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Chapter 1
Introduction

Nucleon femtography is a rapidly expanding topic in the domain of subnuclear
physics. Its goal is to unveil the complex multi-dimensional distributions of
partons (quark and gluons) inside nucleons. In other words, it seeks to pro-
vide multi-dimensional maps of the internal structure of protons and neutrons,
which are the building blocks of matter, and they represent more than 99% of
the visible mass in the visible Universe.

Through nucleon femtography, we can deepen our understanding of the
strong interaction and of Quantum Chromodynamics (QCD), leading to valu-
able insights on some fundamental aspects such as confinement. It is clear
that nucleon femtography can gain more and more precision in understanding
the internal dynamics of quarks and gluons inside nucleons as experimental
techniques and theoretical frameworks evolve with time.

This thesis focuses on the phenomenology of unpolarized transverse-momentum-
dependent (TMD) distributions, where the need for precision is very impor-
tant. Unpolarized TMDs are a generalization of collinear partonic densities,
and provide three-dimensional maps of the momentum distribution of unpo-
larized partons within unpolarized hadrons. They can be accessed in various
experimental measurements of particle scatterings in the Deep-Inelastic Scat-
tering (DIS) kinematic regime.

The quest for precision in nucleon phenomenology emerges from the com-
plicated interplay of theoretical calculations and experimental measurements.
In fact, parton distributions such as TMDs provide information on the still
poorly known regime of non-perturbative QCD, and can be extracted only
through a fit to the available experimental data, based on theoretically justi-
fied factorization theorems. Therefore, it is crucial to achieve a high level of
precision in order to obtain accurate interpretations of experimental data.

In this thesis, we firstly review the procedure of extracting unpolarized
quark TMDs in the proton. Then, we illustrate the most recent work simul-
taneous extraction of TMD Parton Distribution Functions (PDFs) and TMD
Fragmentation Functions (FFs), the latter providing information about the
fragmentation of a quark into a detected hadron.
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1. Introduction

The work presented in this thesis represents at the moment the state-of-art
of global extractions of unpolarized TMDs in the literature [1]. In fact, it is
the most recent and sophisticated simultaneous extraction of TMD PDFs and
TMD FFs. The level of sophistication of a global analysis is given by two
ingredients: the number of experimental data sets included in the fit, deter-
mining how widespread is the information that we can get from experimental
measurements; the degree of accuracy in the theoretical calculations, indicat-
ing how many terms we include in the perturbative expansion of calculable
ingredients. In our analysis, we consider the most recent experimental data for
Semi-Inclusive DIS (SIDIS) and Drell–Yan processes, including very precise
measurements at the LHC. We compute theoretical predictions through the
NangaParbat1 computational tool for TMD studies, developed by the MAP
Collaboration, at the current highest perturbative accuracy, namely at next-
to-next-to-next-to-leading logarithmic accuracy (N3LL).

This global analysis is at the cutting edge because it addresses for the first
time the normalization issue of SIDIS measurements, that occurs when the
theoretical accuracy increases beyond the leading order. This issue has been
known in the literature since a decade, but it was overlooked in the past global
analyses. Here, we make an important step forward in the identification of
the source of this issue, and we propose a theory-based operative solution to
overcome it. Because of this, we are able to reach an extremely good agree-
ment between theoretical predictions and the majority of experimental data
in both the shape and normalization, making an important breakthrough in
unpolarized TMD phenomenology.

After discussing proton TMDs, we present a determination of unpolarized
quark TMD PDFs in the pion [2]. In fact, it is interesting to understand the
internal dynamics of partons inside the pion because it is the simplest particle
in the hadronic spectrum, and it is the Goldstone boson of chiral symmetry
breaking in the Standard Model (SM). Here, we perform an extraction of un-
polarized pion TMDs through a fit of pion-nucleus Drell–Yan measurements.
We include the largest number of available experimental data, and we make
theoretical calculations at the current highest accuracy. Therefore, this new
analysis is a significant step forward in the tomography of the structure of
pions, which is far less known than the one of protons.

To complete the discussion on TMD extraction, we examine some example
of variations in the general setup of the above phenomenological analyses.
We show that in our fitting framework there are hints that TMDs do not
significantly depend on their collinear input, as expected. Then, we study for
the first time the compatibility among the experimental data sets included
in a global fit of TMDs. We collect evidences that very precise high-energy
Drell–Yan data have to be treated carefully.

In the final part of this thesis, we show how the precision reached by
collinear PDF extractions can lead to the investigation of BSM physics in

1The NangaParbat code is available at https://github.com/MapCollaboration/NangaParbat
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1.1. The internal structure of hadrons

the QCD sector. Indeed, reaching high levels of precision in nucleon phe-
nomenology not only plays a key role in improving our knowledge of the inter-
nal structure of hadrons, but has also implications in broader areas of particle
physics. In fact, accurate determinations of partonic distributions can enter
as fundamental ingredients in various calculations, including Standard Model
predictions of cross sections and event generators.

As a consequence, parton densities play a crucial role in Beyond-Standard-
Model (BSM) physics. In fact, they enter the determination of di↵erent SM
parameters in the Electroweak sector, such as the W -boson mass mW , or the
weak mixing angle sin ✓W . Deviations from SM expectations can provide indi-
rect evidence for BSM physics.

In fact, we demonstrate for the first time that we can identify BSM e↵ects
in the internal structure of protons. In particular, we investigate the possi-
bility of strong parity violation in the proton’s structure, providing the first
phenomenological estimate of strong parity-violating PDFs, and showing that
a high-energy photon may interact with more left-handed than right-handed
quarks in an unpolarized proton [3]. Such phenomenological investigation is
the first one ever attempted in this area of research, and it could open the door
for future studies of the so-called “strong CP” problem, which is expected to
be deeply connected to the explanation of the matter-antimatter imbalance in
the Universe.

1.1 The internal structure of hadrons

The ultimate goal of hadronic physics is to unveil and understand all the
details of the dynamics of the constituents of hadrons dictated by the strong
interaction.

The strong interaction is much more elusive than the electroweak one. In
fact, some fundamental particles such as electron and neutrino were discovered
in the first half of the XX century, while the concept of fundamental building
blocks of particles under the e↵ect of strong interactions has been postulated
only in the 1960s.

In 1964, Gell–Mann [4] and Zweig [5], independently, explained many prop-
erties of the multitude of hadronic particles observed in the mass spectrum
by hypothesizing that they are made of spin-12 elementary particles named
“quarks”.2 Thus, hadrons are bound states of a given combination of quarks
or antiquarks, their antiparticles. Baryons are made by three quarks, while
mesons by a quark-antiquark pair.

In the late 1964, Greenberg proposed to introduce a further quantum num-
ber to solve the issue of quarks of identical quantum states coexisting inside

2The term “quark” was chosen by Gell–Mann, taking inspiration from James Joyce’s tale
Finnegans Wake. Zweig proposed the name “ace” for the same fundamental particle, but
Gell-Mann’s terminology came to prominence once the concept of quark had been commonly
accepted.
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1. Introduction

some hadrons (e.g., the �++ particle) without violating the Pauli exclusion
principle [6]. This new quantum number was later named by Gell–Mann“color
charge”, or simply “color”.

It became immediately evident that strong interactions are strictly related
to the property of color. In particular, this new quantum number led to the in-
troduction of 8 new particles, named “gluons”, which mediate the interactions
between quarks and antiquarks, similarly to photons for electromagnetic inter-
actions. Moreover, Nature allows to measure only hadrons, namely colorless
bound states of quarks and/or antiquarks, whereas it is not possible to observe
quarks as free particles. Such phenomenon is known as color confinement, and
there is still no rigorous mathematical proof of it.

Due to this behavior of Nature, there was a long debate in the community
of physicist about whether quarks are physical entities or a mathematical ab-
stractions used to explain concepts that were not fully understood at the time.
The only way to determine the actual existence of quarks was to investigate
phenomena appearing in the internal structure of hadrons, being the direct
consequence of their internal dynamics. Therefore, it seemed natural to shed
light on the inside of protons by hitting them with high-energy electron beams,
which act as probes of the internal structure of the target.

The quest for proving the existence of quarks culminated in the late 1960s
with deep inelastic scattering experiments at the Stanford Linear Accelerator
Center (SLAC) [7]. The observed scattering patterns are consistent with the
existence of point-like constituents within protons and neutrons [8, 9]. This
discovery confirmed the existence of quarks, and gave credit to Gell-Mann and
Zweig’s theoretical postulations.

In 1969, Feynman proposed the so-called parton model [10] to justify one
of the main observation of the SLAC measurements, namely that the objects
describing the internal structure of hadrons depend only on a combination of
the squared momentum transfer Q2 and the energy transfer ⌫, and not on the
two separately [11]. This property was later called Bjorken scaling. In the
parton model, this phenomenon was explained by assuming that the leptons
in the beam collide against almost free point-like particles, the partons, inside
the nucleons. Partons were later identified with quarks and gluons because
experiments proved that they have the same quantum numbers.

All these observations and models were condensed into a quantum field the-
ory that can include all the properties of quark dynamics. Such a theory, called
Quantum Chromodynamics (QCD, in short) was formulated in the 1970s. It
is a non-Abelian SU(3) gauge theory that exhibits the property of asymptotic
freedom: interactions between quarks become asymptotically weaker as the en-
ergy increase [12, 13]. This means that partons behave as point-like particles
at high energy (short distance), while they are confined in hadron states at low
energy (large distance). Thus, asymptotic freedom allows for the introduction
of perturbative techniques in QCD calculations at high energy. This is the
region where the strong coupling constant ↵s is approximately small, and it is

4



1.1. The internal structure of hadrons

often referred to as perturbative QCD (pQCD) region.

The first process to which QCD was applied is the DIS, aiming to provide
an explanation of the Bjorken scaling. To do this, it is necessary to isolate the
short-distance physics in the DIS cross section. This ensures that perturba-
tive techniques can be properly applied. Thanks to the mathematical tool of
operator product expansion (OPE) [14], it was shown that the lowest-order re-
sult in pQCD reproduces Bjorken scaling, which is, however, broken at higher
orders. In fact, corrections with large logarithms of the momentum transfer
spoil the perturbative treatment, and they have to be resummed through some
evolution equations.

The deviation of Bjorken scaling was later confirmed by several experiments
such as the NA2 experiment of the European Muon Collaboration (EMC) [15,
16] and the NA4 experiment of the Bologna–CERN–Dubna–Munich–Saclay
(BCDMS) Collaboration [17, 18] (for a more recent review, see Ref. [19]).

In 1977, in a milestone work Altarelli and Parisi proposed a new way to
describe partons and their interactions [20]. They introduced for the first
time the concept of parton densities, called Parton Distribution Functions
(PDFs) [21, 22], and fragmentation functions (FFs) [23, 24] and they described
how PDFs and FFs change with the energy scaleQ2. These new ingredients can
be defined only in the deep inelastic regime and at all orders of ↵s. When it was
realized that Dokshitzer [25], Gribov and Lipatov [26] derived independently
the same equations of Altarelli and Parisi, QCD evolution were finally named
DGLAP, after the initial of all their authors. Thanks to DGLAP equations,
theoretical calculation can be compared to experimental data at any value of
the energy scale Q2 (at least, in the deep inelastic regime).

In order to perform QCD predictions for an experimental observable, one
must consider that the cross section contains both short- and long-distance
physics; therefore, it is not directly calculable in pQCD. However, there are
some classes of processes for which it is possible to formally separate long-
distance from short-distance behaviors in a systematic way. In other words,
there are factorization theorems that allow the application of perturbative
techniques to some key processes involving hadrons (denoted with h), such as
DIS process lh! l0X (where l is a lepton and X means unobserved hadrons),
Drell–Yan process h1h2 ! l+l�X, or single hadron production from electron-
positron annihilation, e+e� ! hX. In the 1980s, Collins, Soper and Sterman
explicitly demonstrated factorization theorems for these processes [27].

In high-energy processes, it is customary to assume that for a hadron mov-
ing in a certain dominant direction, usually named “longitudinal”, all partons
move approximately collinear with it, sharing a fraction x of its longitudinal
momentum. Analogously, a hadron detected in a final state is assumed to
move almost collinear with the corresponding fragmenting parton, sharing a
fraction z of its (longitudinal) momentum. In this collinear framework, factor-
ization theorems have been demonstrated for all process involving hadrons in
the initial or final state, or both. Thanks to collinear factorization, it is possi-
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1. Introduction

ble to express experimental observables in terms of perturbative subprocesses
(at the partonic level) and universal parton distributions (collinear PDFs) or
fragmentation functions (collinear FFs) [28].

Nowadays, the phenomenological studies of PDFs have reached a very high
level of sophistication [29–31] and also make use of deep concepts of Machine
Learning (ML) in computational frameworks. Despite a similar level of so-
phistication, FFs are less known than PDFs [32, 33], at least for unpolarized
distributions. All polarized distributions are less known.

1.2 Transverse-Momentum-Dependent distributions

Parton distributions in the collinear framework can be seen as one-dimensional
maps in momentum space of the internal structure of a specific hadron. In
fact, at leading order they represent the probability density of finding a quark
(or a gluon) inside a hadron carrying a fraction x of its momentum in the
longitudinal direction. However, this interpretation is not so straightforward
when QCD corrections are introduced [34].

Although the level of agreement with di↵erent experimental measurements
has reached an extremely good quality, there are experimental evidences that
cannot be interpreted within the collinear framework [35–38]. Along with az-
imuthal single-spin asymmetries (SSA) [39–42], the violation of the Lam-Tung
sum rule [43–46], namely an observed sizeable asymmetry in the azimuthal dis-
tribution of Drell–Yan lepton pairs not explained in pQCD, indicates that the
annihilating partons have an intrinsic transverse momentum, not induced by
QCD radiation. Perhaps, the most renowned example is the EMC experiment
at CERN [47], where for the first time it became evident that the spin of the
proton is only partially given by the helicities of quarks. Since few years, we
know that the helicity of gluons does not saturate the spin sum rule, although
with large errors. Therefore, the question is if the remaining contribution is
due to the orbital motion of partons inside the proton itself (for a recent review,
see Ref. [48]).

These open questions led to the conclusion that partons inside hadrons have
non-negligible intrinsic momentum in the transverse plane with respect to the
hadron’s longitudinal direction. This kind of momenta are integrated out in
collinear framework because they are considered as much smaller than the
longitudinal (dominant) momentum. However, Nature shows that they have
to be accounted for a complete description of hadrons, because they produce
experimentally observable e↵ects.

Without integrating out intrinsic transverse momenta, parton distribu-
tions acquire a dependence also on the transverse momentum k? of a quark
with respect to the hadron direction of motion. This picture is illustrated
by Transverse-Momentum-Dependent PDFs (TMD PDFs), which represent
three-dimensional generalizations of PDFs in collinear framework: they are 3-
D maps in momentum space of partons inside hadrons (see, e.g., Refs. [49–51]).

6



1.2. Transverse-Momentum-Dependent distributions

N\q U L T
U f1
L g1
T h1

N\q U L T
U f1 h?

1

L g1L h?

1L

T f?

1T g1T h1, h?

1T

Table 1.1: Leading twist parton densities. Left panel: collinear PDFs de-
pending on the longitudinal momentum fraction x. Right panel: TMD PDFs
depending on the longitudinal momentum fraction x and the transverse mo-
mentum k?. The letters U, L, T stand for unpolarized, longitudinally polarized
and transversely polarized nucleons (rows) and quarks (columns), respectively.

Similarly to partonic distributions, TMD FFs depend also on the transverse
momentum P? of the detected hadron with respect to the fragmenting parton
direction of motion, and they can be seen as a 3-dim picture of the hadroniza-
tion process (see, e.g., Refs. [52, 53]).

At twist 2, namely if we consider only leading-power contributions in the
1/Q expansion of factorization theorems, there are only 3 quark PDFs in
collinear framework; they are listed in the left panel of Tab. 1.1, where the
letters U, L, T, denote unpolarized, longitudinally and transversely polarized
particles, respectively. In the case of quark TMD PDFs, there are more pos-
sibilities of correlations between spin and quark transverse momentum. The 8
possible quark TMDs are listed in the right panel of Tab. 1.1 [51, 54–57]. In this
thesis, we focus on the extraction of unpolarized quark TMD PDFs, which are
the most studied in TMD phenomenology. Also some of the polarized TMDs
have been extracted in the literature either in the parton model approach [58–
62] or in the TMD factorization approach [63–67]. Similar decompositions
of the fragmentation correlator can be worked out also for collinear FFs and
TMD FFs, as indicated in Tab. 1.2. The majority of the investigations in TMD
phenomenology are addressed to unpolarized quark TMD FFs, and very few
analyses have been performed for the polarized ones [59, 60, 67–69]

h\q U L T
U D1

L G1

T H1

h\q U L T
U D1 H?

1

L G1L H?

1L

T D?

1T G1T H1, H?

1T

Table 1.2: Leading twist fragmentation functions. Left panel: collinear FFs
depending on the longitudinal momentum fraction z. Right panel: TMD FFs
depending on the longitudinal momentum fraction z and the transverse mo-
mentum P?. The letters U, L, T stand for unpolarized, longitudinally polarized
and transversely polarized hadron (rows) and fragmenting quarks (columns),
respectively.

The foundation of the present formalism for TMDs can be traced back to
the work of Collins, Soper and Sterman, who built a systematic framework to
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1. Introduction

make theoretical prediction for TMD-sensitive observables [27, 70–72]. They
provided fundamental insights on TMD evolution equations, on the separation
between perturbative and nonperturbative components of TMD distributions,
and on the methods to demonstrate factorization theorems, de facto opening
the door for future phenomenological analyses. Indeed, TMDs can be only
partially determined by means of well-established perturbative methods that
take into account collinear and soft radiation to all orders. Since perturbative
calculations in QCD become unreliable for values of transverse momentum
close to the Landau pole (⇤QCD), nonperturbative components of TMDs have
to be introduced, and they have to be determined through fits to experimental
data.

In this thesis, we will focus on the unpolarized TMDs f1(x,k2
?
) andD1(z,P 2

?
).

Because of factorization theorems [73], the information encoded in TMDs can
be accessed through a fit of experimental data for Drell–Yan (DY) process,
semi-inclusive DIS (SIDIS), or back-to-back hadron production from electron-
positron annihilation. In particular, the DY cross section can be written as
a convolution of two TMD PDFs, the cross section of e+e� annihilations as
a convolution of two TMD FFs, and the SIDIS one as the convolution of one
TMD PDF and one TMD FF. Therefore, the availability of measurements of
di↵erent processes in di↵erent experiments makes it possible to test factoriza-
tion theorems and to extract TMD PDFs and FFs through so-called global
fits.

In the past, several works studied the nonperturbative transverse momen-
tum components of parton distributions in Drell–Yan or in SIDIS, even with-
out mentioning the concept of TMDs (see, e.g., Refs. [74–77]). In more recent
works, the extraction of TMDs have been performed through fits of DY [78–83]
or SIDIS data [84, 85], or both [86–88]. Moreover, TMDs can be determined in
the so-called parton branching approach [89–92] by solving evolution equation
with an iterative method similar to parton shower, but including the transverse
momentum of partons.

Alternatively, a complementary approach to calculate nonperturbative quan-
tities from first principles is given by large-scale numerical simulations of lattice
QCD. These methods have been successfully used to study quark masses [93,
94], hadron masses [95], decay constants and form factors [96, 97], CKM ma-
trix elements [98, 99], the strong coupling constant [100], and many more.
An overview of recent lattice QCD results is given in Ref. [101]. There are
very recent attempts to calculate partonic distributions on the lattice in both
collinear [102] and TMD [103] frameworks (see Ref. [104], for a recent review),
but the computational methods require much e↵ort, and further steps have
to be made to improve the reliability of the results, particularly to calculate
TMD PDFs as a function of the partonic transverse momentum.

In this thesis, we discuss the extraction of unpolarized quark TMDs from
a global fit that represents the state of the art in the current literature.

A precise knowledge of TMDs is important not only to understand the

8



1.3. E↵ects of new physics through precise nucleon phenomenology

confined motion of quarks and gluons inside the hadron, but also to improve
the reliability of predictions involving TMDs. In fact, the perturbative part of
TMDs may be dominant in the domain of high-energy colliders, but also the
nonperturbative components become relevant when experimental uncertainties
are extremely small, as for experimental data at the LHC (see, e.g., Ref. [105]).
Moreover, a precise determination of unpolarized TMDs plays a key role also
in the extraction of polarized TMDs. In fact, the experimental measurements
sensitive to polarized physics are usually released as single-spin or double-spin
asymmetries, which contain the unpolarized cross section in the denominator.

Looking at future developments in hadronic physics, important opportu-
nities to explore the 3D internal structure of hadrons could be o↵ered by the
(possible) so-called JLab22 upgrade [106], an improvement in energy and lu-
minosity of the CEBAF accelerator at the Je↵erson Lab (JLab), and by the
Electron-Ion Collider (EIC) [107], a new facility which is going to be built at
the Brookhaven National Laboratory (BNL). Therefore, in the near future it
is of fundamental importance to produce precise and reliable theoretical pre-
dictions in both the perturbative and nonperturbative domains, especially in
view of the foreseen luminosity that could be achieved.

1.3 E↵ects of new physics through precise nucleon

phenomenology

Nowadays, there are several works that make use of the available information
on the internal structure of the proton to identify Beyond-Standard-Model
(BSM) e↵ects. Such e↵ects are not directly related to the internal structure of
the proton itself, but understanding the latter is needed to recognize the former.
For instance, the determination of the running weak mixing angle sin ✓W at
high energy scales has been performed by studying the Drell–Yan process at
large invariant mass of the final lepton pair [108–112]. In this context, an
accurate knowledge of PDFs in collinear framework is fundamental because
they are needed to perform the calculation of the experimental observable.
Moreover, QCD is important in the determination of hadronic contributions
to the muon anomalous magnetic moment g � 2 [113, 114]. Also, an accurate
data analysis for the extraction of the W -boson mass should consider flavor
dependence of partonic intrinsic transverse momentum [105]. In other words,
since hadronic contributions can be crucial to understand the discrepancies
between experimental data and purely perturbative EW calculations, hadronic
physics plays a key role as an input to BSM physics searches in the EW sector.

Since QCD is less under control than EW physics, investigations of BSM
e↵ects in the QCD sector are more di�cult. In this thesis, we show that
the knowledge of some aspects of QCD has reached such a precision that it
is possible to estimate e↵ects of BSM physics even inside the structure of
nucleons.
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1. Introduction

The presence of operators that violate parity (P) or charge-parity (CP)
symmetries is admitted in the QCD Lagrangian. In the last decades, a par-
ticular operator with these features, the so-called “✓-term”, has been studied.
This BSM term is usually not included in the QCD Lagrangian because it
should give rise to a nonzero electric dipole moment for the neutron (nEDM),
while experiments put very small upper limits on it [115]. Hence, an upper
limit to the value of ✓ is set to 10�12. However, there are no theoretical reasons
that prevent it to be of order 1. This is the so-called “strong CP problem”. A
possible explanation can be found in the theory of Peccei and Quinn [116].

Addressing the strong CP problem could o↵er a solution to one of the
biggest questions of cosmological physics, namely the baryon asymmetry ob-
served in the Universe. The presence of CP violation emerges as a good can-
didate to account for the detected excess of matter over antimatter in the
Universe. In fact, in the scenario where matter and antimatter are in perfect
equilibrium, the universe would be made up only by radiation, without any
matter. The existence of matter imposes that CP symmetry must be somehow
broken. However, weak CP violation is not su�cient to explain the observed
imbalance. A theoretical model that includes strong CP violation, as the one
by Peccei and Quinn [116], could provide an explanation of the observed im-
balance, if confirmed by experiment.

In this thesis, we will not investigate the origin of strong parity violation.
We will assume that the QCD Lagrangian can contain parity-violating terms.
Then, we explore the consequences in DIS experiments. We show that new
collinear PDFs appear in the partonic correlation function, which produce new
structure functions in the DIS cross section. A similar discussion for parity-
violating di-hadron fragmentation functions was presented in a pioneering work
in Ref. [117], and more recently for PDFs and FFs in Refs. [118, 119].

The main innovation of the study reported in this thesis is the phenomeno-
logical estimate of the size of the newly introduced parity-violating PDFs
through a fit of the available experimental data.

Identifying signals of BSM physics is surely much simpler in the EW sec-
tor than in QCD. Indeed, the internal structure of nucleons can be investi-
gated only through nonperturbative physics, and is a↵ected by several power-
suppressed corrections, which can originate e↵ects that may be wrongly con-
nected to new physics. In this thesis, these corrections are somewhat under
control, namely they are included in the analysis or they are estimated much
smaller than the required accuracy.

The phenomenological estimate of parity violation reported in this thesis
is the fist one in the literature, and could possibly open a new door for the
investigation of new physics beyond the Standard Model. This is an example of
how QCD phenomenology can be used to study BSM physics, if the precision
of experimental data and theoretical predictions is su�ciently high.
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1.4 Outline of the thesis

The main topics covered in this thesis are:

m the simultaneous extraction of unpolarized quark TMD PDFs in the
proton and TMD FFs through a global fit of available experimental data;
the work is conventionally named MAP22 [1]

m the extraction of unpolarized quark TMD PDFs in the pion through
a fit of available experimental data; the work is conventionally named
PionMAP22 [2]

m the phenomenological estimate of strong parity violation in the internal
structure of the proton [3].

The author of this thesis was one of the main developers of the NangaParbat
code, which is the computational tool for TMD studies employed to perform
the analyses presented in this thesis, and was one of the main authors of the
papers on which this thesis is based.

This dissertation is organized as follows. In Ch. 2, the theoretical frame-
work of TMDs is discussed, addressing the factorized expressions of the ex-
perimental observables of Drell–Yan process and Semi-Inclusive DIS (SIDIS),
which are the two main sources of information on TMDs. Then, we discuss
the theoretical ingredients needed to build a TMD distribution, namely TMD
evolution and its matching onto collinear distributions, resummation of large
logarithms, the logarithmic ordering, and its nonperturbative content. Finally,
we address the normalization issue of SIDIS observables when increasing the
perturbative accuracy.

The phenomenological analysis of the MAP22 global fit is illustrated in
Ch. 3. We present the global data set included in the analysis, the criteria
introduced to restrict the analysis in a reliable region where TMD factoriza-
tion holds, and we discuss how experimental and theoretical uncertainties are
treated. Then, after briefly outlining the parameterization introduced for the
nonperturbative parts of TMDs, we show the results of the MAP22 global fit.
We discuss the global �2 as an estimator of the quality of the fit, we show the
results for the fitted parameters, we display the TMD PDFs and FFs in di↵er-
ent kinematic regions, plus some other ingredients, such as the average squared
transverse momenta and the Collins–Soper kernel, a fundamental ingredient in
TMD evolution. Also, we discuss variations of the baseline fit configuration,
namely variations of its perturbative accuracy, of the choice of the prescrip-
tion to introduce the nonperturbative TMD content, and of the cut imposed
on the transverse momentum to restrict the analysis in TMD region. Finally,
we estimate the impact on the TMD uncertainty bands of new data from the
JLab22 upgrade and the EIC machine.

In Ch. 4, we present the phenomenological analysis of the PionMAP22
fit. Again, we describe the data set included in the analysis, the criteria to

11



1. Introduction

restrict the analysis in TMD region, and the treatment of experimental and
theoretical uncertainties. We discuss the choice for the nonperturbative part
of TMD PDFs in the pion, the results of the fit, and we display the extracted
pion TMDs, making also a comparison with the MAP22 proton ones. Finally,
we perform theoretical predictions for upcoming data from the COMPASS
Collaboration.

Ch. 5 is devoted to some investigation on possible modifications of the
usual setup of our TMD phenomenological analyses. Specifically, we discuss a
possible modification on the theoretical input of collinear PDFs in order to get
information about their role in the extraction of TMD distributions (through a
fit of experimental data). After that, we present a study on the identification of
possible inconsistencies among di↵erent data sets included in a TMD analysis.
Based on previous studies in PDFs determinations, we show how problematic
measurements can be identified and, eventually, removed from the baseline
data set through objective criteria. We collect evidences that this procedure
could produce some benefits also in TMD phenomenology.

The first phenomenological estimate of strong parity violation signals in the
internal structure of nucleons is discussed in Ch. 6. We illustrate the formalism
of parity-violating (PV) PDFs, their contribution to DIS structure functions,
and the experimental observable sensitive to this newly introduced e↵ects. We
describe our first model for PV PDFs. We discuss the available experimental
data introduced in the phenomenological analysis and, finally, we present the
results.

Finally, a brief overview of the results illustrated in this thesis and an
outlook on possible future developments are reported in Ch. 7.
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Chapter 2
Factorized framework for TMD

unpolarized observables

As already mentioned in Ch. 1, the possibility to extract information from dif-
ferent processes about nonperturbative objects describing the internal struc-
ture of hadrons, such as TMDs or collinear parton densities, is a key feature
of QCD. This allow us to draw a global picture of the e↵ects caused by the
internal dynamics of partons inside hadrons.

In this chapter, we describe the theoretical framework used to make pre-
dictions for the experimental processes that are included in global analyses
of unpolarized TMDs, namely the Drell–Yan (DY) and Semi-Inclusive DIS
(SIDIS) processes.

In hadron tomography, the Drell-Yan (DY) process is of fundamental im-
portance to get clean information on the transverse-momentum content of
hadrons, since it can be described in terms of TMD PDFs.

At the same time, the SIDIS process has been proven to be a fundamental
tool to investigate several aspects of perturbative and nonperturbative QCD,
which sometimes cannot be accessed through the Drell-Yan process, such as
the framgmentation of colored quarks into colorless hadrons. This kind of
process is important to perform a simultaneous analysis of TMD PDFs and
TMD Fragmentation Functions (TMD FFs).

In Sec. 2.1, we give an overview of the TMD factorization formula for the
di↵erent Drell-Yan obsevables measured by di↵erent experimental collabora-
tions, which are included in recent global analyses. In Sec. 2.2, we discuss
the TMD factorization formula for SIDIS obsevables measured by di↵erent
experimental collaborations. Then, the formalism of TMD distribution is in-
troduced in Sec. 2.3, including their perturbative and nonperturbative contents
and their evolution equations. Finally, in Sec. 2.4 the problem related to the
normalization of SIDIS observable is discussed. In particular, the formalism of
Refs.[1, 2, 81] is taken into consideration.
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2.1 Drell–Yan observables
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Figure 2.1: Diagram describing the relevant momenta involved in a DY process
in the center-of-mass (CM) reference frame. A virtual photon with momentum
q is produced by the annihilation of a quark and an antiquark with momenta
kB and kA, respectively, inside two protons with momenta PB and PA (defining
the reference axis). The quark (antiquark) has a transverse momentum k?B

(k?A), which is not measured. The total measured transverse momentum of
the photon (or the final-state lepton pair) is qT . At large values of q2, the
longitudinal components are all much larger than the transeverse components.
In this regime, qT = k?A + k?B.

In Drell–Yan process, two hadrons hA and hB with four-momenta PA and
PB, respectively, collide with center-of-mass energy squared s = (PA + PB)2.
In the final state, a pair of lepton `�(l0) and an antilepton `+(l) is measured,
while all other hadrons X composing the final state are not detected. We
neglect the lepton masses, since they are only a small fraction of the hadrons
ones. The process can be represented as follows (see Fig. 2.1 for a graphical
representation):

hA(PA) + hB(PB) �! `+(l) + `�(l0) +X . (2.1)

The Drell–Yan process was discussed for the first time in Ref. [120], where
the authors considered only that the result of the collision is the production
of a virtual photon �⇤ with four-momentum q and invariant mass Q =

p
q2,

which eventually decays in a lepton-antilepton pair with four-momenta l and
l0 constrained by the momentum conservation rule, q = l + l0.

With the advent of the high-energy physics colliders, it has been possible
to produce also a Z0-boson from the collision of two hadrons. In the litera-
ture, this kind of process is usually named “Z-boson production”. Since the
measured final-state is still a lepton-antilepton pair, we consider it as same as
Drell–Yan process throughout this thesis.
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2.1. Drell–Yan observables

We consider the center-of-mass (CM) frame as the frame of reference, where
we identify the light-cone basis formed by the four-vectors PA and PB. Hence,
we identify the longitudinal direction ẑ as the axis of the hadronic collision:
one of the two hadronic four-momenta PA and PB can be chosen as a reference
direction. The plane of the collision x̂ẑ can be identified by the vectors of
the hadron and the virtual boson, being the ŷ-axis chosen accordingly (for a
discussion on di↵erent choices for the frame of reference see Ref. [121]). In this
frame of reference, qT is the photon transverse momentum with respect to the
hadrons’ direction of motion.

We define the absolute value of the transverse momentum and the rapidity
of the vector boson or, equivalently, of the lepton-antilepton pair as

|qT | =
q

q2
x
+ q2

y
, y =

1

2
ln

✓
q0 + qz
q0 � qz

◆
. (2.2)

In order to extract unpolarized TMDs, we need to compare experimental data
to the theoretical predictions of the cross section of this process integrated over
the azimuthal angle of the intermediate vector boson (for a detailed diagram
of the process, see Ref. [122]), and with two unpolarized hadrons in the initial
state. Namely, the object of interest is the transverse-momentum spectrum of
the vector boson. Such an observable can be written in terms of two structure
functions , F 1

UU
and F 2

UU
[121, 123]. The structure function F 2

UU
is suppressed

in the kinematic limit where TMD factorization holds, namely whereM2 ⌧ Q2

(with M the mass of the incoming hadrons) and q2
T
⌧ Q2. In fact, F 2

UU
is

a twist-4 object, and it provides a correction of the cross section at the order
O
�
M

2

Q2

�
. It can be written in terms of the F cos 2�

UU
structure function1, according

to the Lam–Tung sum rule [124], which is exact in collinear framework at
O(↵S), while it is violated at higher order [125]. On the experimental side,
violations of the Lam–Tung sum rule have been observed due to unexpectedly
large cos 2� modulation of the cross section [43, 44, 46]. Therefore, the F 2

UU

structure function can be described in terms of the F cos 2�
UU

one only at O(↵S) in
the large-|qT | region, where the most of its integral is expected to be situated.
In the complementary region, it is suppressed as a twist-4 object, and it is
expected to give a small contribution (few %) to the DY cross section, at least
at large Q [123].

At leading twist and in the |qT | ⌧ Q region, the expression of the cross
section is

d�DY/Z

d|qT | dy dQ
=

16⇡2↵2

9Q3
|qT | P F 1

UU

�
xA, xB, |qT |, Q

�
+O

✓
|qT |
Q

◆
+O

✓
M2

Q2

◆
,

(2.3)
where ↵ is the (running) electromagnetic coupling, xA and xB are the longitu-
dinal momentum fractions of the quark or antiquark acting in the collision at

1The F cos 2�
UU structure function determines the cos 2� modulation of the unpolarized DY

cross section.
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2. Factorized framework for TMD unpolarized observables

the partonic level, and P is the phase space factor.

Such a phase-space reduction factor is included to account for potential
cuts on the final-state leptons kinematics, which turns out to give a relevant
impact when high-precision data are taken into account (see, e.g., a recent
analysis in Ref. [126]). It is important to note that an additional parity-
violating term contributes to the cross section in presence of cuts on single-
lepton variables [127]. This term can be originated either by the EW sector
or the QCD sector, as will be discussed in Ch. 6. However, in Ref. [81] it was
shown that this contribution is negligible in the experimental conditions we
are taking into consideration.

The structure function F 1
UU

contributes to the cross section at every point
of the phase-space, but the theoretical formalism that can be used to build
its expression depends on the considered kinematic region. At low transverse
momentum q2

T
⌧ Q2, TMD factorization allow us to express the structure

function as a convolution over the partonic transverse momenta of two TMD
PDFs:

F 1
UU

�
xA, xB, |qT |, Q

�

= xA xB HDY(Q, µ)
X

a=q,q̄

ca(Q
2)

ˆ
d2k?A d2k?B fa

1 (xA,k
2
?A

;µ, ⇣A)

f ā

1 (xB,k
2
?B

;µ, ⇣B)�
(2)(k?A + k?B � qT ).

(2.4)

In the above equation, HDY is commonly named“hard factor”. In perturbative
QCD, it can be computed order by order in the strong coupling ↵s and is equal
to 1 at leading order. The results shown in this thesis are obtained following
the definition of Ref. [128]. The expression at O(↵s) of HDY is given by

HDY(Q, µ)

����
O(↵s)

= 1+
↵s

4⇡
CF

✓
�16+

2⇡2

3
+6 ln

✓
Q2

µ2

◆
�2 ln2

✓
Q2

µ2

◆◆
. (2.5)

This function encodes the virtual part of the hard scattering at the partonic
level and depends on the hard scale Q and on the renormalization scale µ.

The summation over a in Eq. (2.4) runs over the active quarks and anti-
quarks at the scale Q, and the coe�cients ca(Q2) are the related electroweak
charges given by

ca(Q
2) = e2

a
� 2eaVaV` �1(Q

2) + (V 2
`
+ A2

`
) (V 2

a
+ A2

a
)�2(Q

2) , (2.6)

with

�1(Q
2) =

1

4 sin2 ✓W cos2 ✓W

Q2(Q2 �M2
Z
)

(Q2 �M2
Z
)2 +M2

Z
�2
Z

, (2.7)

�2(Q
2) =

1

16 sin4 ✓W cos4 ✓W

Q4

(Q2 �M2
Z
)2 +M2

Z
�2
Z

, (2.8)
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2.1. Drell–Yan observables

where the constants ea, Va, and Aa represent the electric, vector, and axial
charges of the flavor a, respectively. Moreover, V` and A` are the vector and
axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are
mass and width of the Z boson.

In Eq. (2.4), the unpolarized TMD PDFs of a given quark are denoted by
fa

1 . In particular, the first line of Eq. (2.4) displays the convolution of two TMD
PDFs fa

1 and f ā

1 of the hadrons h1 and h2, respectively. It describes the an-
nihilation of a quark (antiquark), with longitudinal momentum fraction xA =
Qey/

p
s and transverse momentum k?A, with the corresponding antiquark

(quark), with longitudinal momentum fraction xB = Qe�y/
p
s and transverse

momentum k?B. The presence of the delta-function �(2)(k?A+k?B�qT ) guar-
antees the momentum conservation in the annihilation. It is useful to underline
that TMD factorization requires the transverse momentum of the photon q2

T

to be much smaller than Q2, while the intrinsic transverse momenta of partons
k?A and k?B can be of any size allowed by momentum conservation.

Since TMD distributions arise from a double-factorization procedure [73,
129], they depend on two factorization scales (for more details, see Sec. 2.3.1).
One scale is the standard renormalization scale µ of ultraviolet (UV) singu-
larities and another is the renormalization scale ⇣ connected to rapidity di-
vergences. These two scales are equally important for the computation of the
cross section, and they should be treated separately. The scale µ can assume
an arbitrary value, because it is introduced by the theoretical formalism and it
cannot be measured. Throughout this thesis, we set it equal to Q (the energy
scale of the process). More complex is the situation for the rapidity scales of
the two TMDs, which must obey the relation ⇣A⇣B = Q4 [73]. For convenience,
we set ⇣A = ⇣B = µ2 = Q2.

In order to avoid the convolution of transverse momenta, it is convenient
to rewrite Eq. (2.4) in the so-called |bT |-space. It is the conjugate space to
transverse momenta k?. In order to write the formalism in |bT |-space, we need
to introduce the Fourier transform of each TMD. In this thesis, we consider
the following definition of the Fourier transform of the TMD PDFs:2

f̂a

1

�
x, b2

T
;µ, ⇣

�
=

ˆ
d2k? eibT ·k? fa

1

�
x,k2

?
;µ, ⇣

�

= 2⇡

ˆ
1

0

d|k?| |k?|J0(|bT ||k?|) fa

1

�
x,k2

?
;µ, ⇣

�
.

(2.9)

In Eq. (2.9), the function J0 is the 0-th order Bessel function of the first kind
and is given by the following integral expression

J0(x) =
1

2⇡

ˆ 2⇡

0

d✓eix cos ✓ . (2.10)

2The |bT |-dependent function f̂a
1 is the Fourier transform of the actual TMD fa

1 . However,
for semplicity, henceforth we will refer to f̂a

1 as to TMD.
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2. Factorized framework for TMD unpolarized observables

By inserting Eq. (2.9) into the cross section in Eq. (2.4), we finally get the
expression of the F 1

UU
structure function in terms of the ingredients in |bT |-

space

F 1
UU

�
xA, xB, |qT |, Q

�

=
xAxB

2⇡
HDY(Q, µ)

X

a

ca(Q
2)

ˆ +1

0

d|bT ||bT |J0
�
|bT ||qT |

�
f̂a

1 (xA, b
2
T
;µ, ⇣A)f̂

ā

1 (xB, b
2
T
;µ, ⇣B).

(2.11)

This is the formula for the F 1
UU

structure function actually implemented in
the NangaParbat computational tool for the analyses reported in this thesis.
In this formula, some ingredients can be calculated fully perturbatively, while
others require the introduction of nonperturbative contributions. The former
will be discussed in Sec. 2.3.2, the latter in Sec. 2.3.4.

We note that in Ref. [87] the variable |bT | was replaced by ⇠T . Such a choice
was made to avoid confusion with other definitions. In fact, in the literature of
Generalized Parton Distributions (GPDs) the symbol bT is typically introduced
for the impact parameter. In this thesis, we decided to use |bT | instead of ⇠T
as it is more common in TMD, qT -resummation and SCET (Soft Collinear
E↵ective Field Theory) literature, by keeping in mind that this is the Fourier
conjugate variable of qT , and not the impact parameter. Finally, we stress
that the expression of the structure function in |bT |-space could be di↵erent
depending on the definition of the Fourier transform.3 However, its expression
in k?-space must be always the same as in Eq. (2.4).

As will be discussed in Sec. 3.1 and summarized in Tab. 3.1, the observable
generally provided by the experimental collaborations for DY process is the
di↵erential cross section (normalized to the total) with respect to the transverse
momentum |qT |. By considering each bin delimited by the initial (i) and
final (f) values of kinematical variables, the experimental values for the above
mentioned observables are compared with the following theoretical quantity:

Oth

DY(|qT |i,f , yi,f , Qi,f ) =

 
|qT |f

|qT |i

d|qT |
ˆ

yf

yi

dy

ˆ
Qf

Qi

dQ
d�DY/Z

d|qT | dy dQ
, (2.12)

where the
�

symbol represents the integral divided by the width of the kine-
matic bin where the integration takes place:

 
|qT |f

|qT |i

d|qT | =
1

|qT |f � |qT |i

ˆ
|qT |f

|qT |i

d|qT | . (2.13)

Consequently, Eq. (2.12) corresponds to the cross section in Eq. (2.3) inte-
grated over rapidity and invariant mass of the exchanged boson and aver-

3Notice that in Ref. [87] the Fourier transform was defined with an extra 1/(2⇡) factor.
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2.1. Drell–Yan observables

aged over its transverse momentum. When the experimental collaboration
released only the normalized di↵erential cross section, the final observable is
obtained by dividing both sides of Eq. (2.12) by the appropriate fiducial cross
section, namely the fully integrated cross section, which is computed through
the DYNNLO code [130, 131].4

However, this is the case only when experimental data are measured in
facilities where both the initial-state hadrons of the DY process are accelerated,
namely only for data sets released by experimental collaborations working at
high-energy colliders (Tevatron, RHIC and LHC). In the case of low-energy
fixed-target experiments, where only one of the two hadrons is accelerated, the
measured cross section is usually written as

E
d�DY

d3q
=

1

2⇡ |qT |
d�DY

d|qT | dy
, (2.14)

where E and q are the energy and the three-momentum of the photon , re-
spectively. From Eq. (2.14), in principle the experimental value in a given
kinematic bin needs to be compared to the following theoretical quantity:

Oth

DY(|qT |i,f , yi,f , Qi,f ) =

 
|qT |f

|qT |i

d|qT |
 

yf

yi

dy

ˆ
Qf

Qi

dQ
1

2⇡ |qT |
d�DY

d|qT | dy dQ
.

(2.15)

However, since all the fixed-target experiments considered in the phenomeno-
logical analyses do not provide bins of |qT | but just the average transverse
momentum values |qT |, the integration over |qT | is not considered. Moreover,
some experiments provide only the average value y for the rapidity. Accord-
ingly, the theoretical quantity considered for those experiments reads

Oth

DY(|qT |, y, Qi,f ) =
1

2⇡ |qT |

ˆ
Qf

Qi

dQ
d�DY

d|qT | dy dQ

����
y=y, |qT |=|qT |

. (2.16)

Some low-energy fixed-target experiments (see Tab. 3.1) use the variable“Feyn-
man x”xF in place of the rapidity y. For the variable xF the following relations
with other kinematic variables hold:

y(xF , Q) = sinh�1

✓p
s

Q

xF

2

◆
, xA =

r
Q2

s
+

x2
F

4
+

xF

2
, xB = xA � xF .

(2.17)

4See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html
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2. Factorized framework for TMD unpolarized observables

Using Eq. (2.17), one obtains

E
d�DY

d3q
=

2E

⇡
p
s

d�DY

dq2
T
dxF

. (2.18)

When experimental collaborations provide bins in xF and average transverse
momentum values |qT |, the experimental values are compared to the following
theoretical quantity:

Oth

DY(|qT |, xF i,f , Qi,f ) (2.19)

=

ˆ
Qf

Qi

dQ

 
xF f

xF i

dxF

2E

⇡
p
s

d�DY

dq2
T
dxF dQ

����
|qT |=|qT |

(2.20)

⇡ Q cosh(y)

⇡ |qT |
p
s (xF f � xF i)

ˆ
y(xF f ,Q)

y(xF i,Q)

dy

ˆ
Qf

Qi

dQ
d�DY

d|qT | dy dQ

����
|qT |=|qT |

,

where

Q = (Qi +Qf )/2 , y = [y(xF i, Q) + y(xF f , Q)]/2 . (2.21)

We stress that Eq. (2.19) is an approximation of the actual experimental ob-
servable, since we replaced y and Q with y and Q in the prefactor in front
of the cross section and pull it out of the integral. It is a convenient choice
dictated by the structure of NangaParbat, the computational tool for TMD
studies developed by the MAP Collaboration [1].

This last case happens when experimental collaborations provides average
values for both transverse momentum and xF . In our work, such data are
compared against the following theoretical quantity:

Oth

DY(|qT |, xF , Qi,f ) ⇡
Q cosh(y)

⇡ |qT |
p
s

ˆ
Qf

Qi

dQ
d�DY

d|qT | dy dQ

����
|qT |=|qT |, y=y

, (2.22)

where, in this case, y = y(xF , Q) with xF = (xFi + xFf )/2.

2.2 SIDIS observables

In semi-inclusive DIS, a lepton ` with momentum l scatters o↵ a hadron target
N with four momentum P mass M . In the final state, a single hadron h (a
pion or a kaon, generally) with four-momentum Ph is measured, while all other
hadrons composing the final state are not detected. The mass of the lepton
can be neglected, since it is only a small fraction of the hadron’s one. The
process can be represented as follows:

`(l) +N(P )! `(l0) + h(Ph) +X . (2.23)
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2.2. SIDIS observables

Following the standard notation, X contains all the products of the process
that are not detected.

Generally, the available experimental data used for studying the internal
structure of nucleons come from scattering on protons and light nuclei, such as
deuterium and helium. In the analyses performed by the MAP collaboration,
the scattering on a nucleus is approximated as a scattering on an isoscalar
combination of protons and neutrons. In fact, since the knowledge of nuclear
collinear parton densities is not as refined as for the nucleon (for a review, see
Ref. [132]), there are only few recent exploratory attempts to introduce nuclear
modifications to TMD distributions [133, 134].

For convenience, we define the (space-like) four-momentum transfer, namely
the four-momentum of the virtual exchanged photon, as q = l � l0, and the
invariant momentum transfer as Q2 ⌘ �q2 > 0, and the following standard
SIDIS variables [55, 135]:

x =
Q2

2P · q , y =
P · q
P · l , z =

P · Ph

P · q , � =
2Mx

Q
. (2.24)

In the above equation, x is the Bjorken scaling variable, which defines the
fraction of the initial hadron momentum carried by the struck parton, y is the
energy fraction that is transferred by the lepton to the hadron. Therefore,
both x and y lie between 0 and 1, and provide information about the degree of
inelasticity of the process (being 1 the value for elastic scattering process). In
Eq. (2.24), the variable z is the fraction of the fragmenting parton momentum
carried by the final-state hadron.

As shown in Fig. 2.2, we will follow the definitions and notations for trans-
verse momenta discussed in Ref. [136, 137]. Before going into the details of
a specific frame of reference, we define the transverse part PhT of the final-
state hadron momentum Ph as orthogonal with respect to the momenta P and
q. Moreover, we define the transverse part qT of the photon momentum q as
orthogonal with respect to the momenta P and Ph.

We can make several choices for the frame of reference. If we choose the
light-cone basis formed by the vectors P and q, we find a class of frames
of reference where PhT is defined as the hadron transverse momentum with
respect to the photon’s direction of motion. As a consequence, the four-
momentum PhT has only transverse components and the frame-independent
relation |PhT |2 = �P 2

hT
holds. Instead, if we choose light-cone basis formed by

P and Ph, we obtain a class of frames of reference where qT is defined as the
photon transverse momentum with respect to the hadron’s direction of motion.
As a consequence, the four-momentum qT has only transverse components and
the frame-independent relation |qT |2 = �q2

T
holds. The two momenta are

related by a Lorentz boost [138, 139]

qµ
T
= �P µ

hT

z
� 2x

|qT |2
Q2

P µ . (2.25)
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hadron

photon

nucleon

quark

P

k

Ph

q

k�

k�

PhT

P�

p

� zk�

Figure 2.2: Diagram describing the relevant momenta involved in a SIDIS
event in the Breit (nucleon-photon) frame. A virtual photon with momentum
q (defining the reference axis) strikes a parton with momentum k inside a
nucleon with momentum P . The parton has a transverse momentum k? (not
measured). The struck parton with momentum p = k + q fragments into a
hadron with momentum Ph, which acquires a further transverse momentum
P? (not measured) with respect to the fragmenting quark axis. The total
measured transverse-momentum of the final hadron is PhT . When Q2 is very
large, the longitudinal components are all much larger than the transverse
components. In this regime, PhT ⇡ zk? + P?.

In the kinematic region where the invariant mass of the photon is much larger
then the target and hadron masses (M2,M2

h
⌧ Q2) and q2

T
, P 2

hT
⌧ Q2,

Eq. (2.25) reduces to

qT ⇡ �
PhT

z
. (2.26)

We stress that Eq. (2.26) is valid up to power corrections of O(|qT |/Q). Power
corrections can give rise to the modification of some kinematic variables (kine-
matic power corrections), like the term proportional to q2

T
/Q2 in Eq. (2.25), or

they can introduce the contribution of higher-twist parton densities (dynam-
ical power corrections). In this thesis, we will neglect any power corrections
that should vanish in the considered region, apart from some modifications to
the normalization of the SIDIS observables (that could be seen as the e↵ect of
power corrections, see Sec. 2.4 for more details).

The unpolarized di↵erential cross section for the SIDIS process can be
written in terms of two structure functions, FUU,T and FUU,L [55] as follows5

d�SIDIS

dxdzd|qT |dQ
=

8⇡2↵2z2|qT |
xQ3

y2

1� ✏


FUU,T

�
x, z, |qT |, Q

�
+✏FUU,L

�
x, z, |qT |, Q

��
,

(2.27)
where ↵ is the QED coupling constant, y is defined in Eq. (2.24), and ✏ is the

5We note that in Ref. [1] there is a typographical error of a factor 2 in this formula.
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2.2. SIDIS observables

ratio of longitudinal and transverse photon flux

✏ =
1� y � 1

4�
2

1� y + 1
2y

2 + 1
4�

2y2
, (2.28)

where � =
2Mx

Q
. As for the notations, the subscripts of the structure func-

tions FXY,Z refer to the lepton (X), the target (Y ), and the intermediate
photon (Z) polarizations. The structure function FUU,L is formally a twist-4
ingredient [138], and is related to the photon longitudinal polarization as same
as the structure function F 2

UU
in the DY process. In this case, the informa-

tion on FUU,L is really poor. While moderately accurate measurements of this
contribution have been made in inclusive DIS, there are currently no measure-
ments of that quantity in SIDIS. In the limit considered here, it is expected to
be suppressed [138]. However, there very recent investigations indicating that
the FUU,L structure function might not vanish at small |qT |, and its size might
be even up to the 30% of the FUU,T [106]. In the analyses presented in this
thesis, we neglect it, and we leave this topic for a future study.

Neglecting target mass corrections O(�) and O(�2), which are a source of
kinematic power corrections, the y-dependent prefactor in Eq. (2.27) can be
approximated as

y2

(1� ✏)
⇡ Y+ = 1 +

✓
1� Q2

xs

◆2

. (2.29)

As for Drell-Yan, the SIDIS structure functions can be written in terms of TMD
PDFs and TMD Fragmentation Functions FFs by relying on factorization the-
orems [73, 140]. Therefore, at low transverse momenta |qT | = |PhT |/z ⌧ Q,
the structure function FUU,T can be defined as follows

FUU,T

�
x, z, |qT |, Q

�
= xHSIDIS(Q, µ)

X

a=q,q̄

e2
a

⇥
ˆ

d2k?

ˆ
d2P?

z2
fa

1 (x,k
2
?
;µ, ⇣A)D

a!h

1 (z,P 2
?
;µ, ⇣B)�

(2)(k? +
P?

z
+ qT )

+ YUU,T (Q
2,P 2

hT
) +O

✓
M2

Q2

◆
.

(2.30)

Here, the sum runs over quarks and antiquarks a. The variable k? is the
transverse momentum of the struck quark with respect to the target-nucleon
axis, whereas P? is the transverse momentum of the produced hadron h with
respect to the fragmenting quark axis (see Fig. 2.2). As for the DY case, we
stress that TMD factorization requires the transverse momentum of the photon
q2
T
to be much smaller than Q2, while the intrinsic transverse momenta of the

initial-state parton k? and the final-state hadron P? can be of any size allowed
by momentum conservation (imposed by the delta-function). The hard factor
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2. Factorized framework for TMD unpolarized observables

HSIDIS describes the scattering at the partonic level. It can be computed order
by order in the strong coupling ↵s, and is equal to 1 at leading order. In the
present work, we follow the definition of Ref. [128]. The expression at O(↵s)
of HSIDIS is given by

HSIDIS(Q, µ)

����
O(↵s)

= 1+
↵s

4⇡
CF

✓
�16+⇡2

3
+6 ln

✓
Q2

µ2

◆
�2 ln2

✓
Q2

µ2

◆◆
. (2.31)

In Eq. (2.30), the function Da!h

1 (z,P 2
?
;µ, ⇣B) is the TMD FF for an unpolar-

ized parton of flavor a that fragments in an unpolarized (measured) hadron h.
As already mentioned in Sec. 2.1, since these distributions arise from a double-
factorization procedure [73, 129], both TMD PDFs and TMD FFs depend on
two factorization scales.

The function YUU,T (Q2,P 2
hT
) is the so-called Y -term. It was introduced for

the first time in Ref. [72]. Such term ensures a matching to the perturbative
calculations at large values of transverse momentum. In fact, the cross section
expression in Eq. (2.27) is valid in any region of transverse momentum. In the
region at low transverse momenta |qT |⌧ Q, it is determined by Eq. 2.30 (W -
term, in literature) and by the Y -term in the complementary region |qT | &
Q. Indeed, in this last region, the TMD factorization breaks down and the
collinear factorization becomes the appropriate framework to describe the cross
section [138].

In Eq. (2.27), the electroweak couplings are given only by the square of the
electric charges e2

a
because we limit to the energy region Q2 ⌧M2

Z
, where the

contribution of the Z-boson exchange and the �Z-interference terms can be
neglected. This approximation is reasonable for the experimental observables
included in TMD global analyses, which lay at low values of Q (smaller than
10 GeV).

As for the Drell-Yan case, it is convenient to rewrite Eq. (2.30) in |bT |-space
in order to avoid the convolution of transverse momenta

FUU,T

�
x, z, |qT |, Q

�
=

x

2⇡
HSIDIS(Q, µ)

X

a=q,q̄

e2
a

ˆ +1

0

d|bT ||bT |J0
�
|bT ||qT |

�
f̂a

1 (x, b
2
T
;µ, ⇣A) D̂

a!h

1 (z, b2
T
;µ, ⇣B) ,

(2.32)

where the Fourier transform of the TMD PDF is defined in Eq. (2.9), while
for the TMD FF is defined as

D̂a!h

1

�
z, b2

T
;µ, ⇣

�
=

ˆ
d2P?

z2
e�ibT ·P?/z Da

1

�
z,P 2

?
;µ, ⇣

�

= 2⇡

ˆ
1

0

d|P?|
z2

|P?|J0(|bT ||P?|/z)Da

1

�
z,P 2

?
;µ, ⇣

�
.

(2.33)

The structure of TMD PDFs and FFs will be discussed in detail in Sec. 2.3.
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2.2. SIDIS observables

As already mentioned for DY in Sec. 2.1, some ingredients of Eq. (2.32) can
be calculated fully perturbatively, while other ones require the introduction of
nonperturbative techniques. The former ones will be discussed in Sec. 2.3.2,
the latter ones in Sec. 2.3.4.

The available experimental data for the SIDIS process were released by
the COMPASS [141] and HERMES [142] Collaborations. The provided ob-
servable is the hadron multiplicity, namely the di↵erential number of hadrons
produced per corresponding inclusive DIS event. In terms of cross sections,
the multiplicities can be defined as

M(x, z, |PhT |, Q) =
d�SIDIS

dx dz d|PhT | dQ

�
d�DIS

dx dQ
. (2.34)

Here, the d�SIDIS is the di↵erential cross section for the SIDIS process, and
the d�DIS is the corresponding for inclusive DIS. The former is defined as in
Eq. (2.27), the latter reads

d�DIS

dx dQ
=

8⇡ ↵2

xQ3

y2

2(1� ✏)


FT (x,Q

2) + ✏FL(x,Q
2)

�

⇡ 4⇡ ↵2

xQ3


Y+F2(x,Q

2)� y2FL(x,Q
2)

�
,

(2.35)

where the approximation F2 ⇡ FT + FL is justified because we neglect target
mass corrections. Following the standard DIS conventions, only the photon
polarization is explicitly written (T , L) in the subscript of the structure func-
tions. The structure function FL in the DIS cross section is not an higher-twist
correction such as the FUU,L structure function in the SIDIS process. However,
it is di↵erent from zero starting only from next-to-leading order in ↵s. There-
fore, at the perturbative order considered in Ref. [1], the structure function FL

cannot be neglected, at variance with, e.g., Refs. [84, 87].

In order to make the comparison against the experimental values in each
kinematic bin, we calculate the multiplicity with the NangaParbat compu-
tational tool by separately averaging the numerator and denominator of the
multiplicity in Eq. (2.34) over the respective kinematics. For the numerator
the computed expression is

Oth

SIDIS(xi,f ,zi,f , |PhT |i,f , Qi,f )

=

 
Qf

Qi

dQ

 
xf

xi

dx

 
zf

zi

dz

 
|PhT |f

|PhT |i

d|PhT |
d�SIDIS

dx dz d|PhT | dQ
,

(2.36)

while for the inclusive DIS the expression is the following

Oth

DIS(xi,f , Qi,f ) =

 
Qf

Qi

dQ

 
xf

xi

dx
d�DIS

dx dQ
. (2.37)
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2. Factorized framework for TMD unpolarized observables

Finally, the computed multiplicity is given by

Mth(xi,f , zi,f , |PhT |i,f , Qi,f ) =
Oth

SIDIS(xi,f , zi,f , |PhT |i,f , Qi,f )

Oth

DIS(xi,f , Qi,f )
. (2.38)

The COMPASS collaboration provides multiplicities in bins of P 2
hT
, whereas

the HERMES collaboration in bins of |PhT | (see also Tab. 3.3). In both cases,
the numerator of the observable can be calculated as in Eq. (2.36), but in the
COMPASS case the average is on P 2

hT
. Moreover, a cut on the invariant mass

of the hadronic final states W 2 = (P + q)2, through the relation

M2
N
= W 2 � 1� x

x
Q2 , (2.39)

is introduced by both collaborations (see Tab. 3.3), which makes the upper
integration limit xf in the integral over the kinematic variable x a Q-dependent
quantity.

2.3 TMD distributions

In this section, we discuss all the ingredients needed to express a TMD distri-
bution at the energy scale Q (see also Refs. [1, 73, 81]). We stress that the
actual TMD is defined in |k?|-space, while its Fourier transform depends on
the variable b2

T
(the conjugate variable of the transverse momentum). In this

thesis, we discuss the full expression of the TMD distribution in |bT |-space.
Then, one can recover the expression of the actual TMD distribution simply
by taking its Fourier anti-transform.

2.3.1 TMD evolution and matching

In the following, we will discuss formalism for the evolution and the matching
for TMD distributions, which is equivalent for both TMD PDFs and TMD
FFs.

As already mentioned in Secs. 2.1-2.2, TMD distributions acquire a depen-
dence on two scales, µ and ⇣, due to the removal of the ultraviolet and rapidity
divergences at the level of the operator definition [73, 129, 143].

In Quantum Field Theory, the dependence on the renormalization scale
of a renormalized object is dictated by a Renormalization Group (RG) equa-
tion. Therefore, in the case of TMD distributions, we deal with two evolution
equations

@ ln f̂1
@ lnµ

= �(µ, ⇣) ,
@ ln f̂1
@ ln
p
⇣
= K(|bT |, µ) , (2.40)

where � is the anomalous dimension of the RG evolution in the scale µ, and
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2.3. TMD distributions

K is the so-called “Collins-Soper kernel”, namely the anomalous dimension of
the rapidity RG (RRG) evolution in

p
⇣ [70]. Notice that, for brevity, we have

dropped the flavour index a and ā, being the evolution equations equal for each
flavor. Moreover, since in this section we will only discuss the dependence of
f̂1 on the scales µ and ⇣, we will also temporarily drop the dependence on x
and bT .

A key feature of the Collins-Soper kernel K is that is not finite, and is
renormalized by adding a counterterm that generates an additive anomalous
dimension. Therefore, the rapidity anomalous dimension K(|bT |, µ) obeys its
own RG equation

@K

@ lnµ
= ��K

�
↵s(µ)

�
, (2.41)

where �K is the so-called cusp anomalous dimension. Since the cross derivatives
of f̂1 must be equivalent, a RG equation arises also for the UV anomalous
dimension

@�

@ ln
p
⇣
= ��K

�
↵s(µ)

�
. (2.42)

Fixing the boundary condition to the point ⇣ = µ2, the solution of this di↵er-
ential equation is

�(µ, ⇣) = �F
�
↵s(µ)

�
� �K

�
↵s(µ)

�
ln

p
⇣

µ
, (2.43)

where �F (↵s(µ)) ⌘ �(µ, µ2). By assuming that the TMD f̂1 is known at some
starting scales µi and ⇣i, the solution of the evolution equations in Eq. (2.40)
reads

f̂1(µf , ⇣f ) = R
⇥
(µf , ⇣f ) (µi, ⇣i)

⇤
f̂1(µi, ⇣i) , (2.44)

where the so-called Sudakov form factor R provides the evolution of f̂1. It
results

R
⇥
(µf , ⇣f ) (µi, ⇣i)

⇤

= exp

(
K(µi) ln

p
⇣fp
⇣i

+

ˆ
µf

µi

dµ0

µ0
�(µ0, ⇣f )

)
.

(2.45)

We note that Eq. (2.45) can be implemented in various ways [144–147]. In this
work, we follow the standard approach described in [73], namely the Collins-
Soper-Sterman (CSS) approach. Moreover, the calculation of all the ingredi-
ents involved in Eq. (2.45) is performed by adopting a fully numerical approach.

The expression of di Sudakov form factor in Eq. (2.45) can be obtained as
follows. The application of the RG evolution equation on f̂1(µf , ⇣f ) gives:

f̂1(µf , ⇣f ) = exp

ˆ
µf

µi

dµ0

µ0
�(µ0, ⇣f )

�
f̂1(µi, ⇣f ) . (2.46)
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2. Factorized framework for TMD unpolarized observables

The factor F (µi, ⇣f ) can then rewritten using the RRG evolution equation as
follows:

f̂1(µf , ⇣f ) = exp

(
K(µi) ln

p
⇣fp
⇣i

+

ˆ
µf

µi

dµ0

µ0
�(µ0, ⇣f )

)
f̂1(µi, ⇣i) , (2.47)

which is the same result as in Eq. (2.45).

Figure 2.3: Two equivalent paths of RG and RRG evolution: red lines show the
path 1 defined in Eq. (2.47); blue lines show the path 2 defined in Eq. (2.49).

Therefore, Eq. (2.45) describes the evolution of the TMD distribution at
the initial scales f̂1(µi, ⇣i) first in the ⇣ direction at fixed µ = µi and then in
the µ direction at fixed ⇣ = ⇣f (path 1 in Fig. 2.3). However, it is easy to verify
that exchanging the order of the two evolution operators (path 2 in Fig. 2.3)
leads to the exact same result. Indeed, the application of the RRG evolution
equation on f̂1(µf , ⇣f ) gives:

f̂1(µf , ⇣f ) = exp

(
K(µf ) ln

p
⇣fp
⇣i

)
f̂1(µf , ⇣i) . (2.48)

In this case, the factor F (µf , ⇣i) can then rewritten using the RG evolution
equation as follows:

f̂1(µf , ⇣f ) = exp

(
K(µf ) ln

p
⇣fp
⇣i

+

ˆ
µf

µi

dµ0

µ0
�(µ0, ⇣i)

)
f̂1(µi, ⇣i) , (2.49)
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2.3. TMD distributions

We can express the Collins–Soper kernel K(µf ) by solving Eq. (2.41) as

K(µf ) = K(µi)�
ˆ

µf

µi

dµ0

µ0
�K(↵s(µ

0)) . (2.50)

Finally, by introducing Eq. (2.50) in Eq. (2.49) it is easy to see that Eq. (2.49)
is exactly equivalent to Eq. (2.48). In this way, we demonstrated that the
Sudakov form factor and, thus, TMD evolution do not depend on the chosen
path to connect the point (µi, ⇣i) to the point (µf , ⇣f ) in the µ-⇣ plane. In
particular, the following relation holds:

R [(µf , ⇣f ) (µi, ⇣i)] = R [(µf , ⇣f ) (µi, ⇣f )]R [(µi, ⇣f ) (µi, ⇣i)]

= R [(µf , ⇣f ) (µf , ⇣i)]R [(µf , ⇣i) (µi, ⇣i)] .
(2.51)

This is true for any path connecting the point (µi, ⇣i) to the point (µf , ⇣f ),
and is a direct consequence of imposing that the cross derivatives of f̂1 are
equivalent at each perturbative order.

An important property of TMDs is that at small values of |bT | they can be
matched onto their collinear counterparts (f1(x) for unpolarized TMD PDFs,
D1(z) for unpolarized TMD FFs). Reinstating for clarity the x and bT depen-
dence, we can write the TMD PDF at the initial scales µi and ⇣i at |bT | ⌧ 1
as [73]

f̂a

1 (x, b
2
T
;µi, ⇣i) =

X

b=q,q̄,g

ˆ 1

x

dy

y
Cab(y, b

2
T
;µi, ⇣i)f

b

1

✓
x

y
;µi

◆
, (2.52)

where f b

1

�
x

y
;µi

�
is the PDF for the parton b in collinear framework, and Cab

are the so-called matching coe�cients. Such coe�cient functions are fully
perturbatively calculable and are currently known up to N3LO, i.e. O(↵3

s
).

Then, Eq. (2.52) can be written in a more compact way as follows

f̂1(x, b
2
T
;µi, ⇣i) =

⇥
C ⌦ f1

⇤
(x, b2

T
;µi, ⇣i) , (2.53)

where the symbol ⌦ denotes the Mellin convolution, implying the sum over
flavors (and including the gluon). The matching function Cab for each pair
of flavors a, b is included in the function C, which is a matrix in flavor-space
multiplying a column vector of collinear PDFs. In this notation, the actual
evolved TMD PDF becomes

f̂1(x, b
2
T
;µf , ⇣f ) = R

⇥
b2
T
; (µf , ⇣f ) (µi, ⇣i)

⇤⇥
C ⌦ f1

⇤
(x, b2

T
;µi, ⇣i) . (2.54)

Both the matching and the evolution are a↵ected by nonperturbative e↵ects
that become relevant in the large-|bT | region. Usually, in order to take into ac-
count these e↵ects, a phenomenological nonperturbative function fNP is intro-
duced. In the CSS approach [73], the TMD in |bT |-space gets a multiplicative
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2. Factorized framework for TMD unpolarized observables

correction that is diagonal in the flavor space (it does not mix di↵erent flavors).
In addition, the nonperturbative content of the TMD is smoothly damped away
at small-|bT | due to the introduction of the so-called b⇤-prescription. All these
topics are discussed in Sec. 2.3.4.

In order to calculate evolved TMDs at the energy scale of a given experi-
mental measurement, we need to choose the values of both the initial and final
pair of scales, (µi, ⇣i) and (µf , ⇣f ) in Eq. (2.54). It can be shown that in the
MS renormalization scheme there exist a particular scale µb(|bT |)

µb(|bT |) =
2e��E

|bT |
, (2.55)

with �E the Euler constant, that prevents the appearance of large logarithms

ln
�

µ
2b2T

4e�2�E

�
in the perturbative expansion of both the Collins-Soper kernel K

and the matching coe�cients C at the initial scales by choosing µi =
p
⇣i = µb.

The final value of the UV renormalization scale µ must be equal to the
one inserted in the hard factor H (see Eqs. (2.11)-(2.32)). If we look at the
expression of the hard factor (for both SIDIS and DY processes), it can be seen
that we can avoid large logarithms ln(µ/Q) by setting the final scale µf of the
order of Q: we choose µf = Q. The rapidity scales ⇣A and ⇣B are fixed by the
relation ⇣A⇣B = Q4. Therefore, a standard choice is ⇣A,f = ⇣B,f = ⇣f = Q2.
However, any choice that fulfills this relation is equivalent at the level of the
evolution. In fact, in Eq. 2.45 it can be seen that the evolution factors R
included in the definition of two TMDs combine such that the result depends
on the product ⇣A,f⇣B,f .

2.3.2 TMD perturbative content

In this section, we discuss the expression of the perturbative ingredients needed
to build the structure functions F 1

UU
and FUU,T for DY and SIDIS processes,

respectively.6.
Firstly, we consider the hard factor H. Up to order O(↵2

s
), its perturbative

expansion is given by

H(Q,Q) = 1 +
2X

n=1

✓
↵s(Q)

4⇡

◆n

H(n) . (2.56)

The coe�cients H(n) for DY process can be read o↵ from, e.g., Ref. [148]. If we
consider contributions beyond two-loop accurancy, the hard factor acquires a
non-trivial flavour structure (see, e.g., Ref. [128]). As a consequence, H should
in principle be moved inside the flavour sum in Eq. (2.11) (or Eq. (2.32), for
SIDIS process). However, in this thesis we will only show phenomenological
analyses that do not take into account corrections beyond O(↵2

s
).

6See Eqs. (2.11)-(2.32)
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2.3. TMD distributions

Next, we consider the matching coe�cients C introduced in Eq. (2.52) to
express the TMD distribution in the small-|bT | region. Their perturbative
expansion at the initial scale is

Cab(x, b
2
T
;µb, µ

2
b
) = �ij�(1� x) +

1X

n=1

✓
↵s(µb)

4⇡

◆n

C(n)
ab

(x) , (2.57)

where the coe�cient functions C(n)
ab

(x) up to two-loop accuracy have been
already calculated in Refs. [149, 150]. The calculation of the O(↵3

s
) corrections

to the quark matching functions for TMD PDFs can be found in Ref. [151].
The perturbative expansions of the anomalous dimensions K, �F , and �K

in the Sudakov form factor in Eq. (2.45), read, respectively,

K(µb) =
1X

n=0

✓
↵s(µb)

4⇡

◆n+1

K(n) ,

�F (↵s(µ)) =
1X

n=0

✓
↵s(µ)

4⇡

◆n+1

�(n)
F

,

�K(↵s(µ)) =
1X

n=0

✓
↵s(µ)

4⇡

◆n+1

�(n)
K

.

(2.58)

The coe�cients K(n) are listed up to n = 2 in Ref. [128] and up to n = 3 in
Ref. [150]. Due to a di↵erent definition of the CS kernel K, they di↵er by a

factor �2. Also the coe�cients �(n)
F

are given in Refs. [128, 150] up to n = 2,
and they di↵er by a minus sign due to a di↵erent definition of the anomalous
dimension. Finally, the coe�cients �(n)

K
were originally computed in Ref. [152]

and are also given in Refs. [128, 150] up to n = 2, where they di↵er by a factor

2. The coe�cient �(3)
K

has been recently computed in Refs. [153–155].

2.3.3 TMD logarithmic accuracy

In this section, we discuss how to consistently combine the perturbative ingre-
dients in Eqs. (2.56)-(2.58) for the computation of the full expression of the
structure functions in Eqs. (2.11)-(2.32) (see also Refs. [156, 157]).In particu-
lar, we use the same convention adopted in Ref. [81] for the definition of the
logarithmic ordering.

As it is well known, TMD factorization provides resummation of large log-
arithms of Q/|qT | or, equivalently, of Q/µb. The resummation is implemented
in the Sudakov form factor R in Eq. (2.45), whose perturbative expansion reads

R = 1 +
1X

n=1

✓
↵s(Q)

4⇡

◆n 2nX

k=1

LkR(n,k) , (2.59)
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2. Factorized framework for TMD unpolarized observables

with

L = ln
Q2

µ2
b

. (2.60)

Since the inner sum runs up to 2n, the double-logarithmic nature of the resum-
mation can be clearly seen in Eq. (2.59). This structure can be traced back
to the evolution equations in Eq. (2.40) that perform the resummation of two
di↵erent categories of logarithms. However, our particular choice of the scales
(µi =

p
⇣i = µb and µf =

p
⇣f = Q) makes the two categories coincide, lead-

ing to the introduction of up to two logarithms for each power of ↵s. Hence,
Eq. (2.59) must include all powers of ↵s if the scales are such that ↵sL2 & 1.

In order to explicitly define the logarithmic ordering, we can rearrange the
expansion in Eq. (2.59) as follows

R = 1 +
1X

k=0

RNkLL , (2.61)

with

RNkLL =
1X

n=1+[k/2]

✓
↵s(Q)

4⇡

◆n

L2n�kR(n,2n�k) , (2.62)

where [k/2] is defined as the integer part of k/2. According to this definition,
the leading-logarithmic (LL) approximation is given by the term k = 0 in
Eq.(2.61), the next-to-leading-logarithmic (NLL) approximation by the term
k = 1, and so on. If we multiply the expression of RNkLL by a general power p
of ↵s, we obtain

✓
↵s(Q)

4⇡

◆p

RNkLL

=
1X

m=1+[(k+2p)/2]

✓
↵s(Q)

4⇡

◆m

L2m�(k+2p)R(m�p,2m�(k+2p)) $ RNk+2pLL ,

(2.63)

where the symbol $ means that the left- and right-hand sides have the same
logarithmic accuracy. This is a crucial point in the discussion. In fact, the
Sudakov form factor in the cross section can be multiplied by some power
of ↵s deriving from the perturbative expression of hard factor H and/or the
matching functions C. Consequently, equation (2.63) states that, at the cross
section level, the inclusion of an additional power of ↵s in the perturbative
expansion of H and/or C leads to a contribution higher by two orders with
respect to the leading term in the logarithmic expansion. For example, at LL
and NLL accuracy the functions H and C have to be computed at O(1), while
at NNLL and N3LL they need to include theO(↵s) corrections, and so on. This
logarithmic counting is illustrated in the left panel of Fig. 2.4: the diagonal
bands represent the terms included in each RNkLL, with H(n) the perturbative
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1 L L2 L3 L4 L5 L6 L7 L8 …
1 1
�s �(1) R(1,1) R(1,2)

�2
s �(2) R(2,1) R(2,2) R(2,3) R(2,4)
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�4
s �(4) R(4,1) R(4,2) R(4,3) R(4,4) R(4,5) R(4,6) R(4,7) R(4,8)

� N6LL N5LL N4LL N3LL N2LL NLL  LL

1 L L2 L3 L4 L5 …

�s �(1) g(1,1)
2 g(1,2)

1

�2
s �(2) g(2,1)

3 g(2,2)
2 g(2,3)

1

�3
s �(3) g(3,1)

4 g(3,2)
3 g(3,3)

2 g(3,4)
1

�4
s �(4) g(4,1)

5 g(4,2)
4 g(4,3)

3 g(4,4)
2 g(4,5)

1

� N4LL N3LL N2LL NLL LL

Figure 2.4: Graphical representation of logarithmic countings: in the left panel
the counting is done at the level of the cross section, in the right panel at the
level of the logarithm of the cross section.

coe�cients of either H or C or a combination of the two.

Generally, the counting discussed above applies to any process whose am-
plitude factorises in the appropriate limit, such as in TMD factorization. How-
ever, if we consider the specific case of DY, also the phase space for the emission
of n real particles in |bT | space factorizes (see, e.g., Ref. [158]). This two as-
pects allow one to exponentiate soft-collinear emissions such that the Sudakov
form factor can be written in the following general form (see, e.g., Ref. [159])7

R = exp


1

2
Lg(1)(↵sL) +

1

2
g(2)(↵sL) +

1

2
↵sg

(3)(↵sL) + . . .

�
, (2.64)

where the functions g(i) are defined with the boundary condition g(i)(0) = 0.
As compared to the general counting in Eq. (2.59), this exponentiation relates
all the terms in Eq. (2.59) of the type ↵n

s
Lm with n+1 < m  2n to the lower-

order terms. In Eq. (2.64), the logarithmic counting is performed at the level
of the argument of the exponential. In this view, the terms Lg(1), g(2), ↵sg(3),
etc., are responsible for the resummation of the LL contributions ↵n

s
Ln+1, the

NLL contributions ↵n

s
Ln, the NNLL contributions ↵n

s
Ln�1, etc. This counting

is driven by the condition ↵sL & 1, which extends the validity of the resummed
result (truncated at a given level: NLL, NNLL, etc.) to larger values of the
divergent L (for smaller values of qT ).

In Ref. [148], it has been shown that the logarithmic counting applied to
the argument of the exponential is equivalent to consider the logarithm of the
cross section. Indeed, neglecting for simplicity the contribution of the matching

7The factors 1/2 in the argument of the exponential are justified by the fact that each
of the two TMDs involved in the cross section of a given process (DY or SIDIS) contains an
evolution factor R.
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2. Factorized framework for TMD unpolarized observables

coe�cients, for the DY cross section we have

ln

✓
d�

dQdydqT

◆
/ lnH + Lg(1) + g(2) + ↵sg

(3) + . . . (2.65)

The logarithm of H can be expanded as

ln(1 + ↵sH
(1) + ↵2

s
H(2)) = ↵sH

(1) + ↵2
s

✓
H(2) � H(1)2

2

◆
+O(↵3

s
) . (2.66)

In this context, the first term ↵sH(1) contributes to the tower ↵n

s
Ln�1, namely

the NNLL contribution. The second term ↵2
s

�
H(2) �H(1)2/2

�
contributes to

the ↵n

s
Ln�2 tower, thus to the N3LL contribution. The same counting applies to

the matching coe�cients C. Therefore, this means that the inclusion of O(↵s)
contributions in H and C implies the introduction of NNLL corrections, while
O(↵2

s
) contributions inH and C contribute to N3LL accuracy, and so on. In the

right panel of Fig. 2.4 , a graphical representation of this counting is reported.

As for the left panel, the bands represent the logarithmic towers, H(n)
are the

appropriate coe�cients of the expansion of either lnH or lnC or a combination
of the two, while the functions g(i) are replaced by the symbol g(n,m)

i
(being

n the order of ↵s and m the power of the resummed L. This logarithmic
counting has been used in several works (see, e.g., Refs. [76, 148, 160, 161]).
In this thesis, we will simply denote this counting with the acronyms NLL,
NNLL, and so on, and we will refer to it as to “standard counting”.

In literature, a slightly di↵erent convention has also been widely used for
the logarithmic ordering (see, e.g., Refs. [156, 162–165]). By expanding the
Sudakov form factor (2.64) and multiplying it by the expansion of the hard
function in Eq. (2.56), the result for the DY cross section is

d�

dQdydqT
/ 1 + Lg(1) + g(2) +H(1)↵sLg

(1) + . . . , (2.67)

where in the r.h.s. the combination of the first-order terms ↵sH(1) and Lg(1)

in both expansions is reported. From the previous discussion, this term has
the same form ↵n

s
Ln as g(2).

Then one can state that in order to reach NLL accuracy [162] we need to in-
clude not only the g(2) contribution but also the H(1) one. The same argument
can be applied to all orders: at any given logarithmic accuracy, it prescribes
to include one more order in the perturbative expansion of H (and/or C) with
respect to the standard counting. We will refer to this counting as the “primed
counting”, and we will denote it as NLL0, NNLL0, and so on. This conven-
tion for logarithmic counting and for ”standard counting” is the same up to
subleading terms.

The apparent contradiction between the standard and primed countings
is in fact due to subleading contributions. It can be resolved by observing
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2.3. TMD distributions

that the first term of the perturbative expansion of ↵sLg(1) is proportional to
↵2
s
L2. When considering the general expansion of the cross section given in

Eqs. (2.61)-(2.63), the term proportional to ↵2
s
L2 is of the form ↵n

s
L2n�2 and,

thus, it belongs to the NNLL tower. This is formally subleading with respect
to the NLL accuracy determined by the g(2) term in the exponent.

In Tab. 2.1 we summarize the perturbative accuracy for each perturba-
tive ingredient to be used for a consistent computation of the cross section in
Eq. (2.3) for both the “standard” and the “primed” countings. The numbers
in Tab. 2.1 give the power of ↵s at which the corresponding quantity is to be
computed, while the last column reports the corresponding accuracy in com-
puting the evolution of the strong coupling constant ↵s. In the logarithmic
counting reported in Ref. [166], ↵s is evolved at one loop less than the cusp
anomalous dimensions because the running coupling RG equation resums sin-
gle logs, and, therefore, the � function can be taken at the same order as the
non-cusp anomalous dimension. For consistency, in the MAP Collaboration
analyses we take ↵s from the LHAPDF grid of the PDF set we use. In the

Accuracy H and C K and �F �K PDF and ↵s evolution

LL 0 - 1 -
NLL 0 1 2 LO
NLL0 1 1 2 NLO
NNLL 1 2 3 NLO
NNLL0 2 2 3 NNLO
N3LL 2 3 4 NNLO
N3LL’ 3 3 4 NNNLO
N4LL 3 4 5 NNNLO

Table 2.1: Truncation order in the expansions of Eqs. (2.56)-(2.58) for the two
logarithmic countings considered in this work (see text). The last column lists
the order used for the collinear PDFs determination and the evolution of ↵s.

literature, di↵erent conventions are used in some cases to identify the level of
perturbative accuracy. In Refs. [82, 83, 88], the authors do not make use of
the definitions we described in Tab. 2.1, also because they evaluate the double-
scale evolution of TMDs in the so-called “⇣-prescription”, which is a di↵erent
approach from the standard CSS formalism.

2.3.4 Nonperturbative content of TMDs

In Sec. 2.3.1, we showed that µb can be identified as a natural choice for the
initial scales µi and

p
⇣i. Therefore, the strong coupling ↵s(µ) in the per-

turbative expansion of K (see first line of Eq. (2.58)) and C (see Eq. (2.57))
must be computed at the initial scale µb. Consequently, the value of ↵s(µb)
may strongly increase for large values of bT , and eventually diverge when µb
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2. Factorized framework for TMD unpolarized observables

reaches the Landau pole at ⇤QCD. In other words, the TMD formula defined
in Sec. 2.3.1 is perturbatively meaningful only at low values of |bT |, such that
the scale µb is su�ciently far from the Landau pole ⇤QCD. However, since the
upper bound of the integral over |bT | in Eqs. (2.11)-(2.32) is infinity, the TMD
factorized expression of the cross section does require accessing large values of
bT . Regularizing this behavior is arbitrary (see, e.g., Refs. [75, 167–169]). We
report here some possible choices, starting from the “b⇤-prescription” proposed
by Collins in Ref. [71]. Such prescription aims to maximize the use of pertur-
bation theory for small |bT | and, at the same time, combine nonperturbative
information. Therefore, an arbitrary parameter bmax is introduced as the max-
imum value of |bT | at which perturbation theory is considered reliable. Hence,
bmax must be such that

↵s(µb(bmax)) = ↵s

✓
2e��E

bmax

◆
⌧ 1 . (2.68)

In this way, a minimum value for µb(|bT |) is defined through the introduction
of the function b⇤(b2

T
), which saturates at bmax in the large-|bT | region. A

common choice for the function b⇤(b2
T
), originally proposed in Ref. [71], is

bCollins
⇤

(b2
T
) =

vuut b2
T

1 +
b2T
b2max

. (2.69)

This e↵ectively allows one to avoid the Landau pole in the evaluation of ↵s(µb⇤).
In recent years, another expression has been proposed (see Ref. [170])

bBacchetta
⇤

(b2
T
) = bmax[1� exp (�b4

T
/b4max)]

1
4 , (2.70)

which leads to a sharper transition between the perturbative and the non-
perturbative regions. In Fig. 2.5, the comparison between the two functions
is displayed. While the small-|bT | limit of the two functions is exactly the
same, they approach the maximum value bmax with two di↵erent rates. As
a consequence of its functional form, the function bCollins

⇤
(b2

T
) approaches the

nonperturbative region in a milder way than bBacchetta
⇤

(b2
T
), and it deviates from

the behavior of |bT | earlier.
Moreover, the b⇤(b2

T
) function can be chosen to modify not only the large

distance region |bT | & 1/⇤QCD (as already shown), but also the very short
distance region |bT | ⌧ 1/⇤QCD, as extensively discussed in Ref. [171]. Such
further modification is not strictly mandatory, namely it is not introduced
to preserve the theory from some inconsistency (especially when considering
only small values of |qT |). However, it is shown to be necessary for low-Q
phenomenological studies, where both the ratios |qT |/Q and M/Q are not
su�ciently small that TMD and collinear factorizations are simultaneously
valid [171]. Moreover, such modification is useful to preserve the physical
meaning of the integral in Eq. 2.45. In fact, if we choose µi = µb, than µi !1
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Figure 2.5: Comparison between the definition of the b⇤(b2
T
) functions in

Eqs. (2.69)-(2.70) by fixing bmax = 2e��E (with �E the Euler constant).

at small values of |bT , and the lower bound of the integral becomes larger than
the upper one (µi > µf = Q). The need of having a regular behavior at
|bT | ⌧ 1/⇤QCD was already discussed in the literature, and the modified-log
prescription was the first attempt to address this issue (see, e.g., Ref. [159]).
The idea of limiting the lower limit µi < µf of the integral in the Sudakov
form factor (see Eq. (2.45)) was discussed for the first time in Ref. [172], where
the authors introduced a new scale µ0

b
which does not become larger than Q

as |bT |! 0.

This new feature gives a physical interpretation of the cross section in-
tegrated in |qT |, being the lowest-order term equivalent to the lowest-order
collinear result [171]. To this end, the cuto↵ value bmin is introduced in the
“modified” b⇤-prescription. We can satisfy all these requirements by replacing
the variable |bT | with a monotonic function b̄⇤(b2

T
) that must asymptotically

behave as follows

b̄⇤(b2
T
)! bmin for |bT |! 0 ,

b̄⇤(b2
T
)! bmax for |bT |!1 .

(2.71)

According to the boundaries defined above, the proposed functional form in
Ref [171] is given by

b̄Collins
⇤

(b2
T
) =

s
b2
T
+ b20/(C5µ)2

1 + b2
T
/b2max + b20/(C

2
5µ

2b2max)
, (2.72)

where b0 = bmax, C5 is of O(1) (we choose C5 = 1), and µ is the energy scale.
The functional form clearly takes inspiration from Eq. (2.69). By taking the
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Figure 2.6: Graphical representation of two definition of the function b̄⇤(b2
T
) in

the “modified” b⇤ prescription of Eqs. (2.72) and (2.74): in the left panel the
functions are evaluated at µ = 2 GeV, in the right panel at µ = 10 GeV.

limit of this expression for |bT |! 0 we obtain

b̄Collins
⇤

(0) =
bmax

µ

s
1

1 + 1/µ2
⌘ bCollins

min . (2.73)

In this thesis, we adopt for b̄⇤(b2
T
) the same functional form chosen by the

MAP Collaboration (see Refs. [1, 2, 81, 87]) that guarantees a smoother and
more rapid convergence towards the asymptotic limits:

b̄MAP
⇤

(b2
T
) = bmax

0

@
1� exp

⇣
� b4T

b4max

⌘

1� exp
⇣
� b4T

b4min

⌘

1

A

1
4

, (2.74)

with

bmax = 2e��E GeV�1 ⇡ 1.123 GeV�1 , bMAP
min = 2e��E/µ . (2.75)

In Fig. 2.6, the comparison between the two functions b̄Collins
⇤

(b2
T
) and b̄⇤

MAP
(b2

T
)

is displayed. As can be seen, the small-|bT | behaviour is di↵erent at small val-
ues of the energy scale µ, and also the two cuto↵ values bCollins

min in Eq. (2.73)
and bMAP

min in Eq. (2.75) are distinct (left panel). When the value of the energy
scale µ is large enough, bCollins

min can be approximated to bMAP
min in Eq. (2.75) (right

panel). In the phenomenological results reported in this thesis, we make use
of the expression in Eq. (2.74) to account for the b⇤ prescription. The impact
of the modification of the b⇤ prescription on a phenomenological analysis will
be estimated in Sec. 3.3.2.

The saturation of the function b⇤(b2
T
) to a cuto↵ value at large-|bT | has also

the e↵ect of introducing power corrections which scale like (⇤QCD/|qT |)k [167],
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2.3. TMD distributions

with k > 0. Such corrections need to be accounted for by a nonperturbative
function in the region |qT | ' ⇤QCD. The nonperturbative function can be
e↵ectively defined by rewriting the TMD f̂1 as

f̂1(x, b
2
T
;µ, ⇣) =

"
f̂1(x, b2

T
;µ, ⇣)

f̂1(x, b⇤(b2
T
);µ, ⇣)

#
f̂1(x, b⇤(b

2
T
);µ, ⇣)

⌘ fNP(x, b
2
T
, ⇣)f̂1(x, b⇤(b

2
T
);µ, ⇣) .

(2.76)

The advantage of such separation is that, due to the saturation of b⇤(b2
T
) for

large values of |bT |, the function f̂1(x, b⇤(b2
T
), µ, ⇣) is kept in the perturbative

region. Instead, the non-perturbative ingredients are confined into fNP. This
new function must be modeled with a set of parameters that have to be de-
termined through a fit to the available experimental data. The choice of such
model is guided by some properties of fNP that can be derived from Eq. (2.76).
First of all, we can see that fNP does not depend on the renormalization scale
µ. Indeed, by using Eqs. (2.44) and (2.45) and by imposing µi =

p
⇣i = µb, we

find

fNP(x, b
2
T
, ⇣) =

f̂1(x, b2
T
;µ, ⇣)

f̂1(x, b⇤(b2
T
);µ, ⇣)

=
f̂1(x, b2

T
;µb, µ2

b
)

f̂1(x, b⇤(b2
T
);µb⇤ , µ

2
b⇤
)
exp

(
K(µb) ln

p
⇣

µb

�K(µb⇤) ln

p
⇣

µb⇤

)

exp

( ˆ
µb⇤

µb

dµ0

µ0


�F (↵s(µ

0))� �K(↵s(µ
0)) ln

p
⇣

µ0

�)
,

(2.77)
where µb⇤ ⌘ µb(b⇤(b2

T
)). It is clear that the dependence on µ cancels in the

ratio. Moreover, µb⇤ saturates to some minimal value µb(bmax) for large values
of |bT |, while µb becomes increasingly small and approaches to 0. As a conse-
quence of this deviation between µb⇤ and µb, as well as between

p
⇣ and µb in

the exponential in Eq. (2.77), the function fNP tends to be suppressed.8 In the
small-|bT | region, b⇤ approaches bmin while |bT | approaches to 0. Thus, looking
at Eq. (2.75), we can see that µb⇤ saturates to Q while µb becomes larger and
larger. In this limit, we have [171]

fNP �!
|bT |!0

1 +O
✓

1

Qp

◆
, (2.78)

where p is some positive number. However, we can neglect the power sup-
pressed contribution because we assume that they are small in the kinematic re-

8It can be shown that the argument of both the exponential functions in Eq. (2.77) tends
to �1 as |bT |! +1.
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2. Factorized framework for TMD unpolarized observables

gion addressed our investigations. In this way, fNP ! 1 for |bT |! 0. We stress
that the“artificial”separation between perturbative and non-perturbative com-
ponents of a TMD is arbitrary and depends on the particular choice of the
function b⇤(b2

T
) (or in general on the prescription used to avoid the Landau

pole). For any choice, only the combination in Eq. (2.76) is meaningful. In
Sec. 3.3.2, we will show the impact of modifying the b⇤ prescription in the
shape of the TMD distribution as extracted in phenomenological analyses.

Another way to design the full TMD distribution has been recently pro-
posed in Ref. [173]. In this “hadron structure oriented” approach, the focus is
put on preserving a connection to the TMD parton model interpretation when
combining perturbative and nonperturbative transverse momentum in TMD
factorization.

2.4 Normalization factors for SIDIS multiplicities

In this section, we address the normalization issue that occurs in the descrip-
tion of SIDIS multiplicities when pushing the theoretical formalism to high
accuracy. This issue was pointed out for the first time in phenomenological
studies in Refs. [86, 174] and, recently, in Ref. [1], whereas it was not observed
in the global analysis reported in Ref. [88]. Therefore, the normalization of
SIDIS multiplicity is an issue that the TMD community is still discussing, and
it could be related to general properties of the TMD formalism. In this thesis,
we report the approach introduced in Ref. [1] to fix this problem.

We start from pointing out some known outcomes regarding previous anal-
yses which included SIDIS multiplicities. In Refs. [84, 85], it was shown that
a good description of both normalization and shape of HERMES SIDIS multi-
plicities can be achieved still at the level of parton model. This means that the
experimental data can be described to a good extent at the lowest perturba-
tive order (LO) with a simple Gaussian ansatz for the nonperturbative part of
TMDs and without TMD evolution. As a consequence, it is straightforward to
expect that the TMD formalism at NLL is able to get better or similar results,
since it only implies the introduction of the double-scale evolution through the
Sudakov form factor. Indeed, a first attempt to compare theoretical calcula-
tions at NLL and experimental data of HERMES multiplicities was provided
in the analysis of Refs. [175], where no issue on the normalization of such data
was observed. Moreover, within TMD factorization in Ref. [87] it was possi-
ble to succesfully reproduce the normalization and shape of HERMES SIDIS
multiplicities and the shape of the available COMPASS multiplicities at NLL
accuracy. More recently, a new release of COMPASS data was published [141].
Then, in Ref. [176] it was demonstrated that the TMD distributions extracted
from Ref. [87] are able to correctly reproduce normalization and shape of the
new data. However, when going beyond NLL in the perturbative accuracy
(to NLL’ or higher), the TMD formula severely underestimates the measure-
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2.4. Normalization factors for SIDIS multiplicities

ments [86, 174, 176] by nearly constant factors in each bin.9

As it will be shown in Sec. 3.3.1, the authors of Ref. [1] confirm that an
excellent description of both normalization and shape of the SIDIS multiplic-
ities can be achieved at NLL accuracy, whereas the N2LL results are much
smaller. The quality of the description at N3LL is similar, with the theoretical
predictions still far from the NLL ones and, consequently, from the experimen-
tal data. At average kinematics of the COMPASS measurements, the ratios of
multiplicities MNLL/MN2LL and MNLL/MN3LL can even exceed a factor 2.

By looking at Tab. 2.1, one can identify the order in the strong coupling that
is needed to reach the consistent accuracy in the resummation of logarithmic
divergences. It is clear that an appreciable modification on the normalization
of the predictions at two di↵erent accuracies can be obtained only with a sig-
nificant variation of the hard factor, the matching coe�cients, or the collinear
input (or all of them). In our analysis, the major di↵erence in the predictions
between di↵erent logarithmic orders is due to the perturbative corrections to
the hard factor in Eq. (2.30) [128]. We report here the expression of the SIDIS
hard factor HSIDIS(Q, µ)10 at NLO with the standard choice µ = Q

HSIDIS(Q,Q) = 1 +
↵s(Q)

4⇡
CF

✓
� 16 +

⇡2

3

◆
. (2.79)

We can immediately see that the structure function in Eq. (2.30), at Q = 2
GeV with ↵s ⇡ 0.3, is reduced to about 60% of its original value just by intro-
ducing O(↵s) corrections. This modification is not compensated by a similar
suppression in the DIS cross section in the denominator of Eq. (2.34). In fact,
the di↵erences between the LO and NLO expressions of the inclusive DIS cross
section are typically below 5% and the NLO results are actually larger than
the LO ones. A similar result was obtained in Ref. [88], where it was shown
that the SIDIS cross section in TMD factorization drops down going beyond
NLL. However, in Ref. [88] SIDIS experimental data are nicely described in
both shape and normalization at N3LL, even if with a very restrictive cut on
the TMD region.

Following Ref. [88], one could argue that the NLL expression would over-
shoot the data by a factor 1.5 at least, while N2LL and N3LL ones should
reproduce them. However, as already pointed out at the beginning of this sec-
tion, there are several past works that have shown a good agreement with data
even using a parton-model approach. Moreover, we stress that the structure
function in Eq. (2.30) integrated over qT corresponds to the value at |bT | = 0
of its Fourier transform (see Eq.Eq. 2.9). Since we introduced a b⇤ prescription

9Note that tensions between the TMD cross sections and the associated measurements
exist also at large transverse momentum in SIDIS [177], DY [178], and electron-positron
annihilation into two hadrons [179].

10In the literature, di↵erent definitions for the hard factor have been computed, but they
are compensated by di↵erent definitions of the matching coe�cients C in Eq.(2.52). Here
we follow the definition of Ref. [128].
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2. Factorized framework for TMD unpolarized observables

with a cuto↵ at bmin = 2e��E/µ, the value of the NLL TMD formula at |bT | = 0
is equivalent to the LO expression of the collinear SIDIS structure function,
which is independent of the TMD nonperturbative parameters. Therefore, we
can express the integral of the structure function in Eq. (2.30) as follows11

ˆ
d2qTFUU,T = x

X

a

e2
a
H(Q,Q)

✓
f̂a

1 (x, b
2
T
;Q)D̂a!h

1 (z, b2
T
;Q)

◆����
|bT |=0

NLL
= x

X

a

e2
a
fa

1 (x;Q)Da!h

1 (z;Q).
(2.80)

It is commonly known that LO predictions for SIDIS process in collinear frame-
work give a reasonable description of the experimental data and, if anything,
they seem to be lower (and not larger) than the experimental data [142, 180].
Consequently, the integral of the NLL expression of the structure function in-
cluded in our analysis must be in good agreement with the data, and errors in
the normalization should not occur at this level of logarithmic accuracy.

Given all these reason, namely that the NLL predictions describe SIDIS
data well and the N2LL and N3LL calculations are below by a constant factor,
we propose a modification of the normalization to restore the good agreement
with data obtained at NLL. This issue was already extensively discussed in
Ref. [176], which we take as inspiration for our proposed solution. Since the
TMD factorization is valid only at low |qT |, we observe that the integral of the
TMD formula should reproduce only part of the full collinear cross section.
In fact, when integrating over the full transverse-momentum space, terms at
large |qT | are missing. Following the discussion above, the only exception is the
order O(↵0

s
) in bmin prescription, since the contributions from gluon radiation

at high transverse momentum are not present at this order.

At higher orders, the integral of the cross section in the TMD region (i.e.,
the integral of the so-called W term in the language of Ref. [73]), is much
smaller than the corresponding collinear cross section at N2LL or higher ac-
curacies in the kinematics of fixed-target SIDIS experiments (namely, at low
values of the energy scale Q). In order to recover the full collinear cross sec-
tion, one should include all the terms in the fixed-order calculation that are
not included in the TMD resummed expression. This is the so-called Y term
in the conventions of Ref. [73]

In principle, the Y term should be negligible in the low-|qT | region, where
the W term should be dominant and should reproduce the normalization of
experimental data. However, this is not always the case at low Q: the Y term
is finite but relatively large, even at |qT | = 0 [86].

The integral of the W term (i.e., the integral of Eq. (2.27)), with our bmin

11This argument is true for any b⇤ prescription with bmin = 2e��E/µ. Note that in the
absence of a bmin prescription, the integral of the structure function would vanish.
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prescription, at order O↵s, is given by

ˆ
d2qT W

����
O(↵s)

= �0
↵s

4⇡
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q

e2
q

h
Dq!h
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1

+Dq!h
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1

+Dg!h

1 ⌦ Cgq

TMD ⌦ f q

1

i
(x, z,Q),

(2.81)

where

�0 =
4⇡2 ↵2 z2 |qT |

xQ3
Y+. (2.82)

We define the double convolution over both x and z as
h
Da!h

1 ⌦ Cab ⌦ f b

1

i
(x, z,Q)
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1
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ˆ 1

x

dx0

x0

ˆ 1
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Da!h
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⇣ x
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⌘
f b

1(x
0;Q).

(2.83)

The Cab

TMD coe�cients of Eq. (2.81) are given by:

Cqq

TMD(x, z) = 2CF

✓
�8�(1� x)�(1� z) + �(1� x)

h
2L2(z) + (1� z)

i

+ �(1� z)(1� x)

◆
,

(2.84)

Cgq

TMD(x, z) = 2CF

✓
Pgq(z)�(1� x) ln (z(1� z)) + z�(1� x)

◆
, (2.85)

Cqg

TMD(x, z) = 2TF

✓
�(1� z)2x(1� x)

◆
. (2.86)

In the above expressions L2 is the abbreviation for the logarithmic function

L2(⇠) ⌘
1 + ⇠2

1� ⇠
ln ⇠ . (2.87)

Moreover, here and in the following, the functions Pqq, Pgq and Pqg are the
standard Altarelli-Parisi splitting functions. The Cab

TMD coe�cients correspond
to the combination of the matching coe�cients Cab from the OPE expression
at low-|bT | of the TMD PDFs and FFs (see Sec. 2.3.1).

The W term integrated over transverse momentum |qT | in Eq. (2.81) should
be compared to the collinear expression of the cross section at the same order
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(see, e.g., Ref. [181])
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(2.88)

The QCD coe�cients Cab

1 and Cab

L
can be perturbatively calculated. The

former can be written as

Cab

1 (x, z;Q, µ) = Cab

nomix(x, z,Q, µ) + Cab

mix(x, z), (2.89)

where we define the coe�cient Cnomix as the sum of all those terms that contain
either a �(1� x) or a �(1� z), or both. We note that not all these terms are
present in CTMD. This definition holds at all orders in ↵s. It can be shown that
the CL matching coe�cients, instead, only contain“mixed”contributions [176].

We report here the explicit expression of the Cab

nomix coe�cients:

Cqq

nomix(x, z;Q, µ) = Cqq

TMD(x, z)

+ 2CF

"
�(1� x)

 
Pqq(z) ln
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+ L1(z)� L2(z)
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,

(2.90)

Cgq

nomix(x, z;Q, µ) = Cgq

TMD(x, z) + 2CF �(1� x)Pgq(z) ln
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µ2
, (2.91)

Cqg
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TMD(x, z) + 2TF �(1� z)Pqg(x) ln

✓
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1� x

x

◆
. (2.92)

Here, L1 is the abbreviations for the following logarithmic function:

L1(⇠) ⌘
�
1 + ⇠2

�✓ ln(1� ⇠)

1� ⇠

◆

+

. (2.93)
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The expressions for the “mixed” coe�cients Cab

mixed, are given by:

Cqq
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1

z
� 2

�
. (2.96)

In the above expressions µ denotes the factorization scale for PDFs or FFs,
TF = 3.

In order to find a solution of the normalization issue of TMD predictions
for SIDIS multiplicities, we take into account only the contribution of all the
“nonmixed” terms Cnomix to build the collinear cross section. We consider
this choice reasonable because the factorizable nature of Cnomix allows for a
redefinition of each individual TMD. Hence, we define
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dxdQdz
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= �0
↵s
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i
(x, z,Q),

(2.97)

and similarly for higher orders. Then, we introduce the following normalization
factor:

!(x, z,Q) =
d�nomix

dx dz dQ

� ˆ
d2qT W . (2.98)

It is important to stress that this normalization factor depends only on the
choice of the collinear PDFs and FFs sets, is independent of the parametriza-
tion of the TMD nonperturbative part (see Eq. (2.88)), and, thus, can be
precomputed before performing a new fit.

At NLL, the normalization prefactor is 1 by definition with the bmin cuto↵ in
b⇤ prescription. By increasing the logarithmic accuracy beyond NLL, the value
of the prefactor exceeds one and guarantees that the integral of the TMD part
of the cross section reproduces most of the collinear cross section, as suggested
by the data. On the contrary, without the inclusion of the normalization factor,
the integral of the TMD formula for the cross section would be too small,
requiring a compensation from the high-transverse-momentum tail, which is
not observed in the experimental data.

As a consequence of the introduction of our normalization prefactor, the

45



2. Factorized framework for TMD unpolarized observables

theoretical expression for the SIDIS cross section in Eq. (2.27) becomes

d�SIDIS
!

dx dz d|qT | dQ
= !(x, z,Q)

d�SIDIS

dx dz d|qT | dQ
. (2.99)

The impact of the normalization factor defined in Eq. (2.98) will be addressed
in detail in Sec. 3.2.2.
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2.A Appendix - Analytic expression of perturbative

ingredients

In this section, we report the analytical expression of the perturbative ingredi-
ents needed to build the structure functions F 1

UU
and FUU,T for DY and SIDIS

processes in TMD factorization at N2LL accuracy (see Tab. 2.1). We follow
the definition of Ref. [128] for the hard factor (see Sec. 2.1 and Sec 2.2) and
the matching coe�cients (see Sec. 2.3.1). The NLO expression of the hard
factor HSIDIS(Q,Q) for SIDIS process is reported in Eq. (2.79). The one for
DY process reads

HDY(Q,Q) = 1 +
↵s(Q)

4⇡
CF

✓
� 16 +

7⇡2

3

◆
, (2.100)

where CF = 4/3. The NLO expressions of matching coe�cients CPDF
ab

(x, b, µ, ⇣)
for TMD PDFs (see Eq. (2.52)) are given by
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CPDF
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2
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CPDF
qq̄0 (x, b⇤, µb⇤ , µ

2
b⇤) = 0 , (2.105)

where µb⇤ has been defined in Sec. 2.3.4. The NLO expressions of the ones for
TMD FFs are given by
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(2.106)
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2
b⇤) = 0 , (2.110)

where the functions pqq(z) and pgq(z) are related to the one-loop DGLAP
kernels and are defined as [150]
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pqq(z) =
1 + x2

1� x
, (2.111)

pqg(z) = 1� 2z(1� z) . (2.112)

Also, the perturbative expressions at NNLO of the anomalous dimensions K
and �F read
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where nf is the number of active flavors, CA = 3, ⇣3 is the value of the Riemann
Zeta function ⇣(t) at t = 3, and
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. (2.115)

Finally, the N3LO expression of the anomalous dimension �K is given by
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Chapter 3
Extraction of unpolarized proton

TMDs

In this chapter, we report the most recent simultaneous extraction of unpo-
larized quark TMD PDFs and FFs using more than two thousand data points
from several experiments for two di↵erent kinds of processes: Semi-Inclusive
Deep Inelastic Scattering (SIDIS) and production of Drell–Yan (DY) lepton
pairs, significantly improving the previous analysis by the MAP Collabora-
tion [87]. This new analysis is an important step towards understanding the
3D structure of protons at the best possible degree of precision. In fact, this
is currently the most sophisticated global analysis in TMD phenomenology.

The level of sophistication of a TMD extraction essentially depends on two
ingredients: the amount of analyzed data from di↵erent processes, namely how
general is the experimental information from which TMDs are extracted, and
the perturbative accuracy of the theoretical formalism.

The process of TMD extraction relies on TMD factorization theorems,
which determine a precise framework for defining and extracting these quanti-
ties, and establish their universality and evolution equations. In this context,
the precision of the calculations is defined by the maximum order reached in the
resummation of large logarithmic terms, which in turn determines the appro-
priate powers of the strong coupling constant, ↵s, to be included into the per-
turbative expansion of quantities involved in the calculations [73, 81, 164, 182].

A fundamental aspect in TMD extractions is also the combination of an-
alyzed data coming from di↵erent processes. Only in this case, we can speak
of a global fit, meaning that it tests the universality of parton distributions
by combining information from di↵erent sources. The cross section of SIDIS
process is built by two kind of TMD distributions: the TMD PDFs, describing
how partons are arranged in the nucleon, and TMD FFs, describing how a
parton fragments into a detected final-state hadron. Independent information
about TMD PDFs can be obtained also from DY measurements, since there are
no identified hadrons in the final state. Instead, the knowledge of TMD FFs
would be significantly improved by using data from electron-positron annihila-
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3. Extraction of unpolarized proton TMDs

tions into two almost back-to-back hadrons [170]. Unfortunately, this data are
presently not available. However, measurements for the inclusive production
of single hadrons have been recently made available by the Belle Collabo-
ration [183]. The issue with this data is that transverse momenta need to be
defined with respect to the thrust axis. Rigorous factorization theorems for
this process have been discussed from di↵erent approaches only recently (see,
e.g., Refs. [184–187] and references therein). A first extraction of TMD FFs
from Belle data in a non-standard approach has been reported in Ref. [188].
At the moment, this kind of observable cannot be incorporated in standard
unpolarized TMD fitting frameworks. Therefore, for unpolarized TMD ex-
tractions we currently talk about a global fit when data from SIDIS and DY
processes are included.

In the last decade, several extractions of TMDs have been presented [78–
82, 84–88, 175, 189]. Most of them have some limitations: they are either
performed in a parton-model framework without QCD corrections (and TMD
evolution), or they do not consider the complete set of available data, or do
not perform a full global fit. TMDs are also studied in a di↵erent framework,
the so-called parton-branching approach (see Refs. [89–91]).

Before the present analysis, henceforth named MAP22, there are only two
works that have successfully reached the stage of performing a comprehensive
TMD global fit by combining SIDIS and DY data: the above mentioned ex-
traction of Ref. [87], henceforth named PV17, and the extraction of Ref. [88],
henceforth named SV19. As already discussed in Sec. 2.4, the PV17 extrac-
tion reached only the NLL accuracy, it was based on the calculation at mean
kinematics in each bin of the included experimental observables, and did not
manage to describe the normalization of all data sets (COMPASS and Tevatron
data). In the MAP22 analysis, we improved the accuracy of the theoretical
calculations to what we will refer to as N3LL�. In fact, at the time of this work
there were no NNLO collinear FFs, which are needed to reach the full N3LL
accuracy (see Tab. 2.1).1 In addition to the improvement in the perturbative
accuracy, this analysis includes many measurements published after the PV17
extraction.

Instead, the SV19 global fit was performed at the same perturbative accu-
racy and included approximately the same data sets as MAP22. One significant
di↵erence is in the selection of the experimental points to be included in the
global fit. Precisely, we include a larger number of experimental data points.
Moreover, the implementation of TMD evolution (see Sec. 2.3.1), the choice
of functional forms of the nonperturbative components, and the control of
the SIDIS normalization (see the discussion in Sec. 2.4) are crucial di↵erences
between MAP22 and SV19.

As already discussed in Sec. 2.4, the description of the normalization of
SIDIS data from fixed-target experiments at moderate to low scales presents

1During the completion of this work, further e↵orts were made to include part of the
NNLO corrections [33, 190, 191] in the extraction of FFs.
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considerable di�culties in our analysis. To address this issue, we choose to
adjust the theoretical predictions with the normalization prefactor defined in
Eq. (2.98). With this procedure, we set the normalization of our calculations
before the fit, in a way that is independent of the fitting parameters.

The baseline fit presented in this chapter is performed at N3LL�, including
2031 data points and obtaining �2/Ndat = 1.06. We also discuss variations of
this baseline fit by changing the theoretical accuracy, the selected data, and
the b⇤ prescription in the theoretical calculations.

The chapter is organized as follows. In Sec. 3.1, we describe the global
data set included in the MAP22 analysis and how experimental data have
been selected. In Sec. 3.2 we present the results of our global fit. In Sec. 3.3,
we discuss the possible variations of the baseline setup. Finally, Sec. 3.4 shows
the estimate of the impact of pseudodata from the EIC and from a possible
JLab 22 GeV upgrade.

3.1 Data selection

In this section, we describe the experimental data included in the MAP22 [1]
simultaneous extraction of unpolarized quark TMD PDFs in the proton and
unpolarized TMD FFs. We consider a very large number of data sets for both
DY lepton pair production and SIDIS processes, for the observables discussed
in Secs. 2.1-2.2. The kinematic coverage in the x-Q2 plane spanned by these
experimental sets is displayed in Fig. 3.1.

The data sets included in the analysis presented in this chapter are:

• DY di-muon production from the collision of a proton beam with an
energy of 200, 300 and 400 GeV on copper and lead fixed targets from
E288 (

p
s = 19.4, 23.8, 27.4 GeV, respectively) [192];

• DY di-muon production from the collision of a proton beam with an
energy of 800 GeV on a copper fixed target from E605 (

p
s = 38.8

GeV) [193];

• DY di-muon production from the collision of a proton beam with an
energy of 800 GeV on a 2H fixed target from E772 (

p
s = 38.8 GeV) [194];

• Z ! e+e� distribution from CDF experiment of Tevatron Run I [195]
and Run II [196] (

p
s = 1.8, 1.96 TeV, respectively);

• Z ! e+e� distribution from CDF experiment of Tevatron Run I [197]
and Run II [198] (

p
s = 1.8, 1.96 TeV, respectively);

• Z ! µ+µ� distribution from D0 Run II [199];

• forward Z-production data from the LHCb experiment at 7 [199], 8 [200],
and 13 [201] TeV;
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3. Extraction of unpolarized proton TMDs

• Z-production data from the CMS experiment at 7 [202], 8 [203] and
13 [204] TeV;

• Z-production data di↵erential in rapidity from the ATLAS experiment
at 7 [202], 8 [205] and 13 [206] TeV;

• o↵-peak (low- and high-mass) DY data from the ATLAS experiment at
8 TeV [205],

• preliminary Z-production data from the STAR experiment at 510 GeV;

• DY di-muon production from the PHENIX Collaboration [207];

• Unpolarized SIDIS multiplicites on hydrogen (p) or deuterium (D) gas
targets from HERMES [142] experiment (

p
s = 7.26 GeV);

• Unpolarized SIDIS multiplicites on 6LiD target from COMPASS [141]
experiment (

p
s = 17.325 GeV).

The majority of data sets included in this work was already taken into
consideration in the global fit of SIDIS and DY data in Ref. [87] and in the
fit of DY data discussed in Ref. [81]. For more details, we refer the reader to
those papers.
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Figure 3.1: The x vs. Q2 coverage spanned by the experimental data considered
in the MAP22 analysis (see also Tab. 3.1 and Tab. 3.3).

3.1.1 Drell–Yan data set

Since our analysis is based on the applicability of TMD factorization, which is
valid only in the region |qT |⌧ Q, we impose the following cut on the transverse
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3.1. Data selection

momentum of the intermediate boson for the DY data set

|qT | < 0.2Q , (3.1)

which is comparable to the choices of Refs. [81–83, 88], sometimes even more
restrictive. We note that in Refs [82, 83, 88] a further cut on the ratio between
experimental and theoretical uncertainties on high-energy data (particularly,
for the ATLAS data set) has been included, and the E772 data sets below 9
GeV were not considered.

Experiment Ndat Observable
p

s [GeV] Q [GeV] y or xF Ref.

E605 50 Ed3�/d3q 38.8 7 - 18 xF = 0.1 [193]

E772 53 Ed3�/d3q 38.8 5 - 15 0.1 < xF < 0.3 [194]

E288 200 GeV 30 Ed3�/d3q 19.4 4 - 9 y = 0.40 [192]

E288 300 GeV 39 Ed3�/d3q 23.8 4 - 12 y = 0.21 [192]

E288 400 GeV 61 Ed3�/d3q 27.4 5 - 14 y = 0.03 [192]

STAR 510 7 d�/d|qT | 510 73 - 114 |y| < 1 -

PHENIX200 2 d�/d|qT | 200 4.8 - 8.2 1.2 < y < 2.2 [207]

CDF Run I 25 d�/d|qT | 1800 66 - 116 Inclusive [195]

CDF Run II 26 d�/d|qT | 1960 66 - 116 Inclusive [196]

D0 Run I 12 d�/d|qT | 1800 75 - 105 Inclusive [197]

D0 Run II 5 (1/�)d�/d|qT | 1960 70 - 110 Inclusive [198]

D0 Run II (µ) 3 (1/�)d�/d|qT | 1960 65 - 115 |y| < 1.7 [199]

LHCb 7 TeV 7 d�/d|qT | 7000 60 - 120 2 < y < 4.5 [200]

LHCb 8 TeV 7 d�/d|qT | 8000 60 - 120 2 < y < 4.5 [201]

LHCb 13 TeV 7 d�/d|qT | 13000 60 - 120 2 < y < 4.5 [208]

CMS 7 TeV 4 (1/�)d�/d|qT | 7000 60 - 120 |y| < 2.1 [202]

CMS 8 TeV 4 (1/�)d�/d|qT | 8000 60 - 120 |y| < 2.1 [203]

CMS 13 TeV 70 d�/d|qT | 13000 76 - 106 |y| < 2.4 (5 bins) [204]

ATLAS 7 TeV 18 (1/�)d�/d|qT | 7000 66 - 116 |y| < 2.4 (3 bins) [209]
ATLAS 8 TeV

on-peak
36 (1/�)d�/d|qT | 8000 66 - 116 |y| < 2.4 (6 bins) [205]

ATLAS 8 TeV
o↵-peak

4
8

(1/�)d�/d|qT | 8000
46 - 66

116 - 150
|y| < 2.4 [205]

ATLAS 13 TeV 6 (1/�)d�/d|qT | 13000 66 - 116 |y| < 2.5 [206]

Total 484

Table 3.1: Breakdown of the DY data sets considered in the MAP22 analysis.
For each data set, the table includes information on: the number of data
points (Ndat) that survive the nominal cut on |qT | (see Eq. (3.1)), the measured
observable, the center-of-mass energy

p
s, the range(s) in invariant mass Q, the

angular variable (either y or xF ), and the published reference (when available).
The total number of DY data points amounts to 484.

In Tab. 3.1, we summarize all the DY experimental data sets included in
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3. Extraction of unpolarized proton TMDs

our analysis. Note that the experimental observable is given within a fiducial
region for some sets. In this case, kinematic cuts on transverse momentum pT `

and pseudo–rapidity ⌘` of the single final-state leptons are enforced in the ex-
perimental analysis. This implementation in the NangaParbat computational
tool has been extensively discussed in Ref. [81]. The second column of Tab. 3.1
reports the number of data points (Ndat) for each experiment after imposing
the kinematic cut in Eq. (3.1).

As already pointed out in Sec. 2.1, the measured cross sections has been
released in di↵erent forms by the experimental collaborations. In Tab. 3.1, we
can see that some of them are normalized to the total (fiducial) cross section
while others are not. For the data sets where the total cross section � is
required, we calculated it through the code DYNNLO [130, 131]. The fiducial
cross section has been consistently calculated at the same perturbative order
of the di↵erential cross section. To be precise, it is computed at NLO for
NNLL accuracy, and NNLO for N3LL accuracy. The values of the total cross
sections at di↵erent orders are reported in Tab. 3.2. They have been calculated
using the MMHT2014 set of collinear PDFs, according to choices that will
be discussed in Sec. 3.1.3.

Experiment LO [pb] NLO [pb] NNLO [pb]

D0 Run II 170.332 242.077 253.573

D0 Run II (µ) 100.765 119.002 124.675

CMS 7 TeV 291.977 384.569 398.853

CMS 8 TeV 340.132 456.337 473.411

ATLAS 7 TeV
|y| < 1

1 < |y| < 2
2 < |y| < 2.4

196.457
135.511
12.568

251.296
181.267
17.091

253.781
181.466
17.104

ATLAS 8 TeV
on-peak

|y| < 0.4
0.4 < |y| < 0.8
0.8 < |y| < 1.2
1.2 < |y| < 1.6
1.6 < |y| < 2
2 < |y| < 2.4

89.531
89.120
85.499
69.018
43.597
14.398

113.650
112.853
109.800
91.884
59.114
19.574

116.766
115.738
112.457
95.187
62.127
20.937

ATLAS 8 TeV
o↵-peak

46 GeV < Q < 66 GeV
116 GeV < Q < 150 GeV

15.199
3.805

14.449
5.317

14.368
5.521

ATLAS 13 TeV - 694.3 707.3

Table 3.2: Total (fiducial) cross sections computed with DYNNLO [130, 131] using
the central member of the MMHT2014 collinear PDF sets [210]. It is required for
the computation of the normalised di↵erential cross sections at the di↵erent
perturbative orders.

The total number of DY data points included in the analysis presented in
this chapter is 484. Note that for E605, E772 and E288 at 400 GeV we have
excluded those bins in Q around the ⌥ resonance peak (Q ' 9.5 GeV).
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3.1.2 SIDIS data set

For the SIDIS process, the identification of the region of validity of the TMD
formalism is not a trivial task. In fact, one of the issues about determining such
region is that the available experimental data cover the region at small values of
Q, where even the validity of collinear factorization can be challenged. Hence,
the definition of the TMD region may be revised as new data are released and
the theoretical description is improved, as discussed in Refs. [135, 211, 212].

In SIDIS process, di↵erent cuts on kinematics have to be applied. A first
cut on the virtuality Q of the exchanged photon is needed to fulfill the condi-
tion Q� ⇤QCD. In fact, this is the region where perturbation theory and the
collinear factorization theorem are applicable. After imposing this kind of cut,
the corrections O(M2/Q2) (see the definition of the SIDIS structure function
in Eq. (2.30)) can be neglected.2 In order to fullfil this requirement, the energy
scale Q2 of the SIDIS experimental data included in the MAP22 analysis is
required to be larger than 1.4 GeV2, which is comparable to the cuts imple-
mented in other studies of this process, even in collinear framework [32, 33].

A further cut on the variable z is required to restrict the analysis to the
current fragmentation region. This is the region where the detected hadron
in the final state is produced from the fragmentation of the active parton
in the hard scattering. In this region, the experimental observable can be
interpreted in terms of parton distribution and fragmentation functions. The
kinematic region at small-z is named “target fragmentation region”, and can
be investigated through the formalism of fracture functions (see, e.g., [213]).
Instead, the region at large-z is governed by exclusive physics processes, and
can be studied through Generalized Parton Distributions (GPDs) [214]. We
restrict our global analysis in the current fragmentation region by requiring z >
0.2, and we avoid contributions from exclusive processes by considering only
bins at z < 0.7. The lower limit of this cut is the same introduced in di↵erent
fits of fragmentation functions in collinear framework [32, 33]. The upper limit
is slightly more restrictive than in Ref. [87] in order to exclude contributions
from exclusive channels and to focus on a region where the extracted collinear
fragmentation functions have small relative uncertainties.

Finally, our baseline choice for the cut on transverse momentum is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (3.2)

with fixed parameters c1 = 0.2, c2 = 0.5 and c3 = 0.3. Note that this choice is
more restrictive than a similar one made in Ref. [87], but much less restrictive
than the one made in Ref. [88]. It allows us to include in the analysis many
data points with |PhT | ⌧ Q, but also with 0.2Q < |qT | < Q. In Sec. 3.3,
some variations of the baseline SIDIS cut in Eq. (3.2) will be discussed to give
phenomenological support to our choice.

For what concerns the data sets included in the present analysis, the main

2This means that we can neglect target-mass corrections and higher twist contributions.
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3. Extraction of unpolarized proton TMDs

di↵erence with Ref. [87] is that we considered the new release of COMPASS
data [141]. In this new data analysis that superseeds the previous one, the
vector–boson contributions to the fragmentation of observed hadrons have been
subtracted. In the case of the HERMES data set, we consistently selected
the vector–meson–subtracted data set (.vmsub set). Moreover, we chose to
include the zxpt-3D-binning for HERMES multiplicities, since it provides a
finer binning in |PhT |. The breakdown of the entire SIDIS data set included
in the present analysis is reported in Tab. 3.3.

Experiment Ndat Observable Channels Q [GeV] x z Ref.

HERMES 344 M(x, z, |PhT |, Q)

p! ⇡+

p! ⇡�

p! K+

p! K�

d! ⇡+

d! ⇡�

d! K+

d! K�

1 -
p

15
0.023� 0.6

(6 bins)
0.1� 1.1
(8 bins)

[142]

COMPASS 1203 M(x, z, P 2
hT , Q)

d! h+

d! h�
1 - 9

(5 bins)
0.003� 0.4

(8 bins)
0.2� 0.8
(4 bins)

[141]

Total 1547

Table 3.3: Breakdown of the SIDIS data sets included in the MAP22 analysis.
For each data set, the table includes information on: the number of data points
(Ndat) surviving the nominal cut on |PhT |, the measured observable, the SIDIS
fragmentation channel, the range(s) in photon invariant mass Q, the ranges in
the kinematic variables x and z, and the public reference. The total number
of SIDIS data points amounts to 1547.

In the second column of Tab. 3.3, for each data set the number of experi-
mental data (Ndat) that respect the aforementioned kinematic cuts is shown.
The total number of SIDIS experimental data points included in the analysis
illustrated in this chapter is 1547.

In conclusion, the total number of DY and SIDIS data points surviving our
kinematic cuts is 2031.

3.1.3 Error treatment

For the considered experimental measurements, a set of systematic and sta-
tistical uncertainties is associated to each data point. As already discussed in
Ref. [81], it is important to properly treat the experimental uncertainties in
order to obtain a reliable result of a global fit and, consequently, of the ex-
tracted TMDs. In the analysis described in this chapter, we choose to consider
systematic uncertainties as fully correlated only if it is explicitly specified in
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the corresponding published paper. Instead, the statistical uncertainties are
always considered as uncorrelated.

In order to properly treat fully correlated uncertainties, the iterative t0-
prescription [215] was introduced in Ref. [81]. This prescription usually plays
a significant role to avoid the underestimation of the predictions caused by
the so–called D’Agostini bias [216]. At variance with Ref. [81], in the analysis
presented in this chapter we do not make use of such prescription because our
experimental data do not show any sensitivity to it. In fact, after performing
the fit with and without the t0-prescription, we observed that our analysis is
not a↵ected by the D’Agostini bias. Therefore, we see no reason to introduce
the t0-prescription in the computation of the �2.

In addition to the systematic experimental uncertainties, one has to care-
fully treat all the possible sources of systematic theoretical errors. A first
source of error is given by the intrinsic uncertainty of the collinear parton dis-
tributions (fragmentation functions) needed to build the TMD PDFs (FFs) to
be extracted by our global analysis (see Eq. (2.52)). In our case, we choose
the PDFs set MMHT2014 [210] and the FFs set DSS. These choices are
comparable with the ones in Refs. [81, 88]. Since the HERMES collaboration
provides SIDIS multiplicities for identified charged pions and kaons separately
(see Tab. 3.3), we consider DSS14 [217] for ⇡± and DSS17 [32] for K±. Ac-
cording to the nature of the PDF and FF set used in the MAP22 analysis,
their uncertainties are computed using the Hessian method [217–219] and are
included in the �2 calculation as systematic errors. It is di�cult to evaluate
the degree of correlation of such theoretical errors between the bins in |qT | of
a given data set. A crude estimate could be obtained by making predictions
of a given experimental observable with di↵erent replicas of the considered
collinear input set. This procedure has to be independent of the nonperturba-
tive model. Therefore, all the predictions are calculated with a parameteriza-
tion that is kept fixed for all the replicas. Since the MMHT2014 is composed
of Hessian members, we do the exercise with the NNPDF3.1 [220] set of PDFs
at NNLO, which is composed by 100 Monte Carlo (MC) replicas. In the left
panel of Fig. 3.2, we display the ratio between the predictions of a subset of
replicas and the replica 0 (the mean over the ensemble) of the NNPDF3.1 for
the first |y|-bin of the ATLAS 7 TeV data set. In the right panel, we show
the correlation matrix for each |qT |-bin of the considered replicas, identified
by mathix labels.

We observe that PDF uncertainties are significantly correlated across bins,
but not always 100% correlated. The same outcome holds also for collinear
FFs. In order to account for this correlation, we decomposed the corresponding
errors into a fully correlated part (80% of the total), while we treated the
remaining 60% as uncorrelated.3

Moreover, a collinear set of FFs for unidentified charged hadrons is needed

3Notice that, with this decomposition, the sum in quadrature of correlated and uncorre-
lated parts reproduce the original errors.
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Figure 3.2: Left panel: ratio between the predictions of the DY di↵erential
cross section for one of the ATLAS data sets of a given replica of the NNPDF3.1
collinear PDF set and the mean replica (member 0). Right panel: correlation
matrix of the PDF replicas in each |qT |-bin.

to reproduce the SIDIS observables measured by COMPASS. The most recent
extraction of collinear FFs for unidentified charged hadron is the DSS07 [221]
set. However, such extraction does not provide an estimate of the uncertainties.
Therefore, we computed the COMPASS multiplicities by using the sum of the
DSS14 and DSS17 sets for pions and kaons.4 The related error is calculated
by propagating to the unidentified charged hadron multiplicity the Hessian
errors associated to each of the two hadronic components.

A second source of theoretical uncertainties is given by the choice of a
specific set for the collinear distributions. In fact, as already pointed out in
Ref. [88], the choice of a given set may have a sizeable impact on the final result.
In the MAP22 analysis, we did non consider other collinear sets due to the hard
computational e↵ort needed. We discuss this topic in Ch. 5. Similarly, we leave
for furure studies the investigation of other sources of theoretical uncertainties
such as higher-twist corrections and the choice of perturbative scales. The
e↵ects of the introduction of TMD flavor dependence will be addressed in
future studies.

3.2 Phenomenological results

In this section, we will show the phenomenological results of the simultaneous
extraction of proton TMD PDFs and TMD FFs through the global fit of the
SIDIS and DY experimental data reported in Tabs. 3.1-3.3. In order to deter-
mine the accuracy of this analysis, we use the convention for the logarithmic

4According to Ref. [88], we assumed that the yield due to other hadronic species, such as
protons, antiprotons, ⇤, etc., is negligible as compared to the sum of kaons and pions. As
discussed in Ref. [222], the contribution to the total yield due to hadrons heavier that pions
and kaons is indeed marginal (about 5%).
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ordering discussed in Sec. 2.3.3. At the time of this work, the full N3LL accu-
racy could not be achieved, since sets of fragmentation functions in collinear
framework at NNLO were not available. Recently, two analysis of collinear
FFs have been discussed in Refs. [33, 190], making a simultaneous fit of TMD
PDFs and FFs at full N3LL possible. This study is left for a future work.

3.2.1 Nonperturbative models of TMDs

As already discussed in Sec. 2.3.4, a nonperturbative function has to be in-
troduced in the expression of a TMD distribution to account for the power
corrections induced by the b⇤ prescription. Early attempts to describe unpo-
larized observables where made in parton model-like approximation to TMDs
(see Ref. [166] and references therein). Here, we illustrate the choices of Ref. [1]
for fNP (andDNP for TMD FFs) in Eq. (2.77). We stress that both the Collins–
Soper kernel K [143] and the OPE in Eq. (2.52) need to be modified to account
for nonperturbative e↵ects. For the Collins–Soper kernel K, this results in a
nonperturbative correction term, named gK(b2

T
). For such new ingredient, we

choose a specific functional form:

K(|bT |, µb⇤) = K(b⇤, µb⇤) + gK(b
2
T
) , gK(b

2
T
) = �g22

b2
T

2
, (3.3)

where g2 is a free parameter. As commonly known, this corrections add to
TMD evolution a nonperturbative term that scales like (⇣f/Q2

0)
gK/2, where Q0

is an arbitrary scale at which the nonperturbative model is parametrized. We
set Q0 = 1 GeV. Since at small |bT | the perturbative calculation of the CS
kernel K(b⇤, µb⇤) must not be a↵ected by this new nonperturbative term, the
function gK needs to vanish in the limit |bT |! 0. The choice of the quadratic
|bT | dependence for the gK(b2

T
) function takes inspiration from previous works

focused either in the phenomenology [74, 77, 87, 88, 223, 224] or in the theory
side [143].

The nonperturbative corrections to the OPE can be parameterized by a
multiplicative function that generally depends on x or z and bT . The net result
of the inclusion of the nonperturbative corrections into the evolved TMD PDF
reads:

f̂a

1 (x, b
2
T
;µf , ⇣f ) =[C ⌦ f1](x, b⇤;µb⇤ , µ

2
b⇤) exp

⇢ˆ
µf

µb⇤

dµ

µ
�
�
µ, ⇣f

��

⇥
✓

⇣f
µ2
b⇤

◆K(b⇤, µb⇤ )/2

f1NP (x, b
2
T
; ⇣f , Q0) ,

(3.4)

and the same holds for the TMD FF, where the nonperturbative function
D1NP (z, b2

T
; ⇣, Q0) is introduced. In our definition, the f1NP and D1NP factors

include both the correction to the evolution provided by the gK function of
Eq. (3.3) and the correction to the associated OPE. Following the requirements
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3. Extraction of unpolarized proton TMDs

discussed in Sec. 2.3.4, we define f1NP as

f1NP (x, b
2
T
; ⇣, Q0) =


⇣

Q2
0

�gK(b2T )/2 1

g1(x) + �2 g21B(x) + �2
2 g1C(x)

⇥
⇢
g1(x) e

�g1(x)
b2T
4 + �2 g21B(x)


1� g1B(x)

b2
T

4

�
e�g1B(x)

b2T
4

+ �2
2 g1C(x) e

�g1C(x)
b2T
4

�
,

(3.5)

and for the TMD FF the D1NP is defined as

D1NP (z, b
2
T
; ⇣, Q0) =


⇣

Q2
0

�gK(b2T )/2 1

g3(z) +
�F
z2

g23B(z)

⇥
⇢
g3(z)e

�g3(z)
b2T
4z2 +

�F

z2
g23B(z)


1� g3B(z)

b2
T

4z2

�
e�g3B(z)

b2T
4z2

�
.

(3.6)

Notice that �, �2, �F are free parameters. We stress that the nonperturbative
factors f1NP , D1NP ! 1 for |bT | ! 0. This is coherent with the defini-
tion of the Fourier transform of Eq.(2.9). Consequently, the integral of the
nonperturbative model in |k?|-space is equal to 1: it a↵ects only the shape in
transverse-momentum and not the normalization. The gi(x) functions describe
the widths of the distributions. According to model calculations (see Ref. [225]
and references therein) and more generally to Lorentz-invariance constraints
on the proton light-front wave functions (see, e.g., the discussion in Ref. [226]),
we assume that these widths depend on the variable x and z as

g{1,1B,1C}(x) = N{1,1B,1C}

x�{1,2,3}(1� x)↵
2
{1,2,3}

x̂�{1,2,3}(1� x̂)↵
2
{1,2,3}

, (3.7)

g{3,3B}(z) = N{3,3B}

(z�{1,2} + �2
{1,2})(1� z)�

2
{1,2}

(ẑ�{1,2} + �2
{1,2})(1� ẑ)�

2
{1,2}

, (3.8)

where x̂ = 0.1, ẑ = 0.5 and Ni, �i, ↵i, �i, �i, �i are free parameters.

In total, the models considered in the global fit of this analysis involves
21 free parameters to be fitted to more than two-thousand experimental data.
They are grouped as follows: 11 are related to the nonperturbative part of the
TMD PDF (�, �2, Ni, �i, ↵i in Eqs. (3.5), (3.7)), 9 for the nonperturbative
part of the TMD FF (�F , Ni, �i, �i, �i in Eqs. (3.6), (3.8)), and one associated
to the nonperturbative part of the Collins–Soper kernel (g2 in Eq. (3.3)).

We stress that the functional forms in Eqs. (3.5)-(3.8) are phenomenological
ansätze, namely are arbitrary. However, they naturally correspond to the
Fourier transform of the sum of a Gaussian, a weighted-Gaussian (multiplied
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3.2. Phenomenological results

by k2
?
) and, in the case of the TMD PDFs, of a third Gaussian. Therefore,

they are positive definite for all values of the transverse momentum (|k?| for
TMD PDFs and |P?| for TMD FFs).5

In order to avoid negative contributions in |k?|-space, the parameters �
and �2 in Eq. (3.5) are squared. In the case of TMD FFs, we do not find
the necessity to square the parameter �F in Eq. (3.6) because the fit always
favors positive values for this parameter. As can be seen in Eqs. (3.7), (3.8),
the widths of the Gaussians and the weighted-Gaussian are x� (or z�) de-
pendent and vanish as x (or z) approaches 1. The choice is inspired by early
models introduced in global fits of PDFs (or FFs) in collinear framework. In
principle, the parameters of our phenomenological model may depend on the
partonic flavor q. However, in throughout this thesis they are assumed to be
flavor-independent, namely the nonperturbative transverse-momentum shape
of TMDs is assumed to be the same for each flavor. The investigation of the
sensitivity of the experimental data on the partonic flavor is considered as a fu-
ture extension of this work. We stress that the fact that we can obtain a good
description of the experimental data sets included in the analysis described
in this chapter does not exclude the possibility of performing a successful fit
with flavor-dependence, which is actually expected according to model calcu-
lations [227–232], lattice QCD analyses [233], and also if QED corrections are
taken into account [139, 234]. The possibility of the inclusion of flavor depen-
dence on the phenomenological analysis of SIDIS data was studied in Ref. [84].
Recently, flavor-dependent parameterizations have been tested on Drell–Yan
data sets in Refs. [82, 83].

Our choice of the functional form of the whole nonperturbative function
takes also inspiration by model calculations of TMD PDFs (see, e.g., [140,
225, 227, 235–239]) and TMD FFs (see, e.g, [231, 240]). Many of these models
give a justification for the existence of terms that behave as Gaussians and
weighted Gaussians. The details of the functional dependence predicted by
the models are related to the correlation between the transverse momentum of
the quarks and their spin. In the case of fragmentaton functions, a di↵erent role
can be played by di↵erent production channels (e.g., direct production from
the fragmentation of the active quark or the production through the decay of
hadronic resonances).

3.2.2 Fit quality

In this section, we discuss the quality of the MAP22 baseline fit at N3LL� im-
posing the cuts on kinematics as discussed in Sec. 3.1. The propagation of the
fit errors is performed through the so-called bootstrap method, which consists
in fitting an ensemble of Monte Carlo (MC) replicas of the experimental data
(see Ref. [87] for more details). We choose the number of replicas by requiring

5Note, however, that when evolved at the scale Q a TMD distribution can become neg-
ative at large values of transverse momentum due to evolution e↵ects.) .
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3. Extraction of unpolarized proton TMDs

that the mean and standard deviation of the ensemble accurately reproduces
the original data points. In this case, we find that 250 replicas are su�cient.

Clearly, the most complete statistical information about the extracted TMDs
is given by the full ensemble of 250 replicas. However, it is useful to define a
single representative replica over the full set in order to quantify the agreement
between the fitted theoretical predictions and the experimental data. In order
to estimate the quality of our fit, we find that the most appropriate indica-
tor is the the �2 value of the best fit to the experimental unreplicated data
(�2

0). We refer to this fit as the “central replica”. The ensemble of replicas is
therefore employed only to identify the errors associated to the prediction for
the experimental observable and the extracted TMD distributions, as required
when applying a general bootstrap technique.

Other possible indicators of the quality of the fit are the average of the
�2 over all replicas, indicated as h�2i, as well as the �2 of the mean replica,
indicated as �2

m
and computed as the �2 of the average over the full ensemble

of TMD replicas [81]. In a stable fit, these values should be very close to each
other.

In Fig. 3.3, we show the �2 values per number of data Ndat (�2/Ndat)
of the 250 MC replicas of the MAP22 global fit. As expected, the shape
of the histogram closely resembles a �2 distribution. The observation that
the distribution exhibits a peak at a value extremely close to 1 serves as an
indication of the good quality of the our baseline fit.
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Figure 3.3: Statistical distribution of the �2 values of the 250 Monte Carlo
replicas of the MAP22 global fit.

In Tabs. 3.4-3.5, we report the breakdown of the �2
0 values normalized to

the number of data points (Ndat) for DY and SIDIS data sets.
As already discussed in Ref. [81], in the presence of correlated uncertainties
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3.2. Phenomenological results

N3LL�

Data set Ndat �2
D �2

� �2
0

CDF Run I 25 0.45 0.09 0.54

CDF Run II 26 0.995 0.004 1.0

D0 Run I 12 0.67 0.01 0.68

D0 Run II 5 0.89 0.21 1.10

D0 Run II (µ) 3 3.96 0.28 4.2

Tevatron total 71 0.87 0.06 0.93

LHCb 7 TeV 7 1.24 0.49 1.73

LHCb 8 TeV 7 0.78 0.36 1.14

LHCb 13 TeV 7 1.42 0.06 1.48

LHCb total 21 1.15 0.3 1.45

ATLAS 7 TeV 18 6.43 0.92 7.35

ATLAS 8 TeV 48 3.7 0.32 4.02

ATLAS 13 TeV 6 5.9 0.5 6.4

ATLAS total 72 4.56 0.48 5.05

CMS 7 TeV 4 2.21 0.10 2.31

CMS 8 TeV 4 1.938 0.001 1.94

CMS 13 TeV 70 0.36 0.02 0.37

CMS total 78 0.53 0.02 0.55

PHENIX 200 2 2.21 0.88 3.08

STAR 510 7 1.05 0.10 1.15

DY collider total 251 1.86 0.2 2.06

E288 200 GeV 30 0.35 0.19 0.54

E288 300 GeV 39 0.33 0.09 0.42

E288 400 GeV 61 0.5 0.11 0.61

E772 53 1.52 1.03 2.56

E605 50 1.26 0.44 1.7

DY fixed-target total 233 0.85 0.4 1.24

HERMES 344 0.48 0.23 0.71

COMPASS total 1203 0.62 0.3 0.92

SIDIS total 1547 0.59 0.28 0.87

Total 2031 0.77 0.29 1.06

Table 3.4: Breakdown of the values of �2 normalized to the number of data
points Ndat that survive the kinematic cuts for all data sets considered in our
baseline fit. The �2

D
refers to uncorrelated uncertainties, �2

�
is the penalty

term due to correlated uncertainties (see Eq. (3.9)), �2
0 is the sum of �2

D
and

�2
�
. All �2 values refer to the central replica (see text).

on di↵erent bins of the experimental data the total �2 can be expressed as the
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3. Extraction of unpolarized proton TMDs

N3LL�

Data set Ndat �2
D �2

� �2
0

HERMES (p! ⇡+) 45 0.86 0.42 1.28

HERMES (p! ⇡�) 45 0.61 0.31 0.92

HERMES (p! K+) 45 0.49 0.04 0.53

HERMES (p! K�) 37 0.18 0.13 0.31

HERMES (d! ⇡+) 41 0.68 0.45 1.13

HERMES (d! ⇡�) 45 0.63 0.35 0.97

HERMES (d! K+) 45 0.2 0.02 0.22

HERMES (d! K�) 41 0.14 0.08 0.22

HERMES total 344 0.48 0.23 0.71

COMPASS (d! h+) 602 0.55 0.31 0.86

COMPASS (d! h�) 601 0.68 0.3 0.98

COMPASS total 1203 0.62 0.3 0.92

SIDIS total 1547 0.59 0.28 0.87

Table 3.5: Breakdown of the values of �2 normalized to the number of data
points Ndat that survive the kinematic cuts for SIDIS data sets considered in
our baseline fit. Same notations as in previous table.

sum of two separate contributions

�2 =
NX

i

✓
di � ti
�i

◆2

+ �2
�
= �2

D
+ �2

�
, (3.9)

where the so-called partial chi-squared �2
D

is given by the standard formula
for N experimental data points di and all possible sources of uncorrelated
(including statistical) uncertainties �2

i
= �2

i,stat + �2
i,uncor, but involving shifted

theoretical predictions ti due to the correlated uncertainties,

ti = ti +
kX

↵=1

�↵ �
(↵)
i,corr , (3.10)

where �(↵)
i,corr is the value of the ↵-th source of correlated uncertainty associated

to the i-th experimental data point and �↵ is the so-called nuisance parameter.
In Eq. (3.9), the additional term �2

�
is a penalty contribution due to the pres-

ence of correlated uncertainties. It is completely determined by the nuisance
parameters,

�2
�
=

kX

↵=1

�2
↵
. (3.11)

An interesting feature of the nuisance parameters �↵ is that their optimal value
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can be calculated by minimizing the total �2 in Eq. (3.9) with respect to them.
We stress that this is only an alternative expression of the �2, and it can be

demonstrated that Eq. (3.9) is equivalent to the general definition involving the
covariance matrix [241]. In the following, we will display shifted predictions in
Eq. (3.10) for all observables included in the fit because they provide a better
visualization of the agreement between theory predictions and experimental
data.

As can be seen in Tab. 3.4, the global �2
0 of the MAP22 baseline fit value

is 1.06, indicating that the description of the included global data set is very
good.6 This result suggests that the formalism involved in MAP22 fit is able
to simultaneously describe experimental data coming from two di↵erent pro-
cesses over a wide kinematic range. This is a phenomenological demonstration
of the universality of TMDs. As can be seen in Tabs. 3.1-3.3, the data set
at low-energy scale is composed by fixed-target DY experiments and SIDIS
observables, while the high-energy data set comes from collider experiments at
the LHC and Tevatron.

Although the penalty term �2
�
is expected to be of modest size, we notice

that sometimes it is more than 25% of the total �2
0. This is due to the fact

that the size of the shifts produced by correlated uncertainties is often large.
The value of �2

�
/Ndat obtained in the MAP22 analysis is larger than the one in

the PV19 [81], mainly because the theoretical uncertainties related to collinear
PDFs and FFs are considered here as 80% correlated (see Sec. 3.1), while they
were considered as fully uncorrelated in the PV19 fit.

From Tab. 3.5, we can see that for HERMES and COMPASS multiplic-
ities the values of �2

0/Ndat are almost always smaller than 1, indicating that
these data sets, which represent about 75% of the total number of data points
considered in the MAP22 analysis (1547 over 2031) are very well described.

We note that the largest contribution to the �2 for HERMES multiplicities
comes from the channel where a positive pion (⇡+) is detected in the final
state. This happens for both proton and deuteron targets, and it is consistent
with the results of both Refs. [84, 87] and [88].

In the case of identified charged kaons in the final state, the �2 is lower than
the one of pions. Such result is a consequence of the large statistical errors
a↵ecting the measurement of kaon multiplicities and by the large theoretical
error due to the uncertainties in the extraction of kaon collinear FFs (sometimes
of the order of 50%).

The comparison between theoretical results for the SIDIS multiplicities of
Eq. (2.34) and HERMES data for the production of charged pions and kaons
o↵ a deuteron target is shown in Fig. 3.4. A specific x-bin is displayed in
each column, while a specific final-state channel in each row. The results
are reported as functions of the transverse momentum |PhT | of the measured
final-state hadron. For a better visualization of di↵erent representative z-bins,

6The �2 related to the mean replica and the average over the full ensemble are, respec-
tively, �2

m = 1.07 and h�2i = 1.08 ± 0.01.
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3. Extraction of unpolarized proton TMDs

points with di↵erent markers and colors are displayed. For the same reason,
di↵erent o↵sets are introduced as indicated in the plot legend. The theoretical
results of the MAP22 fit are represented as light blue rectangles with size
corresponding to the 68% Confidence-Level (C.L.) band.7

We note that the central column, corresponding to the 0.2 < x < 0.35 bin,
does not include the magenta points for the highest 0.6 < z < 0.8 bin in the
K� channel (second row) because they are excluded by the kinematic cut in
z. Moreover, we can see that in all panels there are only three green points for
the lowest z bin, while four for the other bins (orange and magenta points).
This is caused by the z-dependent cut on transverse momentum in Eq. (3.2),
which leads to the exclusion of a larger number of |qT |-bins at lower values of
z.

In Fig. 3.5, we display the HERMES multiplicities with same conventions
and notation as in Fig. 3.4 but o↵ a proton target. We remark that for the
negative kaon channel the kinematic cuts have a more drastic e↵ect. In fact,
the magenta points for the |PhT |-distributions at the largest z-bin are excluded
for the two largest x-bins considered (central and rightmost panels of second
row from top).

In Fig. 3.6, the result of the MAP22 fit for the COMPASS SIDIS mul-
tiplicities for the production of unidentified negatively charged hadrons o↵ a
deuteron target is shown. Each panel, which corresponds to a specific Q and
x bin, displays the multiplicity as a function of P 2

hT
/Q2 on a logarithmic scale.

As for the plots of HERMES multiplicities, di↵erent markers and colors are
introduced to display the data points of di↵erent representative z bins, as indi-
cated in the plot legend. Again, the light-blue rectangles correspond to the 68%
CL theoretical results. As already discussed in Sec. 3.1, we remark that the
results for unidentified negatively charged hadrons h� are obtained by simply
adding the results for negatively charged pions and kaons, h� ⇠ ⇡� +K�.

We note that the quality of the MAP22 fit is very nice for almost all bins,
which is also denoted by small �2 values in Tab. 3.5. The agreement worsens
for the lowest Q-bin (1.3 < Q < 1.73 GeV), particularly for x & 0.02. This
could be due to the fact that such data set can be considered at the boundary
of both the TMD and the collinear factorization regions, at least according to
the kinematical cuts introduced in Sec. 3.3. Also in this case, the uncertainties
on the theoretical predictions for the largest z-bin included in the fit (0.6 <
z < 0.8) are significantly larger than for the others because of much larger
uncertainties in the collinear FFs. Finally, if we look at the panels in Fig. 3.6
from top to bottom, we note that the lowest z-bin distributions (0.2 < z < 0.3)
are included in the fit only for the largest Q-bins. This is a consequence of the
kinematic cut in Eq. (3.2).

In Fig. 3.7 the COMPASS multiplicities with same conventions and no-
tation as in Fig. 3.6, but for unidentified positively charged hadrons h+, are
reported. Again, theoretical results at 68% C.L. are displayed as light-blue

7The 68% C.L. band is built by excluding the largest and the smallest 16% of the replicas.
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Figure 3.4: Comparison between data for the HERMES multiplicities and
theoretical predictions (rectangles with size proportional to the uncertainty at
the 68% C.L.) for the production of charged pions and kaons o↵ a deuteron
target for di↵erent x and z bins as a function of the transverse momentum
|PhT | of the final-state hadron. For better visualization, each z bin is shifted
by the indicated o↵set.
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Figure 3.5: Same conventions and notation as in previous figure but for charged
pions and kaons o↵ proton target.
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Figure 3.6: Comparison between data for the COMPASS multiplicities and the-
oretical predictions rectangles with size proportional to the uncertainty at the
68% C.L. for the production of negatively charged hadrons o↵ a deuteron tar-
get. For each Q, x bin, the multiplicities are displayed as functions of P 2

hT
/Q2

for di↵erent z bins surviving kinematic cuts, as indicated in the legend.
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Figure 3.7: Same conventions and notation as in previous figure but for uniden-
tified positively charged hadrons o↵ deuteron target.
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rectangles, and are obtained as the sum of the results for positively charged
pions and kaons, h+ ⇠ ⇡+ + K+. Similar comments as for Fig. 3.6 can be
made about the agreement between data and theory.

As can be seen in Tab. 3.1, DY data represents approximately 25% of
the full set of analyzed data. From Tab. 3.4, we can see that most of low-
energy DY data from fixed-target experiments (E605, E288, E772), but also
from STAR, can be fitted with good accuracy (low �2 values), much better
than high-energy DY data from collider experiments like, e.g., at the LHC.
As already discussed in Ref. [81], this di↵erence in the level of agreement of
the description most likely arises from the larger (systematic) errors a↵ecting
low-energy DY data and the big impact of the uncertainties on collinear PDFs
at these kinematics.

We point out that the quality of our fit for the ATLAS data sets is poor
(see Tab. 3.4). In particular, the value of the �2 becomes larger and larger
for low-rapidity bins of both ATLAS 7 TeV and ATLAS 8 TeV data sets,
the worst case being at |y| < 1 for ATLAS 7 TeV. Di↵erent e↵ects could
be responsible for this result. In fact, since the experimental observable is
a di↵erential cross section normalized over the total one, systematic errors
cancel in the ratio, leading to extremely precise measurements (errors of the
order of 0.1-1 ‰). Therefore, fitting this experimental data is very di�cult,
because even small theoretical e↵ects could give significant contributions to the
�2 value. Moreover, it is known that di↵erent implementations of phase-space
cuts on the final-state leptons could lead to modifications in both the shape and
the normalization of the theoretical observable (see, e.g., Refs. [126, 242, 243]).
We leave this issue for a future study. In any case, we stress that, at variance
with Ref. [88], we obtain our result without excluding any extra points on top
of the ones exceeding the maximum value of |qT |/Q in Eq. (3.1). In Ref. [88],
a more restrictive cut was implemented only for the most precise ATLAS
experimental data. Surprisingly, we observe that this issue at low rapidity is
not present for the CMS data set at 13 TeV, which is splitted in di↵erent
rapidity bins as the ATLAS set.

It is important to comment the results of our baseline fit for those data
sets that were not included in the previous PV19 analysis of Ref. [81] (see
Sec. 3.1.1). For the E772 data set, the quality of the description is good only
for data points above the peak of the ⌥ resonance. For Q < 9 GeV, the
description of the experimental data worsens. At variance with Ref. [88], the
Q < 9 GeV bins are still included in our analysis because there is no evident
motivation to exclude them. The new CMS data set at

p
s = 13 TeV is very

nicely described, even better than the CMS sets at smaller center-of-mass
energies

p
s = 7, 8 TeV. This is probably due to the fact that the CMS 13

TeV data set is binned in rapidity. It is important to fit this new data sets
because they extend the kinematic coverage in our analysis.

In order to better visualize the quality of our fit, the comparison between
experimental data and theoretical results for a representative selection of the
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3. Extraction of unpolarized proton TMDs

DY data set is reported in Figs. 3.8-3.11. In the upper panels of each plot, we
display the |qT |-di↵erential cross section, while in the lower panels we show
the ratio between data and theory. As for the SIDIS case, the light-blue bands
are the theoretical results at 68% C.L.

In Fig. 3.8, the DY cross section for the E288 data set at beam energy
Ebeam = 200 GeV is displayed for di↵erent bins of the energy scale Q. Since
the experimental collaboration did not release the |qT |-bin limits for DY fixed-
target observables, we calculate the cross section at mean values of |qT | (see
discussion in Sec. 2.1). Hence, we display the 68% C.L. uncertainty of the fit
as a continuous band rather than a series of rectangles. We notice that the
uncertainty band is larger for lowerQ bins. This trend is caused by the presence
of larger correlated systematic uncertainties for smaller invariant masses of the
lepton pair.

Fig. 3.9 displays our fit results for the cross section for DY in pp̄ collisions
at the Tevatron. Black data points in the left panel correspond to the results
of Run I of the CDF experiment, while in the right panel the results for
Run II are reported. The lower panels show the corresponding ratio between
experimental data and theoretical results. The latter are displayed as light-blue
rectangles, each one corresponding to the integral of the cross section within
the corresponding bin limits. The size of the rectangle is given by the 68%
C.L. accuracy. We note that the quality of the fit for CDF data is comparable
to the one in Ref. [81].

In Fig. 3.10, we show the results of the fit for the DY cross section in
pp collisions at the LHC. From left to right, the black data points refer to the
measurements released by the CMS Collaboration at increasing center-of-mass
energy

p
s = 7, 8, 13 TeV. We remark that for the experimental data sets atp

s = 7, 8 TeV, the results are normalized to the fiducial cross section. As
in previous figures, the lower panels display the ratio of experimental data to
the 68% C.L. theoretical results. For

p
s = 7, 8 TeV, the quality of the fit is

comparable to the one in Ref. [81]. For the new data set at
p
s = 13 TeV, the

agreement in the displayed rapidity bin is excellent, and remains very good
also for higher values for the rapidity.

Fig. 3.11 reports the comparison between the theoretical results for the
DY cross section in pp collisions normalized to the fiducial cross section for
the ATLAS data at

p
s = 7 TeV. Three representative bins at increasing

rapidity |y| are shown from the left to the right panel. The leftmost one cor-
responds to the worst described experimental data set in our global analysis,
with �2/Ndata = 13.5. We notice that our fitted predictions correctly repro-
duce the behaviour of the data points, and the presence of extremely small
experimental errors leads to a large contribution to the �2 calculation. As in
previous figures, the lower part of each panel displays the ratio of experimental
data to the 68% C.L. theoretical results. We note that the quality of the fit
increases at more forward rapidities (from left to right). The same trend is
observed at

p
s = 8 TeV, but not for CMS at 13 TeV.
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Figure 3.8: Upper panel: comparison between data and theoretical predictions
for the DY cross section di↵erential in |qT | for theE288 data set at Ebeam = 200
GeV for di↵erent Q bins; uncertainty bands correspond to the 68% CL. Lower
panel: ratio between experimental data and theoretical cross section. For
clarity, the whole band is displayed because for fixed target experiments we
calculate the qT -spectra at the mean variable.
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Figure 3.10: Same as in previous figure but for Z boson production in pp
collisions measured by the CMS Collaboration. From left to right: increasingp
s = 7, 8, 13 TeV, respectively. For

p
s = 7, 8 TeV, the results are normalized
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ATLAS kinematics at
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s = 7 TeV. From left to right, results at increasing

rapidity.

3.2.3 Extracted TMD distributions

In this section, we consider the TMD distributions extracted from our baseline
fit at the N3LL� accuracy. Tab. 3.6 reports the full list of our 21 fitting
parameters, along with their average values and standard deviations. Most
of the parameters are well determined. Only the parameter �2 is found to be
compatible with zero.

The � parameter measures the relative weight of the weighted-Gaussian
with respect to the first Gaussian in the nonperturbative part of the TMD
PDF (see Eq. (3.5)). Since the value of this parameter is close to 2 and not
compatible with zero, the contribution of the weighted-Gaussian component
has a significant role in obtaining a good fit of the data. In Eq. (3.5), the
parameter �2 measures the relative weight of the third Gaussian with respect
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3.2. Phenomenological results

Parameter Average over replicas

g2 [GeV] 0.248 ± 0.008

N1 [GeV2] 0.316 ± 0.025

↵1 1.29 ± 0.19

�1 0.68 ± 0.13

� [GeV�1] 1.82 ± 0.29

N1B [GeV2] 0.134 ± 0.017

�2 0.455 ± 0.050

↵2 4.27 ± 0.31

�2 [GeV�1] 0.0215 ± 0.0058

N1C [GeV2] 0.0130 ± 0.0069

�3 12.71 ± 0.21

↵3 4.27 ± 0.13

N3 [GeV2] 0.0055 ± 0.0006

�1 10.23 ± 0.29

�1 0.0094 ± 0.0012

�1 1.406 ± 0.084

�F [GeV�2] 0.078 ± 0.011

N3B [GeV2] 0.2167 ± 0.0055

�2 4.17 ± 0.13

�2 0.167 ± 0.006

�2 0.0007 ± 0.0110

Table 3.6: Average and standard deviation over the Monte Carlo replicas of
the free parameters fitted to the data.

to the first one; this parameter is small but not compatible with zero, which
means that also this component of the TMD PDF is necessary to reach a good
description of experimental data.

As already discussed in Sec. 3.2.1, the parameterization of the nonper-
turbative part of TMD FFs in Eq. (3.6) contains just the combination of a
Gaussian and a weighted Gaussian because this is su�cient to describe the
data in an accurate way. The �F parameter measures the relative weight of
the two components; its value is close to 0.1, indicating that the contribution
of the weighted Gaussian is small. However, being its value incompatible with
zero, it has non-trivial consequences on the tail of the TMD FF, as we will
show below. We tried also to include a third Gaussian similar to the TMD
PDF case, but the quality of the fit did not increase.

The g2 parameter is a key ingredient in the parameterization of the nonper-
turbative part of a TMD, since it is related to the Collins–Soper (CS) kernel
(see Sec. 2.3.1). A more detailed discussion on the CS kernel will be addressed
below. A similar parameter was used in the analysis of Ref. [87]. We observe
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3. Extraction of unpolarized proton TMDs

that the value obtained in the present global fit is smaller by almost a factor
4 with respect to Ref. [87]. This apparent incompatibility may be caused by
the higher theoretical accuracy of the present analysis and by the role of the
very precise high-energy Drell–Yan measurements, which may be responsible
for the very small standard deviation of g2.

g2 N1 �1 �1 � N3 �1 �1 �1 �F N3BN1BN1C �2 �2 �3 �2 �3 �2 �2 �2
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Figure 3.12: Graphical representation of the correlation matrix for the fitted
parameters.

Fig. 3.12 displays a representation of the correlations among the 21 fitting
parameters. Looking at the provided color code in the legend, we realize
that the o↵-diagonal elements are generally small, except for certain (anti-
)correlations observed among the parameters �1, �1 and �1. These particular
parameters govern the z–dependent width of the Gaussians in the TMD FF
(see Eqs. (3.6)- (3.8)). The absence of significant correlations overall indicates
that the chosen parametrization is appropriate and e↵ectively captures the
non-perturbative content of TMDs.

A visual representation of the uncertainty on the determination of the non-
perturbative parameters is reported in Fig. 3.13, where the distribution of the
values of a subset of parameters is shown.

The shapes of the up-quark TMD PDFs in the proton at µ =
p
⇣ = Q = 2

and 10 GeV are summarized in Fig. 3.14 as a function of |k?| and x. The
surfaces refer to the central replica, no uncertainty band is shown for the
readability of the figure. From this 3D-plot, we can better identify the relation
between the normalization of the TMDs and the collinear PDFs at a specific
value of the variable x.
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Figure 3.13: Distribution of the 250 replicas for a selection of the MAP22 free
parameters.

A more detailed view is o↵ered in Fig. 3.15. Here, we show the unpolarized
TMD PDF for the up quark in the proton at µ =

p
⇣ = Q = 2 GeV (left panel)

and 10 GeV (right panels) as a function of the quark transverse momentum
|k?| for three di↵erent values of x, namely x = 0.001, 0.01, and 0.1. In order
to better visualize the uncertainties on the extracted TMDs, we draw also the
68% C.L. error bands, built by excluding the largest and the smallest 16% of
the replicas for each value of |k?|.

From Figs. 3.14-3.15, we note that the TMD PDFs extracted from this
analysis are wider at intermediate x = 0.01, but have also a high tail at
x = 0.001. As already mentioned, a significant role is played by the presence
of the weighted Gaussian. This may be a sign of separate contributions from
di↵erent quark flavors and/or from di↵erent spin configurations in the shape
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Figure 3.14: The TMD PDF of the up quark in a proton at µ =
p
⇣ = Q =

2 GeV (left panel) and 10 GeV (right panel) as a function of the partonic
transverse momentum |k?| and x. Results for the central replica, uncertainty
bands are not shown for better readability.
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Figure 3.15: The TMD PDF of the up quark in a proton at µ =
p
⇣ = Q =

2 GeV (left panel) and 10 GeV (right panel) as a function of the partonic
transverse momentum |k?| for x = 0.001, 0.01 and 0.1. The uncertainty bands
represent the 68% C.L.

of the TMDs (see Sec. 2.3).

It is worth noticing that the largest error band happens at x = 0.001 in
both left and right panels, particularly at low |k?|. This is caused by the lack
of of experimental data in that kinematic region (see Fig. 3.1), which is covered
only by some DY data. An important role in reaching a better description of
the TMD PDFs at low x will be played by future data from the Electron-Ion
Collider (EIC) [107, 244]. The impact of new experimental data on the MAP22
extraction will be discussed in Sec. 3.4.

In Fig. 3.16, we simultaneously display in the same panel the 68% C.L. un-
certainty bands (colored bands) and the spread of the full ensemble of replicas
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3.2. Phenomenological results

(light blue lines) of the extracted unpolarized TMD PDFs for the up quark
in the proton at µ =

p
⇣ = Q = 2 GeV (upper panels) and 10 GeV (lower

panels) as a function of the quark transverse momentum |k?| for the usual
three di↵erent values of x. As for Fig. 3.15, we can see that the region where
our TMD extraction shows the largest uncertainties is at small values of x.
Moreover, Fig. 3.16 shows that whole set of replicas is not very spread, which
is a signal of the accuracy level of the MAP22 extraction.
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Figure 3.16: The TMD PDF of the up quark in a proton at µ =
p
⇣ = Q = 2

GeV (upper panels) and 10 GeV (lower panels) as a function of the partonic
transverse momentum |k?| for x = 0.001 (right panel), 0.01 (central panel) and
0.1 (left panel). The light blue lines depict each replica of the full ensemble,
while the 68% C.L. is represented by the colored bands.

Notice that in Fig. 3.16 the values in the x-axis of the upper and lower
panels are the same. This indicates that the TMD PDFs at larger values of
the energy scale are broader, as expected from the evolution.

In Fig. 3.17, the TMD FF for the up quark fragmenting into a ⇡+ is dis-
played at µ =

p
⇣ = Q = 2 GeV (left panel) and 10 GeV (right panel) as

a function of the pion transverse momentum |P?| for two di↵erent values of
z = 0.3 and 0.6. As in previous figures, the uncertainty bands correspond to
the 68% C.L. In both the left and right panels, a distinct additional structure
becomes apparent at intermediate transverse momenta |P?|, particularly at
z = 0.3. This peculiar feature arises as a consequence of the presence of the
weighted Gaussian described in Eq. (3.6). It may be related to the contribu-
tion of secondary channels in the fragmentation of an up quark into a ⇡+, such
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3. Extraction of unpolarized proton TMDs

as the fragmentation into a � particle, which eventually decays into a pion.
Further investigations on this topic are needed, and the inclusion of data from
electron-positron annihilations would significantly improve our understanding
of this feature.
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Figure 3.17: The TMD FF for an up quark fragmenting into a ⇡+ at µ =p
⇣ = Q = 2 GeV (left panel) and 10 GeV (right panel) as a function of the

hadron transverse momentum |P?| for z = 0.3 and 0.6. The uncertainty bands
represent the 68% C.L.

In Fig. 3.18, we simultaneously display in the same panel the 68% C.L.
uncertainty bands (colored bands) and the spread of the full ensemble of repli-
cas (light blue lines) of the extracted unpolarized TMD FF for the up quark
fragmenting into a ⇡+ at µ =

p
⇣ = Q = 2 GeV (upper panels) and 10 GeV

(lower panels) as a function of the pion transverse momentum |P?| for the
above mentioned two di↵erent values of z.

It is important to highlight that the displyed error bands in Figs. 3.15-
3.18 represent the uncertainty on the fitted parameters (see Eqs. (3.5)-(3.6)).
These uncertainties are determined by propagating the error on the extraction
of the collinear parton distribution functions (PDFs) and fragmentation func-
tions (FFs), as discussed in Sec. 3.1.3. However, since the fitting procedure is
performed by using the central set of collinear distributions, all TMD replicas
are forced to have the same integral in k? (i.e., their values at |bT | = 0 are
identical). Consequently, the plots in Figs. 3.15-3.18 only partially include the
error associated to the collinear distributions.

A refined estimation of the uncertainty on TMD extractions could be
achieved by considering a set of collinear distributions composed by an ensem-
ble of MC replicas. Each of them should be associated to a single MC replica
of the experimental data built to estimate the error on the nonperturbative
parameters of TMDs. In this way, each replica of the fitted parameters would
be linked to a definite replica of the collinear distribution, accounting for the
uncertainty in both the shape and the normalization of a TMD distribution.

80



3.2. Phenomenological results

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

|P�| [GeV]

0.00

0.05

0.10

0.15

0.20

0.25
z
D

u
�

�
+

1
(z

,P
2 �
,Q

,Q
2
) Q = 2 GeV

z = 0.3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

|P�| [GeV]

0.00

0.05

0.10

0.15

0.20

0.25

z
D

u
�

�
+

1
(z

,P
2 �
,Q

,Q
2
) Q = 2 GeV

z = 0.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

|P�| [GeV]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

z
D

u
�

�
+

1
(z

,P
2 �
,Q

,Q
2
) Q = 10 GeV

z = 0.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

|P�| [GeV]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

z
D

u
�

�
+

1
(z

,P
2 �
,Q

,Q
2
) Q = 10 GeV

z = 0.6

Figure 3.18: The TMD FF for an up quark fragmenting into a ⇡+ at µ =p
⇣ = Q = 2 GeV (upper panels) and 10 GeV (lower panels) as a function of

the hadron transverse momentum |P?| for z = 0.6 (right panel) and 0.3 (left
panel). The light blue lines depict each replica of the full ensemble, while the
68% C.L. is represented by the colored bands.

3.2.4 Average squared transverse momenta

In order to better visualize the width of the extracted TMDs, we choose to
provide the average squared momenta hk2

?
i(x,Q) (for TMD PDFs), hP 2

?
i(z,Q)

(for TMD FFs), which are calculated with the Bessel weighting technique (see
Refs. [245, 246] for a detailed discussion).

In the case of the TMD PDF for a quark q in the proton at µ =
p
⇣ = Q, the

average squared transeverse momentum hk2
?
i(x,Q) is defined as follows [245,

246]:

hk2
?
iq(x,Q) =

´
d2k? k2

?
f q

1 (x,k
2
?
, Q,Q2)´

d2k? f q

1 (x,k
2
?
, Q,Q2)

=
2M2 f̂ q (1)

1 (x, b2
T
, Q,Q2)

f̂ q

1 (x, b
2
T
, Q,Q2)

����
|bT |=0

,

(3.12)

where the Fourier transform f̂ q

1 of the TMD PDF has been defined in Eq. (2.9),
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3. Extraction of unpolarized proton TMDs

and the first Bessel moment of the TMD PDF f̂ q (1)
1 is defined as [245]:

f̂ q (1)
1 (x, b2

T
, Q,Q2) =

2⇡

M2

ˆ +1

0

d|k?|
k2
?

|bT |
J1
�
|k?||bT |

�
f q

1 (x,k
2
?
, Q,Q2)

= � 2

M2

@

@b2
T

f̂ q

1 (x, b
2
T
, Q,Q2) .

(3.13)

However, we need to shift the value of |bT | from 0 to a value well inside the
nonperturbative region [246]. This is required to obtain meaningful values for
the average squared transverse momenta, i.e., finite, positive, and not domi-
nated by the perturbative tails of the TMDs. In this way, the Bessel functions
J0,1 have the e↵ect of taming the power-law behavior of the TMD at large
transverse momentum making the involved integrals to converge. It is clear
that the choice of the specific value for |bT | is arbitrary, but should not have a
significant e↵ect on the associated numerical values. We choose |bT | = 1.5 bmax,
which guarantees that the average squared transverse momenta are positive in
the x, Q values considered in the fit. Accordingly, Eq. (3.13) becomes:

hk2
?
iq
r
(x,Q) =

2M2 f̂ q (1)
1 (x, b2

T
, Q,Q2)

f̂ q

1 (x, b
2
T
, Q,Q2)

����
|bT |=1.5 bmax

, (3.14)

where the subscript r stands for regularized. We have numerically checked that
the results are equivalent (up to numerical accuracy) when choosing either the
integral or di↵erential expressions in Eq. (3.13).

A similar arguments apply to the regularized average squared transverse
momentum produced during the fragmentation of the quark q into the final
state observed hadron h [139, 245, 246]:

hP 2
?
iq!h

r
(z,Q) =

2 z2 M2
h
D̂q!h (1)

1 (z, b2
T
, Q,Q2)

D̂q!h

1 (z, b2
T
, Q,Q2)

����
|bT |=1.5 bmax

, (3.15)

where the Fourier transform D̂q!h

1 of the TMD FF is defined in Eq. (2.33) and

the first Bessel moment of the TMD FF D̂q!h (1)
1 is defined as [139]:
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(3.16)

In Fig. 3.19, we show the scatter plot of hk2
?
iu
r
(up quark contribution) at

x = 0.1 vs. hP 2
?
iu!⇡

+

r
(commonly known as “favored” fragmentation channel)
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Figure 3.19: Scatter plot of average squared transverse momenta for the TMD
PDF of the up quark at x = 0.1 and for the TMD FF of the u ! ⇡+ frag-
mentation at z = 0.5. Orange circles for the PV17 analysis [87] at NLL at
Q = 1 GeV; the black cross represents the average. Blue circles for this anal-
ysis (MAPTMD22) at N3LL� and at Q = 1, 2, 4.75 GeV; the red squares
represent the average values for each considered Q value.

at z = 0.5. The blue circles (denoted by MAPTMD22) are the results related
to each single replica, while the red square corresponds to the average over all
replicas for the N3LL� analysis. In order to show the evolution of the average
transverse momenta with the energy scale, three di↵erent values of Q = 1, 2,
4.75 GeV are reported in the plot. In Fig. 3.19, also the results for the PV17
replicas [87] at NLL and Q = 1 GeV are displayed, with the black cross be-
ing the average over the full ensemble. For the values extracted in the PV17
analysis, it is not necessary to introduce the above mentioned regularization
because the involved TMDs at Q = 1 reduce to their nonperturbative compo-
nents. From Fig. 3.19, we observe that the MAP22 extraction shows a much
less anti-correlation between hk2

?
i and hP 2

?
i at Q = 1 than the PV17 one. A

possible explanation of this result may be the inclusion in the MAP22 analysis
of very precise DY data from LHC.

It is interesting to see the dependence of the average squared transverse
momenta on the energy scale. We can clearly see from Fig. 3.19 that, by in-
creasing the value of Q from 1 GeV to 4.75 GeV, the average squared transverse
momenta hk2

?
i for the TMD PDF of the up quark becomes larger and larger.

This is consistent with the content of Figs. 3.15-3.18, and is physically reason-
able. Similarly, the average squared transverse momenta hP 2

?
iu!⇡

+

r
grows at

large values of the energy scale, even if in a milder way.
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3. Extraction of unpolarized proton TMDs

3.2.5 Collins–Soper kernel

Another interesting topic to be discussed is the Collins–Soper kernel [70, 73],
namely the anomalous dimension that drives the evolution of TMDs in terms
of the rapidity scale ⇣ (see Sec. 2.3.1). This crucial ingredient of the TMD
formalism has been recently discussed in Refs. [247, 248], and several estimates
based on lattice QCD have been recently proposed in Refs. [249–253].

The Collins–Soper kernel, as written in Eq. (3.3), can be decomposed in
two parts. The first part is perturbatively calculable at a given NkLL accuracy,
and is computed at b⇤:

K(b⇤(b
2
T
), µ) =

k�1X

n=0

✓
↵s(µb⇤)

4⇡

◆n+1

K(n,0) �
kX

n=0

�(n)
K

ˆ
µ

µb⇤

dµ0

µ0

✓
↵s(µ0)

4⇡

◆n+1

,

(3.17)

where K(n,0) and �(n)
K

are the coe�cients of the perturbative expansion (see,
e.g., Ref. [128]). In the NangaParbat computational tool, the integral on the
r.h.s. is directly computed numerically, thus providing a fully resummed result.

The second part is usually denoted as gK , and it cannot be computed in
perturbation theory. This is one of the results of our fit. We stress that only
the full Collins–Soper kernel can be compared to other works, because the
behavior of the gK function is related to the choice of the b⇤-prescription.8

Fig. 3.20 displays the Collins–Soper kernel as a function of |bT | at the scale
µ fixed at 2 GeV9, for the present analysis (MAPTMD22, green band) and
for four di↵erent analyses in the literature [79, 81, 87, 88]. The solid lines at
low |bT | follow the perturbative result, as expected. For the sake of compari-
son with the SV19 [88] and SV17 [79] results, the MAP22 [1], PV19 [81] and
PV17 [87] curves are obtained by setting bmin = 0. Note that the slight di↵er-
ences between the curves are due to the di↵erent accuracies of the perturbative
calculations: the PV17 analysis was performed at NLL, the SV17 analysis at
N2LL, the PV19, SV19 and MAP22 at N3LL. As in the other plots, the size of
the bands around the solid lines corresponds to one standard deviation of the
parameter g2 around its best-fit value.

Moreover, we observe that the inclusion of the bmin value in the b⇤ pre-
scription produces a saturation of the curve at low |bT | starting from |bT | ⇡ 1
GeV�1. The e↵ect of introducing our choice bmin = 2e��E/µ ⇡ 1.123/µ is
shown by the dashed curves. As expected, the Collins–Soper kernel saturates
to a finite value in this framework. As already discussed in Sec. 2.3.4, we
stress that such modification occurs at lower values of |bT | (and becomes less
relevant) as the energy scale increases.

The behavior at high |bT | is driven by gK and is di↵erent for the various
analyses, accordingly to the related parameterization. We observe that the

8This is true also for the nonperturbative part of the TMD distributions: only the full
TMD in Eq. (3.4) can be compared to other extractions.

9We keep the renormalization scale µ fixed at 2 GeV only for a better comparison with
previous results.
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Figure 3.20: The Collins–Soper kernel as a function of |bT | at the scale µ = 2
GeV from the present analysis (MAPTMD22), compared with the PV17 [87],
SV17 [79], PV19 [81], and SV19 [88] analyses (see color codes in the legend).
For the MAPTMD22, PV17, and PV19 curves, the uncertainty bands represent
the 68% C.L. The corresponding dashed lines show the e↵ect of including the
bmin-prescription (see text).

curve of the MAP22 analysis is suppressed with respect to the others. This
is caused by the fact that the parameter g2 is smaller than the PV17 one.
Further investigations on these di↵erences will be performed in future works,
and possible connections with the lattice QCD community will be very fruitful.

3.3 Variations of the fit configurations

In this section, we discuss the results obtained in the framework MAP22 global
fit, but by modifying some of the baseline settings. In particular, we perform
new fits at NNLL and NLL accuracy. Then, we study the impact of the modi-
fication of the b⇤-prescription (see Sec. 2.3.4 for details on the theory) on both
the shape of the extracted TMDs and some experimental observables. Finally,
we study the sensitivity of our analysis with baseline settings to modifications
of the cut on transverse momentum imposed to restrict our fit in the TMD
region.

3.3.1 Global fit at NNLL and NLL

In the following, we firstly present two di↵erent fits at NNLL and NLL accu-
racy, respectively, comparing them to the baseline one at N3LL�.
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3. Extraction of unpolarized proton TMDs

N3LL� NNLL NLL

Data set Ndat h�2i± �h�2i Ndat h�2i± �h�2i Ndat h�2i± �h�2i
ATLAS 72 5.01 ± 0.26 / / / /

PHENIX 200 2 3.26 ± 0.31 2 0.81 ± 0.11 / /

STAR 510 7 1.16 ± 0.04 7 0.99 ± 0.03 / /

Other sets 170 0.83 ± 0.01 170 2.37 ± 0.11 / /

DY collider 251 2.06 ± 0.07 179 2.3 ± 0.1 / /

E772 53 2.48 ± 0.12 53 2.05 ± 0.22 / /

Other sets 180 0.87 ± 0.04 180 0.71 ± 0.04 180 0.81 ± 0.04

DY fixed-target 233 1.24 ± 0.04 233 1.01 ± 0.05 180 0.81 ± 0.04

HERMES 344 0.71 ± 0.04 344 1.1 ± 0.06 344 0.51 ± 0.02

COMPASS 1203 0.95 ± 0.02 1203 0.6 ± 0.06 1203 0.41 ± 0.01

SIDIS 1547 0.89 ± 0.02 1547 0.71 ± 0.05 1547 0.43 ± 0.01

Total 2031 1.08 ± 0.01 1959 0.89 ± 0.01 1727 0.47 ± 0.01

Table 3.7: Comparison of �2 values normalised to the number of data points
Ndat for fits at di↵erent perturbative accuracies. The h�2i and �h�2i are the
average and standard deviation of the �2 values of all replicas.

In the previous sections, we reported the results of the MAP22 baseline fit
at N3LL� accuracy (see Tab. 2.1). In Tab. 3.7, we compare them with results
obtained at lower accuracy.

As already discussed in Ref. [81], it is crucial to introduce perturbative
corrections up to N3LL to obtain a good description of some of the most
recent experimental measurements, like at the LHC. However, it is interesting
also to extract unpolarized TMDs at lower perturbative orders that enter the
definition of the single-spin asymmetries for the extraction of polarized TMDs,
where it is not possible to reach the same level of perturbative accuracy.

This is the case, e.g., of the Sivers TMD PDF. In fact, due to the lack
of knowledge of the collinear behavior at low |bT |, the computation of the
polarized cross section for the Sivers e↵ect presently cannot go beyond the
NLL level [64, 65, 254, 255]. Therefore, unpolarized TMDs at the same level
of accuracy are required for a consistent extraction.

However, since the most precise LHC data sets require the highest theoret-
ical accuracy, it is possible to obtain a reasonably good fit only by excluding
those experimental sets. Specifically, we found that we are able to reach an
acceptable good description at NNLL only by removing the full ATLAS data
set. As a matter of fact, we observe in Tab. 3.7 that the value of �2 in this
configuration, namely for the full data set without ATLAS data, is lower than
the one of the baseline fit at N3LL�.

When changing perturbative accuracy, the di↵erences in the framework are
significant. Therefore, we do not expect to find compatible results for the
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3.3. Variations of the fit configurations

best fit parameters between the NNLL and N3LL� fits. For instance, we get
� = 12 ± 10 GeV�1 and �F = 340 ± 280 GeV�2 at NNLL, to be compared
to � = 1.8 ± 0.3 GeV�1 and �F = 0.08 ± 0.01 GeV�2 at N3LL�. We remind
the reader that the � and �F parameters determine the relative weight of the
weighted Gaussian with respect to the first Gaussian in the non perturbative
part of the TMD PDF and FF, respectively (see Eqs (3.5)-(3.6)). They control
the size of the DY and SIDIS spectrum at middle to large values of |qT |. Since
we obtain large values for such parameters, the weighted Gaussian dominates
for both TMD PDF and FF parametrizations in the NNLL analysis. It is
clear that this might not be a genuine behavior, and it may be induced by the
lack of perturbative corrections in the NNLL fit, which gets compensated by
nonperturbative e↵ects.

In Fig. 3.21, we display the 68% C.L. error bands of the unpolarized TMD
PDF for the up quark in the proton at µ =

p
⇣ = Q = 2 GeV and x = 0.01

as a function of the quark transverse momentum |k?| for the baseline (violet
band) and the NNLL (pink band) accuracies. In the lower plot the two bands
are reported as normalized to the central value of N3LL�.
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Figure 3.21: Upper plot: the TMD PDF of the up quark in a proton at
µ =

p
⇣ = Q = 2 GeV and x = 0.01 as a function of the partonic trans-

verse momentum |k?| for the baseline N3LL� and the NNLL accuracies of the
MAP22 global fit. Lower plot: same bands as the upper plot, but normalized
to the central value of the N3LL� extraction. The uncertainty bands represent
the 68% C.L.

We observe that the NNLL band is compatible with the N3LL� one, indi-
cating that in the shown kinematic region the resulting shape of the TMD PDF
is comparable, even considering di↵erent global data sets and perturbative ac-
curacies. However, a more relevant contribution of the weighted Gaussian can
be seen in the shape of the NNLL curve at intermediate |k?|, confirming our
discussion on the � parameter. Note also that the two bands become incom-
patible at large |k?|, where the di↵erence in the perturbative content of the
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3. Extraction of unpolarized proton TMDs

TMD distribution is expected to be relevant. As already discussed, such nice
compatibility is not required nor expected, and in general di↵erent results are
obtained for other values of x and Q.

We performed also a global fit at NLL accuracy. Similarly to the previous
case, we have to exclude other data sets to obtain acceptable description at
this order. Hence, we consider only SIDIS data and fixed-target DY data (i.e.,
E605 and E288).

We point out that with our choice of the b⇤ prescription the integral of the
W -term at NLL is fixed to the SIDIS |qT |-integrated collinear cross section.
As a consequence, the value of the normalization prefactor ! in Eq. (2.99) is
by construction equal to 1. Moreover, at this accuracy we consistently use the
collinear MMHT2014 PDF set at LO and we use the DSS set at NLO for
collinear FFs. As shown in Tab. 2.1, at NLL both collinear PDFs and FFs
should be the result of an extraction at LO, but we choose FFs at NLO because
no recent extractions at LO are currently available.

As can be seen in Tab. 3.7, low �2/Ndat are obtained for all included data
sets. This result may be the consequence of a very flexible functional form
fitting a reduced data set. It is interesting to compare such result with the out-
come of the PV17 analysis [87]. In that work, the normalization of COMPASS
data was fixed by the first bin in P 2

hT
. A new release of COMPASS has been

published in the meanwhile, and here we prove that we can obtain an excellent
description of the most recent COMPASS data at NLL, without problems of
normalization.

In Fig. 3.22, we display the 68% C.L. error bands of the unpolarized TMD
PDF for the up quark in the proton at µ =

p
⇣ = Q = 2 GeV and x = 0.01

as a function of the quark transverse momentum |k?| for the baseline (blue
band) and the NLL (green band) configurations. In the lower plot is reported
the two error bands normalized to the N3LL� central value.

We observe that the NLL fit band is not compatible with the N3LL� one.
As for the comparison with the NNLL fit, we note that the two bands are
clearly incompatible at large |k?|, where the di↵erence in the perturbative
content of the TMD distribution is expected to be relevant. Moreover, we note
that the integral of the two TMDs is di↵erent, being related to the collinear
set of PDFs included in the analysis (MMHT2014 at NNLO for the N3LL�

fit and MMHT2014 at LO for the NLL one).

Finally, in Fig. 3.23 we show the comparison between the 68% C.L. error
bands of the unpolarized TMD PDF for the up quark in the proton for and
x = 0.1, 0.01 and 0.001 at µ =

p
⇣ = Q = 2 and 10 GeV as a function of

the quark transverse momentum |k?| for the baseline MAP22 fit (blue band)
and the two variations at NNLL and NLL accuracy (violet and green bands,
respectively).

From Fig. 3.23, we can observe the di↵erences in the results of the three
global analyses. In general, they are expected to be di↵erent because of the
distinct data sets included in the analyses and the di↵erent orders in the per-
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Figure 3.22: Upper plot: the TMD PDF of the up quark in a proton at
µ =

p
⇣ = Q = 2 GeV and x = 0.01 as a function of the partonic transverse

momentum |k?| for the baseline N3LL� and the NLL accuracies of the MAP22
global fit. Lower plot: same bands as the upper plot, but normalized to the
central value of the N3LL� extraction. The uncertainty bands represent the
68% C.L.

turbative ingredients. Moreover, since the integral of each TMD PDF is related
to the value of the collinear set of PDF used in the extraction, the normaliza-
tion of the three curves di↵ers by construction according to the value of the
MMHT2014 set at LO, NLO and NNLO (see Tab. 2.1).

In Fig. 3.24, the comparison between the the 68% C.L. error bands of the
unpolarized TMD PDF for the up quark in the proton at µ =

p
⇣ = Q = 2 and

10 GeV for x = 0.1, 0.01 and 0.001 of the MAP22 global fit at NLL and the
PV17 global fit is shown. We note that both the normalization and the shape
of the two TMD PDFs are pretty similar at x = 0.1, even if they are matched
onto two di↵erent sets of collinear PDFs.10 In the other cases, the results are
not very compatible. As already discussed, this may be caused by the di↵erent
data sets included in the analyses11 and the di↵erent choice of collinear PDFs.

3.3.2 Impact of b⇤-prescription on unpolarized TMDs

It is interesting to understand also the dependence of the TMD shape when we
choose a di↵erent b⇤ prescription (see discussion in Sec. 2.3.4). To this aim, we
show the TMDs calculated with di↵erent b⇤(|bT |) functions, but keeping the
nonperturbative model with the same set of parameters. In fact, it is crucial
to use the same parameterization in order to identify the genuine impact of a

10The MMHT2014 collinear set at LO is used for the MAP22 global fit at NLL, while
the GJR08FFnloE [256] for the PV17 analysis.

11We stress that in the PV17 global fit an old version of the COMPASS data set was
included, which has been superseded by a new release in recent years.
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Figure 3.23: The TMD PDF of the up quark in a proton at µ =
p
⇣ = Q = 2

GeV (left panels) and 10 GeV (right panels) and x = 0.1, 0.01 and 0.001 (from
top to bottom) as a function of the partonic transverse momentum |k?| for the
baseline N3LL� (blue band), the NNLL (violet band) the NLL (green band)
accuracies in the MAP22 global fit. The uncertainty bands represent the 68%
C.L.

particular choice of the b⇤ prescription before the fitting procedure. We choose
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Figure 3.24: The TMD PDF of the up quark in a proton at µ =
p
⇣ = Q = 2

GeV (left column) and 10 GeV (right column) and x = 0.1, 0.01 and 0.001
(from top to bottom) as a function of the partonic transverse momentum |k?|.
Upper plot: the TMD PDF of the up quark in a proton for the NLL accuracy
MAP22 variation (green band) and the PV17 extraction (light blue band).
Lower plot: same bands as the upper plot, but normalized to the central value
of the PV17 extraction. The uncertainty bands represent the 68% C.L.

the set of parameters of the MAP22 baseline fit.12 We choose four di↵erent
12Actually, the choice of the b⇤ prescription is strictly related to the nonperturbative part

of a TMD distribution (see Eq. (2.77) and discussion above). Therefore, a change in the
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b⇤(b2
T
) functions: bCollins

⇤
(b2

T
) (see Eq. (2.69)), bBacchetta

⇤
(b2

T
) (see Eq. (2.70)),

b̄Collins

⇤
(b2

T
) (see Eq. (2.72)), and b̄MAP

⇤
(b2

T
) (see Eq. (2.74)). The di↵erences

among them can be found in Figs. 2.5-2.6.
Fig. 3.25 shows the comparison between the unpolarized TMD PDF for the

up quark in the proton calculated for di↵erent choices of the b⇤ prescription at
µ =
p
⇣ = Q = 2 GeV for x = 0.1 (left panel) and 0.01 (right panel).
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Figure 3.25: The TMD PDF of the up quark in a proton at µ =
p
⇣ =

Q = 2 GeV as a function of the partonic transverse momentum |k?| for x 0.1
(left panel) and 0.01 (right panel) for di↵erent b⇤ prescriptions. Upper plot:
TMD PDFs comparison for bCollins

⇤
(b2

T
) (Eq. (2.69)), bBacchetta

⇤
(b2

T
) (Eq. (2.70)),

b̄Collins

⇤
(b2

T
) (Eq. (2.72)), and b̄MAP

⇤
(b2

T
) (Eq. (2.74)); 68% C.L. uncertainty

bands are shown only for the MAP22 baseline fit result. Lower plot: ratio
between the result for a given b⇤(b2

T
) function choice and the b̄MAP

⇤
(b2

T
) one.

Fig. 3.26 shows the same comparison, but at µ =
p
⇣ = Q = 10 GeV.
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Figure 3.26: Same as in previous figure but at µ =
p
⇣ = Q = 10 GeV.

b⇤(b2
T ) function should require new best fit parameters. However, our aim is not to perform

a new TMD extraction, but only to understand the impact of di↵erent choices.
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In the left panel of Fig. 3.25 we observe that the discrepancy between the
curves built with di↵erent b⇤ prescriptions lays in the region at intermediate
|k?|. This is somehow expected, since the introduction of a bmin cuto↵ should
generate di↵erent behaviors in the intermediate transverse momentum domain.
This is observed also at x = 0.01 and for both the panels in Fig. 3.26. The
di↵erences between the b̄MAP

⇤
(b2

T
) bands and the b̄Collins

⇤
(b2

T
) can be related to

the di↵erence in the value of the bmin parameter and the di↵erent shapes of
the functions. Indeed, the discrepancies that can be seen in Fig. 3.26 may
be caused by the di↵erent behaviors of the b⇤(b2

T
) at both small and large

b2
T
. It is interesting to note also that at intermediate |k?| the TMDs with

bBacchetta

⇤
(b2

T
) and b̄MAP

⇤
(b2

T
) are slightly larger than the other. This feature is a

consequence of the fact that such prescriptions leave more space to perturbative
radiation before saturating in both small- and large-|bT | regions (see discussion
in Sec. 2.3.4).

We also perform the fit of theATLAS data set by considering the b̄MAP

⇤
(b2

T
)

prescription of the baseline fit and the b̄Collins

⇤
(b2

T
) one. We report the results

in Fig. 3.27, where the comparison of the two configurations are shown for a
selection of ATLAS bins. We choose to fit only the ATLAS data set because
it is the most precise and problematic one. Therefore, a modification of the b⇤
prescription used to build the theoretical predictions could be responsible for
a visible modification in the agreement with the experimental data.

We note that the peak of the |qT |-spectra is generally shifted at smaller
|qT | values when we consider the b̄Collins

⇤
(b2

T
) prescription. Consequently, the

predictions for the first |qT | bin is generally larger and the intermediate-|qT |
tail is lower than the experimental data. This observation is in agreement
with Figs. 3.25-3.26, where we can see that the TMD PDFs with b̄Collins

⇤
(b2

T
)

prescription are systematically larger than the baseline ones at small |qT |, while
they are slightly smaller at intermediate |qT |.

In conclusion, we find better agreement between the ATLAS experimen-
tal data and the theoretical (fitted) predictions built with the choice of the
b̄MAP

⇤
(b2

T
) prescription. Such result could be considered as a phenomenological

justification for our baseline choice of the b⇤ prescription.

3.3.3 Cut in |qT |/Q
The last variation of the MAP22 baseline fit configuration is related to the cut
on the experimental data introduced to keep the MAP22 global analysis inside
the TMD region. An essential ingredient in any phenomenological analysis
of TMDs is the kinematic cut |qT |/Q ⌧ 1 on the data set to guarantee the
applicability of TMD factorization. In Sec 3.1, we extensively discussed the
MAP22 default choices for these kinematic cuts. It is of particular interest to
determine how the global quality of fit is a↵ected by variations in this cut, as it
provides quantitative insight into the range of validity for TMD factorization.

To this purpose, we change the parameters c1, c2, and c3 in Eq. (3.2),
which play a role only on the cut for the SIDIS data, while we keep the limit
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Figure 3.27: Comparison between the experimental data and (fitted) theo-
retical predictions with b̄MAP

⇤
(b2

T
) (green line) and b̄Collins

⇤
(b2

T
) (purple line)

prescriptions for a selection of ATLAS data sets. Lower panel: ratio between
theoretical results and experimental data. Fit errors are not shown.

|qT |/Q < 0.2 for the DY data. An analogous study of the |qT |/Q cut on the
DY data has already been performed in Ref. [81].

We consider five di↵erent configurations for the cut on SIDIS data:

(a) A first and most conservative cut is performed by fixing the z-independent
upper value |qT |/Q < 0.4 which can be obtained by setting c1 = c2 = 0.4
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3.3. Variations of the fit configurations

and c3 = 0 in Eq. (3.2);

(b) A second cut by setting c1 = 0.15, c2 = 0.4 and c3 = 0.2 in Eq. (3.2);

(c) The cut of our baseline fit with c1 = 0.2, c2 = 0.5 and c3 = 0.3;

(d) A fourth cut with c1 = 0.2, c2 = 0.6 and c3 = 0.4 but without imposing
|qT | < Q (i.e. removing the outermost “min” in Eq. (3.2));

(e) A fifth cut inspired by the PV17 analysis [87], namely the same as in the
previous case but with c1 = 0.2, c2 = 0.7 and c3 = 0.5; this is the least
conservative choice.
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Figure 3.28: Global �2/Ndat for di↵erent configurations of the kinematic cut
on SIDIS data sets (see text). The blue point corresponds to the reference cut
used in the present baseline fit.

Fig. 3.28 displays the variation of the global �2/Ndat when taking into
account the five configurations described above. We observe that more conser-
vative choices do not necessarily correspond to better �2 values. Consequently,
we deduce that the TMD formalism is able to describe a bunch of SIDIS data
that do not satisfy the formal requirement |qT |/Q⌧ 1. In this regard, we no-
tice that the global �2/Ndat of cut (d) is smaller than the baseline fit, despite
including a larger amount of data, some of which at |qT | & Q, i.e., well outside
the region where TMD factorization is expected to be valid.

The situation is better represented in Fig. 3.29, where we show the com-
parison between COMPASS data and theoretical predictions from our baseline
fit. We choose to plot the SIDIS multiplicity for positively charged hadrons
as a function of |PhT |/Q in the bin 1.3 < Q < 1.73 GeV, 0.02 < x < 0.032,
0.3 < z < 0.4. The upper panel of the plot displays the multiplicity while
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3. Extraction of unpolarized proton TMDs

the lower panel shows the ratio of experimental data to the theoretical pre-
dictions. A vertical line separates data points included in the fit (solid circles
on the left) from data predicted (empty squares on the right). Remarkably,
the agreement remains very good up to |PhT |/Q ' 0.5, well beyond the value
of |PhT | allowed by our baseline cut. We also stress that this behavior is not
specific of the considered COMPASS bin but is a general feature also of other
bins, as well as of the HERMES data set. In Fig. 3.30, we observe the same
feature also for a specific HERMES kinematic bin.13
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Figure 3.29: Comparison between COMPASS multiplicities and theoretical
results for the SIDIS production of unidentified positively charged hadrons o↵
a deuteron target at 1.3 < Q < 1.73 GeV, 0.02 < x < 0.032 and 0.3 < z < 0.4
as a function of |PhT |/Q. Upper panel: light-blue rectangles for baseline fit at
68% CL, empty squares for data points not included in the baseline fit. Lower
panel: ratio between experimental data and theoretical results. Vertical line
separates data included in the fit (left) from predictions (right).

In general, we may conclude that from the MAP22 global analysis it appears
that the validity of the TMD formalism, at least in the kinematic region covered
by COMPASS and HERMES data sets, seems to extend well beyond the usual
cut |qT |/Q⌧ 1.

This empirical evidence provides a quantitative reason for our selection
of the |qT |/Q cut in Eq. (3.2) for the baseline fit. It makes clearer why we
consistently got �2/Ndat values close to 1 even when taking into account less
stringent cuts. Additionally, it suggests that the applicability of TMD factor-
ization in SIDIS might be better defined in terms of |PhT | rather than |qT |.
Further investigations in this particular direction are needed.

13Notice that the selected bins from the COMPASS and the HERMES data sets are in
two di↵erent kinematic regions.
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Figure 3.30: Comparison between HERMES multiplicities and theoretical re-
sults for the SIDIS production of positively charged pions o↵ a proton target
at 1 < Q < 3.87 GeV, 0.12 < x < 0.2 and 0.2 < z < 0.25 as a function of
|PhT |/Q. Same notations as in previous figure.

3.4 Impact of new data sets

Estimating the impact of new experimental data sets in TMD phenomenol-
ogy is extremely important for advancing our understanding of fundamental
aspects of the theory of strong interactions.

The availability of new sets of experimental data allows us to refine and
validate theoretical models and parametrizations. By comparing the predic-
tions of TMD factorization with the outcomes of the latest experiments, we
can determine the robustness and accuracy of existing theoretical frameworks.
Moreover, the analysis of new data sets enables the exploration of poorly known
kinematic regimes and o↵ers the potential to shed light on previously unob-
served phenomena.

Precise estimates of the impact of new experimental data are also impor-
tant to increase precision and reliability of theoretical predictions for future
experiments. By quantifying the influence of these data sets, experimental
collaborations can optimize designs of a new experiment or a new detector and
target specific regions of interest, maximizing the potential of a new machine.

There are two main questions we would like to answer. Which are the
kinematic regions where the new data sets will give the most of information?
How much the uncertainties on TMD distributions will be reduced? To answer
these questions, a fundamental role will be played by the interchanges between
theoreticians and experimentalists, at least for the first question. In fact, it is
the accumulated knowledge by phenomenology that should drive the goals and
determine the kinematic domains of new experiments. Hence, it is important
to answer these questions before designing a new experiment or a new machine.

We devote this section to the study of the impact of new pseudodata coming
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from the EIC machine [107] and the JLab22 upgrade [106] on unpolarized quark
TMDs.

There are several procedures that can be followed in order to perform such
estimate. In Ref. [107], the sensitivity of di↵erent kinematic regions to the pa-
rameters of the PV17 [87] extraction of TMD PDFs and TMD FFs is discussed
through the calculation of some sensitivity coe�cients S, defined as

S[O, fi] =
hOfii � hOihfii

�O�fi
, (3.18)

where O, �O are a given experimental observable and its uncertainty, and fi,
�fi are a given parameter of a nonperturbative TMD model and its theoretical
uncertainty.

Another useful tool for quantitatively estimating the reduction of unpolar-
ized TMD bands is given by the reweighing technique [257, 258], which has
been usually used in collinear PDFs framework. However, the outcome of this
procedure may be biased by the choice of the reweighing function, and may
lead to unreliable results.

The most reliable way to estimate the impact of pseudodata is to repeat
a global fit with the same setup, but including them from the very beginning.
We choose to follow this procedure. In particular, we generate the values of
pseudodata by calculating the theoretical predictions in NangaParbat compu-
tational tool with the set of parameters of the MAP22 central replica. Then,
the associated experimental uncertainties are provided by the experimental
collaborations through their Monte Carlo simulations. In this way, the result
of the new fit is equivalent to the MAP22 one, while the uncertainties on the
extracted TMDs are modified by the introduction of new pseudodata. In par-
ticular, such uncertainties are reduced according to the size of the experimental
errors of the new pseudodata.

3.4.1 E↵ects of JLab 22 GeV data on TMDs

In this section, we show the results of the impact on the new experimental
data coming from a possible JLab 22 GeV upgrade.14 In unpolarized TMD
phenomenology, JLab22 is expected to extremely improve the experimental
accuracy in the measurement of SIDIS cross sections in the moderate- and
large-x region, which will help to get refined information on the 3D nucleon
structure in the valence domain with greater precision that ever before. In
Fig. 3.31, the coverage of the JLab 22 GeV upgrade is illustrated. Only for
illustrative purposes, we consider a center-of-mass energy

p
s = 7 GeV, 0.1 <

y < 0.9, and an invariant mass W 2 < 10 GeV2. As already mentioned, we
expect that the new experimental data coming from this upgrade will help us
to deepen our knowledge on the valence TMD content of the proton. In fact,

14For more details on the JLab22 upgrade see Ref. [106].
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3.4. Impact of new data sets

they will provide information about the region 0.1 < x < 0.5, which is not
covered by available SIDIS data sets.
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Figure 3.31: The x vs. Q2 coverage spanned by the SIDIS experimental data
considered in the estimate of the impact of JLab 22 GeV upgrade.

From Fig. 3.31, we observe that almost half of the region covered by the
JLab22 data is the same of the HERMES and COMPASS data sets. This is
important because it allows us to compare and validate the theoretical predic-
tions produced from the knowledge of past experiments. On the contrary, the
region beyond x = 0.1 - 0.2, particularly at low Q, is so far unexplored.

For the estimate of the impact of the JLab 22 GeV upgrade, two sets of ex-
perimental pseudodata were provided by JLab experimentalists, with identified
positive or negative pions. Since each set includes more than 30000 experimen-
tal bins after imposing the kinematic cuts, we decided to consider only the set
with identified positive pions in the final state. Therefore, we added more than
30000 pseudodata to the MAP22 global fit with ⇠ 2000 data. This unbalance
could introduce a bias in the analysis: the fit might be no more sensitive to
the actual experimental data.

The impact of the JLab22 data at Q = 2 GeV (left panels) and 10 GeV
(right panels) and for x = 0.1 (first row), 0.01 (second row) and 0.001 (third
row) is shown in Fig. 3.32.

As expected, the major reduction of the TMD uncertainty bands provided
by the JLab22 pseudodata is in correspondence of the large-x region (upper
panels of Fig. 3.32). In such kinematic region, the impact of the new data is
huge because of the very small size of the experimental errors and the large
amount of pseudodata introduced. In the central and lower panels of Fig. 3.32,
we observe that the JLab 22 GeV upgrade may impact also at lower values of
x, even if this kinematic region is not covered. This result may be an e↵ect
of the bias introduced by the functional form for the parameterization of the
TMD nonperturbative part. In fact, it could happen that, due to the limited
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Figure 3.32: Estimate of the impact of the JLab 22 GeV upgrade on the error
bands of the unpolarized TMD PDF of the u quark in the proton in |k?| space
at Q = 2 GeV (left column) and 10 GeV (right column) for x = 0.1, 0.01
and 0.001 (from top to bottom), based on the MAP22 analysis. Purple bands:
current 68% C.L. TMD uncertainties from the MAP22 global fit. Red bands:
68% C.L. TMD uncertainties after the inclusion of JLab22 pseudodata.

flexibility of the nonperturbative TMD model, some parameters related to
uncovered kinematic regions are fixed by the available experimental data.

In conclusion, we showed that the impact of JLab22 data on reducing quark
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3.4. Impact of new data sets

unpolarized TMD uncertainties is mainly in the large-x region. In particular,
it is estimated to be about two orders of magnitude for x = 0.1 starting from
the MAP22 global analysis.

3.4.2 E↵ects of EIC data on TMDs

In this section, we discuss the results on the impact of pseudodata coming from
the Electron Ion Collider (EIC).15

In Fig. 3.33, the kinematic coverage of the EIC machine is displayed, along
with the present SIDIS and DY data sets. Only for illustrative purposes, we
consider for the EIC a center-of-mass energy

p
s = 140 GeV, 0.01 < y < 0.95,

according to Ref. [107].
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Figure 3.33: The x vs. Q2 coverage spanned by the experimental data consid-
ered in unpolarized TMDs global analyses compared to the one of the EIC.

As can be seen from Fig. 3.33, the EIC machine is expected to provide
unique insights on the 3D nucleon structure either in the region at large-x
and large-Q or in the one at small- or intermediate-x and small-Q. Therefore,
measurements at the EIC energies are expected to fill in the gap between the
low-energy fixed-target experiments (both SIDIS and DY) and the high-energy
collider machines as the LHC and Tevatron. In fact, the region 10 < Q < 100
GeV is of particular interest to get information about TMD evolution and the
compatibility between SIDIS and DY data.

For the estimate of the impact of the EIC machine, di↵erent preliminary
sets of pseudodata were available for di↵erent energy configurations.16 Since
we got qualitatively similar results for the other energy configurations, we

15For more details on the EIC machine see Ref. [107].
16The EIC pseudodata are based on PYTHIA simulations, and include statistical and

systematic errors obtained from a hand-book detector design with moderate particle identi-
fication (PID) capabilities.
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3. Extraction of unpolarized proton TMDs

show the results for the 18x100 GeV case. 17 Moreover, we consider only the
pseudodata sets with identified positive pions in the final state. In the end, we
were able to add about 3000 pseudodata points to the MAP22 global data set
of ⇠ 2000 data, obtaining a good balance between real experimental data and
pseudodata.

In Fig. 3.34, we show the estimate of the impact of EIC data at Q = 2
GeV (left panels) and 10 GeV (right panels) and for x = 0.1 (first row), 0.01
(second row) and 0.001 (third row).

In the central and the lower panels of Fig. 3.34, we can see that the impact
of the EIC pseudodata is significant in the region at small and intermediate x.
Moreover, we note that we obtain a nice improvement of the TMD uncertainty
bands also at x = 0.1 and Q = 2 GeV, a kinematic region to which the EIC
should not be sensitive. Such result may be related to a limited flexibility
of the nonperturbative TMD parameterization. In any case, we expect that
this result is an overestimation of the actual reduction of the TMD bands
when the real data will become available. However, this tells us how much
the availability of these new data sets is of fundamental importance to get
a better understanding of the 3D structure of the nucleon. We stress that
the importance of getting a better knowledge of the unpolarized structure of
nucleons goes beyond the interest in understanding unpolarized physics. In
fact, unpolarized TMDs enter in the definition of polarized structure functions
and spin asymmetries, and, thus, they play a significant role the determination
of polarized e↵ects inside the nucleon.

17The EIC possible energy configurations for electron-ion collisions are: 5x41 GeV, 5x100
GeV, 10x100 GeV, 18x100 GeV and 18x275 GeV.
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Figure 3.34: Estimate of the impact of the EIC machine on the error bands of
the unpolarized TMD PDF of an u quark in the proton in |k?| space at Q =
2 GeV (left column) and 10 GeV (right column) for x = 0.1, 0.01 and 0.001
(from top to bottom), based on the MAP22 analysis. Purple bands: 68% C.L.
current TMD uncertainties from the MAP22 global fit. Red bands: 68% C.L.
TMD uncertainties after the inclusion of EIC pseudodata.
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Chapter 4
Phenomenology of pion TMD PDFs

In this chapter, we report on the extraction by the MAP Collaboration of
unpolarized pion quark TMDs, henceforth named PionMAP22 [2], through
the first ever analysis of the whole set of available data for the DY lepton-pair
production in ⇡�-nucleus collisions.

We are interested in the internal structure of the pion because it is the
simplest of all hadrons. Moreover, it plays a fundamental role in the Standard
Model, being the Goldstone boson of chiral symmetry breaking. Therefore, we
find important to investigate its internal structure, which is also responsible
for the macroscopic di↵erences between the bound state of a pion and of a
nucleon (see, e.g., Ref. [259] for a review).

The one-dimensional momentum distribution of quarks inside a pion can
be described in terms of collinear PDFs, and there are various extractions
available in the literature starting from the 1990s [260–270]. Moreover, a si-
multaneous extraction of pion PDFs and TMDs has been recently presented
by the Je↵erson Lab Angular Momentum (JAM) Collaboration [134].

Despite this extensive literature, the knowledge of the internal structure of
pions is much less refined than the one of the proton. Such situation is caused
by the lack of experimental data on scattering processes involving pions in
di↵erent kinematic domains.

Consequently, the knowledge of 3D structure of pions is even more limited.
In the last ten years, various model calculations of pion TMDs have been
discussed with di↵erent approaches [271–278], and only few phenomenological
analyses have been published [134, 279, 280]. The extraction of TMD PDFs
presented here is an improvement upon the previous ones because it includes
the whole set of pion-induced DY data and the theoretical formalism is pushed
at the best accuracy currently available.

Since the available measurements are obtained from pion-nucleus collisions,
the cross section di↵erential in the lepton-pair transverse momentum can be
written in terms of a convolution of a unpolarized proton TMD and a unpolar-
ized pion TMD. We make use of results of the MAP22 global fit discussed in
Ch. 3 for proton TMD PDFs, and we extract pion TMDs in the NangaParbat
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4. Phenomenology of pion TMD PDFs

computational tool with the formalism presented in this thesis.
If we compare our analysis to Ref. [280], we include a broader data set and

use a di↵erent implementation of TMD evolution. As for Ref. [279], our fit
includes a broader data set, a better theoretical accuracy, considers the latest
extraction of proton TMDs, and consistently uses the same Collins-Soper kernel
for both proton and pion TMDs.

The simultaneous analysis of pion PDFs and TMDs in Ref. [134] has been
published after the work presented in this thesis. Compared to Ref. [134], we
include an even larger number of experimental data points, and we introduce
a di↵erent functional form for the nonperturbative part of pion TMDs. It is
interesting to observe that the proton TMD PDFs from the MAP22 global fit
have been used also in Ref. [134], confirming the quality of our extraction.

This chapter is organized as follows. In Sec. 4.1, we describe the data set
included in the PionMAP22 analysis and how experimental data have been
selected. In Sec. 4.2, we present the results of our fit. Finally, Sec. 4.3 shows
the predictions of the PionMAP22 analysis for the kinematic region spanned
by the upcoming pion-induced DY data from the COMPASS Collaboration.

4.1 Data selection

In this section, we present the experimental data sets included in the Pio-
nMAP22 analysis. The only available sets come from two DY experiments
(E615 [281] and E537 [45]) on ⇡�-tungsten collisions. The kinematic cover-
age of these data sets in the (x,Q2) plane is illustrated in Fig. 4.1.
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Figure 4.1: The coverage of E615 [281] (blue) and E537 [45] (light blue) data
in the (x,Q2) plane.

From Fig. 4.1, we observe that the kinematic coverage of pion-induced DY
data is comparable with the fixed-target DY sets included in the MAP22 global
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4.1. Data selection

fit (see Fig. 3.1). As expected by fixed-target DY experiments, they provide
information in the kinematic region at small Q and relatively large x.

As already discussed in Sec. 3.1, we need to impose a cut |qT |⌧ Q on the
transverse momentum |qT | to limit our analysis to the TMD region. Hence,
we apply to the included data set the following cut:

|qT |
Q

< 0.3 +
0.6

Q
. (4.1)

This cut di↵ers slightly from the corresponding one introduced in the ex-
traction of proton TMDs (see Eq. (3.1)). Due to the limited number of data
sets, we find that this cut represents a balanced compromise between the need
to include more data and the requirement to stay within the limits of applica-
bility of TMD factorization.

Moreover, we also exclude those bins of the DY experiment E615 for which
9.00 < Q < 11.70 GeV to avoid the kinematical region of invariant masses
around the ⌥ resonance. The number of experimental data points (Ndat) af-
ter the application of these cuts are reported in Table 4.1, together with the
definition of the observables and the kinematic regions of each data set.

Experiment Ndat Observable
p
s [GeV] Q range [GeV] xF range

E615 74 d2�/dQd|qT | 21.8 4.05 - 13.05 0.0 - 1.0
E537 64 d2�/dQdq2

T
15.3 4.0 - 9.0 -0.1 - 1.0

Table 4.1: For each experiment we indicate the number Ndat of data points
included in the fit after applying the kinematical cuts, the delivered observable,
the center-of-mass energy

p
s, the range in invariant massQ and the integration

range in xF .

We note that each of the considered data sets is a↵ected by relatively
large systematic and statistical uncertainties. In particular, the systematic
uncertainties are quite large for both E537 (8%) and E615 (16%). We choose
to treat them as fully correlated.

As for the MAP22 analysis, we have to include the systematic uncertainties
introduced by the choice of the collinear PDFs. Consistently with Ref. [1], we
choose the PDF set MMHT2014 [210] to perform the matching at low-|bT |
of proton TMDs, while for the pion we choose the xFitter20 one [267]. The
PDF uncertainties have been estimated by using the Hessian method, and 80%
of them has been considered as fully correlated while the remaining 60% as
uncorrelated, as already done in the MAP22 global fit. The t0-prescription is
not included in our results, since we found no relevant di↵erences between the
fits with and without the t0-prescription.
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4.2 Phenomenological results

In this section, we show the phenomenological results of the extraction of
unpolarized quark TMD PDFs in the pion from a fit of all the existing DY
data involving pions (see Tab. 4.1). Similarly to the MAP22 analysis, the full
N3LL accuracy could not be achieved, because sets of collinear pion PDFs are
presently available only at NLO accuracy. Therefore, we extract pion TMDs
at N3LL� accuracy.

As already done for the MAP22 global fit, we propagate the errors on the
free parameters by fitting an ensemble of 200 MC replicas of experimental
data. For consistency with the MAP22 analysis, we used the proton TMD
PDFs extracted in that fit and we associate the i–th replica of quark TMD
PDFs in the pion to the same replica in the ensemble of quark TMD PDFs in
the proton.

4.2.1 Nonperturbative models of TMD PDFs

The cross section of the pion-induced DY process involves the TMD PDFs f̂a

1p

and f̂a

1⇡ of a quark a in the proton and in the pion, respectively. Actually, the
target of the included set is a nucleus (tungsten) and, thus, we should take
into account unpolarized quark TMDs in a nucleus. However, in our analysis a
nucleus is described as a incoherent sum of free nucleons in first approximation,
even though possible nuclear modifications have been recently studied [133].
Nuclear e↵ects in pion TMDs analysis have been introduced for the first time
in Ref. [134].

As for the proton, we use the MAP22 global extraction for the unpolarized
TMD PDFs in the proton f̂a

1p (see Eq. (3.5)). The parameters of proton TMDs
are kept fixed to the values extracted from the MAP22 fit. For consistency,
we keep the same b⇤(b2

T
) prescription also for pion TMDs, but we parametrize

their nonperturbative part f⇡

1NP
as follows:

f⇡

1NP
(x, b2

T
; ⇣) = e�g1⇡(x)

b2T
4


⇣

Q0

�gK(b2T )/2

= e�g1⇡(x)
b2T
4


⇣

Q0

��g
2
2
b2T
4

, (4.2)

where Q0 is an arbitrary starting scale that we choose to be 1 GeV, and g2 is
the parameter related to the nonperturbative part of the Collins-Soper kernel.
Consistently, we fix it to the value extracted by the MAP22 fit, since the
Collins-Soper kernel is independent of the hadron. The x-dependence of the
width g1⇡ is given by

g1⇡(x) = N1⇡
x�⇡(1� x)↵

2
⇡

x̂�⇡(1� x̂)↵2
⇡
, (4.3)

with x̂ = 0.1. In conclusion, only 3 free parameters have to be fitted to data:
N1⇡, �⇡ and ↵⇡.
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4.2.2 Fit results

Consistently with the analysis in Ch. 3, we choose the �2 value of the best
fit to the unfluctuated data, �2

0, as the most representative indicator of the
quality of our fit. We report in Tab. 4.2 uncorrelated and penalty components
of �2

0 normalized to the number of data points surviving the kinematical cuts
(Ndat).

Experiments Ndat �2
D
/Ndat �2

�
/Ndat �2

0/Ndat

E537 64 1.00 0.57 1.57
E615 74 0.31 1.22 1.53
Total 138 0.63 0.92 1.55

Table 4.2: The break up of the central replica �2
0 into components related to

uncorrelated (�2
D
) and correlated (�2

�
) uncertainties, normalized to the number

of data points surviving the kinematical cuts (Ndat).

In Tab. 4.2, we observe that the value of the total penalty �2
�
/Ndat is very

large. This result suggest that the comparison between experimental data and
theoretical predictions is strongly a↵ected by normalization uncertainties. In
fact, the small values of the uncorrelated chi-squared �2

D
indicate that our

theoretical predictions can nicely describe the shape of the experimental data.
The large value of the penalty �2

�
is probably caused by the large correlated

systematic uncertainties a↵ecting the experimental data sets (⇠ 16%). In fact,
the theoretical errors related to pion and proton PDFs uncertainty are not
larger than 5-8%. Our result is comparable with Ref. [280], where the same
issue was observed for the E615 data set.

We remark that low-energy fixed-target DY data are properly described
in global fits of unpolarized proton TMDs (see, e.g., Refs. [1, 80, 81, 87]).
Therefore, this issue seems not to be related to the low energy scale of the
E615 and E537 experiments. In Ref. [280], it was suggested that the issue
could be related to a wrong normalization of the experimental data.

In Fig. 4.2, we show the comparison between the result of our fit (colored
band) and experimental data (black points) for a selection ofQ bins of the E615
data set. In the upper panels, the di↵erential DY cross section is shown as a
function of the transverse momentum |qT | of the virtual vector boson, in the
lower panels the ratio between theory and data is displayed. The uncertainty
bands correspond to the 68% C.L.1 As mentioned above, we note that the shape
of the experimental data is very well reproduced. The broad error bands are
a consequence of the large correlated systematic errors of the considered data
set.

In Fig. 4.3, we illustrate the same kind of comparison as in the previous
figure but for the E537 data set. Again, in the upper panels the uncertainty

1Consistently with the conventions introduced in Ch. 3, the 68% C.L. is built by excluding
the largest and smallest 16% of the replicas.
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Figure 4.2: Comparison between data (black points) and our fit (colored band)
for two di↵erent Q bins of the E615 data set. Upper panels: DY cross section
di↵erential in |qT |; lower panels: ratio between data and results of the fit.
Uncertainty bands correspond to the 68% C.L.

bands at 68% C.L. from our fit are compared to experimental data (black
points) for the DY cross section as function of q2

T
for two di↵erent Q bins,

while the lower panels display the ratio between fit results and data.

The overall quality of the fit slightly worsens for the E537 data set. Despite
a similar value of �2

0/Ndat, the information we get from the partial contribu-
tions to the �2 of the E537 data set is di↵erent from the E615 one. To be
more precise, we observe that the component �2

D
, related to uncorrelated un-

certainties, is three times larger in the E537 case and contributes significantly
to �2

0. This means that our fit does not appropriately describe the shape of the
data points, and is reflected in the inadequate description of the data points
at low q2

T
in Fig. 4.3. This discrepancy may be attributed to the limited flexi-

bility of our parametrization for the nonperturbative part of the quark TMD
PDF in the pion. We explored various models for f⇡

1NP
, but no substantial

modifications in the final results were observed.

On the other side, the contribution of the penalty term �2
�
is less than

half of the E615 one. Indeed, this may be due to the fact that the correlated
systematic uncertainties of the E537 data set are much smaller, and it indicates
that the normalization problem between theory and data is more under control.
Consequently, in Fig. 4.3 the fit has much smaller uncertainty bands.

We also investigated the behavior of our fit when reducing the level of
precision in the theoretical predictions. As already seen in the PV19 analysis
for proton TMDs, we obtain a nice convergence of the NLL and N2LL results
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Figure 4.3: Upper panels: comparison between data and theoretical predictions
for the DY cross section di↵erential in q2

T
for the E537 data set for di↵erent

Q bins; uncertainty bands correspond to the 68% C.L. Lower panels: ratio
between experimental data and theoretical cross section.

to the N3LL in Tab. 4.2.2 Moreover, we find that the best fit values of the free
parameters remain always within the uncertainty bands of the fit at N3LL�,
which is a clear indication of the stability of our results.

4.2.3 Extracted pion TMDs

In this section, we discuss the quark TMD PDFs in the pion extracted from
our fit at N3LL� accuracy. In Tab. 4.3, we report the average values and
the standard deviations of the three fitting parameters describing the nonper-
turbative part of the TMD PDF in Eqs. (4.2) and (4.3). Given their large
uncertainties (sometimes of the order of 50%), we note that the parameters
are not well constrained. We stress that similar or even worse results have been
obtained by testing di↵erent ansätze of the nonperturbative parametrization.
Therefore, we conclude that the available data set shows limited sensitivity
to these degrees of freedom, and additional data are needed to achieve more
robust constraints on them.

A visual representation of the uncertainty on the determination of the non-
perturbative parameters is reported in Fig. 4.4, where the distribution of 200
replicas is shown.

Moreover, the result of the fit shows strong correlations among the three
di↵erent parameters. A visual representation of the correlation matrix is dis-

2The values of the �2
0/Ndat are 2.00 at NLL and 1.72 at N2LL.
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4. Phenomenology of pion TMD PDFs

Parameter Average ±�

N1⇡ [GeV2] 0.47 ± 0.12
�⇡ 4.50 ± 2.25
↵⇡ 4.40 ± 1.34

Table 4.3: Average and one standard deviation over the MC replicas of the
fitting parameters in the nonperturbative part of the quark TMD PDFs in a
pion.
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Figure 4.4: Distribution of the 200 replicas of the PionMAP22 free parameters.

played in Fig. 4.5.
We observe that the pion TMD parameters (lower right corner) are strongly

correlated or anti-correlated. This could be an indication of a non-optimal
parameterization. However, we obtained similar results with di↵erent models,
and we find that the expression in Eq. (4.2) is reasonable. Strong correlations
have been found also in the analyses of Ref. [134, 280]. Once more, this result
points toward the need for new experimental data to better constrain the quark
TMDs in the pion.

We also note that there is no correlation between the proton TMD parame-
ters and the pion TMD ones. This means that the internal dynamics of quarks
inside proton and pions are totally independent.

In Fig. 4.6, we display the unpolarized TMD PDF for a d quark in ⇡� at
µ =
p
⇣ = Q = 5 GeV (left panel) and 10 GeV (right panel) as a function of
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Figure 4.5: Graphical representation of the correlation matrix for the fixed
proton TMD parameters and the fitted pion TMD parameters.
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Figure 4.6: The TMD PDF of the down quark in ⇡� at µ =
p
⇣ = Q = 5 GeV

(left panel) and 10 GeV (right panel) as a function of the partonic transverse
momentum |k?| for x = 0.2, 0.3 and 0.4. The uncertainty bands correspond
to the 68% C.L.

the quark transverse momentum |k?| for three di↵erent values of x = 0.2, 0.3,
and 0.4. These three values of x have been selected to show the TMD PDF
in the region covered by the experimental data (see Fig. 4.1). The error bands
correspond to the 68% C.L. We stress that in this plot the uncertainty related
to collinear PDFs is only partially accounted, since the the integral in k? of
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4. Phenomenology of pion TMD PDFs

all TMD replicas is fixed to the central replica of collinear pion PDFs.
We notice that in both the left and right panels of Fig. 4.6 the TMD PDF

at x = 0.3 and 0.4 shows the largest uncertainties, particularly at small values
of |k?|. This may be due to the limited number of data sets that cover the
considered kinematic region. Future data from the COMPASS collaboration
are expected to improve the knowledge of pion TMDs in this region of the
phase space.

Another interesting aspect that can be noted in Fig 4.6 is that the width
of the TMD distributions decreases with increasing longitudinal momentum
fraction x. This reflects the fact that at lower values of the fraction of lon-
gitudinal momentum carried by the quark there is more phase space for the
intrinsic transverse momentum.
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Figure 4.7: Comparison between pion and proton TMDs. Upper plot: the
TMD PDF of the up quark in a pion (purple band) and in a proton (red band)
at µ =

p
⇣ = Q = 2 GeV and x = 0.3 as a function of the partonic transverse

momentum |k?|. We consider the MAP22 [1] extraction for the proton TMD
(see Ch. 3). Lower plot: ratio between the pion TMD band and the proton one
normalized to the central value of the latter. The uncertainty bands represent
the 68% C.L.

The parameter N1⇡ of our fit identifies the mean squared transverse mo-
mentum of quarks in the pion at Q = 1 GeV and x = 0.1. It turns out to
be hk2

?
i = 0.47 ± 0.12, which is larger than the same quantity for the proton

(see Fig. 3.19 in Ch. 3). Therefore, the results of our fit favor wider TMDs of
quarks in the pion than in the proton.

In Fig. 4.7, we show the comparison between the 68% C.L. error bands of
the unpolarized d-quark TMD in a pion and in a proton (MAP22) at µ =

p
⇣ =

Q = 2 GeV and x = 0.3, as a function of the quark transverse momentum |k?|.
As already discussed, the pion TMD is wider that the proton one. In general,
the di↵erences between the two distributions may be an e↵ect of di↵erent
behaviors in x and Q of proton and pion collinear PDFs. A similar result has
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4.3. Predictions for new experiments

been obtained in Ref. [280].

4.3 Predictions for new experiments

The COMPASS Collaboration has recently released data for (un)polarized az-
imuthal asymmetries in the (polarized) pion–induced Drell–Yan processes [282,
283], and in the near future will probably release also data for the unpolarized
cross section di↵erential in |qT |.
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Figure 4.8: Theoretical predictions (based on our fit) for the unpolarized pion–
nucleus DY cross section as function of the virtual vector boson transverse
momentum |qT |, based on the PionMAP22 fit. Left panel for tungsten (W )
nucleus, right panel for ammonia molecule (NH3). Uncertainty bands corre-
spond to 68% C.L.

In Fig. 4.8, we report the theoretical predictions based on our fit for the
unpolarized pion–nucleus DY cross section as function of |qT |. The left panel
refers to the tungsten (W ) nucleus, while the right panel to the ammonia
molecule (NH3). We explored the same kinematic region of Ref. [283], which is
quite similar to the one covered by the data sets included in the PionMAP22
fit (see Fig. 4.1). We can see that the uncertainty bands (68% C.L.) are
evidently large, showing that the current information on the internal structure
of the pion is not su�cient to make accurate predictions. We hope that the
upcoming COMPASS data for pion-induce DY process will help to better
constrain the TMD PDFs in the pion, and will shed light on the normalization
issue between theory and experimental measurements observed for the E615
data set.
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Chapter 5
Variations of the MAP22 TMD

analysis

In the previous chapters, we discussed the results of the latest extractions
of proton and pion TMDs by the MAP Collaboration [1, 2]. In both the
analyses, the same theory and fitting configurations have been considered. In
the case of the MAP22 fit of proton TMDs, we discussed some variations on
the perturbative accuracy, on the choice of the b⇤ prescription, and on the cut
that defines which data can be considered in the TMD region. In this chapter,
we perform two exploratotry studies to assess the impact of more profound
modifications in the settings of our TMD phenomenological analyses.

A first possible modification concerns the choice of collinear PDFs, which
are a fundamental ingredient of TMD distributions (see, e.g., Eq. (2.54)). In
fact, the matching of TMDs onto their collinear counterpart at small |bT | in-
fluences in a crucial way the predictions of the cross section, especially at large
values of transverse momentum, but still within the TMD region. Therefore,
the results of a TMD extraction are deeply correlated to the collinear PDFs
involved in the fit. In principle, collinear and TMD PDFs (or FFs) should be
simultaneously extracted in a global fit including data for both collinear and
TMD kinematics. However, in the present TMD analysis collinear PDFs (or
FFs) are treated as an independent input that we cannot control.

The issue of the choice of collinear PDFs has been already discussed in
Refs. [1, 80, 84, 87], and it has been more sistematically studied in Ref. [88].
In this latter work, the authors show how the global quality of their analysis
changes for di↵erent choices of sets of collinear PDFs, and they find that a
modification of the collinear input has a non-negligible impact on the global
agreement between theory and experiment. In this chapter, we perform a
similar analysis and conclude that in the MAP framework the results associated
to di↵erent choices of collinear PDFs are comparable.

Another important issue is the compatibility among the experimental in-
puts of a TMD fit. This study is inspired by a similar analysis reported in
Ref. [30], where the authors discuss some selection criteria adopted to con-
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5. Variations of the MAP22 TMD analysis

struct the baseline data set for PDFs extractions. At variance with the pre-
vious literature, where very subjective selection criteria have been adopted,
Ref. [30] discusses objective criteria to identify an optimal and self-consistent
data set for PDF determinations.

In our exploratory study, we discuss the procedure to assess whether an
experimental set is or is not to be included in the fitting data set. This pro-
cedure relies on the possibility of performing a weighted-fit of problematic
experimental sets. In this way, we can point out the existence of possible ten-
sions between selected experimental measurements and the rest of the data
set. We focus our attention on ATLAS data, which are described in a poor
way in the MAP22 global fit. We prove that they have to be treated carefully,
because they deteriorate the value of the global �2 of a TMD analysis without
having a significant impact on the result of the fit. This is the first study
on this issue in TMD phenomenology, and it opens the door to further, more
refined investigations on each of the kinematic bins of the ATLAS data set.

In order to estimate the e↵ect of the above changes, we focus on Drell–Yan
(DY) data. Moreover, in order to establish a baseline fit for comparison, we
first of all perform a fit with the same choices of the MAP22 analysis, but
restricted to DY data sets.

The chapter is organized as follows. In Sec. 5.1, we describe a new fit of
only DY data with the same setup of the MAP22 global analysis. In Sec. 5.2 we
present the results of another fit of the same data set, but by choosing a di↵er-
ent collinear PDFs set. In particular, we estimate the impact of theNNPDF3.1

collinear PDFs set on the extraction of TMD PDFs. Finally, Sec. 5.3 is de-
voted to a discussion on the determination of possible inconsistencies among
experimental measurements included in a TMD analysis.

5.1 Fit of Drell–Yan data

In this section, we discuss the results of a new fit, henceforth named MAP22DY,
with the same setup of the MAP22 analysis but using only Drell–Yan (DY)
data. In other words, this fit adopts the theory settings discussed in Ch 2, it
is based on the methodology described in Ch. 3, and it introduces the kine-
matic cuts discussed in Sec. 3.1.1. As for the nonperturbative part of the
unpolarized proton TMD PDFs, we use the MAP22 phenomenological model
f1NP (x, b2

T
; ⇣, Q0) (see Eq. (3.5)). We propagate the errors on the model pa-

rameters by fitting an ensemble of 200 Monte Carlo (MC) replicas of the ex-
perimental data.

Such fit on DY data is useful to perform investigations on possible modifi-
cations of the global settings without undertaking the massive computational
e↵ort required by SIDIS data. If benefits are found, we plan to extend the
study to the full data set of DY and SIDIS measurements.
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5.1. Fit of Drell–Yan data

5.1.1 Results of the fit

The breakdown of the �2
0 values of the central (unfluctuated) replica normalized

to the number of data points (Ndat) for the MAP22DY fit is reported in Tab. 5.3
for each of the included experimental data sets.

MAP22DY fit

Data set Ndat �2
D �2

� �2
0

CDF Run I 25 0.59 0.06 0.65

CDF Run II 26 1.73 0.02 1.75

D0 Run I 12 0.8 0.02 0.82

D0 Run II 5 1.18 0.49 1.67

D0 Run II (µ) 3 5.16 0.6 5.77

LHCb 7 TeV 7 1.24 0.31 1.55

LHCb 8 TeV 7 0.6 0.13 0.72

LHCb 13 TeV 7 1.27 0.03 1.30

ATLAS 7 TeV 18 3.99 0.71 4.70

ATLAS 8 TeV 48 1.96 0.24 2.20

ATLAS 13 TeV 6 2.84 0.46 3.30

CMS 7 TeV 4 2.09 0.06 2.16

CMS 8 TeV 4 1.53 0.0 1.54

CMS 13 TeV 70 0.15 0.01 0.16

PHENIX 200 2 6.24 1.98 8.21

STAR 510 7 1.2 0.06 1.26

E288 200 GeV 30 0.22 0.38 0.60

E288 300 GeV 39 0.45 0.04 0.49

E288 400 GeV 61 0.46 0.08 0.54

E772 53 1.28 0.7 1.98

E605 50 0.82 0.2 1.02

Total 484 1.04 0.22 1.26

Table 5.1: Breakdown of the values of �2
0 normalized to the number of data

points Ndat that survive the kinematic cuts for all the DY data sets considered
in the MAP22DY fit. The �2

D
refers to uncorrelated uncertainties, �2

�
is the

penalty term due to correlated uncertainties (see Eq. (3.9)), �2
0 is the sum of

�2
D
and �2

�
.

We obtain a global value of �2
0/Ndat = 1.26. Since SIDIS data are excluded

by the MAP22DY data set, the �2
0/Ndat value of this analysis is smaller than

the partial result of the MAP22 global fit on the Drell–Yan subset (�2
0/Ndat =

1.67), as expected.
As already noted in Sec. 3.2.2 for the MAP22 global fit, the �2

0/Ndat ob-
tained in this MAP22DY analysis is larger than the one in PV19 [81], due to
the di↵erent treatment of theoretical uncertainties related to collinear PDFs.
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5. Variations of the MAP22 TMD analysis

Indeed, here they are considered as 80% correlated (see Sec. 3.1), while in the
PV19 fit they were considered fully uncorrelated.

Although the penalty term �2
�
is expected to be of modest size, we notice

from Tab. 5.1 that it is sometimes of the same size of the uncorrelated con-
tribution �2

D
. This is a consequence of the fact that the shifts produced by

correlated uncertainties assume often large values.
We observe that the quality of our fit for the ATLAS data sets is poor.

In particular, the value of the �2
0 increases for low-rapidity bins, the worst

case being at |y| < 1 for ATLAS 7 TeV, in agreement with the MAP22
results. It is interesting to stress that the low level of agreement between
our theoretical predictions and ATLAS data is still present even without the
inclusion of SIDIS data sets in the analysis. Such result suggests to investigate
the compatibility of ATLAS data with the rest of the DY data set.

We note that also PHENIX and one bin of D0 measurements shows poor
agreement with theoretical predictions. However, they represent less then one
percent of the DY data set.

5.1.2 TMDs from only Drell–Yan data

In this section, we discuss the TMD distributions extracted from the MAP22DY
fit. Tab. 5.2 lists the 12 fitting parameters, along with their average values and
standard deviations, resulting from both the MAP22DY (second column) and
the baseline MAP22 (third column) analyses.

Parameter Average over replicas

MAP22DY fit MAP22 fit

g2 [GeV] 0.24 ± 0.01 0.248 ± 0.008

N1 [GeV2] 0.47 ± 0.11 0.316 ± 0.025

↵1 1.8 ± 0.3 1.29 ± 0.19

�1 0.79 ± 0.27 0.68 ± 0.13

� [GeV�1] 2065.4 ± 2064.9 1.82 ± 0.29

N1B [GeV2] (4.38 ± 0.06) ⇥ 10�3 0.134 ± 0.017

�2 4.12 ± 5.75 0.455 ± 0.050

↵2 8.16 ± 4.92 4.27 ± 0.31

�2 [GeV�1] (2.26 ± 0.77) ⇥ 10�2 (2.15 ± 0.58) ⇥ 10�2

N1C [GeV2] (5.71 ± 5.71) ⇥ 10�3 (1.30 ± 0.69) ⇥ 10�2

�3 6.09 ± 6.05 12.71 ± 0.21

↵3 3.29 ± 0.75 4.27 ± 0.13

Table 5.2: Average and standard deviation over the Monte Carlo replicas of
the free parameters resulting from the MAP22DY (second column) and the
MAP22 (third column) fits.

From Tab. 5.2, we observe that the parameters of the MAP22DY fit are
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5.2. Introduction of a Monte Carlo set of collinear PDFs

much less constrained than the ones of the MAP22 global fit. Indeed, the 30%
of the parameters are compatible with 0 at 1-� level, and many others are
a↵ected by errors of more than 20% of their central values. Such result is due
to the lack of SIDIS data in the present analysis. Indeed, the number of SIDIS
experimental data points is three times larger than the number of DY ones
and, consequently, they play a significant role in constraining the fitting pa-
rameters. This suggests that the phenomenological model of f1NP (x, b2

T
; ⇣, Q0)

(see Eq. (3.5)) can be properly determined only by simultaneously fitting DY
and SIDIS data and might be too flexible for only DY data.

We note that the majority of the fitting parameters of the MAP22DY fit
are compatible with the ones of the MAP22 global fit, indicating that the fit
to the DY data set is still consistent with the global MAP22 fit. In particular,
we note from Tab. 5.2 that the values of the g2 parameter, which is related
to the nonperturbative part of the Collins–Soper (CS) evolution kernel (see
Sec. 2.3.1), are nicely compatible between the two fits. This suggests that
its value is mainly constrained by high-energy DY measurements, and not by
low-energy fixed-target SIDIS data. As for the � parameter, we notice that
its value is much larger in the MAP22DY fit, even if very loosely determined.
This may lead to a larger uncertainty of the width of the resulting TMD PDFs.

In Fig. 5.1 we show the comparison between the 68% C.L. error bands of
the unpolarized TMD PDF for the up quark in the proton for and x = 0.1, 0.01
and 0.001 (top, middle, and bottom rows, respectively) at µ =

p
⇣ = Q = 10

and 100 GeV (left and right columns, respectively) as a function of the quark
transverse momentum |k?| for the MAP22DY fit (pale orange band) and the
MAP22 baseline fit (light blue band).

From Fig. 5.1, we can identify the di↵erences in the results of the two anal-
yses. We immediately see that the uncertainties of the TMD PDFs extracted
from the MAP22DY fit are much larger than the MAP22 baseline fit because of
the lack of SIDIS data. It visualizes the information encoded in Tab. 5.2. Also,
we can see that there are no unreasonable features in the shape of MAP22DY
TMD PDFs, indicating that the nonperturbative model is not too flexible and
does not produce overfitting issues.

It is interesting to observe that the largest di↵erences in the extracted
TMDs from the two fits are found at Q = 10 GeV and x = 0.01, a typical
kinematic region covered by SIDIS measurements that obviously play a non-
negligible role.

5.2 Introduction of a Monte Carlo set of collinear

PDFs

A source of systematic theoretical error in TMD global fits is given by the
choice of the set of collinear PDFs (FFs) necessary to build the considered
TMD PDFs (FFs). As already pointed out in Sec. 3.1.3, this choice may have
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Figure 5.1: The TMD PDF of the up quark in a proton at µ =
p
⇣ = Q = 10

GeV (left column) and 100 GeV (right column) and x = 0.1, 0.01 and 0.001
(from top to bottom) as a function of the partonic transverse momentum |k?|.
Upper plot: the TMD PDF of the up quark in a proton as extracted from
the MAP22DY fit (pale orange band) and the MAP22 baseline fit (light blue
band). Lower plot: same bands as the upper plot, but normalized to the
central value of the MAP22 baseline fit. The uncertainty bands represent the
68% C.L.

a sizeable impact on the final result.

122



5.2. Introduction of a Monte Carlo set of collinear PDFs

In this section, we aim to estimate the e↵ect of modifying the choice
of collinear PDFs on the extraction of TMD PDFs in the proton. As dis-
cussed in Sec. 3.1.3, in the MAP22 [1] global analysis we chose the PDFs set
MMHT2014 [210]. In the study discussed in this section, we consider the
NNPDF3.1 [220] set. We make this choice because this PDF set has already
been considered in other unpolarized TMD analyses [82, 83, 88], and it is
at the basis of state-of-the-art collinear FFs extraction (for more details, see
Ref. [33]). As for the nonperturbative part of the unpolarized proton TMD
PDFs, once more we use the MAP22 model for f1NP (x, b2

T
; ⇣, Q0) of Eq. (3.5).

5.2.1 Fit quality

In this section, we discuss the quality of the new fit, henceforth named MCDY,
at full N3LL accuracy. We impose the same cuts on kinematics as in the
MAP22 analysis (for more details, see Sec. 3.1), and we propagate the errors
by fitting an ensemble of 100 Monte Carlo (MC) replicas of the experimental
data, associating the i–th replica of the collinear PDF set to the same replica
of the experimental data. This procedure may allow a better visualization of
PDF errors in TMD distributions (see Sec. 5.3.5).

We obtain a global value of �2
0/Ndat = 1.29, indicating that the quality of

the fit based on the NNPDF3.1 set of collinear PDFs is similar to the one
based on the MMHT2014 set. In Tab. 5.3, we report the breakdown of the
�2
0 values of the central (unfluctuated) replica normalized to the number of

data points (Ndat). As for the MAP22DY fit, we note from Tab. 5.3 that the
penalty term �2

�
is sometimes of the same size of the uncorrelated contribution

�2
D
(see discussion in Sec. 5.1).
Similarly to the MAP22DY fit, we observe once more that the quality of this

new fit for the ATLAS data sets is poor. Therefore, a low level of agreement
between our theoretical predictions andATLAS data is still present even when
choosing a more modern MC set of collinear PDFs. This is another indication
that specific studies are needed on the compatibility of such experimental data
set.

Finally, we note that in the MCDY fit the agreement between D0 (and
PHENIX) experimental measurements and theoretical predictions improves
significantly.

5.2.2 Extracted TMDs

In this section, we discuss the TMD distributions extracted from the MCDY
fit. Tab. 5.4 reports the full list of the 12 fitting parameters, along with their
average values and standard deviations, resulting from both the MCDY (second
column) and the MAP22DY (third column) analyses.

From Tab. 5.4, we observe that the level of constraint of the parameters
fitted with NNPDF3.1 collinear PDFs is comparable to the one obtained with
the other choice. This is an indication of the stability of the fitting procedure,
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5. Variations of the MAP22 TMD analysis

MCDY fit

Data set Ndat �2
D �2

� �2
0

CDF Run I 25 0.49 0.20 0.69

CDF Run II 26 1.41 0.01 1.42

D0 Run I 12 0.82 0.01 0.83

D0 Run II 5 0.83 0.05 0.88

D0 Run II (µ) 3 0.61 0.27 0.88

LHCb 7 TeV 7 2.34 2.48 4.82

LHCb 8 TeV 7 1.01 2.02 3.03

LHCb 13 TeV 7 1.35 0.07 1.42

ATLAS 7 TeV 18 4.51 1.06 5.56

ATLAS 8 TeV 48 3.05 0.66 3.7

ATLAS 13 TeV 6 3.38 1.60 4.98

CMS 7 TeV 4 1.90 0.06 1.96

CMS 8 TeV 4 1.14 0.2 1.34

CMS 13 TeV 70 0.21 0.05 0.25

PHENIX 200 2 3.21 1.40 4.61

STAR 510 7 0.92 0.31 1.23

E288 200 GeV 30 0.16 0.51 0.67

E288 300 GeV 39 0.18 0.29 0.47

E288 400 GeV 61 0.11 0.05 0.17

E772 53 0.77 0.08 0.85

E605 50 0.55 0.22 0.77

Total 484 0.97 0.32 1.29

Table 5.3: Breakdown of the values of �2
0 normalized to the number of data

points Ndat that survive the kinematic cuts for all DY data sets. We use the
same conventions for the �2

0 decomposition as in Tab. 5.1.

since it is reasonable that the constraint on the fitting parameters is determined
only by the experimental data included in the analysis. We stress that for each
of the two fits the included data set is the same (see Tab. 5.3).

Moreover, we note that the majority of the fitting parameters values is
compatible, at list at the 1-� level, between the two cases. This is a further
indication of the stability of the fitting framework. However, any incompati-
bility can be caused by the e↵ect of the di↵erences between the two collinear
PDFs sets, particularly in their shapes in the scale µb (see Eq. (2.54)).

In Fig. 5.2 we show the comparison between the 68% C.L. error bands of
the unpolarized TMD PDF for the up quark in the proton for x = 0.1, 0.01
and 0.001 (top, middle, bottom rows, respectively) at µ =

p
⇣ = Q = 10

and 100 GeV (left and right columns, respectively) as a function of the quark
transverse momentum |k?| for the MAP22DY fit (pale orange bands) and the
MCDY fit (green bands).
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5.2. Introduction of a Monte Carlo set of collinear PDFs

Parameter Average over replicas

NNPDF3.1 set MMHT2014 set

g2 [GeV] 0.16 ± 0.06 0.24 ± 0.01

N1 [GeV2] 2.72 ± 0.94 0.47 ± 0.11

↵1 1.36 ± 0.99 1.8 ± 0.3

�1 0.88 ± 1.94 0.79 ± 0.27

� [GeV�1] 25.47 ± 17.23 2065.4 ± 2064.9

N1B [GeV2] 0.12 ± 0.05 (4.38 ± 0.06) ⇥ 10�3

�2 1.36 ± 0.76 4.12 ± 5.75

↵2 1.96 ± 1.80 8.16 ± 4.92

�2 [GeV�1] (8.21 ± 8.17) ⇥ 10�3 (2.26 ± 0.77) ⇥ 10�2

N1C [GeV2] (2.63 ± 2.63) ⇥ 10�5 (5.71 ± 5.71) ⇥ 10�3

�3 26.8 ± 2.36 6.09 ± 6.05

↵3 4.87 ± 0.9 3.29 ± 0.75

Table 5.4: Average and standard deviation over the Monte Carlo replicas of
the free parameters of the MCDY (second column) and the MAP22DY (third
column) fits.

From Fig. 5.2, we can appreciate the expected di↵erences in the results
of the two analyses. Since the integral of each TMD PDF is related to the
value of the collinear set of PDFs used in the extraction, the normalization
of the two curves di↵ers by construction. In fact, the integral of each TMD
replica of the MAP22DY fit is fixed to the central member of the MMHT2014
collinear PDFs set, because of its Hessian nature. On the contrary, being the
NNPDF3.1 set composed by an ensemble of equivalent replicas, the integral
of each TMD replica of the MCDY fit is fixed to the corresponding replica of
the NNPDF3.1 set, providing a better estimate of the actual uncertainty on
TMD distributions.

In Fig. 5.2, we also note that the uncertainty bands of the TMDs extracted
in the MCDY fit are larger than the MAP22DY case, except for the x = 0.1
case. This e↵ect may reflect the di↵erent features of NNPDF3.1 with respect
to the older MMHT2014.

It is interesting to observe that the TMD PDFs resulting from the two fits
are compatible with each other, indicating that TMD distributions extracted
from a phenomenological fit only slightly depend on their collinear input. This
is reasonable because the fit should be able to adjust the fitting parameters
to get the same features of TMDs that are needed to properly describe the
included experimental data set. In conclusion, this study indicates that it
is important to consider Monte Carlo sets of collinear PDFs in TMD analy-
ses, because they allow to better identify the uncertainty on the integral of
the extracted TMDs, whitout strongly a↵ecting their shape.. This finding is
somewhat di↵erent from the conclusions of Ref. [88].
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Figure 5.2: The TMD PDF of the up quark in a proton at µ =
p
⇣ = Q = 10

GeV (left column) and 100 GeV (right column) and x = 0.1, 0.01 and 0.001
(from top to bottom) as a function of the partonic transverse momentum |k?|.
Upper plot: MCDY fit (green band) and the MAP22DY fit (pale orange band).
Lower plot: same bands as the upper plot, but normalized to the central value
of the MAP22DY fit. The uncertainty bands represent the 68% C.L.
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5.3. Determination of a fully consistent data set

5.3 Determination of a fully consistent data set

In this section, we discuss a possible way to identify a fully consistent data set
in a phenomenological analysis, and we investigate the dependence of results
on the choice of input data sets. For instance, the DY measurements and the
kinematic cuts described in Sec 3.1.1 define an extended data set, and inside
it we want to isolate a reduced set that are fully consistent, namely where the
incompatibilities between single data sets are removed.

The new“reduced” data set is established through a weighted-fit procedure
that was introduced in Ref. [30]. In this procedure, by suitable estimators we
first identify data sets that are problematic in terms of fit quality. Then, we
perform a dedicated weighted fit for measurements whose estimators exceed
some predefined thresholds, and we exclude/keep the considered sets according
to the results of this weighted fit.

5.3.1 Selection criteria

We examine the Drell-Yan data set discussed in Sec 3.1.1 with the aim to de-
termine its internal consistency. Indeed, specific measurements may exhibit
inconsistencies with the rest of the data set for various reasons: missing sys-
tematic uncertainties, underestimated experimental uncertainties, di↵erences
in the detailed definition of the reported observable, missing higher-order QCD
or electroweak corrections, etc... The goal of this study is not to identify the
nature of such inconsistencies, but to single out and exclude the problematic
measurements from the baseline data set based on objective criteria. These
measurements can be subsequently studied with dedicated fits.

We consider the MCDY fit discussed in Sec. 5.1 as baseline. The number
of indicators that can be used to select the problematic data sets is large,
quite subjective and potentially biased. In Ref. [30], the authors consider as
reasonable estimators the �2 per data, the number n� of standard deviations of
the �2 per data point from the unit value, and the stability metric Z [284] that
estimates potential inaccuracies a↵ecting the experimental covariance matrix.
In our study, we select the full ATLAS data set as potentially problematic
because it shows the largest values of �2/Ndat in both the MAP22 fit (see
Tab. 3.4) and in the MAP22DY fit (see Tab. 5.1).1 The potential inconsistence
of this data set is assessed using the weighted fit method, as discussed below.
This choice is a reasonable first step to a future more detailed study.

5.3.2 Weighted fit procedure

The weighted fit method relies on determining whether a specific measurement
is inconsistent with the global data set by performing a new analysis that pro-

1Notice that also LHCb and PHENIX data sets may be potentially problematic, given
their large values of �2/Ndat (see Tabs. 3.4-5.1). We leave the investigation of their compat-
ibility for a future study.
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5. Variations of the MAP22 TMD analysis

vides the best agreement to this measurement. The second step consists in
checking if the achieved best agreement does or does not lead to the deteriora-
tion in the description of the other data included in the global data set. Such
procedure was recently implemented in Ref. [285] in order to study Standard
Model parameters through a global PDF fit. Related methods are discussed
in Ref. [286].

In the weighted fit discussed here, the selected data set is given a weight
that, in the calculation of the �2 value, makes it of the same statistical weight
as the rest of the global data set. In formulae, by assign the index j to the
possible problematic data set, the expression of the �2 is modified as

�2 =

NexpX

i=1

�2
i

�! �2 =

NexpX

i 6=j

�2
i
+ !j�

2
j
, (5.1)

where Nexp is the number of experimental data sets included in the fit, and �2
i

is the �2 value of the data set i. The value of the weight !j associated to the
selected problematic measurement is usually taken to be

!j =
Ndat

N (j)
dat

, (5.2)

where N (j)
dat is the number of data points in the data set j. For theATLAS data

set, N (j)
dat = 72, while for the entire DY data set Ndat = 412. Hence, the value

of the assigned weight is !j ' 5.5. In order to assess the stability of our study,
we have checked that the results do not change qualitatively by repeating the
procedure with two more choices, namely twice and half the nominal value.

Based on the outcomes of the weighted fit, we can identify the following
scenarios [30]:

- The value of �2
j
does not improve considerably while the �2

i
of the rest

of the data sets remain essentially unaltered. In this case, we conclude
that the data set j shows internal inconsistencies. Further investigations
are required to assess their removal from the baseline data set.

- The value of �2
j
does not improve considerably and the �2

i
of several

of other data sets (including those belonging to the same process type
of data set j) worsen significantly. In this case, we conclude that the
internal inconsistencies of the selected data set cause a distortion of the
baseline fit. We remove data set j from the baseline data set.

- The value of �2
j
improves considerably and the �2

i
of the rest of the data

set lays within statistical fluctuations. In this case, we conclude that the
data set j carries a small weight over the full set and is not properly
fitted. We keep the data set j in the baseline data set.
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5.3. Determination of a fully consistent data set

- The value of �2
j
improves considerably but the �2

i
of several of other data

sets (including those belonging to the same process type of data set j)
worsen significantly. In this case, we conclude that the selected data set
is inconsistent with the full data set. We remove data set j from the
baseline data set.

5.3.3 Results of the weighted fit

The outcome of the weighted fit, when applied to the ATLAS data set and
the full DY data set, is reported in Tab. 5.5. For a better comparison, we
report in Tab. 5.5 the �2

0/Ndat for both the weighted fit (third column) and the
unweighted fit (fourth column). For convenience, we consider the MAP22DY
fit discussed in Sec. 5.2 as the unweighted fit, but we checked that our results
do not depend on this choice: we obtained similar results even considering the
full MAP22 set.

�2
0/Ndat

Data set Ndat Weighted fit Unweighted fit

CDF Run I 25 0.70 0.69

CDF Run II 26 1.42 1.42

D0 Run I 12 0.82 0.83

D0 Run II 5 0.92 0.88

D0 Run II (µ) 3 0.81 0.88

LHCb 7 TeV 7 4.86 4.82

LHCb 8 TeV 7 3.04 3.03

LHCb 13 TeV 7 1.41 1.42

CMS 7 TeV 4 1.96 1.96

CMS 8 TeV 4 1.31 1.34

CMS 13 TeV 70 0.26 0.25

PHENIX 200 2 5.00 4.61

STAR 510 7 1.26 1.23

E288 200 GeV 30 0.68 0.67

E288 300 GeV 39 0.48 0.47

E288 400 GeV 61 0.18 0.17

E772 53 0.86 0.85

E605 50 0.81 0.77

ATLAS 72 4.25 4.27

Total 484 2.48 1.29

Table 5.5: Breakdown of the values of �2
0 normalized to the number of data

points Ndat for the weighted (third column) and unweighted (fourth column)
fits (see text).

In Tab. 5.5, we can see that the value of the �2
0/Ndat of the ATLAS data
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5. Variations of the MAP22 TMD analysis

set improves in the weighted fit from 4.27 to 4.25, while the agreement with the
rest of the fitted data sets remains almost unchanged, and sometimes it wors-
ens. These results suggest that the ATLAS measurements show “internal”
inconsistencies, accordingly to the terminology of Ref. [30]. These inconsis-
tency may be related to the detailed definition of the reported observable.2

Therefore, further investigations are needed to assess if it must be kept or
removed from the baseline data set.

It is important to remark that the global �2
0/Ndat of the weighted fit al-

most doubles the unweighted one. Hence, the ATLAS data set considerably
contributes to the the global �2

0. In other words, it leads to a significant deterio-
ration of the estimator of the global agreement between theoretical predictions
and experimental data, even if the results of the rest of the data sets is not af-
fected. This represents a significant evidence that ATLAS measurements may
be not compatible with the rest of the data set, and may have to be separately
treated.

In the following, we will analyze the results of a new fit without theATLAS
data set. This will allow us to better estimate the impact of the discarded
measurements.

5.3.4 Results of the fit with a reduced data set

In this section, we report the results of the extraction of unpolarized TMD
PDFs at full N3LL accuracy from a fit to the reduced DY data set discussed
above, namely without the ATLAS data set. Once more, we choose the same
setup of the MCDY fit.

We obtain the value of �2
0/Ndat = 0.72. The small value of this figure of

merit indicates that the agreement between theoretical predictions and experi-
mental measurements included in the reduced data set is extremely good, even
if its optimal value should be 1. However, a �2/Ndat smaller than 1 may be
induced by large experimental errors a↵ecting the considered data set, or by a
too flexible model that leads to overfitting. Further insights on this topic will
be discussed in Sec. 5.3.5.

In Tab. 5.6, we report the breakdown of the �2
0 values of the central (un-

fluctuated) replica normalized to the number of data points (Ndat) for both the
fits to the reduced data set (third column) and the baseline data set (fourth
column).

In the last row of Tab. 5.6, we list the normalized �2
0 of both the reduced

(third column) and baseline (fourth column) data sets. We remark that the
former is significantly smaller than the latter, even with a comparable number
of data points. Moreover, we note that the �2

0 of the majority of data sets is
slightly smaller than in the baseline case, or at most unchanged. This suggests

2These data sets include final-state lepton cuts that can produce a disagreement if not
properly treated. A new release of ATLAS 8 TeV data sets without these cuts has been
announced to be published in the near future [287].

130



5.3. Determination of a fully consistent data set

�2
0/Ndat

Data set Ndat Reduced data set Baseline data set

CDF Run I 25 0.66 0.69

CDF Run II 26 1.28 1.42

D0 Run I 12 0.81 0.83

D0 Run II 5 0.91 0.88

D0 Run II (µ) 3 1.26 0.88

LHCb 7 TeV 7 4.87 4.82

LHCb 8 TeV 7 3.12 3.03

LHCb 13 TeV 7 1.63 1.42

CMS 7 TeV 4 1.95 1.96

CMS 8 TeV 4 1.29 1.34

CMS 13 TeV 70 0.26 0.23

PHENIX 200 2 3.19 4.61

STAR 510 7 1.05 1.23

E288 200 GeV 30 0.62 0.67

E288 300 GeV 39 0.41 0.47

E288 400 GeV 61 0.18 0.16

E772 53 0.79 0.85

E605 50 0.58 0.77

ATLAS 72 / 4.27

Total 0.72 (412) 1.29 (484)

Table 5.6: Breakdown of the values of �2
0 normalized to the number of data

points Ndat for the fits to both the reduced (third column) and baseline (fourth
column) DY data sets. Last row: global �2

0 normalized to the number of data
(reported in parentheses for the two cases).

that the ATLAS set is responsible for a significant increase of the global �2
0

(see the values in the last row of Tab. 5.5). Consequently, the agreement
between theory and experimental data for the baseline case is generally better
than indicated by the value of the global �2

0, which is spoiled by the presence
of ATLAS data.

Therefore, we conclude that the ATLAS data have to be treated carefully
and, when they are included in a global analysis, their important contribution
to the value of the global �2 may lead to inaccurate assessments on the quality
of the fit. Also, including them may imply the use of unnatural flexible models
in order to reach a better agreement. We leave this issue for future more
detailed studies.
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5. Variations of the MAP22 TMD analysis

5.3.5 TMD distributions

In Tab. 5.7, we report the full list of the 12 fitting parameters, along with their
average values and standard deviations, for the fit to the reduced DY data
set discussed in the previous section (second column) and for the MCDY fit
discussed in Sec. 5.2.2 (third column).

Parameter Average over replicas

Reduced data set Baseline data set

g2 [GeV] 0.15 ± 0.04 0.16 ± 0.06

N1 [GeV2] 3.33 ± 1.41 2.72 ± 0.94

↵1 2.39 ± 1.73 1.36 ± 0.99

�1 1.87 ± 2.39 0.88 ± 1.94

� [GeV�1] 21.57 ± 12.47 25.47 ± 17.23

N1B [GeV2] 0.14 ± 0.05 0.12 ± 0.05

�2 1.31 ± 1.15 1.36 ± 0.76

↵2 2.04 ± 0.84 1.96 ± 1.80

�2 [GeV�1] (4.11 ± 4.09) ⇥ 10�4 (8.21 ± 8.17) ⇥ 10�3

N1C [GeV2] (2.89 ± 2.86) ⇥ 10�7 (2.63 ± 2.63) ⇥ 10�5

�3 35.19 ± 4.37 26.8 ± 2.36

↵3 5.67 ± 0.96 4.87 ± 0.90

Table 5.7: Average and standard deviation over the Monte Carlo replicas of
the free parameters fitted to the reduced data set of Sec. 5.3.4 (second column)
and to the baseline data set of Sec. 5.2.2 (third column).

From Tab. 5.7, we first remark that the majority of the parameters are af-
fected by large errors. Moreover, the results of both data sets are all compatible
at 1-� level, except for the parameter �3. This suggests that the exclusion of
ATLAS data from the data set considered in our TMD analyses does not lead
to significant modifications of the best fit parameters.

It is interesting to note that the g2 parameter, which describes the nonper-
turbative part of TMD evolution (see Sec. 2.3.1), is nicely compatible between
the two fits. This indicates that ATLAS data are not of fundamental impor-
tance to properly fix the nonperturbative evolution of TMDs. Indeed, there
are other experimental measurements at high energies that provide precise
information, such as the D0, LHCb and CMS data sets.

We also note that the �2 parameter, which is related to the relative weight
of the third Gaussian in the parametrization of the TMD PDFs (see Eq. (3.5)),
is smaller than in the baseline case by a factor 100. Since it is squared in the
formula, this indicates its negligible relevance in the nonperturbative model.
Moreover, it shows strong correlations with the other parameters, suggesting
that this additional Gaussian may be removed by the fitted parametrization.
Further studies on this topic are left for future works.
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5.3. Determination of a fully consistent data set

In Fig. 5.3, we show the comparison between the 68% C.L. error bands of
the fit to the reduced data set (dark orange band) and of the baseline fit (green
band) for the unpolarized TMD PDF of the up quark in the proton for x = 0.1,
0.01 and 0.001 (top, middle, bottom rows, respectively) at µ =

p
⇣ = Q = 10

and 100 GeV (left and right columns, respectively) as a function of the quark
transverse momentum |k?|.

In principle, the two TMD PDFs are expected to be somehow di↵erent
because they are extracted from two di↵erent sets of data points.

In agreement with Tab. 5.7, the two uncertainty bands are comparable,
except in the low-|k?| region at Q = 10 GeV and x = 0.1. Such an e↵ect may
be due to the fact that the ↵2 and � parameters are more constrained in the
fit to the reduced data set (see Tab. 5.7).

We also note that the TMD PDFs extracted from the reduced data set are
generally smaller in the low-|k?| region. This is probably the consequence of
the smaller contribution of the third Gaussian in the fit (see discussion above).

In conclusion, this study suggests that the inclusion of ATLAS measure-
ments in our TMD analyses considerably spoils the value of the global �2 of
the fit, while it does not significantly modify the extracted TMD PDFs. The
exclusion of ATLAS data points can open up the possibility of obtaining a
good fit even with a simpler parametrization for the nonperturbative model of
TMDs. Therefore, ATLAS experimental data have to be treated carefully in
TMD analyses.
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Figure 5.3: The TMD PDF of the up quark in a proton at µ =
p
⇣ = Q = 10

GeV (left column) and 100 GeV (right column) and x = 0.1, 0.01 and 0.001
(from top to bottom) as a function of the partonic transverse momentum |k?|.
Upper plot: fit to the baseline DY data set (green band) and to the reduced one
(dark orange band). Lower plot: same bands as the upper plot, but normalized
to the central value of the band of the baseline data set. The uncertainty bands
represent the 68% C.L.



5.A. Appendix - Comparison of MAP22DY and MCDY parameters

5.A Appendix - Comparison of MAP22DY and

MCDY parameters

In this section, we report the distribution of each of the 12 fitting parame-
ters obtained from the MAP22DY (red histograms) and the MCDY (green
histograms) fits (see Tab. 5.4 for average value and standard deviation). We
note that the histograms of the parameters � and N1C are barely visible for
the MCDY case. This is due to the fact that their values are smaller by two
order of magnitude than the MAP22DY ones (see Tab. 5.4).
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Figure 5.4: Distribution of the replicas for the MAP22DY (red histograms)
and MCDY (green histograms) free parameters.

5.B Appendix - Comparison of parameters fitted to

baseline and reduced DY data set

In this section, we report the distribution of each of the 12 fitting parameters
obtained from the fits to the baseline (green histograms) and the reduced (blue
histograms) data sets (see Tab. 5.7 for average value and standard deviation).
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Figure 5.5: Distribution of the replicas of the fit to the baseline (green his-
tograms) and reduced (blue histograms) data sets.
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Chapter 6
Parity-violating e↵ects in the

proton structure

In this chapter, we study another aspect of the internal structure of hadrons.
We try to phenomenologically address the following question: Would the inter-
nal structure of the proton be identical in a mirrored world? Since Quantum
ChromoDynamics (QCD) is invariant under parity transformations in the Stan-
dard Model (SM), one could argue that the proton structure should remain
the same. However, there is no first principle in QCD that guarantees parity
(P) invariance from a theoretical point of view. In this chapter, we propose a
way to estimate its possible violation, i.e., “strong P violation”, in the internal
structure of nucleons (without determining its source). We will show that an
unpolarized proton may contain more left-handed than right-handed quarks.

The identification of strong P violation would have profound consequences
that go far beyond the understanding of the internal structure of nucleons. In
fact, the violation of the charge-parity (CP) symmetry is the most plausible
explanation of the matter-antimatter imbalance observed in the Universe from
its early stages. We focus on the QCD domain because it has been proven that
CP violation in the SM electroweak sector is not su�cient to justify the size
of such imbalance [288–290].

In order to understand this yet unexplained phenomenon, it is necessary to
extend the SM by introducing new ingredients. In the last decades, di↵erent
studies have been devoted to the following gauge invariant and renormalizable
term:

L✓ =
✓g2

s

64⇡2
✏µ⌫⇢�F̂

µ⌫

a
F̂ ⇢�

a
, (6.1)

where gs is the strong coupling, ✏µ⌫⇢� the antisymmetric tensor, and F̂ µ⌫

a
is the

gauge field strnght tensor. This is the so-called “✓-term” of QCD. Since it can
be written as a 4-divergence, such term does not add any Feynman rules. Its
peculiarity is that it preserves charge (C) symmetry, while it violates parity
(P) and time-reversal (T) symmetries. Hence, it violates CP symmetry.
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6. Parity-violating e↵ects in the proton structure

Higher-dimensional operators that violate CP-symmetry have been dis-
cussed in the context of SM E↵ective Field Theories (SMEFT), which are based
on the assumption that sizeable low-energy e↵ects can arise from the presence
of new physics at significantly larger energy scales (see, e.g., Refs. [291–293]).
It has been shown that the first relevant CP-odd operators arise at dimension
six, and include lepton and quark electric dipole moments, chromo-electric
dipole moments, four-quark operators (see Ref. [294] and references therein).

One of the possible measurable e↵ects of CP violation is the generation of
permanent electric dipole moments in various particles (see, e.g., [295] and ref-
erences therein). However, no experiment has been able to measure any e↵ects
of strong CP violation in the last 30 years. In particular, current experimen-
tal measurements set an upper bound on the neutron electric dipole moment
(nEDM) to be dn < 10�26 e cm, indicating that the coupling parameter of a
new BSM CP term in the QCD Lagrangian must be small.

In general, the strong CP problem can be traced back to a broader topic,
i.e. the justification that strong interactions are invariant under parity trans-
formations. Up to now, no theoretical principle has been found that prevents
parity-violating terms in the QCD Lagrangian. Moreover, the experimental
evidence that CP violation occurs in the EW sector of the Standard Model
could anyway make us wonder why such a violation does not happen in QCD.
In fact, in the last thirty years many facilities have measured consistent CP
violations in the EW sector. For instance, in March 2019 the LHCb Collabo-
ration announced the discovery of (weak) CP violation in charmed D0 decays
with a level of significance of 5.3 standard deviations [296].

In this chapter, we discuss how to probe the presence of strong P violation
through a detailed study of the internal structure of nucleons. We base our
discussion on Ref. [3].

If we do not impose strong P invariance, new terms appear in the hadronic
tensor for the DIS process, generated by new strong parity-violating (PV) par-
ton densities. These new terms are odd under parity transformation (P-odd),
and they can be C-even (CP-odd) or C-odd (CP-even). Similar terms have
been discussed in Ref. [117], a pioneering work on the P-odd quark fragmenta-
tion in the ✓-vacuum, which can give rise to non-trivial dihadron correlation.
Also, theory-based models of PDFs and FFs have been recently discussed in
Refs. [118, 119].

In this thesis, we discuss the case for collinear PDFs by identifying the
new contributions that P-odd PDFs would generate in structure functions.
Moreover, we propose for the first time a phenomenological estimate of PV
e↵ects through a phenomenolocal fit of the available experimental data.

Our focus is mainly on the DIS process of a longitudinally polarized lepton
beam o↵ an unpolarized proton or nuclear target, and we briefly discuss the
case of DIS of an unpolarized lepton beam o↵ a polarized target.

In the case of unpolarized target, we show how a genuine new PV contribu-
tion in the structure function F3 appears in the pure photon-exchange channel
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6.1. Formalism of PV parton densities

when considering longitudinally polarized lepton probes. Being absent in the
SM, this contribution would be non-zero only with the presence of a new strong
PV PDF.

We estimate the size of such partonic distribution through a fit at the best
possible theoretical accuracy of the available experimental data from HERA,
SLAC, and Je↵erson Lab (JLab) that can be sensitive to this kind of PV
e↵ects.

Our phenomenological study, the first one on this topic, could lead to new
analyses of DIS measurements with di↵erent lepton beam polarizations and
charges. New measurements from the JLab 12 GeV program and the EIC
machine could shed further light on the presence of experimental e↵ects that
could derive from a strong P violation.

This chapter is organized as follows. In Sec. 6.1, we describe the structure
functions and the observable which can be a↵ected by the introduction of PV
PDFs. In Sec. 6.2, we discuss how structure functions get modified by our
ansatz for the new PV parton densities. In Sec. 6.3, we describe the data
set and the theoretical choices included in the analysis in Ref. [3]. Finally, in
Sec. 6.4 we show the estimate of the size of PV e↵ects in the proton, which is
the main result of our analysis.

6.1 Formalism of PV parton densities

In DIS with Neutral Current (NC), the leptonic tensor of a fast-moving lepton
with initial (final) 4-momentum k (k0 = k�q) and helicity � has three possible
channels (� exchange, � �Z interference and Z exchange) and can be written
as

L(j)
µ⌫

= C(j) L(�)
µ⌫

,

L(�)
µ⌫

= 2
⇥
kµk

0

⌫
+ k0

µ
k⌫ � (k · k0)gµ⌫ � i�"µ⌫↵�k

↵k0�
⇤
, (6.2)

where the index j runs over the channels j = �, �Z, Z, and the coe�cients
C(�) = 1, C(�Z) = �(ge

V
� �ge

A
), C(Z) = (ge

V
� �ge

A
)2 [297]. The ge

V,A
are

the electron’s neutral weak couplings to the Z. For an anti-lepton, the same
formula holds but with the sign of ge

A
flipped.

The hadronic tensor for an unpolarized hadron with momentum P µ is given
by [298]

W µ⌫ =
⇣
� gµ⌫ +

qµq⌫

q2

⌘
F1 +

P̃ µP̃ ⌫

P · q F2 + i
"µ⌫⇢�

2(P · q)P⇢q� F3 , (6.3)

where we introduced the four-vector P̃ µ = P µ � qµ (P · q)/q2.
The cross section can be calculated by contracting the leptonic and hadronic
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tensors

d2�

dxB dy
=

2⇡y↵2

Q4

X

j=�, �Z,Z

⌘(j) L(j)
µ⌫

W µ⌫ =
2⇡y↵2

Q4

X

j=�, �Z,Z

⌘(j) C(j) L(�)
µ⌫

W µ⌫ ,

(6.4)

where ↵ is the fine structure constant, y is the inelasticity of the process, xB

is the Bjorken variable, Q2 = �q2 is the hard scale of the DIS process, and the
prefactors ⌘(j) are

⌘� = 1; ⌘�Z =

✓
GFM2

Z

2
p
2⇡↵

◆✓
Q2

Q2 +M2
Z

◆
; ⌘Z =

�
⌘�Z
�2

, (6.5)

with MZ the mass of the Z boson, and GF the Fermi coupling constant.

If we neglect the lepton mass, the contraction of the leptonic tensor L(�)
µ⌫ of

Eq. (6.2) with the hadronic tensor W µ⌫ of Eq. (6.3) gives

L(�)
µ⌫

W µ⌫ = 2


Q2 F (�)

1 +
Q2

xBy2

✓
1� y � 1

4
R2y2

◆
F (�)
2 � �

Q2

2

2� y

y
F (�)
3

�
,

(6.6)

where R = 2MxB/Q determines the size of target mass corrections (TMC).
By taking into account such TMC, we introduce the relation 2xBF1 = (1 +
R2)F2 � FL into the above contraction and we get

L(�)
µ⌫

W µ⌫ =
Q2

xBy2

✓
Y+ +

1

2
R2y2

◆
F (�)
2 � y2 F (�)

L
� �Y� xBF

(�)
3

�
, (6.7)

with Y± = 1± (1� y)2.

If we insert the above result into the expression of the cross section in
Eq. (6.4), we finally get

d2�

dxBdy
=

2⇡↵2

xByQ2

"✓
Y+ +

R2y2

2

◆�
F2,UU + �F2,LU

�
� y2

�
FL,UU + �FL,LU

�

� Y�

�
xBF3,UU + �xBF3,LU

�
#
. (6.8)

This result is equivalent to the standard expression for the NC DIS cross
section listed in the PDG review (see also Ref. [297]). For convenience, we
explicitly distinguished the terms independent of �, that involve unpolarized
lepton (U) and hadron (U), from the one proportional to �, that requires a
polarized lepton beam (L).

The structure functions involved in the cross section of Eq. (6.8) can be
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6.1. Formalism of PV parton densities

expressed as [298]

F2,UU(xB, Q
2) = F (�)

2 � ge
V
⌘�ZF

(�Z)
2 +

�
ge
V

2 + ge
A

2
�
⌘ZF

(Z)
2 , (6.9)

F2,LU(xB, Q
2) = ge

A
⌘�ZF

(�Z)
2 � 2ge

V
ge
A
⌘ZF

(Z)
2 , (6.10)

FL,UU(xB, Q
2) = F (�)

L
� ge

V
⌘�ZF

(�Z)
L

+
�
ge
V

2 + ge
A

2
�
⌘ZF

(Z)
L

, (6.11)

FL,LU(xB, Q
2) = ge

A
⌘�ZF

(�Z)
L
� 2ge

V
ge
A
⌘ZF

(Z)
L

, (6.12)

F3,UU(xB, Q
2) = ge

A
⌘�ZF

(�Z)
3 � 2ge

V
ge
A
⌘ZF

(Z)
3 , (6.13)

F3,LU(xB, Q
2) = F (�)

3 � ge
V
⌘�ZF

(�Z)
3 +

�
ge
V

2 + ge
A

2
�
⌘ZF

(Z)
3 . (6.14)

We point out that the sign of terms containing ge
A
in Eqs. (6.10), (6.12),(6.13)

must be changed for positron scattering.

As already mentioned, the results presented here are in agreement with
standard literature. However, in the SM the contribution to the F3 structure
function that arises from pure � exchange is zero. It emerges only when in-
troducing the possibility of strong P violation, and it is the new ingredient we
estimate in our analysis.

We identify the following parity-violating asymmetry as the observable that
is sensitive to this new term:

APV ⌘
d�(� = 1)� d�(� = �1)
d�(� = 1) + d�(� = �1)

=

⇣
Y+ + R

2
y
2

2

⌘
F2,LU � y2FL,LU � Y� xBF3,LU

⇣
Y+ + R2y2

2

⌘
F2,UU � y2FL,UU � Y� xBF3,UU

. (6.15)

In the region M2 ⌧ Q2 where collinear factorization holds, the structure
functions above can be written in terms of PDFs, arising from the decompo-
sition of the quark correlator. In particular, if we include strong PV terms
in the correlation function for unpolarized nucleons, we obtain the following
expression for the quark-quark correlator at leading twist,

�q(x,Q2) =

⇢
f q

1 (x,Q
2) + gPVq

1 (x,Q2)�5

�
n/+

2
, (6.16)

where x is the light-cone momentum fraction of the parent hadron carried by
the quark q, and n+ is a light-like vector pointing to the dominant light-cone
”+” direction (neglecting target mass corrections, x ⇡ xB). The second term
is usually ignored in the standard literature of collinear PDFs because it is
not allowed by the SM. Such term incorporates the parton distribution gPV1 ,
which describes the di↵erence in the probability to find right-handed vs. left-
handed quarks inside an unpolarized proton. It is a P-odd function, in the
sense that it changes its sign under parity transformation; it is also even under
charge transformations, hence it is CP-even. Since it originates from the Dirac
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structure �5n/+ = �5��, its behavior under QCD evolution is equivalent to the
helicity PDF g1(x,Q2). Moreover, a connection can be established between
the integral of this function and the so-called anapole moment of the proton
or the nucleus (see, e.g., Refs. [299–302]), which could be responsible for PV
e↵ects measured in electron-proton elastic scattering experiments [303, 304].

We remark that a decomposition similar to the one in Eq. (6.16) can be
found also for the transverse-momentum-dependent correlation function, as
already discussed in Ref. [119]. Our new function gPV1 corresponds to the
integral of the function u1 in that reference.

If we neglect strong P violation, we can write the structure function F3 in
terms of the unpolarized PDF f1 [298]. In presence of target mass corrections
(see, e.g., Ref. [305] for a recent review), the PDF f1 must be evaluated at the
Nachtmann variable [305]

xN =
2xB

1 +
p
1 +R2

. (6.17)

For convenience, in the following we avoid explicitly writing the arguments
of the PDFs. The detailed expression of the structure functions is

F (�)
3 (xB, Q

2) = 0, (6.18)

F (�Z)
3 (xB, Q

2) =
1p

1 +R2

X

q

2eqg
q

A
f (q�q̄)
1 , (6.19)

F (Z)
3 (xB, Q

2) =
1p

1 +R2

X

q

2gq
V
gq
A
f (q�q̄)
1 , (6.20)

where f q�q̄

1 = f q

1 � f q̄

1 , eq is the quark charge, gq
V,A

are quark’s neutral weak
couplings to the Z, and R has been defined below Eq. (6.8). The inclusion of
strong P violation leads to a modification of the standard results given by the
following additional contributions:

�F (�)
3 (xB, Q

2) = � 1p
1 +R2

X

q

e2
q
gPV(q+q̄)
1 , (6.21)

�F (�Z)
3 (xB, Q

2) = � 1p
1 +R2

X

q

2eqg
q

V
gPV(q+q̄)
1 , (6.22)

�F (Z)
3 (xB, Q

2) = � 1p
1 +R2

X

q

�
gq2
V
+ gq2

A

�
gPV(q+q̄)
1 . (6.23)

We note that also the structure function F2 gets modified by the following
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terms:

�F (�)
2 (xB, Q

2) = 0, (6.24)

�F (�Z)
2 (xB, Q

2) = �
X

q

2eqg
q

A
xBg

PV(q�q̄)
1 , (6.25)

�F (Z)
2 (xB, Q

2) = �
X

q

2gq
V
gq
A
xBg

PV(q�q̄)
1 . (6.26)

The same new contributions have to be introduced also in the structure
function FL.

For sake of completeness, we briefly discuss the case of a polarized nucleon.
The correlator becomes

�q(x,Q2) =

⇢
f q

1 (x,Q
2) + gPVq

1 (x,Q2)�5 + SL

⇣
gq1(x,Q

2)�5 + fPVq

1L (x,Q2)
⌘

� S/T
⇣
hq

1(x,Q
2)�5 � ePVq

1T (x,Q2)
⌘�n/+

2
,

(6.27)

where SL,T are the longitudinal/transverse polarization of the hadron, respec-
tively. Two new polarized PDFs fPV

1L and ePV1 arise by breaking parity invari-
ance. We observe that the PDF fPV

1L is P-odd and CP-odd, and should be
connected to the electric dipole moment of the proton. Further investigations
on this parton density are left for future studies that go beyond this thesis.
We observe that our functions fPV

1L and ePV1 correspond to the integral of the
functions v1L and w1T in Ref. [119], respectively.

6.2 Modeling the unpolarized PV parton density

In this section, we describe our model of the unpolarized PV parton density
gPV1 (x,Q2) that is included in our phenomenological analysis to estimate the
size of PV e↵ects in the nucleons structure.

Currently, there are no models that can generate strong P-violating par-
tonic distributions. As already discussed in Ch. 1, the introduction of the
✓-term ✓g

2

32⇡2 G̃µ⌫Gµ⌫ in the QCD lagrangian1 would generate too small e↵ects
due to the very strong experimental constraints provided by the measurements
of the nEDM. E↵ects of the order of ✓ ⇠ 10�10 cannot be identified in the inter-
nal structure of nucleons with the present experimental data. Therefore, one
should find alternative terms to be added to the QCD lagrangian. Such terms
must be Lorentz-invariant, P-odd, CP-odd, and must not break renormaliza-
tion. If we look at the literature of SM E↵ective Field Theories (SMEFT), we
may find some higher-dimensional P-violating operators which could generate

1Here, g is the strong interaction coupling constant, Gµ⌫ is the full field strength tensor
of the gauge field, and G̃µ⌫ = 1

2✏↵�µ⌫G↵� .
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6. Parity-violating e↵ects in the proton structure

non-vanishing PV parton densities. Moreover, a model of quark fragmenta-
tion in a topologically non-trivial QCD vacuum has been shown to lead to
the emergence of P-odd transverse-momentum-dependent fragmentation func-
tions [117]. Finally, PV parton densities can be produced by the inclusion of
electroweak corrections to the evolution of PDFs. In particular, contributions
from the perturbative radiation of a Z-boson from a quark could be responsible
for a P-odd distribution function. Such kind of EW perturbative corrections
have never been studied in QCD.2 However, this e↵ect is expected to be negli-
gible. In fact, the corrections introduced by QED contributions to the DGLAP
kernels are of the order 1% [307, 308], and PV contributions arising from EW
corrections are expected to be much smaller (by a factor Q2/M2

Z
).

In order to obtain a first estimate of the new PV PDF gPV1 , we make the
simplest possible hypotesis: we assume it is proportional to its parity-even
counterpart, i.e., gPV1 = a g1, where a is a fitting parameter. Therefore, the

additional strong PV term to be added to the F (�)
3 structure function is the

following:

�F (�)
3 (xB, Q

2) = � ap
1 +R2

X

q

e2
q
g(q+q̄)
1 . (6.28)

The total additional contributions to the standard expression of the two
terms F3,UU and F3,LU are
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Moreover, the structure function F2 becomes

2These EW corrections due to Z-boson emission should be similar to the corresponding
QED corrections due to the emission of a photon [306].
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�F2,LU(xB, Q
2) = �ge

A
⌘�Z a

X

q

2eqg
q

A
xBg

(q�q̄)
1 (6.32)

+ 2ge
V
ge
A
⌘Z a

X

q

2gq
V
gq
A
xBg

(q�q̄)
1 .

To evaluate the size of this e↵ect, we adopt the following approach: we
attribute any discrepancy between the SM predictions and the available data
entirely to the presence of the new PV PDF, and we estimate the size of the
gPV1 (x,Q2) distribution needed to be compatible with the available experimen-
tal data.

6.3 Experimental data sets

In this section, we illustrate the experimental data set included in the fit of
the gPV1 (x,Q2) distribution, and we discuss the choices for the inputs to this
analysis.

In the analysis described in this chapter, we fit theoretical predictions at
NLO accuracy for the electron and positron PV asymmetries in Eq. (6.15) to
the experimental data of DIS on an unpolarized proton beams from the HERA
Collaboration [309], and of DIS on deuterium target from the PVDIS Collab-
oration at JLab 6 GeV [310, 311]) and from the SLAC E122 experiment [312].
We list in Tab. 6.1 the number of data points (Ndat) along with the kinematics
of each experimental set.

Experiment Ndat Observable Hadron
p

s [GeV] Q2 [GeV2] y Ref.

HERA 136 APV for e+ proton 319 120 - 30000 0.033 - 0.9 [309]

HERA 138 APV for e� proton 319 120 - 30000 0.033 - 0.9 [309]

PVDIS 2 APV for e� deuterium 4.77 1.085; 1.901 0.20; 0.28 [310]

E122 11 APV for e� deuterium 5.5 - 6.5 0.92 - 1.96 0.15 - 0.36 [312]

Total 287

Table 6.1: Breakdown of the data sets considered in the analysis presented in
this chapter. For each data set, the table includes information on: the number
of data points (Ndat), the measured observable, the initial-state hadron, the
center-of-mass energy

p
s, the covered range(s) in Q2, the inelasticity y, and

the published reference.
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6. Parity-violating e↵ects in the proton structure

We stress that the deuterium is described in first approximation as a in-
coherent sum of free nucleons, i.e. one proton and one neutron. The total
number of experimental data included in our fit amounts to 287, with 136
data for positron asymmetry and 151 for electron asymmetry.

We observe that the PVDIS and E122 data sets are characterized by very
small values of the energy scale Q2 ' 1� 2 GeV2. Therefore, the inclusion of
target mass corrections in Eq. (6.8) and Eqs. (6.19)-(6.23) has a sizeable e↵ect
for these two data sets, while it is negligible for the HERA measurements at
much larger values of Q2.

Moreover, according to Refs. [310, 311] we introduce the electroweak radia-
tive corrections discussed in Ref. [313] into the C1 and C2 coe�cients, which
involve the lepton and quark axial and vector couplings gq

A
and gq

V
, respec-

tively. In fact, the standard expressions for the u and d components of the
above mentioned C coe�cients are
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(6.33)

where ✓W is the weak mixing angle. The same expressions hold for the other
quark families. The electroweak radiative corrections in the MS scheme are
parametrized in Ref. [313] as

C 0
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3
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◆

C 0

1d = 0.3419� 0.0011⇥ �1
3

ln

✓
Q2

0.14 GeV2

◆

C 0

2u = �0.0351� 0.0009⇥ ln

✓
Q2

0.078 GeV2

◆

C 0

2d = 0.0248 + 0.0007⇥ ln

✓
Q2

0.021 GeV2

◆
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(6.34)

In principle, this corrections, which include di↵erent e↵ects discussed in
Ref. [313], could be considered also at higher Q2, but they are very small
compared to the experimental errors.3

In our fit, we need to include a set of collinear unpolarized PDFs and
helicity PDFs: we choose the NNPDF4.0 [30] and the NNPDFpol1.1 [315]

3They are provided by, e.g., the Djangoh event generator [314].
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6.4. Estimate of the size of PV e↵ects inside nucleons

sets, respectively. In order to take into account the error on the PDFs sets, we
consider the full ensemble of MC replicas, and we include their uncertainty as
a source of theoretical (systematic) error. However, the impact of this kind of
uncertainty is very small because it is of order 1% of the experimental errors
(or less). Since we perform the calculation of the structure functions F2, FL

and F3 at O(↵s), we consider PDF sets as extracted at NLO.
In order to perform a global extraction of gPV

1 , it could be interesting to
identify an experimental observable which is sensitive to this new PV distribu-
tion function also for DY process. Currently, such observable has never been
studied.

6.4 Estimate of the size of PV e↵ects inside nucleons

In this section, we report the results of the fit we performed to estimate the
size of the new PV PDF gPV

1 in the nucleon structure.
We perform the error propagation through the replica method (see Sec. 3.2).

In short, we generate 100 Monte Carlo replicas of the experimental data and
we associate each one of them to a single replica of unpolarized and polar-
ized PDFs. The final result is a bootstrap distribution of 100 values for the
parameter a (see Eq. (6.28)).

In Tab. 6.2, we report the resulting quality of the fit. We indicate the �2

value per number of data points Ndat for each of the considered experimental
data sets, along with one standard deviation from the full ensemble of replicas.
We provide also the values of �2/Ndat that we obtain with the SM predictions.
From the last row of Tab. 6.2, we observe that the mean value of the global

SM predictions Our analysis

Data set Ndat �2/Ndat �2/Ndat

HERA e+ (p) 136 1.12 ± 0.01 1.12 ± 0.01

HERA e� (p) 138 0.98 ± 0.01 0.98 ± 0.01

PVDIS e� (d) 2 0.67 ± 0.12 0.42 ± 0.40

E122 e� (d) 11 0.97 ± 0.01 0.94 ± 0.02

Total 287 1.042 ± 0.001 1.037 ± 0.004

Table 6.2: Breakdown of the values of �2 per number of data points Ndat for all
data sets considered in our analysis (hadron targets in brackets). The values
of �2 and uncertainties refer to the mean value and one standard deviation
from the ensemble of replicas of the experimental data.

�2/Ndat is slightly smaller than the SM result. This means that the description
of the global data set is improved by our model of PV PDFs. However, we
note that the values of �2/Ndat are all close to or smaller than 1 because of the
large experimental errors a↵ecting the majority of the data points. New data
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6. Parity-violating e↵ects in the proton structure

with better precision are required to have more information on the actual size
of PV contributions.

In Fig. 6.1, we show the �2 per number of data Ndat of the 100 MC replicas
in the analysis illustrated in this chapter in SM (blue histogram) and after
including PV e↵ects (yellow histogram). It is interesting to see that the �2

distribution of the 100 replicas is shifted at smaller values after the inclusion
of PV e↵ects. This reflects what can be seen in Tab. 6.2, namely that a non-
zero PV e↵ect, even if small, is statistically favoured by current experimental
data.
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Figure 6.1: Statistical distribution of the �2 values of the 100 Monte Carlo
replicas of our analysis in SM (blue histogram) and after the inclusion of PV
e↵ects (yellow histogram).

The result of the fit for the parameter a is

a = â±�a = (�1.01± 0.66) · 10�4 , (6.35)

where â and �a are the mean value and one standard deviation from the boot-
strap set of 100 values, respectively. Our fitting parameter is incompatible with
zero at the 1.5 � level. More precisely, our results indicate that the null hy-
pothesis (no e↵ect) can be rejected with a p-value = 0.063: the probability of
making an error by rejecting the hypothesis of no parity-violating contributions
is 6.3%. It is not negligible but small. This is a phenomenological indication
that P violation is statistically favoured by current experimental data with
respect to the SM result. Moreover, a negative value of the parameter a indi-
cates that there would be more left-handed quarks than right-handed ones in
the proton. In Fig. 6.2, we display the statistical distribution for the parameter
a. We observe once more that the left-side tail of the distribution of our fitting
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Figure 6.2: Statistical distribution of the 100 replicas of the PV parameter a
fitted to experimental data.

parameter exhibits a marginal compatibility with zero. We checked that this
result is independent of the chosen set of unpolarized PDFs by performing the
fit with di↵erent sets. We find no significant di↵erences when using other sets,
and each result for a single set is compatible with all the others.

In Fig. 6.3, we display the PV PDF gPV1 for a u quark in the proton at
Q = 2 GeV as a function of the longitudinal momentum fraction x. In the
upper plot, each of the 100 replicas is represented as a colored line, while the
light blue band correspond to the 68% C.L.

It is evident that the global distribution of replicas is marginally compatible
with a null parton density. On the contrary, a negative gPV1 for an u quark
in the proton is clearly favoured. In the lower plot of Fig. 6.3, we show the
relative uncertainty of the 68% C.L. band with respect to the mean value of
the PV PDF: it is quite large due to the large experimental errors a↵ecting the
majority of the data sets included in our analysis.

The upper panel of Fig. 6.4 shows the comparison between theoretical pre-
dictions for APV of Eq. (6.15) (colored bands) and HERA data for inclusive
DIS o↵ a proton target of electrons e� (solid black points) and positrons e+

(open red points), as a function of Q2 at the given x = 0.13. The central
(lower) panel shows the relative di↵erence of data and results of our fit with
respect to SM predictions for the e+ (e�) asymmetry. The colored uncertainty
bands correspond to the 68% C.L.We point out that the small theoretical un-
certainty of the PDFs used in this work generates a very narrow with of the
displayed uncertainty bands of our theoretical predictions.

As can be seen from Fig. 6.4 and Tab. 6.2, the HERA data sets are nicely
described in our framework although the �2 for the e+ asymmetry is slightly
worse than the e� case because of the behaviour of the more precise data
points at the lowest Q2 bins (see central panel). This is the region where the
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Figure 6.3: Upper plot: PV PDF gPV1 for a u quark in the proton at Q = 2
GeV as a function of the longitudinal momentum fraction x. The colored lines
represent each of the 100 fitted replicas, while the light blue band the 68%
C.L. Lower plot: relative uncertainty for the 68% C.L. band.

contribution of the structure function F3 in the �-channel is dominant, which
may leave room for improvements of our model in a future work.

It is interesting to consider also the behaviour of our predictions at a fixed
energy scale Q as a function of x. In Fig. 6.5, we show the comparison between
theoretical predictions for APV of Eq. (6.15) (colored histogram) and HERA
data as a function of x at the given Q2 = 800 GeV2. The comparison for
HERA data with positron beam are displayed in the left panel, while HERA
data with electron beam in the right one. The lower panel shows the relative
di↵erence of data and results of our fit with respect to SM predictions.

We observe that in both left and right panels the experimental data show
a behavior in x which is not reproduced by our theoretical predictions. This
may indicate that a better description of the available data can be achieved by
a PV PDF gPV1 with a di↵erent x dependence. This could motivate a future
calculation of a model of these PV e↵ects starting from a new PV structure in
the QCD lagrangian. However, we stress that our fit of the experimental HERA
data has a good �2, also because of their large experimental errors. Moreover,
we note that both the �2 for e+ and e� asymmetries are not modified by
introducing PV e↵ects (see Tab. 6.2), indicating that such contributions do
not impact the description of HERA data: in fact, the fit is driven by the
other experimental data sets with much smaller errors.

In Fig. 6.6, the upper panel shows the comparison between theoretical pre-
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Figure 6.4: Comparison between theoretical predictions and HERA experi-
mental data for e+p (open red points) and e�p (solid black points) collisions
as a function of Q2 at x = 0.13. Upper panel: PV asymmetry of Eq. (6.15);
central panel: relative di↵erence with respect to SM predictions for e+ asym-
metry; lower panel: same for e� asymmetry. Uncertainty bands correspond to
the 68% C.L.

dictions for APV from an electron beam of Eq. (6.15) and PVDIS data (blue
rectangles versus solid points) and E122 data (green rectangles versus open
points) as a function of Q2. The central (lower) panel shows the relative di↵er-
ence of data and results of our fit with respect to SM predictions for the E122
(PVDIS) asymmetry. Similar to Fig. 6.4, the colored uncertainty bands corre-
spond to the 68% C.L. We note that both the experimental data sets are nicely
described in our framework, which is reflected in Tab. 6.2 by the systematic
improvement of the quality of the fit with respect to the SM framework. Since
it is a↵ected by very small uncertainties, this result is particularly relevant
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Figure 6.5: Comparison between theoretical predictions (colored histogram)
and HERA experimental data for e+p (left panel) and e�p (right panel) col-
lisions as a function of x at Q2 = 800 GeV2. Upper panel: PV asymmetry
of Eq. (6.15); Lower panel: relative di↵erence with respect to SM predictions
for e+ asymmetry. Uncertainty bands, unless barely visible, correspond to the
68% C.L.

for the PVDIS data, whose agreement with respect to the SM predictions is
significantly improved.

In conclusion, this study shows that the introduction of strong PV contribu-
tions to DIS of longitudinally polarized leptons o↵ an unpolarized target leads
to a nonvanishing F3 structure function in the case of pure photon exchange,
which is not present in the SM result. The description of existing experimen-
tal data on DIS PV asymmetries gets improved by the addition of these new
contributions. Their size is phenomenologically estimated to be small, but ex-
hibiting a deviation from zero of about 1.5 �. More precisely, the probability
of making an error by rejecting the hypothesis of no parity-violating contri-
butions is 6.3%, which is not negligible but small and underscores the need of
more precise data and more detailed analyses.
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Figure 6.6: Comparison between theoretical predictions and data from PVDIS
at JLab 6 GeV (blue recangles versus solid points) and SLAC E122 (green
rectangles versus open points) experiments as a function of Q2. Upper panel:
electron e� asymmetry APV of Eq. (6.15). Central panel: relative di↵erence
with SM predictions for the E122 asymmetry. Lower panel: same for the
PVDIS asymmetry. Uncertainty bands correspond to the 68% C.L.
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Chapter 7
Conclusions

The main goal of this thesis was to describe the currently most sophisticated
exploration of the internal multidimensional structure of the proton, and to
illustrate an example of how it is possible to search for Beyond-Standard-Model
(BSM) e↵ects on the inner structure of nucleons.

Most of this dissertation has been devoted to the description of the theoreti-
cal and phenomenological aspects at the basis of the simultaneous extraction of
TMD parton densities (TMD PDFs) and TMD fragmentation functions (TMD
FFs) for unpolarized quarks in the proton through fits of Drell–Yan (DY) and
semi-inclusive Deep Inelastic Scattering (SIDIS) measurements.

As discussed in Ch. 2, the cross section for these process can be written in
terms of TMDs through suitable factorization theorems. Such theorems have
been demonstrated only for Drell–Yan, Semi-Inclusive DIS, and back-to-back
hadron production in e+e� annihilation processes. In Ch. 2, we have focused
on the description of the cross sections of di↵erent experimental observables
for DY and SIDIS measurements that are made available by the various exper-
imental collaborations, and we have examined the perturbative and nonper-
turbative ingredients of TMDs. In particular, we have illustrated the details
of TMD evolution with the energy scale, which is given by a system of two dif-
ferential equations. In fact, TMDs depend on two renormalization scales: the
ultra-violet scale µ and the rapidity scale ⇣. We have discussed suitable choices
for initial and final scales, and we have examined the perturbative ingredients
resulting from this particular choices. We have reviewed the treatment of the
resummation of large logarithms appearing in the Sudakov form factor (the
TMD evolution operator), and we defined a logarithmic ordering that allows
to properly combine perturbative ingredients and, consequently, to identify a
specific level of accuracy for the TMD extraction.

Then, we have described the need of a prescription to regularize the be-
haviour of TMDs at small quark transverse momenta (equivalently, at large
values of the conjugated impact variable |bT |). The most common recipe is
the so-called b⇤-prescription introduced by Collins, Soper, and Sterman (CSS),
which freezes the scales to avoid the Landau pole. After reviewing the di↵erent
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b⇤(b2
T
) functions used in the literature, we introduced nonperturbative model-

dependent ingredients in the TMD expression: the nonperturbative part of the
Collins–Soper kernel, driving the TMD evolution in the rapidity scale, and the
intrinsic contribution to the full TMD.

Before discussing a full TMD extraction, we addressed the issue of the
normalization of theoretical predictions for the SIDIS multiplicity at high log-
arithmic accuracy. We have discussed why the formalism is expected to work
well at the lowest order and why problems are encountered at higher orders.
A rigorous solution of this issue would need the inclusion of higher order con-
tributions, such as power corrections, higher twists and, maybe, the so-called
Y -term [73], which are currently not fully known. We identify as a operative
solution the introduction of pre-computed normalization factors that are inde-
pendent of the fit, and are identified by comparing the integral upon transverse
momenta of the TMD formula to the corresponding collinear calculation, as
explained in Sec. 2.4.

In Ch. 3, we have presented the state-of-the-art by the MAP Collaboration
of simultaneous extractions of unpolarized TMD PDFs and TMD FFs from a
global fit to presently available experimental data (indicated as MAP22 [1]).
We included in the global data set 2031 data points collected by several ex-
periments: 251 data points from DY measurements in collider-mode configu-
ration at the Tevatron, LHC and RHIC, 233 points from fixed-target DY (see
Tab. 3.1), and 1547 data points from SIDIS measurements by the HERMES
and COMPASS collaborations (see Tab. 3.3).

Theoretical calculations are based on TMD factorization at a perturbative
accuracy that is defined as N3LL�, namely considering TMD evolution at
the next-to-next-to-next leading-log (N3LL) level, hard factor and matching
coe�cients at second order in the strong coupling constant (O(↵2

s
)), collinear

PDFs at next-to-next leading order (NNLO), and collinear FFs at NLO (see
Tab. 2.1).

To build the full TMDs, we have combined perturbative ingredients, regu-
larized by means of the b⇤ prescription defined in Eq. (2.74), and phenomeno-
logical nonperturbative models of intrinsic transverse momentum, made by a
sum of one or two Gaussians and a weighted Gaussian (see Eqs. (3.5) and
(3.6)). In total, we had 21 free parameters to be fitted to 2031 experimental
data: 11 for the TMD PDF, 9 for the TMD FF, and one for the Collins–Soper
kernel. In this thesis, we have assumed these parameters to be the same for
all quark flavors.

In Secs. 3.1.1-3.1.2, we have described the selection criteria for building
the baseline data set of experimental measurements considered in the MAP22
analysis. For DY measurements, we have included all data points with fi-
nal lepton pair transverse momentum qT such that |qT | < 0.2Q, with Q the
lepton pair invariant mass. For SIDIS data, we have adopted a more restric-
tive criterion than in Ref. [87], but less restrictive than in Ref. [88]: our cut
includes many data points where the transverse momentum of the detected
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hadron is much smaller than the hard scale, i.e. |PhT | ⌧ Q, but also with
0.2Q < |PhT |/z < Q (with z the fractional energy carried by the detected
hadron). In total, we included about the 20% of the full SIDIS data set. 1

The error propagation in the fit is performed with the replica method [87],
leading to a final set of 250 TMD replicas. We reached a very nice overall
agreement between data and theory, with a �2/Ndat = 1.06 for the central
replica (defined in Sec. 3.2.2). We found a satisfactory description of all in-
dividual data sets, except for a small number of cases, the worst one being
ATLAS (see Tab. 3.4 and Fig. 3.11). The obtained TMD PDFs are shown in
Figs. 3.14, 3.15 and 3.16, and the TMD FFs in Figs. 3.17 and 3.18. We found
that they deviate from a simple Gaussian (especially the FFs) and that the
TMD shape changes in a nontrivial way as a function of x (TMD PDF) and z
(TMD FF).

We also performed the unpolarized TMD extraction at lower NNLL and
NLL accuracy, because they are needed in the theoretical expression of the
single-spin asymmetries involving polarized TMDs, that cannot be currently
studied at the top level of accuracy. We found that it is possible to simulta-
neously extract TMD PDFs and TMD FFs even at lower accuracy, but only
if we exclude high-energy DY data set. We obtained a comparable or better
description of the experimental data than the N3LL result because the most
precise high-energy data sets were not considered.

At the end of Ch. 3, we have discussed the e↵ect of modifying the choice
for the b⇤ prescription on TMD PDFs using a specific data set, and we have
tested the quality of our fit by exploring other criteria for the |qT |/Q cut. We
demonstrated that our choice of the b⇤-prescription among the ones discussed
in Ch. 2 leads to the best description of the most precise experimental data
sets inclded in the MAP22 fit. Furthermore, we found that we can obtain
fits of quality comparable to the baseline result even with less conservative
cuts than the nominal one. In particular, we can reach a good description
including several points at |qT | & Q, opening the door to further discussions
on the definition of the range of applicability of TMD factorization for SIDIS
observables.

The results of the MAP22 analysis have been used to estimate the impact
of pseudodata from the JLab22 upgrade and the EIC machine in reducing
unpolarized TMD error bands. To this aim, we have repeated the MAP22
global fit with the same setup, but including pseudodata covering the kinematic
region of these future experiments. We obtain that the impact of JLab22
pseudodata is mainly in the large-x region. In particular, we have estimated
a reduction of two orders of magnitude in the uncertainty at x = 0.1 (starting
from the MAP22 global analysis). A similar reduction in the size of TMD
PDFs uncertainties has been observed in the region at small and intermediate

1We succeeded in including about the 40% of the SIDIS data set after imposing the cuts
on the kinematic variables z and Q. The majority of them belongs to the kinematic region
0.2 Q < |PhT |/z < Q.
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x with the inclusion of EIC pseudodata (for a specific choice of its energy
configuration).

In Ch. 4, we have presented the extraction by the MAP Collaboration of
the TMD PDF for the unpolarized quark in the pion, based for the first time
on the fit to the whole set of available experimental measurements [2]. The
data set included in the analysis reported in this chapter, which we refer to
as PionMAP22, is made of 138 data points for the DY lepton pair production
in ⇡�-nucleus collisions from experiments conducted at Fermilab (E615 [281]
and E537 [45] collaborations).

Such measurements can be described in TMD formalism in terms of TMD
PDFs for unpolarized quarks in the proton and in the pion. For the proton,
we have considered TMDs extracted in the MAP22 fit. As for the pion, we
have modeled the non perturbative part of the TMD PDF as one single Gaus-
sian with x-dependent width, parametrized by three free parameters. We have
achieved a fairly good agreement between experimental data and fitted the-
oretical predictions, with a global �2/Ndat = 1.55. We found that half of its
value is contributed by fully correlated experimental errors. The pion TMD
PDFs obtained by this analysis (displayed in Fig. 4.6) are a↵ected by large
error bands due to the lack of experimental information (compared to the pro-
ton case). The results of our fit favor wider TMDs of quarks in the pion than
in the proton, in agreement with previous analyses [280].

The results of the PionMAP22 fit were used to produce predictions for
unpolarized cross section in pion–nucleus DY collisions at the COMPASS
kinematics, which will allow to broaden the experimental information on pion
TMDs and, consequently, reduce their error bands.

Chapter 5 has been devoted to the investigation of the impact produced by
modifications in some of the settings of our TMD phenomenological analyses.

First of all, in order to establish a baseline result, we have illustrated a
new fit of only Drell–Yan data, conventionally indicated as MAP22DY, that
has the same setup of the MAP22 global analysis. We obtained that most of
the fitted parameters of the MAP22DY fit are compatible with the ones of the
MAP22 global fit, despite much less constrained. We considered this result as
an indication of the consistency and the stability of our fitting framework.

In addition, we estimated the e↵ect of modifying the choice of collinear
PDFs included in the structure of TMD PDFs in the proton. To this aim, we
performed a new fit of the DY data set with the same setup as the MAP22DY
fit, but changing the input collinear PDFs, replacing the baselineMMHT2014
set with the NNPDF3.1 set [220]. We found that the agreement between data
and theory for the fit based on the NNPDF3.1 set is similar to the one based
on the MMHT2014 set. Also, TMD PDFs extracted from the two fits are
compatible with each other, indicating that they marginally depend on their
collinear input, contrary to the findings of Ref. [82].

Furthermore, this study indicates that it is important to consider Monte
Carlo sets of collinear PDFs in TMD analyses, because they allow to better
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identify the uncertainty on the integral of the extracted TMDs.

In accordance with the MAP22 results, we found it di�cult to describeAT-
LAS data set: the agreement theoretical predictions and experimental data is
poor in both the variations of the fit. This led us to test potential inconsisten-
cies of those data points with the rest of the data set through the weighted-fit
method [30]. Artificially increasing the statistical weight of ATLAS data, we
found that the agreement between experimental data and fitting curves slightly
improves, while the agreement with the rest of the (fitted) data set remains
almost unchanged, and sometimes worsens. Moreover, the global �2 of the
weighted fit is almost twice that of the unweighted one. These results suggest
that the ATLAS data may show internal inconsistencies, and that is not fully
clear whether they are compatible with the rest of the data set.

The impact of discarding ATLAS data has been estimated by a new fit
that excludes them. We have obtained an extremely good agreement between
theory and the reduced data set (412 data points against the previous 484),
with a �2/Ndat < 1. The free parameters obtained from fitting the reduced
data set are all compatible at 1-� level with those from the baseline global fit.

To our knowledge, this is the first study of compatibility among specific data
sets analyzed in TMD phenomenology. It suggests thatATLASmeasurements
must be treated carefully: including them in the fit largely increases the global
�2 without significantly modifying the profile of the extracted TMD PDFs.
Moreover, improving the quality of the fit might demand unreasonably complex
parameterizations of the nonperturbative part of TMDs.

So far we have discussed the currently most sophisticated studies of the 3-D
structure of the proton and the pion. We dedicated the last chapter of this
thesis to a phenomenological exploration of BSM e↵ects on the structure of
nucleons. Indeed, in Ch. 6 we demonstrated that the level of precision reached
by collinear PDF extractions make it possible the investigation BSM physics in
the QCD sector. In particular, we have explored the impact of violating QCD
parity invariance (strong P violation) on nucleon structure and nuclei [3].

Based on Ref. [3], we wrote for the first time the full contribution of parity-
violating (PV) PDFs to the structure functions of neutral-current DIS of longi-
tudinally polarized leptons o↵ unpolarized targets. We found that a new P-odd
and CP-even PDF, denoted as gPV1 , contributes to the structure function F3 in
the channel of pure photon exchange, which is absent in the SM result. More-
over, we briefly mentioned the case of DIS of an unpolarized lepton beam o↵
a longitudinally polarized target, which leads to the introduction of another
PV PDF, denoted fPV

1L , which is P-odd, CP-odd, and is related to the proton
electric dipole moment.

We have estimated the size of gPV1 through a fit to existing experimental
data from HERA, SLAC, and JLab, which are sensitive to PV e↵ects. As an
exploratory model, we have assumed that the PV PDFs are proportional to
their parity-even counterpart g1 and we have fitted the proportionality con-
stant, a. We have shown that a better description of the data can be achieved
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with the inclusion of strong PV contributions. We have obtained the value
a = (�1.01±0.66) ·10�4, which indicates that there could be more left-handed
quarks than right-handed ones in an unpolarized proton.

Finally, we have discussed how this study can be expanded to future analy-
ses of experimental data from DIS processes with di↵erent lepton beam polar-
izations and charges, especially from experiments at the JLab 12 GeV program
(or its possible 22 GeV upgrade), and at the future Electron Ion Collider. We
remark that this phenomenological study is the first one ever attempted in
this field, and it could open the door to future studies of the so-called “strong
CP”problem, which is deeply connected to the unexplained matter-antimatter
imbalance in the Universe.

7.1 Outlook

The results discussed in this thesis show that the internal momentum-space
structure of the nucleon can be studied with a high level of precision. This
studies can serve as a starting point for a considerable number of future devel-
opments. Here, we discuss which kind of steps can be made towards improving
and refining such studies.

The level of sophistication of a TMD extraction essentially depends on
two ingredients: the accuracy of the theoretical formalism, and the amount of
analyzed data from di↵erent processes. On the theory side, we plan to improve
the perturbative accuracy of the MAP22 extraction to the full N3LL. Indeed,
a NNLO extraction of collinear FFs has been recently become available [33].
At the same time, we plan to consider Monte Carlo sets of collinear PDFs to
obtain a better determination of the actual uncertainty of TMD distributions,
as shown in Ch. 5. Moreover, in order to get a more reliable determination
of theoretical uncertainties, it is important to introduce the evaluation of the
errors induced by scale variations [316]. In fact, they provide an estimate
of the theoretical uncertainty due to the truncation of QCD calculations at a
specific perturbative order, enhancing precision and refining our understanding
of hadron transverse momentum structure.

In order to better evaluate the stability of our extractions, it could be use-
ful to test alternative functional forms of the nonperturbative parts of TMD
distributions. When dealing with a lot of experimental data and, consequently,
very flexible parametrizations with a large number of free parameters, the in-
troduction of techniques based on Neural Networks may bring benefits. In
fact, they can capture complex, non-linear relations among experimental data,
o↵ering improved modeling power compared to traditional methods. On the
other side, one should be careful with overfitting and with the physical in-
terpretation of the results, above all in the kinematic regions that are barely
covered by the experimental information.

In order to fully understand the normalization issue in the description of
SIDIS multiplicities at intermediate and low energies, we need to improve
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our knowledge on the contributions of power suppressed ingredients, such as
kinematic power corrections [88, 317], higher-twist ingredients [106, 318–321]
or the role of the Y -term at low transverse momentum [86].

On the experimental side, we expect that in the next years further data
will become available, and will play a crucial role in deepening our knowledge
of unpolarized TMD PDFs. Some preliminary measurements of azimuthal
modulation of the unpolarized SIDIS cross section on a proton target have been
recently published [322] by the COMPASS Collaboration, and experimental
data on hadron multiplicities will probably be released in the near future. It
would be very important to include those data in our analysis because they will
allow us to considerably extend our present data set. Also, the 12 GeV physics
program at Je↵erson Lab [323] will be very important to provide measurements
in the large-x and low-Q kinematic region. On a longer term, experimental data
coming from the Electron-Ion Collider (EIC) will play a crucial role in better
constraining unpolarized TMDs in a wide kinematic range (see Fig. 3.33). A
similar impact could be produced by the possible JLab 22 GeV upgrade, but
in a complementary kinematic region (see Fig. 3.31).

Moreover, we remark that our MAP22 global extraction is currently missing
the independent determination of TMD FFs, which will be possible only with
the inclusion of experimental measurements of back-to-back hadron production
in e+e� annihilation sensitive to transverse relative momenta. This kind of
data are not available yet, but they should become available from the Belle
collaboration [183].

Apart from the inclusion of new data sets, in this thesis we set the stage
for a refined estimate of the compatibility of ATLAS data with the other data
sets. This could lead to a better identification of a self-consistent baseline data
set, which will allow for more precise unpolarized TMD extractions.

Another possible extension of the MAP22 analysis is the inclusion of par-
tonic flavor dependence in transverse-momentum dynamics. In fact, state-of-
the-art extractions of unpolarized TMDs assume that di↵erences among quark
flavors are limited to the dependence on the collinear longitudinal momentum.
Even if a very nice agreement between theoretical prediction and present data
can be achieved without the inclusion of flavor dependence, we expect di↵er-
ent quark flavors to give separate contributions to the overall cross section of
di↵erent experimental processes, and preliminary studies with state-of-the-art
collinear FFs seem to indicate that. The first extraction of flavor-dependent
TMD PDFs and TMD FFs is reported in Ref. [84]. Recently, some attempts
have been performed with improved sophistication, but only through fits of
DY experimental data [82, 83]. Along these lines, the upcoming experimen-
tal data on SIDIS processes o↵ proton targets from the COMPASS collab-
oration will be extremely useful. We remark that an accurate extraction of
flavor-dependent unpolarized TMDs has been shown to be necessary for pre-
cise measurements at high-energies, such as the determination of the W -boson
mass [105].
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The availability of unpolarized TMD extractions at a high accuracy pro-
vides important benefits also to the extraction of polarized TMDs. The study
of these nonperturbative objects will allow to investigate possible correlations
between partonic transverse momentum and spin, which can be interpreted as
spin-orbit correlations at the partonic level [64]. The most prominent exam-
ple is the so-called Sivers function, f?

1T , which represents the number density
of unpolarized partons inside a transversely polarized nucleon [58, 63–65]. In
the next future, we plan to perform the extraction of f?

1T in the NangaParbat
computational tool for TMD studies.

Of crucial importance is also the study of the interplay between hadron
phenomenology and calculation on the lattice. In fact, phenomenology should
guide lattice calculations in specific areas of interest, while lattice results should
be useful to refine phenomenological models, improving their precision and
predictive power. Several e↵orts have been directed to the comparison between
phenomenological TMD extractions and lattice calculations of the Collins–
Soper kernel, a fundamental ingredient of TMD evolution (see, e.g. Refs [249–
253]). Instead, only one preliminary determination of the quark unpolarized
TMD PDF has been performed in Ref. [103], indicating that further studies
are needed to reach a good agreement between phenomenology and ab-initio
calculations on the lattice.

Another crucial development of the topics discussed in this thesis is the
implementation in present computational tools for TMD fits of the possibil-
ity of performing simultaneous analyses of TMDs and collinear distributions.
This has already been done for polarized TMDs, such as the Sivers function,
and could be attempted also in the unpolarized case, where the experimen-
tal information is larger and more sophisticated experimental techniques are
required.

Concerning our exploratory study of possible e↵ects of strong P violation
in the internal structure of nucleons described in Ch. 6, it can be improved in
many aspects. First of all, a more refined model of the PV PDF gPV

1 should
be developed, starting from the addition of new PV structures in the QCD
lagrangian. Then, it would be very useful to identify new observable that are
sensitive to the contribution of such PV PDF. In order to study the stability of
our result, it would be interesting to include in our analysis experimental data
from Drell-Yan measurements. Moreover, we plan to investigate the possibility
of performing an estimate of the size of the PV PDF fPV

1L , which is P-odd and
CP-odd, and should be connected to the electric dipole moment of the proton.
We remark that detecting strong P violation could have implications even
beyond the understanding of nucleon structure, potentially shedding light on
the unexplained matter-antimatter imbalance in the universe.

In summary, this collection of possible future directions underscores the
dynamic scientific activity taking place in hadronic physics, and it points to-
wards the expectation of significant developments in this research field in the
future years.
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