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Abstract

In this Thesis, we propose a loosely coupled model for numerical cardiac simu-
lations representing the main physical processes involved in heart physiology by
means of an electro-fluid-structure interaction (EFSI) problem.

Firstly, we develop computational methods for simulating cardiac electrophys-
iology, specifically focusing on the propagation of electrical signals through the
cardiac tissue. We employ the anisotropic Monodomain model, which combines
a reaction-diffusion equation with various membrane models representing ionic
currents. To accurately capture the behavior of these models, we propose a
second-order scheme based on Strang splitting, where the nonlinear subproblem
is solved by an explicit second-order predictor-corrector scheme. This scheme
effectively handles the stiff gating variables and the rapid gradient increase of
the action potential, resulting in improved computational efficiency.
Furthermore, we extend our computational framework by incorporating the Eikonal
model. This model allows us to compute the time activation, considering the re-
duced computational costs associated with its implementation.

Secondly, a generalized formulation for the fluid-structure interaction (FSI) prob-
lem, which incorporates an active term expressed as active stress, is developed.
This formulation draws inspiration from the Immersed Boundary Method and
combines various mathematical tools. Specifically, we utilize elastodynamics
equations to model the solid behavior, a high-order Navier-Stokes solver for the
fluid flow, and an L2-projection method for the transfer of velocities and forces
between the fluid grid and the solid mesh.
By incorporating the active term, our formulation accurately accounts for the
active mechanical contribution of the cardiac muscle. We validate the effective-
ness and reliability of our approach through extensive testing, including the use
of the Turek-Horn benchmark. Additionally, we simulate the filling phase of a
two-dimensional idealized ventricle, where the deformed mesh obtained serves
as the initial condition for simulating the active contraction stage. Throughout
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these simulations, our proposed formulation consistently demonstrates its ability
to extend the capabilities of FSI modeling in the context of cardiac simulations.

Lastly, we achieve the coupling between the generalized fluid-structure inter-
action (FSI) framework, incorporating active stress, and the electrophysiological
environment by evaluating a time activation map using two different models: the
reduced Eikonal model and the Monodomain model coupled with the LuoRudy
ionic model.
We conduct these evaluations on a three-dimensional idealized ventricle, en-
abling us to observe the effects of the coupling on the cardiac system. Specifically,
we compare the results obtained from a uniform contraction scenario with those
obtained considering the deformations generated by the activation maps. This
comparative analysis provides valuable insights into the impact of electrome-
chanical couplings on cardiac modeling. These advancements open up possibil-
ities for advanced electromechanical couplings in cardiac modeling, providing a
more comprehensive understanding of heart physiology.
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Chapter 1

Introduction

Numerical cardiac models of the whole human heart have been widely studied as
a support for the investigation of cardiac diseases such as arrhythmia, ischemia,
and in particular rare pathologies characterized by limited experimental research
involving human cardiac tissue.
Normal human heart activity involves three main physical processes: electro-
physiology, active and passive mechanics, and blood dynamics. In particular,
electrophysiology describes the propagation of the cardiac electrical signal, which
starts in the sinoatrial node and goes through the cardiac tissue thanks to the ex-
citable conformation of the cells. This electrical stimulus generates active forces
which induce the cardiac wall to contract and pump blood throughout the circu-
latory system.
For this reason, the computation of an entire heart requires the combination
of models that represent the distinct physiological aspects regarding the cellu-
lar electrical activity, the anisotropic and nonlinear mechanical properties of the
myocardium during muscular contraction and relaxation, and the large defor-
mations resulting in a proper space-time scale. In addition, the heart can be
represented as a fluid-structure system, and taking into account the inertia of
blood and the cardiac wall is needed.
Several mathematical and numerical models have been attempted to reproduce
an accurate replication of the heart functions but the multiphysics interaction
and the multiscale properties of the problem require high computational power,
that is available in only specialized supercomputing centers, and models need to
be highly optimized to solve an entire heart beat within reasonable hours.
For this reason, the majority of models focus on some specific features and many
times replace the missing heart function with reduced problems or prescribe use-
ful variables.
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The most common models used for electrophysiology are the bidomain model
and the reduced monodomain model, nonlinear parabolic differential partial
equations describing the evolution in time of the transmembrane potential cou-
pled with a system of ordinary differential equations representing the behavior
of the gating variables of a specific ionic model. For an accurate representation
of the gradient of the action potential, and in particular its depolarization phase,
a fine spatial grid is required furthermore a fine temporal grid is necessary for
the computation of gating variables.
In particular, BARNAFI et al. [2022] compares parallel nonlinear solvers for the
solution of the Bidomain model, while Del Corso et al. [2022] proposes an elec-
trophysiological representation of the whole heart with a GPU-accelerated solver
considering the different properties of cardiac tissue including the topology and
electrical conductivities.
The spatio-temporal evolution of the cardiac electrical signal results in the gener-
ation of a contraction-relaxation process and their interaction, with the passive
mechanical properties of cardiac tissue, is quantitatively described by the car-
diac electro-mechanical coupling model. This model combines the deformation
of cardiac tissue described by a finite elasticity model, the generation of an active
tension term through non-linear ordinary differential equations, the evolution of
the electrical signal with Bidomain or Monodomain models coupled with several
ionic membrane models including the cardiac fibers architecture (Piersanti et al.
[2021]).
Several computational strategies for electromechanical coupling have been pro-
posed (DeSimone et al. [2020]), (Usyk et al. [2002]) and have made significant
developments, but the computational costs are still significant.
However, electromechanical models and their numerical formulation have been
widely investigated and employed for clinical experiments, but only few works
have considered the relationship between cardiac mechanics and hemodynam-
ics.
Boundary-fitted methods are the most widely used approach, where the fluid is
solved on a moving spatial domain in an Arbitrary Lagrangian-Eulerian formu-
lation, while the solid is usually described with a Lagrangian formulation (Feng
et al. [2019]),(Nordsletten et al. [2011]). However, these methods may involve
large displacements and distorted fluid grids yielding complicated implementa-
tion and high computational costs.
A multi-scale heart simulation proposed by the UT-Heart simulator (Hosoi et al.
[2010]) is one of the first cardiac fully coupled models published and employed
for the analysis of clinical studies. Another fully coupled model focused on right
and left ventricular systole offers essential information on the computational
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techniques which enable the use of high-performance computing resources for
cardiac simulations even though they ignore the valves and consider a simplified
description of the atria (Ahmad Bakir et al. [2018]).
An immersed-boundary approach was proposed in (Viola et al. [2020]) for a
coupled fluid-structure-electrophysiology left heart model involving a reduced
description of force generator and setting aside the consequences due to fibers
shortening.
A novel multiphysics fully coupled model has recently been proposed (Bucelli
et al. [2022]) for a three-dimensional detailed description of the heart, includ-
ing a closed-loop lumped-parameter model to simulate systemic and pulmonary
circulation.
However, this kind of model requires extremely high computational power, com-
plex solvers, and specific preconditioners, losing flexibility in the choice of the
discretization schemes.

1.1 Research overview

This dissertation can be divided into two main parts. The first part consists of an
analysis of the electrophysiological environments introducing a time integrator
based on Strang splitting coupled with an explicit predictor-corrector scheme,
obtaining an overall second-order numerical scheme. In particular, we apply the
proposed method on a modified FitzHugh Nagumo model and compare it with a
Strang splitting operator integrated with a second-order θ -method applying the
Newton method for the resolution.
We also consider a three-dimensional simplified geometry of the left ventricle
and evaluate the activation map related to the mechanical contraction of cardiac
muscle through the implementation of the eikonal model and the Monodomain
model coupled with the Luo Rudy ionic membrane model.
The second part generalizes the fluid-structure interaction problem based on the
immersed-boundary method with the introduction of a time dependent active
term in the elastodynamic equation referring to the solid to represent the active
contribution of cardiac muscle.
The problem is then coupled with the electrophysiology creating a one-way re-
lation that connects the time dependent active force generator term with the
activation maps produced by the resolution of the eikonal model and the Mon-
odomain model.



4 1.2 Contributions and limitations

1.2 Contributions and limitations

The contributions of the present dissertation are multiple. In this work, we
present a first attempt to represent all the physical processes involved in car-
diac simulation, leading to an extremely challenging problem, especially if we
consider that only interdisciplinary research groups have recently published sat-
isfactory results.

In particular, we will first focus on the electrophysiological models where we
propose a second-order numerical scheme for the time integration of the equa-
tion that describes the evolution of action potential. Starting from the operator
splitting theory, where the problem is decoupled into a linear e nonlinear sub-
problem representing the diffusive and the reactive terms respectively, we adopt
the second-order Strang splitting and combine a θ -rule of second-order accuracy
for solving the linear PDE and a second-order explicit predictor correct scheme
for the nonlinear system, representing an alternative opportunity compared to
the classical implicit scheme as Newton or Runge-Kutta methods.
All electrophysiological models proposed have been implemented by the author
inside the application Pony , based on the open source general purpose C++
finite element framework MOOSE, Multiphysics Object Oriented Simulation En-
vironment, specifically designed for the development of multiphysics tools. Pony
can be extended without effort by incorporating additional ionic and mechanical
models to generate active forces.

An additional contribution is represented by the introduction of a generalization
of the immersed-boundary approach for FSI problems adding an active term in
the elastodynamic equation for the solid which depends on the activation maps
evaluated by different electrophysiological models, creating a one-way fluid-
structure-electrophysiology coupling.
The immersed boundary method offers an alternative to avoid dynamic mesh
generation, where the elastic structure is immersed in a viscous incompressible
fluid and the fluid subproblem is described in the Eulerian form while the solid
subproblem is in the Lagrangian form, involving large displacements and dis-
torted fluid grids. In this thesis, an FSI formulation based on immersed bound-
ary method is employed where the incompressible flow is discretized with a finite
difference method and coupled with a finite element method for the resolution
of the structural problem by using an L2-projection approach.
We consider different benchmarks of an incompressible fluid past an elastic solid
structure for the resolution of parallel numerical simulations which include the
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time dependent active term. The Turek Hron benchmark is used for convergence
studies, while a novel two-dimensional geometry is proposed for the representa-
tion of a transversal section of the left ventricle. Three-dimensional simulations
offer a more realistic description of cardiac functions even though the electro-
physiology and the fluid-structure interaction were performed separately.
The fluid-structure interaction algorithm is implemented in the FE framework
MOOSE, where a Newton method is used to linearize the solid subproblem and
GMRES is employed to solve the associated linear system, and it is integrated
with an Object Oriented Numerics Library MOONoLith for the transfer of dis-
crete fields and the flow solver IMPACT, validated and widely used for different
complex flow configurations.
Future research should concentrate on advanced electromechanical couplings,
including calcium concentration effects on active force generation. Additionally,
a more accurate simulation of the velocity profile should be made by taking into
account a more realistic ventricular geometry and integrating it with the mitral
and aortic valves.
To capture important aspects of the heart’s electrical activity, models for the Purk-
inje network should be also investigated and the implementation of an adaptive
mesh refinement strategy may permit to avoid oscillations in the simulations re-
sults.
These improvements will enhance the accuracy and applicability of the simu-
lation model, and provide a more comprehensive understanding of the heart’s
function.

1.3 Outline of the dissertation

In Chapter 2 we quickly introduce the bioelectric property of the cell mem-
brane, including the description of action potential and channel gating. Then,
we present a modified FiztHugh Nagumo model for the electrical activity of the
heart, that effectively explains the qualitative elements of cardiac excitation, as
well as some quantitative characteristics of cardiac tissue, like the action poten-
tial’s form and duration, and it will be involved in the convergence studies of
the proposed time integrator. Lastly, we briefly describe two membrane mod-
els for cardiac tissue that, due to their lower computing costs, are better suited
to coupling with the fluid-structure problem through the evaluation of attention
maps: the Monodomain model for the cardiac tissue, a reduction of the Bido-
main model, consisting of only one parabolic reaction-diffusion equation that
describes the evolution of the transmembrane potential and coupled with the
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Luo Rudy ionic model, and the Eikonal model.
Chapter 3 is dedicated to space-time discretization techniques for the Monodomain
model. In particular, we consider the finite element method for space discretiza-
tion and two different approaches for time discretization: the first is a classic
semi-implicit finite difference method for the reaction-diffusion equation cou-
pled with Rush-Larsen scheme for the ODE’s system (where it is permitted by the
equations’ form). The second is based on an operator splitting strategy coupled
with a predictor-corrector scheme (Heun’s method). We propose a global second
order of accuracy integrator that includes an explicit scheme for the resolution of
the nonlinear subproblem, complemented by a convergence analysis and com-
pared with a common implicit scheme (second order θ method solved with a
Newton method).
In Chapter 4 we give a general review of continuum mechanics in order to in-
troduce the equations for the solid and fluid subproblems. The fluid-structure
interaction issue will then be addressed by concentrating on the geometrical and
physical coupling requirements. Lastly, we will introduce a generalization of the
fluid-structure interaction problem based on an immersed boundary approach
adding an active term into the elastodynamic equation referred to the structure’s
behavior.
Chapter 5 describes the space-time discretization of the FSI problem, where we
adopt the finite element method for the spatial discretization of the elastodynam-
ics equations, a finite difference method for the spatial discretization of Navier-
Stokes equations, and the coupling on the interface is led by an L2-projection
variational approach. Moving on to the discretization in time, we use the New-
mark approach for the solid subproblem and a third-order Runge-Kutta method
for the fluid. The fluid-structure algorithm utilized to enhance the solution of
the fluid-structure interaction system is presented last.
In the last Chapter, we present the numerical results of parallel numerical sim-
ulations of an incompressible fluid past an elastic solid structure using several
benchmarks: a Turek-Hron benchmark for testing the generalization of the FSI
problem with the active stress term, also used for convergence analysis, a two-
dimensional section of left-ventricle and a three-dimensional simplified left ven-
tricle, where a one-way electrical-fluid-structure coupling is proposed.
The main arguments of the thesis were proposed in the following conferences:

- 1st Young Applied Mathematicians Conference, Santa Maria di Leuca (Le),
September 13 – 17, 2021

- Young Researchers Workshop on Mathematical and Numerical Cardiac Mod-
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eling, Pavia, December 14, 2021.

- COMPMAT 2022, Spring Workshop, Pavia, March 13 – 14, 2022.

-International MultiGrid Conference 2022, Multilevel Methods for Cardiac Sim-
ulations, Lugano, August 22 – 27, 2022.

- MCF2022, Modelling the Cardiac Function iHEART Conference, Cetraro, Septem-
ber 30 – October 2, 2022.
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Chapter 2

Models of Ventricular Cardiac Cells for
Electrophysiology

We start this chapter by rapidly recalling a membrane model for the ionic current,
before passing to the bioelectric property of the cell membrane. After that, we
give an explicit description of the most complete model of cardiac electrical activ-
ity, the Bidomain model, a system of two degenerate parabolic reaction-diffusion
equations which represent the intra and the extracellular potential in the cardiac
muscle, coupled with a system of ordinary differential equations describing the
ionic currents. Because of its computational cost, lastly, we will see a simpli-
fied Monodomain model for the cardiac tissue, consisting of only one parabolic
reaction-diffusion equation that describes the evolution of the transmembrane
potential with an ionic model.

2.1 Membrane Models and Ionic Currents

The cell membrane is a protective covering of the cell that preserves the integrity
of the inner environment. It is at the same time selectively permeable, permit-
ting the free passage of some materials and restricting the passage of others.
It is made up of a double layer of phospholipid molecules, in which their hy-
drophilic heads face the external environment as well as the internal cytosolic
environment, while the hydrophobic tails face each other. Irregularly dispersed
throughout the phospholipid bilayer are aggregates of globular proteins, such
as structural proteins (that help to give the cell support and shape), receptor
proteins (which help cells communicate with their external environment), and
transport proteins (that transport molecule across the cell membrane through fa-
cilitated diffusion). The membrane also acts as a barrier to the free flow of ions

9
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(Na+, K+, Cl−) and maintains concentration differences by active mechanisms
that use energy to pump ions against their concentration gradients. Differences
in ionic concentrations create a potential difference across the cell membrane,
on which we will focus. In fact, many cells, such as neurons and muscle cells,
use the membrane potential as a signal: for example, the operation of the ner-
vous system and muscle contraction are both dependent on the generation and
propagation of electrical signals Klabunde [2011].
There are cells for which, if we apply a current for a short period of time and
it is sufficiently strong, the membrane potential goes through a large excursion,
called action potential (AP), before eventually returning to rest. Such cells are
called excitable and they include precisely cardiac cells.

2.1.1 The Action Potential

When the cell is at rest, ions are distributed across the membrane in a very pre-
dictable way. For example, the concentration of Na+ outside the cell is 10 times
greater than the concentration inside. The difference in charge is described as
the resting membrane potential and its exact value varies between cells (we will
use a resting membrane potential of -84mV). Once the cell is electrically stimu-
lated, it begins a sequence of actions involving the influx and efflux of ions that
produce the action potential of the cell. There are three recognizable phases of
an action potential. The first phase is the rapid depolarization. This phase is due
to the opening of the fast Na+ channels causing a rapid increase of the sodium
membrane conductance and a rapid influx of Na+ ions inside the cell. Thus the
membrane potential is reversed from negative to positive (about +25mV). After
the inactivation of the sodium channels, the transient outward current causes
the small downward deflection of the action potential, and it is due to the move-
ment of K+ and Cl− ions outside the cell. The second phase is called plateau.
The influx of calcium into the cell is balanced by the efflux of potassium out of
the cell through the slow delayed K+ channels. During the third phase, the rapid
repolarization the calcium channels close while the potassium channel remains
open. As the K+ ions start to leave the cell, the membrane potential begins to
move back toward its resting value Ikonnikov et al. [2014].
From the beginning of the depolarization phase until the part way of the repo-
larization phase, each cell is in an absolute refractory period during which it is
impossible to evoke another action potential. This is because of the inactivation
gate of the sodium channel. Once that channel is back to its resting conforma-
tion, a new action potential could be started, but only by a stronger stimulus.
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Figure 2.1. Phases of the action potential in cardiac muscles and ionic currents
(Physiology of cardiac conduction and contractility, G. Ikonnikov and E. Wong,
2013)

2.1.2 Channel Gating

Each individual ion channel can be thought as a container of one or more physical
subunits, called gates, that regulate the flow of ions through the channel. An
individual gate can be in one of two states: open or closed. When all of the gates
for a particular channel are in the open state, ions can pass through the channel
and the channel is open Keener and Sneyd [2009]. If any of the gates are in
the closed state, ions cannot flow and the channel is closed. A common model
describes an ionic current through an open channel as a linear function of the
membrane potential:

IS = gS(V − VS) (2.1)

where gS is the membrane conductance and VS is the Nernst Potential given by
VS =

RT
zF ln( ce

ci
), with ce external concentration and ci internal concentration. It is

now important to determine how ionic channels open and close in response to
changes in the membrane potential.
The probability for an individual gate to be open or closed depends on the value
of the membrane voltage. Indeed the gate model can be described as a first-order
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chemical reaction with two states:

C
α(V)
−−*)−−
β(V)

O (2.2)

where C and O correspond to the closed and open states and α(V ), β(V ) are
the voltage-dependent rate constants at which a gate goes from the closed to the
open and from the open to the closed states. Be w the fraction of open gates,
then 1− w is the fraction of closed gates. From the law of mass action

dw
dt
= α(V )(1− w) + β(V )w=

w∞(V )− w
τ(V )

(2.3)

where w∞ =
α(V )

α(V )+β(V ) is the steady-state value of w, and τ(V ) = 1
α(V )+β(V ) is

the time constant of approach to the steady-state. In the Hodgkin-Huxley model
(which we will see in the next subsection) these functions were derived by fitting
data.
The macroscopic conductance for a large population of channels is thus propor-
tional to the number of channels in the open state, which is in turn proportional
to the probability that the associated gates are in their open state. Thus the
macroscopic conductance gs due to channels of type s, with constituent gates of
type i, is proportional to the product of the individual gating variable wi:

gs = ḡs

∏

i

wi (2.4)

where ḡs is a normalization constant that determines the maximum possible con-
ductance when all the channels are open.

2.1.3 A Simplified Two-Variable Model

To avoid computational difficulties, R. R. Aliev and A. V. Panfilov [Aliev and Pan-
filov, 1996] published a simplified model for intensive 3-dimensional computa-
tions of the whole heart. They modified the FitzHugh Nagumo (FHN) model,
which describes successfully qualitative aspects of excitation, including some
quantitative properties of cardiac tissue such as the shape and the duration of
the action potential.
FitzHugh has given a qualitative description of the Hodgkin-Huxley model [Hodgkin
and Huxley, 1952], taking into account the different kinetics of the model vari-
ables: m and v are fast variables (i.e. the sodium channel activates quickly, and
the membrane potential changes rapidly), while n and h are slow variables.
If we fix the slow variables at their steady-state values n0 and h0 it is possible
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considering the behavior of the model as a function of only the two fast variables
and study the process of excitation. On the other hand, to see what happens on
a larger time scale, we have to consider the slow variations of the variables n and
h.
A useful description of the Hodgkin-Huxley model is given by the involvement of
one fast variable (assuming that m is an instantaneous function of the potential
and the activation of sodium conductance performs on a faster time scale) and
one slow variable (estimating h+ n≈ 0.8 [FitzHugh, 1961] ) and can be written
as










Cm
dv
dt
= − ḡNam∞(v)

3(0.8− n)(v − vNa)− ḡK n4(v − vK)− ḡL(v − vL),

dn
dt
= αn(1− n) + βnn.

(2.5)

The Fitzhugh-Nagumo (FHN) model is a phenomenological model which cap-
tures the behavior of the fast-slow Hodgkin-Huxley model and consists of an
exci tat ion variable v and a slow variable called recover y variable w:











dv
dt

= f (v)− w,

dw
dt

= α(β v − γw)
(2.6)

where f (v) is a third degree polynomial and α, β and γ are real constant. The
model proposed by R. R. Aliev and A. V. Panfilov consists of two equations de-
scribing the fast and slow processes:











∂ v
∂ t

=
∂

∂ x i
di j
∂ v
∂ x j
− kv(v − a)(v − 1)− vw

∂ w
∂ t

= ε(v, w)(−w− kv(v − a− 1))
(2.7)

where ε(v, w) = ε0 +
µ1w
(v+µ2)

, di j is the conductivity tensor and k, a, ε0, µ1 and µ2

are real costant parameters.
The nonlinear term for the voltage-like variable v is a cubic function and, contrary
to the FHN model, they add −vw instead of −w, improving the description of the
shape of the action potential and preventing it from becoming super-repolarized.
Furthermore, the linear term used in the FHN model is replaced by a quadratic
function, which is more appropriate for the heart tissue.
The model involves dimensionless variables v, w, and t. For obtaining the usual
values for transmembrane potential and time the following formulae are useful:

E[mV ] = 100v − 80 t[ms] = 12.9t[t.u.] (2.8)
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The right-hand side of the equation (3.19) is similar to the FHN model. We still
have a cubic function for the fast variable v and, to improve the representation
of the shape of the action potential, the term uv is added. Furthermore, in the
differential equation referring to the slow variable w it is used a quadratic term
instead of the linear function of the FHN model. Such geometry is more appro-
priate for describing the heart tissue.

2.1.4 The Monodomain Model

The most complete model of cardiac electrical activity is the Bidomain model.
It was first proposed in the late 1970s by Tung and Geselowitz (Tung, 1978)
and it is now the generally accepted model for the electrical behavior of car-
diac tissue. This model consists of two degenerate parabolic reaction-diffusion
equations describing the intra ui and the extracellular ue potential in the cardiac
muscle, coupled with a system of ordinary differential equations describing the
ionic currents flowing through the cellular membrane. At the microscopic level,
a model for the cellular structure of the cardiac tissue is complicated by the fact
that the membrane potential, the intra and the extracellular spaces are continu-
ously connected and intertwined. It is difficult to write equations that take into
account the fine structure of the geometry of these spaces. However, it is pos-
sible to derive, by a homogenization process, a macroscopic model describing
the averaged intra and extracellular electric potential and currents; see Keener
and Sneyd [2009] andFranzone and Savaré [2002] for a formal derivation and
modeling details.
A mathematical analysis of the Bidomain model can be found in Veneroni [2009]
and in Bourgault et al. [2009b], including the study of the existence and unique-
ness of the model.
Referring to Colli Franzone and Pavarino [2004], let Ω ⊂ R3 be the bounded
physical region occupied by the cardiac tissue. The intra and the extracellular
medium are characterized by the conductivity tensor Di and De. Because of the
anisotropic structure, the conductivity is related to the arrangement of the car-
diac fibers, whose direction rotates counterclockwise from the epicardium to the
endocardium. It is now possible to identify three distinct principal axes at any
point x. Let al(x), at(x) and an(x) be a triplet of orthonormal vectors related to
the structure of the myocardium at a point x, with al(x) parallel to the local fiber
direction and at(x) normal to the muscle sheet. Let σi,e

l , σi,e
t , σi,e

n be the con-
ductivity coefficients measured along the corresponding directions. In general,
these coefficients may depend on x, but we assume they are constant, i.e. we are
considering homogeneous anisotropy. Then the conductivity tensors, dependent
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on x, are given by:

Di,e(x) = σ
i,e
l al(x)a

T
l (x) +σ

i,e
t at(x)a

T
t (x) +σ

i,e
n an(x)a

T
n (x) (2.9)

The total membrane current per unit volume is given by

Im = χ
�

Cm
∂ v
∂ t
+ Iion

�

(2.10)

where v = ui−ue is the transmembrane potential, the coefficient χ is the ratio of
membrane area per tissue volume, Cm is the surface capacitance of the membrane
and Iion is the ionic current.
Imposing the conservation of currents, i.e. the interchange between the two
media must balance the membrane current flow per unit volume, we have:

divJi = −divJe = Im (2.11)

where Ji,e = −Di,e∇ui,e are the intra and the extracellular current densities.
Before writing the model reaction-diffusion system of PDEs, we have to describe
the ionic current. We have seen how it is possible representing the ionic cur-
rent through a fixed number of gating and ionic concentration variables w :=
(w1, ..., wM)

Iion(v, w) =
N
∑

k=1

Gk(v)
M
∏

j=1

w
p jk
j (v − vk(w)) (2.12)

where N is the number of current we are considering, Gk(v) is the normalize
membrane conductance, vk is the reversal potential for the kth current and p jk are
integers. Recalling (2.3), the dynamics of the gating and concentration variables
are described by the system of ODEs

∂ w j

∂ t
= α j(v)(1− w j)− β j(v)(w j) = R(v, w j),withw(x, 0) = w0(x) (2.13)

where α j,β j > 0 and 0≤ w j ≤ 1.
We can now model the intra and the extracellular potential by coupling the
reaction-diffusion equation (2.10) with the system of ordinary differential equa-
tions given by (2.13). Given an applied current per unit volume I i,e

app : Ω ×
(0, T ) −→ R, where (0, T ) is the time interval (usually it coincides with a heart-
beat) and initial conditions v0 : Ω −→ R, w0 : Ω −→ RM we can find the intra and
the extracellular potential ui,e : Ω × (0, T ) −→ R, the transmembrane potential
v = ui − ue, the gating and ionic concentrations variables w : Ω× (0, T ) −→ RM ,
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c : Ω× (0, T ) −→ RQ such that










































χCm
∂ v
∂ t
− div(Di∇ui) +χ Iion(v, w, c) = i i

app in Ω× (0, T )

−χCm
∂ v
∂ t
− div(De∇ue)−χ Iion(v, w, c) = −ie

app in Ω× (0, T )

∂ w
∂ t
= R(v, w) in Ω× (0, T )

∂ c
∂ t
= S(v, w, c) in Ω× (0, T )

(2.14)

We can also assume that the cardiac tissue is insulated, therefore homogeneous
Neumann boundary conditions are assigned on ∂Ω× (0, T )

nT Di∇ui = 0,nT De∇ue = 0.

Initial conditions are assigned in Ω for t = 0

v(x, 0) = ui(x, 0)− ue(x, 0) = v0(x), w(x, 0) = w0(x). (2.15)

Adding the first two equations of the system, we have −divDi∇ui − divDe∇ue =
I i
app − I e

app. Integrating on Ω and applying the divergence theorem we have the
following condition for the system to be solvable:

∫

Ω

I i
app dx =

∫

Ω

I e
app dx (2.16)

Concluding, the electric potentials, ui and ue, in bounded domains are deter-
mined up to the same additive time-dependent constant, while v is uniquely
determined. The usual choice consists of selecting this constant so that ue has
zero average on Ω

∫

Ω

ue dx = 0.

The anisotropic Monodomain system is a simplified cardiac tissue model that con-
sists of a parabolic reaction-diffusion equation describing the evolution of the
transmembrane potential coupled with an ionic model. This model has been
widely used for three-dimensional simulations because of its lower computa-
tional cost. For our simulations we will refer to this simplified model, considering
the ionic model ranging from the Luo-Rudy model (see the previous section).
Assuming equal anisotropy ratio of the two media (λ), the Bidomain system re-
duces to
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χCm
∂ v
∂ t
− div(D∇v) +χ Iion(v, w, c) = iapp in Ω× (0, T )

∂ w
∂ t
= R(v, w) in Ω× (0, T )

∂ c
∂ t
= S(v, w, c) in Ω× (0, T )

(2.17)

where D = λD
1+λ and Iapp =

λI i
app

1+λ +
λI e

app

1+λ , with Neumann boundary conditions for v
and initial conditions for v and w.

2.1.5 The Luo-Rudy Model

After the work of Hodgkin and Huxley, there were works done to apply their
model to different cell types, including cardiac cells. The quantitative models of
cardiac cells serve the purpose of reproducing the details of the action potential
shape (which is different from the nerve cells action potential) while attempt-
ing to give reasonable mechanistic explanations of their behavior. The difficulty
with cardiac cells is that there are many different cell types and different types
of ionic channels. For example, in the ventricles, epicardial, myocardial, and en-
docardial cells have noticeable differences in the action potential. We recall here
the phase I Luo-Rudy (LR1) model: a mathematical model of the membrane
action potential of the mammalian ventricular cell. With the development of
single-cell and single-channel recording techniques in the 1980s, the limitations
of voltage-clamp measurements were overcome and the intracellular and extra-
cellular ionic environments could be controlled. The data from single-channel
recordings provide the basis for a quantitative description of channel kinetics
and membrane ionic currents. The Luo-Rudy model focuses on the depolariza-
tion and repolarization phases of the action potential and on phenomena that
involve interactions between these processes, including a periodic response of
the cell to periodic stimulation. The general approach is based on a numerical
reconstruction of the ventricular action potential by using Hodgkin-Huxley-type
formalism and Beeler-Reuter equations [Beeler and Reuter, 1977a]. We will see
that the primary difference between a ventricular cell and a Purkinje or sinoatrial
nodal cell is the presence of calcium, which is needed to activate and contract
the cardiac muscle.
The rate of change of membrane potential is given by (2.17) where ionic current
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Iion is the sum of six ionic currents: INa, a fast sodium current; Isi, a slow in-
ward current; IK , a time-dependent potassium current;IK1, a time-independent
potassium current; IKp, a plateau potassium current; and Ib, a time-independent
background current. The ionic currents are determined by ionic gates, whose
gating variables are obtained as a solution to a system of ordinary differential
equations of the form(2.3).

INa: Fast sodium current. The model of the fast sodium channel incorporates
both a slow process of recovery from inactivation and adequate maximum con-
ductance that results in a realistic rate of membrane depolarization. They used
the activation m and inactivation h parameters and it is incorporated a slow in-
activation gate j to represent the slow recovery of sodium current. Thus

INa = ḡN am3h j(V − VNa) (2.18)

Isi: Slow inward current. The slow inward current differs from the fast inward
sodium current in that it is carried primarily by calcium rather than sodium,
requires a more positive level of membrane potential to be activated, and has
slower activation and inactivation kinetics. They have used the activation d and
inactivation f gates and it can be described by

Isi = ḡsid f (V − Vsi) (2.19)

IK : Time-dependent potassium current. Patch-clamp experiments showed that
the IK channel is controlled by a time-dependent activation gate x and a time-
independent inactivation gate x i. Thus

IK = ḡK x x i(V − VK) (2.20)

IK1: Time-independent potassium current. It can be identified an inactivation gate
k1 but, because its time constant is small, it can be approximated by k1x , its
steady-state value. Thus the IK1 can be formulated as follow

IK1 = ḡK1k1x(V − VK1) (2.21)

The current at the plateau potentials results from a time-independent channel
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IKp, which is also independent of external potassium concentration, and a back-
ground current Ib. They can be formulated as

IKp = ḡKpKp(V − VKp) (2.22)

and
Ib = ḡb(V − Vb) (2.23)

It can be defined the total time-independent potassium current, Ik1(T ), as

IK1(T ) = IK1 + IKp + Ib (2.24)

2.1.6 Eikonal Model

An alternative way to reduce the computational costs and the complexity of the
Bidomain model is to consider the Eikonal model for the propagation of action
potential wavefront in the myocardium, which can be derived from the Bido-
main Model by means of a perturbation technique [Keener, 1991], [Franzone
and Guerri, 1993]. This model captures the main features of cardiac electrical
activity regardless of one’s specific ionic model.
Since the action potential has a rapid increase, the excitation wavefront involves
a thin depolarized region of cardiac cells and the eikonal model can be used for
evaluating the activation time at which the wavefront occupies a given position.
Then, the propagation of the excited layer is characterized by the activation time
function ψ(x) : Ω→ R that satisfies the following eikonal equation

c0

Æ

∇ψ · D∇ψ−∇ · (D∇ψ) = τm in Ω (2.25)

ψ = η on Sa (2.26)

D∇ψ · n= 0 on ∂Ω− Sa (2.27)

where c0 ∈ R, τm is the membrane time costant, Sa is the physical boundary
where the activation is prescribed and D is the conductivity tensor.
The Eikonal model permits to use coarser spatial resolution than the one re-
quired for the computation of the depolarization phase of the action potential
by a reaction-diffusion model [Pezzuto et al., 2017] with the result of a shorter
computation time.
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Chapter 3

Numerical Formulation of the
Electrophysiology Mathematical
Problem

The Bidomain and the Monodomain models are more complex to integrate. This
chapter briefly summarizes the main techniques used in literature for space and
time discretization. Then we present a Monodomain space discretization based
on the finite element method and two different approaches for time discretiza-
tion: the first is a semi-implicit finite difference method for the reaction-diffusion
equation coupled with Rush-Larsen scheme for the ODE’s system. The second is
an operator splitting strategy coupled with a predictor-corrector method applied
to (3.19).

3.1 Space Discretization

Many different approaches have been developed for Bidomain and Monodomain
space discretization. Finite difference methods have been proposed in Buist et al.
[2003] and Trew et al. [2005], and Finite Elements have been extensively used
[Quarteroni and Quarteroni, 2009], [Linge et al., 2009]. Recently Isogemetry
Analysis has also been applied for space discretization of the Monodomain Model
[Bucelli et al., 2021]

3.1.1 Variational formulation

Finite element discretization of the Monodomain model is based on the Galerkin
variational formulation. Referring to Franzone et al. [2014], let V be the Sobolev

21
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space H1(Ω), where Ω ⊂ R3 is the bounded physical region occupied by the
cardiac tissue, and defined by

(ϕ,ψ) =

∫

Ω

ϕψ, d x ∀ϕ,ψ ∈ L2(Ω)

a(ϕ,ψ) =

∫

Ω

(∇ϕ)T D(x)∇ψ d x ∀ϕ,ψ ∈ H1(Ω)
(3.1)

the usual L2-inner product and elliptic bilinear forms. Now we can consider the
variational formulation of the Monodomain model. Given v0, w0 ∈ L2(Ω), Iapp ∈
L2(Ω×(0, T )), find v ∈W 1,1((0, T ); V ), w ∈W 1,1((0, T ); L2(Ω)M), c ∈W 1,1((0, T ); L2(Ω)Q)
such that ∀t ∈ (0, T )























χCm
∂

∂ t
(v(t),ϕ) + a(v(t),ϕ) +χ(Iion(v, w),ϕ) = (Iapp,ϕ) ∀ϕ ∈ V

∂

∂ t
(w(t),ψ) = (R(v(t), w(t)),ψ) ∀ψ ∈ L2(Ω)M

∂

∂ t
(c(t),ζ) = (S(v(t), w(t)), c(t),ζ) ∀ζ ∈ L2(Ω)Q

(3.2)

with the initial conditions v(x, 0) = ui(x, 0)− ue(x, 0) = v0(x), w(x, 0) = w0(x),
c(x, 0) = c0(x).

3.1.2 Finite element discretization for the Monodomain model

Let Th be a uniform triangulation ofΩ and V h the associated finite element space.
It is possible to choose a finite element basis {φi} for V h and to define the sym-
metric mass matrix and stiffness matrix

Mi j =

∫

Ω

φiφ j d x , Ai j =

∫

Ω

(∇φi)
T D(x)∇φ j d x

Denoting vh, wh, Ih
ion and Ih

app as nodal values of v, w,Iion and Iapp, the finite
element discretization of the Monodomain equation needs to find the solution
vh of

χCmM
∂ vh

∂ t
+ Avh +χM Ih

ion(v
h, wh) = M Ih

app (3.3)
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This equation is coupled with the semi-discrete approximations of the membrane
model











∂ wh

∂ t
= R(vh, wh)

∂ ch

∂ t
= S(vh, wh, ch)

(3.4)
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3.2 Time Discretization

There are several techniques for performing the time discretization of the Mon-
odomain equations, and they involve explicit, semi-implicit, or fully implicit
schemes. Some examples of explicit schemes can be found in Potse et al. [2006b]
and Puwal and Roth [2007], while fully implicit methods have been considered
in Murillo and Cai [2004], Munteanu and Pavarino [2009], and MUNTEANU and
FRANCO PAVARINO [2007].

3.2.1 IMEX time integrator for the Monodomain system

In this section, we consider an implicit-explicit scheme that is able to combine
the stability of implicit methods with the lower computational cost of explicit
ones. In particular, the diffusion term is treated implicitly, while the reaction
term, related to the ionic currents, is explicitly considered.
Let T = [0, T] be partioned into N intervals [tn−1, tn] of costant time step
τ= tn − tn−1.
In general, the most diffused method for the time discretization of gating vari-
ables and concentrations are forward and backward Euler and Rush Larsen meth-
ods.
For the simulations of the Monodomain system coupled with the Luo-Rudy ionic
model, we employ the Rush Larsen method for gating variables described by
ordinary differential equations with the following form:

∂ w
∂ t
= αw(v)(1− w)− βw(v)w=

w∞(V )− w
τw(v)

(3.5)

In other words, m, h, j, d, f and x .
The Rush Larsen method assumes the action potential V constant all over the
subintervals [tn−1, tn]. So (3.5) can be treated as a linear ODE with an exact
solution given by:

wn = w∞(v
n−1) +
�

wn−1 − w∞(v
n−1)
�

e−
τ

τw(vn−1) (3.6)

This method is equivalent to an explicit exponential integrator and ensures that
gating variables belong to their physiological domain [0,1].
We adopt the forward Euler scheme for the remaining concentration and gating
variables.
Then we can use the gating solutions for solving the Monodomain equation

χCm
vn − vn−1

τ
− Dvn +χ Iion(v

n−1, wn, cn) = Iapp(t
n) (3.7)
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It is also possible to consider a second-order scheme for the time derivative:

χCm
3vn − 4vn−1 + un−2

2τ
− Dvn +χ Iion(v

n−1, wn, cn) = Iapp(t
n). (3.8)

3.2.2 Operator Splitting

Operator Splitting is a useful technique for solving complex coupled PDE systems
since they may be split into smaller parts that are easier to integrate. The class
of methods we will refer to it is called f ract ional step methods.
We can consider a time interval T = [0, T] divided into N subintervals [tn−1, tn]
with a constant time step ∆t = tn − tn−1 and an initial problem of the form

dv
d t
= (L1 + L2) v, with v(0) = v0 (3.9)

where L1 and L2 are operators and v0 is a given initial condition.
The main idea is to consider a small time step ∆t and to compute at first an
approximate solution at t =∆t of the problem

dv
d t
= L1(v), with v(0) = v0 (3.10)

for t ∈ [0,∆t].
Then we solve the problem

du
d t
= L2(u), with u(0) = v(∆t) (3.11)

for t ∈ [0,∆t].
Let us now apply this algorithm to the Monodomain model

∂ v
∂ t
= D∇ · (∇v)− Iion(v, w)

∂ w
∂ t
= R(v, w)

(3.12)

following the scheme proposed by Qu and Garfinkel [1999a].
Then the two operator L1 and L2 are defined by

L1v = −Iion(v, w)

L2v = D∇ · (∇v)
(3.13)

noting that the nonlinear partial differential equation is reduced to a linear PDE
(a diffusion problem) and a nonlinear ODE.
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For the simplicity of notation, we define vn = v(tn), the action potential at a fixed
time tn, and wn = w(tn), the restoring variable at the time tn. The first step of
the splitting algorithm consists of solving

∂ v
∂ t
= −Iion(v, w)

∂ w
∂ t
= R(v, w)

v(tn) = vn

w(tn) = wn

(3.14)

for t ∈ (tn +∆tn]. Then we need to solve

∂ v
∂ t
= D∇ · (∇v)

v(tn) = vn
∗

(3.15)

for t ∈ (tn, tn +∆t], with vn
∗ solution of v at t = tn +∆t in the previous step.

This scheme, commonly referred to as Godunov splitting, is a first-order method.
Hence it is of no benefit to solve the subproblem equations with greater than
first-order accuracy.
A small modification permits us to make a second-order splitting algorithm: in-
stead of solving the first step for a full-time step of length ∆t, we solve the first
subproblem for a time step of length ∆t/2

∂ v
∂ t
= −Iion(v, w)

∂ w
∂ t
= R(v, w)

v(tn) = vn

w(tn) = wn

(3.16)

then we evaluate the solution of the second subproblem for a full-time step ∆t

∂ v
∂ t
= D∇ · (∇v)

v(tn) = vn
∗

(3.17)
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with vn
∗ resulting solution in the first step.

Finally, we solve the first subproblem again for a time interval of length ∆t/2.

∂ v
∂ t
= −Iion(v, w)

∂ w
∂ t
= R(v, w)

v(tn +∆t/2) = vn+1
∗

w(tn +∆t/2) = wn
∗

(3.18)

where vn+1
∗ is the solution of the action potential at the second subproblem, and

wn
∗ is the solution of the recovery variable in the first subproblem. This three step

scheme is also known as Strang splitting.
To obtain an overall second-order accuracy of the Strang splitting, it is necessary
to solve both the ODEs in the first and third steps and the PDE in the second step
with at least a second-order method.

3.2.3 A second-order time integrator scheme

Starting from the Strang splitting algorithm, we combine a θ -rule of second-
order accuracy for solving the linear PDE and a second-order predictor correct
scheme for the nonlinear system in the first and third steps. The target is to ob-
tain a second-order time integrator scheme.

Simplified Two-Variable Model time discretization

We apply this time integrator to the Two-variable model proposed by R. R. Aliev
and A. V. Panfilov











∂ v
∂ t

= d∇ · (∇v)− kv(v − a)(v − 1)− vw

∂ w
∂ t

= ε0 +
µ1w
(v +µ2)

(−w− kv(v − a− 1))
(3.19)

setting
We solve the linear PDE in the second step using a time discretization based on
θ -rule, which is the most common technique used for the time discretization of
PDEs. A simple finite difference approximation is used for the time derivative,
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k 8.0
a 0.15
ε0 0.002
µ1 0.2
µ2 0.3

Table 3.1. fixed parameters for numerical simulations

while the other terms are computed as weighted averages of the values from the
start to the end of the time step

vn+1 − vn

∆t
= θ
�

d∇ · (∇vn+1)
�

+ (1− θ ) (d∇ · (∇vn)) (3.20)

A different accuracy is obtained for different choices of θ ∈ [0,1]. Setting θ =
1/2 we derive the Crank-Nicolson scheme, which is second-order accurate in
time.
There are a large variety of methods for solving nonlinear differential systems,
but we have to take into account that the cellular processes describing cardiac
electrophysiology involve different time scales, making the equations stiff and
challenging to solve. Implicit Runge-Kutta methods have been found suitable for
time discretization of the first and third step of the splitting algorithm, but also
explicit predictor-corrector schemes can be an opportunity.
In particular, we consider the problem











∂ v
∂ t

= F(v, w)

∂ w
∂ t

= G(v, w)
(3.21)

with F(v, w) = −kv(v−a)(v−1)−vw and G(v, w) = ε0+
µ1w
(v+µ2)

(−w−kv(v−a−1))
and let vn = v(tn) and wn = w(tn).
The predictor-corrector algorithm consists of a suitable combination of two dif-
ferent numerical methods (usually one explicit and the other implicit) and pro-
ceeds in two steps. First, the predictor step attempts to anticipate the function’s
value at a subsequent time step; then the corrector step refines the initial approx-
imation by using a weighted average of function’s values including the predicted
one.
For the first predicted step, we apply the Explicit Euler method:

�

vn+1
∗ = vn +∆t F(vn, wn)

wn+1
∗ = wn +∆tG(vn, wn)

(3.22)
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with ∆t = tn+1 − tn.
Then we update the solution employing the predicted values vn+1

∗ and wn+1
∗ :















vn+1 = vn +∆t F

�

vn + vn+1
∗

2
,
wn + wn+1

∗

2

�

wn+1 = wn +∆tG

�

vn + vn+1
∗

2
,
wn + wn+1

∗

2

� (3.23)

Combing this explicit scheme for solving the nonlinear differential equation with
the Crank-Nicolson method for solving the diffusion problem, we obtain an over-
all second-order accuracy time integrator that stands out from the common op-
erator splitting methods for the use of a fully explicit scheme for the resolution
of the nonlinear subproblem.

Benchmark and data

The computational domain considered for numerical simulations of the second-
order time integrator scheme is a two-dimensional square Ω with a length side
of 20[mm].

Figure 3.1. Computational domain for numerical simulations of the simplified
two-variable model for cardiac action potential

Because of the stiff characteristics of the reaction-diffusion equation, we also
include a smooth initial condition on a circled region on the left bottom of the
computational domain

v0 = v(0) = −
1
π

arctan20(x2 + y2 − 12.0) + 0.5 (3.24)
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This problem is independent of fibres direction and uses isotropic material prop-
erties considering the conductivity coefficient d = 0.09529837251. We need to
recall that this simplified model involves dimensionless variables, and for obtain-
ing the usual values, the following formulae are convenient

V [mV ] = 100v − 80 t[ms] = 12.9t[t.u.] (3.25)

We perform the simulation on a time period T = 38.76[t.u.] = 500[ms] which is
the usual action potential duration (APD) with a time step ∆t = 0.05[t.u.].
We report the overtime plot of a fixed point on the domain Ω noting that com-
pared to the usual simple model for membrane cells, the Aliev and Panfilov model
is able to represent an action potential duration more similar to the cardiac one

Figure 3.2. Over time plot of action potential on a fixed point of the compu-
tational

Next, we present some frames representing the evolution of action potential over
the computational domain Ω showing the first depolarization phase, when the
action potential reaches its pick value (nearly 20mV), and the subsequent repo-
larization phase characterized by the returning to the resting value after a plateau
phase (typical of cardiac cells).
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(a) t=0[t.u.] (b) t=10[t.u.]

(c) t=20[t.u.] (d) t=25[t.u.]

(e) t=30[t.u.] (f) t=35[t.u.]

Figure 3.3. Simulation of Alien and Panfilov membrane cell model with second-
order time integrator scheme on a two-dimensional square
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Convergence Study

Convergence results for the second-order time integrator are performed on the
ICS (Institute of Computational Science) cluster (Lugano, Switzerland ), com-
posed of 42 compute nodes running CentOS 8.2.2004.x86_64 using the com-
putational domain described in the previous section for different time step and
mesh sizes.
Following Sundnes et al. [2007], the reference solution is computed with a time
step ∆t = 0.001 and a mesh size h= 0.00625 and N = 3200× 3200 elements.
The table shows the L2 norm of the errors eL2 and the orders of convergence α
estimated by comparing the solutions with the reference solution.

∆t elements eL2 α

0.25 40 × 40 0.3378 -
0.125 80× 80 0.0904 1.9024
0.0625 160× 160 0.0219 2.0433
0.03125 320× 320 0.0069 1.6742
0.015625 640× 640 0.0014 2.2842

Table 3.2. Convergence results for the monodomain model with the Aliev and
Panfilov cardiac cell model

As we expected, we obtain an overall time integrator of second-order accuracy
thanks to the combination of the second-order Strang splitting algorithm with the
Crank-Nicolson model for the linear diffusive subproblem and the second-order
predictor-corrector scheme for solving the nonlinear ODE related to the reaction
term.
The proposed model can be compared to a traditional implicit time integrator
based on a second-order θ -method scheme solved by the Newton method

�

vn+1
∗ = vn + θ∆t F(vn, wn) + (1− θ )∆t F(vn+1, wn+1)

wn+1
∗ = wn +∆tG(vn, wn) + (1− θ )∆tG(vn+1, wn+1)

(3.26)

with θ = 1
2 .

The advantages are multiple. Even though explicit schemes have additional sta-
bility restrictions, implicit methods, like Newton, are usually time-consuming
and too expensive for ionic models and refined mesh (Table2.3) In addition, the
Newton method requires more than 6 iterations for the resolution of each step,
while the predictor-corrector competes with only two iterations maintaining the
same precision with comparable errors for different resolutions.
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∆t elements Predictor-
Corrector

Newton method

0.25 40 × 40 16.2028[ms] 16.2941[ms]
0.125 80× 80 15.7057[ms] 15.9594[ms]
0.0625 160× 160 82.8601[ms] 82.1158[ms]
0.03125 320× 320 210.447[ms] 209.554[ms]
0.015625 640× 640 811.383 [ms] 814.453[ms]
0.001 3200× 3200 50923.9[ms] 54481.8[ms]

Table 3.3. Solving time at each time step for predictor-corrector and Newton
scheme on a Macbook Pro, chip M1 (ARM-based systems-on-a-chip (SoCs)
designed by Apple Inc.) with 8 cores and a RAM of 16 GB.

∆t elements Predictor-
Corrector

Newton method

0.25 40 × 40 0.2869 0.3638
0.125 80× 80 0.0696 0.0695
0.0625 160× 160 0.0180 0.0181
0.03125 320× 320 0.0068 0.0068
0.015625 640× 640 0.0010 0.0010

Table 3.4. L2 norm errors for predictor-corrector and Newton scheme on a
Macbook Pro, chip M1 (ARM-based systems-on-a-chip (SoCs) designed by
Apple Inc.) with 8 cores and a RAM of 16 GB.

The described time integrator can also be applied to the Monodomain model
with different ionic models.
The first step of the nonlinear subproblem can be reformulated to as:







vn+1
∗ = vn +∆t F(vn, wn, cn)

wn+1
∗ = wn +∆tG(vn, wn)

cn+1
∗ = cn +∆tG(vn, wn, cn)

(3.27)

with ∆t = tn+1 − tn.
F(v, w, c) represents the ionic currents depending on gating variables w and ionic
concentrations c. The second step updates the solution employing the predicted
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values of v, w, and c as follows:


































vn+1 = vn +∆t F

�

vn + vn+1
∗

2
,
wn + wn+1

∗

2
,
cn + cn+1

∗

2

�

wn+1 = wn +∆tG

�

vn + vn+1
∗

2
,
wn + wn+1

∗

2

�

cn+1 = cn +∆tG

�

vn + vn+1
∗

2
,
wn + wn+1

∗

2
,
cn + cn+1

∗

2

�

(3.28)

We need to remind that explicit schemes, instead of implicit or exponential meth-
ods, have additional stability restrictions, which result in fine mesh and smaller
time steps.



35 3.3 Numerical simulations of electrophysiological models for cardiac cells

3.3 Numerical simulations of electrophysiological mod-
els for cardiac cells

In this section, we will show some results of the numerical simulations of the
Eikonal model and the Monodomain system with the Luo-Rudy ionic model. Both
are implemented in the FE framework MOOSE [ht tps : //gi thub.com/Sil via−
Caligari/pony.gi t].
The Monodomain system is discretized using an IMEX time integrator scheme
for the monodomain equation coupled with the Rush-Larsen and forward Euler
methods for the resolution of the ordinary differential equations related to the
gating variables and concentrations, while the Finite Element method is used for
space discretization of both models (Monodomain and Eikonal) with a number
of nodes N = 494762 and N = 57524 respectively.

3.3.1 Activation maps in a truncated ellipsoid

Geometry setup

The geometry we take into account is the volume contained in the endocardial
and epicardial surfaces generated by the parametrization of a truncated ellipsoid
proposed in Land et al. [2015a]

x=





x
y
z



 =





rs sinφ cosψ
rs sinφ sinψ

rl cosφ



 (3.29)

where for the endocardial sur f ace:

rs = 7[mm] rl = 17[mm] φ ∈ [−π,−arccos
5
17
] ψ ∈ [−π,π]

and for the epicardial sur f ace:

rs = 10[mm] rl = 20[mm] φ ∈ [−π,−arccos
5

20
] ψ ∈ [−π,π]

with a base plane fixed at z = 5[mm]. The solid is then scaled by a factor 0.0025
and the base plane is set at x = 0.005[m] and centered in (0.005,0.035, 0.035) in
anticipation with FSI simulations where solid structure and fluid domain are ex-
pressed in meters. Space discretization in Eikonal simulation consists of 324376
P1 elements and 61216 nodes, while because of the stability properties of the
Monodomain system, we consider a finer mesh for the simulation involving the
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Monodomain equation coupled with LR1 model. The solid is discretized with
2595008 P1 elements and 460935 nodes

Figure 3.4. Volumetric geometry between the endocardial and epicardial sur-
face

Eikonal model

We first evaluate the activation map generated by the Eikonal model (see Chapter
2). Because we don’t include the activity of the Purkinje network, we apply
stimuli at three different points on the epicardium. For the one-way electro-

σl/Cmχ σt/Cmχ σn/Cmχ c0 τm

0.0001529 0.0000699 0.0000225 8.27 0.09

Table 3.5. Three-dimensional Eikonal parameters

fluid-structure coupling, we shift the activation of cardiac muscle according to
the solution of the Eikonal equation (Chapter 6).
The inclusion of the fiber orientation plays a fundamental role in the propagation
of the electrical signal since the electrical propagation velocity differs along the
fiber and cross-fiber directions.
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Figure 3.5. Eikoanl Model. Activation map in the three-dimensional left ven-
tricle

In this thesis, we estimate the fibres orientation following the approach presented
in Potse et al. [2006a], where we introduce a normalized coordinate that is null
for points on the epicardium and equal to one for points on the endocardium of
the left simplified ventricle.

Monodomain system coupled with Luo-Rudy ionic model

Differently from sinoatrial node (SAN) cells, which are a group of cardiac pace-
maker cells located on the right atrium and able to reach autonomously excita-
tion, ventricle cells need a proper electrical stimulus.
If the stimulus is below the threshold value (nearly −60mV), the transmembrane
potential returns to its resting value. If the stimulus is above the threshold value,
depolarization starts, and transmembrane potential increases.
Because our geometry consists of a simplified left ventricle, we need to apply an
electrical stimulus at three different points on the epicardial surface (Iapp in the
Monodomain equation (2.17)).
In particular, we introduce an applied current Iapp = 50 [mA/cm3] for 2 [ms].

σl[Ω−1cm−1] σt[Ω−1cm−1] σn[Ω−1cm−1] χ[ cm−1] Cm[mF/cm2]
0.0012 0.000225 0.00005 1000 0.001

Table 3.6. Three-dimensional Monodomain parameters

The model is run for 10000 time steps of 0.05 [ms], and coefficients are reported
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Figure 3.6. Action potential profile on a fixed point on the epicardial surface

in Table 3.6. We evaluate the voltage, the gating variables and concentrations,
and the activation time at each time step.

Figure 3.7. Monodomain with LR1 model. Activation map in the three-
dimensional left ventricle



Chapter 4

Governing equations in Fluid-Structure
Interaction Problem with Active Force

Fluid-structure interaction (FSI) is a multiphysics interaction between a deformable
or moving structure and a surrounding external or internal fluid flow exchanging
energy through an interface.
The FSI mathematical problem needs to account for the physical and geomet-
rical interaction. At the numerical level, this calls for suitable methods able to
maintain stability and accurately manage the coupling efficiently between the
two subproblems.
First, we will present an overview of the fundamentals of continuum mechanics
for introducing subsequently the equations related to the solid and fluid subprob-
lems separately. Then we will describe the fluid-structure interaction problem by
focusing on geometrical and physical coupling conditions.
Traditional FSI formulations typically focus on the coupling between fluid flow
and passive elastic structures. However, to comprehensively study the fluid-
structure interaction phenomena in cardiac models, it is essential to develop a
generalized FSI framework that incorporates the active behavior of the cardiac
muscle. In this chapter, we present an extension to the elastodynamic equations
in the context of FSI, introducing an active term that accounts for the structure’s
behavior due to active contraction.

4.1 Fundamentals of continuum mechanics

In this section, we will briefly review the main principles of continuum mechan-
ics, starting from introducing the notions of a continuum body and internal forces
leading to the definitions of deformation map and stress tensor field. Then we

39
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will report the main balance laws useful for the representation of the constitutive
models for hyperelastic solids, also investigating materials reinforced by a family
of fibers.

4.1.1 Kinematics

It is possible to make a basic assumption about any material body, ignoring its
atomic structure, modeling the material involved as a continuum: at any fixed
instant t, a material body can be identified as an open set B ⊂ E3 and each
particle with a point x ∈ B.
Let us assume that the mass of a body B is continuously distributed, and any
subset of B has positive mass with positive volume and define a mass density
field per unit volume ρ : Ω ⊂ B→ R such that

mass[Ω] =
∫

Ω

ρ(x)dV (4.1)

where Ω is an open subset of B and dV denote an infinitesimal volume element
at x ∈ Ω.
Furthermore, the force field, exerted by an external presence, on a body B per
unit volume can be given by a function b̂(x) : B→V , then the resultant force on
an open subset of B, Ω, is defined by

rb[Ω] =

∫

Ω

b̂(x)dV (4.2)

In the same way, it is used the term surface force to denote a force, per unit
area, along a bounding surface of a body or an imaginary surface within the
interior of a body. Let Γ be an oriented surface in B with a unit normal field
n : Γ → V , the surface force is given by a function tn : B→ V called traction or
surface force field.
The resultant force due to a surface force field on an oriented surface Γ is defined
as

rs[Γ ] =

∫

Γ

tn(x)dA (4.3)

where dA represents an infinitesimal surface area element at x ∈ Γ .
In particular the traction field tn depends only pointwise on the unit normal field
n and there is a traction function t :N × B→V such that tn = t(n(x),x), where
N ⊂ V . The Cauchy’s Theorem makes more evident the dependence of the
traction function t(n,x) from n and it is fundamental for the definition of the
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Cauchy stress field for a body B.
Let t :N ×B→V be a traction function for a body B satisfying the law of action
and reaction, then t(n,x) is linear in n and for each x ∈ B exists a second-order
tensor S(x) ∈ V 2 such that

t(n,x) = S(x)n (4.4)

The nine components of the stress tensor can be interpreted as the compo-
nents of the traction vectors t(e j,x), where e j are the normals on the coordinate
planes at x. In other words, the traction vectors represent the surface forces per
unit area on an infinitesimal cube centered at x.
Now we can proceed to introduce the main definitions and principles of deforma-
tion and motion that causes stresses or are caused by stresses in a material body.
First of all, we consider a reference frame at a fixed origin O with an orthonormal
basis {Ei}i=1,...,3. As the body B moves in space E3, at a given time t it occupies
a sequence of geometrical regions which are called con f i gurations of B at that
time t and are determined uniquely at any instant of time. When the position
of a point X corresponds to a fixed reference time, the region occupied by the
body is referred to as reference configuration and coordinates X = (X1, X2, X3)
are labeled as material coordinates. If we assume that this region moves into a
new region at a subsequent time t, this new configuration is called current (or
deformed) configuration, and particles may be identified by the position vector
x = (x1, x2, x3) and usually named ad spatial coordinates. If the motion is de-
scribed by the material coordinates, it is said to be a material description of the
motion or Lagrangian description. At the same time, the spatial description or
Eulerian description is referred to a characterization of the motion in terms of
spatial coordinates. In fluid mechanics, it is usually used the Eulerian description
on the other hand, the Lagrangian description is often preferred for describing
the constitutive behavior of solids.
A deformation is a vector field χ that maps points X located in the reference
configuration to points x in the current configuration

x= χ(X, t). (4.5)

It is assumed to be uniquely invertible with the inverse motion denoted by χ−1.

Thus it can be defined the displacement of a material particle from its initial
location X to its final location x in the material description

U(X, t) = x−X= χ(X, t)−X. (4.6)
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Figure 4.1. Deformation map between the reference configuration B0 and the
current configuration Bt

A principal measure of deformation is the deformation gradient, defined as

dx= F(X, t)dX, where F(X, t) =
∂ χ(X, t)
∂ X

(4.7)

which describes a linear transformation generating a vector dx by the action of a
second-order tensor F on a vector dX. If we assume the existence of the inverse
motion, then the inverse of the deformation gradient F−1 can be defined.
It could be useful to derive a relation able to transform integrals defined in ma-
terial coordinates to integrals over the corresponding spatial coordinates and
vice-versa. Let us consider an infinitesimal volume element dV at the point X
in the reference configuration and the corresponding volume element dv at the
point x in the current configuration. The infinitesimal volume dV can be rep-
resented as a triple scalar product of the three vectors based dX1, dX2 and dX3,
then dV = (dX1×dX2)·dX3. Recalling the definition of the deformation gradient
(4.7) and noting that the infinitesimal vectors dx1, dx2 and dx3 can be used to
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define the volume element dv we obtain

dv = (dx1 × dx2) · dx3 = (F(X, t)dX1 × F(X, t)dX2) · F(X, t)dX3

= det(F(X, t))(dX1 × dX2) · dX3 = det(F(X, t))dV
(4.8)

We define J(X, t) = det(F(X, t)) known as Jacobian determinant. Since F is in-
vertible then J(X, t) = det(F(X, t)) 6= 0 and because volume elements can not
have negative volume, J(X, t)> 0 for all points X and time t.
The infinitesimal volume in the current configuration can be expressed as a dot
product

dv = ds · dx (4.9)

that can be rewritten as

(FT ds− J(X, t)ds) · dX= 0 (4.10)

So we find the relation between the infinitesimal areas on the current and refer-
ence configurations, known as Nanson’s formula

ds = JF−T dS (4.11)

Changes in material elements during motion can be expressed in the form of
second-order strain tensors, of which many definitions and names have been
proposed in literature. Following Holzapfel [2002], we will present the most
common definitions.
Let a0 be the unit vector at the position X in the reference configuration, describ-
ing the direction of a material line element (such as fibre), and dX the length of
the material line element. The stretch vector in the direction of a0 is defined as

λa0
(X, t) = F(X, t)a0 (4.12)

The modulus λ = |λa0
| is called stretch, and if we evaluate the square, we obtain

λ2 = a0 · FT Fa0 = a0 ·Ca0 (4.13)

where C= FT F is the symmetric and positive define right Cauchy-Green tensor.
The inverse of the Cauchy-Green tensor B= C−1 is called Piola deformation ten-
sor.
Another strain measure is the change in the squared lengths in the direction of
a0 at a point X

1
2
[(λ|dX|)2 − (|dX|)2] = dX · E (4.14)
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with E= 1
2(F

T F− I) the Green-Lagrange strain tensor.
An instant consequence of deformation and motion is stress, which is often re-
sponsible for the deformation of materials and is fundamental in continuum me-
chanics.
As we have seen in (4.4), surface tractions can be expressed in terms of stress
fields acting on a normal vector for both material and spatial description. Then
we define t the Cauchy traction vector, the force measured per unit surface area in
the current configuration, and T the first Piola-Kirchoff traction vector, the force
measured per unit surface area in the reference configuration. For the Cauchy’s
stress theorem, there exist second-order tensors so that

t(x, t,n) = σ(x, t)n

T(X, t,N) = P(x, t)N
(4.15)

where σ is the Cauchy stress tensor and P is called first Piola-Kirchoff stress ten-
sor.
Because it is not convenient to work with stress tensors expressed in spatial co-
ordinates in problems involving solids, it is possible to find a relation between
the Cauchy stress tensor and the first Piola-Kirchoff stress tensor known as Piola
transformation

P= JσF−T (4.16)

4.1.2 Balance principles

In this section, we will recall the main balance principles applying to any material
and fundamental in continuum mechanics.
As we have already observed (4.1), an integral expression of a mass of a body
includes a continuous scalar field representing the mass density per unit volume.
Let ρ0(X) be the reference mass density and ρ(x, t) the spatial mass density.
Because mass can not be produced or destroyed (in the case of non-relativistic
physics), it is a conserved quantity; in particular, if an element has a fixed mass
in the reference configuration, then it must maintain the same mass during its
motion. This statement is known as conservation of mass and can be expressed
as

mass[Ω0] = m=

∫

Ω0

ρ0(X)dV =

∫

Ω

ρ(x, t)dv (4.17)

for all times. Then,
Dm
Dt
=

D
Dt

∫

Ω

ρ(x, t)dv = 0 (4.18)
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From (4.8), it is possible to rewrite this relation as
∫

Ω0

[ρ0(X)−ρ(χ(X, t), t)J(X, t)]dV = 0 (4.19)

The arbitrariness of Ω0 allows to convert the integral equality into the pointwise
one

ρ0(X) = ρ(χ(X, t), t)J(X, t) (4.20)

Before introducing the next balance principles, let us consider a set of particles
occupying a region Ω with volume Vx, with a motion given by x = χ(X, t), a
smooth spatial velocity field v = v(x, t), a spatial mass density field ρ = ρ(x, t)
and a smooth spatial scalar field φ = φ(x, t) describing a physical quantity per
unit volume at a time t.
The status of the continuum body subjected to the scalar field φ may be charac-
terized by the integral function

I(t) =

∫

Ω

φ(x, t)dv (4.21)

If we want to compute the material time derivate of I(t), we need to transform
the integral in terms of variables that refer to the reference configuration since
the region Ω depends on time

D
Dt

I(t) =
D
Dt

∫

Ω0

φ(χ(X, t), t)J(X, t)dV

=

∫

Ω0

�

D
Dt
φ(χ(X, t), t)J(X, t) +φ(χ(X, t), t)

D
Dt

J(X, t)
�

dV

(4.22)

Then, if we convert the volume integral to the current configuration dv = J(X, t)dV :

D
Dt

∫

Ω

φ(x, t) =

∫

Ω

�

D
Dt
φ(x, t) +φ(x, t)

D
Dt J(X, t)

J(X, t)

�

dv

=

∫

Ω

�

D
Dt
φ(x, t) +φ(x, t)∇ · v(x, t)

�

dv

=

∫

Ω

�

∂ φ(x, t)
∂ t

+∇ · (φ(x, t)v(x, t))
�

dv

(4.23)

Applying the divergence theorem

D
Dt

∫

Ω

φ(x, t) =

∫

Ω

∂ φ

∂ t
dv +

∫

∂Ω

φv · nds (4.24)
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The first term on the right-hand side represents the local time rate of change of
the spatial field φ, while the second term describes the outward normal flux of
φv across the surface ∂Ω. This relation is known as Reynolds transport theorem,
and it is fundamental for the derivation of conservation principles. Applying
the theorem to (4.18), it is possible to obtain the rate form of continuity mass
equation in the spatial description

D
Dt

∫

Ω

ρ(x, t)dv =

∫

Ω

∂ ρ

∂ t
+∇ · (ρv)dv = 0 (4.25)

and because of the arbitrariness of the volume, it follows that

∂ ρ

∂ t
+∇ · (ρv) = 0 (4.26)

We now define the linear momentum

L(t) =

∫

Ω

ρ(x, t)v(x, t)dv (4.27)

and the angular momentum at a fixed point x0

J(t) =

∫

Ω

r×ρ(x, t)v(x, t)dv (4.28)

with r= x− x0.
The linear and angular momentum balance principles are generalizations of the
first and second principles of motions in continuum mechanics, then the contri-
butions to linear and angular momentum are due to external sources, F(t) and
M(t), which represent the resultant force and the resultant moment (i.e., the
moment of F(t) at a fixed point x0) respectively.
The resultant force in the current configuration is given by the additive form

F(t) =

∫

∂Ω

tds+

∫

Ω

bdv (4.29)

where t represents the Cauchy traction vector and b the volumetric force field.
Then, the conservation of linear momentum reads as

D
Dt

L(t) =
D
Dt

∫

Ω

ρ(x, t)v(x, t)dv = F(t)

=

∫

Ω

bdv +

∫

∂Ω

tds

(4.30)
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and the momentum balance as

D
Dt

J(t) =
D
Dt

∫

Ω

r×ρ(x, t)v(x, t)dv =M(t)

=

∫

Ω

r× bdv +

∫

∂Ω

r× tds

(4.31)

The Cauchy stress theorem ensures the existence of a second-order tensorσ(x, t)
such that t(x, t,n) = σ(x, t)n. Applying the divergence theorem to (4.30), we
obtain the Cauchy’s first equation of motion

∫

Ω

[∇ ·σ+ b−ρ(x, t)
D
Dt

v(x, t)]dv = 0 (4.32)

and by assuming Ω is arbitrary, we have the local relation

∇ ·σ+ b= ρ(x, t)
D
Dt

v(x, t) (4.33)

Since working with material coordinates is usually more convenient, we would
rewrite the Cauchy equation of motion in terms of coordinates related to the
reference configuration.
First of all, we need to introduce the Piola identity

∇ · (JF−1) = 0 (4.34)

which combined with Piola transformation (4.16), gives us the transformation
of the first Piola-Kirchhoff stress tensor

∇ · P= J∇ ·σ (4.35)

After a change of variables (and using the relation dv = JdV ), the resultant
Cauchy’s first equation of motion in material coordinates reads as

∫

Ω0

[∇ · P+ B−ρ0(X)
D
Dt

V(X, t)]dV = 0 (4.36)

The fundamental equations introduced are essential for characterizing kinemat-
ics, stress, and balance principles and are valid for any continuum body. For this
reason, they do not permit to distinguish one material from another, and we need
to establish additional equations in the form of constitutive laws to specify the
material properties we take into account.
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A constitutive law should approximate the physical behavior of a material under
specific conditions of interest. It is usually considered a phenomenological ap-
proach that describes the macroscopic nature of the material as continua. The
main idea is to fit mathematical equations to experimental data even though the
relation of mechanism of deformation with the microscopic physical structure of
the material is not possible.
If the constitutive equations regard physical objects like fluid, we call the field
of continuum mechanics fluid mechanics; on the other hand, if the constitutive
equations are valid for solids is known as solid mechanics.
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4.2 Mathematical modeling of the solid problem

Usually, the elastodynamic equations referred to the solid are written in the La-
grangian framework, with respect to an observer that moves with the structure
displacement.
Then, let Ω̂s ⊂ R3 be a bounded Lipschitz domain representing the reference
configuration of the solid body and x̂s ∈ Ω̂s the material position. To pass to the
current configuration for scalar and vectorial functions, we need to consider the
unique deformation vector field χ : Ω̂s × [0, T] → R3 such that xs = χ(x̂s, t),
where xs is the current position in the current configuration Ωs(t) of the solid
structure.

Figure 4.2. Reference configuration and current configuration of the solid do-
main.

The boundary ∂ Ω̂s is split into the Dirichlet Γ̂D and Neumann Γ̂N parts, such that
∂ Ω̂s = Γ̂D ∪ Γ̂N and Γ̂D ∩ Γ̂N = ;.
The behavior of the solid structure is then described by the following mathemat-
ical problem

ρs
∂ 2ûs

∂ t2
− ∇̂ · P̂= b in Ω̂s (4.37)

ûs = ûb on Γ̂D (4.38)

P̂n̂= Ψ̂ on Γ̂N (4.39)

where the vectorial function ûs = ûs(x̂s, t) is the displacement field, ρs is the
mass density per unit undeformed volume, P̂(ûs) is the first Piola-Kirchoff stress
tensor, ∇̂· is the divergence operator computed in the reference configuration,
the vectorial function b represents the volume force per unit volume acting on
the solid and ûb, Ψ̂ are two given suitable vectorial functions.
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The relation between the stress tensor P̂ and the displacements ûs (usually non-
linear) is the constitutive law and characterizes the material properties chosen
for the solid structure.
Since this relation involves the gradient of the displacements, the elastodynamics
equations form a system of three hyperbolic partial differential equations.
The first Piola-Kirchoff stress tensor P̂ of the reference configuration and the
Cauchy stress tensorσs of the current configuration are related by the Piola trans-
formation

P̂= JσsF
−T

where F−T is the deformation tensor and J = det(F) is the Jacobian determinant
defining the changes of volumes between the reference and the current configu-
rations (J = 1 means no change in volume).
When the relation between the first Piola-Kirchoff stress tensor P̂ and the dis-
placement field ûs is linear, we have perfectly linear elastic material, and the
relationship is also known as Hooke’s law. This law is used only for small dis-
placements as a consequence of the linearization of a general material.
In particular, we have

P̂(ûs) = 2µε(ûs) +λ∇ · ûsI (4.40)

where ε(v) = 1
2(∇v+∇vT ) and the material parameters µ and λ are known as

the Lamè constants, and µ is also called the shear modulus. They both have the
dimensions of pressure, and they measure a solid’s ability to withstand deforma-
tion: λ and µ take large values for “hard” materials like steel or diamond, and
lower values for “soft” materials like rubber.
Often they are written in terms of the Young modulus E and Poisson ratio υ

λ =
Eυ

(1+υ)(1−υ)
, µ=

E
1+υ

(4.41)

E accounts for the elastic properties while υ for the degree of incompressibility
(υ= 1

2 means incompressible material).
A nonlinear constitutive theory suitable to describe a class of materials that re-
spond elastically even when they are subjected to large deformations is known
as finite hyperelasticity theory.
The main characteristic of this theory is the postulation of the existence of a
Helmholtz free-energy function Ψ, which is defined per unit reference volume.
If the energy function depends only on the deformation gradient Ψ(F) or some
strain tensor, it is referred to as the strain-energy function, which we assume to
be continuous.
We restrict our attention to the case of homogeneous material, that is, the dis-
tributions of internal components are assumed to be uniform. For this type of
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material, the strain-energy function is a function of only the deformation gradi-
ent F, while for non-homogeneous material (heterogeneous material), the strain-
energy function Ψ will depend additionally on the position of a particle in the
structure.
A hyperelastic material is characterized by the following relation determining the
first Piola-Kirchoff stress tensor

P̂=
∂Ψ

∂ F
(4.42)

In this work, we will consider three different benchmarks for fluid-structure inter-
action simulations: the two-dimensional Turek-Hron benchmark Turek and Hron
[2006], a two-dimensional idealized left ventricle, and a three-dimensional ide-
alized left ventricle.
For the two-dimensional simulations, we consider the Saint-Venant-Kirchoff con-
stitutive relation, which reads as follows

Ψ =
λs

2
[Tr(Ê)]2 +µsTr(Ê2) (4.43)

where Ê = 1
2(F̂

T F̂ − I) is the Green-Lagrangian strain tensor, Tr(·) is the trace
operator, λs and µs are the constitutive parameters (see Table 6.1 and Table 6.5
).
For the three-dimensional ventricle, we consider the Guccione-Costa constitutive
law [Guccione et al., 1995] to model the elastic behavior of the human ventri-
cle with the constitutive parameters derived from Nikou et al. [2015] (reported
in Table 6.7). To fulfill the nearly incompressibility condition of soft tissue,
the penalty technique is employed. In this method, a volumetric energy term
ΨV (Ĵ) = 1/2κ(Ĵ − 1)2 is added to the expression of the strain energy function Ψ
with κ representing the penalty coefficient.

Weak formulation of solid subproblem

Let

V̂ =
¦

φ̂ ∈
�

H1(Ω̂s)
�3

: φ̂|ΓD = 0
©

V̂b =
¦

φ̂ ∈
�

H1(Ω̂s)
�3

: φ̂|ΓD = ûb

©

suitable spaces of vector functions.
The weak formulation of the elastodynamic equation with boundary conditions
read:
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Find ûs ∈ V̂b with ûs(x̂s, 0) = ûs,0 and ∂ ûs
∂ t (x̂s, 0) = v̂s,0 such that for each time

�

ρs
∂ 2ûs

∂ t2
, φ̂

�

−
�

∇̂ · P̂, φ̂
�

=
�

b̂, φ̂
�

(4.44)

where (·, ·) is the L2(Ω̂s) inner product.
Integrating by parts we obtain

�

ρs
∂ 2ûs

∂ t2
, φ̂

�

−
�

∇̂ · P̂, φ̂
�

=
�

b̂, φ̂
�

∫

Γ̂N

Ψ̂φ̂dSx̂ (4.45)

4.3 Mathematical modeling of the fluid problem

LetΩ f ⊂ R3 be a fixed bounded domain representing the current configuration of
the fluid domain. To allow for the Dirichlet and Neumann boundary conditions,
the boundary ∂Ω f is split into the Dirichlet ΓD and Neumann ΓN parts, such that
∂Ω f = ΓD ∪ ΓN and ΓD ∩ ΓN = ;.
The Navier-Stokes equations for an incompressible and homogeneous (the fluid
density is constant in space and time) fluid read for x ∈ Ω, t ∈ (0, T]







ρ f

Dv f

Dt
−∇ · T f (v f , p f ) = b f

∇ · v f = 0
(4.46)

with the initial condition v f (x, 0) = v0, f (x) and boundary conditions

v f = vb on ΓD
T f (v f , p f )n=ΨΨΨ on ΓN

(4.47)

where vb and ΨΨΨ are suitable given data, n is the outward unit normal to ∂Ω f , D
Dt

is the material derivative, v f = v f (x, t) : Ω f × (0, T]→ R3 the vectorial function
representing the fluid velocity, p f = p f (x, t) : Ω f ×(0, T]→ R3 the scalar function
representing the pressure of the fluid, T f is the Cauchy stress tensor formed by
a viscous part depending on v f and a hydrostatic part depending on p f .
We restrict our attention to incompressible Newtonian fluids, characterized by a
linear relation

T f (v f , p f ) = µ f

�

∇v f + (∇v f )
T
�

− p f I (4.48)
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where µ f is the constant fluid viscosity.
If we recall the definition of the material derivative

Dv f

Dt
=
∂ v f

∂ t
+ v f · ∇v f

we have for an incompressible Newtonian fluid the point-wise form of Navier-
Stokes equations in an Eulerian formulation







ρ f

∂ v f

∂ t
+ρ f (v f · ∇v f )−µ f∆ · v f +∇p f = b f

∇ · v f = 0
(4.49)

The Navier-Stokes equations are four scalar equations in the four unknows v f ,x ,
v f ,y , v f ,z and p f . The first three equations describe the conservation of momen-
tum, while the last one the conservation of mass.
Notice that if ΓN = ; we have

0=

∫

Ω f

∇ · v f dVx =

∫

∂Ω f

v f · ndSx =

∫

∂Ω f

vb · ndSx (4.50)

Moreover, p f is defined up to a constant, and for this reason, it is usually required
that
∫

Ω f
p f dVx = 0.

Weak formulation of fluid subproblem

Assume ΓN 6= ;, µ ∈ L∞(Ω f ),vb ∈
�

H
1
2 (ΓD)
�3

, ΨΨΨ ∈
�

L2(ΓD)
�3

for almost each time
and set

V =
¦

φ ∈
�

H1(Ω f )
�3

: φ|ΓD = 0
©

Vb =
¦

φ ∈
�

H1(Ω f )
�3

: φ|ΓD = vb

©

Q = L2(Ω)

where the equality in the first set is in the sense of the trace and notice that
if ΓN = ; then Q = L2

0(Ω) =
�

q ∈Q :
∫

Ω
q = 0
	

. Thus, the weak formulation
of Navier-Stokes equations for an incompressible Newtonian fluid reads almost
each time: Find v ∈ Vb and p ∈Q such that






�

∂ v
∂ t

,φ
�

+ ((v · ∇v),φ)−
�

µ f∆ · v,φ
�

+ (∇p,φ) = (b,φ) ∀φ ∈ V

(∇ · v, q) = 0 ∀q ∈Q
(4.51)
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where the fluid density ρ f is fixed at 1 without any loss of generality and (·, ·) is
the L2(Ω) inner product.
Integrating by parts and recalling Gauss theorem, we obtain the following rela-
tions

−
∫

Ω

µ f∆v ·φ =
∫

Ω

µ f∇v · ∇φ −
∫

∂Ω

µ f
∂ v
∂ n
·φ

∫

Ω

∇p ·φ = −
∫

Ω

p∇ ·φ +
∫

∂Ω

pφ · n

and we get







�

∂ v
∂ t

,φ
�

+ ((v · ∇v),φ) +
�

µ f∇v,∇φ
�

− (p,∇ ·φ) = (b,φ) +

∫

ΓN

ψ ·φ ∀φ ∈ V

(∇ · v, q) = 0 ∀q ∈Q
(4.52)

From this formulation, it is clear the role of the Lagrange multiplier played by p.

4.4 Fluid-structure interaction problem

The interaction between a flowing fluid and an immersed or surrounded solid
structure is the base of different physical phenomena with applications in dis-
tinct fields of engineering, such as the aerospace industry, construction projects,
and biomedical research.
Fluid–structure interaction problems are often too complex to solve analytically,
and so they have to be analyzed by numerical simulations. There exist two prin-
cipal approaches for the resolution of fluid-structure interaction problems. One
consists of a monolithic scheme, where a single solver is used for both the fluid
and solid governing equations simultaneously. The other one solves each sub-
problem separately with two distinct numerical solvers.
The main difficulties related to the numerical simulation of fluid-structure inter-
action problems regard the presence of a two-field problem where the common
boundary of the fluid and structure subdomains is an unknown of the problem,
the choice and analysis of interface coupling conditions which need to ensure no-
slip conditions, i.e., perfect adherence between particles of the fluid and struc-
ture, through the continuity of the velocity on the interface and the third New-
ton law, namely the action-reaction principle implying that the surface forces
exerted by the fluid at the interface should be compensated by that exerted by
the structure, through the continuity of stress on the interface. Lastly, all the
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complications due to the material properties of the solid structure may induce
large deformations and the transition from laminar to turbulent flow.
We now introduce the governing equations describing the fluid-structure inter-
action problem in a Newtonian fluid.

Let Ω f (t) and Ωs(t) the current configurations of the fluid domain and solid,
respectively, such that Ω = Ω f (t) ∪ Ωs(t) is the computational domain and let
Γ f si(t) be the fluid-structure interaction interface.

Figure 4.3. Reference configuration of the solid domain on the left. Current
configurations of structure Ωs(t) and fluid domain Ω f (t) and fluid-structure
interaction interface Γ f si(t) on the right

A Lagrangian formulation is adopted for the elastodynamics equations rep-
resenting the structure behavior, while the Navier-Stokes equations are written
using the Eulerian formulation.
Let Ω̂s ⊂ R3 a bounded domain representing the reference configuration of the
solid structure. The material x̂s ∈ Ω̂s and spatial xs ∈ Ωs(t) positions are linked
through a unique deformation vector field over a time integral [0, T] such that
χ : Ω̂s × [0, T]→ R3 and xs = χ(x̂s, t).
For granting Dirichlet boundary conditions as well as coupling conditions on the
interface, the boundary ∂ Ω̂s is disjointed into the Dirichlet Γ̂ D

s and fluid-structure
interaction Γ̂ f si parts, such that ∂ Ω̂s = Γ̂ D

s ∪ Γ̂
f si and Γ̂ D

s ∩ Γ̂
f si = ;.

The same considerations need to be done for the fluid subproblem, then the
boundary of the fluid domain ∂Ω f (t) is split into the Dirichlet Γ D

f and FSI Γ f si(t)boundary
such that ∂Ω f = Γ D

f ∪ Γ
f si(t) and Γ D

f ∩ Γ
f si(t) = ;.
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Thus, the fluid-structure interaction problem read as

ρs
∂ 2ûs

∂ t2
− ∇̂ · P̂= b in Ω̂s (4.53)

ρ f

∂ v f

∂ t
+ρ f (v f · ∇v f )−µ f∆ · v f +∇p f = b f in Ω f (4.54)

∇ · v f = 0 in Ω f (4.55)

with initial conditions

ûs(x̂s, 0) = û0
s in Ω̂s (4.56)

∂ ûs

∂ t
(x̂s, 0) =

∂ û0
s

∂ t
in Ω̂s (4.57)

v f (x, 0) = v0
f in Ω f (4.58)

and boundary conditions

ûs = ûb on Γ̂ D
s (4.59)

v f = vb on Γ D
f (4.60)

v f =
∂ ûs

∂ t
on Γ f si(t) (4.61)

Ĵ−1P̂F̂T n= σ f n on Γ f si(t) (4.62)

where ρs is the mass density per unit volume, ûs is the displecement field, P̂ is
the first Piola-Kirchoff stress tensor, ∇̂· is the material divergence operator, ρ f is
the fluid density, µ f is the fluid viscosity, v f is the fluid velocity field, p f is the
fluid pressure and ûb is a given suitable boundary vectorial function.
Equations (4.91) and (4.92) guarantee the continuity of the velocity and force
equilibrium on the interface Γ f si(t), with F̂ deformation gradient, Ĵ the corre-
sponding determinant Ĵ = det

�

F̂
�

,σ f is the Cauchy stress for the Newtonian
fluids depending on v f and p f , n is the outward normal to the structure bound-
ary of the current configuration.

4.4.1 Immersed boundary approach

The resolution of fluid-structure interaction problems often involves evaluating
the fluid dynamic equations in the moving domain. Various approaches have
been investigated to overcome the difficulties related to the reconstruction of
the mesh at each time step.
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The Arbitrary Lagrangian-Eulerian (ALE) method is one of the most used, usu-
ally coupled with the solid structure analyzed in a Lagrangian fashion. Although
this approach has been used successfully with accurate results at the interface
between solid and fluid, its implementation is expensive since the mesh follows
the movement of the solid, adapting its shape to the structure’s behavior. If the
movements are too large, they may be involved large deformation of elements
such that the accuracy of the solution and numerical stability can be affected.
A completely different approach was introduced by Peskin [Peskin, 1977] to
study the blood flow in the heart, known as immersed boundary method (IBM).
One of the advances proposed by this method is the use of a fixed cartesian mesh
for the fluid and an independent immersed structure. The method proposed was
based on the finite difference for the spatial discretization, which employs two
independent grids: one for the Eulerian formulation of the fluid problem and the
other for the Lagrangian variables related to the immersed boundary.

(a) ALE approach (b) Immersed boundary method

Figure 4.4. Two approaches for managing fluid-structure interaction coupling.
(4.4a) represents the distorted mesh due to ALE method. (4.4b) represents the
cartesian grid mesh for the fluid and the independent immersed structure for
the immersed boundary method [Nestola et al., 2019]

In the immersed boundary method, the immersed solid body is modelled as
an elastic incompressible material in two or three-dimensional space or simply
in the form of a closed curve or surface. The presence of the structure is taken
into account by thinking of the solid as a part of the fluid where additional forces
are applied, and additional mass is located.
The equations involved are the modified Navier-Stokes equations







ρ f

∂ v f

∂ t
+ρ f (v f · ∇v f )−µ f∆ · v f +∇p f = F

∇ · v f = 0
(4.63)

where F is a vector field representing the force density of the solid acting on the
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fluid.
The mass density of the immersed structure can be described through a La-
grangian mass density M(x̂s), where x̂s denotes the Lagrangian coordinates in
the reference configuration of the solid structure. This term represents the dif-
ference between the mass of the elastic structure and the displaced mass of the
fluid due to the presence of a solid.
Thus, the force exerted on the fluid and the fluid density can be expressed in-
volving a smoothed approximation of the Dirac delta function δ

ρ(x, t) = ρ f +

∫

Ω̂s

M(x̂s)δ(x−χ(x̂s, t)dVx̂ (4.64)

F(x, t) =

∫

Ω̂s

f(x̂s, t)δ(x−χ(x̂s, t)dVx̂ (4.65)

where F is the force term on the right-hand side of the Navier-Stokes equation
and f considers the solid material’s elasticity properties.
At each time step, only the fluid system with the added force term need to be
solved, which means a reduction of the computational cost. However, a consis-
tent approximation of the Dirac delta function is difficult to find. Peskin proposed
a discrete Dirac delta function that must be continuous (for guaranteeing the con-
tinuity of the velocity and the applied force on the immersed boundary), have a
compact and smallest possible support, and be exact for linear interpolation.

Figure 4.5. Traditional discrete Dirac delta function 1
4(1+ cos
�

πr
2

�

) and more
recent reproducing kernel particle method

Since the original immersed boundary method was proposed by Peskin, various
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other methods based on this approach have been developed. For example, sev-
eral attempts have been made to consider a finite element formulation for both
fluid and solid discretization, adopting also reproducing particle method to ap-
proximate the Dirac delta function [Glowinski and Kuznetsov, 2007] or involving
the Dirac delta function in a variational way [Boffi and Gastaldi, 2003], so there
is no need of approximating.
This dissertation has been considered a framework inspired by the immersed
boundary method able to solve fluid-structure interaction of hyperelastic and
anisotropic structures immersed in incompressible, laminar, transitional, or tur-
bulent flow [Nestola et al., 2019]. The main characteristics of this method are
the use of a variational transfer based on L2-projections for coupling conditions,
a high-order finite difference solver for Navier-Stokes equations, and the solid
motion evaluated through the resolution of the elastodynamics equations.
Then, the fluid-structure interaction problem we consider read as follows:

Solid subproblem:

ρs
∂ 2ûs

∂ t2
− ∇̂ · P̂= 0 in Ω̂s (4.66)

ûs = ûb on Γ̂ D
s (4.67)

Fluid subproblem:

ρ f

∂ v f

∂ t
+ρ f (v f · ∇v f )−µ f∆ · v f +∇p f = f f si in Ω f (4.68)

∇ · v f = 0 in Ω f (4.69)

v f = vb on Γ D
f (4.70)

Initial conditions:

ûs(x̂s, 0) = û0
s in Ω̂s (4.71)

∂ ûs

∂ t
(x̂s, 0) =

∂ û0
s

∂ t
in Ω̂s (4.72)

v f (x, 0) = v0
f in Ω f (4.73)

FSI Coupling conditions:

v f =
∂ ûs

∂ t
on Γ f si(t) (4.74)

Ĵ−1P̂F̂T n= σ f n on Γ f si(t) (4.75)



60 4.4 Fluid-structure interaction problem

where f f si represents the interaction term which considers the presence of the
solid superimposing the stresses of the structure into the fluid stress.
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4.5 Fluid-stricture interaction problem with active term

One fascinating and challenging area within FSI is the study of cardiac models,
where the dynamic behavior of the heart is influenced by both fluid dynamics
and the active contraction of cardiac muscle. However, to accurately capture the
dynamic behavior of the heart, it is crucial to account for the active contraction
and its impact on fluid flow patterns.In this section, we present a generalized
approach to the Fluid-Structure Interaction (FSI) framework. We achieve this
by incorporating an active term into the elastodynamic equations, enabling us to
capture the dynamic behavior of the structure arising from active contraction.
There are typically two different ways in the literature for modeling an activation
term in solid mechanics: the first one consists of decomposing the total stress into
a passive mechanical part and an active part, and it is called act ive st ress. The
second one was inspired by the ideas in plasticity and theories of growth and
decomposes the deformation gradient tensor into an active deformation tensor
and an elastic deformation tensor. It is named act ive st rain.
A comparison between the two different approaches has been efficiently pro-
posed in Guan et al. [2022] and Rossi et al. [2012], as a matter of fact, both
procedures have strong motivations: the active stress can easily fit into experi-
ments, on the other hand, active strain is mathematically more robust.
In our proposed framework, we extend the elastodynamic equations by introduc-
ing an active stress term. Unlike previous approaches that relied on active strain,
we utilize active stress as a more comprehensive measure of the force generated
by the active contraction of the structure. By incorporating active stress into the
elastodynamic equations, we aim to provide a more accurate representation of
the dynamic behavior.
Firstly, we consider a uniform time-dependent active stress that allows us to in-
vestigate the overall impact of active contraction on fluid-structure interactions.
This approach provides a straightforward and computationally efficient method
to assess the general behavior of the system.
We further enhance the framework by incorporating activation maps obtained
through the resolution of electrophysiological models.

4.5.1 Active stress

The active stress method decomposed the Cauchy stress tensor into a mechanical
part and an active part, and both can induce deformations.

σ̂σσ = σ̂σσm + σ̂σσa (4.76)
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If we consider an active stress exerted only along the fibres direction, the first
Piola-Kirchoff tensor associated with σ̂σσa is

P̂a = TaF̂(f⊗ f) (4.77)

where the scalar value Ta represents the active component along the fiber direc-
tion f. The total Piola stress tensor can be rewritten as

P̂t = P̂m + P̂a (4.78)

Citing Ambrosi and Pezzuto [2012], it is possible to reinterpret in terms of
active strain for polynomial energy. Consider, for example, a basic constitutive
equation for the active strain F̂a that describes the contraction of the fibers

F̂a = I− γf⊗ f (4.79)

and let us suppose that the strain energy is the sum of a neo-Hookean isotropic
term and a transverse isotropic one

W =
µ1

2
F̂e : F̂e +

µ2

2
F̂ef · F̂ef (4.80)

The Cauchy stress is

σ̂ = det
�

F̂a

�∂W
∂ F̂e

F̂−T
a F̂= det
�

F̂a

� �

µ1F̂e +µ2F̂ef⊗ f
�

F̂−T
a F̂T (4.81)

and noting that F̂ef= F̂F̂−1
a f we obtain :

σ̂ = µ1

�

F̂F̂T − γF̂F̂T + γ
2− γ
1− γ

F̂f⊗ F̂f
�

+µ2

�

1+
γ

1− γ

�

F̂f⊗ F̂f (4.82)

where all the terms depending on γ can be seen as the active dynamics contri-
bution.
Thus we can reformulate the fluid-structure interaction problem by adopting the
active stress model on the elastodynamics equations of the solid subproblem for
simulating active contractions:

Solid subproblem:

ρs
∂ 2ûs

∂ t2
− ∇̂ · P̂t = 0 in Ω̂s (4.83)

ûs = ûb on Γ̂ D
s (4.84)
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Fluid subproblem:

ρ f

∂ v f

∂ t
+ρ f (v f · ∇v f )−µ f∆ · v f +∇p f = f f si in Ω f (4.85)

∇ · v f = 0 in Ω f (4.86)

v f = vb on Γ D
f (4.87)

Initial conditions:

ûs(x̂s, 0) = û0
s in Ω̂s (4.88)

∂ ûs

∂ t
(x̂s, 0) =

∂ û0
s

∂ t
in Ω̂s (4.89)

v f (x, 0) = v0
f in Ω f (4.90)

FSI Coupling conditions:

v f =
∂ ûs

∂ t
on Γ f si(t) (4.91)

Ĵ−1P̂t F̂
T n=σσσ f n on Γ f si(t) (4.92)

where f f si represents the interaction term which considers the presence of the
solid superimposing the stresses of the structure into the fluid stress and P̂t =
P̂m + P̂a is the sum of mechanical stress and active stress tensors.
In this work, the electromechanical coupling is not considered. However, the
active stress term is characterized by a time-dependent activation function α(t)
and takes into account the orientation of the fibres.

P̂a = α(t)Fgn⊗ n (4.93)

We first consider a linear time-dependent activation function. Then, to establish
a first unidirectional link between the FSI framework and electrophysiology, we
propose to use the activation time Ψa evaluated by electrophysiological models
(such as the reduced eikonal model) in the activation function.
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Chapter 5

Discretization of the Generalized
Fluid-Structure Interaction Problem

5.1 Space discretization

The main idea of Immersed boundary method is to embed the solid structure into
the fluid domain and modify the fluid dynamics subproblem by adding s source
force term which accounts for the reaction force exerted from the solid to the
fluid. One of the advances proposed by this method is the use of a fixed carte-
sian mesh for the fluid and an independent mesh for the immersed structure.
The method proposed by Peskin was based on finite difference for the spatial
discretization but other recent approaches have included a finite element spa-
tial discretization for the Lagrangian subproblem related to the solid [Boffi and
Gastaldi, 2003], [Griffith and Luo, 2017a], [Glowinski and Kuznetsov, 2007].
Following the methodology proposed by Nestola et al. [2019], we adopt the finite
element method for the spatial discretization of the elastodynamics equations
and the finite difference method for the spatial discretization of Navier-Stokes
equations.
This approach, inspired by the immersed boundary method, embeds the solid
structure in the computational domainΩ and the fluid subproblem is solved inΩ,
including the part in the interior of the immersed structure, where an additional
force term in Navier-Stokes equations guarantees the balance of the stresses on
the interface Γ f si(t).

65
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Solid subproblem

Let us consider Ω̂h
s as the discrete domain of the solid domain Ω̂s and T̂ h

s = {Ês ⊆
Ω̂h

s |
⋃

Ês = Ω̂h
s } the associated triangulation such that Ê1

s , Ê2
s ⊆ T̂ h

s with Ê1
s 6= Ê2

s
then Ê1

s ∩ Ê2
s = ;.

If we take into account first-order finite elements, the function space read as

X̂ h
s (T̂

h
s ) = {ψ̂

h
s ∈ C0(Ω̂h

s ), ψ̂
h
s|Ês
∈ P1∀Ês ∈ T̂ h

s }

where P1 is the space of linear polynomials defined on each element Ês ∈ T̂ h
s .

Let ψ̂h
s be the test functions of the function space V̂ h

s = H1
Γ̂ D

s
(Ω̂s)∩ X̂ h

s . Thus, the

Galerkin formulation of the elastodynamics equations read as:
∫

Ω̂s

ρs

∂ 2ûh
s

∂ t2
· ψ̂h

s dVx̂ −
∫

Ω̂s

∇̂ · P̂t(û
h
s ) · ψ̂dvx̂ = 0 ∀ψ̂h

s ∈ V̂ h
s (5.1)

where P̂t = P̂m + P̂a

Applying the Green-s formula we obtain
∫

Ω̂s

ρs

∂ 2ûh
s

∂ t2
·ψ̂h

s dVx̂+

∫

Ω̂s

P̂t(û
h
s ) : ∇̂ψ̂dvx̂ =

∫

Γ̂ f si

P̂t(û
h
s )n̂·ψ̂dvx̂ ∀ψ̂h

s ∈ V̂ h
s (5.2)

The term P̂t(ûh
s )n̂ can be decoded as the force exerted on the solid on the interface

and plays the role of Lagrange multiplier associated to the constraint related to
the continuity of the velocity.
We define

(ϕ̂, ·)L2(Ω̂s) =

∫

Ω̂s

ϕ̂ · ψ̂dVx̂

(ϕ̂, ·)L2(Γ̂ f si) =

∫

Γ̂ f si

ϕ̂ · ψ̂dVx̂

the L2 inner product operators and

(̂fs→ f , ·)L2(Ω̂s) = (P̂t(û
h
s n̂, ·)L2(Γ̂ f si)

the term representing the force exerted from the solid to the fluid.
Then, the Galerkin formulation can be rewritten as

(̂fs→ f , ·)L2(Ω̂s) =

�

ρs

∂ 2ûh
s

∂ t2
+ f̂int , ·
�

L2(Ω̂s)

(5.3)
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where
�

ρs

∂ 2ûh
s

∂ t2
, ·
�

L2(Ω̂s)

=

∫

Ω̂s

ρs

∂ 2ûh
s

∂ t2
· ψ̂h

s dVx̂ (5.4)

�

f̂int , ·
�

L2(Ω̂s)
=

∫

Ω̂s

P̂t(û
h
s ) : ∇̂ψ̂dvx̂ (5.5)

Then it is possible to evaluate the coupling force term f̂s→ f as the residual of the
variational equality (5.3).
Let {φ̂h

s,i}i∈Is
be the Langrangian basis of V̂ h

s where Is is a set of index. We can
write the matrix formulation of (5.2)

ρsm
∂ 2ûs

∂ t2
+ k(ûs) =mf̂s→ f (5.6)

where m is the mass matrix

mi j =

∫

Ω̂s

p̂his, j · φ̂s,idVx̂

k represents the vector of nonlinear mechanical and active forces

ki =

∫

Ω̂s

P̂t(û
h
s ) : ∇̂φ̂s,idVx̂

ûs is the vector of the displacement field and f̂s→ f is the vectorial function repre-
senting the fluid-structure interaction force density.

fluid subproblem

The Navier-Stokes equations defined in the fluid-structure interaction problem
in a domain Ω f (t) are solved in Ω, including the region in the interior of the
immersed structure and adding the interaction force term f f→s with the intention
of superimposing the stresses of the structure into the fluid stresses.
The Navier-Stokes equations can be rewritten using matrix operators

ρ f
∂

∂ t

�

v f

0

�

+

�

−L G
D 0

��

v f

p f

�

=

�

N (v f ) + f f→s

0

�

(5.7)

where L is the Laplacin operator and G ,D are the gradient and divergence op-
erators respectively. N represents all the other terms except for the time deriva-
tive.
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For space discretization, we follow the approach proposed by Henniger et al.
[2010] and introduce a rectangular domain on a Cartesian grid.
We apply finite differences on a staggered grid for the velocity and the pressure.

Figure 5.1. Staggered grid in three dimensions [Nestola et al., 2019].

We consider four subgrids: one for each velocity component, labeled 1,2 and 3
(corresponding to the direction of the velocity component) and one for the pres-
sure labeled 0.
We also eliminate the zero diagonal block in (5.7) and derive a Poisson prob-
lem for the pressure by evaluating the Schur complement, which is solved with
the iterative Krylov subspace method BiCGstab with right preconditioning by a
V-cycle geometric multigrid preconditioner of Gauss-Seidel type. For a detailed
description the reader may refer to Henniger et al. [2010].
Hence the momentum equations are solved on the velocity grid, while the conti-
nuity equation is satisfied on the pressure grid. The discrete divergence operator
D performs first derivatives on the grid 0 from values from the grid 1, 2 and 3.
On the other hand, the discrete gradient operator G performs first derivatives on
the grid 1, 2 and 3 from values on the grid 0. The discrete Laplace operator L
performs operations on one grid only.
The discrete form of the operator N demands products between velocity com-
ponents and the first derivatives of the other velocity components. The discrete
operator C represents the first derivative on the i-th grid in the j direction

ci j =
∂ (·)i
∂ x j

.

A central stencil width n has been chosen for all operators. In the interior of the
domain, because of L and C have the variable and its derivative defined on the
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same grid, the convergence order is n − 1 (and becomes n − 2 in the presence
of upwind-biased schemes). For all the other operators D, G, which transfer in-
formation between different grids, the convergence orders are identical to the
stencil widths.

Figure 5.2. An example of a differentiation scheme near the boundary: (a)
from a velocity grid to the same velocity grid, (b) from a velocity grid to the
pressure grid, and (c) from the pressure grid to a velocity grid [Nestola et al.,
2019].
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5.2 Fluid-structure coupling based on variational trans-
fer

The coupling between the solid and fluid subproblems necessitates to transfer
the velocities v f from the Eulerian fluid grid to the Lagrangian solid mesh and
the force densities fs→ f from the Lagrangian solid mesh to the Eulerian fluid grid.
In the immersed boundary method the force exerted on the fluid and the fluid
velocity can be expressed involving a smoothed approximation of the Dirac delta
function even though a consistent approximation of the Dirac delta function is
difficult to find and it suffers from poor volume conservation.
More recently transfer operators based on variational approaches, such as L2-
projections or pseudo-L2-projections, have been developed. This dissertation
considers a framework inspired by the immersed boundary method with the use
of exact L2-projections approach for coupling conditions [Nestola et al., 2019].

5.2.1 L2-projection approach

We start with a short introduction of the mortar projection, which will be the
base for the formulation of L2-projection approach.
Let Ωm,Ωs ⊂ Rd , with d = 2,3 and I = Ωm ∩Ωs the intersection of the two do-
mains.
The domains Ωm and Ωs can be approximated by the discrete domains Ωh

m and Ωh
s

with the associated mesh T h
k = {Ek ⊆ Ωh

k|
⋃

Ek = Ωh
s } and k = m, s, where its el-

ements Ek form a partition such that if E1
k , E1

k ⊂ Ωk and E1
k 6= E2

k then E1
k ∩ E2

k = ;.
Lastly, let us denote by Vh = Vh(T h

m ) and Wh = Wh(T h
s ) the associated finite ele-

ment spaces, Ih = Ωh
m ∩Ω

h
s the intersection of the two discretized domains and

Nm, Ns the set of nodes of the meshes.
For simplicity, we assume Ωh

s ⊆ Ω
h
m and define Mh = Mh(T h

s ) which is a suitable
discrete space of Lagrange multipliers based on the same mesh as Wh (the asso-
ciation with T 〈m or T h

s is arbitrary).
The space Wh is often referred to as slave while Vh as master. The main idea of
mortar projection is to map a function from to the master discrete space Vh to
the slave discrete space Wh through a projection operator P : Vh→Wh which for
a function vh ∈ Vh finds wh = P(vh) ∈Wh such that

(P(vh),µh)L2(Ih) = (vh,µh)L2(Ih) ∀µh ∈ Mh (5.8)

where (·, ·)L2(Ih) is the L2-inner product.
Let {φi}i∈Jv

, {ϕ j} j∈Jw
and {ψk}k∈Jµ be the basis of Vh, Wh and Mh repsectively and
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Jv, Jw, Jµ sets of indices. We can write (5.8) as a matrix equation

Bv= Dw (5.9)

with

bk,i =

∫

Ih

φiψkdV

dk, j =

∫

Ih

ϕ jψkdV

Assuming the invertibility of D it is possible to define the algebraic representation
of the discrete mortar projection operator T

w= D−1Bv= Tv (5.10)

Depending on the choice of Mh we can obtain different transfer operators.
If we set Mh =Wh, the projection operator T becomes the discrete representation
of L2-projection.
Since the evaluation of the inverse of the matrix D might be computationally ex-
pensive, we can apply the transfer operator solving each time the linear system,
keeping the matrices D and B separated.

Figure 5.3. Quadrature points mapped to the simplex S1 and transformed to
the reference element [Krause and Zulian, 2016].

Following Krause and Zulian [2016] we give an example procedure for the as-
sembly of the coupling operator T.

- First we need to determine all pairs of intersecting elements by means of
tree-search algorithm and data structures.
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- For each pair of intersecting elements we compute the intersection gen-
erated polytope I E = Em ∩ Es and we define a triangulation T 〈I E = {Si ⊆
I E|
⋃

Si = I E}, where Si is a simplex.

- We generate the quadrature points by mapping points from quadrature
rules defined on a reference element Ê to each simplex Si and choosing a
suitable quadrature formula with K points { x̂k}Kk=1 ⊂ Ê and weights {αk}Kk=1

such that
∑K

k=1αk = 1.

- We transform the quadrature points in Si to the reference element Ê for
both master and slave mesh. Then we compute the local element-wise
contributions by means of numerical quadrature and finally assemble B
and D

5.2.2 Spatial discretization of fluid-structure coupling

In order to use the L2-approach for the coupling space discretization we need
to attach Lagrangian basis functions to the finite difference grid of the fluid
subproblem and to introduce the corresponding auxiliary finite-element space
V h

f = V h
f (T

h
f ) ⊂ H1

Γ D
f
(Ω), where T h

f is the fluid grid.

Let Mh
f si a discrete space of Lagrange multipliers based on the current configura-

tion of the slave mesh T 〈∫ , coinciding with the current configuration of the solid

mesh.
We define the fluid-structure interaction operator Π : V h

f (T
h

f )→ V h
s (T

〈
∫ (t)) for

transferring the discrete velocity field from the fluid grid to the current configu-
ration of the solid mesh, then for each component of the fluid velocity vh

f ∈ V h
f

we want to find wh
s ∈ V h

s such that

∫

Ih

(vh
f −Π(v

h
f ))λ

h
f sidV =

∫

Ih

(vh
f − wh

s )λ
h
f sidV = 0 ∀λh

f si ∈ Mh
f si (5.11)

with Ih = T h
s (t)∩T

h
f the overlapping region between solid mesh and fluid grid

and wh
s the solid velocity field in the current configuration wh

s = ŵh
s ◦χ(x̂s, t).

Let {ϕh
s,i}i∈Js

, {ϕh
f , j} j∈J f

and {ϕh
f si,k}k∈J f si

be the Lagrangian basis functions of
V h

s , V h
f and Mh

f si repsectively and Js, J f , J f si sets of indices. We can write the mor-
tar matrix in (5.9)

Bv f = Dws (5.12)
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with

bk, j =

∫

Ih

ϕh
f , j ·ϕ

h
f si,kdV

dk,i =

∫

Ih

ϕh
s,i ·ϕ

h
f si,kdV

and ws,v f are the vectors of coefficients entries wh
s,i and vh

f , j.
The discrete mortar projection operator reads as

ws = D−1Bv f (5.13)

but for reducing computational costs, we solve the linear system at each time
getting the projected velocity ws. Then we use only the values related to the
interface Γ f si(t) for imposing the velocity constraint

vs,Γ f si(t) =ws|Γ f si(t) (5.14)

where vs,Γ f si(t) is the velocity of the structure at the interface and we use it as
boundary condition for the solid problem.
Then we need to transfer the fluid-structure interaction force density term from
the solid mesh to the fluid grid, so the adjoint operator T̃= TT is adopted

f f→s = T̃fs→ f (5.15)

where fs→ f is the force density evaluated in the current configuration Ωs(t) and
f f→s is the source term added to the right-hand side of the Navier-Stokes equa-
tions.

5.3 Time discretization

In this section, we describe the time discretization of the entire fluid-structure
interaction system.
For solving a fluid-structure interaction problem there can be used two different
approaches.
The first one, known as loosely coupling, is based on the solution of the fluid and
structure subproblems only once at each time step, while the second one, known
as strongly coupling, performs the fluid and structure subproblem at every time
step until synchronization is obtained between the solutions.
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Loosely coupled schemes are less expensive in terms of computational costs but
they require rigid restrictions for maintaining stability. It has been proved they
feature instabilities under certain choices of the physical parameters, in particu-
lar when the fluid and structure densities are comparable, as in hemodynamics
[Causin et al., 2005]. However, recent works have been focused on loosely cou-
pled schemes based on Robin interface conditions with the introduction of suit-
able parameters that influence the stability of the numerical solution [Gigante
and Vergara, 2021].
A strongly coupled scheme, with a fully implicit treatment of the FSI system, is
a better choice for overcoming these limitations.
We start from the time discretization of the solid subproblem, where we adopt
the Newmark scheme. Then we consider the discretization in time of the fluid
subproblem following the strategy proposed by Henniger et al. [2010], where a
third-order Runge-Kutta scheme is used. Lastly, we present the fluid-structure
algorithm used for improving the solution of the fluid-structure interaction sys-
tem.

Solid suproblem

We recall the elastodynamics equations obtained by the finite element spatial
discretization

ρsm
∂ 2ûs

∂ t2
+ k(ûs) =mf̂s→ f (5.16)

where ûs is the vector of the displacement field, f̂s→ f is the vectorial function
representing the fluid-structure interaction force density, m is the mass matrix
and k(ûs) describes the mechanic and active forces:

mi j =

∫

Ω̂s

φ̂h
s, j · φ̂

h
s,idVx̂ (5.17)

ki =

∫

Ω̂s

P̂t(ûs) : ∇̂φ̂h
s,idVx̂ (5.18)

with P̂t = P̂m + P̂a and {φ̂h
s,i}i∈Is

Lagrangian basis of V̂ h
s = H1

Γ̂ D
s
(Ω̂s)∩ X̂ h

s .

Let’s consider a time interval [0T] divided into N equal subintervals of length
∆t. Set tn = n∆t and denote ûn

s the approximation of ûs at time tn.
We adopt the Newmark scheme, which is one of the most used approaches for
structural dynamics:

ρsm
ûn+1

s

∆t2
+ k(ûn+1

s ) =mf̂n+1
s→ f + rs(û

n
s ) (5.19)
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with

rs(û
n
s ) = ρsm

�

2ûn
s

∆t2
−

ûn−1
s

∆t2

�

(5.20)

Fluid subproblem

It is possible to write Navier-Stokes equations in matrix operator form

ρ f
∂

∂ t

�

v f

0

�

+

�

−L G
D 0

��

v f

p f

�

=

�

N (v f ) + f f→s

0

�

(5.21)

where L , G and D are the Laplace, gradient and divergence operators respec-
tively. N contains all the remaining terms except for the time derivative. The
presence of the structure is taken into account by the interaction force term f f→s

where the stresses of the structure are imposed into the fluid stresses which also
included internal forces of the fluid.
We use explicit finite difference for the spatial discretization, leading to a linear
system of equations

ρ f
∂

∂ t

�

v f

0

�

+

�

−L G
D 0

��

v f

p f

�

=

�

N(v f ) + f f→s

0

�

(5.22)

where L, G and D represent the Laplace, gradient and divergence discrete oper-
ators.
We apply an explicit time integration with a low-storage third-order accurate
Runga-Kutta scheme [Wray, 1986]. The equation related to the conservation of
mass is independent of time and must be satisfied at each time step, then an
implicit treatment is required. The same consideration can be made for the pres-
sure gradient.
Let vm=0

f = vn
f and vm=3

f = vn+1
f . Then we obtain the following algebraic system

�

J Gm

D 0

��

vm
f

pm
f

�

=

�

q(vm−1
f ,vm−2

f , fn+1
f→s)

0

�

(5.23)

with J equal to the identity matrix I except that the rows correspond to the bound-
ary points, which contain velocity boundary conditions. The discretized diffusive
and convective terms are contained in q together with the interaction force f f→s

which is reevaluated for each Runge-Kutta subtime step.
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Fluid-structure interaction coupling

A fully implicit treatment is used for the nonlinear FSI system, which can be
written employing an algebraic formulation as follow

S(ûn+1
s ) =mf̂n+1

s→ f + rs(û
n
s ) (5.24)

vn+1
s,Γ f si(t) − (Tvn+1

f )|Γ f si(t) = 0 (5.25)

F(vn+1,pn+1
f ) = rs(f

n+1
f ]→s,v

n
f ) (5.26)

f f→s − T̃fn+1
s→ f = 0 (5.27)

A strategy for solving the system is the iteration of the Block-Gauss-Seidel method
between the fluid and the solid subproblems. Then we can start by writing it as
a fixed point problem. For each time step we need to solve:

ûs = S (ûs,v f ) (5.28)

(v f , p f ) =F ((v f , p f ), ûs) (5.29)

where the operatorS represents the first two equations of the FSI system related
to the solid subproblem, while F takes the place of the remaining equations
describing the fluid subproblem. The time step indices are omitted for facilitating
the notation.
We initialize the variables at the previous time step, whose values are given û0

s =
ûn

s , v0
f = vn

f and p0
f = pn

f and for l ≥ 0

ûl+1
s = S (ûl

s,v
l+1
f ) (5.30)

(vl+1
f , pl+1

f ) =F ((v
l
f , pl

f ), û
l+1
s ) (5.31)

The iterative procedure terminates when one of the following criteria is satisfied
and the solid displacement and fluid velocity variables are updated:

Relative convergence criterion

‖ fl+1
s→ f − fl

s→ f ‖∞
‖ f0

s→ f ‖
< εR (5.32)

Absolute convergence criterion

‖ fl+1
s→ f − fl

s→ f ‖∞< εA (5.33)

A scheme of the iterative algorithm is now proposed:
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Algorithm 1 Algorithm
Step 0:
The displacement, velocity, and pressure variables are initialized.

û0
s = ûn

s v0
f = vn

f p0
f = pn

f

Step 1:
The fluid velocity is transferred from the cartesian fluid grid to the current
configuration of the solid mesh.

wl+1
s = Tvl

f
where ws is the spatial velocity of the solid in the current configuration.

Step 2:

The displacement field of the solid structure is computed on the interface. Γ f si

ûl+1
s, ˆΓ f si
= ûn

s, ˆΓ f si
+∆tŵl+1

s| ˆΓ f si

where ŵs is the material velocity of the solid in the reference configuration
ûs =ws ◦ χ̂−1(x̂s, t).

Step 3:
The discrete elastodynamics equations are solved by applying the Newmark
scheme and imposing ûl+1

s, ˆΓ f si
as Dirichlet boundary condition.

Step 4:

The reaction force fl+1
s→s is computed and transferred from the current configu-

ration of the solid mesh to the cartesian fluid grid.

fl+1
f→s = T̃fl+1

s→ f

Step 5:
The Navier-Stokes equations are solved employing the three-order Runge-
Kutta method.

Step 6:
If the absolute or relative convergence criteria are satisfied, the solution is
updated, otherwise, the index l is incremented and the iteration restarts from
step 0.

ûn+1
s = ûl+1

s vn+1
f = vl+1

f pn+1
f = pl+1

f
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Chapter 6

Benchmark Fluid-Structure Interaction
Problems with Active Stress

In this chapter, we present the outcomes of parallel numerical simulations con-
ducted on various benchmarks involving the interaction of an incompressible
fluid with an elastic solid structure. All experiments were carried out on two
high-performance computing systems: the Euler Institute cluster in Lugano, Switzer-
land, which consists of 42 compute nodes running CentOS 8.2.2004.x8664, and
the Piz Daint supercomputer at CSCS, also located in Lugano, Switzerland. The
Piz Daint system is a hybrid Cray XC40/XC50 with a substantial capacity of 5320
compute nodes.
The fluid-structure interaction algorithm is implemented in the FE framework
MOOSE including the FSI coupling based on a parallel algorithm framework
[Krause and Zulian, 2016] and the flow solver IMPACT, validated and widely
used for different complex flow configurations [Henniger et al., 2010].

6.1 Modified Turek-Hron benchmark with active force

We begin our analysis by considering the Turek-Hron benchmark, a well-established
reference Turek and Hron [2006] frequently utilized to evaluate and compare
different numerical methods for fluid-structure interaction (FSI) problems. This
benchmark offers specific configurations that aid in testing and validating FSI
algorithms.
In the computational domain, the fluid region possesses a length of L f = 3.0 and
a height of H f = 0.41. The immersed structure within the domain consists of
a disk centered at coordinates C = (0.2,0.2) relative to the lower-left corner of
the rectangular fluid domain. The disk has a radius of r = 0.05. An elastic bar
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is also incorporated, measuring l = 0.35 in length and h = 0.02 in height (Fig.
6.1). For the structure’s disk, two fixed points are subjected to Dirichlet bound-

(a) Computational Domain
(b) Detail of the immersed
structure

Figure 6.1. Geometry of the modified Turek-Hron benchmark

ary conditions. The fluid channel, on the other hand, employs periodic boundary
conditions at both the inlet and outlet, also considering no-slip boundary condi-
tions on the top and the bottom of the fluid domain.
At the inflow section of the left channel, a parabolic velocity profile is enforced
by incorporating a fringe forcing term. This ensures that the fluid flow exhibits
a well-defined parabolic shape as it enters the computational domain

v0(x, t) = 1.5U ·
y(H f − y)
�

H f

2

�2 (6.1)

such that the mean of the inflow velocity is U and the maximum is 1.5U .
To address the challenges associated with boundary conditions in simulations of
transitional and turbulent boundary layers, the fringe region techniques were
introduced Spalart [1989]. These techniques have proven useful in eliminating
complications arising from boundary conditions.
In the computational domain, two distinct regions are defined: the utility region
and the fringe region. The fringe region, located at the boundaries of the do-
main, incorporates an additional forcing function on the right-hand side of the
Navier-Stokes equations. This compensation accounts for the periodic nature of
the problem and mitigates any nonphysical phenomena occurring in the fringe
region. It is assumed that these phenomena do not invalidate the solution within
the remaining computational domain.
Similar techniques resembling the fringe region approach were utilized in pre-
vious studies, such as Kloker et al. [1993]. In that work, a weighting function
was employed to suppress vorticity perturbations near the outflow region. Other
strategies include implementing a stretched grid combined with a filter to min-
imize reflections from the outflow boundary Colonius et al. [1993], as well as
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modifying the governing equations within the fringe region to expedite conver-
gence to a steady state solution Karni [1992].
In our case, the fringe function has the following form:

λ(x) = λ̂

�

S
�

x − xstar t

∆rise

�

− S

�

x − xend

∆ f al l
+ 1

��

(6.2)

where λ̂ = 10 is the maximum strength of the damping, xstar t = 2.5 and xend =
3.0 are the endpoints of the region xstar t < x < xend where the damping function
is nonzero, ∆rise =∆ f al l = 0.025 are the rise and the fall distances respectively,
and S(x) is a smooth step function rising from zero for negative x to 1 for x ≥ 1.
We have used

S(x) =











0, x ≤ 0,
1

1+exp( 1
x+1+

1
x )

0< x < 1,

1, x ≥ 1

(6.3)

which has the advantage of having continuous derivates of all orders. In the
forcing region, we enforce the velocity profile v0, and the fluid pressure increase
by

f f r inge = λ(x)

�

(v0 − v f ) +
L f

λ̂(xend − xstar t)
·

8µ
H2

f

3U
2

�

(6.4)

In our analysis, the structure is considered to be both elastic and incompress-
ible. Thus, the material properties are characterized by specifying the second
Piola-Kirchhoff tensor Sm using the constitutive law for Saint-Venant-Kirchhoff
material.

Sm = λsTr(E) + 2µsE (6.5)

where E = 1
2(F

T F− I)I is the Green-Lagrangian strain tensor and λs = ks − 2µs
d ,

with d mesh dimension (Table 6.1).
The fluid domain is discretized using a Cartesian grid with dimensions 769×129,

while the solid structure is meshed using 1405 P1 finite elements, resulting in 806
nodes. The chosen time step for the simulations is ∆t = 10−5 [ms].
In a fluid-structure interaction (FSI) simulation, the choice between using an ac-
tive stress or an active strain approach depends on the specific requirements and
characteristics of the problem at hand.
We refer to a study by [Lin et al., 2019] where they assumed the elastic material
to follow the Neo-Hookean model and employed an active strain approach to
investigate the swimming motion of thin robots.
Nevertheless, active stress formulations provide greater flexibility in modeling
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par. dim.
ρs [kg/m3] 1000
µs [kg/ms2] 2000000
ks [kg/ms2] 4666667
ρ f [kg/m3] 1000
µ f [Pa · s] 1
U [m/s] 2

Table 6.1. Parameters of the modified Turek-Hron benchmark

the active behavior of the solid structure; by directly prescribing the stress ten-
sor, it is possible to have more control over the distribution and magnitude of
forces and to reproduce and validate the experimental stress profiles in the FSI
simulation.
In our setup, we model the first 10% of the length of the bar as a passively de-
formed solid structure. In the middle, an active segment of length δ is connected,
where a periodic time-dependent contractile field is applied (Fig. 6.2). This con-
figuration allows for the incorporation of active behavior in the solid structure.
The contraction strength is characterized by the active stress function (assum-

Figure 6.2. Schematic representation of the active segment

ing fibre direction oriented along the x-direction), where the maximum stress is
imposed on the surface with an exponential decay in the thickness direction

α(t) =











5 · 105 · sin
�

2πt
T

�

· exp
�

−
0.21− y
0.006667

�

, 0≤ t ≤ T/2

5 · 105 · sin
�

2πt
T

�

· exp
�

−
y − 0.19

0.006667

�

, T/2< t ≤ T
(6.6)

For our numerical simulations, we first applied the active stress along the
first principal direction, and we can compare the results with the ones computed
without the active term (only fluid-structure interaction)[Fig. 6.5a]. Then the
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(a) t = 0.40s

(b) t = 0.85s

(c) t = 1.19s

(d) t = 2.10s

Figure 6.3. First component of fluid velocity vf x and immersed displaced struc-
ture with active stress term applied along the x-direction

active stress was applied along the second principal direction, where periodic
behavior was more evident. Also, in this case, the results have been compared
with the simulations in the absence of active term [Fig.6.5b].
The FSI simulation using the Turek-Hron benchmark with an active stress ap-
proach offers a comprehensive understanding of the dynamic interplay between
the fluid and solid domains.
The presence of active stress leads to dynamic changes in the behavior of the
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(a) t = 0.17s

(b) t = 1.00s

(c) t = 1.52s

(d) t = 2.42s

Figure 6.4. First component of fluid velocity vf x and immersed displaced struc-
ture with active stress term applied along the y-direction

fluid and solid domains. These changes are observed in various aspects of the
simulation, including the deformation of the solid structure (Fig. 6.5), the flow
patterns within the fluid domain, and the interaction between the fluid and the
solid (Fig. 6.3 and Fig. 6.4).
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(a) Active stress applied along x-direction

(b) Active stress applied along y-direction

Figure 6.5. First and second components of displacements of a fixed point cen-
tered in the active region of the bar in relation to the displacements performed
without the active term
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6.1.1 Convergence study

A series of fluid-structure interaction (FSI) simulations with active stress have
been conducted using different meshes to analyze the convergence behavior in
space. From the results obtained, the case where the active stress is applied along
the second principal direction has demonstrated superior performance, prompt-
ing us to focus on this particular configuration.
For the reference solution, a high-resolution grid was employed, consisting of
a 9217 × 1521 Cartesian grid for the fluid domain. The solid structure was
discretized using a mesh composed of 740032 P1 elements, corresponding to
372277 nodes. The time discretization parameter ∆t was set to 4× 10−6.
To ensure comparability with previous studies, the fluid grids were sized to match
the dimensions reported in Nestola et al. [2019]. This ensures that the results
can be directly compared to previous research (Table 6.2). In all the simulations,
a common time step size of ∆t = 1× 10−5 was employed.

solid mesh nodes/elements fluid grid
coarse 6065/11563 1153 × 193
medium 23692/46 252 2305 × 385
fine 93635/185 008 4609 × 761
reference 372277/740 032 9217 × 1521

Table 6.2. Solid mesh and fluid grid sizes

The L2-norm errors of the two components of the displacements (usx and us y)
are computed with respect to the reference solution (Table 6.3), while the∞-
norm errors (Table 6.4) are evaluated for the velocity components of the fluid
(vf x and vf y).

mesh usx L2-norm error us y L2-norm error
coarse 0.061844 0.12708
medium 0.03413 0.095554
fine 0.013625 0.05215

Table 6.3. Solid displacement errors

The analysis of the displacement errors in the FSI simulations reveal a conver-
gence rate ranging between first and second order (see Fig. 6.6 and Fig. 6.7).
This behavior aligns with the expected convergence rates reported in [Nestola
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mesh vf x L∞-norm error vf y L∞-norm error
coarse 0.017578 0.019206
medium 0.0023986 0.00091625
fine 0.0010562 0.00041403

Table 6.4. Fluid velocity errors

(a) usx L2-norm error (b) us y L2-norm error

Figure 6.6. Solid displacement field convergence rate

(a) v f x L∞-norm error (b) v f y L∞-norm error

Figure 6.7. Fluid velocity convergence rate

et al., 2019].
However, it is noteworthy that the overall convergence rate of the velocity fields
is lower, despite employing a sixth-order scheme for the fluid solver. This lower
convergence rate can be attributed to the use of P1 finite elements for the solid
subproblem. While the fluid solver utilizes a higher-order scheme, the limitations
imposed by the lower-order solid discretization affect the overall convergence
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rate. However, It is essential to carefully consider the trade-offs between compu-
tational efficiency and accuracy when selecting finite element types for both the
fluid and solid domains in FSI simulations. Higher-order finite elements for the
solid domain may lead to improved convergence rates but at the cost of increased
computational complexity.

6.1.2 Computational Capabilities

The generalized fluid-structure interaction (FSI) framework provides a powerful
tool for investigating the complex interplay between fluid dynamics and cardiac
mechanics.
The computational performance of the framework was evaluated using the Piz
Daint supercomputer machine. The machine’s high-performance computing ca-
pabilities allowed for efficient execution of the simulations and enabling the in-
vestigation of realistic three-dimensional cardiac models.
For the two-dimensional simulations, a single node consisting of 8 processors

Figure 6.8. Perfomance of the parallel computation of FSI problem compared
with the ideal speed-up.

was employed. This configuration provided sufficient computational power to ac-
curately capture the fluid-structure interaction phenomena in a reduced dimen-
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sionality setting, while in the case of three-dimensional simulations, the frame-
work utilized 8 nodes, each containing 32 processors.
To assess the scalability and performance of the framework, a strong scaling tech-
nique was employed. This technique involves increasing the number of proces-
sors while keeping the problem size constant. The framework exhibited near-
optimal scaling, indicating that the computational workload was effectively dis-
tributed among the processors, resulting in efficient utilization of computing re-
sources (see Fig. 6.8).
It is important to note that the computational performance discussed here does
not take into account the electrophysiological subproblem. The coupling be-
tween the electrophysiological and mechanical aspects of the heart was achieved
through the separated evaluation of the activation map, which was then incorpo-
rated into the formulation of the active stress. This approach allowed for the in-
vestigation of the electromechanical coupling without explicitly solving the elec-
trophysiological problem.
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6.2 A two-dimensional idealized left ventricle

The cardiac cycle describes the performances of the atria and ventricles from the
beginning of one heartbeat to the beginning of the next. Each cardiac cycle has a
diastolic phase (called diastole), where the heart’s chamber is relaxed and refills
with blood, and a systolic phase (called systole), characterized by robust con-
traction and pumping of blood (see Appendix).
Since ventricular contraction is the most important from a dynamic point of view,
we focus on the ventricular cardiac cycle, and systole and diastole can be further
subdivided. The first phase of ventricular systole consists of an isovolumetric con-
traction, while the second phase is referred to as ejection. The diastolic phase
starts with the closing of semilunar valves, followed by an isovolumetric relax-
ation. The imbalance of pressure between the atria and ventricles involves the
opening of the atrioventricular (AV) valves with a rapid filling, then a slow filling
phase occurs (called diastasis), whose length depends on the heart rate.

This section introduces a benchmark that serves as an initial approximation
to the physiology of the human left ventricle, represented within an idealized
vertical section immersed in a fluid channel.
The fluid domain in the benchmark has a length of L f = 0.7 [m] and a height of
H f = 0.3 [m]. It is important to note that the fluid, in this case, is considered to
be incompressible and exhibits Newtonian behavior.
The immersed structure comprises the section of the ventricle connected to an
open channel. The channel has a thickness of 0.0134 [m] and a length of L =
0.15 [m]. The surface that represents the ventricle is defined by the inner curve,
which corresponds to the endocardial surface, and the outer curve, which rep-
resents the epicardial surface. These curves delineate the boundaries of the ap-
proximated ventricle in the benchmark (Fig. 6.9). Each curve is parametrized
by ellipses equations with different values for semiaxes

aepi = 0.08[m] bepi = 0.04[m]
aendo = 0.068[m] bendo = 0.028[m]

The top of the channel is fixed at x = 0.01.
To account for the high deformability of human cardiac tissue, the solid domain
in the benchmark is divided into two separate regions. The first region encom-
passes the open channel and a small portion of the ventricle (x < 0.183473),
while the second region includes the remaining portion of the ventricle’s section
(see Fig. 6.10). This division allows for the consideration of two distinct groups
of coefficients for the hyperelastic constitutive material models used to describe
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Figure 6.9. Computational domain representing the rectangular fluid domain
and the immersed two-dimensional idealized ventricle connected with an open
channel

the structure.
In particular, assuming that the fiber direction within the tissue is oriented along
the x-direction, the material properties are assumed to be isotropic. The behav-
ior of the material in this region is characterized by the second Piola-Kirchhoff
tensor Sm, which is determined by the constitutive law for Saint-Venant-Kirchhoff
material (see Table 6.5).
By considering different material properties for the two regions of the ventri-
cle, the benchmark aims to capture the heterogeneity and anisotropic nature of
the cardiac tissue, allowing for a more accurate representation of its mechanical
response and deformation characteristics.

Sm = λsTr(E) + 2µsE (6.7)

where λs = ks −µs.
The first set of parameters used for the channel’s material is equal to the one
used for simulations with the modified Turk-Hron benchmark, while the second
group takes into account the soft property of cardiac tissue.
The fluid domain is discretized using a cartesian grid 561× 241, while the solid
mesh consists of 727 P1 finite elements with 492 nodes. The time step is chosen
at ∆t = 10−5[ms].
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Figure 6.10. Representation of the partition of the solid domain: the first
subdomain colored in blue and the second domain colored in red.

par. dim.
µs[kg/ms2] 2000000
ks[kg/ms2] 4666667

(a) Bulk and shear moduli used for the
cannel’s material

par. dim.
µs[kg/ms2] 250000
ks[kg/ms2] 583333

(b) Bulk and shear moduli used for the
ventricle’s material

Table 6.5. Material coefficients of the two-dimensional idealized ventricle.

6.2.1 Simulation of filling phase

The E-wave is an important component of the cardiac cycle and represents the
passive flow of blood from the left atrium to the left ventricle. It occurs following
the closing of the aortic valve and the subsequent relaxation of the ventricular
muscles.
During this phase, the ventricular muscles relax, leading to a rapid decrease in
ventricular pressure. This pressure gradient, combined with the opening of the
mitral valve (the atrioventricular valve located between the left atrium and left
ventricle), facilitates the flow of blood from the atrium to the ventricle.
The simulation of the rapid filling of the left ventricle using the idealized two-
dimensional benchmark provided valuable insights into the fluid dynamics and
behavior of the ventricular filling process (Fig. 6.13). The simulation was per-
formed starting from a relaxed conformation of the solid without including a
model for the mitral valve. The fluid’s viscosity and density parameters were set
to the same values as in the Turek-Hron simulation, with the reference length set
at Lre f = 0.1.
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Figure 6.11. Inlet flow velocity profile proposed in [Chan et al., 2012]

Figure 6.12. Relaxed two-dimensional ventricle and two fixed points (A and
B) at the top of the channel

A null Dirichlet boundary condition is imposed at two fixed points of the struc-
ture’s channel (points A and B in (Fig. 6.12)) with periodic boundary conditions
at the inlet and outlet of the fluid domain and no-slip boundary conditions on
the top and bottom walls.
To enforce a sinusoidal velocity profile at the left fluid channel inflow, the fringe
force technique was employed. This technique allowed us to impose a time-
varying velocity profile that mimics the filling phases observed in clinical data.

v0(x, t) = 1.5U ·
h

0.0001sin
�π

2
t
�i

(6.8)

In this case, the fringe function has the same form of (6.2), where λ̂ = 10, the
endpoint of the fringe region are xstar t = −0.02, xend = 0.02 and the rise and
fall distances are ∆rise = 0.01, ∆ f al l = 0.005 respectively.
Comparisons were made between the velocity profile at two distinct points in our
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Figure 6.13. Fluid velocity m/s at times t = 0.00, 0.14, 0.16, 0.18[s] and im-
mersed displaced ventricle

simulation and a profile proposed in a previous study [Chan et al., 2012], where
the effects of the dilated cardiomyopathy (characterized by low ejection fraction
and decreased wall motion) on the intraventricular flow dynamics was studied.
In particular, the velocity profile was adapted from clinical data and represented
a time-varying pattern of the filling phase, including the E-wave, diastasis, and
A-wave (see Fig. 6.11).
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The simulation results revealed important aspects of the ventricular filling pro-
cess. The imposed sinusoidal velocity profile accurately captured the filling phases,
and the E-wave, representing the rapid early diastolic filling, was clearly evident
in the velocity profile (Fig. 6.14). The simulation revealed that the velocity inside

(a) point A (b) point B

Figure 6.14. Velocity profile at two fixed points of coordinates A(0.1925, 0.15),
inside the ventricle (a), and B(0.17,0.15) close to the entry of the ventricle
region (b).

the ventricle reached a peak value of 0.68 m/s (Fig. 6.15), which is comparable
to the velocity reported in [Chan et al., 2012].
However, it is important to note that our simulation did not include a model
for the mitral valve, and it may have influenced the flow patterns and dynamics
within the ventricle. Specifically, without the presence of the valve’s geometry,
the jet of fluid entering the ventricle may not have extended as far down into the
ventricle as reported in another study [Kronborg et al., 2022a], where different
geometries for the mitral valve were considered.
Despite the absence of the mitral valve model, our simulation still provided valu-
able insights into the inflow dynamics of the left ventricle, and the exact value of
the E-wave peak can vary depending on factors such as age, cardiac health, and
individual variations.
However, the peak velocity of 0.68 m/s indicates a relatively rapid inflow, con-
tributing to efficient filling of the ventricle during the diastolic phase. This veloc-
ity magnitude is consistent with the findings also reported in [Sattarzadeh et al.,
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2015], where the mitral peak E velocity of the studied population is 0.7 ± 0.1,
which suggests that our simulation accurately captured the flow characteristics
observed in clinical data.
Our results highlight the importance of considering the mitral valve geometry
when aiming to reproduce the full extent of the jet. Future studies incorporating
a comprehensive mitral valve model may provide a more detailed representation
of the inflow patterns and further improve the accuracy of the simulation.

Figure 6.15. Velocity field at time t = 0.18s and displaced 2D ventricle mesh.

6.2.2 Simulation of contraction

Ventricular systole is the phase of the cardiac cycle that begins when the heart
is filled with blood and subsequently contracts, forcing blood into the aorta and
pulmonary trunk. This process consists of two main phases: the isovolumetric
contraction and the ejection [Little, 2001]. During the isovolumetric contraction,
the left ventricle contracts forcefully. All the heart valves, including the mitral
valve (between the left atrium and left ventricle) and aortic valve (between the
left ventricle and aorta), are closed (see Appendix). This closure prevents any
backflow of blood into the atrium and aorta. Despite the contraction, there is no
change in the volume of blood within the ventricle. As the ventricular pressure
exceeds the pressure in the aorta, the aortic valve opens. This allows the blood
to be ejected from the left ventricle into the aorta and subsequently distributed
to the entire body. The contraction of the ventricle is rapid and forceful during
this phase, facilitating efficient blood ejection. To simulate the rapid contraction,
we partitioned the domain into two distinct subdomains. In this approach, we



97 6.2 A two-dimensional idealized left ventricle

Figure 6.16. Deformed two-dimensional ventricle and two fixed points (A and
B) at the top of the channel

designate the channel’s subdomain (where x < 0.183473) as passive, meaning
it does not exhibit active contraction. On the other hand, the subdomain repre-
senting the ventricle is subjected to a contractile field (see Fig. 6.10).
The contraction process is characterized by a linear time-dependent active stress
function, which is incorporated into the elastodynamics equation using the first
Piola-Kirchhoff stress. This stress function takes into account the orientation of
the fibers present in the ventricular tissue. By considering these factors, we can
accurately model the mechanical behavior of the ventricle during contraction in
our simulation with the following form:

P̂= P̂m + P̂a

P̂a = α(t)Fgn⊗ n
(6.9)

with P̂m first Piola-Kirchoff passive stress tensor and

α(t) = (t ≤ 0.0001) · 0.0+ (106 · (t − 0.0001)) · (t > 0.0001). (6.10)

To initiate the simulation, the deformed solid mesh obtained from the final step
of the inflation simulation is utilized as the initial condition for the solid subprob-
lem. This ensures that the geometry accurately represents the deformed state of
the ventricle before contraction.
To establish the boundary conditions, we set null Dirichlet boundary conditions
at two fixed points located at the top of the channel, specifically points A and
B, as illustrated in Fig.6.16. Additionally, in the fluid domain, zero flow is con-
sidered at the left side, while the top and bottom walls exhibit no-slip boundary
conditions.

To avoid reflection effects resulting from the outflow generated by the ven-



98 6.2 A two-dimensional idealized left ventricle

Figure 6.17. Fluid velocity m/s at time t = 0.00, 0.04, 0.06, 0.12 and the dis-
placed ventricular mesh showing the active contraction

tricular contraction, a second fringe force function is generated. This function
incorporates a pressure difference in the opposite direction compared to the pre-
viously defined fringe forcing condition (6.4). By implementing this opposite
pressure difference, the simulation accounts for the impact of the ventricular
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contraction without inducing unwanted reflections in the fluid domain.

f f r inge = λ(x)
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2
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(6.11)

with λ̂ = 10, xstar t = −0.02, xend = 0.02 and ∆rise = 0.0005, ∆ f al l = 0.001. By
plotting the module of the velocity, we can observe the flow patterns and under-
stand the overall fluid dynamics during ventricular contraction (Fig. 6.17). This
representation provides a visual insight into the movement and direction of the
fluid within the ventricle and the connected channel.
Simultaneously, the simulation also showcases the active contraction of the ven-
tricular mesh. This feature demonstrates how the ventricular tissue changes
shape and size during the contraction process (Fig. 6.17).
Furthermore, the velocity profiles at two fixed points serve as important indi-

(a) point A (b) point B

Figure 6.18. Velocity profile at two fixed point A = (0.1925,0.15) and B =
(0.17, 0.15) respect of time

cators of fluid dynamics (see Fig. 6.18). The first point A, located inside the
ventricle, shows the velocity distribution within the ventricle during contraction.
This provides valuable information about the flow characteristics and velocity
magnitudes inside the ventricular chamber, where the velocity reaches a peak
value of 0.34 m/s.
The second fixed point B, positioned inside the connected channel but close to
the entry of the ventricle, allows us to assess the influence of the absence of the
aortic valve on the dynamics in the ventricular apex. The velocity profile at this
point helps us understand how the absence of the aortic valve affects the fluid
flow patterns and velocities within the ventricle.
Additionally, through the velocity field, we can observe the relationship between
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Figure 6.19. Velocity field at time t = 0.12s and the conctracted two-
dimensional ventricle.

the flow increase and the reduction in the section of the channel (Fig. 6.19). This
observation highlights how changes in the geometry and valvular dynamics im-
pact the flow dynamics within the ventricle and the connected channel.
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6.3 A three-dimensional idealized left ventricle

In this section, we demonstrate the capabilities of the generalized FSI framework
with active stress through a three-dimensional application involving a truncated
ellipsoid, as inspired by Land et al. [2015a], within a cubic fluid domain.
Initially, we perform a simulation using a linear function to define the active
stress, generating a uniform contraction throughout the truncated ellipsoid. By
examining the effects of this simplified active stress model, we gain initial in-
sights into the overall behavior of the system and lay the foundation for more
complex and realistic simulations.
Subsequently, we introduce the concept of activation maps, which is a graphical

µs [kPa] b f bt b f s

0.493 38.06 4.11 45.07

Table 6.6. Guccione-Costa constitutive law parameters of the truncated ellip-
soid

representation that illustrates the timing and propagation of electrical activation
within cardiac or biological tissue. It provides a spatial depiction of the initi-
ation and spread of electrical impulses responsible for the heart’s contraction.
Two distinct activation maps are utilized: one generated by the eikonal model
and another generated by the monodomain model coupled with Luo-Rudy ionic
model.
The eikonal model offers quick approximations of activation patterns with a sim-
plified representation of electrical propagation, while the monodomain model
provides a more detailed and accurate description of electrical activity but re-
quires more computational resources. Once the activation maps are applied, the
simulation evaluates the electrical activity on each node and the information is
used to generate a three-dimensional contraction of the heart.
All the three-dimensional simulations discussed in this chapter were performed
on the Piz Daint supercomputer machine. Each simulation utilized 8 nodes, with
each node consisting of 32 processors. The simulations were executed using a
time step of ∆t = 1e−5, which ensured accurate temporal resolution of the car-
diac dynamics.
The computational time required for each simulation was approximately 13 hours.
The high-performance computing capabilities of the Piz Daint machine, coupled
with the parallel implementation of the solution strategy, enabled efficient and
timely execution of the simulations.
As in Chapter 3 for the electrophysiological simulations, the orientation of the
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fibres is estimated following Potse et al. [2006a].
We consider the Guccione-Costa constitutive law [Guccione et al., 1995] for

Figure 6.20. Relaxed three-dimensional ventricle and outer and internal node-
sets

modeling the elastic behavior of the human ventricle with the constitutive pa-
rameters taken from Nikou et al. [2015] and reported in Tab. 6.6. Null Dirichlet
Boundary conditions are imposed in the outer and internal ring of the ventricle
base with periodic boundary conditions at the inlet and outlet of the fluid domain
for all the following simulations (see Fig. 6.20).
In this study, the fluid properties were carefully selected to achieve a desired flow
regime in the computational fluid dynamics simulations. Specifically, the fluid
density was set to 1060 [kg/m3], while the viscosity was chosen as 0.004 [Pa ·s].
To determine the reference length and velocity, we aimed to attain a Reynolds
number on the order of 104, which corresponds to a turbulent flow regime. This
choice was based on the recommendations presented in [Kronborg et al., 2022b],
which highlighted the importance of considering turbulent effects in cardiovas-
cular flow simulations.

6.3.1 Simulation of uniform contraction

In this section, we present the results of our simulation using a linear function
to define the active stress, resulting in a uniform contraction of the truncated
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(a) t = 0.00s (b) t = 0.18s

(c) t = 0.00s (d) t = 0.18s

Figure 6.21. Uniform contraction. Displacement of the ventricle domain and
Von Mises stress.

ellipsoid immersed in a three-dimensional fluid domain. The fluid domain
has dimensions of L f ,x = 0.07[m], L f ,y = 0.07[m] and L f ,z = 0.07[m], while the
solid geometry corresponds to the same configuration described in the second
and third benchmarks of Land et al. [2015b]. The solid geometry is scaled by a
factor of 0.005, translated, and rotated to ensure that the base plane is fixed at
x = 0.005 [m] and centered at (0.005, 0.035,0.035).
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The fluid and solid domains remain identical for all computations related to the
contraction process. The fluid domain is discretized using a Cartesian grid with
dimensions of 161 × 161 × 161 points, providing a suitable resolution for cap-
turing the fluid dynamics. On the other hand, the ventricular structure is repre-
sented using 324376 P1 elements and 61216 nodes, enabling a detailed descrip-
tion of the solid mechanics.
During the simulation, we employ a cubical time-dependent active stress func-
tion to model the rapid contraction during the systolic phase representing the
expected behavior during the cardiac cycle:

α(t) = 0.0 · (t ≤ 0.0001)+
103

(0.2− 0.0001)3
· (t −0.0001)3 · (t > 0.0001) (6.12)

Furthermore, we impose zero flow at the inlet of the fluid domain to simulate
a closed system, consistent with the absence of an aortic valve geometry. No-
slip boundary conditions are enforced at the top and bottom walls of the fluid
domain.
To evaluate the displacement of the solid structure, we compare our results (see

Fig 6.21) with those reported in [Bucelli et al., 2023]. Specifically, we examine
the magnitude of the velocity (Fig. 6.22) and its profile at a specific point located
inside the ventricle (Fig. 6.24) but close to the entry of the truncated ellipsoid. It
is important to note that our simulation, similar to the previous two-dimensional
study, does not incorporate the aortic valve geometry. Despite this omission, we
anticipate that the maximum velocity value and flow magnitude (Fig. 6.23) will
remain within a comparable range to those presented in [Bucelli et al., 2023].
By making this comparison, we can assess the agreement between our findings
and the established results in the literature.
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(a) t = 0.00s (b) t = 0.12s

(c) t = 0.15s (d) t = 0.18s

Figure 6.22. Uniform contraction. Slice perspective of fluid velocity [m/s] and
immersed displaced ventricle with uniform active stress.
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Figure 6.23. Uniform contraction. Velocity field at time t = 0.18[s].

Figure 6.24. Uniform contraction. Velocity profile over time at a fixed point
A(0.0122302, 0.035, 0.035) close to the entry of the ventricle.
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6.3.2 One way electro-fluid-structure coupling

Eikonal model

In this section, we present the results of the simulation for the contraction driven
by an active force, which in turn depends on an activation map constructed
through the resolution of an Eikonal model (see Fig. 6.25). Although this model
does not accurately represent cardiac electrophysiology, it provides an initial and
unique bridge, given the absence of a complete electromechanical coupling, be-
tween a generalized fluid-structure model based on immersed domains and the
L2 projection, which includes the description of an active term.

The fluid domain in our simulation maintains the same dimensions as in the

Figure 6.25. Time dependent active stress function for different cellular time
activation.

uniform contraction simulation. The dimensions of the fluid domain are set as
L f ,x = 0.07 m, L f ,y = 0.07 m, and L f ,z = 0.07 m. On the other hand, the
solid geometry, following [Land et al., 2015a], is scaled by a factor of 0.0025
and translated such that the base plane is fixed at x = 0.005 m and centered at
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(0.005, 0.035,0.035).
The discretization of the fluid domain is performed using a Cartesian grid with
161×161×161 points. The grid is refined near the solid apex to capture the de-
tails of the geometry accurately. The truncated ellipsoid, representing the solid
domain, is discretized using 324,376 P1 elements and 61,216 nodes, which is
the same as the uniform contraction simulation.
To imitate the function of the Purkinje network, which is not included in the
mathematical model, stimuli are applied at three different points on the epicar-
dial surface. These stimuli initiate the activation process and propagate through
the myocardial tissue. The active stress is defined by a time-dependent cubical
function

P̂a = α(t)Fgn⊗ n (6.13)

α(t) = (t ≤ψa) · 0.0+
�

Ta

(0.2−ψa)3
· (t −ψa)

3
�

· (t >ψa). (6.14)

whereψa represents the activation time obtained by the resolution of the Eikonal
model and the maximum value of the active stress is set to Ta = 500 [Pa], which
is reached at t = 0.20 s.
For the parallel implementation of the proposed solution strategy, we utilize a sin-
gle matrix preconditioner (SMP). The system resulting from the linearization of
the Eikonal-diffusion model is solved using the SuperLU solver from the PETSC
suite. In contrast, a Newton method is employed to linearize the mechanical
equations, and the GMRES method is used to solve the associated system for
both the uniform and Eikonal contraction cases. This parallel implementation
strategy enables efficient computation and solution of the system equations, fa-
cilitating the simulation of cardiac mechanics.
The displacement results obtained from the simulation can be compared with

the work by [Gerbi et al., 2018]. Furthermore, the activation map influences the
deformation, as the geometry differs from that generated using a uniform active
force (see Fig. 6.26). In addition to the fluid-structure interaction, the magni-
tude of the velocity field has also been analyzed, and it remains consistent with
previous cases (Fig. 6.27). The velocity field, on the other hand, is strongly in-
fluenced by the choice of geometry, which does not include the aortic valve and
the consequent increase in flow.

The simulation results reveal valuable insights into the contraction dynamics
of the simplified right ventricle geometry. By incorporating the activation map
derived from the Eikonal model, the active force plays a crucial role in driving
the deformation of the geometry. Therefore, the simulation results demonstrate
the effectiveness of the proposed approach in capturing the contraction behavior
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(a) first (t = 0.00s) and final (t = 0.18s) stage

(b) first (t = 0.00s) and final (t = 0.18s) stage

Figure 6.26. Eikonal contraction. Displacement of two different sections of the
ventricle and Von Mises stress.

of the simplified left ventricle geometry. The employment of the Eikonal model
to construct the activation map allows for the integration of an active term in the
fluid-structure model. While limitations exist due to the absence of a complete
electromechanical coupling, the results provide a valuable starting point for fur-
ther investigations and advancements in the understanding of cardiac functions.
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(a) t = 0.00s (b) t = 0.12s

(c) t = 0.15s (d) t = 0.18s

Figure 6.27. Eikonal contraction. Slice perspective of fluid velocity [m/s] and
immersed displaced ventricle over time.

Monodomain with LR1 model

In this section, we extend our analysis by incorporating the activation time map
evaluated using the Monodomain system coupled with the LuoRudy ionic model
(Chapter 3). The Monodomain model provides more detailed information about
cardiac electrophysiology compared to the Eikonal model.
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(a) t = 0.00s (b) t = 0.12s

(c) t = 0.15s (d) t = 0.18s

Figure 6.28. Monodomain contraction. Slice perspective of fluid velocity [m/s]
and immersed displaced ventricle over time.

Then, to evaluate the activation time map, we solve the electrophysiological
Monodomain problem separately and, due to the need for higher computational
resolution, we discretize the ventricular domain with N = 460935 nodes. Subse-
quently, we interpolate the activation time onto the coarser mesh with N= 61216
nodes, which is consistent with the previous simulation. The fluid domain and
its discretization remain the same as before.
Similar to the previous simulation, the active stress in this simulation is defined
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by the time-dependent cubical function 6.13, which takes into account the time
activation map obtained from the resolution of the Monodomain model. The
threshold value for the action potential is fixed at -60.0 mV.
In this simulation, we set the maximum value of the active stress to Ta = 5e2

(a) first (t = 0.00s) and final (t = 0.18s) stage

(b) first (t = 0.00s) and final (t = 0.18s) stage

Figure 6.29. Monodomain contraction. Displacement of two different sections
of the ventricle and Von Mises stress.

[Pa]. This value determines the peak intensity of the active stress during the
cardiac cycle, influencing the deformation and mechanical behavior of the ven-
tricular walls.
To visualize the impact of the activation map on the dynamics, we present a slice
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perspective of the magnitude of the velocity field and the displaced ellipsoid
(Fig. 6.28). Additionally, we plot the displacement of the solid from different
viewpoints, highlighting the influence of the activation map on the mechanical
response (Fig. 6.29).
Furthermore, we analyze the velocity field, where we observe that, despite the

(a) t = 0.15s (b) t = 0.18s

Figure 6.30. Monodomain contraction. Velocity field at time t = 0.15[s] and
t = 0.18[s].

reduction in the fluid domain compared to the two-dimensional simulations, the
periodic boundary conditions do not significantly influence the dynamics (see
Fig. 6.30). This observation underscores the robustness and validity of the sim-
ulation framework in capturing the fluid dynamics within the ventricular domain.
It is essential to maintain an optimal ratio between the solid and fluid meshes to
ensure regular solutions and stable performance. In particular, the interface be-
tween the solid and fluid domains is sensitive to the ratio of the two mesh sizes.
An improper fraction can lead to instabilities and oscillations in the simulation
results. This observation holds for both the current and previous simulations. To
mitigate this issue, an adaptive mesh refinement technique could be introduced,
especially in regions where the displacement and stress exhibit significant varia-
tions (see Fig. 6.30).
By incorporating the activation time map evaluated using the Monodomain model,
we gain a more comprehensive understanding of cardiac electrophysiology and
its impact on the mechanical response. The combination of the Monodomain
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model and the fluid-structure interaction framework allows for a more realistic
representation of cardiac dynamics, enabling us to study the complex interplay
between electrical and mechanical processes in a simplified way.



Chapter 7

Conclusion

In this work, we developed a partioned coupled model for numerical cardiac sim-
ulations performing the fundamental physical processes concerning heart physi-
ology by a one-way electro-fluid-structure interaction problem.
Initially, we explored electrophysiological models that describe the propagation
of electrical signals through cardiac tissue. These models include the Monodomain
model, which consists of a nonlinear reaction-diffusion equation coupled with a
system of ordinary differential equations governing the evolution of gating vari-
ables for ionic channels, and the simplified Eikonal Model. To implement these
electrophysiological models, we utilized the library Pony , which is based on the
open-source C++ finite element framework MOOSE.
We considered a space discretization based on the finite element method and two
different approaches for time discretization: the first was a semi-implicit finite
difference method for the reaction-diffusion equation coupled with the Rush-
Larsen scheme for the ODE’s system. The second was a second-order time inte-
grator scheme based on Strang splitting where a second-order θ -rule method for
the resolution of the linear diffusive differential equation was combined with a
second-order explicit predictor-corrector scheme for solving the nonlinear sub-
problem. We validated this time integrator with a Monodomain equation coupled
with a modified FitzHugh Nagumo model for cardiac membrane cells, which suc-
cessfully describes qualitative aspects of excitation, including some quantitative
properties of cardiac tissue, such as the shape and the duration of the action po-
tential.
Considering the mechanical properties of the heart and blood, which can be mod-
eled as a Newtonian fluid, we then developed a generalized fluid-structure in-
teraction formulation based on the immersed boundary method. In this formu-
lation, we introduced a time-dependent active contribution expressed as active
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stress to simulate the mechanical contraction of cardiac muscles. To validate our
approach, we compared the results with the Turek-Hron benchmark, demonstrat-
ing the capability of our methodology to accurately capture the complex behavior
of the cardiac system.
We first presented the results of a two-dimensional idealized ventricle simulation,
where we simulated the inflow of blood and the contraction of the cardiac mus-
cles. To initialize the ventricle, we utilized the deformed geometry generated by
the inflation simulation. By incorporating the time-dependent active contribu-
tion, we were able to capture the dynamic contraction behavior of the ventricle,
providing insights into the mechanical response of the cardiac muscles during
the cardiac cycle.
Subsequently, we extended our investigation to three-dimensional simulations.
Initially, we considered a uniform contraction of the idealized ventricle, examin-
ing the fluid-structure interaction and the resulting mechanical deformation. To
further enhance the realism of our simulations, we incorporated two different
activation maps derived from distinct models of cardiac electrophysiology. The
first activation map was obtained through the resolution of the Eikonal Model,
while the second was computed using the Monodomain model coupled with the
LuoRudy ionic model. Hence, we were able to investigate the influence of cardiac
electrophysiology on the mechanical behavior of the ventricle. By comparing the
different activation maps, we were able to observe their distinct effects on the
deformation patterns and mechanical response of the ventricle. This highlights
the importance of incorporating detailed cardiac electrophysiological models to
capture the full complexity of cardiac electromechanics.
The one-way electro-fluid-structure interaction algorithm was implemented in
the finite element framework MOOSE, where a Newton method was used to
linearize the solid problem, and GMRES was employed to solve the associated
system and integrated with an Object Oriented Numerics Library MOONoLith
for the transfer of discrete fields and the flow solver IMPACT.
All the simulations were performed on the Euler Institute cluster (Lugano, Switzer-
land ), composed of 42 compute nodes running CentOS 8.2.2004.x86_64 and the
Piz Daint supercomputer at CSCS (Lugano, Switzerland), a hybrid Cray XC40/XC50
system with a total of 5320 compute nodes.

Based on the obtained results, future research should focus on advanced elec-
tromechanical couplings, including the effects of calcium concentration on active
force generation and the feedback induced on the active force and electrophysio-
logical equations by the mechanical model. Furthermore, it is important to con-
sider a more realistic geometry of the ventricle and integrate it with the mitral
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and aortic valves to accurately regulate and stabilize the inflow and outflow of
blood, as well as simulate the velocity profile in specific regions of the domain.
Additionally, several aspects remain open, such as mesh generation, boundary
constraints, and fiber-reinforced material models.
A correct description of heart functions through these simulations has the po-
tential to support medical research in investigating cardiac diseases and rare
pathologies, particularly those with a limited number of patients.



118



Appendix

Anatomy and physiology of the heart

The heart is a complex organ primarily responsible for pumping blood through
the body with an intricate system of muscle layers, chambers, valves, and nodes,
its own circulation system, and an electrical conduction system that makes it
contract and relax. Because of this task, the heart may be considered one of the
most important organs of the body, and a methodical and numerical understand-
ing could be the key for studying dysfunctions and abnormalities.
In this chapter, we present a basic description of the anatomy of the heart. In
particular, we focus on the organic structure of the heart and its functions, then
move on to the main characteristics of cardiac tissue and its contractile property
and we conclude with a summary of the electrical conduction system of the heart.
Mammalian hearts can be viewed as a four-chambered pump, consisting of two

separated pumps: one (the right heart) drives blood from the systemic veins
into the pulmonary circulation, while the other one (the left heart) drives the
oxygenated blood around the body. Each of these hearts is composed of two
chambers: an atrium (the upper chamber) and a ventricle (the lower chamber).
A layer of collagenous fibers called atrioventricular septum, is interposed be-
tween the atria and the ventricles to whom atrioventricular (AV) valves are fixed.
On the right is the tricuspid valve, with three cusps, and on the left the mitral
valve, also known as the bicuspid valve due to the presence of only two cusps.
Semilunar valves separate each ventricle from its great artery: the pulmonary
valve is located between the right ventricle and the pulmonary artery, while the
aortic valve is between the left ventricle and the aorta Marieb and Hoehn [2007].
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Figure 7.1. Schematic representation of the cardiovascular system (Physiology
of the heart, Arnold M.Katz, MD, D.Med (Hon), FACP, FACC, Fig. 1-1, p. 4)

Electrical conduction

The heart is provided with a system for generating rhythmical electrical impulses
to cause contraction of the heart muscle and conducting these impulses rapidly
through the heart tissue.
Cardiac cells perform are both excitable and contractile. Their excitable con-
formation allows electrical signals, transmitted by the action potential (rapid
changes in the membrane potential), to propagate through the cardiac tissue.
The electrical activity of the heart is initiated in a collection of cells known as
the sinoatrial (SA) node located just below the superior vena cava on the right
atrium with the capability of self-excitation, a process that can cause automatic
rhythmical discharge and control the rate of the beat of the entire heart. The
action potential, that is generated by the SA node, is then propagated through
the atria by the atrial cells.
The conformation of the conductive system in the atria does not permit the car-
diac impulse to travel from the atria into the ventricles too rapidly, such that atria
have enough time for emptying their blood into the ventricles before a ventricu-
lar contraction begins.
The atria and ventricles are separated by a septum composed of non-excitable
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Figure 7.2. Structure of the heart and blood flow through the heart chambers
(Textbook of medical physiology, Arthur C. Guyton, John E. Hall.—11th ed.,
Fig. 9-1, p. 104)

cells, so there is one pathway for the action potential to continue propagation
and that is through another collection of cells, known as the atrioventricular
node, located at the base of the atria. When the electrical signal leaves the AV
node, it propagates through a specialized collection of fibers called the bundle of
HIS, composed of Purkinje fibers, very large fibers which guarantee the instan-
taneous transmission of the cardiac impulse Katz [2010].
The Purkinje fiber network spreads via tree-like branching into the left and right
bundle branches beneath the endocardium on the two sides of the ventricular
septum. Each branch spreads throughout the interior of the ventricles progres-
sively dividing into smaller branches.

Cardiac muscle

The heart wall is made up of three layers: the inner endocardium, the middle
myocardium, and the outer epicardium. The middle layer of the heart, the my-
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Figure 7.3. Schematic diagram of the cardiac conduction system (Cardiovas-
cular dynamics, Rushmer, 1976)

ocardium, is the cardiac muscle, a layer of involuntary striated muscle tissue
Guyton et al. [1986].
The main three types of cardiac muscle are atrial muscle, ventricular muscle, and
excitatory and conductive muscle fibers. The contraction of atrial and ventricular
muscles is similar to skeletal muscle, while the excitatory and conductive fibers
contract feebly.
As in typical skeletal muscle, cardiac muscle is striated and has myofibrils that
contain actin and myosin filaments which lie side by side and work together to
produce muscle contraction.
Each cardiac fiber is made up of individual cells connected in series and in parallel
with the other ones and cell membranes fuse with each other forming permeable
junctions (gap junctions) that allow free diffusion of ions.
When an action potential diffuses over the cardiac muscle membrane, it spreads
to the interior of the cardiac muscle fiber along the membranes of the transverse
(T) tubules causing the release of calcium ions into the muscle sarcoplasm. These
calcium ions diffuse into the myofibrils and induce the sliding of the actin and
myosin filaments producing muscle contraction. Differently from the skeletal
muscle, an additional large quantity of calcium ions diffuses into the sarcoplasm
from the T tubules to increase muscle contraction strength.

Cardiac muscle contraction begins a few milliseconds after the first appearance
of the action potential and continues until a few milliseconds after the action
potential ends. For this reason, the duration of contraction of cardiac muscle
can be considered as a function of the duration of action potential with values of
about 0.2 milliseconds in atria and 0.3 milliseconds in ventricles.
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Figure 7.4. Structure of cardiac muscle fibers (Textbook of medical physiology,
Arthur C. Guyton, John E. Hall.—11th ed., Fig. 9-2, p. 104)

Cardiac cycle

Changes in pressure and volume that occur during a heartbeat are repeated pe-
riodically in the same order. This repetition is referred to as the cardiac cycle.
The cardiac cycle can be divided into two major phases: systole and diastole.
Systole is the phase characterized by the muscle transforming from its totally
relaxed state to mechanical activation. Diastole is the period during which the
muscle relaxes toward its resting state Fukuta and Little [2008].
The cardiac cycle duration is nearly 0.8[s] and is inversely proportional to the
heart rate. Usually, under resting conditions, diastole lasts 2

3 of the duration of
cardiac cycle, while systole occupied 1

3 .
It is possible to give a schematic point of view of the cardiac cycle highlighting
four main events: atrial systole, atrial diastole, ventricular systole, and ventricu-
lar diastole Luisada and MacCanon [1972].

- Atrial systole and diastole:

at the beginning of the cardiac cycle, the atria and the ventricles are re-
laxed. Atrial diastole is characterized by the inflow of blood in the right
atrium through the vena cava and in the left atrium through the pulmonary
veins. In the first part of this phase the atrioventricular valves are closed
then atria start to fill up with blood and the pressure inside increases until
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it becomes greater than the pressure in the ventricles. When this pressure
difference occurs, the atrioventricular valves open and blood flows inside
the ventricles where the semilunar valves are closed to prevent backflow of
blood from the aorta (on the left) and the pulmonary trunk (on the right).
In this way, approximately 70− 80 percent of ventricular filling occurs.
Atrial contraction works for the remaining 20 − 30 percent of filling and
it is the main event of atrial systole. It starts when the SA node initiates
an electrical signal that propagates throughout the atrial myocardium and
results in the contraction of the atria, forcing any residual blood into the
ventricles. It lasts for 0.1[s] while atrial diastole lasts for the resultant
0.7[s].
At the end of atrial systole, atrial diastole returns and ventricular systole
begins.

Figure 7.5. Summary of the sequence of events in cardiac cycle. The inner
ring represents the atrial events while the outer ring the ventricular systole
and diastole.

- Ventricular systole:

it starts with the depolarization of ventricles, in particular when the elec-
trical impulse arrives at the AV node, going then to the bundle of His and
subsequently to the left and right bundle branches.
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As the ventricular muscles begin to contract, the pressure inside the ven-
tricles rises even though it is not high enough to induce the opening of
semilunar valves. This increase in pressure is responsible for flowing back
toward the atria of the blood, closing the tricuspid and mitral valves (atri-
oventricular valves).
Because both the valves are closed, no blood is ejected from the ventricles
hence there is no change in volume. For this reason, it is said that ventri-
cles are in the stage of isovolumetric contraction.
When the ventricular pressure exceeds the pressure in the pulmonary trunk
and aorta, blood is pumped outside the ventricles, and the so called ejec-
tion phase starts. It usually lasts 0.25[s] and it can be divided into two
parts: in the first part the outflow is very rapid, keeping 0.11[s], and we
have the maximum ejection period, while in the second part, which lasts
0.14[s], the rate of outflow slows down.

- Ventricular diastole:

after the ejection of blood, the ventricular muscle relaxes, and as a con-
sequence pressure within the ventricles begins to fall.
When the pressure inside the ventricles goes down below pressure in the
pulmonary trunk and aorta, blood tries to roll back toward the ventricles
but it is stopped by the closure of semilunar valves. At this point, both
valves are closed and ventricles continue to relax as closed cavities and
without outflow and inflow of blood. Hence it is named isovolumetric re-
laxation.
When the pressure inside the ventricles drops below the pressure in the
atria, the atrioventricular valves open and a new cycle begins.
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Figure 7.6. Volume-pressure diagram in red line and the relationship between
intraventricular pressure and left ventricular volume (Textbook of medical
physiology, Arthur C. Guyton, John E. Hall.—11th ed., Fig. 9-7, p. 110)
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Simone Pezzuto, Peter Kal’avskỳ, Mark Potse, Frits W Prinzen, Angelo Auricchio,
and Rolf Krause. Evaluation of a rapid anisotropic model for ecg simulation.
Frontiers in physiology, 8:265, 2017.

Roberto Piersanti, Pasquale C Africa, Marco Fedele, Christian Vergara, Luca Dedè,
Antonio F Corno, and Alfio Quarteroni. Modeling cardiac muscle fibers in ven-
tricular and atrial electrophysiology simulations. Computer Methods in Applied
Mechanics and Engineering, 373:113468, 2021.

Mark Potse, Bruno Dubé, Jacques Richer, Alain Vinet, and Ramesh M Gulrajani. A
comparison of monodomain and bidomain reaction-diffusion models for action
potential propagation in the human heart. IEEE Transactions on Biomedical
Engineering, 53(12):2425–2435, 2006a.

Mark Potse, Bruno Dubé, Jacques Richer, Alain Vinet, and Ramesh M Gulrajani. A
comparison of monodomain and bidomain reaction-diffusion models for action
potential propagation in the human heart. IEEE Transactions on Biomedical
Engineering, 53(12):2425–2435, 2006b.

Steffan Puwal and Bradley J Roth. Forward euler stability of the bidomain model
of cardiac tissue. IEEE transactions on biomedical engineering, 54(5):951–953,
2007.

Zhilin Qu and Alan Garfinkel. An advanced algorithm for solving partial differ-
ential equation in cardiac conduction. IEEE Transactions on Biomedical Engi-
neering, 46(9):1166–1168, 1999a.

Zhilin Qu and Alan Garfinkel. An advanced algorithm for solving partial differ-
ential equation in cardiac conduction. IEEE Transactions on Biomedical Engi-
neering, 46(9):1166–1168, 1999b.

Alfio Quarteroni and Silvia Quarteroni. Numerical models for differential prob-
lems, volume 2. Springer, 2009.

Francesco Regazzoni, Luca Dedè, and Alfio Quarteroni. Active force generation
in cardiac muscle cells: mathematical modeling and numerical simulation of
the actin-myosin interaction. Vietnam Journal of Mathematics, 49(1):87–118,
2021.



137 Bibliography

Scott I Heath Richardson, Hao Gao, Jennifer Cox, Rob Janiczek, Boyce E Griffith,
Colin Berry, and Xiaoyu Luo. A poroelastic immersed finite element framework
for modelling cardiac perfusion and fluid–structure interaction. International
journal for numerical methods in biomedical engineering, 37(5):e3446, 2021.

Simone Rossi, Ricardo Ruiz-Baier, Luca F Pavarino, and Alfio Quarteroni. Or-
thotropic active strain models for the numerical simulation of cardiac biome-
chanics. International journal for numerical methods in biomedical engineering,
28(6-7):761–788, 2012.

Stanley Rush and Hugh Larsen. A practical algorithm for solving dynamic mem-
brane equations. IEEE Transactions on Biomedical Engineering, (4):389–392,
1978.

Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM Journal on scientific and
statistical computing, 7(3):856–869, 1986.

Roya Sattarzadeh, Anahita Tavoosi, Mostafa Jabbari, Amir Farhang Zand Parsa,
Babak Geraiely, Mohammad Saadat, Farnoosh Larti, Ali Pasha Meysamie, and
Mehrdad Salehi. Acceleration rate of mitral inflow e wave: a novel transmitral
doppler index for assessing diastolic function. Cardiovascular Ultrasound, 14:
1–6, 2015.

P. Schlatter, N.A. Adams, and L. Kleiser. A windowing method for periodic in-
flow/outflow boundary treatment of non-periodic flows. Journal of Computa-
tional Physics, 206(2):505–535, 2005.

NP Smith, DP Nickerson, EJ Crampin, and PJ Hunter. Multiscale computational
modelling of the heart. Acta Numerica, 13:371–431, 2004.

PR Spalart. Direct numerical study of leading-edge contamination. Fluid dynam-
ics of three-dimensional turbulent shear flows and transition, pages 5–1, 1989.

Simone Stella, Francesco Regazzoni, Christian Vergara, Luca Dede, and Alfio
Quarteroni. A fast cardiac electromechanics model coupling the eikonal and
the nonlinear mechanics equations. Mathematical Models and Methods in Ap-
plied Sciences, 32, 05 2022. doi: 10.1142/S021820252250035X.

Joakim Sundnes, Glenn Terje Lines, Xing Cai, Bjørn Frederik Nielsen, Kent-Andre
Mardal, and Aslak Tveito. Computing the electrical activity in the heart, vol-
ume 1. Springer Science & Business Media, 2007.



138 Bibliography

Larry A Taber and Renato Perucchio. Modeling heart development. Journal of
elasticity and the physical science of solids, 61(1):165–197, 2000.

Kirsten HWJ Ten Tusscher and Alexander V Panfilov. Alternans and spiral breakup
in a human ventricular tissue model. American Journal of Physiology-Heart and
Circulatory Physiology, 291(3):H1088–H1100, 2006.

Mark L Trew, Bruce H Smaill, David P Bullivant, Peter J Hunter, and Andrew J
Pullan. A generalized finite difference method for modeling cardiac electrical
activation on arbitrary, irregular computational meshes. Mathematical bio-
sciences, 198(2):169–189, 2005.

Stefan Turek and Jaroslav Hron. Proposal for numerical benchmarking of fluid-
structure interaction between an elastic object and laminar incompressible
flow. In Fluid-structure interaction, pages 371–385. Springer, 2006.

Taras P Usyk, Ian J LeGrice, and Andrew D McCulloch. Computational model of
three-dimensional cardiac electromechanics. Computing and visualization in
science, 4:249–257, 2002.

Marco Veneroni. Reaction–diffusion systems for the macroscopic bidomain model
of the cardiac electric field. Nonlinear Analysis: Real World Applications, 10(2):
849–868, 2009.

Francesco Viola, Valentina Meschini, and Roberto Verzicco. Fluid–structure-
electrophysiology interaction (fsei) in the left-heart: a multi-way coupled com-
putational model. European Journal of Mechanics-B/Fluids, 79:212–232, 2020.

HM Wang, H Gao, XY Luo, C Berry, BE Griffith, RW Ogden, and TJ Wang.
Structure-based finite strain modelling of the human left ventricle in diastole.
International journal for numerical methods in biomedical engineering, 29(1):
83–103, 2013.

Lewis Wexler, Derek H Bergel, Ivor T Gabe, GEOFFREY S MAKIN, and CHRISTO-
PHER J MILLS. Velocity of blood flow in normal human venae cavae. Circula-
tion Research, 23(3):349–359, 1968.

Alan A Wray. Very low storage time-advancement schemes. Technical report,
Internal Report, Moffett Field, CA, NASA-Ames Research Center, 1986.

Patrick Zulian, Teseo Schneider, Kai Hormann, and Rolf Krause. Parametric finite
elements with bijective mappings. BIT Numerical Mathematics, 57(4):1185–
1203, 2017.


	Contents
	List of Figures
	List of Tables
	Introduction
	Research overview
	Contributions and limitations
	Outline of the dissertation

	Models of Ventricular Cardiac Cells for Electrophysiology
	Membrane Models and Ionic Currents
	The Action Potential
	Channel Gating
	A Simplified Two-Variable Model 
	The Monodomain Model
	The Luo-Rudy Model
	Eikonal Model


	Numerical Formulation of the Electrophysiology Mathematical Problem
	Space Discretization
	Variational formulation
	Finite element discretization for the Monodomain model

	Time Discretization
	IMEX time integrator for the Monodomain system
	Operator Splitting
	A second-order time integrator scheme

	Numerical simulations of electrophysiological models for cardiac cells
	Activation maps in a truncated ellipsoid


	Governing equations in Fluid-Structure Interaction Problem with Active Force
	Fundamentals of continuum mechanics
	Kinematics
	Balance principles

	Mathematical modeling of the solid problem
	Mathematical modeling of the fluid problem
	Fluid-structure interaction problem
	Immersed boundary approach

	Fluid-stricture interaction problem with active term
	Active stress


	Discretization of the Generalized Fluid-Structure Interaction Problem
	Space discretization
	Fluid-structure coupling based on variational transfer
	L2-projection approach
	Spatial discretization of fluid-structure coupling

	Time discretization

	Benchmark Fluid-Structure Interaction Problems with Active Stress
	Modified Turek-Hron benchmark with active force
	Convergence study
	Computational Capabilities

	A two-dimensional idealized left ventricle
	Simulation of filling phase
	Simulation of contraction

	A three-dimensional idealized left ventricle
	Simulation of uniform contraction
	One way electro-fluid-structure coupling


	Conclusion
	Bibliography

