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Abstract

Over the past few decades, the generation, manipulation, and detection of light

at the nanoscale, including all the aspects concerning the physical foundations and

the deriving technologies, have undergone substantial development. The relevance of

photonics today is such that the knowledge of its basics and applications is essential in

numerous fields of physics and engineering. One of the most challenging e↵orts of pho-

tonics is the design and fabrication of photonic integrated circuits, in which di↵erent

optical components are combined on a single chip to form a multifunctional device. As

the miniaturization of semiconductor devices has made it possible to achieve unpre-

dictable advances in electronics, so the shift from bulk to integrated photonics paves

the way to the development of flexible, accessible, and scalable light-based devices,

for a number of applications ranging from optoelectronics to biochemical sensing to

quantum information processing.

To date, silicon-based structures have attracted special attention as a preferred

platform for integrated optics, owing to their high performance in the near-infrared

spectrum and well-established foundry technology. Though other material platforms

have been developed (III-V semiconductors, lithium niobate, silicon nitride, high-

refractive-index glasses, polymers, etc.), a promising alternative to gain on-chip light

control is the use of surface electromagnetic waves (SEWs) propagating along the

interface between two di↵erent media. In particular, the ability of achieving strong

optical confinement at the structure surface allows one to enhance various linear, and

especially nonlinear, optical processes.

The most popular SEWs are certainly surface plasmon polaritons (SPPs), which

originate from the collective oscillations of conduction electrons coupled with pho-

tons propagating at a metal/dielectric interface. These waves are transverse magnetic

(TM) in nature and show a well-defined dispersion relation limited by the material

permittivities. The electromagnetic field intensity is highest at the interface and

decays exponentially into the adjacent materials, thus providing sub-wavelength con-

finement in the proximity of the interface. Due to this extreme localization of the

electromagnetic field, SPPs have long been promoted as candidates for integrated op-

tics, and their current applications include waveguides, modulators, nanolasers, and

other circuit elements. Yet, their behavior at optical frequencies is largely dominated
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by the absorption loss inherent in all metals, which results in propagation lengths

typically on the order of microns or tens of microns.

To overcome this limitation, multilayer dielectric stacks have emerged as one

potential solution. Periodic multilayers are known to exhibit forbidden frequency

windows, named photonic bandgaps (PBGs), for which light propagation is inhibited.

Therefore, they act as perfect mirrors with unity reflectivity within the PBG. By

breaking the multilayer periodicity with a truncation layer of proper thickness, one

may introduce defect modes inside the PBG known as Bloch surface waves (BSWs).

These modes propagate at the interface between the truncated periodic multilayer and

the external homogeneous dielectric. Their dispersion relation is located within the

multilayer PBG and below the lightline of the external medium. As a consequence,

the field envelope inside the multilayer and the field amplitude in the external medium

decay exponentially, which origins a surface wave.

BSWs have been known since the late 1970s. However, a renewed interest has been

driven by the development of fabrication techniques that allows one to obtain periodic

multilayers with tens of periods quite inexpensively. Although more complicated than

plasmonic systems, BSW-based devices do not su↵er from the absorption loss that

a↵ects metallic structures. In addition, as compared to SPPs, the dispersion relation

of BSWs does not depend only on the choice of the constituent materials, but it can

be tuned at almost any frequency by properly tailoring the multilayer geometry. This

makes BSWs particularly attractive for applications in the visible spectrum. Finally,

both transverse electric (TE) and transverse magnetic (TM) BSWs can be excited.

To date, many circuit elements operating with BSWs have been studied, these

including waveguides, resonators, gratings, lenses, and interferometers. However, the

development of BSW-based integrated optics has been hampered by relatively high

propagation loss (of the order of dB/mm or higher) that cannot be explained in

terms of surface scattering or material absorption. Second, 3D confinement has been

realized mainly in large-mode-volume ring resonators or other whispering-gallery-

mode systems. Less attention has been paid to other solutions, e.g., based on photonic

crystals (PhCs), which are known to support resonant modes characterized by small

mode volumes, even smaller than a cubic wavelength of light. Finally, even less

research has been conducted on BSW excitation methods compatible with the concept

of integrated optics.

This dissertation rests on these unanswered questions to present novel concepts for

on-chip integration of a multilayer platform supporting BSWs at visible wavelengths.

In Chapter 1, after providing a general introduction to the optical confinement strate-

gies in dielectric structures, we present the essential building blocks of an integrated

optical platform. In Chapter 2, we focus on the nature of guided BSWs in PhC ridges

and their strategic advantage in integrated optics. Namely, we track down the origin
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of the disappointing performance of PhC ridge waveguides in terms of propagation

loss, and suggest a general design principle that allows us to obtain intrinsic loss

as low as 5 dB/km for a polymeric PhC ridge operating in the visible spectrum. In

Chapter 3, we demonstrate a PhC nanobeam cavity realized on the same platform,

thus combining the small mode volumes and footprint size of a PhC cavity with the

surface field enhancement typical of BSWs. In Chapter 4, we tackle the di�cult task

of exciting BSWs, with major detail to di↵raction grating schemes and their opti-

mization. Finally, in Chapter 5, we draw our conclusion and present some future

perspectives, in particular on inverse design strategies and potential application for

integrated nonlinear optics based on polymers. Appendix A contains an in-depth

treatment of some specific topics.
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CHAPTER 1

Building blocks of integrated optics

1.1. Light confinement in dielectric structures

The possibility of manipulating light is of great importance in all areas of research

concerning the light-matter interaction, from fundamental physics to engineering ap-

plications. In dielectric structures, the control of light propagation can be obtained by

exploiting the phenomenon of total internal reflection (TIR) at the interface between

two media with di↵erent refractive indices. If light is incident from an optically dense

medium (refractive index n2) to an optically rare medium (refractive index n1 < n2)

at an angle equal or greater than the critical angle #c = arcsin(n1/n2), the incident

wave is totally reflected, in the sense that all the energy in the incident wave goes

into the reflected wave. The transmitted wave propagates only parallel to the in-

terface with the field amplitude decaying exponentially in the direction normal to

the interface (evanescent wave). The reader is referred to Appendix A for a general

review of some basic properties of the electromagnetic radiation, or to any standard

electromagnetism textbook for a more detailed account [1].

TIR is the basis for e�ciently guiding light. The most simple configuration one

can study is the symmetric slab waveguide shown in Fig. 1.1. It consists of a thin slab

of a high-refractive-index dielectric medium (the core, with index n2) sandwiched be-

tween two semi-infinite low-refractive-index layers (the cladding, with index n1 < n2).

When the angle of incidence # < #c = arcsin(n1/n2), no total reflection occurs at

the interfaces, with the electromagnetic energy free to flow out of the core into the

n(z)

z

n1

n2

n1

x

z

y
d

Figure 1.1. Schematic of a symmetric slab waveguide.
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#

n1

n2

n1

# < #c: no TIR
(leaky modes)

# > #c: TIR
(guided modes)

x

z

y

Figure 1.2. Schematic illustration of the mechanism of TIR in a slab waveguide, resulting in leaky
modes when # < #c (left side) and guided modes when # > #c (right side).

cladding. This results in a continuum of leaky modes that transversely oscillate to in-

finity on both sides of the waveguide. When # � #c, instead, the wave inside the core

is totally reflected at both interfaces. If # is such that the wave interferes construc-

tively, the wave can sustain itself as it propagates along the waveguide. This leads to

a discrete set of guided modes, corresponding to the angles of incidence that fulfill the

constructive interference condition (Fig. 1.2). The number of allowed guided modes

depends on the light wavelength and polarization, the material refractive indices, and

the core thickness. A rigorous treatment that considers also the more general case of

an asymmetric slab waveguide is given in Appendix A.4.

Slab waveguides confine light in only one transverse direction, and therefore have

little utilization in integrated optics, for most practical applications take advantage

of the optical confinement attainable in 2D waveguides. These latter are the op-

tical analog of electrical wires, in that they enable connectivity between all com-

ponents of a photonic device. Light can be confined in both transverse directions,

e.g., by exploiting TIR also laterally, in a number of di↵erent solutions (Fig. 1.3) [2].

The paradigmatic example is the ridge waveguide. It is formed by loading a low-

refractive-index substrate with a rectangular strip of a high-refractive-index material

that serves as waveguiding core. A ridge waveguide provides strong lateral confine-

ment, provided the ridge material has high enough refractive index as compared to the

external medium. The modes supported by a ridge waveguide cannot be calculated

analytically; though, one can exploit numerical approaches such as finite-element or

finite-di↵erence methods (see Appendix A.9). An alternative approach is to use the

e↵ective index method (EIM) to find an approximate solution by separating the 2D

problem in two 1D problems along each transverse direction (see Appendix A.6).

One can also use TIR to achieve full 3D light confinement, e.g., by bending a

waveguide in a closed loop to form a microring resonator. When an integer number of

e↵ective wavelengths fits in one roundtrip length, constructive interference occurs. On
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ridge waveguide rib waveguide buried channel
waveguide

Figure 1.3. Schematics of some common 2D channel waveguides. A darker color represents a higher
refractive index.

microring microdisk microsphere

Figure 1.4. Whispering gallery mode resonators.

resonance, the resulting traveling wave builds up in intensity and it is sustained inside

the structure for many optical cycles. The ability of a resonator to store energy over

significant time makes it indispensable in all applications that require strong light-

matter interaction. Similarly, in microdisks, microtoroids, and microspheres, light

can circulate close to the structure boundaries in what are referred to as whispering

gallery modes (Fig. 1.4) [3]. These modes develop because of TIR and therefore exist

as long as the refractive index contrast between the microstructure and the ambient

medium is su�ciently high.

Besides TIR, light propagation can be controlled by exploiting interference in

media with periodically modulated refractive index, e.g., distributed Bragg reflec-

tors (DBRs). DBRs are stacks of dielectric layers with di↵erent refractive indices

alternating in space with period ⇤, as sketched in Fig. 1.5(a). As an electromag-

netic wave propagates in the structure, it experiences multiple reflection from the

periodically arranged interfaces. For certain frequencies, the optical path di↵erence

between two consecutive reflected waves, plus the phase shift acquired at each inter-

face, causes them to interfere constructively (Bragg’s condition). Thus, the partial

reflected waves add perfectly in phase and build up into a strong reflected wave that

inhibits the propagation of the incident one within these frequency intervals (stop-

band). In the stopband, the reflectivity of the structure ideally reaches unity for an

infinite number of periods (Fig. 1.5(b)) [4]. DBRs are widely used in modern opto-

electronics as mirrors or spectral filters, also owing to the development of thin-film

deposition techniques, which makes it possible to grow dielectric stacks with tens
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Figure 1.5. (a) Schematic of a DBR consisting of two materials with di↵erent refractive indices
(n1 < n2) alternating with period ⇤. (b) Reflectivity spectra for an infinite-size (dashed) and a
finite-size (solid) DBR.

of layers quite inexpensively. Remarkably, though, the observation of the reflection

stopband in periodically layered media dates back to Lord Rayleigh in 1887 [5].

DBRs with an infinite number of periods are the 1D example of a more general

class of structured materials known as photonic crystals (PhC). PhCs are media with

a periodic modulation of the dielectric function in one, two or three dimensions. In

close formal analogy with electrons in natural crystals, electromagnetic waves prop-

agating in PhCs experience a periodic potential due to the periodic spatial variation

of the refractive index, just as electrons in crystals experience a periodic Coulomb

potential due to the periodic arrangement of ions in the crystal lattice. It gives rise

to allowed photonic energy bands and forbidden photonic bandgaps (PBGs) for the

electromagnetic states, just as energy bands separated by bandgaps develop in elec-

tronic crystals. This is illustrated in Fig. 1.6 for the simple case of a 1D PhC. Hence,

k

! ! = ck

! = ck/n

n

(a)

k

!

�⇡/⇤ ⇡/⇤

n1 n2

⇤

d1 d1

(b)

Figure 1.6. Dispersion relations !(k) for electromagnetic waves (a) in a homogeneous medium of
refractive index n and (b) in a 1D PhC consisting of two materials with di↵erent refractive indices
(n1 < n2) alternating with period ⇤. The periodicity of the photonic lattice folds the dispersion
curves in the first Brillouin zone (�⇡/⇤,⇡/⇤). The shaded areas correspond to the forbidden PBGs.
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Figure 1.7. (a) Schematic of a 2D PhC slab consisting of a suspended dielectric membrane patterned
with hexagonal lattice of air holes. Naturally occurring PhCs: (b) blue-iridescent Morpho butterfly
and (c) SEM image of the 1D wing structure (reprinted from [9]); (d) multicolored peacock feather
and (e) TEM image of the 2D structure of the blue area (reprinted from [9]); (f) natural opal gemstone
and (g) SEM image of the 3D silica sphere structure (reprinted from [10]). The scale bar in (c), (e)
and (f) is 1µm. Images (b), (d) and (f) by Wikimedia Commons.

PhCs are able to inhibit the propagation of light in certain frequency windows and

provide quite unique ability to manipulate light, somewhat like semiconductors allow

one to control the electron current (see Appendix A.7).

Since the pivotal papers issued in 1987 by Yablonovitch [6] and John [7], who first

suggested the possibility of controlling spontaneous emission using periodic structures,

PhCs have attracted considerable attention, and a wide variety of periodic structures

with di↵erent dimensionality has been accessed with conventional nanofabrication

techniques. Research has primarily focused on 2D systems. In practical devices, 2D

PhCs typically come embedded within the guiding core of a slab waveguide, in the

form of a so-called PhC slab, as shown in Fig. 1.7(a), where a self-standing membrane

is etched with cylindrical air holes arranged in a hexagonal lattice. PhC slabs allow for

strong optical confinement owing to the combination of a PBG e↵ect (in-plane) and

TIR (out-of-plane). A detailed account can be found in [8]. On a side note, PhCs also

occur in the natural world, e.g., opals, natural gemstones consisting of periodically

packed sub-micrometric spheres of amorphous silica (Fig. 1.7(f),(g)). Other examples

are found in numerous biological systems, from bird feathers to butterfly wings, whose

distinctive iridescence is the signature of PBG e↵ects due to their regularly arranged

internal structures (Fig. 1.7(b)–(e)).

As stated above, the most important feature of PhCs is the existence of a PBG,

for which light cannot propagate through the crystal. However, if one introduces a

defect to the periodic structure, new modes can be supported within the PBG. A

defect can be created by shifting, missing, or resizing one or more lattice elements.
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(a) Fabry-Pérot cavity (b) Line defect (W1 waveguide)

(c) Sharply-bent line defect (d) Point defect (L3 cavity)

Figure 1.8. Schematics of di↵erent defects in PhC systems.

The paradigmatic example is introducing a defect layer in a 1D PhC, thus forming a

so-called Fabry-Pérot (FP) microcavity (Fig. 1.8(a)). In 2D PhC slabs, line defects

lead to the realization of optical waveguides (Fig. 1.8(b)), even with sharp bends

(Fig. 1.8(c)), while point defects give rise to cavities that are able to localize light in

all dimensions (Fig. 1.8(d)). A detailed review is given in [11].

1.2. Bloch surface waves

The photonic band structure of a 1D PhC is conveniently calculated by means

of the transfer matrix method (TMM), which is summarized in Appendices A.3 and

A.8. Let us consider the case of a two-layer unit cell consisting of two dielectric

layers of refractive indices n1 and n2 (n1 < n2), and thicknesses d1 and d2, as shown

in Fig. 1.6(b). The period of the structure is ⇤ = d1 + d2. In the notation of

Appendix A.3, the unit-cell transfer matrix can be calculated in terms of ordered

multiplication of interface and propagation matrices in the form M⇤ = �2I1,2�1I2,1.

The photonic band structure can be found by means of the compatibility equation

(A.47). Straightforward calculations yield

cos(q⇤) = cos(w1d1) cos(w2d2)�
1

2

✓
p+

1

p

◆
sin(w1d1) sin(w2d2), (1.1)

where q is the Bloch wavevector, wi =
q

k
2
i � �2 is the wavevector component along

the stacking direction in the layer i, with ki = ni!/c and � the propagation constant,

and p depends on the polarization as

p =
w2

w1
(TE modes), p =

w2

w1

n
2
1

n
2
2

(TM modes). (1.2)
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Figure 1.9. Photonic gapmap of a typical 1D PhC crystal for TE (right axis) and TM (left axis)
polarization. The multilayer is assumed of refractive indices n1 = 1.46 and n2 = 2.67, and thicknesses
d1 = 182 nm and d2 = 100 nm. The solid lines are the low-refractive-index lightline (orange), high-
refractive-index lightline (red), air lightline (green), and Brewster’s lightline (lightblue). Notice that
this gapmap makes sense only when the chromatic dispersion of the materials can be neglected.

Eq. (1.1) gives the dispersion relation between !, �, and q (for a given polarization) in

the form of an implicit equation. The allowed modes occur when the absolute value of

the RHS is lower than unity, for which q is real and thus corresponds to propagating

fields. By contrast, when the absolute value of the RHS exceeds unity, q is complex

with a non-null imaginary part and the field is evanescent, the larger the imaginary

part of q, the faster its decay within the crystal. These regions are the forbidden

PBGs. The band edges (BEs) are those where the absolute value of the RHS equals

unity. Solving Eq. (1.1) numerically, one can easily provide a gapmap for both TE

and TM polarization. Fig. 1.9 shows the magnitude of Im(q) as a function of � and

! for a representative periodic multilayer. Areas where Im(q) = 0 correspond to

propagating states, whereas areas where Im(q) > 0 are PBGs where only evanescent

states exist. Remarkably, TM PBGs close when approaching the Brewster’s lightline

! = c�/(n1 sin#p), with #p = arctan(n2/n1), since TM modes propagate without any

reflection across the interfaces at Brewster’s angle #p [12].

Fig. 1.10 illustrates the band structure of the same periodic multilayer of Fig. 1.9

for the special case � = 0 (normal incidence). The periodicity of the photonic lattice

folds the dispersion curves in the first Brillouin zone (�⇡/⇤,⇡/⇤). Since the photonic
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Figure 1.10. Projected band structure of the 1D PhC of Fig. 1.9 for light propagating in the
direction normal to the multilayer (� = 0). Left panel: allowed bands and forbidden gaps (shaded
areas) folded in the first Brillouin zone. Notice that the second-order gap is extremely narrow. The
dashed lines indicate the (folded) average-refractive-index lightline. Right panel: imaginary part of
the Bloch wavevector q within the PBGs.

modes that occupy the high-refractive-index (low-refractive-index) material tend to

minimize (maximize) their energy, the bands below and above each PBG are generally

referred to as the dielectric band and air band, respectively, in analogy to the valance

band and conduction band in semiconductors. Notably, near the BEs, the dispersion

becomes flat, the group velocity is close to zero, and the density of states (DOS)

becomes ideally infinite. Such regime of “slow light” is of great interest for achieving

stronger light-matter interaction or enhancing nonlinear processes [13, 14].

The normal-incidence PBG is maximed for a quarter-wave multilayer, i.e., when

the layer thicknesses d1, d2 satisfy the condition k1d1 = k2d2 = ⇡/2. In this specific

case, it can be shown that the first-order midgap frequency is [4]

!mid =
n1 + n2

4n1n2

2⇡c

⇤
. (1.3)

If the refractive index contrast is small, i.e., �n = |n1 � n2| ⌧ n, with n = (n1+n2)/2

being the average refractive index, the midgap frequency in (1.3) is approximately

!mid = ⇡c/(n⇤), and Eq. (1.1) can be solved analytically in the proximity of !mid.

The gap width results

�! =
4

⇡
!mid

|n1 � n2|
n1 + n2

' 2

⇡
!mid

�n

n
, (1.4)

and the complex Bloch wavevector at the center of the PBG is

q =
⇡

⇤
+ i

�n

n⇤
. (1.5)
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By introducing a defect into the periodic structure, translational invariance is

broken and modes can be supported within the PBG. In particular, when an infi-

nite periodic multilayer is truncated at the appropriate thickness, localized surface

modes can appear at the interface between the truncated multilayer and the exter-

nal homogeneous medium. These modes are known as Bloch surface waves (BSWs).

An example is presented in Fig. 1.11 starting from the same multilayer of Figs. 1.9

and 1.10 The first high-refractive-index layer is truncated to a thickness �d2, with

� = 0.11. The dispersion relation is located within the multilayer PBG and below the

lightline of the external dielectric medium (here, air). Not only does the mode have

an evanescent tail in the external medium, but also its field envelope decays expo-

nentially inside the multilayer, the maximum intensity being close to the truncation

interface.

BSWs are characterized by a strong field confinement at the truncation surface,

with surface field enhancements up to 45% larger than those achievable in dielec-

tric slabs [15]. Their dispersion relation can be tuned within the PBG by carefully

choosing the multilayer composition (thicknesses and permittivities) and termination

condition. A procedure to minimize the decay length of the electric field into the

multilayer by adjusting the truncation factor � is presented in Appendix A.8. Fur-

thermore, the deposition of an additional dielectric layer on top of the structure can

provide further control of the dispersion and optical properties of the surface mode,

such as the field decay length or the energy density localization at a generic point

[16]. In Fig. 1.12 we show the e↵ect of an additional layer on top of the bare structure

of Fig. 1.11 on the BSW dispersion relation and intensity profile.

A phenomenological comparison can be made between BSWs and another type

of surface electromagnetic wave, surface plasmon polaritons (SPPs), which propagate

along the planar interface between a metal and a dielectric medium through collective

oscillations of electron plasma in the metal [17]. As for BSWs, the electromagnetic

field of SPPs is confined in the close proximity of the metal/dielectric interface, with

evanescent decay in the normal direction (Fig. 1.13). SPPs can also be confined

in 2D waveguides, e.g., by depositing a thin metal strip on top of a dielectric slab

(metal-on-isulator SPPs) or, vice versa, by patterning a dielectric ridge on top of a

metal film (dielectric-loaded SPPs), which can be readily done by using lithographic

resists. SPPs are nowadays a well-established photonic platform for a large number of

applications, from optical sensing to integrated circuitry [18]. However, compared to

BSWs, SSPs have some inherent shortcomings [19]. First, the SPP dispersion is de-

termined only by the properties of the constituent materials, which limits their choice

to a small number of suitable metals. On the contrary, BSW dispersion can be tuned

at almost any wavelength (from UV to mid-IR) by properly selecting the geometrical

and physical parameters of the structure (thicknesses and permittivities). Second, the
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Figure 1.11. Left: BSW dispersion relation (TE polarized) (solid lightblue). The multilayer consists
of alternating layers of refractive indices n1 = 1.46 and n2 = 2.67, and thicknesses d1 = 182 nm
and d2 = 100 nm, respectively, and is truncated on the high-refractive-index layer with truncation
thickness dtrunc = 11nm. The external medium is air. In the simulation, a number N = 15 of
multilayer periods is taken. The PBG (regions with nonnull Im(q)) and the lightlines for air (solid
green), low-refractive-index material (solid orange), and high-refractive-index material (solid red)
are also shown. Right: mode intensity profile calculated at �0 = 532 nm (2.33 eV). The calculated
e↵ective index is ne↵ = 1.3416 (dashed white lines in the left panel).

Figure 1.12. Left: BSW dispersion relation sustained by a dielectric-loaded multilayer (TE po-
larized) (solid pink). The structure is the same of Fig. 1.11 with an additional dielectric layer of
refractive index n3 = 1.49 and thickness d3 = 400 nm. Notice that the photonic gap map is the
same as the one in Figs. 1.9 and 1.11 because it is a bulk property of the PhC and depends on the
multilayer composition only. Right: mode intensity profile calculated at �0 = 532 nm (2.33 eV). The
calculated e↵ective index is ne↵ = 1.4918 (dashed white lines in the left panel).
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Figure 1.13. Advantages of BSWs with respect to SPPs.

large ohmic loss that a↵ect metals at optical frequencies results in low propagation

lengths of SPPs, typically tens or thousands of microns, but even up to millimeters

in long-range SPPs (though at the cost of weaker field localization, making them less

practicable in highly integrated optical circuits). BSWs can theoretically propagate

over much longer distance owing to the use of dielectric materials. Third, SPPs are

TM polarized in nature, while BSWs can be excited in both TE and TM polarization.

Finally, with an appropriate choice of the constituent materials, multilayers provide

mechanical stability and chemical robustness, o↵ering the possibility of working in

more aggressive environments.

BSWs have been known since the late 1970s [20–22], although the first experimen-

tal observations were conducted by Robertson et al. in the 1990s [23–25]. A renewed

interest has been driven by the development of fabrication techniques that allow one to

obtain high-quality multilayers with tens of periods quite inexpensively. A number of

di↵erent dielectric materials can be used to fabricate multilayers that sustain BSWs,

these including titania (TiO2)/silica (SiO2), tantalum pentoxide (Ta2O5)/silica, sili-

con nitride (Si3N4)/silica, porous Si (p-Si), and amorphous silicon-based alloys such

as hydrogenated silicon nitride (a-SiN:H), silicon carbide (a-SiC:H), and silicon oxide

(a-SiO:H). This allows one to operate in a wide spectral range, particularly at visi-

ble wavelengths, for which there is paucity of transparent materials having a strong

refractive index contrast.

Numerous works have focused on chemical and biological sensing applications of

BSWs because of their strong field enhancement at the structure surface and high

sensitivity to the refractive index changes of the surrounding medium [26, 27]. In life

science applications, BSW-based sensors using di↵erent sensing schemes (fluorescence-

based and label-free) and measurement techniques (wavelength, angle, intensity and

phase interrogation) have been reported. In fluorescence-based sensing, fluorescent

labels such as organic dyes and quantum dots are used to detect the presence of the

target analytes. In this respect, the strong electromagnetic field intensity of BSWs at

the truncation layer can be exploited to obtain enhanced and/or directional emission
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of fluorophores placed at the structure surface. As an example, Ballarini et al. demon-

strated the BSW-driven amplification of the fluorescence signal from dye-labeled pro-

teins on a polymer-loaded multilayer [28]. Toma et al. further improved the excitation

rate and collection e�ciency of fluorescence light by employing a two-segment mul-

tilayer [29]. On the other hand, label-free schemes allow for direct detection of the

target analytes, for instance, by monitoring the spectral shift of the optical resonance

in response to the analyte-induced refractive index variation. It o↵ers a relatively sim-

ple and cost-e↵ective alternative to fluorescence-based sensors. In terms of sensitivity

(i.e., the ratio ��/�n, where �� is the resonance spectral shift on account of the

local refractive index variation �n), BSWs are inherently sensitive to small changes

in the refractive index of the external dielectric environment. In recent years, various

label-free sensors based on BSWs have been developed for the detection of di↵erent

analytes and using di↵erent measurement techniques. Just to name a few, Paeder

et al. demonstrated the application of an angular-sensitive sensor to the detection

of protein aggregation [30]. Farmer et al. investigated antibody/antigen reactions

and DNA binding by monitoring the shift in the BSW resonance wavelength [31].

Similarly, Rivolo et al. showed label-free detection of antibody/anti-antibody binding

[32]. Rodriguez et al. reported size-selective sensing of large and small molecules us-

ing BSWs and Bloch sub-surface wave (BSSWs) in a p-Si multilayer [33]. Sinibaldi

et al. [34] and Li et al. [35] demonstrated that the rapid phase variation of the BSW

sensor caused by the environment refractive index changes can enhance the device

sensitivity, while Kong et al. showed that intensity interrogation can lead to sensitiv-

ities comparable or higher than those of plasmonic sensors [36]. Notably, Sinibaldi et

al. reported a sensing platform capable of working simultaneously in a label-free and

fluorescence mode on the same readout system [37] and its use for clinical detection

of cancer biomarkers [38]. On a final note, we mention that alternative schemes based

on enhanced di↵raction [39–41] and surface enhanced Raman scattering [42, 43] have

been proposed.

Beside optical sensing, BSWs have great potential for integrated optics appli-

cations. Descrovi et al. demonstrated that, starting from a truncated multilayer

supporting a 1D BSW, it is possible to control such excitation in the plane of the

structure by simply loading the bare multilayer with a dielectric ridge [44]. This has

paved the way for the realization of various planar optical components based on 2D

BSWs. Wu et al. investigated the propagation of BSWs in ultrathin polymeric curved

waveguides [45]. Yu et al. showed focusing of BSWs on top of the multilayer through

a planar lens [46]. This concept was used by Angelini et al. to inject BSWs into

ultrathin polymeric ridges [47]. Later, Dubey et al. reported the first experimental

realization of a BSW-based microdisk resonator [48], while Rodriguez et al. fabricated
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the first BSW-based microring resonator [49]. Kovalevich et al. proposed a 2D grat-

ing coupler with polarization-switching capability [50]. More recently, following their

study on multimode interference of BSWs, Safronov et al. demonstrated the operation

of a Mach–Zehnder interferometer using polymeric ridges [51]. Remarkably, many of

these structures are obtained from low-refractive-index materials such as polymers,

which can be readily structured by standard lithography techniques [52]. Such ease

of manipulation makes BSWs highly promising for the development of an etchless,

all-dielectric integrated platform.

1.3. Passive components for integrated optics

The ultimate goal of integrated optics is the realization of robust, small-footprint

optical devices that allow one to generate, route, process, and detect light on a sin-

gle chip. Silicon-on-insulator (SOI) has doubtlessly become the leading platform

for a low-cost, large-scale integration owing to its high refractive index contrast

(nSi ' 3.45 and nSiO2 ' 1.44 at 1550 nm) and compatibility with mature comple-

mentary metal-oxide semiconductor (CMOS) technology. Other material platforms

can also be adopted, such as silicon nitride (SiN), lithium niobate (LN), gallium ar-

senide (GaAs), indium phosphide (InP), high-index doped silica glass, laser-written

silica glass, and polymers (acrylic plastics, epoxy resins, etc.). Each platform has its

own advantages and disadvantages, making them more suitable for the realization

of certain components than others. It is beyond the scope of this work to discuss

these properties in detail. A wide variety of tutorial reviews exist on the topic for the

interested reader [53–58].

The principal building blocks of an integrated optical device are (i) active com-

ponents: lasers, modulators, switches, photodetectors, and (ii) passive components :

waveguides, microresonators, couplers, splitters, filters, demultiplexers. For the pur-

pose of this dissertation, we shall focus on passive components.

Waveguides. Waveguides are essential elements in integrated optics, as they

allow one to control the flow of light in the device. As seen in previous sections,

one can exploit conventional TIR-based waveguides, in which light is confined within

a high-refractive-index, small-cross-section core, or line-defect waveguides in PhC

slabs, in which light is guided along the defect by PBG confinement on the two sides

and by TIR in the out-of-plane direction. Alternative approaches based on surface

electromagnetic waves (SPPs, BSWs, etc.) are also possible.

In general, a guided mode is an electromagnetic wave that propagates along a

particular waveguide structure with distinct phase velocity, group velocity, transverse

field profile, and polarization. For a 2D waveguide operating at frequency !, the
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Material platform Range Con�guration Propagation loss
(dB/cm) Ref

Silicon (Si) NIR Submicrometric SOI wire waveguide 0.1 (1310 nm) [59]

Gallium arsenide (GaAs) NIR GaAs/AlGaAs rib waveguide 1.6 (1550 nm) [60]

GaAs-based single-line defect PhC slab waveguide 0.76 (1550 nm) [61]

Indium phosphide (InP) NIR InP waveguides based on local Zn-di�usion 0.4 (1550 nm) [62]

Fused silica Vis–NIR Laser-written waveguide in fused silica 0.06 (777 nm) [63]

High-index doped silica glass (Hydex) waveguide 0.06 (1550 nm) [64]

Lithium niobate (LN) Vis–NIR LN-on-insulator waveguide 0.06 (630 nm) [65]

LN-on-insulator waveguide 0.02 (1550 nm) [66]

Silicon nitride (SiN) Vis–NIR Single-mode PECVD SiN wire waveguide 2.25 (532 nm) [67]

High-aspect-ratio SiN waveguide 0.09 (1550 nm) [68]

Polymer Vis–NIR PMMA-based waveguide using femtosecond laser 0.3 (637 nm) [69]

Acrylate-based waveguide 0.8 (1550 nm) [70]

Polymer-based LRSPPs NIR Polymer-based long-range surface plasmon polariton
(LRSPP) waveguide 0.8 (1550 nm) [71]

Table 1.1. Comparison of selected waveguides in di↵erent material platforms.

electric field of a guided mode is of the form

E(r, t) = E(y, z)ei�x�i!t (1.6)

where E(y, z) is the field profile in a plane transverse to the propagation direction

and � is the propagation constant. The value of � defines the e↵ective mode index

ne↵ = �c/!, meaning that the mode propagates along the waveguide with a phase

velocity vp = c/ne↵ . In contrast to planar waveguides, which support only TE or TM

modes, 2D waveguides support hybrid modes owing to the light confinement being

in both transverse directions. In channel waveguides, modes usually have either the

dominant electric (TE-like) or magnetic (TM-like) field component in the direction

parallel to the planar layers. For most applications, it is preferable to operate in a

single-mode regime for each polarization.

The power of a guided mode is attenuated as it propagates along the waveguide:

P (L) = P (0)e�↵L
, (1.7)

where P (0) is the input power, P (L) is the output power over a propagation distance

L in the waveguide, and ↵ is the power attenuation coe�cient (expressed in m�1).

This is caused by several loss mechanisms, e.g., material absorption, scattering from

surface roughness, etc. The total loss (per unit length) can be accounted for by adding
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an imaginary part to the propagation constant �:

↵ (m�1) = � 1

L (m)
ln

P (L)

P (0)
= 2 Im(�), (1.8)

with Im(�) > 0, which results in the exponential power decay of Eq. (1.7). Conven-

tionally, ↵ is also given in dB/m:

↵ (dB/m) = � 1

L (m)
10 log10

P (L)

P (0)
. (1.9)

Comparing (1.9) with (1.8), one obtains the conversion formula

↵(dB/m) = 4.34↵(m�1). (1.10)

The reported attenuation in integrated waveguides are typically around 0.1–3 dB/cm

(see Table 1.1), compared with less than 1 dB/km attenuation attainable in bulk silica

glass fibers [72].

Another important figure of merit is the e↵ective mode area:

Ae↵ =

✓Z
|E(y, z)|2 dy dz

◆2

Z
|E(y, z)|4 dy dz

, (1.11)

which is a measure of the e↵ective extension of the mode in the plane transverse to

the propagation direction. Small e↵ective areas are the signature of strong guiding

and become significant when dealing with nonlinear e↵ects, whose e�ciency critically

depends on the local distribution of the field intensity. In the latter case, the previous

definition of e↵ective area works properly for optical fibers, in which the mode power is

predominantly within the guiding core. In general, the integration in the denominator

of Eq. (1.11) should be carried over the cross section of the core hosting the nonlinear

material [73]:

Ae↵,nl =

✓Z
|E(y, z)|2 dy dz

◆2

Z

nl core
|E(y, z)|4 dy dz

. (1.12)

Microresonators. Microresonators have a broad range of application in inte-

grated optics owing to their ability to store light in a small volume and for a long

period of time. They are characterized by two key parameters, the quality factor

Q and the mode volume V . The Q factor quantifies the enhancement of the elec-

tromagnetic field intensity in the resonator due to temporal confinement, while the

mode volume V determines the enhancement due to spatial confinement, the overall

enhancement being proportional to the ratio Q/V .
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The Q factor is defined as the ratio of the resonance frequency !res and the energy

decay rate � of the resonator. Assuming that the energy stored in the resonator decays

with time constant ⌧ = 1/�, it can be written as

Q = !res

✓
energy stored in the resonator

average power dissipation

◆
=

!res

�
= !res⌧. (1.13)

It can also be understood as the number of oscillation cycles required for the stored

energy to be damped by a factor 1/e. In general, multiple mechanisms can lead to

energy loss in a resonator, each of which can be accounted for by an individual quality

factor Qi. The total quality factor Q is given by

1

Q
=
X

i

1

Qi
. (1.14)

From Eq. (1.14) it is apparent that the total Q is limited by the smallest individual

Qi, i.e., by the largest loss mechanism. In literature, it is customary to express the

Q factor as Q
�1 = Q

�1
int + Q

�1
ext, in which Qint accounts for radiation loss, material

absorption, scattering from fabrication imperfections and impurities, etc. (intrinsic

Q factor), and Qext accounts for loss due to in and outcoupling (extrinsic Q factor).

The total Q factor is usually referred to as the loaded Q factor.

The mode volume V can be defined as follows:

V =

Z
"(r)|E(r)|2 dr

max["(r)|E(r)|2]
. (1.15)

Despite its name, the mode volume can di↵er significantly from the spatial extension

of the mode or the actual size of the resonator. As a rule of thumb, Q scales with V .

It can be qualitatively understood by considering that the larger the resonator, the

longer the time spent by light in it. Hence, achieving a high Q/V ratio to maximize

the field enhancement is a di�cult task, but careful designs can lead to satisfactory

tradeo↵s [74].

Whispering-gallery-mode (WGM) resonators have achieved some of the highest Q

factors. In particular, microrings have gained increasing interest due to their potential

for high-density integration in a multitude of di↵erent material platforms [83]. Their

application include filtering and demultiplexing [84], modulation [85], sensing [86],

nonlinear interaction enhancement [87], quantum information processing [88], just to

name a few. A common configuration is the all-pass filter sketched in Fig. 1.14, in

which the optical energy can transfer to the ring from an adjacent bus waveguide

through evanescent coupling. The gap distance between the ring and bus determines

the strength  of the coupling. In order to achieve resonance, an integer number of
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Figure 1.14. (a) Scheme of an all-pass microring resonator. Light is coupled to the ring from a
bus waveguide. The coupling region is described as a point coupler of cross-coupling coe�cient 

and self-coupling coe�cient t, with 
2 + t

2 = 1. The coe�cient a = e�(↵/2)L represent the loss
after one roundtrip, with ↵ the power attenuation coe�cient; � is the propagation constant of the
circulating mode and L the roundtrip length. (b) Transmission spectrum T = |Eout/Ein|2 of the
all-pass microring as a function of the phase shift ' = �L under critical coupling (a = t). The
resonances are equally spaced.

Material
platform Range Con�guration R (um) FSR

(pm) Q Ref

Indium phosphide
(InP) NIR InP ring resonator 13,000 17.8 0.97M [75]

Silicon (Si) NIR SOI microring resonator 2,450 45.7 22M [76]

NIR Submicrometer-SOI racetrack resonator 29+260 900 1.3M [77]

Silica-based NIR Silica-based racetrack resonator 1,600 137 1.83M [78]

Lithium niobate (LN) Vis-NIR LN-on-insulator microring resonator 100 – 11M [66]

LN-on-insulator microring resonator 80 – 10M [65]

Silicon nitride (SiN) NIR On-chip SiN microring resonator 115 – 37M [79]

NIR Planar integrated all-waveguide SiN
resonator 11,787 17.4 422M [80]

Polymer Vis SU-8 microring resonator fabricated by
nanoimprint lithography 60 2000 0.8M [81]

Polymer-based
LRSPPs NIR Polymer hybrid plasmonic ring resonator 25 – 270 [82]

Table 1.2. Comparison of selected microring resonators in di↵erent material platforms.

e↵ective wavelengths must fit in one roundtrip length L:

� =
ne↵,mL

m
, (1.16)

where m is the resonance order and ne↵,m is the e↵ective index of the mode propa-

gating in the ring. The transmission spectrum of the bus waveguide exhibits equally

spaced dips at the ring resonances, which drop to zero under critical coupling, i.e.,

when the coupled power is equal to the power loss in the ring (2 = 1� exp(�↵L) '
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↵L, with ↵ the power attenuation coe�cient), as illustrated in Fig. 1.14(b). The free

spectral range (FSR), i.e., the wavelength separation between neighboring resonances,

is given by

FSR� =
�
2

ngL
, (1.17)

where ng is the group index of the propagating modes. The intrinsic and extrinsic Q

factors can be expressed as

Qint =
2⇡ngL

�(↵L)
and Qext =

2⇡ngL

�2
, (1.18)

respectively, with the loaded Q factor being given by Q
�1 = Q

�1
int + Q

�1
ext. Typical

values are in the range 104–105, though recent research e↵orts resulted in ultra-

high values exceeding 108 in millimeter-scale microrings. Some selected examples in

di↵erent host materials are reported in Table 1.2.

Mode volumes in high-Q microrings can be quite large due to the large bend radii,

which makes them not suitably sized for dense integration and limits their use in those

application requiring high optical field strengths, e.g., spontaneous emission or strong

coupling. Therefore, nanocavities based on PhCs, capable of achieving mode volumes

as small as the di↵raction limit (�/n)3, have been explored as an attractive alternative.

The best performing PhC nanocavities are realized in PhC slabs, especially in self-

standing Si membranes, by omitting a single hole (H1 cavity) or three holes (L3 cavity)

in a hexagonal lattice. By tuning position and radius of the holes in the immediate

vicinity of the cavity, Q factors exceeding 107 are predicted numerically [89], with

experimental values up to 106 due to fabrication limitations [90]. Higher Q factors

can be achieved in heterostructure cavities formed by connecting PhC line-defect

waveguides with slightly di↵erent structural parameters, such as the longitudinal

lattice constant, waveguide width, or slab refractive index [91–93]. However, such

structures are quite challenging to fabricate, and usually require a su�ciently large

refractive index contrast of the constituent materials.

A di↵erent approach is that of photonic crystal nanobeam cavities (PhCNCs),

which exploit the presence of a PBG along a waveguide segment in which light is

confined transversely by TIR (Fig. 1.15(a)). Although wavelength-scale mode volumes

can be achieved quite straightforwardly, high Q factors are more challenging to obtain

[106]. The rule of thumb to increase Q is that the mode field should not terminate

abruptly at the cavity edges, as this would lead to significant in-plane di↵raction

(Fig. 1.15(b)). Quite the contrary, its spatial variation should be as smooth as possible

at the cavity edges, thus enabling more gradual reflection by the Bragg mirrors [107,

108]. In practice, this “gentle confinement” requires tapering the Bragg mirrors into

the cavity region, e.g., by gradually resizing or shifting neighboring holes towards
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Figure 1.15. (a) Schematics of a PhC nanobeam cavity consisting of a waveguide segment of length
Lcav, width w, and thickness t, embedded by two Bragg mirrors of lattice constant ⇤. (b) Light
di↵raction at the cavity edges. (c) Mitigation of di↵raction due to tapering of holes.

Material
platform Range Con�guration Q factor mode V

(�/n)3 Ref

Silicon (Si) NIR Circular hole PhCNC 58,000 0.6 [94]

Circular hole/ladder/stack mode-gap cavities in
SOI and Si air-bridge 220,000–750,000 0.5–1.4 [95]

Bowtie-shaped unit cell PhCNC 100,000 0.001 [96]

Width-modulated PhC stack mode-gap cavity 27,000 1.48 [97]

Nanoslotted single PhCNC 10,000 0.025 [98]

Slotted PhCNC with parabolic modulated width 10,000 0.22 [99]

Silica (SiO2) Vis Circular hole nanobeam in SiO2 5,000 2.0 [100]

Polymer NIR Low-index-contrast polymeric PhCNC 36,000 – [101]

InP-based NIR Stick-like cavity with tapered air holes 100,000 – [102]

Porous silicon
(p-Si) NIR PhCNC based on p-Si 9,000 – [103]

SiN Vis–NIR Suspended SiN nanobeam 55,000 0.55 [104]

SiN-on-insulator 440,000 – [105]

Table 1.3. Comparison of selected PhC nanobeam cavities in di↵erent material platforms.

center of the cavity (Fig. 1.15(c)). Although it may induce slight increase in the

mode volume V , a significant improvement of Q/V is still expected owing to the much

larger increase in Q. This optimization procedure is relevant also to the scope of this

dissertation, and is discussed in detail in Chapter 3. By this approach, a number of

high-Q/V PhCNCs have been proposed with di↵erent geometries, from ladder to stack

nanobeams, and with a vast choice of constituent materials. A partial report is given

in Table 1.3. Numerical simulations show Q factors exceeding 108, with measured

Q factors in the range 104–105, essentially limited by fabrication imperfections and
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impurities. Ultra-small mode volumes V < (�0/n)3 can be obtained by resorting

to nanoslotted cavities [109] or engineering the geometrical shape of the unit cell

(e.g., bowtie-shaped unit cell) [110]. Their application include tunable filtering [111],

electro-optic modulation [112], ultra-low energy switching [113], low-threshold lasing

[114, 115], biochemical sensing [116, 117], and cavity quantum electrodynamics [118].

Couplers. The small dimension of integrated waveguides makes the coupling to

an optical fiber more di�cult due to the large modal size mismatch. For instance, the

standard single-mode fiber for telecom applications, Corning’s SMF-28, has a mode

field diameter of about 10.4 µm at 1550 nm (e↵ective mode area of about 85 µm2),

compared to an e↵ective mode area of the order of 0.1 µm2 in submicrometric SOI

waveguides. Direct edge coupling of both waveguides would result in coupling loss

around �30 dB, not to mention the submicrometric alignment tolerance required.

To avoid such impracticable loss, alternative coupling strategies have been found:

inverse-taper edge coupling or grating coupling (Fig. 1.16).

In edge couplers, the (usually lensed) fiber is placed horizontally at the chip facet

and directly aligned with the on-chip waveguide. By gradually shrinking the waveg-

uide dimensions along the direction of propagation toward the chip edge (inverse

taper), the e↵ective mode area increases because of the weaker confinement, up to

the point it becomes comparable with that of the fiber mode. By using inverse-taper

edge couplers, one can achieve high coupling e�ciency (i.e., the ratio between the

optical power coupled to the fiber and the optical power propagating along the waveg-

uide), with large operating bandwidth and low polarization dependence. However,

post-fabrication cleaving and polishing are required to obtain high-quality coupling

facets. In addition, the fiber positioning is restricted to the chip facets, with strin-

gent alignment tolerance and impracticable wafer-level testing. To circumvent these

disadvantages, one can bend the taper in the upward direction and align the fiber

vertically, or use other ingenious 3D structures free from planar design limitations.

inverse-taper edge coupler grating coupler

Figure 1.16. Schematics of two prominent coupling schemes between optical fibers and integrated
waveguides: inverse-taper edge coupler (left) and grating coupler (right).
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Structure Range Con�guration CE (dB) BW (nm) Ref

Inverse-taper edge
coupler NIR SOI edge coupler, parabolic-shape

inverse taper –3.3 (1550 nm) – [119]

NIR SOI edge coupler with polymer clad,
inverse taper –0.5 (1550 nm) >100 (1 dB) [120]

NIR SOI edge coupler –0.25 (1550 nm) 100 (1 dB) [121]

3D edge coupler NIR Vertical curved Si waveguide coupler –2.2 (1550 nm) >100 (1 dB) [122]

NIR 3D polymer coupler attached to a SiN
waveguide –2.07 (1550 nm) >200 (1 dB) [123]

Uniform grating
coupler NIR SOI grating coupler –5.2 (1550 nm) 40 (1 dB) [124]

Directionality-
enhanced grating
coupler

NIR SOI grating coupler with poly-Si overlay –1.6 (1530 nm) 44 (1 dB) [125]

NIR SOI grating coupler with Al bottom
re�ector –0.58 (1560 nm) 71 (3 dB) [126]

Vis SiN grating coupler with AlCu/TiN bottom
re�ector –2.29 (660 nm) – [127]

NIR SOI grating coupler with bottom DBR –1.58 (1510 nm) 36 (1 dB) [128]

NIR SiN grating coupler with SOI grating
bottom re�ector –1.3 (1536 nm) 80 (1 dB) [129]

Apodized grating
coupler NIR SOI grating coupler, pitch+duty cycle

apodized –0.9 (1550 nm) 37.4 (1 dB) [130]

NIR, n-Vis LNOI grating coupler, duty cycle apodized –3.27 (1550 nm),
–3.48 (775 nm)

35 (3 dB),
11 (3 dB) [131]

NIR
Plasmonic grating coupler on
dielectric-loaded SPP, pitch+duty cycle
apodized

–2.9 (1550 nm) 115 (1 dB) [132]

Table 1.4. A comparison of the coupling e�ciency (CE) and bandwidth (BW) of selected couplers
using di↵erent CE enhancement schemes.

Grating couplers are periodic corrugations (in one or two dimensions) that di↵ract

light from the waveguide to free space, making it possible to couple light on top of

the chip. Their behavior relies on Bragg’s di↵raction condition, which is nothing but

a phase matching condition between the propagation constant of the waveguide mode

and the wavevector of the light incident from the optical fiber above the chip. The

grating vector makes up for the phase mismatch. Compared to edge couplers, grating

couplers are more easily fabricated and require no additional post-processing steps.

Plus, they can be placed anywhere on the chip, providing much easier fiber alignment

and also wafer-level testing. On the contrary, they are intrinsically wavelength selec-

tive, with relatively narrow bandwidth, and it is not trivial to achieve high coupling

e�ciency, which is essentially limited by non-optimal directionality and poor overlap
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between the fiber mode and the optical mode di↵racted by the grating. Directionality

can be increased by placing a backreflector, such as a metallic mirror or a DBR, at the

bottom of the grating to recover part of the power leaked into the substrate, while the

mode overlap can be enhanced by using non-uniform (apodized) gratings to produce

a field distribution of the di↵racted mode matching the Gaussian field distribution

of the SMF fundamental mode. This requires intensive design optimization and can

make the fabrication procedure more complex. Finally, 1D grating couplers are po-

larization sensitive, and can e�ciently couple only one polarization. The working

principles of 1D di↵raction gratings are discussed in further detail in Chapter 4. A

comparison of di↵erent couplers selected from the literature is presented in Table 1.4.

A complete overview is provided in [133].



CHAPTER 2

Guiding BSWs: long-range BSWs in PhC ridges

2.1. PhC ridges supporting BSWs

BSWs can be easily managed using dielectric loading on the surface of the trun-

cated multilayer. It makes them an interesting candidate for the development of

integrated planar optical systems. The most common implementations are based on

PhC ridges, which consist of a dielectric strip placed on top of the truncated multi-

layer. A schematic is shown in Fig. 2.1. In these structures, light confinement results

from the hybrid combination of a PBG e↵ect from the multilayer side and TIR in

the other directions. Interestingly, the existence of guided modes depends very little

on the ridge refractive index, which can be even lower than those of the multilayer

materials.

Liscidini showed that, starting from the same multilayer but varying the ridge

characteristics, PhC ridges can support at least three di↵erent kinds of modes, which

the author e↵ectively named the good, the bad, and the ugly (Fig. 2.2) [134]. These

modes have di↵erent dispersion and field distribution, with light concentrated near

the multilayer surface or in the ridge. Namely, the good is localized at the truncation

surface irrespective of the ridge thickness. Its dispersion relation lies below the light-

line of the ridge material, and thus the field is evanescent in the ridge. It is indeed a

truly guided 2D BSW. The bad exists only in ultra-thin ridges and is characterized

by a dispersion relation above the lightline of the ridge material. Unlike the good, the

field is not evanescent in the ridge, and light is confined near the multilayer surface

PhC ridge waveguide

z

y
x

TIR TIR

TIR

PBG

Ey (TE-like)

Hy (TM-like)

(a) ridge waveguide

TIR TIR

TIR

TIR

Figure 2.1. Sketch of the cross section of (a) ridge waveguide and (b) PhC ridge waveguide.

23
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Figure 2.2. Intensity profile of (a) good, (b) bad and (c) ugly BSWs supported by the PhC ridges
considered in [134]. The truncated multilayer is the same in the three cases, but is loaded with ridges
of di↵erent thickness and refractive index. Note that in panel (c) the mode is confined by the PBG
even though field oscillations in the multilayer are barely visible. Calculations are done via HEIM
using an in-house implementation of the TMM. See the reference for details.

only because the ridge is shallow. In both cases, however, the modes originate from

the unguided BSW supported by the bare multilayer as an e↵ect of the dielectric

perturbation. Finally, the ugly exists only for su�ciently thick ridges, with light

being almost totally confined within the ridge. The dispersion relation is above the

lightline of the ridge material. This mode does not originate from a perturbation of a

BSW, and is reminiscent of guided modes in TIR-based rectangular waveguides, with

higher-order modes appearing when the ridge thickness is increased. Notice that light

is still confined by the PBG from the multilayer side.

A rigorous analytic treatment of PhC ridges is not possible, and various numerical

algorithms such as RCWA, FDTD or finite element methods can be successfully

utilized. To reduce the simulation complexity (memory and computation time) even

further, the e↵ective index method (EIM) is typically adopted. The basic concept

of the EIM is the reduction of the 2D problem to two 1D problems that can be

solved consecutively. Namely, one substitutes the ridge on top of the multilayer with

an e↵ective homogeneous layer of the same thickness t and refractive index ne↵,slab,

calculated as the e↵ective index of the fundamental mode supported by a symmetric

air/ridge/air slab waveguide of width w (see Fig. 2.3(b)). The guided modes of

the PhC ridge correspond to the guided modes supported by the resulting e↵ective

multilayer. We refer to this method as the horizontal EIM (HEIM).

In alternative, one can take a di↵erent approach. For su�ciently wide ridges, the

strong confinement in the vertical direction over the lateral direction suggests that one

should divide the cross section vertically into three di↵erent regions, namely the bare
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(a) PhC ridge

t

w

(b) HEIM (c) VEIM

Figure 2.3. (a) Cross section of a PhC ridge of width w and thickness t. Illustration of the reduction
of the problem dimensionality by using the (b) HEIM and (c) VEIM.

regions, corresponding to the 1D bare multilayer, and the loaded region, in which the

1D multilayer is loaded with an additional layer corresponding to the ridge. One can

calculate the e↵ective indices nbare and nload of the surface states supported by each

region, and finally consider an e↵ective slab waveguide of width w and refractive index

nload with cladding of refractive index nbare (see Fig. 2.3(c)). The fundamental mode

of this e↵ective slab waveguide corresponds to the BSW guided by the PhC ridge.

We refer to this second approach as the vertical EIM (VEIM). Obviously, the VEIM

assumes that both bare and loaded regions support a 1D BSW, the loaded mode being

indeed a perturbation of the bare one due to the presence of the additional dielectric

layer. Therefore, using the nomenclature above, it cannot be applied to calculate the

dispersion of ugly modes, which can be in fact determined using the HEIM only. As

a rule of thumb, the VEIM is particularly indicated to describe those modes that are

localized at the multilayer surface because of the strong vertical confinement of the

field, while the HEIM is also suited to describe those modes that are strongly confined

within the ridge.

The (often underemphasized) key assumption of e↵ective index approaches is

that the ridge modes are purely TE (TM) polarized. For instance, when dealing

with TE (TM) ridge modes using the VEIM, one searches for the TE (TM) modes

supported by the bare and loaded multilayers, and then for the TM (TE) fundamental

mode supported by the e↵ective bare/loaded/bare slab waveguide. Likewise, if one

applies the HEIM, they search for the TM (TE) fundamental mode of the e↵ective

air/ridge/air slab waveguide, and then for the TE (TM) mode supported by the

e↵ective multilayer. However, as for any 2D dielectric waveguide, the ridge modes

cannot be purely TE (TM) polarized because of the optical confinement being in both

transverse directions. Therefore, the EIM fails to capture the hybrid nature of 2D

guided modes, but is to some extent reliable, provided the dominant field component

is TE (TM) polarized. We shall expand on this in the following section.
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The goal of this dissertation is to demonstrate the potential integration of BSWs

sustained by PhC ridges in on-chip devices. In particular, their peculiar mechanism of

light confinement, based on the combination of TIR and PBG, allows one to operate

with polymeric ridges, despite the relatively low refractive index contrast. The inter-

est in using polymers is manifold [70]. They are already ubiquitous in nanotechnology,

due to their relatively low cost, chemical stability, and mechanical robustness. Most

importantly, they can be readily deposited and structured on the multilayer surface

by simple lithographic techniques, such as electron beam lithography (EBL) [135] or

direct laser writing (DLW) via two-photon polymerization (2PP) [136]. Although the

small refractive index might be a limit to their light confinement abilities, on the

other hand it can help reduce the scattering loss due to sidewall roughness and allow

for higher fabrication tolerance. Next, their transparency window extends to visible

wavelengths, which are not accessible with silicon photonics. Operating with visible

light is of great interest in a large field of applications, from biochemical sensing and

medical diagnostics to quantum information processing. In this respect, for exam-

ple, polymers can be chemically functionalized for molecular recognition in biosensors

[137], or can be doped with a wide range of nanoemitters, from organic dyes to quan-

tum dots to color centers, which is appealing for on-chip integration of quantum

light sources [138–142]. Finally, polymers can exhibit large second and third-order

nonlinear optical properties [143].

Although this work is intended as a theoretical study, the feasibility of our ideas

is validated numerically by considering structures whose features (geometry, dimen-

sions, materials) are realistic and compatible with the actual fabrication. In particu-

lar, a titania (TiO2)/silica (SiO2) multilayer loaded with poly(methyl-methacrylate)

(PMMA) and operating at visible wavelength �0 = 532 nm (corresponding to the

second harmonic of a Nd:YAG laser) will be assumed as a de facto standard platform

in this work.

2.2. Long-range BSWs in PhC ridges

Since their first experimental observation by Descrovi et al. [44], several works

have focused on the control and manipulation of guided BSWs using dielectric loads

on the multilayer surface to establish a complete integrated optical platform based

on PhC ridges [45–52, 144–146]. Unfortunately, so far, experimental works have

shown propagation loss of the order of dB/mm at best (see Table 2.1), which is one

or two orders of magnitude larger than the typical loss reported in other integrated

platforms (see Table 1.1). Propagation loss of the order of dB/cm is reported but for

unguided BSWs [147]. This is not only frustrating, as it hinders the development of

an integrated platform based on BSWs, but also unclear from a physical standpoint.

Many authors claim that the use of lossless dielectric materials per se should guarantee
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Structure Material platform � (nm) Propagation loss
� (dB/cm) Comments Ref

Ultrathin ridge
waveguide

a-SiN:H (multilayer) + AZ5214E
photoresist (ridge) 1530 > 100 [44]

SiO2/Ta2O5 (multilayer) +
PPST (ridge) 532 1042 Focusing planar lens for

mode injection [47]

SiO2/SiN (multilayer) + TiO2
(ridge) 1553 350 Waveguide grating as a

BSW re�ector [144]

Curved waveguides SiO2/SiN (multilayer) +
AZ1518 photoresist (ridge) 1542 27 (straight), 178 (bend

radius = 80 µm) [45]

Ridge waveguide SiO2/SiN (multilayer) + SU-8
photoresist (ridge) 670 – Two-photon laser

lithography [52]

SiO2/Ta2O5 (multilayer) +
SU-8 photoresist (ridge) 670 – Mach-Zender

interferometer [51]

Microdisk SiO2/SiN (multilayer) + TiO2
(disk) 1550 ⇠ 80 † Q factor = 2,000, radius

R = 100 µm [48]

Microring p-Si 1612 ⇠ 25 † Q factor = 4,000, radius
R = 105 µm [49]

Polymeric nano�bre SiO2/SiN (multilayer) +
Nylon-6 (�ber) 633 8330 Nano�ber radius

R = 125 nm [145]

† Estimated from the Q factor under the assumption of critical coupling (Qint = 2Q).

Table 2.1. Comparison of integrated waveguides supporting 2D BSWs.

long propagation lengths of BSWs, and take this strategic advantage for granted. In

actual fact, FDTD simulations of idealized structures confirm that such high loss is

not entirely due to fabrication imperfections [49], but it is intrinsically related to this

very kind of light confinement relying on the combination of TIR and PBG.

Little research has been conducted on understanding the leading loss mechanisms.

Earlier theoretical investigations on BSW dispersion and propagation rely on the use

of approximated strategies, based mainly on EIMs [148]. As mentioned in the previ-

ous section, these approaches o↵er an advantage in terms of computational time and

resources to calculating the dispersion relation and field distribution, and provide

reliable results. At the same time, they are not able to capture all the physics of

light propagation, especially for what concerns propagation loss. Here, by neglect-

ing material absorption and scattering, we explain the physical mechanism behind

the intrinsic loss of guided BSWs in PhC ridges and present a strategy to achieve

significant improvement in the mode propagation length.

The structure under investigation is illustrated in Fig. 2.4. It consists of a dielec-

tric ridge placed on the top of a truncated periodic multilayer. The multilayer has a

finite number N of periods composed of two alternating layers of thicknesses da and

db stacked along the z direction, with refractive indices na and nb < na, respectively.
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Figure 2.4. Sketch of the cross section of the PhC ridge.

The filling fraction f = da/(da + db) determines the spectral position and extension

of the (polarization-dependent) PBG with respect to the given refractive indices of

the layers. The topmost na-index layer is truncated with thickness d� = �da, with

� 2 (0, 1). On the top of the structure, a homogeneous dielectric ridge of width w,

thickness t, and refractive index nridge sustains a guided BSW at a given operating

wavelength �0 in vacuum. In SOI platforms, the waveguide dimensions are often

preset by industry-standard wafers having a silicon thickness of 220 nm. Here, we

require that the ridge width and thickness be of the same order of magnitude as �0 to

ensure single-mode operation. Finally, we stress that we consider a very general case

of PhC ridge, in which the guided BSW can be either a perturbation of the unguided

BSW supported by the bare structure or not.

Due to the combination of TIR and reflection within the PBG, the guiding prop-

erties of the structure (number of modes, polarization dependence, dispersion profile,

propagation loss, etc.) depend on both the ridge dimensions (for a given ridge ma-

terial) and multilayer composition. It provides great freedom in terms of structure

design, and yet sums up to a vast parameter space. It is worth reminding that the

PBG is a bulk property of the sole multilayer, and its features depend only on its

unit cell composition. The multilayer is the main focus here, for it is associated with

the most complex confinement mechanisms and, as we shall see, its optimization is

crucial to reducing the propagation loss.

Even in the presence of isotropic materials, the multilayer response at finite kx

depends on the light polarization. The PBG is intuitively understood to arise from

the interference of the light reflected at each multilayer interface, whose amplitude

depends on its polarization according to Fresnel’s coe�cients (see Appendix A.2). As

a result of the mirror symmetry with respect to the xz plane and any other plane

parallel to it, optical modes inside a 1D PhC can be labeled as either transverse

electric (TE) or transverse magnetic (TM), with either E or H perpendicular to the

xz plane. Consequently, one can classify eventual unguided 1D BSWs supported by
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Figure 2.5. Pictorial representation of the field distribution and its Fourier spectrum in the (ky, kx)
plane of the Ey component for (a), (b) TE BSW in a 1D structure and (c), (d) TE-like guided BSW
in a PhC ridge.

a bare truncated multilayer as TE polarized, with only Hx, Ey, Hz nonvanishing field

components, or TM polarized, with only Ex, Hy, Ez nonvanishing.

On the contrary, the guided mode propagating in the x direction along the ridge

shown in Fig. 2.4 is characterized by the propagation constant � = ne↵k0, with

ne↵ the e↵ective mode index (k0 = 2⇡/�0 is the free space wavevector), and by the

electric and magnetic field profiles E(y, z) and H(y, z), which now are functions of

both transverse spatial coordinates. Due to the finite width of the ridge, the structure

is symmetric upon reflection with respect to the sole xz plane, i.e., at the center of the

ridge (y = 0). In general, for y 6= 0, all six field components of any guided mode are

nonvanishing. This can also be understood by considering that light confinement in

the y direction implies @/@y 6= 0. Thus, a purely TE mode E = (0, Ey, 0) cannot be

a solution to Maxwell’s first equation r · (n2E) = 0, with n = n(y, z) the transverse

refractive index profile. Indeed, from Maxwell’s first equation one can show that a

longitudinal electric field component Ex is always originated from the spatial gradient

of the transverse field Et = (Ey, Ez) [149]

Ex =
i

�n2
rt · (n2Et), (2.1)

where rt denotes the transverse gradient. A stronger optical confinement in the

transverse direction yields a larger longitudinal electric field component due to the
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increasing spatial derivative. This is a major feature of any guided mode in a 2D

waveguide. In silicon waveguides, for instance, the amplitude of the Ex component

can be as high as 97% of that of the dominant transverse component Et [150]. In

many cases, Ey (Hy) is the dominant field component, and the guided modes can be

labeled as TE(TM)-like, despite preserving a nonzero longitudinal field component.

The hybrid polarization inherent in guided BSWs is of fundamental importance

in addressing the origin of propagation loss. Indeed, while the condition of TIR

is independent of light polarization (unless one deals with anisotropic media), in

PhC ridges light confinement from the multilayer side is due to the PBG. Thus, the

simultaneous presence of TE and TM PBGs around kx = � is always required to

ensure that all six nonvanishing field components are guided.

A second important aspect is associated with the field distribution in the struc-

ture, which is connected to the Fourier components of the mode. In Fig. 2.5(a), we

sketch the case of a purely 1D system, in which light is confined only along the z

direction. At a given �0, the mode is characterized by a single point in the Fourier

plane (ky, kx) (see Fig. 2.5(b)). On the contrary, in the case of a guided BSW, light

confinement along the y direction (see Fig. 2.5(c)) determines a spread of the mode

Fourier components along ky (see Fig. 2.5(d)). The tighter the confinement, the larger

the spread of the field Fourier components along ky, with the risk of having a signif-

icant fraction of them outside the PBG, as pointed out in Fig. 2.5(d). In the latter

case, light can couple to the radiation modes supported by the multilayer.

For a given wavelength �0 and a set of materials, one can design the structure

on the basis of these two arguments to minimize the propagation loss. The idea is

that, for a su�ciently large number of periods, longer propagation lengths require

that all the field Fourier components be inside a PBG, so as to avoid leakage into the

multilayer. In addition, since light is confined also by TIR, the Fourier components

must be outside the cladding light cone to prevent coupling with the continuum of

radiation modes in the cladding.

2.3. Simulation results and discussion

Following this approach, we consider the case of a PhC ridge realized on a TiO2

(na = 2.67)/SiO2 (nb = 1.46) multilayer ofN = 10 periods ⇤ = da+db = 440 nm. The

topmost TiO2 layer is truncated with thickness d� = 10nm and loaded with a PMMA

(nridge = 1.49) ridge of thickness t = 0.4 µm and width w = 1.0 µm to work in the

visible spectrum at �0 = 532 nm. To restrict the number of possible configurations in

the parameter space, we first let the filling fraction f be the only free parameter, with

the TiO2 and SiO2 layers having thicknesses da = f⇤ and db = (1�f)⇤, respectively.

For such a structure, in Fig. 2.6, we report the gapmap for both polarizations as
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a function of the filling fraction f and the modulus kk =
q
k2x + k2y of the in-plane

wavevector (kx, ky).

We can identify three di↵erent points A, B, and C that represent three qual-

itatively di↵erent situations given the ridge parameters indicated above. Point A

corresponds to the case in which the PhC ridge is designed with a filling frac-

tion fA = 0.7 and supports a TE-like BSW with a leading Fourier component at

kk = �A = 17.1 µm�1. In this case, one has a strong PBG for the TE components,

but no gap for the TM components. Point B, at fB = 0.45 and �B = 17.4 µm�1,

represents the intermediate situation of a strong TE PBG overlapping with a mod-

erately wide TM PBG. Finally, point C, at fC = 0.22 and kk = �C = 17.5 µm�1,

corresponds to the most favorable case in which both TE and TM PBGs are wide

and well-overlapping.

Following the argument presented in Fig. 2.5, we calculate the Fourier transform

(FT) of each field component as a function of kk for the guided modes supported by

the PhC ridges A, B, and C. This can be obtained from the electric field profile E(y, z)

of the modes, which are calculated by means of Ansys/Lumerical 2D finite di↵erence

eigenmode (FDE) solver with perfectly matched layer (PML) boundary conditions.

It should be noticed that, in general, E(y, z) is not separable as a product of two

functions in the y and z coordinates separately, thus also the FT is not separable

in ky and kz. This means that, for a proper analysis, one has to consider the FT

distribution as a function of both kk and kz, as plotted in Figs. 2.7, 2.8, and 2.9.

Figure 2.6. Gapmap at �0 = 532 nm for the present TiO2/SiO2 multilayer of period ⇤ = 440 nm as
a function of the filling fraction f and the in-plane wavevector kk. The TE (TM) PBG is represented
by the light (dark) area. The three investigated cases (dashed lines) and the air lightline (solid) are
pointed out.
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Figure 2.7. Intensity profiles (normalized to the maximum value) of (a) Ey and (b) Ex for the
structure corresponding to case A, along with the FT spectrum of (c) Ey and (d) Ex. The dashed
areas correspond to regions where the (c) (green) TE and (d) (cyan) TM PBGs are closed.

We start by considering the case fA = 0.7 (working point A of Fig. 2.6) for which

�A = 17.1 µm�1. The intensity profiles and Fourier spectra as a function of kk and

kz for the two field components Ey and Ex are shown in Fig. 2.7. The results for

Ez are not shown because its field intensity is su�ciently small to be neglected. In

each graph, the dashed regions correspond to values of kk for which the PBG for the

relevant polarization is closed, and light is not guided. We observe that, while almost

the entire FT for Ey is within a PBG, this is not so for Ex, for which most of the

light cannot be confined on the multilayer side. This is confirmed by the relatively

large propagation loss ↵A = 50.0 dB/cm, as calculated from the imaginary part of

the complex e↵ective index: ↵ (dB/cm) = 8.68 · (2⇡nim/�0 (cm)).

A similar analysis can be done for the structure fB = 0.45 (working point B of

Fig. 2.5), for which there exist TE and TM PBGs around the working point. In this

case, the Fourier analysis (Fig. 2.8) unveils that a significant fraction of the Fourier

components is within the TE and TM PBGs around �B = 17.4 µm�1. The previous

example suggests that, in this case, lower propagation loss should be expected. In-

deed, the computed value is ↵B = 1.03 dB/cm. This improvement is of more than one

order of magnitude and indicates that a further optimization of the PBG position to

confine the TM fraction of the mode could lead to better results.
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Figure 2.8. Intensity profiles (normalized to the maximum value) of (a) Ey and (b) Ex for the
structure corresponding to case B, along with the FT spectrum of (c) Ey and (d) Ex. The dashed
areas correspond to regions where the (c) (green) TE and (d) (cyan) TM PBGs are closed.

With this in mind, we now turn to the case fC = 0.22 (working point C of Fig. 2.5).

This point represents a favorable situation of wide and well-overlapping TE and TM

PBGs. In this case, the computed propagation loss is ↵C = 5.67⇥ 10�5 dB/cm,

six orders of magnitude lower than that of case A. The origin of such a noteworthy

improvement is clear by looking at Fig. 2.9, where we show the Fourier analysis along

with the electric field intensity profiles for the two dominant field components. In this

case, almost all the field FTs are within the PBG regions for both polarizations. All

the results are summarized in Tab. 2.2. We also report the mode e↵ective areas as

calculated by Eqs. (1.11) and (1.12). In the latter, we assume the ridge as the region

with nonlinear optical (NLO) properties. PMMA by itself does not have significant

NLO properties, but is a suitable host material for other highly NLO guest materials

(although the linear refractive index may change significantly on account of the guest

material concentration). However, in the present case, the field distribution is not

always optimal to enhance possible nonlinear e↵ects, for one would rather operate

with ugly modes, in which light is mainly confined inside the NLO ridge itself, than

good modes, in which light is mostly confined near the truncation surface. We expand

on this point in Chapter 5.
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Figure 2.9. Intensity profiles (normalized to the maximum value) of (a) Ey and (b) Ex for the
structure corresponding to case C, along with the FT spectrum of (c) Ey and (d) Ex. The dashed
areas correspond to regions where the (c) (green) TE and (d) (cyan) TM PBGs are closed.

We stress that, in the discussion above, we always considered the situation in

which the number N of multilayer periods is su�ciently large so that the confinement

is essentially perfect in the whole region defined by the PBG of the corresponding

infinite multilayer. For the best structure considered here, N = 10 is su�cient to

obtain propagation loss that is equivalent to the case of an infinite number of periods.

Indeed, in that case, the mode Fourier components are localized well within the

PBGs and far from the photonic band edges (BEs) (see Fig. 2.9). However, care

should be taken when the Fourier components are nonvanishing near the BEs, for a

Case f w (µm) ne� � (dB/cm) Ae� (µm2) Ae�,nl (µm2)

A 0.70 1.0 1.444 50.0 0.355 0.413

B 0.45 1.0 1.474 1.03 0.336 0.517

C 0.22 1.0 1.483 5.67⇥ 10–5 0.365 0.640

1.2 1.487 5.48⇥ 10–3 0.418 0.727

Table 2.2. Results for the cases A, B, and C described in this section, with f the multilayer filling
fraction, w the ridge width, ne↵ the mode e↵ective index, ↵ the mode propagation loss, Ae↵ the
mode e↵ective area calculated with (1.11), and Ae↵,nl the mode e↵ective area calculated with (1.12)
assuming the ridge as the NLO region.
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Figure 2.10. Propagation loss ↵ (left axis) (red) and figure of merit I defined in Eq. (2.2) (right
axis) (green) as a function of the ridge width w for the structure C, plotted in logarithmic scale.

considerably large number of periods could be required to achieve strong attenuation

in the multilayer.

So far, we focused on the multilayer parameters that control the position and

extension of the PBGs. However, one can also modify the FT distribution of the

guided BSW by varying the ridge width w. This gives an additional tuning parameter

that can be particularly useful in practice, when the multilayer is already fabricated

and one wants to improve the propagation lengths even further. In the limit of wide

ridges, propagation loss is expected to decrease, for the mode is more localized in the

Fourier space and its polarization tends to become purely TE or TM. In the more

interesting situation of tight confinement, when the ridge width is of the order of

the operating wavelength, the FT distribution with respect to the PBGs is no longer

intuitive, and a slight increase in the ridge width can lead also to a counterintuitive

increase in the propagation loss. This is illustrated in Fig. 2.10 (left axis), where the

ridge width in the structure C is varied from 0.5 µm to 2.5 µm with a 25 nm increment.

For instance, by increasing the ridge width from w = 1.0 µm to w = 1.2 µm, the

propagation loss increases by almost two orders of magnitude (see Tab. 2.2).

To measure the e↵ectiveness of our argument, we compare the intrinsic propaga-

tion loss with the fraction of leaky Fourier components. This is done in Fig. 2.10.

Namely, in an attempt to include also the e↵ect of a finite number N of multilayer

periods (i.e., imperfect guiding in the PBG window due to finite mirror strength), we

introduce the quantity

I =

Z
|FT(Ey)|2e�2 Im(qTE)N⇤ dkk dky

+

Z ⇣
|FT(Ex)|2 + |FT(Ez)|2

⌘
e�2 Im(qTM)N⇤ dkk dky,

(2.2)
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Figure 2.11. Illustration of the fraction of leaky Fourier components as expressed in Eq. (2.2) for
a generic electric field component E and given kz as a function of the in-plane wavevector kk. The
function being integrated in Eq. (2.2) (dashed green) is the product of the Fourier spectrum of E
(solid green) and an exponential factor e�2 Im(q)N⇤, with Im(q) being the imaginary part of the
Bloch wavevector for the corresponding polarization (solid red). The intrinsic loss is approximately
proportional to this integral (shaded area).

where the integrals extend over the whole wavevector space (kk, ky). The exponential

factor e�2 Im(q)N⇤, with q being the Bloch wavevector for the relevant polarization,

fully accounts for the Fourier components inside the leaky region (Im(q) = 0), but

also assigns di↵erent weights to the Fourier components inside the guiding region

depending on the magnitude of Im(q) > 0. This is illustrated in Fig. 2.11. Notice

that the Fourier components in close proximity to the photonic BEs might be weakly

guided due to the poor mirror strength, adding to the integral in (2.2). Fig. 2.10

clearly shows the same trend of ↵ (left axis) and I (right axis) as functions of w,

confirming the reliability of our approach.

In conclusion, we showed that the optimization of the PBGs for both light polar-

izations is essential to achieve long-range guided BSWs in PhC ridges. The propa-

gation length can be improved by engineering the structure so that the field Fourier

components for both polarizations are outside the cladding light cone and inside the

corresponding PBG. We illustrated that this can be achieved by a proper design of

the multilayer by choosing its period and filling fraction to adjust the PBG position

and extension in the Fourier space. Our results clarify the nature of BSW propaga-

tion in PhC ridges and extend the possibilities of BSW-based integrated platforms

for on-chip light control.



CHAPTER 3

Confining BSWs: BSW-based nanobeam cavities

3.1. BSW-based microresonators

As seen in previous chapters, the possibility of guiding BSWs by simply realiz-

ing a polymeric ridge waveguide makes them appealing for the development of an

etchless, all-dielectric integrated photonic platform operating also at visible wave-

lengths. To this end, microresonators constitute an indispensable building block.

Recently, Menotti et al. suggested that full 3D confinement of BSWs could be read-

ily achieved by bending the ridge on itself to obtain high-Q ring resonators [148].

The authors outlined a very general design strategy based on the separation of the

vertical and in-plane structure, and adopted a combination of EIM and 2D FDTD

calculations to predict Q factors exceeding 107 at visible wavelengths. However, this

approach neglects the polarization-related shortcomings inherent to EIMs. Dubey et

al. first demonstrated a BSW-based microdisk resonator using a TiO2 disk of radius

R = 100 µm on top of a truncated SiO2/SiN multilayer, with a reported Q = 2000

around 1550 nm [48]. Later, Rodriguez et al. fabricated a BSW-based microring res-

onator of radius R = 105 µm on a p-Si multilayer, with Q factors exceeding 103 at

telecom wavelengths [49]. These values are below par as compared to typical micror-

ings (see Table 1.2). Still, the authors believe that Q factors as high as 104 could be

obtained with further optimization of the structure parameters.

It is known that WGM resonators can lead to relatively high Q factors, yet at the

price of large mode volumes V owing to the large bend radii allowed by the gentle

light confinement in the plane. It can be undesirable in many applications involv-

ing, for instance, spontaneous emission or strong coupling, for which the figure of

merit is proportional to the Q/V ratio. Therefore, standing-wave optical resonators,

characterized by small V , even smaller than a cubic wavelength of light, have been

explored as an attractive alternative. Vosoughi Lahijani et al. fabricated a subwave-

length Fabry-Pérot cavity exhibiting a Q factor of about 400 (at 633 nm) using ZEP

(a positive e-beam resist) on top of a SiO2/SiN multilayer [151]. Stella et al. de-

signed a circular Fabry-Pérot cavity using dye-doped PMMA on top of a Ta2O5/SiO2

multilayer. The structure also provided an external di↵ractive grating for light out-

coupling. They experimentally observed Q factors of the order of 103 (at 570 nm),

with a predicted mode volume V = 2.23(�/n)3 [152].

37
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Structure Material platform � (nm) Q factor Comments Ref

Microdisk SiO2/SiN (multilayer) + TiO2
(disk) 1550 nm 2,000 (20,000†) radius = 100 µm [48]

Microring p-Si 1612 nm 4,000 radius = 105 µm [49]

Fabry-Ṕerot cavity SiO2/SiN (multilayer) + ZEP
(DBRs) 633 nm 400 subwavelength cavity length

(Lc = 252 nm)
[151]

Circular Fabry-Ṕerot
cavity

Ta2O5/SiO2 (multilayer) +
dye-doped PMMA
(concentric rings)

570 nm ⇠ 1,000 (1,440†) mode V = 2.23(�/n)3 [152]

† Theoretical value.

Table 3.1. Comparison of BSW-based microresonators.

A di↵erent approach is that of photonic crystal nanobeam cavities (PhCNCs).

They can be fabricated in a PhC ridge waveguide by directly patterning the ridge

to create a cavity region surrounded by Bragg mirrors on each side. This leads to

a structure in which light is confined by a PBG from the multilayer side and in the

longitudinal direction of the nanobeam, and by TIR in all the other directions, in a

combination that, to the best of our knowledge, has never been proposed before. In

this chapter, we theoretically demonstrate the concept of a BSW-based PhCNC. Our

design is essentially borrowed from Noda group’s study of optimal field distribution

in photonic double heterostructures [107], and it is optimized within the framework

of Fourier space analysis. In addition, in order to limit the computational resources

required for the numerical treatment of a 3D structure, the design is carried out by

means of an e↵ective index approach, which allows one to reduce the dimensionality

of the problem.

3.2. BSW-based photonic crystal nanobeam cavity

We consider BSWs supported by a PhC ridge waveguide, as sketched in Fig. 3.1(a).

The multilayer has a finite number N of periods composed of two alternating layers

of thicknesses da and db, and refractive indices na and nb, respectively. The filling

fraction f = da/(da + db) determines the spectral position and the extension of the

PBG with respect to the given refractive indices of the layers. The multilayer termi-

nation is defined by a truncation layer of thickness d� = �da, with � 2 (0, 1), and

refractive index na. On top of the multilayer, we consider a dielectric ridge of width

w, thickness t, and refractive index nridge. The surrounding cladding is assumed to

be air (nclad = 1). The structure is designed to operate at a wavelength �0 (frequency

!0) in vacuum. Without loss of generality, we consider a TE-like mode with Ey as

the dominant field component.

The cavity is formed by patterning two Bragg mirrors into the ridge, each includ-

ing NBragg periodically spaced rectangular stacks, in the fashion of a row of dominoes,
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Figure 3.1. (a) Sketch of the cross section of the PhC ridge under study. (b) Sketch of the BSW-
based PhCNC.

as shown in Fig. 3.1(b). The unit cell has a lattice constant ⇤Bragg = sBragg + gBragg,

in which sBragg and gBragg are the thicknesses of the ridge stacks and air slits, respec-

tively. The filling fraction is fBragg = sBragg/⇤Bragg. This geometry greatly simplifies

the fabrication procedure, which can be done by standard lithography. In addition,

the system can be modeled within an e↵ective index (EI) framework to reduce the

dimensionality of the problem and limit the computational cost of its optimization,

which usually requires to investigate a large parameter space.

Here, the EI method is applied twice. First, we determine the e↵ective index

of the guided BSW supported by the ridge (ne↵) by modeling its cross section as

an e↵ective slab waveguide, where the cladding and core refractive indices are those

of the modes supported by the 1D bare (nbare) and ridge-loaded (nload) multilayers,

respectively (VEIM, as described in Chapter 2). Second, the in-plane cavity is treated

as an e↵ective 1D multilayer of alternating layers of indices n1 = ne↵ and n2 = nbare

for each ridge stack and air slit, respectively. In other words, we replace each ridge

stack and air slit with a uniform layer having a refractive index corresponding to that
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Figure 3.2. Illustration of the e↵ective index approach for the PhCNC under investigation.

of the pertaining confined mode. This is illustrated in Fig. 3.2. All these tasks are

easily solved via the transfer matrix method (TMM), which can take only minutes,

if not seconds, on a standard personal computer. The EI approximation assumes the

mode field to be factorized in the three spatial directions. Hence, the overall 3D mode

profile can be obtained by combining the 1D mode profiles of the bare and loaded

BSWs (which give the field distribution in the z direction), the 1D mode profile of the

e↵ective slab waveguide (which gives the field distribution in the y direction), and the

1D mode profile of the e↵ective in-plane multilayer (which gives the field distribution

in the x direction).

In our design, the Bragg mirrors are chosen as conventional quarter-wave stack,

i.e., ⇤Bragg = (�0/4)(1/n1 + 1/n2) and fBragg = n2/(n1 + n2), where n1 = ne↵

and n2 = nbare are the e↵ective indices defined above. The mirrors are tapered

by gradually resizing a number Ntaper of stacks toward the cavity center. Tapering

the Bragg mirrors is crucial to optimize the Q factor of the cavity mode. If we

neglect material absorption and scattering from fabrication imperfections, the leading

loss mechanisms are light leakage through the finite-sized Bragg mirrors in the x

direction (with decay rate �Bragg) and light coupling to the radiation modes out of

the nanobeam in the other directions (with decay rate �rad). The total Q factor is

given by

1

Q
=

1

QBragg
+

1

Qrad
, (3.1)
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Figure 3.3. Band diagram for a PhC with lattice constant ⇤ (red) and another PhC with reduced
lattice constant ⇤0

< ⇤ (green). When the lower bandedge of the PhC with lattice constant ⇤0 lies
inside the PBG of the PhC with lattice constant ⇤ (red shaded area), it serves as a defect mode.
The gray shaded area indicates the cladding material lightcone.

where QBragg = !0/�Bragg and Qrad = !0/�rad, respectively. In principle, QBragg can

be made arbitrarily high by increasing NBragg. Therefore, the total Q is limited by

Qrad. Coupling to the radiation modes arises from the Fourier components of the

cavity mode that (i) lie inside the air lightcone, and thus violate the TIR condition,

or (ii) lie outside the PBG of the underlying multilayer. Regions (i)+(ii) constitute

the so-called leaky region. Therefore, a simple rule to achieve a high Q factor of the

cavity mode is to minimize the fraction of Fourier components within the leaky region

[153, 154].

Here is where the taper comes into play. By means of a “gentle” modification of

the cavity geometry, the optical field in the real domain can be altered in such a way

that its distribution in the Fourier domain is well-localized outside the leaky region.

We remark that light polarization plays an essential role in determining the extension

of the leaky region. As discussed in Chapter 2, due to the confinement in the lateral

direction, the mode supported by the PhC ridge is not purely TE polarized, but

TE-like polarized, in that it exhibits all six nonvanishing field components, with Ey

being the dominant one and Ex, Ez being weak but nonzero. Hence, the simultaneous

presence of both TE and TM PBGs is always required to have each field component’s

Fourier distribution well-located within the appropriate PBG. A careful choice of the

PhC ridge geometry can ensure wide and well-overlapping TE and TM PBGs in the

spectral region of interest.

We are interested in a dielectric-mode nanobeam, in which most of the optical en-

ergy is concentrated in the high-refractive-index cavity material. In the present case,

a “gentle confinement” can be achieved by gradually reducing the lattice constant of

the mirror segments toward the cavity center. It results in a blueshift of the PBG, so

that the segment with a reduced lattice constant ⇤0
< ⇤ has the lower bandedge lying

within the PBG of the segment with lattice constant ⇤ (Fig. 3.3). It acts as a defect

mode in the PhC with lattice constant ⇤, which serves, in turn, as a Bragg mirror.
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In other words, the decrease in lattice constant gives rise to an optical potential well

for the dielectric mode, which is pulled from the dielectric band within the PBG. On

a side note, we remark that an air-mode nanobeam can also be designed using the

same principle. In this case, by progressively increasing the lattice constant of the

mirror segments, the air mode moves inside the PBG from the air band.

In the next paragraph, we show that a Gaussian field envelope ensures a very

gentle confinement and we obtain a simple geometric rule to achieve it in our struc-

ture. Our results are comparable with similar design strategies proposed to analogous

PhCNCs [155]. Incidentally, we notice that other approaches are also possible, e.g.,

modulating the ridge width w, and have been promisingly tested in the trial design

but have not been investigated any further in this dissertation. Moreover, di↵erent

solutions might be combined simultaneously, but at the cost of introducing additional

degrees of freedom.

In-plane optimization. The essence of our optimization strategy is tapering

the cavity Bragg mirrors so that we can minimize the fraction of Fourier components

inside the leaky region. We follow the argument in [107]. In the case of quarter-

wave Bragg mirrors with lattice constant ⇤ = (�0/4)(1/n1+1/n2) and filling fraction

f = n2/(n1 + n2) (here we temporarily drop the subscript for ease of reading), the

Bloch wavevector within the PBG is a complex quantity:

q =
⇡

⇤
+ i�, (3.2)

where the attenuation constant (or mirror strength) at the center of the PBG is,

according to Eq. (1.5), � = �n/(n⇤), with �n = |n1 � n2| the refractive index

contrast and n = (n1 + n2)/2 the average refractive index. Thus, the electric field in

the reflector region decays exponentially with

Ey(x) / cos
⇣
⇡

⇤
x

⌘
exp(��x). (3.3)

When two Bragg mirrors are placed back to back to form a FP cavity with length L

(Fig. 3.4(a1)), the electric field can be expressed as a sinusoidal wave modulated by

an envelope function that is determined by the cavity geometry (Fig. 3.4(a2)):

Ey(x) / cos
⇣
⇡

⇤
x

⌘
rect

⇣
x

L

⌘
+

cos
⇣
⇡

⇤
x

⌘h
1� rect

⇣
x

L

⌘i
exp

h
��

⇣
|x|� L

2

⌘i
,

(3.4)

where rect(x) is the rectangular function. The Fourier transform of (3.4) is shown in

Fig. 3.4(a3). The sinusoidal wave gives a delta distribution peaked at kx = ±⇡/⇤,

while the envelope function modifies the spectrum. The more abrupt the change of

slope in the envelope function at the cavity edges, the larger the Fourier components

inside the leaky region.
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Figure 3.4. Analysis of cavity loss for di↵erent geometries: (a) FP cavity; (b) FP cavity with very
short cavity length; (c) FP cavity with perfect Bragg mirrors; (d) cavity with tapered mirrors. For
each geometry, insets show (1) a sketch of the cavity, (2) the electric field profile, and (3) the spatial
Fourier spectrum. The shaded area indicates the leaky region. The patterned area indicates the air
lightcone.
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It is instructive to consider the Fourier distribution of the cavity field in the

limiting cases of (i) very short cavity (L ⌧ �0, Figs. 3.4(b1),(b2)) and (ii) perfect

mirrors (� ! 1, Figs. 3.4(c1),(c2)). In the case (i), the Fourier transform involves

the convolution of a delta distribution with a Lorentzian function (Fig. 3.4(b3)):

FT(Ey)(kx) /
1

(kx � ⇡/⇤)2 + �2
+

1

(kx + ⇡/⇤)2 + �2
, (3.5)

with a spectral width �kx in the vicinity of kx = ⇡/⇤ of the order of the attenuation

constant �. In the case (ii), the Fourier transform is the convolution of a delta

distribution with a sinc function (Fig. 3.4(c3)):

FT(Ey)(kx) / sinc
⇣
L

2

⇣
kx �

⇡

⇤

⌘⌘
+ sinc

⇣
L

2

⇣
kx +

⇡

⇤

⌘⌘
. (3.6)

Away from the peaks at k = ±⇡/⇤, the spectrum decreases / 1/||kx|� ⇡/⇤| but
revives at every local extremum. In both cases, appreciable components are pulled

within the leaky region.

In order to localize more tightly the Fourier components away from the leaky

region, we would rather have a Gaussian envelope, which ensures a “gentle confine-

ment” of the field at the cavity edges. Indeed, if the field is modulated by a Gaussian

function with variance � (Fig. 3.4(d2)),

Ey(x) / cos
⇣
⇡

⇤
x

⌘
exp
⇣
�1

2

x
2

�2

⌘
, (3.7)

its Fourier transform is the convolution of a delta distribution with another Gaussian

function (Fig. 3.4(d3)),

FT(Ey)(kx) / exp
h
��

2

2

⇣
kx �

⇡

⇤

⌘2i
+ exp

h
��

2

2

⇣
kx +

⇡

⇤

⌘2i
. (3.8)

The spectral width �kx around each peak kx = ±⇡/⇤ is of the order of 1/� and

can be tuned by adjusting the width � of the Gaussian envelope in the real domain.

In particular, the modal distribution in the Fourier domain can be narrowed around

kx = ±⇡/⇤ by increasing �, hence minimizing the Fourier components in the leaky

region. This maximises Q, yet at the cost of a slight increase in the mode volume V .

From Eqs. (3.3) and (3.7), it becomes clear that the exponentially-attenuated

field in the reflector region can be modulated to a Gaussian profile by making the

attenuation constant � a linear function of the spatial coordinate x, i.e.,

� =
x

2�2
. (3.9)

This can be achieved by reducing the lattice constant ⇤ of each taper section toward

the cavity center (Fig. 3.4(d1)). Such a modification leads to a blueshift of the lower-

bandedge frequencies toward the cavity center, thus forming an optical potential

well. The complex dispersion relation within the PBG can be found by analytic
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continuation, i.e., by expanding the real dispersion relation into its complex form via

a Taylor expansion at the bandedge (k = ⇡/⇤). Due to the even symmetry of the

dispersion relation around this point, only even powers of (kx � ⇡/⇤) appear in the

expansion. Up to second order, we have for the dielectric band:

! = !(⇡/⇤) + c1(kx � ⇡/⇤)2, (3.10)

where c1 < 0 due to its negative curvature. Substitution of kx = ⇡/⇤ + i� gives the

dispersion in the bandgap as a function of �:

! = !
lbe � c1�

2
, (3.11)

where !lbe = !(⇡/⇤) is the lower-bandedge frequency. Plugging (3.9) into (3.11) and

rearranging the terms yields the required distribution of the lower-bandedge frequency

along the x direction at a given operating frequency !:

!
lbe(x) = ! + c1

⇣
x

2�2

⌘2
= !(1� ↵x

2), (3.12)

where ↵ = �c1/(4�4
!) is a positive constant (c1 < 0). The frequency is inversely

proportional to the lattice constant ⇤. With respect to the cavity center (subscript

0), the lower bandedge can be shifted by adjusting the lattice constant according to

⇤(x)

⇤0
=

!
lbe
0

!lbe(x)
=

1

1� ↵x2
. (3.13)

Provided ↵x
2 ⌧ 1, it can be simplified to

⇤(x) = ⇤0(1 + ↵x
2). (3.14)

Eq. (3.14) introduces a quadratic dependency of the lattice constant ⇤ on the x

coordinate. It should be noticed that ↵ / 1/�4, so for large values of ↵ the field has a

narrow Gaussian envelope in the real domain, which results in undesirable broadened

spectral components in the Fourier domain.

Optimal taper parameters. In our design, the untapered Bragg mirrors are

chosen as conventional quarter-wave stacks comprising NBragg unit cells (on each

side) of lattice constant ⇤Bragg = (�0/4)(1/n1 + 1/n2) and filling fraction fBragg =

n2/(n1 + n2) (we restore the subscript), where n1 = ne↵ and n2 = nbare are the

e↵ective indices defined above. Eq. (3.14) shows that a quadratic taper profile results

in the desired Gaussian field attenuation. With a finite number Ntaper of stacks in

the taper, the lattice period is changed stepwise according to

⇤i = ⇤0(1 + ↵(i/Ntaper)
2), (3.15)

where the integer i 2 [�Ntaper, Ntaper] and ⇤0 is the minimum lattice constant (at the

cavity center). The filling fraction is kept constant throughout: fi = fBragg. Under

the continuity condition ⇤±Ntaper = ⇤Bragg at the taper boundaries, which implies
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that ↵ = ⇤Bragg/⇤0 � 1, Eq. (3.15) can be written in the form

⇤i = ⇤0 + (⇤� ⇤0)(i/Ntaper)
2
. (3.16)

We can make an estimate of the modulation parameter ↵ by choosing ⇤0 such that the

lower-bandedge frequency !
lbe
0 at the cavity center is equal to the midgap frequency

of the outer Bragg mirror, i.e., !lbe
0 = !

mid
Bragg. From Eqs. (1.3) and (1.4), we express

!
mid
Bragg ' ⇡c/(n⇤) and

!
lbe
0 = !

mid
0 � �!0

2
= !

mid
0

✓
1� �!0

2!mid
0

◆
' ⇡x

n⇤0

✓
1� �n

n⇡

◆
, (3.17)

with �n = |n1 � n2| the refractive index contrast and n = (n1 + n2)/2 the average

refractive index. Eq. (3.17) entails

⇤0

⇤Bragg
' 1� �n

n⇡
, hence ↵ ' 1

1��n/(n⇡)
� 1. (3.18)

It should be noticed that (3.18) is a rough estimate, for ↵ (which controls the depth

of the optical potential well) should be adjusted according to the choice of Ntaper

(which a↵ects the width of the optical potential well), such that the cavity mode is

tuned at the target frequency.

It should be possible to achieve arbitrarily high in-plane Q factors by increasing

Ntaper. However, this requires arbitrarily fine (subnanometer) features, not feasible

with the current fabrication technology. In addition, an increase in Ntaper leads

to a flatter quadratic taper profile, in which the stacks neighboring the cavity center

display almost the same thickness. As a consequence, the field distribution in the real

domain exhibits a plateau in this region, with an envelope function not dissimilar to

Eq. (3.4) (where in this case L is the spatial extension of the plateau) and a large

fraction of leaky Fourier components.

3.3. Simulation results and discussion

We consider a PhCNC on the usual truncated TiO2/SiO2 multilayer loaded with

a PMMA ridge, operating in the visible spectrum at �0 = 532 nm. The multilayer

is composed of two alternating TiO2(a)/SiO2(b) layers of thicknesses da = 100 nm

and db = 182 nm, and refractive indices na = 2.67 and nb = 1.46, respectively. The

multilayer has N = 15 periods, and the first TiO2 layer is truncated with thickness

d� = �da, where � = 0.11. The ridge has width w = 1 µm, thickness t = 400 nm,

and refractive index nridge = 1.49. The surrounding cladding is air (nclad = 1).

These parameters guarantee the existence of a TE-like guided BSW that propagates

along the ridge with estimated propagation loss of about 5.4 dB/m, according to the

polarization-wise argument outlined in Chapter 2.
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Figure 3.5. Electric field distribution and Fourier transform calculated via the TMM within the EI
framework referenced in the text. (a) Lattice parameter ⇤i, the layer number i being counted from
the cavity center. (b) Transmission spectrum at normal incidence showing the mode resonance at
�0. (c) Electric field intensity (normalized to the maximum value) at normal incidence as a function
of the spatial coordinate x (x = 0 is fixed at the cavity center, the external leads are omitted). (d)
Fourier spectrum distribution (normalized to the maximum value) along the kx axis. The air lightline
(black) and the multilayer photonic bandedges (BEs) for TE (green) and TM (cyan) polarization are
also shown.

The nanobeam is designed according to the previous EI-based guidelines using an

in-house TMM code.1

First, we set the EI framework by determining the TE dispersion relations in the

bare and loaded region, for which we find nbare = 1.3416 and nload = 1.4918, respec-

tively (Figs. 1.11 and 1.12). The mode e↵ective index is calculated by considering the

fundamental TM guided mode for the e↵ective slab waveguide with core of refractive

index nload and cladding of refractive index nbare. It results ne↵ = 1.4757.

Second, we implement the in-plane e↵ective multilayer with alternating layers of

refractive indices n1 = ne↵ and n2 = nbare stacked along x. The ridge stacks and

air slits have widths satisfying the quarter-wave condition, i.e., sBragg = �0/(4n1) =

89 nm and gBragg = �0/(4n2) = 100 nm. The lattice constant results ⇤Bragg = 189 nm

with filling fraction fBragg = 0.47. The taper is created by modulating the lattice

1The author is grateful to Dr. Daniele Aurelio for his support in implementing the TMM code and
stimulating discussion.
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Figure 3.6. Intensity profile (normalized to the maximum value) of the electric field from 3D FDTD
simulation.

constant quadratically according to Eq. (3.16) while keeping the filling fraction con-

stant. The modulation spans Ntaper = 30 periods in both directions away from the

cavity center, the last stack having the same width of those of the Bragg mirrors.

The lattice constant of the central stack is ⇤0 = ⇤Bragg/(1 + ↵), where ↵ = 0.04 for

the present structure, such that the cavity mode is tuned at �0 (Fig. 3.5(a)).

Third, we simulate the 1D e↵ective multilayer by means of the TMM. The trans-

mission spectrum reveals a resonance peak at �0 with a quality factor Q1D = �/�� =

2.53⇥ 105 (Fig. 3.5(b)). This essentially accounts for energy loss through the finite

number of layers in each Bragg mirror. It cannot be assumed as a direct estimate

of the latter, though, for it is evaluated in the EI framework. Once the electric field

profile is evaluated at the resonance frequency for normal incidence (Fig. 3.5(c)), the

Fourier distribution can be calculated by a standard fast Fourier transform (FFT)

algorithm. In Appendix A.5, we also suggest a possible computation directly using

the TMM. Fig. 3.5(d) unveils that the majority of the Fourier components are outside

the leaky region.

Finally, the structure is simulated via Ansys/Lumerical FDTD Solutions. We

use a conformal mesh (maximum mesh step 10 nm) with a mesh refinement in a re-

gion around the truncation layer, where we expect the maximum field. It is a good

tradeo↵ between numerical accuracy and computational resources, though full vec-

torial 3D simulations can take up to several hours on a standard computer. The

simulation boundaries are terminated by PMLs. The mode is excited by an electric

dipole. The Q factor is determined from the slope of the envelope of the decaying
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Figure 3.7. Fourier spectrum of the dominant electric field component Ey (normalized to the max-
imum value). The air lightline (white) and the multilayer photonic bandedges (BEs) for TE (dashed
green) and TM (dash-dotted cyan) polarization are also shown.

time signal, recorded by a cloud of field time monitors. As a preliminary coun-

tercheck, we simulate the 2D in-plane structure (top view). We consider finite-sized

stacks of refractive index nload with width w and quadratically-modulated thickness

si, whereas the background region has refractive index nbare. A simulated quality fac-

tor Q2D,top = 1.7⇥ 105 is observed at the resonance wavelength �2D,top/�0 = 0.998, in

conformity with the results provided by the TMM simulation. We then proceed with

a full 3D FDTD simulation. It shows a quality factor Q = 5.5⇥ 104 at a slightly de-

tuned resonance wavelength �/�0 = 0.987, thereby providing validation of our design

assumptions. It should be noticed that Q is limited only by di↵raction, thus with

negligible loss in the multilayer. This depends on the large value of N considered

here, which is su�cient to guarantee a strong attenuation of the field in the region of

Fourier space in which the mode is localized. Further optimization of the multilayer

could lead to a smaller N while preserving a high Q factor.

The electric field intensity profile of the fundamental mode of the cavity is illus-

trated in Fig. 3.6 over di↵erent cross sections (clockwise from top left: top, side, and

front views). The mode is confined in three dimensions, the field being peaked at the

interface between the multilayer and the ridge with the maximum intensity located

at the central stack of the cavity. The corresponding Fourier spectrum is shown for

the dominant component Ey in Fig. 3.7. As expected, it reveals a narrow profile

mainly confined within the guiding region. Similar results hold for the other field

components. The mode volume V is estimated to be ⇠ �
3
0, which is two orders of

magnitude smaller than the one estimated for a ring resonator with the same cross

section and a radius R = 100 µm.
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In conclusion, we demonstrated a novel PhC resonator based on BSWs. This

structure, characterized by a high Q/V and a field enhancement near the struc-

ture surface, has a small footprint size, is mechanically stable, is flexible in terms

of constituent materials, and can be fabricated with etching-free technologies, e.g.,

from low-refractive-index polymeric ridges on commercially available multilayers. In

principle, it can be implemented in a wide spectral range, from infrared to visible

wavelengths. All these properties are not easily obtained at once in conventional

nanobeam cavities relying on high refractive index contrast to achieve ultrahigh Q/V

ratio, which are typically realized in suspended structures with limited mechanical

stability. This makes our platform appealing for a number of applications that re-

quire large enhancement of surface light-matter interaction, from optical sensing to

quantum nanophotonics.



CHAPTER 4

Coupling BSWs: excitation of BSWs with gratings

4.1. Excitatation of BSWs

The excitation of BSWs is a major challenge in most of the current platforms.

As explained in previous chapters, BSWs exist within the PBG of the underlying

multilayer and below the lightline of the cladding medium. Consequently, they can-

not be excited directly by light incident from free space, in that their propagation

constant is always larger than that of any radiation mode. Thus, one needs to provide

additional momentum to the wavevector of the incident radiation mode to fulfill the

phase matching condition with the BSW propagation constant. The most common

and conceptually simple solution is to use a dielectric prism, either in the so-called

Kretschmann configuration, in which the multilayer structure is deposited on top of

the prism (Fig. 4.1(a)), or Otto configuration, in which there is an air gap between

the multilayer and the prism (Fig. 4.1(b)). By tuning the angle of incidence of the

totally reflected beam inside the prism, it can be phase-matched and e�ciently cou-

pled to the BSW. Prism coupling is widely used in sensing schemes, but, in general,

it is bulky and not compatible with the concept of integrated optics. Very recently,

though, an integrated microprism coupler in the Otto configuration was proposed to

implement highly e�cient unidirectional coupling [156].

(a) Kretschmann
configuration

(b) Otto
configuration

t h

s

p

k0
G

�

#

(c) grating coupler

Figure 4.1. Coupling schemes used to excited BSWs. Cross sectional schematics of (a) prism
coupling in the Kretschmann, (b) prism coupling in the Otto configuration, and (c) grating coupling
using a uniform di↵raction grating.
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Another approach is the use of gratings, in which light incident near vertically

above the structure can be coherently di↵racted into the surface modes. Fig. 4.1(c)

illustrates a uniform grating coupler patterned on top of a truncated PhC in air

(nclad = 1). Each di↵racting unit consists of a tooth of length s and thickness t,

and a trench of length g and depth h 2 (0, t). The grating pitch is the period of the

di↵racting unit, p = s+g, and the duty cycle is the filling fraction with respect to the

tooth length, d = s/p. Let k0 = 2⇡/�0 be the free space wavevector of the incident

beam, tilted by an angle # with respect to the vertical direction, and � = ne↵,ak0 the

propagation constant of the coupled surface mode propagating along the waveguide

with the grating, where ne↵,a is the average e↵ective index. In general, ne↵,a 6= ne↵

(the e↵ective index of the surface mode without the grating). For a weakly perturbing

grating, ne↵,a can be approximated by ne↵ , which is not necessarily the case in PhC

ridges, though. We can write the phase matching condition (Bragg’s condition) as

k0 sin#+mG = �, (4.1)

where m is the (integer) di↵raction order and G = 2⇡/p is the additional wavevector

provided by the grating. Due to their di↵ractive behavior, grating couplers are wave-

length selective. This is advantageous in terms of mode selectivity but comes at the

price of narrow bandwidth (no bandwidth in an ideally infinite grating) and stringent

fabrication tolerance. Slight detuning from the peak wavelength or tiny variations of

some structural features can result in a degradation of the coupling e�ciency.

The idea of grating-assisted excitation of BSWs was first proposed by Kang et

al. [157] and by Scaravilli et al. [158] for biosensing applications. In these works, the

di↵raction grating is realized at the bottom of the multilayer in order to couple a

BSW on the opposite facet. This configuration is intended to prevent the grating

deterioration when exposed to the sensing environment. The concept was experi-

mentally validated by directly writing the grating on the tip of a single-mode fiber,

and subsequently depositing the multilayer [159]. For applications in integrated op-

tics, grating couplers have been scarcely investigated. Kovalevich et al. reported a

double cross grating coupler capable of controlling the BSW propagation direction

by switching the polarization of the incident light [50]. Input and output grating

couplers fabricated using two-photon polymerization (2PP) were also demonstrated

by Abrashitova et al. [51, 52].

Achieving large fiber-to-chip coupling e�ciency is the principal concern with grat-

ing couplers even in silicon photonics [133], let alone much more complex BSW-based

platforms. In a grating coupler for BSW-based waveguide systems, loss arises from

multiple mechanisms, as illustrated in Fig 4.2. We follow a notation analogous to the

one used in [160]. For input coupling (left side of Fig. 4.2), only a fraction ⌘ (cou-

pling e�ciency) of the input power (Pin) is actually coupled to the waveguide (Pwg).
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Pin

Pout

Pwg

Pwg,r Pwg,t

Pwg,2

PupPr

Pdown

Psub

Pdown

Psub

Incoupling Outcoupling

z

x
y
⌦

Figure 4.2. Loss channels in input and output grating coupling. Adapted from [160].

Some power is coupled opposite to the waveguide (Pwg,2) and some is reflected to the

free space (Pr). Finally, some power will propagate downward (Pdown): part of it is

actually reflected upward to the waveguide, but another part will ultimately leak in

the substrate (Psub). The power coupled to the waveguide is given by

Pwg = ⌘Pin = Pin � Psub � Pr � Pwg,2. (4.2)

We notice that adopting a fiber tilt angle in place of perfectly vertical coupling

prevents bidirectional propagation of coupled light and reduces Pwg,2 (at # = 0,

Pwg,2 = Pwg for di↵raction order m = ±1).

In the output configuration (right side of Fig. 4.2), the situation is slightly more

complicated, for the intensity profile di↵racted upward by the grating is, in general,

di↵erent from that of the optical fiber. For a uniform grating, it has a nearly ex-

ponential decay shape, with a reduced overlap with the Gaussian profile of the fiber

mode. Thus, the outcoupled power (Pout) depends also on the overlap factor �out of

the two field patterns according to

Pout = ⌘Pwg = �outPup = �out(Pwg � Psub � Pwg,t � Pwg,r), (4.3)

where Pwg is the power in the waveguide, Pup is the power di↵racted upward, Psub is

the power leaked in the substrate, Pwg,t is the power transmitted beyond the grating,

and Pwg,r is the power reflected back to the waveguide at the grating interface. The

overlap factor �out is given by

�out =

����
Z

E
⇤
up(x)Eout(x) dx

����
2

Z
|Eup(x)|2 dx

Z
|Eout(x)|2 dx

, (4.4)
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(a) dual-purpose DBR

DBR

bottom
DBR

(b) two-segment DBR

DBR

chirp

(c) linearly chirped DBR

Figure 4.3. Design strategies to enhance the directionality of grating couplers on PhC ridges: (a)
dual-purpose DBR, (b) two-segment DBR, and (c) chirped DBR. The red arrows illustrate the power
radiated downward and “recycled” upward.

(a) apodized trench depth (b) apodized duty cycle

Figure 4.4. Nonuniform grating couplers on PhC ridges: (a) linear apodization of trench depth and
(b) linear apodization of duty cycle (with constant pitch).

where Eup and Eout are the field profiles of the mode di↵racted upward and the

fiber mode, respectively; x is the propagation direction. Sometimes, another figure

of merit called directionality is introduced, which is nothing but the ratio Pup/Pwg.

Poor directionality in grating couplers is consequent to substantial fraction of power

being radiated downward and eventually leaked in the substrate.

The coupling e�ciency can be increased by improving both the directionality and

the overlap factor. One straightforward way to enhance the directionality is to recover

part of the power radiated downward by inserting a backreflector at the bottom of the

grating. It comes naturally in PhC ridges since the multilayer itself, which already

provides the PBG for sustaining the surface mode, can be engineered to suppress

substrate leakage. For instance, one can choose the unit cell composition (lattice

constant and filling fraction) of the multilayer in the first place, such that it results

highly reflective also in this range of interest (Fig. 4.3(a)). Otherwise, one can change

the multilayer parameters, either by gradually chirping them (Fig. 4.3(c)) or simply

by juxtaposing a di↵erent multilayer (Fig. 4.3(b)). Incorporating a backreflector in
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(a) linear taper (b) focusing grating

Figure 4.5. Top view of (a) grating with rectangular trenches and varying taper width (b) focusing
grating with circular trenches.

PhC ridges adds no further complexity to the fabrication, since the layer thicknesses

can be varied throughout the deposition process.

The overlap factor can be increased by employing nonuniform (apodized) gratings,

e.g., by using multiple trench depths (Fig. 4.4(a)) or by varying the pitch and/or duty

cycle of each di↵racting unit (Fig. 4.4(b)). This allows one to tailor the di↵racted

field profile and mitigate the mismatch with the Gaussian field profile of the fiber

mode. Linearly apodized gratings are reportedly fit for purpose, though more complex

and time consuming optimization techniques lead to substantially improved overlap

factors [130].

So far, we have considered the grating behavior only along the propagation direc-

tion x. However, the grating width in the y direction is also an important feature, for

it must accommodate the spot size of the fiber (about 10 µm in telecom-wavelength

fibers and 5 µm in visible-wavelength fibers). This is larger than the typical waveguide

width (micrometric or submicrometric, to ensure single-mode operation), so a mode

size converter must be implemented. It can consist of a linear taper of hundreds of mi-

crons (Fig. 4.5(a)), which allows for an adiabatic transition, or other small-footprint

focusing configurations (Fig. 4.5(b)), in which the grating trenches are shaped as

ellipses with one common focal point at the integrated waveguide.

In the following section, starting from the basic design of a uniform grating, we

discuss some possible approaches for coupling e�ciency enhancement. As usual, we

are interested in polymer-loaded PhC ridges for visible light operation. We stress

that the moderately low refractive index of polymeric materials strongly reduces the

attainable grating strength. It aggravates the already existing di�culty in realizing

e�cient grating couplers for BSW-based waveguide systems, which are plagued by

multiple loss channels due to the much complex confinement mechanism. Still, the

advantages of gratings in terms of flexible design, ease of fabrication, and tolerant

positional requirements make them a preferred candidate for BSW coupling in in-

tegrated devices. For reasons of expediency, the designs are carried out on the 2D

cross-sectional model of the structure, and full 3D modeling is left for future research.
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Though, we believe that it shall not represent a major challenge, for transition tapers

and focusing grating couplers have been successfully demonstrated in many other

platforms, even using low-refractive-index-contrast materials in the visible and near-

visible wavelength range [131], and often show negligible di↵erence between 2D and

3D simulations [161].

4.2. Simulation results and discussion

An exhaustive analysis is virtually impossible because of the enormous parameter

space. Thus, we shall limit our attention to the structures considered in the previous

chapters, with the aim of providing them with an excitation scheme compatible with

the idea of integrated circuits. We start from the PhC ridge supporting long-range

BSWs described in Chapter 2 (case C). Namely, it consists of a TiO2 (refractive index

na = 2.67)/SiO2 (refractive index nb = 1.46) periodic multilayer with N = 10 periods

of lattice constant ⇤ = 440 nm and filling fraction f = 0.22. Its TE/TM gapmap is

illustrated in Fig. 4.7(c). The multilayer is truncated with a 10 nm-thick TiO2 layer

and loaded with a PMMA (nridge = 1.49) ridge of width w = 1.0 µm and thickness

t = 0.4 µm in air. As usual, we operate at a target wavelength �0 = 532 nm. This

geometry guarantees the existence of a TE-like guided BSW that propagates along

the ridge with e↵ective index ne↵ = 1.483 and intrinsic propagation loss of about

5.7 dB/km.

Ansys/Lumerical FDTD Solutions is used to model the longitudinal 2D cross sec-

tion of the structure. A sketch of the computational domain is presented in Fig. 4.6.

We consider the grating as an incoupling device. A Gaussian beam of waist radius

2 µm (comparable to that of standard SMFs operating in the visible range) is launched

from a source plane 5 µm above the structure, with an o↵set distance 15 µm from the

left edge of the grating. The input beam consists of a frequency-domain pulse cen-

tered at �0 = 532 nm with bandwidth ��0 = 50nm. As mentioned before, using a

non-normal angle of incidence can provide better directionality to the light coupled

through the grating. In particular, we use a negative tilt angle # = �12� (backscat-

tering design), also in view of matching a possible angular-polished end face of the

fiber array. The electric field of the Gaussian beam is polarized along the y direction.

A frequency-domain power monitor spanning the height of the simulation domain is

placed 50 µm away from the left edge of the grating to compute the optical power

coupled to the waveguide (normalized to the source power) (Twg). Such a distance

ensures that spatial transient fields have decayed su�ciently to be negligible. A sec-

ond monitor is used to compute the optical power flowing in the direction opposite

to the waveguide (Twg,2). Similarly, other two monitors spanning the width of the

simulation domain are placed at the top and bottom of structure to evaluate the

power reflected upward (Tup) or radiated downward (Tdown). The normalized power
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# < 0
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Figure 4.6. Schematic of the longitudinal 2D cross section of a PhC ridge with a grating coupler
(here, sketched as uniform for simplicity). The computational domain is terminated by PMLs (orange
thick line). A Gaussian beam tilted by a negative angle # with respect to the normal direction is
launched above the grating (backscattering design). Four power monitors are used to compute the
power flowing along the �x direction into the waveguide (red solid), along the x direction (green
solid), downward in the substrate (blue solid), and upward in free space (yellow solid), respectively.
The dashed line correspond to the left edge of the grating.

transmission (as a function of wavelength) for each monitor is calculated as

T (�) =

1

2

Z

monitor
Re(S(�)) · da

source power(�)
(4.5)

where S is the Poynting vector and da is the surface normal. The simulation grid

is defined as an automatic conformal mesh, with an additional refinement at the

truncation layer, and is terminated by PML boundaries.

Starting from Bragg’s condition (4.1), the grating pitch must satisfy, for the lowest

grating order (m = 1),

p =
�0

ne↵,a � sin#
. (4.6)

The grating e↵ective index ne↵,a is not always easily determined in the case of PhC

ridges supporting BSWs. When dealing with good or bad BSWs, which originate from

the surface mode supported by the bare multilayer owing to the dielectric perturba-

tion, it can be reasonably approximated as ne↵,a = dnload + (1� d)nbare, where nbare

and nload are the e↵ective indices of the BSWs supported by the bare and loaded,

respectively, and d is the duty cycle. For the present structure, nbare = 1.393 and

nload = 1.497. We consider a fully etched grating, i.e., t = h = dridge = 400 nm, with
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a duty cycle d = 0.5. Exact tuning of p can be performed by running a 2D FDTD

simulation using a broadband pulse source and checking that Twg(�) is peaked at

�0; otherwise, one scales p accordingly. Here, we set p = 324 nm. Notice that, on

account of the dimensionality reduction in 2D simulations, the ridge on top of the

multilayer should be substituted with an e↵ective homogeneous medium of refractive

index ne↵,ridge, where ne↵,ridge is the e↵ective index of the fundamental mode sup-

ported by a symmetric air/ridge/air slab waveguide of width equal to the extension

wgc of the grating in the y direction. Since the grating must accommodate the spot

size of the fiber, wwg must be greater than 4 µm. It results ne↵,ridge = 1.489 in the

case of wgc = 4 µm, therefore, in practice, we can safely use ne↵,ridge = nridge.

Starting from a uniform design with constant pitch p = 324 nm and duty cycle

d = 0.5, we introduce a linear apodization spanning 20 µm on the grating. Namely, we

linearly modify the duty cycle such that the trench next to the waveguide segment has

a minimal feature of 50 nm (in practice, it should correspond to the smallest feature

achievable in the fabrication process). By doing so, the grating e↵ective index can

be slowly increased to match the waveguide mode e↵ective index, which significantly

reduces the scattering at the grating/waveguide boundary.

The time-averaged distribution of the electric field in the longitudinal cross section

is shown in Fig. 4.7(b). The coupling e�ciency is the fraction of power that couples

from the incident Gaussian beam to the BSW mode of the waveguide. In reality, the

actual transmitted field in the �x direction does not have exactly the same profile of

the guided BSW (Fig. 4.7(a)). This is not surprising, considering that the photonic

structure supports a multiplicity of modes other than the BSW, most of which are in

fact highly lossy and rapidly decay to zero. As a result, the coupling e�ciency can be

evaluated from the normalized power transmission Twg, reduced by an overlap factor

�in that accounts for the di↵erence in the field distribution between the BSW (Ebsw)

and the actual transmitted field (Ewg):

�in =

����
Z

E
⇤
bsw(z)Ewg(z) dz

����
2

Z
|Ebsw(z)|2 dz

Z
|Ewg(z)|2 dz

. (4.7)

We report Twg ⇡ 8.4% and �in ⇡ 92.4%, with an overall coupling e�ciency ⌘ =

�inTwg ⇡ 7.8%. This also explains the intensity beat that can be seen along the

waveguide, which is attributed to a (moderately lossy) spurious mode that is excited

in the waveguide with a slightly di↵erent propagation constant (ne↵ = 1.359). The

phase di↵erence between this mode and the BSW is compatible with the observed

beatlength of about 3.7 µm. This spurious mode is actually extinguished over few

tens of microns.
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Figure 4.7. Distribution of |E|2 computed using the FDTD (a) over the line power monitor Twg and
(b) over the longitudinal 2D cross section of the structure. (c) Gapmap of the underlying multilayer
(lattice constant ⇤ = 440 nm, filling fraction f = 0.22) along with the lightlines of free space (green),
SiO2 (orange), TiO2 (red), free space at a tilt angle �12� (black), and at SiO2/TiO2 Brewster’s angle
(lightblue). The TE (TM) PBG is represented by the light (dark) area. (d) Transmitted normalized
power across the monitors Twg (red), Twg,2 (green), Ttop (yellow), and Tbottom (blue).

We notice that the normalized power Twg,2 transmitted in the direction opposite

to the waveguide is almost zero owing to the use of negative tilt angle. However, a

considerable fraction Tdown ⇡ 80% leaks in the substrate. Indeed, the multilayer is

designed according to the procedure of Chapter 2 to exhibit wide and well-overlapping

TE and TM PBGs for kk � k0ne↵ , with kk = (kx, ky) the in-plane wavevector, whereas

no PBG is present around the parallel component k0 sin# of the incident wavevector.

This is detrimental for the grating directionality, unless part this substrate leakage is

“recycled” using one of the solutions illustrated in Fig. 4.3.

As a first alternative, we introduce Nbottom = 10 additional periods to the mul-

tilayer structure, albeit with lattice constant ⇤bottom = 141 nm and filling fraction

fbottom = 0.35, corresponding to a quarter-wave stack at the bottom of the structure



60 4. COUPLING BSWS: EXCITATION OF BSWS WITH GRATINGS

Figure 4.8. Distribution of |E|2 computed using the FDTD (a) over the line power monitor Twg

and (b) over the longitudinal 2D cross section of the structure. (c) Gapmap of the multilayer bottom
segment (lattice constant ⇤ = 140 nm, filling fraction f = 0.35) along with the lightlines of free
space (green), SiO2 (orange), TiO2 (red), free space at a tilt angle �12� (black), and at SiO2/TiO2

Brewster’s angle (lightblue). The TE (TM) PBG is represented by the light (dark) area. The gapmap
of the top segment is the same of Fig. 4.7(c). (d) Transmitted normalized power across the monitors
Twg (red), Twg,2 (green), Ttop (yellow), and Tbottom (blue).

(Fig. 4.3(b)). Hence, the top multilayer segment is designed to support a long-range

BSW, while the bottom segment is designed to function as a backreflector, with

increased reflectivity around the angle of incidence (see Fig. 4.8(c)). The grating

geometry is unaltered. The time-averaged distribution of the electric field is shown in

Fig. 4.7(b). As expected, the high reflectivity provided by the bottom segment results

in Tdown ⇡ 0 and, consequently, an increase in the power coupled to the waveguide,

with Twg ⇡ 15.5%. Although this “recycling” mechanism is also responsible for some

parasitic scattering in the bulk modes of the PhC (�in ⇡ 91.5), the coupling e�ciency

is ⌘ ⇡ 14.2%, which is almost twofold with respect to the one-segment multilayer.
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Figure 4.9. Distribution of |E|2 computed using the FDTD (a) over the line power monitor Twg and
(b) over the longitudinal 2D cross section of the structure. (c) Gapmap of the underlying multilayer
(lattice constant ⇤ = 482 nm, filling fraction f = 0.15) along with the lightlines of free space (green),
SiO2 (orange), TiO2 (red), free space at a tilt angle �12� (black), and at SiO2/TiO2 Brewster’s angle
(lightblue). The TE (TM) PBG is represented by the light (dark) area. (d) Transmitted normalized
power across the monitors Twg (red), Twg,2 (green), Ttop (yellow), and Tbottom (blue).

This result is on par with those reported in recent literature, with coupling e�ciency

up to 18% at telecom wavelengths [50].

As a second alternative, we modify the multilayer structure in the first place,

namely, by choosing ⇤ = 482 nm and f = 0.15. The truncation thickness and ridge

parameters are left unchanged. Naturally, we are considering a di↵erent structure

from the previous case, but it sustains a BSW with comparable e↵ective index ne↵ =

1.484 (nload = 1.498, nbare = 1.395) and field distribution. However, the multilayer

is now designed with a dual purpose, i.e., to support a BSW and, simultaneously, to

provide a stopband around the angle of incidence #, as can be seen from the gapmap in

Fig. 4.9(c). In this case, the grating pitch is modified to p = 310 nm to fulfill Bragg’s

condition. The simulation results are shown in Fig. 4.9. We obtain Twg ⇡ 10% and
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Tbottom ⇡ 0, without significant improvement of the coupling e�ciency, which results

⌘ = 9.7% (overlap factor �in ⇡ 97.1%). This is not entirely surprising given the

high reflectivity of the whole multilayer, for which most light is reflected back to the

incidence medium (Ttop ⇡ 90%) and only a small fraction can be actually coupled.

This is a major drawback of this strategy, which was worth to be investigated anyway.

In conclusion, we examined the possibility of e�ciently coupling BSWs using

di↵raction gratings. This approach can facilitate the integration of BSW-based de-

vices, eliminating the requirements of bulky prisms. Indeed, they are compatible

with the same fabrication process used to manufacture the PhC ridge, and can be

easily adapted to achieve fairly good coupling e�ciency by using apodized designs or

directionality-improving backreflectors.



CHAPTER 5

Conclusion and perspectives

Controlling light in 2D integrated platforms is one of the most challenging e↵orts

in today’s photonics. If one focuses on dielectric structures, such control is achieved

by exploiting only two di↵erent phenomena: total internal reflection (TIR) and/or

interference, which gives rise to the formation of the so-called photonic band gaps

(PBGs) in photonic crystal (PhC) structures. In Chapter 1, we briefly reviewed that

these two e↵ects can be combined in many di↵erent ways, leading to several configura-

tions supporting propagating modes confined in two dimensions. An interesting case

is that of Bloch surface waves (BSWs), electromagnetic modes that propagate at the

interface between a truncated periodic multilayer and an external dielectric medium.

In such truncated multilayers, light confinement in the vertical direction is obtained

by means of TIR from the homogenous side and by the presence of a PBG from the

multilayer side. In terms of surface field enhancement, BSWs have been shown to

o↵er strategic advantages with respect to simpler solutions based only on TIR. BSWs

provide large freedom in terms of constituent materials, from organic compounds to

semiconductors, and operate in a wide spectral range, remarkably at visible wave-

lengths, for which there is paucity of transparent materials having a strong refractive

index contrast.

In Chapter 2, we investigated the possibility of guiding BSWs by simply realizing

polymeric ridge waveguides, which makes BSWs appealing for the development of

an etchless, all-dielectric integrated photonic platform. Since one essential require-

ment for large-scale integration is that the overall loss should be low, we focused

on propagation loss in BSW-based ridge waveguides. These systems are plagued by

high propagation loss (of the order of dB/mm or higher) not only in experimental

realizations but also in theoretical simulations of idealized structures free of mate-

rial absorption and surface scattering. We addressed the problem by describing the

simple design rule that light should be confined polarization-wise in order to achieve

low propagation loss. For the BSW supported by the ridge is not purely TE (TM)

polarized, but shows all nonvanishing field components as a consequence of the lateral

confinement, the simultaneous presence of both TE and TM PBGs in the spectral

region of interest is essential to guide all components. Another possible point of view

is looking at the field distribution of the mode in the Fourier domain. Indeed, the

field Fourier components that fall inside the cladding material light cone or outside

63
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the corresponding PBG are not guided and can couple to radiation modes. This sug-

gests that a possible approach to reduce propagation loss is minimizing the fraction

of Fourier components in the leaky regions. This can be accomplished by changing

the width and thickness of the ridge, which influences the field distribution and its

Fourier transform, or by changing the multilayer composition (e.g., changing the fill-

ing fraction and, if necessary, the period), with the purpose of engineering the TE

and TM PBG spectral position. In particular, we focused on the latter aspect, which

turns out to be the most e↵ective strategy. We showed that even a slight variation of

the multilayer composition can determine a considerable modification in the spectral

position and extension of the polarization-dependent leaky window, which can result

in a dramatic increase or decrease in propagation loss. Proper design allowed us to

reduce radiation loss to a level of dB/km without the need to resort to ultra-wide

ridges, thus ensuring small mode areas in a single-mode regime.

In Chapter 3, we demonstrated a photonic crystal nanobeam cavity (PhCNC) in

a PhC ridge supporting BSWs. This kind of resonator structure is characterized by

a moderately high Q/V ratio and a large field enhancement close to the structure

surface. In particular, we suggested the possibility of texturing two Bragg mirrors in a

PhC ridge, each of which consisting of periodically spaced rectangular stacks. In our

design, the Bragg mirrors are adiabatically tapered by quadratically resizing a number

of stacks toward the cavity center. Tapering the Bragg mirrors is crucial to mitigate

the e↵ect of di↵raction loss, which is expected to be the leading loss mechanism when

one neglects scattering loss from fabrication imperfections and finite size e↵ects of

the multilayer. Once again, this can be understood by looking at the mode field

distribution in the Fourier domain. The field Fourier components that fall inside the

cladding material light cone or outside the multilayer PBG are not guided and can

couple to the continuum of radiation modes. A smooth modification of the nanobeam

geometry gives rise to a gentle variation of the electric field, and therefore, to a

narrower distribution of its Fourier components, which can be piloted away from the

leaky region. Light polarization plays an essential role, for the simultaneous presence

of PBGs for both polarizations is always required to have each field component’s

Fourier distribution well-located within the appropriate PBG. We reported the design

of a polymeric structure operating at visible wavelengths characterized by a Q factor

exceeding 5⇥ 104 and mode volume V ⇠ �
3
0.

At last, we tackled the critical aspect of coupling light from an optical fiber into

a PhC ridge waveguide. A prevalent approach is to use bulky prisms, which are not

compatible with the idea of an integrated structure. Thus, we investigated on the use

of gratings. Grating couplers are well established in silicon photonics, and provide

some of the highest coupling e�ciencies. However, their application to PhC ridges

is particularly challenging, given the complexity of the light confinement mechanism,
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Figure 5.1. Forward and inverse design of photonic structures. Adapted from [162].

and hardly investigated in literature. In Chapter 4, starting from the basic design

of a uniform grating, we discussed some possible approaches to enhance the coupling

e�ciency. Namely, to avoid incoupling in the direction opposite to the waveguide, we

introduced a backscattering scheme with a negative angle of the incident beam. A

linear apodization helped us improve the quality of the incoupled beam by attenuat-

ing the strong impedance mismatch at the grating/waveguide interface. Finally, we

adopted some “recycling” strategies to mitigate light leakage in the multilayer and

substrate. Choosing the unit cell composition of the multilayer such that it results

highly reflective also at the angle of the incident beam can be a valid solution, but

di�cult to achieve since the PBGs must be simultaneously optimized to minimize

propagation loss as well. More e↵ectively, one can use a two-segment multilayer,

where the top segment is designed to support the surface mode, while the bottom

segment is designed to function as a backreflector. Starting from the same structure

proposed in Chapter 2, we demonstrated that this latter strategy leads to a twofold

increase in the coupling e�ciency.

On a final note, we want to draw the reader’s attention to the design process

adopted throughout this work. It may be regarded as a forward design approach,

in which the search for the optimal structure is primarily driven by our physical

intuition. First, we specify the design parameters of a given structure (geometry, ma-

terials, excitation sources, etc.) according to our a priori theoretical assumptions and,

second, we compute its optical response via the numerical electromagnetic solver, in

order to minimize or maximize a certain figure of merit (FOM) that benchmarks the

structure performance (e.g., BSW field distribution, waveguide propagation loss, cav-

ity Q factor, grating coupling e�ciency, etc.). This reflects the spirit of our work, in

which the proposed designs are essentially understood as numerical proofs of concept
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that help us clarify the relevant physical aspects of BSWs from a theoretical stand-

point. However, this approach does not necessarily lead to an optimal design with

the highest possible performance. Actually, by doing so, we explore just a small sub-

space of the entire parameter space, with only a handful of free parameters allowed

by the physics-inspired design. Inspection by hand is clearly ine�cient, while full

inspection by brute-force parameter sweeping becomes, in general, computationally

intensive. For instance, in the design strategy employed in Chapter 2 to improve the

propagation length of BSWs guided by PhC ridges, first, we let the multilayer filling

fraction be the only free parameter and, second, we fine-tuned the geometry through a

brute-force sweeping of the ridge width. In principle, we could vary other geometrical

parameters (multilayer period, truncation thickness, ridge thickness) or even working

with a di↵erent topology (e.g., using quasi-periodic or aperiodic multilayers).

In contrast to the forward design approach, inverse design methods target the

desired FOM and retrieve the optimal structure (Fig. 5.1) [163, 164]. By combining

an electromagnetic solver with e�cient optimization algorithms, either gradient-based

(such as the adjoint method [165, 166]) or evolution-based (such as genetic algorithms

[167] or particle swarm algorithms [168]), it is possible to manage a larger number

of degrees of freedom at a much lower computational cost. Inverse design has led to

a number of counterintuitive devices with better performance and smaller footprint

than traditional devices, in a range of applications from silicon photonic components

[169, 170] to photonic crystals [171] to metamaterials [172]. Thus, it could prove

a powerful tool also for BSW-based optical components, capable of handling the

complex properties of BSWs.

Among others, genetic algorithms (GAs) are a class of stochastic optimization

methods inspired by the principles of natural evolution [173]. GAs operate on a pop-

ulation of individuals that are each represented by a chromosome p = (p1, . . . , pN ),

where the genes pi are the design parameter. Initially, a random population of in-

dividuals is formed and the fitness function f(p), i.e., the FOM to be optimized, is

evaluated for each individual. The better performing individuals are selected to form

a mating pool. Optionally, a number of most-fit individuals are passed directly to

the next generation with no change (elitism). Next, pairs of parent individuals are

selected in the mating pool and their chromosomes are crossed over to form a new

generation of child individuals, which will inherit their parents’ genetic material. A

small fraction of the o↵spring is randomly mutated to maintain a level of genetic di-

versity in the population. Once the new generation is populated, it can be evaluated

by the fitness function and undergo the same process of selection, crossover, and mu-

tation until the optimum is reached. GAs can produce highly optimized individuals

in a relatively small number of generations, despite the vast space of all possible gene

crossovers and mutation.
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To date, a number of robust and fast-converging frameworks have been created for

working with GAs. In particular, GAs are also suited for multiobjective optimization,

i.e., when two ore more (possibly conflicting) FOMs must be optimized at once. In

this case, there exists no single solution that simultaneously optimizes each FOM,

but a multiplicity of solutions that are no worse than any other, in the sense that

no FOM can be improved without deteriorating the others (Pareto optimum). We

believe that multiobjective numerical optimization could be successfully applied in a

number of contexts related to BSWs, e.g., designing ultra-low-loss PhC ridges while

minimizing the e↵ective mode area, or apodizing a grating coupler to simultaneously

maximize coupling e�ciency and bandwidth. It might be fruitful to first establish a

properly constrained input solution by means of our forward design approach, and

then apply a GA for further optimization.

In conclusion, we demonstrated the complete optical architecture necessary for a

fully integrated operation of BSWs. It works in a wide spectral range (from visible

to mid-IR wavelengths), is flexible in terms of constituent materials, has a small foot-

print size, is mechanically stable, and can be fabricated with etching-free technologies

from low-refractive-index polymeric ridges on commercially available multilayers. All

these properties, which are not easily obtained at once, make this structure well-

suited for a number of applications requiring the enhacement of surface light-matter

interaction. In particular, the use of cost-e↵ective, mass-produced polymers with

customizable physical and optical properties provides interesting functionalities. For

instance, polymers can embed diverse quantum emitters, such as single molecules,

quantum dots, or nitrogen-vacancy centers in diamond, opening the possibility of re-

alizing on-demand single-photon sources. Furthermore, several organic and inorganic

polymers show nonlinear optical (NLO) properties, with NLO coe�cient up to two

orders of magnitude larger than those of most semiconductors. Taking advantage of

the remarkable nonlinearity of polymers and the small e↵ective mode areas achievable

in PhC ridges would be of great interest to access nonlinear regimes that are hard

to explore in state-of-the-art integrated platforms, e.g., ultra-high-e�cient four-wave

mixing (FWM) or sub-milliwatt threshold for optical parametric oscillation (OPO).





APPENDIX A

General background

A.1. Plane waves in a dielectric

The behavior of the electromagnetic field in a medium is governed by macroscopic

Maxwell’s equations. In the absence of charges and currents, they read [1]

r ·D = 0, r⇥E = �@B

@t
,

r ·B = 0, r⇥H =
@D

@t
,

(A.1)

where E is the electric field and H is the magnetic field. The electric displacement

D and the magnetic induction B are related to the electric and magnetic fields,

respectively, by the constitutive relations D = D(E) and B = B(H), which depend

on the medium electric and magnetic properties, the externally applied fields, etc.

We shall be dealing with nonmagnetic, linear, and isotropic media, for which

D = "0"E, B = µ0H, (A.2)

where "0 = 8.854 · 10�12 F/m and µ0 = 4⇡ · 10�7H/m are the vacuum permittivity

and permeability, respectively. The scalar quantity " is the dielectric function; in

general, it depends on the frequency and the position within the medium.

A basic feature of Maxwell’s equations is the existence of traveling wave solutions.

We consider a homogeneous, nonmagnetic, linear, and isotropic medium, which can

be described by a spatially constant dielectric function ". We assume " to be real

and positive (lossless medium). Under these assumptions, Maxwell’s equations can

be combined into well-known Helmholtz’s equation, e.g., for the electric field,

r2E� µ0"0"
@
2E

@t2
= 0. (A.3)

The solutions to this equation are monochromatic plane waves of the form

E(r, t) = E0 exp(ik · r� i!t), (A.4)

with amplitude E0, frequency !, and wavevector k. The real part is understood to

be the physical field. This functional form describes an oscillating field propagating

in the direction of k with phase velocity v = !/k. The frequency ! is related to the

69
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Figure A.1. Electric and magnetic fields in an electromagnetic wave.

magnitude of the wavevector k by the dispersion relation

! =
k

p
µ0"0"

= k
c

n
whit n =

p
" (A.5)

where n is the refractive index of the medium (c = 1/
p
µ0"0 = 2.998⇥ 108m/s is the

speed of light in vacuum).

The same equations hold when E is replaced with H. It is easily seen from

Maxwell’s equations the three vectors E, H, and k are mutually orthogonal. Fig. A.1

illustrates the geometrical form of the plane wave solution.

Electromagnetic waves carry energy. The instantaneous magnitude and direction

of the power flow of the electromagnetic field is given by the Poynting vector S =

E ⇥ H. The optical intensity I (power flow across a unit area normal to S) is the

magnitude of the time-averaged Poynting vector hSi.

A.2. Reflection and refraction at the interface of two dielectrics

At the interface of two media of di↵erent optical properties, field components must

satisfy certain boundary conditions. Namely, the tangential components of E and H

and the normal components of D and B must be continuous across the interface

(Fig. A.2). These can be derived directly from Maxwell’s equations.

We now consider the simple case of reflection and refraction at the planar interface

of two dielectric media that are linear, isotropic, and lossless, with refractive indices

n1 and n2, respectively. Using the coordinate system shown in Fig. A.3, the interface

lies in the xy plane. Let E1, E0
1, and E2 denote the electric fields associated with

the incident (from medium 1), reflected, and transmitted waves, respectively. For an

incident plane wave, these fields have the form (A.4), where k1, k0
1, and k2 denote

the incident, reflected, and transmitted wavevectors, respectively. Phase continuity
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Figure A.2. Boundary conditions for optical fields.

at all points along the interface (at all times) implies that the three wavevectors lie

in the same plane, known as the plane of incidence (the xz plane). The wavevector

components parallel to the interface are conserved: k1x = k
0
1x = k2x. This can be

expressed as

k1 sin#1 = k
0
1 sin#

0
1 = k2 sin#2, (A.6)

where #1, #0
1, and #2 are the angles of incidence, reflection, and transmission, respec-

tively, as measured with respect to the normal n̂ to the interface. Since k1 = k
0
1 and

k1/k2 = n1/n2, Eq. (A.6) yields the familiar law of reflection

#1 = #
0
1, (A.7)

which indicates that the angle of reflection is equal to the angle of incidence, and

Snell’s law of refraction

n1 sin#1 = n2 sin#2. (A.8)
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Figure A.3. Reflection and transmission of (a) TE and (b) TM waves at the planar interface of two
isotropic dielectric media (here shown for the case n1 < n2).
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Figure A.4. When an optical wave travels from a high-index medium (n1) to a low-index medium
(n2 < n1), the transmitted wave is bent away from the normal (#2 > #1), according to Snell’s law
(A.8) (left). When the angle of incidence is equal to the critical angle #c, the angle of transmission
is ⇡/2 (center). If #1 is greater than #c, total internal reflection occurs (right).

Interestingly, when a wave is incident on a rarer medium (n2 < n1), the incident

wave is refracted away from the normal (#2 > #1) in such a way that, as #1 increases,

#2 reaches ⇡/2 first (Fig. A.4). This occurs when #1 is equal to the so-called critical

angle #c = arcsin(n2/n1). At exactly the critical angle, the transmitted wave travels

along the interface since k2x = k1x = k2 and k2z =
p

k
2
2 � k

2
2x = 0. If light is incident

at an angle #1 � #c, k2x = k1x > k2 and k2z becomes imaginary: k2z = i�, where �

is real. The propagation of the transmitted wave is thus described by a decreasing

exponential eik2zz = e��z, i.e., an evanescent wave, and no energy is transmitted in

medium 2. The incident wave is said to be totally reflected, for all of the energy

is carried by the reflected wave. This phenomenon is called total internal reflection

(TIR) and is the basis for guiding light, since for #1 � #c light is restricted to the

high-refractive-index medium.

By applying the boundary conditions, one can also determine the reflection co-

e�cient r and transmission coe�cient t, defined as the ratio of the reflected and

transmitted field amplitudes to the incident field amplitude, respectively,

r =
E

0
1

E1
and t =

E2

E1

The reflected and transmitted field amplitudes depend on the wave polarization. Ev-

ery incident plane wave can be resolved into two polarization components: (i) TE

(transverse electric) or s polarization, with the electric field perpendicular to the

plane of incidence, as shown in Fig. A.3(a), and (ii) TM (transverse magnetic) or p

polarization, with the electric field in the plane of incidence, as shown in Fig. A.3(b).

As can be seen from symmetry reason, for isotropic dielectrics these two polariza-

tions are preserved upon reflection and refraction, albeit with di↵erent reflection and

transmission coe�cients. We summarize the reflection and transmission coe�cients
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TM
TE

re
fl
ec
ti
v
it
y
R

angle of incidence #1

0� 30� 60� 90�
0

0.5

1

Figure A.5. Reflectivity of TE (red) and TM (green) waves at the interface of two lossless, isotropic
media as a function of the angle of incidence for (a) external reflection (here shown for n1 = 1 and
n2 = 2) and (b) internal reflection (shown for n1 = 2 and n2 = 1).

for the two cases:

rs =
w1 � w2

w1 + w2
, ts =

2w1

w1 + w2
= 1 + rs, (A.9)

rp =
n
2
2w1 � n

2
1w2

n
2
2w1 + n

2
1w2

tp =
2n1n2w1

n
2
2w1 + n

2
1w2

=
n1

n2
(1 + rp), (A.10)

where wi = ki cos#i is the wavevector component normal to the interface in the

medium i = 1, 2. These are known as Fresnel’s coe�cients. It is interesting to

notice that, in the case of TM polarization, if the angle of incidence is such that

#1 = #p ⌘ arctan(n2/n1), called Brewster’s angle, then rp = 0 and the wave is totally

transmitted. In general, for an unpolarized wave incident at an angle #1 = #p, the

reflected wave is completely TE polarized.

The reflectivity R and transmissivity T are defined as the ratios of power flow

(along a direction normal to the interface) of the reflected and transmitted waves to

that of the incident wave,

R =
|S0

1 · n̂|
|S1 · n̂|

and T =
|S2 · n̂|
|S1 · n̂|

.

In the absence of absorption loss, T = 1 � R. Because the incident and reflected

waves propagate in the same medium and make the same angle with the normal to

the surface, it follows that Rs,p = |rs,p|2. On the contrary, Ts,p is generally not equal

to |ts,p|2 since the incident and transmitted waves travel in di↵erent media and at

di↵erent angles. The reflectivity of TE and TM waves as a function of #1 is shown

in Fig. A.5. It can be seen that, in the case of internal reflection (n2 < n1), total

internal reflection occurs when #1 > #c = arcsin(n2/n1).
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Figure A.6. Schematic of a multilayer. E±
i indicate the forward and backward propagating ampli-

tudes within layer i.

A.3. Transfer matrix method

For treating an arbitrary number of dielectric layers, the transfer matrix method

(TMM) is an extremely useful approach [20]. We consider N layers of thickness di and

dielectric constant "i, with i = 1, 2, . . . , N , stacked along the z direction, as illustrated

in Fig. A.6. The plane of incidence is the xz plane. In the case of harmonic time

dependence e�i!t, the electric field (for each polarization s or p) at any point within

layer i can be written as a superposition of forward and backward propagating waves,

i.e.,

Ei(r, t) = [E+
i e

iwiz + E
�
i e

�iwiz]ei(�x�!t)
. (A.11)

Here, E±
i indicate the forward and backward propagating wave amplitudes, respec-

tively; � = kix and wi = kiz =
q
k
2
i � �2 are the wavevector components along x and

z, respectively, with ki = (!/c)
p
"i. According to (A.6), � is conserved throughout

the multilayer (hence we drop the layer index i) and is referred to as the propagation

constant.

The field components in layer i+ 1 are linked to those in layer i via the relation
 
E

+
i+1

E
�
i+1

!
= Ii,i+1�i

 
E

+
i

E
�
i

!
, (A.12)

where �i is the propagation matrix, which accounts for the phase gained by the field

components as they propagate within layer i,

�i =

 
eiwidi 0

0 e�iwidi

!
, (A.13)
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while Ii,i+1 is the interface matrix from layer i to layer i+ 1, which follows from the

continuity conditions for the field components across the interface,

Ii,i+1 =
1

ti+1,i

 
1 ri+1,i

ri+1,i 1

!
. (A.14)

Fresnel’s coe�cients ri+1,i and ti+1,i depend on the polarization of the incident field

according to Eqs. (A.9) and (A.10).

Ordered multiplication of these matrices connects the amplitudes in each layer of

the structure. If we carry out the amplitude transfer over the whole multilayer, we

obtain
 
E

+
N

E
�
N

!
= M1,N

 
E

+
1

E
�
1

!
, (A.15)

where M1,N is the transfer matrix of the whole structure

M1,N =

 
m11 m12

m21 m22

!
= IN�1,N�N�1 . . .�2I1,2. (A.16)

The transfer matrix of a lossless structure is unimodular, i.e., detM1,N = 1.

Once the transfer matrix is evaluated, reflection and transmission coe�cients are

readily derived. Assuming that the field is incident only upon the first layer, we can

write
 
E

+
N

0

!
=

 
m11 m12

m21 m22

! 
E

+
1

E
�
1

!
, (A.17)

where E
+
1 is the incident field, while E

�
1 and E

+
N are the reflected and transmitted

fields, respectively. The reflection and transmission coe�cients r and t result

r =
E

�
1

E
+
1

= �m21

m22
, (A.18)

t =
E

+
N

E
+
1

=
detMN1

m22
=

1

m22
, (A.19)

where the unimodularity of the transfer matrix has been taken into account.

We can also use the transfer matrix to determine the bound modes of the structure

by requiring the incoming waves on the first and last layers to vanish, i.e., E+
1 = E

�
N =

0. This results in the following equation
 
E

+
N

0

!
=

 
m11 m12

m21 m22

! 
0

E
�
1

!
, (A.20)

which can be satisfied with nontrivial E�
1 and E

+
N provided that

m22 = 0. (A.21)
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Figure A.7. Schematic of a dielectric slab waveguide.

From Eq. (A.18), we see that solving (A.21) is equivalent to studying the poles of the

reflection coe�cient of the structure.

A.4. Dielectric slab waveguides

We adopt the TMM to obtain the guided modes supported by a dielectric slab

waveguide, whose characteristics have been outlined in Chapter 1. In the notation

of Fig. A.7, the refractive index depends only on the z coordinate, n = n(z), with

n2 > n3 > n1. We can always choose the x axis along the direction of propagation of

the wave, and write the solutions to Maxwell’s equations in the form

E(r, t) = Em(z)ei�x�i!t
, (A.22)

where m is the mode index, Em(z) is the transverse field profile, and � is the prop-

agation constant of the mode. Before proceeding with a full derivation, it is worth

noticing that guided modes correspond to a TIR mechanism: when k2 > � > k3 > k1,

the field components are oscillating within the core and evanescent in the substrate

and cladding.

Mirror symmetry with respect to the plane of incidence xz allows one to classify

the modes by separating them in two polarizations, according to their parity with

respect to the mirror symmetry operator �xz: (i) TE modes (odd parity, �xz = �1),

with nonvanishing field components (Hx, Ey, Hz), and (ii) TM modes (even parity,

�xz = 1), with nonvanishing field components (Ex, Hy, Ez).

The structure transfer matrix can be written as

M1,3 = I2,3�2I1,2

=
1

t3,2

 
1 r3,2

r3,2 1

! 
eiw2d 0

0 e�iw2d

!
1

t2,1

 
1 r2,1

r2,1 1

!

=
e�iw2d

t2,1t3,2

 
r2,1r3,2 + e2iw2d r3,2 + r2,1e2iw2d

r2,1 + r3,2e2iw2d 1 + r2,1r3,2e2iw2d

!
(A.23)
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Applying Eq. (A.21) to (A.23) and observing that r3,2 = �r2,3 gives the condition for

the existence of guided modes:

1� r2,1r2,3e
2iw2d = 0. (A.24)

In the case of TE modes, from Fresnel’s relations (A.9), we can write

1� w2 � w1

w2 + w1

w2 � w3

w2 + w3
e2iw2d2 = 0. (A.25)

For a guided mode, k2 > � > k3 > k1, so w2 is real, and w3 and w1 are imaginary.

Therefore, positive real parameters h2, q3, and q1 exist such that

w2 = h2 with h
2
2 = k

2
2 � �

2

w3 = iq3 with q
2
3 = �

2 � k
2
3

w1 = iq1 with q
2
1 = �

2 � k
2
1

Eq. (A.25) reads

1� h2 � iq1
h2 + iq1

h2 � iq3
h2 + iq3

e2ih2d = 0

or, equivalently, with a slight variation,

1 + e2ih2d = 1 +
h2 + iq1
h2 � iq1

h2 + iq3
h2 � iq3

.

This leads to

1 + cos(2h2d) + i sin(2h2d)

=
2(h22 � q1q3)

(h22 + q
2
1)(h

2
2 + q

2
3)
[(h22 � q1q3) + ih2(q1 + q3)].

By equating the ratio of imaginary to real parts of the LHS to that of the RHS,

sin(2h2d)

1 + cos(2h2d)
=

h2(q1 + q3)

h
2
2 � q1q3

,

we obtain the well-known eigenvalue equation for the dispersion of TE guided modes

in an asymmetric slab waveguide [2]:

tan(h2d) =
h2(q1 + q3)

h
2
2 � q1q3

. (TE modes) (A.26)

The solution yields a finite number of allowed values of �. The number of guided

modes depends on the core thickness d: the thicker the slab, the larger the number

of guided modes. In particular, to support the m-th TE mode (with m = 0, 1, 2, . . . ),

its value of d/� must be larger than the following cuto↵ value

✓
d

�

◆

c.o.,TE

=
1

2⇡
p
n
2
2 � n

2
3

"
m⇡ + arctan

s
n
2
3 � n

2
1

n
2
2 � n

2
3

#
. (A.27)
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Figure A.8. Dispersion curves of TE (solid black) and TM modes (dashed black) supported by (a)
asymmetric air-silicon-silica and (b) symmetric air-silicon-air slab waveguide of thickness d = 220 nm.
Lightlines of air (n1 = 1) (green), silicon (n = 3.45) (red), and silica (n3 = 1.44) (orange) are
indicated. Chromatic dispersion is neglected.

A similar derivation holds for TM modes, for which the eigenvalue equation is

tan(h2d) =
(h2/n2

2)(q1/n
2
1 + q3/n

2
3)

(h2/n2
2)

2 � (q1/n2
1)(q3/n

2
3)
, (TM modes) (A.28)

with cuto↵ condition
✓
d

�

◆

c.o.,TM

=
1

2⇡
p

n
2
2 � n

2
3

"
m⇡ + arctan

n
2
2

n
2
1

s
n
2
3 � n

2
1

n
2
2 � n

2
3

#
. (A.29)

As an example, Fig. A.8(a) shows the dispersion of guided TE and TM modes

for an asymmetric slab waveguide made of a silicon core (n2 = 3.45) of thickness

d = 1 µm deposited on a silica substrate (n3 = 1.44); the cover is air (n1 = 1).

We notice that the dispersion relation for the di↵erent guided modes lie between the

lightlines ! = c�/n2 and ! = c�/n3, i.e., in the region where TIR within the core is

ensured. For a given guided mode with propagation constant �, it is useful to define

the e↵ective mode index ne↵ via the relation ! = c�/ne↵ . With respect to the mode

propagation, the slab waveguide can be treated as an e↵ective homogeneous medium

with refractive index ne↵ .

A special case of a slab waveguide occurs when the substrate and cover consist

of the same medium, n1 = n3. In this case, the mirror symmetry with respect to the

slab midplane xy allows one to further classify the modes as even (�xy = 1) or odd

(�xy = �1). By equating q1 to q3, the eigenvalue equation (A.26) for TE modes can
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be cast in the following two equations

tan
h2d

2
=

q1

h2
, (TE even modes) (A.30)

� cot
h2d

2
=

q1

h2
. (TE odd modes) (A.31)

Similarly, Eq. (A.28) can be transformed to

tan
h2d

2
=

n
2
2

n
2
1

q1

h2
, (TM even modes) (A.32)

� cot
h2d

2
=

n
2
2

n
2
1

q1

h2
. (TM odd modes) (A.33)

As can be seen from Eqs. (A.27) and (A.29), in the symmetric case both fundamental

TE and TM modes (m = 0) have no cuto↵ and are guided for all values of d/�.

Thus, any symmetric slab waveguide supports at least one TE and one TM mode.

An example is illustrated in Fig. A.8(b).

A.5. Fourier transform via transfer matrix method

The electric field spatial Fourier transform (FT) is defined as follows:

eE(k) =

Z
Re(E(z))e�2⇡ikz dz =

1

2

Z
[E(z) + E

⇤(z)]e�2⇡ikz dz . (A.34)

Here we show that, when the electric field is determined by means of the TMM, the

FT can be computed semi-analytically. We consider the usual multilayer of Fig. A.6

composed by N layers of thickness di and refractive index ni, with i = 1, 2, . . . , N .

By introducing the cumulative thickness zi =
Pi

j=0 dj , where we set d0 = 0, we can

write the integral in (A.34) as follows:

eE(k) =
N�1X

i=0

Z zi+1

zi

1

2
[E(z) + E

⇤(z)]e�2⇡ikz dz . (A.35)

Within each layer, the electric field can be expressed as the combination of forward

and backward waves in the form of Eq. (A.11). After change of the spatial variable

z ! z � zj and some rearrangement, we obtain

eE(k) =
N�1X

i=0

Z di

0

1

2

⇥
(E+

i + E
�⇤
i )eiwiz + (E�

i + E
+⇤
i )e�iwiz

⇤
e�2⇡ik(z+zj) dz

=
N�1X

i=0

e�2⇡ikzi

Z di

0

1

2

⇥
(E+

i + E
�⇤
i )eiwiz + (E�

i + E
+⇤
i )e�iwiz

⇤
e�2⇡ikz dz

=
N�1X

i=0

e�2⇡ikzi eEi(k), (A.36)
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with obvious notation. Calculation of eEi(k) in (A.36) can be performed analytically:

eEi(k) =

Z di

0

1

2

h
(E+

i + E
�⇤
i )ei(wi�2⇡k)z + (E�

i + E
+⇤
i )e�i(wi+2⇡k)z

i
dz

=
1

2

i(E+
i + E

�⇤
i )

wi � 2⇡k

h
1� ei(wi�2⇡k)di

i

� 1

2

i(E�
i + E

+⇤
i )

wi + 2⇡k

h
1� e�i(wi+2⇡k)di

i
. (A.37)

Hence, the FT of the overall electric field can be determined directly from the TMM-

calculated amplitudes (E+
i , E

�
i ).

A.6. Dielectric ridge waveguides: e↵ective index method

A ridge waveguide, shown in Fig. A.9 (left), is formed by loading a planar slab

(the substrate) with a high-refractive-index strip of width w and height d that serves

as guiding core (the ridge). The ridge is surrounded on three sides by a low-refractive-

index cladding, which provides optical confinement in both transverse directions. If

the ridge is infinitely wide, the problem reduces to a 1D asymmetric slab waveguide,

for which the guided modes can be classified as TE or TM polarized. If the ridge has

a finite width w, the existence of purely TE or TM modes is not possible because the

two transverse field components Ey, Ez are coupled by the boundary conditions at

the dielectric interfaces given by n = n(y, z). Thus, in general, all six electromagnetic

field components are nonvanishing. However, the modes can sometimes be labeled as

TE-like or TM-like, in that Ey or Hy is the dominant field component, respectively.

Since an analytical treatment is not feasible, one is interested in obtaining ap-

proximate solutions that give the guided mode characteristics. One of the simplest,

yet most useful, approximate approaches is the e↵ective index method (EIM). The

basic concept of the EIM is to replace the 2D ridge waveguide with a combination

of 1D slab waveguides, as illustrated in Fig. A.9. First, one considers the symmet-

ric slab waveguide of width w that corresponds to the horizontal cross section of

the layer containing the ridge (waveguide I: cladding/ridge/cladding), and calculates

the e↵ective index ne↵,I of the supported guided mode. Second, one substitutes the

ridge region with a uniform layer of height h having refractive index ne↵,I, and looks

for the mode supported by the e↵ective asymmetric slab waveguide (waveguide II:

cladding/e↵ective ridge/substrate). It should be noticed that, for a TE-like (TM-

like) mode of the 2D ridge waveguide, one first does the TM (TE) mode analysis of

waveguide I and then the TE (TM) mode analysis of waveguide II.

This approach o↵ers an advantage in terms of computational time and resources

to calculating the dispersion relation and field distribution, but at the same time is

not able to capture all the physics of light propagation, for instance, the group index

or propagation loss.
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Figure A.9. Concept of the e↵ective index method applied to a ridge waveguide (n2 > n3 > n1).

A.7. Photonic crystals

Photonic crystals (PhCs) are media displaying a spatial periodicity in their di-

electric function. The description of light propagation in PhCs begins with Maxwell’s

equations (A.1). If we assume nonmagnetic media, µ = µ0, and harmonic time de-

pendence, Maxwell’s equations can be cast into a second-order di↵erential equation

for the electric field,

r⇥r⇥E =
!
2

c2
"(r)E(r) with r · ["(r)E(r)] = 0 (A.38)

or an analogous one for the magnetic field,

r⇥


1

"(r)
r⇥H(r)

�
=

!
2

c2
H(r) with r ·H(r) = 0. (A.39)

The latter of these equations is usually taken as the starting point for computing the

photonic band structure since it can be cast in the form of an eigenvalue problem:

⇥H(r) =
!
2

c2
H with ⇥ = r⇥


1

"(r)
r⇥

�
. (A.40)

It can be shown that ⇥ is self-adjoint, thus Eq. (A.40) has real eigenvalues (!/c)2 and

one can find a set of orthonormal eigenmodes. Such a problem has strong analogies

with the matrix formulation of quantum mechanics. However, it is worthwhile to

point out that the linear operator ⇥ does not correspond to the energy observable

(as a purely formal analogy with Schrödinger’s equation might suggest). It is also

interesting to notice that the dielectric function "(r) appears in the denominator of ⇥.

Thus, modes corresponding to lower eigenvalues tend to concentrate their energy in

high-permittivity regions (unlike in quantum mechanics, where the lower eigenstates

typically have their amplitude concentrated in regions of low potential).
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One important feature of Eq. (A.40) is its scale invariance, provided the material

chromatic dispersion can be neglected. By reducing the length scale by a factor s

(r ! r/s), the eigenmodes are unchanged while the eigenfrequencies are all scaled

by a factor s (! ! s!). Thus, there is no fundamental length scale for the photonic

problem (other than the assumption that the medium is macroscopic) unlike the

electronic problem, for which the Bohr radius is the natural unit length. In particular,

if one scales down the coordinates by s and also the dielectric constant " by s
2, the

eigenfrequencies are unchanged. As a consequence, in a structure made up of only

two di↵erent dielectric media of permittivity "1 and "2, its photonic properties only

depend on the dielectric contrast "1/"2. Scale invariance proves to be quite useful in

practice, since one can create a magnified PhC structure that is more easily fabricated

and characterized, and later scale it down to operate in the desired spectral region.

A PhC is invariant under translation by vectors R = m1a1+m2a2+m3a3, where

a1,a2,a3 are non-coplanar vectors (primitive vectors) and m1,m2,m3 are integer

numbers. All translation vectors R form a Bravais lattice. The dielectric constant

satisfies the relation

"(r+R) = "(r), (A.41)

and the magnetic field has the form implied by Bloch’s theorem

Hmk(r) = e
ik·rumk(r), (A.42)

where umk(r +R) = umk(r) is a periodic function, m is a discrete band index, and

k is the Bloch vector (which may be restricted to the first Brillouin zone). The

fundamental Eq. (A.39) can be expressed in terms of the periodic component umk:

(ik+r)⇥


1

"(r)
(ik+r)⇥ umk(r)

�
=

!
2
m(k)

c2
umk(r), (A.43)

with the further condition that (ik+r) ·umk(r) = 0. The eigenvalues ! = !m(k) of

Eq. (A.43), for each k within the first Brillouin zone, describe the band structure of

the system, which consists of allowed frequency regions (photonic bands) separated

by forbidden frequency regions (PBGs). Except for the 1D case, numerical techniques

have to be invoked to solve Eq. (A.43), e.g., plane-wave expansion (PWE), rigorous

coupled-wave analysis (RCWA), and finite-di↵erent time-domain (FDTD) method.

A.8. 1D photonic crystals

The photonic band structure of a 1D PhC is conveniently calculated by means of

the TMM. We consider an infinite number of planar layers of two or more di↵erent

materials stacked with a certain period ⇤ along a given direction, say z, as illustrated

in Fig. A.10(a). For each polarization, the electric fields takes the form E(x, z, t) =

E(z)ei�x�i!t, where � is the propagation constant. According to Eq. (A.11), let E±
0



A.8. 1D PHOTONIC CRYSTALS 83

⇤

E
+
0 E

�
0

E
+
⇤ E

�
⇤

x

z

y

(a)

d1

d2
⇤

�d2

(b)

n2

n1

Figure A.10. (a) Notation used in the TMM analysis of 1D PhCs. (b) Di↵erent choices of unit cell
for a 1D PhC composed of two alternating layers of thicknesses d1, d2 and refractive indices n1, n2.

be the forward and backward components at the beginning of a generic unit cell.

After propagating through a period ⇤, the amplitudes E±
⇤ are given by

 
E

+
⇤

E
�
⇤

!
= M⇤

 
E

+
0

E
�
0

!
. (A.44)

where M⇤ is the (polarization-dependent) transfer matrix associated with the unit

cell. As stated by Bloch’s theorem, the electric field must be invariant up to a phase

factor eiq⇤ when translating over a period ⇤, i.e., E(z+⇤) = eiq⇤E(z), where q is the

Bloch wavevector. Thus, we look for amplitudes E±
⇤ that satisfy

 
E

+
⇤

E
�
⇤

!
= eiq⇤

 
E

+
0

E
�
0

!
. (A.45)

Application of (A.45) to (A.44) leads to

M⇤

 
E

+
0

E
�
0

!
= eiq⇤

 
E

+
0

E
�
0

!
. (A.46)

This is an eigenvalue problem for the unit-cell transfer matrix M⇤. Due to its uni-

modularity, the eigenvalues of M⇤ have to be �1,2 = e±iq⇤. For the trace of a matrix

is invariant upon diagonalization, we obtain the following compatibility equation

trM⇤ = �1 + �2 = eiq⇤ + e�iq⇤ = 2 cos(q⇤). (A.47)

Since cos(q⇤) is bounded in the range [�1, 1], solutions cannot exist when |trM⇤|/2
is larger than unity. The nonexistence of solutions gives rise to the formation of the

PBGs. In the particular case of a 1D PhC with a unit cell composed of two layers of

thickness d1 and d2, and refractive indices n1 and n2, respectively, the transfer matrix

reads

M⇤ = �2I1,2�1I2,1. (A.48)
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Here, the unit cell is chosen in such a way that it begins just on the d1 side of an

interface and finishes one lattice period ⇤ = d1 + d2 away (Fig. A.10(b) (solid red)).

The compatibility equation (A.47) can be cast in the form of the implicit equation

(1.1), as illustrated in Chapter 1.

Following [40], we now consider a less intuitive choice of a unit cell that begins

with a layer of thickness �d2, where � 2 [0, 1] (Fig. A.10(b) (solid green)). The

transfer matrix associated with this unit cell is

M� = ��1
� �2I1,2�1I2,1�� = ��1

� M⇤��, (A.49)

where M⇤ is given by (A.48) and �� = diag(eiw2�d2 , e�iw2�d2) is the propagation

matrix in the layer of thickness �d2. Since �� is invertible, matrices M⇤ and M� are

similar. Matrices related by similarity represent the same linear transformation under

two di↵erent bases, with �� being the change-of-basis matrix. Similar matrices have

invariant eigenvalues, trace, and determinant. This is physically understandable since

the photonic band structrure is a bulk property of a PhC, which depends only on the

eigenvalues of the transfer matrix by means of the compatibility equation (A.47) and

is independent of the particular choice of a basis, i.e., of a unit cell. Bloch’s theorem

clearly holds with this choice of unit cell as well, namely,

M�

 
E

+
�

E
�
�

!
= ��1

� M⇤��

 
E

+
�

E
�
�

!
= eiq⇤

 
E

+
�

E
�
�

!
, (A.50)

where, by comparison with (A.46),
 
E

+
�

E
�
�

!
= ��1

�

 
E

+
0

E
�
0

!
=

 
e�iw2�d2E

+
0

eiw2�d2E
�
0

!
. (A.51)

This choice of a unit cell is suited to describing a truncated periodic multilayer, for

it naturally takes into account the presence of a truncation layer of thickness �d2.

The external homogeneous dielectric media has refractive index next. As discussed in

Chapter 1, the addition of such termination on top of the periodic structure gives rise

to Bloch surface waves (BSW). Because of TIR from the external medium, the BSW

dispersion relation can be determined by applying the continuity of the tangential

field components at the truncation interface in the absence of incident field from the

external medium:
 

0

E
�
ext

!
= I2,ext

 
E

+
�

E
�
�

!
=

1

text,2

 
1 rext,2

rext,2 1

! 
E

+
�

E
�
�

!
(A.52)

From Eq. (A.52), we obtain E
+
� + rext,2E

�
� = 0 or, by recalling that rext,2 = �r2,ext,

r2,ext =
E

+
�

E
�
�

=
E

+
0

E
�
0

e�2iw2�d2 , (A.53)
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where we used Eq. (A.51). Bloch’s theorem (A.46) entails E�
0 = E

+
0 (e

iq⇤�m11)/m12,

where m11 and m12 are the (polarization-dependent) matrix elements of M⇤ and can

be found by expanding M⇤ in the form of (A.48). The Bloch wavevector q has

nonzero imaginary part on account of the field exponential decay in the PhC. Thus,

Eq. (A.53) reads

r2,ext =
m12

eiq⇤ �m11
e�2iw2�d2 . (A.54)

We can now specify the reflection coe�cient r2,ext by means of Fresnel’s relations

(A.9) and (A.10):

r2,ext =
pw2 � wext

pw2 + wext
=

pw2 � iqext
pw2 + iqext

, (A.55)

where the transverse wavevector component in the external medium is purely imagi-

nary owing to the evanescent nature of the field, i.e., wext = iqext, with qext 2 R. The
parameter p = 1 for s polarization and p = n

2
ext/n

2
2 for p polarization. By equating

(A.54) and (A.55), we can determine the truncation factor �:

� =
i

2w2d2
ln

✓
e
iq⇤ �m11

m12

pw2 � iqext
pw2 + iqext

◆
(A.56)

Once the Bloch wavevector q is chosen such that its imaginary part is maximized, the

truncation layer width can be calculated by evaluating the parameter � according to

Eq. (A.56).

A.9. Finite-di↵erence time-domain method

The finite-di↵erence time-domain (FDTD) method is a widely known numeri-

cal technique that discretizes the electromagnetic fields in both space and time to

solve Maxwell’s equations. In particular, assuming nonmagnetic, linear media free of

sources, the curl Maxwell’s equations in (A.1) can be written as

@E

@t
=

1

"
r⇥H,

@H

@t
= � 1

µ0
r⇥E, (A.57)

where we made use of the constitutive relations (A.2). The FDTD method as first

introduced by Yee in 1966 employs a second-order central-di↵erence approximation

in both space and time, with E and H displayed on a staggered grid [175]. In order

to briefly introduce Yee’s discretization, we consider the simple 1D case (@/@z 6= 0)

using only Ex, Hy. Eqs. (A.57) become

@Ex

@t
= �1

"

@Hy

@z
,

@Hy

@t
= � 1

µ0

@Ex

@z
. (A.58)

We introduce the following notation

(Ex)
n
i = Ex(i�z, n�t), (Hy)

n
i = Hy(i�z, n�t). (A.59)
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Figure A.11. Visual illustratuon of the space-time interdependence of Ex and Hy at di↵erent grid
points in 1D Yee’s cell. Adapted from [174].

Here, �z and �t are the space and time sampling intervals, respectively, with n and

i being the space and time steps. In Yee’s algorithm, Ex and Hy are interleaved in

the space and time grid at intervals �z/2 and �t/2. For instance, at time t = 0,

values of Hy are placed at x = (i+1/2)�x; at time t = �t/2, values of Ex are placed

at x = i�z, and so on. This is illustrated in Fig. A.11.

Taking the central-di↵erence approximations for both space and time derivatives

in (A.58) gives

(Ex)
n+1/2
i � (Ex)

n�1/2
i

�t
= � 1

"i

(Hy)ni+1/2 � (Hy)ni�1/2

�z
, (A.60)

(Hy)
n+1
i+1/2 � (Hy)ni+1/2

�t
= � 1

µ0

(Ex)
n+1/2
i+1 � (Ex)

n+1/2
i

�z
. (A.61)

Assuming that the values of the field components for n and n�1/2 have already been

stored, the only unknown components remain those for n+ 1/2:

(Ex)
n+1/2
i = (Ex)

n�1/2
i � 1

"i

(Hy)ni+1/2 � (Hy)ni�1/2

�z/�t
, (A.62)

(Hy)
n+1
i+1/2 = (Hy)

n
i+1/2 �

1

µ0

(Ex)
n+1/2
i+1 � (Ex)

n+1/2
i

�z/�t
. (A.63)

Hence, these equations update the fields by moving them one half time-step forward.

It can be seen that the value of a field at a given node in the grid is determined by

three previous values: one from the same field at a previous single time-step, and two
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from two neighboring opposite fields at a previous half time-step. To ensure numerical

stability, Courant’s condition should be satisfied: �z/�x � c/nmin, where nmin is the

lowest refractive index of any dielectric element in the computational domain.

This “leap-frog” scheme can be extended to 2D and 3D cases, and guarantees Yee’s

algorithm its second-order accuracy. We notice that finite-sized simulations require

the challenging implementation of absorbing boundary conditions to suppress the

spurious reflections at the boundaries back into the simulation domain. One possible

solution to this issue is using perfectly matched layers (PMLs), i.e., thin nonphysical

layers that enclose the boundaries and anisotropically absorb the outgoing waves,

thus enabling the simulation of free-field conditions. For more details, the reader is

referred to [176].

For the present work, we use a commercial FDTD software, Ansys/Lumerical

FDTD Solutions, which provides the users with Python-based scripting capability,

post-processing features (e.g., Q factor analysis), and advanced optimization routines.
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tonic crystal cavities”. In: Opt. Express 13.16 (2005), pp. 5961–5975. doi:

10.1364/OPEX.13.005961.
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