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Sintesi.  

Il presente elaborato raccoglie l’insieme delle ricerche 

condotte e dei risultati ottenuti nel corso del mio percorso di 

dottorato. Quest’ultimo si è svolto presso il laboratorio di 

Bioingegneria del dipartimento di Ingegneria Industriale e 

dell’Informazione dell’Università di Pavia, sotto la guida del 

Professor Giovanni Magenes. 

Le attività svolte e raccolte nel presente elaborato rientrano 

nell’ambito del progetto PRIN ICT4MOMs, che mira a 

realizzare un sistema di monitoraggio intelligente del 

sistema madre-feto nel corso della gravidanza.  

Il progetto è coordinato dalla professoressa Maria Gabriella 

Signorini del Politecnico di Milano.  

Sebbene la gravidanza in sé non rappresenti un evento 

pericoloso per la vita del sistema madre-feto, l’antepartum 

rappresenta generalmente un periodo critico, che necessita, 

in quanto tale, di un attento monitoraggio per evitare esiti 

sfavorevoli.  

In tale contesto si sviluppa il tema focale della presente tesi, 

che riguarda lo sviluppo e l’applicazione di soluzioni di 

intelligenza artificiale (AI) per l’elaborazione, l’analisi e la 

classificazione di serie di variabilità cardiaca (HRV), con 

una particolare attenzione al caso fetale.   

I segnali di variabilità cardiaca fetale (FHR) rappresentano 

l’oggetto di studio della cardiotocografia (CTG), una pratica 

clinica non invasiva utilizzata per monitorare lo stato di 

benessere fetale nel corso della gravidanza.  

Introdotta a partire dai primi anni ’70, questa metodica ha 

avuto una notevole diffusione nella pratica clinica, tanto da 

rappresentare ad oggi lo standard di riferimento per il 

monitoraggio e la valutazione del benessere antenatale.  
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Diversi studi hanno dimostrato la validità della CTG in 

intrapartum, portando a concludere ragionevolmente che un 

pattern CTG “normale” sia da considerarsi un buon 

indicatore di benessere fetale, mentre un test “anormale” 

risulti in una scarsa predittività nei confronti della presenza 

di sofferenza fetale. Per contro, l’efficacia della CTG 

nell’identificazione della sofferenza fetale in antepartum  

presenta caratteristiche più controverse e criticità più 

difficilmente arginabili, risultando in un’accuratezza 

diagnostica subottimale. Il maggiore problema risiede nella 

difficoltà di lettura e interpretazione dei tracciati, ad oggi 

affidata alla sola esperienza clinica, e alla mancanza di un 

accordo generale circa i criteri di valutazione dei tracciati 

stessi. A partire dell’introduzione della CTG nella pratica 

clinica, sono state proposte numerose linee guida per la 

valutazione visiva dei tracciati CTG, nessuno dei quali si è 

però nettamente imposto come standard clinico. Per giunta, 

diversi studi hanno evidenziato che, anche in centri che 

adottano gli stessi criteri di valutazione, raramente i singoli 

osservatori concordano nell’interpretazione dello stesso 

tracciato. Numerose prove hanno evidenziato come la 

semplice ispezione visiva del tracciato CTG non consenta 

l’estrazione di tutte le informazioni di variabilità cardiaca 

contenute nel segnale FHR. Caratteristiche quali l’entità 

delle componenti periodiche del segnale generato dal 

pacemaker cardiaco, la non linearità del sistema di controllo 

della frequenza cardiaca fetale (FCF) o anche la stessa 

variabilità a breve termine non possono essere colte 

semplicemente analizzando ad occhio nudo il tracciato CTG.  

I limiti della CTG convenzionale risiedono, pertanto, nella 

difficoltà di lettura e interpretazione dei tracciati e 

nell’impossibilità dell’ispezione visiva di permettere di 

estrarre informazioni quantitative dai tracciati.  

Le sempre crescenti possibilità offerte del supporto 

informatico e la necessità di identificare un nuovo approccio 

più oggettivo e replicabile hanno determinato l’avvento della 

cardiotocografia computerizzata (cCTG).  

A partire dall’introduzione della cCTG, la ricerca si è 

focalizzata sull’identificazione di un unico indice 

quantitativo che rappresentasse un gold standard capace di 
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descrivere adeguatamente il comportamento dei segnali di 

variabilità cardiaca fetale. Pur avendo contribuito a conferire 

riproducibilità al metodo e quindi a ridurre l'elevata 

variabilità intra e inter-osservatore, l’utilizzo di un unico 

regressore non ha sortito i risultati sperati, non consentendo 

di ottenere una valutazione adeguata circa il benessere fetale. 

Ciò ha spinto i ricercatori a capire che il problema 

dell'interpretazione dei tracciati CTG non potesse essere 

risolto con l'identificazione di un singolo indice, ma che, al 

contrario, dovesse basarsi su un approccio multivariato, che 

integrasse informazioni eterogenee raccolte attraverso 

diversi approcci metodologici. Questo ha aperto la strada a 

un’analisi in grado di fornire una visione a più ampio spettro 

dei tracciati CTG, in grado, pertanto, di consentire una 

descrizione di dinamiche (lineari e non) non facilmente 

ravvisabili ad occhio nudo. 

L'integrazione dell'intelligenza artificiale (AI) nell'analisi 

dei tracciati CTG, ha il potenziale di rafforzare il potere 

analitico di questa metodologia. I modelli di AI hanno, 

infatti, la capacità intrinseca di scoprire schemi e tendenze 

nei dati che potrebbero passare inosservati con la semplice 

analisi visiva.  

Negli ultimi anni, in particolare, l'attenzione della ricerca si 

è spostata verso l'impiego del Deep Learning (DL), in quanto 

considerato come l’approccio più promettente in questo 

campo. L’efficacia degli algoritmi di DL dipende però 

strettamente dalla disponibilità di ingenti moli di dati 

annotati e strutturati.  

Tuttavia, attualmente, dataset CTG di grandi dimensioni non 

sono facilmente accessibili e solo pochi di essi, pur con un 

numero limitato di casi, sono pubblicamente disponibili 

online. 

Il presente elaborato di tesi si erge su queste premesse e si 

pone l’obbiettivo di proporre alcune soluzioni che 

consentano di affrontare e superare alcune delle limitazioni 

che ad oggi inficiano le capacità diagnostiche della metodica 

cardiotocografica.  

In particolare, il corpus è articolato nel modo seguente:  

Il Capitolo 1 fornisce un’introduzione alle serie di 

variabilità cardiaca, motivando l’utilità della loro analisi sia 
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nel caso adulto che fetale e dettagliando gli step necessari ai 

fini dell’ottenimento delle stesse.  

Il Capitolo 2 mostra un caso di studio che affronta il tema 

della qualità dei segnali ECG, a partire dai quali possono 

essere ottenute, per l’appunto, le serie di variabilità cardiaca. 

in particolare, nel corso del capitolo viene proposto un 

metodo per inferire la qualità di un gruppo di segnali ECG 

raccolti tramite un dispositivo indossabile. La metodologia 

qui proposta nel caso di segnali provenienti da soggetti adulti 

può anche essere estesa al caso fetale. 

Il Capitolo 3 si addentra nel tema dell’analisi delle serie di 

variabilità cardiaca fetale, fornendo un’introduzione alla 

CTG e presentandone pregi, limiti e possibilità di sviluppo.  

Il Capitolo 4 è dedicato alla presentazione di un nuovo 

dataset CTG (NAPAMI) di grandi dimensioni, 

specificamente pensato per consentire l’applicazione di tutte 

quelle tecniche di AI, (in particolare di DL) le cui 

performance sono strettamente vincolate alla quantità di dati 

a disposizione.  

Il Capitolo 5 presenta due nuovi approcci metodologici utili 

ai fini della comprensione e dell’interpretazione delle 

dinamiche dei tracciati CTG sia nel dominio del tempo che 

delle frequenze. In particolare, La Sezione 5.1 introduce un 

metodo innovativo, basato su un modello Markoviano 

nascosto, progettato per l'identificazione automatica delle 

fasi comportamentali del feto, a partire dai tracciati FHR, 

mentre nella Sezione 5.2, viene invece presentato un nuovo 

approccio per l’analisi spettrale dei tracciati.  

Infine, il Capitolo 6 affronta il tema della classificazione dei 

tracciati FHR, proponendo una nuova architettura neurale ad 

input eterogenei, che possa consentire di distinguere, con un 

buon livello di confidenza, una situazione di sofferenza 

fetale da una situazione fisiologica.
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Abstract. 

This document summarizes the research activities carried out 

as part of my doctoral program, which took place at the 

Bioengineering Lab of the Electrical, Computer and 

Biomedical Engineering Department of the University of 

Pavia, under the guidance of Professor Giovanni Magenes.  

The performed activities are part of the Italian PRIN project 

ICT4MOMs, which aims at realizing intelligent solutions to 

monitor the mother-fetus system during pregnancy. The 

project is leaded by Prof. Maria G. Signorini (Politechnic of 

Milano). 

The activities carried out and collected in this paper are part 

of the European PRIN project ICT4MOMs, which aims to 

realize an intelligent monitoring system of the mother-fetus 

system during pregnancy.  

Although pregnancy itself does not represent a life-

threatening event for the mother-fetus system, antepartum is 

generally a critical period, which needs, as such, careful 

monitoring to avoid unfavorable outcomes.  

It is in this context that the focal theme of this thesis is 

developed, which concerns the development and application 

of artificial intelligence (AI) solutions for the processing, 

analysis, and classification of heart rate variability series 

(HRV), with a particular focus on the fetal case.   

Fetal heart rate variability signals (FHR) are the object of 

study in cardiotocography (CTG), a noninvasive clinical 

practice used to monitor fetal well-being throughout 

pregnancy.  

Introduced since the early 1970s, this method has been 

widely used in clinical practice, so much so that it is now the 

gold standard for monitoring and assessing antenatal well-

being.  
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Several studies have demonstrated the validity of CTG in 

intrapartum, leading to the reasonable conclusion that a 

"normal" CTG pattern should be considered a good indicator 

of fetal well-being, while an "abnormal" test results in poor 

predictivity toward the presence of fetal suffering.  

In contrast, the effectiveness of CTG in identifying fetal 

distress in antepartum has more controversial features and 

critical issues that are more difficult to curb, resulting in 

suboptimal diagnostic accuracy. The greatest problem lies in 

the difficulty of reading and interpreting the tracings, to date 

left to clinical experience alone, and the lack of general 

agreement about the criteria for evaluating the tracings. 

Since the introduction of CTG into clinical practice, 

numerous guidelines for the visual evaluation of CTG 

tracings have been proposed, none of which, however, has 

clearly established itself as a clinical standard. What is more, 

several studies have shown that even in centers adopting the 

same assessment criteria, individual observers rarely agree 

in their interpretation of the same tracing. Numerous trials 

have shown that mere visual inspection of the CTG tracing 

does not allow extraction of all the cardiac variability 

information contained in the FHR signal. Features such as 

the magnitude of the periodic components of the signal 

generated by the cardiac pacemaker, the nonlinearity of the 

fetal heart rate (FCF) control system, or even the short-term 

variability itself cannot be captured by simply analyzing the 

CTG trace with the naked eye.  

The limitations of conventional CTG lie, therefore, in the 

difficulty of reading and interpreting the tracings and the 

inability of visual inspection to allow quantitative 

information to be extracted.  

The ever-increasing possibilities offered by computer 

support and the need to identify a new, more objective and 

replicable approach led to the advent of computerized 

cardiotocography (cCTG).  

Since the introduction of cCTG, research has focused on 

identifying a single quantitative index that would represent 

a gold standard capable of adequately describing the 

behavior of fetal cardiac variability signals. Although it 

helped to give reproducibility to the method and thus reduce 
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the high intra- and inter-observer variability, the use of a 

single regressor did not yield the hoped-for results, failing to 

provide an adequate assessment about fetal well-being. 

This prompted the researchers to realize that the problem of 

interpreting CTG tracings could not be solved by the 

identification of a single index but, on the contrary, should 

be based on a multivariate approach, integrating 

heterogeneous information collected through different 

methodological approaches. This paved the way for an 

analysis that could provide a broader spectrum view of CTG 

tracks, capable, therefore, of enabling a description of 

dynamics (linear and nonlinear) not easily discernible to the 

naked eye. The integration of artificial intelligence (AI) into 

CTG trace analysis has the potential to strengthen the 

analytical power of this methodology. Indeed, AI models 

have the inherent ability to uncover patterns and trends in 

data that might go unnoticed by simple visual analysis.  

In recent years, in particular, research attention has shifted 

toward the use of Deep Learning (DL), as it is seen as the 

most promising approach in this field. The effectiveness of 

DL algorithms, however, is strictly dependent on the 

availability of large masses of annotated and structured data.  

However, currently, large CTG datasets are not readily 

accessible and only a few of them, albeit limited in number, 

are publicly available online. 

The present thesis paper stands on these premises and aims 

to propose AI solutions to address and overcome some of the 

limitations that to date mar the diagnostic capabilities of the 

cardiotocographic method.  

Specifically, the corpus is organized as follows:  

Chapter 1 introduces heart rate variability series, motivating 

the usefulness of their analysis in both adult and fetal cases 

and detailing the steps necessary for the purpose of obtaining 

them.  

Chapter 2 shows a study case, concerning adults but 

eventually extendable to the fetal case, that addresses the 

issue of the quality of electrocardiograms (ECG), from 

which cardiac variability series can be obtained; in 

particular, a method for inferring the quality of a group of 
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ECG signals collected via a wearable device is proposed 

throughout the chapter.  

Chapter 3 delves into the topic of fetal heart rate variability 

series analysis, introducing CTG and presenting its merits, 

limitations and possibilities for development.  

Chapter 4 is dedicated to the presentation of a new large 

CTG dataset (NAPAMI), specifically designed to allow the 

application of all those AI techniques, (particularly DL) 

whose performance is strictly constrained by the amount of 

available data.  

Chapter 5 presents two new methodological approaches 

useful for understanding and interpreting the dynamics of 

CTG traces in both the time and frequency domains. 

Specifically, Section 5.1 introduces a novel method, based 

on a hidden Markovian model, designed for automatic 

identification of fetal behavioral stages from FHR tracings, 

while in Section 5.2, a new approach for spectral analysis of 

tracings is presented instead.  

Finally, Chapter 6 addresses the issue of classification of 

FHR tracings, proposing a new neural architecture with 

heterogeneous inputs, which can allow to distinguish, with a 

certain level of confidence, a situation of fetal distress from 

a physiological situation. 
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Chapter 1 

1 A gentle introduction to heart 
rate variability (HRV) in adults 
and fetuses. 

1.1. Introduction to HR and HRV: on the 
importance of their analysis. 

 

The term heart rate (HR) is used to indicate the number of 

heart beats in a specified time interval (generally 1 minute). 

Heart Rate Variability (HRV), on the other hand, represents 

the amount of fluctuations around the average HR [1.1]. In 

other words, HRV can be seen as the variation in the time 

intervals between adjacent heart beats (see Figure 1.1).  

A healthy heart does not adhere to a rigid metronome-like 

beat; on the contrary, the oscillations of a healthy heart’s 

rhythm exhibit intricate and nonlinear patterns.  

HRV can be viewed as both a reflection of the cardio-

respiratory control system activity and a valuable tool for 

studying the sympathetic and parasympathetic functions of 

the autonomic nervous system (ANS). It serves as a 

reflection of neuro-cardiac functions, arising from intricate 

heart-brain interactions and the dynamic, nonlinear 

processes of ANS.  
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Figure 1.1:  Typical healthy ECG trend with heart beats 

interspersed by time intervals with different durations.  

 

The ANS communicates with the Cardiac System (CS) via 

the cardiac nerves, some of which originate from the cervical 

portion of the sympathetic nervous system, while the 

remaining come from the vagus nerve. Nerves from the 

sympathetic system have an excitatory role on the CS, 

leading to an increase in cardiovascular functions like heart 

rate (HR) and blood pressure (BP). Conversely, nerves from 

the vagus (or parasympathetic) system have inhibitory 

functions, working to decrease these cardiovascular 

activities (Figure 1.2). The interplay between the vagus and 

sympathetic systems is intricate and is known as the 

sympathovagal balance. Continuous changes in the 

sympathovagal balance result in fluctuations in HR around 

the average rate. These control mechanisms operate in 

opposition to one another, striving to rectify any disruptions 

introduced into the cardiovascular system which tend to alter 

heart rate.  In adults, under normal conditions and at rest, this 

system responds to both external and internal stimuli, 

maintaining the heart rate at approximately 70 beats per 

minute [1.2].  
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Figure 1.2:  The autonomic nervous system (ANS), composed of 

the sympathetic and parasympathetic branches, plays a central 

role in regulating heart rate. The sympathetic nervous system 

tends to increase heart rate (a "fight or flight" response), while the 

parasympathetic nervous system decreases heart rate (a "rest and 

digest" response). 

 

Furthermore, besides cardiac activity, HRV mirrors the 

regulation of blood pressure (BP), gas exchange, 

gastrointestinal function, vascular tone (which governs BP 

by adjusting blood vessel diameter), and potentially even 

facial muscle activity [1.3]. 

The fluctuations in a healthy heart's beat-to-beat intervals 

find their most accurate description in the realm of 

mathematical chaos [1.4]. This variability endows the heart 

with the capacity to swiftly respond to an uncertain and ever-

changing environment. However, it's important to note that 

a higher HRV is not universally indicative of better health, 

as pathological conditions can also give rise to elevated 

HRV.  On the other hand, optimal HRV levels are linked to 

overall health, self-regulatory capacity, and adaptability or 

resilience. Elevated levels of resting vagally-mediated HRV 

are associated with enhanced performance in executive 

functions such as attention and emotional processing, which 
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are regulated by the prefrontal cortex [1.5]. Observing the 

behavior of the sympathovagal balance through the analysis 

of HRV signals allows for the monitoring of patients with 

heart disorders as well as with conditions involving 

disruptions in the functions of the autonomic nervous 

system. These illnesses, in fact, by altering the dynamic 

equilibrium of the sympathovagal balance, render the 

modulation of the heart's natural pacemaker less effective 

and modify the HRV signal spectrum compared to that of a 

healthy individual. 

Hence, HRV is a source of important information regarding 

the general health status and its monitoring is of great 

interest both in the case of adult and fetus. As a matter of 

fact, as detailed in Chapter 4, many quantitative indexes 

have been presented in the literature, trying to provide a 

reliable description of autonomic functions. However, 

sympathovagal interplay is a complex phenomenon, that has 

not been proven to be accurately described by a unique 

index.  

Measurements of heart rate variability are simple to perform, 

non-invasive, and therefore widely employed in clinical 

practise.  

The next sections are dedicated to HRV series and will detail 

the necessary steps to obtain the latter both in the case of 

adult subjects (Section 1.2) and in the fetal case (Section 

1.3). 

1.2. Construction of HRV series in 
adults. 

 

In adults, HRV series can be obtained through different 

approaches, each of which makes use of different sensors. 

Asides from the electrocardiogram (ECG), which represents 

the gold-standard, different methodologies have been 

developed to estimate HRV series and include wearable 

garments (as will be treated in Chapter 2) and devices, such 
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as smartwatches and fitness trackers, which rely on diverse 

kinds of technologies, as optical sensors, bioelectrical 

impedance-based sensors and even textile ones [1.6]. 

Obviously the precision in estimating HRV series can vary 

substantially among these methods, accordingly to the 

embedded systems and the choice of the most suitable 

approach depends on specific needs and intended use. 

Regardless from the employed technology, the goal is being 

able to spot heart beat events with a certain degree of 

accuracy, since the more precise is the beat event 

localization, the more reliable are the computed parameters.   

The most accurate method to estimate HRV series is 

electrocardiogram, which makes use of electrodes to record 

the heart's electrical activity. The obtained ECG signals 

present a quasi-periodic trend, characterized by the 

repetition of typical patterns (Figure 1.3), each of which 

comprehends a P wave (resulting from atrial depolarization), 

a QRS complex (associated with atrial repolarization and 

ventricular depolarization), and a T wave (attributed to 

ventricular repolarization). 

 

 
 

Figure 1.3:  Typical P-QRS-T complex of an ECG signal. It 

comprehends a P wave (resulting from atrial depolarization), a 

QRS complex (associated with atrial repolarization and 

ventricular depolarization), and a T wave (attributed to ventricular 

repolarization). 
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The first step towards obtaining HRV series is the precise 

localization of R peaks, which represent the local maxima 

within each QRS complex.  

The identification of R peaks can be achieved through 

various approaches, some of which rely, for example, on the 

computation of the Hilbert transform [1.7] or on some other 

digital filtering methods [1.8] or again on pattern recognition 

[1.9].  

The most classical and vastly employed method for the 

detection of R peaks is the Pan-Tompkins algorithm [1.10]. 

The latter comprehends a cascade of digital elaborations, the 

first step of which includes bandpass filtering (with a 5-50Hz 

bandpass) to remove unwanted noise and baseline wander. 

Then, the filtered ECG is differentiated, squared and 

integrated in moving windows to emphasize the high-

frequency components and hence highlight the QRS 

complex peaks. A dynamic threshold is set to distinguish 

QRS complex peaks from other parts of the ECG signal. This 

threshold is often determined based on the local maximum 

of the integrated signal. Peaks above the threshold are 

considered as QRS complex detections. Last, the algorithm 

identifies the R-wave peak of each QRS complex, which 

represents the most prominent point in the ECG waveform. 

Once R peaks are detected, the temporal distance between 

consecutive R peaks (RR interval) is computed, for each 

couple of consecutive R peaks.  

This allows for obtaining the tachogram, which shows the 

trend of RR intervals (generally in milliseconds) over time.  

The RR interval time series exhibits irregular sampling 

intervals due to variations in the durations of consecutive 

heartbeats. The representation of R-R intervals as a function 

of time poses challenges, particularly in frequency-domain 

analysis. To mitigate this issue, various strategies have been 

employed prior to spectrum analysis. One approach involves 

calculating the power spectrum directly from the RR interval 

time series, which is available as a function of the beat index. 

However, in this method, the spectrum is not a function of 

frequency; instead, it depends on cycles per beat [1.11]. 

Another approach is to resample the RR interval time series 
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using different interpolation techniques, such as spline 

interpolation. The aim is to evenly distribute the non-

uniformly sampled RR intervals, making them equally 

spaced. The third approach utilizes an integral pulse 

frequency modulation (IPFM) model. The IPFM method 

employs delta functions that represent a series of impulses 

occurring at the times of heartbeats [1.12]. 

Regardless from the adopted strategy, HRV series can be 

obtained straightly from tachogram by applying equation 

1.1, which converts the RR series in beats per minute (bpm).  

  

𝑯𝑹𝑽(𝒃𝒑𝒎) =  
𝟔𝟎

𝑹𝑹(𝒔)
    

 

In ideal conditions, RR interval time series are solely 

consisting of pure sinus beats. However, these series are in 

most cases imperfect, due to several kinds of artefacts, which 

can represent a significant problem affecting the reliability 

of HRV series.  

Being able to stand if a HRV series can accurately represent 

the real fluctuations of heart beats can’t help but evaluating 

the quality of collected ECG signals. This means assessing 

whether P-QRS-T complexes are well maintained or either if 

noise and artefacts cause their deterioration and the loss of 

their typical trends. 

Chapter 2 addresses this issue and illustrates a novel 

method, specifically designed to automatically identify ECG 

signal artifacts, and hence to provide a numerical 

quantification of the global quality of collected ECGs.  

 

1.3. Construction of fetal HRV series. 

For what concerns, instead, the fetal case, the extraction of 

HRV series in fetuses (FHR) can be obtained through diverse 

methodologies.  

In clinical practice, the golden standard for fetal heart rate 

monitoring is based on the Doppler ultrasound (US) [1.13]. 

(1.1) 
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Continuous monitoring of the fetal heart rate (FHR) both 

before and during labor is achieved by securing a US 

transducer to the maternal abdomen. This continuous FHR 

monitoring, along with simultaneous monitoring of uterine 

activity, is referred to as cardiotocography (CTG), as will be 

detailed in Chapter 2. In contrast, when intermittent 

measurements of the FHR are needed, a handheld Doppler 

US transducer is typically employed [1.14]. 

Doppler ultrasound imaging operates by emitting an 

ultrahigh-frequency sound wave beam (exceeding 20 kHz) 

that is aimed at the fetal heart. This beam is directed through 

an ultrasound probe positioned on the mother's abdomen. 

Ultrasound waves transmitted through the maternal skin and 

underlying subcutaneous tissue travel through the uterine 

muscle, the amniotic sac containing amniotic fluid, and 

reach the fetal heart. During each cardiac cycle, both atria 

and ventricles undergo a diastolic and systolic phase, which 

cause the rhythmic contraction and dilation of the heart 

walls. These movements alter the frequency components of 

US echoes coming back to the transducer. In fact, when a US 

wave encounters a moving target, the latter changes its 

frequency accordingly to equation 1.2 (Doppler effect): 

 

𝒇𝒔 =  
𝟐𝒇𝒗𝒄𝒐𝒔(𝜃)

𝒄
                 

  

where fs represents the frequency shift, cos() is the 

velocity of the moving target (the fetal heart walls 

contracting and dilating) along the direction of the US beam 

and c is the c the speed of sound in the tissue (m/s). In 

general, if the target approaches the transducer, the received 

frequency increases (i.e., fs > 0), while it decreases when the 

target moves away (Figure 1.4). 

 

 

(1.2) 
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Figure 1.4: Visual representation of US Doppler effect. When US 

waves encounter a moving object, their frequency components are 

altered according to the ratio between the speed of the moving 

object and the one of the propagating US waves.  

 

After detecting the envelope of the Doppler signal 

(commonly performed through the computation of Hilbert 

transform), the autocorrelation function is computed to 

estimate the number of beats per minute and hence obtain the 

FHR. What makes the US Doppler method the most 

employed approach in the antepartum is its robustness to 

extract FHR from signals with low signal to noise ratio 

(SNR) together with its total lack of invasiveness. On the 

other hand, the drawbacks of this method include the 

necessity for skilled clinicians or nurses to accurately 

position the ultrasound probe on the maternal abdomen to 

detect the fetal heart rate. Additionally, it is not suitable for 

prolonged FHR monitoring due to its high sensitivity to both 

fetal and maternal movements, which often necessitates 

frequent probe repositioning and can lead to ambiguous 

records with respect to accelerations and decelerations. 

Maternal movements can introduce Doppler-shifted 

reflected waves, which may be stronger than the actual 

cardiac signal. Moreover, the equipment is bulky, and 

monitoring must take place in a hospital setting. Lastly, 

monitoring sessions are infrequent during pregnancy, 

requiring pregnant women to travel to the hospital for these 

examinations [1.15]. 

Besides US Doppler, another possible solution to estimate 

FHR is abdominal ECG (AECG). AECG involves the 

placement of electrodes directly on the maternal abdomen. 
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These electrodes capture faint electrical signals originating 

from the fetal heart, enabling noninvasive FHR assessment 

during pregnancy (Figure 1.5).  

 

 
 

Figure 1.5: Scheme of AECG electrodes disposition onto the 

maternal abdomen. The latter lead to record electrical signals 

originating from the fetal heart, enabling noninvasive FHR 

assessment during pregnancy. 

 

 

AECG can be employed to extract the Fetal 

Electrocardiogram (FECG), identify fetal QRS complexes, 

and generate HRV data. However, the recorded signal is a 

blend of various sources, including the desired FECG signal 

and numerous interfering noises, such as the maternal ECG, 

alternating current (AC) interference, motion artifacts, 

muscle activity, and others. To record these electrical 

signals, various electrode technologies and configurations 

can be employed. The primary advantage of AECG is its 

noninvasiveness and unobtrusiveness, making it suitable for 

extended monitoring periods, even up to 24 hours. AECG is 

also preferred over US CTG, in case of pregnant women with 

BMI > 30 kg/m2. Additionally, AECG devices have modest 

power requirements and can be designed to be compact and 

portable. This method allows for the detection of both 

maternal ECG and heart rate. Signal processing algorithms 

enable the extraction of both fetal and maternal ECG signals. 

In comparison to US Doppler, AECG offers supplementary 

insights into fetal cardiac activity, as FECG contains 
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pathophysiological details not present in HRV series 

obtained through Doppler. Furthermore, in AECG, it is still 

possible to derive HRV after identifying QRS complexes. 

Nonetheless, a notable drawback of this technique is that 

acquiring a reliable FECG signal can be challenging and, in 

many instances, quite demanding. Furthermore, the signal-

to-noise ratio (SNR) is often quite low due to the numerous 

sources of interference. Consequently, the use of noise 

reduction and FECG extraction algorithms is imperative to 

address these challenges. 

When uncertain fetal heart rate patterns are observed during 

labor, Internal Fetal Monitoring (IFM) is employed. This 

method involves the insertion of an electrode at the tip of a 

catheter through the cervix, positioning it just beneath the 

fetal scalp's skin (Figure 1.6). The electrode directly records 

the Fetal Electrocardiogram (FECG) and transmits this 

signal to a recording device via a wire. Since the internal 

fetal monitor is directly connected to the baby, the Fetal 

Heart Rate (FHR) signal is notably clearer and more 

consistent than what is typically obtained with an external 

monitoring device. However, it's essential to acknowledge a 

minor risk of infection associated with internal monitoring. 

Additionally, the scalp electrode may leave a mark or a small 

cut on the baby's head, though these typically heal swiftly. 

It's important to note that internal fetal monitoring can only 

be initiated after the rupture of the fetal membranes, meaning 

it is employed exclusively during labor [1.15]. 
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Figure 1.6: Visual representation of Internal fetal monitoring. 

This method involves the insertion of an electrode at the tip of a 

catheter through the cervix, positioning it just beneath the fetal 

scalp's skin and collects the FECG signal. 

 

Other existing technologies include the INVU from Nuvo 

Cares [1.16], a wireless, wearable device containing passive 

electrical and acoustic sensors which fuses ECG and audio 

signals to furnish a reliable estimation of fetal HRV; another 

important technology is Magnetocardiography (mECG) 

which leads to high quality FHR signals at the expense of 

costs and instrumentation size [ 1.17]. 
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Chapter 2 

2 Case of study: automatic ECG 
signal quality assessment in 
Mountain Rescuers through 
the computation of Sample 
Entropy. 

As anticipated in Chapter 1, the quality of the acquired ECG 

signal is pivotal in obtaining a precise and dependable 

estimation of HRV series. An ECG of high quality offers 

clean and interference-free data, which is indispensable for 

an accurate comprehension of HRV and its implications for 

cardiac health and well-being. As explained in the previous 

paragraph, HRV relies on a precise identification of R-R 

intervals to measure time intervals between consecutive 

heartbeats. If the ECG exhibits disturbances or artifacts, 

these discrepancies might be incorrectly interpreted as 

variations in heart rate, leading to an inaccurate estimation 

of HRV. For instance, a low-quality ECG may include 

electrical interferences or body movements that need to be 

rectified or removed before analysis. Artefacts can either 
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affect the whole ECG or be localized at some particular 

signal portions. However, the automatic identification of 

distorted portions of ECG signal is a nontrivial task.  

In this chapter we present the developed method to 

automatically assess the quality of a set of ECG signals 

collected through a wearable device in typical mountain 

rescuers activities. ECGs signals have been obtained during 

sessions of programmed field tests at the Bormio Ski Resort 

(Valtellina, Lombardy, Italy) in the month of March 2022. 

Here, following the defined protocol, a group of 15 mountain 

rescuers has carried out daily rescuers’ activities, while 

wearing a wearable textile system. The test protocol was 

designed to simulate the real physiological demands of 

mountain rescuers during their emergency deployments. 

Among the performed activities, rescuers had to walk up and 

down hill in snow-covered trails and carrying stretchers onto 

which simulated victims were located. To infer the quality 

of ECG signals recorded we developed an algorithm for the 

automatic evaluation of collected signal deterioration, which 

is based on the analysis of regularity of ECGs’ P-QRS-T 

complexes pattern.  

 

2.1. Background. 

 

In recent years, wearable devices became a consolidated 

reality and their use has been extended to always wider fields 

of application. In particular wearables providing 

physiological signals are highly diffused, not only for 

medical application but, nowadays are becoming central, as 

source of data, in more complex systems that interact with 

human being in each area of his daily activity (work, home, 

sport.). Reliability of the signals acquired is fundamental 

since these signals are often used to trigger advice, alerts and 

feedbacks coming from such integrated system to the final 

user. Even if the overall quality of the signals offered by 
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wearable devices increased considerably, there are intrinsic 

difficulties such as motion artifacts due to the nature of these 

devices. Moreover, signals measured by wearable devices in 

daily life activities result much more challenging due to 

uncontrolled environment and the consequent noise that this 

condition can bring. For this reason, a good signal quality 

assessment (SQA) results fundamental for a functional use 

and diffusion of wearable devices.  

In this context, we present our work, describing the 

development of an automatic ECG SQA, capable to verify 

the quality and acceptability of the ECG signal acquired by 

a wearable textile system a sensing vest and a data logger. 

This study has been carried out in the frame of EU funded 

project SIXTHSENSE [2.1].  

Analysis have been conducted on a subset of the data 

collected during the field trials held in Bormio (Italy) to 

verify the functionalities of the first prototype delivered. In 

particular, it has been analyzed the ECG signal acquired by 

the sensing vest during operation designed to simulate the 

real physiological demands of mountain rescuers during 

their emergency deployments. The SQA developed aims to 

quantify the global quality of ECGs recorded, in terms of the 

percentage of conservation of P-QRS-T complexes. To 

achieve this result, the ECG signal has been decomposed 

using the sym4 mother wavelet, then a frequency-localized 

version of the ECG waveform has been reconstructed, only 

using the wavelet coefficients at scales 4 and 5, in order to 

maximize the QRS energy. The estimation of the regularity 

of ECG patterns is obtained evaluating the Sample Entropy 

(SampEn) (see the Appendix section for more details) of the 

WT signal obtained from the squared absolute value of each 

coefficient composing the sequence. Low values of SampEn 

relate to high regularity, while high values indicate irregular 

or noisy signal portions. Furthermore, SQA has been 

completed evaluating the correlation between the intensity 

of the activity with the quality of ECG signal. 
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2.2. The employed wearable system. 

 

The data analyzed in this study have been acquired by a 

wearable textile system by Smartex Srl. The system, based 

on Wearable Wellness System (WWS) [2.2], has been re-

designed and customized to meet SIXTHSENSE project 

requirements in which several sensors have to be embedded 

in an integrated wearable prototype. The platform used for 

this study, part of the ALFA version of the SIXTHSENSE 

prototype, is composed by a garment, equipped with 

electrodes for ECG acquisition and a piezoresistive sensor 

for breath measurement, and a data logger (Figure 2.1). 

 

 
 

 
Figure 2.1:  Illustration of the employed WWS. The vest is 

equipped with two textile electrodes to collect the ECG signal, 

one piezoresistive textile sensor to measure respiratory signals 

and a data logger (RUSA device). 

 

The physiological signals provided by the system can be 

grouped in the following categories:  
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1. ECG measurements: One lead ECG (with a 

sampling frequency of 250 Hz), and derived Heart 

Rate, Heart Rate Variability, and R-R interval.  

 

2. IMU measurements: The system is equipped with 

one IMU with 9 degrees of freedom (DOF) placed on 

the chest. Besides the IMU raw signals additional 

information are provided on activity intensity 

 

3. Respiration measurements: The piezoresistive 

sensor placed on the thorax is used to measure the 

strain on the thorax caused by the participant’s 

breathing. 

 

2.3. Participants and experimental 
protocol. 

 

Fifteen mountain rescuers from different countries (Serbia, 

Bosnia, and Italy) took part in the study (age, 31.7±8.6 yr.; 

body mass, 78.2±12.6 kg, and height, 178.1±7.7 cm). The 

study was performed according to the recommendations of 

the Helsinki Conference for research on humans and was 

approved by the Ethics Committee of the University of León, 

Spain. Written informed consent was obtained from all 

subjects before starting the tests. 

All participants performed a field test at the Bormio Ski 

Resort (Valtellina, Lombardy, Italy) in the month of March 

2022. The test was designed to simulate the real 

physiological demands of mountain rescuers during their 

emergency deployments. For this, the participants executed 

the most common activities during their deployments [2.3]. 

Specifically, the mountain rescuers had to walk uphill until 

they reached a point where a simulated victim was located 

(~75 kg). After that, the victim was evacuated on a stretcher 
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(~12 kg) to the base of the ski resort. The starting and ending 

test point was at an altitude of about 2,000 m. Likewise, the 

victim was located at 2,263 ± 61 m. The test was performed 

on snowy terrain at an environmental temperature and 

relative humidity of 6.9 ± 2.1 ºC and 17.1 ± 11.6%, 

respectively. The test was performed in crews of 3−4 

members, each crew used the techniques of movement on 

snow most used by them (i.e., using crampons or mountain 

skis). The mean duration of the test was ~80 min (~40 min 

ascent, ~15 min rescue and ~25 min descent). Participants 

were encouraged to move at a speed consistent with an actual 

deployment and allowed rest stops if required. Rescuers 

wore their standard team clothing (i.e., cold protective 

trousers and jackets over a cotton T-shirt; helmet, gloves and 

boots) and each carried personal equipment during the whole 

field test. Finally, each subject was equipped with different 

devices to measure heart rate: a commercial heart rate 

monitor (RS800, Polar Electro Oy, Kempele, Finland) and 

the ALPHA version vest. The size of this garment was 

chosen before starting the test to fit the shape and size of the 

participants. 

 

2.4. The proposed automatic ECG SQA 
method. 

 

The proposed method is designed to numerically assess the 

quality of ECG signals, based on the regularity of the 

patterns composing the latter, regardless from the way 

signals are recorded.  

As anticipated at the beginning of Section 1.2, in ideal 

conditions, ECG signals present a quasi-periodic trend, 

characterized by the recurrence of typical patterns (Figure 

2.2 a). A normal ECG pattern contains a P wave (due to atrial 

depolarization), a QRS complex (due to atrial repolarization 
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and ventricular depolarization) and a T wave (due to 

ventricular repolarization). However, due to many factors, 

ECG signals are often corrupted by different kinds of noise 

(e.g., baseline wander, muscle artefact, power line 

interference, instrumentation noise, etc.) [2.4], that alter the 

regularity of its normal patterns, making it difficult to 

identify P-QRS-Ts complexes (Figure 2.2 b). 

 
Figure 2.2: (a) Regular ECG patterns characterized by the 

repetition of identifiable P-QRS-T complexes. (b) Atypical ECG 

patterns resulting from different kinds of artefacts. 

 

Since our goal was to quantify the global quality of ECGs 

recorded, in terms of the percentage of conservation of P-

QRS-T complexes, we developed an algorithm for the 

automatic evaluation of ECG signals’ regularity based on the 

computation of Sample Entropy (SampEn) [2.5] on sliding 

windows. In particular, the first step composing the 
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aforementioned method is the computation of the maximal 

overlap discrete wavelet transform (MODWT) of the ECG 

tracing. The idea is to use wavelets as templates [2.6] for a 

process of pattern matching in order to enhance the typical 

ECGs patterns respect to noisy atypical ones. First, we 

proceeded to decompose the ECG using the sym4 mother 

wavelet, exploiting the similarity of the latter with the P-

QRS-T complex (Figure 2.3). 

 
Figure 2.3: Mother wavelet Sym4 (1) with its typical shape 

resembling a typical ECG P-QRS-T complex (2). 

 

Then, to maximize the QRS energy and to improve signal to 

noise ratio, we reconstruct a frequency-localized version of 

the ECG waveform, only using the wavelet coefficients at 

scales 4 and 5. Finally, the computation of the squared 

absolute value of each coefficient composing the sequence, 

gives back the signal (WT), used to estimate the regularity 

of ECG patterns. For this aim we moved a sliding window of 

5 seconds-length with a stride of 1 second along the WT 

signal and, at each shift, we computed the SampEn. The 

latter is a measure of the amount of regularity and 

predictability of fluctuations of time series data. Low values 

of SampEn relate to high regularity, while high values 

indicate unpredictable behaviors. In the specific case of 

study, low values of SampEn describe parts of ECG where 

P-QRS-T patterns are well maintained, while atypical 

patterns are related to high levels of this parameter. The 
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resulting series of SampEn indices obtained is then resample 

at the same sample frequency of ECG (fs = 250 Hz).  

By analyzing ECGs in relation to SampEn series, we 

identified two values of threshold through which we could 

define three levels of signal quality that we refer to as green, 

yellow, and red. Green quality is related to parts of the signal 

where P-QRS-T complexes are perfectly identifiable while 

yellow and red ones are respectively related to portions 

where complexes are still present but distort and to parts 

where signal is totally corrupted by noise, such that P-QRS-

T are completely impossible to spot. The process discussed 

so far is shown in Figure 2.4, which illustrates all the steps 

that, starting from a row 70-minutes ECG, bring to the 

localization, on the ECG signal itself, of good, middle, and 

low quality points, respectively depicted as green, yellow, 

and red ones. 

 

 
 
Figure 2.4: steps that, starting from a row 70-minutes ECG, bring 

to the localization, on the ECG signal itself, of good, middle, and 
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low quality points, respectively depicted as green, yellow, and red 

ones. From the top to the bottom, we have the ECG signal, the WT 

signal, the signal obtained after the SampEn computation, the 

classification of each point in good (green), middle (yellow) and 

bad quality (red), and the same classification on the ECG signal.  

2.5. Achieved results.  

 

After testing the overall ECG signal quality obtained, 

regardless from the activity carried out, we evaluated the 

quality maintenance while performing high intensity 

activities as compared to low intensity ones.  

To evaluate the global quality of the ECGs recorded by the 

system, we computed the average value of the percentage of 

good, middle, and low-quality points on the 15 ECG signals 

recorded, regardless from the intensity of the activity 

performed.  

The obtained results are summarized in the pie chart in 

Figure 2.5. 

 

 
Figure 2.5: Pie chart showing the average value of the percentage 

of good, middle, and low-quality points on the 15 ECG signals 

recorded, regardless from the intensity of the activity performed. 

 

From the analysis of the obtained results it appears that good 

and bad quality points are well balanced (40% green – 39 % 

red) while 21% of points are of middle quality. This means 
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that globally, approximately 60% of points in the analyzed 

ECGs present a sufficient maintenance of P-QRST-

complexes, leading to the estimation of heart rate. 

After evaluating the global quality of the recorded signals, 

we proceeded to compare the average of the percent ECG 

signal quality while performing high and low intensity 

activities. 

WWS system provides information on the intensity of the 

activity performed by the subject wearing it. This estimation 

is based on the evaluation of Signal Magnitude Area (SMA) 

[2.7], the most extended feature used to measure the physical 

activity, obtained from the accelerometer signals coming 

from the IMU embedded in the WWS electronic. SMA is 

expressed through equation 2.1 as:  

 

𝑺𝑴𝑨 = ∑(|𝒙(𝒊)| + |𝒚(𝒊)| + |𝒛(𝒊)|)

𝑵

𝒊=𝟏

 

 

where x(i), y(i) and z(i) indicate the values of respectively x-

axis, y-axis, and z-axis acceleration signals and N is the 

length of the sliding window (N=5,000 in our case).  

The wearable system provides several levels for the 

energy/intensity of activity but for the purpose of this work 

this feature has been binarized to distinguish low and high 

intensity activity and correlate this information with possible 

degradation of ECG signal quality.  

Intensity Energy value signal was resampled at the same 

sample frequency of the ECG (fs = 250 Hz) and then, after 

defining a reasonable threshold value, was binarized to 

identify points relating to low and high intensity activities 

(Figure 2.6). After the energy related to each point of the 

tracing was determined, we computed the average value of 

the percentage of good, middle, and bad-quality points on 

the 15 ECG signals analyzed, stratified by intensity 

(high/low) of the activity carried out. 

 

(2.1) 
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Figure 2.6: From the top to the bottom: ECG signal, Intensity 

Energy value signal, Classification of points in time in High and 

Low intensity of activity. 

 

The obtained results are summarized in Figure 2.7. By 

comparing the pie charts relating to high and low intensity 

points, we can state a strong dependency of the ECG signal 

quality from the intensity of the activity performed. In fact, 

the percentage of good quality points, in low energy case, 

almost triples the ones in high energy condition (59% vs 

21%). The mirror image situation is for bad quality points. 

In fact, as we can observe, the percentage of bad quality 

points in the low energy case is about one third of the one in 

the high energy case. The percentage of middle quality 

points is instead balanced between the two cases. 
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Figure 2.7: Pie charts quantifying the average of the percentage 

of good, middle, and bad-quality points on the 15 ECG signals 

analyzed, stratified by intensity (high/low). 

 

2.6. Discussions and Conclusions for the 
proposed method. 

 

In this chapter we have presented the development of a 

method for the automatic assessment of ECG signal 

regularity based on the computation of SampEn on fixed 

length sliding windows. 

This SQA approach was employed to evaluate the average 

quality of 15 ECGs recorded during scheduled field tests, in 

order to infer the ability of wearable system to register ECGs 

of sufficient quality, in terms of maintenance of P-QRS-T 

complexes, both in stress and non-stress conditions. 

From the analysis of the obtained results, it appears that the 

average percentage of acceptable portions of ECG signals 

recorded by WWS system is about 60% of signal length.  

If we separately analyze the system behavior under both high 

and low intensity regimes, we can observe an important 

degradation of ECG signal quality, when a high intensity 

activity is performed. In fact, while the maintenance of P-

QRS-T complexes acceptable integrity is about 80% in the 
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case of a low energy activity, it approximately reduces of a 

half, when a high intensity activity is carried out.  

The gathered results confirm the difficulties to acquire 

reliable data in the field. Harsh and uncontrolled condition 

and activity of a certain intensity can imply sudden 

degradation of the signal quality. In this particular 

application an added source of artifacts relies on the use of 

heavy clothes and equipment (i.e., bulky backpack) of the 

mountain rescuers that affects the performance of the 

wearable device.  

Lastly, it’s worth to observe that the presented automatic 

SQA approach is not uniquely applicable to the specific case 

illustrated in the chapter but can also be extended to any 

possible context where it’s necessary to infer the acquired 

ECGs’ quality (both local and global). For example, this 

SQA method could even be employed to integrate and better 

the estimation accuracy of systems computing HR.   
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Chapter 3  

3 Analysis of fetal heart rate 
variability series. 

3.1. Introducing cardiotocography. 

In developed countries, all mothers are submitted to medical 

examinations to monitor fetal wellbeing throughout 

pregnancy. Although most pregnancies proceed 

physiologically, complications affect approximately 8% of 

the total ones [3.1]. These might arise due to adverse 

mother’s health conditions, thus leading to various medical 

issues, further impacting the health of both the mother and 

fetus. The negative impact on the fetus health is usually 

referred to as “fetal distress”, which is strictly linked to 

alterations in the FHR signal. 

The most employed diagnostic examination in the clinical 

practice to assess the fetal health during pregnancy is 

cardiotocography (CTG). In Italy, during pregnancy, each 

woman can undergo three or even more ambulatory CTG 

monitoring tests. In case mothers are diagnosed with a 

condition that makes the pregnancy high-risk, the screening 

occurrence can be scheduled on a weekly or even daily basis. 

Since the introduction of the first commercial 
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cardiotocograph in Europe by Hammacher in 1968, there has 

been a significant scientific effort and tremendous 

enthusiasm directed toward a method that appeared to offer 

a tangible means of understanding when and why fetal health 

deterioration occurred, thereby enabling more effective 

intervention [3.2]. 

CTG monitoring has gained widespread use in clinical 

practice since the 1970s. It remains the most widely 

employed method for monitoring the ongoing clinical 

condition of the fetus, despite the emergence of newer 

techniques such as Doppler velocimetry and ultrasound. 

Conventional CTG is a non-invasive method which monitors 

the fetal wellbeing by analyzing two different tracings, i.e., 

the fetal heart rate (FHR) and uterine contractions (TOCO) 

signals. The latter are recorded simultaneously by means of 

two different instruments which are placed on the abdomen 

of the mother to be (see Figure 3.1). The first US transducer 

is positioned near the fetal back and is used to record the 

fetal heart rate. The second one is used to collect the uterine 

contractions and is hence posed not far from the uterine 

fundus, which is located at the upper part of the uterus.  

Numerous studies have validated the reliability of CTG in 

predicting fetal hypoxia during the early stages of labor. 
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Figure 3.1:  CTG consists of the simultaneous recording of two 

diverse tracings, i.e., FHR and TOCO, which are obtained with 

two different transducers, placed on the abdomen of the pregnant 

woman. 

 

In contrast, an abnormal CTG test has limited predictive 

value for identifying fetal distress or hypoxia when 

compared to other indicators of fetal health, such as 

analyzing the acid-base balance of blood sampled from the 

umbilical artery or assessing the Apgar score. Indeed, a 

normal fetal heart rate (FHR) pattern predicts an Apgar score 

greater than 7 at 5 minutes with 99% accuracy, while a 

pattern indicative of fetal distress is associated with the birth 

of a healthy neonate in approximately 50% of cases [3.3].  

Conversely, the effectiveness of antepartum 

cardiotocography, or non-stress testing, in detecting fetal 

distress during pregnancy remains a subject of controversy. 

The primary challenge lies in the absence of a universally 

agreed-upon set of criteria for interpreting CTG tracings.  
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As a matter of fact, the complete non-invasiveness of CTG, 

which is the main characteristic that has determined the great 

diffusion of this technique, is however counterbalanced by 

the fact that in most clinical contexts CTG tracings are 

analyzed through eye inspection by obstetricians and/or 

gynecology specialists. Since the introduction of CTG in 

clinical practice, numerous visual reading systems have been 

developed, none of which has become the established 

standard. Furthermore, studies have highlighted that even in 

centers adhering to the same guidelines, individual observers 

rarely reach a consensus in evaluating the same tracing. 

Moreover, there is ample evidence that visual assessment of 

CTG tracings fails to capture all the intricacies of cardiac 

variability present in the FHR signal. Factors such as the 

extent of periodic components in the signal generated by the 

cardiac pacemaker, the non-linearity of the FHR control 

system, and short-term variability cannot be adequately 

discerned through visual inspection of the CTG tracing [3.4-

3.5].  

The considerable inter and intra-observer variability and the 

inability of the human eye to extract quantitative information 

from the FHR signal played a key role representing the real 

weakness of the method [3.6]. Moreover, attempts made so 

far to interpret the tracings, according to various guidelines, 

did not provide the desired results [3.7]. 

 

3.2. Computerized cardiotocography.  

The analysis of CTG tracings received a boost since the early 

1980s, with the introduction of computerized CTG (cCTG), 

which had the goal of overcoming the limitations of classical 

CTG.  

The cCTG relies on quantitative measurements of both FHR 

and UCs and extracts from the two signals a set of features 

that could offer better insights and assist clinicians in their 

evaluations [3.8-3.9]. Since the introduction of cCTG, for at 

least two decades, the research has focused on finding a 
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single methodological approach that could represent the gold 

standard in discriminating healthy from pathological fetuses. 

This allowed to quantitatively reproduce the standard 

analysis method based on eye inspection of CTG signals’ 

time course [3.10], conferring reproducibility to the method 

and playing a role in reducing the high intra and inter-

observer variability. However, it was not enough to reach a 

satisfactory assessment of fetal wellbeing. The reliability of 

such approach has been limited for long time using basic 

time domain analysis, considering linear parameters only. As 

a matter of fact, a better understanding of physiological 

mechanisms impinging FHR control showed how the 

Autonomous Nervous System (ANS) acts in a very complex 

way, particularly when pathological conditions arise. 

On the other hand, it has been observed that FHR changes 

anticipate and can predict fetal distress as well as adverse 

conditions before the insurgence of any other recognizable 

symptom [3.11]. In this context, more sophisticated FHR 

Variability (FHRV) investigations have been proposed, 

stressing the importance of considering multiple parameters 

to assess fetal state [3.12]. Moreover, even frequency 

analysis parameters started to be used for quantifying fetal 

cardiovascular control mechanisms as it happened for adults 

[3.13]. 

A further development was introduced with the application 

of non-linear methods to biological time series, which can 

investigate the geometric and dynamic properties of the FHR 

signal. Entropy estimators [3.14], complexity indices [3.15] 

as well as wavelets [3.16] and other nonlinear related 

parameters were applied with the aim to improve the 

information enhancement from the FHR [3.17-3.19]. Such 

techniques allowed to describe and understand complex 

physiological control mechanisms thanks to novel available 

tools. A review of the most used nonlinear indices applied to 

FHR was recently published by Ribeiro et al. [3.20]. These 

nonlinear indices were added to more traditional signal 

processing parameters developed in time domain such as the 

ones derived from classical analysis in time domain: Short- 
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and Long-Term Variability (STV and LTV), Delta and 

Interval Index (II) as proposed by Arduini et al [3.21].  

Thus, researchers started to understand that the problem of 

interpreting CTG tracings could not be solved by using a 

single index, but on the contrary it should make use of 

various features, extracted through different methodological 

approaches, to provide a reliable antenatal diagnosis. 

Dawes & al. in 1991 were the first to publish a pioneer 

multivariate approach to CTG analysis, stressing the 

importance of how the integration of multiple parameters is 

effectively improving the assessment of the fetal wellbeing 

[3.22]. 

Other examples of what above described are two papers 

[3.23-3.24] which focus on the early identification of Intra 

Uterine Growth Restricted (IUGR) fetuses. The multivariate 

model makes use of a small set of parameters and clearly 

shows how it outperforms accuracy, sensitivity, and 

specificity of each parameter in a univariate approach.  

Moreover, it is clear that the mother-fetus system during 

pregnancy should be considered as a whole; thus, it can be 

viewed as a continuously evolving system, which must be 

monitored by means of time-varying approaches. These 

should take into account the development of FHR control 

mechanisms and, as a consequence, the changes in the 

relevant parameters/features. Thus, the search for a unique, 

robust and reliable set of parameters to accurately describe 

the FHR signal still remains an open challenge due to the 

evolution and complex nature of the fetal heart rate 

variability [3.25]. 

3.3. On the limits of cCTG: new 
perspectives from AI. 

 

The multiparameter approach aroused great interest, in 

particular, in the evaluation of the onset of states of fetal 

pathology. However, as the number of parameters increased, 
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even a multifactorial statistical analysis became very 

difficult to be applied and researchers in the field of fetal 

monitoring started to consider AI techniques.  

In the current era, there has been a notable surge in the 

abundance of data across various domains of knowledge, and 

the field of medicine stands to benefit significantly from this 

wealth of information. However, clinical data often face 

challenges in terms of lack of structured records and 

standardization [3.26]. In fact, clinical data often consist of 

not organized and not structured collections of 

measurements, signals and information which limit their 

analysis and interpretability. Addressing these issues 

becomes crucial to extract meaningful insights from data. 

A medical exam that can benefit from a large amount of 

standardized and well-organized data is CTG.  

The integration of Artificial Intelligence (AI) into CTG data 

analysis holds the potential for improving the discriminative 

power of this methodology [3.27]. AI models have the 

intrinsic ability to discover patterns and trends in data that 

may go unnoticed by visual analysis, providing valuable 

insights to manage risky pregnancies and to take appropriate 

decisions [3.28].  

Indeed, several attempts have been made to address the 

problem of classifying CTG tracings through Machine 

Learning (ML) techniques [3.29-3.30].  

In recent years, the focus has shifted towards employing 

Deep Learning (DL) algorithms, which can implicitly 

understand signal characteristics without relying on 

predefined features. DL algorithms are considered the most 

promising approach in this field [3.31-3.33]. However, their 

effectiveness heavily relies on the availability of large 

amounts of labeled training data. Insufficient data quantity 

and/or the lack of accurate labels may hinder practical 

implementations, leading to overestimation of model 

generalization capabilities and an increased risk of 

misclassification. Moreover, to achieve high performance, 

these methods must deal with appropriately structured data. 
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Currently, large CTG datasets specifically designed for deep 

learning purposes are not readily accessible, and only a few 

CTG datasets are publicly available online.  

To the best of our knowledge the largest of them is the one 

presented by Ayres de Campos et al. [3.34]. This dataset 

does not include row CTG tracings, but only a series of 23 

features extracted from the FHR tracings. These describe 

statistical aspects of the latter such as variability and central 

tendency. Each record also contains a tag added by an expert 

clinician, indicating one among three possible fetal 

conditions, i.e., pathological (P), normal (N) or suspect (S). 

The dataset comprises a total of 2,126 instances split in 1,655 

N, 295 S and 176 P.  

Another freely accessible CTG dataset is the one described 

by Chudaceck et al. [3.35], which can be found in PhysioNet 

[3.36]. This contains 552 intrapartum recordings collected at 

the obstetrics ward of the University Hospital in Brno, Czech 

Republic. It includes the FHR time series and UC signals 

together with a set of maternal, delivery, and fetal clinical 

details. 

These two datasets are the most frequently used in the 

literature. For example, Fergus [3.37] used the dataset from 

[3.35]to prove that the employment of AI techniques has the 

potential to outperform visual inspection to determine 

whether a cesarean section was necessary or not. This dataset 

was also employed used to test various DL architectures such 

as those presented in the work from Zhao et al. [3.38] and in 

the study of Ogasawara et al. [3.39].  

Also the dataset from [3.34] was used in different works, 

including the one described in [3.40] which analyses the 

performance of ten ML classification models in predicting 

the fetal risk. The same dataset was also used in the work 

from [3.41] which explores the capacity of diverse ML 

algorithms such as Support Vector Machine, Random Forest 

and K-Nearest Neighbors to assess the fetal health state.  

Another available dataset is the one described in Signorini et 

al. [3.42] which includes a set of 12 linear and nonlinear 

indices referred to a little cohort of 120 fetuses, equally split 

in 60 healthy and 60 Intra Uterine Growth Restricted 
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(IUGR). This dataset has been used in several works, such 

as [3.43] which analyses the employment of the most 

common ML algorithms to predict IUGR.  

Among these datasets, only the one by Chudaceck et al. 

[3.35] contains the CTG signals and is therefore suitable for 

DL studies, despite its relatively low sample size. 

In general, publicly accessible CTG datasets suffer from 

some important limitations, particularly related to both 

limited numerosity and the lack of a fair balance in the 

representation of the different classes contained in the 

dataset. 

There are also several papers in the literature that refer to 

datasets that cannot be publicly accessed, such the one 

reported in the work from [3.44], which is said to contain 

more than 35,000 records, and the one mentioned in [3. 45], 

which is said to contain 73,802 nonstress tests.  

An extensive collection of CTG data could empower 

clinicians and researchers with a more accurate and 

comprehensive understanding of fetal well-being. In fact, a 

rich collection of organized clinical data could lead to an 

enhancement of CTG’s diagnostic capabilities, helping to 

detect signs of fetal distress or abnormalities.  

By analyzing a vast collection of CTG data, clinicians could 

identify patterns and correlations that might indicate 

potential risks or complications earlier, leading to more 

accurate diagnoses and timely interventions and hence 

improving patient outcomes. A large CTG dataset could even 

lead clinicians to have access to a broader spectrum of cases, 

including maternal conditions (such as diabetes) that could 

compromise the fetal outcomes. This could enable them to 

develop a deeper understanding of these situations, 

recognize subtle patterns associated with specific conditions, 

and make more informed decisions in challenging scenarios. 

 

In the next chapter we will illustrate the steps we took to face 

the aforementioned limits and that could lead to the setup of 

a large, balanced and structured dataset of labelled CTG 

recordings. The latter is suitable for the application of those 
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AI techniques, the application of which requires can’t do 

without large volumes of data to achieve acceptable results. 
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Chapter 4 

4 Data collection: the creation 
of NAPAMI, a novel dataset 
for cCTG. 

4.1. Background. 

 

As anticipated at the end of Chapter 3, the potential 

application of artificial intelligence (AI) techniques in the 

analysis of CTG data seems to be more than a hope to stem 

the limitations deriving from the visual inspection of CTG 

tracings. However, nowadays, the poor quantity of reliable, 

structured and labelled real clinical datasets represents a 

non-trivial obstacle, since the most promising AI methods 

(e.g., deep learning algorithms-DL) inevitably require a 

large amount of data to obtain high-quality results. 

This section illustrates the steps that, starting from an 

unorganized set of CTG recordings, collected at the Federico 

II Hospital in Napoli, Italy, have taken to the setup of a large, 

balanced, structured dataset of labelled CTG recordings, 

which we have baptized with the name NAPAMI.  
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In particular, in the course of the current section, it will be 

detailed how, starting from an unorganized collection of 

37,095 CTG recordings, stored in a MS-Access database 

during ambulatory non-stress tests, we managed to achieve 

the final version of NAPAMI. A four step procedure was 

adopted and allowed to a) extract the labels identifying 

pregnancy at risk b) preprocess the FHR signals by filtering 

out artifacts and loss of signal, c) extract time, frequency and 

non-linear domain indices and compute new parameters on 

the FHR signal, d) fix the remaining bugs. 

The obtained dataset has the necessary features allowing to 

explore the classification performances of all those 

algorithms which, by their nature, require many examples.  

In fact, NAPAMI is a large, structured and annotated dataset 

of CTG recordings (NAPAMI), that could be used for 

developing and testing AI supervised solutions to improve 

the care and outcomes of pregnant women and their 

offspring. 

This result opens application perspectives toward obtaining 

a system for the automatic classification of CTG recordings 

representing a reliable diagnostic tool to support clinical 

decisions. 

In fact, NAPAMI can be a valuable resource for testing and 

validating new approaches for the CTG classification, 

improving the management and outcomes of pregnant 

women in the antenatal period and during labor. In addition, 

the availability of a wide range of case histories could also 

grant clinicians access to a wider range of information and 

this could result in a deeper understanding of diverse 

antenatal scenarios. 

4.2. Data Collection and Access 
Database Completing. 

The CTG recordings were collected at the Gynecology and 

Obstetrics Unit, Department of Neuroscience, Reproductive 

Sciences and Dentistry, School of Medicine, Federico II 
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University of Naples, Italy, as part of routine antepartum 

fetal monitoring exams.  

The CTG monitoring was conducted in a controlled clinical 

environment, with the patients lying on an armchair, using a 

Philips Avalon FM30 device (Figure 4.1) equipped with an 

ultrasound transducer and a transabdominal 

tocodynamometer. These fetal monitors utilize an 

autocorrelation technique to compare the demodulated 

Doppler signal of a given heartbeat with the subsequent one, 

in order to obtain the heart period (equivalent to the RR 

period). The heart period is then translated into a heart 

frequency in beats per minute (bpm) upon the detection and 

acceptance of a new heart event. 

 

 
 

Figure 4.1:  The upper part shows the Philips Avalon FM30 

device, which is equipped with an ultrasound transducer and a 

transabdominal tocodynamometer for the registration of FHR and 

TOCO tracings. The latter are analyzed with the 2CTG2 software 

for the cCTG, which is illustrated below. 

 

Each CTG recording has a duration ranging from about 20 to 

60 minutes. 



Data collection: the creation of NAPAMI, a novel dataset for 
cCTG. 

 

 48 

The raw signals acquired were processed through the 2CTG2 

program [4.1], a software designed for the computerized 

CTG (Figure 4.1). This system reads the FHR and UC 

signals with a sampling frequency of 2Hz, which represents 

a good compromise to minimize the repetition of FHR values 

and to provide at the same time an appropriate level of detail 

for advanced analysis, including frequency and non-linear 

parameters. The 2CTG2 software allows users to inspect the 

FHR and UC signals on a computer screen.  

The 2CTG2 also includes algorithms, that perform the 

computation of several quantitative features, starting from 

the raw FHR tracings [4.2], as will be detailed in the 

following sections.  

At each exam, the CTG tracings, together with the computed 

parameter set, are automatically stored in a Microsoft Access 

Database (.mdb).  

Each recording is labeled with a class assigned by the 

members of the medical team at the occurrence of the first 

examination. The labeling process was carried out following 

the main indications for antepartum CTG monitoring with 

documented pathologies at risk of chronic hypoxia according 

to ACOG guidelines [4.3]. 

Code 01 refers to physiological pregnancies and includes the 

largest group of records. CTG monitoring was performed in 

physiological pregnancies starting from 39 weeks of 

gestation. Prior to this gestational week, the CTG in this 

group was only offered for study purposes.  

Code 02 is used to identify physiological twin pregnancies.  

Code 03 includes pregnant women with fetuses affected by 

IUGR or fluximetric alterations (fetal pathology).  

Code 04 includes all maternal pathologies that can cause 

chronic fetal hypoxia, such as type I, type II or gestational 

diabetes, essential or gestational hypertension, thyroid 

dysfunctions, maternal chronic kidney disease, systemic 

lupus erythematosus, connective tissue disease with 

autoantibodies to SS-A and SS-B, antiphospholipid antibody 

syndrome, maternal hypoxia, hemoglobinopathies and other 

maternal anemias with hemoglobin < 8 g/dl, cyanogenic 

maternal heart disease. It also includes pregnant subjects 



Data collection: the creation of NAPAMI, a novel dataset for 
cCTG. 

 

 49 

with severe obesity (Body Mass Index ≥40) and dyspnea or 

drug addicted.  

Code 05 is used to label cases of fetal malformation with 

potential cardiovascular impact. 

Code 06 mainly includes cases of maternal pathologies that 

have caused chronic fetal hypoxia. Therefore, this group of 

fetuses already experienced complications related to the 

maternal pathology (e.g., pregestational or gestational 

diabetes and macrosomia or hypertension/preeclampsia and 

IUGR, respectively), differently from fetuses with code 04 

where the risk is only potential.  

Code 07 includes fetuses affected by a malformation 

diagnosed or suspected during the 2nd trimester of 

pregnancy (e.g. heart disease, suspected esophageal or 

duodenal atresia, clubfoot, spina bifida) associated with at 

least one obstetric complication developed during the 3rd 

trimester of pregnancy (e.g. IUGR, macrosomia, 

polyhydramnios, oligohydramnios). These are fetuses at 

increased risk for genetic and/or chromosomal syndromes, 

which are often diagnosed after birth.  

Code 08 includes pregnant women with an obstetric disease 

potentially causing chronic fetal hypoxia associated with a 

fetal malformation diagnosed or suspected during 2nd 

trimester screening ultrasound (e.g. chronic/gestational 

hypertension and fetal heart disease or pregestational 

diabetes and fetal heart disease or spina bifida, respectively). 

It is not necessary that a correlation between the maternal 

pathology and the fetal malformation has been demonstrated.  

Code 09 includes twin pregnancies in which one or both 

fetuses developed a pregnancy related complication, almost 

always IUGR.  

Code 10 includes twin pregnancies in which the pregnant 

woman is affected by pathologies with a potential risk of 

chronic fetal hypoxia.  

Code 11 includes twin pregnancies in which one or both 

fetuses have a malformation diagnosed or suspected during 

2nd trimester screening ultrasound. These are fetuses at 

increased risk for genetic and/or chromosomal syndromes, 

often diagnosed after birth.  
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The 12th group (“xx”) includes records without a code. They 

are associated with recordings belonging to pregnancies 

classified as high-risk but in which fetuses were never 

associated to a risk of fetal chronic hypoxia. These were 

collected exclusively for study purposes.  

A code for late-term or post-term pregnancy has not been 

included, because pregnant women over 40 weeks + 6 days 

of gestation were managed in the emergency room.  

Oligohydramnios has not been considered as an independent 

risk category, because it was frequently associated with other 

pregnancy complications, such as IUGR or premature 

rupture of membranes. The term or preterm premature 

rupture of membranes with suspected chorioamnionitis was 

managed in the emergency room and then admitted in the 

Obstetrics Unit.  

Decreased fetal movements is an occasional indication to 

CTG. However, since if the trace is reactive and the amniotic 

fluid is regular (maximum pocket >2 cm) there is no 

indication to repeat the exam, a specific code was not 

assigned. Maternal-fetal isoimmunization and previous fetal 

death (unexplained or recurrent risk) are also infrequent 

events, therefore no specific code has been assigned. 

A summary reporting codes and their related description can 

be found in Table 4.1. 
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Table 4.1: Outpatient code with associated description. 

CODE DESCRIPTION 

01 physiological pregnancy 

02 twin pregnancy  

03 
fetal pathology (Intra Uterine Growth Restriction - 

IUGR, fluximetric alterations) 

04 
maternal pathologies that can cause chronic fetal 

hypoxia 

05 
fetal malformation (with possible cardiovascular 

impact) 

06 maternal pathology + fetal pathology 

07 fetal pathology + fetal malformation 

08 maternal pathology + fetal malformation 

09 twin pregnancy + fetal pathology 

10 twin pregnancy + maternal pathology 

11 twin pregnancy + fetal malformation 

xx 
Unknown (records that do not fall into any of the 

above categories) 

 

 

The Access Database (.mdb) includes a set of records 

relating to 10,918 pregnant women, yielding a total corpus 

of 37,095 CTG registrations. Before it was provided to us, 

the database was completely anonymized by the hospital 

itself to safeguard the privacy of pregnant women who 

underwent the examination. Avoiding compromising the 

confidentiality of the individuals represented in the data, 

each personal information, including name, surname, 

address etc., was removed. 

The aforementioned Access database has been organized 

into 4 tables: 

 PCC_INFO: includes a "notes" column 

containing the outpatient code together with 
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details such as the Apgar score, and any other 

comment, manually added by the clinician.  

 CTG_EXAM: contains the reference ID 

associated to the patient and to the exam and the 

gestational week.  

 

 CTG_PARAMETERS: contains the ID associated 

to the exam and the parameters computed by the 

2CTG2 software.  

 

 CTG_TRACES: contains the ID of the exam, the 

length of the FHR trace and the row CTG signals, 

i.e., FHR, UC and fetal movement profile (FMP), 

compressed as Binary Long Objects (BLOB). 

Figure 4.2 shows the schematic representation of the 

Microsoft Access Database (.mdb). The dashed lines in 

represent the linkages between the four tables composing the 

structure.  

 
 
Figure 4.2:  Structure of the Microsoft Access Database (.mdb 

file). CTG_EXAM and PCC_INFO are linked through the key 

PATNUM. While CTG_PARAMETERS, CTG_EXAM and 

CTG_TRACES are linked through the key ID_PREST. 
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4.3. Extracting data from the Access 
database. 

The first step towards building up the final structured dataset 

is the retrieval, from the Access (.mdb) database, of all the 

information relative to each exam, including the row tracings 

and the parameters computed by the 2CTG2. This was 

obtained by establishing a connection with the Access file 

and retrieving the fields of interest through an SQL query. 

To this end MATLAB 2021a was employed. 

After each record was retrieved from the Access database, 

the BLOB objects codifying the row CTG tracings were 

decrypted to obtain FHR signals, together with perceived 

fetal movements (FMP) and UCs. A more detailed 

description of FMP will be furnished in Chapter 5.  

Once the raw FHR traces were extracted, a preprocessing 

step was applied to remove artifacts. As seen in Chapter 1, 

in clinical practice, the FHR signal is recorded using an 

ultrasound (US) probe placed externally on the abdomen of 

the pregnant woman. Movements produced by the opening 

and closing of the fetal cardiac valves represent the 

information content of the US signal. By an algorithm based 

on the autocorrelation function, the firmware of the CTG 

monitors reconstructs with good accuracy the occurrence of 

the fetal beats providing the FHR. However, there are several 

factors that can affect the measurement of FHR, such as the 

movement of the mother and fetus, the displacement of the 

transducer, and also events in the external clinical 

environment. 

This can result in artifacts and signal losses which are the 

major sources of noise in the fetal signal. Therefore, the main 

goal of the pre-processing phase is to reduce these 

disturbances that worsen the successive phases of the 

analysis of the signals.  Signal intervals with losses having a 

duration of less than 15 s, were linearly interpolated, while 

losses of longer duration, were instead completely removed 

from the signal. Figure 4.3 shows an example of a noisy row 

FHR signal before (a) and after (b) pre-processing. 
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Figure 4.3:  example of row FHR signal before (a) and after 

(b) artifacts removal. 

For what concerns instead parameters, the group of 

regressors automatically computed by the 2CTG2 includes a 

heterogeneous set of indices, pertaining to different 

domains, which are yet known in literature and allow for a 

description of FHR signals from different viewpoints. The 

2CTG2 performs the calculation of parameters on non-

overlapping 3-minutes windows and then averages the 

obtained values. The classical set of features automatically 

calculated by the 2CTG2 comprises:  

 

1) Time domain parameters: mean FHR, Delta [4.4], 

Interval Index (II) [4.5], Short Term Variability 

(STV) [4.4-4.5], Long-Term Irregularity (LTI) [4.4] 

and number of large and small accelerations per hour 

[4.6]. 

 

2) Frequency domain parameters: Low Frequency (LF), 

Movement Frequency (MF), High Frequency (HF) 

[4.7]. 
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3)Non-linear parameters: Approximate Entropy (ApEn) 

[4.8-4.9]. 

 

4.4. Computation of additional 
parameters at different time scales. 

We decided to integrate the set of parameters computed by 

the 2CTG2 with a new set of indices already known in the 

literature, although some come from different research 

domains. The new feature set includes the binary and ternary 

Lempel-Ziv Complexity indexes (LZ2, LZ3) [4.10-4.11], 

Acceleration and Deceleration Phase Rectified Slope 

(APRS, DPRS) indices extracted from the Phase Rectified 

Signal Averaging (PRSA) [4.12-4.13], acceleration and 

deceleration capacities (AC, DC) [4.12], deceleration 

reserve (DR) [4.14]), the normalized power in the LF, MF 

and HF bands computed from the PRSA signal [4.12], 

Sample Asymmetry [4.15] and Sample Entropy (SampEn) 

[4.16-4.17]. 

We decided to perform the computation of the different 

parameters introduced so far at diverse time scales.  

In particular, a group of 16 global parameters (PG) was 

computed on a single segment of 20 minutes extracted from 

the whole FHR signal, which corresponds to the longest 

segment available for all recordings, and includes: mean 

value, median value, standard deviation, inter-quantile 

range, acceleration and deceleration capacity (AC, DC), DR, 

APRS, DPRS, normalized power in the LF, MF and HF 

bands computed from the PRSA signal, Sample Asymmetry, 

SampEn , ApEn, LZ2, LZ3.  

In addition to the features calculated by considering the 

signal in its entirety, other parameters were computed by 

shifting a fixed size moving window (1 min or 3 min) along 

the FHR signal, and are stored as series. More specifically, 

the parameters computed at each slide of the 3-minute length 
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window (P3) include 19 indices, i.e., mean frequency, total 

signal power, power in the Very Low Frequency (VLF), LF, 

MF and HF bands, percentage of power in LF, MF and HF 

bands, LZ2, LZ3, ApEn and SampEn (both computed with 3 

different parameter choices), LTI both with and without 

excluding large accelerations.  

Moreover, 6 parameters were computed at each shift of the 

1-minute length sliding window (P1): DELTA, STV and II, 

all computed with and without excluding accelerations and 

decelerations.  

An exhaustive description of each of the presented 

parameters can be found in the Appendix section. 

4.5. Final adjustments. 

Once the row tracings had been extracted and processed, the 

outpatient code retrieved, and the 2CTG2 parameters 

integrated with the new set of features computed at different 

time scales, a processing step was necessary to fix 

inconsistencies within the dataset assembled so far.  

The process involved several steps, such as eliminating 

duplicated records. Additionally, records with a duration of 

less than 20 minutes were removed, along with those where 

the gestational age or maternal age was missing or lacked 

plausible values (e.g., mother age over 70). Furthermore, 

excessively poor-quality signals, characterized by 

significant noise distortion, were directly discarded. Finally, 

we proceeded to correct typos from the “notes” field. The 

latter contains several information about the health status of 

both mother and fetus as well as the related outpatient code. 

Since this field is manually filled out by the physician 

performing the analysis, it is possible that the entered text 

includes spelling and typographical errors that needed to be 

fixed to allow a correct retrieval of meaningful information. 

Figure 4.4 summarizes all the aforementioned steps.  
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Figure 4.4: Visual illustration of the necessary steps taken to 

clean the records retrieved from the Access Database and obtain 

the final Dataset. 

4.6. NAPAMI: the obtained dataset.  

After all the steps discussed so far, the obtained dataset 

includes a total of 24,491 CTG records, organized in the 

form of a MATLAB table (. mat).  

The NAPAMI Dataset comprises 16 fields which can be 

organized into 3 groups by their semantic meaning, as 

schemed in Figure 4.5. 

The first group includes information related to pregnancy. In 

particular, it comprises the patient number (PATNUM), the 

age of the pregnant woman, the gestational week, the 

outpatient code and the note field. This contains several 

information items about the maternal and fetal health status, 

such as the presence of pre-existing pathologies, the 

assumption of drugs, the maternal weight etc. It is important 

to note that the PATNUM does not match the identifier 

originally assigned in the Access database. In fact, the latter 

has been replaced by a new numeric code whose sole purpose 

is to identify examinations related to the same patient, within 

the same pregnancy. 
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Figure 4.5: Schematization of the final dataset. The obtained 

dataset, consisting of 16 fields, can be organized into 3 

groups. The first group includes data related to pregnancy 

while the second and the third ones respectively comprise 

the CTG signals and the computed parameters’ sets. 

 

The second group comprises the CTG tracings, including the 

row FHR signal together with QUALITY, TOCO and FMP. 

Each QUALITY trace has the same length as the 

corresponding FHR trace. For each FHR sample it indicates 

the related quality through a number ranging from 32 (good 

quality) to 224 (bad quality). The FMP trace is also as long 

as the corresponding FHR signal and is an array composed 

of zeros and ones, respectively indicating the 

presence/absence of perceived fetal movements.  

In addition to the raw FHR signals, we enriched the final 

dataset by adding both the corresponding denoised FHR 

traces in beats per minute (FHR120bpm) and their associated 

baselines (Base120bpm). From these, we identified the time 

points where accelerations and decelerations occur and their 

duration in seconds (Intacc120bpm, Intdec120bpm).  

The third group includes all the parameters computed at 

different time scales, which have been detailed in the 

previous session. 

The number of records stratified by gestational code is 

illustrated in the bar plot in Figure 4.6 (a), while Figure 

4.6(b) depicts the number of occurrences per gestational 

week. 
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Figure 4.6: (a) Number of occurrences per outpatient code; 

(b) number of records per gestational week. 

As regards the numerosity per outpatient code, Figure 4.6 

(a) clearly shows that the most represented class in the 

dataset coincide with physiological pregnancies (01). 

Moreover, it is possible to observe that a good portion of 

records are related to codes 03 and 04, which refer to the 

fetal and maternal conditions at greatest risk of chronic fetal 

hypoxia, for which CTG monitoring is required. 
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Code 06 includes maternal conditions resulting in chronic 

fetal hypoxia. The numerosity of this group is likely 

underestimated because the code was assigned during the 

first outpatient access, and unfortunately was rarely updated 

according to the evolution of obstetric complications. Foer 

example, many patients had a code 04 for hypertension and 

the fetus later developed IUGR but remained with a code 04 

until delivery.  

Codes 05, 07, 08 and 11 are poorly represented because the 

incidence of fetal malformations in live fetuses is low during 

the 3rd trimester of pregnancy. Indeed, in many cases the 

patients voluntarily terminated the pregnancy during the 1st 

or 2nd trimester. When the patient decided not to terminate 

the pregnancy despite severe cardiac, neurological or renal 

malformations with a low probability of neonatal survival, 

CTG monitoring was not performed.  

The group “xx” included recordings performed in high-risk 

pregnancies not directly associated with fetal chronic 

hypoxia, for which there is no indication for antepartum 

CTG monitoring. This is a very heterogeneous group that 

includes pregnancies obtained with medically assisted 

procreation techniques, pregnancies complicated by 

cholestasis or severe hypertransaminasemia, autoimmune 

hypothyroidism, high-risk thrombophilia, severe obesity, 

maternal seroconversion for toxoplasmosis, 

cytomegalovirus or HIV. These are maternal conditions that 

could affect fetal well-being. Therefore, it was decided to 

monitor their pregnancies only for clinical research 

purposes.  

Since gestational weeks from 34 to 39 individuate the typical 

time interval during which antepartum CTG is performed, 

the majority of records fall within this period (see Figure 4.6 

(b)). Generally, monitoring starts from the 32nd week and 

has a weekly frequency, but the decision to start the 

antepartum CTG, as well as the frequency of controls, 

depends on the severity of the risk of hypoxia. In many cases, 

monitoring was started before the 32nd week and the 

frequency was biweekly, triweekly or even daily. Except for 

specific situations, it was not performed multiple times a 
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day, because CTG is not predictive of acute adverse events 

(49). Most of the monitoring sessions were performed near 

term or at the end of the pregnancy, to identify the best 

timing for delivery. 

Figure 4.7 shows another important factor to consider: the 

resulting well-balanced composition of NAPAMI for records 

related to physiological pregnancies and those with potential 

risks. By aggregating records labeled with codes 01 and 02 

into one group representing physiological pregnancies, and 

grouping the remaining data labeled with codes 03 to 11 as 

potentially risky pregnancies, we can observe that the dataset 

is nearly evenly distributed between these two groups. 

 

 
 

Figure 4.7: portion of records with codes 01-02 

(physiological) vs 03-11 (risky). 

4.7. Final considerations on NAPAMI. 

In this chapter we have provided a detailed description of the 

steps taken to build up NAPAMI, which is, at date, one of 

the largest datasets on antepartum monitoring of healthy and 

high-risk pregnancies. It is a systematic and continuous 

collection of information on the clinical characteristics of 

patients and their fetuses during pregnancy up to delivery. In 

many cases of high-risk pregnancies, fetal monitoring data 

are available as early as the 26th week, and for some of these 

patients, data on delivery and neonatal outcomes are also 
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available. The presence of an extensive collection of clinical 

data as the one provided by NAPAMI, coupled with the 

pursuit of fresh clinical evidence and the potential for 

ongoing assessment, would enable healthcare professionals 

in the fetal medicine to gain a more precise understanding of 

fetal well-being. This, in turn, can aid in making informed 

decisions regarding i.e., the optimal timing of delivery, 

particularly in cases where delivery must be conducted 

before the 34-week and carries the combined risks of 

prematurity and fetal pathology. 

The dataset resulting from the various processing stages 

outlined in the manuscript enables the integration of existing 

clinical knowledge with findings from experimental 

research, verifying its practical applicability in clinical 

settings, and generating new evidence where it is currently 

lacking.  

NAPAMI represents a reliable picture of the population of 

pregnant women over a quite large time window in a 

standard clinical context. Moreover, based on the evidence 

that the mother-fetus system should be considered as a 

whole, pregnancy can be viewed as a continuously evolving 

system which can be analyzed through time-varying 

approaches and our dataset contains longitudinal data 

coming from both healthy and risky pregnancies. 

In fact, another significant benefit provided by the computed 

set of parameters within NAPAMI, is the possibility to 

evaluate the progression of fetal CTG features over time, 

without any restrictions, across all monitored patients. This 

presents a valuable opportunity for continuous auditing and 

analysis. The added value of these features will also be to 

facilitate a reliable analysis of FHR signal both for clinicians 

and researchers, independently from the methodological 

approach they decide to adopt. The dataset should be 

considered a tool to empower the diagnostic reliability of 

CTG.  

In addition, the availability of a wide range of case histories 

could also grant clinicians access to a wider range of 

information, including those involving maternal conditions 

such as diabetes that could impact fetal outcomes. 
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Consequently, this could result in a deeper understanding of 

these scenarios, recognizing subtle patterns associated with 

specific conditions, and making more informed decisions 

even in challenging circumstances. Through the analysis of 

a vast set of CTG data, clinicians would be able to identify 

patterns and correlations that may indicate potential risks or 

complications at an earlier stage of pregnancy, enabling 

more accurate diagnoses and timely interventions.  
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Chapter 5 

5 Time and spectral analysis of 
CTG tracings. 

In the previous chapter, we provided a comprehensive 

account of how we successfully constructed a rich dataset of 

CTG tracings (NAPAMI). This expansive collection paves 

the way for groundbreaking possibilities in the analysis of 

CTG signals.  

In the following chapter, we will harness the wealth of this 

dataset to delve deeper into the comprehension and 

interpretation of FHR traces, exploring them both in 

temporal and spectral domains. 

Section 5.1 introduces a novel methodology centered around 

a Hidden Markov Model, designed for the automatic 

identification of fetal behavioral stages within FHR tracings. 

This innovative approach promises to enhance our ability to 

discern and classify different stages of fetal activity, adding 

an invaluable layer of insight to our analysis. 

Section 5.2 presents an innovative approach to the spectral 

analysis of FHR tracings. We aim to provide a fresh 

perspective on spectral analysis, comparing the performance 

of our approach with that of more commonly employed 

traditional methods.  
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Through this chapter we will shed light on the potential 

advantages and benefits of our proposed methodologies in 

elucidating the intricacies of FHR patterns. 

5.1. Identification of fetal behavioral 
stages in FHR tracings. 

For a proper understanding of CTG tracings, it is essential to 

know the pathophysiological mechanisms underlying 

changes in FHR both ante- and intra-partum. In particular, a 

correct interpretation cannot help but consider how fetal 

behavioral states influence heart rate and fetal 

responsiveness [5.1]. 

The transition from one to the other behavioral state is a sign 

of integrity and good maturation of the fetal central nervous 

system (CNS) and autonomic nervous system (ANS). For 

example, a trace with no accelerations in 20 minutes of 

recording ("nonreactive") could be due to a quiet behavioral 

state. The longer the period of time in which there are no 

accelerations, the greater the risk that the fetus may be in a 

hypoxic condition. Conversely, a highly responsive well-

oxygenated fetus might have incoming accelerations for 

more than an hour and simulate fetal tachycardia, a condition 

associated with hypoxia [5.2]. 

For these reasons, the automatic identification of fetal 

behavioral states is a challenging but fundamental task in 

cCTG. Being able to spot the distinct fetal stages within the 

CTG tracings has the potential to increase the interpretability 

and reliability of this diagnostic methodology and is of 

fundamental clinical relevance. In fact, from the duration of 

the different phases, important information about the state of 

fetal well-being is derived. It has been observed that 

prolonged phases of inactivity are important indicators of 

pathological conditions, and alterations in the physiological 

alternation of fetal states have been associated with several 

conditions in pregnancy [5.3-5.7]. Moreover, CTG 

parameters have been shown to vary substantially according 
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to the behavioral state, which suggests that they should be 

more correctly interpreted knowing the fetal state in which 

they were computed [5.8-5.11].  

Indeed, as discussed in [5.12], the fetal behavioral state has 

been shown to affect the responsiveness of CNS. 

Nijhuis [5.1] reported that for fetuses at term (i.e., from 36-

38 weeks of gestation), 4 distinct behavioral states can be 

identified, which closely follow the behavioral states 

observed in neonates. These states are referred to as 1F (quiet 

sleep), 2F (active sleep), 3F (quite awake) and 4F (active 

awake). Each is characterized by a typical FHR pattern and 

is associated with a different motility and eye movements 

profile. 

In fetuses not yet at term this distinction is less clear and is 

often difficult to identify these 4 behavioral states by 

definition.  

In the context of the non-stress test, it is more common to 

consider only two states (i.e., “active” and “quiet”) which 

can be more consistently identified also at earlier gestational 

ages [5.13-5.14].  

The identification of different fetal states within CTG 

tracings is, to date, still left to the clinician's experience and 

can consequently lead to discordance in interpretations. In 

the wider context of automatic identification of fetal 

behavioral states in the FHR, only a few simple algorithms 

for their identification have been presented in [5.15-5.17]. 

In this section, we present an unsupervised method based on 

Hidden Markov Models (HMMs) for clustering FHR signals’ 

points as belonging to “active” and “quiet” states. We 

believe that HMMs could be particularly well-suited for this 

task for several reasons. Unlike other clustering techniques, 

they correctly capture the inherent temporality of the 

analyzed signal and they naturally exploit the clinical 

observation that FHR signals change their characteristics in 

time, alternating among different phases that present 

consistent similarities and are generated by variations in the 

fetal state, which cannot be directly observed. Moreover, 

they are fully data-driven and present the great advantage to 

be very well interpretable.  
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The proposed approach is based on shifting a fixed-length 

sliding window on the FHR tracing and extracting a small 

set of features at each slide. The parameters are considered 

to be the set of emissions/observations of the HMM while 

the “active” and “quiet” phases are the hidden states. After 

the unsupervised training phase, the model can automatically 

assign each point of the shifting window to the state under 

which it is more likely to have observed the emitted set of 

observations [5.18].  

An illustration of the procedure is shown in Figure 5.1. 

 

 
 

Figure 5.1: Illustration of the whole described procedure. 

At each shift of a 3-min sliding window, a set of selected 

parameters, describing different aspects of the FHR chunk 

within the 3-min window, is obtained. The computed set is 

then properly encoded and passed in input to the HMM. The 
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latter predicts the state which is more likely to have 

generated the observed sequence of parameters. 

5.1.1. Overview of the proposed method. 

 

The core idea behind this approach is to exploit the a priori 

knowledge of the existence of two distinct fetal stages (A 

and Q) to develop an unsupervised classification model for 

their identification within an FHR signal. The need for 

adopting an unsupervised learning approach, which aims at 

discovering patterns and relationships in data without any 

predefined guidance (no labelled data as in the supervised 

case) derives from the absence of an objective external 

source of information that can be used to identify the labels 

(i.e., the ground truth). 

In particular, in our work, we set up a discrete emissions 

multivariate HMM with two possible states (A and Q), one 

for each possible fetal phase. The HMM states are not 

directly visible, but they are observable through a discrete 

set of emissions; the latter consists of the discretized values 

of a set of parameters computed on a moving window 

running on the FHR signal. Hence, at each shift of the sliding 

window, the computation of a set of quantitative features, 

describing different aspects of the FHR signal, is performed. 

Each variable in the set is then codified so that the 

parameters’ set is in the form of a binary array, that is passed 

to the trained HMM. The latter gives back the state (A or Q) 

most likely to have given rise to the observed set of 

emissions.  

The chapter has the following structure: a brief introduction 

on HMMs is provided in Section 5.1.2; Section 5.1.3 

furnishes details about parameters computation and 

encoding; Section 5.1.4 illustrates the proposed HMM for 

the fetal states assessment; Section 5.1.5 shows details about 

training and testing of the developed model, while the 

proposed HMM’s results are illustrated in Section 5.1.6 

while Section 5.1.7 provides a statistical comparison 



Time and spectral analysis of CTG tracings. 

 

 70 

between the identified fetal phases. Lastly, final discussions 

about the work are presented in Section 5.1.8. 

 

5.1.2. A brief introduction to Hidden Markov 
Models. 

 

Classical Markov models are random stochastic processes in 

which the probability that rules the transition from one state 

of the system to another one only depends on the 

immediately preceding one and not on the whole trajectory 

of states that have brought to the actual one (memory-

lessness property). In standard Markov models, the states of 

the system are directly observable. 

HHMs, on the other hand, are Markov models in which the 

states are not directly observable, but are inferable through a 

set of random variables, called observations or emissions, 

that are probabilistically related to the unobservable states 

[5.18]. 

 

An HMM is defined through: 

 

• A set S of N possible states {S1, ..., SN}. 

 

• A set A of M possible emissions/observations  

{a1, …, aM}. 

 

• A N x N transition matrix called P such that  

P(i, j) = pij = p(Sj|Si). 

 

• A N x M emission matrix called E such that  

E(i, j) = eij = p(aj|Si). 

 

• A 1 x N vector π0 of prior probabilities. 

 

The P matrix regulates state changes, while the E matrix 

rules the probability of a given state to emit a certain symbol 
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(observation). HMMs can present univariate or multivariate 

emissions. In the first case, a single observation is emitted at 

each time, while in the second one, a set of observations is 

issued. 

The P and E matrices are learnt during the training phase 

through the Baum-Welch algorithm, a special case of the 

expectation-maximization (EM) algorithm [5.19]; the 

algorithm requires an initial estimate of π0, E and P, which 

are then updated to the current values during the training.  

Once an estimate of matrices E and P has been obtained, the 

model can be exploited to make predictions. Specifically, 

given a particular sequence of observations, the model will 

use the learnt knowledge to predict the trajectory of states 

most likely to have given rise to the observed sequence. This 

task is addressed through the Viterbi algorithm [5.20]. The 

prototype of an HMM is depicted in Figure 5.2. 

 

 
 

Figure 5.2: Scheme of a generic Hidden Markov Model 

with N states and M possible emissions for each state. The 

probability to observe the jth emission in the ith state is 

ruled by the emission probability eij. On the other hand, the 

probability of shifting from state i to state j is governed by 

pij. 
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5.1.3. Parameters computation and encoding. 

 

The tracings employed to conduct the presented work are 

from the NAPAMI dataset (see Chapter 3). From this huge 

data collection, we only considered denoised signals for 

gestational weeks between 30 and 40. 

We decided to perform the computation of a set of 

parameters on 3-minute moving windows (i.e., 360 points of 

the tracing), shifting along the FHR signal with a 5-second 

stride (10 signal points).  

The parameters we decided to include in our study are those 

which, based on our prior knowledge, we expect to vary the 

most between Active and Quiet states.  

In particular, the regressor set we considered comprehends 

two groups of features, the first of which includes parameters 

that are directly obtained from the FHR signal, and the 

second of which is formed by a single signal-independent 

feature, hence not straightly derived from the tracing.   

The first group is formed by 5 parameters and includes the 

variance of the signal or total power (PWT), DELTA, 

Sample Entropy (SampEn), the power in the very-low 

frequency range (VLF) and the number of accelerations 

within the window (Accel.). All features are computed onto 

the whole three-minute windows except from DELTA, 

which is obtained only using the points belonging to the 

central minute of each window, for consistency with its 

definition [5.21]. 

PWT and DELTA are two linear measures of variability in 

the time domain, which are known to increase during fetal 

activity [5.8] [5.22], DELTA is a commonly used parameter 

in clinical practice and consists of the difference between the 

maximum and minimum value of the signal after the 

application of a low-pass and down-sampling procedure 

excluding accelerations and decelerations [5.21]. Wide 

variations in terms of this parameter among distinct 

behavioral states have been reported in the literature [5.8]. 

SampEn is a family of statistical indices that measure 

regularity, or predictability, by counting the presence of 
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repetitive patterns. SampEn has been shown to increase 

during quiet states [5.8], [5.22]. VLF was computed as the 

percentage of the power of the detrended signal at 

frequencies below 0.03Hz. This feature has been shown to 

vary substantially between active and quiet states in [5.8]. 

The accelerations are identified according to the definition 

provided in [5.23] as periods longer than 15 seconds during 

which the FHR remains at least 5 bpm above the baseline 

and that have a maximum amplitude of at least 10 bpm. 

The second group of parameters coincides with the 

percentage of perceived fetal movements (FMP) inside the 

window. The FMP signal is the result of the pregnant woman 

pressing a button, integrated within the system, to indicate 

the perception of fetal movements during the CTG 

examination. Technically, the FMP is a signal that has the 

same duration as the FHR trace, where the perceived 

movements are indicated by the value 1 and the remaining 

points have a value of 0. In our study, we refer to FMP as the 

percentage of perceived movements within the 3-min 

window. 

Accelerations and fetal movements are perhaps the most 

typical characteristic of activity phases in CTG traces. 

However, their presence does not automatically indicate that 

the fetus is in an active state. FMPs, for example, may be 

present also in the quiet phase 1F, although more 

sporadically, and could be the result of the mother’s 

misperception [5.24].  

The choice of integrating a set of indices derived from the 

FHR tracing (PWT, DELTA, SampEn, VLF, Accel.) 

together with a signal-independent feature (FMP) has the 

intent to allow objective and subjective information to co-

participate and work in tandem to the process of identifying 

fetal stages. 

A summary reporting the computed parameters is shown in 

Table 5.1. Parameters were computed using MATLAB 

R2022b (The Math Works, Inc.). 
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Table 5.1: Summary of computed parameters  

Method Parameter 
Sequence 

length 
Hypothesis 

Time domain 

DELTA 1 min Variability of FHR 
signal in the time 

domain 
PWT 3 min 
Accel 3 min 

Frequency 

domain analysis 

 
VLF 

 
3 min 

Quantification of the 

activity of the autonomic 

nervous system 

Signal 

regularity and 

predictability 

SampEn 3 min 
Presence of recurrent 

patterns in a single 
scale 

Signal 

Independent 
FMP 3 min 

Mother’s perception of 
fetal movement 

 

 

Once the parameters’ set is obtained at each shift of the 3 

minutes sliding window, the latter needs to be properly 

encoded to be passed as input to the HMM. 

As previously stated, the idea is to interpret the group of 

regressors computed at each sliding of the moving window 

as the set of observable random variables emitted by the 

actual state of the HMM (i.e., the emissions). These 

observations are probabilistically related to the system’s 

state through the emission matrix E, which is estimated 

during the training phase.  

Since each parameter is continuous, we decide to put 

ourselves in a simplified case, by converting each variable to 

categorical. PWT, VLF, SampEn, DELTA and FMP are 

categorized according to the 33.3 ̅rd and 66.6 ̅th percentile 

values of their respective PDFs, which have been computed 

considering all the signals in the dataset. Accel., on the other 

hand, is binarized with respect to the presence or absence of 

accelerations within the 3-minute window. Thus, each 3-

minute excerpt of the FHR signal is converted into a binary 

vector of 17 symbols, formed by 5 triplets and a final tuple. 

The first 5 groups of 3 digits respectively indicate low, 

middle and high values of PWT, VLF, SampEn, DELTA and 

FMP, and the last group of 2 symbols stand for the presence 

or absence of accelerations.  
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For example, let’s assume we consider a 3 minutes’ chunk 

of FHR signal, described by high PWT, middle VLF, low 

SampEn, high DELTA, high FMP and presence of 

accelerations; the latter will be coded as “0 0 1 0 1 0 1 0 0 0 

0 1 0 0 1 1 0” (see Figure 5.3). 

 

 

 
 
Figure 5.3: Schematization of the adopted encoding 

procedure. Each 3-min excerpt of FHR signal is summarized 

by a set of 6 parameters. Each of the latter is categorized 

accordingly to the values of the 33rd and 66th percentiles of 

their relating PDFs.  For example, a 3 minutes’ chunk of FHR 

signal, described by high PWT, middle VLF, low SampEn, 

high DELTA, high FMP and presence of accelerations; the 

latter will be coded as “0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 0” . 

5.1.4. The proposed HMM for the fetal state 
assessment. 

 

The intent of the present work is to demonstrate how HMMs 

can be used as a tool capable of enabling the unsupervised 

identification of fetal states within an FHR signal.  
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In our attempt to the problem, we make the modelling 

assumption that the system can be described by an HMM 

with two possible states (N = 2), i.e., activity (A) and quiet 

(Q). The evolutional dynamics of this system are governed 

by its emission and transition probabilities, which are 

estimated during the training phase, as will be explained in 

Section 5.1.5. The emission set A is hence composed of 17 

possible observations: A= {PWT low, PWT middle, PWT 

high, VLF low, VLF middle, VLF high, SampEn low, 

SampEn middle, SampEn high, DELTA low, DELTA 

middle, DELTA high, FMP low, FMP middle, FMP high, 

Accel. yes, Accel.no}. This modelling choice hence makes 

the E matrix of size N x M, and the P matrix of size N x N 

where N = 2 and M = 17. A representation of the developed 

HMM is depicted in Figure 5.4. The HMM was 

implemented in Python, version 3.7. 

 
 
Figure 5.4: Illustration of the HMM structure in the complete 

case. The developed HMM consists of 2 possible states (Quiet 

- Q and Activity - A), each of which can generate a discrete set 

of observations. L, M and H respectively denote low, middle 

and high values for each discretized parameter. 
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5.1.5. HMM training and testing. 

After defining the structure of the model and coding each 3 

minutes’ chunk of FHR, as explained in Sections 5.1.3 and 

5.1.4, we proceed to the estimation of matrices E and P 

through the Baum-Welch’s algorithm. This requires an 

initial estimate of π0, E and P, which are then updated to the 

current values during the training. To avoid any kind of bias 

due to particular a priori modelling choices, we chose the 

equiprobability condition for the initialization of π0, E and 

P.  

For model training, we selected a subset of 9 signals, each 

containing at least one quiet and one activity stage. The 

training set thus results in 3’273 3-min excerpts.  

To identify the top-performing observation set, we trained 

several HMMs, one for each possible combination of the 

parameters set. Excluding the case where no feature is 

included, since each parameter may or may not be included 

in the emission set, the number of possible combinations 

amounts to 2n -1 = 63, where n = 6 equals to the number of 

features. 

Once an estimate of matrices E and P has been obtained 

through the Baum-Welch’s algorithm, the model can be 

exploited to make predictions. Specifically, given a 

particular sequence of observations, the model will use the 

learnt knowledge to predict the trajectory of states most 

likely to have given rise to the observed sequence, through 

the Viterbi algorithm.  

Once each FHR point is classified as belonging to the Active 

or Quiet phase, a post processing step is carried out. Since 

Quiet and Active stages are known to have a duration of the 

order of the tens of minutes [5.25], the label associated with 

short sub-sequences, totally included in longer excerpts of 

the opposite state, is reversed. 
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5.1.6. Fetal states clustering results.  

 

As discussed so far, the goal of the present study is to 

describe a method based on HMMs for the unsupervised 

clustering of fetal behavioral states within FHR signals. 

Since the developed method is completely data-driven, to 

evaluate the model’s capacity to spot activity and quiet 

stages, we compared the predictions provided by our models 

with the annotations of an expert clinician. To avoid any kind 

of bias on both sides, we provided the doctor with a set of 35 

unlabeled signals and asked him to annotate them. Meantime 

we used our HMMs to classify each data point within the 

same signals supplied to the clinician, which represent our 

testing set. Then, to assess the degree of concordance, we 

proceeded to compare the predictions of the HMMs with the 

annotations of the clinician, which we consider to be the 

ground truth. Table 5.2 shows the scores for the 5 best 

performing HMMs and the ones for the best-performing 

HMM with the exclusion of FMP, ordered by decreasing 

accuracy. The green and red dots in Table 5.2 respectively 

indicate included and excluded features. The scores reported 

in Table 5.2 include the overall accuracy (ACC), the True 

Active Rate (TAR), the True Quiet Rate (TQR), the False 

Active Rate (FAR) and the False Quiet Rate (FQR) as 

defined in equations from 5.1 to 5.5. 

 

 
 
   

 
 
 
     

 
 
 
     
 

𝑻𝑨𝑹 =  
𝑻𝑨

𝑻𝑨 + 𝑭𝑸
  

𝑻𝑸𝑹 =  
𝑻𝑸

𝑻𝑸 + 𝑭𝑨
  

𝑨𝒄𝒄 =  
𝑻𝑨 + 𝑻𝑸

𝑻𝑨 + 𝑻𝑸 + 𝑭𝑨 + 𝑭𝑸
  (5.1) 

 

(5.2) 

 

(5.3) 

 



Time and spectral analysis of CTG tracings. 

 

 79 

 
 
     

 
  
 
 

 
Table 5.2: Top 5 performing HMMs + #1 without FMP 

  Models 

  

HMM#1 HMM#2 HMM#3 HMM#4 HMM#5 

HMM#1 

without 

FMP 

F
E

A
T

U
R

E
S

 

PWT 
      

VLF 
      

SampEn 
      

DELTA 
      

FMP 
      

Accel. 
      

S
C

O
R

E
S

 

ACC 0.9 0.88 0.88 0.87 0.85 0.84 

TAR 0.9 0.86 0.89 0.85 0.82 0.80 

TQR 0.87 0.93 0.87 0.92 0.93 0.86 

FAR 0.09 0.14 0.11 0.14 0.17 0.20 

FQR 0.13 0.06 0.12 0.08 0.07 0.14 

 

 

The obtained results indicate that HMM#1, represented in 

the first column of Table 5.2, stands out with the highest 

overall accuracy of 0.90. It includes VLF, SampEn, DELTA, 

FMP, and Accel. Its outperforming ACC indicates a strong 

concordance between the predictions of HMM#1 and the 

annotations made by the clinician. HMM#1 also 

demonstrates a high TAR of 0.90, suggesting its 

effectiveness in correctly identifying active states. 

Comparing HMM#1 to HMM#2, which includes the whole 

set of computed parameters, we observe that HMM#1 has a 

higher accuracy (0.90 vs. 0.88) and a higher TAR (0.90 vs. 

0.86). This indicates that HMM#1 is more successful in 

accurately identifying active states. However, HMM#1 has a 

𝑭𝑸𝑹 =  
𝑭𝑸

𝑻𝑸 + 𝑭𝑨
  

𝑭𝑨𝑹 =  
𝑭𝑨

𝑻𝑨 + 𝑭𝑸
  (5.4) 

 
(5.5) 
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lower TQR compared to HMM#2, implying that it may 

struggle somewhat in accurately identifying quiet phases. 

HMM#3, which excludes PWT and VLF, on the other hand, 

achieves a TAR of 0.89 and a TQR of 0.87. These values are 

comparable to those of HMM#1, indicating that HMM#3 is 

also capable of correctly identifying both active and quiet 

states with a high degree of accuracy, at the expense of FAR. 

HMM#4, which doesn’t comprise PWT and SampEn, 

exhibits slightly lower performance than HMM#1 and 

HMM#3, with an accuracy of 0.87 and a TAR of 0.85. 

However, it shows a higher TQR of 0.92, suggesting its 

ability to accurately identify quiet phases.  

HMM#5, which doesn’t include PWT and DELTA, achieves 

the lowest overall accuracy of 0.85. However, it still presents 

a TQR of 0.93 showing off a high discriminative power in 

identifying quiet stages. 

The choice of the most suitable HMM depends on the 

specific requirements and priorities of the analysis, 

considering factors such as the desired balance between 

accurately identifying both active and quiet states.  

In our specific case we are mostly interested in maximizing 

the classification accuracy, since our goal is assessing the 

HMMs' ability to correctly classify both active and quiet 

states, providing a reliable measure of the model's overall 

performance. ACC, in fact, provides an overall assessment 

of the concordance between the HMM predictions and the 

clinician's annotations, giving us a comprehensive 

understanding of the model's effectiveness. 

The transition matrix P for the most accurate HMM (i.e., 

HMM#1) is reported in Table 5.3. 

 

 
Table 5.3: Transition Matrix P for HMM#1 

State Quiet Activity 

Quiet 0.985 0.015 

Activity 0.018 0.982 
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The analysis of P provides important insights into the 

system’s dynamics since its values indicate the probability 

of the system to transit from one state to another.  

The high values on the main diagonal of P, hence, indicate 

the tendency of the system to remain in the actual state for 

long periods rather than rapidly shifting to the other one. In 

fact, the probabilities associated with remaining in a quiet or 

active state are respectively 0.985 and 0.982; on the other 

hand, the probability of shifting to an active state when the 

system is in a quiet phase is very low (0.015) and so is the 

probability of passing from an active stage to a quiet one 

(0.018). 

This kind of behavior is consistent with what is generally 

observed in clinics, since both active and quiet phases are 

known to have a duration in the order of tens of minutes 

[5.13]. This means that once the fetus enters either the quiet 

or active phase, it tends to persist in that state for a 

considerable amount of time before transitioning to the other 

state. 

 

 
 

Figure 5.5: Illustration of the HMM structure in the complete 
case. The developed HMM consists of 2 possible states (Quiet 
and Activity), each of which can generate the discrete set of 
observations. 
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A visualization of the observation probabilities within the 

emission matrix E of HMM#1 is shown in Figure 5.5, which 

provides insights into the relationship between the 

probabilities associated with different feature values and the 

corresponding fetal states. Green and black bars in Figure 

5.5 stand to indicate the probabilities associated to each 

emission of the HMM, respectively in activity and quiet. 

From the observation of Figure 5.5 we can ascertain how 

high probabilities associated with high values of VLF, 

DELTA, FMP, Accel., together with low values of SampEn 

are more likely to reflect a state of fetal activity, rather than 

a quiet one. On the other hand, high probabilities associated 

with low values of VLF, DELTA, FMP, Accel. and high 

values of SampEn are very likely to be related to a quiet 

phase.  

The analysis of Table 5.3 combined with the findings 

depicted in Figure 5.5, sheds light on the heavy impact of 

Accel and FMP, which appear to be the most important 

features in the clustering process.  

To evaluate the contribution of FMP, which is the only 

signal-independent feature, we compared the scores obtained 

by HMM#1 with the ones obtained with HMM#1 with the 

exclusion of FMP.  

The inclusion of FMP in HMM#1 resulted in an 

improvement in the classification accuracy by approximately 

6%. This suggests that FMP contributes positively to the 

overall performance of the model in accurately classifying 

fetal states. 

However, it is noteworthy that even when FMP was excluded 

from the feature set, the obtained scores remained 

acceptable, particularly in terms of True Positive Rate 

(TPR). This indicates that the other features included in the 

regressor set are still capable of capturing relevant 

information and effectively distinguishing between fetal 

activity and quiet phases. 

Figure 5. 6 illustrates a visual comparison between the 

annotations made by the clinician and the predictions 

generated by HMM#1. Two exemplary signals are shown, 

where the green and black points represent Active and Quiet 
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phases, respectively. Additionally, short red horizontal lines 

are used to indicate the segments in which the clinician's 

annotations differ from the model's predictions.  

It is necessary to remark again that the labeling performed 

by the clinician was done on signals not annotated by our 

model, so that his judgment was not influenced by the 

predictions obtained from the HMM. Figure 5.6 (a) 

illustrates a signal presenting a prolonged phase of fetal quiet 

within two active stages. By comparing the HMM 

predictions with the labels provided by the clinician we can 

assess a high degree of concordance. The only equivocal 

portions are concentrated in areas that straddle two distinct 

phases.  

Figure 5.6 (b), shows instead a signal which exhibits an 

initial quiet phase, lasting about 20 minutes, followed by an 

active stage approximately of the same duration. Even in this 

case, the model’s predictions are aligned with the clinician’s 

annotations, and the degree of concordance is still higher 

than in the preceding example.  

From the observation of Figure 5.6 (a) and (b) it’s possible 

to appreciate that portions labelled as quiet tend to exhibit 

lower variability and a lower tendency to accelerate as 

compared to activity phases. This tendency is consistent with 

what observed in Figure 5.5, since parameters associated 

with signal’s variability (i.e., SampEn and DELTA) tend to 

assume higher values when the actual state is active. On the 

other hand, the more likely presence of accelerations within 

active phases determines a more predictable dynamic of the 

system. Again, this is consistent with what was observed 

from the inspection of E since low values of SampEn are 

probable to reflect a condition of fetal activity. 
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Figure 5.6: comparison between the predictions of the best 

performing HMM (HMM #1) and the clinician’s annotations 

for two example signals (a) and (b). Green and black points 

respectively denote Active and Quiet phases. The red 

horizontal lines in predictions plots underline the portions in 

which the physician's notes deviate from the model's 

predictions. 
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5.1.7. Characterizing statistical differences 
between Active and Quiet phases. 

In the previous section, we presented the developed method 

for clustering Active and Quiet phases within FHR signals, 

which is based on a categorical HMM. Once validated, 

according to clinician’s interpretations, the aforementioned 

algorithm was employed to explore statistical differences 

between the Quiet and Active stages. For that aim, the 

developed HMM was used to cluster fetal phases within the 

whole set of tracings contained in NAPAMI (i.e., 24’491 

records). From the wider set of parameters explained in 

Chapter 4, we selected a subgroup of 14 features, which we 

retain to be the most suitable to grasp the characteristics of 

Quiet and Active stages and to provide an appropriate 

description of the latter, in terms of statistical properties. In 

particular, we decided to include PWT, LF, MF, HF, LZ2, 

LZ3, SAMPEN, LTI, DELTA, STV, II, FMP%, VLF and 

percentage of points in which the signal is accelerating while 

being in Active and Quiet phase (%pts ACC).  Please refer 

to the Appendix section for a more in-depth description of 

each index. 

To assess significant differences in terms of computed 

parameters’ central tendency, within Active and Quiet 

phases, hypothesis testing was performed with a significance 

level =0.05.  First, Kolmogorov-Smirnov test (KS) was 

applied to verify the null hypothesis (H0) of normally 

distributed PDFs. Since H0 was refused for each parameter, 

the non-parametric Mann Whitney U-test (MW) was 

employed to infer differences in terms of central tendency 

between features, respectively describing Active and Quiet 

phases.   

A summary reporting median values for features in Active 

and Quiet phases is shown in Table 5.4 while boxplots are 

illustrated in Figure 5.7. 
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Table 5.4: median values for parameters in A and Q. Bold numbers 

indicate higher values for each row.  

 

 Active Quiet 

PWT 242.6 69.5 

LF 40.0 48.2 

MF 5.3 8.7 

HF 1.4 2.9 

LZ2 1.02 1.05 

LZ3 0.9 0.95 

SAMPEN 0.72 1.06 

LTI 29.6 15.5 

DELTA 44.6 28.2 

STV 6.8 4.4 

II 0.85 0.83 

FMP % 0.17 0.07 

VLF 52.7 38.4 

% pts 

Acc 

0.1172 0.001 

 

 

From the analysis of Figure 5.7 and Table 5.4 we can 

observe very different behaviors between the two stages in 

comparison. In particular, parameters associated to signal’s 

variability (i.e., PWT, DELTA, II, LTI, STV) assume 

significantly higher values in the Active stage as compared 

to those in Quiet stage. This suggests that the signal in the 

Active phase is more variable, tending to present more 

fluctuations compared to the Quiet stage. This is also 

confirmed by the percentage of points in which the signal is 

accelerating while being in Active and Quiet phase (%pts 

ACC); in fact, %pts ACC is significantly higher during the 

Activity (A:  11.72% vs Q: 1%), reflecting the signal’s 

tendency to accelerate while being in phase A.  On the other 
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hand, features associated to signal’s regularity (i.e., LZ2, 

LZ3, SAMPEN) tend to assume slightly higher values in Q, 

revealing that the system presents a bit more predictable 

behavior in Quiet phase, as compared to Active one, where 

the trend is less regular.  

For what concerns instead the percentage of HF, MF, HF, 

it’s possible to observe lower values in Activity, rather than 

Quiet, as the slow oscillations resulting from accelerations 

fall in the VLF band.  
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Figure 5.7: Boxplot for each computed parameter in Active 

and Quiet stages. Blue dots represent outliers.  
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To visually explore the spatial distribution of Active and 

Quiet phases, Principal component Analysis (PCA) was 

employed as a dimensionality reduction technique. To this 

aim, we started considering the set of 14 parameters, 

described above, for each of the labelled (through the 

aforementioned HMM) 3-mins non-overlapping chunk 

composing each signal of NAPAMI.  PCA was hence applied 

and the first three principal components where considered, 

since they explain more than the 80% of variance. So doing, 

each FHR subsequence of 3 minutes is converted into a 

single point in a three-dimensional space, whose axes 

represent the three first PCA components (PC1, PC2, PC3). 

A 3-D Scatterplot representing the spatial distribution of 

points summarizing each 3-minutes chunk is depicted in 

Figure 5.8. Green and black color in Figure 5.8 respectively 

represent active and quiet points, accordingly to the 

classifications provided by the HMM above described. 

 
 

Figure 5.8: 3-D Visualization of first three principal 

components. Each 3-D point summarizes the properties of a 3-

minute chunk of FHR tracing. Green points denote signal 

excerpts classified as Active by the HMM, while black ones 

are instead relating to those labelled as Quiet. Black and green 

dots are linearly separated by the gray hyperplane. 
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Observing the spatial distribution of points relating to 

active and quiet phases we can observe two slightly 

overlapping clusters, which are quite well linearly 

separable. In fact, it’s possible to notice how they can be 

split into two separate groups through a plane boundary 

(see gray Hyperplane in Figure 5.8).  

5.1.8. Discussions and conclusions on the proposed 
method. 

 

In this section, we illustrated our proposed method for 

unsupervised FHR signal clustering, based on Hidden 

Markov Models (HMM), to automatically identify fetal 

behavioral states of quietness and activity within CTG 

tracings. More specifically, the developed model is a 

Multivariate HMM with categorical emissions.  

The obtained results seem to suggest that the developed 

model can identify quiet and activity states with a good 

degree of reliability. In fact, the predictions of the model 

have shown, for the best model, a degree of agreement of 

90% with the interpretations of an expert clinician.  

A desirable feature of our method is the ease of interpreting 

the obtained results. Indeed, the choice of a small set of 

parameters, already used in computerized Cardiotocography, 

with a clear intrinsic meaning, provides explainability to this 

approach.   

Another appealing feature of our approach is that the 

learning process is fully unsupervised. In fact, the states 

identified by the model using the Baum-Welch algorithm are 

associated with the “Active” and “Quiet” states only a-

posteriori. The choice of using a totally data-driven approach 

was suggested by the need to find a classification method 

able to go beyond the clinician’s interpretations. Letting the 

model autonomously identifying the clusters, rather than 

relying on expert annotations, removes the dependence on 

the annotator’s choice, thus hopefully reaching a more 

objective evaluation that is only based on the intrinsic 
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characteristics of the signal.  Indeed, in the absence of a more 

objective external source of information that can be used to 

identify the labels, e.g., ultrasound, the advantages of a 

supervised approach are limited.  

Despite the achieved results seem to suggest that the 

approach can be effectively used as a tool to cluster active 

and quiet fetal stages, it should be considered that just a 

limited amount of data was available to test the performance 

of the proposed HMM. The limited quantity of testing data 

can be primarily attributed to the time constraints faced by 

the participating clinician. The time required to increase the 

testing set of one order of magnitude would have caused an 

unacceptable delay in the publication of our work. Looking 

ahead, we are firmly committed to expanding our research 

efforts with the aim of gathering more extensive testing data. 

This could even benefit from the enrollment of a larger 

cohort of expert clinicians, boosting the truthful of testing 

ground truth. By doing so, we seek to enhance the robustness 

and generalizability of our results. 

Future developments of the present work include defining 

different models tuned for gestational age and, for the last 

weeks of gestation, moving to a four-state model. Indeed, a 

model capable of distinguishing among all four behavioral 

states would be of great interest, although it has been shown 

in [4] that these states emerge with reasonable reliability 

only at the very end of the pregnancy.  

We believe that the proposed method could represent a 

noticeable enhancement for the computerized analysis of the 

non-stress test. Indeed, the alternation of behavioral states is 

by itself of clinical interest and is an important pre-

processing stage for the interpretation of CTG parameters 

that is often overlooked. Indeed, it has been clearly shown 

that CTG parameters widely vary between behavioral states. 

Reporting only their mean value without taking into account 

the states on which they were averaged could at least explain 

the large variability observed in CTG parameters, even 

within physiological pregnancies.  

It is worth noting that including the FMP signal in the 

analysis only marginally increases the performance of the 
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model, which can be successfully adopted by using the FHR 

signal alone.  

Our method is applicable also when the FHR is extracted 

employing other methods rather than CTG, such as non-

invasive electrophysiology. A compelling use case could be 

the analysis of behavioral states in long-term recordings, 

which could be very interesting for monitoring several 

pregnancy complications [5.3], from Intra Uterine Growth 

Restriction [5.4], diabetes [5.7], [5.26], or hypertension 

[5.5], since all these conditions have been shown to have an 

impact on behavioral states. 

5.2. Fetal heart rate spectral analysis. 

 

The fetal heart rate (FHR) is a readily available source of 

physiological information [5.27]. 

As anticipated in Chapter 3, an improvement to the FHR 

analysis came when several biomarkers were proposed in the 

literature together with systems for the computerized 

analysis of the signals. This allowed to overcome some of 

the limitations linked to the simple eye inspection of the 

traces [5.28-5.33]. 

In fact, quantitative analysis of the FHR signal allows the 

identification of important characteristics that can go missed 

by visual inspection and ensures the reproducibility of the 

analysis.  

Despite the advancements made in the last years, however, 

biomarkers of the most common fetal pathologies, e.g., intra-

uterine growth restriction (IUGR), still have limited 

reliability [5.34-5.35] and most have been tested on a very 

limited number of subjects. 

The rationale behind the study of the FHR antepartum is that 

disturbances in the normal intrauterine development lead to 

changes in the autonomic functions that are observable from 

the cardiovascular regulation [5.36]. Monitoring these 

changes is important both in perinatal medicine for their 

prognostic and diagnostic value and in the framework of the 
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“developmental origin of health and disease” [5.37] for the 

possibility to predict disturbances later in life. Among the 

parameters presented in the literature, those that allow 

quantifying the frequency distribution of the oscillations in 

the heart rate variability (HRV) have the desirable property 

of being physiologically interpretable, since it has been 

shown that the sympathetic and parasympathetic branches of 

the autonomic nervous system (ANS) influence the HRV at 

different frequencies [5.38].  

When analyzing the power spectral density (PSD) of the 

FHR signal three main bands are typically defined in analogy 

with those employed for adults [5.39] and specifically 

adapted to the fetal case. These include the Very Low 

Frequency (VLF), Low Frequency (LF) and High Frequency 

(HF) bands. In addition, some authors also consider an 

additional frequency band, called movement frequency 

(MF), between LF and HF [5.30]. The exact frequency 

ranges vary between different authors and have been 

summarized in [5.40]. In general, the power in VLF is related 

to long period and non-linear contributions and gross body 

movements, LF with mainly sympathetic activity and HF 

with parasympathetic activity and fetal breathing [5.30]. MF 

has been hypothesized to be related to fetal movements and 

maternal breathing but overlaps with what other authors 

consider HF [5.40]. 

The FHR signal presents characteristics that complicate its 

analysis in the frequency domain. The variability of the FHR 

and its frequency distribution change over time. While in 

adults the experimental conditions can be easily controlled 

(for example asking the patient not to move and breathe at a 

controlled rate) this is impossible to apply in the fetal case, 

due to frequent changes in behavioral states [5.41] (Chapter 

5.1). It results that the FHR signal is inherently non-

stationary, which must be addressed in frequency analysis. 

Moreover, it is expected that some oscillations in the FHR, 

like the ones induced by respiratory movements, are 

transient and possibly not phase-synchronized, which means 

they may not be captured by standard spectral analysis. 
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Lastly, FHR traces are often very noisy and subject to signal 

loss. 

Since the task of analyzing the frequency content of the FHR 

signal is not trivial, several methodologies have been applied 

[5.42-5.43]. In particular, we expect that some of these may 

be more effective in detecting oscillations even when the 

assumptions of classical spectral analysis do not hold (more 

noticeably, stationarity and linearity). These techniques can 

be broadly classified as parametric (typically autoregressive 

- AR) and non-parametric (based on the Discrete Fourier 

Transform -DFT or the Hilbert–Huang transform) and may 

use explicit windowing (such as the Short Time Fourier 

Transform -STFT) or not (such as the Continuous Wavelet 

Transform-CWT).  

More recently, the Phase-Rectified signal averaging (PRSA) 

technique has been proposed to detect quasi-periodicities in 

non-stationary signals [5.44]. The PRSA is not a method for 

spectral analysis itself, but rather a technique that produces 

a compressed version of the original signal (i.e., the PRSA 

curve) in which the noise is smoothed-out and (quasi) 

oscillations are highlighted, even in the presence of phase-

resetting. 

Several works employing measures extracted using PRSA 

have been applied to FHR analysis. In particular, 

acceleration and deceleration capacity [5.45-5.47], 

acceleration and deceleration phase rectified slope [5.48] 

and deceleration reserve [5.49]. Some authors postulate that 

the deceleration capacity is a measure of the vagal control of 

the heart rate and the acceleration capacity is a measure of 

sympathetic activity [5.50]. However, this assumption has 

been challenged in [5.51] and [5.49].  

In this chapter, we illustrate our proposed approach for the 

analysis of the PRSA curve, derived from FHR signals. 

Similarly, to what proposed by Bauer et al. [5.44], we 

perform the CWT of the PRSA curve but evaluate the 

relative distribution of the oscillations in the frequency 

domain instead of evaluating it only at specific scales, like it 

is done when calculating acceleration and deceleration 

capacity.  
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The proposed approach is compared to four more traditional 

methods used to perform spectral analysis of FHR signals 

from CTG recordings [5.43], i.e., DFT, AR modelling, CWT 

and Empirical Mode Decomposition (EMD). 

This section describes the performance of the proposed 

method and of the other existing in the detection of changes 

in the FHR due to two very common complications of 

pregnancy, which are expected to produce changes in the 

FHR signal characteristics: Intrauterine growth restriction 

(IUGR) and gestational diabetes (GDM). For the analyses, 

we used a very large database of antepartum CTG recordings 

collected at different gestational ages. 

 

5.2.1. Description of the used data. 

The present study has been conducted by exploiting 

NAPAMI (Chapter 3).  

In this study, we selected the first 20 minutes of each 

recording with less than 10% of interpolated points. Only 

tracings relating to fetuses between the 32nd and 38th 

gestational weeks have been considered. Then, three distinct 

populations were considered: Controls, i.e., physiological 

pregnancies without known maternal or fetal pathologies, 

IUGRs (diagnosed when the fetal weight is lower than the 

10th percentile for gestational age and are present alterations 

in the umbilical artery flow, in agreement with [5.52]), and 

GDMs (diagnosed following a positive 1-step glucose 

tolerance test [5.53]). For each week, we selected a subset of 

equal size from each population, randomly down sampling 

from the largest groups. The final dataset thus contains the 

same numerosity for the three analyzed groups in each week 

and includes a total of 2,178 recordings. 
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5.2.2. Classical methods for the time-frequency 
analysis. 

Among the traditional methods to perform spectral analysis 

we selected: DFT, AR modelling, CWT and EMD. All these 

methods aim to estimate the PSD, albeit in different ways. In 

this paragraph, we briefly outline some details about their 

implementation and their differences. DFT and AR are based 

on an explicit windowing, while CWT and EMD are time-

varying algorithms.  

 

Explicit windowing methods: DFT & AR 

 

The DFT and AR are the most common methodologies to 

estimate the PSD. Since both assume stationarity, the FHR 

signal was divided into windows of 2 minutes overlapped by 

1 minute, which is a compromise between spectral resolution 

and the fulfilment of the stationarity condition. Inside each 

window, we removed the linear trend from the signal. The 

DFT was estimated by applying the Fast Fourier Transform 

and directly used to estimate the PSD. Parametric spectral 

analysis with AR models was performed as reported in 

[5.30]. 

 

Time varying algorithms: CWT & EMD 

Time-varying algorithms, i.e., the CWT and the EMD, are 

expected to provide better time-frequency resolution as 

compared to methods that employ explicit windowing. 

Moreover, since the EMD assumes neither stationarity nor 

linearity of the signal [5.54], it appears to be particularly 

suitable for the analysis of FHR. Prior to their application, 

the signal was detrended by removing its moving average, 

computed over shifting windows of 1 minute and padded 

with a periodized extension of 240 samples to reduce 

distortions at the borders. 

For the computation of the CWT, we employed the Morlet 

Wavelet with non-dimensional central frequency equal to 6. 

The scales “s” were defined according to equation 5.6. 
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{
𝜹𝒋 = 𝑱

−𝟏 ∙ 𝐥𝐨𝐠𝟐(
𝑵∙𝜹𝒕

𝒔𝟎
)

𝒔𝒋 = 𝒔𝟎 ∙  𝟐
𝒋𝜹𝒋  , 𝒋 = 𝟎, 𝟏, … , 𝑱

  

 

where N is the length of the signal and δt the sampling period 

(i.e., 0.5s). s0 was set to 1s (2∙δt) and J to 179. Wavelet 

software was provided by C. Torrence and G. Compo [5.55] 

and is available at the URL: 

http://paos.colorado.edu/research/wavelets/. 

Spectral features, i.e., LF%, MF% and HF% are computed 

by integrating the spectra (or spectrograms) over the 

frequency and considering the mean over time. Segments 

with more than 5% of interpolated points were excluded 

from averaging. We consider the following frequency bands: 

LF (0.03 – 0.15 Hz), MF (0.15 – 0.5 Hz) and HF (0.5 – 1 

Hz), following the definition provided in [5.30]. Spectral 

features are expressed as percentages of the total power. We 

do not report the values of VLF, which can be trivially 

obtained from the others. Indeed, what we are interested in 

quantifying in this study is the frequency distribution of the 

signal variability, rather than the variability itself. 

 

5.2.3. PRSA spectrum evaluation: classical 
computation and the proposed method 

In this section, we briefly describe the PRSA technique, which 

was introduced by Bauer et al. [5.44]; than follows the 

description of the method that has led to the computation of the 

PRSA spectrum [5.57] and the proposed approach for its 

evaluation and extraction of spectral features. 

The first step to obtain the PRSA curve is finding the 

deceleration anchor points (xdec), which are defined as samples 

satisfying the condition (equation 5.7):  

 
𝟏

𝑻
∑ 𝒙[𝒕 + 𝒊]𝑻−𝟏
𝒊=𝟎 > 

𝟏

𝑻
∑ 𝒙[𝒕 − 𝒊]𝑻
𝒊=𝟏       

  

(5.6) 

 

(5.7) 

) 

http://paos.colorado.edu/research/wavelets/
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 Where x is the FHR series expressed in milliseconds (Figure 

5.9 a). For each xdec, a window of length 2L is defined taking 

the values of the original signal that go from xdec-L to xdec+L-1. 

The PRSA curve (xk
PRSA) is constructed by averaging all these 

windows (Figure 5.9 b). This procedure highlights 

components that are phase-synchronized with the anchor points 

and cancels out the others. In this study, T was set to 1 sample 

(i.e., 0.5 seconds). We acknowledge that the choice of such a 

small value of T can make the procedure more sensitive to 

noise, but selecting a bigger value would filter the power in the 

HF band, which is of interest in this study. Indeed, the larger 

the value of T, the lower the frequency of the components that 

are highlighted by the PRSA [5.58]. To reduce the influence of 

noise, signal samples with poor quality were prevented from 

being anchor points and were not included in the averaging 

procedure. 

 Once the PRSA curve was obtained, to compute the PRSA 

spectrum (PRSA_Spt) we computed the scalogram using the 

CWT according to equation 3 in a similar fashion to [5.57]: 

 

 

𝑿𝒘
𝑷𝑹𝑺𝑨(𝒔, 𝒑) =  ∑ 𝒙𝒌

𝑷𝑹𝑺𝑨 ∙
𝒘[(𝒌−𝒑)/𝒔]

𝒔

𝑳−𝟏
𝒌=−𝑳    

  

 

 Where s is the scale, p is the position and w is the mother 

wavelet. We employed the analytic Morse wavelet with γ equal 

to 3 and time-bandwidth product equal to 60 and applied L1 

normalization. The spectrogram is obtained as the square of the 

wavelet coefficients (Figure 5.9 c) and is evaluated at k=0 

(Figure 5.9 d), thus obtaining a single spectrum.   

 As discussed in [5.44], the PRSA_Spt presents relevant 

differences compared with conventional spectral analysis. The 

signal-to-noise ratio is improved by two effects:  

 Short patches of periodicities with a particular frequency 

cancel out in conventional spectral analysis while, due to the 

way it is defined, they all contribute to the PRSA curve and, 

therefore, to its spectrum. 

 A sinusoidal component of amplitude Af produces an 

oscillation proportional to Af
2∙f in the PRSA curve. It derives 

(5.7) 
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that while its contribution in the conventional power spectrum 

is proportional to Af
2 in the PRSA_Spt is proportional to Af

4∙f2. 

Therefore, a 1/f noise has a flat PRSA spectrum. 

Both these properties are useful in the analysis of FHRV. 

Indeed, oscillatory patterns in the FHR are usually transient and 

not phase synchronized. Moreover, most of the variability is 

contained at very-low frequencies, consistently with a long-

term correlated series, rendering it difficult to identify high-

frequency oscillations that, despite their smaller amplitude, 

may offer important information on fetal physiology. 

 

 
Figure 5.9: Illustration of the technique employed to compute 

the PRSA spectrum. a: FHR signal; b: PRSA curve; c: CWT 

spectrogram of the PRSA curve obtained by squaring wavelet 

coefficients; d: CWT spectrum at k=0 (section of the 

spectrogram). 

The method we present in this study is a variation of the one 

presented in [5.57] to evaluate the PRSA_Spt. Here, instead 

of considering the Wavelet coefficients at a single scale, we 

propose to quantify the distribution of the oscillations 

integrating the PRSA_Spt (Fig. 5.9 d) in the frequency bands 

used in traditional spectral analysis (i.e., LF MF and HF). 

The features considered are ultimately the percentages of 

power obtained integrating the PRSA_Spt in the frequency 

bands described previously. 
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It should be noted that spectral features computed after the 

application of PRSA can no longer be regarded as an 

estimate of the distribution of the signal variance in the 

frequency domain. Rather, it is a measure of the localization 

in frequency of the oscillations that survive the PRSA 

procedure evaluated in descending signal segments.  

This approach allows using the distribution of the 

oscillations in the frequency domain to estimate the fetal 

autonomic activity, rather than the fact that they are aligned 

around portions in which the signal increases or decreases. 

Therefore, unlike the other features that can be extracted 

from the PRSA, the ones proposed should not suffer from the 

limitations in the interpretation of their physiological 

meaning which have been pointed out in [5.51] and [5.49]. 

All analyses were conducted using MATLAB R2022a. 

5.2.4. Results. 

Recordings have been divided into two groups: from week 32 

of gestation to week 36 (pre-term) and from 37 to 38 (early-

term), since considerable differences in fetal maturation are 

expected between the two periods. The first includes a total of 

1,161 recordings and the second 1,017. 

Table 5.5 reports values in relative spectral power obtained in 

the first and in the second group of weeks respectively in the 

first and second column. It can be noticed that the values 

achieved from classical methods of spectral analysis did not 

show substantial differences among each other. On the other 

hand, the PRSA_Spt accentuates higher frequency 

components, a result consistent with the scaling behavior of the 

PRSA_Spt. As a result, the PRSA_Spt reports higher values for 

MF% and HF% compared to the other methods. Moreover, 

employing classical spectral analysis a considerable portion of 

the total power is contained in the VLF band (i.e., f<0.03 Hz) 

while the power in this band is almost entirely filtered-out by 

the PRSA. 
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Table 5.5: Medians and quartiles of the spectral features at weeks 

32-36 (first columns) and 37-38 (second column). All values are 

reported in percentages of the total power. 

 Weeks 32-36 Weeks 37-38 

   

 LF% LF% 

 Control GDM IUGR Control GDM IUGR 

FFT 39 (33-45) 39 (33-46) 37 (32-44) 37 (32 -43) 38 (33 -44) 37 (32 -44) 

AR 35 (25-48) 35 (25-48) 32 (25-43) 32 (22 -41) 33 (25 -44) 33 (24 -43) 

CTW 40 (34 -46) 41 (35 -46) 40 (35 -46) 38 (33 -44) 39 (35 -45) 39 (34 -46) 

EMD 33 (28 -39) 34 (29 -40) 33 (28 -39) 32 (27 -38) 33 (28 -39) 33 (28 -28) 

PRSA
_Spt 

38 (25 -52) 36 (22 -50) 37 (23 -50) 38 (24 -53) 37 (24 -53) 36 (26 -51) 

  MF%   MF%  

 Control GDM IUGR Control GDM IUGR 

FFT 5.6 (4.0-7.0) 6.4 (4.5-8.7)  6.0 (4.5-7.9) 6.0 (4.5 -7.8) 6.3 (4.7 -8.1) 5.9 (4.7 -8.2) 

AR 4.3 (3.0-5.8) 5.2 (3.5-7.1) 5.0 (3.6-6.7) 4.7 (3.4 -6.4) 5.1 (3.6-7.0) 4.9 (3.5-4.8) 

CTW 5.3 (3.9-7.2) 6.5 (4.5-8.7) 6.3 (4.6-8.7) 5.9 (4.4-7.9) 6.5 (4.5-8.5) 6.1 (4.7-8.5) 

EMD 5.5 (4.2-7.1) 6.6 (5.0-9.1) 6.4 (4.9-8.3) 6.4 (4.9-8.5) 6.6 (4.9-9.0) 6.6 (4.9-9.0) 

PRSA
_Spt 

20 (16-25) 30 (22-37) 28 (20-35) 25 (19 -33) 29 (22 -37) 28 (21 -36) 

  HF%   HF%  

 Control GDM IUGR Control GDM IUGR 

FFT 1.8 (1.2-2.7) 1.7 (1.1-2.5) 1.5 (1.1-2.4) 1.7 (1.1-2.5) 1.7 (1.2-2.5) 1.6 (1.1-2.3) 

AR 1.8 (1.2-2.8) 1.9 (1.2-2.8) 1.5 (1.1-2.4) 1.7 (1.1-2.5) 1.6 (1.2-2.4) 1.6 (1.1-2.3) 

CTW 1.7 (1.1-2.4) 1.5 (1.1-2.4) 1.4 (1-2.3) 1.4 (0.9-2.3) 1.5 (0.9-2.3) 1.5 (1.0-2.1) 

EMD 3.2 (2.1-4.7) 3.0 (1.9-4.5) 2.7 (1.9-4.6) 2.8 (1.9-4.6) 2.9 (1.9-4.5) 2.8 (1.9-4.1) 

PRSA
_Spt 

33 (19-46) 25 (17-37) 25 (14-38) 26 (14 -41) 25 (14 -36) 23 (14 -36) 
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Since the discussed features are not normally distributed, we 

employed the Mann-Whitney U-test to evaluate differences 

between the two high-risk groups and controls and computed 

the Cohen’s r size effect to quantify them [5.59]. Results are 

considered significant when p<0.0167, following Bonferroni 

correction for multiple comparisons. The results related to the 

comparison between GDMs and Controls are reported in 

Figure 5.10, while comparisons between IUGRs and Controls 

in Figure 5.11. Confidence intervals were computed using 

empirical bootstrap with 1000 repetitions. 

 

 
 

Figure 5.10: Cohen’s effects size for the Mann-Whitney U-test 

in comparison between Controls and GDMs. Positive values 

indicate an increase in the high-risk population. Confidence 

intervals are computed using empirical bootstrap with 1000 

repetitions. 
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Figure 5.11: Cohen’s effects size for the Mann-Whitney U-test 

in comparison between Controls and IUGR.  

In general, more differences were identified in the first group 

of weeks. This result is in agreement with other studies [5.31] 

[5.60], which also found more differences in the pre-term 

period compared to the early term, even though the FHR 

features analyzed were different.  

In the first groups of weeks, all methods identified a significant 

increase in MF% both in the comparison between GDMs 

against Controls and IUGRs against Controls. It can be noticed 

that the PRSA_Spt method resulted in a significantly bigger 

size effect. Indeed, traditional methods resulted in both cases 

in small size effects (lower than 0.2), while the ones obtained 

with PRSA_Spt were moderate (0.40 for GDMs and 0.36 for 

IUGRs).  

Classical methods did not detect any significant difference in 

the HF band for GDMs, while a small reduction was identified 

by AR and DFT in the IUGR population. The PRSA_Spt 

instead evidenced significantly lower values in the HF band for 

both pathological groups compared to controls. The effect sizes 

however are small (-0.17 for GDMs and -0.16 for IUGRs), even 

though the p-values are well below the 5% significance level 

(3x10-6 and 7.5x10-6, respectively).  
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No differences were identified in the LF band for GDMs, while 

a small reduction was identified by AR in the GDMs. The 

PRSA_Spt did not evidence a significant difference in this 

band.  

In the second group of weeks some traditional methods, but not 

PRSA_Spt, suggest a slight increase in LF% for GDMs. An 

increase in MF% in both high-risk groups was identified only 

by PRSA_Spt. No differences were identified in HF%. 

The differences between groups identified with the PRSA_Spt 

method can also be clearly seen by looking at the spectra, which 

are reported in Figure 5.12. It can be noticed that at weeks 32 

to 36 high-risk pregnancies and controls show different 

behaviors in MF and HF, while they substantially overlap in 

the LF band. Moreover, it is clearly visible a reversal of the 

trends of physiological and high-risk pregnancies around 

0.55Hz. The differences among the average PRSA_Spt for the 

three analyzed groups at weeks 37 and 38 are much less 

evident. 

 

 
 

Figure 5.12: Average normalized deceleration related 

PRSA_Spt with 95% confidence intervals computed using 

empirical bootstrap with 1000 repetitions.  

 

Notice that high-risk pregnancies show similar behaviors 

(increase in MF and decrease in HF) and more relevant 

differences are observed in the first group of weeks. Spectra 

have been normalized by dividing by the total power of the 

PRSA_Spt and are presented in normalized units. 
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As reported in Table 5.6 the FHR variance, or total power, 

shows a trend which aligns with expectations, i.e., higher 

variability in Controls. However, the differences are not 

statistically significant. 

 
Table 5.6:  Medians and quartiles of the total power of FHR. 

 32-36 
 Control GDM IUGR 

Tot. Pow. [ms2] 259 (158 - 404) 220 (143 – 391) 243 (137 - 391) 

  

 37-38 

 Control GDM IUGR 

Tot. Pow. [ms2] 297 (178 - 452) 265 (166 - 418) 266 (172 - 451) 

 

5.2.5. Discussions and conclusions.  

The purpose of the work presented in this chapter is two-fold. 

Firstly, we elaborated on the applicability and robustness of 

spectral analysis in FHR signals using a very large dataset of 

healthy and complicated pregnancies and compared several 

existing methods of spectral analysis. Secondly, we proposed a 

different approach for evaluating the spectrum of the PRSA and 

compared the results with those obtained with more classical 

spectral analysis methods.  

We found that the application of the PRSA method before 

computing the spectra improves substantially the capability to 

distinguish between uncomplicated and high-risk pregnancies 

compared to classical spectral analysis while maintaining the 

physiological interpretability of the results. On the other hand, 

we did not observe substantial differences among the classical 

methods of spectral analysis. 

Time-frequency analysis has the advantage that allows 

localizing in time the results, allowing for example to 

investigate how the fetus reacts to stimuli (e.g., uterine 

contractions [5.61]) and differentiating among different fetal 

behavioral states [5.62]. However, the reported results suggest 

that when an aggregate measure is pursued, the PRSA_Spt 

presents a clear advantage over the other methods, which we 
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attribute to its ability to reduce noise, capture oscillations that 

are not phase synchronized, and its advantageous scaling 

behavior. 

The most relevant difference observed between controls and 

high-risk groups is a relative increase in the power in MF for 

the latter. Previous studies have attributed oscillations in this 

band to the presence of fetal movements [5.30]. However, we 

did not observe a significant increase in their occurrence as 

perceived by the mother in the high-risk groups. This may be 

indicative that other pathophysiological mechanisms are at the 

source of this pattern. Indeed, this frequency band is arguably 

the one with the least clear physiological interpretation, which 

requires further study. Quite interestingly, in [5.63] the authors 

found very little power in this band in uncomplicated low-risk 

pregnancies.  

The reduction in HF that was observed is consistent with a 

reduction of respiratory movements in the pathological groups. 

Concerning IUGR foetuses, this is backed up by other studies 

which found that respiratory movements are lower in speed, 

power and intensity and in general have lower “quality” [5.64]. 

We did not observe significant differences between the groups 

in LF% with PRSA_Spt, while minimal differences were 

identified using other methods. This is probably due to the 

scaling behavior of the PRSA and the choice of T=1. Indeed, 

quasi-oscillations that are enhanced the most lay around 1⁄2.5T 

[5.44] which in our case corresponds to the HF band. We did 

identify a significant reduction in LF% at weeks 32-36, but not 

at weeks 37-38 using T=2 (size effect:-0.19 for GDM and -0.15 

for IUGRs). This however came at the expense of substantially 

reduced differences in MF% and HF%. At T=4 the relative 

power in HF was virtually null.  

Interestingly, we did not find substantial differences when 

considering the acceleration-related PRSA curve instead of the 

deceleration-related one. 

One limitation of the present study is that we only analysed data 

collected using CTG with a sampling frequency of 2Hz. We 

acknowledge that the results may change using FHR acquired 

with different techniques, such as fetal electrocardiography. 

Another limitation is that we did not differentiate between 
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behavioral states, which is something we aim to do as future 

development. 

The analysis in the frequency domain of the FHR provides 

useful insights into the fetal physiology, since it allows to 

assess non-invasively the functioning of the ANS. In this work, 

we compared four relatively traditional methods to perform 

spectral analysis and a novel approach based on the CWT of 

the PRSA curve and conclude that the latter allows to identify 

more clearly the differences in the frequency content of the 

FHR induced by GDM and IUGR. We believe that this 

approach may have relevant applications, for example for 

improving multi-parameters classification.  
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Chapter 6 

6 Deep learning methods for 
the classification of FHR 
tracings. 

As anticipated at the end of Chapter 3, The incorporation of 

Artificial Intelligence (AI) into the analysis of CTG data has 

the potential to enhance the discriminative capabilities of 

this approach. AI models inherently possess the capacity to 

uncover hidden patterns and trends within the data that might 

escape detection through visual analysis alone, thereby 

offering valuable insights for the management of high-risk 

pregnancies and the informed decision-making process. 

In recent years, major attentions are turning towards Deep 

Learning, which at time, seems to be the most promising 

approach. However, the performances of DL algorithms are 

strongly dependent on the availability of large amounts of 

labeled training data. Inadequate data volume or imprecise 

labeling can impede real-world applications, potentially 

leading to an overestimation of a model's ability to 

generalize and an elevated risk of misclassification. 

Additionally, these techniques require well-structured data 

to achieve optimal performance. As stressed through 
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Chapters 3 and 4, at present, there is a shortage of large 

CTG datasets purposefully tailored for deep learning 

applications, making them less readily available. In Chapter 

4 we illustrated how we managed to address the 

aforementioned constraints, building up NAPAMI, a novel 

large structured CTG dataset, specifically designed for the 

application of all that AI techniques that rely on substantial 

data volumes to attain satisfactory outcomes. In the present 

chapter we will detail how we exploited this new abundance 

of CTG data to develop three innovative DL solutions for the 

classification of FHR tracings. In particular, we illustrate a 

hybrid net which is able to deal with heterogeneous data (i.e., 

quantitative information describing the FHR tracings and a 

set of images coding the tracings themselves) to increase the 

performances of classical architectures in classifying CTG 

tracings. 

 

6.1. Background: Artificial Intelligence 
in CTG analysis and the shift towards 
Deep Learning. 

 

Several AI approaches have been proposed in the literature 

since the introduction of the computerized CTG analysis, 

which allows to quantify the FHR behavior by means of both 

linear and non-linear aspects. These aspects consider the 

indices used in traditional diagnostics, novel and advanced 

regressors coming from quantitative frequency analysis, 

nonlinear parameters, and are integrated with maternal 

information. The different sets of features are used for the 

classification of the occurrence of pathological states or 

simply for the assessment of the maintenance of the healthy 

condition. The results strongly depend on the number of 

cases, the used database, the considered features and the 

performance of the classifiers 
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Fergus et al. [6.1] utilized Machine Learning models to 

classify caesarean section and normal vaginal deliveries 

based on cardiotocographic traces. In this study 552 FHR 

signal recordings, of which 506 controls and 46 pathological, 

were used as dataset, from which features like baseline, 

accelerations, decelerations, Short-Term Variability (STV) 

and many others have been extracted. The models adopted in 

this work are multi-Layer feedforward neural network, 

Fisher’s Linear Discriminant Analysis (FLDA) and Random 

Forests (RF).  

These methods, based on predictive learning classifiers, are 

known to suffer from the limitation of relying on the 

extraction of complex hand-crafted features from the signals. 

Therefore, research in this field has been moving in the 

direction of deep learning techniques. Petrozziello et al. [6.2] 

make use of raw signals from Electronic Fetal Monitoring 

(EFM) to predict fetal distress. They fed a Long Short-Term 

Memory (LSTM) and a CNN network with both FHR and 

UC signals, reaching a predictive accuracy of respectively 

61% and 68%. It is worthnoting that their dataset consisted 

of 35,429 recordings, but contained 33,959 healthy 

newborns, while only 1,470 compromised, resulting to be 

strongly unbalanced.  

Iraji et al. [6.3] explored other soft computing techniques to 

predict fetal state using cardiotocographic recordings. 

Neuro-fuzzy inference system (MLA-ANFIS), Neural 

Networks and deep stacked sparse auto-encoders (DSSAEs) 

were implemented. Iraji used a limited dataset composed of 

2,126 selected recordings that were divided in three classes: 

1655 normal, 295 suspect, and 176 pathologic. On the full 

dataset, the best performing approach was deep learning with 

an accuracy of 96.7%, followed by ANFIS that reaches an 

accuracy of 95.3%.  

Zhao et al. [6.4]  used FHR signals transformed into images 

by using Continuous Wavelet Transform. Their models 

consist of an 8-layer Convolutional Neural Network (CNN) 

with a single Convolutional Layer. Their dataset was the 

open-access database (CTU-UHB), with 552 intrapartum 
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FHR recordings, containing a noticeable percentage (about 

20%) of scalp electrode recordings. Their model reaches a 

98.34% of accuracy with an AUC of 97.82%. 

More recently, Rahmayanti et al. [6.5] propose a comparison 

between ML methods for the classification of fetal well-

being using 21 attributes from the measurement of FHR and 

UC. They report excellent levels of accuracy. The dataset 

used was obtained from the University of California Irvine 

Machine Learning Repository, which is a public dataset. It 

consisted of 2,126 data on pregnant women who are in the 

third trimester of their pregnancy collected through the 

system Sys Porto. In their study, the application of deep 

learning methods did not produce satisfactory and improved 

results compared to the ML approach The authors consider 

that using a more representative dataset and perfecting the 

set of variables can improve performance. 

The contribution of Su Liu et al. [6.6] stresses the importance 

of integrating echo images with CTG data for improving the 

classification of fetal states. The goal of the study was to 

improve the feasibility and economic benefits of an artificial 

intelligence based medical system when Doppler ultrasound 

(DUS) imaging technology are combined with fetal heart 

detection to predict the fetal distress in pregnancy-induced 

hypertension (PIH). 

Finally, the review by Ki Hoon Ahn, et al. [6.7] presents a 

comprehensive overview of the possible application of AI, 

DL and ML in Obstetrics for the early diagnosis of various 

maternal-fetal conditions such as preterm birth and abnormal 

fetal growth. The work purpose was to review recent 

advances on the application of artificial intelligence in this 

medical field. The work summarizes in table form the main 

characteristics of the different studies using AI, ML, DL 

methods. From this study we understand the pervasiveness 

in the field of fetal medicine of AI methodologies. There is 

also a perception of the complexity of the work still to be 

done to build reliable and validated classification systems. 

The data illustrated show the great variety in terms of 

applications and the number of data collected/used that 

define the final performance of the analysis tools.  
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As a general remark, it is possible to notice that the global 

accuracy and performance of AI methods for perinatal 

medicine so far published in the literature are almost 

inversely proportional to the number of cases: the best results 

are obtained with limited and selected datasets.   

In fact, the main limitation imposed by deep learning 

techniques is the huge number of data needed to train the 

neural architectures. Hence, the use of an inadequate number 

of records could lead to an overestimation of the 

generalization capabilities of the model.   

To overcome this intrinsic limitation, as detailed in Chapter 

4, we succeeded in structuring NAPAMI, a vast CTG dataset, 

whose dimension and class balance opens the way to all that 

AI solutions (e.g., DL ones) which require a huge number of 

records to achieve acceptable results.    

Leveraging this new abundance of labelled CTG data, as will 

be illustrated throughout the chapter, we developed and 

compared three different DL solutions to classify CTG 

tracings, such to disambiguate a reassuring trace from a 

suspicious one, which could likely reflect a condition of fetal 

distress.  

The first solution includes a Multi-Layer Perceptron (MLP) 

net, which is fed with a set of quantitative indices, selected 

from the wider group described in Chapter 4. 

The second one consists of a Convolutional Neural Network 

(CNN) which receives as input a set of images, obtained 

from the FHR tracings through ad hoc transformation 

techniques, as will be detailed in Section 6.2.2.  

Finally, we propose a new neural model with two branches 

respectively consisting of the two nets introduced above. 

This MLP+CNN neural architecture receives heterogeneous 

input data, i.e., a set of parameters and images. The aim is to 

exploit the neural network’s generalization capacity by 

integrating FHR quantitative regressors, known to 

summarize the pathophysiological condition of the fetus, 

(either in time, frequency, and non-linear domains) with 

some new features implicitly learned from images, 

consisting in various representations of the raw FHR signal 

(time-frequency, recurrent patterns, etc.).  
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6.2. Preparing Training and Test sets. 

The dataset used to train and test the classification 

performance of the proposed neural architectures derives 

from some modifications to NAPAMI (Chapter 4).  

First records relating to FHR tracings with an excessive level 

of corruption by noise and signal losses were excluded. 

Then, to avoid any potential polarization induced by the 

difference in the length of the FHR sequences, we decided to 

consider sequences of exactly 20 minutes each, 

corresponding to 2,400 points in time (Fs = 2Hz). Records 

including tracings lasting less than 20 minutes were directly 

discarded, while traces with a duration lasting longer than 20 

minutes were split such to consider the last 2,400 points.  

After these steps, the dataset contains 17,483 entries, with 

7,733 healthy and 9,750 pathological tracings. 

Pathological group included tracings of subjects with 

different diseases both of maternal and fetal origin, such as 

diabetes, malformations, intrauterine growth restriction 

(IUGR).  

As the goal of the study aimed at the separation between 

healthy and pathological fetuses, each entry of the dataset 

was binary categorized. Recordings belonging to the 

physiological pregnancy group (Normal), i.e., those with 

codes 01 and 02 in Table 4.1 of Chapter 4, were denoted 

with 0 and those presenting a disease condition (Pathologic), 

i.e., codes from 03 to 11, were denoted with 1. 

Furthermore, to obtain a perfect balance between Normal 

and Pathologic records, a subset of 7,000 recordings was 

selected in both the groups, on the basis of the FHR signals 

quality.  

Thus, the final dataset contains 14,000 of fetal records, 

equally balanced by category. 

Having a large set of balanced data is fundamental to avoid 

polarized and inconsistent results which are both weaknesses 

affecting DL method applications. 
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6.2.1. Parameters selection. 

With the intent of feeding the MLP branch with a set of 

quantitative regressors describing the statistical 

characteristics of recorded signals, we considered a set of 

parameters for each of the 20 minutes split and processed 

FHR signals in our dataset. 

Among the features calculated from the FHR signal, the 

subgroup that constitutes the selection of the ones included 

in the analysis, was made based on the literature study. This 

was followed by a process of feature selection and 

correlation analysis, starting from a wide group of more than 

30 regressors, as introduced in Chapter 4, commonly used 

in fetal monitoring, and known to provide 

pathophysiological meaning related with the control 

mechanisms of heart. In particular, we decided to include in 

our study all the parameters evaluated in [6.8], which 

provided good results in the classification of Normal and 

IUGR fetuses, although with a small dataset.  

The final set consists of 15 quantitative parameters. The 

parameter set includes 4 linear parameters describing signals 

in time domain, namely:  DELTA, Interval Index (II), Short-

Term Variability (STV), Long-Term Irregularity (LTI) 

computed as described in [6.9], 3 linear parameters related 

to frequency domain signal content i.e., Low Frequency 

(LF), Movement Frequency (MF), High Frequency (HF) and 

the complex, non-linear parameter Approximate Entropy 

(ApEn) [6.10]. These parameters were automatically 

extracted by the 2CTG2 software. Moreover, we also 

included the FHRB that is the mean value of baseline, 

extracted with a modified version of Mantel’s Algorithm 

[6.11], the ratio in the power spectrum bands (LF/(MF+HF)), 

the number of small accelerations (>10 bpm and <15 bpm 

for 15 s), the number of large accelerations (>15 bpm for 15 

s), the number of decelerations (>20 bpm for 30 s or > 10 

bpm for 60 s) [6.9]. Two more indices were considered as 

input values for the MLP branch, i.e., the gestational week 

and mother’s age.  
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This parameter set covers most of the information the FHR 

signal contains as it considers time domain changes, 

frequency domain linear components and complexity signal 

characteristics associated to nonlinear dynamic evolution. 

Since the considered parameters have different scales, before 

providing them as inputs to the MLP, we applied a 

normalization procedure by scaling all parameters in the 

range 0-1 using the min-max normalization. 

6.2.2. Signal to images techniques. 

Among the goals of our approach was to exploit the implicit 

ability of neural networks to learn complex features directly 

from the available data, without summarizing them by means 

of any statistical regressor. Thus, we developed a 

convolutional neural network (CNN), because CNNs have 

already shown great abilities in extracting important features 

from images and in image classification tasks [6.12]. 

To realize this approach, we needed to shift from a 1-D 

representation of the FHR tracings to a bi-dimensional one, 

through the use of ad-hoc techniques. In other words, we had 

to encode the denoised FHR signals, obtained after 

preprocessing, into a set of images representing the FHR 

behavior by means of various computational 

transformations. Signal to image transformations are 

becoming more and more common since the recent successes 

got by DL in the field of computer vision. 

In particular, for our purpose we decided to use eight 

transformation techniques, whose results are represented in 

Figure 6.1, with the same parula colormap, and briefly 

described in the following subsections, to allow the system 

to automatically grasp different aspects about the nature of 

the FHR signal from the different images provided. 
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Figure 6.1: The present figure illustrates the conversion of an 

exemplifying FHR tracing into 8 images, obtained with 8 

different transformation techniques. The latter comprehend: 

Wavelet transform (WT), Gramian Angular Summation Field 

(GASF), Gramian Angular Difference Field (GADF), Markov 

Transition Field (MTF), Recurrence Plot (R), Distance Matrix 

for Recurrence Plot (S), Power Spectrum (PS), Persistence 

Spectrum (PSP). 

The choice of the particular set of techniques employed to 

encode the FHR signals into images has followed an in-depth 

literature search. Our intent was to exploit the intrinsic 

capacity of CNNs to automatically select the most relevant 

features, starting from the images provided as input. For that 

aim we selected a set of transformation techniques to obtain 

a group of images that could allow a description of the FHR 

signals, from different points of view, as much complete as 

possible. To provide a time-frequency view of FHR tracings, 
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both spectrograms and scalograms were considered. 

Scalograms represent the analog to power spectrums when 

dealing with wavelet transforms; they generally provide a 

better time localization for rapid, high frequency events and 

a better frequency localization for low-frequency, longer-

duration events. However, since the best time-frequency 

representation depends on the specific application, both 

spectrograms and scalograms were included in our study. 

The use of scalograms to encode FHR tracings into images, 

used as inputs for a CNN net, were already proposed in the 

work by [6.13]. However, their dataset was limited to 552 

records (of which 447 normal and 105 pathological), so that 

a process of data augmentation was necessary to obtain a 

sufficient number of records for the training of the proposed 

neural model.  

Moreover, persistence spectrums were included in our study 

since they provide information about the persistence of a 

certain frequency in a signal during its evolution.  

Together with the aforementioned techniques, which are 

used to obtain time-frequency representations of signals, 

other methods were employed to explore different aspects of 

FHR tracings, such as their evolutional dynamics. Among 

these, Markov Transition Fields (MTF) were taken into 

account. The latter allow to obtain a visual representation of 

the transition probabilities, for each time point in the 

sequence, that maintains their sequentially, in order to 

preserve information in the temporal dimension.  

To explore the presence of recurrent patterns or irregular 

cyclicities in the FHR tracings, recurrence plots (RP) were 

also considered, as they provide visual representations that 

reveal all the times when the phase space trajectory of a 

dynamical system visits roughly the same area in the phase 

space.  

Another transformation technique that we included in our 

work is Gramian Angular Field (GAF), which provides a 

description of the temporal correlation structure of a time 

series, through the use of a polar coordinate system.  

MTF, RP and GAF have already been employed as methods 

to transform time series into images, as illustrated, for 
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example, in the work from [6.14]. However, none of the 

studies in the literature reports the use of these techniques to 

encode FHR tracings.  

The different transformations were applied to encode each 

20 minutes of clean FHR signal into corresponding images, 

as illustrated as follows.  

Even in this case, the images generated through the different 

methods were characterized by different scales and were so 

mapped in [0,1] range through min-max normalization. 

Moreover, all images so far obtained, were reduced in size 

to a dimension of 64x64x1.  

Signals to images encodings were implemented by using the 

software MATLAB 2022a (The Math Works, Inc.). 

From here on, the mentioned techniques used to convert the 

FHR series into images will be detailed. 

 

Continuous Wavelet Transform (CWT) 

 

The wavelet transform (WT) [6.15] is a mapping from L2(R) 

→  L2(R2), with superior time-frequency localization as 

compared to the Short Time Fourier Transform (STFT). This 

characteristic opens up the possibility of a multiresolution 

analysis. 

WT have been extensively employed in biomedical 

engineering to analyze non-stationary and nonlinear signals 

over the last decades. CWT presents great abilities, such as 

its flexible capacity to extract general and fine-grained 

feature information from the input signal.  

CWT is a formal tool that provides a hyper-complete 

representation of a signal by performing the convolution of 

a signal with a rapidly decaying oscillating finite-length, 

waveform, called mother wavelet, whose translation and 

scaling varies continuously. 

The result of these convolutions is a series of coefficients, 

obtained for each time point, that are used to create a 2D 

representation of the signal, called scalogram. The x-axis 

coincides with the time axis and the y-axis with the scaling 

factor of the mother wavelet.  
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Each point of this 2D map represents the intensity of the 

corresponding (associated) coefficient and it is shown using 

a particular colormap.  

The CWT is defined as the summation of the overall signal 

spectrum multiplied by the compressed and translated 

“mother wavelet”, which can be expressed mathematically 

by the following equations: 

 

𝑪𝑾𝑻(𝝉, 𝒔) = 𝝍(𝝉, 𝒔) = ∫ 𝒇(𝒕)𝝓𝝉
∗∞

−∞
  , 𝒇(𝒕)𝝐𝑳𝟐(𝑹)     

𝝓𝝉,𝒔(𝒕) =
𝟏

√|𝑺|
𝝓 (

𝒕 − 𝝉

𝒔
)   

𝝉, 𝒔 𝝐 𝑹, 𝒔 ≠ 𝟎  , ∫ 𝝓(𝒕) ⅆ𝒕
+∞

−∞
= 𝟎   

 

In equation 6.1 f(t) represents the input signal, φ(t) is the 

wavelet basis, and ψ (τ, s) represents the wavelet coefficient, 

a function of two variables. τ is the translation factor that 

reflects temporal and spatial information and represents the 

translation diameter of time shifting; s is the scaling factor 

that determines the degree to which the wavelet is 

compressed or stretched. 

An example of image obtained by applying the CWT to 20 

minutes FHR signal of our DB is shown in Figure 6.1 (a). 

The yellow portions in the image represent the coefficients 

with the higher intensity values while the blue portions 

define the coefficients with the lower intensities. 

The primary reason for applying the CWT in this research is 

that the CWT can provide a better method than others for 

observing and capturing the local characteristic information 

which is hidden in the FHR signal both in time and frequency 

domains. 

 

Gramian Angular Field (GAF) 

 

Gramian Angular Field (GAF) [6.14] generates an image, 

obtained from a time series, which shows the temporal 

correlations between each time point in the time signal. GAF 

images represent a time series in a polar coordinate system 

instead of the typical Cartesian coordinates.  

(6.1) 

 (6.2) 
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GAF images depict the relationship between every point and 

each other in the time series, that is, it displays the temporal 

correlation structure in the series. The greatest advantage of 

GAF is that it can preserve temporal dependencies and 

leading to bijective encodings.  

It is possible to obtain two different kinds of GAF, i.e., the 

Gramian Angular Difference Field (GADF) and the Gramian 

Angular Summation Field (GASF). 

First, let’s recall that the dot product (or inner product) is a 

measure of similarity between two arrays. I.e., if we consider 

two vectors (x1 and x2), the dot product between x1 and x2 

is defined as follows: 

 

⟨𝒙𝟏, 𝒙𝟐⟩ = ‖𝒙𝟏‖‖𝒙𝟐‖ 𝐜𝐨𝐬𝜽     

 

where θ is the angle between x1 and x2. If we don’t consider 

the magnitude of the arrays, we can state that if the angle 

between x1 and x2 is small (i.e., close to 0) then the cosine 

of that angle will be nearly 1. If x1 and x2 are perpendicular, 

the cosine of the angle is 0. If the two vectors are pointing in 

opposite directions, the cosine will be -1. Starting from this 

consideration it is possible to obtain the Gram Matrix G, as: 

 

𝑮 = (
⟨𝒙𝟏, 𝒙𝟏⟩ ⋯ ⟨𝒙𝟏, 𝒙𝑵⟩

⋮ ⋱ ⋮
⟨𝒙𝑵, 𝒙𝟏⟩ ⋯ ⟨𝒙𝑵, 𝒙𝑵⟩

)    

 

 

Gramian Angular Field (GAF) is obtained by introducing 

“special” inner product as follows. 

Let’s suppose we are given a time series X= {x1, x2, …, xN}, 

normalized to be in [-1,1]. The first step is to convert each 

value in X into polar coordinates, through the 

transformation: 

𝝓�̇� = 𝐚𝐫𝐜𝐜𝐨𝐬(𝒙𝒊)    
 

Finally, the GAF method defines its “special” inner product 

as: 

(6.3) 

 

(6.4) 

 

(6.5) 
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⟨𝒙𝒊, 𝒙𝒋⟩ = 𝐜𝐨𝐬(𝝓𝒊 +𝝓𝒋)    

 

to obtain GASF, and: 

 

⟨𝒙𝒊, 𝒙𝒋⟩ = 𝐬𝐢𝐧(𝝓𝒊 −𝝓𝒋)    

 

to obtain GADF. 

 

An example of a GASF and a GADF images, obtained from 

an FHR signal of 20 mins of our dataset, are reported in 

Figure 6.1 (b) and (c) respectively. 

 

 

Markov Transition Field (MTF) 

 

Markov Transition Field (MTF) [6.14] provides an image 

which is obtained from a time series. The image contents 

represent a field of transition probabilities for a discretized 

time series. For an n-length time series, MTF is a n x n matrix 

containing the probability of a one-step transition from the 

bin for xk to the bin for xl, where xk and xl are two points in 

the time series at arbitrary time steps k and l. 

More in detail, given a time series X= {x1, x2, …, xn}, a data 

point xi is assigned to its corresponding quantile bin q j (1≤ j 

≤Q) where Q is the number of bins, i.e., the number of states. 

In this way we can construct, from X, a Markov chain, 

deriving the Q x Q Markov transition matrix (W) where wij 

(1≤ I, j ≤Q) in W is the frequency with which a data point in 

the state qj is followed by a data point in state qi. After 

normalization, W is the Markov Transition Matrix, where wij 

represents the transition probability of qi → qj in the MTF. 

By assigning the probability from the quantile at time step i 

to the quantile at time step j at each pixel of Mij, the MTF, 

denoted as M (equation 6.8), encodes the multi-span 

transition probabilities of the time series. The main diagonal 

Mii captures the probability from each quantile to itself (the 

self-transition probability) at time step i. 

(6.6) 

 

(6.7) 
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𝑴 = [

𝒘𝒊𝒋|𝒙𝟏 𝝐 𝒒𝒊 , 𝒙𝟏  𝝐 𝒒𝒋 ⋯ 𝒘𝒊𝒋|𝒙𝟏  𝝐 𝒒𝒊, 𝒙𝒏  𝝐 𝒒𝒋
⋮ ⋱ ⋮

𝒘𝒊𝒋|𝒙𝟏  𝝐 𝒒𝒊, 𝒙𝟏  𝝐 𝒒𝒋 ⋯ 𝒘𝒊𝒋|𝒙𝟏  𝝐 𝒒𝒊, 𝒙𝒏  𝝐 𝒒𝒋

]   

 

To make the image size manageable and the computation 

more efficient, we reduced the MTF size by averaging the 

pixels in each non-overlapping m × m patch, that is we 

aggregate the transition probabilities in each subsequence of 

length m together.  

Figure 6.1 (d) shows an example of an MTF image obtained 

from a 20-minute FHR sequence belonging to the dataset 

used in our work. 

 

Recurrence Plot (RP) 

 

Recurrence plots (RP) were introduced as a visualization 

tool to measure the time constancy of dynamical systems 

[6.14].  

Natural processes can have distinct recurrent behaviors like 

periodicities (as seasonal cycles) or irregular cyclicities. A 

RP, generally defined as R, depicts all the time instants when 

the phase space trajectory of a dynamical system visits the 

same area in the phase space. A recurrence of a state at time 

i at a different time j is marked within a two-dimensional 

squared matrix where both axes represent time.  

A RP can be generated by first computing a distance matrix 

S that contains each distance from one point in the time series 

with each other and then applying a threshold ε to binarize 

the values.  

In mathematical terms, the RP is defined by matrix R, as in 

equation 6.9: 

 

𝑹(𝒊, 𝒋) = {
𝟏  𝒊𝒇 ||�⃗⃗� (𝒊) − �⃗⃗� (𝒋)||  ≤  𝛆

𝟎        𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
     

 

𝑥 (i) and 𝑥 (j) represent the states, ‖.‖ is the first norm and ε is 

a chosen threshold. R(i,j) is 1 if 𝑥 (i) ≈ 𝑥 (j) up to an error ε. 

This is fundamental since systems often do not recur exactly 

to a previously visited state but tend to visit roughly the same 

(6.8) 

 

(6.9) 
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area in the phase space. Similarly, a RP can be generated by 

first computing a distance matrix S (equation 6.10), that 

contains each pair of distances and then applying the 

threshold ε. 

 

𝑺 = ||�⃗⃗� (𝒊) − �⃗⃗� (𝒋)||   

 

An example of S and R images obtained from an FHR series 

included in our dataset is shown in Figure 6.1, respectively 

(e) and (f). 

 

Power Spectrogram (PS) 

 

Power spectrogram (PS) [6.16] is a visual representation of 

the frequency spectrum of a signal (y-axis) as it varies with 

time (x-axis). The most common way to show a spectrogram 

is using a heat map which uses a system of color-coding to 

represent different intensity values.  

Given a time series, we can estimate spectrograms with 

methods based on Fourier transform (FT) or by using filter 

banks. Our choice was to adopt a FFT approach. This method 

splits data into chunks, which usually overlap, and proceed 

to compute the Fourier transform of each chunk to calculate 

the relating frequency spectrum magnitude. Each vertical 

line in the image corresponds to a chunk, a measurement of 

magnitude versus frequency for a specific moment in time. 

These so-called spectra are then put sequentially to form the 

image. Hence, given a time series s(t), to retrieve the image 

we need to apply a short-time Fourier transform (STFT) on 

the signal s(t) and window width ω (equation 6.11) 

 

𝒔𝒑𝒆𝒄𝒕𝒓𝒐𝒈𝒓𝒂𝒎(𝒕,𝝎) = |𝑺𝑻𝑭𝑻(𝒕,𝝎)|𝟐    

 

The spectrogram of a 20-minute FHR signal from the DB 

used in this work is shown in Figure 6.1 (g). 

 

Persistence Spectrum (PSP) 

(6.10) 

 

(6.11) 
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The persistence spectrum of a signal is a time-frequency 

representation that shows the percentage of time a given 

frequency is present in a signal.  

The persistence spectrum is a histogram in power-frequency 

space. The longer a particular frequency persists in a signal 

as it evolves, the higher its time percentage and thus the 

“brighter” or "hotter" its color in the display.  

The calculation of the persistence spectrum is obtained by 

first computing the spectrogram for a time segment. After 

that, power and frequency values are partitioned into 2-D 

bins. For each time value, a bivariate histogram of the 

logarithm of the power spectrum is computed. For every 

power-frequency bin where there is signal energy at that 

instant the corresponding matrix element is increased by one. 

The persistence spectrum is obtained through the 

computation of the sum of all the histograms related to every 

time value. The image obtained presents the Frequency (Hz) 

on the x-axis and the Power Spectrum (dB) on the y-axis. 

Figure 6.1 (h) shows an example of Persistence Spectrum 

extracted from an FHR signal belonging to the dataset used 

in our study. 

 

6.3. The proposed MLP net. 

 

The proposed MLP net is the resulting architecture obtained 

after testing different combinations of layers and parameters. 

As anticipated, the MLP is fed with a set of 15 quantitative 

indices describing various aspects of the FHR signals 

(denoised and with a length of 20 minutes), in both time and 

frequency domains. This net is trained to learn to distinguish 

whether the provided set of input parameters describe a 

reassuring tracing or a pathological one.  
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Figure 6.2: The present figure illustrates the scheme of the 

proposed MLP net. The Input layer is composed of 15 neurons, 

each receiving one of the 15 indices describing the ith 20-min 

FHR signal. The Input layer is then followed by 4 Hidden 

Layers, the last of which is connected to an Output Layer 

formed by two neurons (H-Healthy, P-Pathological). 

An illustration of the proposed MLP is shown in Figure 6.2, 

while the details of each layer composing the architecture are 

reported as follows:  

 

Input layer: composed of 15 neurons, one for each 

quantitative parameter passed in input. These neurons are 

fully connected to the ones of the first hidden layer. 

 

Hidden layer 1: Composed of 500 neurons with ReLU 

activation function, followed by a Dropout layer with a 

probability of 0.4, to avoid overfitting.  

 

Hidden layer 2: Composed of 250 neurons with ReLU 

activation function, followed by a Dropout layer with a 

probability of 0.4. 
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Hidden layer 3: Composed of 150 neurons, with ReLU 

activation function. L1 and L2 regularization penalty is 

applied. The value for L1 is set to 10 −5, for L2 is 10 −4. 

 

Hidden layer 4: Composed of 50 neurons, with ReLU 

activation function followed by a Dropout layer with a 

probability of 0.4. 

 

Output layer: The 50 nodes of the fourth hidden layer are 

fully connected to the 2 last neurons of the output layer, with 

Softmax activation function.  

 

6.4. The proposed CNN net. 

 

As previously stated, the idea behind the choice of a CNN 

architecture is trying to leverage the inherent capability of 

these kind of network to learn complex features from the 

available data, without condensing them through the use of 

any statistical regressor. Since the most suitable inputs for 

CNNs are shaped to be in the form of two-dimensional 

arrays, we proceeded to fed the proposed net with a set of 

images, obtained through the techniques described in 

Section 6.2.2, which furnish an alternate 2-D representation 

of FHR signals. Particularly, we decided to reshape the 

inputs to be in the form of 64 x 64 gray level images. 

Even in this case, this net is trained to learn to distinguish 

whether the provided set of images describe a reassuring 

tracing or one coming from a likely pathologic fetus. 

A complete description of each layer is reported as follows. 

 

Input layer: The CNN input layer receives as input an array 64 

x 64 x 1 x n, where n stands for the number of images fed to 

the net. The array is created by concatenating n images on the 

fourth dimension, with n=1…8. The images building up the 

input array are the ones described in Section 6.2.2.  
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Convolutional 2D Layer: The input layer nodes are convoluted 

by using 16 filters of 5 x 5 kernel, with no padding and ReLU 

activation function. A Batch Normalization layer is then used 

to re-scale and recenter the input layer to make the network 

more stable and faster.  

Max Pooling 2D Layer: The first convolutional layer is 

followed by a Max Pooling Layer with pool size 2 x 2. The 

pooling operation reduces the eigenarrays of the convolution 

output and the number of parameters, so it can lower the model 

complexity and speed up the computation while preventing 

overfitting.   

Convolutional 2D Layer: The second convolutional layer is 

formed by 32 filters with 5 x 5 kernels, ReLU activation 

function and no padding, followed by a Batch Normalization 

layer.  

Max Pooling 2D Layer: After the second convolutional layer, 

a Max Pooling Layer with pool size 2 x 2 is added. Dropout is 

applied with probability 0.8.  

Flatten Layer: To unroll the output of the convolutional layers, 

a Flatten layer is applied.  

Dense Layer: Each neuron of the Flatten Layer is fully 

connected to the 64 neurons of the successive Dense Layer with 

ReLU activation function, followed by a Batch Normalization 

layer. A Dropout with 0.8 rate is then applied.  

Dense Layer: The 16 neurons with ReLU activation function 

are fully connected to the last 2 neurons of the output layer.  

Output Layer: Consists of 2 neurons, one per class, with 

Softmax activation function.  

A visual illustration of the described CNN is depicted in 

Figure 6.3. 
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Figure 6.3: The present figure illustrates the scheme of the 

proposed CNN net. The Input layer, which receives in input a 

set of images in the shape 64 x 64 x n, with n = 1, …, 8, is 

followed by two blocks, each composed by a 2D convolution 

layer and a 2D Max Pooling layer. These are followed by a 

Flatten Layer and by two Dese layers, the last of which is 

connected to an Output Layer formed by two neurons (H-

Healthy, P-Pathological). 

6.5. The hybrid MLP+CNN net: a novel 
mixed data type approach. 

As reported at the beginning of the chapter, the core idea was 

to design a neural network capable of dealing with 

heterogeneous data, i.e., a set of scalar values summarizing 

a signal processing pipeline and a set of images which 

represent the whole FHR signal in different domains (time-

frequency, recurrent periodicities). 

Our aim is to integrate the information automatically grasped 

by two connected branches, each of which is provided with 

a different kind of input (i.e., images and arrays of values). 

This type of approach combines parameters already known 

to provide information about the physiological mechanisms 

responsible of the FHR signal, with other characteristics 

obtained from an implicit understanding made by the model 

itself. More precisely, the network we designed was fed with 

an array of 15 quantitative regressors and a set of images, 

obtained from each FHR sequence of 2,400 samples (20 min 

length, as reported in the previous sections). 
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The proposed hybrid net is composed by two branches, 

which exactly correspond to the MLP and CNN architectures 

presented in Sections 6.3 and 6.4. 

The CNN+MLP net was hence obtained by concatenating the 

outputs of the two separate branches to form a single output 

array, which is passed to the subsequent fully connected 

layers, through a concatenation layer. From a structural 

viewpoint, the terminal neurons of MLP and CNN branches 

are connected to form a flatten layer so that the input to the 

final set of layers is the output of the layer where MLP and 

CNN branches are concatenated. This one is followed by a 

Dense layer of 128 neurons with ReLU activation function. 

The nodes of the Dense layer are then fully connected to each 

of the 2 neurons of the output layer, which use a Softmax 

activation function. These ones give back the probability of 

the input passed to the artificial network belonging to one of 

the 2 possible classes (healthy or unhealthy fetus). 

An illustration of the proposed hybrid net is furnished in 

Figure 6.4. 

 

 
 

 
Figure 6.4: The present figure illustrates the scheme of the 

proposed mixed CNN + MLP net. The CNN and MLP branches 

are connected through a Flatten Concatenation Layer. The 

latter is fully connected to a Dense Layer, which is connected 
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to an Output Layer formed by two neurons (H-Healthy, P-

Pathological) 

6.6. Training and testing. 

The dataset used to train and test the performances of our 

proposed neural classifier is the one described in Section 6.2. 

It is formed by 14,000 labelled examples, of which 7,000 

correspond to healthy fetuses and 7,000 to pathological ones. 

Each example, which relate to a diverse FHR trace, consists 

of a set of 15 quantitative parameters and a group of images. 

80% of the dataset (i.e., 11,200 data) was used to train the 

neural networks, while 20% (i.e., 2,800 data) was used for 

testing the performances of the trained nets.  

The neural model setup was carried out by using Python 3.7 

and for the training phase the online virtual machines 

provided by Kaggle were used (https://www.kaggle.com/).  

We adopted the Adam optimizer with a learning rate of 10 -4 

and a decay rate of 10-4/200 for the training of the network. 

Binary-cross-entropy was designed as the loss function to be 

optimized.  

Early Stopping technique, with a patience of 2, was 

employed as an overfitting prevention technique. We always 

analyzed the relation between the accuracy and loss curves 

obtained in the different training sessions, in order to verify 

that overfitting was not occurring. For example, Figure 6.5 

shows the accuracy and loss trends on the training examples 

for the CNN+MLP net, as functions of the epochs, compared 

with the accuracy and loss curves on the validation 

examples. The use of Early stopping, interrupts the training 

phase at the 90th epoch, preventing the model from 

excessively adapting to the training data. The crossing point 

of the red dashed lines in both diagrams of Figure 6.5 

identifies the point where the training is interrupted by the 

stop criterion. 
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Figure 6.5: CNN+MLP model: Accuracy curve on training and 

validation set vs. epochs and loss curve on training and 

validation set vs. epochs. After about 90 epochs the training is 

interrupted by the anti-overfitting stop criterion. 

6.7. Results. 

 

We separately evaluated the performance of the proposed 

MLP and CNN nets and compared them with the ones 

obtained by the CNN+MLP mixed model, in order to state if 

the latter could over perform as respect to the MLP and CNN 

branches singularly.   

To provide robustness to the analysis, we repeated the 

training process 30 times for each of the considered nets. 

After each training phase was completed, accuracy (ACC), 
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sensitivity or True Positive Rate (TPR), specificity or True 

Negative Rate (TNR), precision or Positive Predictive Value 

(PPV), negative predictive value (NPV), False Positive Rate 

(FPR), False Negative Rate (FNR), False Discovery Rate 

(FDR) and Area Under the ROC Curve (AUC) were 

computed. The definition of each of these performance 

metrics is reported as follows:  

 

𝑨𝑪𝑪 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
   

 

𝑻𝑷𝑹 = 
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
   

 

𝑻𝑵𝑹 =
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
  

 

𝑷𝑷𝑽 = 
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
  

 

𝑵𝑷𝑽 = 
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
   

 

𝑭𝑷𝑹 =
𝑭𝑷

𝑭𝑷 + 𝑻𝑵
   

 

𝑭𝑵𝑹 = 
𝑭𝑵

𝑻𝑷 + 𝑭𝑵
  

 

𝑭𝑫𝑹 = 
𝑭𝑷

𝑻𝑷 + 𝑭𝑷
  

 

 

To infer significant statistical differences in terms of average 

classification accuracy, between the three architectures 

proposed, T-test was applied. 

The average confusion matrices for the three proposed models 

are reported in Table 6.1. 

(6.12) 

 
(6.13) 

 
(6.14) 

 
(6.15) 

 
(6.16) 

 
(6.17) 

 
(6.18) 

 
(6.19) 
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The average values, for the different performance metrics 

computed for the three nets, are instead summarized in Table 

6.2. 

 

Table 6.1: Confusion Matrix for the MLP, CNN, CNN+MLP models 

obtained on the 2800 examples of test. TP = True Positive, TN = True 

Negative, FN = False Negative, FP = False Positive, TP = True 

Pathological, TH = True Healthy, PP = Predicted Pathological, PH = 

Predicted Healthy.  

  MLP CNN CNN+MLP 

PP PH PP PH PP PH 

TP TP = 

998 

FN = 

427 

TP = 

681 

FN = 

596 

TP = 

960 

FN = 

431 

TH FP = 

258 

TN = 

1117 

FP = 

298 

TN = 

1225 

FP= 

109 

TN = 

1300 

 

Table 6.2: Performance metrics for the MLP, CNN, CNN + MLP 

models. It reports: True Positive Rate (TPR = TP/(TP+FN)), even 

called Recall or Sensitivity, True Negative Rate (TNR = 

TN/(TN+FP)) or Specificity, Positive Predictive Value (PPV = TP/ 

(TP + FP)) or precision, Negative predictive value (NPV = TP/ (TP 

+ FN)), Fall out or false positive rate (FPR = FP/ (FP + TN)), False 

negative rate (FNR = FN/ (TP + FN)), False discovery rate (FDR = 

FP/ (TP + FP)). 

 Performance metrics  

 TPR TNR PPV NPV FPR FNR FDR AUC 

MLP 0.7 0.81 0.79 0.72 0.18 0.29 0.2 0.76 

CNN 0.53 0.80 0.69 0.53 0.19 0.46 0.3 0.67 

CNN+MLP 0.69 0.92 0.90 0.75 0.08 0.31 0.1 0.81 

 

The mean accuracy reached by the single MLP, over the 30 

train trials, on the 2’800 test examples, was 75.5%, i.e., 2’115 

correct classifications against 685 misclassifications.  
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For what concerns the CNN branch, we firstly had to choose 

which combination of images provided as input to the net, 

could lead to the best results. For that aim, we tested all the 

different combinations of images, and for each of them we 

trained the CNN a number of 15 times, computing the 

classification accuracy at each step.  

At the end of the process, we selected the combination of 

images providing in average the highest accuracy. By looking 

at the results achieved, the most impactful set of images results 

to be composed by GADF, PS and PSP. 

After selecting the most performing CNN architecture, we 

trained the latter a number of 30 times and for each phase we 

computed all the performance metrics. The overall accuracy 

obtained is 68.1%, i.e., 1’906 correct classifications against 894 

misclassifications.  

After evaluating MLP and CNN branches separately, we tested 

the performances of the combined CNN+MLP model, that 

concatenates MLP and CNN nets in a single mixed 

architecture.  

As for the single CNN case, we had to select the top performing 

combination of images to feed the CNN branch of the 

combined model. Even in this case, the most impactful images 

have been proved to be GADF, PS and PSP. 

After selecting the most suitable inputs for the CNN branch of 

the combined model, we repeated the training phase of the 

CNN+MLP net 30 times and as for the single CNN case, we 

computed all the performance metrics for each phase.  

A summary of the overall accuracy achieved by the different 

models evaluated is reported in Table 6.3, while the 

corresponding boxplot and ROC curves are illustrated in 

Figure 6.6 and 6.7 respectively. 
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Table 6.3: Summary of overall accuracy achieved for the MLP, 

CNN and CNN+MLP models. 

 Mean ACC 

Number of 

correct 

classifications 

Number of wrong 

classifications 

MLP 75.7% 2120 680 

CNN 68.1% 1907 893 

CNN + MLP 80.1% 2260 540 

 

 
Figure 6.6: Boxplots for the mean accuracy values reached, 

over the 30 replications of the training phase, for the 3 models 

compared, i.e., MLP, CNN, combined CNN+MLP. The hybrid 

CNN+MLP data outperforms, showing an average accuracy of 

0.801, against the 0.757 and 0.681 respectively achieved by the 

MLP and CNN.    
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Figure 6.7: ROC curves for MLP, CNN and CNN+MLP 

combined neural model developed. 

To prove significant statistical differences among the three nets 

explored, T-test was applied to challenge the null hypothesis 

(H0) of equality, in terms of average classification accuracy, 

between the three models. With a level of significance of 0.01, 

H0 was refused for every comparison performed.   

From the observation of the obtained results, it appears how the 

use of the convolutional branch alone does not allow to reach 

an adequate classification accuracy, showing lower 

performances than those obtained with the single MLP branch. 

However, the results achieved with the combined CNN+MLP 

model show a significant increase in the classification capacity 

of the model, compared to the MLP and CNN architectures 

individually considered. The combined CNN+MLP model, in 

fact, reached an overall classification accuracy of 80.1%. This 

corresponds to a total number of 2260 correct classifications 

against 540 misclassifications. 

The combined model proposed, hence, seems to be able to 

exploit the good accuracy of the MLP to influence and boost 

the performance of the CNN on the provided images, 

confirming how the combined use of known quantitative 
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regressors and features, implicitly learnt from the neural model, 

could increase the classification capabilities. 

There is however to point out that the neural model realized 

tends to better classify the signals related to healthy fetuses (FP 

= 109, FN = 431). In fact, the CNN-MLP model presents a high 

specificity (TNR) of 92%, but its sensitivity (TPR) is of 69%. 

This means that the proposed architecture misclassifies a signal 

related to a healthy subject the 8% of times while misses the 

classification 31% of times when dealing with a signal referred 

to an unhealthy subject. 

 

6.8. Discussions and conclusions 

The possibility to identify early signs of fetal sufferance 

antepartum still remains a dream in the Ob-Gyn management 

of pregnancies. An accurate disambiguation between healthy 

and suffering fetuses can allow obstetricians to intervene in 

a timely manner and take appropriate actions to prevent 

permanent damages to the fetus. Among the prenatal exams, 

the CTG represents the major source of information on the 

correct development of the fetus.  

Despite the fast increase of the digital technology in medical 

devices, in the clinical practice, the analysis of CTG signals, 

both antepartum and during labor, is mostly carried out by 

visual analysis of the tracings. This procedure is obviously 

affected by significant inter-observer and intra-observer 

variability, which often causes erroneous interpretations of 

real fetal conditions.  

The introduction of computerized CTG analysis decreased 

the qualitative and subjective interpretation of the CTG 

exam, but didn’t lead to a reliable clinical decision-making 

strategy, despite the great effort produced in the past twenty 

years for extracting significant quantitative indices from the 

FHR signal.  

Artificial Intelligence techniques, with a particular focus on 

Deep Learning, represent a further tool to investigate the 

information content of CTG tracings, although they need 
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huge datasets in order to provide reliable conclusions.  As 

we had available a considerable amount of annotated CTG 

exams, we decided to approach the problem of classifying 

normal and pathological fetuses by means of those methods.   

The availability of a very large and structured database, 

consisting of real labeled data that were collected in the same 

clinical department, represents the first important aspect of 

this work. This feature is difficult to find in the field of fetal 

monitoring. It has made possible to exploit machine learning 

and deep learning methods to the best of their abilities. In 

fact, it is known that the classification power of AI methods 

is best expressed only with large amounts of data, which was 

not allowed until now for the analysis of the fetal heart 

variability signal. 

A second factor is the correspondence between the 

quantitative values of the parameters used for classification 

and the fetal and maternal physiology. Each parameter we 

have employed (and the 15-feature set is an example), can 

contribute to the understanding of the physiological 

mechanisms that controls fetal heart. These features make 

readable and interpretable the data set in terms of control 

developed by physiological systems. 

The classification proposed in this work benefits from the 

information contained in these parameters. Therefore, it is 

possible to formulate a classification between healthy and 

pathological fetuses that is interpretable according to 

involved pathophysiology, whose measurements take place 

through the parameters extracted in the FHR. 

We designed and implemented a neural architecture able to 

deal with heterogeneous data, i.e., images and quantitative 

parameters describing the statistical characteristics of the 

FHR signal. The neural network consists of two branches, a 

MLP receiving an array of 15 regressors and a CNN one fed 

with a set of 64x64 images. The latter have been obtained 

through several transformations (e.g., MTF, GADF, RP, etc.) 

applied to the pre-processed denoised FHR signal.  

To understand if the novel mixed-type architecture 

outperforms the MLP and CNN branches singularly, we 

compared the results obtained from the three neural 
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architectures in terms of overall classification accuracy. 

After the hyperparameters’ optimization for each NNs, the 

MLP, CNN and MLP-CNN architecture have been trained 

and tested on a set of 14 K data (split in 80% for the training 

and 20% for the test). The results obtained have shown that 

the MLP-CNN network is the best performing architecture. 

Hence, with the best set of hyperparameters, this mixed-type 

net achieved an overall classification accuracy of 80.1%.  

The major limitation of the Method still lies in the 

sensitivity, which is not yet fully satisfactory. In fact, with 

the combined model (CNN+MLP) the TPR reached is of 

69%, that corresponds to a probability of erroneous 

classification of an unhealthy subject of 31%.  

There is, however, to consider that unhealthy subjects 

contained in the database and used for this work, are a 

heterogeneous group, which includes several types of 

diseases:  intra uterine growth restriction (IUGR), metabolic 

alterations, fetal malformations, and even maternal 

pathological conditions, such as diabetes.  

The decision to include all the different categories of disease 

in the unhealthy class made it possible to balance the number 

of healthy and unhealthy subjects with a sufficient 

numerosity to allow the use of Deep Learning techniques. 

This could lower the performance of our neural model, both 

in terms of accuracy and specificity, since different 

pathologies could show different behaviors in the FHR 

signals, reducing the classification capacities and increasing 

the variability of FHR features. These analyses must be 

considered as a starting point in the direction of more 

complex studies, that look at the different classes of 

pathologies separately, once the amount of data for each 

pathology will reach an acceptable value for Deep Learning 

methods.  

Nevertheless, the obtained results are promising, since they 

have been achieved by using a noticeable amount of clinical 

data, whose variability closely represents the real 

population. Although this fact may reduce the classification 

performance, as compared to other existing works, it can 
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however increase the robustness and the generalization 

ability of the model.  

Further developments for this work include the search for 

other techniques for converting the CTG signals into images, 

in order to provide new kinds of inputs to the CNN branch. 

In addition, more quantitative parameters, to feed the MLP 

branch, will be investigated. Moreover, other mixed-type 

neural architectures will be explored and will include other 

types of neural branches such as Recurrent NN or Temporal 

CNN. 
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7 Overall discussions and 
conclusions. 

This thesis collects and illustrates the research carried out 

during my PhD program. The activities included in this work 

are part of the European PRIN project ICT4MOMs, which 

aims to develop a system for the intelligent monitoring of 

mother and fetus, during pregnancy.  

In this frame, my role was to develop diverse artificial 

intelligence (AI) solutions to face and eventually overcome 

some of the limitations affecting traditional CTG analysis.  

The latter is the most widely employed technique to monitor 

the well-being of the fetus during pregnancy, based on the 

inspection of fetal heart rate variability (FHR) series, which 

are obtained as explained in Chapters 1 and 2. 

The effectiveness of CTG, has been proven in labor; 

however, its usefulness in the ante-partum period remains 

questionable. This is primarily due to challenges in 

interpreting the intricacies of CTG recordings and the 

absence of consensus on evaluation criteria. While visual 

examination of FHR tracings is the current standard method, 

however it fails to encompass all the valuable information 

present in the signals. Efforts to address this through 

computerized CTG (cCTG) have aimed to identify a single 

indicator but have fallen short in delivering an adequate 

evaluation. Recognizing the necessity of a multi-

dimensional approach, researchers have sought to integrate 

various methodologies.  

As detailed in Chapter 3, there is considerable potential for 

utilizing AI techniques to analyze CTG data and overcome 

the limitations associated with visually inspecting CTG 

tracings. However, a significant hindrance currently exists 
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due to the limited availability of reliable, well-organized, 

and labeled clinical datasets. This obstacle is especially 

noteworthy because the most effective AI methods, such as 

deep learning algorithms (DL), necessitate a substantial 

volume of data to achieve accurate and high-quality 

outcomes.  

For these reasons, the first step towards an effective 

implementation of AI in the field of CTG is the creation of a 

large and structured CTG dataset. Chapter 4 illustrates the 

steps that, starting from an unorganized set of CTG 

recordings, collected at the Federico II Hospital in Napoli, 

Italy, have taken to the setup of a large (more than 30k 

records), balanced, structured dataset of labelled CTG 

recordings, which we have baptized with the name 

NAPAMI. At date, the latter is one of the largest datasets on 

antepartum monitoring of healthy and high-risk pregnancies. 

It is an organized and continuous gathering of clinical data 

on pregnant patients and their fetuses, spanning from 

pregnancy to delivery. In high-risk pregnancies, fetal 

monitoring data can be obtained as early as the 26th week, 

and in some cases, information on delivery and neonatal 

outcomes is also accessible. The thorough collection of 

clinical data provided by NAPAMI, combined with a 

dedication to staying up to date with clinical evidence and 

the ability to continually assess, offers fetal medicine 

healthcare professionals a more precise understanding of 

fetal well-being. This knowledge is particularly valuable in 

making informed decisions regarding optimal delivery 

timing, especially in instances where delivery is necessary 

before the 34-week mark and there are risks associated with 

prematurity and fetal pathology. 

The dataset resulting from the various stages of data 

processing outlined in the manuscript allows for the 

integration of existing clinical knowledge with findings from 

experimental research. This integration verifies the practical 

applicability of the gathered information in clinical settings 

and generates new evidence where gaps currently exist. 

NAPAMI provides a reliable representation of the pregnant 

population over a substantial period in a standard clinical 
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environment. Furthermore, recognizing that the mother-fetus 

system should be viewed as a whole, pregnancy can be seen 

as a continuously evolving entity that can be analyzed using 

time-varying approaches. Our dataset contains longitudinal 

data from both healthy and high-risk pregnancies. 

Furthermore, the computed set of parameters within 

NAPAMI (detailed in the Appendix section) offers the 

possibility to examine the progression of fetal CTG features 

over time in all monitored patients without any limitations. 

This allows for continuous auditing and analysis, providing 

valuable insights. These features also enhance the analysis 

of FHR signal for both clinicians and researchers, regardless 

of the methodological approach they choose. The dataset 

serves as a tool to improve the diagnostic reliability of CTG. 

Moreover, the availability of a wide range of case histories 

grants clinicians access to a wealth of information, including 

cases involving maternal conditions such as diabetes that 

could influence fetal outcomes. Consequently, clinicians can 

gain a deeper understanding of these scenarios, identifying 

subtle patterns associated with specific conditions and 

making well-informed decisions even in challenging 

circumstances. By analyzing a vast set of CTG data, 

clinicians can identify patterns and correlations that may 

indicate potential risks or complications at an earlier stage of 

pregnancy, facilitating more accurate diagnoses and timely 

interventions. 

This extensive collection of organized CTG data hence paves 

the way for new groundbreaking possibilities in the analysis 

of CTG signals.  

Particularly, as illustrated in Chapter 5, we took advantage 

NAPAMI’s wealth to investigate the understanding and 

analysis of FHR patterns, examining them in both the 

temporal and spectral domains. 

Specifically, for what concerns temporal analysis, Section 1 

of Chapter 5 introduces a novel methodology based on a 

multivariate categorical Hidden Markov Model (HMM), 

designed for the automatic identification of fetal behavioral 

stages within FHR tracings. The obtained results suggest that 

the developed model can effectively identify quiet and 
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activity states, since the best model's predictions matched an 

expert clinician's interpretations with a 90% agreement. One 

desirable feature of the proposed method is the ease of 

interpreting the obtained results, since the use of a small set 

of parameters, already extensively employed in cCTG, 

provides explainability and clear intrinsic meaning. Another 

appealing aspect is that the learning process is fully 

unsupervised. The model automatically identifies the 

clusters using the Baum-Welch algorithm, associating them 

with the "Active" and "Quiet" states after the fact. This 

approach eliminates reliance on expert annotations and 

ensures an objective evaluation based solely on the signal's 

intrinsic characteristics. However, it should be noted that the 

approach was tested with limited data due to time 

constraints, and future efforts will focus on expanding the 

testing data and the enrollment of more expert clinicians to 

enhance the reliability and generalizability of the results. It 

should also be noticed that the inclusion of the FMP signal 

in the analysis only marginally improves the model's 

performance, suggesting that the HMM is able to accurately 

identify fetal stages regardless from maternal perception of 

fetal movements. Future developments for this work include, 

e.g., leveraging knowledge of the actual state and the 

hysteresis of active/quiet state transition as a biomarker of 

development and fetal heath. 

On the other hand, Section 2 of Chapter 5 concerns FHR 

signals’ spectral analysis and serves a dual purpose. First, we 

exploited the abundance of information contained in 

NAPAMI to compare various existing methods of spectral 

analysis; secondly, we propose a new approach for 

evaluating the spectrum of the phase-rectified signal 

averaging (PRSA), comparing the obtained results with 

those of the more classical spectral analysis methods. 

Our study has shown that using the PRSA method before 

computing the spectra significantly improves the ability to 

distinguish between uncomplicated and high-risk 

pregnancies, compared to classical spectral analysis 

methods, while still providing physiologically interpretable 
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results. On the other hand, the classical methods of spectral 

analysis did not show substantial differences. 

While time-frequency analysis allows for localizing results 

in time and investigating fetal reactions to stimuli, the results 

suggest that the PRSA method presents a clear advantage 

over other methods when an aggregate measure is sought. 

This is attributed to its ability to reduce noise, capture non-

phase synchronized oscillations, and its advantageous 

scaling behavior. One notable difference observed between 

control and high-risk groups is a relative increase in power 

in the mid-frequency range for the latter. This frequency 

band has been previously associated with fetal movements, 

but our study did not observe a significant increase in 

movement occurrence perceived by the mother in high-risk 

groups, suggesting other pathophysiological mechanisms 

may be involved. The physiological interpretation of this 

frequency band requires further study. Notably, a previous 

study found very little power in this band in uncomplicated 

low-risk pregnancies. The reduction in high-frequency 

power observed is consistent with a decrease in respiratory 

movements in pathological groups, which is supported by 

other studies demonstrating lower respiratory movement 

speed, power, intensity, and overall quality in intrauterine 

growth restriction (IUGR) fetuses. We did not observe 

significant differences in low-frequency power with the 

PRSA method, although minimal differences were identified 

with other methods. This may be attributed to the scaling 

behavior of the PRSA and specific parameter choices. 

Instead, we did not find substantial differences when 

considering the acceleration-related PRSA curve instead of 

the deceleration-related one.  

The conclusive Chapter of this thesis (Chapter 6) addresses 

the challenge of classifying FHR signals through the use of 

DL techniques. More specifically, it illustrates how we 

managed to exploit the abundance of CTG data offered by 

NAPAMI to develop and test the classification performance 

of a novel neural architecture. This neural network (NN) has 

been specifically designed to handle heterogeneous data, 

comprising both images and quantitative parameters 
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representing the statistical characteristics of the FHR signal. 

The presented NN is composed of two branches: a Multi-

Layer Perceptron (MLP) branch that receives a set of 15 

regressors, and a Convolutional Neural Network (CNN) 

branch that is fed with a series of 64x64 images. These 

images are generated through various transformations 

applied to the pre-processed denoised FHR signal, including 

MTF, GADF, RP, and others. 

To evaluate the superiority of the novel mixed-type 

architecture over the standalone MLP and CNN branches, we 

conducted a comparison of the three neural architectures in 

terms of overall classification accuracy. After optimizing 

each NN's hyperparameters, the MLP, CNN, and MLP-CNN 

architectures were trained and tested on a dataset of 14,000 

instances, split into 80% for training and 20% for testing. 

The results demonstrated that the MLP-CNN network 

outperformed the other architectures, achieving an overall 

classification accuracy of 80.1% with the best set of 

hyperparameters. However, the main limitation of this 

method lies in its sensitivity, which is not yet fully 

satisfactory. Specifically, with the combined CNN+MLP 

model, the True Positive Rate (TPR) reached only 69%, 

corresponding to a 31% probability of incorrectly classifying 

an unhealthy subject. It should be noted that the unhealthy 

subjects included in the database used for this study 

represent a diverse group encompassing various types of 

diseases, such as intrauterine growth restriction (IUGR), 

metabolic alterations, fetal malformations, and maternal 

pathological conditions like diabetes. 

The decision to include all these different disease categories 

within the unhealthy class was made to balance the number 

of healthy and unhealthy subjects and enable the utilization 

of Deep Learning techniques. However, this approach may 

decrease the performance of our neural model in terms of 

accuracy and specificity, as different pathologies can exhibit 

distinct patterns in FHR signals, thereby reducing 

classification capabilities and increasing the variability of 

FHR features. It is necessary to consider these findings as a 

starting point towards more intricate studies that examine 
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distinct pathology classes separately, once the quantity of 

data for each pathology reaches an acceptable level for DL. 

Nonetheless, the results obtained from this study are 

promising, as they were achieved using a substantial amount 

of clinical data that closely represents the real population's 

variability. While this may result in lower classification 

performance compared to other existing works, it enhances 

the model's robustness and ability to generalize. Future 

advancements in this research will involve exploring 

alternative techniques for converting CTG signals into 

images to provide novel inputs for the CNN branch. 

Additionally, we will investigate the incorporation of a wider 

set of quantitative parameters to feed the MLP branch and 

explore other mixed-type neural architectures that include 

Recurrent Neural Networks (RNNs) or Temporal CNNs, 

thus allowing for an increased classification accuracy, 

enhancing the diagnostic capabilities of the CTG, and 

therefore, also maximizing its power as a medical decision-

support tool. 
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8 Appendix. 

This section is designed to furnish insights about each 

parameter introduced in the corpus.  

Table 1A summarizes the full set of computed quantitative 

indexes and indicates, for each of them, the domain it 

belongs to (time, frequency, non-linear) and the duration of 

the signal excerpt considered for its computation.  
 

Table 1A: summary of all computed parameters 

Name Domain Window-length 

Delta (Δ) Time 1 min 

Interval Index (II) Time 1 min 

Short Term Variability 

(STV) 

Time 1 min 

Long-Term Irregularity 

(LTI) 

Time 3 min 

Low Frequency (LF) Frequency 3 min 

Movement Frequency 

(MF) 

Frequency 3 min 

High Frequency (HF) Frequency 3 min 

Total Power (PWT) Frequency 3 min 

Approximate Entropy 

(ApEn) 

Non-Linear 3 min 

Sample Entropy 

(SampEn) 

Non-Linear 3 min 

Sample Asimmetry  Non-Linear 20 min 

Binary Lempel-Ziv 

complexity (LZ2) 

Non-Linear 3 min/20 min 
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The FHR signal is read by the 2CTG2 software 2 times per 

second, resulting in a “sampling frequency” of 2 Hz. The 

signal which is originally expressed in beats per minute 

(bpm) is transformed in ms by applying Equation A1. 

 

𝑹𝑹[𝒎𝒔] =  
𝟔𝟎𝟎𝟎𝟎

𝑭𝑯𝑹[𝒃𝒑𝒎]
 

 

Time domain parameters are computed on a down sampled 

version of RR [ms], called T[ms], obtained by averaging the 

signal in non-overlapping windows of 5 samples, resulting in a 

“sampling frequency” of 0.4 Hz. This procedure makes it 

impossible to quantify beat-to-beat variability but makes the 

analysis more robust to noise. 

For consistency with the analysis conducted automatically by 

the 2CTG2 software, most parameters are computed on 

windows of 3 minutes. Some of the time-domain parameters 

are computed on sub-windows of 1 minute. Some non-linear 

parameters, which benefit from the use of longer time-series, 

Ternary Lempel-Ziv 

complexity (LZ3) 

Non-Linear 3 min/20 min 

Acceleration Capacity 

(AC) 

Non-Linear 20min 

Deceleration Capacity 

(DC) 

Non-Linear 20min 

Deceleration Reserve 

(DR) 

Non-Linear 20min 

Acceleration Phase 

Rectified Slope (APRS) 

Non-Linear 20min 

Deceleration Phase 

Rectified Slope (DPRS) 

Non-Linear 20min 

LFprsa Non-

Linear/Frequency 

20min 

MFprsa Non-

Linear/Frequency 

20min 

HFprsa Non-

Linear/Frequency 

20min 

(A1) 
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are computed on windows of 20 minutes, which is the 

minimum signal-length available for all recordings. 

 

 

Time Domain indices 

 

Delta (Δ), Short Term Variability (STV), Interval Index (II) 

and Long-Term Irregularity (LTI) are traditional time-domain 

parameters that quantify variability. Δ, STV, II and LTI are 

computed on windows of 1 minute, while LTI on windows of 

3 minutes.   

Δ is simply computed as the difference between the maximum 

and minimum value of T[ms] in the window (equation A2): 

 

𝚫 =  𝐦𝐚𝐱 (𝑻(𝒊)) − 𝐦𝐢𝐧 (𝑻(𝒊)),    i=1,…,24 

 

STV estimates variability on a short-time scale, and is the mean 

of the absolute value of the difference between consecutive 

values of T[ms] (equation A3): 

 

𝑺𝑻𝑽 =  
∑ |𝑻(𝒊+𝟏)−𝑻(𝒊)|𝟐𝟑
𝒊=𝟏

𝟐𝟑
 ,   i=1,…,23 

 

II is defined as in equation A4: 

 

𝐈𝐈 =  
𝒔𝒕ⅆ[|𝑻(𝒊+𝟏)−𝑻(𝒊)|]𝒊

𝑺𝑻𝑽
,    i=1,…,24 

 

LTI quantifies variability on a longer time scale, and is defined 

as in equation A5: 

 

𝑳𝑻𝑰 = 𝑰𝑸𝑹(√𝑻(𝒊 + 𝟏)𝟐 + 𝑻(𝒊)𝟐),    i=1,…,71 

 

 

Frequency Domain parameters 

 
Frequency domain parameters are used to quantify the activity 

of the sympathetic and parasympathetic branches of the 

autonomic nervous systems. They are computed on windows 

of three minutes of RR[ms]. 

(A2) 

(A3) 

(A4) 

(A5) 
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Spectra are estimated using autoregressive models of order 12, 

and the parameters are estimated using the Levinson-Durbin 

algorithm.   

PWT (total signal power) is the integral of the entire spectrum 

and corresponds to the variance of the signal RR[ms]. 

LF, MF and HF are defined as the integral in their respective 

frequency bands and can be expressed in natural units (ms2) or 

as percentage of PWT (e.g., 𝐿𝐹[%] =  
LF[ms2]

PWT[ms2]
∙ 100  ). 

The Low-Frequency (LF) band is defined between 0.03 Hz and 

0.15Hz and is mostly related with the activity of the 

sympathetic nervous system. 

The Movement-Frequency (MF) band is defined between 

0.15Hz and 0.5Hz and has been related to maternal breathing 

and fetal movements. 

The High-Frequency (HF) band is defined between 0.5Hz and 

1Hz and is related to fetal breathing and parasympathetic 

activity. 

 
Non-Linear parameters  

 
Non-linear parameters capture characteristics of the signal 

which cannot be properly quantified in time or frequency 

domain: regularity and complexity. Non-linear parameters are 

computed on RR[ms] 

The Approximate Entropy (ApEn) is a family of statistics 

used to compute an approximate value of the signal entropy 

based on measuring the signal regularity: the less predictable 

the states are, the more complex the system is. In particular, 

“ApEn(m, r, N) is approximately equal to the negative average 

natural logarithm of the conditional probability that two 

sequences that are similar for m points remain similar, that is, 

within a tolerance r, at the next point”. N is the number of 

sampled of the input series.  

The Sample Entropy (SampEn) is a variation over the 

approximate entropy that solves the bias effect of ApEn caused 

by self matches. In detail, “SampEn(m, r, N ) is precisely the 

negative natural logarithm of the conditional probability that 

two sequences similar for m points remain similar at the next 

point, where self-matches are not included in calculating the 

probability”. 
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ApEn and SampEn are computed on windows of 3 minutes 

(N=360) with the following combinations of m and r: 

ApEn(1,0.15,360), ApEn(1,0.1,360), ApEn(1,0.2,360), 

SampEn(1,0.15,360), SampEn (1,0.1,360), SampEn 

(1,0.2,360). r is multiplied by the standard deviation of the 

signal in the 3-minutes window. 

The Lempel-Ziv Complexity asses the minimum amount of 

information needed to define a string, i.e., it quantifies 

algorithmic complexity. Before computing the Lempel-Ziv 

complexity RR[ms] is transformed into a symbolic sequence of 

a low-dimensional alphabet.  

Two metrics are computed, which differ in the strategy 

employed to code RR[ms] into a symbolic sequence. Both are 

computed on windows of three minutes. The values are 

normalized by the asymptotic behavior of a random string.   

For the computation of the Binary Lempel-Ziv complexity 

(LZ2), RR[ms] is encoded as follows (equation A6): 

 

{
𝟏,    𝒊𝒇 𝑹𝑹[𝒎𝒔]𝒏+𝟏 > 𝑹𝑹[𝒎𝒔]𝒏 + 𝒑 ∙ 𝑹𝑹[𝒎𝒔]𝒏
𝟎,    𝒊𝒇 𝑹𝑹[𝒎𝒔]𝒏+𝟏 ≤ 𝑹𝑹[𝒎𝒔]𝒏 + 𝒑 ∙ 𝑹𝑹[𝒎𝒔]𝒏

 

 

Where p indicates the smallest quantization level for a symbol 

alteration within the encoded strings. p is set to 0.02 

On the other hand, the Ternary Lempel-Ziv complexity (LZ3), 

relies on the following encoding of RR[ms] (equation A7): 

 

{
 

 
𝟏,    𝒊𝒇 𝑹𝑹[𝒎𝒔]𝒏+𝟏 > 𝑹𝑹[𝒎𝒔]𝒏 + 𝒑 ∙ 𝑹𝑹[𝒎𝒔]𝒏
𝟎,    𝒊𝒇 𝑹𝑹[𝒎𝒔]𝒏+𝟏 < 𝑹𝑹[𝒎𝒔]𝒏 − 𝒑 ∙ 𝑹𝑹[𝒎𝒔]𝒏
𝟐,    𝒊𝒇 𝑹𝑹[𝒎𝒔]𝒏 − 𝒑 ∙ 𝑹𝑹[𝒎𝒔]𝒏 ≤ 𝑹𝑹[𝒎𝒔]𝒏+𝟏 

≤ 𝑹𝑹[𝒎𝒔]𝒏 + 𝒑 ∙ 𝑹𝑹[𝒎𝒔]𝒏

 

 

Where p is set to 0.01 

 

The Sample Asymmetry describes changes in the shape of the 

histogram of RR intervals, allowing to separate the contribution 

of accelerations and decelerations. To compute the Sample 

Asymmetry the FHR [bpm] considered over windows of 20 

minutes is detrended removing the moving median computed 

over 3 minutes (360 samples) and is computed as in equation 

A8:   

(A6) 

(A7) 
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𝑺𝒂𝒎𝒑𝒍𝒆 𝑨𝒔𝒚𝒎𝒎𝒆𝒕𝒓𝒚 =  
∑ (𝑭𝑯�̃�|𝑭𝑯�̃� > 𝟎)𝟐𝒏
𝒊=𝟏

∑ (𝑭𝑯�̃�|𝑭𝑯�̃� < 𝟎)𝟐𝒏
𝒊=𝟏

 

 
Where 𝐹𝐻�̃� indicates the detrended signal. 

The phase rectified signal averaging (PRSA) is a non-linear 

signal processing technique that allows to identify quasi 

periodicities in non-stationary signals. It is a non-linear 

technique, but due to the importance it has assumed in the 

analysis of the FHR it has been dedicated a separate sub-

chapter.  

The PRSA method allows computing a compressed version of 

the signal, called PRSA curve, in which quasi periodicities are 

phase-synchronized while non-periodic components tend to be 

cancelled out. 

To compute the deceleration-related PRSA curve (PRSAdec), 

the samples of the RR[ms] signal that satisfy the following 

condition are defined as deceleration anchor points (APdec) as 

in equation A9: 

𝐀𝐏𝐝𝐞𝐜 = {𝐭:  
𝟏

𝑻
∑𝑹𝑹[𝒕 + 𝒊]

𝑻−𝟏

𝒊=𝟎

> 
𝟏

𝑻
∑𝑹𝑹[𝒕 − 𝒊]

𝑻

𝒊=𝟏

} 

 

For each APdec, a window of length 2L is defined taking the 

values of the original signal that go from APdec-L to L to 

APdec+L-1. 

L is set to 40 and T is set to 1. 

A similar procedure is performed to obtain the acceleration-

related PRSA curve (PRSAacc), inverting the direction of the 

inequality. 

 

The Deceleration Capacity (DC) is defined as in equation 

A10: 

 

DC = 
𝟏

𝟐𝒔
∑ 𝑷𝑹𝑺𝑨ⅆ𝒆𝒄[𝑳 + 𝒊]𝒔
𝒊=𝟏  

−
𝟏

𝟐𝒔
∑ 𝑷𝑹𝑺𝑨ⅆ𝒆𝒄[𝑳 − 𝒊]

𝒔−𝟏

𝒊=𝟎
 

 

(A8) 

(A9) 

(A10) 
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s is the scale and is set to 1. DC quantifies the deceleration-

related oscillations, and it has been linked to the activity of the 

parasympathetic nervous system.  

 

The Acceleration Capacity (AC)  is defined in a similar way, 

using PRSAacc instead of PRSAdec and has been hypothesized 

to quantify sympathetic activity. 

 

The deceleration reserve is simply defined as in equation A11: 

 

𝑫𝑹 = 𝑫𝑪 + 𝑨𝑪 

 

and quantifies asymmetries in the RR signal, since AC and DC 

have the same expected value for stochastic gaussian processes. 

 
LFprsa, MFprsa and HFprsa were recently proposed to 

quantify the oscillations in PRSAdec, thus exploiting the 

abilities of the PRSA method to detect quasi oscillations and 

remove noise to improve spectral analysis of RR[ms] 

The scalogram of PRSAdec is computed as in equation A12: 

 

𝑿𝒘
𝑷𝑹𝑺𝑨(𝒔, 𝒑) =  ∑ 𝒙𝒌

𝑷𝑹𝑺𝑨 ∙
𝒘[(𝒌 − 𝒑)/𝒔]

𝒔

𝑳−𝟏

𝒌=−𝑳
 

 

Where w is the analytic Morse wavelet with γ equal to 3 and 

time-bandwidth product equal to 60. The spectrogram is 

obtained as the square of the wavelet coefficients and is 

evaluated at k=0, thus obtaining a single spectrum, i.e. 

PRSA_Spt. LFprsa, MFprsa and HFprsa are obtained as the 

integral of PRSA_Spt between the frequency bands defined 

previously normalized by the total power of PRSA_Spt. 

 

For the computation of Acceleration Phase Rectified Slope 
(APRS) and Deceleration Phase Rectified Slope (DPRS), 

PRSAacc and PRSAdec are computed as previously explained, 

but using FHR[bpm]. As a consequence, APdec is defined as 

follows (equation A13): 

 

(A11) 

(A12) 
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𝐀𝐏𝐝𝐞𝐜 = {𝐭:  
𝟏

𝑻
∑𝑭𝑯𝑹[𝒕 + 𝒊]

𝑻−𝟏

𝒊=𝟎

 

                      <  
𝟏

𝑻
∑𝑭𝑯𝑹[𝒕 − 𝒊]

𝑻

𝒊=𝟏

} 

 

DPRS is defined as the slope of PRSAdec at the anchor point 

(equation A14): 

 

DPRS = 
𝝏𝑷𝑹𝑺𝑨ⅆ𝒆𝒄

𝝏𝒊
,   𝒊 = 𝐀𝐏𝐝𝐞𝐜  

 

APRS is defined in the same way but on PRSAacc. 

(A13) 

(A14) 


