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Introduction

Screens have become a pervasive part of our daily lives, with smartphones alone aver-

aging over 4 hours per day. We bounce from screen to screen, including smart TVs,

computers, smartwatches, and smart bracelets. These interconnected devices can col-

lect a vast amount of data on our consumer choices and interests. Thanks to advanced

Machine Learning (ML) and classification models, firms can use this data to anticipate

our searches and infer our interests. While this has reduced search times, improved

match quality, and increased innovation, it has also raised privacy concerns.

Over the past decade, there has been a growing interest in the topic of privacy in

digital markets. Books such as ”Permanent Record” and ”The Capitalism of Surveil-

lance”have shed light on the negative effects of data collection. In ”Permanent Record,”

Snowden exposes how governmental bodies collect data, highlighting the issue of dig-

ital footprint and government intrusion (Snowden, 2019). Meanwhile, Zuboff delves

into the private and business aspects of this world, exposing how powerful companies

commodify personal data and manipulate people into revealing more information, all

for the sake of profit (Zuboff, 2019).

Only recently, competition authorities have introduced user data and users’ privacy

concerns within policy cases. In 2019 the German Federal Cartel Office filed a lawsuit

and condemned Facebook for the exploitative practices that concerned the collection

and use of data from third-party websites and apps that use Facebook’s advertising

and analytics tools.1 On the other side of the Atlantic instead, the US Federal Trade

Commission filed a lawsuit in 2020 against the abuse of monopoly power in the social

media market that originates in Facebook’s strategic acquisitions of Instagram and

WhatsApp, and the practice of sharing data with Facebook.2

During this turmoil, the European Union did not bide its time. It opened the

consultations for the Digital Market Act (DMA) and Digital Service Act (DSA) to

regulate digital platforms and online services. The DMA designates large online plat-

forms as ”gatekeepers” based on market share, size, and impact on competition and

provides a new set of rules and obligations to stimulate competition in digital markets.

1German Court Upholds Ruling Against Facebook’s Data Collection. The New York Times (ny-
times.com)

2FTC Sues Facebook for Illegal Monopolization. Federal Trade Commission (ftc.gov)
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Complementarily, the DSA targets online intermediaries and will assign responsibil-

ity for the content provided within its boundaries. It will be crucial for social media

companies.3 Therefore, these recent developments clearly show the importance and

increasing attention that the theme of data in digital markets is receiving.

Previous literature has investigated the theme of privacy since the 1980s, producing

insights on the uses of consumers’ information, the welfare effects of data trading, the

biases that consumers face when dealing with personal data, and the effect of privacy

regulation on marketing, and more generally on producer surplus. However, due to the

invisibility of the phenomenon of data collection and data use to the researcher’s eye

and due to the increase in world digitization, some themes still need to be completely

understood, and investigation is required to intervene with further regulation.4

One interesting phenomenon that still needs to be adequately explained is the one

of data markups. While this concept was relevant in the Bundeskartellamt Facebook

decision, only a few papers try to investigate the relationship between the intensity

of data collection and firms’ market power. In Chapter 1, I analyze this relationship

through an empirical analysis of the iOS App Store, finding a positive association

between market shares and data used to track individuals. This finding is interesting

because it implies that even in zero-price markets, influential firms find a way to

exploit their market power and that despite the presence of privacy notices, due to

network effects and market monopolization, consumers may find themselves stuck in

low privacy solutions. This motivates the concern and attention of authorities to the

theme of consumer exploitation by dominant firms.

In order to investigate this relationship, the first Chapter’s research question re-

quired the assembly of a unique panel dataset covering 12 months and about 1.2 mln

apps available in the Apple Catalog.56 The dataset includes information about apps’

descriptive characteristics, proxies for downloads, perceived quality, similar apps, in-

novation activity, and, most importantly, data uses. On this last element, the Apple

Privacy Nutrition Labels provide an impressive granularity of information about the

firms’ data collection and use practices: they distinguish among different link statuses

(linked to the user profile, not linked to it, or used to track consumers) and only for the

first two link statuses they provide six alternative data uses (third-party ads, developer

ads, product personalization, analytics, app functionality, other purposes) each with

the complete set of items collected and exploited (32 categories see Figure 1.1 for a

detailed view). Unlike previous literature that focuses on the number of permissions

3Digital Markets Act and Digital Services Act: two new EU regulations to address digital chal-
lenges | European Commission - European Commission (europa.eu)

4The reader can find specific literature reviews within the chapters.
5https://apps.apple.com/us/genre/ios/id36
6The scraping of data is still ongoing, and the analysis will be replicated on a more extended

observation period.
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required by an app, this study can proxy data intensity by the purpose of data collec-

tion and focuses on the ”Data Used to Track You” indicator. This different perspective

has the advantage of potentially isolating data collection purposes that are most likely

to cause an increase in market share from those that aim at extracting consumers’ sur-

plus, thus providing a way to break out of feedback loops that have hindered previous

studies on this topic.

Innovative techniques were used to establish important explanatory variables, in-

cluding market shares and concentration indexes. Two methods were utilized: modu-

larity maximization for community identification in a network and text data analysis.

A community identification algorithm was applied to the network of suggestions called

“You Might Also Like” provided by Apple as a benchmark to determine sub-markets.

In order to ensure reliable results, a document similarity matrix was created based on

the text analysis of the descriptions, which was then treated as a weighted network.

By using modularity maximization, communities were identified. In digital markets

where prices are often zero, more than traditional tests like SSNIP is needed, making

market definition challenging. Thus, using textual descriptions to capture the feature

space of individual offerings makes it possible to define distance among firms by the

intersections of their feature spaces. Then, the similarity matrix from text analysis

was treated as a weighted network to overcome the inflexible structure of traditional

market definition in digital markets. Community identification algorithms commonly

used in social and biological networks were then employed. This approach yielded

interesting results in the Apple App Store data, detailed in Appendix A.2.2.

Due to the short time dimension and the low within-variation of the panel, the main

specification is a Pooled OLS model with categories and sellers dummies to capture

time-invariant factors that would influence data use. The former set of dummies is

essential to capture the variance stemming from the app’s sector: a calculator may

need fewer data from external sources than a social network or a search engine to

provide the service. The latter, instead, captures the developer’s ability and data

strategies that may be the same across multiple apps. In the main specifications,

although the estimated coefficient for the Herfindahl-Hirschman Index (HHI) is not

significant, or its effect on data markup is marginally irrelevant, market share proxies

have a significant and positive effect. In the main specification, an increase in market

share by 1% is associated with about 0.4% more data items used to track consumers.

In the categorized market share specification, dominant and quasi-dominant apps use

about 33% more items to track consumers. However, the low within-variation of the

panel does not allow for enough statistical power to keep the significance across all of

the market share’s categories when testing the panel within estimator, and repeating

the analysis on a more extended observation period may be needed in future research.

On the other hand, the employment of the within estimator revealed that as apps
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age, the amount of data used to track consumers increases. This could be interpreted

either as a market power effect or as an app’s survival effect. Further research on

the relationship between data and entry and exit patterns is necessary to understand

whether the increase in data intensity represents a shift in business model or whether

there are selection effects at stake motivated by anti-competitive or product improve-

ment uses of data.

In addition to confirming the market power-driven data markup on a new dataset,

this Chapter provides descriptive elements about the correlation of data used to track

with in-app purchases, app maturity, and to some extent, updates. Apps that track

more have a higher number of in-app purchase options and higher average options’

prices. This descriptive evidence suggests that apps may provide a set of different

qualities in the market to operate price discrimination through in-app purchases by

integrating data from different sources and sharing them with third parties. On this

theme, I highlight interesting future venues of research in this field that could be

analyzed with the same dataset.

On top of the market power effect investigated in Chapter 1, a very recent research

strand has shown that influential firms were able to build particularly rich datasets

such that ML models can now infer private consumer information by exploiting the

correlation among users’ types. Since they now only need minimal data about the con-

sumer to infer the remaining fraction, these techniques allow firms to exploit consumer

data despite privacy regulations. Thus, in cases where consumers have heterogeneous

privacy preferences, the effects of this negative externality on welfare remain to be

understood entirely.

In Chapter 2, I propose a theoretical model to explain how the correlation among

consumer data impacts social welfare when a monopolist faces consumers with het-

erogeneous privacy concerns. The Chapter presents a model where data is a quality

element of a monopolist platform with two revenue instruments: prices and data disclo-

sure to advertisers. The negative externality is added as a network effect proportional

to the stock of information accumulated by the firm and inversely proportional to the

level of privacy the platform offers. With this approach, I adapt the traditional theme

of the optimal quality decision of a monopolist that faces heterogeneous consumers to

the novel framework provided by the economics of privacy literature, where consumer

data constitutes both a revenue source alternative to prices and an element of quality.

This model further reinforces the findings of the previous Chapter and shows that

even when the price is zero, there is a welfare loss associated with the monopoly that

stems from an under-provision of privacy. This is relevant because digital platforms

have commonly used the zero-price argument to defend themselves in court and to

show that consumers could not be exploited. Instead, this result further motivates

the decision of the Bundeskartellamt against Facebook, which is itself a zero-price
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platform. Furthermore, this analysis highlights the inappropriateness of the SSNIP

test because, from the model, it arises that the firm may set a zero or negative price

(subsidizing consumers), and it exploits its market power through a higher disclosure

rate. Therefore, in such cases, the SSNIP test would not capture the profitability of

a price increase, and a Small but Significant and Non-transitory Decrease in Quality

(SSNDQ) would be a more appropriate tool.

Another set of results from the model is obtained by studying the impact of the

externality on welfare. The second essay analyzes two cases: in the first, consumers

are unaware of the externality, while in the second, they can perfectly anticipate its

damaging effects and consider them in the joining decision. Generally, as expected,

the negative externality is welfare detrimental with respect to the no externality case.

However, somewhat unexpectedly, adding the negative externality produces a wel-

fare increase to the no externality case when data correlation among users is strong

enough, consumers can anticipate it, and they have a viable outside option. In this

(limited) case, the disutility from the data correlation contributes to reducing the qual-

ity distortion of the monopolist - also known in the literature as Spence Distortion -

by increasing the demand elasticity to data disclosure above the demand elasticity to

prices that pushes the monopolist to switch to the price instrument optimally. Even-

tually, for large enough externality values, the consumers’ average willingness to pay

for quality becomes equal to the marginal willingness to pay, the Spence distortion

disappears, and the only welfare loss that remains stems from the price markup.

This second result has implications for the choice of the optimal policy. Although

the proposed strategy of decorrelating data would be an effective solution against the

loss that derives from the externality, it still needs to repair the under-provision of

quality. When the externality has a strong impact and consumers have an outside

option to avoid it, the model shows that raising awareness about the impact of others’

privacy decisions may raise the demand’s sensitivity to privacy enough to push the

platform to offer a higher quality alternative.

However, this Chapter suffers some critical limitations that shall be expanded by

future research. The policy debate currently revolves around how to regulate privacy

and data markets. While the study has implications on the effectiveness of decor-

relating data, it is generally silent about regulation. The model could then be used

in future research to study the effect on the welfare of alternative data regulations,

such as a cap on the disclosure rate (analogous to a minimum quality standard), a

Pigouvian tax on disclosure revenues, or data decorrelation/anonymization. Secondly,

the descriptive evidence of the empirical analysis suggests that there may be a firm

quality differentiation. The firm offers premium and privacy-preserving features that

consumers with different willingness to pay for privacy may be able to buy. In that

case, the model result shall be adapted to multiple offerings by the same firm to study

5



the effect of the externality on welfare. Finally, the location-then-price model with

duopolists quickly becomes algebraically irksome. Therefore, the effect of competition

remains unexplored in the presence of the informational externality. A way out that

could be considered in future research would be to constrain the price of the service

to zero and assume that firms only produce revenues from advertising. This would

limit the model’s generality but allow studying the impact of competition when the

externality is present.
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Chapter 1

Market power and user tracking: an

empirical analysis of iOS apps market

1.1 Introduction

The pervasiveness of smartphones in consumers’ life has increased drastically in the

last ten years. Smartphones are now the primary data collection device, and some

websites report the fact that globally, people average 7 hours of screen time per day,

and more than half is represented by smartphones.1

Consequently, consumers access apps for any task: to run business meetings and lec-

tures, they use Zoom calls and digital whiteboards, to meet someone, they resort to

social networks and dating apps, their television and entertainment are now app-based

and provided by Big Tech companies, and they even have an app for managing their

pets’ dating life.2 Thanks to this increase in consumption, the market size of the

apps’ global market has already reached US$430.90bn in 2022 (size comparable to

the EU sales in the ‘Passenger Car Market’), and it is projected to reach a market

volume of US$641.10bn by 2027 depicting a truly astonishing success of the digital

economy. Surprisingly, however, most apps offer a zero-priced base product, and de-

velopers have found other ways to generate such significant market revenues: selling

advertisement slots, trading consumer data, and selling in-app purchases. Therefore,

data has assumed both the role of currency and input in the production process and

allows consumers to access free services (Kummer and Schulte, 2019; Cecere, Le Guel,

and Lefrere, 2020).

With data assuming the role of currency, the concern that larger firms impose a

higher data markup and exploit consumers was raised in courts. Due to both consumer

biases and to the absence of competition, the attention of competition authorities

1https://www.bbc.com/news/technology-59952557. Other source CDC infographics: link
2Here is the page of one of the many presents on the Apple App Store: link
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shifted to privacy terms. 3

Indeed, empirical research in the economics of privacy has shown that consumers

suffer many behavioral biases when trading personal data to access free services, and

despite the General Data Protection Regulation (GDPR), influential firms have been

able to use dark patterns to extract data from consumers (Acquisti, Brandimarte, and

Loewenstein, 2015; Norwegian Consumer Council, 2018). Nonetheless, the empirical

literature on the presence of data markups is scarce due to the difficulty in finding

adequate proxies for market power and data strategies and the presence of endogenous

feedback loops.

This paper investigates the relationship between market power and data markups

by studying a novel panel dataset assembled from the Apple App Store. The pa-

per contributes by proposing an analysis focusing only on data uses that are most

likely focused on surplus extraction and less affected by the concern for reverse causal-

ity. Furthermore, the paper provides a methodological contribution to the definition

of digital markets by creating competition proxies through network science and text

analysis. The paper’s results confirm the ones found in the previous literature, and

it shows that the concern for consumer data exploitation is well founded, and market

power is associated with higher data markups even after controlling for developers’

fixed characteristics and apps-specific controls.

The structure of the paper is as follows: subsection 1.1.2 discusses the related liter-

ature and subsection 1.1.1 better defines the research question, Section 1.2 presents the

dataset and some descriptive statistics. Then, Section 1.3 illustrates the econometric

model employed, and Section 1.4 highlights in-depth sample statistics and descriptive

evidence for the data used. Finally, Sections 1.5 and 1.7 conclude with the results

and their interpretation. Complementarily, Section 1.6 provides the limitations and

the assumptions needed and reports the results of some sensitivity tests, whose more

extensive treatment can be found in Appendix A.1. Among these are the robustness

of market definition and a small extension that analyses the impact of different data

uses on the updating process.

Before diving deep into the analysis, the research question and related literature

are presented in the following two subsections.

1.1.1 Research question and main contribution

Analyzing the relationship between market power and data in the digital economy

is complicated by several factors. These include the challenge of defining markets in

zero-priced digital markets, the low observability of firms’ data strategies, and the

3 German Court Upholds Ruling Against Facebook’s Data Collection. The New York Times
(nytimes.com)
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presence of endogenous relationships and feedback loops between data and market

structure.

However, the availability of text data, faster computing power, and recent attention

to privacy regulation contribute to reducing these difficulties in three ways. Firstly,

the introduction of the General Data Protection Regulation (GDPR) increased market

transparency about data strategies by introducing the obligation to state the purpose

of data collection within the privacy notices proposed to consumers. Secondly, as

discussed in section 1.2.2, the Apple App Store, with its recent Privacy Nutrition

labels, forces apps to specify data use in a schematic and salient way that potentially

helps to avoid feedback loops. Thirdly, advancements in the realm of networks and

communities identification supported by an exponential increase in computing power

gave researchers the ability to explore new methodologies to proxy competition, such as

modularity maximization in network analysis (Newman, 2006) and Natural Language

Processing that a decade ago were not computationally tractable for large datasets

like the one used in this article.

With the increase in exploitation and remuneration of consumer data in secondary

markets, the EU regulator has intervened with the GDPR, which has been taken as a

model worldwide. This regulation was needed because of the many biases consumers

suffer. However, it was not enough to avoid the fall of consumers into dark patterns

and the resulting lack of control over personal data, despite the many privacy notices

they are required to sign when accessing any service online (European Commission,

2019; Acquisti, Brandimarte, and Loewenstein, 2015; Norwegian Consumer Council,

2018).

Therefore, the widespread discussion about intervention versus the laissez-faire

approaches comes back also in this field. Can competition in privacy terms push firms

to offer better privacy terms where regulation fails? Moreover, do more powerful firms

use data more intensively due to their market power? To answer these questions, we

must understand how different data uses are affected by competition and how they

impact competition. This article describes the relationship between market power and

the amount of information used to target consumers.

This research establishes a correlation between market power and the use of data by

different companies, which confirms what other studies have also found (Dimakopoulos

and Sudaric, 2018; Kesler, Kummer, and Schulte, 2019; Preibusch, Kübler, and Beres-

ford, 2013). The approach and methodology align with other researchers (Kesler,

Kummer, and Schulte, 2019), but are applied to a novel panel dataset obtained from

the Apple App Store market. The article’s results show that companies with larger

market shares tend to track consumer data more extensively, and this trend is consis-

tent across various market definitions and functional forms.

While the previous literature analyzing app privacy focuses on apps’ permissions,
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this article exploits the unique information from the Apple App Store that splits among

different data uses and “link statuses”. This difference lets us focus on data uses with

a higher surplus extraction component. So under the hypothesis of non-simultaneity

in the Privacy Label’s choice, the typical reverse causality problem would be atten-

uated. In fact, the characterization of different data uses in the privacy nutrition

labels allows us to disentangle the cases where data has a surplus extraction term that

balances the markup effect in the terminology of De Cornière and G. Taylor (2023).4

In the Apple environment, we can distinguish between data uses that are unilater-

ally pro-competitive (UPC) and potentially reverse causal (product personalization,

app functionality, analytics, and potentially third-party advertising) from cases where

data use would not be endogenous (tracking). Furthermore, privacy preferences can

be easily influenced by the way information is presented, as different framing can elicit

varying levels of concern. Studies have shown this to be true (Tsai et al., 2011; Ac-

quisti, Brandimarte, and Loewenstein, 2015). In turn, consumers’ privacy concerns

may be activated by the label Data Used to Track You, as better defined in Sec-

tion 1.2.2, which is the most worrisome for privacy. Consumers’ privacy preferences,

added to the surplus extraction component, make this data use less likely to be UPC

and a clear expression of market power.

Additionally, the sample descriptives and the regression analysis show that the

apps that use more data to track consumers across apps are associated with a higher

number of in-app-purchases and a higher mean value of in-app-purchases (see Section

1.4). Therefore, apps may be using these data items to tune their pricing options,

and this may involve some elements of price discrimination among different demand

elasticities and multiple qualities: that would represent a data use with high surplus

extraction term, so also on this front, a lower probability of satisfying the conditions

stated in De Cornière and G. Taylor (2023). 5

Finally, I contribute methodologically with an innovative way to cluster apps: I

exploit recent advancements in computing power, network science, and text analysis

to provide robustness to the market definition employed in Kesler, Kummer, and

Schulte (2019). To define markets, I employ the network analysis through modularity

maximization of the ‘similar apps network’ (You Might Also Like - YMAL) proposed

in Kesler, Kummer, and Schulte (2019), providing sensitivity to some parameters in

4A thorough revision and application to this context of De Cornière and G. Taylor (2023) is
presented in the appendix A.1.1

5Concerning data used for third party advertising De Cornière and G. Taylor (2023) shows that
there are multiple conditions for this data use to be Unilaterally Anti Competitive (UAC). Among
them, the assumption that the firm does not use both the price and the advertising level may not
hold in the app market, where despite prices being constrained to zero, firms can use in-app purchases
to tune the monetary instrument and the advertising one. Therefore, I only consider Data Used to
Track You as an exogenous indicator because privacy concerns make it less likely to be UPC. We
further discuss the implications and necessary conditions not to have endogeneity in estimating the
market power effects on data uses in section A.1.
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the algorithm as discussed in Sections 1.2.3 and 1.6. Interestingly, Apple does not

provide the ‘You Might Also Like’ section for all their native apps (iMessage, Apple

Podcasts, Apple Books, . . .). Additionally, given that this information is mostly based

on the download patterns of users, the entrants may not be classified optimally. So as

sensitivity analysis, I propose an alternative way to define markets using text data, and

I expand a recent strand of literature that proxies for competition by using text data.

This approach is drawn from the literature that aims at measuring market competition

through the intersection of the feature spaces of firms’ offerings (Hoberg, Phillips, and

Prabhala, 2014; Pellegrino, 2023; Hoberg and Phillips, 2010). Recently, Leyden (2018)

defined categorical markets by analyzing product descriptions and clustering through

unsupervised machine learning techniques. I employ a similar methodology that this

literature has used to extract a similarity matrix that captures the distance of firms

in the feature space, as further detailed in 1.2.3 and Appendix A.2.2.

1.1.2 Literature

The economics of mobile apps literature covered the estimation of apps’ demand

and the factors influencing it. For example, Ghose and Han (2014) estimates a positive

correlation of demand with the in-app purchase option, app age, and number of apps

of the same developer, among other factors. Furthermore, Kummer and Schulte (2019)

expanded the subject by studying the impact of privacy permissions on demand and

highlighted the role of the preferences for privacy in the market, finding that there ex-

ists substitutability between apps’ privacy-intrusiveness and their price. Additionally,

Bian, Ma, and Tang (2021) showed that when apps’ privacy information is published,

apps with more invasive data strategies have a higher drop in downloads.

Instead, a cluster of recent articles investigates the updates of mobile applications.

Yin, Davis, and Muzyrya (2014) shows the differences between successful game devel-

opers and non-game developers. They highlight that while the former category has

a higher chance of success with sequential innovation by producing more apps and

not working on updates, incremental innovation through frequent updates raises non-

gaming apps’ likelihood of success. Instead, Comino, Manenti, and Mariuzzo (2019)

focuses on the strategic use of updates to increase downloads and shows how success-

ful developers in the Apple App Store tend to use updates to counteract a slowdown

in downloads. Finally, Leyden (2018) classifies updates into bug fixing and feature

addition through text analysis, and it uses this information to provide a structural

model of product updating decisions and developers’ innovation in the productivity

apps category. Although the main focus of the present analysis is on market power and

data, due to the impact of data on updates and consequentially on competition, I con-

tribute to this literature by providing descriptive shreds of evidence of the relationship
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between data uses and update behavior.

Another strand of literature in the economics of apps has focused on the impact

of data on the choice of business models. A peculiarity of the digital economy is the

availability of apparently free services and remaining profitable at zero price required to

find new ways to increase revenues. Apps in these markets pick one out of three types

of business models: paid, “freemium”with in-app purchases, and free with data trades

and ad-funded (Cecere, Le Guel, and Lefrere, 2020). As with respect to worldwide

app revenues, in 2022, 51% of the global turnover was earned through advertising and

data sales, while 47% was earned through in-app purchases and only a slim fraction

derived from the upfront apps price.6 Therefore, consumer data has assumed the role

of currency, an idea that this literature has taken into consideration both theoretically

and empirically.

Casadesus-Masanell and Hervas-Drane (2015), which characterizes data/privacy

features of online services as quality differentiation elements takes the substitutability

of prices and data as potential sources of revenues theoretically into account. This

paper explains duopolists’ (revenue) differentiation decisions and relates them to the

willingness to pay for the product and the heterogeneity of consumers’ privacy prefer-

ences. The theoretical model shows that while a monopolist exploits both streams of

revenues, when competition increases, each firm decides to differentiate and specialize

on only one revenue source (data or prices). In this case the substitutability between

prices and data disclosure appears.

Empirically, Kummer and Schulte (2019) was the first to estimate the ‘data-for-

money trade-off’ using Play Store app’s observational data. This paper focuses on the

‘data as currency’ by confirming the impact of sensitive permissions (grade of privacy

intrusiveness of an app) in substituting prices. Furthermore, it identifies a lower bound

in the reduction in demand for an app that requests more privacy-sensitive permissions,

showing that consumers have positive privacy preferences. Related to this topic, Bian,

Ma, and Tang (2021) estimates the impact on the app’s download of the recent Apple

Privacy Nutrition Labels initiative. By employing a difference-in-difference approach,

this working paper finds a significant reduction in downloads after introducing the

privacy summary proportional to the data collection intensity. Similarly, I exploit the

information in the privacy labels better described in Section 1.2.2.

This last cluster of research falls in the intersection between the economics of mo-

bile apps literature and the economics of data and privacy literature that instead has

investigated the use and the profitability of data collection theoretically. The early

economics of privacy has studied the effects of data collection on firms’ behavior from

various perspectives, highlighting a richness of potential data uses (Acquisti, Brandi-

marte, and Loewenstein, 2015). Information can be exploited by firms for surplus

6Statista website
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extraction, such as price discrimination (Fudenberg and Tirole, 2000; C. R. Taylor,

2004; Acquisti and Varian, 2005; Calzolari and Pavan, 2006), to increase demand and

shift revenues upwards through product improvement and personalization (Acquisti

and Varian, 2005), to improve revenues coming from advertisements through better

targeting (De Cornière and De Nijs, 2016). Finally, with the growth of data inter-

mediaries and aggregators, information can be sold in secondary markets (Montes,

Sand-Zantman, and Valletti, 2019). 7

In the digital world, data plays a similar role to prices in traditional markets.

This raises the question of whether dominant companies can increase their profits by

collecting and utilizing more data than their competitors. This question resembles the

first correlational studies in empirical industrial organization that aimed at estimating

the link between market power and prices (Schmalensee et al., 1989). However, while

the interest in the functioning of digital markets is at its peak, few observational studies

assess the strength of the correlation and the causal link between market structure,

market power, and user data exploitation by influential firms.

A recent strand of articles investigates the relationship between data and compe-

tition. Some articles try to estimate the effects of market power on data markups

(Kesler, Kummer, and Schulte, 2019; Preibusch, Kübler, and Beresford, 2013), while

others try to highlight the impact of data on the long-term industry dynamics (Prüfer

and Schottmüller, 2021; Farboodi et al., 2019). This potential feedback loop requires

attention in empirical studies due to the problem of reverse causality.

The theoretical link that may drive firms that face lower competition to have higher

data markups has been investigated in Dimakopoulos and Sudaric (2018), which shows

how softer competition on either side of the market leads to increased data collection.

This theoretical result and the ‘data as currency’ phenomenon motivates the study

Kesler, Kummer, and Schulte (2019), where the authors investigate the relationship

between competition and apps’ number of requested permissions in the Google Play

Store. With a large sample of more than two mln observations followed quarterly over

a two-year window, they study conditional correlations in cross-sections and panel re-

gressions that seem to confirm the positive relationship between market power and

data markups reported in the literature (Dimakopoulos and Sudaric, 2018; Bian, Ma,

and Tang, 2021; Preibusch, Kübler, and Beresford, 2013). Additional to panel regres-

sions, they provide an empirical strategy based on apps’ re-categorizations and exploit

them as exogenous variations in market power. Therefore, they are able to solve the

reverse causality problem and confirm the positive relationship between market power

and data extraction found in fixed effects regressions.

7In-depth review of this literature is in Bergemann and Bonatti (2019), Bergemann, Bonatti,
and Gan (2022), and Acquisti, C. Taylor, and Wagman (2016) and Acquisti, Brandimarte, and
Loewenstein (2015)
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Preibusch, Kübler, and Beresford (2013) analyzes the privacy policies of 140 web

retailers across five industries. While their results on the data for money trade-off are

not so unambiguous as the ones in Kummer and Schulte (2019), they find a negative

correlation between data intensity and the amount of direct competitors a website

has.8

However, their paper could not solve the reverse causality problem behind the

market structure and data extracted relationship: is the website extracting more data

because it has no competition, or has it no competition because it is extracting more

data?

On this issue, the recent working paper of De Cornière and G. Taylor (2023) pro-

poses a general model of competition in utility. It shows that data uses with a higher

surplus extraction term, or those that elicit more substantial privacy concerns, are less

likely to impact market shares and could express market power. The proposed appli-

cations of this model distinguish different data uses by the magnitude of the surplus

extraction term: for example, data for product personalization would have an impact

on next period market concentration because the surplus extraction term is zero (data

is Unilaterally Pro Competitive - UPC), but other data uses such as data used for price

discrimination incentivize the firm to offer lower utility (due to the surplus extraction

term) so that data would not affect next period market share.

1.2 Data description

1.2.1 Data collection: method and variables

The data for this paper contains publicly available information that has been

scraped from the Apple App Store. The dataset has been collected through a Python

crawler from the catalog of Apple App Store. The Python scraper collected all the

apps’ links then it opened one-by-one each app page to collect information. 9 The

full scrape needed ten days for each wave collected, and the extraction order remained

similar along all the waves. With this procedure, six unevenly spread waves were

collected from 01/12/2021 to 01/12/2022.

8Probably the data for money trade-off is not supported because of their selection methodology:
they argue that, since individuals display horizontally differentiated preferences across different data
items (e.g. some may prefer to share health-related data while others may be averse sharing it and
would rather share hobbies or some other data category), information extraction cannot be considered
as a vertical differentiation framework and retailers that extract different data items cannot be directly
compared. Therefore, they analyzed only those retailers that extract with different intensity the same
category of data, and they compared their prices and privacy policies. It turns out that with this
sample selection rule, retailers with higher privacy also correspond to those with lower prices.

9We observe entrants after some months from their release, and their number does not corre-
spond to the astonishing figure released by professional data collectors (almost 2000 daily new apps).
However, we assume that at least the largest apps are listed on the catalog in at least one category.
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I have gathered a dataset containing information on 1.2 million apps that were

tracked for 12 months. With information about:

• App identifiers: unique ID, name of the app, developer name, date of extraction

• App descriptives: description, store category, languages, age rating (PEGI),

list of updates, date of release, number of ratings, average rating, and rating

distribution (e.g., the fraction of rates by rating level), price, in-app purchases,

estimated downloads, estimated revenues, release date and vector of similar apps

ID

• Privacy Labels: as described in the next subsection

Exclusion criterion and sample size

After the creation of the key variables (privacy indicators, developer statistics, and

market shares), the apps that satisfied these conditions were dropped from the sample:

i apps that do not have an iPhone or iPad version (only Mac or iPod);

ii apps that do not have at least 20% of their description in English;

iii gaming apps;

iv apps that did not provide the privacy summary in at least a wave;

The final sample is an unbalanced panel with 434955 app ids followed in six waves

from 1/12/2021 to 1/12/2022 for a total of about 2.4 mln observation.

1.2.2 Apple Privacy Initiative and Privacy indicators

In the effort to differentiate itself from the Android ecosystem, Apple is pushing

towards the title of privacy champion and has introduced with iOS 14.2 a series of

means to provide users with the tools and information for not being tracked.10 It has

introduced the Apple Tracking Transparency (ATT) feature, under which apps must

now request consent from users to track them across apps, and the Apple Privacy

Nutrition labels that the developer must provide to deliver an update of the app. 11

10It is out of the purpose of this paper to discuss whether this is a strategic initiative to leverage
their power to increase their ad revenues cutting out other strong competitors such as Google and
Facebook, or it is only a way to differentiate in the spirit of Etro (2021).

11I assume information is truthful and do not consider the strategic release of information. However,
some technical articles report that privacy summaries may not be as truthful as they seem. An
informative version is: Apple Privacy Nutrition Labels. Therefore, the effect of strategic use of
this information is possible, and section 1.6.3 presents a discussion of the error introduced by the
relaxation of this assumption.
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The nutrition labels are self-reported summaries of the privacy policies that in-

crease the saliency and observability of the data strategies of firms. The amount of

information provided is massive and structured in several layers, as described in Fig-

ure 1.1. In the first layer, the user finds four different data types or also called ‘link

statuses’ ‘Data Used to Track You’ (hereafter U2TU ), ‘Data Linked to You’ (hereafter

L2U ), ‘Data Not Linked to You’ (hereafter NL2U ), ‘Data Not Collected ’ plus a fifth

Summary not Provided (that does not appear in the Figure because, as a preliminary

step for the analysis, we discarded those apps that have not provided the privacy

summary).

The main distinction between the U2TU and L2U link statuses is that information

collected in the first is also shared among other apps, data brokers, and ad networks

providers, while the second can be used for advertising or other purposes internally,

without transferring consumer information to third parties. So suppose a developer

provides an ad space: he can share personal data to an ad network manager that

efficiently allocates the spaces across multiple apps, or he may auction a spot for some

characteristics of the consumer without transferring the actual data to a third party.

In the first case, the developer must list the item in the U2TU section; in the second,

he must list the data item only in the L2U section. 12 This distinction is the most

important one for this article because different data uses have different relationships

with competition, and the ability to identify the data uses with such precision is the

core identification strategy I follow.

The second layer is available for L2U and NL2U, describing the purpose of data col-

lection. This is divided in five specific categories: App Functionality (af ), Third-Party

Advertising (tpa), Developer’s Advertising or Marketing (da), Product Personalization

(pp), Analytics (ana) plus a sixth one being more vague Other Purposes (other). The

third layer displays the 14 possible data types that an app may collect, which in the

fourth layer are disaggregated into all possible data items for each data type. This

final is the most detailed view of the app behavior with a granular view of the 32 data

items.

A view of how this information is presented on the main page of an app in the

Apple App Store accessed from an iOS smartphone is depicted in the left Figure 1.2.

In the same Figure the two screenshots on the right show the “see details” and the

breakdown of privacy policies.

This information has been scraped and converted into a set of dummies coded as

‘status use type item’ that are equal one if that particular combination of link status,

use, data type, and data item is present (e.g., l2u tpa identifiers userid is equal to one

if the user id is linked to the personal profile and it is used for third party advertising).

12The information here presented is as taken from the Apple guidelines to fill and explain the
privacy labels: at Apple’s Privacy Labels.
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Figure 1.1: Layered structure of privacy information in the Apple App Store

The first-layer indicates the category, the second layer the use, the third indicates the type each
composed by different set of items. Source: Bian, Ma, and Tang (2021) Figure 2
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Figure 1.2: Privacy section in the iOS Store

The disaggregation returned more than 430 unique dummies that have been aggregated

to form privacy scores representing the intensity of the different data statuses. Notice

that the app may collect the same data for different purposes, and therefore multiple

dummies may stem from the same item.

Data Link status-Use intensity Raw indexes describing the privacy policies have been

constructed by summing the dummies: all the dummies that start with a combination

of link statuses (l2u or nl2u) and data use (af,tpa,da,pp,ana,other) have been ag-

gregated to form the correspondent index (l2u af,l2u ana,l2u pp,l2u tpa,l2u da,l2u tot

and u2tu tot).13

The U2TU indicator will form the dependent variable as it is the one that is most

likely to be impacted by market power and not to affect it.

1.2.3 Market share proxy

In order to find out which apps are competing with each other, Kesler, Kummer,

and Schulte (2019) utilized a community identification algorithm that employed mod-

ularity maximization. They did this by using Google suggestions for “Customers also

13Given that the min (0) and the max (32) score of these indicators is the same for every one of
them it has been taken not standardizing it
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bought” to build a network. Similarly, our study utilizes information from Apple’s

”You Might Also Like” (YMAL) suggestions for similar app IDs. We then treat the

similar apps as a network and apply the Blondel et al. (2008) algorithm for modularity

maximization, as described in the next paragraph.

It is worth noting that the YMAL network does not suggest similar apps for all of

Apple’s apps. It could be because Apple strategically promotes its apps and may want

to avoid suggesting competitors’ apps like those from Google or Microsoft. Whatever

the reason, it may create a biased market definition. Therefore, an alternative mar-

ket definition that does not rely on the YMAL suggestion network is proposed as a

robustness test. 14

We used the modularity maximization algorithm to analyze the YMAL network

and identified 522 communities. We also applied the same algorithm to the alternative

network created from the apps’ descriptions and found 3209 communities. To ensure

the clusters were accurate, we manually validated them by analyzing the network of

the highest-rated apps. Market definition is a highly contested task in competition eco-

nomics, and our proposed technique is not exempt from criticism. One drawback is the

absence of a clear metric for checking the appropriateness of market definition. To ad-

dress this, we provide sensitivity analysis to the tunable parameters in Section 1.6 and

an alternative market definition in the Appendix. The following paragraph discusses

the details of the modularity maximization procedure and the algorithm employed.

Modularity Maximization - Louvain algorithm The modularity maximization tech-

nique is frequently employed in network science to obtain the network’s community

structure. As an optimization-based method, it involves maximizing the so-called

‘modularity’ of the network defined as

Q =
1

2m

∑

i,j

[

Aij −
kikj
2m

]

δ(ci, cj) (1.1)

Where m is the total number of links, Ai,j the adjacency matrix ki,j are the degree of

node i and j and the δ is the Kronecker delta with Ci that represent the class labels

of the community to which node i belongs to. This measure compares the number of

edges within communities ( 1
2m

∑

i,j Aijδ(ci, cj)) to the expected number of edges in an

equivalent network (with the same degree distribution) with randomly placed edges

( 1
2m

∑

i,j

kikj
2m

δ(ci, cj)).

If the number of edges within communities is larger than the expected number

in an equivalent network with randomly placed edges, then the Q is positive. A

large and positive value of Q indicates the possible presence of community structure.

Reversing this observation, we can look for community structure by changing the

14For more details about this alternative definition, please refer to Section 1.6.2 and Appendix A.
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network divisions in sub-communities and selecting the divisions that maximize the

value of Q.

Computational algorithms are the quickest method to find a network division with

maximum modularity. One such algorithm, described in Blondel et al. (2008), utilizes

a bottom-up approach to optimize modularity. The algorithm begins by assigning each

node i to a separate community, which is then merged with their j closest neighbors.

Next, modularity changes are calculated until a local maximum is reached, and this

process is repeated for every node until the global maximum is achieved. The network

is then recalculated, and the procedure is iteratively repeated until modularity begins

to decrease.

The analysis presented here uses the command cluster louvain in R’s package igraph

to solve this partitioning problem. Given that the algorithm is hierarchical, setting

the resolution parameter is possible. This parameter determines the level of detail in

community detection within a network, and it controls the granularity of the process,

allowing for more specific identification of communities. At a technical level, the res-

olution parameter affects the optimization process of the algorithm by adjusting the

balance between modularity and resolution limit. Modularity seeks to maximize the

density of connections within communities while minimizing connections between com-

munities. The resolution limit controls the trade-off between maximizing modularity

and allowing for the detection of smaller communities by penalizing the creation of new

communities. A higher resolution value leads to more fine-grained communities, while

a lower value results in larger, more general communities. By adjusting the resolution

parameter, users can explore different scales of community structure within a network,

allowing them to analyze the network’s organization at varying levels of detail. The

resolution parameter has been chosen by validating the clusters by hand. However,

the sensitivity of the results to this parameter is reported in Section 1.6.

Market shares To proxy the number of downloads for an app, we can use the number

of ratings as a minimum benchmark since users need to download the app to rate

it. Research has demonstrated that this measure strongly correlates with the actual

number of downloads (Kummer and Schulte, 2019). Hence, in line with previous

literature on app markets, we adopt the rating count as a substitute for the number

of downloads. This is represented by the formula:

si,j,t =
ri,t

∑

j,t r
,
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the market share of i in market j is the ratio between the rating and the sum of all

the ratings in that cluster. 15 16

1.3 Econometric model and hypotheses

In this study, I investigate the impact of market power on the data collected. Given

the recent iOS update that forced developers to publish the Privacy Nutrition Labels,

we can distinguish between different data uses. I focus on Data Used to Track You

indicator U2TU because, for this particular data use, the effect of data on competition

is reduced, and the nature of this data use may attenuate reverse causality concerns.

Although a within estimator would alleviate most of the endogeneity concerns due

to simultaneity, given the low within variation in the panel (that covers only one year),

a fixed effects model at the app id level would not be an appropriate model as the

fixed effects would completely capture the time-invariant factors. 17

Various papers have employed the sellers’ other app characteristics as instruments

in their identification strategy (Comino, Manenti, and Mariuzzo, 2019; Cecere, Le

Guel, and Lefrere, 2020). Indeed, developers’ level characteristics are a crucial element

of the app’s success, and multi-app developers likely employ the same data strategy,

update strategy, and pricing strategy to their apps.

I suggest utilizing a pooled OLS approach that includes developer-category dummy

variables to address these factors. The first group of dummies considers the sell-

ers’ skills and other unobservable attributes, like their work methods (whether data-

oriented or not) and managerial abilities. On the other hand, the second group of

dummies considers time-invariant fixed effects that are specific to each category. This

control is crucial because a data-savvy business model may not be viable in data-

intensive sectors, like social networking, but can still be attainable in others, like

Books. Therefore, it is essential to acknowledge the inherent differences between cat-

egories.

Therefore, the proposed econometric model is:18

15Using the number of worldwide downloads estimated by Sensor Tower may seem like the only
option when cumulative installs are unavailable. However, this measure has its own set of problems
since it has based on estimates and does not accurately reflect the number of users. Furthermore,
the rating count can better proxy the number of actual users and estimate the number of satisfied
users who may have the app installed. Additionally, professional data aggregators services like Sensor
Tower, 42Matter, and AppAnnie, estimate the number of downloads starting from the rating count
and the apps’ rank weekly charts, further validating this proxy.

16We need to be aware that employing rating counts as a proxy of the installed base may favor free
apps since more users download them hastily just to test them.

17As discussed in 1.4 the dependent variables exhibit very little within variation.
18The FE model has been chosen over RE after conducting the Hausman test, additionally cluster

(submarket) specific fixed effects could not be introduced because the variable HHI varies only
between c.
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log(U2TUict) =α0 + γ1HHIct + γ2log(shareict) + γ3log(ratingsict) (1.2)

+ γ4P
d
ict + γ5D

inapp
ict +

n
∑

j=1

δjSellerj +
24
∑

z=1

θzCategoryz + µi + εict,

therefore, the model implies that Data Used to Track You indicator is a function of

concentration in the submarket (cluster), of the rating share (i.e., market share) of the

app in that cluster, and the cumulative count of ratings, and a set of essential apps

characteristics that capture apps’ language, device, age rating group and maturity

(distance from release date).

More specifically:

• log(U2TUict) is the dependent variable aggregated as explained in 1.2.2.

• HHIct is the traditional measure of concentration in cluster c at time t, and

it was computed using the rating shares as a proxy for quantity and exploiting

the community identification through network analysis of the ‘suggested apps’

data.19

– In accordance to Kesler, Kummer, and Schulte (2019) results, concentrated

submarkets exhibit higher data used. Therefore a positive sign shall be

expected.

• log(shareict) is the logarithm of the rating share as computed in 1.2.3.20

– As this is a measure of the firm’s market share, more powerful firms should

exploit data more intensively (Dimakopoulos and Sudaric, 2018; Kesler,

Kummer, and Schulte, 2019; Preibusch, Kübler, and Beresford, 2013).

Therefore, the sign shall be positive.

• log(ratingsict) is the logarithm of the cumulative count of ratings, used to split

the effect of competition (log(shareijt)) from the firm size.

– The expected sign is positive, as this is a measure of the market size of the

firms. Larger firms may use more data.

19Sensitivity to an alternative and innovative methodology to define markets exploiting Natural
Language Processing is in 1.6.

20Alternatively, I estimated the model with four market share dummies to look for non-linear
relationships. Hence, five dummies were codified (si ≤ 5%, 5 < si ≤ 20%, 20 < si ≤ 40%, 40 <

si ≤ 80%,80 < si ≤ 1%) to express different classes of market shares and to isolate the last section
that may be the one most likely biased by the imperfection of the ‘You Might Also Like’ measure of
competition.
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We formalize the hypothesis tested relative to market power, market concentration

and data use as follows:

Hypothesis 1. If data markups are present, we expect that concentration positively

correlates with data to track individuals, so the estimated coefficient for HHI should be

γ1 > 0.

Hypothesis 2. Apps with higher market share and higher demand would have more

market power and higher data markups, this would imply γ2, γ3 > 0.

• P d
ict represents a dummy variable equal to one if the app has an upfront price.

– Given the results in Kummer and Schulte (2019), the expected sign is neg-

ative because of the substitution of revenue streams.21

• Dinapp
ict is an indicator variable of a business model based on in-app purchases,

and it is a dummy equal to one if the app has at least one in-app purchase.

– The expected sign may be negative because of the substitution of revenue

streams, or it could be positive if data is an input for price discrimination

and the two would be complementary.

We formalize the hypothesis tested relative to monetization and data use as follows:

Hypothesis 3. The literature showed that in the Andoid ecosystem data and prices are

substitute, if it is so also with Apple apps we expect γ4 < 0.

Hypothesis 4. In-app purchases and data can be substitute if data is sold to advertisers

and in this case we expect γ5 < 0, or they can be complements if data is used for better

price discriminate through various packages, and in this case we expect γ5 > 0.

• µi is composed by a set of app-specific and (often) time-invariant controls. The

set of dummies and categories taken into consideration as controls are: mac,

iPad, iPhone, age rating, #languages, and appmaturity.

• Seller developers fixed effects, this captures the ability of the developer and

developers’ habits in extracting data. In the standard Pooled OLS, we control

for the number of apps a seller has published. Additionally, I introduce the

logarithm count of the number of apps by the developer.

21It would be interesting to check whether, in more concentrated markets, the firms do not dif-
ferentiate and use both revenues from data and from prices (Casadesus-Masanell and Hervas-Drane,
2015)
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– This coefficient shall be positive in the Pooled OLS without seller FE and

should lose significance when the seller dummies are introduced. Given that

it varies over time when new apps are released, or old are dismissed, it does

not drop out with seller FE.

• Category category fixed effects, to capture sector-specific time-invariant charac-

teristics.

For completeness, I also report the coefficients of the POLS with only category

dummies and the app id fixed effect model. All the proposed models have the log-

log specification for market shares that have been chosen for two main reasons: the

Ramsey Regression Equation Specification Error Test (RESET ) results favored the

log-log specification over the log-lev and lev-lev. Additionally, a common suggestion

to reduce the problem of heteroskedasticity is to apply the logarithmic transformation

(Fox, 2015). Furthermore, to correct for heteroskedasticity, we estimate the model

with robust standard error, and we allow clustering of errors at the seller level.22

As for the choice between fixed effects and random effects models, the Hausman test

firmly rejected the hypothesis of consistency of the random effect estimator. Therefore,

the fixed effect model in (1.2) was estimated (Greene, 2003).

Before looking at the regressions’ results, we discuss the specificities of the sample

by providing summary statistics and preliminary inspection of the variables.

1.4 Sample Statistics

1.4.1 Summary statistics: data uses

Table 1.1: Summary Statistics Data Uses

count mean sd min max skewness kurtosis

Count of all the L2U data items by purposes 2410916 4.120 8.464 0 192 3.757536 27.82185
Count of all the U2TU data items 2410916 0.382 1.378 0 31 5.292713 41.00837
Dummy = 1 if any item U2TU 2410916 0.126 0.332 0 1 2.251939 6.071229
Dummy = 1 if any item L2U 2410916 0.378 0.485 0 1 .5030516 1.253061

Observations 2410916

Table 1.1 shows the descriptive statistics and the distribution of the relevant in-

dicators. The ‘Data Linked to You’ variable is the sum of all the data items by each

possible data use linked to the consumer profile. Therefore, the maximum of 192 is

obtained by multiplying 32 possible data items collected over six possible data pur-

poses. On the other hand, the link status Data Used to Track also represents a data

22Alternative clustering of standard errors that have been considered are: market level and category
level and do not impact the significance of the main terms in the regressions.
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Figure 1.3: HHI histogram

purpose. It does not include the other categories (advertising, app functionality, prod-

uct personalization), and it can assume a value from a minimum of zero to 32. Given

the considerable skewness of these two indicators, taking the logs of these variables is

the standard practice to reduce skewness I also employ. 23 About 12% of the sample

had at least one item tracked, while 36% and 40% of the sample had at least one item

linked or not linked to the user profile, respectively. According to the linked status

data, app functionality, and analytics were the most common purposes for data use.

1.4.2 Summary statistics: market definition and market shares

The market shares of apps, as proxied by the rating share and the Herfindahl–Hirschman

index (HHI), have been computed in these clusters. Concerning the primary market

definition methodology, the histogram in Figure 1.3 shows that the majority of mar-

kets are deemed competitive market (in 276 clusters HHI ≤ 1500), a fraction has

moderate concentration (in 131 clusters 1500 < HHI ≤ 2500) and more than a third

is highly concentrated (in 205 cases HHI > 2500). The mean HHI along the clusters

was .18 with moderate skewness (1.866) but relatively high kurtosis (6.3).

As a result, of the skewness of the rating count, the market share is highly skewed,

and 99 % of the sample has an estimated share that is smaller than 5%. However,

this concentration level is in line with statistics on the number of downloads, where

23A future extension may employ quintile regression that is particularly fit to work with skewed
data. Given the skewness, as an additional test of the study’s reliability, I analyzed the use of data
items as dependent variables. I used an indicator variable to identify cases where at least one data
item was tracked. This logistic regression model mirrored the pooled OLS model in Table 1.4 and
confirmed the results from Section 1.5.
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Table 1.2: Cluster Level Summary Statistics

YMAL Analysis

count mean sd min max skewness kurtosis

(mean) Market share 522 0.008 0.027 0 .5 13.01427 225.8422
(mean) hhi 522 0.183 0.196 0 .9930173 1.866231 6.321524
Mean number of firms 522 4618.6 8132.006 1 65908 3.33712 17.35601

Observations 522

Description Analysis

count mean sd min max skewness kurtosis

(mean) Market share 3209 0.410 0.480 0 1 .3639937 1.179732
(mean) hhi 3209 0.424 0.482 0 1 .3073414 1.13825
Number of firms by cluster 3209 751.298 7758.296 1 185218 13.16196 208.6528

Observations 3209

Note: these are the summary statistics after having collapsed the dataset at the cluster level and
having retained the mean of the three variables. Therefore, every mean value refers to the mean of
the cluster means.

SensorTower reported that in 2019 the top 1% of app publishers were responsible for

80 % of downloads. 24 Similarly, Bian, Ma, and Tang (2021) reports that the top

10000 apps account for 90% of downloads.

Other summary statistics for the panel dataset are reported in Table 1.2. There is

a considerable difference in the number of clusters reported by the two procedures.

Consequently, the mean HHI produced by the two market definition and their standard

deviation is different, with more strictly defined markets having a higher concentration.

Additionally, comparing the two market definitions reveals that the rating share is

much less positively skewed in the case of the description analysis algorithm and with

a much lower kurtosis.25

When using network analysis to define markets, there is a disadvantage because

there is no clear metric to assess the clustering performance other than modularity.

As a result, the reliability of the results across different clustering methods becomes

crucial. 26

Descriptive evidence of the positive association of data U2TU with market shares

emerges from Figure 1.4, where there is an increasing trend between the market share

category and the items reported in U2TU. However, the last class does not respect this

trend, which may be due to a non-linear market power effect or a misclassification error

24SensorTower.com is a commercial data collector for aggregated statistics in the app sector.
25This is likely due to a more granular definition of markets that identified more clusters on the

network from description analysis.
26It is worth noting that a test to evaluate the accuracy of the results that has been conducted and

it is not reported in the article involves creating random clusters to demonstrate that the relationship
between the clusters becomes insignificant as expected.
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Figure 1.4: Log of U2TU by category of market share

of the modularity maximization algorithm. The misclassification is a possibility when

the nodes have a low degree (like Apple products) and may end up in their cluster

even though they have competitors. Thus, a further check that I do to isolate the

misclassified apps or isolate non-linear effects is to use the categorized market share

variable of Figure 1.4 and run the regression with four dummies. By breaking market

shares into five categories, the misclassified apps tend to be the ones in clusters whose

sum of ratings is less than 1000 and a market share (and HHI) close to 1.

1.4.3 Controls’ summary statistics

Table 1.3 reports the summary statistics for the controls used in this study and

other variables used to check the consistency of the sample with previous studies.

Firstly, we observe missing values for some of the variables, such as months from

the release date (m old), count of the languages, and apps’ age rating that reduce the

number of observations in the regressions. The missing values are entirely random due

to the refusal of some HTML requests in the scraping process.27

1.4.4 Summary statistics: Monetization

Concerning the monetization strategy only 7% of the sample has a positive price,

and 14% of the sample has in-app purchasing options. There is consistent variability

27To scrape the apps, a proxy service has been used with IP listed in the US. However, the proxy
failed some requests that produced the missing values
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in the purchasing options offered in the number of packages and the average price of

the package, and one interesting future research avenue would be to explain the impact

that data has on the ability of apps to price discriminate. I contribute to this theme

by providing descriptive pieces of evidence: Figure 1.5a and 1.5b show that the last

quartile of the sample in both the variable L2U and U2TU has a higher level of in-app

purchasing options and a higher average price of in-app purchases with respect to the

other 75% of the distribution. Furthermore, there is a consistent (and statistically

significant) difference among the top 25% apps for data L2U from the top 25% apps

for U2TU use. Moreover, further inspection of the few apps that changed the privacy

Figure 1.5: In-app purchases indicators for last quartile of L2U and U2TU vs. first
three quartiles

(a) Mean number of in-app purchases pack-
ages

(b) Average price of in-app purchases pack-
ages

Note: The figure splits the sample with the top 25% of data use L2U (the left subplots in
each figure) and of U2TU (the right subplots in each figure) against the remaining part of
the respective distribution. Apps that use more data have an average number of packages
available for purchase: the left panel shows the mean for the number of packages available
for L2U (the left subplot) and U2TU (the right subplot). Apps with more data used have
a higher average price (three times the sample averages for U2TU ).

panel (U2TU) shows significant differences in terms of rating count and market share.

On average, the apps that changed the summary have a rating count and market

share that is twice those of the apps that did not change it. This fact would indicate a

market power manifestation in surplus extraction for this category. A more in-depth

descriptive analysis of the apps that changed the privacy indicator U2TU is provided

for the interested reader in A.3.

1.4.5 Summary statistics: Updates

The data is also rich regarding updates information by providing the history of

the last 25 updates of the apps with their associated date and topic. By dividing
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the number of updates by the update range expressed in months, an indicator for

the number of updates per month was obtained. The average app in the sample

updates the app every 50 days, which is remarkably similar to the figure found in

Comino, Manenti, and Mariuzzo (2019). The apps that have higher values of the

privacy indicators also have a higher number of updates. However, the app age may

be driving this correlation since older apps are more likely to have more updates

and, simultaneously, have a more extensive installed base that would motivate higher

profitability of data trades. Therefore, regression analysis to separate the effect of data

on updates would be needed. A short extension on this theme is proposed in A.4.

Table 1.3: Summary Statistics

count mean sd min max skewness kurtosis

Count of ratings (in thousands) 2410916 2.082 95.290 0.000 28500.000 156.890 33480.235
Average stars, NA if rating count==0 1323377 4.217 1.053 1.000 5.000 -1.593 4.769
Price dummy, =1 if price>0 2410916 0.072 0.258 0.000 1.000 3.314 11.984
Dummy variable for in-app purchases 2410916 0.141 0.348 0.000 1.000 2.058 5.237
Numeric count of number of packages 2410916 0.546 1.822 0.000 20.000 4.160 20.994
Avg. Price of the inapp purchases 2410916 2.924 19.286 0.000 999.990 21.154 701.232
N. apps by seller and wave 2410916 45.742 321.573 1.000 3991.000 10.877 125.712
Months from release date 2401033 40.185 33.600 0.000 171.000 1.199 3.794
Age Rating (PEGI), 4+ 9+ 12+ or 17+ 2410901 6.070 4.364 4.000 17.000 1.798 4.541
Dummy variable, =1 if mac version exist 2410916 0.775 0.418 0.000 1.000 -1.314 2.726
Dummy variable, =1 if ipad version exist 2410916 0.653 0.476 0.000 1.000 -0.644 1.415
Dummy variable, =1 if iphone version exist 2410916 0.981 0.135 0.000 1.000 -7.118 51.666
Numeric count of the languages of the app 2335136 3.588 6.889 1.000 141.000 4.565 32.237
Number of updates per month 2410916 0.630 0.895 0.000 25.000 3.896 34.955
Numeric count of the updates done (capped at 25) 2410916 9.759 8.431 1.000 25.000 0.781 2.154

Observations 2410916

1.4.6 Other controls

Despite the table indicating an average age of the app of 40 months, this does

not consider that the panel is unbalanced, and we observe entrants for only a couple

of periods. As a result, the average maturity of the apps in February 2022 was 36

months. Over the whole panel, the developer’s average number of apps is 45.72, with

a substantial standard deviation. Considering that some developers have almost 4000

apps, controlling for developers’ unobservable characteristics becomes paramount given

this high variance. Almost all the sample has a version for the iPhone (98%), while

around 70% also has a version for the macOS operating system. Given that multi-

device apps may provide richer data for tracking the users, it is interesting to check

whether multi-device apps collect more or less data.

1.4.7 Inspection of within variation

The panel’s summary statistics indicate that the within standard deviation for the

U2TU indicator is low compared to the between variation, with values of 0.09 and
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0.44, respectively. This trend is even more pronounced with market shares, which

have values of 0.001 and 0.011, respectively.

In Figure 1.6a, I plot the deviation from the apps’ own mean for the U2TU indicator

against the log deviation of market share for the whole sample. While data strategy

is a long-term strategic variable, the panel used in this study covers only one year.

Therefore, it is natural that the within-variation in these variables is not significant.

Consequently, it is difficult to observe a significant trend between the deviations of

the two variables.28 Although the left panel of the figure confirms that given the short

observation period, most of the variability is between apps, by focusing on the apps

that showed a change in U2TUi (the right sub-figure 1.6b), a weak positive correlation

emerges.

Figure 1.6: Inspection of within variation for main variables
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Furthermore, the same weak positive correlation emerges also if we look at the

deviation from the mean of the app maturity (months from release) and the deviation

from the mean of U2TU (see Figure A.3).

In the next section, the results from the main regressions are reported.

1.5 Results

1.5.1 Main model: the impact of market power on Data Used to Track You

Table 1.4 reports the results of the regression analysis: the first column shows

the results of standard OLS with category dummies, the second reports the model

expressed in (1.2), and the third displays the same model with categorized market

shares to look for non-linear effects. The fourth and fifth columns mirror the model in

28I do not have access to Apple App Store’s historical data, and I am currently collecting data
quarterly to expand the dataset to cover multiple years and repeat the analysis over a longer period.
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the second and third columns, with the difference that the fixed effects are at the app

id level like in Kesler, Kummer, and Schulte (2019). Differences in the sample from

the total number of observation arises from the automatic drop of singletons when

estimating the regression. Using singleton would lead to artificially underestimating

the standard errors and artificially increasing significance (Correia, 2015). Addition-

ally, given the concern of heteroskedasticity, heteroskedastic-robust standard errors are

provided in parenthesis.

Market concentration effects The regressions with Pooled OLS with category FE and

the columns of the category-developer FE model show a small but significant positive

association of concentration and Data Used to Track You, while, when introducing app

fixed effects, the estimated coefficient unsurprisingly becomes insignificant due to the

low within-variation of these variables as reported in 1.6a. Even when the magnitude

is at the largest estimate, the magnitude of the HHI estimated coefficient seems to

be neglectable: with a complete transition from perfect competition to monopoly, the

parameter estimated in column (1) would imply an increase in Data Used to Track

You of about 2%. Moreover, this effect is not robust to different specifications and

market definitions, and the positive association fades when running robustness tests

on the resolution parameter and alternative forms of market definition.

Market power effects However, the market share proxy coefficient is highly signif-

icant in both the first two models and loses significance when moving to app-level

fixed effects. However, the loss in significance can be attributed to the low within-

variation in the sample and the short time dimension of the panel. The app fixed

effect model explains 95% of the variance, and correspondingly it is expected that

(almost) time-invariant factors lose statistical significance and get lower estimated co-

efficients. Additionally, some endogeneity may come from the measurement error of

market shares. In fact, by breaking the market share into categories, there either is

a non-linear effect or the noise of the measure for market share may impact the co-

efficient of the last category. The market definition may be particularly problematic

when the YMAL network is skewed with lower degree nodes (like the entrants/new

apps). In this case, these apps form communities with low impact for their market size

(demand) but very high market shares that tend to be unitary. This would explain

the high and positive significance of the fourth category (0.4 < si ≤ 0.8) in column (5)

(model with app-level fixed effects) and the non-significance of the last one. Concern-

ing the interpretation of these results, we infer from the log-log model with category

and seller fixed effect that the relationship between market power and Data Used to

Track You is inelastic: an increase of market share by 1% would translate to an in-

crease of about 0.43% in data uses. Although the magnitude varies consistently across
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Table 1.4: Selected coefficients for model on Data Used to Track You

POLS Developers Dummy App FE

Dep. Var: log(u2tu) (1) (2) (3) (4) (5)

HHI 0.024*** 0.005* 0.006* -0.003 -0.003
(0.002) (0.003) (0.003) (0.002) (0.002)

Log(share) 0.703*** 0.443*** -0.067
(0.047) (0.041) (0.072)

Categorical market shares (baseline x≤ 0.5)

0.05 < x ≤ 0.2 0.045*** -0.000
(0.008) (0.008)

0.2 < x ≤ 0.4 0.062*** 0.028
(0.017) (0.019)

0.4 < x ≤ 0.8 0.330*** 0.081**
(0.033) (0.030)

0.8 < x ≤ 1 -0.005 -0.109
(0.042) (0.156)

Log of rating count 0.033*** 0.019*** 0.019*** 0.015*** 0.015***
(0.000) (0.000) (0.000) (0.001) (0.001)

Price dummy, =1 if price> 0 -0.140*** -0.210*** -0.210*** -0.027*** -0.027***
(0.001) (0.002) (0.002) (0.003) (0.003)

Dummy variable for in-app purchases 0.182*** 0.047*** 0.047*** 0.043*** 0.043***
(0.001) (0.002) (0.002) (0.003) (0.003)

Log(N. apps) by seller and wave 0.020*** -0.020*** -0.020*** -0.013*** -0.013***
(0.000) (0.002) (0.002) (0.001) (0.001)

App age Categories (baseline 0-12m/o)

Young (13-21m/o) 0.003*** -0.000 -0.000 0.005*** 0.005***
(0.001) (0.000) (0.000) (0.000) (0.000)

Mature (22-37m/o) -0.016*** -0.001 -0.001 0.016*** 0.016***
(0.001) (0.001) (0.001) (0.001) (0.001)

Very Mature (38-66m/o) -0.023*** 0.000 0.000 0.029*** 0.029***
(0.001) (0.001) (0.001) (0.001) (0.001)

Veteran (67-121m/o) 0.004*** 0.009*** 0.009*** 0.047*** 0.047***
(0.001) (0.001) (0.001) (0.001) (0.001)

Constant 0.044*** 0.166*** 0.165*** 0.141*** 0.141***
(0.001) (0.002) (0.002) (0.002) (0.002)

Fixed Effects | | | | |
Category

Developer | | |

App | | |

Observations 2317525 2317525 2317525 2317525 2317525
R2 0.121 0.847 0.847 0.955 0.955

Note: this regression controls for device supported (mac), age rating of the app
(+4,+9,+12,+17) category fixed effects, count of languages. The set of dummies used in
each model is in the last section of the table. All models have been estimated through the
Stata command regdfe that automatically drops singletons to ensure the standard error is
not underestimated. The sample has been restricted from the original sample to ensure

that each estimated model had the same number of observations. Variations in the sample
did not substantially modify the coefficients’ magnitude, significance, and sign. Significance

levels are: *** p<0.001, ** p<0.01, * p<0.05
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specifications, this effect’s sign and significance are robust to market definition and

resolution parameters, albeit decreasing in this last element.

We state this first set of results in the following proposition:

Proposition 1. The regression analysis results do not fully support Hypothesis 1, as the

significance of the estimated coefficient γ1 is not robust to changes in the specification

and market definition. Furthermore, even when the estimated coefficient is significant,

its impact on the dependent variable is negligible. On the other hand, the results

support Hypothesis 2: as the estimated γ2 is positive and significant across multiple

specifications, the correlation of market power’s with the self-reported ‘Data Used to

Track You’ indicator may be the result of a market power effect.

In the following paragraph, we report some ancillary unexpected results that may

offer further support to Proposition 1.

Apps’ Maturity Introducing a categorical variable encoding the quintiles of the

months since the app’s release provides intriguing insights into the relationship be-

tween an app’s maturity and Data Used to Track You. This effect, although not

particularly large in magnitude, is robust to the inclusion of sellers’ dummies. This

coefficient reveals a novel aspect of Data Used to Track You: the oldest apps tend to

track consumers more across apps and possibly sell more consumer data to third par-

ties, even after controlling for developer-fixed effects and the number of apps available

by the same seller. Interestingly, the category of the app’s age is significant across all

specifications and robust to the app-level fixed effects. Therefore, older apps associate

with higher Data Used to Track You with respect to very young apps. The fact that

the effect reinforces when introducing apps’ level fixed effects indicates that the aging

of the apps in this short panel was already relevant to identify the effect of a data

markup. Finally, while the time-invariant component of the app is captured by the

within estimation, the app maturity indicator (that varies over time) that becomes

more prominent and statistically significant may indicate that there is a dynamic in-

crease of the data markup associated with the aging process of the firms of the sample.

Multiple explanations are possible, and more research is needed on this correlation.

Theoretically, as the firm ages and grows, the stock of data becomes larger, richer,

and more informative. Consequently, the marginal revenue from selling data may be

increasing, and the older the app and the more the developer tends to substitute the

price source of revenue with other data-driven sources (ads, sales of information to

data brokers). A popular alternative explanation is one of data barriers: apps that

survived are those that employed more data to track consumers in the first place by

raising barriers and using data strategically not only to ensure the survival of their
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business but to push out rivals that were not using data.29 A final potential cause

of this result that could not be excluded is the measurement error in the dependent

variable, further discussed in the 1.6.3.

Monetization One intriguing finding is that the coefficient for the price dummy is

negative, while the coefficient for in-app purchases is positive. This suggests that while

upfront app prices and data are substitutes, in-app purchases are linked to “Data Used

to Track You.” Additionally, these effects hold across various specifications with similar

estimated magnitudes. This result supports the theory that data used in this manner

is utilized for price discrimination. As stated in the descriptive section and confirmed

in the regression, “Data Used to Track You”may be connected to “freemium” business

models that can engage in price discrimination by lowering quality through advertising

and then offering ad-removal packages. While this analysis is not covered in this paper,

it presents an exciting avenue for future research, especially given the wealth of data

on this topic. Let us formalize the results in the following proposition:

Proposition 2. The resulting correlation support Hypothesis 3. Data and prices are sub-

stitutes in the Apple ecosystem, as the estimated coefficient γ3 is negative and highly

significant across multiple specifications and market definitions. Concerning Hypothe-

sis 3, the positive sign of γ4 suggests that in-app purchases and data are complements,

and apps may use data to maximize their profits through price discrimination.

Other controls It is interesting to notice that differently from Kesler, Kummer, and

Schulte (2019), the log of rating count, which should capture the size or demand of the

firm, remains positive and significant and reinforces the leading market share effect.

However, the full effect is still below the unitary elasticity.

The log number of apps of the developer has only been introduced as a control

because otherwise, when developer fixed effects are not included, there would be omit-

ted variable bias: it is expected that developers that have more apps also use more

data to track consumers across their own (different) apps. It is also expected that the

significance of this term disappears in the fixed effects models. However, the fact that

29It is crucial therefore to study entrants’ behavior more in detail in future research. An example
of the data-driven exclusionary practice was the attempt of Google to exclude rivals from accessing
users’ Big Data in European Commission, Case AT.40099 – Google Android: “In addition to allowing
Google to maintain and deepen its dominance in online advertising, its data collection has allowed
Google to entrench its dominance in search. As the EC is well aware, the advantage conferred to
Google by its scale in data – combined with the anti-EN 97 EN competitive conduct Google employs to
protect its position – has raised insurmountable barriers to entry in the markets for general search and
in particular specialized search services. [...] In addition to giving Google an advantage in search and
online advertising, the data Google collects gives it an advantage in optimizing its mobile (and PC)
services such as YouTube and Maps, as well as in predictive technologies such as Google Now. For
example, one way Google can gain competitive insight into user behaviour is to understand which apps
are installed, or removed, by users on its platform.” Oracle Statement in the Google case available
at https://ec.europa.eu/competition/antitrust/cases/dec docs/40099/40099 9993 3.pdf
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it becomes negative when introducing fixed effects was not expected and could capture

the launch of new apps by the same developer. This is because the developer fixed

effect would capture the time-invariant characteristics, but the log(number of apps)

may vary over time precisely when the developer dismantles old apps or launches new

apps.

The other regressors introduced in the model to control for the app (mostly) fixed

characteristics in the model (2) are the age rating of the apps, which show the com-

forting fact that the apps that also target kids (+4) are those that track users less, a

dummy for the presence of the macOS version and a count of the languages of the app

that shall capture a demand effect and confirms the positive demand effect on Data

Used to Track You proxied by the rating count. These results are available in the full

Table A.1 in the Appendix.30

1.6 Robustness

1.6.1 Sensitivity to cluster resolution

Table A.1 shows the relevance of the resolution parameter for the result. Given

that the Louvain Algorithm is a hierarchical clustering and the resolution parameter

gives the level at which the algorithm stops, the sensitivity of the results to this

parameter shall be discussed. In the table in the Appendix, I show that the result

is not dependent on the level of resolution chosen as long it is not too large. To be

conservative on the effect of market power, the effects from the model reported in 1.4

that have been selected (by validating the clusters by hand) are the smallest of the

series. The table shows a clear negative relationship between the resolution parameter

and the effect of market share on data used to track. However, a resolution parameter

larger than the one reported tends to create a high share of clusters with apps with

low aggregate demand but extremely high market share (mostly one). This artificially

decreases the significance of the market share coefficient.

1.6.2 Other market definitions

Similarly to Kesler, Kummer, and Schulte (2019), I tested alternative proxies of

competition. Firstly, the market share results do not carry over when considering

only the “radius around the plant” measure built by taking the market share of one

app among the vector of similar apps. Secondly, I propose a sensitivity test based

on a market definition measure that does not use the You Might Also Like (YMAL)

30A non-reported test was done with a logit model on the dummy equal one if any item is reported
in the U2TU privacy label. It fully confirmed the results of the linear regressions, and it is available
upon request.
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network. Given that the YMAL section may fail to provide similar apps for new and

smaller apps and the fact that Apple does not provide the YMAL section for its apps,

such as iMessage or Apple Music, the distribution of communities obtained through

modularity maximization may not capture the categorization of new apps correctly.

Therefore, I enrich this with an analysis of the description text similarity through

a Natural Language Processing analysis that exploits the textual descriptions of the

apps and network analysis to identify apps’ submarkets (similarly to Hoberg, Phillips,

and Prabhala (2014) and Pellegrino (2023) and Hoberg and Phillips (2010)).

The results and detailed methodology are reported in Appendix A.2.2, and Ta-

ble A.2 shows that although the magnitude is lower, the significance and sign of the

effect of market share proxy is robust to this new market definition.

1.6.3 Endogeneity concerns

Endogeneity concerns are addressed in Appendix A.1, and here I summarize the

main issues treated in the Appendix. A first concern arises from the potential reverse

causality of data and market share: the focus on Data Used to Track You reduces the

concerns for reverse causality because this data use has the largest surplus extraction

term. Therefore, the firm that extracts more data is less likely to increase the utility

offers to consumers. Consequently, there is a higher likelihood that data do not impact

the reaction function in the firm’s utility (De Cornière and G. Taylor, 2023).

A second concern may arise from data being an input in the updating process. On

this issue, a preliminary regression analysis in Appendix A.4 shows that this indicator

has a negative conditional correlation with the count of updates and the probability

of a version change, and this would suggest that U2TU data is not directly used as an

input in the updating process.

Nonetheless, a third potential bias may derive from simultaneity in choosing the

data items in each data use panel. Applying app-level fixed effects and the robustness

of the categorical market share variable in this regression alleviates the concern for

simultaneity bias driven by economies of scale in data collection. In addition, future

dataset expansion and repeating the analysis over a longer time period may further

reduce concerns for simultaneity.

Sensitivity to different specifications

The sign and significance of the main effect of market share are robust to a change

in specification from log-log to log-lev and lev-lev. Moreover, this remains significant
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even considering as dependent variable the following:

Data Mark-up =







u2tu− l2u If l2u ≤ u2tu

0 Otherwise

This definition exploits the data items that are unique to the U2TU section. This

specification of the dependent variable has the advantage of being more robust to

simultaneity bias and the results with this regression were excluded as they were fully

in line with the main results presented in Table 1.4.

Measurement error in dependent variable

Both dependent and explanatory variables used in this study are proxies for the vari-

ables of interest and may be subject to measurement error. While the measurement

error for the explanatory variables is discussed in the market definition robustness

tests, we discuss the possible impact of measurement error for the dependent variable

by basing the discussion on Wooldridge (2015).

Regarding the dependent variable, it was impossible to address the concern of

strategic reporting of privacy labels in the present research.31 Generally, the estimates

obtained through POLS will still be unbiased if the reporting error is statistically in-

dependent of each explanatory variable (for example, if every developer cheats slightly

or is randomly distributed). However, this will not be true if the reporting error corre-

lates with the estimated regressors. Indeed, if there is no sanction for misrepresenting

privacy policies, developers do not have many incentives to report correct informa-

tion, and the possibility that everyone cheats is sensible. Therefore, absent Apple’s

intervention, the reporting error is i.i.d. within the sample, and the estimates are

unbiased.32

However, Apple’s declared that developers must update their privacy labels when

found “guilty”, and this intervention may influence the statistical independence of the

reporting error in multiple ways. The likelihood that Apple finds a developer guilty

can be modeled as a function of the duration of the deceptive behavior of the app, the

number of consumers/popularity of the app, and the lobbying activity of the developer.

Understanding the correlation of market power with these three elements is crucial to

31See for example privacy labels article.
32Consider the simple regression model that satisfies the Gauss-Markov assumptions:

y∗ = β0 + β1x1 + u

where e0 = y − y∗ is the measurement error. If we only observe y and we write a model for it:

y = β0 + β1x1 + u+ e0,

we see that we need to have e0 independent of x1 to have a unbiased estimate for β1.
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determine the direction of the bias.

Firstly, Apple’s initiative is relatively recent, and we can assume that the duration

of the deceptive behavior is similar among high and low market share firms. Secondly,

powerful firms are more likely to get caught by Apple because of popularity. Then,

while they would be constrained to their actual value, smaller apps may still get

away with deception and keep U2TUTRUE > U2TUREPORTED. If this is the case,

the impact of market power on U2TU (represented by γ2 in the model’s equation)

may be exaggerated. Thirdly, larger firms (and multi-app developers) also have more

resources for lobbying and could be able to invest to capture ‘regulators’. In this case,

the bias would go in the opposite direction, and the estimated relationship would be

understated. In conclusion, we need more information about the correlation between

market power and the under-reporting phenomenon to provide a clear direction for

the bias. Finally, at this stage, Apple’s intervention has been minimal. Therefore, this

article estimates the effect of competition on the self-reported app’s privacy policies

under the assumption that the practice of misreporting is still statistically independent

from the regressors in the equation.

1.7 Conclusions

This study investigates the correlation between data and market power, utilizing a

unique dataset obtained from the Apple App Store. The impact of market power on

data usage was estimated by meticulously collecting and analyzing data on all available

apps from the online iTunes catalog. Market definitions were determined using a

network science technique based on the modularity of the network of similar apps

provided by Apple, and an alternative market definition was tested using a network

of description cosine similarities to ensure the robustness of the results. Despite data

limitations, rating count was utilized as a proxy for downloads and to build market

shares and concentration indexes. Differently from the previous literature, the intensity

of data usage to track individuals was the focal point of the analysis rather than the

number of permissions required by an app. This indicator was built from the privacy

labels provided by app developers, and it alleviates concerns for reverse causality due

to the high privacy concerns elicited and the high surplus extraction role of data in this

link status. A Pooled OLS model was utilized for the primary analysis, introducing

developer and category dummies accounting for time-invariant factors.

The estimated marginal impact of HHI on Data Used to Track You indicator is

negligible, and the effect is not robust across specifications. On the other hand, apps’

market share proxies have a significant and positive effect on data U2TU . The magni-

tude suggests an inelastic relationship between market share and data intensity, with

the log-log form suggesting that an increase in market share by 1% is associated with
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about 0.4% more data items. Instead, the categorized shares show that the effect may

be non-linear, and apps that are dominant and quasi-dominant firms that fall within

the 40-80% use about 33% more items to track consumers. While the magnitude drops

consistently (to 8%) in the case of the app’s fixed effect, the significance of this result

carries over. This result has been obtained by controlling for the app’s maturity (dis-

tance in months from release date), and it emerged that this control variable becomes

highly significant and more impactful in the app fixed effects case. This suggests that

the amount of data U2TU increases as apps age. It remains to understand whether

this represents a shift in business model or whether there are selection effects at stake

that may be motivated by the anti-competitive use of data.

This article contributes to the existing literature by examining the extent to which

various apps use data, allowing for the identification of their data strategy. This

approach is advantageous as it distinguishes between data collection purposes that may

increase market share and those that may have a small or negative impact, thereby

decreasing the risk of reverse causality in estimates.

Furthermore, this focus on data usage, rather than the amount of data collected,

adds to the economics of app literature by highlighting the correlation between ”Data

Used to Track You” (U2TU) and in-app purchases, app maturity, and updates.33 The

apps with higher values of U2TU also tend to use more in-app purchasing options with

a higher average price and are marginally older than those with more data linked to

user profiles (L2U). This trend is consistent across different perspectives, with those

apps that are more active in changing their U2TU panel and introducing new items

having three times the number of packages compared to the sample average.

Additionally, our regression analysis confirms that using data to track consumers

complements the presence of in-app purchases, while the prices and data are inter-

changeable. This finding is novel with respect to the literature and fully explaining its

causes was beyond the scope of this article. Further investigation is required to explore

why the correlations between data and upfront prices and data and in-app purchases

have opposite signs. The descriptive evidence indicates that apps may offer various

qualities in the market to enable price discrimination through in-app purchases. These

apps can price discriminate by collecting data from different sources and sharing them

with third parties. A structural model in this field would help determine the welfare

effects of data when this type of price discrimination occurs.

By merging two methodologies, namely network modularity maximization (as in

Kesler, Kummer, and Schulte (2019)) with Natural Language Processing (NLP) and

text analysis (as in Hoberg and Phillips (2010), Hoberg, Phillips, and Prabhala (2014),

and Leyden (2018)), this article provides a methodological contribution and an alter-

native way to define digital markets that are particularly promising in applied work

33The analysis of updates is in the Appendix as it is still in an early stage.
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when text data is available.

To sum up, this essay shows that market shares positively correlate with the data

used to track consumer behavior, but this correlation is smaller than anticipated. The

findings are consistent across different specifications, but the limited variation within

the panel makes it challenging to maintain statistical significance for all market share

categories when using a within estimator. Therefore, this is the first limitation of

the study, which could be addressed by analyzing a more extended panel in future

research.

Moreover, the identification strategy in this article is based on theoretical assump-

tions regarding the impact of data on competition, which may be restrictive. While

these assumptions are plausible, it was impossible to test for simultaneity in the choice,

which could bias the market share estimates. Only the coefficients of the categorical

market share, which remain significant with app fixed effects, and the effect of app age

on data use intensity are robust to simultaneity bias. These were obtained through

panel fixed effects that captured within-variation and eliminated time-invariant factors.

Therefore, at this stage the results must be read with the appropriate caution

and given the many sources of endogeneity the estimated coefficients represent con-

ditional correlation that do not imply causality. Future investigation exploiting ex-

ogenous changes, such as the introduction of other app stores, app recategorizations,

or governmental-imposed bans of apps may provide an instrument to confirm these

estimates.

Another limitation of the study is the measurement error and associated attenua-

tion bias of the proxies employed for market concentration and the self-reported nature

of the privacy labels.

On the first concern, although the correlation between rating count and downloads

is solid, free apps may be overrepresented in some categories. Therefore, this measure

may overestimate the market share of free apps that receive more downloads, reviews,

and uninstalls. Focusing on an app’s installed base is challenging, but it may be a

better proxy for market power in future research. One way to estimate this measure

could be to count only ratings with at least three stars.

Finally, the research could not address concerns about strategic reporting of privacy

labels. If the reporting error is independent of explanatory variables, estimates from

POLS will be unbiased. However, the estimates will be biased if the error is correlated

with estimated regressors. Although the hypothesis of statistical independence is rea-

sonable without platform’s intervention, Apple’s requirement that developers update

privacy labels when found guilty may affect the statistical independence of report-

ing errors. We need more information on market power correlation to determine the

bias direction. Nevertheless, with the label’s introduction being so new, the article

assumes that the impact of Apple’s intervention is minimal and misreporting is still
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independent of regressors.

Future research This study did not explore the impact of innovation on data, which

is an essential aspect. Innovation is usually seen in new apps or updated versions

of existing ones. With approximately 2000 new apps being submitted daily, it is

impossible to keep track of all of them since the catalog is not updated that frequently.

As a result, I only observed a fraction of the entrants, about 65000 in a year. These

could either be the ones that successfully passed the initial developmental stages and

complied with all the required rules and regulations, or they could be entirely random.

To better understand the effects of data on competition and how it alters developer

incentives, future research should investigate the connection between a developer’s

likelihood of launching new apps and the data they collect, also through different

apps.

I only use updates in the Appendix to test for potential feedback loops. Incremental

updates are essential for non-game app developers, so the analysis of updates in the

Appendix can lead to new research on the positive effects of data. One potential area

of research could be analyzing app update behavior through survival analysis, which

could answer questions about the impact of consumer data on update quality and the

length of time an app can survive without updates. This could also help determine if

reducing the number of updates while increasing their quality could increase the ”buzz

effect” reported in previous studies. Additionally, categorizing updates as bug fixes,

feature expansions, or pricing updates (in a way similar to Leyden (2018)) could help

expand our understanding of the positive effects of data on innovation.
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Chapter 2

Data Externalities and Vertical

Differentiation in Digital Markets: a

Welfare Analysis

2.1 Introduction

In recent years, consumer associations have raised concerns about the privacy of digi-

tal platforms’ users as their data is increasingly collected and extensively used. These

platforms often offer lower or zero prices in exchange for users’ data. Personal infor-

mation has become a valuable currency for firms because they can sell it to advertisers

or use it to improve their offerings through product innovation. However, studies have

shown that when consumers are given privacy information, they are less likely to use

privacy-invasive offerings (Kummer and Schulte, 2019; Bian, Ma, and Tang, 2021;

Acquisti, Brandimarte, and Loewenstein, 2015). Despite behavioral biases that may

cause users to overshare data, invasive offerings come at a privacy cost.

Furthermore, different users have varying levels of privacy consciousness, and less

privacy-conscious users’ choices may have unintended consequences for more privacy-

conscious users. This is because personal traits of the latter may be inadvertently

revealed through data correlations present in the population (Acemoglu et al., 2022;

Choi, Jeon, and Kim, 2019).

This paper studies the impact of this externality on welfare in a monopolist model

of vertical differentiation. Specifically, the study focuses on a scenario where the plat-

form’s quality depends on the information released by users and where this information

is also a source of revenue for the firm. In the presented framework, users are hetero-

geneous for both their willingness to pay for the service and their privacy cost, and the

two are positively correlated. An element of novelty in this setting is the introduction

of a negative externality, which is modeled as a network effect.
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The analysis shows that when there is no externality, the monopolist under-provides

privacy, and there is a downward distortion of the quality level. Moreover, when the

externality is introduced, and consumers are unaware of it when they make their

joining decision, it further aggravates this under-provision of privacy and increases the

welfare loss. However, if they are aware and have an outside option, the monopolist

may switch to the price channel by setting a zero disclosure policy, thereby eliminating

the quality distortion and leaving a price mark-up driven welfare loss. Interestingly,

our results suggest that introducing a negative externality may increase welfare in the

market compared to the no-externality case if consumers consider its impact at the

joining stage and the externality is strong enough to increase the sensitivity of demand

to data disclosure over the sensitivity to prices.

Overall, our study provides insights into the complex interactions between privacy,

platform quality, and consumer welfare in the presence of user data correlation. The

results suggest that policymakers should consider these externalities when designing

privacy regulations and, when the externality is particularly impactful, focus on raising

awareness by making salient privacy notices (such as Apple Privacy Nutrition Labels)

and the use of data models able to infer consumer data from minimal information.

The structure of the paper is as follows: Subsection 2.1.1 presents a short literature

review, Section 2.2 introduces the basic model, and Section 2.3 finds the optimal

allocation that a planner would seek when consumers are aware and when consumers

are unaware. Next, section 2.4 computes the welfare of the market allocation when

consumers are unaware of the externality. Then, section 2.5 extends this basic model to

the case where consumer awareness is raised, and consumers internalize the externality

when they make their joining decision. Finally, Section 2.6 compares total welfare in

the three previous sections and explains the welfare loss, while Section 2.7 presents

and discusses the results.

2.1.1 Literature

This article draws on three different areas of literature. The first focuses on the

optimal quality provision in vertical differentiation models with network effects. The

second examines the impact of privacy concerns on platform quality in these models.

Finally, a third emerging area highlights the effects of information externalities in data

markets.

The theme of the optimal quality provision in vertical differentiation is investigated

in Spence (1975) that analyzes the quality decision of the monopolist and compares it

to the one chosen by a benevolent planner. Spence (1975) highlighted how a welfare

loss might arise from a quality set by the monopolist at a level that is distant from

the one that social optimum would require. The monopolist always sets its quality
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level based on the marginal consumer’s willingness to pay for quality. In contrast,

the benevolent planner would use the willingness to pay of the average consumer to

maximize welfare. Hence, a quality distortion (defined in the literature as Spence Dis-

tortion) arises whenever the two differ. However, as reported in Tirole (1988), the sign

of this distortion depends on the model, and the monopolist may over-provide or under-

provide quality depending on which of the two willingness to pay is higher. Spence’s

result has then been extended to the case of network externalities by Lambertini and

Orsini (2001) that shows how positive network effects would lead the monopolist to

over-provide quality. This chapter contributes to the literature by adapting the Spence

distortion to the theme of data disclosure and by discussing the effects of a negative

data externality.

Secondly, Casadesus-Masanell and Hervas-Drane (2015) introduces the idea that

privacy could represent a strategic element in a vertical differentiation framework, and

it studies the impact of competition on the level of privacy provided. In the setting,

consumers are heterogeneous for both their privacy cost and the value they assign to

the service. A peculiarity of this model is that it endogeneizes consumers’ decision of

how much information to provide to the platform. Conversely, firms can earn revenues

by selling this information in a competitive secondary market or charging consumers

a price. The model results show that the level of competition positively influences

the level of privacy consumers get. A related model is the one of Bloch and Demange

(2018) that also treats a situation where a monopolist platform faces consumers hetero-

geneous on the privacy cost. Differently from Casadesus-Masanell and Hervas-Drane

(2015), however, this model uses a homogeneous value for the service, and the data

collection decision resides entirely on the platform. Under these assumptions, they

show that the firm, for some parameter values, picks a high data exploitation level and

decides to uncover the market by excluding the high-privacy-cost consumers. They

also show that data collection may be excessively high from a welfare perspective.

Furthermore, they expand the basic model with different policy instruments such as

taxes and opt-out options. A similar comparison of policy instruments in a setting

in which a monopolistic platform monetizes only disclosing personal information to

third parties and can invest in quality is proposed by Lefouili and Toh (2017). They

show that the monopolist always under-supplies privacy. This chapter’s contribution

to this literature resides in reinforcing the result related to an under-supply of privacy

in a different setup and in showing that when willingness to pay for the base service

is perfectly correlated to the privacy cost, the part of consumers that get excluded is

the left tail of the distribution. 1

1If privacy is a superior good, this assumption makes more sense than the one without correlation.
However, that would be helpful to obtain a closed-form solution of the model without having to resort
to simulations.
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In this analysis, we include a third category of research focusing on the effects of

data correlation on consumer valuation and social welfare. These studies, conducted

by Acemoglu et al. (2022) and Choi, Jeon, and Kim (2019), demonstrate that data

correlation can have negative consequences. Acemoglu et al. (2022) proposes a model

in which a monopolist firm contracts with different users, and he can exploit the

negative externality they exert on each other to minimize the price paid for consumers’

information. This results in data being undervalued due to market failure. Choi,

Jeon, and Kim (2019) instead analyzes a model very similar to Bloch and Demange

(2018), but where consumers’ base valuation of the service drives heterogeneity and,

conversely, consumers are homogeneous for the impact of privacy features on utility

(benefits and costs). One of the results of this paper is that the welfare loss is driven

by the difference in social marginal cost and private marginal cost, which is, in turn,

mainly determined by the nuisance of data collection on non-users. Consequently,

the monopolist ends up over-collecting data and serving too many consumers. We

contribute to this discussion by showing that the Spence distortion is aggravated by a

small externality even when consumers are aware, the number of users served by the

platform is optimal, and non-users are not suffering from the externality. Surprisingly,

when consumers are aware, a significant externality reduces the Spence distortion and

pushes the firm to offer optimal quality. Consequently, in such situations, welfare is

increased by the presence of a negative externality.

Further extensions of the model may go in the direction of Bloch and Demange

(2018) and Bourreau, Caillaud, and De Nijs (2018) that have analyzed taxation of a

digital monopoly platform, and this theme could be applied to define the effects of an

optimal Pigouvian tax and opt-out policy or a cap on data disclosure (Lefouili and

Toh, 2017). 2

2.2 Basic setup

2.2.1 Consumers

Let us consider a market where a monopolist platform faces consumers that are

distributed over the support [θ̄ − 1, θ̄] for their taste parameter θ. This assumption

is used along all variants of the model presented. Keeping fixed the support of the

distribution implies that the monopolist is more likely to find it profitable to cover the

market. Instead, suppose consumers’ willingness to pay followed a distribution with a

higher standard deviation. In that case, the monopolist may find it profitable to focus

2However, to introduce such elements, the model structure shall be simplified, such as in Bloch
and Demange (2018).
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only on the distribution’s right tail. 3

Consumers value the platform quality based on the information exchanged (or

activity) (y) and on the rate of information disclosure (d) to advertisers, level of

which is set by the platform. If we indicate with Y the total stock of information

collected by the firm, we assume that consumers’ utility function is:

Ui =







θ(y − y2 − yd)− αY d− P if the consumer buys,

−βαY−id if the consumer does not buy,
(2.1)

Equation 2.1 illustrates the consumer’s utility in case they choose to buy the product

or not.4 In this equation, P denotes the good’s price (or the one-time membership

fee), while d represents the disclosure rate of the consumer’s provided information y.

Furthermore, the parameter α can be interpreted either as the intensity of user data

correlation among consumers or as the weight of the disutility from the externality on

users, while the parameter β has a similar interpretation for non-users.

With α = β = 0, this model would be the standard setup in Casadesus-Masanell

and Hervas-Drane (2015), where consumers are heterogeneous for their taste param-

eter that expresses their willingness to pay for the good provided and for privacy. A

peculiarity of this utility function is that consumers with a higher willingness to pay

for the good also have a higher distaste for disclosure. This correlation assumption

between the two components is supported if privacy is a superior good.5 Finally, this

utility function is concave in y and depends negatively on d and P that the firm sets.

A difference from the Casadesus-Masanell and Hervas-Drane (2015) framework

is the presence in the utility function of a negative externality that arises from the

fraction of total information sold by the firms in the ads market (Y · d). This term is

introduced as the multiplication of the whole information stock accumulated by the

firm (Y ) by the disclosure rate applied (d). The total stock of information Y is given

by the product of the information provided by the single user y and the demand x

for the good.6 This Y · d term is then weighted by a parameter α, which can be seen

either as the strength of data correlation in the population or as the weight of this

externality on utility.

As in Choi, Jeon, and Kim (2019), also non-users are negatively impacted by the

3One additional implication worth noticing is that with the price of data standardized to one, we
lose the possibility to vary the relative value of the two revenue sources that are employed by the
monopolist (see 2.2.2).

4We use the terms buy and join interchangeably throughout the text. This is because the price
can be seen as a one-time membership fee to subscribe to the platform or the price paid for a good.

5However, there could be cases where a consumer that gets more utility from the platform also
prefers more disclosure of his data. In this case, the model of Bloch and Demange (2018) would be
informative of the equilibrium

6y could be seen as the user’s activity level on the platform, such as the number of likes, comments,
and posts.
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externality αY−id that is weighted by β ∈ [0, 1]. Since, in this case, the consumer does

not join, Y−i is the total information stock provided by all users, but i : Y−i = yx−i

where x−i represents the demand of all other users except user i, and y is the level of

information revealed by the user.

2.2.2 Firm’s profit, stages, and equilibrium concept

As in Casadesus-Masanell and Hervas-Drane (2015), the monopolist has two rev-

enue sources: prices and data. Its profit function takes the form:

π = x(P + yd), (2.2)

where x is the demand for the service, P the price paid, d the disclosure rate and y is

the consumer’s provided information.

The game is a classic location-then-price one, with the addition of the information

stage. We propose two variations: one with consumers aware of the externality when

they join the platform and another where consumers are unaware of the externality at

all stages. When consumers are unaware, the stages of the game are:

• At t=0, the firm sets its quality level by deciding on the disclosure d

• At t=1, the firm sets its membership price P

• At t=2, consumers observe P, d and decide whether or not to join

• At t=3, consumers set the level of information y

In this first variant of the game, consumers are unaware at t = 2 of the joining decision

of other agents and do not account for the externality parameter when taking their

joining decision. Only after t = 3 the actual utility level (externality included) is

observed.

Alternatively, when consumers are aware of the externality, the game stages are:

• At t=0, the firm sets its quality level by deciding on the disclosure d

• At t=1, the firm sets its membership price P

• At t=2, consumers observe P, d and decide whether or not to join, also consid-

ering the decision of others (the demand enters the indifferent consumer as in

Lambertini and Orsini (2001))

• At t=3, consumers set the level of information y

In this second variant, instead, consumers are forward-looking and perfectly antici-

pate the joining decision of other users. They are also perfectly aware of the externality

effect and consider this factor when taking the decision at t = 2.

We look for the Sub-Game Perfect Nash Equilibrium by backward induction and

the equilibrium defined as the triplet: price, disclosure, and information released by

consumers (P ∗, d∗, y∗).
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Before turning to the solution of the two monopolist games just described, we look

into the optimal allocation of a benevolent planner that sets P and d to maximize

social welfare.

2.3 First Best

In this Section, we highlight what a perfectly informed, benevolent government would

choose when it keeps into account the externality.

Welfare follows the traditional sum of consumer surplus and profits to which we

need to add the ”non-consumers”negative surplus derived from the externality. Hence,

we have the following:

max
d,P

{

W c =

∫ θ̄

θ̄−1

Uu
i dθ + π

}

, (2.3)

that when θ∗ ∈ (θ̄ − 1, θ̄) and the non-users disutility Un
i ≤ 0 enters the welfare

maximization problem becomes:

max
d,P

{

W u =

∫ θ̄

θ∗
Uu
i dθ +

∫ θ∗

θ̄−1

Un
i dθ + π

}

, (2.4)

depending on how consumers react to the externality (i.e., whether they are aware or

not), the definition of the indifferent consumer changes.

2.3.1 Information stage and indifferent consumer

In the spirit of Acemoglu et al. (2022) we build the models solved in this essay

with the following assumption: the single user is infinitesimal to the full support of

the distribution.

Therefore, its own demand is negligible with respect to the whole demand and the

value of a single user’s information and joining decision is irrelevant to the total infor-

mation stock. Because of this assumption we can approximate the stock of information

in the following way:

Y−i = y∗x−i ≈ y∗x = Y (2.5)

where y∗ is the equilibrium level of information as determined in the remaining of

this Section. This assumption is rooted on the reasoning of Acemoglu et al. (2022)

that states: “[. . .] the marginal increase in the leaked information from individual i’s

sharing decision is decreasing in the information shared by others. This too is intuitive

and follows from the fact that when others’ actions reveal more information, there is

less to be revealed by the sharing decision of any given individual.”.

The assumption finds also support in the geographical widened coverage of plat-
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forms and the presence of data brokers. These two components strongly support the

idea that a single consumer’s information is insignificant when compared to the overall

stock of information. 7

Given that with both consumer awareness and unawareness, this assumption im-

plies that the externality is not internalized at the information level, consumers’ equi-

librium level of information is:

y∗ =
1− d

2
, (2.6)

inserting this into the utility function, we have

U = θ
(1− d)2

4
− P − αY d,

given that the joining decision is different in the two variations, we analyze them

separately.

Unaware Consumers Firstly, when consumers are unaware, the externality effect

on utility will be revealed only when they use the service and observe the perfect

targeting of ads. Therefore, in monopoly, the indifferent consumer remains similar to

Casadesus-Masanell and Hervas-Drane (2015) case:

θ∗ =
4P

(1− d)2
, (2.7)

Aware Consumers When consumers are aware of the consumer that is indifferent

between buying and not buying solves the following:

Ubuys ≥ Unot buy,

θ
(1− d)2

4
− P − αY d ≥ −βαY d,

θ
(1− d)2

4
− P ≥ αx

1− d

2
d(1− β),

where the last equation uses Y = xy∗.

In this case, we find it helpful to express the model in terms of e = α(1−β): given

that 1− β determines the “saving” of utility that the consumer can get by not joining

(the consumers’ outside option), this term multiplied by α represents the net impact

of the externality on demand. At the extreme, if the externality is unavoidable by the

consumer 1−β = 0, then the net impact of the externality on demand is zero.8. Thus,

we use e to simplify the equations.

7Additionally, it provides modeling benefits of simplifying the modeling process, such as the sim-
plification of the indifferent consumer equation, that outweigh the need for strict mathematical rigor.

8This is a crucial part of the elasticity of the demand function to the externality parameter
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To identify demand, we employ the straightforward approach of Lambertini and

Orsini (2001), that is, we consider x as the integral over the space [θ̂, θ̄] of the density

function and we substitute this in the indifferent consumer equation.

The latter becomes:

θ
(1− d)2

4
− P − e

1− d

2
d

∫ θ̄

θ̂

fθdθ = 0, (2.8)

with θ̂ = max[θ̄ − 1, θ∗], we have two cases: θ̂ = θ̄ − 1 that is full market coverage

(FMC), and partial market coverage (PMC) that corresponds to the case in which

θ̂ = θ∗ > θ̄ − 1.

In the FMC case, the indifferent consumer writes:

θ∗FMC =

4

(

P + e
1− d

2
d

)

(1− d)2
, (2.9)

while in the PMC case, the equation becomes the following:

θ∗PMC =
P + eθ̄

1− d

2
d

(1− d)2

4
+

(1− d)

2
ed

, (2.10)

The indifferent consumer in the unaware case is as defined in (2.7) and is defined

by solving for θ equation (2.8) when consumers are aware, obtaining the conditions

(2.9) and (2.10). Despite this change, the only difference between the aware and

unaware first bests is that the aware consumers model first best requires a lower price.

This is because aware consumers have more bargaining power and demand higher

compensation for their data. Nonetheless, P is only a transfer, and this difference

does not impact final welfare. Therefore, we relegate to the Appendix the planner’s

optimization problem for the ‘aware’ case (see Section B.4).

Additionally, while with a covered market, we can find a closed-form solution for the

(P, d) pair to the maximization problem, the uncovered market maximization prob-

lems (both unaware and aware) become a tedious task. In these cases, we need to

rely on numerical simulations through Python and Mathematica (see Section B.3 and

Section B.4).

By studying the numerical simulations tables reported in the Appendix, it results

that to maximize welfare, the planner will always rely on a covered market configura-

tion as the uncovered market simulation of welfare tends to the covered one in both

cases. Therefore, a covered solution always gives more welfare than an uncovered one,
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whatever α and β values are. 9 10

2.3.2 Covered market with unaware consumers

In this case, the externality consumers suffer does not impact the market demand,

and since the market is covered, θ∗ will only influence the price.

When the market is covered, the welfare function writes:

Wc =

∫ θ̄

θ̄−1

(

θ
(1− d)2

4
− αd

1− d

2
− P

)

dθ + π,

and by solving the integral, we obtain the following:

Wc =
1

8
(d− 1)(d(4α + 2θ̄ − 5)− 2θ̄ + 1), (2.11)

by studying this polynomial, we notice that when the market is covered, welfare is

price-neutral (
∂Wc

∂P
= 0), and prices are only a transfer of surpluses. Thus, the planner

picks the price that keeps the market covered and then maximizes welfare through the

disclosure rate.11

By maximizing this function in d, we obtain the FOC:

1

4
(α(4d− 2) + d(2θ̄ − 5)− 2θ̄ + 3) = 0,

with the following SOC:

∂2W

∂d2
= α +

θ̄

2
−

5

4
≤ 0 ⇐⇒ α ≤

5

4
−

θ̄

2

that is always satisfied as:

0 ≤ dwc ≤ 1 ⇐⇒ α ≤
3

2
− θ̄,

given the bounds on disclosure (0,1), we would need an α larger than
3

2
−θ̄ to violate the

second order condition. However, when α is larger than
3

2
− θ̄, the optimal disclosure

becomes negative, so that welfare is maximized by d = 0, and we can be sure that the

SOC is satisfied. Therefore, we can state the following Proposition that collects the

9We defer to a later stage the analytical proof of this result.
10The only exception found is in the model with aware consumers around the point (α, β, θ) =

(1, 0.4, 1.2) where a point of discontinuity arises, and it causes an uncovered welfare solution
11Notice that this would not hold if the distribution support were not fixed. In that case, welfare

is not price-neutral, and that
∂Wc

∂P
> 0 with

∂2Wc

∂P 2
≥ 0 hence the planner would take the highest

possible price to keep the market covered.
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results of welfare maximization when the market is covered:

Proposition 3. The welfare maximizing planner would set a price that ensures a covered

market:

Pfb =
1

4
(θ̄ − 1)(1− d)2

and then uses disclosure to maximize welfare according to the rule:

dfb =















2(α + θ̄)− 3

2(2α + θ̄)− 5
if 1 ≤ θ̄ ≤

3

2
∧ α ≤

1

2
(3− 2θ̄),

0 Otherwise,

this gives welfare as a function of α and θ̄:

Wfb =



















(α− 1)2

10− 8α− 4θ̄
if 1 ≤ θ̄ ≤

3

2
∧ α ≤

1

2
(3− 2θ̄),

1

8
(2θ̄ − 1) Otherwise,

(2.12)

further inspection of the denominator of the welfare function in this interval shows

that Wc > 0.

The proof follows from the maximization in d of the function in (2.11), and from

the comparison with the results of numerical simulations to show that the market is

always covered (see Section B.3). 12

By analyzing the inequality constraint in the optimal d rule, the welfare-maximizing

disclosure rate can be positive only if it respects two necessary conditions. Given

that α > 0, the first necessary condition to have a positive disclosure rate is that the

wealthiest consumer is poor enough, i.e., θ̄ ≤
3

2
. Additionally, given that the minimum

acceptable value for the willingness to pay of the wealthiest consumer is θ̄ = 1, and

anything below this value is not acceptable (since θ = θ̄ − 1 ≥ 0): the externality

cannot be larger than
1

2
.

Corollary 1. When the market is covered, a positive disclosure rate maximizes welfare

only in “poor markets” (where the willingness to pay of the richest consumer is not too

high θ̄ ≤
3

2
), and in those markets where the externality is less significant: α <

1

2
. In

all other cases, the welfare-maximizing disclosure rate shall be zero.

12It is, however, likely that this optimal configuration is not unique as we used P to keep the market
covered while the planner may use d to achieve this.
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2.4 Market allocation and welfare with unaware consumers

In this Section, we study the case of unaware consumers. In this case, consumers’

equilibrium level of information y∗ is described by (2.6), and the indifferent consumer

is defined by eq (2.7). Consequently, given that the externality does not impact these

two equations, the monopoly solution computed in Casadesus-Masanell and Hervas-

Drane (2015) paper remains unaffected.

We now characterize the total welfare of this solution while we delay to Section 2.5

the discussion of the case where consumers are aware.

2.4.1 Market allocation and welfare with unaware consumers

Here we analyze the welfare properties of the market allocation of the basic model.

Covered market welfare analysis

Given that the indifferent consumer and the profit function are the same, the market

allocation does not change. We can therefore state the following remark:

Remark 1. If the market is covered, and consumers are distributed according to a

uniform distribution over the interval [θ̄ − 1, θ̄], we have two cases:

θ̄ ≥ 2 then monopolist’s optimal disclosure is dmc = 0 and price Pm
c =

θ̄ − 1

4
. Profits

become πm
c =

θ̄ − 1

4
, and the market generates a consumer surplus of CSm

c =
1

8

and total welfare Wm
c =

1

8
(2θ̄ − 1),

1 ≤ θ̄ ≤ 2 then monopolist’s optimal disclosure rate is dmc =
θ̄ − 2

θ̄ − 3
, with a price of Pm

c =

θ̄ − 1

4(θ̄ − 3)2
and profits become πm

c =
1

12− 4θ̄
, the market generates a consumer

surplus of CSm
c =

4α(θ̄ − 2) + 1

8(θ̄ − 3)2
, and total welfare Wm

c =
4α(θ̄ − 2)− 2θ̄ + 7

8(θ̄ − 3)2
,

the proof follows directly from the proof of Proposition 1 in Casadesus-Masanell

and Hervas-Drane (2015), to which we applied the definition of welfare as:

W c =

∫ θ̄

θ̄−1

Uu
i dθ + π, (2.13)

If θ̄ < 2, the externality negatively affects welfare as expected, whereas when θ̄ ≥ 2

optimal disclosure is zero, and the price is the only source of revenues, and neither

consumer surplus nor total welfare is affected by the value of the externality so we do

not focus on this parameter region for the remaining of the article.
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Uncovered Market - Welfare Analysis

Given the indifferent consumer in (2.7) and optimal information choice, the profit

function reduces to:

πu
m =

(

θ̄ −
4P

(d− 1)2

)(

P −
(d− 1)

2
d

)

,

by maximizing in P this function, we find that P =
1

8
(d−1)(θ̄d− θ̄+2d), and inserting

it into the profit function gives us the optimization problem:

max
d

1

16
(θ̄ + d(2− θ̄))2

the maximization of this function shows that a solution exists only when θ̄ ≥ 2 and

when the support of the distribution is smaller than one because otherwise, the profit

function is convex in d and the only candidate equilibrium would be full disclosure

(d = 1). Indeed, a so high disclosure rate would cause consumers not to use the

platform at all: when d = 1, every consumer’s optimal level of activity is zero (y∗ =

0). Therefore, full disclosure (d = 1) completely degrades quality and destroys the

potential profit. As a consequence, the location of the indifferent consumer tends to

infinity when quality is so low:
4P

(1− d)2
→ ∞.

Finally, we can state the following remark:

Remark 2. When the support of the distribution is fixed at one, there is not a feasible

solution to the monopolist problem that involves an uncovered market configuration.

The proof was omitted as it directly follows from the proof of Proposition 1 in

Casadesus-Masanell and Hervas-Drane (2015) and the assumption about the external-

ity. Because of Remark 2, we can generalize the subscripts of the welfare function from

Remark 1 to be Wm
c = Wm.

As in Casadesus-Masanell and Hervas-Drane (2015), poorer markets are those mar-

kets where the mean willingness to pay for the services is lower: an example of this

would be the search engine markets where the standard price in the industry is zero

against a music streaming platform where consumers’ higher willingness to pay brings

in the market ad-based offerings (YouTube) together with those subscription based

(Spotify).

An alternative interpretation, which opens possibilities for empirical estimation,

is considering countries as different markets. In this case, we expect the monopolist

platform to have high disclosure rates in low-income countries and low disclosure rates

in high-income countries. This may explain the cross-national differences in privacy

policies observed in Kumar et al. (2022).
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2.5 Market allocation and welfare with aware consumers

In this Section, the utility and profit structure is the same as the monopolist solu-

tion provided in Casadesus-Masanell and Hervas-Drane (2015) framework. However,

we add informational externalities on the consumers’ side and explore the possibility

that perfectly rational consumers, having observed disclosure rates and prices, can

anticipate the information stock that the firm will accumulate flawlessly. They can

“internalize the externality” at the game’s third stage. In other words, the effect arises

when consumers release information at the information stage (last stage) and do not

consider their impact on others’ utility.

However, when consumers decide whether to buy or not, they perfectly anticipate

the information stock at the firm disposal. They are aware of the impact of the

externality, so they change their consumption accordingly. Therefore, this “negative

network effect” is introduced similarly to Lambertini and Orsini (2001) and is partially

internalized.13

The information stage remains as in Section 2.3.1, and the indifferent consumer

when the market is fully covered is described by Eq (2.9) and Eq (2.10).

In both cases, the monopolist has the following profit function:

π = x(P +
1− d

2
d),

this is the profit function of Casadesus-Masanell and Hervas-Drane (2015) whose dis-

closure revenues satisfy the concavity conditions of Choi, Jeon, and Kim (2019).

2.5.1 Full market coverage case

In the case of full market coverage θ̂ ≤ θ̄ − 1 and consequently xfmc = 1. This

simplifies the problem, and we can find the analytical solution that we state in Lemma

1:

Lemma 1. When consumers are aware of the externality and the market is covered,

the monopolist charges:

P ∗

fmc =















(1− e)
(

2e2 − e(θ̄ − 3) + θ̄ − 1
)

4(2e+ θ̄ − 3)2
if θ̄ + e ≤ 2 ∧ θ̄ 6= 3− 2e,

θ̄ − 1

4
Otherwise,

13An alternative would be to use the responsive rational expectation assumption, which would work
similarly and achieve the same results.
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and disclosure rate:

d∗fmc











e+ θ̄ − 2

θ̄ + 2e− 3
if θ̄ + e ≤ 2 ∧ θ̄ 6= 3− 2e,

0 Otherwise,

optimal profit is:

π∗

fmc =















(1− e)2

4(3− θ̄)− 8e
if θ̄ + e ≤ 2 ∧ θ̄ 6= 3− 2e

θ̄ − 1

4
Otherwise

where e = α(1− β) is the net impact of the externality on demand.

the proof is the standard backward induction procedure to solve the game and is

presented in Section B.1.

When the market is covered and consumers are aware, A positive disclosure rate

can emerge only under two conditions. Firstly, even when e is at its minimum, the

market must be ”poor”, i.e., willingness to pay of richest consumer θ̄ ∈ (1, 2). Given a

uniform distribution with fixed support, this condition implies a low mean willingness

to pay in the market. The consumer with the highest willingness to pay is relevant

only as a proxy for the mean of the distribution. That is what defines a market as rich

or poor: so we can directly link the w.t.p. of the richest consumer to the market value

for the monopolist. Secondly, the net effect of the externality on demand cannot be

too large relative to the mean willingness to pay (market value). From the constraint

θ̄+ e ≤ 2, we see that as e reaches its upper bound of one, the willingness to pay that

can sustain a positive disclosure and covered market becomes smaller and smaller.

By decomposing e into its components, we see that one effect of this model, where

consumers are aware of the externality, is how β impacts this constraint: when β is

low, the constraint on α gets tighter. Thus, the better the outside option for users

(higher 1− β), the more likely the optimal disclosure rate is zero.

Not surprisingly, then, profit is decreasing in the value of externality among the

users (
∂π

∂α
< 0) and increasing in the value of externality among the non-users (

∂π

∂β
> 0)

because the more substantial the externality among non-users is, the worse the outside

option for potential subscribers. At the extreme β = 1, consumers have no outside

option and can only bear the externality.

A practical example of how the externality effect may propagate to non-users may

be the cases of Facebook and WhatsApp, or Gmail and Google Search. In both cases,

one of the products that the multiproduct firm offers is a kind of an essential facility

for most of the consumers in the digital economy, and if one has a particular high

evaluation of privacy may decide not to use Gmail but still finds the value of Google

59



Chapter 2 – Data Externalities and Vertical Differentiation in Digital Markets: a Welfare Analysis

Search reduced by the externality other users cause. Therefore, one also ends up

joining Gmail because of the powerlessness in front of the external effect. This is a

similar mechanism to Acemoglu et al. (2022), where the platform extracted more data

from consumers by leveraging this externality among consumers in contracting with

the platform.

When the market is covered, the effect on prices and disclosure of the externality

parameter (α) is mediated by the users’ outside option and by their willingness to pay

for quality (β and θ̄). We show the effect of different values of these two parameters on

optimal prices and disclosure in a covered market in Figures 2.1a and 2.1b. These two

figures show how the average willingness to pay in the market shifts the monopolist’s

incentive to use disclosure versus prices as the primary revenue instrument. As the

average willingness to pay is perfectly correlated with the consumers’ distaste for

disclosure, absent the externality, the monopolist uses prices in markets with a high

willingness to pay for quality and disclosure in markets where this is low. When

the market is richer, consumers are more reactive to disclosure than to prices, and

the monopolist extracts more revenues with the monetary instrument than the data

instrument. On the contrary, in very poor markets, as the sensitivity of consumers

to the disclosure parameter is lower than the price sensitivity, the monopolist favors

disclosure.

When we introduce the externality parameter, it shifts the indifferent consumer to

the right. Consequently, given the interaction of the disclosure with the externality

the sensitivity of consumers to disclosure rises, for the monopolist disclosure revenues

become more expensive in terms of extensive margin. In relatively wealthier markets,

this effect quickly drives the disclosure rate to zero (orange and red curves) and causes

the monopolist to increase prices further.

However, we observe the most significant impact of the externality in markets where

a positive (and high) disclosure rate was set before introducing the externality. In poor

markets, in fact, the drop in disclosure rate and the correspondent switch to prices

tend to be quite dramatic (blue line). With the externality, prices start to drop in poor

markets and reach the negative area (consumer subsidization).14 This is because in

these markets, the monopolist that faces aware consumers would need to compensate

them for the externality through negative prices to keep extracting revenues in the ads

market through data sales. Then, when the distaste for disclosure dominates prices,

the loss in extensive margin from further raising disclosure dominates the one that the

monopolist would have from higher prices. Therefore, at this point, the monopolist

switches revenue sources.

This switch happens at a rate directly proportional to the consumers’ outside op-

14This compensation can be a non-monetary transfer from the firm to consumers: it can be seen
as services provided to consumers below costs or coupons ad discounts.
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tion. If consumers do not have a good alternative option, the externality impact on

demand will be less (shown by the green and red lines). This means that both price and

disclosure will be less affected by large values of the externality, resulting in smoother

and less noticeable changes.

Figure 2.1: Prices, disclosure and α relationships for different values of β =
{1/10, 9/10} and θ̄ = {11/10, 19/10}
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(b) Disclosure rate and α

2.5.2 Partial market coverage

While the function πa
fmc in Lemma 1 represents the profit function when consumers

are aware and the market is covered, we still need to compare it with the PMC case.

A comparison that we present in this subsection.

Considering the partial market coverage case with θ̂ = θ∗, the indifferent consumer

is defined from eq.(2.10). By inspecting this condition, we observe that an uncovered

market is possible in this model even when P < 0, which was not feasible in the

unaware model.

It is then straightforward to obtain demand and the profit function:

xu =
(d− 1)2θ̄ − 4P

(d− 1)(d(1− 2e)− 1)
, (2.14)

πu =
(d2 − d− 2P )

(

(d− 1)2θ̄ − 4P
)

2(1− d)(d(1− 2e)− 1)
, (2.15)

whose maximization in price results in the following optimal price:

P a
u =







1
8
(d− 1)(d(θ̄ + 2)− θ̄) ∀(θ, e, d) ∈ R,

Indeterminate Otherwise,
(2.16)

where the regionR is a parametric region that was obtained by imposing the uncovered
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market condition (θ̄ − 1 < θ∗ ≤ θ̄) on the profit-maximizing price.

This region is defined as the set of points (θ, e, d) satisfying either one of the

following conditions:

• Condition 1:



















θ ≥ 2

1
2
< e ≤ 1

d̂ < d < 1

• Condition 2:



















1 ≤ θ < 2

0 ≤ e < 1
2

0 ≤ d < d̂

• Condition 3:



















1 ≤ θ ≤ 2

1
2
≤ e ≤ 1

0 ≤ d < 1

where d̂(e, θ̄) = θ̄−2
4e+θ̄−4

.

Condition 1 regards rich markets: the externality impact must be large enough,

and the disclosure rate must respect a lower bound to have an uncovered equilibrium

in such markets. The lower bound on disclosure is a function that depends negatively

on the externality value and positively on the market value.

Condition 2 and condition 3 give conditions on the acceptable disclosure range in

poor markets when the externality value is low or high, respectively. In these markets,

to have a result that respects the uncovered market constraint when the externality is

low, the disclosure must be lower than the upper bound, which has the same properties

as the lower bound presented in Condition 1. Alternatively, when the externality is

high, the disclosure rate is unbounded and can be between zero and one.

When the parameter values fall in R∁, the openness of the set, implied by the price

inequality in the uncovered market condition, would grant no feasible equilibrium, and

the price maximization problem has no solutions.

Finally, the profit function and the maximization problem at the disclosure stage

are:

πa
u =











(1− d)(θ̄ − d(θ̄ − 2))2

16(d(2e− 1) + 1)
∀(θ, e, d) ∈ R,

Indeterminate Otherwise,

maxd πa
u s.t. d ≤ 1,

d ≥ 0,
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we solve the problem numerically through scipy optimize package with Sequential Least

Square programming and through “NMaximize” command in Wolfram Mathematica

with “SimulatedAnnealing” and “DifferentialEvolution”methods.15 The analytical so-

lution to this problem becomes algebraically irksome and would only clutter the text

without offering additional insights compared to the simulation results. Therefore,

we only explain the characteristics of the equilibrium without providing an analytical

solution.

The numerical simulation with an uncovered market configuration and aware con-

sumers shows that for low values of the net externality e and rich markets θ̄ ≥ 2, the

candidate optimal price would violate the lower bound of θ̄ − 1 < θ∗ ≤ θ̄. Similarly,

to Casadesus-Masanell and Hervas-Drane (2015), the openness of that set implies that

no equilibrium exists.

Figure 2.2a and 2.2b help visualize the simulation results and the profit-maximizing

rule followed by the monopolist in different types of markets. The most significant

difference is undoubtedly in poor markets with an outside option: in this case, α

has a non-monotonic effect on disclosure (and price) that first increases (decreases)

in α (for α ≤ 0.3) and then drops (increases). Noticeably, with an uncovered market

configuration, the prices never go into the negative area, and the monopolist does

not subsidize consumers. In sufficiently rich markets (3
2
≤ θ̄ < 2), instead, when the

externality is strong e > 1
2
, the monopolist optimally sets zero disclosure and positive

prices under an uncovered market configuration.

Figure 2.2: Prices, disclosure and α relationships for different values of β =
{1/10, 9/10} and θ̄ = {11/10, 19/10} with an uncovered market
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(b) Disclosure rate and α

We now proceed to specify the optimal decision of the monopolist when he chooses

between a covered and uncovered market.

15Alternatively, we could simplify the problem by assuming a standard uniform and solving the
KKT to obtain a closed-form solution, but in doing so, we could no longer appreciate the differences
among different markets.
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2.5.3 Comparison covered-uncovered market

From the simulation results in Appendix B.2, we compare the profit obtained in a

covered market (as stated in Lemma 1) and the profit obtained in an uncovered market

configuration. From this comparison, we can state the following Lemma:

Lemma 2. The decision to cover the market depends on the externality effect on the de-

mand (e) and the willingness to pay of the richest consumer (θ̄ ≥ 2). This relationship

is summarized as follows:

1. When θ̄ ≥ 2:

(a) When e is sufficiently low (e / 2
10
), the monopolist always covers the mar-

ket.

(b) Larger values of e and θ̄ make the uncovered configuration an equilibrium

more frequently. Eventually, if e ' 4
10
, an equilibrium with an uncovered

market configuration may arise even in very poor markets.

2. When θ̄ ≥ 2:

(a) The monopolist always covers the market.

A closed-form analytical solution is necessary to understand the intuition behind

these results quickly. The most likely explanation derives from how the externality is

modeled and impacts the indifferent consumer. From Eq (2.9) and (2.10), it emerges

that the higher the impact of the externality on the utility of users and the larger the

shift of the indifferent consumer to the right. Consequently, the only instrument the

monopolist has to counteract this effect is to reduce the disclosure rate and use only

prices to earn revenues. The simulation table in the Appendix confirms this and shows

that higher levels of the net externality impact on demand correspond to a reduction

of the disclosure rate. Thus, also in this case, for higher values of the externality, which

reduces consumers’ utility proportionally to d, consumers’ sensitivity to disclosure in-

creases. Furthermore, this shift is amplified by the interaction between the externality

and positive levels of disclosure that further shift the indifferent consumer’s location

on the right. An increase in willingness to pay causes a similar effect on the indifferent

consumer: when the market is rich, consumers’ evaluation of the service is higher as

well as the positively correlated distaste of disclosure and the indifferent consumer

shifts to the right.

In the next Section, we compare the welfare obtained by the monopolistic solutions

with the first best and characterize the welfare loss.
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2.6 Welfare comparison

In this section we compare the three relevant welfare function Wfb,Wa,Wm as stated

respectively in Proposition 3, Proposition 1 and Remark 1.

In Figure 2.3 we plot the three welfare functions against the α parameter for the

combination of market value (θ̄ = 6
5
∨ 19

10
) and externality on non-users (β = 1

10
∨ 9

10
).

While we use unique colors to indicate that the market is always covered for the basic

unaware solution (blue) and the first best solution (green), we plot the aware case

in different colors depending if it involves a covered market (orange) or an uncovered

one (red). The discontinuities between the orange and the red lines are where the

monopolist switches from the covered to the uncovered market configuration.

In Choi, Jeon, and Kim (2019), the welfare loss arises from the externality effect

on non-users that creates a divergence between private cost and social cost, and the

monopolist ends up serving too many consumers compared to the social optimum.

The β high case represented in the two plots on the right of Figure 2.3 shows that also

in the models presented, the absence of a viable outside option gives the bargaining

power to the monopolist and results in a welfare loss. This also happens in markets

where the externality is internalized (aware case). However, this is not the only source

of divergence from the first best, as the left panels of this figure show. Indeed, even if

the externality parameter for non-users is very low or zero, a welfare loss always arises

in the unaware case, even when the consumers have a viable outside option and the

monopolist serves the whole market.16

In Section 2.3, we have shown that the first best solution requires high prices and

zero disclosure in richer markets θ̄ > 3
2
and lower prices and higher disclosure in poorer

markets 1 ≤ θ̄ ≤ 3
2
. These two situations are respectively represented in the two top

(rich) and bottom (poor) panels of Figures 2.4 and 2.5. Unsurprisingly, in the unaware

case, the monopolist distorts prices and disclosure rates with respect to the first best

solution and ends up under-supplying privacy. Indeed, while Figure 2.4 shows that

the price (blue) is always too low in the unaware case with respect to the welfare-

maximizing price (green), Figure 2.5 shows that the disclosure rate is always too high

(blue) with respect to the welfare-maximizing one (green). This result is independent

of the externality.

Therefore, differently from Choi, Jeon, and Kim (2019), the monopolist that faces

unaware consumers always serves the optimal number of consumers and sets a quality

(and price) too low compared to the social optimum. Consequently, the information

(that forms platform quality) consumers release is too low. Although quantity is

optimal, the welfare loss is driven by a distortion of quality (Spence distortion).

16As an extension of the model, it would be interesting to have two groups, informed and unin-
formed.
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Figure 2.3: Welfare and externality relationships in different models.
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However, if consumers are aware of the externality, it impacts the indifferent con-

sumer, and after a certain level, the firm is forced to use prices as a primary revenue

instrument. For sufficiently high levels of externality, the disclosure rate drops to zero,

and the price set surpass the welfare-maximizing one. In this case, the monopolist

provides the optimal quality but operates with the traditional price markup.

Surprisingly, despite a welfare loss from monopoly is present in both models through

all parameters configurations, in the aware case a higher value of the externality is

beneficial and contributes to reducing the loss, particularly when the market is richer.

This is because the externality shortens the gap between the average and the marginal

willingness to pay for quality and so the Spence distortion is reduced and eventually

approaches zero. In these kind of markets, the monopolist that faces aware consumers

quickly switches to an uncovered market configuration that uses the price channel and

so the welfare loss that arises is driven by market power exploited in the form of higher

prices.

We collect the above results in the following Proposition:

Proposition 4. Without the externality, the monopolist always under-supplies privacy

and extracts consumer welfare through too high disclosure rates. In the unaware case,

this distortion is aggravated by the negative externality. On the other hand, when
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Figure 2.4: Price and α
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consumers are aware of the negative externality caused by user data correlation, the

monopolist is forced to switch to a price-funded business model, and the welfare loss is

reduced.

The proof of this result follows directly from the comparison of the welfare functions

and the results of Proposition 3, Remarks 1 and 2, and Lemmas 1 and 2.

This implies that as long as an outside option is present (β 6= 1), according to

this model, an effective policy to deal with informational externalities of this type

would not be to de-correlate data (as proposed in Acemoglu et al. (2022)), but to raise

consumers awareness and let the firm decide its optimal rate. Although this strategy

would not represent the first best, it would reduce the welfare loss at a lower cost for

regulatory agencies and consumers in richer markets.

2.7 Conclusions

Most consumers use digital services characterized by a zero monetary price and a trans-

fer of users’ personal data to the firms. In fact, 7 out of the 10 largest global companies

in 2018 provided zero prices products (Mancini and Volpin, 2018). Additionally, data

is correlated among consumers, and since this correlation allows firms to estimate
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Figure 2.5: Disclosure rate and α
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users’ non-shared personal information, a negative externality arises (Acemoglu et al.,

2022; Choi, Jeon, and Kim, 2019). In this work, we combine this externality with the

facts that data disclosure and information exchanged through a platform represent an

element of quality for which consumers have different willingness to pay.

We introduce the informational externality in the monopolist model of Casadesus-

Masanell and Hervas-Drane (2015) that studied the firm’s pricing and data disclosure

decisions when personal information is an element of platform vertical differentiation.

We build two variants of the model: in one, consumers are unaware of the externality

at the joining stage, while in the other, they perfectly anticipate it at the joining stage,

and so we include the externality in a similar fashion to the Lambertini and Orsini

(2001) network effect.

We then use the models to study the welfare loss arising from monopoly, the impact

of the externality on welfare, and the effect of consumer awareness. In order to do so,

we had to shut out the effect of prices on the platform’s advertising side, which we

model as a perfectly competitive market. Additionally, we had to limit the analysis

to cases where the support of the distribution is fixed at one, and there is only a

monopolistic firm.

With these limitations in mind, our model delivers intriguing results that can be

compared to the similar model of Choi, Jeon, and Kim (2019). They analyze the
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case of data collection by a monopolist where consumers are heterogeneous for their

base valuation of the service but are homogeneous for the impact of privacy features

on utility. One of the results of their paper is that the welfare loss is driven by the

difference in social marginal cost and private marginal cost, which is, in turn, mainly

determined by the nuisance of data collection on non-users. As a result, the monopolist

ends up over-collecting data and serving too many consumers.

Instead, in our model, consumers’ preferences are heterogeneous for both the service

value and the privacy cost, which are, however, perfectly correlated: a consumer with a

higher service valuation is also willing to pay more to preserve his privacy. Additionally,

consumers endogenously set the level of information released to the firm that collects

all the data and decides the fraction that will disclose.

Differently from Choi, Jeon, and Kim (2019), in our model, the welfare loss arises

even when non-users are not impacted and when the optimal number of consumers

is served: the monopolist exerts its market power by under-providing privacy, that

is, by distorting downward the quality level (Spence, 1975). Regardless of the exter-

nality, when platforms make revenues by trading personal data, they exploit market

power not through prices but through disclosure (or collection) rates, even if the price

consumers pay is close to zero or negative, and they have no market power in the

ads markets. These results support the practice of using a quality reduction test (SS-

NDQ) for defining markets instead of the traditional price increase test (SSNIP) when

the firms make revenues from data disclosure as proposed for zero-priced markets in

Mancini and Volpin (2018).

The comparison of the first best and the model in Section 2.2 and Section 2.5 shows

that when we introduce the externalities and consumers have no outside option or are

unaware of them at the joining stage, then the Spence distortion is further aggravated,

and the only two possibilities to restore welfare may be a Pigouvian tax on data sales

or a minimum quality standard with a cap on maximum disclosure rates.

From the same comparison, we also show that despite the negative effect of the

externality on consumers’ utility, if consumers consider this at the joining decision, its

presence increases welfare in the market compared to the no externality case. There-

fore, de-correlating data is sub-optimal to spreading awareness about the externality

in some cases. When the externality is strong enough, and consumers have an outside

option, the sensitivity to disclosure becomes higher than the sensitivity to prices, and

a marginal increase in the disclosure generates a higher loss in demand than a marginal

increase in prices. Therefore, without strategic effects on the advertising side, the mo-

nopolist switches to the price channel eliminating the Spence distortion by setting a

zero disclosure policy. This result has implications for regulation as making consumers

aware may represent a cost-efficient strategy to increase welfare.
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Appendix A

A.1 Endogeneity and limitations

A.1.1 Reverse causality

On the potential reverse causality issue, De Cornière and Taylor (2023) working

paper provides the necessary conditions for an influence of data on market structure.

They propose a general model of competition in utility to show that the necessary

condition for having more concentration is that data is unilaterally pro-competitive

(UPC), and this happens when more data (or more informative data) shifts the firms’

reaction function on the right.

In their model, the reaction function is shifted by more or better data (δi) when:

∂2πi

∂ui∂δi
=

∂Di(ui,u−i)

∂ui

∂r(ui, δi)

∂δi
+

∂2r(ui, δi)

∂ui∂δi
Di(ui,u−i) > 0, (A.1)

where the function D(.) represents the demand, and the function r(.) represents the

revenue function.

If equation A.1 is met, additional data will prompt the company to offer a greater

level of utility through the first term known as the “markup effect.” This effect is

always positive and is not offset by the second term, which is called the “surplus

extraction effect.” The “markup effect” refers to the additional profit earned from an

extra consumer. In contrast, the “surplus extraction effect” represents the opportunity

cost of providing utility to consumers.

For instance, if the firm can extract surplus by showing more (or better targeted)

ads, then the term ∂2r(ui,δi)
∂ui∂δi

Di(ui,u−i) may compensate the incentive of the firm to offer

higher utility and poach consumers, increasing market shares. If this statement were

accurate, the firm would have a greater incentive not to increase the utility offered,

causing data uses that extract more surplus to suffer less from reverse causality.

The proposed applications of this model distinguish different data uses by the
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magnitude of the second term: for example, data for product personalization would

impact next-period market concentration because the surplus extraction term is zero

(data is UPC). However, other data uses, such as price discrimination, incentivize the

firm to offer lower utility (due to the surplus extraction term), so data would not be

UPC.

Since no exogenous variations are available, I exploit the richness of the Apple

App Store information, which, differently from the Play Store, enables distinguishing

among different data uses. Consequently, I form some hypotheses based on the general

model of De Cornière and Taylor (2023) that provides the necessary conditions for data

influence on market structure.

Their model shows that a necessary condition for having higher concentration is

that more (or better) data shifts the firms’ reaction function on the right: say that a

social network uses data for feed personalization at t0, then by increasing perceived

quality (or addictiveness) of the platform it will start with a competitive advantage at

t1.

With this use, the unilateral effect of data is the one that dominates in the long run.

Therefore, the firm could sell the same quantity at a higher price (data is unilaterally

pro-competitive or UPC). On the other hand, under the assumption that more data

reduces utility (such as in some cases price discrimination or when privacy preferences

are strong), the firm would not build this competitive advantage, and data cannot

cause the increase in market concentration (data is unilaterally anti-competitive or

UAC).

Therefore, if data used for product personalization, app functionality, and app ana-

lytics are data uses unilaterally pro-competitive (UPC), then they cause an increase in

concentration, and there would be a positive effect of these data uses on concentration

measures. 1

On the other hand, data used for tracking the user may activate intrinsic privacy

concerns or instrumental valuations to privacy that may make this category (UAC)

(Lin, 2022; Tsai et al., 2011). Thus this indicator would not directly cause an increase

in market concentration, and the impact of the reverse causal link may be attenuated.

However, we need to discuss a further issue that may arise: simultaneity in the

choice of the sections of the privacy summary.

A.1.2 Simultaneity bias

If, as proposed in De Cornière and Taylor (2023) and discussed in the previous

section Data Used to Track You is not UPC, then the direct effect of this indicator

1With the dual instrument of prices and ads third-party advertising and developer advertising also
fall into the UPC category De Cornière and Taylor (2023)
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on market shares is alleviated, and the estimation would not suffer from direct reverse

causality.

A mix of simultaneity and omitted variables may bias the estimates presented,

and the model is valid only if the choice of the fields in “Data Used to Track You” is

independent of the one for the fields of “Data Linked to You” (and “data not linked to

you”).

Suppose the two were not independent and were instead taken according to the

models:

u2tu =α1 + γ1l2u+ β1ms+ u1, (A.2)

l2u =α2 + γ2u2tu+ β2ms+ u2, (A.3)

the model represented in eq (1.2) would suffer from omitted variable bias due to the

non-inclusion of the l2u indicator. Additionally, including l2u would not be a solution

because through the parameter γ1, the error term of the resulting model would become

a linear combination of the γs parameters and the estimates would be biased. Finally,

even if γ2 is equal to zero, we need to have corr(u1, u2) = 0 to have unbiased estimates,

and the only way to solve this problem would be a structural model that describes

data uses, a truly exogenous instrument or a within estimator (Wooldridge, 2015).

It is believed that the use of L2U and U2TU data involve different strategies that

are independent of each other. Two reasons support this. Firstly, these indicators have

a weak positive correlation, as the Pearson correlation coefficient falls between 0.2-0.3.

Secondly, theory indicates that these data uses may be employed at different stages of

an app’s life cycle. During the development stage, data is used to build features and

improve the offering through product personalization, app functionality, and analytics.

However, when the app reaches maturity and gains market share, the larger installed

base guarantees a higher marginal value for each data unit. At this stage, the app

can infer more information about consumers, and data trades become more profitable.

Therefore, it is expected that “Data Linked to You”and“Data Not Linked to You”will

be reported in the early stages of the app, while “Data Used to Track You” will only

be added when the app grows in popularity and starts to extract surplus. This is also

supported by a dummy variable indicating whether the app is an entrant (less than

one-year-old), which has a negative and significant estimated coefficient in the case of

the U2TU regression, while a positive significant estimated coefficient in the case of

L2U .

Furthermore, descriptive pieces of evidence reported in Figure A.1 weakly indicate

that this may be the case: by looking at the average age of apps in the last quartile of

Data Used to Track You and last quartile of data linked to you we can see that those

that have more elements in U2TU are on average slightly older.
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Figure A.1: Data used and app’s maturity

Additionally to this figure and the coefficient of app maturity in the regression,

the sequentiality of the decision is also reflected by the sample summary statistics. By

splitting entrants from the established firms, it emerges that while the established firms

use only 18% more data items linked to the user than an entrant, they collect about

50% more items used to track consumers than an entrant. Additionally, by further

decomposing the differential of the “Data Linked to You” indicator by its purposes and

investigating those that change the most among apps of different maturity, we observe

the most significant change in that third-party advertising and developer advertising.

This result is coherent with a gradual shift in business model as the app gains a more

significant installed base. Following entrants for an extended period would allow future

studies to confirm this hypothesis and provide unambiguous evidence of a switch in

the business model or proof of the survival thesis.

A.1.3 Economies of scale and impact of privacy preferences

A further concern that would motivate the simultaneity of the system (A.3) is the

presence of economies of scale in using the same data field. Once an app collects the

browsing history for product personalization, the extra technical cost of collection and

security of that item associated with selling it (Data Used to Track You: shared to

third parties or data brokers) is basically null.

However, the decrease in demand due to privacy preferences that the app may face

if they include the item in the ‘U2TU ’ may represent an impactful opportunity cost.

In this case, the high opportunity cost may balance the cost savings due to economies

of scope and may be highly relevant in deciding which items to include.
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If none of these assumptions hold, I propose a robustness test by including the

competitors’ average level of “Data Linked to You” in the regression to proxy the

potential simultaneity link between the two variables. This instrument would not be

endogenous in the case that the (infinitesimal) firm is a “privacy taker” in the clusters,

an assumption that may hold only in some clusters. The coefficient for this proxy is

positive and significant, but the change in the main results for the market share effect

is low, and the main results hold.

A.1.4 Impact of data on updates

Even if the indicators are chosen independently, data may impact developers’ in-

novation ability, which in turn may impact market shares and market power. Conse-

quently, in the estimates presented until now, there could be an upward bias due to the

potential positive correlation of updates with downloads and market shares (Comino,

Manenti, and Mariuzzo, 2019).

Apps that obtain more data can update more often or raise the quality of updates,

and this would result in an increase in the quantity downloaded and in the rating

share of the app. To test for this bias, we added the additional covariates of update

frequency and count of updates and found that the results do not change consistently.

Additionally, for robustness, I provide estimated auxiliary regression models using

as dependent variables updates indicators and as main explanatory variables the type

of data uses. The view provided by these auxiliary regressions is coherent with the

fact that “Data Used to Track You” is not used in the updating process. Although

“Data Linked to You” and “Data Not Linked to You” indicators positively affect the

probability of seeing a version change, the total number of updates and increase the

update frequency (updates per month), “Data Used to Track You” indicator is either

not significant or impacts in the opposite direction updates. To my knowledge, this

is the first attempt to measure the impact of various data applications on online

market shifts. Albeit in an early and still embryonic stage results are presented in

Appendix A.4.

A.2 Sensitivity to Market Definition

A.2.1 Sensitivity to Resolution Parameter with YMAL network

Table A.1 shows how the resolution parameter impacts the results. Modularity is

maximized when the resolution parameter is equal to one. However, one can adjust

this parameter to identify smaller, more homogeneous communities. Despite the im-

portance of this parameter, this is not reported in Kesler, Kummer, and Schulte (2019).
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I show that by increasing the resolution on this particular network, the magnitude of

the effects halves when reaching R=20 and eventually becomes non-significant when

reaching R=70.

In the case of the network used in this article, the value of R=10 already gave good

communities. However, conservatively, the results have been reported for R=20 be-

cause after this threshold, the communities’ quality started degrading, and large hubs

started forming distinct clusters. As an example, above such resolution, I observed

that competing apps, such as “Pandora: Music & Podcasts” and “Spotify - Music and

Podcasts”, fell into different clusters with no major competitor.

A.2.2 Alternative market definition

General market definition considers three main elements: demand substitution,

supply substitution, and entry/expansion patterns Motta (2004). The first of these

elements is the one that the YMAL section is most suited to capture because it is drawn

directly from the purchasing patterns of consumers. Description analysis, however,

integrates multiple dimensions by considering the app’s similarities in the feature space

from both a demand-side and a supply-side perspective. Apps with low substitutability

on the demand side may have high substitutability on the supply side, and the feature

set may capture this pattern. As an example, on the demand substitutability side, an

app that reminds watering the garden, such as ‘WaterMe - Gardening Reminders’, is

very different from an app, such as ‘Water Reminder - Daily Tracker’, that tracks the

amount of water you drink and reminds drinking water. However, on the supply side,

the code may be sufficiently similar to quickly adapt a version of one app to the other

market, and therefore, considering the descriptions may allow capturing ‘small entry’

by developers.2

Thus, if we consider an app as a bundle of features and assume that the descriptions

tend to express them, we can exploit them to define markets by obtaining a term-

document-matrix (TDM), apply a cosine similarity measure to obtain a document-

document similarity matrix and model it as a network on which we can perform the

modularity maximization through the Louvain algorithm.

Methodology

Here, I integrate the approach of Hoberg and Phillips (2010), Hoberg, Phillips, and

Prabhala (2014), and Pellegrino (2023) with applied network analysis based on mod-

ularity maximization also used in Kesler, Kummer, and Schulte (2019).

After pre-processing the descriptions by removing all URLs, punctuation, and sec-

2Focusing on the categories (Lifestyle in the first case and Health & Fitness) instead, would not
capture either of these two elements because of the app heterogeneity you find in each category
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Table A.1: Sensitivity of the Seller FE model to the resolution parameter and market
definition

R 3 R 10 R 15 R 20

(1) (2) (3) (4)

HHI -0.008 0.025** 0.009 0.005
(0.010) (0.009) (0.007) (0.007)

Log of market share 1.039** 0.812*** 0.574*** 0.443***
(0.320) (0.167) (0.133) (0.104)

Log of rating count 0.019*** 0.019*** 0.019*** 0.019***
(0.001) (0.001) (0.001) (0.001)

Price dummy, =1 if price>0 -0.210*** -0.210*** -0.210*** -0.210***
(0.012) (0.012) (0.012) (0.012)

Dummy variable for in-app purchases 0.047*** 0.047*** 0.047*** 0.047***
(0.006) (0.006) (0.006) (0.006)

Numeric count of the languages of the app 0.001 0.001 0.001 0.001
(0.000) (0.000) (0.000) (0.000)

Dummy variable, =1 if mac version exist -0.012** -0.012** -0.012** -0.012**
(0.004) (0.004) (0.004) (0.004)

Log(N. apps) by seller and wave -0.020** -0.020** -0.020** -0.020**
(0.007) (0.007) (0.007) (0.007)

Age rating (PEGI): Baseline 4+

Factor variable, 4+ 9+ 12+ or 17+=9 0.016 0.016 0.016 0.016
(0.009) (0.009) (0.009) (0.009)

Factor variable, 4+ 9+ 12+ or 17+=12 0.011 0.012 0.012 0.012
(0.006) (0.006) (0.006) (0.006)

Factor variable, 4+ 9+ 12+ or 17+=17 0.015*** 0.015*** 0.016*** 0.016***
(0.004) (0.004) (0.004) (0.004)

App Maturity (months old): Baseline Very young (0-12)

Young (13-21m/o) -0.000 -0.000 -0.000 -0.000
(0.001) (0.001) (0.001) (0.001)

Mature (22-37m/o) -0.001 -0.001 -0.001 -0.001
(0.002) (0.002) (0.002) (0.002)

Very Mature (38-66m/o) 0.000 0.000 0.000 0.000
(0.003) (0.003) (0.003) (0.003)

Veteran (67-121m/o) 0.009* 0.009* 0.009* 0.009*
(0.004) (0.004) (0.004) (0.004)

Constant 0.166*** 0.164*** 0.165*** 0.166***
(0.010) (0.010) (0.010) (0.010)

Observations 2317525 2317525 2317525 2317525
R2 0.847 0.847 0.847 0.847

Note: this regression includes category and seller dummies in the pooled OLS regression.
The number of observations is lower than the full dataset because singletons are

automatically dropped by the Stata command ‘reghdfe,’ which would otherwise artificially
reduce standard errors.

Standard errors in parentheses. Significance levels are: *** p<0.001, ** p<0.01, * p<0.05
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tions not in English characters, all descriptions of the non-game apps have been tok-

enized to form a Term-Document-Matrix (with dimensions 50063-754430 and a maxi-

mal term length of 60).

To build this matrix, Hoberg and Phillips (2010) utilizes a binary weighting function

with a ceiling to limit the analysis to rare words (words appearing in more than 5% of

the document were excluded).

Using a binary weighting function strongly reduces the accuracy of the analysis

because it does not account for the frequency of that word in the document or the

frequency in the whole document set. Additionally, it has to rely on a subjective

threshold of 5%.

Instead, using Term Frequency inverse Document Frequency (TFiDF) weights and

assigning the weight of each cell in the matrix according to the formula

vij = TFij/DFi,

where TF is the frequency of term i in document j and DF is the frequency of term i

across all documents, allows to give more weight to rare words (in the documents set)

that repeatedly appear in a single document. 3

After obtaining the TDM , as a last step to obtain a similarity matrix, I use a

version of cosine similarity comparable to Hoberg and Phillips (2010):

Cn,n = MTM,

where M is the Term-Document Matrix.

The resulting Cn,n is a document-document matrix of similarity indexes that go

from 0.3 to one. All the values of similarity below 0.3 have been deleted to ease

computations and not to employ dense matrices that would overload the available

memory. This 0.3 threshold was the lowest I could reach by hardware limitation.

Unfortunately, with an extensive similarity matrix like the one used, the resulting

network from the dense matrix multiplication would be larger than the 200Gb of ram

available in the hardware used.

As an example, and to show this procedure’s capabilities and pitfalls, Figure A.2

shows the unweighted associated network for the top Apps of the Apple Store.

I used a static version of the market definition to simplify the process and pre-

vent description changes from affecting the data. This involved combining all waves

and merging app descriptions by app while removing duplicate terms. Although this

method may group apps with added or removed functions, it is still preferred to a

dynamic market definition due to the short observation period. Finally, I applied

3Additionally, every column vector has been standardized to have a unit length.
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modularity maximization using the Louvain algorithm to identify communities within

the network. For more information on the procedure and mathematical aspects, please

refer to in-text Section 1.2.3.

Figure A.2: Network based on description similarity

Remind: School Communication

Ulta Beauty: Makeup & Skincare

Panera Bread

Nike

Facebook

ParkMobile - Find Parking

Uber - Request a ride

U.S. Bank

JetBlue - Book & manage trips

Nextdoor: Local Neighborhood

DuckDuckGo Privacy Browser

Audiomack - Download New Music

FaceApp: Face Photo Editor

VPN - Super Unlimited Proxy

WeatherBug – Weather Forecast

Hotels.com: Travel Booking

StubHub: Event Tickets

Messenger

Roku - Official Remote Control

ESPN Fantasy Sports & More

Duolingo - Language Lessons

Mercari: Your Marketplace

SiriusXM: Music & Sports

CNN: Breaking US & World News

MyFitnessPal

Hulu: Watch TV series & movies

Plenty of Fish dating

PicCollage: Photo Layout Edits

Ibotta: Save & Earn Cash Back

Calm: Sleep & Meditation

Microsoft Word

Wayfair – Shop All Things Home

My Spectrum

Google DuoDoorDash - Driver

AccuWeather: Weather Alerts

USAA Mobile

ESPN: Live Sports & Scores

Nest

Hilton Honors: Book Hotels

InShot - Video Editor

Macy's

GroupMe

Twitch: Live Game Streaming Amazon Music: Songs & Podcasts

Google Docs: Sync, Edit, Share

Coinbase: Buy Bitcoin & Ether

Libby, by OverDrive

Experian Credit Report

Lime - Your Ride Anytime

WW (formerly Weight Watchers)

Sam's Club

My Disney Experience

YouTube Kids

Fandango Movie Tickets & Times

Fidelity Investments

TicketmasterBuy, Sell Tickets

Postmates - Fast Delivery

Fetch Rewards

Marco Polo - Stay in Touch

Indeed Job Search

Instacart: Grocery delivery

ClassDojo

Discord - Talk, Chat & Hangout

Microsoft Teams

Expedia: Hotels, Flights & Car

Cash App

Google Classroom

Reddit

ADP Mobile Solutions

Wish - Shopping Made Fun

ZOOM Cloud Meetings

Amex

Canvas Student

HP Smart

T-Mobile

Musi - Simple Music Streaming

Shop: package & order tracker

OpenTable

Citi Mobile®

Pizza Hut - Delivery & Takeout

Yahoo Mail - Organized Email

Waze Navigation & Live Traffic

GEICO Mobile - Car Insurance

Etsy: Custom & Creative Goods

Weather - The Weather Channel

Walgreens

Amazon Alexa

Bank of America Mobile Banking

Amazon Kindle

Grubhub: Local Food Delivery

Discover Mobile

Audible audiobooks & podcasts

Robinhood: Investing for All

Chase Mobile®: Bank & Invest

Starbucks

Microsoft Outlook

Target

Fly Delta

Pinterest

United Airlines

OfferUp - Buy. Sell. Letgo.

Google Maps

My Verizon

Google Drive

Credit Karma

Walmart - Shopping & Grocery

Southwest Airlines

Uber Eats: Food Delivery

Capital One Mobile

Domino's Pizza USA

Zillow Real Estate & Rentals

PayPal - Send, Shop, Manage

Shazam: Music Discovery

Wells Fargo Mobile

Bible

Pandora: Music & Podcasts

WhatsApp Messenger

Lyft

TikTok

Venmo

DoorDash - Food Delivery

Spotify New Music and Podcasts

Instagram

YouTube: Watch, Listen, Stream

Note: The network has been filtered with 0.3 as a minimum score to have a link. Figure obtained by
considering top non-gaming apps to test the correct classification of different apps. Despite a good
overall accuracy, the algorithm shows that productivity apps tend to be thrown together despite being
in different sectors.

Results

The results presented in Table A.2 are consistent with the results of the YMAL net-

work. The magnitude is slightly lower than the estimates in the text, but the sign and

significance are unvaried.

Notice that the number of observations is lower because apps with too short de-

scriptions or zero characters descriptions were excluded. Their inclusion would imply

many single-app clusters with unitary market share but are in markets of less than 1000

ratings. These 1035 apps (7000 observations) were their communities’ only elements.

Due to these markets’ competitiveness and the superstars’ economics, apps with a uni-

tary market share should be rare. Therefore, including these apps brings measurement

errors that have the potential to bias the results. By including these apps, the sign of

the app id fixed effects model was negative and statistically significant, and all other

results were mostly unaffected.

Given these apps’ negative impact on the market share coefficient, we expect that

the simple exclusion introduces an attenuation bias of the positive coefficient of market
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Table A.2: Sensitivity to market definition based on text analysis

POLS Dev. FE Id FE

(1) (2) (3) (4) (5)

HHI -0.158*** -0.023*** -0.021*** 0.024** 0.024**
(0.003) (0.004) (0.004) (0.007) (0.007)

Log of market share in clusters 0.413*** 0.336*** 0.119
(0.055) (0.054) (0.117)

Categorized Share (baseline x<5%)

0.05 < x <= 0.2 0.068** 0.037*
(0.025) (0.017)

0.2 < x <= 0.4 0.120** 0.030
(0.044) (0.017)

0.4 < x <= 0.8 0.110** 0.038
(0.040) (0.040)

0.8 < x <= 1 0.117** 0.066
(0.038) (0.066)

Log of rating count 0.033*** 0.019*** 0.019*** 0.015*** 0.015***
(0.000) (0.000) (0.000) (0.001) (0.001)

Price dummy, =1 if price>0 -0.142*** -0.210*** -0.210*** -0.026*** -0.026***
(0.001) (0.002) (0.002) (0.003) (0.003)

Dummy variable for in-app purchases 0.179*** 0.047*** 0.047*** 0.043*** 0.043***
(0.001) (0.002) (0.002) (0.003) (0.003)

Numeric count of the languages of the app 0.002*** 0.001*** 0.001*** 0.001*** 0.001***
(0.000) (0.000) (0.000) (0.000) (0.000)

Dummy variable, =1 if mac version exist -0.000 -0.012*** -0.012*** -0.016*** -0.016***
(0.001) (0.001) (0.001) (0.002) (0.002)

Log(N. apps) by seller and wave 0.020*** -0.020*** -0.020*** -0.013*** -0.013***
(0.000) (0.002) (0.002) (0.001) (0.001)

App Maturity (months old): Baseline Very young (0-12)

Young (13-21m/o) 0.002** -0.000 -0.000 0.005*** 0.005***
(0.001) (0.000) (0.000) (0.000) (0.000)

Mature (22-37m/o) -0.016*** -0.001 -0.001 0.017*** 0.017***
(0.001) (0.001) (0.001) (0.001) (0.001)

Very Mature (38-66m/o) -0.023*** 0.000 0.000 0.030*** 0.030***
(0.001) (0.001) (0.001) (0.001) (0.001)

Veteran (67-121m/o) 0.005*** 0.009*** 0.009*** 0.047*** 0.047***
(0.001) (0.001) (0.001) (0.001) (0.001)

Age rating (PEGI): Baseline 4+

Factor variable, 9+ 0.135*** 0.016*** 0.016*** -0.023 -0.023
(0.002) (0.004) (0.004) (0.013) (0.013)

Factor variable, 12+ 0.063*** 0.012*** 0.012*** 0.024*** 0.024***
(0.001) (0.002) (0.002) (0.006) (0.006)

Factor variable, 17+ 0.074*** 0.016*** 0.015*** -0.007* -0.007*
(0.001) (0.001) (0.001) (0.003) (0.003)

Constant 0.065*** 0.168*** 0.168*** 0.138*** 0.138***
(0.001) (0.002) (0.002) (0.002) (0.002)

Observations 2310689 2310689 2310689 2310689 2310689
R2 0.122 0.847 0.847 0.955 0.955
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share.4 Results are robust to the resolution parameter.

4Ideally, we could re-classify them based on a scoring function that uses category and name to the
most similar cluster. However, most of the insights of the analysis are the same.
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A.3 Inspection of apps that changed U2TU section

The panel consists of around 2.3 million observations spanning over 6 periods and

covering 434955 apps. Only 14891 changes occurred in the variable U2TU over time,

with 76.5% resulting in an increase in value and 23.4% in a decrease.

Table A.3: Summary Statistics Data Uses

Decrease in U2TU Constant U2TU Increase in U2TU

count mean sd count mean sd count mean sd

Count of number of packages 3483 1.077 2.510 2396025 0.542 1.815 11408 1.290 2.723
Avg. Price of the inapp purchases 3483 5.754 20.889 2396025 2.908 19.289 11408 5.273 17.819
Months from release date 3476 43.012 33.884 2386155 40.142 33.590 11402 48.146 34.632
Log of market share 3483 0.002 0.016 2396025 0.001 0.011 11408 0.002 0.018
HHI 3483 0.101 0.127 2396025 0.106 0.123 11408 0.099 0.121
Rating Count 3483 2517.478 33771.975 2396025 2073.843 95457.429 11408 3622.916 69167.021
Average stars, NA if no ratings 2435 4.266 0.939 1312602 4.217 1.053 8340 4.221 0.987

Observations 2410916

Table A.3 displays significant differences in sample averages of crucial variables among

the apps that altered the value of U2TU and those that did not. After analyzing the

data, it is apparent that apps with an increase in the number of items in the privacy

summary are usually free, have a higher market share and rating count, are more

up-to-date, older, and have more expensive in-app purchases compared to the sample

average. In-app purchases seem to be correlated with the U2TU variable, as the apps

that experienced an increase have almost three times the sample average. The higher

market share and rating count of these apps may be because they have a lower price,

making them more accessible to consumers who try the app and leave reviews. It

could also be due to the strategic effect of constantly updating the app. However, the

fact that these apps are older raises questions about whether they have changed their

business model or driven out competitors by using data. It is worth noting that there

is a positive correlation between the app’s maturity and the within variation of the

variable U2TU for apps that changed their privacy summaries (depicted in Figure A.3).

This suggests that with a more extended observation period, we may gain more insights

into this phenomenon. Further analysis of entry and factors impacting the success of

entrants could indicate whether using data to track is a competitive tool necessary to

improve the product or just a means to extract surplus.

A.4 Apps updates behavior

Apps’ product innovation can be incremental, through more app updates or entirely

new apps. While the latter innovation methodology is the most effective strategy for
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Figure A.3: Deviation from apps mean log(U2TU) vs months old

the success of gaming apps, non-gaming applications are likelier to become killer apps

if the developer constantly improves the app Yin, Davis, and Muzyrya (2014). Since

I exclude gaming apps from the dataset, I focus on the update side of innovation in

this section. 5

If data is an input in the updating process, not to have endogeneity in the model

for U2TU , we shall have that L2U and NL2U indicators impact updates. However,

our main dependent variable should not impact them.

I use three approaches to understand the relationship between data and updates.

First, I build a dummy variable to identify version changes between waves and estimate

a logit model to predict the probability of observing an update. I use three data

collection indexes, category dummies, app-level and developer-level controls as main

regressors. Second, I estimate a Tobit model using the censored count of updates as

the dependent variable. Third, I normalize the count of updates to obtain an update

frequency indicator and then regress it on the data collection indexes. These three

approaches complement each other and provide a comprehensive understanding of

updates.

We estimate all the models with lagged values to consider the decision’s sequen-

tiality, and that data is an input for the update process. Additionally, we want to

avoid the endogeneity of the regressors that may arise from the positive impact that

updates have on market share by creating a buzz around the app. Consequently, the

developer may also decide to increase data extraction.

5Furthermore, due to a lack of data on costs, I neglect another innovation aspect that may be
data-driven, cost-reducing innovations. Unfortunately, since we do not observe the cost side of the
market, I abstain from commenting on cost-saving innovation due to data collection.
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We expect that l2u and nl2u indicators would affect the updating probability, while

U2TU would not. The results of this robustness test are in column (1) of Table A.4.

Another way to look at updates would be to regress the count of updates on the

data indicators. However, given that the count of updates is capped at 25, and older

apps are more likely to have reached the threshold, this regression would capture other

effects due to the app’s maturity. Therefore, I estimate a tobit regression model on the

count of updates to consider that observations are censored. We expect that the two

indicators l2u and nl2u positively affect the app’s number of updates, while U2TU

shall not. The results are presented in columns 5 to 7 of Table A.4. We check for

robustness of this regression by introducing lagged values for the data uses indicators

and two indicators of app quality: the fraction of 5-star and 1-star ratings. Given the

results in Comino, Manenti, and Mariuzzo (2019), I expect the decision to update to

correlate positively with the fraction of 1-star ratings and negatively with the fraction

of 5-star ratings. Therefore we control for these values.

Finally, to avoid the downsides of the censored count of updates, I created a fre-

quency of updates indicator by normalizing the count of updates by the range in which

these are released. The mean of this indicator suggests that the apps in the sample

released an update every 50 days, which is a value in line with Comino, Manenti, and

Mariuzzo (2019). Therefore, if more data is beneficial in the innovation process, we

would expect the release of more updates and a positive effect of the data indicators

l2u and nl2u on the frequency of updates and no effect of the Data Used to Track

consumers. Results are reported in columns 2-3-4.

A.4.1 Descriptives

Figure A.4: Updates indicators for last quartile of L2U and U2TU vs. first three
quartiles

(a) Mean number of updates (b) Mean of update frequency (upd/months)
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updates Figure A.4 shows a considerable jump in the average number and frequency

of updates. However, this correlation may be driven by the older age of apps with more

U2TU. In fact, more mature apps also have more extended version history. Therefore,

we shall control for the app’s maturity in the regression and check whether the effect

is robust to this factor.

A.4.2 Results

The analysis shows that in all three regressions, L2U and NL2U positively impact

the probability of a version change and are associated with a higher frequency of

updates, resulting in more updates. On the other hand, the impact of the variable

U2TU is not statistically significant or has a more negligible impact on these indicators.

It is noteworthy that the coefficient of U2TU (lagged in columns (1) and (7) and not

lagged in columns (5) and (6)) has a negative and significant sign. This suggests

that Data Used to Track is associated with a lower chance of observing a version’s

change and a lower cumulative number of updates, all else being equal. One possible

explanation is that apps with higher Data Used to Track individuals have greater

market power and do not need to rely as much on updates to drive downloads. These

results confirm the findings in the text.

When data is used to develop a better app, we expect a positive correlation between

the shares and these indexes of data usage. All these descriptive pieces of evidence

indicate that in a structural model, the equations would follow a pattern such as:

upd =g(l2u/nl2u, ability,# of downloads, . . .), (A.4)

ms =f(updates, features, price, . . .), (A.5)

u2tu =z(share,# of packages, price, . . .), (A.6)

with or without the reverse causality element for L2U/NL2U , as long as there is

independence between the choices of the privacy summary section, and U2TU is UAC,

the results in the regression (1.2) could be interpreted as a signal of the effect of market

power.

To check for the consistency of the result in Table 1.4, I also introduced the number

of updates and whether an app has in-app purchases or not in the regression. The

results show that despite both variables have a positive (and significant) effect on

the amount of Data Used to Track consumers, the market share variable estimated

coefficient does not substantially change in magnitude, sign, or significance.

Therefore, if U2TU and L2U are not co-determined, as in (A.3), the findings of

this study may indicate the impact of market power on data markups. However, if

they are co-determined, it is advisable to interpret the results with caution. To address
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Table A.4: Selected coefficients for model on update frequency and count of updates

Dummy = 1 if vers. change Upd. Freq. (month) Count update

(1) (2) (3) (4) (5) (6) (7)

main
Lag of Log(data linked to you) 0.141*** 0.042*** 0.472***

(0.003) (0.005) (0.046)

Log(data linked to you) 0.025*** 0.042*** 0.457*** 0.450***
(0.003) (0.005) (0.043) (0.045)

Lag of Log(data not linked to you) 0.152*** 0.028*** 0.941***
(0.004) (0.006) (0.033)

Log(data not linked to you) 0.012*** 0.025*** 0.879*** 0.918***
(0.004) (0.006) (0.032) (0.033)

Lag of Log(data used to track you) -0.029*** 0.002 -0.362***
(0.007) (0.012) (0.078)

Log(data used to track you) 0.013 0.002 -0.384*** -0.354***
(0.008) (0.012) (0.076) (0.079)

Dummy in-app purchases, =1 if at least one package 0.055*** 0.121*** 0.146*** 0.146*** 1.054*** 1.021*** 1.029***
(0.009) (0.010) (0.015) (0.015) (0.083) (0.089) (0.089)

Price dummy, =1 if price>0 -0.422*** -0.010 -0.004 -0.004 -1.646*** -1.546***-1.532***
(0.017) (0.010) (0.014) (0.014) (0.107) (0.108) (0.109)

Log(N. apps) by seller and wave -0.101*** 0.045*** 0.025 0.025 -0.643*** -0.565***-0.566***
(0.002) (0.007) (0.016) (0.016) (0.063) (0.065) (0.066)

Log(rating count) 0.162*** 0.065*** 0.071*** 0.070*** 1.519*** 1.474*** 1.470***
(0.002) (0.002) (0.003) (0.003) (0.017) (0.017) (0.017)

Log of % of 5 stars ratings -0.055*** 0.042*** 0.042*** -1.096***-1.097***
(0.009) (0.008) (0.008) (0.072) (0.073)

% of 5 stars ratings 0.022*** -1.095***
(0.006) (0.072)

Log of % of 1 stars ratings -0.046*** -0.019* -0.019* -0.283***-0.277***
(0.017) (0.011) (0.011) (0.082) (0.082)

% of 1 stars ratings -0.041*** -0.272***
(0.007) (0.078)

Average count of updates by developer (excluding that app) 0.049*** 0.434*** 0.400*** 0.399***
(0.001) (0.007) (0.007) (0.007)

App Maturity (baseline 0-13 m/o)

Young (13-21m/o) -0.397*** -0.175*** -0.263***-0.262*** 3.008*** 3.825*** 3.836***
(0.009) (0.003) (0.009) (0.009) (0.031) (0.040) (0.040)

Mature (22-37m/o) -0.539*** -0.325*** -0.407***-0.406*** 5.629*** 5.927*** 5.940***
(0.010) (0.005) (0.009) (0.009) (0.047) (0.055) (0.056)

Very Mature (38-66m/o) -0.620*** -0.392*** -0.462***-0.462*** 7.140*** 7.333*** 7.348***
(0.011) (0.006) (0.010) (0.010) (0.118) (0.119) (0.120)

Veteran (67-121m/o) -0.699*** -0.421*** -0.501***-0.500***10.074***10.431***10.449***
(0.011) (0.008) (0.013) (0.013) (0.084) (0.098) (0.097)

Constant -2.011*** 0.637*** 0.695*** 0.693*** 0.366*** 0.391*** 0.374***
(0.038) (0.011) (0.022) (0.022) (0.126) (0.126) (0.128)

sigma
Constant 7.180*** 6.854*** 6.850***

(0.032) (0.030) (0.029)

Observations 715721 2401033 827924 827924 2401033 827924 827924
R2 0.723 0.787 0.787
Pseudo R2 0.065 0.089 0.093 0.093

Note: The first column indicates the logit model for the probability of a version change,
with category dummy. The columns (2-3-4) come from a seller-level fixed effects regression.

In contrast, the coefficients in columns (5-6-7) come from a Pooled Tobit regression to
account for the upper censoring of the update history. Significance levels are: *** p<0.001,

** p<0.05, * p<0.10

potential endogeneity issues, an exogenous variation or a structural model could be

used to estimate the effect of market share on Data Used to Track.
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Figure A.5: Log of L2U by category of market share

A.5 Regression for data linked to you indicator

Some descriptive evidence is in A.5. It shows a positive relationship even stronger

than the one for U2TU .

This is confirmed by the regression analysis in Table A.5. However, given that this

includes functionalities that improve the product the estimated coefficient are likely

biased. Computing the direction of the bias is particularly complex in this setup and

it would depend on the strength of each side correlation.
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Table A.5: Regression analysis with the log. of data linked to you as dependent
variable

Dep. Var log(l2u)

R 3 R 10 R 15 R 20 Radius

(1) (2) (3) (4) (5)

hhi 0.004 0.047** 0.031* 0.011
(0.021) (0.020) (0.016) (0.014)

Rating share in the radius of similar apps -0.020
(0.016)

Log of market share in clusters 0.433 0.507** 0.493** 0.418**
(0.357) (0.233) (0.220) (0.167)

Log of rating count 0.052*** 0.051*** 0.051*** 0.051*** 0.052***
(0.002) (0.002) (0.002) (0.002) (0.002)

Dummy in app purchases, =1 if at least 1 package 0.043*** 0.043*** 0.043*** 0.043*** 0.043***
(0.008) (0.008) (0.008) (0.008) (0.008)

Price dummy, =1 if price>0 -0.167*** -0.167*** -0.167*** -0.167*** -0.167***
(0.013) (0.013) (0.013) (0.013) (0.013)

Age rating (PEGI): Baseline 4+

Factor variable, 9+ 0.035** 0.035** 0.035** 0.035** 0.035**
(0.016) (0.016) (0.016) (0.016) (0.016)

Factor variable, 12+ 0.083*** 0.083*** 0.083*** 0.083*** 0.083***
(0.011) (0.011) (0.011) (0.011) (0.011)

Factor variable, 17+ 0.078*** 0.078*** 0.078*** 0.078*** 0.078***
(0.009) (0.009) (0.009) (0.009) (0.009)

Number of updates per month 0.018*** 0.018*** 0.018*** 0.018*** 0.018***
(0.002) (0.002) (0.002) (0.002) (0.002)

Numeric count of the languages of the app 0.005*** 0.005*** 0.005*** 0.005*** 0.005***
(0.001) (0.001) (0.001) (0.001) (0.001)

Dummy variable, =1 if mac version exist -0.046*** -0.046*** -0.046*** -0.046*** -0.046***
(0.007) (0.007) (0.007) (0.007) (0.007)

App Maturity (months old): Baseline Very young (0-12)

Young (13-21m/o) -0.005** -0.005** -0.005** -0.005** -0.005**
(0.003) (0.003) (0.003) (0.003) (0.003)

Mature (22-37m/o) -0.001 -0.001 -0.001 -0.001 -0.001
(0.005) (0.005) (0.005) (0.005) (0.005)

Very Mature (38-66m/o) -0.010* -0.009* -0.009* -0.009* -0.010*
(0.006) (0.006) (0.006) (0.006) (0.006)

Veteran (67-121m/o) 0.010 0.010 0.010 0.010 0.010
(0.007) (0.007) (0.007) (0.007) (0.007)

Log(N. apps) by seller and wave -0.084*** -0.085*** -0.085*** -0.084*** -0.084***
(0.008) (0.008) (0.008) (0.008) (0.008)

Constant 0.853*** 0.850*** 0.851*** 0.853*** 0.852***
(0.013) (0.013) (0.013) (0.013) (0.013)

Observations 2320133 2320133 2320133 2320133 2320133
R2 0.891 0.891 0.891 0.891 0.891

Note: This regression uses the same functional form of the seller-category fixed effect model
for Data Used to Track consumers. The number of observations is lower than the full

dataset because 5274 singletons are automatically dropped by the Stata command ‘reghdfe’,
because they would otherwise artificially reduce standard errors and overstate significance.
The standard errors reported in parentheses are clustered at the seller level to account for

possible heteroskedasticity. Significance levels are: *** p<0.001, ** p<0.05, * p<0.10
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Appendix B

B.1 Model with aware consumers

Proof. Full Market Coverage case: with θ̂ = θ̄ − 1 demand is xfmc = 1 and the

indifferent consumer needs to be located at the left of the consumer with the lowest θ.

So to obtain FMC we need the indifferent condition in eq.B.1 respected and satisfied

with equality:

θ
(1− d)2

4
− P − e

1− d

2
d ≥ 0,

θ∗ =

4

(

P + e
1− d

2
d

)

(1− d)2
≤ θ̄ − 1, (B.1)

we can then solve this equation by finding the price Pc that satisfies with equality the

covered market condition in (B.1):

Pc =
1

4
(d− 1)(d(2e+ θ̄ − 1)− θ̄ + 1), (B.2)

with this price the profit function becomes:

πfmc =
1

4
(d− 1)(d(2e+ θ̄ − 3)− θ̄ + 1), (B.3)

we can then maximize the profit function in d and get the following F.O.C.:

∂πfmc

∂d
=
1

2
(d(2e+ θ̄ − 3)− e− θ̄ + 2) = 0, (B.4)

∂2πfmc

∂d2
=
1

2
(2e+ θ̄ − 3) = 0, (B.5)

when the second order condition is not respected, the function is convex and the profit

function is maximized at the corner d = 0, additionally by solving the FOC for the

89



Chapter B – Appendix B

optimal disclosure we obtain:

d∗fmc











e+ θ̄ − 2

2 e+ θ̄ − 3
if θ̄ ≤ 2− e ∧ θ̄ 6= 3− 2e,

0 Otherwise,

(B.6)

where the condition:

θ̄ ≤ 2− e ⇐⇒ α ≤
2− θ̄

1− β
,

derives from the constraint that d∗ is bounded between zero and one. Instead the

second order conditions requires:

θ̄ ≤ 3− 2e ⇐⇒ α ≤
3− θ̄

2(1− β)
,

it is obvious that the first constraint is stricter than the one imposed by the SOC.

That is, when the net impact of the externality on the demand function is large

enough the monopolist optimally sets the boundary solution of the zero disclosure rate:

d drops to zero before the function becomes convex.

Pulling all together we have final prices and profits of Proposition 1:

P ∗

fmc =















(1− e)
(

2e2 − e(θ̄ − 3) + θ̄ − 1
)

4(2e+ θ̄ − 3)2
if θ̄ + e ≤ 2 ∧ θ̄ 6= 3− 2e,

θ̄ − 1

4
Otherwise,

(B.7)

π∗

fmc =















(1− e)2

4(3− θ̄)− 8e
if θ̄ + e ≤ 2 ∧ θ̄ 6= 3− 2e,

θ̄ − 1

4
Otherwise,

(B.8)

as the market is covered, and the fraction of non-users is zero, consumer welfare is

defined as:

CS =

∫ θ̄

θ̄−1

Ujoindz =

∫ θ̄

θ̄−1

(

z(1− d)2

4
− αdy∗ − P

)

dz, (B.9)

which results in:

CSa =











1
8

2e+ θ̄ = 3 ∧ e+ θ̄ > 2

(e− 1)(−4α(e+ θ̄ − 2) + 4e(e+ θ̄)− 7e− 1)

8(2e+ θ̄ − 3)2
, Otherwise,

(B.10)

and summing up profit and consumer surplus gives total welfare:

Wa =







1
8
(2θ̄ − 1) 2e+ θ̄ = 3 ∧ e+ θ̄ > 2,

(e−1)(−4α(e+θ̄−2)+2(e+1)θ̄+3e−7)

8(2e+θ̄−3)2
Otherwise,

(B.11)
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B.2 Partial market coverage with aware consumers

Here the results of the simulation and a short code snippet are presented.

From the Table, we can observe the following patterns:

Table B.1: Simulation results for monopolist equilibrium with aware consumers

πc πu du α β e θ̄ Configuration

8 0.1250 0.1111 0.3333 0 0 0 1 Covered

0.1429 0.1322 0.2727 0 0 0 1.25 Covered

0.1667 0.1600 0.2000 0 0 0 1.5 Covered

0.2000 0.1975 0.1111 0 0 0 1.75 Covered

0.1250 0.1111 0.3333 0 0.25 0 1 Covered

0.1429 0.1322 0.2727 0 0.25 0 1.25 Covered

0.1667 0.1600 0.2000 0 0.25 0 1.5 Covered

0.2000 0.1975 0.1111 0 0.25 0 1.75 Covered

0.1250 0.1111 0.3333 0 0.5 0 1 Covered

0.1429 0.1322 0.2727 0 0.5 0 1.25 Covered

0.1667 0.1600 0.2000 0 0.5 0 1.5 Covered

0.2000 0.1975 0.1111 0 0.5 0 1.75 Covered

0.1250 0.1111 0.3333 0 0.75 0 1 Covered

0.1429 0.1322 0.2727 0 0.75 0 1.25 Covered

0.1667 0.1600 0.2000 0 0.75 0 1.5 Covered

0.2000 0.1975 0.1111 0 0.75 0 1.75 Covered

0.1250 0.1111 0.3333 0 1 0 1 Covered

0.1429 0.1322 0.2727 0 1 0 1.25 Covered

0.1667 0.1600 0.2000 0 1 0 1.5 Covered

0.2000 0.1975 0.1111 0 1 0 1.75 Covered

0.1250 0.1111 0.3333 0.25 1 0 1 Covered

0.1429 0.1322 0.2727 0.25 1 0 1.25 Covered

0.1667 0.1600 0.2000 0.25 1 0 1.5 Covered

0.2000 0.1975 0.1111 0.25 1 0 1.75 Covered

0.1250 0.1111 0.3333 0.5 1 0 1 Covered

0.1429 0.1322 0.2727 0.5 1 0 1.25 Covered

0.1667 0.1600 0.2000 0.5 1 0 1.5 Covered

0.2000 0.1975 0.1111 0.5 1 0 1.75 Covered

Continued on next page
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Table B.1 – continued from previous page

πc πu du α β e θ̄ Configuration

0.1250 0.1111 0.3333 0.75 1 0 1 Covered

0.1429 0.1322 0.2727 0.75 1 0 1.25 Covered

0.1667 0.1600 0.2000 0.75 1 0 1.5 Covered

0.2000 0.1975 0.1111 0.75 1 0 1.75 Covered

0.1250 0.1111 0.3333 1 1 0 1 Covered

0.1429 0.1322 0.2727 1 1 0 1.25 Covered

0.1667 0.1600 0.2000 1 1 0 1.5 Covered

0.2000 0.1975 0.1111 1 1 0 1.75 Covered

0.1172 0.1085 0.3636 0.25 0.75 0.0625 1 Covered

0.1352 0.1291 0.3000 0.25 0.75 0.0625 1.25 Covered

0.1598 0.1566 0.2222 0.25 0.75 0.0625 1.5 Covered

0.1953 0.1948 0.1250 0.25 0.75 0.0625 1.75 Covered

0.1094 0.1050 0.4000 0.25 0.5 0.125 1 Covered

0.1276 0.1250 0.3333 0.25 0.5 0.125 1.25 Covered

0.1531 0.1523 0.2500 0.25 0.5 0.125 1.5 Covered

0.1914 0.1916 0.0685 0.25 0.5 0.125 1.75 Uncovered

0.1094 0.1050 0.4000 0.5 0.75 0.125 1 Covered

0.1276 0.1250 0.3333 0.5 0.75 0.125 1.25 Covered

0.1531 0.1523 0.2500 0.5 0.75 0.125 1.5 Covered

0.1914 0.1916 0.0685 0.5 0.75 0.125 1.75 Uncovered

0.1016 0.1003 0.4444 0.25 0.25 0.1875 1 Covered

0.1200 0.1196 0.3750 0.25 0.25 0.1875 1.25 Covered

0.1467 0.1467 0.2657 0.25 0.25 0.1875 1.5 Uncovered

0.1886 0.1914 0.0000 0.25 0.25 0.1875 1.75 Uncovered

0.1016 0.1003 0.4444 0.75 0.75 0.1875 1 Covered

0.1200 0.1196 0.3750 0.75 0.75 0.1875 1.25 Covered

0.1467 0.1467 0.2657 0.75 0.75 0.1875 1.5 Uncovered

0.1886 0.1914 0.0000 0.75 0.75 0.1875 1.75 Uncovered

0.0938 0.0938 0.5000 0.25 0 0.25 1 Covered

0.1125 0.1127 0.3731 0.25 0 0.25 1.25 Uncovered

0.1406 0.1425 0.1492 0.25 0 0.25 1.5 Uncovered

0.1875 0.1914 0.0000 0.25 0 0.25 1.75 Uncovered

0.0938 0.0938 0.5000 0.5 0.5 0.25 1 Covered

0.1125 0.1127 0.3731 0.5 0.5 0.25 1.25 Uncovered

0.1406 0.1425 0.1492 0.5 0.5 0.25 1.5 Uncovered

0.1875 0.1914 0.0000 0.5 0.5 0.25 1.75 Uncovered

Continued on next page
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Table B.1 – continued from previous page

πc πu du α β e θ̄ Configuration

0.0938 0.0938 0.5000 1 0.75 0.25 1 Covered

0.1125 0.1127 0.3731 1 0.75 0.25 1.25 Uncovered

0.1406 0.1425 0.1492 1 0.75 0.25 1.5 Uncovered

0.1875 0.1914 0.0000 1 0.75 0.25 1.75 Uncovered

0.0781 0.0817 0.4105 0.5 0.25 0.375 1 Uncovered

0.0977 0.1033 0.2396 0.5 0.25 0.375 1.25 Uncovered

0.1302 0.1406 0.0000 0.5 0.25 0.375 1.5 Uncovered

0.1875 0.1914 0.0000 0.5 0.25 0.375 1.75 Uncovered

0.0781 0.0817 0.4105 0.75 0.5 0.375 1 Uncovered

0.0977 0.1033 0.2396 0.75 0.5 0.375 1.25 Uncovered

0.1302 0.1406 0.0000 0.75 0.5 0.375 1.5 Uncovered

0.1875 0.1914 0.0000 0.75 0.5 0.375 1.75 Uncovered

0.0625 0.0741 0.3333 0.5 0 0.5 1 Uncovered

0.0833 0.0988 0.1111 0.5 0 0.5 1.25 Uncovered

0.1250 0.1406 0.0000 0.5 0 0.5 1.5 Uncovered

0.1875 0.1914 0.0000 0.5 0 0.5 1.75 Uncovered

0.0625 0.0741 0.3333 1 0.5 0.5 1 Uncovered

0.0833 0.0988 0.1111 1 0.5 0.5 1.25 Uncovered

0.1250 0.1406 0.0000 1 0.5 0.5 1.5 Uncovered

0.1875 0.1914 0.0000 1 0.5 0.5 1.75 Uncovered

0.0547 0.0713 0.2967 0.75 0.25 0.5625 1 Uncovered

0.0766 0.0978 0.0433 0.75 0.25 0.5625 1.25 Uncovered

0.1250 0.1406 0.0000 0.75 0.25 0.5625 1.5 Uncovered

0.1875 0.1914 0.0000 0.75 0.25 0.5625 1.75 Uncovered

0.0313 0.0655 0.1861 0.75 0 0.75 1 Uncovered

0.0625 0.0977 0.0000 0.75 0 0.75 1.25 Uncovered

0.1250 0.1406 0.0000 0.75 0 0.75 1.5 Uncovered

0.1875 0.1914 0.0000 0.75 0 0.75 1.75 Uncovered

0.0313 0.0655 0.1861 1 0.25 0.75 1 Uncovered

0.0625 0.0977 0.0000 1 0.25 0.75 1.25 Uncovered

0.1250 0.1406 0.0000 1 0.25 0.75 1.5 Uncovered

0.1875 0.1914 0.0000 1 0.25 0.75 1.75 Uncovered

0.0000 0.0625 0.0000 1 0 1 1 Uncovered

0.0625 0.0977 0.0000 1 0 1 1.25 Uncovered

0.1250 0.1406 0.0000 1 0 1 1.5 Uncovered

0.1875 0.1914 0.0000 1 0 1 1.75 Uncovered
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1 Clear["Global‘*"]

2 (* Define model fundamentals *)

3 SetDirectory[NotebookDirectory[]]

4 pif[d_, e_, theta_] :=

5 Piecewise[{{((-1 + d) (-d (-2 + theta) + theta)^2)/(16 (-1 + d -

6 2 e d)), (1 <= theta <

7 2 && ((0 <= e <= 1/2 &&

8 0 <= d < (-2 + theta)/(-4 + 4 e + theta)) || (1/2 < e <=

9 1 && 0 <= d < 1))) || (theta >= 2 &&

10 1/2 < e <= 1 && (-2 + theta)/(-4 + 4 e + theta) < d < 1)}, {0,

11 True}}]

12 pic[theta_, e_] :=

13 Piecewise[{{((1 - e)^2)/(4 (3 - theta) - 8 e),

14 theta + e <= 2 && theta != 3 - 2 e}, {(theta - 1)/4, True}}]

15

16 (* note that constraints for the existence of the solution are already

within the function *)

17

18 (* Optimization *)

19 result = Table[{N@pic[theta, alpha (1 - beta)],

20 N@Maximize[{pif[d, alpha (1 - beta), theta], 0 <= d <= 1}, {d},

21 WorkingPrecision -> 4], N@alpha, N@beta, N@theta}, {alpha, 0, 1,

22 1/4}, {beta, 0, 1, 1/4}, {theta, 1, 99/100, 1/3}];

23 flatResult = Flatten /@ Flatten[result, 2];

24 cleanResult = flatResult /. rule_Rule :> rule /. (d -> x_) :> x

25 Export["data_uncovered.csv", cleanResult]

B.3 First best uncovered market with unaware consumers

We define the indifferent consumer and the demand function as in (B.1), however the

welfare function now takes into account the non-user disutility that comes from the
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externality and is weighted by the terms β ∈ (0, 1).

Wu =

∫ θ̄

θ∗

(

θ
(1− d)2

4
− αd

1− d

2
x− P

)

dθ (B.12)

− β

∫ θ∗

θ̄−1

(

αx d
1− d

2

)

dθ + π,

Wu =
(4αd+ d− 1)

(

(d− 1)2θ̄ − 4P
)2

8(d− 1)3
(B.13)

−
1

2
αβ(1− d)d

(

4P

(d− 1)2
− θ̄ + 1

)(

θ̄ −
4P

(d− 1)2

)

+

(

P −
1

2
(d− 1)d

)(

θ̄ −
4P

(d− 1)2

)

,

and the maximization problem would be:

max
d,P

{Wu} s.t.
4P

(1− d)2
> θ̄ − 1, (B.14)

4P

(1− d)2
≤ θ̄,

0 ≤ d ≤ 1,

0 ≤ α, β ≤ 1,

Differently from the covered market case, this function will depend on prices so we

cannot set any price to keep the market uncovered.

Numerical optimization through scipy with the Sequential Least Squares Program-

ming (SLSQP) algorithm highlights that welfare with the uncovered market configu-

ration is always smaller than with the covered market one, and no matter the values

of the parameters α, β, θ̄ the indifferent consumer is always located at the boundary

of the first constraint in (B.14).1

Please notice that because of the 4 digits approximation the values of the Wc are

equal to Wu. The function Wu converges to Wc without ever reaching it.

Table B.2: Simulation results for planner solution with aware consumers

Wu Pu du α β θ̄ Wc Wc ≥ Wu

8 0.1667 0.0000 0.3333 0 0 1 0.1667 Covered

0.1923 0.0296 0.2308 0 0 1.2 0.1923 Covered

0.2273 0.0826 0.0909 0 0 1.4 0.2273 Covered

Continued on next page

1Full .csv results of the simulations are available at the Drive
Folder: https://drive.google.com/drive/folders/1u9XV2XcQLgoAUtsy1N1VPA5MX-
i5T9NE?usp=share link.
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Table B.2 – continued from previous page

Wu Pu du α β θ̄ Wc Wc ≥ Wu

0.2750 0.1500 0.0000 0 0 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0 0 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0 0 2 0.3750 Covered

0.4250 0.3000 0.0000 0 0 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0 0 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0 0 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0 0 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0 0 3 0.6250 Covered

0.1667 0.0000 0.3333 0 0.2 1 0.1667 Covered

0.1923 0.0296 0.2308 0 0.2 1.2 0.1923 Covered

0.2273 0.0826 0.0909 0 0.2 1.4 0.2273 Covered

0.2750 0.1500 0.0000 0 0.2 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0 0.2 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0 0.2 2 0.3750 Covered

0.4250 0.3000 0.0000 0 0.2 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0 0.2 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0 0.2 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0 0.2 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0 0.2 3 0.6250 Covered

0.1667 0.0000 0.3333 0 0.4 1 0.1667 Covered

0.1923 0.0296 0.2308 0 0.4 1.2 0.1923 Covered

0.2273 0.0826 0.0909 0 0.4 1.4 0.2273 Covered

0.2750 0.1500 0.0000 0 0.4 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0 0.4 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0 0.4 2 0.3750 Covered

0.4250 0.3000 0.0000 0 0.4 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0 0.4 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0 0.4 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0 0.4 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0 0.4 3 0.6250 Covered

0.1667 0.0000 0.3333 0 0.6 1 0.1667 Covered

0.1923 0.0296 0.2308 0 0.6 1.2 0.1923 Covered

0.2273 0.0826 0.0909 0 0.6 1.4 0.2273 Covered

0.2750 0.1500 0.0000 0 0.6 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0 0.6 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0 0.6 2 0.3750 Covered

Continued on next page

96



Chapter B – Appendix B

Table B.2 – continued from previous page

Wu Pu du α β θ̄ Wc Wc ≥ Wu

0.4250 0.3000 0.0000 0 0.6 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0 0.6 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0 0.6 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0 0.6 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0 0.6 3 0.6250 Covered

0.1667 0.0000 0.3333 0 0.8 1 0.1667 Covered

0.1923 0.0296 0.2308 0 0.8 1.2 0.1923 Covered

0.2273 0.0826 0.0909 0 0.8 1.4 0.2273 Covered

0.2750 0.1500 0.0000 0 0.8 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0 0.8 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0 0.8 2 0.3750 Covered

0.4250 0.3000 0.0000 0 0.8 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0 0.8 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0 0.8 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0 0.8 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0 0.8 3 0.6250 Covered

0.1667 0.0000 0.3333 0 1 1 0.1667 Covered

0.1923 0.0296 0.2308 0 1 1.2 0.1923 Covered

0.2273 0.0826 0.0909 0 1 1.4 0.2273 Covered

0.2750 0.1500 0.0000 0 1 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0 1 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0 1 2 0.3750 Covered

0.4250 0.3000 0.0000 0 1 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0 1 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0 1 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0 1 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0 1 3 0.6250 Covered

0.1455 0.0000 0.2727 0.2 0 1 0.1455 Covered

0.1778 0.0395 0.1111 0.2 0 1.2 0.1778 Covered

0.2250 0.1000 0.0000 0.2 0 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.2 0 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.2 0 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.2 0 2 0.3750 Covered

0.4250 0.3000 0.0000 0.2 0 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.2 0 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.2 0 2.6 0.5250 Covered

Continued on next page
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Table B.2 – continued from previous page

Wu Pu du α β θ̄ Wc Wc ≥ Wu

0.5750 0.4500 0.0000 0.2 0 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.2 0 3 0.6250 Covered

0.1455 0.0000 0.2727 0.2 0.2 1 0.1455 Covered

0.1778 0.0395 0.1111 0.2 0.2 1.2 0.1778 Covered

0.2250 0.1000 0.0000 0.2 0.2 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.2 0.2 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.2 0.2 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.2 0.2 2 0.3750 Covered

0.4250 0.3000 0.0000 0.2 0.2 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.2 0.2 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.2 0.2 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.2 0.2 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.2 0.2 3 0.6250 Covered

0.1455 0.0000 0.2727 0.2 0.4 1 0.1455 Covered

0.1778 0.0395 0.1111 0.2 0.4 1.2 0.1778 Covered

0.2250 0.1000 0.0000 0.2 0.4 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.2 0.4 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.2 0.4 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.2 0.4 2 0.3750 Covered

0.4250 0.3000 0.0000 0.2 0.4 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.2 0.4 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.2 0.4 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.2 0.4 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.2 0.4 3 0.6250 Covered

0.1455 0.0000 0.2727 0.2 0.6 1 0.1455 Covered

0.1778 0.0395 0.1111 0.2 0.6 1.2 0.1778 Covered

0.2250 0.1000 0.0000 0.2 0.6 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.2 0.6 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.2 0.6 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.2 0.6 2 0.3750 Covered

0.4250 0.3000 0.0000 0.2 0.6 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.2 0.6 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.2 0.6 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.2 0.6 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.2 0.6 3 0.6250 Covered

0.1455 0.0000 0.2727 0.2 0.8 1 0.1455 Covered

Continued on next page
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Table B.2 – continued from previous page

Wu Pu du α β θ̄ Wc Wc ≥ Wu

0.1778 0.0395 0.1111 0.2 0.8 1.2 0.1778 Covered

0.2250 0.1000 0.0000 0.2 0.8 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.2 0.8 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.2 0.8 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.2 0.8 2 0.3750 Covered

0.4250 0.3000 0.0000 0.2 0.8 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.2 0.8 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.2 0.8 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.2 0.8 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.2 0.8 3 0.6250 Covered

0.1455 0.0000 0.2727 0.2 1 1 0.1455 Covered

0.1778 0.0395 0.1111 0.2 1 1.2 0.1778 Covered

0.2250 0.1000 0.0000 0.2 1 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.2 1 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.2 1 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.2 1 2 0.3750 Covered

0.4250 0.3000 0.0000 0.2 1 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.2 1 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.2 1 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.2 1 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.2 1 3 0.6250 Covered

0.1286 0.0000 0.1429 0.4 0 1 0.1286 Covered

0.1750 0.0500 0.0000 0.4 0 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.4 0 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.4 0 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.4 0 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.4 0 2 0.3750 Covered

0.4250 0.3000 0.0000 0.4 0 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.4 0 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.4 0 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.4 0 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.4 0 3 0.6250 Covered

0.1286 0.0000 0.1429 0.4 0.2 1 0.1286 Covered

0.1750 0.0500 0.0000 0.4 0.2 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.4 0.2 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.4 0.2 1.6 0.2750 Covered

Continued on next page
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Table B.2 – continued from previous page

Wu Pu du α β θ̄ Wc Wc ≥ Wu

0.3250 0.2000 0.0000 0.4 0.2 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.4 0.2 2 0.3750 Covered

0.4250 0.3000 0.0000 0.4 0.2 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.4 0.2 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.4 0.2 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.4 0.2 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.4 0.2 3 0.6250 Covered

0.1286 0.0000 0.1429 0.4 0.4 1 0.1286 Covered

0.1750 0.0500 0.0000 0.4 0.4 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.4 0.4 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.4 0.4 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.4 0.4 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.4 0.4 2 0.3750 Covered

0.4250 0.3000 0.0000 0.4 0.4 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.4 0.4 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.4 0.4 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.4 0.4 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.4 0.4 3 0.6250 Covered

0.1286 0.0000 0.1429 0.4 0.6 1 0.1286 Covered

0.1750 0.0500 0.0000 0.4 0.6 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.4 0.6 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.4 0.6 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.4 0.6 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.4 0.6 2 0.3750 Covered

0.4250 0.3000 0.0000 0.4 0.6 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.4 0.6 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.4 0.6 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.4 0.6 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.4 0.6 3 0.6250 Covered

0.1286 0.0000 0.1429 0.4 0.8 1 0.1286 Covered

0.1750 0.0500 0.0000 0.4 0.8 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.4 0.8 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.4 0.8 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.4 0.8 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.4 0.8 2 0.3750 Covered

0.4250 0.3000 0.0000 0.4 0.8 2.2 0.4250 Covered

Continued on next page
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Table B.2 – continued from previous page

Wu Pu du α β θ̄ Wc Wc ≥ Wu

0.4750 0.3500 0.0000 0.4 0.8 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.4 0.8 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.4 0.8 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.4 0.8 3 0.6250 Covered

0.1286 0.0000 0.1429 0.4 1 1 0.1286 Covered

0.1750 0.0500 0.0000 0.4 1 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.4 1 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.4 1 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.4 1 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.4 1 2 0.3750 Covered

0.4250 0.3000 0.0000 0.4 1 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.4 1 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.4 1 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.4 1 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.4 1 3 0.6250 Covered

0.1250 0.0000 0.0000 0.6 0 1 0.1250 Covered

0.1750 0.0500 0.0000 0.6 0 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.6 0 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.6 0 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.6 0 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.6 0 2 0.3750 Covered

0.4250 0.3000 0.0000 0.6 0 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.6 0 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.6 0 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.6 0 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.6 0 3 0.6250 Covered

0.1250 0.0000 0.0000 0.6 0.2 1 0.1250 Covered

0.1750 0.0500 0.0000 0.6 0.2 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.6 0.2 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.6 0.2 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.6 0.2 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.6 0.2 2 0.3750 Covered

0.4250 0.3000 0.0000 0.6 0.2 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.6 0.2 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.6 0.2 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.6 0.2 2.8 0.5750 Covered
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0.6250 0.5000 0.0000 0.6 0.2 3 0.6250 Covered

0.1250 0.0000 0.0000 0.6 0.4 1 0.1250 Covered

0.1750 0.0500 0.0000 0.6 0.4 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.6 0.4 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.6 0.4 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.6 0.4 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.6 0.4 2 0.3750 Covered

0.4250 0.3000 0.0000 0.6 0.4 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.6 0.4 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.6 0.4 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.6 0.4 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.6 0.4 3 0.6250 Covered

0.1250 0.0000 0.0000 0.6 0.6 1 0.1250 Covered

0.1750 0.0500 0.0000 0.6 0.6 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.6 0.6 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.6 0.6 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.6 0.6 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.6 0.6 2 0.3750 Covered

0.4250 0.3000 0.0000 0.6 0.6 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.6 0.6 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.6 0.6 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.6 0.6 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.6 0.6 3 0.6250 Covered

0.1250 0.0000 0.0000 0.6 0.8 1 0.1250 Covered

0.1750 0.0500 0.0000 0.6 0.8 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.6 0.8 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.6 0.8 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.6 0.8 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.6 0.8 2 0.3750 Covered

0.4250 0.3000 0.0000 0.6 0.8 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.6 0.8 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.6 0.8 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.6 0.8 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.6 0.8 3 0.6250 Covered

0.1250 0.0000 0.0000 0.6 1 1 0.1250 Covered

0.1750 0.0500 0.0000 0.6 1 1.2 0.1750 Covered
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Wu Pu du α β θ̄ Wc Wc ≥ Wu

0.2250 0.1000 0.0000 0.6 1 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.6 1 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.6 1 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.6 1 2 0.3750 Covered

0.4250 0.3000 0.0000 0.6 1 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.6 1 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.6 1 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.6 1 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.6 1 3 0.6250 Covered

0.1250 0.0000 0.0000 0.8 0 1 0.1250 Covered

0.1750 0.0500 0.0000 0.8 0 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.8 0 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.8 0 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.8 0 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.8 0 2 0.3750 Covered

0.4250 0.3000 0.0000 0.8 0 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.8 0 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.8 0 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.8 0 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.8 0 3 0.6250 Covered

0.1250 0.0000 0.0000 0.8 0.2 1 0.1250 Covered

0.1750 0.0500 0.0000 0.8 0.2 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.8 0.2 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.8 0.2 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.8 0.2 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.8 0.2 2 0.3750 Covered

0.4250 0.3000 0.0000 0.8 0.2 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.8 0.2 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.8 0.2 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.8 0.2 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.8 0.2 3 0.6250 Covered

0.1250 0.0000 0.0000 0.8 0.4 1 0.1250 Covered

0.1750 0.0500 0.0000 0.8 0.4 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.8 0.4 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.8 0.4 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.8 0.4 1.8 0.3250 Covered
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0.3750 0.2500 0.0000 0.8 0.4 2 0.3750 Covered

0.4250 0.3000 0.0000 0.8 0.4 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.8 0.4 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.8 0.4 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.8 0.4 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.8 0.4 3 0.6250 Covered

0.1250 0.0000 0.0000 0.8 0.6 1 0.1250 Covered

0.1750 0.0500 0.0000 0.8 0.6 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.8 0.6 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.8 0.6 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.8 0.6 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.8 0.6 2 0.3750 Covered

0.4250 0.3000 0.0000 0.8 0.6 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.8 0.6 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.8 0.6 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.8 0.6 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.8 0.6 3 0.6250 Covered

0.1250 0.0000 0.0000 0.8 0.8 1 0.1250 Covered

0.1750 0.0500 0.0000 0.8 0.8 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.8 0.8 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.8 0.8 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.8 0.8 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.8 0.8 2 0.3750 Covered

0.4250 0.3000 0.0000 0.8 0.8 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.8 0.8 2.4 0.4750 Covered

0.5250 0.4000 0.0000 0.8 0.8 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.8 0.8 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.8 0.8 3 0.6250 Covered

0.1250 0.0000 0.0000 0.8 1 1 0.1250 Covered

0.1750 0.0500 0.0000 0.8 1 1.2 0.1750 Covered

0.2250 0.1000 0.0000 0.8 1 1.4 0.2250 Covered

0.2750 0.1500 0.0000 0.8 1 1.6 0.2750 Covered

0.3250 0.2000 0.0000 0.8 1 1.8 0.3250 Covered

0.3750 0.2500 0.0000 0.8 1 2 0.3750 Covered

0.4250 0.3000 0.0000 0.8 1 2.2 0.4250 Covered

0.4750 0.3500 0.0000 0.8 1 2.4 0.4750 Covered
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0.5250 0.4000 0.0000 0.8 1 2.6 0.5250 Covered

0.5750 0.4500 0.0000 0.8 1 2.8 0.5750 Covered

0.6250 0.5000 0.0000 0.8 1 3 0.6250 Covered

0.1250 0.0000 0.0000 1 0 1 0.1250 Covered

0.1750 0.0500 0.0000 1 0 1.2 0.1750 Covered

0.2250 0.1000 0.0000 1 0 1.4 0.2250 Covered

0.2750 0.1500 0.0000 1 0 1.6 0.2750 Covered

0.3250 0.2000 0.0000 1 0 1.8 0.3250 Covered

0.3750 0.2500 0.0000 1 0 2 0.3750 Covered

0.4250 0.3000 0.0000 1 0 2.2 0.4250 Covered

0.4750 0.3500 0.0000 1 0 2.4 0.4750 Covered

0.5250 0.4000 0.0000 1 0 2.6 0.5250 Covered

0.5750 0.4500 0.0000 1 0 2.8 0.5750 Covered

0.6250 0.5000 0.0000 1 0 3 0.6250 Covered

0.1250 0.0000 0.0000 1 0.2 1 0.1250 Covered

0.1750 0.0500 0.0000 1 0.2 1.2 0.1750 Covered

0.2250 0.1000 0.0000 1 0.2 1.4 0.2250 Covered

0.2750 0.1500 0.0000 1 0.2 1.6 0.2750 Covered

0.3250 0.2000 0.0000 1 0.2 1.8 0.3250 Covered

0.3750 0.2500 0.0000 1 0.2 2 0.3750 Covered

0.4250 0.3000 0.0000 1 0.2 2.2 0.4250 Covered

0.4750 0.3500 0.0000 1 0.2 2.4 0.4750 Covered

0.5250 0.4000 0.0000 1 0.2 2.6 0.5250 Covered

0.5750 0.4500 0.0000 1 0.2 2.8 0.5750 Covered

0.6250 0.5000 0.0000 1 0.2 3 0.6250 Covered

0.1250 0.0000 0.0000 1 0.4 1 0.1250 Covered

0.1750 0.0500 0.0000 1 0.4 1.2 0.1750 Covered

0.2250 0.1000 0.0000 1 0.4 1.4 0.2250 Covered

0.2750 0.1500 0.0000 1 0.4 1.6 0.2750 Covered

0.3250 0.2000 0.0000 1 0.4 1.8 0.3250 Covered

0.3750 0.2500 0.0000 1 0.4 2 0.3750 Covered

0.4250 0.3000 0.0000 1 0.4 2.2 0.4250 Covered

0.4750 0.3500 0.0000 1 0.4 2.4 0.4750 Covered

0.5250 0.4000 0.0000 1 0.4 2.6 0.5250 Covered

0.5750 0.4500 0.0000 1 0.4 2.8 0.5750 Covered

0.6250 0.5000 0.0000 1 0.4 3 0.6250 Covered
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0.1250 0.0000 0.0000 1 0.6 1 0.1250 Covered

0.1750 0.0500 0.0000 1 0.6 1.2 0.1750 Covered

0.2250 0.1000 0.0000 1 0.6 1.4 0.2250 Covered

0.2750 0.1500 0.0000 1 0.6 1.6 0.2750 Covered

0.3250 0.2000 0.0000 1 0.6 1.8 0.3250 Covered

0.3750 0.2500 0.0000 1 0.6 2 0.3750 Covered

0.4250 0.3000 0.0000 1 0.6 2.2 0.4250 Covered

0.4750 0.3500 0.0000 1 0.6 2.4 0.4750 Covered

0.5250 0.4000 0.0000 1 0.6 2.6 0.5250 Covered

0.5750 0.4500 0.0000 1 0.6 2.8 0.5750 Covered

0.6250 0.5000 0.0000 1 0.6 3 0.6250 Covered

0.1250 0.0000 0.0000 1 0.8 1 0.1250 Covered

0.1750 0.0500 0.0000 1 0.8 1.2 0.1750 Covered

0.2250 0.1000 0.0000 1 0.8 1.4 0.2250 Covered

0.2750 0.1500 0.0000 1 0.8 1.6 0.2750 Covered

0.3250 0.2000 0.0000 1 0.8 1.8 0.3250 Covered

0.3750 0.2500 0.0000 1 0.8 2 0.3750 Covered

0.4250 0.3000 0.0000 1 0.8 2.2 0.4250 Covered

0.4750 0.3500 0.0000 1 0.8 2.4 0.4750 Covered

0.5250 0.4000 0.0000 1 0.8 2.6 0.5250 Covered

0.5750 0.4500 0.0000 1 0.8 2.8 0.5750 Covered

0.6250 0.5000 0.0000 1 0.8 3 0.6250 Covered

0.1250 0.0000 0.0000 1 1 1 0.1250 Covered

0.1750 0.0500 0.0000 1 1 1.2 0.1750 Covered

0.2250 0.1000 0.0000 1 1 1.4 0.2250 Covered

0.2750 0.1500 0.0000 1 1 1.6 0.2750 Covered

0.3250 0.2000 0.0000 1 1 1.8 0.3250 Covered

0.3750 0.2500 0.0000 1 1 2 0.3750 Covered

0.4250 0.3000 0.0000 1 1 2.2 0.4250 Covered

0.4750 0.3500 0.0000 1 1 2.4 0.4750 Covered

0.5250 0.4000 0.0000 1 1 2.6 0.5250 Covered

0.5750 0.4500 0.0000 1 1 2.8 0.5750 Covered

0.6250 0.5000 0.0000 1 1 3 0.6250 Covered
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Mathematica Code Here is reported the Mathematica code used for the simulation.2

1 Clear["Global‘*"]

2 (* Define model fundamentals *)

3

4 tsc = Simplify[ 4 P/(1 \[Minus] d)^2];

5 THB = THU - 1;

6 xu = Simplify[ THU - tsc];

7 uiu = Simplify[( theta (1 - d)^2)/4 -

8 alpha (THU - tsc) d (1 - d)/2 - P];

9 u0u = Simplify[-alpha beta (THU - tsc) d (1 - d)/2];

10 profit = Simplify[(THU - tsc) (P + (d - d^2)/2)];

11 uw = \!\(

12 \*SubsuperscriptBox[\(\[Integral]\), \(tsc\), \(THU\)]\(\((uiu + \((P \

13 +

14 \*FractionBox[\((d -

15 \*SuperscriptBox[\(d\), \(2\)])\), \(2\)])\))\) \[DifferentialD]theta\

16 \)\) + \!\(

17 \*SubsuperscriptBox[\(\[Integral]\), \(THU -

18 1\), \(tsc\)]\(u0u \[DifferentialD]theta\)\);

19

20 (* welfare function *)

21 cwf[alpha_, THU_] :=

22 Piecewise[{{-((-1 + alpha)^2/(-10 + 8*alpha + 4*THU)),

23 1/2 < THU < 3/2 && alpha >= 0 && alpha + THU <= 3/2}}, (-1 +

24 2*THU)/8]

25 welfun[P_, d_, beta_, alpha_,

26 THU_ ] := -(1/(

27 8 (-1 + d)^3)) (-4 P + (-1 + d)^2 THU) (4 P + THU +

28 d^3 (4 + 4 alpha beta (-1 + THU) - THU - 4 alpha THU) +

29 d^2 (-8 + 3 THU + 8 alpha (beta + THU - beta THU)) -

30 d (-4 + 4 P + 3 THU +

31 4 alpha (beta - 4 P + 4 beta P + THU - beta THU)))

32

33

34 (* run simulation *)

35 result =

36 Table[{N@Maximize[{welfun[P, d, beta, alpha, THU],

37 0 <= d <= 1, (4 P)/(1 - 2 d + d^2) <= THU <= (

38 1 - 2 d + d^2 + 4 P)/(1 - 2 d + d^2)}, {P, d},

39 WorkingPrecision -> 6], N@alpha, N@beta, N@THU,

2Scipy’s python optimization confirms this results and is available upon request.
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40 N@cwf[alpha, THU]}, {alpha, 0, 1, 1/5}, {beta, 0, 1, 1/5}, {THU, 1,

41 3, 1/5}]

42

43 (* clean results *)

44 flatResult = Flatten /@ Flatten[result, 2];

45 cleanResult = flatResult /. rule_Rule :> rule[[2]];

46

47 SetDirectory["InsertYourPath"]

48 Export["data_uncovered_welfare_unaw.csv", cleanResult]

B.4 First best with aware consumers

Covered market with aware consumers When consumers can internalize the exter-

nality and the market is covered the indifferent consumer equation is (B.1) given that

prices do not influence welfare when the market is covered P is set to ensure a covered

market.

P =
1

4
(1− d)(2α(β − 1)d− dθ̄ + d+ θ̄ − 1),

and the welfare function is the sum of CS and profit:

W c
a =

∫ θ̄

θ∗
Uidθ + π =

1

8
(d− 1)(d(4α + 2θ̄ − 5)− 2θ̄ + 1),

where maximization in d of this function gives:

dafb =















2α + 2θ̄ − 3

4α + 2θ̄ − 5
1 ≤ θ̄ ≤

3

2
∧ α ≤

1

2
(3− 2θ̄),

0 Otherwise,

(B.15)

and total welfare is:

W a
fb =















(α− 1)2

10− 8α− 4θ̄
1 ≤ θ̄ ≤

3

2
∧ α + θ̄ ≤

3

2
,

1

8
(2θ̄ − 1) Otherwise,

(B.16)

Prices are just a transfer from consumers to the firm and it turns out that the price

that keeps the market covered is:

P a
fb =















(α− 1)
(

2α2(β − 1) + α(β(2θ̄ − 3)− θ̄ + 2)− θ̄ + 1
)

(4α + 2θ̄ − 5)2
1 ≤ θ̄ ≤

3

2
∧ α + θ̄ ≤

3

2
,

θ̄ − 1

4
Otherwise,
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even if the price that is different from the one found in section 2.3.2, the welfare

function remains the same.

The extension with welfare maximization under an uncovered market and aware

consumers is treated in B.4

Uncovered market with aware consumers

Wu =

∫ θ̄

θ∗

(

θ
(1− d)2

4
− αd

1− d

2
x− P

)

dθ

−

∫ θ∗

θ̄

(

αxβ d
1− d

2

)

dθ + π, (B.17)

=
1

8(d− 1)(2α(β − 1)d+ d− 1)2

(

(d− 1)2θ̄ − 4P

)

(

d3
(

8α2(β − 1)β − 4α(β − 2) + θ̄ − 4

)

+ d2
(

− 8α2(β − 1)β − 8α− 3θ̄ + 8

)

+ d(4α(4βP + β − 4P ) + 4P + 3θ̄ − 4)− 4P − θ̄

)

,

here the price is not only a transfer because a change in price would change the

market coverage and modifies welfare. So to maximize this function we should write

the Lagrangean for the constrained maximization problem where the constraints are:

θ̄ − 1 < θ∗ ≤ θ̄ and 0 ≤ d ≤ 1.

When expanding the integral and writing the Lagrangian with four constraints we

have an overwhelmingly complex problem. Inspection of numerical simulation, shows

that the solution lies on the boundary θ̄ − 1 < θ∗, and that the welfare generated by

this solution is lower than the one provided in the covered market case. 3

3Full .csv results of the simulations are available at the Drive
Folder: https://drive.google.com/drive/folders/1u9XV2XcQLgoAUtsy1N1VPA5MX-
i5T9NE?usp=share link.
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Mathematica Code Here is reported the Mathematica code that replicates the sim-

ulation.

1

2 Clear["Global‘*"]

3 (* Define models fundamentals *)

4

5 ui = Simplify[( theta (1 - d)^2)/4 - alpha x d (1 - d)/2 - P];

6 u0 = Simplify[-alpha beta x d (1 - d)/2];

7 x = FullSimplify[ thetabar - theta];

8 Reduce[ui == u0, theta];

9 indcons =

10 Simplify[ (

11 2 (2 P + alpha d thetabar - alpha beta d thetabar -

12 alpha d^2 thetabar + alpha beta d^2 thetabar))/((-1 + d) (-1 +

13 d - 2 alpha d + 2 alpha beta d))];

14 x = Simplify[ thetabar - indcons];

15 uiu = Simplify[( theta (1 - d)^2)/4 - alpha x d (1 - d)/2 - P];

16 u0u = Simplify[-alpha beta x d (1 - d)/2];

17 profit = Simplify[x (P + (d - d^2)/2)];

18 uw = Simplify[\!\(

19 \*SubsuperscriptBox[\(\[Integral]\), \(indcons\), \

20 \(thetabar\)]\(\((uiu + \ \((P +

21 \*FractionBox[\((d -

22 \*SuperscriptBox[\(d\), \(2\)])\), \(2\)])\))\) \[DifferentialD]theta\

23 \)\) + \!\(

24 \*SubsuperscriptBox[\(\[Integral]\), \(thetabar -

25 1\), \(indcons\)]\(u0u \[DifferentialD]theta\)\)];

26

27 (* Define simulation function NB: w = uw *)

28 Clear[alpha, beta, thetabar]

29 cwf[alpha_, thetabar_] :=

30 Piecewise[{{-((-1 + alpha)^2/(-10 + 8 alpha + 4 thetabar)),

31 1 <= thetabar <= 3/2 && alpha + thetabar <= 3/2}},

32 1/8 (-1 + 2 thetabar)]

33 w[P_, beta_, alpha_, thetabar_,

34 d_] = ((-4 P + (-1 + d)^2 thetabar) (-4 P +

35 d^2 (8 - 8 alpha - 8 alpha^2 (-1 + beta) beta - 3 thetabar) -

36 thetabar + d^3 (-4 - 4 alpha (-2 + beta) + 8 alpha^2 (-1 + beta) beta +

37 thetabar) + d (-4 + 4 P + 4 alpha (beta - 4 P + 4 beta P) +

38 3 thetabar)))/(8 (-1 + d) (-1 + d +

39 2 alpha (-1 + beta) d)^2);
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40

41 (* Run Simulation *)

42 result =

43 Table[{NMaximize[{w[P, beta, alpha, thetabar, d], 0 <= d <= 1,

44 thetabar - 1 < indcons <= thetabar}, {P, d},

45 WorkingPrecision -> 6], N@alpha, N@beta, N@thetabar,

46 cwf[alpha, thetabar]}, {alpha, 0, 1, 1/5}, {beta, 0, 1,

47 1/5}, {thetabar, 1, 15/5, 1/5}]

48

49 (*Clean Results*)

50 flatResult=Flatten/@Flatten[result,2]

51 cleanResult=flatResult/.rule_Rule:>rule[[2]]

52

53 (*Set save directory*)

54 SetDirectory["InsertYourPath"];

55

56 (*Export to .csv*)

57 Export["results_uncovered_welfare_aware.csv",cleanResult]

Please notice that because of the 4 digits approximation the values of the Wc are

equal to Wu. The function Wu converges to Wc without ever reaching it:

Table B.3: Simulation results for monopolist equilibrium with aware consumers

Wu Pu du α β θ̄ Wc Wc ≥ Wu

8 0.16666 0.00000 0.33746 0 0 1 0.16667 Covered

0.19230 0.02932 0.23428 0 0 1.2 0.19231 Covered

0.22727 0.08204 0.09426 0 0 1.4 0.22727 Covered

0.27477 0.14871 0.00438 0 0 1.6 0.27500 Covered

0.32467 0.19913 0.00219 0 0 1.8 0.32500 Covered

0.37488 0.24977 0.00048 0 0 2 0.37500 Covered

0.42497 0.29996 0.00008 0 0 2.2 0.42500 Covered

0.47485 0.35011 0.00000 0 0 2.4 0.47500 Covered

0.52464 0.40023 0.00000 0 0 2.6 0.52500 Covered

0.57467 0.45019 0.00000 0 0 2.8 0.57500 Covered

0.62415 0.50043 0.00000 0 0 3 0.62500 Covered

0.16666 0.00000 0.33746 0 0.2 1 0.16667 Covered

0.19230 0.02932 0.23428 0 0.2 1.2 0.19231 Covered

0.22727 0.08204 0.09426 0 0.2 1.4 0.22727 Covered

0.27477 0.14871 0.00438 0 0.2 1.6 0.27500 Covered
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Wu Pu du α β θ̄ Wc Wc ≥ Wu

0.32467 0.19913 0.00219 0 0.2 1.8 0.32500 Covered

0.37488 0.24977 0.00048 0 0.2 2 0.37500 Covered

0.42497 0.29996 0.00008 0 0.2 2.2 0.42500 Covered

0.47485 0.35011 0.00000 0 0.2 2.4 0.47500 Covered

0.52464 0.40023 0.00000 0 0.2 2.6 0.52500 Covered

0.57467 0.45019 0.00000 0 0.2 2.8 0.57500 Covered

0.62415 0.50043 0.00000 0 0.2 3 0.62500 Covered

0.16666 0.00000 0.33746 0 0.4 1 0.16667 Covered

0.19230 0.02932 0.23428 0 0.4 1.2 0.19231 Covered

0.22727 0.08204 0.09426 0 0.4 1.4 0.22727 Covered

0.27477 0.14871 0.00438 0 0.4 1.6 0.27500 Covered

0.32467 0.19913 0.00219 0 0.4 1.8 0.32500 Covered

0.37488 0.24977 0.00048 0 0.4 2 0.37500 Covered

0.42497 0.29996 0.00008 0 0.4 2.2 0.42500 Covered

0.47485 0.35011 0.00000 0 0.4 2.4 0.47500 Covered

0.52464 0.40023 0.00000 0 0.4 2.6 0.52500 Covered

0.57467 0.45019 0.00000 0 0.4 2.8 0.57500 Covered

0.62415 0.50043 0.00000 0 0.4 3 0.62500 Covered

0.16666 0.00000 0.33746 0 0.6 1 0.16667 Covered

0.19230 0.02932 0.23428 0 0.6 1.2 0.19231 Covered

0.22727 0.08204 0.09426 0 0.6 1.4 0.22727 Covered

0.27477 0.14871 0.00438 0 0.6 1.6 0.27500 Covered

0.32467 0.19913 0.00219 0 0.6 1.8 0.32500 Covered

0.37488 0.24977 0.00048 0 0.6 2 0.37500 Covered

0.42497 0.29996 0.00008 0 0.6 2.2 0.42500 Covered

0.47485 0.35011 0.00000 0 0.6 2.4 0.47500 Covered

0.52464 0.40023 0.00000 0 0.6 2.6 0.52500 Covered

0.57467 0.45019 0.00000 0 0.6 2.8 0.57500 Covered

0.62415 0.50043 0.00000 0 0.6 3 0.62500 Covered

0.16666 0.00000 0.33746 0 0.8 1 0.16667 Covered

0.19230 0.02932 0.23428 0 0.8 1.2 0.19231 Covered

0.22727 0.08204 0.09426 0 0.8 1.4 0.22727 Covered

0.27477 0.14871 0.00438 0 0.8 1.6 0.27500 Covered

0.32467 0.19913 0.00219 0 0.8 1.8 0.32500 Covered

0.37488 0.24977 0.00048 0 0.8 2 0.37500 Covered

0.42497 0.29996 0.00008 0 0.8 2.2 0.42500 Covered

Continued on next page

112



Chapter B – Appendix B

Table B.3 – continued from previous page

Wu Pu du α β θ̄ Wc Wc ≥ Wu

0.47485 0.35011 0.00000 0 0.8 2.4 0.47500 Covered

0.52464 0.40023 0.00000 0 0.8 2.6 0.52500 Covered

0.57467 0.45019 0.00000 0 0.8 2.8 0.57500 Covered

0.62415 0.50043 0.00000 0 0.8 3 0.62500 Covered

0.16666 0.00000 0.33746 0 1 1 0.16667 Covered

0.19230 0.02932 0.23428 0 1 1.2 0.19231 Covered

0.22727 0.08204 0.09426 0 1 1.4 0.22727 Covered

0.27477 0.14871 0.00438 0 1 1.6 0.27500 Covered

0.32467 0.19913 0.00219 0 1 1.8 0.32500 Covered

0.37488 0.24977 0.00048 0 1 2 0.37500 Covered

0.42497 0.29996 0.00008 0 1 2.2 0.42500 Covered

0.47485 0.35011 0.00000 0 1 2.4 0.47500 Covered

0.52464 0.40023 0.00000 0 1 2.6 0.52500 Covered

0.57467 0.45019 0.00000 0 1 2.8 0.57500 Covered

0.62415 0.50043 0.00000 0 1 3 0.62500 Covered

0.14545 -0.02004 0.27748 0.2 0 1 0.14545 Covered

0.17777 0.02887 0.11569 0.2 0 1.2 0.17778 Covered

0.22476 0.09861 0.00466 0.2 0 1.4 0.22500 Covered

0.27471 0.14932 0.00178 0.2 0 1.6 0.27500 Covered

0.32489 0.19981 0.00039 0.2 0 1.8 0.32500 Covered

0.37491 0.25009 0.00000 0.2 0 2 0.37500 Covered

0.42487 0.30011 0.00000 0.2 0 2.2 0.42500 Covered

0.47467 0.35024 0.00000 0.2 0 2.4 0.47500 Covered

0.52465 0.40022 0.00000 0.2 0 2.6 0.52500 Covered

0.57377 0.45068 0.00000 0.2 0 2.8 0.57500 Covered

0.62342 0.50079 0.00000 0.2 0 3 0.62500 Covered

0.14541 -0.01626 0.28440 0.2 0.2 1 0.14545 Covered

0.17777 0.03088 0.11604 0.2 0.2 1.2 0.17778 Covered

0.22481 0.09895 0.00377 0.2 0.2 1.4 0.22500 Covered

0.27480 0.14952 0.00130 0.2 0.2 1.6 0.27500 Covered

0.32484 0.19971 0.00062 0.2 0.2 1.8 0.32500 Covered

0.37500 0.25000 0.00000 0.2 0.2 2 0.37500 Covered

0.42492 0.30007 0.00000 0.2 0.2 2.2 0.42500 Covered

0.47466 0.35024 0.00000 0.2 0.2 2.4 0.47500 Covered

0.52462 0.40024 0.00000 0.2 0.2 2.6 0.52500 Covered

0.57408 0.45051 0.00000 0.2 0.2 2.8 0.57500 Covered
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Wu Pu du α β θ̄ Wc Wc ≥ Wu

0.62388 0.50056 0.00000 0.2 0.2 3 0.62500 Covered

0.14544 -0.01204 0.27845 0.2 0.4 1 0.14545 Covered

0.17776 0.03248 0.11931 0.2 0.4 1.2 0.17778 Covered

0.22471 0.09854 0.00566 0.2 0.4 1.4 0.22500 Covered

0.27470 0.14930 0.00198 0.2 0.4 1.6 0.27500 Covered

0.32489 0.19981 0.00042 0.2 0.4 1.8 0.32500 Covered

0.37495 0.25006 0.00000 0.2 0.4 2 0.37500 Covered

0.42492 0.30007 0.00000 0.2 0.4 2.2 0.42500 Covered

0.47475 0.35018 0.00000 0.2 0.4 2.4 0.47500 Covered

0.52473 0.40017 0.00000 0.2 0.4 2.6 0.52500 Covered

0.57421 0.45044 0.00000 0.2 0.4 2.8 0.57500 Covered

0.62407 0.50047 0.00000 0.2 0.4 3 0.62500 Covered

0.14542 -0.00811 0.28362 0.2 0.6 1 0.14545 Covered

0.17776 0.03481 0.11758 0.2 0.6 1.2 0.17778 Covered

0.22475 0.09887 0.00481 0.2 0.6 1.4 0.22500 Covered

0.27477 0.14948 0.00154 0.2 0.6 1.6 0.27500 Covered

0.32483 0.19971 0.00068 0.2 0.6 1.8 0.32500 Covered

0.37496 0.24995 0.00009 0.2 0.6 2 0.37500 Covered

0.42491 0.30008 0.00000 0.2 0.6 2.2 0.42500 Covered

0.47478 0.35016 0.00000 0.2 0.6 2.4 0.47500 Covered

0.52444 0.40035 0.00000 0.2 0.6 2.6 0.52500 Covered

0.57394 0.45059 0.00000 0.2 0.6 2.8 0.57500 Covered

0.62391 0.50055 0.00000 0.2 0.6 3 0.62500 Covered

0.14544 -0.00400 0.27738 0.2 0.8 1 0.14545 Covered

0.17777 0.03714 0.11492 0.2 0.8 1.2 0.17778 Covered

0.22483 0.09929 0.00326 0.2 0.8 1.4 0.22500 Covered

0.27460 0.14922 0.00253 0.2 0.8 1.6 0.27500 Covered

0.32480 0.19967 0.00079 0.2 0.8 1.8 0.32500 Covered

0.37491 0.24989 0.00023 0.2 0.8 2 0.37500 Covered

0.42494 0.30005 0.00000 0.2 0.8 2.2 0.42500 Covered

0.47476 0.35017 0.00000 0.2 0.8 2.4 0.47500 Covered

0.52461 0.40024 0.00000 0.2 0.8 2.6 0.52500 Covered

0.57401 0.45055 0.00000 0.2 0.8 2.8 0.57500 Covered

0.62398 0.50051 0.00000 0.2 0.8 3 0.62500 Covered

0.14545 0.00001 0.27444 0.2 1 1 0.14545 Covered

0.17777 0.03901 0.11675 0.2 1 1.2 0.17778 Covered
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Wu Pu du α β θ̄ Wc Wc ≥ Wu

0.22468 0.09877 0.00617 0.2 1 1.4 0.22500 Covered

0.27469 0.14939 0.00205 0.2 1 1.6 0.27500 Covered

0.32477 0.19964 0.00092 0.2 1 1.8 0.32500 Covered

0.37493 0.24997 0.00012 0.2 1 2 0.37500 Covered

0.42496 0.30003 0.00000 0.2 1 2.2 0.42500 Covered

0.47476 0.35017 0.00000 0.2 1 2.4 0.47500 Covered

0.52463 0.40023 0.00000 0.2 1 2.6 0.52500 Covered

0.57427 0.45040 0.00000 0.2 1 2.8 0.57500 Covered

0.62428 0.50036 0.00000 0.2 1 3 0.62500 Covered

0.12857 -0.02447 0.14274 0.4 0 1 0.12857 Covered

0.17490 0.04939 0.00204 0.4 0 1.2 0.17500 Covered

0.22495 0.09987 0.00032 0.4 0 1.4 0.22500 Covered

0.27497 0.14998 0.00008 0.4 0 1.6 0.27500 Covered

0.32489 0.20014 0.00000 0.4 0 1.8 0.32500 Covered

0.37485 0.25015 0.00000 0.4 0 2 0.37500 Covered

0.42465 0.30029 0.00000 0.4 0 2.2 0.42500 Covered

0.47440 0.35043 0.00000 0.4 0 2.4 0.47500 Covered

0.52422 0.40049 0.00000 0.4 0 2.6 0.52500 Covered

0.57405 0.45053 0.00000 0.4 0 2.8 0.57500 Covered

0.62382 0.50059 0.00000 0.4 0 3 0.62500 Covered

0.12837 -0.01556 0.10919 0.4 0.2 1 0.12857 Covered

0.17488 0.04940 0.00234 0.4 0.2 1.2 0.17500 Covered

0.22491 0.09979 0.00060 0.4 0.2 1.4 0.22500 Covered

0.27498 0.14997 0.00008 0.4 0.2 1.6 0.27500 Covered

0.32494 0.20007 0.00000 0.4 0.2 1.8 0.32500 Covered

0.37491 0.25009 0.00000 0.4 0.2 2 0.37500 Covered

0.42482 0.30015 0.00000 0.4 0.2 2.2 0.42500 Covered

0.47476 0.35017 0.00000 0.4 0.2 2.4 0.47500 Covered

0.52436 0.40040 0.00000 0.4 0.2 2.6 0.52500 Covered

0.57391 0.45061 0.00000 0.4 0.2 2.8 0.57500 Covered

0.62374 0.50063 0.00000 0.4 0.2 3 0.62500 Covered

0.12856 -0.01529 0.15000 0.4 0.4 1 0.12857 Covered

0.17431 0.04710 0.01338 0.4 0.4 1.2 0.17500 Covered

0.22484 0.09967 0.00106 0.4 0.4 1.4 0.22500 Covered

0.27487 0.14993 0.00036 0.4 0.4 1.6 0.27500 Covered

0.32499 0.19999 0.00002 0.4 0.4 1.8 0.32500 Covered
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Wu Pu du α β θ̄ Wc Wc ≥ Wu

0.37497 0.25003 0.00000 0.4 0.4 2 0.37500 Covered

0.42479 0.30018 0.00000 0.4 0.4 2.2 0.42500 Covered

0.47481 0.35014 0.00000 0.4 0.4 2.4 0.47500 Covered

0.52436 0.40040 0.00000 0.4 0.4 2.6 0.52500 Covered

0.57417 0.45046 0.00000 0.4 0.4 2.8 0.57500 Covered

0.62355 0.50073 0.00000 0.4 0.4 3 0.62500 Covered

0.12857 -0.00980 0.14286 0.4 0.6 1 0.12857 Covered

0.17476 0.04914 0.00480 0.4 0.6 1.2 0.17500 Covered

0.22472 0.09948 0.00188 0.4 0.6 1.4 0.22500 Covered

0.27481 0.14975 0.00070 0.4 0.6 1.6 0.27500 Covered

0.32498 0.19999 0.00004 0.4 0.6 1.8 0.32500 Covered

0.37495 0.25005 0.00000 0.4 0.6 2 0.37500 Covered

0.42482 0.30015 0.00000 0.4 0.6 2.2 0.42500 Covered

0.47484 0.35011 0.00000 0.4 0.6 2.4 0.47500 Covered

0.52453 0.40029 0.00000 0.4 0.6 2.6 0.52500 Covered

0.57430 0.45039 0.00000 0.4 0.6 2.8 0.57500 Covered

0.62400 0.50050 0.00000 0.4 0.6 3 0.62500 Covered

0.12857 -0.00503 0.14774 0.4 0.8 1 0.12857 Covered

0.17481 0.04948 0.00374 0.4 0.8 1.2 0.17500 Covered

0.22486 0.09979 0.00090 0.4 0.8 1.4 0.22500 Covered

0.27479 0.14976 0.00077 0.4 0.8 1.6 0.27500 Covered

0.32491 0.19993 0.00021 0.4 0.8 1.8 0.32500 Covered

0.37498 0.25002 0.00000 0.4 0.8 2 0.37500 Covered

0.42487 0.30011 0.00000 0.4 0.8 2.2 0.42500 Covered

0.47476 0.35017 0.00000 0.4 0.8 2.4 0.47500 Covered

0.52442 0.40036 0.00000 0.4 0.8 2.6 0.52500 Covered

0.57439 0.45034 0.00000 0.4 0.8 2.8 0.57500 Covered

0.62387 0.50057 0.00000 0.4 0.8 3 0.62500 Covered

0.12853 0.00003 0.12856 0.4 1 1 0.12857 Covered

0.17479 0.04958 0.00425 0.4 1 1.2 0.17500 Covered

0.22481 0.09976 0.00124 0.4 1 1.4 0.22500 Covered

0.27478 0.14976 0.00085 0.4 1 1.6 0.27500 Covered

0.32493 0.19993 0.00019 0.4 1 1.8 0.32500 Covered

0.37500 0.25000 0.00000 0.4 1 2 0.37500 Covered

0.42492 0.30007 0.00000 0.4 1 2.2 0.42500 Covered

0.47473 0.35019 0.00000 0.4 1 2.4 0.47500 Covered
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0.52478 0.40014 0.00000 0.4 1 2.6 0.52500 Covered

0.57434 0.45037 0.00000 0.4 1 2.8 0.57500 Covered

0.62401 0.50050 0.00000 0.4 1 3 0.62500 Covered

0.12500 0.00086 0.00000 0.6 0 1 0.12500 Covered

0.17499 0.04997 0.00009 0.6 0 1.2 0.17500 Covered

0.22496 0.10009 0.00000 0.6 0 1.4 0.22500 Covered

0.27493 0.15012 0.00000 0.6 0 1.6 0.27500 Covered

0.32485 0.20019 0.00000 0.6 0 1.8 0.32500 Covered

0.37478 0.25022 0.00000 0.6 0 2 0.37500 Covered

0.42454 0.30038 0.00000 0.6 0 2.2 0.42500 Covered

0.47404 0.35069 0.00000 0.6 0 2.4 0.47500 Covered

0.52391 0.40068 0.00000 0.6 0 2.6 0.52500 Covered

0.57405 0.45053 0.00000 0.6 0 2.8 0.57500 Covered

0.62285 0.50108 0.00000 0.6 0 3 0.62500 Covered

0.12500 0.00144 0.00000 0.6 0.2 1 0.12500 Covered

0.17497 0.04996 0.00019 0.6 0.2 1.2 0.17500 Covered

0.22499 0.10002 0.00000 0.6 0.2 1.4 0.22500 Covered

0.27491 0.15015 0.00000 0.6 0.2 1.6 0.27500 Covered

0.32490 0.20012 0.00000 0.6 0.2 1.8 0.32500 Covered

0.37477 0.25023 0.00000 0.6 0.2 2 0.37500 Covered

0.42467 0.30028 0.00000 0.6 0.2 2.2 0.42500 Covered

0.47429 0.35050 0.00000 0.6 0.2 2.4 0.47500 Covered

0.52412 0.40055 0.00000 0.6 0.2 2.6 0.52500 Covered

0.57375 0.45069 0.00000 0.6 0.2 2.8 0.57500 Covered

0.62383 0.50058 0.00000 0.6 0.2 3 0.62500 Covered

0.12500 0.00059 0.00000 0.6 0.4 1 0.12500 Covered

0.17499 0.04998 0.00006 0.6 0.4 1.2 0.17500 Covered

0.22499 0.09999 0.00003 0.6 0.4 1.4 0.22500 Covered

0.27498 0.15003 0.00000 0.6 0.4 1.6 0.27500 Covered

0.32489 0.20014 0.00000 0.6 0.4 1.8 0.32500 Covered

0.37485 0.25016 0.00000 0.6 0.4 2 0.37500 Covered

0.42473 0.30023 0.00000 0.6 0.4 2.2 0.42500 Covered

0.47435 0.35047 0.00000 0.6 0.4 2.4 0.47500 Covered

0.52434 0.40041 0.00000 0.6 0.4 2.6 0.52500 Covered

0.57389 0.45062 0.00000 0.6 0.4 2.8 0.57500 Covered

0.62382 0.50059 0.00000 0.6 0.4 3 0.62500 Covered
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0.12500 0.00046 0.00000 0.6 0.6 1 0.12500 Covered

0.17496 0.04996 0.00026 0.6 0.6 1.2 0.17500 Covered

0.22493 0.09993 0.00026 0.6 0.6 1.4 0.22500 Covered

0.27495 0.15003 0.00005 0.6 0.6 1.6 0.27500 Covered

0.32491 0.20011 0.00000 0.6 0.6 1.8 0.32500 Covered

0.37492 0.25008 0.00000 0.6 0.6 2 0.37500 Covered

0.42479 0.30018 0.00000 0.6 0.6 2.2 0.42500 Covered

0.47479 0.35015 0.00000 0.6 0.6 2.4 0.47500 Covered

0.52420 0.40050 0.00000 0.6 0.6 2.6 0.52500 Covered

0.57403 0.45054 0.00000 0.6 0.6 2.8 0.57500 Covered

0.62329 0.50086 0.00000 0.6 0.6 3 0.62500 Covered

0.12500 0.00059 0.00000 0.6 0.8 1 0.12500 Covered

0.17493 0.04994 0.00044 0.6 0.8 1.2 0.17500 Covered

0.22489 0.09991 0.00041 0.6 0.8 1.4 0.22500 Covered

0.27490 0.14994 0.00024 0.6 0.8 1.6 0.27500 Covered

0.32497 0.20003 0.00000 0.6 0.8 1.8 0.32500 Covered

0.37493 0.25007 0.00000 0.6 0.8 2 0.37500 Covered

0.42483 0.30014 0.00000 0.6 0.8 2.2 0.42500 Covered

0.47455 0.35032 0.00000 0.6 0.8 2.4 0.47500 Covered

0.52419 0.40051 0.00000 0.6 0.8 2.6 0.52500 Covered

0.57435 0.45036 0.00000 0.6 0.8 2.8 0.57500 Covered

0.62347 0.50077 0.00000 0.6 0.8 3 0.62500 Covered

0.12500 0.00086 0.00000 0.6 1 1 0.12500 Covered

0.17495 0.04999 0.00029 0.6 1 1.2 0.17500 Covered

0.22489 0.09991 0.00046 0.6 1 1.4 0.22500 Covered

0.27490 0.14991 0.00029 0.6 1 1.6 0.27500 Covered

0.32494 0.19996 0.00011 0.6 1 1.8 0.32500 Covered

0.37493 0.25007 0.00000 0.6 1 2 0.37500 Covered

0.42489 0.30009 0.00000 0.6 1 2.2 0.42500 Covered

0.47482 0.35013 0.00000 0.6 1 2.4 0.47500 Covered

0.52472 0.40017 0.00000 0.6 1 2.6 0.52500 Covered

0.57441 0.45033 0.00000 0.6 1 2.8 0.57500 Covered

0.62422 0.50039 0.00000 0.6 1 3 0.62500 Covered

0.12497 0.00403 0.00000 0.8 0 1 0.12500 Covered

0.17498 0.05012 0.00000 0.8 0 1.2 0.17500 Covered

0.22495 0.10013 0.00000 0.8 0 1.4 0.22500 Covered
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0.27489 0.15018 0.00000 0.8 0 1.6 0.27500 Covered

0.32475 0.20031 0.00000 0.8 0 1.8 0.32500 Covered

0.37441 0.25059 0.00000 0.8 0 2 0.37500 Covered

0.42425 0.30063 0.00000 0.8 0 2.2 0.42500 Covered

0.47381 0.35085 0.00000 0.8 0 2.4 0.47500 Covered

0.52349 0.40094 0.00000 0.8 0 2.6 0.52500 Covered

0.57322 0.45099 0.00000 0.8 0 2.8 0.57500 Covered

0.62351 0.50075 0.00000 0.8 0 3 0.62500 Covered

0.12500 0.00118 0.00001 0.8 0.2 1 0.12500 Covered

0.17499 0.05006 0.00000 0.8 0.2 1.2 0.17500 Covered

0.22495 0.10012 0.00000 0.8 0.2 1.4 0.22500 Covered

0.27494 0.15009 0.00000 0.8 0.2 1.6 0.27500 Covered

0.32483 0.20022 0.00000 0.8 0.2 1.8 0.32500 Covered

0.37454 0.25046 0.00000 0.8 0.2 2 0.37500 Covered

0.42423 0.30064 0.00000 0.8 0.2 2.2 0.42500 Covered

0.47428 0.35051 0.00000 0.8 0.2 2.4 0.47500 Covered

0.52387 0.40070 0.00000 0.8 0.2 2.6 0.52500 Covered

0.57359 0.45078 0.00000 0.8 0.2 2.8 0.57500 Covered

0.62362 0.50069 0.00000 0.8 0.2 3 0.62500 Covered

0.12498 0.00293 0.00000 0.8 0.4 1 0.12500 Covered

0.17498 0.05011 0.00000 0.8 0.4 1.2 0.17500 Covered

0.22496 0.10011 0.00000 0.8 0.4 1.4 0.22500 Covered

0.27488 0.15019 0.00000 0.8 0.4 1.6 0.27500 Covered

0.32489 0.20014 0.00000 0.8 0.4 1.8 0.32500 Covered

0.37487 0.25013 0.00000 0.8 0.4 2 0.37500 Covered

0.42466 0.30029 0.00000 0.8 0.4 2.2 0.42500 Covered

0.47421 0.35056 0.00000 0.8 0.4 2.4 0.47500 Covered

0.52500 0.40000 0.00000 0.8 0.4 2.6 0.52500 Covered

0.57398 0.45057 0.00000 0.8 0.4 2.8 0.57500 Covered

0.62305 0.50097 0.00000 0.8 0.4 3 0.62500 Covered

0.12497 0.00387 0.00000 0.8 0.6 1 0.12500 Covered

0.17500 0.05001 0.00000 0.8 0.6 1.2 0.17500 Covered

0.22499 0.10003 0.00000 0.8 0.6 1.4 0.22500 Covered

0.27492 0.15014 0.00000 0.8 0.6 1.6 0.27500 Covered

0.32494 0.20007 0.00000 0.8 0.6 1.8 0.32500 Covered

0.37477 0.25023 0.00000 0.8 0.6 2 0.37500 Covered
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0.42459 0.30034 0.00000 0.8 0.6 2.2 0.42500 Covered

0.47436 0.35046 0.00000 0.8 0.6 2.4 0.47500 Covered

0.52435 0.40041 0.00000 0.8 0.6 2.6 0.52500 Covered

0.57411 0.45049 0.00000 0.8 0.6 2.8 0.57500 Covered

0.62375 0.50063 0.00000 0.8 0.6 3 0.62500 Covered

0.12500 0.00112 0.00000 0.8 0.8 1 0.12500 Covered

0.17499 0.05004 0.00000 0.8 0.8 1.2 0.17500 Covered

0.22498 0.10004 0.00000 0.8 0.8 1.4 0.22500 Covered

0.27496 0.15006 0.00000 0.8 0.8 1.6 0.27500 Covered

0.32490 0.20012 0.00000 0.8 0.8 1.8 0.32500 Covered

0.37491 0.25009 0.00000 0.8 0.8 2 0.37500 Covered

0.42472 0.30024 0.00000 0.8 0.8 2.2 0.42500 Covered

0.47455 0.35032 0.00000 0.8 0.8 2.4 0.47500 Covered

0.52449 0.40032 0.00000 0.8 0.8 2.6 0.52500 Covered

0.57379 0.45067 0.00000 0.8 0.8 2.8 0.57500 Covered

0.62397 0.50052 0.00000 0.8 0.8 3 0.62500 Covered

0.12500 0.00048 0.00000 0.8 1 1 0.12500 Covered

0.17498 0.05001 0.00006 0.8 1 1.2 0.17500 Covered

0.22498 0.10001 0.00004 0.8 1 1.4 0.22500 Covered

0.27498 0.15002 0.00002 0.8 1 1.6 0.27500 Covered

0.32497 0.20001 0.00003 0.8 1 1.8 0.32500 Covered

0.37496 0.25004 0.00000 0.8 1 2 0.37500 Covered

0.42487 0.30011 0.00000 0.8 1 2.2 0.42500 Covered

0.47481 0.35014 0.00000 0.8 1 2.4 0.47500 Covered

0.52464 0.40023 0.00000 0.8 1 2.6 0.52500 Covered

0.57409 0.45050 0.00000 0.8 1 2.8 0.57500 Covered

0.62405 0.50047 0.00000 0.8 1 3 0.62500 Covered

0.12500 0.00082 0.00001 1 0 1 0.12500 Covered

0.17493 0.05034 0.00000 1 0 1.2 0.17500 Covered

0.22485 0.10037 0.00000 1 0 1.4 0.22500 Covered

0.27476 0.15040 0.00000 1 0 1.6 0.27500 Covered

0.32439 0.20076 0.00000 1 0 1.8 0.32500 Covered

0.37427 0.25073 0.00000 1 0 2 0.37500 Covered

0.42500 0.30000 0.00000 1 0 2.2 0.42500 Covered

0.47427 0.35052 0.00000 1 0 2.4 0.47500 Covered

0.52416 0.40052 0.00000 1 0 2.6 0.52500 Covered
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0.57376 0.45069 0.00000 1 0 2.8 0.57500 Covered

0.61932 0.50283 0.00000 1 0 3 0.62500 Covered

0.12500 0.00007 0.00000 1 0.2 1 0.12500 Covered

0.17500 0.05001 0.00000 1 0.2 1.2 0.17500 Covered

0.22488 0.10030 0.00000 1 0.2 1.4 0.22500 Covered

0.27484 0.15026 0.00000 1 0.2 1.6 0.27500 Covered

0.32500 0.20000 0.00000 1 0.2 1.8 0.32500 Covered

0.37500 0.25000 0.00000 1 0.2 2 0.37500 Covered

0.42500 0.30000 0.00000 1 0.2 2.2 0.42500 Covered

0.47384 0.35083 0.00000 1 0.2 2.4 0.47500 Covered

0.52361 0.40087 0.00000 1 0.2 2.6 0.52500 Covered

0.57360 0.45078 0.00000 1 0.2 2.8 0.57500 Covered

0.62354 0.50073 0.00000 1 0.2 3 0.62500 Covered

0.12497 0.00405 0.00000 1 0.4 1 0.12500 Covered

0.17576 0.04602 0.00002 1 0.4 1.2 0.17500 Uncovered

0.22491 0.10023 0.00000 1 0.4 1.4 0.22500 Covered

0.27491 0.15016 0.00000 1 0.4 1.6 0.27500 Covered

0.32500 0.20000 0.00000 1 0.4 1.8 0.32500 Covered

0.37455 0.25045 0.00000 1 0.4 2 0.37500 Covered

0.42431 0.30058 0.00000 1 0.4 2.2 0.42500 Covered

0.47440 0.35043 0.00000 1 0.4 2.4 0.47500 Covered

0.52417 0.40052 0.00000 1 0.4 2.6 0.52500 Covered

0.57327 0.45096 0.00000 1 0.4 2.8 0.57500 Covered

0.62359 0.50071 0.00000 1 0.4 3 0.62500 Covered

0.12499 0.00272 0.00000 1 0.6 1 0.12500 Covered

0.17499 0.05006 0.00000 1 0.6 1.2 0.17500 Covered

0.22496 0.10011 0.00000 1 0.6 1.4 0.22500 Covered

0.27485 0.15025 0.00000 1 0.6 1.6 0.27500 Covered

0.32491 0.20011 0.00000 1 0.6 1.8 0.32500 Covered

0.37477 0.25023 0.00000 1 0.6 2 0.37500 Covered

0.42460 0.30033 0.00000 1 0.6 2.2 0.42500 Covered

0.47388 0.35080 0.00000 1 0.6 2.4 0.47500 Covered

0.52416 0.40053 0.00000 1 0.6 2.6 0.52500 Covered

0.57413 0.45048 0.00000 1 0.6 2.8 0.57500 Covered

0.62390 0.50055 0.00000 1 0.6 3 0.62500 Covered

0.12499 0.00217 0.00000 1 0.8 1 0.12500 Covered
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0.17500 0.05001 0.00000 1 0.8 1.2 0.17500 Covered

0.22500 0.10001 0.00000 1 0.8 1.4 0.22500 Covered

0.27496 0.15007 0.00000 1 0.8 1.6 0.27500 Covered

0.32493 0.20008 0.00000 1 0.8 1.8 0.32500 Covered

0.37492 0.25009 0.00000 1 0.8 2 0.37500 Covered

0.42465 0.30029 0.00000 1 0.8 2.2 0.42500 Covered

0.47438 0.35044 0.00000 1 0.8 2.4 0.47500 Covered

0.52424 0.40047 0.00000 1 0.8 2.6 0.52500 Covered

0.57430 0.45039 0.00000 1 0.8 2.8 0.57500 Covered

0.62347 0.50077 0.00000 1 0.8 3 0.62500 Covered

0.12500 0.00000 0.00000 1 1 1 0.12500 Covered

0.17493 0.05033 0.00000 1 1 1.2 0.17500 Covered

0.22494 0.10016 0.00000 1 1 1.4 0.22500 Covered

0.27498 0.15000 0.00002 1 1 1.6 0.27500 Covered

0.32497 0.20004 0.00000 1 1 1.8 0.32500 Covered

0.37495 0.25005 0.00000 1 1 2 0.37500 Covered

0.42487 0.30011 0.00000 1 1 2.2 0.42500 Covered

0.47481 0.35013 0.00000 1 1 2.4 0.47500 Covered

0.52466 0.40022 0.00000 1 1 2.6 0.52500 Covered

0.57404 0.45053 0.00000 1 1 2.8 0.57500 Covered

0.62420 0.50040 0.00000 1 1 3 0.62500 Covered
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