non-vacs 0 14 (29.2) 14 (100.0) 
  

patient 
 

20 (41.7) 
 

20 (100.0) 
 

vacs 
 

14 (29.2) 
  

14 (100.0) 

Doses, n (%) Zero 0 34 (70.8) 14 (100.0) 20 (100.0) 
 

Two 
 

4 (8.3) 
  

4 (28.6) 

Three 
 

10 (20.8) 
  

10 (71.4) 

Last dose since 
sampling, n (%) 

No-doses 0 35 (72.9) 14 (100.0) 20 (100.0) 1 (7.1) 

six  
 

8 (16.7) 
  

8 (57.1) 

year 
 

5 (10.4) 
  

5 (35.7) 

 

The Tucky statistical method played a pivotal role in facilitating Pairwise comparisons 
between each pair of groups, offering a robust statistical framework for in-depth analysis 
[212]. Concurrently, the assessment of effect size was conducted through the application 
of the standard mean difference, providing valuable insights into the practical 
significance of observed differences. 

CD4 T Cell Activity against E6 Antigen: Comparative Analysis 

The analysis of CD4 T cell activity against the E6 antigen involved an analysis of variance 
(ANOVA) to explore potential differences among different participant groups, non-vacs: 
non vaccinated, vacs: vaccinated participants, and patient means the group of patients 
with first stage of HPV related cervical cancer. The ANOVA table revealed the following 
statistical information: 

• F-Statistic (F): 1.846144 

• p-value (p-unc): 0.182561 
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• Partial Eta Squared (np2): 0.149532 

While the ANOVA did not indicate a statistically significant difference among the groups 
(p-value = 0.182561), further analyses were conducted to explore specific pairwise 
comparisons Figure 2. 

 

 
Figure 2 ANOVA did not indicate a statistically significant difference among the groups for CD4 T cells for 
HPV16-E6. non-vacs: non vaccinated, vacs: vaccinated participants, and patient: first stage HPV related 

cervical cancer patients  

Tukey HSD Post Hoc Test 
The Tukey Honestly Significant Difference (HSD) test was employed for pairwise 
comparisons. The results are summarized below: 

• non-vacs vs. patient: Mean Difference = 0.8974, p-adj = 0.3304, 95% CI [-
0.6533, 2.4481] 

• non-vacs vs. vacs: Mean Difference = -0.1002, p-adj = 0.9879, 95% CI [-1.8001, 
1.5997] 

• patient vs. vacs: Mean Difference = -0.9977, p-adj = 0.2278, 95% CI [-2.475, 
0.4796] 

The p-adj values indicate that none of the pairwise comparisons reached statistical 
significance. 

Effect Size Measures 
To further understand the practical significance of the observed differences, standardized 
mean differences (SMD) were calculated along with 95% confidence intervals (CI): 
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• CD4 activity-E6-vacs-nonvacs: SMD = 0.1565, 95% CI [-0.5878, 0.9009] 

• Minimal Detectable Change (MDC) for CD4 activity-E6-vacs-nonvacs: 
13.944122342898568 

• CD4 activity-E6-vacs-patients: SMD = 0.7271, 95% CI [-0.4897, 1.9438] 

• Overall MDC for CD4 activity-E6-vacs-patients: 9.21917776238874 

• CD4 activity-E6-nonvacs-patients: SMD = 0.6679, 95% CI [-0.4273, 1.7630] 

• Overall MDC for CD4 activity-E6-nonvacs-patients: 11.942026896533873 

These effect size measures provide insights into the magnitude of differences, suggesting 
modest to moderate effects without reaching statistical significance. 

Study Power and Sample Size 

The study's statistical power was calculated at 0.108, indicating a relatively low power to 
detect differences. The required sample size for adequate power was estimated to be 353 
participants. 

CD4 T Cell Activity against E7 Antigen: Comparative Analysis 

The analysis of CD4 T cell activity against the E7 antigen involved an analysis of variance 
(ANOVA) to explore potential differences among different participant groups, non-vacs: 
non vaccinated, vacs: vaccinated participants, and patient means the group of patients 
with first stage of HPV related cervical cancer. The ANOVA table revealed the following 
statistical information: 

• F-Statistic (F): 1.08313 

• p-value (p-unc): 0.35671 

• Partial Eta Squared (np2): 0.093509 

Although the p-value is greater than the conventional significance level (0.05), suggesting 
no statistically significant difference among groups, further analyses were conducted to 
explore specific pairwise comparisons Figure3. 
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Figure 3 ANOVA did not indicate a statistically significant difference among the groups for CD4 T cells for 
HPV16-E7. non-vacs: non vaccinated, vacs: vaccinated participants, and patient: first stage HPV related 

cervical cancer patients 

Tukey HSD Post Hoc Test 

The Tukey Honestly Significant Difference (HSD) test was employed for pairwise 
comparisons. The results are summarized below: 

• non-vacs vs. patient: Mean Difference = -0.6554, p-adj = 0.3887, 95% CI [-
1.8867, 0.5758] 

• non-vacs vs. vacs: Mean Difference = -0.1626, p-adj = 0.9506, 95% CI [-1.5123, 
1.1871] 

• patient vs. vacs: Mean Difference = 0.4928, p-adj = 0.5492, 95% CI [-0.6802, 
1.6658] 

The p-adj values indicate that none of the pairwise comparisons reached statistical 
significance. 

Effect Size Measures 

To further understand the practical significance of the observed differences, standardized 
mean differences (SMD) were calculated along with 95% confidence intervals (CI): 

• CD4 activity-E7-vacs-nonvacs: SMD = 0.1361, 95% CI [-1.3484, 1.6206] 

• CD4 activity-E7-vacs-nonvacs, overall MDC: 13.006690536508211 

• CD4 activity-E7-vacs-patients: SMD = -0.5961, 95% CI [-1.5561, 0.3639] 

• CD4 activity-E7-vacs-patients, Overall MDC: 14.95889165338539 
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• CD4 activity-E7-nonvacs-patients: SMD = -0.7245, 95% CI [-1.9267, 0.4776] 

• CD4 activity-E7-nonvacs-patients, overall MDC: 18.720007849781386 

These effect size measures provide insights into the magnitude of differences, suggesting 
minimal to moderate effects without reaching statistical significance. 

Study Power and Sample Size 

The study's statistical power was calculated at 0.072, indicating a relatively low power to 
detect differences. The required sample size for adequate power was estimated to be 900 
participants. 

CD4 T Cell Activity against L1 Antigen: Comparative Analysis 

The investigation into CD4 T cell activity against the L1 antigen involved an analysis of 
variance (ANOVA) to explore potential differences among participant groups, non-vacs: 
non vaccinated, vacs: vaccinated participants, and patient means the group of patients 
with first stage of HPV related cervical cancer. The ANOVA table revealed the following 
statistical information: 

• F-Statistic (F): 2.577069 

• p-value (p-unc): 0.0998 

• Partial Eta Squared (np2): 0.197068 

Although the p-value is greater than the conventional significance level (0.05), suggesting 
no statistically significant difference among groups, further analyses were conducted to 
explore specific pairwise comparisons Figure 4. 

 
Figure 4 ANOVA did not indicate a statistically significant difference among the groups for CD4 T cells for 
HPV16-L1. non-vacs: non vaccinated, vacs: vaccinated participants, and patient: first stage HPV related 

cervical cancer patients. 
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Tukey HSD Post Hoc Test 

The Tukey Honestly Significant Difference (HSD) test was employed for pairwise 
comparisons. The results are summarized below: 

• non-vacs vs. patient: Mean Difference = 2.9646, p-adj = 0.5462, 95% CI [-
4.0592, 9.9885] 

• non-vacs vs. vacs: Mean Difference = 6.8636, p-adj = 0.0863, 95% CI [-0.836, 
14.5632] 

• patient vs. vacs: Mean Difference = 3.8989, p-adj = 0.3256, 95% CI [-2.7924, 
10.5903] 

The p-adj values indicate that none of the pairwise comparisons reached statistical 
significance. 

Effect Size Measures 

To further understand the practical significance of the observed differences, standardized 
mean differences (SMD) were calculated along with 95% confidence intervals (CI): 

• CD4 activity-L1-vacs-nonvacs: SMD = -1.4829590145261706, 95% CI [-
6.7541, 3.7882] 

• CD4 activity-L1-vacs-nonvacs, overall MDC: 28.26603503928943 

• CD4 activity-L1-vacs-patients: SMD = -0.6263735332142737, 95% CI [-6.9543, 
5.7016] 

• CD4 activity-L1-vacs-patients, overall MDC: 30.513590807077826 

• CD4 activity-L1-nonvacs-patients: SMD = 0.5666329586944453, 95% CI [-
3.7237, 4.857] 

• CD4 activity-L1-nonvacs-patients, overall MDC: 24.62997918527744 

These effect size measures provide insights into the magnitude of differences, suggesting 
moderate to minimal effects without reaching statistical significance. 

Study Power and Sample Size 

The study's statistical power was calculated at 0.152, indicating a relatively low power to 
detect differences. The required sample size for adequate power was estimated to be 204 
participants. 

CD8 T Cell Activity against HPV E6 Antigen: Comparative Analysis 

The examination of CD8 T cell activity against the HPV E6 antigen involved an analysis 
of variance (ANOVA) to assess potential group differences, non-vacs: non vaccinated, 
vacs: vaccinated participants, and patient means the group of patients with first stage of 
HPV related cervical cancer. The ANOVA results are summarized as follows: 
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• F-Statistic (F): 1.131613 

• p-value (p-unc): 0.341404 

• Partial Eta Squared (np2): 0.097288 

The p-value suggests no statistically significant differences among participant groups in 
CD8 T cell activity against the E6 antigen Figure 5. 

 
Figure 5 ANOVA did not indicate a statistically significant difference among the groups for CD8 T cells for 
HPV16-E6. non-vacs: non vaccinated, vacs: vaccinated participants, and patient: first stage HPV related 

cervical cancer patients. 

 
Tukey HSD Post Hoc Test 

To further explore pairwise group differences, the Tukey Honestly Significant Difference 
(HSD) test was conducted. The results are presented below: 

• non-vacs vs. patient: Mean Difference = 2.9646, p-adj = 0.5462, 95% CI [-
4.0592, 9.9885] 

• non-vacs vs. vacs: Mean Difference = 6.8636, p-adj = 0.0863, 95% CI [-0.836, 
14.5632] 

• patient vs. vacs: Mean Difference = 3.8989, p-adj = 0.3256, 95% CI [-2.7924, 
10.5903] 

The p-adj values indicate that none of the pairwise comparisons reached statistical 
significance. 

Effect Size Measures 
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To understand the practical significance of observed differences, standardized mean 
differences (SMD) were calculated along with 95% confidence intervals (CI): 

• CD8 activity-E6-vacs-nonvacs: SMD = 0.0374, 95% CI [-0.2362, 0.3110] 

• CD8 activity-E6-vacs-nonvacs, overall MDC: 4.708838267585426 

• CD8 activity-E6-vacs-patients: SMD = 0.5709, 95% CI [0.2739, 0.8678] 

• CD8 activity-E6-vacs-patients, Overall MDC: 1.9553189701938658 

• CD8 activity-E6-nonvacs-patients: SMD = 0.6317, 95% CI [0.4120, 0.8513] 

• CD8 activity-E6-nonvacs-patients, overall MDC: 4.380901865352174 

These effect size measures suggest small to moderate differences in CD8 T cell activity 
against the E6 antigen, with the most notable difference observed between the vaccinated 
(vacs) and non-vaccinated (non-vacs) participants. 

Study Power and Sample Size 

The study's statistical power was calculated at 0.074, indicating a low power to detect 
differences. The required sample size for adequate power was estimated to be 831 
participants. 

CD8 T Cell Activity against HPV E7 Antigen: Comparative Analysis 

The investigation into CD8 T cell activity against the HPV E7 antigen involved an 
analysis of variance (ANOVA) to examine potential group differences, non-vacs: non 
vaccinated, vacs: vaccinated participants, and patient means the group of patients with 
first stage of HPV related cervical cancer. The ANOVA results are summarized as follows: 

• F-Statistic (F): 0.882503 

• p-value (p-unc): 0.42854 

• Partial Eta Squared (np2): 0.077532 

The p-value suggests no statistically significant differences among participant groups in 
CD8 T cell activity against the E7 antigen Figure 6. 
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Figure 6 ANOVA did not indicate a statistically significant difference among the groups for CD8 T cells for 
HPV16-E7. non-vacs: non vaccinated, vacs: vaccinated participants, and patient: first stage HPV related 

cervical cancer patients. 

 

Tukey HSD Post Hoc Test 

Further exploration of pairwise group differences was conducted using the Tukey 
Honestly Significant Difference (HSD) test. The results are presented below: 

• non-vacs vs. patient: Mean Difference = -0.1236, p-adj = 0.6348, 95% CI [-
0.4629, 0.2156] 

• non-vacs vs. vacs: Mean Difference = 0.0343, p-adj = 0.9707, 95% CI [-0.3376, 
0.4061] 

• patient vs. vacs: Mean Difference = 0.1579, p-adj = 0.4483, 95% CI [-0.1652, 
0.4811] 

The p-adj values indicate that none of the pairwise comparisons reached statistical 
significance. 

Effect Size Measures 

To understand the practical significance of observed differences, standardized mean 
differences (SMD) were calculated along with 95% confidence intervals (CI): 

• CD8 activity-E7-vacs-nonvacs: SMD = -0.1043, 95% CI [-0.4968, 0.2882] 

• CD8 activity-E7-vacs-nonvacs, overall MDC: 3.761121592716725 

• CD8 activity-E7-vacs-patients: SMD = -0.5999, 95% CI [-0.9154, -0.2843] 
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• CD8 activity-E7-vacs-patients, overall MDC: 2.6937371743417673 

• CD8 activity-E7-nonvacs-patients: SMD = -0.5912, 95% CI [-0.8512, -0.3312] 

• CD8 activity-E7-nonvacs-patients, overall MDC: 2.9969096857622155 

These effect size measures suggest small to moderate differences in CD8 T cell activity 
against the E7 antigen, with the most notable difference observed between vaccinated 
(vacs) and non-vaccinated (non-vacs) participants. 

Study Power and Sample Size 

The study's statistical power was calculated at 0.065, indicating a low power to detect 
differences. The required sample size for adequate power was estimated to be 1308 
participants. 

CD8 T Cell Activity against HPV L1 Antigen: Comparative Analysis 

The investigation into CD8 T cell activity against the HPV L1 antigen involved an 
analysis of variance (ANOVA) to explore potential group differences. The ANOVA 
results are summarized as follows: 

• F-Statistic (F): 3.242844 

• p-value (p-unc): 0.059249 

• Partial Eta Squared (np2): 0.235966 

While the p-value is above the conventional significance level (0.05), the effect size (np2) 
indicates a moderate influence of the group variable on CD8 T cell activity against the 
L1 antigen Figure 7. 
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Figure 7 ANOVA did not indicate a statistically significant difference among the groups for CD8 T cells for 
HPV16-L1. non-vacs: non vaccinated, vacs: vaccinated participants, and patient: first stage HPV related 

cervical cancer patients. 

Tukey HSD Post Hoc Test 

To further explore pairwise group differences, the Tukey Honestly Significant Difference 
(HSD) test was conducted. The results are presented below: 

• non-vacs vs. patient: Mean Difference = -0.1236, p-adj = 0.6348, 95% CI [-
0.4629, 0.2156] 

• non-vacs vs. vacs: Mean Difference = 0.0343, p-adj = 0.9707, 95% CI [-0.3376, 
0.4061] 

• patient vs. vacs: Mean Difference = 0.1579, p-adj = 0.4483, 95% CI [-0.1652, 
0.4811] 

The p-adj values indicate that none of the pairwise comparisons reached statistical 
significance. 

Effect Size Measures 

To understand the practical significance of observed differences, standardized mean 
differences (SMD) were calculated along with 95% confidence intervals (CI): 

• CD8 activity-L1-vacs-nonvacs: SMD = -1.2840, 95% CI [-3.9429, 1.3748] 

• CD8 activity-L1-vacs-nonvacs, overall MDC: 19.51745331059357 

• CD8 activity-L1-vacs-patients: SMD = -0.8037, 95% CI [-3.6201, 2.0127] 

• CD8 activity-L1-vacs-patients, overall MDC: 18.126661343984658 
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• CD8 activity-L1-nonvacs-patients: SMD = 0.5847, 95% CI [-0.8495, 2.0190] 

• CD8 activity-L1-nonvacs-patients, overall MDC: 6.425104320015117 

Study Power and Sample Size 

The study's statistical power was calculated at 0.198, suggesting a low-to-moderate power 
to detect differences. The required sample size for a higher power (0.80) was estimated 
to be 143 participants. 

The SMD confidence intervals for CD4 and CD8 activation, comparing non-vaccinated 
vs. vaccinated, patients vs. vaccinated, and non-vaccinated vs. patients, demonstrated 
considerable width. This suggests substantial uncertainty in the effect estimates. Notably, 
none of the intervals conformed to conventional Cohen’s d effect size thresholds, 
including 0.2, 0.5, 0.8, or exceeding 1.4. These findings are visually depicted in Figure 8.  

 

 
Figure 8 The forest plot visually presents the Standardized Mean Differences (SMDs) and their 

corresponding confidence intervals for CD4 and CD8 proliferation. The comparisons include non-
vaccinated vs. vaccinated, patients vs. vaccinated, and non-vaccinated vs. patients. Notably, the forest plot 
illustrates the uncertainty reflected in the wide confidence intervals, indicating variability in the effect size 

estimates based on Cohen's d. This uncertainty underscores the challenges in precisely determining the 
impact of vaccination and patient status on CD4 and CD8 proliferation. 
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Comparative Analysis of T Cell Activity to Actin Across Groups 

In this study, an examination was conducted to assess the relative fold increase in T cell 
activity to actin among different groups. Notably, the investigation revealed a distinctive 
pattern in the fold increase in T cell activity, specifically observed for HPV16-E7 and 
HPV16-L1 for vaccinated participants. 

The results, presented graphically in the accompanying figure, distinctly illustrate the 
enhanced T cell activity concerning these specific antigens. Noteworthy is the observation 
that the fold increase in T cell activity to actin was significant only for HPV16-E7 and 
HPV16-L1, suggesting a targeted and selective response of T cells to these antigens. 

This finding holds significant implications for our understanding of the immune response 
dynamics within the studied groups. The depicted results in the figure serve as a visual 
representation of the observed patterns, providing a clear and concise overview of the 
comparative T cell responses across the specified antigens Figure 9. In this context, the 
hierarchy of fold increases is noteworthy: 

• TH1-L1 exhibits the highest fold increase with 40-fold enhancement. 

• TFH1-L1 follows with a substantial 28-fold increase. 

• CXCR5-TH1-L1 demonstrates a noteworthy 20-fold enhancement. 

• CD4-T-L1 displays a 15-fold increase in activity. 

• TFH exhibits a 13-fold rise in T cell activity. 

• TFH1-E7 shows a significant 9-fold increase. 

• CD8-T-L1 displays an 8-fold enhancement. 

• CXCR5-L1 reveals a 5-fold increase. 

• CXCR5-E7 exhibits a 4-fold enhancement. 

These findings provide a detailed perspective on the specific T cell responses to different 
HPV16 antigens, shedding light on the variations in their respective fold increases. 
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Figure 9 This graph illustrates the fold increase in T cell proliferation specific to HPV16 antigens (E6, E7, 
and L1) in comparison to T cell proliferation for actin. Notably, a discernible fold proliferation increase is 
observed exclusively for T cells targeting E7 and L1 antigens. In this case, TH1-L1 with 40-fold increase 

was the first, TFH1-L1 28-fold, CXCR5-TH1-L1 20-fold, CD4-T-l1 15-fold, TFH 13-fold, TFH1-E7 9-fold, 
CD8-T-L1 8-fold, CXCR5-L1 5-fold, and CXCR5-E7 4-fold.  
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Impact of Vaccination Parameters on T Cell Activity Fold Increase 

The logistic regression analysis comparing vaccinated and non-vaccinated individuals 
reveals that the brand name of the vaccine, whether 9-valent, 4-valent, or 2-valent, does 
not significantly impact the fold increase in T cell activity. The focus shifts to key factors 
influencing T cell activation, as indicated by odds ratios (OR) and associated statistics. 

Logistic Regression Results: 

• Intercept: 

• OR: 9.175791e+29 

• z-value: 0.999801 

• 2.5%: 0.000000 

• 97.5%: inf 

• Doses: 

• OR: 1.310651e+10 

• z-value: 0.999614 

• 2.5%: 0.000000 

• 97.5%: inf 

• Vaccine Name: 

• OR: 9.154724e-11 

• z-value: 0.999867 

• 2.5%: 0.000000 

• 97.5%: inf 

• Age: 

• OR: 4.582071e-01 

• z-value: 0.228859 

• 2.5%: 0.128527 
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• 97.5%: 1.633544 

These results underscore the significance of the intercept, number of vaccine doses, 
vaccine brand name, and age in influencing the activation of T cells. Notably, vaccine 
brand specificity does not contribute to variations in T cell activity fold increase, 
highlighting the robustness of T cell response across different vaccine formulations. 

Immunoinformatics: 
Sequence Alignment and Conserved Areas Across HPV Groups 

The sequence alignment of HPV species across various risk groups4high risk, low risk, 
probably high risk, and unknown risk4reveals limited conserved areas in the E6, E7, and 
L1 regions, Table 3. This table delineates conserved regions within the E6, E7, and L1 
protein sequences for distinct HPV groups. Notably, 'x' designates sequences categorized 
as unknown risk, uppercase letters highlight conserved areas and amino acids, and 
lowercase letters signify inconsistencies observed among aligned protein sequences. 

 

Table 3 Conserved Regions and Variabilities in E6, E7, and L1 Protein Sequences Across HPV Groups. 'x' 
denotes sequences categorized as unknown risk, uppercase letters signify conserved areas and amino acids, 

while lowercase letters indicate inconsistencies observed among aligned protein sequences. 

Antigens Preserved sequences  

E6 MxqxxxxxxRxxxexxxxxxxxxxxxxLxxxxxxxkxxxxxxxxxxfxxxxIVxxxxNxxxxxxxxxxx

xxxxxxxxxYxYxxxxxxxxxxxxxxxxxxxLxxxxxxxxxxxxxKEKxxxxxKRrxxxxxxxxxxx

xxxxxxxxxxxqxxxxxxxxxxxxxxxxxxxxxxxxxx 

E7 MHGxxpTLKDIVLDLQPExxxxxxxxQxxDSSEEEDEDdxxxxxxxxxQxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxExLxxxxxILxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxx 

L1 MALxxxSxxxVYLPPxxVSxVVSTDEYVxRTxIYYxAxSSRLLxVxHPYxxVxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxD

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxVxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxYxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxTxS

xxxxxxxSxxSxxxxxxxSxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxNxxxxxxxxxxxxx

xxxxxxxxxxxxxxSxxxxxQxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxKxxASSSxxxxxxxxKxKxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
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Phylogenetic Analysis of HPV Species without Antigen-Based 
Categorization 

Protein sequences for distinct groups of HPV species (high risk, low risk, probably high 
risk, and unknown risk) were sourced from NCBI, Uniprot, and PaVe databases. After 
analysis, a consensus-based approach identified unique sequences for E6, E7, and L1. 
Phylogenetic trees were then constructed for each protein across all species collectively, 
as illustrated in the accompanying figure 10. 

 

 

Figure 10 Phylogenetic analysis encompassing all HPV species without subgroup classification. a) 
Phylogenetic tree based on E6 antigen, b) Phylogenetic tree based on E7 antigen, c) Phylogenetic tree 
based on L1 antigen.  

Phylogenetic Analysis of High-Risk HPV Clades Based on E6, E7, and 
L1 Antigens 

Conducting a phylogenetic analysis on high-risk HPV clades utilizing E6, E7, and L1 
antigens elucidates the evolutionary relationships among these high-risk species. The 
resulting figure illustrates the distinct clades, providing valuable insights into the 
grouping of HPV species with shared genetic characteristics, Figure 11. 

 

 

Figure 11 Phylogenetic analysis depicting high-risk HPV species using E6, E7, and L1 antigens. a) 
Phylogenetic tree based on E6, b) Phylogenetic tree based on E7, c) Phylogenetic tree based on L1. HR: 

High Risk. 
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Phylogenetic Analysis of Low-Risk HPV Clades Based on E6, E7, and 
L1 Antigens 

Conducting a phylogenetic analysis on low-risk HPV clades using E6, E7, and L1 
antigens unveils the relationships among these species. The resulting figure illustrates the 
distinct clades within the low-risk group, shedding light on which HPV species share a 
common evolutionary lineage, Figure 12. 

 

 

Figure 12 Phylogenetic tree analysis depicting the low-risk HPV clades using E6, E7, and L1 antigens. 
a) Phylogenetic tree based on E6, b) Phylogenetic tree based on E7, c) Phylogenetic tree based on L1. LR: 

low risk 

Phylogenetic Analysis of Likely High-Risk HPV Species Based on E7 
and L1 Antigens 

Classifying HPV species into the high-risk group elucidates the shared characteristics 
among them, as depicted in the accompanying figure. Notably, the phylogenetic tree 
generated for E6 within this high-risk group demonstrates distinct differences between 
each subgroup, indicating diverse evolutionary paths, Figure 13. 

 

 

Figure 13 the phylogenetic tree analysis explores potentially high-risk HPV clades through examination of 
E7 and L1 antigens. PHR: potentially high risk 
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Phylogenetic Analysis of Unknown-Risk HPV Species Using E7 and L1 
Antigens 

Unfortunately, conducting a phylogenetic tree analysis within this group proved 
challenging due to the substantial diversity present. The intricate genetic variations 
among the unknown-risk HPV species, particularly in the E7 and L1 antigens, hindered 
the establishment of a meaningful phylogenetic tree. The extensive diversity observed in 
this set of HPV species posed a significant obstacle, preventing a conclusive phylogenetic 
analysis. 

Exploration of High-Risk HPV Antigens (HPV-16 and HPV-18) 

Given the significance of the high-risk HPV group and the observed phylogenetic 
inconsistencies in other groups, our focus shifted towards investigating selected antigens 
in HPV-16 and HPV-18. These chosen antigens are representative of two distinct classes 
within the high-risk HPV group, a critical consideration, particularly for classical 
vaccines primarily composed of the HPV-L1 antigen. 

To initiate our analysis, we systematically extracted the sequences corresponding to E6, 
E7, and L1 for both HPV-16 and HPV-18. This extraction process was carried out 
meticulously using reliable databases, as detailed in Table 4. 
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Table 4 The examination of protein sequences for the HPV:16,18 E6, E7, and L1 antigens through 

comprehensive searches on NCBI, UniProt, and PaVe databases.. 

Species Antigen  Database  ID 

HPV16 E6 NCBI AYV61474.1 

HPV16 E6 Uniprot P03126 

HPV16 E6 PaVe HPV16-E6 

HPV16 E7 NCBI 2002324A 

HPV16 E7 Uniprot P03129 

HPV16 E7 PaVe HPV16-E7 

HPV16 L1 NCBI NP_041332.2 

HPV16 L1 Uniprot P03101 

HPV16 L1 PaVe HPV16-L1 

HPV18 E6 NCBI Non 

HPV18 E6 Uniprot A0A7D5IFD8 

HPV18 E6 PaVe HPV18-E6 

HPV18 E7 NCBI Non 

HPV18 E7 Uniprot A0A291PQC6 

HPV18 E7 PaVe HPV18-E7 

HPV18 L1 NCBI AMJ21969.1 

HPV18 L1 Uniprot Q5G240 

HPV18 L1 PaVe HPV18-L1 

https://www.ncbi.nlm.nih.gov/protein/AYV61474.1?report=fasta
https://www.uniprot.org/uniprotkb/P03126/entry#sequences
https://pave.niaid.nih.gov/locus_viewer?seq_id=HPV16REF&feature_id=HPV16_E6
https://www.ncbi.nlm.nih.gov/protein/2002324A?report=fasta
https://www.uniprot.org/uniprotkb/P03129/entry
https://pave.niaid.nih.gov/locus_viewer?seq_id=HPV16REF&feature_id=HPV16_E7
https://www.ncbi.nlm.nih.gov/protein/NP_041332.2?report=fasta
https://www.uniprot.org/uniprotkb/P03101/entry
https://pave.niaid.nih.gov/locus_viewer?seq_id=HPV16REF&feature_id=HPV16_L1
https://www.uniprot.org/uniprotkb/A0A7D5IFD8/entry#sequences
https://pave.niaid.nih.gov/locus_viewer?seq_id=HPV18REF&feature_id=HPV18_E6
https://www.uniprot.org/uniprotkb/A0A291PQC6/entry#sequences
https://pave.niaid.nih.gov/locus_viewer?seq_id=HPV18REF&feature_id=HPV18_E7
https://www.ncbi.nlm.nih.gov/protein/AMJ21969.1?report=fasta
https://www.uniprot.org/uniprotkb/Q5G240/entry#sequences
https://pave.niaid.nih.gov/locus_viewer?seq_id=HPV18REF&feature_id=HPV18_L1
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In the sequence alignment of Human Papillomavirus (HPV) types 16 and 18, distinct 
conserved regions are observed within the genetic sequences of the E6, E7, and L1 
antigens, as depicted in the accompanying Figure 14. This alignment highlights the 
shared elements between the two HPV types, offering valuable insights into the 
preserved areas of these critical antigens. 

The conserved regions identified in the sequence alignment are indicative of potential 
functional significance, suggesting common structural or functional motifs crucial for 
the biological activities of E6, E7, and L1, Figure 14. 
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Figure 14 a comprehensive multiple alignment is presented, depicting the genetic sequences of Human 
Papillomavirus types 16 (HPV16) and 18 (HPV18) for three crucial genes: a) E6, b) E7, and c) L1. The 

alignment provides insights into the similarities and differences in the nucleotide sequences of these genes 
between the two HPV types. 

 

Physicochemical and Secondary Structural Analysis of Target HPV 
antigens 

After obtaining sequences from databases, we conducted a thorough analysis of the 
physicochemical and secondary structural properties of HPV proteins, using Expacy 
ProtParam [155], as outlined in Table 3. 

b 

c 

a 

https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
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Theoretical pI (Isoelectric Point) is the pH at which the protein carries no net electrical 
charge, representing its neutral state [213]. For HPV16-L1 and HPV18-L1, the theoretical 
pI is 8.55 and 8.52, respectively. Instability Index is a predictor of protein stability. Values 
above 40 generally indicate an unstable protein [214]. HPV16-L1 has an instability index 
of 36.57, while HPV18-L1 has an index of 49. Estimated Half-life (Mammalian 
Reticulocytes) is the time it takes for half of the protein to be degraded in mammalian 
reticulocyte cells, expressed in hours [215]. Both HPV16-L1 and HPV18-L1 have an 
estimated half-life of 30 hours. Aliphatic Index represents the relative volume occupied 
by aliphatic side chains, indicating thermostability [216]. HPV16-L1 and HPV18-L1 
exhibit aliphatic indices of 74.32 and 70.16, respectively. GRAVY (Grand Average of 
Hydropathicity) is A measure of the protein's hydrophobicity [217]. Negative values 
suggest hydrophilicity, while positive values indicate hydrophobicity. HPV16-L1 and 
HPV18-L1 have GRAVY values of -0.35 and -0.43, respectively. 

These physicochemical properties provide insights into the stability, degradation, and 
hydrophobicity of the major capsid proteins or late proteins (L1) of HPV16 and HPV18, 
crucial information for understanding their functional characteristics, Table 5. 

Table 5 Physicochemical Properties of Structural Proteins L1 and E for HPV16 and HPV18 (Analyzed with 
ProtPram tool) 

Proteins Molecular 

weight 

Theoretical 

pI 

Instability 

index 

Estimated 

half-life 

Aliphatic 

index 

GRAVY 

 HPV16-L1 56308.21 8.55 36.57 30 hours 74.32 -0.35 

 HPV18-L1 56506.94 8.52 49 30 hours 70.16 -0.43 

 HPV16-E7 11022.32 4.2 63 30 hours 78.57 -0.41 

 HPV16-E6 18334.27 9.01 73.25 30 hours 70.99 -0.73 

HPV18-E7 11995.57 4.7 72.93 30 hours 86.38 -0.38 

 

Antigenicity Assessment 

Antigenicity assessment was conducted utilizing the Vaxijen 2.0 server [114] for 
HPV18 and HPV 16, specifically targeting the E7, E6, and L1 proteins. The outcomes 
of this analysis are presented in the accompanying Table 6. 

 

 

https://web.expasy.org/protparam/
https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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Table 6 Analysis of HPV 18 and 16 Antigenicity with VaxiJen 2.0 

 Antigens   Protein ID (PaVE) Size Antigenicity 

HPV-16-E6 HPV-16-E6 151 0.6733 

HPV-16-E7 HPV-16-E7 56 0.5765 

HPV-16-L1 HPV-16-L1 505 0.52 

HPV-18-E6 HPV-18-E6 158 0.54 

HPV-18-E7 HPV-18-E7 105 0.49 

HPV-18-L1 HPV-18-L1 507 0.52 

 

Secondary Structure Prediction: 

The protein's secondary structure analysis provides a lucid depiction of potential 
secondary structural elements, enhancing our understanding of protein structure (see 
Figure 15). This analysis aids in unraveling the intricacies of the protein's structural 
composition. 

https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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Figure 15 the SOPMA tool [156] illustrates the distribution of structural elements, including the percentage 
of Alpha helix, Beta sheets or Extended strands, Beta turn, and Random coil, in the target proteins. 

Specifically, panels (a) to (f) represent the results for HPV16-E6, HPV16-E7, HPV18-E6, HPV18-E7, 
HPV16-L1, and HPV18-L1, respectively. 

https://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
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Homology Modeling and Structural Validation 

Phyre2 generated five models for each protein, from which the best model with 100% 
confidence and over 90% coverage was selected, Figure 16. The structural validation 
involved testing all selected models using the Ramachandran plot. Detailed results are 
presented in the accompanying Table 7. 

 

Figure 16 Illustrates the homology modeling process conducted with the Phyre2 tool. The models for (a) 
HPV16-E6, (b) HPV16-E7, and (c) HPV16-L1 were generated using the PDB ID numbers 4GIZ, 2EWL, 
and 3J6R, respectively. Similarly, models for (d) HPV18-E6, (e) HPV18-E7, and (f) HPV18-L1 were 
created based on the PDB ID numbers 6SLM, 2EWL, and 2R5I. 

 

 

 

 

 

 

 

https://www.rcsb.org/structure/4GIZ
https://www.rcsb.org/structure/2EWL
https://www.rcsb.org/structure/3J6R
https://www.rcsb.org/structure/6SLM
https://www.rcsb.org/structure/2EWL
https://www.rcsb.org/structure/2R5I
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Table 7 presents models generated with Phyre2, which underwent refinement and analysis through the 
Ramachandran plot. 

Protein Template Ramachandran Plot 

Favored region Allowed region Disallowed region 

HPV-16-E6 4GIZ 92.80% 7.20% 0.00% 

HPV-16-E7 2EWL 72.5% 25.50% 2.00% 

HPV-16-L1 3J6R 81.10% 17.90% 1.1% 

HPV-18-E6 6SLM 90.80% 9.20% 0.00% 

HPV-18-E7 2EWL 72.5% 25.50% 2.00% 

HPV-18-L1 2R5I 80.2% 19.6% 0.00% 

 

Prediction of T Cell Epitopes for HPV16 

Utilizing the IEDB [118] and NetCell 1.2 [218] servers with a modeled version of 
HPV16-E6, E7, and L1, epitopes were identified for both T helper cells and T cytotoxic 
cells. A systematic screening process was implemented, evaluating each epitope for 
antigenicity, duplications, and immunogenicity for both types of T cells. The 
comprehensive results of this analysis are depicted in Figure. 

Prediction of T Cell Epitopes for HPV18 

A parallel approach was undertaken for HPV18-E6, E7, and L1 refined models. Epitopes 
for both T helper cells and cytotoxic T cells (CTCs) were meticulously extracted and 
subjected to a stepwise filtration process. This method aimed to attain the optimal number 
of epitopes suitable for inclusion in the vaccine, as illustrated in Figure 17. 

 

https://www.rcsb.org/structure/4GIZ
https://www.rcsb.org/structure/2EWL
https://www.rcsb.org/structure/3J6R
https://www.rcsb.org/structure/6SLM
https://www.rcsb.org/structure/2EWL
https://www.rcsb.org/structure/2R5I
https://www.iedb.org/
https://services.healthtech.dtu.dk/services/NetCTL-1.2/
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Figure 17 illustrates the epitope selection process for potential inclusion in our vaccine. (a) presents the 
flowchart detailing epitope selection for HPV16, and (b) demonstrates a similar process for HPV18. 

Initially, candidate epitopes for Th cells and CTCs underwent filtration based on scores provided by IEDB 
and NetCell. Subsequently, the process involved checking for epitope duplication and removing any 
duplicates. Finally, the selected epitopes were assessed for stability of structure, antigenicity, and 

allergenicity. 

https://www.iedb.org/
https://services.healthtech.dtu.dk/services/NetCTL-1.2/
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Epitopes meeting criteria for duplication, antigenicity, allergenicity, and structural 
stability were incorporated into the prospective vaccine. Subsequently, the population 
coverage, based on IEDB-Population Coverage , assessment revealed that all selected 
epitopes exhibited coverage exceeding 90%. Detailed information on these epitopes is 
presented in Table 8. 

Table 8 The epitopes that successfully met the filtering criteria are presented for both HPV16 and HPV18, 
specifically targeting Th cells and cytotoxic T cells (Tc). 

HPV types T cytotoxic epitopes T-helper epitopes 

HPV-16 SYSLYGTTL(E6) 

SAYAANAGV(L1) 

TTLEQQYNK(E6) 

YGTTLEQQY(E6) 

KKQRFHNIRGRWTGR(E6) 

LDDTENASAYAANAG(L1) 

SYSLYGTTLEQQYNK(E6) 

DTENASAYAANAGVD(L1) 

HPV-18 KPLGAVALK(E6) 

AVNYGVTVL(E6) 

LTNKGISDL(E6) 

SAVNYGVTV(E6) 

DTDYSIAEA(E6) 

DYSIAEAAF(E6) 

AGAKAGLTF(E6) 

GAKAGLTFL(E6) 

QTVDAALAA(E6) 

ALAAAQTNA(E6) 

GVTVLPTFK(E6) 

NADTDYSIA(E6) 

GRQTVDAAL(E6) 

 

KDKPLGAVALKSYEE(E6) 

LGAVALKSYEEELAK(E6) 

SLYIKGTGMRASPGS(L1) 

PQSLYIKGTGMRASP(L1) 

http://tools.iedb.org/population/
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Subsequently, the identified epitopes underwent mapping onto the E6 and L1 proteins of 
both HPV16 and HPV18. Notably, during this process, it was observed that none of the 
E7 epitopes met the stringent criteria to qualify for inclusion in the vaccine formulation. 

To visualize the mapped antigens, Chimera, a molecular visualization tool, was 
employed. The results of this mapping process are graphically depicted in Figure 18. This 
visual representation aids in comprehending the spatial distribution and interaction of the 
identified epitopes on the respective HPV proteins. 
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Figure 18 Illustrates the mapped epitopes for Cytotoxic T Cells (CTCs) and T helper cells (Th cells) on 

HPV16 and HPV18, focusing on E6 and L1 proteins. The specific mappings are as follows: a) CTCs 
epitopes mapped on HPV16-E6, b) Th cells epitopes mapped on HPV16-E6, c) CTCs epitopes mapped on 
HPV16-L1, d) Th cells epitopes mapped on HPV16-L, e) CTCs epitopes mapped on HPV18-E6, f) Th cells 
epitopes mapped on HPV18-E6, g) CTCs epitopes mapped on HPV18-L1, h) Th cells epitopes mapped on 
HPV18-L1. This comprehensive depiction provides insights into the antigenic regions recognized by CTCs 

and Th cells for each specific HPV protein, aiding in the understanding of immune responses. 
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B cell-Stimulating Epitopes 

Linear and conformational epitopes were extracted from HPV16 and HPV18, specifically 
from E6, E7, and L1 proteins. The process involved identifying two types of epitopes 
capable of stimulating B cells: linear and conformational. These epitopes play a crucial 
role in triggering antibody production within B cells. Detailed information on the 
extracted linear and conformational epitopes can be found in Tables 9, 9.1, 10 and 10.1, 
respectively. Additionally, the spatial distribution of conformational epitopes on HPV 
antigens is visually represented in Figure 20. 

Table 9 Displays Linear B cell epitopes along with their respective source antigens 

No Peptides Origin 

1 LSPEEKQRHLD HPV16-E6 

2 GLKAKPKFTLG HPV16-L1 

3 LEDGDM HPV18-L1 

4 PQVAAT HPV18-E6 

5 YAFKYENGKYDIKDVGVDNA HPV18-E6 

6 TLQDTKCE HPV18-L1 

7 TPAAAFQDK HPV18-E6 

8 RAGTMGDTVPQSLYIKGTGMRASP HPV18-L1 

9 LQMSADPY HPV18-L1 

10 LTDEGLEAVNKDKPLGAVALKSYEEELAKDP HPV18-E6 

11 YRHYCYSLYGTTLEQQYNKPLCDL HPV16-E6 

12 FGFPDTSFYNPDT HPV16-L1 

13 STILEDWNFGLQPPPGGTLEDTYRFVTS HPV16-L1 
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Table 9.1 Continue with displays Linear B cell epitopes along with their respective source antigens 

1 TSETTYKNTNFKEYLRHGEE HPV16-L1 

2 YIKMVSEPY HPV16-L1 

3 QKGEIMPNIPQMSA HPV18-E6 

4 DLKEKFSLDLDQYPL HPV18-L1 

5 FYNKLDDTESSHAATSNVSEDVR HPV18-L1 

6 PVPVSKVVSTDEYV HPV16-L1 

7 WRRPRTETQVGSSGAAESSELTLQEL HPV18-E6 

8 LEDWNNKDPYDKL HPV18-L1 

9 HMNADTDYSI HPV18-E6 
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Table 10 Displays conformational B cell epitopes along with their respective source antigens. 

No Peptides Origin 

1 PTFKGQP HPV18-E6 

2 KPLSPEEKQRHLD HPV16-E6 

3 KYENGKYDIKDV HPV18-E6 

4 AEITPAAAFQDKLYP HPV18-E6 

5 PLSPEEKQRHLDKKKRFHNIGGRWTGRCIACWRRPRTETQVGSSGAAESSE HPV18-E6 

6 KGTACKSRPLSQGDCPPLE HPV18-L1 

7 LEDWNFGLQPPPGGTLEDTYRFVTSQAIACQKHTPPAPKE HPV16-L1 

8 VCTKCLRFYSKVSEFRWYRYSVYGTTLEKLTNKGIS HPV18-E6 

9 GSPCTQVAVQPGDCPP HPV16-L1 

10 FSADLDQFPLGRKFLLQLGLKAKPKFTLGKRK HPV16-L1 

11 PNKFGFPDTSFYNPDTQ HPV16-L1 

12 MSLCAAISTSETTYKNTNFKEYLR HPV16-L1 

13 LEIPYDELRLNCVYCKGQLTETEVLD HPV18-E6 

14 HPLLNKLDDTENASAYAANAGVDNRECI HPV16-L1 

15 IDTSAVNY HPV18-E6 

16 SGRQTVDA HPV18-E6 

17 NKLDDTESSHAATSNVSEDVRDN HPV18-L1 

18 AAFNKGETA HPV18-E6 

19 RVPAGGGNKQDIP HPV18-L1 
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Table 10.1 Continue with displays conformational B cell epitopes along with their respective source 
antigens. 

20 SMVTSD HPV16-L1 

21 GSIVTSD HPV18-L1 

22 ATVYLPPVPVSKVVSTDEYVARTNIYYH HPV16-L1 

23 YNKDLLPNPPKTWEEIPALDKELKAKGKSA HPV18-E6 
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Figure 19 This figure illustrates the organization of conformational B cells epitopes for HPV16 and HPV18 
based on the epitope counts provided in Table X. 
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Molecular docking of epitopes with MHC-I and MHC-II 

After the epitopes successfully cleared all filters and demonstrated overlaps with B cell 
epitopes, the 3D structures of the peptides obtained from the PEPFOLD 4 server [126] 
underwent docking with HLA-A, HLA-DBR, and HLA-DQ, guided by their recognition 
by T cytotoxic or T helper cells. The outcomes of these docking interactions are visually 
represented in the accompanying Figure 20. 

https://mobyle2.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD4
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Figure 20 Peptides, having cleared filters and demonstrated overlaps with B cell epitopes, underwent 
docking with HLA-A, HLA-DRB, and HLA-DQ 

Vaccine construction 

The vaccine was developed by incorporating the CpG adjuvant and employing EAAAK, 
AAY, and GPGPG linkers. Detailed physicochemical characteristics of the vaccine are 
presented in the accompanying Table 11. 

Table 11 Physicochemical structure of designed multiepitope vaccine. 

Proteins Molecular 

weight 

 

Theoretical pI 

 

Instability 

index 

 

Estimated 

half-life 

(mammalian 
reticulocytes) 

Aliphatic 

index 

 

GRAVY 

 Vaccine 38798.99 5.93 20.37 7.2 hours 66.55 -0.107 

  

According to AllerCatPro [125] analysis, the structure of the vaccine is non-allergenic. 
Experimental assessments were conducted, including tests for gluten, IgE production, 
similarity to common allergens, and autoimmune-stimulating allergens. VaxiJen 2.0 
yielded a predicted score of 0.64, indicating the vaccine's antigenic nature. The 
vaccine's sequence is as follows:  

<TCCATGGACGTTCCTGAGCGTTEAAAKSYSLYGTTLAAYSAYAANAGVAAYTTLEQQYNKAAYYGTTLEQ
QYAAYKPLGAVALKAAYAVNYGVTVLAAYLTNKGISDLAAYSAVNYGVTVAAYDTDYSIAEAAAYDYSIAE
AAFAAYAGAKAGLTFAAYGAKAGLTFLAAYQTVDAALAAAAYALAAAQTNAAAYGVTVLPTFKAAYNADT
DYSIAAAYGRQTVDAALGPGPGKKQRFHNIRGRWTGRGPGPGLDDTENASAYAANAGGPGPGSYSLYGTTLE
QQYNKGPGPGDTENASAYAANAGVDGPGPGKDKPLGAVALKSYEEGPGPGLGAVALKSYEEELAKGPGPGSL
YIKGTGMRASPGSGPGPGPQSLYIKGTGMRASP= 

The schematic representation of the designed vaccine, along with its physicochemical 
properties, is illustrated in Figure 21. 

https://allercatpro.bii.a-star.edu.sg/allergy/index.html
https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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Figure 21 The vaccine was constructed utilizing EAAAK, AAY, and GPGPG linkers between CpG, CTCs, 
and Th cell epitopes. a) Schematic representation of the protein structure. b) Three-dimensional structure 

of the protein obtained from SwissModel. c) The Z score of the protein, positioning it within the range 
observed for NMR proteins. d) The Ramachandran plot depicting the protein's conformational quality. 
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Linear and conformational B cells epitopes of the vaccine 

Linear and conformational epitopes of the vaccine were identified through the IEDB 
server. A total of 13 linear epitopes have been delineated and are detailed in the 
accompanying Table 12. Additionally, the presence of two discontinuous or 
conformational B-cell epitopes is illustrated in the corresponding Figure 22. 

Table 12 Predicted Linear epitopes by IEDB for vaccine 

Linear B cells epitopes Score 

GCGTTEAAAK (27) 0.53 

QYNKAAYY (64) 0.513 

TLEQQYAAY (75) 0.519 

IS (106) 0.515 

YSI (129) 0.504 

A (192) 0.505 

AAYNADT (211) 0.527 

GRQTVDAALGPGPGKKQRFHNIRGRWTGRGPGPGLDDTENASAYAANAGGPGPGS 
(274) 

0.590 

EQQYNKGPGPGDTENASAYAANAGVDGPGPGKDKPL (318) 0.615 

KSYEEGPGP (332) 0.517 

EEELAKGPGP (352) 0.604 

GTGMRASPGSGPGPGP (374) 0.620 

KGTGMR (385) 0.520 
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Figure 22 Two conformational or discontinuous B cells epitopes have been predicted using the IEDB-
Ellipro tool. 

 

Interaction of TLR9 with designed vaccine 

The interaction between TLR9 and the designed vaccine was investigated by first 
constructing the TLR9 using the Swiss-Model server (SwissModel) [172]. Subsequently, 
the HDOCK server (HDOCK) [170, 171] was employed to perform docking simulations 
between the vaccine and TLR9. Ten models were generated, and, consistent with 
HDOCK server protocols, the model displaying the lowest energy, recorded at -232.47 
kcal/mol, was chosen among them. The outcomes of this interaction are visually 
presented in the accompanying Figure 23. 

 

https://swissmodel.expasy.org/
http://hdock.phys.hust.edu.cn/
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Figure 23 The docking model depicting the interaction between the vaccine and TLR9 was generated using 
the HDOCK server. In the visual representation, TLR9 is color-coded in a rainbow spectrum, while the 

vaccine is highlighted in yellow. 

 

In silico coloning  

Following the reverse translation of the vaccine into a DNA sequence using EMBOSS 
Backtranseq (EMBOSS Backtranseq) [219]: 

<ACCTGCTGCGCCACCGGCGGCGCCTGCGGCACCACCTGCTGCACCGGCGCCGGCTGCGGC 

ACCACCGAGGCCGCCGCCAAGAGCTACAGCCTGTACGGCACCACCCTGGCCGCCTACAGC 

GCCTACGCCGCCAACGCCGGCGTGGCCGCCTACACCACCCTGGAGCAGCAGTACAACAAG 

GCCGCCTACTACGGCACCACCCTGGAGCAGCAGTACGCCGCCTACAAGCCCCTGGGCGCC 

GTGGCCCTGAAGGCCGCCTACGCCGTGAACTACGGCGTGACCGTGCTGGCCGCCTACCTG 

ACCAACAAGGGCATCAGCGACCTGGCCGCCTACAGCGCCGTGAACTACGGCGTGACCGTG 

GCCGCCTACGACACCGACTACAGCATCGCCGAGGCCGCCGCCTACGACTACAGCATCGCC 

GAGGCCGCCTTCGCCGCCTACGCCGGCGCCAAGGCCGGCCTGACCTTCGCCGCCTACGGC 

GCCAAGGCCGGCCTGACCTTCCTGGCCGCCTACCAGACCGTGGACGCCGCCCTGGCCGCC 

GCCGCCTACGCCCTGGCCGCCGCCCAGACCAACGCCGCCGCCTACGGCGTGACCGTGCTG 

CCCACCTTCAAGGCCGCCTACAACGCCGACACCGACTACAGCATCGCCGCCGCCTACGGC 

https://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobId=emboss_backtranseq-I20231114-164519-0055-12929119-p1m
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AGGCAGACCGTGGACGCCGCCCTGGGCCCCGGCCCCGGCAAGAAGCAGAGGTTCCACAAC 

ATCAGGGGCAGGTGGACCGGCAGGGGCCCCGGCCCCGGCCTGGACGACACCGAGAACGCC 

AGCGCCTACGCCGCCAACGCCGGCGGCCCCGGCCCCGGCAGCTACAGCCTGTACGGCACC 

ACCCTGGAGCAGCAGTACAACAAGGGCCCCGGCCCCGGCGACACCGAGAACGCCAGCGCC 

TACGCCGCCAACGCCGGCGTGGACGGCCCCGGCCCCGGCAAGGACAAGCCCCTGGGCGCC 

GTGGCCCTGAAGAGCTACGAGGAGGGCCCCGGCCCCGGCCTGGGCGCCGTGGCCCTGAAG 

AGCTACGAGGAGGAGCTGGCCAAGGGCCCCGGCCCCGGCAGCCTGTACATCAAGGGCACC 

GGCATGAGGGCCAGCCCCGGCAGCGGCCCCGGCCCCGGCCCCCAGAGCCTGTACATCAAG 

GGCACCGGCATGAGGGCCAGCCCC= 

The Java Codon Adaptation tool (JCat) [175] was utilized to tailor the vaccine code for 
production in the bacterial system, specifically E. coli (K12). Post-optimization, the 
vaccine DNA structure comprised 1164 nucleotides, exhibiting a GC content of 56.01%. 
The Codon Adaptation Index (CAI) for the improved sequence reached 1.0. 
Subsequently, the pET28a(+) vector was chosen from the Addgene server (addgene) 
[220], imported into the Benchling server (Benchling), and the plasmid design was 
finalized, Figure 24. 

 

 

https://www.jcat.de/
https://www.addgene.org/
https://www.benchling.com/
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Figure 24 The multiepitope HPV vaccine was integrated into the pET28a(+) plasmid, denoted as "HPV-
Vaccine." The synthesis of the vaccine utilized the T7 promoter and terminator sequences. The termination 
codon TGA marked the conclusion of the coding sequence. Additionally, the Kozak sequence, represented 

by GCCGCCACCAUGG, played a crucial role in optimizing translational initiation. 

 

Immune Simulations of Constructed Vaccine  

The immune simulations of the vaccine construct revealed that a three-injection regimen 
effectively elicited diverse immunoglobulins. The primary response manifested as an 
elevated IgM level, while the secondary response exhibited increased IgM + IgG, 
IgG1 + IgG2, IgG1, IgG2, and B-cell populations. Subsequent exposures led to a decline 
in antigen levels. Both CTL and HTL T cell populations exhibited heightened responses, 
indicating the immunogenicity of T cell epitopes within the vaccine. Macrophage activity 
increased with each exposure, and NK cell activity remained consistent. Notably, 
subsequent exposures resulted in significant increases in IFN-´, IL-10, IL-23, and IL-12 
levels. 

Upon 12 repeated exposures at regular intervals, the antigen levels reached a similar peak, 
accompanied by a remarkable increase in IgM + IgG, IgG1 + IgG2 levels. Persistent 
elevation in B and T cell memory was observed throughout the exposure, while IFN-´ 
levels remained consistently high from the first to the last exposure. These findings 
underscore the vaccine's ability to generate a robust immune response in short exposures, 
with continued enhancement upon subsequent repeated exposures, Figure 25. 
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Figure 25 In Silico Simulation of Immune Response Using Vaccine as an Antigen. The in silico simulation 
of immune response following three subsequent injections of the vaccine, used as an antigen, revealed 

multifaceted dynamics: Antigen and Immunoglobins a) the simulation depicted variations in antigen levels 
and immunoglobulin responses, providing insights into the vaccine's impact on humoral immunity. B-cell 

Population.  b) The B-cell population exhibited dynamic changes, highlighting the vaccine's ability to 
modulate B-cell responses crucial for adaptive immunity. B-cell Population per State. c) Detailed analysis 

of B-cell population states provided nuanced information about the vaccine-induced states of B cells. 
Cytotoxic T-cell Population. d) The simulation showcased alterations in the cytotoxic T-cell population, 
indicating the vaccine's influence on cellular immunity. Cytotoxic T-cell Population per State. e) Specific 

states of cytotoxic T cells were explored, offering insights into the diverse effects of the vaccine on this 
crucial immune cell subset. Helper T-cell Population. f) The helper T-cell population demonstrated 

fluctuations, indicating the vaccine's impact on orchestrating immune responses. Macrophages Population 
per State. g) The simulation highlighted changes in macrophage states, suggesting the vaccine's role in 

modulating macrophage activity. Dendritic Cell Population per State. h) Analysis of dendritic cell states 
provided valuable information on the vaccine's influence on antigen-presenting cells. Cytokine Production 

i) The simulation illustrated the vaccine's impact on cytokine production, shedding light on its role in 
immune signaling. 
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System Immunology: Analysis of HPV-Related Gene Expression in 
PBMCs 

The Gene Expression Omnibus (GEO) was queried from 12-10-2023 to 19-10-2023 using 
the keyword HPV. This yielded 54,677 results in the Profiles Database and 8,491 records 
in the DataSets Database. Only studies relevant to humans were considered, resulting in 
7,997 papers with human datasets. Papers without CEL supplementary data were 
excluded, leaving 1,486 papers for further analysis.  

CEL files, integral to Affymetrix DNA microarray analysis, store intensity calculations 
crucial for understanding gene expression patterns. After refining the search with the 
keyword "cervical," 184 papers remained. Abstracts from these papers were scrutinized 
for relevance to gene expression in PBMCs of patients with HPV and cervical cancers 
post-HPV vaccination. The selection process is illustrated in the Figure 26. 

One study meeting all criteria was included, focusing on gene expression in PBMCs from 
a double-blind, randomized, placebo-controlled phase II trial of a monovalent HPV-16 
L1 VLP vaccine. Participants, low-risk for HPV16 exposure, received three 
intramuscular doses. Microarray data from 27 subjects (20 vaccine, 7 placebo) at months 
0 and 2 were considered (GEO: GSE13587). 

GEO2R was employed to select groups from pre and postvaccinated participants, 
categorized by media or HPV VLP vaccine. Normalized data was downloaded for 
analysis Figure 27, resulting in 8,793 genes. After filtering for significance and p-value, 
635 genes showed significant expression changes, including 19 with over 2.5-fold 
changes based on LogFC. Among these, three genes exhibited a 2.5-fold increase, while 
16 showed a negative expression. 
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Figure 26 Outlines the process of paper selection for gene expression analysis. The diagram illustrates the 
sequential steps involved in choosing relevant papers for the analysis of gene expression data. This visual 
aid serves as a guide to the selection criteria and decision-making process applied in the context of gene 

expression studies. 
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Figure 27 The normalized samples are visually represented for both groups: those who received a placebo 
are depicted in green, while individuals receiving HPV16 virus-like particles are represented in purple. 

Network Analysis 

To conduct the network analysis, all genes were initially subjected to the STRING 
server (STRING) based on their p-value significance. Subsequently, a tab-separated 
value (TSV) file was generated and imported into Cytoscape. The network in Cytoscape 
underwent enrichment analysis utilizing betweenness centrality, degree, and closeness 
centrality. Specifically, 100 hub genes and 1858 edges were selected based on their high 
values in degree (43-186), betweenness centrality (0.002-0.132), and closeness 
centrality (0.202-0.566). These selected hub genes were then reintroduced into the 
STRING server. The process is demonstrated in Figure 28.  

https://string-db.org/
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Figure 28 A total of 8793 genes exhibiting expression variation between participants receiving a placebo 
and those receiving the HPV virus-like particle vaccine were identified. Subsequently, 635 genes 

demonstrated significant variability between the two groups. The selected genes underwent further analysis 
by introducing them to the STRING website to explore potential networks among them. To identify the top 
100 hub genes, a TSV file extracted from STRING was imported into Cytoscape. The selection of these hub 
genes was based on criteria such as Degree, Betweenness Centrality, and Closeness Centrality. These 100 
hub genes were then exported into a CSV file for additional analysis within the STRING platform. Another 

gene network was constructed in STRING, utilizing the exported hub genes. 

Following the creation of a new network in STRING, a TSV file was obtained for 
further analysis in Gephi software. The Gephi analysis involved editing the TSV file 
based on source and target parameters. The gene network was further scrutinized using 
eigenvector centrality and modularity analysis, as illustrated in Figure 29. This Gephi 
analysis revealed the identification of five distinct modules within the gene network, 
enhancing our understanding of the underlying biological relationships, Figure 30. 
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Figure 29 The Gephi network analysis of 100 hub genes reveals the pivotal role of IL6 in the network. IL6 
occupies a critical position, as indicated by its prominence in the network. Following closely on the second 

rank is IFN-´. The size of the nodes corresponds to the Betweenness centrality, highlighting the nodes' 
significance in information flow. Additionally, the color of the nodes signifies the Degree, with a more 

greenish hue indicating a larger degree. The backbone of this network is constructed from 53 nodes and 
185 edges, providing a structural foundation for the interactions among the identified hub genes. This 

analysis offers valuable insights into the key players and their connectivity within the biological network. 
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Figure 30 Utilizing Gephi for modulatory analysis, the network exhibits a modular organization with five 
distinct modules: a) First Module: Consisting of a network of genes with 5 members. b) Second Module: 
Comprising 21 genes. c) Third Module: Involving 8 genes. d) Fourth Module: Encompassing 17 genes. e) 
Fifth Module: Comprising 2 members. This modular breakdown reveals the intricate composition of the 
network, with each module representing a subset of genes that likely collaborate in specific biological 

processes or pathways. 

 

Importance of Hub Genes in Biological Processes 

 

Utilizing the systems biology server Enricher (Enricher) [189] our analysis reveals the 
pivotal role of hub genes in orchestrating the regulation of cytokine and chemokine 
production (See Figure 31). This comprehensive examination underscores the 

https://maayanlab.cloud/Enrichr/
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significance of these genes in influencing key biological processes associated with 
immune responses and signaling pathways. 

 

Figure 31 The majority of genes participate in biological processes were related to cytokine and chemokine 
production, as well as the regulation of inflammatory responses. A pivotal role of STAT proteins is the 

regulation of cytokine production [221]. The hierarchical arrangement of the chart is based on p-values. 

 

The VirusMINT website [222], in connection with Enricher, highlights genes implicated 
in viral infections like HIV and HPV16, as illustrated in Figure 32. 

 

 
 

 

 

Our investigation involved examining the DisGeNET database (DisGeNET) [223] and 
cross-referencing the same genes using the Enricher platform. The results indicated a 
significant association of these genes with autoimmune diseases, as depicted in the 
accompanying Figure 33. This comprehensive analysis enhances our understanding of 
the genetic links to autoimmune conditions. 

Figure 32 reveals a network of hub genes intricately linked to viral 
infection. Notably, the presence of HPV16 emerges as a key factor 
significantly influencing the expression patterns of these genes..  

https://www.disgenet.org/search
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Figure 33 DisGeNET shows the high relationship between the hub genes and autoimmune diseases such as 
Rheumatoid Arthritis, Graves, Arteriosclerosis, osteoporosis. 

Checking the physicochemical charachteristics of human IL6 

Initially, we identified the Uniprot ID for IL6 as P05231 to ascertain the total number of 
amino acids. Subsequently, the structural details of IL6 were extracted from the PDB 
entry 1ALU, revealing a resolution of 1.9 Å and a respectable R-Value work of 0.21. The 
comprehensive physicochemical structure of IL6 is presented in the accompanying Table 
13. 

Table 13 Physicochemical structure of the IL6 

Protein Molecular 

weight 

Theoretical 

pI 

Instability 

index 

Estimated 

half-life 

(mammalian 
reticulocytes) 

Aliphatic 

index 

GRAVY 

 IL6 23718.22 6.17 57.70 30 hours 87.50 -0.271 

 

Utilizing Jpred4 (Jpred4)[224] for protein secondary structure prediction revealed a 
predominant helical structure in most parts of the protein, with a smaller segment 
adopting a ³-sheet conformation, albeit not with high confidence. The Ramachandran 
analysis exhibited that 95.2% of the protein resides in the most favored regions, with the 
remaining 4.8% distributed in additional allowed regions and no presence in generally 
allowed or disallowed regions. Figure 34 illustrates the PDB 2D structure of IL6, 
accompanied by a secondary structure analysis. This comprehensive analysis provides 
insights into the prevalent structural motifs and conformational preferences within the 
protein. 

https://www.uniprot.org/uniprotkb/P05231/entry#sequences
https://www.rcsb.org/structure/1ALU
https://www.compbio.dundee.ac.uk/jpred4/index.html
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Figure 34 a)3D structure of the IL-6, b) secondary structure analysis of IL6 using SOPMA server, c) 
Ramachandran plot analysis of IL6 

 

Identifying Druggable Pockets in IL6 Structures 

We utilized the PockDrug website (PockDrug) to predict potential antagonist pockets on 
the protein structure. Our analysis revealed nine probable sites within the protein structure 
suitable for drug or ligand interaction. Additionally, we employed Computed Atlas of 
Surface Topography of Proteins (CASTp) to explore the presence of other pockets. 

https://pockdrug.rpbs.univ-paris-diderot.fr/cgi-bin/index.py?page=Druggability
http://sts.bioe.uic.edu/castp/index.html?201l%20
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Figure 35 illustrates four pockets with a high probability of interacting with a drug, as 
identified by PockDrug, along with the pocket predicted by CASTp. 

 

 

Figure 35 PockDrug and CASTp were employed for predictions, yielding distinct pockets denoted as a, b, 
c, d, and e. a) Represents pocket 2, exhibiting the highest drugability probability among the predicted 

pockets. b) Corresponds to the third pocket with a drugability probability of 0.94. c) Represents pocket 
number 0, demonstrating a drugability probability of 0.82. d) Denotes pocket 4 with a drugability 

probability of 0.74. e) Represents the pocket predicted by CASTp. Values closer to 1 indicating higher 
probability. 

 

Exploring Drug Availability for IL6 Targets 

To investigate the availability of drugs targeting IL6, we conducted a search on the 
DrugBank website (DrugBank) [225]  focusing on the Target sequence associated with 
IL6. Our inquiry revealed 12 drugs with potential antigenic, inhibitory, and agonistic 
effects on the IL6 sequence. A comprehensive presentation of these findings can be found 
in the accompanying Table 14. Cheking if some drugs are available for IL6. 

 

 

 

 

 

https://go.drugbank.com/
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Table 14 IL6 agonist and antagonist drug  

Drug Drug group Pharmacological action Actions Pubchem ID 

Ginseng investigational, 
nutraceutical 

unknown antagonist 46508934 

YSIL6 investigational unknown  347909893 

VX-702 investigational unknown  347827732 

CRx-139 investigational unknown  347910206 

Andrographolide investigational unknown  347827741 

Atiprimod investigational unknown  - 

Siltuximab approved, 
investigational 

yes Antagonist 
antibody 

347910394 

Dilmapimod investigational unknown  347828437 

Polaprezinc experimental unknown inhibitor 310265128 

Foreskin 
fibroblast 
(neonatal) 

approved unknown agonist - 

Foreskin 
keratinocyte 
(neonatal) 

approved yes agonist - 

Olokizumab investigational yes antagonist 347911425 

 

Next, Binding Data Bank (Binding DB) [194]  was mined for substances with Half-
maximal inhibitory concentration (IC50) capable of inhibiting human IL6. A dataset of 
41 inhibitory substances was extracted in both SDF and TSV formats. These molecules 
were preserved for molecular computing and descriptor calculation using PaDEL 
software, contributing to the creation of a robust QSAR model. Further expanding the 
search, the KEGG database,(KEGG) was consulted to identify novel drug candidates for 
IL6. Pirfenidone(PubChem ID: 7848646), pomalidomide (PubChem ID: 96025659), and 

https://pubchem.ncbi.nlm.nih.gov/substance/46508934
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=347909893
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=347827732
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=347910206
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=347827741
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=347910394
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=347828437
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=310265128
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=347911425
https://www.bindingdb.org/rwd/bind/index.jsp
https://www.genome.jp/dbget-bin/www_bget?hsa:3569
https://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=7848646
https://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=96025659
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sirukumab (PubChem ID: 135626800) were discovered through KEGG, and their SMILE 
structures were generated using Marvin. Chimera was utilized to construct the 3D 
structures, and OpenBabel facilitated the conversion of these structures into SDF format. 
To uncover additional ligands for IL6, a quest was undertaken in the ZINC20 database. 
This search aimed to identify lead-like compounds with descriptors or fingerprints akin 
to those of known inhibitors from Binding DB or KEGG. By comparing descriptors of 
known inhibitory compounds with unknown molecules, potential IL6-targeting 
molecules in our dataset were predicted. The search in ZINC20 yielded a file of lead-like 
compounds (283 molecules, 1.98 MB in volume) downloaded in SDF format. 

This comprehensive investigation leverages multiple databases to identify a spectrum of 
potential drug candidates for IL6, setting the stage for further analyses in the realm of 
QSAR modeling. 

 

QSAR Modeling Process 

IL6-related SDF files sourced from ZINC, DrugDatabank, and KEGG were processed 
through PaDEL software for descriptor and fingerprint extraction, resulting in 1443 
descriptors. Subsequently, SMLR software was employed to identify high-quality 
descriptors. Through sparse classification, SMLR identified 36 influential descriptors 
from the initial pool of 1443, shaping the QSAR model. 

This streamlined approach enhances efficiency and reliability, yielding a less complex 
model. The selected 36 descriptors, along with molecular fingerprints, contribute to the 
model's effectiveness. The specific descriptors are outlined in the accompanying table 15. 

 

Table 15 Enriched descriptors by SMLR that were used in QSAR model 

Type  Descriptor Description Descriptor class 

2D apol Sum of the atomic polarizabilities (including implicit 
hydrogens) 

APol descriptor 

2D ATS0s  Broto-Moreau autocorrelation - lag 0 / weighted by I-
state  

Auto correlation 
descripto 

 

 

 

https://pubchem.ncbi.nlm.nih.gov/substance/135626800#section=Modify-Date
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Table 15 Enriched descriptors by SMLR that were used in QSAR model 

Type  Descriptor Description Descriptor class 

2D GATS4e Geary autocorrelation of lag 4 weighted by 
Sanderson electronegativity 

Auto correlation 
descriptor 

2D minsssN Minimum atom-type E-State: >N- Electrotopological 
State Atom Type 
descriptor 

2D nRing Number of rings Ring Count descriptor 

2D sumI Sum of the intrinsic state values I  Electrotopological 
State Atom Type 
descriptor 

2D ETA_Eta_B Branching index EtaB  Extended 
Topochemical Atom 
descriptor 

2D AATS2p Average Broto-Moreau autocorrelation - lag 2 / 
weighted by polarizabilities  

Auto correlation 
descriptor 

2D AATSC7i averaged and centered moreau-broto autocorrelation 
of lag 7 weighted by ionization potential 

Auto correlation 
descriptor 

2D nF8Ring number of 8-membered fused rings in a molecular 
structure 

Ring Count descriptor 

2D AATSC3i Average centered Broto-Moreau autocorrelation - lag 
3 / weighted by first ionization potential 

Auto correlation 
descriptor 

2D GATS8c geary coefficient of lag 8 weighted by gasteiger 
charge 

Geary coefficient 
descriptor 

2D MDEC-44 molecular distance edge between all quaternary 
carbons 

molecular distance 
edge Descriptor 

2D MLFER_A Overall or summation solute hydrogen bond acidity MLFER descriptor 

2D MATS3i Moran autocorrelation - lag 3 / weighted by first 
ionization potential  

Auto correlation 
descriptor 
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Table 15 Enriched descriptors by SMLR that were used in QSAR model 

Type  Descriptor Description Descriptor class 

2D VE3_Dzp Logarithmic coefficient sum of the last 
eigenvector from Barysz matrix / weighted by 
polarizabilities 

Barysz Matrix 
descriptor 

2D minsOm Minimum atom-type E-State: -O-  Electrotopological 
State Atom Type 
descriptor 

2D SpMax3_Bhm Largest absolute eigenvalue of Burden modified 
matrix - n 3 / weighted by relative mass 

Burden Modified 
Eigen values descriptor 

2D ALogP Ghose-Crippen LogKow ALOGP descriptor 

2D VE3_Dt Logarithmic coefficient sum of the last 
eigenvector from detour matrix  

Detour Matrix 
descriptor 

2D GATS2m Geary autocorrelation - lag 2 / weighted by mass  Auto correlation 
descriptor 

2D AATS4s Average Broto-Moreau autocorrelation - lag 4 / 
weighted by I-state  

Auto correlation 
descriptor 

2D SaasC Sum of atom-type E-State: :C:-  Electrotopological 
State Atom Type 
descriptor 

2D AATSC3p Average centered Broto-Moreau autocorrelation - 
lag 3 / weighted by polarizabilities 

Auto correlation 
descriptor 

2D VE3_DzZ Logarithmic coefficient sum of the last 
eigenvector from Barysz matrix / weighted by 
atomic number 

Barysz Matrix 
descriptor 

2D minHCsatu Minimum atom-type H E-State: HÂ on C sp3 
bonded to unsaturated C  

Electrotopological 
State Atom Type 
descriptor 

2D nwHBd Count of E-States for weak Hydrogen Bond 
donors  

Electrotopological 
State Atom Type 
descriptor 
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Table 15 Enriched descriptors by SMLR that were used in QSAR model 

Type  Descriptor Description Descriptor class 

2D GATS3e Geary autocorrelation - lag 3 / weighted by 
Sanderson electronegativities  

Auto correlation 
descriptor 

2D nHBint7 Count of E-State descriptors of strength for 
potential Hydrogen Bonds of path length 7  

Electrotopological State 
Atom Type descriptor 

2D ATSC7c centered Broto-Moreau autocorrelation of lag 7 
weighted by gasteiger charge 

Auto correlation 
descriptor 

2D ATSC2e Centred Broto-Moreau autocorrelation of lag 2 
weighted by Sanderson electronegativity 

Auto correlation 
descriptor 

2D ASP.4 The Average Simple Path of order 4 PaDEL ChiPath 
descriptor 

2D VR1_Dze Randic-like eigenvector-based index from Barysz 
matrix / weighted by Sanderson electronegativities 

Barysz Matrix descriptor 

2D Zagreb Sum of the squares of atom degree over all heavy 
atoms i  

Zagreb Index descriptor 

2D VR1_Dt Randic-like eigenvector-based index from detour 
matrix  

Detour Matrix descriptor 

2D AATSC2v Average centered Broto-Moreau autocorrelation - 
lag 2 / weighted by van der Waals volumes 

Auto correlation 
descriptor 

 

Running QSAR model in Chemoface 

In the supervised machine learning process, Chemoface was trained using enriched 
descriptors generated by SMLR (x-axis) and IC50 values (y-axis) from molecules 
sourced from the Binding DB. Eight samples were chosen for the training process. The 
model, depicted in [Figure], predicted the IC50 values for molecules from ZINC, 
database. The model was developed using the known descriptors (x), generated by 
SMLR, and IC50 values (y) from the Binding DB dataset. 

The data underwent auto-scale pretreatment and were analyzed using the partial least 
squares (PLS) statistical method, with a maximum of five latent variables (LV=5). The 
Calibration plot fitted the model based on trained and test data (No. LV=5). The 
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Prediction plot extended the model to molecules from ZINC database, lacking IC50 
values. Linear regression established a correlation line between molecules with known 
IC50 and predicted values, resulting in the equation y = 0.8086 3 0.2826 and R2 = 0.81. 

 

The results, including the linear regression equation and R2, are provided in Figure 36. 
Among the molecules, those with IC50 values between 0 and 10 were selected for 
pharmacophore modeling. 

 

 

Figure 36 QSAR model shows the correlation between molecular structure and IC50 values for molecules 
obtained from ZINC20, with a commendable R2 value of 0.81. 

   

Pharmacophore modeling of IL6 and its ligands ligands 

The optimization of the structure matching the real ligand of IL6 was achieved using 
Schrodinger-Maestro. Initially, a reference model structure was constructed based on 
well-known IL-6 ligands sourced from the Binding DB. In the ensuing pharmacophore 
model development, three pivotal features were identified: two Rings: The 
pharmacophore model integrates two rings as essential structural components, enhancing 
its representation of IL6 ligand interactions. Acceptor: A hydrogen acceptor feature is 
incorporated into the pharmacophore model, playing a vital role in mediating interactions 
with other molecular entities. Hydrophobic Part: the pharmacophore model encompasses 
a hydrophobic feature crucial for shaping the spatial arrangement and understanding 
molecular interactions within the structure. The spatial orientation of these features is 
visually depicted in Figure 37 an accompanying figure associated with the 
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pharmacophore model. It is noteworthy that the matching tolerance for each feature in 
the model is set at 2 Ångströms (A0). 

 

Figure 37 In the developed pharmacophore model, three essential features were identified. Firstly, the 
model incorporates two rings, serving as vital structural components. Additionally, a hydrogen acceptor 

feature is integral to the pharmacophore, playing a crucial role in interactions with other molecular 
entities. Moreover, the pharmacophore model includes a hydrophobic feature that contributes to the spatial 
arrangement, crucial for understanding molecular interactions. The spatial orientation of these features is 
visually depicted in an associated picture, and it's noteworthy that the matching tolerance for each feature 

is set at 2 Å. 

In the subsequent analysis, molecules sourced from ZINC20, underwent scrutiny with 
Maestro to ascertain their alignment with the pharmacophore models. Out of 217 lead-
like molecules extracted from ZINC, a singular match was identified with the model. 
Notably, the matched structure corresponds to 4-(4-morpholinylcarbothioyl) phenyl 3-(2-
furyl) acrylate, with PubChem CID 816391, as illustrated in the accompanying Figure 38.  

https://pubchem.ncbi.nlm.nih.gov/compound/816391
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Figure 38 Employing pharmacophore modeling revealed a singular match within the ZINC database, 
specifically identified as ZINC ID=00329495. This unique structure corresponds to 4-(4-

morpholinylcarbothioyl)phenyl 3-(2-furyl)acrylate. 

 

Docking results for 4-(4-morpholinylcarbothioyl)phenyl 3-(2-
furyl)acrylate 

To elucidate the interaction between 4-(4-morpholinylcarbothioyl)phenyl 3-(2-
furyl)acrylate and IL6, the molecular docking process was executed using PyRx software. 
PyRx identified nine potential binding sites conducive to protein-ligand interaction. A 
detailed summary of these outcomes is presented in the accompanying Table 17. The 
table presents various conformations of ligand-protein interactions, with a focus on 
evaluating the reliability of different models. Best Model Selection Criteria: the first 
model, characterized by low energy in binding affinity and RMSD, is identified as the 
best. Criteria for model assessment include RMSD/up, RMSD/down, both equating to 
zero in the optimal model. Root Mean Square Deviation (RMSD): RMSD measures 
differences in atomic positions across different protein conformations. Higher RMSD 
values indicate more significant errors in the model. Reliability Indicator: The reliability 
of a model is inferred from the difference between upper and lower RMSD. If the RMSD 
difference is approximately 2, the model is considered reliable. This approach provides a 
systematic method for selecting the most accurate ligand-protein interaction model based 
on energy, binding affinity, and RMSD metrics. 
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Table 17 Different Conformations of Ligand-Protein Interactions. 

Ligand-Protein 
conformations 

Binding Affinity RMSD/up  RMSD/down 

1  -5.8 0 0 

2 -5.6 24.711 21.925 

3 -5.5 8.565 6.041 

4 -5.5 33.61 30.616 

5 -5.4 25.04 23.407 

6 -5.3 32.734 29.238 

7 -5.2 8.539 5.023 

8 -5.2 10.79 7.6 

9 -5.2 32.026 29.342 

 

To unveil the initial conformation of ligand-protein interactions with the lowest affinity 
energy level and lowest RMSDs, a 2D-QSAR model was employed. Utilizing BIOVIA 
Studio Visualizer, the interactions were analyzed and visualized (refer to Figure). 
Interactions Between IL6 and 4-(4-morpholinylcarbothioyl) phenyl 3-(2-furyl) acrylate: 
Aspartic Acid (ASP) Residue at Position 160 (A160): Forms a Pi Anion bond, indicating 
interaction between the pi system in the ligand and an anion (ASP). This enhances binding 
specificity. Lysine (LYS) Residue at Position 46 (A46): Participates in a Pi Alkyl 
interaction, involving the interaction between the pi system in the ligand and an alkyl 
group in the amino acid side chain. This contributes to ligand stabilization within the 
binding site. Tryptophan (TRP) Residue at Position 157 (A157): Forms a PiPi-T shaped 
interaction, characterized by the stacking of two pi systems, resembling a T shape. This 
interaction significantly contributes to the overall stability of the ligand-protein complex. 
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These findings provide a detailed understanding of key interactions, shedding light on the 
molecular dynamics governing IL6 and 4-(4-morpholinylcarbothioyl) phenyl 3-(2- furyl) 
acrylate binding, Figure 39.  

.  

Figure 39 Molecular Interaction Overview, a) 3D Diagram of IL6 and 4-(4-morpholinylcarbothioyl) phenyl 
3-(2-furyl) acrylate Interactions Illustrates the spatial arrangement of IL6 and the ligand, showcasing 
hydrogen donors and involved amino acids in the interaction. b) 2D Diagram of the Same Interaction; 

Represents a two-dimensional projection of the IL6 and 4-(4-morpholinylcarbothioyl) phenyl 3-(2-furyl) 
acrylate interaction. Interaction Details: Three interactions occur between amino acids in the IL6 

backbone and 4-(4-morpholinylcarbothioyl) phenyl 3-(2-furyl) acrylate, specifically involving aspartic acid 
and lysine at R10. The interactions with R10 are facilitated through Pi-Anion and Pi-Alkyl bonds based on 
our pharmacophore model. Tryptophan exhibits a Pi-Pi-shaped interaction with the ligand at R12. These 

findings provide a detailed insight into the molecular interactions between IL6 and 4-(4-
morpholinylcarbothioyl) phenyl 3-(2-furyl) acrylate, emphasizing key amino acids and bonding patterns. 

 

Molecular Dynamics Analysis 

To gain a comprehensive understanding of the docking phenomenon, molecular 
dynamics simulations were conducted. The Root Mean Square Deviation (RMSD) value 
for the protein remained stable throughout the molecular dynamics, as depicted in the 
figure. Although there were fluctuations initially, the system eventually stabilized Figure 
40a. 
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The Root Mean Square Fluctuation (RMSF) exhibited an increasing trend over time, 
indicating the flexible movement of 4-(4-morpholinylcarbothioyl) phenyl 3-(2-furyl) 
acrylate during the simulation, as illustrated in the Figure 40b. 

Hydrogen bonds emerged as pivotal contributors to the interaction between IL6 and 4-(4-
morpholinylcarbothioyl) phenyl 3-(2-furyl) acrylate. The figure demonstrates that a 
maximum of two hydrogen bonds formed during the molecular dynamics simulation 
Figure 40c. 

The Radius of Gyration (Rg) analysis was employed to assess the compactness of IL6 in 
the presence of 4-(4-morpholinylcarbothioyl) phenyl 3-(2-furyl) acrylate. The results, 
presented in the figure, provide insights into the structural compactness of IL6 during the 
molecular dynamics simulation Figure 40d. 

Figure 1 Molecular Dynamics Analysis of IL6 Interaction with 4-(4-morpholinylcarbothioyl) phenyl 3-(2-
furyl) acrylate. a) RMSD of IL6 Backbone: The graph illustrates the Root Mean Square Deviation (RMSD) 

of the IL6 backbone while interacting with 4-(4-morpholinylcarbothioyl) phenyl 3-(2-furyl) acrylate. b) 
Ligand RMSF and Flexibility: Representing the fluctuation (RMSF) of the ligand during the interaction, 

indicating its flexible movement during Molecular Dynamics (MD) simulation. c) Hydrogen Bonds 
Dynamics: The graph displays the number of hydrogen bonds formed over time in nanoseconds (ns) during 
the MD simulation. d) Radius of Gyration (Rg) of IL6:Illustrating the Rg of IL6 around its axis versus time 

in picoseconds (ps) during the MD simulation. The stability of IL6 Rg is depicted in this graph. 
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Assessing Drug Likeness of 4-(4-Morpholinylcarbothioyl)phenyl 3-(2-furyl)acrylate 

Using SwissADME 

The physicochemical profile of 4-(4-morpholinylcarbothioyl)phenyl 3-(2-furyl)acrylate 
was systematically evaluated through SwissADME (http://www.swissadme.ch/) utilizing 
its SMILES representation. SwissADME, a web-based computational tool for small 
molecule analysis in drug discovery [226]. encompasses diverse functionalities for 
assessing physicochemical attributes, predicting pharmacokinetic parameters, gauging 
drug-likeness, and scrutinizing other pivotal factors in drug development. Upon 
navigating to the SwissADME platform, 4-(4-morpholinylcarbothioyl)phenyl 3-(2-
furyl)acrylate was submitted via the Simplified Molecular Input Line Entry System 
(SMILES) notation, or the option to upload a file containing its chemical structure. The 
computational process was initiated by clicking the "Run" button, leading to the 
generation of results as illustrated in Figure 41.  

 

 
Figure 41 Physicochemical Characteristics of 4-(4-morpholinylcarbothioyl)phenyl 3-(2-furyl)acrylate 

Analyzed with SwissADME.

http://www.swissadme.ch/
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Discussion 

Hypothesis 

How robust is the T cell immune response, encompassing activation and proliferation, 
specifically targeting HPV 16 antigens (E6, E7, and L1) within both CD8 and CD4 T cell 
subsets? Furthermore, is there evidence of cross-reactivity in patients with different HPV 
species, beyond HPV16, where T cells can be activated or proliferated by HPV16 and 
HPV18 antigens? Assessing the effectiveness of conventional vaccines, namely the 
bivalent Cervarix and the quadrivalent/nine-valent Gardasil, is a key aspect. Additionally, 
this study aims to explore avenues for vaccine enhancement. 

The investigation involves a detailed analysis of T cell activation and proliferation using 
AIM (Activation Induced Marker) and LPA (Lymphocyte Proliferation Assay) assays 
among both HPV-vaccinated, non-vaccinated participants, and patients with different 
stages of HPV induced cervical cancer. Specifically, the study delves into a distinct subset 
of CD4 T cells, namely follicular T cells expressing CXCR5, recognized for their critical 
role in B cell antibody production and maturation. The primary functions of T cells 
expressing CXCR5, known as T follicular helper (Tfh) cells, include providing essential 
help to B cells, leading to class-switching, secretion of antigen-specific antibodies, and 
the formation of immunological memory [227]. 

The research incorporates experimental analyses coupled with immunoinformatics to 
design a multi-epitope vaccine for HPV. A comprehensive examination of system 
immunology involves assessing gene expression in peripheral blood mononuclear cells 
(PBMCs) before and after vaccination. The final objective is to employ network analysis 
to identify a key gene that could potentially enhance vaccine efficacy. Moreover, if 
feasible, the study aims to discover or design a drug, utilizing QSAR (Quantitative 
Structure-Activity Relationship) and pharmacophore modeling, to modulate the 
identified key gene4either by blocking or stimulating it. 

This multifaceted approach seeks to advance our understanding of HPV immunity, 
optimize current vaccines, and explore novel strategies for more effective preventive 
measures. 

Objectives: 

1. Assess CD8 and CD4 T Cell Responses: Analyze the activation and proliferation 
of CD8 and CD4 T cells against HPV 16 antigens (E6, E7, and L1) using AIM 
and LPA assays in HPV-vaccinated, non-vaccinated, and HPV related cervical 
cancer individuals. 

2. Explore Follicular T Cell Dynamics: Investigate the role of follicular T cells 
expressing CXCR5 in the immune response against HPV antigens, considering 
their influence on B cell antibody production and maturation. 
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3. Analyze HPV Clade Differences: Utilize sequence alignment and phylogenetic 
tree analysis to determine the genetic distances between different HPV clades. 

4. Design Immunoinformatics-Based Vaccine: Explore the feasibility of designing 
a multiple epitope vaccine using immunoinformatics, capable of providing 
broad-spectrum immunity against diverse HPV infections, both pre- and post-
infection. 

5. Examine Gene Expression Changes: Utilize systems immunology and systems 
biology to investigate differences in gene expression levels in PBMCs before and 
after vaccination, identifying genes with altered expression. 

6. Assess Drugability of Target Gene: Investigate the drugability of the target gene 
and protein associated with the immune response against HPV, followed by 
screening potential chemical compounds using ZINC, Binding DB, and Drug 
Databank. 

7. Utilize Computational Models for Drug Design: Apply pharmacophore 
modeling, QSAR, 2D-QSAR, molecular dynamics, and docking to evaluate the 
binding efficacy of identified ligands to the target protein. 

This structured approach aims to comprehensively understand T cell immunity against 
HPV, explore vaccine design possibilities, and assess potential therapeutic interventions 
at the genetic and molecular levels. 

Key findings  

1. Vaccination Regimen Optimization: Our study underscores the significance of 
optimizing vaccination effectiveness by considering the number of injections, 
shedding light on the crucial role of dosing in achieving optimal immunity 
against HPV. 

2. Antigen Selection Rationale: The exclusive use of the L1 antigen in common 
HPV vaccines (e.g., Cervarix and Gardasil) is justified by our identification of 
diverse phylogenetic variations across different HPV clades, emphasizing the 
need for a universally effective vaccine targeting the common denominator, L1. 

3. Representative Role of HPV 16 and 18: Through phylogenetic analysis, we 
established that HPV 16 and 18 act as representatives of larger groups of high-
risk HPVs, streamlining research efforts toward these pivotal strains for broader 
implications. 

4. Antigenic Focus Refinement: Contrary to conventional wisdom, we found 
moderate L1 antigenicity for HPV16 and HPV18. Our discovery of higher 
antigenicity in E6, E7, and L2 suggests a refined focus for vaccine development, 
optimizing immune responses. 
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5. Multi-Epitope Vaccine Development: Introducing a multiple epitope vaccine 
targeting E6, E7, and L1 antigens specific to HPV16 and HPV18 demonstrates a 
sophisticated approach toward enhancing vaccine efficacy. 

6. Broad Immune Stimulation: Achieving over 95% population coverage, our 
vaccine not only stimulates CD4 and CD8 T cells but also induces B cell 
activation, resulting in antibody production and a comprehensive immune 
response. 

7. Immune System Simulation Insights: Our simulations reveal an increase in 
antiviral cytokines such as IFN-´ and IL2, accompanied by population growth in 
T cells, B cells, and Macrophages, providing a dynamic understanding of the 
immune response. 

8. Gene Expression Dynamics: Studying gene expressions in PBMCs unveils a 
nuanced picture, indicating an increase in anti-viral cytokine IFN-´ alongside a 
rise in proinflammatory cytokine IL6 post-vaccination, highlighting the 
complexity of immune modulation. 

9. Compound Screening for Immunomodulation: Employing advanced 
screening procedures, we identified 4-(4-morpholinylcarbothioyl)phenyl 3-(2-
furyl)acrylate as a potential attenuator of IL6-induced adverse effects, offering a 
promising avenue for immunomodulation. 

10. Molecular Dynamics Insights: Utilizing molecular dynamics with Gromacs, we 
elucidated the intricate interactions between IL6 and 4-(4-
morpholinylcarbothioyl)phenyl 3-(2-furyl)acrylate, providing molecular-level 
insights into the mechanism of attenuation. 

These findings collectively advance our understanding of HPV vaccination strategies, 
paving the way for tailored, effective interventions against HPV-associated diseases. 

 

AIM Assay Results for CD4/CD8 T Cells and HPV-16 Antigens 

 

CD4/CD8 T Cell Activation for HPV16-E6: 

No significant difference in CD4 and CD8 T cell activation between vaccinated cases and 
non-vaccinated controls for HPV-E6. 
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CD4/CD8 T Cell Activation for HPV16-E7: 

Only CD4 T cells exhibit significant activation for HPV16-E7, emphasizing a selective 
response. Statistical analysis: Th-E7 p-value: 0.039058, CI95%: [-0.26, -0.01], Cohen-d: 
2.248314, BF10: 2.96. 

CD4/CD8 T Cell Activation for HPV16-L1: 

No significant difference in CD4 and CD8 T cell activation for HPV`6-L1. 

Findings underscore selective CD4 T cell activation in response to HPV16-E7, indicating 
nuanced T cell responses to specific antigens. The observed T cell activation for HPV-16 
in vaccinated participants compared to non-vaccinated individuals despite the availability 
of only the L1 antigen in the vaccine may be attributed to cross-reactivity or bystander 
effects. Several factors could contribute to this phenomenon. Cross-reactivity occurs 
when T cells, primed by the L1 antigen in the vaccine, exhibit responses to other antigens, 
potentially including non-L1 antigens from HPV-16. This cross-reactivity might lead to 
T cell activation even against antigens not directly targeted by the vaccine [228]. 
Additionally, bystander activation refers to the non-specific activation of T cells in 
response to inflammatory signals. The vaccine-induced immune response could create an 
inflammatory environment, leading to the activation of T cells against various HPV-16 
antigens, irrespective of the specific antigen composition in the vaccine [229]. Also, 
memory T cells generated by the vaccine may possess a broader specificity, allowing 
them to recognize and respond to a wider range of antigens, including those not included 
in the vaccine formulation [230]. Furthermore, based on our homology analysis, 
activation of T cells in HPV-vaccinated participants might be attributed to the homology 
between HPV16-E7 and Listeria monocytogenes proteins. In this case, studies have 
utilized L. monocytogenes as a vaccine vector expressing HPV16-E7, inducing T cell 
responses [2313233]. 

Lymphocyte proliferation Assay Results for CD4/CD8 T Cells 
and HPV-16 Antigens 

 

CD4 T Cell Activity Against HPV16-E6 Antigen 

The study shifted focus to Lymphocyte Proliferation Assay (LPA) analysis to investigate 
CD4 T cell activity against the HPV16-E6 antigen in a diverse participant pool, including 
vaccinated, non-vaccinated individuals, and patients in early cervical cancer stages. 

In the examination of CD4 T cell proliferation among participant groups, the absence of 
statistical significance in both ANOVA and Tukey HSD implies a lack of discernible 
differences. Although modest to moderate effect sizes suggest potential trends, these 
remain insufficient to achieve statistical significance. In the context of statistical analysis, 
"effect size" refers to the magnitude of the difference observed between groups. When 
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we say "modest to moderate effect sizes suggest potential trends," it means there are 
observable differences between groups, but these differences are not large. They fall 
within a moderate range. However, the statement continues to mention that these effect 
sizes are "insufficient to achieve statistical significance." This implies that, despite the 
presence of trends or differences, the observed effects are not strong enough to be 
considered statistically significant. In statistical terms, achieving significance means 
demonstrating that the observed results are unlikely to occur by random chance. 

So, in simpler terms, even though there are some trends or differences that we can see 
(modest to moderate effect sizes), these differences are not strong or consistent enough 
to confidently say that they are not due to random variability. Statistical significance 
requires a higher level of certainty in the observed patterns, and in this case, the observed 
trends fall short of reaching that level of certainty [2343236].  

The interpretation of meaningful changes is guided by Minimal Detectable Change 
(MDC) values, underscoring the necessity of acknowledging practical significance. The 
study's low statistical power accentuates limitations in detecting differences, 
necessitating caution in result interpretation. These collective findings emphasize the 
importance of a nuanced approach, wherein both statistical and practical significance are 
considered within the context of the study's inherent limitations. Minimal Detectable 
Change (MDC) is a statistical measure used to determine the smallest change in a variable 
that can be considered meaningful or significant. In the context of CD4 proliferation 
against the E6 antigen: MDC values serve as a benchmark for identifying changes that 
go beyond random variability [237]. In fact, it represents the minimum change needed in 
CD4 proliferation to confidently say that the observed difference is not due to 
measurement error alone. The MDC for CD4 proliferation-E6 falls within the range of 
9.22 to 13.94. This range indicates the minimum magnitude of change in CD4 
proliferation that can be considered significant. A change in CD4 proliferation below 9.22 
may not be distinguishable from measurement variability and might be considered within 
the normal fluctuation. Changes between 9.22 and 13.94 suggest a potential meaningful 
shift in CD4 proliferatin. Values beyond 13.94 provide stronger evidence of a substantial 
and noteworthy change. Researchers and practitioners should consider MDC values when 
interpreting study results. Values within or beyond the MDC range influence decisions 
about the practical significance of observed changes in CD4 proliferation. 

CD4 T Cell Proliferation Against HPV16-E7 Antigen 

In this section of the Discussion chapter, the analysis of CD4 T cell proliferation against 
the E7 antigen is presented. The study aimed to explore potential differences among 
different participant groups, including non-vaccinated individuals, vaccinated 
participants, and patients in the first stage of HPV-related cervical cancer. Although the 
p-value is greater than the conventional significance level (0.05), suggesting no 
statistically significant difference among groups, further analyses were conducted. Also, 
the p-adj values indicate that none of the pairwise comparisons reached statistical 
significance. To understand the practical significance of the observed differences, 
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standardized mean differences (SMD) were calculated along with 95% confidence 
intervals (CI). These effect size measures suggest minimal to moderate effects without 
reaching statistical significance.  

The study's statistical power was calculated at 0.072, indicating a relatively low power to 
detect differences. The required sample size for adequate power was estimated to be 900 
participants. This suggests that the study may have been underpowered to detect 
significant differences, potentially influencing the outcomes. Further considerations 
regarding sample size and study design are warranted for future research in this domain.  

In the context of the provided information, "Overall MDC" refers to the Overall Minimal 
Detectable Change. This value, measured for different CD4 T cell activities, indicates the 
smallest change in the measured variable that is considered significant. The range of 
MDC was 13-18.7, so CD4 T cell proliferation against HPV16-E7 fall below the Overall 
MDC, it suggests that these changes may not be practically significant or distinguishable 
from random variability. On the other hand, if changes exceed the Overall MDC, it 
implies that the observed differences are likely meaningful and not merely due to chance.  

CD4 T Cell proliferation Against HPV16-L1 Antigen 

The presented data describes an investigation into CD4 T cell proliferation against the 
HPV16-L1 antigen in different participant groups, including non-vaccinated individuals 
(non-vacs), vaccinated participants (vacs), and patients with the first stage of HPV-related 
cervical cancer. 

The ANOVA results suggest that there is no statistically significant difference among the 
groups, as the p-value exceeds the conventional significance level of 0.05. However, 
further analyses were conducted to explore specific pairwise comparisons using the 
Tukey HSD test. None of the pairwise comparisons (non-vacs vs. patient, non-vacs vs. 
vacs, patient vs. vacs) reached statistical significance, as indicated by the p-adj values. 

However, in the case of SMD and Cohen’s d interpretation ranges, CD4 proliferation-L1-
vacs-nonvacs was -1.48 (large Effect): This value indicates the extent of the difference in 
CD4 T cell proliferation between vaccinated and non-vaccinated individuals concerning 
the L1 antigen. The negative sign implies a decrease in CD4 proliferation in non-
vaccinated participants compared to vaccinated, suggesting a large effect size. SMD for 
CD4 proliferation-L1-vacs-patients indicates moderate effect size (-0.63), that implies 
increase CD4 proliferation in vaccinated participants compared to patients. A reduced in 
CD4 proliferation in non-vaccinated individuals compared to patients, with a moderate 
effect size (0.53). 

The MDC values (ranging from 24.63 to 30.51) provide insights into the magnitude of 
differences that are practically significant. These values represent the amount of change 
needed to exceed measurement error based on a predetermined confidence level. In this 
context, they offer a threshold for determining whether observed changes in CD4 T cell 
proliferation for HPV16-L1 are practically meaningful. 
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CD8 T Cell proliferation Against HPV16-E6 Antigen 

The presented results indicate the following findings in the comparative analysis of CD8 
T cell proliferatin against the HPV E6 antigen. The non-significant p-value (> 0.05) 
suggests no statistically significant differences in CD8 T cell proliferatin among 
participant groups. The effect size (Partial Eta Squared) indicates a small effect, 
contributing to 9.73% of the observed variance. In the case of pairwise comparison, none 
reached statistical significance (p-adj > 0.05). This aligns with the ANOVA result, further 
supporting no significant pairwise differences. A statistical power of 0.074 indicates a 
low probability of detecting true differences. The study is underpowered, suggesting a 
limitation in its ability to identify significant effects. The low power underscores the need 
for caution in interpreting the study findings. A larger sample size is recommended to 
enhance the study's ability to detect meaningful differences and increase the reliability of 
the results. To achieve adequate statistical power, the study would require a larger sample 
size of 831 participants. The current sample size may be insufficient to draw robust 
conclusions or detect existing differences effectively. 

 In the case of effect sizes, CD8 T cells proliferation in patient shows moderately more, 
0.57 and 0.63, in compare to vaccinated and non-vaccinated respectively. CD8 
proliferation-E6-vacs-patients: SMD = 0.5709 (Moderate Effect):  An SMD of 0.5709 
suggests a moderate effect size. This indicates a more substantial difference in CD8 T 
cell proliferation against the E6 antigen between vaccinated participants and patients with 
the first stage of HPV-related cervical cancer. CD8 proliferation-E6-nonvacs-patients: 
SMD = 0.6317 (Moderate Effect): An SMD of 0.6317 indicates a moderate effect size, 
similar to the previous case. This implies a moderate difference in CD8 T cell 
proliferation against the E6 antigen between non-vaccinated participants and patients 
with HPV-related cervical cancer. 

Overall MDC values: Small to moderate differences with practical significance, as 
indicated by values ranging from 1.96 to 4.71: Interestingly, the Minimal Detectable 
Change (MDC) values provide a range (1.96 to 4.71) representing small to moderate 
differences in CD8 T cell proliferation against the E6 antigen. This suggests that observed 
changes in the study are practically significant and not merely due to measurement 
variability.  

CD8 T Cell proliferation Against HPV16-E7 Antigen 

The ANOVA results suggest that there are no statistically significant differences in CD8 
T cell proliferation against the HPV E7 antigen among participant groups. The p-value 
exceeds the typical significance threshold of 0.05, indicating a lack of significant group 
variation. The Tukey HSD test compared group pairs to explore differences further, and 
none of the pairwise comparisons reached statistical significance (p-adj > 0.05), 
supporting the ANOVA findings. The low statistical power (below 0.8) indicates a 
limitation in the study's ability to detect differences. A larger sample size (1308 
participants) is recommended for robust conclusions. 
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In the context of effect size, CD8 proliferation-E7-vacs-nonvacs: SMD = -0.1043 (Small 
Effect), CD8 proliferation-E7-vacs-patients: SMD = -0.5999 (Moderate Effect), and CD8 
proliferation-E7-nonvacs-patients: SMD = -0.5912 (Moderate Effect) were seen. These 
values suggest small to moderate differences in CD8 T cell proliferation against the E7 
antigen, with the most notable difference observed between vaccinated and non-
vaccinated participants. Also, overall MDCs represent the Minimal Detectable Change, 
indicating the smallest change that can be considered significant. They range from 2.69 
to 3.76, suggesting practical significance in observed differences. 

CD8 T Cell proliferation Against HPV16-L1 Antigen 

The ANOVA results suggest no statistically significant differences in CD8 T cell 
proliferation against the HPV L1 antigen among participant groups. Although the p-value 
is slightly above the conventional significance level (0.05), the effect size (np2) indicates 
a moderate influence of the group variable on CD8 T cell proliferation against the L1 
antigen. The Tukey HSD test compared group pairs, none of the pairwise comparisons 
reached statistical significance (p-adj > 0.05), confirming the ANOVA results. The low-
to-moderate, 0.198, statistical power suggests limitations in detecting differences. 
Increasing the sample size to 143 participants is recommended for improved statistical 
power. 

SMD, quantify the magnitude of differences between groups. The values provide insights 
into the practical significance of observed effects. In this context: CD8 proliferation-L1-
vacs-nonvacs: SMD = -1.2840 (Large Effect): This indicates a substantial and practically 
significant difference in CD8 T cell proliferation against the L1 antigen between 
vaccinated (vacs) and non-vaccinated (nonvacs) participants. CD8 proliferation-L1-vacs-
patients: SMD = -0.8037 (large Effect): A large effect signifies a meaningful difference 
in CD8 T cell proliferation between vaccinated participants and those with HPV-related 
cervical cancer (patients). CD8 proliferation-L1-nonvacs-patients: SMD = 0.5847 
(moderate Effect): A small effect suggests a less pronounced but still noteworthy 
difference in CD8 T cell proliferation between non-vaccinated participants and those with 
cervical cancer. 

These SMD values help interpret the practical significance of the observed variations in 
CD8 T cell proliferation among different participant groups. 

Minimal Detectable Change (MDC) values represent the smallest change in a 
measurement that is considered significant or meaningful. In this context, CD8 
proliferation-L1-vacs-nonvacs, overall MDC: 19.52: This indicates that changes in CD8 
T cell proliferation against the L1 antigen in the range of 19.52 are practically significant 
when comparing vaccinated and non-vaccinated participants. CD8 proliferation-L1-vacs-
patients, overall MDC: 18.13: For comparisons between vaccinated participants and those 
with cervical cancer, changes in CD8 T cell proliferation exceeding 18.13 are considered 
practically significant. CD8 proliferation-L1-nonvacs-patients, overall MDC: 6.43: 
Changes in CD8 T cell proliferation beyond 6.43 are considered practically significant 
when comparing non-vaccinated participants with those having cervical cancer. 
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Interpretation of overall SMD Confidence Intervals 

The wide SMD confidence intervals for CD4 and CD8 activation against HPV16 antigens 
(E6, E7 and L1) indicate substantial uncertainty in effect estimates, making it challenging 
to precisely determine the impact of vaccination and patient status on CD4 and CD8 
activation. These results may indicate that participants may exhibit diverse responses to 
HPV vaccination due to individual differences in immune system functioning, genetics, 
or health status. This variability is reflected in the broad confidence intervals [238]. Also, 
this can be influenced by factors such as assay sensitivity and specificity. The wide 
intervals underscore the need for further research to elucidate the factors influencing T 
cell activation against HPV antigens. Larger sample sizes and more comprehensive 
studies could enhance precision and reliability in effect size estimation [239]. 

Comparing the fold increase of T cells proliferation with MDC 

The fold increases in T cell proliferation compared to actin, along with the Minimal 
Detectable Change (MDC) values, provide insights into the practical significance of these 
changes. In summary, TH1-L1, TFH1-L1, and TFH1-E7 show practically significant 
changes in T cell proliferation, surpassing their respective MDC values. The other cases 
might not reach practical significance based on the MDCs. TH1 cells are involved in 
cellular immune responses, while TFH1 cells play a role in supporting B cell responses, 
crucial for antibody production. The changes in these subsets likely reflect the adaptive 
immune system's recognition and response to HPV antigens introduced by the vaccines 
[240].  

The logistic regression analysis provides insights into the impact of vaccination 
parameters on the fold increase in T cell proliferation. The logistic regression underscores 
the substantial impact of the intercept, number of vaccine doses, and age on T cell 
activation. In this scenario, as age increases by one unit, the odds of T cell activation 
decrease. The other two factors have positive on T cells proliferation. Interestingly, the 
brand name of the vaccine does not significantly contribute to variations in T cell 
proliferation fold increase, emphasizing the robustness of T cell response across different 
vaccine formulations. Research suggests that both age and the number of HPV vaccine 
doses have a significant impact on T cell proliferation in response to vaccination. The age 
of the recipient has been shown to significantly influence the generation of HPV-specific 
T cell responses. Specifically, the age of the recipient can impact the proliferation of T 
cells in response to HPV vaccination. Younger individuals may exhibit a more robust T 
cell response, emphasizing the importance of early vaccination to enhance immune 
memory [241]. Additionally, Studies have demonstrated that the number of doses 
differentially impacts human B and T cell immune memory responses to HPV 
vaccination. Adjustments in the vaccination schedule, such as the timing and number of 
doses, may influence the magnitude and durability of T cell responses [242]. 
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Lack of Observable Changes in T Cells Proliferation against 
HPV16 Antigens  

Thus, the absence of detectable changes in proliferation of CD8 and CD4 T cells against 
HPV16 E6, E7, and L1 antigens in vaccinated, non-vaccinated, and patients with first-
stage HPV-related cervical cancer could be influenced by several factors: 

1. Variability in Immune Responses: Individuals may exhibit variability in their 
immune responses to HPV vaccination and infection. Factors such as genetics, 
overall health, and immune system status contribute to the diversity in T cell 
reactions [243]. 

2. Timing of Analysis: The time at which T cell responses are assessed is crucial. 
If the analysis occurs too early or too late after vaccination or infection, the 
changes in T cell proliferation might not be captured. The kinetics of immune 
responses vary among individuals[242]. 

3. HPV Antigen Specificity: T cell responses can be antigen-specific. If the 
antigens assessed (E6, E7, and L1) are not the primary targets of the immune 
response or if other antigens are more dominant, changes in CD8 and CD4 T cells 
may not be apparent. E6 and E7 oncoproteins are considered primary targets for 
T cell responses because they are expressed in HPV-associated cancers. T cells, 
especially cytotoxic T lymphocytes (CTLs), recognize and eliminate cells 
expressing these oncoproteins, contributing to anti-tumor immunity. HPV16 
E6/E7-specific T cells demonstrate cytotoxic proliferation against antigen-
positive targets, indicating their role in directly targeting and eliminating infected 
or transformed cells [244]. While L1 is a structural protein involved in the 
formation of viral capsids, it may not be as prominent a target for T cell responses 
as E6 and E7, which are more directly linked to viral oncogenesis. Studies 
investigating T cell responses to multiple HPV16 proteins have shown that E6 
and E7 are the primary focus, with L1 potentially playing a more limited role in 
the immune response [44]. Additionally, in the context of antigen presentation, 
E6 and E7 oncoproteins, being viral oncoproteins associated with HPV-driven 
cancers, are effectively presented by antigen presenting cells (APCs). Antigen 
presentation of E6 and E7 by APCs leads to the activation of both CD4+ and 
CD8+ T cells, contributing to a robust immune response against HPV-infected 
or transformed cells [245]. In contrast, L1, being a structural protein involved in 
the formation of viral capsids, may have a role in antigen presentation, but it 
might not be as prominent as E6 and E7. Unlike E6 and E7, L1 has less direct 
involvement in HPV-driven oncogenesis. However, it may still contribute to the 
overall immune response against HPV16 [108]. However, it should be considered 
that HPV has evolved immune evasion mechanisms, and certain viral proteins 
like E6 and E7 are known to interfere with immune recognition. If these proteins 
successfully evade the immune response, it can hinder the activation of T cells 
specific to these antigens [246]. 
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4. Individual Immune Status: Pre-existing immunity or immunosuppression in 
certain individuals can affect the magnitude of T cell responses. Patients with 
first-stage HPV-related cervical cancer might have heterogeneous immune 
profiles. 

5. Methodological Considerations: The techniques used to measure T cell 
responses, such as assays or detection methods, can influence the sensitivity and 
specificity of the results. Inaccuracies in measurement may lead to the failure to 
observe changes. The sensitivity of LPA can be influenced by the background 
proliferation in unstimulated cells. Performing a comparative analysis, such as 
comparing stimulated vs. unstimulated conditions, aids in discerning specific T 
cell proliferation. Additionally, the choice of mitogens or antigens used to 
stimulate T cell proliferation is critical. If the selected stimuli do not effectively 
engage T cells, it may result in reduced sensitivity. Utilizing antigens relevant to 
the specific T cell population of interest can enhance sensitivity [247]. 

6. Sample Size and Population Diversity: Insufficient sample size or a lack of 
diversity in the study population may limit the generalizability of findings. Larger 
and more diverse cohorts may be needed to capture subtle variations [242]. 

Understanding the intricacies of immune responses to HPV requires comprehensive and 
context-specific investigations. It may be beneficial to consider a combination of 
immunological assays, longitudinal studies, and a diverse study population to better 
elucidate the factors influencing T cell proliferation in response to HPV. 

 

Phylogenetic Analysis of HPV Species  

Phylogenetic analysis of E6, E7, and L1 antigens across high-risk, low-risk, probably 
high-risk, and unknown-risk HPV species reveals extensive diversity. E6 spans 6 clades, 
E7 encompasses 7, and L1 branches into 9 distinct clades. This complexity poses a 
challenge for designing a multiple epitope vaccine, as it would necessitate incorporating 
antigens from numerous clades, resulting in a large and intricate peptide sequence. 
Phylogenetic diversity refers to the genetic variability and evolutionary relationships 
among different strains or types of a virus, in this case, Human Papillomavirus (HPV). 
Additionally, HPV is a diverse group of viruses with various species or types. Each 
species has distinct genetic characteristics and includes multiple strains [248]. So, the 
varied genetic composition of these antigens across different species suggests a complex 
evolutionary history for HPV. Consequently, the diverse antigens may contribute to 
differences in how the virus interacts with host cells, evades the immune system, and 
causes diseases [249]. 

Classifying HPV species based on risk (low, high, probably high, and unknown) and 
analyzing common ancestry reveals interesting patterns. Lower clade diversity is 
observed as the number of species decreases. Notably, the unknown-risk category 
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exhibits the highest diversity, with all species belonging to different clades. In the 
probably high-risk category, challenges arise in finding a common ancestor for E6, while 
E7 and L1 show categorization into 4 and 3 clades, respectively. High-risk species, 
fortunately, exhibit more manageable diversity, with L1 categorized into 2 clades, and E6 
and E7 into 3 clades each. The data demonstrates the correlation between how HPV 
species are classified based on risk (low, high, probably high, and unknown), the genetic 
diversity within clades, and the total number of HPV species. The unknown-risk category 
is notable for having high genetic diversity. This means that within this category, different 
HPV species exhibit significant genetic variations, indicating a diverse evolutionary 
landscape. So, it is difficult to design a vaccine for this class of HPV. In contrast, high-
risk species demonstrate a more organized genetic structure. This suggests that within the 
high-risk category, there is a discernible pattern or organization in the genetic makeup of 
the HPV species [250]. Probably high-risk HPV class is a good candidate for designing 
a multiple epitope vaccine.  

The fortunate alignment of HPV16 and HPV18 with clades containing a larger number 
of species in the high-risk group provides a strategic advantage. Developing a multiple 
epitope vaccine targeting these specific clades could enhance coverage across a 
significant portion of high-risk HPV species. The genetic alignment of HPV16 and 
HPV18 within clades that encompass a higher number of species in the high-risk group 
is a fortuitous occurrence observed in several studies. For instance, research on the 
rational design of peptide vaccines against multiple HPV types, including HPV 16 and 
18, has identified specific peptides within the L1 capsid protein sequences, highlighting 
the potential for targeted vaccine development [251]. Additionally, studies focusing on 
the development of HPV16, 18, 31, and 45 E5 and E7 peptides acknowledge the 
prevalence of these high-risk HPV types, further emphasizing the importance of strategic 
vaccine design [252]. In silico and in vivo analyses of high-risk papillomavirus L1 and 
the use of a polytope DNA vaccine containing multiple T-cell and B-cell epitopes also 
support the idea of a strategic advantage in targeting specific clades for comprehensive 
vaccine coverage [253]. Therefore, the alignment of HPV16 and HPV18 with species-
rich clades is substantiated by various studies, providing a compelling rationale for the 
development of a multiple epitope vaccine tailored to these specific genetic 
configurations. 

Despite the lower diversity in L1 compared to E6 and E7, the inherent genetic variability 
in HPV, driven by factors like point mutations and amino acid substitutions, underscores 
the challenges in vaccine design. Geographical differences in genetic variations among 
HR-HPV types may impact biological functions, potentially influencing clinical 
outcomes. The challenges in vaccine design arise from the need to account for this 
inherent diversity, especially in critical regions like E6 and E7, to ensure broad efficacy 
against different viral strains. Furthermore, geographical differences in genetic variations 
among high-risk HPV types have been identified, indicating potential implications for 
biological functions that may, in turn, influence clinical outcomes [254]. These findings 
highlight the intricate interplay between genetic diversity, geographical factors, and the 
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design of HPV vaccines, emphasizing the need for comprehensive strategies to address 
the complexities associated with vaccine development. 

The evolution of Papillomaviridae suggests that E6 and E7 proteins may not only result 
from convergent evolution but also share a common evolutionary history. Understanding 
this diversity is pivotal for comprehending the virus's behavior and holds promise for 
developing effective preventive and therapeutic strategies. Research highlights the 
pivotal role of understanding this diversity in comprehending the behavior of the virus. 
Studies emphasize the importance of unraveling the common evolutionary origins of E6 
and E7 proteins, shedding light on their shared ancestry and potential functional interplay 
[255]. Such insights are crucial for the development of effective preventive and 
therapeutic strategies. By uncovering the shared evolutionary history of these proteins, 
researchers aim to exploit this knowledge to design targeted interventions that could 
mitigate the impact of Papillomaviridae, potentially offering innovative approaches to 
prevent and treat associated diseases. 

Elucidating Protein Characteristics in HPV16 and HPV18 

The presented table outlines key characteristics of proteins associated with Human 
Papillomavirus (HPV) strains 16 and 18. Each protein's molecular weight, theoretical 
isoelectric point (pI), instability index, estimated half-life in mammalian reticulocytes, 
aliphatic index, and GRAVY (Grand Average of Hydropathy) score are detailed. 

HPV16-L1 and HPV18-L1, crucial components of common HPV vaccines, exhibit 
similar molecular weights, emphasizing their structural resemblance. However, other 
proteins, such as HPV16-E6, are substantially larger, suggesting diverse structural 
complexities among viral proteins. Larger proteins may have unique features or 
functional domains, contributing to the varied roles they play in the viral life cycle or 
pathogenesis. This insight into the distinct sizes of HPV proteins informs our 
understanding of their diverse functions within the virus and underscores the complexity 
of developing effective vaccines targeting different components of the virus [256]. 

The pI values indicate the pH at which proteins carry no net electrical charge. Notably, 
HPV18-E7 has a lower pI compared to HPV16-E7, suggesting differences in charge 
distribution. These variations may influence protein interactions within the host 
environment. For instance, the lower pI of HPV-18-E7 suggests that it carries a net 
positive charge at physiological pH levels. This can influence its interactions with 
negatively charged proteins or regions of other proteins within the host environment. 
Potential interacting proteins could include those involved in cell cycle regulation or 
cellular signaling pathways, as the E7 protein of high-risk HPVs like HPV-18 is known 
for its role in modulating host cell processes. Additionally, proteins associated with DNA 
damage response or repair mechanisms might be affected by the interaction with HPV-
18-E7 [257].  

Higher instability indices, as seen in HPV16-E6, imply increased vulnerability to 
degradation. This susceptibility may impact the protein's functionality and persistence 
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within the host, potentially influencing viral pathogenicity. Higher instability may lead to 
a shorter half-life of HPV16-E6 within host cells, affecting its ability to form stable 
interactions with cellular proteins [258]. Instability could impact E6's binding to crucial 
cellular factors, such as interferon regulatory factors [259], influencing immune 
responses. Also, E6 plays a role in manipulating cellular processes, including cell cycle 
regulation and apoptosis. Its increased instability might disrupt the protein's normal 
functioning, potentially altering its capacity to modulate these processes and promoting 
cellular abnormalities [260]. Additionally, Instability could compromise E6's 
effectiveness in evading host defenses, potentially reducing the virus's overall 
pathogenicity. 

All proteins exhibit an estimated half-life of 30 hours in mammalian reticulocytes. This 
uniformity suggests a consistent temporal presence of these viral proteins during the viral 
life cycle, emphasizing their importance in viral processes. In the context of mammalian 
reticulocytes, the estimated half-life of proteins, including those originating from viruses, 
is approximately 30 hours. The reliability of the 30-hour half-life suggests that these 
proteins play crucial roles and are integral to key viral processes within reticulocytes 
[261]. Thus, selecting them to produce a multiepitope vaccine against HPV 16;18 is 
reliable.  

The aliphatic index reflects protein stability; higher values indicate greater stability. 
Notably, HPV18-E7 stands out with a significantly elevated aliphatic index, potentially 
indicating enhanced structural robustness compared to other proteins. The significance of 
a high aliphatic index in HPV18-E7 implies that the protein may better withstand 
environmental changes, chemical stresses, or other factors that could potentially 
destabilize proteins. This structural robustness can be advantageous for the proper 
functioning and persistence of HPV18-E7 in cellular environments [262]. 

GRAVY scores represent hydrophobicity; negative values indicate hydrophilicity. While 
most proteins exhibit negative scores, highlighting water-solubility, HPV16-E6 stands 
out with a notably lower GRAVY score, suggesting increased hydrophobicity. Higher 
hydrophobicity of HPV16-E6 implies a greater tendency for the protein to repel water 
molecules and prefer interactions with non-polar substances. It also may have biological 
implications, affecting its interactions with cellular components or influencing its 
stability in different cellular environments. HPV16-E6 interacts with cellular proteins 
involved in signaling pathways. Altered hydrophobicity may modulate these interactions, 
impacting downstream signaling events and cellular responses [263]. Furthermore, 
Hydrophobicity can influence the binding affinity of HPV16-E6 with other cellular 
proteins, impacting the formation of complexes essential for viral replication and cellular 
transformation [264]. Moreover, HPV16-E6 contains zinc-binding domains. Changes in 
hydrophobicity may affect the stability of these domains, influencing the protein's 
structural integrity and functional properties [265]. 

In conclusion, the diverse characteristics among these HPV proteins underscore the 
intricate interplay between their structures and functions. Understanding these nuances is 
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vital for elucidating viral pathogenicity and informing targeted therapeutic strategies such 
as designing a multi-epitope vaccine. 

Strategic Considerations in HPV Vaccine Development 

Antigenicity assessment through VaxiJen yielded intriguing results, particularly in the 
context of HPV 16 and HPV 18 E6, E7, and L1 antigens. Notably, the puzzling revelation 
emerged when comparing the antigenicity of L1, a crucial component in widely used 
HPV vaccines like Cervarix and Gardasil. The preference for L1 in HPV vaccines, such 
as Gardasil and Cervarix, despite the higher antigenicity of E6, E7, and L2, stems from 
strategic considerations. L1 is chosen for its ability to induce a robust immune response 
against the viral capsid, promoting neutralizing antibodies that prevent initial infection 
events [266]. The classical view of designing HPV vaccines was primarily based on a 
prophylaxis point of view. The selection of L1 in vaccines like Gardasil and Cervarix 
reflects a strategic emphasis on preventing initial HPV infection. L1, when expressed as 
virus-like particles (VLPs), mimics the natural structure of the virus, inducing a robust 
immune response that generates neutralizing antibodies against the viral capsid. 

This prophylactic approach aims to establish immune protection before any viral 
infection occurs. By targeting L1, which is integral to the structure of the virus, the 
vaccines strategically focus on hindering the initial steps of the infection process. The 
classical design prioritizes the prevention of HPV acquisition, thereby reducing the risk 
of associated diseases, including cervical cancer [267].  

The prophylactic approach in designing HPV vaccines focuses on preventing initial 
infections. While successful, it has certain limitations. For example, Prophylactic 
vaccines primarily target HPV prevention and may not effectively treat existing 
infections or associated diseases. Also, those already exposed to certain HPV types might 
not benefit fully from prophylactic vaccines, as they mainly prevent infections before 
exposure[268]. Additionally, Prophylactic vaccines primarily cover specific HPV types 
included in the vaccine, leaving individuals susceptible to other non-vaccine types. So, 
they do not eliminate the need for cervical cancer screening, as they may not cover all 
oncogenic HPV types [269]. Moreover, High-risk populations with increased HPV 
exposure may require additional strategies beyond prophylaxis for comprehensive 
protection [270]. 

Contrary to expectations, the antigenicity of L1 was found to be lower compared to E6 
and E7. This finding is unexpected, given the central role of L1 in common HPV 
vaccines. The discrepancy prompts a closer examination of the antigenic properties of L1 
and its implications for vaccine design. The unexpected findings suggest a need to 
reevaluate the current understanding of L1's role in immunity and may necessitate 
adjustments in vaccine design strategies to enhance the overall efficacy of HPV vaccines 
[267]. 

Phylogenetic analysis of HPV species, however, provided a crucial context. Despite the 
lower antigenicity, L1 emerges as the most conserved antigen among the analyzed 
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antigens. This contradicts the antigenicity results but highlights the importance of 
considering phylogenetic conservation in understanding the immune response to HPV 
antigens. This contradiction between antigenicity and genetic conservation emphasizes 
the importance of considering the evolutionary history and genetic makeup of HPV 
antigens in understanding the immune response. While antigenicity is a measure of how 
well an antigen can induce an immune response, phylogenetic conservation indicates the 
degree of genetic similarity or stability over time [271]. 

The finding underscores that, despite its lower antigenicity, L1's genetic conservation 
might play a crucial role in the immune response to HPV [272]. This insight suggests that 
the immune system may recognize and respond to conserved elements in L1, which could 
have implications for vaccine design and understanding the broader dynamics of HPV 
infection. 

The paradoxical nature of L1 antigenicity poses challenges for vaccine development 
strategies. While it may not exhibit the highest antigenicity, its conservation suggests a 
critical role in the viral lifecycle. Balancing the inclusion of antigens with high 
antigenicity, like E6 and E7, with those that are phylogenetically conserved, like L1, 
becomes a crucial consideration for comprehensive vaccine coverage[253]. On the other 
hand, in vaccine design, a balance needs to be struck between including antigens with 
high antigenicity, such as E6 and E7, which may trigger a strong immune response, and 
those that are phylogenetically conserved, like L1. This balance is essential to ensure 
comprehensive vaccine coverage against a diverse range of HPV strains. Including both 
highly immunogenic antigens and conserved ones enhances the effectiveness of the 
vaccine, offering protection against a broader spectrum of viral variants [273]. This 
consideration highlights the complexity of HPV vaccine development, where 
understanding the interplay between antigenicity and conservation is crucial for creating 
effective vaccines. 

Considering the diminished antigenicity of L1 in comparison to E6 and E7, there arises 
a concern about its potential to induce a robust immune response. Our investigation 
uncovered a nuanced interplay encompassing antigenicity, phylogenetic conservation, 
and immunogenicity--a trifecta crucial for vaccine optimization. This revelation 
prompted a rational approach to HPV vaccine design. The imperative lies in striking an 
optimal balance: eliciting a potent immune response while strategically targeting 
conserved elements. This meticulous strategy aims to ensure a comprehensive and 
effective defense, encompassing a broad spectrum of HPV strains. 

Secondary Structure Analysis of HPV16 and HPV18 Proteins 

Secondary structure analysis provides valuable insights into the three-dimensional 
arrangement of proteins, offering clues about their function and stability. By 
understanding the secondary structure, researchers can predict the potential functions of 
proteins. Certain structural motifs are associated with specific biological activities, such 
as binding sites or catalytic proliferation, and identifying these motifs aids in elucidating 
the protein's role in cellular processes [274]. Moreover, the secondary structure is 
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intimately linked to the stability of proteins. Stable structures contribute to a protein's 
overall resilience against denaturation or unfolding, impacting its functional longevity 
[275]. Furthermore, the arrangement of secondary structures provides critical information 
about how different regions of a protein interact with each other and with other molecules. 
This knowledge is essential for comprehending the structure-function relationship of 
proteins [276]. 

Alpha-Helix (³-helix) Content: 

HPV18-E6 exhibits a significantly higher alpha-helix content (60.13%), suggesting a 
more defined and stable secondary structure compared to other proteins. Proteins with a 
well-defined secondary structure, such as a high alpha-helix content, tend to be more 
stable. This stability is crucial for the proper functioning and longevity of the protein in 
its biological context [277]. 

Extended Strand Formation or ³-strands: 

HPV16-L1 and HPV18-L1 show notable extended strand percentages, indicative of beta-
sheet structures. This structural feature might be crucial for their roles in viral assembly. 
³-sheets are a common secondary structure in proteins where neighboring strands align 
and form a sheet held together by hydrogen bonds. The structures often contribute to the 
stability and rigidity of proteins. In the context of viral assembly, these structures may 
play a critical role in forming the outer shell or capsid of the virus [278]. 

Random Coil Abundance: 

HPV16-E7 and HPV18-E7 display elevated random coil percentages, signifying 
structural flexibility. This flexibility could be linked to their diverse functional roles 
during the viral life cycle. Random coil structures are often adopting a flexible and 
disordered conformation. So, it indicates the ability of the proteins to adopt various 
conformations, allowing them to be versatile in their interactions [279]. Also, The 
flexibility of these proteins may enable them to adapt to different stages of the viral life 
cycle, contributing to processes such as infection, replication, or evasion of host defenses 
[280].  

Thus, variations in secondary structure among HPV proteins highlight their functional 
diversity and structural adaptations. These findings contribute to our understanding of 
HPV proteins behavior and can guide us for constructing a better multiepitope vaccine. 

Structural analyzing of HPV16 and HPV18 Antigens 

All modeled proteins show a high percentage in the favored region. It is indicating reliable 
and accurate structural predictions [281, 282]. 

Differences in Allowed Regions: 
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HPV16-E6 and HPV18-E6 have a minimal allowed region, suggesting well-defined 
conformations. The minimal allowed region indicates that the phi (ϕ) and psi (ψ) angles 
of the amino acid residues in these proteins fall within a restricted, specific range, 
suggesting a stable and defined structure [283]. While HPV16-E7 and HPV18-E7 display 
a slightly larger allowed region, indicating structural flexibility. The larger allowed 
region indicates a broader range of phi and psi angles for the amino acid residues, 
suggesting that these proteins have a degree of conformational variability. This structural 
flexibility can be indicative of regions within the proteins that can adopt different 
conformations, possibly playing a role in their functional diversity or adaptability [284]. 

Limited Disallowed Regions: 

Generally, the models exhibit minimal disallowed regions, reinforcing the overall 
reliability of the predicted structures. The majority of the dihedral angles (ϕ and ψ) in the 
modeled protein structure fall within energetically favorable regions on the 
Ramachandran plot. These regions correspond to conformations that are sterically 
allowed and structurally stable. A lower presence in disallowed regions suggests that the 
modeled protein structure is consistent with known protein structures and conforms well 
to the expected backbone geometry [285]. 

These results underscore the quality and reliability of the modeled structures, providing 
a basis for designing the multiepitope vaccine. 

Molecular Docking Analysis of T Cytotoxic and T-Helper  

The docking results of T cytotoxic and T-helper epitopes for HPV16 and HPV18 into 
HLA-A, HLA-BBR, and HLA-DQ are crucial for understanding the potential interactions 
between these epitopes and major histocompatibility complex (MHC) molecules. The 
molecular docking of selected epitopes with HLA-A, HLA-DBR, and HLA-DQ alleles 
provides insights into the potential binding interactions, crucial for eliciting a robust 
immune response against HPV. The choice of a 9-mer or 15-mer epitope selection 
strategy adds granularity to the vaccine design, ensuring a focused and tailored immune 
response against specific regions of the HPV genome [286].  

All of the selected epitopes could strongly with low energy, attach to their MHC 
molecules based on their size. All the 9-mer epitopes docked perfectly into the MHC-I, 
HLA-A, and all the epitopes with 15-mere sizes attach into MHC-II molecules with low 
energy and high affinity, with average of -170 kcal/mol with RMSD near zero. The 
successful docking of epitopes into various HLA molecules supports their potential as 
candidates for inducing both CD8+ and CD4+ T cell responses [287].  

These findings are promising for the development of an effective HPV vaccine. Further 
experimental validation and functional assays are necessary to confirm these in silico 
predictions. 
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Comprehensive Evaluation of Multi-Epitope Vaccine Attributes 

The physicochemical profile of the designed vaccine, as presented in Table 1, reveals 
promising attributes. The molecular weight of 38798.99 KD, theoretical isoelectric point 
(pI) of 5.93, and an instability index of 20.37 indicate a stable protein. The vaccine 
appears to have a moderate molecular weight, a slightly acidic isoelectric point, and a 
stability index suggesting overall stability, which are favorable characteristics for a 
vaccine design [288]. A moderate molecular weight is often preferred to ensure the 
vaccine is immunogenic and effectively presented to the immune system. Extreme 
molecular weights may impact the protein's ability to be processed and presented as 
antigens, affecting overall vaccine effectiveness [289]. Furthermore, molecular weight 
influences the formulation of the vaccine, affecting factors such as solubility and ease of 
administration [290].  In the case of pI, however the protein is stable, but the optimal 
isoelectric point (pI) for designing a multi-epitope vaccine can vary based on the specific 
characteristics of the vaccine and the desired immune response. Generally, a pI in the 
range of 7 to 9 is often considered favorable . A vaccine with a pI within the physiological 
pH range (around 7.4) are more stable, have better solubility, and eliciting an appropriate 
immune response, as it influences the interaction of the vaccine with immune cells and 
receptors [64]. However, The vaccines’ features in overall contribute to the potential 
effectiveness and reliability of the vaccine The estimated half-life of 7.2 hours in 
mammalian reticulocytes suggests adequate persistence. The optimal estimated half-life 
of a multi-epitope vaccine in mammalian reticulocytes can vary, but several studies 
provide insights into potential ranges. It's important to note that the optimal half-life may 
depend on various factors, including the specific design of the vaccine, the nature of 
epitopes used, and the overall vaccine formulation. Therefore, considering a range of 
greater than 20 hours to 30 hours may be indicative of potential stability and effectiveness 
in mammalian reticulocytes [291, 292]. The aliphatic index of 66.55 signifies a protein 
structure rich in aliphatic amino acids, contributing to its stability. The optimal aliphatic 
index for designing a multi-epitope vaccine can vary, but studies suggest that a higher 
aliphatic index is generally desirable for thermostability, a range between 70 to 90 are 
found in the literature [64, 293, 294]. Moreover, the negative GRAVY score (-0.107) 
indicates hydrophilicity, potentially enhancing solubility. The optimal GRAVY (Grand 
Average of Hydropathicity) score for multiple epitope vaccine designing is context-
dependent, but a negative GRAVY score is generally considered favorable [295].  

Allergenicity Assessment 

AllerCatPro analysis negated allergenic potential, affirming the safety of the vaccine. 
Experimental tests for gluten, IgE production, and comparison with common allergens 
and autoimmune-stimulating allergens further support its non-allergenic nature. When 
AllerCatPro shows no evidence for allergenicity, it suggests a low predicted risk of 
inducing an allergic response based on the available data [125]. However, careful 
interpretation and consideration of additional factors are necessary for a comprehensive 
understanding of the protein's allergenic potential. the complexity of determining 
allergenic potential and emphasizes the importance of a holistic evaluation, incorporating 
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multiple factors beyond the predictions [296] made by tools like AllerCatPro. It 
encourages a comprehensive understanding that goes beyond individual assessments to 
make informed conclusions about a protein's allergenicity. 

Antigenicity Prediction 

VaxiJen 2.0 predicted an antigenic score of 0.64, signifying the vaccine's potential to 
evoke a robust immune response. This supports its candidacy as an effective immunogen. 
The optimal range of antigenicity in VaxiJen for multiple epitope vaccine design can 
vary, but a common threshold used in several articles is greater than 0.4 [161, 297, 298].  

B Cell Stimulation 

In addition to physicochemical attributes, the vaccine was tested for B cell stimulation, 
revealing 13 linear epitopes and 2 conformational epitopes. These epitopes play a crucial 
role in eliciting specific immune responses, and antibody production enhancing the 
vaccine's potential efficacy. The identified multiple epitopes exhibit diversity, meaning 
they represent various regions of a foreign protein. These epitopes have the potential to 
bind to B cell receptors, triggering the production of antibodies. A diverse set of epitopes 
is advantageous as it engages different aspects of the immune system, increasing the 
likelihood of a robust and effective B cell immune response. This diversity enhances the 
vaccine's ability to recognize and combat a wide range of pathogens or foreign 
substances, contributing to a more comprehensive and adaptive immune defense [299]. 

Ramachandran Plot Analysis 

The Ramachandran plot illustrates favorable structural conformations. Notably, 62.5% of 
residues fall within the most favored regions, while 33.3% are in additional allowed 
regions. A generous 4.2% in generously allowed regions indicates acceptable flexibility. 
Importantly, no residues are in disallowed regions, affirming structural integrity. 
Ramachandran plot suggests a structurally sound and well-folded protein with a majority 
of residues adopting favorable conformations. The presence of residues in additional 
allowed and generously allowed regions indicates a degree of flexibility, which can be 
beneficial for the protein's function [285]. 

The Z score of -3.88 denotes a significant deviation from the mean, suggesting a unique 
but acceptable protein fold. A negative Z score suggests that the multiepitope vaccine 
structure is energetically more favorable than the average of misfolded structures. This is 
generally a positive sign, indicating that the predicted fold is unique and lower in energy 
[300]. The magnitude of the Z score is essential. A Z score of -3.88 is considered 
significant, indicating a substantial deviation from the mean. Such deviations are often 
associated with distinctive, yet acceptable, protein folds. In fact, the interpretation of a Z 
score involves comparing it to a distribution of scores from misfolded structures. A Z 
score of -3.88 suggests that the multiepitope vaccine has a unique but still acceptable 
protein fold, deviating significantly from random or misfolded conformations [301]. 
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Consequently, the vaccine exhibits favorable physicochemical attributes, safety from 
allergenic reactions, high antigenicity, and a structurally sound conformation, positioning 
it as a promising candidate for further immunological exploration. 

Docking Insights into TLR9-CpG Motif Interaction 

The successful docking of the vaccine with TLR9 suggests potential recognition and 
binding between the CpG motif and TLR9, a crucial player in innate immunity. The 
negative energy value further supports the stability of this interaction. 

Recognition of the CpG motif by TLR9 is of immunological significance. TLR9 is known 
to specifically recognize unmethylated CpG motifs, triggering innate immune responses. 
This interaction can potentially enhance the immunogenicity of the vaccine by activating 
innate immune pathways [302]. LR-9, primarily expressed in professional innate immune 
cells like dendritic cells, macrophages, and NK cells. It recognizes specific DNA motifs 
containing cytosine3phosphate3guanine (CpG) dideoxynucleotides [303]. Upon binding 
to unmethylated CpG motifs, TLR-9 initiates downstream signaling cascades, activating 
innate immune responses. Methylation of self-DNA, unavailability of self-DNA [304], 
and conjunction with other DNA sensors, such as cGAS-STING [305], enhance the 
discrimination between self and non-self DNA. This activation triggers the production of 
various pro-inflammatory cytokines, such as interferons and interleukins, and stimulates 
the maturation and activation of antigen-presenting cells [306]. TLR9 triggers a signaling 
cascade that involves the recruitment of adapter proteins, such as MyD88 leading to the 
activation of downstream kinases and transcription factors, including IRAKs and NF-κB 
[307]. This cascade nduces the release of proinflammatory cytokines, including IL-6, IL-
1³, IL-10, IL-17, TNF-³, and type I interferons (IFNs) [308].  

The molecular docking analysis suggests that the CpG motif added to the vaccine 
sequence is likely to be recognized by TLR9, highlighting a potential avenue for 
enhancing the vaccine's immunogenicity through the activation of innate immune 
responses. 

Framework for Efficient Production of Multi-Epitope HPV Vaccine 

E.coli K-12 strain is genetically stable [309] and this stability of the K12 strain ensures 
consistent and reliable production of the designed multi-epitopes HPV vaccine. Also, the 
E. coli K12 strain offers practicality, cost-effectiveness, safety, and reliable expression 
capabilities, making it a suitable choice for the production of your HPV vaccine [310]. 
The selection of the pET28a (+) plasmid from Addgene and its subsequent importation 
into the Benchling server marked a critical step in the in-silico cloning process. The 
pET28a(+) plasmid is well-recognized and widely used in molecular biology studies. Its 
compatibility with E. coli K-12 strains facilitates efficient cloning and transformation 
processes, ensuring successful integration of the vaccine sequence into the bacterial 
genome [311]. Also, the plasmid offers versatility in terms of the genes it can carry and 
express. Researchers can insert their gene of interest into the pET28a(+) plasmid, 
enabling the expression of specific proteins that form the basis of the vaccine [312]. 
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Additionally, pET28a(+) is designed for use with the T7 RNA polymerase-based 
expression system. This system allows controlled and inducible protein expression, 
providing researchers with the ability to regulate the production of the vaccine in E. coli 
K12 efficiently . Also, it accommodates codon-optimized gene sequences effectively. 
This is crucial for enhancing protein expression levels and ensuring the efficient 
translation of the vaccine's genetic code in E. coli K-12 [313]. The termination codon 
TGA and the Kozak sequence GCCGCCACCAUGG were purposefully integrated for 
proper termination and initiation of translation. The Kozak sequence enhances the 
efficiency of translation initiation by providing a favorable context for the start codon 
(AUG). This sequence, positioned around the start codon, optimally engages with the 
eukaryotic ribosomal machinery, promoting the accurate initiation of translation in E. coli 
K12 strains [314, 315].  

This meticulous in silico cloning strategy establishes a solid foundation for subsequent 
laboratory-based experiments and holds promise for the efficient production of the 
designed multiepitope HPV vaccine. 

In Silico Insights into Multi-Injection Vaccination 

The in silico immune simulations following a three-injection regimen of the designed 
vaccine unveiled a complex interplay of immune responses, providing valuable insights 
into the vaccine's efficacy. These simulations provide insights into factors such as protein 
collective motion, deformability, and epitope interactions, contributing to the design and 
validation of multi-epitope vaccines [316]. Stochastic agent-based immune simulation 
platforms have been employed to evaluate two-dose and three-dose vaccination 
protocols, offering a deeper understanding of adenoviral COVID-19 vaccination 
strategies [317]. Furthermore, immunoinformatics and immune simulation analyses have 
been utilized in designing multi-epitope vaccines for viruses like the lassa virus, 
showcasing the broad applicability of in silico approaches in vaccine development [318]. 

To facilitate the future design of COVID-19 vaccines, a computational approach 
integrating delta binding free energy has been proposed, demonstrating the power of in 
silico prediction in identifying immune-escaping hot spots [319]. Overall, in silico 
immune simulations provide a valuable tool for comprehending the complex interplay of 
immune responses, aiding in the development and optimization of effective vaccines. 

 Humoral Immune Responses: 

The primary injection triggered a substantial elevation in IgM levels, indicative 
of the initial humoral response. IgM antibodies are produced early in the humoral 
immune response to viral infections and provide fast protective immunity [320]. 
After vaccination, the timeline typically involves the detection of IgM antibodies 
by one week postvaccination, peaking around two weeks postvaccination, and 
then gradually declining over several months [321]. It can be an advantage of our 
vaccine as after HPV vaccination, it is not commonly reported to see IgM 
antibodies. Studies on HPV vaccination primarily focus on the measurement of 
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IgG antibodies [322]. While some studies mention the detection of IgM-HPV 
antibodies in a small percentage of cases, such as in maternal HPV-antibodies, it 
is not a predominant or expected immune response after classical HPV 
vaccination [323]. 

Subsequent injections led to a shift towards a more diverse humoral response, 
with increased IgM + IgG, IgG1 + IgG2, IgG1, and IgG2 populations. This 
suggests the vaccine's ability to induce a broad spectrum of antibodies. The 
detection of IgG antibodies is a standard indicator of an effective immune 
response to HPV vaccination [324]. After HPV vaccination, the induction of 
high-quality and sustained serum IgG antibody titers against HPV L1 is observed, 
providing protection against HPV infection [325]. Neutralizing antibodies, 
predominantly of the IgG class, are perceived as a key determinant of 
prophylactic HPV vaccine performance [324]. The levels of anti-HPV 16 IgG 
antibodies in sera and oral fluids have been shown to correlate significantly with 
vaccination, indicating the systemic and mucosal immune response [326]. IgG1 
is the most abundant subclass of IgG in response to HPV. IgG1 antibodies are 
effective in neutralizing viruses and promoting opsonization, facilitating the 
elimination of pathogens. Studies have shown a significant presence of IgG1 
antibodies in the immune response against HPV [327]. While IgG2 antibodies 
are generally less abundant, they play a crucial role in complement activation, 
enhancing the immune response. In the context of HPV, the specific role of IgG2 
in eradication might be influenced by its capacity to interact with Fc-receptors, 
which are essential for driving innate immune effector functions [328]  

 Cellular Immune Responses: 

CTL and HTL T cell populations exhibited heightened responses after each 
exposure, emphasizing the vaccine's immunogenicity in activating T cell 
epitopes. CTCs play a crucial role in HPV immunization by recognizing and 
eliminating cells infected with the virus. They induce cell death in infected cells, 
preventing the virus from replicating and spreading. HPV-specific CD8+ T cells 
are known to exhibit lytic capacity, contributing to the clearance of HPV-infected 
cells [329]. T helper cells, specifically CD4+ T cells, are essential for 
coordinating the immune response. They support the activation of cytotoxic T 
cells and B cells. CD4+ T cells with a T helper phenotype are involved in HPV 
immunization, promoting an effective antiviral response. Additionally, they 
contribute to the development of a memory immune response for long-term 
protection [330]. The interplay between CTCs and T helper cells is crucial for 
mounting a comprehensive and lasting immune defense against HPV. 

Consistent NK cell proliferation throughout exposures suggests a stable immune 
surveillance component. Sustained NK cell activity suggests that the vaccine is 
effectively stimulating the innate immune system. NK cells play a crucial role in 
the early defense against infections, and their consistent activity may contribute 
to an enhanced immune response [331]. Moreover, NK cells are known to 
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influence and support adaptive immune responses. Their continuous activation 
may facilitate the activation of other immune cells, such as T cells and B cells, 
contributing to a robust and adaptive immune defense [332]. NK cells are vital 
in recognizing and eliminating virus-infected cells. Consistent NK cell activity 
implies ongoing surveillance and potential clearance of infected cells, enhancing 
the vaccine's ability to protect against HPV threats [333]. Additionally, NK cells 
constant activity mean the adjuvant, CpG DNA, may contribute to the observed 
NK cell activity. Adjuvants play a crucial role in enhancing the NK cells activity 
and immune response to vaccines [334]. Thus, the observed NK cell activity 
could be an indicator of the vaccine's efficacy in priming the immune system for 
a sustained and vigilant response against the targeted pathogens. 

Antigen Levels and Memory Response: 

The decline in antigen levels after exposures indicates effective clearance, 
highlighting the vaccine's role in inducing a robust immune memory. The decline 
in vaccine antigen levels over time is a normal part of the immune response [335]. 
The initial antigen clearance signifies the resolution of the acute immune 
response. The gradual decline in vaccine antigen levels, coupled with the 
establishment of immunological memory, underscores the efficacy of the 
vaccine. It demonstrates the vaccine's ability to train the immune system for 
sustained protection and memory recall [336]. 

Persistent elevation in B and T cell memory throughout exposures underscores 
the vaccine's potential for sustained immune protection. The prolonged elevation 
in B cell memory suggests that memory B cells continue to produce antibodies 
efficiently. These antibodies play a crucial role in recognizing and neutralizing 
the pathogen upon subsequent encounters, providing long-lasting protection 
[337]. The sustained elevation in T cell memory signifies the endurance of 
memory T cells. These cells contribute to a rapid and targeted immune response. 
Memory T cells are essential for coordinating immune defenses and orchestrating 
the elimination of infected cells [338]. 

Cytokine Production and Immune Signaling: 

Significant increases in IFN-´, IL-10, IL-23, and IL-12 levels upon subsequent 
exposures indicate a pro-inflammatory and regulatory cytokine milieu. This 
suggests the vaccine's impact on orchestrating a balanced immune response with 
cellular and humoral components. The simultaneous elevation of pro-
inflammatory (IFN-´, IL-23, IL-12) and anti-inflammatory (IL-10) cytokines 
creates a balanced cytokine milieu. This balance is crucial for effective immune 
responses without causing excessive inflammation, preventing potential tissue 
damage [339]. Furthermore, the observed pattern of cytokine changes upon 
subsequent exposures may indicate the establishment of immunological memory. 
This memory enables a quicker and more targeted immune response upon 
encountering the same or similar pathogens in the future [340]. Also, IL-23 and 
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IL-12 are associated with the regulation of adaptive immunity, influencing T cell 
responses. The coordinated increase in these cytokines suggests an orchestrated 
immune response involving both innate and adaptive components [341]. 

In silico simulations demonstrate the designed vaccine's ability to elicit a dynamic and 
multifaceted immune response, emphasizing its potential as a promising candidate for 
further experimental validation. 

Post Vaccination: Gene Expression Insights in PBMCs 

The identified genes with significant expression changes in PBMCs offer potential 
insights into the immune response elicited by the HPV-16 L1 VLP vaccine. Further 
exploration of these genes and their functional implications may contribute to our 
understanding of vaccine efficacy and guide future research in HPV vaccination. Gene 
expression analysis of peripheral blood mononuclear cells (PBMCs) following HPV 
vaccination reveals crucial adaptive and innate immune responses induced by the vaccine 
[342]. Furthermore, differentially expressed genes in PBMCs exhibit pathways directly 
and indirectly linked to inflammation, providing insights into the immune system's 
response to HPV vaccination [183]. Also, HPV vaccination, specifically with L1 VLP, 
induces a wide spectrum of cytokines in PBMCs, emphasizing the activation of immune 
signaling molecules crucial for antiviral responses [343]. In the case of therapeutic 
purposes, understanding the gene expression profiles in response to HPV vaccination aids 
in designing more effective vaccines by identifying key immune responses and pathways. 
Moreover, monitoring local immune responses and HPV gene expression during 
therapies, can offer insights into treatment resistance and outcomes [344]. Additionally, 
sequencing T cell receptors (TCRs) of HPV-specific T cells, leading to complete 
resolution of HPV infections, highlighting a potential avenue for immunotherapeutic 
interventions [345].  

The meticulous selection process and subsequent gene expression analysis provide a 
foundation for understanding the molecular responses of PBMCs to the HPV vaccines, 
paving the way for future investigations and potential advancements in HPV vaccination 
strategies. 

Decoding the Network Analysis of Top 100 Hub Genes 

The network analysis of the top 100 hub genes conducted in Gephi reveals pivotal insights 
into the molecular landscape of the studied context. Notably, IL6 emerges as a critical 
player, occupying the top position in the network, indicative of its central role. IFN-´ 
follows closely, as visually demonstrated in the accompanying illustration.  

The network's structural foundation comprises 53 nodes and 185 edges, forming a robust 
backbone that underlies the intricate connections among the identified genes. Gephi 
allows the creation of visually intuitive representations of gene networks, enabling 
researchers to observe relationships and patterns within complex datasets [188]. 
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Modulatory analysis further refines the network into five distinct modules, each 
characterized by a specific set of genes, emphasizing the complexity and modularity of 
the underlying biological system[346]. 

A substantial proportion of these genes actively participate in biological processes 
associated with cytokine and chemokine production, as well as the regulation of 
inflammatory responses. The hierarchal arrangement of the chart is meticulously derived 
based on p-values, establishing a statistical foundation for the observed relationships.  

Bile acids and neurogenesis, both linked to gene expression in PBMCs, showcase 
intriguing biological interconnections. The role of bile acids extends beyond 
immunomodulation, playing a key role in the dynamic interplay between the microbiota 
and the mucosal immune system. In the context of neurogenesis, the suggestion to explore 
a tissue similar to the cervix, like the gut lumen, is insightful. Bile acids, traditionally 
known for emulsifying dietary lipids, have evolved beyond their classic role. Recent 
studies unveil their pleiotropic functions as signaling metabolites, orchestrating diverse 
metabolic and inflammatory pathways across various cells and tissues. Bile acids engage 
in dynamic interactions with host receptors and the microbiota, actively circulating 
between the liver and ileum. This evolution in understanding has linked disrupted bile 
acid circulation and metabolism to the development of cholestatic liver diseases, 
metabolic syndrome, colon cancer, and inflammatory bowel diseases (IBDs). The three-
dimensional interplay between bile acids, the microbiota, and the mucosal immune 
system is a key focus, elucidating mechanisms governing intestinal homeostasis and 
inflammation [347]. Additionally, exploring neuroimmunology in a tissue resembling the 
cervix, such as the gut lumen, could provide valuable insights. The gut-brain axis 
underscores the bidirectional communication between the gut and the central nervous 
system, impacting neuroimmune interactions. Neuroepithelial crosstalk plays a pivotal 
role in gut physiology, particularly in maintaining the mucosal barrier during homeostasis 
and inflammation. The intricate communication between sensory neurons and epithelial 
cells has been a subject of limited understanding. Recent research reveals that Nav1.8+ 
CGRP+ nociceptor neurons interact closely with intestinal goblet cells, triggering mucus 
secretion for gut protection. Commensal microbes activate nociceptors, influencing 
homeostatic CGRP release and contributing to gut barrier protection [348]. 

Furthermore, the hub genes exhibit a noteworthy association with viral infections, 
particularly highlighting the relevance of HPV16 in influencing the expression patterns 
of these genes. Persistent HPV infection can induce chronic inflammation. Once 
established, the infection can alter the immune microenvironment, leading to the 
recruitment of immune cells and causing inflammation [349]. In addition, Chronic 
inflammation is a prolonged immune response that persists over time. In the context of 
HPV infection, the presence of the virus in basal cells may trigger an ongoing immune 
response, leading to chronic inflammation. So, There is a biologically plausible 
connection between chronic inflammation and HPV infection [350]. The initial 
inflammation is critically important for viral eradication. Stealthy viral replication[351] 
and low viral gene expression [352] are two mechanism that are used by HPV to operate 
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without alerting the host immune system and initiating the inflammation. However, 
chronic or persistent HPV infection is considered a key driver of cervical cancer, and 
inflammation is identified as an important factor in this process [353]. IL-6 is found in 
the serum and exfoliated cervical cells of individuals with persistent high-risk HPV 
infections, which are the main cause of cervical cancer and its precursor lesions [354]. 
Furthermore, polymorphisms in the IL-6 gene have been studied in the context of HPV 
infections and cervical cancer development. Genetic variations in IL-6 may contribute to 
susceptibility and outcomes of HPV-associated diseases [355]. Moreover, HPV16 and 
HPV18, through their E6/E7 and E6* proteins, have been found to upregulate IL-6. This 
interaction may contribute to the immunomodulatory effects of HPV on the host's 
immune response [356]. Additionally, DisGeNET underscores a significant correlation 
between the hub genes such as and autoimmune diseases such as Rheumatoid Arthritis 
(RA), Graves, Arteriosclerosis, and osteoporosis, providing valuable clinical implications 
for further investigation. IL-6 dysregulation is implicated in various autoimmune 
diseases, such as RA, contributing to their pathogenesis [357]. Levels of IL-6 in the serum 
correlate with the disease activity of RA. Successful treatment with Disease-Modifying 
Anti-Rheumatic Drugs (DMARDs) or Tumor Necrosis Factor (TNF) inhibitors has been 
shown to reduce serum IL-6 concentrations [358]. Consequently, diseases characterized 
by continual synthesis of IL-6, like rheumatoid arthritis, can be treated by targeting IL-6. 
Inhibition of IL-6 is explored as a therapeutic strategy in autoinflammatory diseases 
[359].  

The comprehensive network and modulatory analyses shed light on the intricate interplay 
of hub genes, offering a molecular perspective on cytokine regulation, viral interactions, 
and potential links to autoimmune disorders in the studied context. 

Targeting Druggable Pockets in IL-6 

IL-6, known for its pro-inflammatory characteristics[360], poses challenges for drug 
design and dosage due to its structural features, including a high alpha-helix content and 
an acidic pI charge. Mitigating its impact on HPV-infected tumors necessitates innovative 
solutions. Additionally, its elevated aliphatic degree enhances stability in high-
temperature tissue environments. High alpha-helix content contributes to structural 
stability, making it resistant to changes. This stability can impede drug interactions as the 
protein structure may not readily accommodate binding [361]. Also, an acidic pI charge 
indicates a prevalence of acidic residues. This can affect drug solubility and alter the 
electrostatic interactions crucial for drug-protein binding. Designing drugs that 
effectively interact with acidic regions becomes more complex [362]. High aliphatic 
content enhances the protein's stability in high-temperature environments. While this is 
advantageous for the protein's natural function, it complicates drug design, as 
conventional drugs may struggle to compete with the protein's inherent stability. The 
protein with high aliphatic contents, have lower numbers of binding site and high number 
of hydrophobic contents. These characters make them difficult to set as drugs target [363].   
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An analysis of IL-6 unveils potential druggable pockets, deepening our insight into 
therapeutic opportunities. Predictions from PockDrug [364, 365] and CASTp [366] shed 
light on the probability of drugability for specific pockets. Pocket 2 (a): Identified as the 
most promising, boasting the highest drugability probability. This indicates a robust 
potential for targeted drug interactions, making it a prime candidate for further 
investigation and drug development . Third Pocket (b): With a high probability of 0.94, 
this pocket represents another favorable site for drug binding. Its proximity to a 
probability of 1 underscores a strong likelihood of successful [8] drug targeting, 
emphasizing its significance in potential therapeutic interventions. Pocket Number 0 (c): 
While not the highest, a substantial probability of 0.82 suggests significant potential for 
drug interactions. This adds to the repertoire of potential target sites for drug design and 
development [367]. Pocket 4 (d): Despite a slightly lower probability of 0.74, this pocket 
presents a noteworthy opportunity for drug binding, indicating a reasonable likelihood of 
successful drug targeting within this site. CASTp Predicted Pocket (e): Identified by 
CASTp, this pocket introduces another dimension to potential druggable sites in IL-6. 
Further exploration could unveil unique opportunities for therapeutic interventions. 

The diverse set of predicted pockets in IL-6, each with varying drugability probabilities, 
provides a comprehensive landscape for targeted drug design. These findings pave the 
way for experimental validation and further exploration of specific pockets to develop 
effective drugs targeting IL-6. 

From Drug Databases to a Potent IL-6 Inhibitor 

Exploring drug databases like DrugBank provides confidence in drugability, yet most 
findings are investigational or agonistic. To target IL-6 with inhibitory effects, Binding 
DB offers crucial insights, revealing compounds predominantly resembling ginseng-like 
structures. Further exploration in ZINC databases enriches the compound pool. These 
materials, sourced from ZINC and Binding DB, lay the foundation for identifying the 
ideal IL-6 inhibitory structure. Leveraging these insights, a robust Quantitative Structure-
Activity Relationship (QSAR) model is constructed, boasting an R² value of 0.81. This 
high R² value signifies a strong fit for the model, enhancing its reliability in predicting 
the inhibitory efficacy of compounds against IL-6. The obtained R² value of 0.81 in the 
Quantitative Structure-Activity Relationship (QSAR) model signifies a substantial 
concordance between the model and the dataset. R², the coefficient of determination, 
quantifies the fraction of variability in the dependent variable (response) that can be 
anticipated from the independent variables (descriptors) within the model. An R² of 0.81 
indicates that approximately 81% of the fluctuations in the response variable are 
elucidated by the model [368]. 

In the domain of QSAR, a heightened R² value denotes a robust alignment between the 
model's forecasts and the empirically observed values, underscoring the reliability and 
effectiveness of the model. These findings underscore the triumphant development and 
validation of a QSAR model, showcasing its prowess in predicting molecular behavior 
from external databases. The results accentuate the model's efficacy in pinpointing 
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pharmacophores within a specified biological activity range. Molecules with IC50 values 
between 0 and 10, chosen from screening, underwent pharmacophore modeling in 
Schrodinger-Maestro. This approach hones in on compounds sharing a specific structure 
aligned with the IC50 range. The software, mirroring molecules binding to IL6 with low 
IC50, identified a structure comprising two rings, an acceptor, and a hydrophobic 
component. Notably, 4-(4-morpholinylcarbothioyl)phenyl 3-(2-furyl)acrylate 
exclusively met these criteria, solidifying its relevance in this distinct category.  

Insights from Docking and 2D-QSAR Analysis 

The molecular docking analysis between 4-(4-morpholinylcarbothioyl)phenyl 3-(2-
furyl)acrylate and IL6 revealed nine potential binding sites, as predicted by PyRx 
software. The most favorable conformation, indicated by the lowest binding affinity (-
5.8) and zero RMSD values, suggests a highly stable interaction. Low binding affinity 
and RMSD=0 indicate a high level of accuracy and agreement between the predicted and 
actual binding poses in molecular docking studies. A low binding affinity suggests a 
strong interaction between the ligand and the receptor, indicating a favorable binding 
configuration. When combined with RMSD=0, it signifies that the predicted binding pose 
perfectly aligns with the experimental or native structure[369]. Also, the combination of 
low binding affinity and RMSD=0 enhances the reliability of molecular docking 
predictions. It implies that the computational model accurately reproduces the 
experimentally observed binding mode[370]. So, low binding affinity signifies a strong 
interaction, and RMSD=0 indicates a perfect alignment of the predicted and actual 
binding poses. Together, they represent a highly accurate and reliable docking model, 
essential for drug discovery and design applications. In the context of ligand-protein 
interactions, especially in tools like PyRex, the affinity values are typically represented 
as free energy changes (ΔG). In this scenario, a more negative ΔG indicates a stronger 
binding affinity, suggesting a more stable interaction between the ligand and the protein. 
A negative ΔG signifies that the reaction is thermodynamically favorable. Moreover, the 
negative sign emphasizes the release of energy during the binding process, contributing 
to the stability of the ligand-protein complex [371].  

In the 2D-QSAR model using BIOVIA Studio Visualizer, the first conformation 
demonstrated significant interactions. The Pi Anion bond formed between the ligand and 
aspartic acid (ASP) residue at position 160 (A160) enhances binding specificity. 
Additionally, the Pi Alkyl interaction involving the ligand's pi system and lysine (LYS) 
residue at position 46 (A46) contributes to ligand stabilization within the binding site. 
The PiPi-T shaped interaction with tryptophan (TRP) residue at position 157 (A157) 
further enhances the overall stability of the ligand-protein complex. Pi interactions play 
crucial roles in ligand-protein stability, contributing to the overall binding affinity. 
Involves the interaction between the pi-electron cloud of an aromatic system and an anion 
(e.g., sulfate groups). It enhances stability by forming attractive forces between the 
aromatic amino acids in the protein and anionic ligands [372]. Pi Alkyl interactions 
occurs when the pi-electron cloud of an aromatic group interacts with the electron cloud 
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of an alkyl group [373]. This interaction contributes to stability by fostering favorable 
interactions between aromatic amino acids in the protein and alkyl groups in the ligand.  

Qualities of 4-(4-Morpholinylcarbothioyl)phenyl 3-(2-
furyl)acrylate 

Assessing the physicochemical characteristics of 4-(4-morpholinylcarbothioyl)phenyl 3-
(2-furyl)acrylate through Lipinski rules reveals promising drug-like qualities. With a 
molecular weight of 343.40, 4 hydrogen bond acceptors (HBA), 0 hydrogen bond donors 
(HBD), and a LogP of 3.48, it aligns with lead-like structures in medicinal chemistry. 

These attributes imply favorable drug-like properties, indicating high solubility and 
potential medicinal relevance. The low LogP suggests limited penetration of the blood-
brain barrier, making it suitable for applications where central nervous system effects are 
undesirable. Conversely, the high gastrointestinal absorption suggests an efficient route 
for systemic distribution. The compound complies with essential drug design and safety 
criteria, positioning it as a promising candidate for drug development. Its lead-like 
classification, determined by factors such as molecular weight, hydrogen bond 
characteristics, and lipophilicity, underscores its potential utility in the early stages of 
drug discovery [374] . The drugability of a compound is often evaluated based on 
Lipinski's Rule of Five, which consists of the following criteria:  

Molecular Mass: The molecular mass should be less than 500 Dalton. 

Lipophilicity (LogP): The LogP (partition coefficient) should be less than 5. 

Hydrogen Bond Donors: There should be fewer than 5 hydrogen bond donors. 

Hydrogen Bond Acceptors: The number of hydrogen bond acceptors should be less than 
10. 

Polar Surface Area (PSA): The polar surface area should be less than 140 Å². 

These rules serve as guidelines for assessing the drug-like properties of a compound, with 
adherence to these criteria often associated with favorable oral bioavailability and 
pharmacokinetic profiles. They provide a framework to evaluate key physicochemical 
properties that influence a compound's potential as a drug candidate [375].  

The absence of hydrogen bond donors (HBD) and the presence of hydrogen bond 
acceptors (HBA) represent pertinent considerations in drug design. These characteristics 
play a pivotal role in governing the molecule's interactions within biological systems, 
influencing pharmacokinetics and potential therapeutic effects. Compounds with 
excessive hydrogen bond donors (HBD > 5) may face challenges in oral absorption, 
potentially leading to poor bioavailability. In addition, compounds with fewer hydrogen 
bond donors and acceptors are more likely to exhibit optimal absorption in 
gastrointestinal tract and distribution characteristics [376] . The balance between the 



Discussion 

31 
 

number of Hydrogen Bond Acceptors (HBA) and Hydrogen Bond Donors (HBD) in a 
compound is crucial for its drugability. Fewer HBA and HBD contribute to a favorable 
equilibrium between solubility and lipophilicity. This balance allows the compound to 
efficiently traverse cell membranes and the gastrointestinal (GI) tract, facilitated by its 
lipophilic properties. Simultaneously, the compound's solubility characteristics enable 
widespread distribution throughout the body. The smaller size of compounds with fewer 
HBD and HBA further enhances their ability to navigate biological membranes with ease. 

This intricate interplay between solubility, lipophilicity, and molecular size underscores 
the significance of HBA and HBD in shaping a compound's pharmacokinetic profile. The 
compound's ability to navigate biological barriers efficiently, both in terms of size and 
physicochemical properties, is pivotal for its successful application in drug development. 
[377].  

In medicinal chemistry, molecular filters play a pivotal role by considering parameters 
like molecular weight to selectively target compounds with desirable drug-like attributes. 
Molecular weight acts as a crucial determinant, ensuring adherence to the desired drug 
profile and thereby improving ADMET characteristics (absorption, distribution, 
metabolism, excretion, and toxicity). A molecular weight less than 500 Da is essential for 
optimal absorption, enhanced bioavailability, faster entry into the bloodstream, and 
increased cell permeability, attributed to the smaller size of the compounds[378]. 
Moreover, a low Polar Surface Area (PSA) below 140 Å² is associated with higher cell 
permeability. Compounds with lower PSA exhibit favorable characteristics, including 
increased absorption. Notably, these molecules demonstrate a heightened ability to 
traverse the Blood-Brain Barrier (BBB) efficiently, emphasizing their potential for faster 
BBB penetration [379]. This strategic consideration of molecular weight and PSA in drug 
design enhances the likelihood of developing compounds with superior pharmacokinetic 
properties and the ability to navigate biological barriers effectively. 

However, the presence of alerts in the Brenk analysis of 4-(4-
morpholinylcarbothioyl)phenyl 3-(2-furyl)acrylate should be carefully considered. A 
Brenk alert value of 3 typically indicates the presence of three specific structural alerts or 
fragments in a compound that could be associated with potential toxicity, chemical 
reactivity, and metabolic instability. In general, a lower number of Brenk alerts is 
desirable, indicating a molecule with fewer structural features associated with toxicity or 
other concerns [380]. SwissSimilarity, an invaluable web tool for molecular analysis, 
facilitates ligand-based virtual screening across a spectrum of small to ultralarge libraries 
of compounds. Notably, it aids in the rapid assessment of structural similarities and 
potential issues in chemical structures. In the context of the compound 4-(4-
morpholinylcarbothioyl)phenyl 3-(2-furyl)acrylate, the interpretation of Brenk alerts 
highlights the need for nuanced consideration, as the significance may vary based on the 
specific chemical structure and intended application of the compound. 

To optimize the safety and efficacy of the aforementioned compound, structural 
modifications are imperative, necessitating the exclusion of problematic features and 
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fragments. SwissSimilarity proves instrumental in this process, allowing for a 
comprehensive analysis of analogous structures to inform targeted adjustments. For a 
practical demonstration, the SwissSimilarity website (http://www.swisssimilarity.ch/) 
can be explored using the compound's SMILES notation, especially those in clinical trials 
that have passed FDA filters [8]. In our investigation, we identified a structural similarity 
between 4-(4-morpholinylcarbothioyl)phenyl 3-(2-furyl)acrylate and UC-781, a reverse 
transcriptase inhibitor used in the context of AIDS [381]. Considering this similarity, 
there arises a potential application of UC-781 in managing the adverse effects of IL-6 
during HPV infection.  

 

Limitations of study 

1. Antigen Selection in Experimental Design: 

• The experimental phase encountered a limitation in the selection of 
optimal antigens for both the Antigen-Induced Activity (AIM) and 
lymphocyte proliferation assays. A more focused investigation on E6 and 
E7 was prioritized over L1 due to their dominance as antigens, crucial 
for T-cell activation and proliferation. 

2. Validation in Vivo: 

While vaccine design primarily occurs through computational tools and 
simulations, it's crucial to acknowledge that in vivo experiments are essential to 
validate the real-world effects of the designed vaccine. Simulation outcomes 
must be rigorously tested in living organisms to ensure the predicted immune 
responses translate effectively into practical vaccine development. 

3. Sample Size and Budget Constraints: 

• The study faced challenges related to sample size and budget constraints, 
restricting the scope to conduct only the Lymphocyte Proliferation Assay 
(LPA) and impeding the continuation of the AIM assay. 

4. pH Levels in Vaccine Formulation: 

• The pH of the vaccine formulation was measured at 5.9, slightly acidic 
for an ideal vaccine. Most vaccines fall within the pH range of 7-9, and 
optimizing the pH within this range is crucial for vaccine stability and 
effectiveness. 

5. Suboptimal Reticulocyte Incubation Period: 

http://www.swisssimilarity.ch/
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• The optimal incubation period for reticulocytes in vaccine development 
is typically 20-30 hours. However, the current vaccine protocol involves 
a shorter incubation period of around 7 hours, potentially affecting the 
optimal maturation and response of reticulocytes. 

6. Missing HPV16:18-E7 Epitopes: 

• The vaccine lacks the HPV16:18-E7 epitopes, indicating a potential 
limitation in its ability to stimulate immunity against these specific 
targets. Considering the incorporation of live-attenuated L. 
monocytogenes [382] may be explored as a strategy to address this 
deficiency. 

7. Brenk Analysis Alerts: 

• During the Brenk analysis of 4-(4-morpholinylcarbothioyl)phenyl 3-(2-
furyl)acrylate, alerts were identified, suggesting potential concerns 
related to toxicity, chemical reactivity, and metabolic instability. Further 
investigation and refinement may be needed to ensure the safety and 
stability of the compound. 

These limitations highlight areas for future optimization and refinement to enhance the 
robustness and effectiveness of the developed vaccine.
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