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1
I N T R O D U C T I O N

In this thesis, I present two research articles that connect different
branches of the vast economic discipline, namely, agricultural, inter-
national trade, and climate economics.

In the first chapter, I present the paper "Climate Instability, Weather
Shocks, and Agricultural Production", coauthored with my supervi-
sor Prof. Alessandro Olper. Here, we follow the climate-economy lit-
erature that uses econometric methods to assess the impact of climate
change on economic activities (e.g. Dell, Jones, and Olken, 2014), to
quantify the climate-driven consequences in global agricultural pro-
duction caused by future climatic changes.
The agricultural economic literature starts early to address this topic
(see the milestone article by Mendelsohn, Nordhaus, and Shaw, 1994)
because of the peculiarity of agricultural productions that are par-
ticularly sensitive to climatic conditions (for an extensive review see
Ortiz-Bobea, 2021). After describing common methodologies, we de-
velop a theoretical framework to assess the impact of changing cli-
matic conditions on aggregate agricultural production, accounting for
adaptation within the sector. Using panel data techniques and histor-
ical observations for a large sample of countries, we estimate the re-
lationship between agricultural production and weather shocks.
We show that when annual temperature and precipitation deviate
from their historical norm, they have a negative effect on agricultural
production. These negative effects are different among countries and,
using differences in income levels, it is possible to estimate a heteroge-
neous damage function. Simple counterfactual analyses, using future
climatic conditions according to different GHGs emissions scenarios,
show that climate change will substantially reduce agricultural pro-
duction if the target of the so-called Paris Agreement will not be
reached. Low-income and developing countries will be particularly
affected with likely consequences on global inequality.

In the second chapter, I present the paper "Adaptation to Climate
Change through Market Integration: Evidence from Agricultural Trade
in the EU", which constitutes the single-author article of the thesis.
Here, I analyze the role of trade and market integration as an adap-
tation mechanism to cope with climate change. This research ques-
tion is not particularly new (see Reilly and Hohmann, 1993), how-
ever, it has been recently renewed in the context of new quantita-
tive trade models (see Costinot and Rodríguez-Clare, 2014 for an
overview of this literature) by recent contributions (Costinot, Don-
aldson, and Smith, 2016; Gouel and Laborde, 2021).
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2 introduction

Because of the heterogeneous impact of climate change on agricul-
tural productivity, the structure of comparative advantage will change,
inducing new patterns of trade among regions. Therefore, I build a
partial equilibrium model, based on the trade literature of Ricardian
models (Eaton and Kortum, 2002), to simulate different degrees of
trade adjustment to a productivity shock induced by climate change.
I use detailed trade data for the agricultural sector of intra-EU sub-
national regions (NUTS2) to feed the quantitative model. I estimate
in a consistent manner a key parameter, i.e. the trade elasticity, that in
these types of models governs comparative advantage. Using econo-
metric techniques and detailed territorial (NUTS3) data on agricul-
tural productivity and climatic conditions, I estimate the relationship
between the two and predict future productivity changes according to
climate change scenarios. Using such changes as an exogenous shock
in the model, I run simulations to quantify the role of trade and its
impact on welfare.
The results show that, on average, trade adjustments play little role
in defining the welfare effect within the EU. However, heterogeneity
is large both between consumers and producers and among the dif-
ferent regions. In particular, trade would play a substantial role in
alleviating consumers’ losses for those regions where the productiv-
ity shock would increase local prices (e.g. Mediterranean area).

The two essays are not directly connected and I present them in
chronological order. The next Section (2) presents the paper "Climate
Instability, Weather Shocks, and Agricultural Production". Section 3

presents the paper "Adaptation to Climate Change through Market
Integration: Evidence from Agricultural Trade in the EU". Appendix
A refers to the first article, while Appendix B refers to the second one.



2
C L I M AT E I N S TA B I L I T Y, W E AT H E R S H O C K S , A N D
A G R I C U LT U R A L P R O D U C T I O N

abstract

We study the relationship between aggregate agricultural produc-
tion and weather anomalies in a panel data setting with a global sam-
ple of countries in the period 1968-2016. Using an aggregate mea-
sure allows us to account for intra-sector and within-country adjust-
ments, while the use of deviations from the historical climatology
(i.e. anomalies) better represents the shocks that a changing climate
imposes on the agricultural system. Our results suggest a negative,
non-linear and significant relationship between agricultural output
and our measure of the weather. We find that less developed coun-
tries experience stronger negative impacts of temperature anomalies.
Development and income levels play an important role in reducing
these negative effects. Counterfactual analyses of potential future im-
pacts caused by climate change show that losses would be substantial
in high-emission scenarios and the gap between developing and de-
veloped regions would further increase.

Keywords: Agriculture, Climate Change, Economic Impact
JEL Classification: Q1, Q51, Q54

2.1 introduction

The relationship between agriculture, weather, and climate is well
documented. A rich literature exists on the subject and the most
recent developments are related to the consequences that Climate
Change (CC) has on the sector (for a review see Auffhammer and
Schlenker, 2014; Ortiz-Bobea, 2021). CC impact assessment has ac-
quired particular importance for the distinctive role that the agricul-
tural system has in the economy. Indeed, agriculture provides the
largest amount of food consumed by the population and employs
a large share of the world’s labor force (especially in developing
countries). Thus, weather and climate impacts on the agricultural
sector have repercussions on important issues such as food security
(Wheeler and Braun, 2013), labor mobility and migration (Falco, Ga-
leotti, and Olper, 2019), and political stability (Burke, Hsiang, and
Miguel, 2015a). Our understanding of the phenomenon plays a cru-
cial role in leading to proper mitigation, adaptation, and sustainable
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4 climate instability, weather shocks , and agricultural production

development policies.
In the economic literature, the terms "climate" and "weather" refer
to different concepts that bring to develop different methodologies.
The former regards the atmospheric conditions in a given location
over a long period of time that allows the economic agents to form
expectations and choose their management practices based on these.
The second term refers to the actual realization of atmospheric condi-
tions over a short period of time. In this case, changes in weather are
not easily predictable by the economic agents and are therefore con-
sidered exogenous (Hsiang, 2016). In this paper, we mainly refer to
the literature based on the second concept and describe the different
methodologies in the subsection 2.2.
Many studies analyze crop productions since they represent a quanti-
tatively important share of the entire agricultural sector and they use
crop yield as the main outcome variable (e.g. Schlenker and Roberts,
2009; Burke and Emerick, 2016; Gammans, Mérel, and Ortiz-Bobea,
2017, among many others). These estimates are of particular value
because they provide the direction and magnitude of the effects that
weather variations have on agricultural productivity and are often
used to be implemented in quantitative economic models to derive
future scenarios under CC.
Despite its remarkable contribution to the literature, the vast majority
of studies that focus only on staple crop yields limits the overall anal-
ysis. Hertel and Lima (2020) highlight the importance of estimating
weather and climate impacts on the overall agricultural system and
focusing the attention on other proxies for productivity (in particu-
lar labor and Total Factor Productivity, TFP) that represent better the
historical evolution of the agricultural sector (see also Fuglie, 2015).
The recent paper by Ortiz-Bobea et al. (2021) represents a clear exam-
ple that overcomes these shortcomings. In particular, they estimate
the relationship between weather variables and agricultural TFP on
a global sample of countries in order to quantify the impact of An-
thropogenic Climate Change (ACC) of the past decades (from 1962 to
2020). They find that on average ACC had a negative impact of 21%
in global TFP (corresponding to the last 7 years of lost growth), with
even higher effects in the hottest regions of the world.
Instructed by the above-mentioned analyses, we focus our attention
on the aggregate agricultural sector and on the future impact of CC.
Using an aggregate measure allows us to account for intra-sectoral
and within-country adjustments to changing climatic conditions (i.e.
adaptation). In fact, not all crops are affected by adverse weather con-
ditions in the same way, also because farmers may select those that
are more resilient. Differences exist between the subsectors, for exam-
ple animal and non-animal productions, that can induce farmers to
rearrange the mix of their agricultural activities in a proper way. Fur-
thermore, some countries may further exploit their lands and move
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the production sites toward more suitable regions (Costinot, Donald-
son, and Smith, 2016) or benefit from competitive input prices in the
national (Dall’Erba, Chen, and Nava, 2021) and international markets
(Garcia-Verdu et al., 2021).
We develop a conceptual framework in which the weather extremes,
in the form of anomalies, affect the production function of the farmers.
We translate the theoretical framework into an empirical specification
and, using data for 172 countries in the period 1968-2016, we esti-
mate the relationship between aggregate agricultural production and
weather anomalies. The results confirm our hypothesis and suggest
a negative, non-linear and significant relationship between agricul-
tural production and our measure of the weather. In particular, when
the temperature is above the historical norm (positive anomaly) and
the precipitation is below (negative anomaly), aggregate agricultural
production decreases significantly. We also estimate a heterogeneous
damage function to assess countries’ ability to cope with adverse cli-
matic conditions (see Auffhammer, 2018). We find that the marginal
effect of temperature anomaly is proportional to GDP per capita. Con-
sequently, future CC impacts (considering only temperature changes)
result in sizeable losses for less developed countries and almost no
losses for advanced economies.
The paper is organized as follows. In Section 2.2, we present the con-
ceptual framework that informs and motivates our empirical applica-
tion. Section 2.3 shows how our theoretical structure can be translated
into an empirical specification, discussing the underline econometric
identification properties. Section 2.4 presents the results. Finally, Sec-
tion 2.5 concludes.

2.2 background and conceptual framework

2.2.1 Climate Change as Increasing Climate Instability

The weather is a complex phenomenon that describes the atmospheric
conditions at a given time and location. The economic literature often
relies on multi-variable simple statistics, e.g. average temperature and
precipitation. Climate is therefore defined by the joint distribution of
these weather variables and is represented by their long-term aver-
ages (e.g. 20-year temperature average represents a climate-normal
or climatology). Climate change is consequently seen as a change in
this distribution (for a review of the climate-economy relationship see
Dell, Jones, and Olken, 2014; Hsiang, 2016; Kolstad and Moore, 2020,
among others).
Directly estimating the impact of a changing climate is not easy. Cross-
sectional Ricardian studies (see Mendelsohn, Nordhaus, and Shaw,
1994) essentially compare economic outcomes of interest in different
climates. As a result, they establish a relationship between the two
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variables that accounts for full adaptation. However, the reliability
of this approach is questionable for two main reasons. First, it may
be subject to omitted variable bias because its cross-sectional nature
does not allow accounting for unobservable heterogeneity. Second,
comparing economic outcomes between hot and cold climates is es-
sentially a static exercise. Indeed, it does not consider the fact that the
adaptation process from one state to the other may take time, can be
costly, or may not take place at all in practice, as recently shown by
Burke and Emerick (2016) for the US corn yields, and confirmed by
Wing, De Cian, and Mistry (2021) at the global level.
Panel fixed effects models (see Schlenker and Roberts, 2006; Deschênes
and Greenstone, 2007) overcome the omitted variable bias, but if cli-
matic norms are used as independent variables, identification prob-
lems emerge because of their low year-to-year variability that is largely
subsumed in the fixed effects. For this reason, one common approach
in estimating the climate-economy relationship is to exploit inter-
annual fluctuations of weather variables (e.g. average annual temper-
ature) using fixed effects to account for time-invariant unobservable
factors. In such a case, the econometrician compares the response of
the economic outcome within the same unit of analysis in warmer
and colder years. For this reason, this approach is often seen as a
short-run estimate of the weather impact, i.e. it cannot incorporate
long-run adaptation.1

Having considered previous methodologies, we focus on weather ex-
tremes in the form of anomalies. An anomaly is defined as the differ-
ence between the current weather statistic (e.g. annual average tem-
perature) and its historical norm (e.g. 20-year average). We define the
weather as the annual observation of the anomaly and the climate as
its probability distribution, while climate change is seen as a change
in this distribution. Importantly, we describe CC as a transition pro-
cess of continuous change in the weather that characterizes an unsta-
ble climate. Given the inertia of the climate response to greenhouse
gasses (GHG) emissions, only after some time, the climate (in par-
ticular the temperature) will reach a new stable path, consisting of
natural fluctuations around a certain norm. We characterize a stable
climate with an expected value of the anomaly (w) in unit i at time t

equal to zero, E[wi,t] = 0, in a given long-time period. Vice versa, an
unstable climate is represented by E[wi,t] ̸= 0.
This approach presents three important advantages. First, it better
describes the direct and indirect impacts of a changing climate on
agricultural output. Both farmers and the crops they choose to plant
are adapted to a specific climate. When the seasonal weather differs
from the expected one, the production can suffer losses directly due

1 When also a quadratic term of the weather variable is added to the specification,
the interpretation is in favor of a medium-long term effect because the changes in
weather vary with the mean level of the variables, i.e. the climate (see Mérel and
Gammans, 2021).
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to the shock (e.g. a reduction in the water content of the soil, caused
by higher temperatures) or indirectly due to the inability to cope with
the unexpected weather (e.g. impossibility to irrigate due to the lack
of an irrigation system). Second, in the literature that uses the level
of the weather variable, we observe large heterogeneity in climates
(e.g. Norway vs. Qatar) while the use of anomalies allows better com-
parability among countries. In the traditional quadratic models that
use average temperature, the marginal effect depends on the level of
the weather variable with the consequence that a warmer year would
have a greater impact in a hot place. For this reason, estimates of CC
often show a larger impact in hot countries and lower (or even posi-
tive) in cold ones (e.g. Burke, Hsiang, and Miguel, 2015b; Ortiz-Bobea
et al., 2021). Using the anomalies, as in our empirical specification, al-
lows us to account for a non-linear effect of the weather shock, but
the impact of CC does not depend a priori on the level of temperature
in the considered country. Moreover, in the traditional quadratic ap-
proach, the optimal temperature for the economic outcome (i.e. the
temperature at which a further increase would reduce it) is estimated
with uncertainty and falls into a relatively large range. This trans-
lates into further uncertainty in the magnitude and direction of the
impacts caused by a warmer climate (Burke, Davis, and Diffenbaugh,
2018). In our setting, the optimal temperature is country-specific and
it is supposed to be reached when it approaches the expected climate
(represented by the historical norm). Third, in this framework, adapta-
tion to the climate is embedded in our estimations. Indeed, the use of
the anomalies (particularly when scaled by country-specific standard
deviations of the variable) consists in an implicit model of adaptation
where farmers adapt to the climate but they have only limited possi-
bility to cope with continuous changes in the weather. Thus, we are
able to provide more reliable estimates for the evaluation of weather
extremes in future climatic scenarios.

2.2.2 Model of Agricultural Production

We hypothesize that agricultural production is affected by weather
conditions when they deviate from their historical norms. Farmers
adapt their production to the local climate (e.g. type of crop, calendar
of agricultural works, machinery). Thus, they choose the main inputs
according to the climatic conditions and they can adjust them conse-
quently. Contrary, they can change the inputs to the current weather
only to some little extent and they may suffer losses when the weather
differs from the usual climate. Hence, we link agricultural production
to weather anomalies considering the following aggregate production
function:

Yi,t = F(wi,t, Ii,t) (1)
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where wi,t = xi,t −µi,t is the weather anomaly (x is the annual mean,
µ is the climatology) and Ii,t is a vector of inputs such as labor, land,
capital and intermediate inputs. The weather enters directly into the
production function. We allow both the annual mean and the clima-
tology to change over time, but the latter changes substantially only
over a longer period. Critically, we assume that farmers can adapt to
these small changes in the climate. Indeed, some intrinsic adaptation
mechanisms can take place during time with the diffusion of technol-
ogy and the advancement of new knowledge (only to mention some
examples).
The inputs used in the current production function are by themselves
a function of farmer’s previous actions:

Ii,t = f(αi,t−1) (2)

where actions αi,t−1 are adjusted according to the climatic conditions
expected by farmers, and not in response to annual weather varia-
tions, i.e.:

αi,t−1 = f(E[µi,t]) (3)

Thus, if the annual weather is consistent with the usual climate, the
input choice leads to a potentially optimal output. Vice versa, when
the two variables differ significantly, the absence of input adjustment
would induce sub-optimal production. Similar to Mérel and Gam-
mans (2021), we account for this effect using a ªpenalty termº and
we assume that farmers choose actions αi,t−1 in order to maximize
the expected output:

αi,t−1 ∈ argmax E [F(wi,t, f(αi,t−1))]

= argmin E [(xi,t − f(αi,t−1))]

= argmin E [(xi,t − µi,t + µi,t − f(αi,t−1))]

= argmin E [(µi,t − f(αi,t−1))] = f−1(µi,t),

(4)

where E[xi,t] = µi,t. To say it simply, the farmers’ actions maximize
the expected output when they are in line with the local climatic
conditions. This occurs when the expected anomaly is equal to zero,
E[wi,t] = 0, meaning that a stable climate is a precondition for opti-
mal agricultural outcomes. Climate change (considered here only in
the form of weather anomalies) is modifying these climatic conditions
making sub-optimal the actions of the farmers.

2.3 methodology and data

2.3.1 Empirical Specification

We translate our conceptual framework in a reduced-form panel ap-
proach using fixed effects, in line with the new climate-economy lit-
erature (Dell, Jones, and Olken, 2014), that allows us to capture both
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direct and indirect effects. The basic idea is to exploit the year-to-year
variability of the (exogenous) weather anomalies and of the agricul-
tural production, comparing a country’s performance when the an-
nual weather is close or not to the historic climate. We use as weather
variables both temperature and precipitation (see Auffhammer et al.,
2013). We divide the anomalies by the standard deviation of the an-
nual average of the variables during the entire period for each coun-
try. This process is important for two reasons. First, it allows us to
give more weight to those weather shocks that are relevant with re-
spect to the distribution of the weather in the specific country (as
suggested in Dell, Jones, and Olken, 2014). As mentioned before, in
our framework the weather variations matters with respect to the ex-
pectations of the current climate and its variability is an important
factor to be considered. Indeed, it allows us to account for an implicit
model of adaptation since we are interacting our weather measure
with a climatic feature such as its long-term variability (Tol, 2021).
Second, with ªstandardizedº measures we can directly compare the
effect of temperature and precipitation anomalies since both of them
may have important consequences in the agricultural sector.
We compute the weather anomalies as T_ani,t = (Ti,t − T∗

i,t−1)/τi
and P_ani,t = (Pi,t − P∗

i,t−1)/ρi, representing the country-year devi-
ations of temperature (Ti,t) and precipitation (Pi,t) from their respec-
tive historical norms (T∗

i,t−1, P∗

i,t−1). These are defined as T∗

i,t−1 =

m−1
∑m

j=1 Ti,t−j−1 and P∗

i,t−1 = m−1
∑m

j=1 Pi,t−j−1, i.e. as moving
averages of the annual temperature and precipitation. m represents
the past time period upon which farmers base their expectations
about the current weather and they adjust the inputs accordingly. In
other words, its value means that farmers expect the current year’s
weather to be similar to the mean of the past m years. The lower
the m, the higher their willingness to change the inputs according
to the recent weather observations. As the baseline value of m, we
use 20 years. We think this time period is long enough to represent
the climate but still coherent with the expectations and adaptation
potentials of the farmers (results are unchanged for different values
of m, see Figure A1). τi and ρi depict the country-specific standard
deviations of annual temperature and precipitation over the entire
period. Finally, in order to account for non-linear and asymmetric ef-
fects induced by weather shocks, we follow Kahn et al. (2021) and
consider both positive and negative anomalies separately. This is a
natural choice (instead of using higher polynomial functional forms)
since the potential optimal outcome occurs when the anomaly is zero
and both positive and negative deviations from the expected climate
may have detrimental effects.
We estimate the following empirical specification:

∆yi,t = β
′

∆Wposi,t + γ
′

∆Wnegi,t +αi + θr×t + ϵi,t (5)
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where ∆yi,t is the change of (log) agricultural output for country i

at year t. It enters in first difference representing the growth rate.
This allows us to estimate the impact on agricultural production and
overcome the issue of non-stationarity due to the upward trend of
the variable. We know from previous literature that the impact of the
weather on agricultural outcomes is a level effect, meaning that the
consequences are not persistent in time and once the weather shock
has ended, a fast recovery occurs in the following year (assuming no
further shock). For this reason, we estimate a static model and focus
on the contemporaneous time period. Coherently, we also differen-
tiate the left-hand side of our equation considering the first differ-
ence of the weather variables (see Newell, Prest, and Sexton, 2021).
Wposi,t represents a vector of positive weather anomalies, i.e. pos-
itive deviation of annual temperature and precipitation from their
historical norms (e.g. Ti,t > T∗

i,t−1). Contrary, Wnegi,t represents a
vector of negative weather anomalies. Negative temperature and neg-
ative precipitation anomalies enter in absolute values to ease the in-
terpretation of the sign of the coefficients. Indeed, we expect that each
departure from the expected climate would induce a negative effect
(i.e. a negative sign).
αi represents a (growth) country fixed effect and implies that the
identification comes from the exogenous deviation of the weather
anomaly growth from its mean. As a result, βs and γs pick up the
anomaly impact on output that are departures from agricultural trend
growth. In other words, this is equivalent to controlling for a linear
country-specific time trend in the log of output (a standard approach
in the literature, see Newell, Prest, and Sexton, 2021 and Ortiz-Bobea
et al., 2021).
θr×t is region-year fixed effects and captures common regional shocks.
We prefer this set of time fixed effects in our baseline specification, in-
stead of simple year fixed effects, because the agricultural markets
are better integrated at the regional level instead of at global.2

We follow the literature using a parsimonious number of controls
to avoid the so-called ªover-controllingº problem (Dell, Jones, and
Olken, 2014). However, we acknowledge that there is a recent liter-
ature trying to determine if omitted variable bias could be an issue
in this standard setting. For example, there is growing evidence of
the role played by soil moisture (Ortiz-Bobea et al., 2019) and spatial
spillover effects (Bae and Dall’erba, 2021; Dall’Erba, Chen, and Nava,
2021).
Finally, ϵi,t represents the idiosyncratic error term. In the baseline
specification, we clustered standard errors simultaneously at country
and region-year levels to account for serial and spatial correlation in
the error terms.

2 We define the regions as Sub-Saharan Africa, Asia, Europe, ex-USSR, Latin America
and the Caribbean, West Asia and North Africa, North America, Oceania.
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2.3.2 Data

We collect national agricultural data from the USDA/ERS Interna-
tional Agricultural Productivity database (2019 version, USDA / ERS,
2019) that provides annual observations for 196 countries for the pe-
riod 1961-2016 on different agricultural variables. It represents one
of the most accurate sources for cross-country data comparison on
aggregate agricultural measures. In particular, we use as the main de-
pendent variable the gross value of agricultural output that accounts
for both crop and animal production. Others useful variables in the
data set are Total Factor Productivity (TFP) and inputs data such as
labor, land, and machinery (among others). This information is use-
ful to build other measures of productivity such as labor productivity.
We also collect agricultural variables from the World Development In-
dicators (WDI) database from the World Bank, such as agricultural
value added, food production index and Gross Domestic Product
(GDP) per capita.
We collect historic weather data from Ortiz-Bobea et al. (2021). They
built seasonal average temperature and total precipitation weighted
by cropland area within each country for the period 1948-2016 based
on the Global Meteorological Forcing Dataset. The seasonal weather
variables (named green season) are built using a five-month period
centered around the month of the year where the Normalized Dif-
ference Vegetation Index (NDVI) shows its maximum value. This is
intended to proxy the main productive season, when most of the
agricultural production takes place, and help us to better identify
the direct relationship between agricultural production and weather
anomalies.
The temperature data used for the counterfactual analyses of the fu-
ture impact of CC comes from the KNMI Climate Change Atlas pro-
vided by the Royal Netherlands Meteorological Institute (KNMI) and
World Meteorological Organization (WMO) (KNMI, 2013). We collect
the linear trend of temperature according to the mean ensemble of
the Global Circulation Models (GCM) of the CMIP5 (Coupled Model
Intercomparison Project, phase 5) for the four Representative Concen-
tration Pathways (RCPs) used in IPCC (2014).
Our final sample with agricultural and weather variables is an unbal-
anced panel with 172 countries that spans from 1968 to 2016. Table
A1 shows the descriptive statistics of the main variables and Table A2

provides the definition and the source for each of them.

2.4 results

Table 1 shows the results from the estimation of Equation (5). Weather
anomalies negatively affect aggregate agricultural output in our sam-
ple of countries. In Column (1), we observe these effects on the growth
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rate of real agricultural production. All the coefficients have a nega-
tive sign, but only those associated with positive temperature anomaly
and negative precipitation anomaly are significant at standard levels
(< 10%). This would imply that when the temperature is warmer or
precipitation is lower than expected, agricultural production suffers
a loss (in ceteris paribus conditions). In particular, when the tempera-
ture in the main productive season is higher than the historical norm
of one standard deviation (average of 0.62 ◦C), aggregate output de-
creases by 0.9 percentage points (ppt); when precipitation is lower
than the historical norm of one standard deviation (average of 40

mm) output decreases by 0.8 ppt.3

Using these coefficients we can derive the marginal effect of the weather
anomalies on the aggregate agricultural output, i.e. a 1◦C rise of tem-
perature and 100 mm decrease in precipitation with respect to the
climatology. In the case of temperature anomaly, we find a marginal
effect of -1.5 ppt, while in the case of precipitation anomaly we find
a marginal effect of -2 ppt.4

In our baseline result, we use as dependent variable the gross value
of the aggregate agricultural production. Since it is expressed in mon-
etary terms, this may hide the direct link between the food produced
and the weather, leading us to underestimate the true impact on the
supply. For this reason, we also estimate the effects of weather anoma-
lies on a quantity-based measure of food production such as the Food
Production Index, which represents the relative level of the aggregate
volume of production for each year in comparison with the base pe-
riod 2014-2016. The overall results, presented in Column (2), are sub-
stantially unchanged.
In our framework, we assume that farmers cannot significantly ad-
just the inputs in the short run. However, in practice, they have the
possibility to change their composition to avoid excessive losses (see
for example Aragón, Oteiza, and Rud, 2021). For this reason, we esti-
mate Equation (5) using three other dependent variables. In Column
(3) we use agricultural value added that measures the difference be-
tween the gross value of production and the costs of intermediate in-
puts. Thus, if the farmers adjust the inputs to the weather shock, this
would be reflected in the costs paid for them. In the case of tempera-
ture, we observe similar coefficients, while in the case of precipitation,
the coefficients are slightly different.5 In Column (4) we use output
per worker as dependent variable since labor is a crucial input for the
agricultural system, especially in developing countries. Again, the co-

3 Table A3 and Figure A1 show some robustness checks.
4 These values are computed using a simple proportion between the estimated coeffi-

cients and the standard deviations of within-country temperature and precipitation
annual variables (e.g. 1°C * -0.9 ppt / 0.62°C).

5 Differently from the variable of aggregate agricultural output, the VA also incorpo-
rates fish and forestry production making the two estimates only partially compara-
ble.
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Table 1: Impact of Weather Anomalies on Agricultural Production

(1) (2) (3) (4) (5)

∆(ln) ∆(ln)Food ∆(ln) ∆(ln)Output ∆(ln)

Output Index VA per worker TFP

∆Tpos -0.00944∗∗∗ -0.00947∗∗∗ -0.00981∗∗∗ -0.0107∗∗∗ -0.00821∗∗∗

(0.00175) (0.00187) (0.00289) (0.00190) (0.00163)

∆Tneg -0.00181 -0.00181 -0.00111 -0.00222 -0.00400∗

(0.00223) (0.00245) (0.00377) (0.00233) (0.00234)

∆Ppos -0.00145 -0.00102 0.00115 -0.00249∗∗ -0.00244∗∗

(0.00106) (0.00118) (0.00262) (0.00125) (0.00111)

∆Pneg -0.00780∗∗∗ -0.00766∗∗∗ -0.00469∗ -0.00800∗∗∗ -0.00658∗∗∗

(0.00177) (0.00202) (0.00283) (0.00195) (0.00175)

Cons 0.0195∗∗∗ 0.0210∗∗∗ -0.0219∗∗∗ 0.0162∗∗∗ 0.00846∗∗∗

(0.0000230) (0.0000249) (0.0000749) (0.0000232) (0.0000225)

N 8232 7422 5695 8088 8232

R2 0.155 0.138 0.131 0.149 0.125

Notes: estimated model as Equation (5). Historical norms are computed using 20-
years moving averages. Standard errors (in parentheses) are clustered at country
and region-year levels. Asterisks indicate statistical significance at the 1% (***), 5%
(**), and 10% (*) levels.

efficients associated with positive temperature (-1 ppt) and negative
precipitation anomalies (-0.8 ppt) are fairly similar to our baseline es-
timate. Finally, in Column (5) we use TFP as dependent variable. It
considers the overall inputs productivity and account for annual in-
puts changes. Also in this case weather anomalies negatively affect
aggregate TFP and we find significant coefficients associated with
positive temperature and negative precipitation anomalies, with sim-
ilar magnitudes.
Overall, these results are in line with previous estimates of the impact
of climatic shocks on agricultural outcomes. For example, the coeffi-
cients estimated in Ortiz-Bobea et al. (2021), which use a quadratic
formulation, imply a marginal effect of temperature at 20°C of about
-1.6%. However, our approach allows accounting for non-linearity
without imposing a specific functional form and without linking the
magnitude of the coefficient to the level of the variables. This impor-
tant feature allows us to better identify heterogeneity among coun-
tries, as described in the next subsection. 6

6 We also tried to understand how much our model captures adaptation by estimating
a short-run linear "levelsº model and comparing it with our results. In the former
case, a 1°C increase in temperature, decreases output by 2.3% suggesting that adap-
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2.4.1 Heterogeneity Between Countries

An important question concerning the impact of climate change on
economic outcomes is related to what extent the direction and magni-
tude of the estimated effect differ between countries. Possible sources
of heterogeneity are the development level of the countries (Dell,
Jones, and Olken, 2012), their degree of integration in the global econ-
omy (Garcia-Verdu et al., 2021), or geographical conditions. For in-
stance, high-income countries may have better adaptive capabilities
to cope with adverse weather shocks, while less developed ones may
lack crucial conditions (such as infrastructures, credit market imper-
fections, risk diversification tools, institutional mechanisms, and pub-
lic subsidies) to reduce these negative effects. We assess the heteroge-
neous effects of weather anomalies on aggregate agricultural produc-
tion using differences in GDP per capita, in order to account explic-
itly for vulnerability and adaptation potential (see Auffhammer, 2018).
Far from being perfect, this measure is a good proxy for the level of
development as it correlates with most of the characteristics that can
play an important role in detecting differences among countries. 7 We
interact our measure of weather extremes with the GDP per capita of
each country to verify that with higher levels of income, the negative
impact of the weather anomalies decreases (and vice versa). We also
divide our sample considering the average GDP per capita distribu-
tion (over the entire period) and attribute a dummy variable to three
groups, corresponding to those countries with values lower than the
25th percentile, lower than the 50th percentile, and higher than the
75th percentile. We then estimate separately Equation (5) interacting
the dummy with the weather anomalies. These results are shown in
Table A4 and show heterogeneous effects for temperature anomalies
and precipitation negative anomaly, with the magnitude of the coeffi-
cients proportional to the level of income.
Focusing on temperature, Figure 1 shows the marginal effect of a
unit increase in positive temperature anomaly according to the GDP
per capita distribution, as estimated in Column (1) of Table A4. The
marginal effect is negative and significant when the level of income
is low and reduces its magnitude to zero (and not significant) with
higher incomes. At the bottom of Figure 1, we also plot the his-
tograms representing the distributions of GDP per capita, population,
and agricultural production, along with the level of GDP per capita.
Note that most of the world’s population and agricultural production

tation (captured by our approach) could reduce this negative effect by 0.8 percentage
points.

7 GDP per capita is considered, to some extent, correlated with geographic conditions.
We investigate, as a further source of heterogeneity, the differences in countries’ cli-
mates and in particular the differences between hot and cold countries. The type of
analysis is the same used in the case of GDP per capita and the results show no
heterogeneous effects (Table A5).
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is concentrated where the marginal effect is the highest in magnitude.
This result underlines two important facts: the climate instability in-
duced by CC would affect most of the world’s agricultural production
and population; it would amplify even more the gap between wealthy
nations and less developed countries as has been recently shown by
Callahan and Mankin (2022) and Palagi et al. (2022).
These heterogeneous effects are in line with previous literature fo-
cusing on the GDP-climate relationship (Dell, Jones, and Olken, 2012,
Letta and Tol, 2019, Newell, Prest, and Sexton, 2021). However, the
agricultural literature shows mixed results. Country-specific analyses
based on crop yields find negative effects also in high-income coun-
tries (e.g. Schlenker and Roberts, 2006, Burke and Emerick, 2016 for
the USA; Gammans, Mérel, and Ortiz-Bobea, 2017 for France). Fo-
cusing on aggregate TFP in the USA, Ortiz-Bobea, Knippenberg, and
Chambers (2018) find heterogeneous effects of climatic shocks with
detrimental results in the Midwest and Southeast. They show that
such heterogeneity is due to the sensitivity of non-irrigated crop pro-
duction in those areas, while regions specialized in livestock produc-
tion do not suffer the same effects.

2.4.2 Counterfactual Analysis for Future Climate

We use the described results to build counterfactual scenarios, help-
ing us to understand what are the possible consequences of pursuing
further climate instability in the future. Our aim here is not to fore-
cast the future, but to give a sense of the direction, distribution, and
magnitude of potential impacts of the weather extremes induced by
climate change in a ceteris paribus condition. Therefore, we compute
future temperature anomalies using the four Representative Concen-
tration Pathways (RCP 8.5, RCP 6.0, RCP 4.5, and RCP 2.6) used in
IPCC (2014) for the period 2017-2070.8 We estimate future changes
in countries’ agricultural production considering the heterogeneity
of the impacts with respect to their income level as shown in the
previous subsection. We allow countries to increase their future in-
come level according to projected economic growth rates for the pe-
riod 2017-2070. To this end, we use the Shared Socioeconomic Path 2

(SSP2) ªMiddle of the Roadº scenario and the country-specific growth
rates computed by the OECD’s ENV-Growth Model. We use RCP2.6
as the reference scenario. It represents an emissions path that is in
line with the Paris Climate Agreement target. Therefore the results
are interpreted as potential changes in production given by failing to

8 We focus only on temperature because it shows a clear upward trend that will con-
tinue also in future years. In the case of precipitation, the trend derived by RCP
scenarios is very often not statistically significant at the country level and for this
reason, we do not present them. However, this must not be interpreted as a non-
relevant issue (see e.g. Damania, Desbureaux, and Zaveri, 2020).
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Figure 1: Marginal Effect of Positive Temperature Anomaly on Agricultural
Output

Notes: the graph shows the marginal effect of a unit increase in positive tempera-
ture anomaly on agricultural output (y-axis), associated with different levels of GDP
per capita (x-axis). Gray bands show the 95% and 90% confidence intervals. The
histograms represent GDP per capita, population, and agricultural production dis-
tributions in 2010, according to specific income levels shown in the x-axis (Norway,
Switzerland, and Qatar are omitted because of their high values).

meet the established goal. We detail the methodology in Appendix
A.1.
Table 2 describes the cumulative percentage change in aggregate agri-
cultural production in 2070 (a medium-long run horizon), divided by
world regions and RCPs scenarios. In the case of RCP 8.5 (Column 1),
the highest emissions scenario, losses are particularly large (average
of -18%) with Africa, Asia and Ex-USSR territories being the most
affected. In this scenario, the gap between income groups is particu-
larly pronounced, with emerging and low-income countries suffering
substantial losses (-21% and -29% respectively). 9

9 RCP 8.5 scenario is potentially catastrophic (Woillez, Giraud, and Godin, 2020) but
highly unlikely (Hausfather and Peters, 2020). We report it here because it is stan-
dard in the literature and it represents a particularly unstable climate.
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Table 2: Cumulative Change (%) of Agricultural Output in 2070

(1) (2) (3)

Region RCP 8.5 RCP 6.0 RCP 4.5

Africa -26 -11 -11

(-38, -14) (-16, -6) (-16, -6)

Asia -19 -7 -8

(-32, -6) (-12, -2) (-14, -2)

Europe -1 0 0

(-27, 26) (-12, 12) (-10, 10)

Ex USSR -29 -13 -12

(-49, -8) (-22, -4) (-21, -4)

Latin America and the Caribbean -18 -7 -7

(-31, -4) (-12, -2) (-13, -2)

Near East and North Africa -18 -7 -7

(-41, 5) (-17, 2) (-16, 2)

North America 7 3 3

(-34, 49) (-13, 20) (-14, 21)

Oceania 5 2 2

(-21,31) (-10, 14) (-9, 13)

Advanced Economies 2 1 1

(-27, 31) (-12, 14) (-11, 13)

Emerging Markets -21 -9 -8

(-38, -3) (-16, -1) (-16, -1)

Low-Income Countries -29 -12 -12

(-41, -16) (-17, -7) (-17, -7)

Average -18 -7 -8

(-35, -1) (-15, 0) (-15, -1)

Notes: RCP 2.6 is the reference scenario. Appendix A.1 shows the methodol-
ogy. Values in parenthesis are the upper and lower bounds, accounting for
uncertainty from the estimates (95% level). Bold numbers are those where
the confidence interval does not cross zero.

Columns (2) and (3) show the results for the RCP 6.0 and RCP 4.5
scenarios, the ones that better represent the emissions trend in recent
years. The results between the two are similar, with an average loss
of about -8%. Also in this case, low-income countries and emerging
markets are the most affected (about -12% and -9% respectively) and
the gap between advanced economies and the rest of the world is
marked.10

Finally, in Figure 2 we plot the percentage changes in agricultural pro-

10 In Figure A2 we show the evolution of a Gini Index based on agricultural output per
worker. The median value among the different scenarios is about 0.77 in 2070 with
an increase of about 10% from the initial year (2016).
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Figure 2: Cumulative Change (%) in Agricultural Output in 2070: RCP 6.0

Notes: the methodology to compute future anomalies and consequent changes in

agricultural output is presented in the Appendix A. Striped areas indicate non-

significant estimates at 90% confidence interval.

duction according to the RCP 6.0 scenario on a world map, showing
the geographical distribution of the predicted impacts. Africa and
West Asia are the most affected areas with production losses rang-
ing from -6 to -14%. Contrary, high-income regions, such as Europe,
North America, and Oceania have positive (although not statistically
significant) effects. The overall results show that limiting climate in-
stability following the Paris Climate Agreement could substantially
benefit the world’s agricultural production, particularly in the most
vulnerable regions.

2.5 conclusions

In this paper, we analyze the relationship between aggregate agri-
cultural production and weather anomalies using country-level data
from a global sample of countries in the last decades. Differently from
a large share of the previous literature, we focus our attention on an
aggregate measure of agricultural production that allows us to ac-
count for within-country and sectoral adjustments to climate change.
We also use a novel methodological approach, that emerged recently
(see Kahn et al., 2021), exploiting weather departures from the histor-
ical climatology which better represents the shocks that a changing
and unstable climate imposes on farmers. Indeed, the agricultural
production system is adapted to the local climate, but it is affected
by unforeseeable weather anomalies that make suboptimal farmers’
choices. This is particularly important since CC is constantly modify-
ing the climatic conditions under which farmers are operating.
Our results suggest a negative, non-linear and significant relation-

ship between aggregate agricultural production and weather anoma-
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lies. Temperatures higher than the historical norm cause negative
effects on aggregate agricultural production and productivity. The
same is true when there is a reduction in total precipitation. Impor-
tantly, we find that the structural characteristics of countries (that
we proxy with income) play a key role in defining the magnitude
of the impacts caused by the temperature anomalies on their agri-
cultural production. These results renew the discussion on the distri-
butional effects of CC damages and, consequently, policies (Hsiang,
Oliva, and Walker, 2019). In absence of substantial mitigation, adap-
tation, and development, future CC projections show sizeable losses
in those regions that have the larger share of agricultural production
and population. The distribution of these losses shows that low and
middle-income countries would be the most affected and that fur-
ther inequalities between them and the advanced economies would
emerge.
We derive three interdependent policy considerations from our anal-
ysis. First, sustainable development policies, e.g. increase the produc-
tivity of small agricultural producers, foster innovation, and sustain
inclusive economic growth (UN, 2015), should be considered as an
integral part of the CC policy agenda, together with mitigation and
adaptation policies. Those countries that face major challenges should
focus their climate policy on insulating their economy (and particu-
larly their agricultural system) from weather shocks, implementing
development and adaptation policies. Second, advanced economies
should make any effort to fulfill the targets posed by the Paris Agree-
ment, namely, reduce GHGs emissions limiting global warming to
1.5°C and finance the Green Climate Fund with USD 100 billion per
year to support developing countries (UNFCCC, 2015). In a similar
direction goes the recent agreement on the ªLoss and Damageº Fund
for vulnerable countries decided at the COP27. Third, policies must
be implemented immediately to stabilize the climate, avoid the fore-
seen large losses in the food production system, and not compromise
efforts in reaching other goals such as reducing global hunger and
inequality.





3
A D A P TAT I O N T O C L I M AT E C H A N G E T H R O U G H
M A R K E T I N T E G R AT I O N : E V I D E N C E F R O M
A G R I C U LT U R A L T R A D E I N T H E E U

abstract

Understanding the trade potential in reducing the negative effects
caused by climate change in agriculture is a hotly debated topic, es-
pecially because of the high levels of protection in this sector. My
analysis provides additional evidence of the role played by market
integration as an adaptation mechanism. Exploiting a rich data set
of trade flows between sub-national administrative units in the Eu-
ropean Union, I run counterfactual analyses using a neo-Ricardian
quantitative trade model. I consistently estimate the productivity-to-
exports elasticity, as well as the impact of future climate change on
agricultural productivity. Comparing simulations with different de-
grees of trade adjustments, the results show that market integration
has little effect on overall welfare in the EU. However, large hetero-
geneity exists among regions, and in some cases, trade has a sub-
stantial role in defining welfare changes. Furthermore, looking at the
welfare decomposition, I show that consumers and producers react
differently and consumers in regions where climate change induces
a reduction in productivity would benefit from import adjustments.

Keywords: Agriculture, Trade, Climate Change, Europe
JEL Classification: D58, F18, Q17, Q54

3.1 introduction

The climate is a fundamental input in the agricultural sector and, to
large extent, determines what is profitable to be produced in a specific
geographic area. Because of climate change (CC), production patterns
are changing and will change further if greenhouse gas emissions
(GHGs) will not stop substantially in the next years. Some countries
will have an advantage from warmer temperatures and longer grow-
ing seasons and they will be able to produce new or more abundant
crops. Contrary, in other regions, heat stress and water scarcity will
reduce productivity if the adaptation investments are too costly.
A direct consequence of such a phenomenon is the change in ab-
solute and comparative advantages in the agricultural sector. The
consequences of evolving comparative advantage induced by climate

21



22 adaptation to climate change through market integration : evidence from

change are gaining interest in the agricultural trade literature (Gaigné
and Gouel, 2022). With heterogeneous impacts, a changing climate
would induce different types of specialization. These new patterns of
comparative advantage would involve specialization in new varieties
of products and changes in land allocation, and trade flows would
consequently adjust to them. Therefore, a natural question that has
emerged is related to what extent new patterns of trade from regions
that benefit from a relatively more suitable climate toward those neg-
atively affected could reduce their welfare losses.1

As an early example, Reilly and Hohmann (1993) investigate the role
of agricultural international trade in the case of future climate change
scenarios. They recognize that for open economies, the effects of cli-
mate change on agricultural markets cannot be considered in isola-
tion from the rest of the global economy. Using a partial equilibrium
model and yield changes predicted by crop modelers, they find that
international trade adjustments tend to buffer the impact of climate
change but with relatively small effects on domestic economies.
Contrary, Randhir and Hertel (2000) reach the opposite conclusion
that international trade would have a detrimental welfare effect. Their
result is driven by positive yield changes induced by climate change
in developed countries that have high levels of protection. Assuming
similar levels of agricultural subsidies also in future scenarios, they
show that increased price transmission would reduce global welfare.
Recently, Costinot, Donaldson, and Smith (2016) make an important
attempt at quantifying the adaptive role of within-country produc-
tion and between-country trade adjustments arising from changes in
comparative advantage for some of the most important cultivated
crops. They build a quantitative model suited to exploit a micro-level
data set on agricultural productivity that uses high-resolution infor-
mation on geographic and climatic conditions to predict crop yields.
These data are available both under contemporary growing condi-
tions and under climate change scenarios and, by comparing them, it
is possible to observe directly the evolution of comparative advantage
across space, as predicted by climatologists and agronomists. Their re-
sults show a negligible role played by international trade compared
to within-country production adjustments.
Following the previous work, Gouel and Laborde (2021) build a very
similar model that incorporates also the livestock sector and uses pa-
rameters from the literature. They show that, with these new features,
international trade could contribute substantially to reducing global
welfare losses, although production adjustments make a larger contri-

1 The economic literature on agricultural trade and CC is generally divided in two
temporal scales (Baldos and Hertel, 2015): short-run shocks from (extreme) weather
events on seasonal production with consequent trade flows from "surplus to deficit"
regions (e.g. Dall’Erba, Chen, and Nava, 2021); and long-run shift in climate suitabil-
ity for agriculture that induces Ricardian specialization (e.g. Costinot, Donaldson,
and Smith, 2016). My focus is on the second one.
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bution.2

Although the mentioned literature provides critical information on
the potential role of trade as an adaptation mechanism for climate
change, it also presents some limitations. First, most of the previous
works focus on cross-country international trade where trade barri-
ers are substantial. Second, often the literature relies on crop models
(developed by agronomists) to simulate the future impact of CC that
are based on future potential environmental conditions (especially of
the soil), with little relation to actual farmers’ behavior.
Given these limitations and the renewed debate on such an impor-
tant topic, the aim of the present work is to shed new light on it. I
decided to focus on a particular geographic area, i.e. Europe. The EU
represents a well-integrated market with limited barriers to trade and
it has a vast climatic heterogeneity.3 Considering its high technologi-
cal development it is also reasonable to think that important changes
to the production structure will be put in place in order to adapt to
a warmer future. Exploiting a rich data set of productivity, weather
variables, and trade flows for sub-national administrative units, I use
econometric methods to estimate the changes in agricultural produc-
tivity due to CC and build a partial equilibrium model that allows
me to simulate the future consequence on trade and welfare.
The analysis goes as follows: I build a partial equilibrium model of
agricultural trade between European sub-national NUTS2 units (I re-
fer to them as "regions"). Describing the model in terms of changes,
I simulate how an exogenous shock in productivity due to climate
change would impact the sector. Finally, to quantify the role of mar-
ket integration as an adaptation mechanism, I simulate different de-
grees of trade adjustments and compare the results. Importantly, I
estimate the trade elasticity (a key parameter of the model) that, in
the neo-Ricardian literature, governs the comparative advantage. I
also calculate the counterfactual productivity changes using detailed
information at the local level following the climate-econometrics lit-
erature. This allows me to quantify the impact of climate change con-
sidering the historical economic behavior of the farmers and not only
the soil potential predicted by agronomic models.
Results show that specialization induced by new climatic conditions
would change trade patterns. On average, welfare changes are small.
Limiting the possibility to fully adjust the trade flows, by fixing the
bilateral import shares, does not change substantially the results. This
would imply a small role of trade as an adaptation mechanism to cli-
mate change. However, large heterogeneity exists among regions and

2 Other important contributions to the literature come from quantitative models of
partial and general equilibrium such as Janssens et al. (2020) and Baldos and Hertel
(2015).

3 Although I refer to market integration, my empirical exercise is focused specifically
on trade adjustments which represent a narrow component of it (Lence and Falk,
2005)
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between consumers and producers. Producers in the northern part
of Europe, where agricultural productivity is predicted to increase,
would have significant benefits from full trade adjustment. In a sim-
ilar manner, consumers in the Mediterranean regions, where the im-
pact of climate change would reduce productivity, could benefit from
importing agricultural goods at lower prices.
The paper is presented as follows: in Section 3.2, I describe the three
steps that allow me to perform the simulations, namely, the quanti-
tative model (subsection 3.2.1), the estimation of the trade elasticity
(3.2.2) and of the productivity change (3.2.3); in Section 3.3, I describe
the data used in the analyses; in Section 3.4, I present the results from
the estimations and simulations; finally, Section 3.5 concludes.

3.2 methods

To understand which role trade plays as an adaptation mechanism,
we build a quantitative neo-Ricardian model of trade that describes
the relationship between agricultural productivity, trade flows, and
welfare. In the standard Ricardian model (Dornbusch, Fischer, and
Samuelson, 1977), the comparative advantage, i.e. the difference in
relative autarky prices caused by cross-country productivity differ-
ences, is the rationale for trade. Qualitative predictions of the Ricar-
dian model are not easy to be tested, but results in line with the theory
can be found in Bernhofen and Brown (2005) and Costinot, Donald-
son, and Komunjer (2012). Since CC has heterogeneous impacts on
countries’ agricultural productivity, this theoretical model is a natu-
ral choice for my purposes.4

Exploiting an ingenious choice for the distribution of technology within
each country, Eaton and Kortum (2002) develop a multi-country neo-
Ricardian model where estimation of parameters and counterfactual
analyses are possible. Dekle, Eaton, and Kortum (2007) and Dekle,
Eaton, and Kortum (2008), further develop their previous model and
describe how to identify the minimum set of information necessary
to obtain counterfactual results (this approach has been called ªexact
hat algebra"). Based on these works, Costinot, Donaldson, and Ko-
munjer (2012) build a multi-country and multi-sector model provid-
ing theoretical justification for the estimate of the trade elasticity (a
key parameter in the model). Finally, Costinot, Donaldson, and Smith
(2016) and Gouel and Laborde (2021) build computable general equi-
librium models precisely to evaluate the role of production and trade
adjustments to CC.
Based on this literature, I develop a theoretical model that allows
me to quantify (a) how productivity affects trade flows; and (b) how

4 Other trade models in which varieties are distinguished by firms rather than coun-
tries such as in Krugman (1980) and Melitz (2003) are not considered here because,
in this setting, I cannot derive firm-level (heterogeneous) impacts of climate change.
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an exogenous agricultural productivity shock, induced by CC, affects
trade flows and welfare. In the next subsections, I describe the the-
oretical model (3.2.1), the empirical strategy to estimate the trade
elasticity (3.2.2), and the counterfactual productivity induced by new
climatic conditions (3.2.3).

3.2.1 Model

Consider the European agricultural market formed by N regions (those
within the member states and a "Rest of the World" region), indexed
by i for the origin and j for the destination. For each region, I assume
a constant-elasticity demand function such as:

Dj = αjP
−ϵ
j (6)

where Dj is the quantity demanded, Pj is the consumer price index
of the agricultural products, and αj is a shift parameter. Similarly, I
assume a constant-elasticity supply function:

Si = Aip
η
i (7)

where Si is the quantity produced, pi is the producer price, Ai is
sectoral productivity that represent a supply-shift parameter and η is
the supply elasticity.
In neo-Ricardian trade models (Eaton and Kortum, 2002, Costinot,
Donaldson, and Komunjer, 2012), productivity in origin i is drawn
from a Fréchet distribution, such as:

Fi(a) = exp

[

−

(

a

Ai

)

−θ
]

where cross-regional variability in the parameter Ai > 0 pins down
differences in absolute advantage, while the parameter θ > 1 reg-
ulates the dispersion of efficiency within the distribution. A lower
value of θ implies a stronger role for comparative advantage and
trade. Since in autarky consumers must consume even their region’s
worst draws, gains from trade emerge because they can import from
other regions and benefit from a favorable productivity draw there.
This also implies that producers can specialize in goods for which
they have the best productivity draws.
From this framework, I derive a standard gravity equation that deter-
mines trade flows:

xi,j = γi,j

(

τi,jpi

Pj

)

−θ

Ej (8)

where xi,j is the value of trade from i to j, γi,j is a constant, τi,j are
bilateral trade costs and Ej = PjDj is the expenditure for agricultural
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products in the importer region j. The consumer price index (Pj) is
given by:

Pj =

[

N∑

i

γi,j(τi,jpi)
−θ

]−1/θ

(9)

where θ substitutes σ− 1 in demand-side Armington models (with
σ being the elasticity of substitution between origin-differentiated
goods).
Market equilibrium is given by the equality between the value of pro-
duction in origin i and the value of demand from all the regions:

piSi =

N∑

j=1

xi,j (10)

I link directly agricultural productivity with the climatic conditions
in the region of origin (Ci) such that:

Ai = F(Ci) (11)

I will use this relationship to estimate the impact of the historical
climate on agricultural productivity and to simulate the future impact
of climate change on it. Following Dekle, Eaton, and Kortum (2008),
I reformulate the model in terms of changes using as an exogenous

shock the change in agricultural productivity, Âi =
A

′

i

Ai
(with A

′

being
the new value). The model is composed by the following system of
equations:

D̂j = P̂−ϵ
j (12)

Ŝi = Âip̂
η
i (13)

x̂i,j =

(

p̂i

P̂j

)

−θ

Êj (14)

P̂j =

[

N∑

i

πi,j(p̂i)
−θ

]−1/θ

(15)

piQi p̂iQ̂i =

N∑

j=1

xi,jx̂i,j (16)

where πi,j = xi,j/Ej represents the bilateral import share, and in
Equation (16) I use the fact that for a generic variable v, the following
holds: v

′

= v · v̂. πi,j captures the interrelation between region i and
j such as bilateral costs, preferences, etc., that are not explicitly mod-
eled. Although this simplifies the analytical framework, it assumes
that counterfactual bilateral characteristics evolve in a similar way as
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in the historical period. I acknowledge that, in the EU context, this as-
sumption is relatively innocuous while in the case of extra EU regions
(RoW) it is not.5

3.2.2 Productivity-to-Exports Elasticity

One important parameter in the model is the trade elasticity θ, which
regulates the relationship between productivity and trade. I exploit
my model setting to consistently estimate this parameter. I derive the
econometric equation from the gravity equation such as:

xi,j =
(τi,jpi)

−θ

∑N
i=1(τi,jpi)−θ

Ej (17)

Given that I do not observe producer prices, I assume that they are
proportional to the production costs (ci) and inversely proportional
to productivity, such that pi = ci/Ai. Substituting it in the previous
equation and dividing by by xn,j (for a general exporter/competitor
n) I obtain (in logarithm):

ln

(

xi,j

xn,j

)

= θ ln

(

Ai

An

)

− θ ln

(

ciτi,j

cnτn,j

)

(18)

This equation shows that to estimate the coefficient that regulates the
relationship between relative productivity and exports in this Ricar-
dian world, we need to account also for production and trade costs.
Estimating directly this equation raises issues of reverse causality.
Therefore, I model agricultural productivity as a function of inno-
vation and rainfall and I rely on an instrumental variable approach.
This method helps also to eliminate possible omitted variable bias
and measurement errors. I estimate the following specification:

log xi,j = θ log Ãi +αj +β ′ci + γ ′
Ti,j + ϵi,j (19)

where log xi,j is the (logarithm) value of exports from region i to
region j; log Ãi is the predicted value of productivity in origin i in-
strumented using the number of agricultural patents and total rainfall
attributed to that specific region6; αj is the importer fixed effects that
account for destination-specific characteristics; cj is a vector of control
variables for the exporter; Ti,j is a vector of bilateral trade costs; and
ϵi,j represents the error term.
This estimation relies on the identifying assumption that innovation
and rainfall are correlated with bilateral trade flows only through
their impact on productivity, which is used as a proxy for producer
prices. Given the structure of this specification, the identification of

5 Notice that the RoW contribution on EU food consumption is not particularly rele-
vant, being only 0.2% of the EU imports.

6 The results are similar when lagged values of the instruments are used.
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the parameter θ comes from cross-sectional variability in exports and
productivity levels between regions, in line with the Ricardian nature
of the model.
To estimate Equation (19), I use bilateral trade and productivity data
for 212 sub-national units (NUTS2) within the EU averaged for the
years 2009-2010 (details in subsection 3.3). Within the EU, trade and
institutional barriers are limited and this allows to avoid possible bias
related to them.

3.2.3 Counterfactual Productivity

The next step to understand the role played by trade adjustments in
the context of climate change is to compute the counterfactual pro-
ductivity in agriculture that would be used as an exogenous shock
in the trade model simulations. To do that, I follow the empirical lit-
erature on climate change impacts in agriculture where productivity
is modeled as a function of the weather (Ortiz-Bobea, 2021). Mérel
and Gammans (2021) show that, under specific conditions, the use
of weather variables in a non-linear panel fixed effect approach is
able to capture long-run climatic response. Therefore I estimate the
following baseline specification:

∆logAi,t = β1∆Ti,t +β2∆T
2
i,t + γ1∆Pi,t + γ2∆P

2
i,t + δi + ρc×t + ϵi,t

(20)
where logAi,t is the (logarithm) agricultural productivity in region i

in year t. The weather is represented by temperature (Ti,t) and precip-
itation (Pi,t) and enters with a linear and a quadratic term. The inclu-
sion of the squared variables allows the effect of the inter-annual vari-
ations in weather to change with their (cross-sectional) baseline level,
i.e. the climate, and to capture non-linearities (Mérel and Gammans,
2021). δi are region fixed effects and controls for average regional
productivity. Given that the model is expressed in first difference, the
inclusion of δi is equivalent to controlling for a region-specific linear
time trend in logA. ρc×t are country-year fixed effects that control for
common shocks within the same country. ϵi,t is the error term that
incorporates unobserved changes in inputs not absorbed by fixed ef-
fects and measurement errors.
To estimate Equation (20), I use productivity and weather data for
about 1172 sub-national (NUTS3) provinces (further discussion in sec-
tion 3.3). This level of detail allows us to clearly identify the climate-
productivity nexus accounting for within-country heterogeneity.
We use the estimated relationship to compute the counterfactual pro-
ductivity change (Âi) in a future scenario of climate change. To do
that, we use the following formula:

Âi = β̂1( ÅT
′

i −
ÅTi) + β̂2( ÅT

′2
i − ÅT2

i ) + γ̂1( ÅP
′

i −
ÅPi) + γ̂2( ÅP

′2
i − ÅP2

i ) (21)
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where the future ( ÅT
′

i , ÅP
′

i) and historic ( ÅTi, ÅPi) climatic variables are ex-
pressed as 20-years-averages in the periods 2081-2100 and 1981-2000

(predicted by the same regional climate model) and β̂s and γ̂s are the
estimated coefficients from Equation (20). The future projections are
computed using the Representative Concentration Pathways (RCP)
4.5 and 8.5. Further discussion is presented in the following section
(3.3).

3.3 data

Trade data comes from the PBL EUREGIO database provided by the
PBL Netherlands Environmental Assessment Agency (Thissen et al.,
2018). It provides Input-Output tables spanning from 2000 to 2010

with regional information at NUTS2 level for the European Union
member states and other external countries. For each region, the data
are disaggregated into 14 sectors. I collect output data (exports) for
the agricultural sector from the region of origin, and I aggregate the
inputs (imports) for the 14 sectors of each destination region. In this
way, I have information on the value of agricultural production traded
from region i to region j. I then use the average value between the
years 2009-2010 to calibrate the model and to estimate Equation (19).
These are the last two available years of the data and represent the
period of maximum European integration. The final sample has 212

EU sub-national regions and the "Rest of the World" with the extra-
EU territories aggregated. Seven countries (Bulgaria, Cyprus, Estonia,
Latvia, Lithuania, Malta, and Romania) do not have information at
NUTS2 level, therefore I consider the national values.
To proxy agricultural productivity, I use the sectoral (NACE2) Gross
Value Added (GVA) divided by the number of employees in the same
sector. The source of these data is the Annual Regional Database of
the European Commission (ARDECO) (European Commission, 2022).
The category "Agriculture" refers to agricultural, forestry, and fishing
products, the same of the trade data. ARDECO provides data at both
NUTS2 and NUTS3 territorial levels for the period 1980 to 2020. I
use the former to match the trade data and estimate the parameter θ.
Contrary, for the estimation of the climate-productivity relationship I
use the more detailed information at NUTS3.
In the estimation of the trade elasticity, I use an IV approach where
the instruments are the number of agricultural patents and/or rain-
falls for each region of production. The former data come from the Or-
ganisation for Economic Co-operation and Development (OECD) Reg-
Pat database (release version January 2021, Maraut et al., 2008), while
the rainfall data are from the ERA5-land database (Muñoz Sabater,
2019). I collect also data on bilateral trade costs, such as common cur-
rency, common language, and distance. The currency and language
information is collected at the national level from the CEPII gravity
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database (Conte, Cotterlaz, and Mayer, 2022), while the last is com-
puted as the distance between the centroid of the regions.
To estimate the productivity-climate relationship, I rely on the proxy
of agricultural productivity (discussed before) and climatic variables
such as temperature and precipitation. I collect these data for the
period 1980 to 2020 from the ERA5-land database (Muñoz Sabater,
2019). It provides grid-level monthly information with a cell size of
about 9 x 9 kilometers (0.1° x 0.1°). I compute the region-specific an-
nual average temperature and total precipitation weighting them by
the agricultural land distribution in each sub-region (NUTS3). The
gridded data on crop and pasture areas (which I aggregate to form
the agriculture land share) come from Ramankutty et al. (2008) and
refers to the year 2000.
Finally, for future climatic projections, I rely on the KNMI-RACMO22E
regional climate model for the European continent provided by the
Netherlands Environmental Assessment Agency. This model falls in
the framework of the Coordinated Regional Climate Downscaling
Experiment (CORDEX) that aims at providing climate change infor-
mation on regional scales in fine detail, which cannot be obtained
from coarse-scale Global Circulation Models (GCMs). The data are
provided at 0.11° x 0.11° resolution on a monthly bases both for his-
toric and future periods (called experiments). Future projections are
provided assuming greenhouse gas emissions based on the RCP 4.5
and 8.5. The former represents a scenario where CO2-equivalent emis-
sions stabilize approximately at 650 ppm in the year 2100, while in
the second they will exceed 1000 ppm. In order to have perfect com-
parability, I compute 20-year long-term averages for temperature and
precipitation in the periods 1981-2000 and 2081-2100 for each NUTS2

region (using again land weights). The difference between the two
represents the change in climatic conditions.
Table 3 summarizes descriptive statistics for key variables.

Table 3: Descriptive Statistics

Mean Median S.D. Min Max Territory

Exports (Mln e) 2.17 0.16 14.34 0 915.22 NUTS2

Patents 6.34 1 17.38 0 187 NUTS2

Distance (Km) 1274 1156 761 17 5269 NUTS2

Productivity (e/Empl) 24348 21680 18779 42 897750 NUTS3

Temperature (°C) 10.11 9.94 2.72 -1.83 19.56 NUTS3

Precipitation (cm) 80.54 76.54 25.94 3.68 300.58 NUTS3

Notes: own elaboration of the variables presented in Section 3.3 .
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3.4 results

In this section, I show the results from each step of the analysis. First,
I show the results from the estimation of the trade elasticity; second,
I present the changes in agricultural productivity predicted for new
climatic conditions; and finally I simulate the counterfactual scenarios
to quantify the welfare effect induced by trade adjustments.

3.4.1 Estimates of the Trade Elasticity

The first step is to estimate the value of θ, the parameter that gov-
erns comparative advantage. Table 4 shows these results. Column (1)
shows the reduced form of Equation (19). The associated coefficient
of interest is positive and significant, but its magnitude is not reliable
due to reverse causality and omitted variable bias. Columns (2) to
(4) show the 2SLS results using patents, rainfall, and both of them
as instruments, respectively. All the estimates are statistically signifi-
cant with coefficients ranging between 1.9 and 3.1. Finally, Column (5)
shows the results using a three years panel dataset (from 2008 to 2010)
instead of the average values in the period 2009-2010. This allows me
to increase the number of observations and use the importer-year
fixed effects to account for time-variant factors. The coefficient asso-
ciated with productivity is very similar to the other estimates (about
2.1).
Our preferred estimate for the trade elasticity is 2.2 from Column (4)
and it is lower than previous estimates in the literature. For exam-
ple, Costinot, Donaldson, and Komunjer (2012) develop a Ricardian
quantitative trade model and, using producer price data for 13 man-
ufacturing sectors in the OECD countries, estimate a value of 6.53.
When they reduce the sample to only EU member states, to avoid
the issue related to endogenous trade protections, their estimates de-
crease to 4.62. They also use other proxies for productivity, such as
labor and multi-factor productivity, and the resulting estimates are
always lower than their preferred estimate (2.7 - 4.3). They warn that
such results could possibly be caused by measurement error that is
not entirely obviated by the instrumental variable procedure.
In the case of agriculture, estimates change substantially. Donaldson
(2018) uses a trade costs approach with data for 15 commodities in
colonial India and estimates a range of values from -9.6 (not signifi-
cantly different from 0) to 29.21 with an average of 7.8. Caliendo and
Parro (2015) build a multi-country, multi-sector Ricardian model and,
with a method based on trade and tariff data, estimate a trade elas-
ticity for agriculture of 8.11. Finally, Tombe (2015) focuses specifically
on the differences between the manufacturing and agricultural sec-
tors. He estimates trade elasticities using country-level data on trade
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and tariffs and his preferred estimate for agriculture is 4.06.

Table 4: Estimate of the Trade Elasticity (θ)

(1) (2) (3) (4) (5)

ln ln ln ln ln

Exports Exports Exports Exports Exports

(ln) Productivity 0.7889∗∗∗ 1.8657∗∗∗ 3.0892∗∗∗ 2.1719∗∗∗ 2.1264∗∗∗

(0.0143) (0.0494) (0.1275) (0.0474) (0.0508)

(ln) Employees 0.7260∗∗∗ 1.0815∗∗∗ 1.4855∗∗∗ 1.1826∗∗∗ 1.1484∗∗∗

(0.0093) (0.0187) (0.0445) (0.0186) (0.0193)

Distance -0.1383∗∗∗ -0.1280∗∗∗ -0.1163∗∗∗ -0.1251∗∗∗ -0.1262∗∗∗

(0.0016) (0.0018) (0.0024) (0.0019) (0.0019)

Same Country 0.3323∗∗∗ 0.2789∗∗∗ 0.2182∗∗∗ 0.2637∗∗∗ 0.3494∗∗∗

(0.0503) (0.0517) (0.0608) (0.0533) (0.0509)

Currency -0.1870∗∗∗ -0.6739∗∗∗ -1.2273∗∗∗ -0.8124∗∗∗ -0.7232∗∗∗

(0.0257) (0.0374) (0.0705) (0.0386) (0.0392)

Language 1.0817∗∗∗ 1.2539∗∗∗ 1.4496∗∗∗ 1.3029∗∗∗ 1.2383∗∗∗

(0.0313) (0.0344) (0.0474) (0.0360) (0.0353)

Observations 41361 41361 41361 41361 123674

R2 0.5459 0.5067 0.5103 0.5103 0.5213

F-stat (1st stage) - 33 22 23 41

Instrument None Patents Rainfall Both Both

FEs importer importer importer importer importer-year

Notes: Columns (2)-(5) use patents and/or rainfall as instruments for productivity. Both have
strong predictive power, with the heteroskedasticity-robust t-statistic in the first stage of col-
umn (4) equal to 4.8 and 3.3, respectively. The F-statistics refers to the first stage run only
across exporters, i.e. utilizing only the meaningful variation of the exporter-specific produc-
tivity and instruments. "Same country", "Currency", and "Language" are dummy variables
and are equal to 1 if the regions share the same feature. Standard errors (in parentheses) are
clustered by exporter-importer pair. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

As noticed in Costinot, Donaldson, and Komunjer (2012), the fact
that my estimate is relatively low could be caused by measurement
error. However, it is also plausible to assume that using intra-national
within Europe data where barriers to trade are limited, allows us to
account for possible confounding factors such as endogenous trade
protections (particularly relevant in the agricultural sector) that could
bias previous estimates. To support this hypothesis, in Figure B1, I
plot the coefficients estimated for every single year in the period 2000-
2010. The value of θ in the year 2000 is 5.8 and decreases since then.
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This could suggest that with further integration the comparative ad-
vantage exerts a stronger force.

3.4.2 Productivity and Climate

In the second step, I compute the climate change-induced shock on
productivity. I start by determining the relationship between climate
variables and productivity using Equation (20). The estimated marginal
effect of temperature and precipitation is shown in Figure 3, while
the associated coefficients are shown in Table B1. Both variables af-
fect European agricultural productivity with a non-linear behavior,
reflected in a non-constant marginal effect. At cold and mild tem-
peratures, the marginal effect is positive, while for warm climates a
further increase in temperature leads to a negative effect. For exam-
ple, an increase of 1°C corresponds to a change in the productivity of
about 0.8% at the 25th percentile of the distribution (8.7°C), but -0.2%
at the 75th percentile (11.6°C). At more extreme values, the positive
and negative effects become substantial. In the case of precipitation,
the marginal effect is lower by about two orders of magnitude with
respect to temperature and the precision of the estimate is less sta-
tistically significant. This could reflect the small size of rainfed crops
and the inclusion of animal production in the measure of agricultural
productivity.

Figure 3: Marginal Effect of Temperature and Precipitation on Productivity

Notes: the red lines show the exposure-weighted marginal effects computed using

estimates from Eq. (20). Grey bands represent confidence intervals at 90% and 95%

levels. The blue histograms represent the NUTS3-level distribution of annual average

temperature and precipitation over the sample period 1980±2019.

I use the estimated relationship to compute the change in produc-
tivity induced by new climatic conditions caused by climate change.
To this end, I consider only the change in long-term averages of tem-
perature and precipitation, neglecting all possible consequences in-
duced by climate change (e.g. extreme weather events, sea-level rise,
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etc.). Considering a detailed regional climate model (NMI-RACMO22E)
for the RCP 4.5 and RCP 8.5 emission scenarios, I compute 20-years
climatologies for the reference (1981-2000) and future (2081-2100) pe-
riods. The change in productivity is given by applying Equation (21).
Figure 4 shows the results using the RCP 4.5 emissions scenario. In
panel (a) the administrative boundaries represent the NUTS3 sub-
national regions. Productivity changes range from -6% to +18% with
a median value of about +2%. The map shows that northeast (e.g.
Scandinavia) and high-altitude (e.g. the Alps) regions would poten-
tially benefit from warmer temperatures. Vice-versa, regions in the
southern part of Europe (southern Spain, Italy, Greece, and Cyprus)
would be negatively affected by warmer temperatures with changes
in productivity rates from 0 to -6%. These negative effects are in-
duced primarily by increasing temperatures, but also because of a
lower amount of precipitation.

Figure 4: Change (%) in Agricultural Productivity (2081-2100, RCP4.5)

Notes: panel (a) shows NUTS3 boundaries, while panel (b) shows NUTS2 boundaries
for which trade data are available.

In order to match these results with the available trade data from
the EUREGIO database, I aggregate the productivity changes at NUTS2

(or country) level, weighting by the share of agricultural GVA within
each sub-national unit. Panel (b) presents the outcome. Contrary to
productivity data from ARDECO, trade data are missing for Croatia,
Norway, Switzerland, and the UK, therefore their corresponding pro-
ductivity changes are not used in the subsequent analysis. In the case
of Bulgaria, Cyprus, Estonia, Latvia, Lithuania, Malta, and Romania
trade data are only available at the national level. For all other coun-
tries, productivity changes are shown for each NUTS2 region.
Although it is difficult to directly compare the results with the liter-
ature, the predictions described above are in line with the previous
analyses. For example, the most recent JRC PESETA reports (num-
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ber IV) about the climate change impact on EU agriculture in 2050

(Hristov et al., 2020) shows that different biophysical crop models
tend to agree on predicting positive yield changes in Northern Eu-
rope and negative changes in Southern Europe for wheat and grain
maize (two of the most important crops). Similarly, Van Passel, Mas-
setti, and Mendelsohn (2017), using a large sample of European farms,
perform a so-called Ricardian analysis to estimate the climate change
impact on farmers’ land values. Using the coefficients estimated with
a median quantile regression and three different climate models, they
predict that farmland value would decreases in Southern European
regions (NUTS3) and increase in the Northern ones in 2100. Using
similar econometric methods, Moore and Lobell (2014) estimate the
impact of climate change on EU farms’ profit and yields for wheat,
maize, barley, sugarbeet, and oilseed. They show that by 2040, the av-
erage farm profit would increase by 1.5% if adaptation occurs. How-
ever, they show that even with adaptation, southern (warm) regions
could potentially suffer losses up to 10%.

3.4.3 Trade Adjustments and Welfare

In the final step, I use the previous results on counterfactual produc-
tivities for the EU regions as exogenous shocks in the partial equilib-
rium model presented in Section 3.2.1.7 Quantities, trade flows, and
prices endogenously adjust to this shock and consequently, induce a
change in welfare. The welfare change is computed as the sum of con-
sumer and producer surplus, i.e. the sum of the defined integrals of
demand and supply functions from the initial prices to the new ones.
To quantify the adjustment role of trade, the model must be slightly
changed. Because climate change affects regions’ comparative advan-
tage and creates new opportunities to trade, I focus on the possibility
that importing regions have on changing their sources of supply (i.e.
importing from new regions). Therefore, in order to restrict trade ad-
justments, I fix the bilateral import shares to their initial values and
replace the (gravity) equation (14) with x̂i,j = Êj. This equation states
that the change in the value of imports of the region j from origin i

is equal to the change in its own expenditure. Thus, the value of the
imports is allowed to change, but the source is not. This implies that
the bilateral import shares stay fixed, i.e. π

′

i,j = πi,j.
My quantitative model is transparent enough to understand clearly
the underlying mechanisms that drive the results. A positive (nega-
tive) change in local productivity Ai ↑ (Ai ↓) induces an increase
(decrease) in the quantity produced Qi ↑ (Qi ↓) and a reduction (in-
crease) in the producer price pi ↓ (pi ↑). The consumer price index

7 The change in productivity for the "Rest of the World" comes from Cline (2007)
where the author shows single country estimates that I aggregate using as weights
the import shares with the EU in 2010.
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Pj, the demand Dj and the trade flows xij adjust consequently. Trade
transmits the local shocks from the exporter to the importer accord-
ing to the bilateral relationships between them and changes in prices
determine consumer surplus, producer surplus, and welfare changes.
Therefore, the net price effect in one region is caused directly by the
productivity shock and indirectly by what happens to its trade part-
ners. For example, southern regions, where the average productivity
decreases, would see an increase in local consumer prices. However,
this effect could be mitigated by the increase (or the milder reduction)
of productivity in their trade partners. Therefore, the more a region
trades with partners that gain (or have lower losses) from warmer
temperatures the more the local consumers would benefit.8 This ef-
fect is particularly relevant for small regions that heavily depend on
imports because the net price effect is mainly driven by trade trans-
mission. For example, a region that trades most of its food with part-
ners where the producer price goes down would see its consumer
price decreased (and vice versa).
Table 5 shows the results of the simulations for both RCP 4.5 and RCP
8.5, comparing the ªfull trade adjustmentº and the ªpartial trade ad-
justmentº scenarios. Given the large number of regions, I sort the
welfare change in the first scenario and only show the first and the
last five regions, and the median of that distribution (the results for
all regions are shown in Table B2, while Table B3 presents the results
aggregated at country level). The last row of each panel shows the
average among all the regions weighted by the value of production.
The values are in percentage change. The third column shows the
predicted change in productivity for each region (Â). The following
columns show the ratio of price changes (p̂/P̂), the change in con-
sumer and producer surplus (ĈS, P̂S), and the change in welfare (Ŵ)
for the two simulations. The ªFull Adjustmentº scenario gives the
reference results, while the ªPartial Adjustmentº shows the results
for the counterfactual simulation where bilateral import shares are
constrained.

Looking at the reference simulation, the average increase in agri-
cultural productivity in the EU (1.72%; 1.79%) would reduce the pro-
ducer prices. This would induce an increase in consumer surplus
(1.19%; 0.98%) and a reduction in producer surplus (-1.22%; -1.04%).
The net effect on welfare is close to zero (-0.03%; -0.06%). Fixing the bi-
lateral import shares, i.e. limiting the possibility to change importer
partners, does not change substantially the results. Reduced trade
interactions would reduce even further the consumer price that de-
pends more on the local producer price, increasing the consumer sur-
plus (1.42%; 1.37%) and decreasing the producer surplus (-1.46%; -

8 The trade relationship between partners is given by bilateral frictions such as dis-
tance, language (etc.). I do not model directly such characteristics and their informa-
tion is captured by the initial trade shares πij.
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Table 5: Results from the Model Simulations (% changes)

RCP 4.5

Full Adjustment Partial Adjustment

Region Code Â p̂/P̂ ĈS P̂S Ŵ p̂/P̂ ĈS P̂S Ŵ

Vienna AT13 2.17 1.44 2.59 -1.19 1.40 1.58 3.22 -1.69 1.53

Cyprus CYP -5.98 1.24 -1.41 2.53 1.12 2.13 -2.53 4.50 1.98

Aland FI20 5.99 1.23 6.62 -5.58 1.04 2.57 8.10 -5.79 2.31

Melilla ES64 -3.86 0.99 -0.14 1.09 0.95 2.24 -0.34 2.51 2.17

Attiki GR30 -3.92 1.00 -1.22 2.17 0.95 1.35 -1.75 3.03 1.28

. . .

Nyugat Dunantul HU22 1.69 -0.01 1.23 -1.25 -0.02 -0.01 1.44 -1.46 -0.03

. . .

Trento ITD2 6.10 -1.28 0.69 -2.06 -1.38 -3.01 0.94 -4.11 -3.17

Mellersta Norrland SE32 10.20 -1.03 4.69 -6.08 -1.39 -1.83 5.95 -8.16 -2.22

Övre Norrland SE33 17.06 -1.29 6.67 -8.87 -2.20 -2.30 9.74 -13.09 -3.35

Bolzano ITD1 10.20 -2.19 1.07 -3.53 -2.46 -4.88 1.65 -6.97 -5.32

Valle d’Aosta ITC2 8.92 -2.29 0.61 -3.11 -2.51 -4.95 0.79 -6.11 -5.32

Weighted Average 1.72 0.01 1.19 -1.22 -0.03 0.00 1.42 -1.46 -0.03

RCP 8.5

Full Adjustment Partial Adjustment

Region Code Â p̂/P̂ ĈS P̂S Ŵ p̂/P̂ ĈS P̂S Ŵ

Vienna AT13 2.33 2.59 3.53 -1.01 2.52 2.98 4.64 -1.77 2.87

Cyprus CYP -12.09 2.33 -3.73 5.53 1.80 4.13 -5.80 9.28 3.48

Melilla ES64 -8.93 1.83 -1.66 3.24 1.58 4.34 -2.17 6.13 3.96

Attiki GR30 -7.87 1.76 -3.15 4.66 1.51 2.44 -4.04 6.22 2.18

Aland FI20 7.30 1.80 8.42 -6.91 1.50 3.80 10.57 -7.20 3.37

. . .

Detmold DEA4 2.69 -0.02 1.53 -1.57 -0.04 0.03 2.26 -2.26 -0.01

. . .

Tirol AT33 17.48 -1.83 5.66 -8.40 -2.74 -3.29 8.92 -13.29 -4.37

Trento ITD2 11.75 -2.64 0.40 -3.35 -2.95 -6.04 1.05 -7.70 -6.65

Övre Norrland SE33 24.29 -1.76 9.05 -12.57 -3.52 -3.08 13.44 -18.54 -5.11

Bolzano ITD1 18.57 -4.04 1.03 -5.87 -4.85 -8.83 2.20 -12.45 -10.25

Valle d’Aosta ITC2 17.30 -4.51 0.16 -5.40 -5.24 -9.64 0.57 -11.57 -11.00

Weighted Average 1.79 0.01 0.98 -1.04 -0.06 0.02 1.37 -1.44 -0.07

Notes: the table shows the first five, the median, and the last five regions of the welfare change distribution
from the "Full Adjustment" simulation. The values are in % change. The ªFull Adjustmentº simulation (used
as reference) provides results allowing trade flows to change in size and direction, while the ªPartial Adjust-
mentº simulation shows the results constraining bilateral import shares.

1.44%).
Looking at the extremes of the welfare change distribution, the re-
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sults are heterogeneous. In the first rows of the panels, I show the
regions with the highest welfare change according to the ªfull ad-
justmentº scenario, while at the bottom there are the five regions
with the lowest one. In the first case, welfare changes are about 1%
(max 1.40) and are driven by two different mechanisms. First, regions
with negative productivity changes (e.g. Cyprus) would have an in-
crease in prices with a positive effect on local producers but a nega-
tive one on consumers. The net effect on welfare is positive, showing
that the producer’s gains are higher. In such a case, fixing import
shares would benefit even further local producers at the expense of
consumers. Therefore, the role of trade here is asymmetric: it gives
consumers the possibility to obtain lower prices from imported goods
(ĈS is lower in the ºpartialº scenario) at the expense of local produc-
ers (P̂S is higher). Second, regions with positive productivity changes
(e.g. Vienna) would see a reduction in producer surplus (given lower
prices) and an increase in consumer surplus. When such regions trade
a substantial amount of products from regions where prices also de-
crease, the net welfare effect will be positive because the consumer
price index would decrease less than the producer price (p̂/P̂ ↑). Lim-
iting trade would benefit further the consumers that can enjoy lower
prices induced by higher local productivity.
On the opposite side, there are regions with higher productivity gains
that would see a reduction in the producer price and this would in-
duce a negative effect on the producer surplus. The net effect on wel-
fare is negative given that the increase in consumer surplus does not
offset completely the producer surplus reduction. Also in this case,
results are driven by price transmissions. For example, regions such
as Trento, Bolzano, and Valle d’Aosta are all placed in northern Italy
where productivity is expected to increase, but their main trade part-
ners are from southern Italy where prices are predicted to rise. There-
fore, consumer surplus does not increase as much as in regions with
similar productivity changes. Limiting trade would induce larger wel-
fare losses driven by lower consumer surplus.
Although these results show little percentage point variation from
one scenario to the other (especially for the weighted average), in rel-
ative terms, changes can be substantial. For some regions, trade could
reduce welfare losses by two times (e.g. ITC2, ITD1), while for others
it could reduce welfare gains by the same amount (e.g. FI20, ES64).
The same is true when looking at consumer and producer surplus.
Comparing the two RCP scenarios, they show qualitatively similar
results, although larger productivity shocks in the RCP 8.5 would
induce a larger welfare response.

Table 6 shows the results of a sensitivity analysis. As before, the
welfare change decomposition in percentage is shown but, in this
case, I show only the average value among the EU regions. Each
row shows the results from a simulation where only one parameter
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has been changed compared to the baseline one (reported in the first
row).
The second and the third rows have a larger value of θ (the trade elas-
ticity) that reflects estimated values in Tombe (2015) and Caliendo
and Parro (2015), respectively. The larger the value, the lower the
changes associated with consumer and producer surplus in the full
adjustment scenario. Also the welfare change is reduced (in absolute
value). This is coherent with the fact that higher values of the trade
elasticity imply reduced sensitivity of trade flows to the productivity
shock and therefore lower price transmissions. When trade is limited,
the results associated with different values of θ are similar because
we imposed a different trade equation that does not depend on the
trade elasticity.
Assuming inelastic demand and supply (ϵ = 0.2,η = 0.2), the change
in consumer and producer surplus is slightly larger but the net wel-
fare change is mostly unchanged. Limiting trade would induce a
slightly larger consumer surplus and lower producer surplus. Con-
trary, assuming elastic demand and supply (ϵ = 0.9,η = 0.9), con-
sumer and producer surplus reduce slightly their magnitude with no
substantial change in welfare.
The sensitivity results show that, on average, the value attributed to
the parameters does not substantially change the overall results (al-
though they could be significantly different for specific regions).

Finally, I directly address one specific question related to this liter-
ature, namely, could consumers located in regions with a negative
impact on agricultural productivity benefit from imported goods?
(e.g. Janssens et al., 2020). In the European continent, productivity
in regions placed in the Mediterranean area is predicted to decline,
causing an increase in local prices. In Figure 5, I plot the percent-
age change of consumer surplus for both simulations and both RCP
scenarios. On average, consumers see a negative change in their sur-
pluses that increases with the intensity of the productivity decline
(RCP 8.5). Comparing the full adjustment scenario (panels a and c)
with the partial one (b and d), we can observe that in the second case
the negative effect is even higher. This implies that allowing them to
trade with partners that offer lower prices could reduce their losses.
For most of the regions, the difference is not trivial and, in relative
terms, the trade adjustment mechanism could lead to more than halv-
ing the reduction in consumer surplus. For example, for the median
region in this sub-sample of Mediterranean areas (GR42), the loss re-
duction ranges from 43% to 56%.

The results presented in this subsection show that on average trade
adjustments within the EU would play a relatively small role in adapt-
ing to climate change. However, heterogeneous results are shown
when welfare is decomposed into consumer and producer surpluses
and when focusing on specific areas. This shows that when looking
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Table 6: Sensitivity analysis

RCP 4.5

Full Adjustment Partial Adjustment

ĈS P̂S Ŵ ĈS P̂S Ŵ

Baseline (θ = 2.2, ϵ = 0.57, η = 0.5) 1.19 -1.22 -0.03 1.42 -1.46 -0.03

θ = 4 1.00 -1.02 -0.02 1.43 -1.46 -0.03

θ = 8.1 0.65 -0.66 0.03 1.46 -1.47 -0.01

ϵ = 0.2 1.47 -1.50 -0.03 1.96 -2.00 -0.03

ϵ = 0.9 1.00 -1.02 -0.02 1.14 -1.17 -0.03

η = 0.2 1.55 -1.58 -0.03 2.03 -2.07 -0.04

η = 0.9 0.96 -0.98 -0.02 1.09 -1.12 -0.03

RCP 8.5

Full Adjustment Partial Adjustment

ĈS P̂S Ŵ ĈS P̂S Ŵ

Baseline (θ = 2.2, ϵ = 0.57, η = 0.5) 0.98 -1.04 -0.06 1.37 -1.44 -0.07

θ = 4 0.65 -0.69 -0.04 1.41 -1.45 -0.04

θ = 8.1 0.01 -0.02 -0.01 1.48 -1.47 0.01

ϵ = 0.2 0.90 -0.96 -0.05 1.77 -1.83 -0.06

ϵ = 0.9 0.90 -0.96 -0.06 1.14 -1.20 -0.07

η = 0.2 1.10 -1.16 -0.07 1.94 -2.02 -0.07

η = 0.9 0.84 -0.89 -0.05 1.06 -1.12 -0.06

Notes: results refers to the weighted average value of all the EU regions.

Figure 5: Change (%) in Consumer Surplus in the Mediterranean Region

Notes: panels (a) and (c) show the "full adjustment" simulations for RCP 4.5 and

RCP 8.5, while panels (b) and (d) show the "partial adjustment" ones.
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at the disaggregated level and focusing on both sides of the market,
the trade adjustment mechanism leads to very different conclusions.
Direct comparison with previous works is not possible, but it can
be useful to find differences and analogies with them. For exam-
ple, Costinot, Donaldson, and Smith (2016), accounting for ten ma-
jor crops, find welfare consequences of climate change of about 0.27

percent loss in global GDP. Simulating a partial adjustment of trade
(holding fixed the shares of crop output exported), they find very sim-
ilar results, suggesting that international trade plays a minor role in
reducing CC impacts on the global economy. Looking at European
countries, they find little variation as well from comparing the two
simulations. Germany and Poland are the only examples of countries
that would benefit from limited trade (difference of 0.1 percentage
point), while countries such as Spain, France, and Romania would
see their welfare slightly reduced (maximum difference of -0.3 pp for
Spain). Gouel and Laborde (2021), using a similar model but a dif-
ferent trade adjustment mechanism (i.e. fixing the bilateral import
shares) find that trade has a non-trivial role in adapting to climate
change. At the world level, they show that this margin of adjust-
ment reduces losses from -1.30% of world GDP to -1%. In Europe,
this mechanism is slightly larger in relative terms (from -1.12% to
-0.80%). At the country level, all the considered EU members, but
Spain, would see their welfare decreased in the scenario where trade
is limited.

3.5 conclusions

In this paper, I discuss the potential role that agricultural trade and
market integration could play as adaptation mechanisms to cope with
climate change. I build a partial equilibrium model, based on the neo-
Ricardian quantitative trade literature, and run counterfactual simula-
tions where trade adjusts to different extents. I contextualize the anal-
ysis within the European Union, exploiting sub-national data and the
fact that trade barriers between regions are limited. This allows me to
estimate a key parameter in the model, i.e. the trade elasticity, avoid-
ing bias connected to unobserved trade frictions. Using detailed data
and a panel econometrics approach, I quantify the predicted change
in agricultural productivity according to different emission scenarios.
This productivity change is used as an exogenous shock in the model.
I run simulations allowing the trade patterns to adjust completely (ref-
erence simulation) or only partially (fixing the bilateral import share).
Comparing the two counterfactuals provide us with a measure of the
extent to which trade can help to attenuate the consequences of cli-
mate change.
Results show that, on average, trade adjustments play a little role in
defining the welfare effect within the EU. However, heterogeneity is
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large both between consumers and producers and among the differ-
ent regions. In relative terms, exploiting new patterns of trade could
avoid substantial losses for producers that see a substantial reduction
in their local prices. In a similar vein, trade would play a substantial
role in alleviating consumers’ losses for those regions where produc-
tivity changes would increase local prices (e.g. Mediterranean area).
From these results, important insights emerge when widening the
perspective at the global scale where climate change impacts will be
larger and more heterogeneous. Lowering trade frictions, similarly to
the EU levels, would provide a significant reduction in consumers’
losses. This is particularly relevant for those areas where food secu-
rity represents an important issue.
Finally, my analysis also presents some limitations. Importantly, I use
a relatively simple partial equilibrium modeling approach that allows
for transparent identification of the underlying mechanisms. How-
ever, it does not consider other important factors that may affect the
results, such as accounting for the intermediate inputs, the income
structure, the role played by other sectors (e.g. food manufacturing),
and general equilibrium effects.
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a.1 methodology

Following Kahn et al. (2021), we consider future annual temperatures
over the counterfactual period (from 2017 to 2070) as:

Ti,h+j = ai + bi,j(h+ j) + vi,h+j, for j = 1, 2, . . . , H (22)

where ai is a constant, bi,j is the yearly average increase in tempera-
ture, vi,h+j is the stochastic weather component, h is the last year of
our analysis, i.e. 2016 and H is the number of years from h to 2070 i.e.
55. We consider the historical norm as in Section 2.2 and we write the
future temperature anomaly as:

Ti,h+j − T∗

i,h+j−1 = Ti,h+j −m−1
m∑

s=1

Ti,h+j−s

=

(

m+ 1

2

)

bi,j + (vi,h+j − Åvi,h+j−1)

(23)

where Åvi,h+j−1 = m−1
∑m

s=1 vi,h+j−s. In this way, the future annual
anomaly is given by the trend change bi,j in temperature and by the
distribution of the temperature shocks vi,h+j. Since the purpose of
our counterfactual analysis is related to future Anthropogenic Cli-
mate Change, we compute the anomaly based only on the tempera-
ture trend and disregard the stochastic fluctuation that also incorpo-
rates a natural component.
We collect data on the country-specific year average increase in tem-
perature according to the RCPs scenarios as a constant linear trend
estimated using the mean ensemble of the Global Circulation Models
(GCMs) forming the CMIP5. Data are collected from the KNMI Cli-
mate Change Atlas (KNMI, 2013). In order to allow the temperature
trends to change in time we define them as:

bi,j = Ti,h+j − Ti,h+j−1 = b0
i + jdi (24)

where b0
i is the historical average increase (from 1968 to 2016) pre-

dicted by the climate models and di is the average incremental change
in temperature between the historical and the future trend according
to the RCPs considered in each counterfactual exercise, i.e.:

di =
2(b1

i − b0
i )

H+ 1
(25)

In order to have a reliable comparison, we use the historical value
predicted by the same climate model used to compute the future

45
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anomaly.
Therefore, we can compute the temperature anomalies according to
the trends shown by the different scenarios and we can apply the fol-
lowing loss function to estimate the difference between the historic
and future patterns:

∆Yi,h+j = δ(∆T_ani,h+j) (26)

where ∆Yi,h+j the is the counterfactual change in the aggregate value
of agricultural production, δ is the marginal effect of 1◦C rise in tem-
perature derived by the estimated coefficient associated with posi-
tive anomaly (β1 in eq. 5) and ∆T_ani,h+j is the difference between
the temperature anomaly computed for the RCP8.5, RCP6.0, RCP4.5
and the anomaly in the reference scenario RCP2.6, i.e. T_anRCP#

i,h+j −

T_anRCP26
i,h+j .

To be coherent with our results that find heterogeneous impacts of
the temperature anomaly between income levels, in the counterfac-
tual analysis we compute the marginal effect using the estimates from
the interacted model (column 1 of A4) that consider GDP per capita.
To compute the future level of GDP per capita we use the SSP2 sce-
nario and the country-specific growth rates computed by the OECD’s
ENV-Growth Model. Finally, we sum the future annual changes of
Yi,h+j to get the cumulate change in the year 2070 according to the
different RCPs compared to the baseline scenario, i.e.:

H∑

j=1

∆Yi,h+j = δ

H∑

j=1

(

T_anRCP#
i,h+j − T_anRCP2.6

i,h+j

)

(27)

Table A1: Descriptive Statistics

mean median sd min max

Output ($) 9642342 1773864 3.38e+07 0 6.23e+08

Output growth 0.019 0.021 0.068 -0.247 0.258

Temperature (◦C) 21.03 22.76 5.43 4.58 30.58

Precipitation (mm) 219.03 190.33 153.24 0.05 982.23

∆ Temp pos -0.0020 0 0.7677 -3.2849 3.2869

∆ Temp neg 0.0107 0 0.5405 -2.5642 2.9103

∆ Prec pos 0.0002 0 0.8693 -4.7677 4.4798

∆ Prec neg -0.0007 0 0.7694 -3.7033 3.9105

Notes: variables are described in Subsection 2.3.2.
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Table A2: Variables’ description and source

Variable Description Source

Gross Agricultural
Production

Total value of crop and an-
imal production using con-
stant 2004-2006 global aver-
age farmgate prices, in $1000

purchasing-power-parity dol-
lars.

USDA/ERS

Agricultural Total Fac-
tor Productivity Index

Derived from output growth
minus input growth.

USDA/ERS

Agricultural Labor Persons (with age higher than
15) economically active in agri-
culture.

USDA/ERS

Agricultural Value
Added

Agriculture, forestry, and fish-
ing, value added (constant
2010 US$).

WDI

Food Index Food production index (food
crops that are considered ed-
ible and that contain nutri-
ents).

WDI

GDP per capita Gross Domestic Product per
person (constant 2015 US$)

WDI

Temperature Annual and green season aver-
age temperature (°C).

Ortiz-Bobea et
al. (2021)

Precipitation Annual and green season aver-
age precipitations (mm).

Ortiz-Bobea et
al. (2021)
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Table A3: Robustness Checks

(1) (2) (3) (4)

∆(ln) ∆(ln) ∆(ln) ∆(ln)

Output Output Output Output

∆Tpos -0.00976∗∗∗ -0.0100∗∗∗ -0.0110∗∗∗ -0.00913∗∗∗

(0.00179) (0.00178) (0.00209) (0.00223)

∆Tneg -0.00349 -0.00278 -0.00477 -0.00615

(0.00285) (0.00186) (0.00285) (0.00404)

∆Ppos -0.00176 -0.00244∗∗ -0.00320∗∗ -0.00301∗∗

(0.00114) (0.00120) (0.00128) (0.00144)

∆Pneg -0.00738∗∗∗ -0.00845∗∗∗ -0.00794∗∗∗ -0.00894∗∗∗

(0.00182) (0.00173) (0.00194) (0.00183)

L.∆Tpos 0.00154

(0.00207)

L.∆Tneg -0.00545

(0.00336)

L.∆Ppos -0.00136

(0.00184)

L.∆Pneg -0.00422∗∗

(0.00202)

L.∆(ln)Output -0.177∗∗∗

(0.0421)

N 8232 8232 8232 7641

R2 0.181 0.079 0.085 0.122

Weights yes no yes yes

Region-Year FE yes no no no

Year FE no yes yes yes

Clust. SE region-year year year region-year
Notes: All the estimates account for country Fixed Effects and clustered standard
errors at the country level. They vary in terms of additional FEs and additional
clusterization (two-way). Weights in column (1) refer to shares of global output
among the countries in the sample. Column (4) is estimated using an ARDL(2,2) but
only the first lag (L) is shown. Standard errors in parentheses. Statistical significance
at the 1% (***), 5% (**), and 10% (*) levels.
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Table A4: Heterogeneity between Income Groups

(1) (2) (3) (4)

∆(ln) ∆(ln) ∆(ln) ∆(ln)

Output Output Output Output

dummy = 1 GDP < 25th GDP < 50th GDP > 75th

∆Tpos -0.0148*** -0.0111*** -0.0108*** -0.0144***

(0.00283) (0.00239) (0.00283) (0.00282)

∆Tneg -0.00612** -0.00300 -0.00283 -0.00295

(0.00285) (0.00344) (0.00317) (0.00279)

∆Ppos 0.00277* -0.00165 -0.00255 0.00233

(0.00153) (0.00158) (0.00188) (0.00160)

∆Pneg -0.0123*** -0.00692*** -0.00526** -0.0119***

(0.00278) (0.00204) (0.00255) (0.00280)

∆Tpos×GDP 0.000226***

(0.0000755)

∆Tneg×GDP 0.000251*

(0.000149)

∆Ppos×GDP -0.000267***

(0.0000665)

∆Pneg×GDP 0.000302***

(0.000104)

∆Tpos× dummy -0.00515 -0.00339 0.00818**

(0.00482) (0.00365) (0.00338)

∆Tneg× dummy -0.00409 -0.00137 -0.00122

(0.00438) (0.00349) (0.00485)

∆Ppos× dummy 0.00725 0.00544** -0.00854***

(0.00443) (0.00258) (0.00282)

∆Pneg× dummy -0.0110 -0.00826* 0.00888**

(0.00690) (0.00454) (0.00411)

∆Tpos net effect -0.01622*** -0.01421*** -0.00626**

(0.00481) (0.00315) (0.002749)

∆Tneg net effect -0.00709*** -0.0042 -0.00418

(0.002568) (0.003215) (0.004658)

∆Ppos net effect 0.005596 0.002893 -0.00621**

(0.004018) (0.002028) (0.002584)

∆Pneg net effect -0.01789*** -0.01352*** -0.00298

(0.006623) (0.003727) (0.003079)

Notes: estimated model in (1) is ∆yi,t = β
′

∆W
′

i,t + ρGDPi,t + γ
′

∆W
′

i,t ×GDPi,t +

αi + θr×t + ϵi,t where W
′

represents our vector of weather variables and GDP rep-
resents the GDP per capita (the associated coefficient ρ is omitted from the table). Es-
timated model from (2) to (4) is ∆yi,t = β

′

∆W
′

i,t+γ
′

∆W
′

i,t×Di,t+αi+θr×t+ϵi,t
where D ′ is the vector of dummy variables described as in the main text. Standard
errors (in parentheses) are clustered at country and region-year level. Asterisks
indicate statistical significance at the 1% (***), 5% (**), and 10% (*) levels.
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Table A5: Heterogeneity between Average Temperature Groups

(1) (2) (3) (4)

∆(ln) ∆(ln) ∆(ln) ∆(ln)

Output Output Output Output

dummy = 1 Temp < 25th Temp < 50th Temp > 75th

∆Tpos -0.0152** -0.00925*** -0.00689*** -0.0108***

(0.00638) (0.00202) (0.00223) (0.00197)

∆Tneg 0.00192 -0.00342 -0.000537 -0.00345

(0.00838) (0.00230) (0.00232) (0.00265)

∆Ppos -0.00826* -0.000555 0.0000522 -0.00159

(0.00428) (0.00126) (0.00143) (0.00129)

∆Pneg -0.00396 -0.00799*** -0.00878*** -0.00614***

(0.00648) (0.00214) (0.00263) (0.00202)

∆Tpos× Temp 0.000278

(0.000288)

∆Tneg× Temp -0.000186

(0.000368)

∆Ppos× Temp 0.000322

(0.000196)

∆Pneg× Temp -0.000184

(0.000307)

∆Tpos× dummy -0.0000628 -0.00517 0.00477

(0.00349) (0.00322) (0.00327)

∆Tneg× dummy 0.00607 -0.00235 0.00681

(0.00457) (0.00350) (0.00420)

∆Ppos× dummy -0.00344 -0.00309 0.000411

(0.00267) (0.00213) (0.00215)

∆Pneg× dummy 0.000698 0.00202 -0.00673*

(0.00369) (0.00360) (0.00353)

Notes: estimated model in (1) is ∆yi,t = β
′

∆W
′

i,t + ρTempi,t + γ
′

∆W
′

i,t ×

Tempi,t + αi + θr×t + ϵi,t where W
′

represents our vector of weather vari-
ables and Temp represents the 20-years moving average (the associated
coefficient ρ is omitted from the table). Estimated model from (2) to (4) is
∆yi,t = β

′

∆W
′

i,t + γ
′

∆W
′

i,t × Di,t + αi + θr×t + ϵi,t where D ′ is the vector of
dummy variables described as in the main text. Standard errors (in parentheses) are
clustered at country and region-year level. Asterisks indicate statistical significance
at the 1% (***), 5% (**), and 10% (*) levels.
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Figure A1: Robustness Check: different values of m

Notes: We estimate Equation (5) using different values of m (from 6 to 30) in com-

puting the moving averages (MA) of the weather variables. The time dimension has

been reduced from 1977 to 2016 to allow computation of MA higher than 20 years.

The red dots show the estimated coefficients of the weather anomalies, while the

blue bands show the 95th confidence interval.
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Figure A2: Evolution of an Agriculture-based Gini Index 2016-2070

Notes: the Gini Index is computed considering the value of agricultural output per

worker taking into consideration the evolution of the population (UN projections),

the share of the agricultural labor force, and the output growth rate (using histori-

cal trends). The range of values represents the different impacts of climate change

according to the RCPs scenarios.
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Table B1: Estimate of the Climate-Productivity Relationship

Dependent variable: ∆ (ln) Productivity

Coefficient Std. Error

∆ Temperature 0.0406∗∗∗ (0.0151)

∆ Temperature2 -0.0019∗∗∗ (0.0007)

∆ Precipitation 0.0006 (0.0005)

∆ Precipitation2 -2.65 x 10−6 (1.67 x 10−6)

N 39849

R2 0.2897

Notes: Standard errors are adjusted to reflect spatial dependence (up to 1000 km) as
modeled in Conley (1999) and serial correlation (up to a lag of 7 years) as modeled
in Newey and West (1987). Province (NUTS3) coordinates refer to province centroid.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B2: Results for all regions - RCP 4.5

Full Partial Full Partial

Code ĈS P̂S Ŵ ĈS P̂S Ŵ Code ĈS P̂S Ŵ ĈS P̂S Ŵ

AT11 2.2 -2.3 0.0 2.4 -2.2 0.1 FR43 1.0 -1.1 -0.1 1.3 -1.4 -0.1

AT12 2.4 -2.5 -0.1 2.8 -2.8 0.0 FR51 0.4 -0.4 0.0 0.4 -0.3 0.1

AT13 2.6 -1.2 1.4 3.2 -1.7 1.5 FR52 0.5 -0.4 0.0 0.4 -0.4 0.1

AT21 3.2 -3.8 -0.6 4.3 -5.2 -0.9 FR53 0.4 -0.3 0.1 0.2 -0.1 0.1

AT22 2.9 -3.3 -0.4 3.7 -4.3 -0.6 FR61 0.3 -0.3 0.0 0.1 0.0 0.1

AT31 2.6 -2.8 -0.2 3.2 -3.4 -0.2 FR62 0.5 -0.5 0.0 0.5 -0.5 0.0

AT32 3.4 -4.3 -0.9 4.8 -6.3 -1.5 FR63 0.8 -0.8 0.0 0.9 -1.0 -0.1

AT33 3.7 -4.9 -1.3 5.4 -7.5 -2.1 FR71 1.0 -1.2 -0.2 1.4 -1.9 -0.4

AT34 2.9 -3.8 -1.0 3.8 -5.8 -1.9 FR72 1.0 -1.2 -0.1 1.4 -1.6 -0.2

BE10 0.8 -0.6 0.2 1.1 -0.9 0.2 FR81 0.6 -0.5 0.0 0.5 -0.5 0.1

BE21 0.8 -0.6 0.2 1.1 -0.9 0.2 FR82 1.3 -1.5 -0.2 2.0 -2.4 -0.4

BE22 0.8 -0.8 0.0 1.1 -1.0 0.1 FR83 0.4 -0.2 0.2 0.2 0.1 0.3

BE23 0.8 -0.7 0.1 1.1 -0.9 0.2 GR11 -0.5 0.7 0.2 -0.8 1.0 0.3

BE24 0.8 -0.5 0.3 1.1 -0.8 0.3 GR12 -0.8 1.0 0.2 -1.0 1.2 0.2

BE25 0.8 -0.8 0.0 1.1 -0.9 0.2 GR13 0.9 -1.2 -0.3 1.4 -1.9 -0.5

BE31 0.8 -0.7 0.1 1.1 -1.0 0.2 GR14 -0.5 0.6 0.1 -0.7 0.8 0.1

BE32 0.8 -0.8 0.1 1.1 -1.0 0.1 GR21 -0.1 0.1 0.0 0.0 0.0 -0.1

53
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Table B2 ± continued from previous page

Full Partial Full Partial

Code ĈS P̂S Ŵ ĈS P̂S Ŵ Code ĈS P̂S Ŵ ĈS P̂S Ŵ

BE33 0.9 -0.9 0.0 1.2 -1.4 -0.2 GR22 -1.8 2.3 0.5 -2.8 3.6 0.7

BE34 1.0 -1.1 -0.2 1.4 -1.7 -0.4 GR23 -1.1 1.4 0.3 -1.6 2.2 0.5

BE35 0.9 -0.9 0.0 1.2 -1.3 -0.1 GR24 -0.9 1.0 0.2 -1.2 1.5 0.3

BGR 0.1 -0.2 0.0 0.6 -0.6 -0.1 GR25 -0.7 1.0 0.3 -1.0 1.5 0.5

CYP -1.4 2.5 1.1 -2.5 4.5 2.0 GR30 -1.2 2.2 0.9 -1.7 3.0 1.3

CZ01 2.4 -1.9 0.5 2.9 -2.6 0.3 GR41 -1.5 2.1 0.6 -2.4 3.3 0.9

CZ02 2.4 -2.5 -0.1 2.8 -2.9 -0.1 GR42 -2.2 2.8 0.5 -3.4 4.3 0.9

CZ03 2.6 -2.8 -0.2 3.1 -3.3 -0.2 GR43 -1.4 1.8 0.5 -2.2 2.9 0.7

CZ04 2.5 -2.7 -0.1 3.0 -3.2 -0.2 HU10 1.1 -1.0 0.2 1.4 -1.4 0.0

CZ05 2.5 -2.7 -0.1 3.0 -3.1 -0.1 HU21 1.2 -1.3 0.0 1.5 -1.5 -0.1

CZ06 2.5 -2.7 -0.1 3.0 -3.1 -0.1 HU22 1.2 -1.2 0.0 1.4 -1.5 0.0

CZ07 2.5 -2.7 -0.2 3.0 -3.2 -0.2 HU23 1.1 -1.1 0.0 1.2 -1.1 0.1

CZ08 2.5 -2.6 -0.1 3.0 -3.1 -0.1 HU31 1.4 -1.5 -0.1 1.7 -2.0 -0.2

DE11 1.5 -1.5 -0.1 2.0 -2.1 -0.1 HU32 1.2 -1.2 0.0 1.4 -1.4 0.0

DE12 1.4 -1.3 0.1 1.8 -1.7 0.1 HU33 1.1 -1.0 0.1 1.1 -0.9 0.1

DE13 1.6 -1.8 -0.2 2.2 -2.4 -0.3 IE01 0.7 -0.8 0.0 1.3 -1.3 0.0

DE14 1.7 -2.1 -0.3 2.5 -3.0 -0.5 IE02 0.5 -0.4 0.1 1.1 -1.1 0.0

DE21 1.7 -2.0 -0.3 2.5 -3.0 -0.6 ITC1 0.9 -1.2 -0.2 1.3 -1.8 -0.5

DE22 1.8 -2.1 -0.3 2.5 -3.0 -0.5 ITC2 0.6 -3.1 -2.5 0.8 -6.1 -5.3

DE23 1.7 -2.0 -0.3 2.4 -2.9 -0.5 ITC3 0.8 -0.5 0.3 1.0 -0.1 0.9

DE24 1.7 -1.9 -0.3 2.3 -2.7 -0.4 ITC4 1.0 -1.0 0.1 1.4 -1.2 0.2

DE25 1.6 -1.7 -0.1 2.1 -2.4 -0.2 ITD1 1.1 -3.5 -2.5 1.6 -7.0 -5.3

DE26 1.6 -1.7 -0.1 2.0 -2.2 -0.2 ITD2 0.7 -2.1 -1.4 0.9 -4.1 -3.2

DE27 1.8 -2.2 -0.4 2.6 -3.2 -0.6 ITD3 0.6 -0.5 0.1 0.6 -0.5 0.1

DE30 1.4 -0.7 0.8 1.8 -1.4 0.4 ITD4 0.4 -0.4 0.1 0.3 -0.1 0.2

DE41 1.5 -1.5 -0.1 1.8 -1.8 0.0 ITD5 0.6 -0.4 0.2 0.6 -0.1 0.5

DE42 1.2 -1.4 -0.2 1.6 -1.7 -0.1 ITE1 0.1 0.1 0.2 -0.2 0.5 0.3

DE50 1.4 -0.6 0.8 1.7 -1.2 0.5 ITE2 0.1 0.0 0.0 -0.2 0.0 -0.2

DE60 1.4 -0.6 0.8 1.8 -1.3 0.5 ITE3 0.1 0.0 0.1 -0.2 0.1 -0.1

DE71 1.4 -1.1 0.2 1.8 -1.7 0.1 ITE4 0.0 0.3 0.3 -0.3 0.8 0.5

DE72 1.5 -1.6 -0.1 1.9 -2.1 -0.2 ITF1 0.1 -0.3 -0.2 -0.2 -0.5 -0.7

DE73 1.5 -1.6 -0.1 2.0 -2.2 -0.2 ITF2 -0.1 0.0 -0.2 -0.6 0.0 -0.6

DE80 1.4 -1.5 -0.1 1.8 -1.9 -0.1 ITF3 0.0 0.1 0.1 -0.3 0.5 0.2

DE91 1.4 -1.4 0.0 1.8 -1.8 0.0 ITF4 0.0 0.4 0.4 -0.4 1.3 1.0

DE92 1.3 -1.3 0.0 1.6 -1.6 0.0 ITF5 -0.3 0.1 -0.1 -0.9 0.4 -0.5

DE93 1.4 -1.4 -0.1 1.6 -1.6 0.0 ITF6 -0.1 0.6 0.5 -0.7 1.6 0.8

DE94 1.3 -1.3 0.0 1.5 -1.5 0.1 ITG1 -0.2 0.7 0.5 -0.7 1.7 0.9

DEA1 1.2 -1.0 0.2 1.5 -1.1 0.4 ITG2 0.0 0.4 0.4 -0.6 1.3 0.7

DEA2 1.3 -1.0 0.2 1.6 -1.4 0.2 LT00 2.6 -2.8 -0.1 3.8 -4.0 -0.2

DEA3 1.3 -1.2 0.0 1.5 -1.4 0.1 LU00 0.9 -1.1 -0.2 1.3 -1.7 -0.4

DEA4 1.3 -1.3 0.0 1.7 -1.6 0.1 LV00 3.2 -3.5 -0.3 4.3 -4.7 -0.4

DEA5 1.3 -1.2 0.2 1.7 -1.6 0.1 MT00 -2.0 2.8 0.8 -3.1 4.3 1.2
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Table B2 ± continued from previous page

Full Partial Full Partial

Code ĈS P̂S Ŵ ĈS P̂S Ŵ Code ĈS P̂S Ŵ ĈS P̂S Ŵ

DEB1 1.4 -1.5 -0.1 1.9 -2.0 -0.1 NL11 0.9 -0.7 0.1 1.2 -1.2 0.1

DEB2 1.5 -1.6 -0.1 1.9 -2.0 -0.1 NL12 0.9 -0.9 0.0 1.2 -1.1 0.1

DEB3 1.4 -1.4 0.0 1.7 -1.7 0.0 NL13 0.9 -0.9 0.1 1.3 -1.2 0.1

DEC0 1.2 -0.9 0.3 1.6 -1.5 0.1 NL21 0.9 -0.8 0.1 1.2 -1.2 0.1

DED1 1.6 -1.8 -0.2 2.2 -2.6 -0.4 NL22 0.9 -0.8 0.1 1.2 -1.1 0.1

DED2 1.5 -1.6 -0.1 2.0 -2.2 -0.2 NL23 0.9 -0.7 0.1 1.2 -1.0 0.2

DED3 1.4 -1.5 -0.1 1.8 -1.9 0.0 NL31 0.9 -0.5 0.3 1.2 -1.0 0.2

DEE0 1.1 -1.4 -0.3 1.5 -1.8 -0.3 NL32 0.8 -0.5 0.3 1.1 -0.8 0.3

DEF0 1.4 -1.5 -0.1 1.8 -1.8 0.0 NL33 0.8 -0.7 0.2 1.1 -0.9 0.2

DEG0 1.5 -1.7 -0.2 2.0 -2.3 -0.3 NL34 0.8 -0.6 0.2 1.1 -0.7 0.4

DK01 1.5 -1.0 0.5 1.9 -1.8 0.2 NL41 0.8 -0.6 0.2 1.2 -0.9 0.2

DK02 1.5 -1.5 0.0 1.9 -1.9 0.0 NL42 0.9 -0.7 0.1 1.2 -1.0 0.2

DK03 1.5 -1.5 0.0 1.9 -1.9 0.0 PL11 2.3 -2.4 -0.1 2.6 -2.6 0.0

EE00 4.3 -4.6 -0.3 5.3 -5.6 -0.3 PL12 2.4 -2.5 -0.1 2.8 -3.0 -0.1

ES11 0.2 -0.3 0.0 0.4 -0.5 -0.1 PL21 2.3 -2.6 -0.3 2.9 -3.2 -0.4

ES12 0.5 -0.8 -0.3 0.9 -1.3 -0.4 PL22 2.2 -2.3 0.0 2.7 -2.8 -0.1

ES13 0.6 -0.8 -0.2 1.0 -1.4 -0.4 PL31 2.6 -2.7 -0.2 3.0 -3.2 -0.2

ES21 0.2 -0.4 -0.2 0.3 -0.8 -0.5 PL32 2.5 -2.6 -0.2 2.9 -3.1 -0.2

ES22 0.2 -0.3 -0.1 0.3 -0.5 -0.2 PL33 2.5 -2.6 -0.2 2.9 -3.1 -0.2

ES23 0.3 -0.4 -0.1 0.5 -0.8 -0.3 PL34 2.8 -3.0 -0.2 3.3 -3.6 -0.2

ES24 0.1 -0.2 0.0 0.3 -0.4 -0.1 PL41 2.1 -2.2 0.0 2.3 -2.3 0.0

ES30 -0.2 0.3 0.1 -0.4 0.0 -0.4 PL42 2.1 -2.2 0.0 2.3 -2.3 0.0

ES41 0.6 -0.7 -0.1 0.9 -1.2 -0.2 PL43 2.1 -2.0 0.0 2.2 -2.0 0.1

ES42 -0.2 0.3 0.1 -0.3 0.3 0.1 PL51 2.2 -2.2 0.0 2.5 -2.5 0.0

ES43 -0.5 0.8 0.3 -1.0 1.5 0.5 PL52 2.3 -2.3 -0.1 2.5 -2.6 0.0

ES51 0.0 0.0 0.0 -0.1 -0.3 -0.4 PL61 2.3 -2.4 -0.1 2.6 -2.7 -0.1

ES52 -0.4 0.5 0.2 -0.7 1.0 0.3 PL62 2.7 -2.9 -0.2 3.2 -3.4 -0.2

ES53 -0.6 1.0 0.5 -1.1 2.0 0.9 PL63 2.4 -2.5 -0.1 2.8 -3.0 -0.2

ES61 -0.6 0.9 0.3 -1.2 1.6 0.5 PT11 -0.2 0.1 -0.1 -0.2 -0.1 -0.3

ES62 -0.4 0.7 0.2 -0.9 1.3 0.4 PT15 -1.0 1.4 0.4 -1.7 2.4 0.7

ES63 -0.2 1.1 0.8 -0.5 2.4 2.0 PT16 -0.4 0.6 0.1 -0.6 0.8 0.2

ES64 -0.1 1.1 1.0 -0.3 2.5 2.2 PT17 -0.7 1.0 0.3 -1.2 1.8 0.7

FI13 6.9 -7.8 -0.9 8.6 -9.6 -1.0 PT18 -0.8 1.1 0.3 -1.4 1.9 0.5

FI18 5.9 -6.1 -0.2 7.3 -7.4 -0.1 ROU 1.3 -1.4 0.0 1.6 -1.7 -0.1

FI19 6.2 -6.7 -0.6 7.6 -8.2 -0.6 SE11 4.4 -4.1 0.4 5.5 -5.2 0.3

FI1A 6.8 -7.8 -1.0 8.7 -9.9 -1.3 SE12 4.0 -4.4 -0.3 4.6 -5.1 -0.4

FI20 6.6 -5.6 1.0 8.1 -5.8 2.3 SE21 3.7 -3.9 -0.2 3.8 -3.9 -0.1

FR10 0.6 -0.3 0.4 0.7 -0.5 0.1 SE22 3.2 -3.2 0.0 3.0 -2.9 0.1

FR21 0.8 -0.8 0.0 1.0 -1.0 0.0 SE23 3.8 -3.9 -0.1 4.0 -3.9 0.1

FR22 0.8 -0.8 0.0 0.9 -0.9 0.0 SE31 4.8 -5.9 -1.0 6.1 -7.6 -1.5

FR23 0.7 -0.7 0.0 0.8 -0.8 0.0 SE32 4.7 -6.1 -1.4 5.9 -8.2 -2.2

FR24 0.6 -0.6 0.0 0.6 -0.6 0.0 SE33 6.7 -8.9 -2.2 9.7 -13.1 -3.4
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Table B2 ± continued from previous page

Full Partial Full Partial

Code ĈS P̂S Ŵ ĈS P̂S Ŵ Code ĈS P̂S Ŵ ĈS P̂S Ŵ

FR25 0.6 -0.6 0.0 0.7 -0.7 0.0 SI00 1.6 -1.7 -0.1 2.1 -2.2 -0.1

FR26 0.8 -0.8 0.0 1.0 -1.0 0.0 SK01 2.1 -2.0 0.1 2.4 -2.1 0.3

FR30 0.7 -0.7 0.0 0.8 -0.8 0.0 SK02 2.2 -2.2 0.0 2.4 -2.4 0.0

FR41 1.0 -1.1 -0.1 1.3 -1.4 -0.1 SK03 2.7 -2.9 -0.3 3.4 -3.8 -0.4

FR42 1.0 -1.1 -0.1 1.3 -1.5 -0.2 SK04 2.7 -2.9 -0.2 3.5 -3.8 -0.3

Figure B1: Estimates of θ using different years

Notes: the figure shows point estimates and 95% confidence intervals from Equation

(19) using single years observations.
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Table B3: Welfare Results: Country Level

RCP 4.5 RCP 8.5

Full Partial Full Partial

Code ĈS P̂S Ŵ ĈS P̂S Ŵ ĈS P̂S Ŵ ĈS P̂S Ŵ

AT 2.8 -3.1 -0.4 3.5 -4.0 -0.5 3.8 -4.6 -0.7 5.1 -6.1 -0.9

BE 0.8 -0.8 0.1 1.1 -1.0 0.1 0.6 -0.5 0.1 1.2 -1.1 0.1

BG 0.1 -0.2 0.0 0.6 -0.6 -0.1 -0.9 0.8 0.0 -0.2 0.1 -0.1

CY -1.4 2.5 1.1 -2.5 4.5 2.0 -3.7 5.5 1.8 -5.8 9.3 3.5

CZ 2.5 -2.6 -0.1 3.0 -3.1 -0.1 3.3 -3.5 -0.2 4.1 -4.3 -0.2

DE 1.5 -1.5 -0.1 1.9 -2.0 -0.1 1.7 -1.9 -0.2 2.6 -2.9 -0.3

DK 1.5 -1.5 0.0 1.9 -1.9 0.0 1.7 -1.7 0.0 2.5 -2.5 0.0

EE 4.3 -4.6 -0.3 5.3 -5.6 -0.3 5.6 -6.0 -0.4 7.1 -7.6 -0.5

ES -0.1 0.2 0.1 -0.2 0.3 0.1 -1.6 1.8 0.1 -2.0 2.2 0.2

FI 6.3 -6.9 -0.6 7.9 -8.5 -0.6 8.0 -8.9 -0.9 10.3 -11.3 -1.0

FR 0.7 -0.7 0.0 0.8 -0.8 0.0 0.3 -0.4 0.0 0.6 -0.6 -0.1

GR -0.9 1.3 0.4 -1.4 1.9 0.6 -2.7 3.3 0.6 -3.4 4.3 0.9

HU 1.2 -1.1 0.0 1.4 -1.4 0.0 0.7 -0.6 0.1 0.9 -0.8 0.1

IE 0.6 -0.5 0.1 1.2 -1.1 0.0 0.6 -0.5 0.0 1.8 -1.8 -0.1

IT 0.4 -0.3 0.1 0.3 -0.2 0.1 -0.3 0.3 0.1 -0.4 0.6 0.2

LT 2.6 -2.8 -0.1 3.8 -4.0 -0.2 3.2 -3.4 -0.2 5.0 -5.4 -0.3

LU 0.9 -1.1 -0.2 1.3 -1.7 -0.4 0.7 -1.2 -0.4 1.5 -2.4 -0.9

LV 3.2 -3.5 -0.3 4.3 -4.7 -0.4 4.0 -4.5 -0.5 5.7 -6.3 -0.6

MT -2.0 2.8 0.8 -3.1 4.3 1.2 -4.6 5.8 1.2 -6.6 8.7 2.1

NL 0.9 -0.7 0.2 1.2 -1.0 0.2 0.6 -0.3 0.3 1.3 -1.0 0.3

PL 2.3 -2.4 -0.1 2.7 -2.8 -0.1 2.9 -3.0 -0.2 3.5 -3.6 -0.2

PT -0.5 0.7 0.1 -0.8 1.0 0.2 -2.5 2.8 0.2 -3.2 3.6 0.4

RO 1.3 -1.4 0.0 1.6 -1.7 -0.1 1.0 -1.0 -0.1 1.5 -1.6 -0.1

SE 4.1 -4.6 -0.4 4.7 -5.2 -0.5 5.6 -6.3 -0.7 6.5 -7.3 -0.8

SI 1.6 -1.7 -0.1 2.1 -2.2 -0.1 2.1 -2.2 -0.2 3.1 -3.3 -0.2

SK 2.4 -2.5 -0.1 2.9 -3.0 -0.1 2.9 -3.0 -0.1 3.5 -3.7 -0.1

Notes: the values have been aggregated considering the share of each region (NUTS2)
in the country’s total production.
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