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With his exceptional coding skills he has been my Norwegian reference to anything IGA
or supercomputing related. The biologists’ group of Nicola Montaldo, Synnøve Ræder,
and Rossana Aprigliano contributed in making my time in Trondheim great, with many
koselig evenings and expertly homemade pizzas. Cesilie Welle’s pragmatism and sharp
sarcastic humour have been essential in several moments. Flora Anna Crocker Ångman
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Introduction

0.1 Waves in water

This thesis deals with the analysis of waves in a homogeneous fluid of finite depth, a
layer of water being the prime example, and in particular with waves which are described
through bifurcation theory.

The motion of an inviscid, incompressible fluid over a flat, rigid, impermeable bottom
B is described by the Euler equations with suitable boundary conditions. The resulting
mathematical model is called the water wave problem. In two dimensions, letting Ω
indicate the interior of a fluid domain of depth d, and assuming its free boundary S can
be represented by the graph of a function with vertical coordinate y = d + η(x, t), the
Euler system reads

ut + uux + vuy = −Px in Ω
vt + uvx + vvy = −Py − g

ux + vy = 0 in Ω

v = ηt + uηx on S
v = 0 on B
P = Patm on S.

(0.1.1)

Here (u, v) is the velocity field of the fluid, P is the pressure, and g is the acceleration
due to gravity. Note that since Ω, or actually η, is to be found as part of the solution this
is a free boundary problem. Albeit being a special case of the Navier-Stokes equations,
the Euler equations are still arduous for both analytical and numerical approaches. Their
great complexity has thus pushed the scientific community to develop, throughout the
years, several simplified models for the description of the fluid’s surface.

Even if waves on Earth can reach amplitudes of over 30 metres [33], smaller waves
are much more common and easily observable in a laboratory. For this reason, and for
sheer mathematical convenience, several model equations to approximate the behaviour
of the surface given by the system (0.1.1) have been proposed in the small amplitude -
long wavelength regime. The first topic presented in this thesis is the Whitham equation,
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a model closely-related to the famous Korteweg-de Vries (KdV) equation. Presented in
1967 [38] by the British-born American mathematician Gerald B. Whitham, the equation
- in two physical dimensions and after a scaling - can be written as

ut + uux +Mux = 0. (0.1.2)

The real function u represents the fluid’s surface, and the convolution operator M is
defined by

M̂f(ξ) = m(ξ)f̂(ξ) =

√
tanh(ξ)

ξ
f̂(ξ). (0.1.3)

The important feature of the Whitham equation lies precisely in the choice of symbol
above: The quantity m(ξ) in (0.1.3) coincides with the dispersion relation of the linearised
water wave problem for purely gravitational waves. In contrast, while having the same
structure as (0.1.2), the KdV equation features a dispersion relation of the form

mKdV (ξ) = 1− 1
6
ξ2,

which is only a second order approximation to the symbol in (0.1.3). As a result the
KdV model is too strongly dispersive to capture phenomena such as wave breaking and
waves with singular points (cusps), which are instead known to exist in the full water wave
problem. Recognising these issues, Whitham conjectured that using the same phase speed
as the linearised Euler equations would enable the model to describe the waves’ behaviours
that were lost to the KdV equation. Yet, the new convolution kernel was nonetheless too
difficult to treat due to its singularity at the origin, and Whitham resorted to investigate
a kernel with a different symbol [38, 39], leaving his claims intuitively plausible, but
mathematically unproven. It did not take long, however. In [5] wave breaking for solutions
of the Whitham equation was proven, albeit the authors apply their method to the case
of a continuous kernel (but state that the same approach works also for the singular one).
A more recent proof where the singular kernel given by (0.1.3) is considered is given in
[17], and wave breaking has been numerically studied in [22]. The existence of a highest
cusped wave was instead numerically observed in [11] and analytically confirmed in [14].

0.2 The capillary Whitham equation

In this thesis we analyse the bifurcation branches of travelling wave solutions of the
Whitham equation when capillary forces are taken into account. The travelling waves
assumption allows to integrate Equation (0.1.2) once, and using a Galilean shift to set
the integration constant to zero, one can write the equation in the form

−cu+ u2 +Mu = 0, (0.2.1)

with c > 0 being the speed of the wave. The operator M as described by (0.1.3) accounts
only for the presence of gravitational forces. The inclusion of surface tension is done, in
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the spirit of Whitham, by using as symbol for the convolution kernel the phase speed
coming from the linearised Euler equations with capillarity. That is, one uses

mT (ξ) =

√
(1 + Tξ2) tanh(ξ)

ξ
(0.2.2)

where T > 0 represents the strength of the capillary effects. Note that for T = 0 the above
symbol agrees with the gravitational one in (0.1.3), but for T > 0 its asymptotic behaviour

changes drastically: From |ξ|−1/2 to |ξ|1/2. This means in particular that mT is no longer
bounded and decreasing on R, and as a consequence the corresponding operator MT will
no longer be smoothing. This issue prompted us to rewrite the equation through the use
of the operator LT = (MT )−1, to recover the boundedness and smoothing properties. On
the other hand, this change leads Equation (0.2.1) to assume the more complicated form

u+ LT
(
u2 − cu

)
= 0. (0.2.3)

The analysis of the branches of solutions of the capillary Whitham equation, either in the
form (0.2.1) or (0.2.3), is the topic of the first two works included in this thesis.

0.2.1 Paper I: Simple and double bifurcations in the capillary
Whitham equation

This paper provides the first analytical investigation of the bifurcation branches of
the capillary Whitham equation (0.2.3). The general approach mimics the one used in
other works such as [10, 11], with important differences concerning the three main areas
of the paper: The theory for the operator LT , the simple bifurcations, and the double
bifurcations.

First, respect to the work in [11], Equation (0.2.3) has the additional difficulty that the
nonlocal operator here acts also on the nonlinear term. This required a thorough study of
the new convolution kernel which we accomplish using complex analysis techniques and
the theory of Stieltjes functions. The many properties of LT recorded in the first part
of the paper constitute the first step on the way to develop the theory for more general
types of equations featuring nonlinear-nonlocal terms.

The second main result is the existence of branches of solutions at points where the
bifurcation kernel is one-dimensional. The branches are shown to locally contain only
unimodal solutions and we furthermore prove that they can be globally extended. Similar
results were already obtained for the Whitham equation but in the purely gravitational
setting: The local bifurcation branches found in [12] were extended to global ones in [11],
and, with techniques similar to those applied here, the authors of [14] were able to give a
complete description of the main global branch, terminating with a highest cusped wave
(thereby also proving Whitham’s conjecture). In this work, while we expect no loops
to occur for large surface tension, due to the higher complexity of both the equation
and the convolution operator at play here a complete proof is currently in progress.
Numerical evidence coming from the code developed in Paper II suggests that for large
surface tension the branches are unbounded, with the solutions satisfying |u− c+ 1| → 0
pointwise as c→∞.
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Third, the new form of the phase speed (0.2.2), being not monotone in its argument,
allows for two families of waves to bifurcate at the same speed - something that is precluded
in the purely-gravitational case. For any choice of two distinct wavenumbers k1 and
k2 we show that there are points where the bifurcation kernel is two-dimensional, and
at those points we prove the existence of local sheets of solutions containing unimodal
waves or bimodal waves featuring the prescribed wavenumbers, also called Wilton Ripples.
Additionally, we point out that for the particular choice k2/k1 ∈ N0 purely k1-mode
solutions might not exist, and only the k2-mode and the mixed-mode solutions appear
to occur, pointing toward resonance phenomena between the two wavenumbers. This
matches the observations made for the Euler equations in [29] for double bifurcations
of (1, 2)-modes: There the authors noted that also their technique failed to prove the
existence of the lower mode branch at the double bifurcation point, and instead a curve of
mixed-mode solutions appeared. The same situation for bimodal waves was additionally
found, also for the Euler equations but including vorticity effects, in [10]. In that work
the authors further wonder whether there might be cases of the bifurcation kernel having
dimension greater than two. That has been answered in the positive by some of the same
authors in [13], where examples of trimodal waves are presented. The question has been
further settled in the work [1], where bifurcation kernels with arbitrary dimension have
been proved to exist in the Euler equations with vorticity. Using a different approach,
based on the roots of the dispersion relation, the authors of [23] also proved the existence
of waves with an arbitrary number of modes.

We list here some additional related works: The existence of solitary wave solutions
for, among others, the capillary Whitham equation was proved in [2]. In the same
work the (conditional) stability of such solutions was analysed, while the (modulational)
(in)stability of the periodic solutions has been treated in [16]. Regarding multimodal
waves in the capillary Euler equations, the stability of Wilton ripples has been the topic
of [34], while bimodal waves in the presence of both capillarity and (constant) vorticity
have been studied in [25]. Lastly, the relevance of the capillary Whitham equation as
a model for water waves has been the subject of the study [26], which shows that it
gives a valid description of surface waves short enough for capillary effect to play a role.
There it is also formally shown that the Whitham equation can be derived from the Euler
equations via an exponential scaling.

0.2.2 Paper II: Numerical bifurcation for the capillary
Whitham equation

This work is the numerical counterpart of Paper I and uncovers the rich bifurca-
tion structure of the capillary Whitham equation, finding and describing a number of
solution curves in both the one- and two-dimensional bifurcation settings. In the case of
one-dimensional bifurcations, we show that the global branches contain purely unimodal
waves, with possible subharmonic, frequency-doubling components appearing for large
amplitudes. In the case of two-dimensional bifurcations with wavenumbers k1 and k2, we
present cases of curves of solutions featuring crossings in the speed-height diagram (the
curves meet at a point but do not share the same solution) or connections (the curves
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actually share the same wave solution), and present examples of branches featuring self-
crossings without self-connections. In the cases where two branches connect we discover
that for particular resonances, i.e. specific multiplicities between two wavenumbers, one
of the branches terminates after connecting with the other, while for different multi-
plicities it continues after the connection giving rise to a secondary bifurcation. In any
two-dimensional bifurcation case with k2 = nk1, n ∈ N, however, no purely k1-mode curve
of solutions is found, but only curves of purely k2 or mixed modes, in accordance with
the observations in Paper I. Moreover, for all configurations of parameters no end of the
branches has been reached, and waves with amplitude well over 1 have been computed;
this supports the idea expressed in Paper I that the branches are unbounded.

The tool of the analysis is a spectral Fourier-collocation scheme built on the technique
presented in [11, 12], where the study of travelling waves for the gravitational Whitham
equation was in focus. Spectral collocation schemes have been proved to be convergent
on similar nonlocal equation in, for instance, [19, 28]. Here we substantially modify and
extend the numerical approach of the earlier works to include the effect of surface tension
and allow following branches of any (smooth) shape. This is particularly important:
Already in the case of no surface tension the branches were shown to present features,
like turning points, which are challenging for a numerical-continuation scheme. With the
introduction of capillarity forces the shape of the branches can exhibit even more exotic
behaviours, so that a robust method to follow them results to be essential to the analysis.
To pursue a complete investigation, we additionally equipped the code with the capability
of automatically detecting secondary bifurcation points, and locking on and resolving the
secondary curves.

The analysis performed in this work is novel for the capillary Whitham equation, but
similar investigations have been conducted, with a completely different method, for the
capillary Euler equations in [3]. We here obtain matching global bifurcation diagrams
for some configurations of wavenumber and surface tension, indicating that the Whitham
equation may provide an interesting model for water waves even outside the small am-
plitude regime where it is originally defined. While we tested a great number of solution
waves in a simple time integration scheme, especially large-amplitude ones, their evolution
and stability has not been in focus in this work. Those topics have been analysed in [24]
for the full-dispersion Kadomtsev-Petviashvli (FKDP) equation with capillarity, which
reduces to the capillary Whitham when one considers two-dimensional waves. With a
numerical scheme different to the one used here, it was shown that the FDKP features
stable, large-amplitude lump solitary waves for large surface tension. It was moreover
shown that the capillary Whitham equation features global-in-time solutions for small
enough initial data.

0.3 The free boundary problem in the Euler equa-

tions

Having analysed the bifurcations of the (capillary) Whitham equation in detail, we
have been interested to move our attention to the full water wave problem, for which the
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Whitham equation is a simplified model.

When searching for travelling wave solutions, one can rewrite the Euler equations
(0.1.1) in a steady form, which is known as the stream function formulation (see [6] for
details):

∆ψ = −ω in Ω

ψ = m0 on B
ψ = m1 on S

1

2
|∇ψ|2 + η = Q on S.

(0.3.1)

Here ψ is the stream function, satisfying ∇ψ = [−v, u− c], m1 −m0 is the relative mass
flux, and Q is a constant coming from the Bernoulli equation. Note also that the vorticity
ω is defined in terms of the stream function: ω = ω(ψ). Up until recently the majority of
works on the Euler equations assumed either ω = 0, corresponding to irrotational flows,
or ω = a ∈ R, corresponding to flows with constant vorticity. Our aim is instead directed
at the linear vorticity case, so that ω = aψ + b, for constants a, b ∈ R.

If Q − η does not change sign on S, then thanks to the third equation in (0.3.1) we
can rewrite the system in a more general form

−∆u = f in Ω

u = h on ΓD (0.3.2)

∂nu = g on S

where ΓD = B∪S is the part of the boundary where Dirichlet conditions are applied. Here
∂nu denotes the normal derivative, and f , h, and g are functions defined in a larger domain
containing Ω and its deformations. The assumption on the sign of Q − η is legitimate:
if ∂

∂y
ψ would change sign on S then a stagnation point would be present at the surface

and no bifurcation could occur; see for instance the explanation in [37]. Rewriting the
problem as in (0.3.2) is then justified, and is on systems of that form that we developed
the free boundary isogeometric algorithms that are the topics of the third work in this
thesis.

Those algorithms represent the core of a continuation-method for bifurcations of the
steady Euler equations: Coupled with a quasi-Newton stepping scheme, they will be used
to solve the Euler system of equations and provide the direction of the update of the free
boundary. Through this process, the numerical method will then iteratively converge to
the branch of solutions.

The algorithms we develop are based on isogeometric analysis (IGA) techniques. IGA
is a fairly recent technique which can be seen as an enhancement of the standard finite
element method (FEM) through the use of smooth B-splines basis functions, and has
attracted a lot of attention from the research community ([4, 18, 36]). We refer to the
book [7] for the details of this approach. The main advantages of IGA over standard FEM
are the possibility to naturally describe curved geometries through the use of splines
functions and the construction of discrete spaces with basis with Cp continuity. Both
these features find perfect applications to free boundary problems involving waves, and
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permit to achieve high accuracy in the description of both the surface and the internal
streamlines.

0.3.1 Paper III: Isogeometric methods for free boundary prob-
lems

This work concerns numerical techniques for systems of the form (0.3.2), with the aim
to apply such methods to the study of the bifurcation branches of solutions of the Euler
equations (0.3.1). In particular, in this paper we review and extend two existing methods
for free boundary problems, and develop a third scheme which is completely novel.

The first method is based on the one presented in [40] - the first application of IGA
to a free boundary problem - which is here extended to the case of periodic boundary
conditions. Our second algorithm uses the approach presented in [20, 21], based on the
classical FEM, which in addition to a similar extension to periodic problems has here been
recast in the IGA framework. The change from FEM to IGA is in this case especially
advantageous: Since the finite element basis produces meshes with straight edges, the
authors of those two earlier works needed to introduce an artificial regularisation of the
free boundary to approximate its curvature. This can be completely avoided in an IGA
framework, resulting in a much more accurate, and straightforward, description of the
curvature-dependent terms. Both of our two first methods are based on an IGA-Galerkin
approach. The third algorithm is instead a completely novel, efficient fast collocation
method based on the superconvergent points presented in [15, 27], and represents the first
application of IGA-collocation to free boundary problems. In all algorithms the treatment
of the unknown free boundary is tackled with a superlinear quasi-Newton method based
on the shape calculus techniques presented in [9, 32].

We compare the three numerical schemes on several benchmark tests, including either
Dirichlet or periodic conditions on the vertical sides of the domain Ω, and for different
free-boundary solutions cases. The main conclusion is that the three methods are overall
comparable in terms of accuracy, but display more marked differences in runtime. While
the two Galerkin-based methods converged to the correct solution faster in terms of num-
ber of iterations respect to the collocation scheme, the latter is decisively more efficient
in the use of machine resources and reached tolerance in half the processing time. In ad-
dition, our algorithms obtain significantly improved results respect to [40] when applied
to the same test case: We do not see a plateau in the error quantities and convergence is
instead reached for any meshsize.

As mentioned, while the Euler equations are not the focus of this work our interest
in such methods lies in a future application to the study of the branches of periodic
solutions of the system of equations (0.3.1). Numerical experiments in this direction have
so far used finite differences methods [8], boundary-integral formulations [31, 35], or finite
elements [30]. The application of IGA to the Euler equations with affine vorticity is then
a promising novel approach, in view of the accurate description of the curved surface
enabled by the use of splines functions.
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Quelli che s’innamorano della
pratica senza la scienza, sono
come i nocchieri che entrano in
naviglio senza timone o bussola,
che mai hanno certezza dove si
vadano. Sempre la pratica
dev’essere edificata sopra la
buona teorica, della quale la
prospettiva è guida e porta, e
senza questa nulla si fa bene.*

Leonardo da Vinci,
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*Those who fall in love with practice without theory, are like those who go sailing without rudder or

compass, such that they never know where they are going. At all times should practice be built upon

good theory, its perspective is guide and gate, and without it none is done well.
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Abstract

We consider the bifurcation of periodic travelling waves of a generalized Whitham
equation that incorporates the effects of capillarity into the dispersion relation. In
particular, we consider a nonlinear pseudo-differential equation that combines the
canonical shallow water nonlinearity together with the exact (unidirectional) dis-
persion for finite-depth gravity-capillary waves. We prove several properties of the
new operator arising from the inclusion of surface tension, and show that in almost
all cases of one-dimensional bifurcation, the curves of solutions can be extended
globally. At points where the bifurcation kernel is two-dimensional, we show the
local existence of sheets of solutions containing bimodal waves.

I.1 Introduction

We consider periodic travelling wave solutions of the capillary-gravity Whitham equa-
tion

ut +MTux + 2uux = 0 (I.1.1)

where MT is a Fourier multiplier operator defined via its symbol mT as

M̂Tf(ξ) = mT (ξ)f̂(ξ) =

(
(1 + Tξ2) tanh(ξ)

ξ

) 1
2

f̂(ξ), (I.1.2)

and the coefficient T > 0 denotes the strength of the surface tension. The symbol mT

arises as the linear dispersion relation for capillary-gravity water waves over a finite depth
described by the Euler equations [27, 13]. In the purely gravitational case, i.e. with
T = 0, the use of this symbol was proposed by Whitham as a way to generalise the KdV
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equation and remedy its strong dispersion [26]. Bifurcation in the gravitational setting has
been investigated by some of the authors in [7, 8]. We are here interested in completely
characterising the local theory for travelling wave solutions of (I.1.1), and understanding
their global extensions.

The overarching technique follows an approach similar to that used for the gravity
Whitham equation in [7] or the Euler equations in [6], where a Lyapunov-Schmidt re-
duction is used to prove the existence of wave solutions through the application of the
implicit function theorem. Here, however, the symbol significantly changes its asymptotic
behaviour: From |ξ|−1/2 for the gravity case to |ξ|1/2 when capillarity is present. This
introduces several mathematical challenges, which are tackled by rewriting the equation
in an equivalent form (I.1.5) through the inverse of the convolution operator. While do-
ing so recovers the boundedness and smoothing properties of the symbol, it has the effect
of applying a nonlocal operator to the nonlinear part of the equation. This required
the development of much of the theory for the new convolution operator, which is here
presented.

Our main results are the following: We show that the inverted convolution operator is
integrable, completely monotone for strong enough surface tension, and that the symbol
allows for two-dimensional bifurcation kernels. With the application of the reduction de-
scribed above we prove the existence of small-amplitude solutions, and later extend those
local branches to global ones. Lastly, in the case of a two-dimensional kernel, the existence
of small-amplitude, two-dimensional manifolds of solutions is shown; these sets contain
bimodal waves with profiles featuring first order terms with two different wavenumbers.
Respect to earlier works on the gravitational Whitham equation, the present investigation
has several important differences, which we now bring forward and comment on.

The technical challenges arising in the present work are multiple. The new operator
appearing in (I.1.5) is investigated in a fashion similar to the approach of [10] in the
water waves problem. We apply complex analysis techniques and the theory of Stieltjes
functions to show the properties of the convolution kernel, among others its regularity,
smoothing and Fredholm properties, and when surface tension is large enough also com-
plete monotonicity. This analysis sets the foundations for the development of more general
theory for similar classes of equations featuring nonlocal-nonlinear terms. The properties
of the operator here recorded provide the mathematical basis upon which the existence
of the bifurcation branches, and later their global extensions, is based. Another challenge
is that the increased complexity in the problem makes it harder to rule out alternatives
arising from the global extension of branches. With the presence of surface tension two-
dimensional transcritical bifurcation can occur, as we will show. Numerical calculations
furthermore suggest that for very large waves the profile converges pointwise to a constant
solution of positive height, but with a strong steepening of the slope. This complicates
the analysis of the alternatives as carried out, for example, in [10]. For these reasons,
while at least for strong surface tension we expect that no loops can be present, and the
branches would therefore be unbounded, a rigorous proof is still in preparation.

The existence of multimodal waves, not possible in the purely gravitational setting,
is given in Theorem I.4.1, where we show that for any two wavenumbers k1 and k2 there
are values of the parameters which allow for solutions with first-order terms of the form
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cos(k1x) and cos(k2x). These waves, also called Wilton ripples, have been shown by Reeder
and Shinbot in [21] to exist for the Euler equations with surface tension, albeit only in
the case with k1 = 1, k2 = 2, and their spectral stability has been recently numerically
investigated in [25]. Additionally, the work [19] showed the existence of Wilton ripples
for the Euler equations with both (constant) vorticity and capillarity. In addition to the
existence result, Theorem I.4.1 brings forward two main points: First, it is possible to
have branches with different wavenumbers connect. This result matches the observations
made in [22], which is the numerical counterpart of the present work, and was also found
and analysed in the water wave problem given by the Euler equations in [2]. Second,
when the bifurcation kernel is two-dimensional and k2 is a multiple of k1, our method fails
at finding any branch containing pure k1-mode solutions. The same situation has been
encountered in [21], where their proof of existence of the lower-mode branch also failed in
this case. Indeed, the k1-mode waves’ branch ceases to exist and is instead replaced by
a branch of solutions with mixed (k1, k2)-wavenumber. Numerical confirmation of this is
again given in [22]. Multimodal solutions of the Euler equations have additionally been
studied in [1, 16], where it is in particular proven, with two different approaches, that
bifurcations with arbitrarily large kernels can occur.

The relevance of the Whitham equation as a model for water waves has been studied for
instance in [20], where it is formally shown that it follows from the full Euler equations via
an exponential scaling. There it is also found that the Whitham equation performs better
than the KdV or BBM equations in describing the surface of waves in the intermediate
or short waves regime. The performance of the full-dispersion Kadomtsev-Petviashvli
equation (FDKP) with capillarity is instead analysed in [17], where it is shown that it
provides a better approximation of surface waves than the standard KP equation. The
FKDP equation reduces to the Whitham equation when the waves are two-dimensional.
The local solvability of the Cauchy problem for a family of dispersive equations, including
KdV, Benjamin-Ono, Burgers, and capillary Whitham, has instead been proved in [18],
while the stability of the waves described by the capillary Whitham equation has been
the subject of the investigation in [12], showing that they can be modulationally unstable,
depending on the wavenumber and strength of the capillarity. As said above, out interest
in this work is to prove the existence of periodic travelling waves for the capillary Whitham
equation.

Traveling-wave solutions of the form u(x− ct) satisfy the (profile) equation

−cu+MTu+ u2 = 0, (I.1.3)

where we have integrated once and used Galilean invariance to set the constant of in-
tegration to zero. Since mT is strictly positive on R, the operator MT is invertible (for
example in an L2-based Fourier space) with inverse LT defined via

L̂Tf(ξ) = lT (ξ)f̂(ξ), lT (ξ) = (mT (ξ))−1. (I.1.4)

In particular, the capillary-gravity Whitham equation (I.1.3) can be rewritten in the
“smoothing” form

u− cLT (u) + LT (u2) = 0, (I.1.5)
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with LT = KT∗ where KT is the convolution kernel corresponding to the symbol lT , and
will be analysed in the forthcoming section. The form (I.1.5) is resemblant of the Whitham
equation itself, but with a nonlocal nonlinearity. In fact, we view this paper as a part of a
larger programme to understand and quantify how the precise balance between dispersion
and nonlinearities interact to large and largest waves and determine their regularity. The
equation (I.1.5) fits into this scheme as it is a first step, in a simple model, to treat the
case of a nonlocal nonlinearity when the linear dispersion is understood.

This paper is organised as follows: In Section I.2 we establish several properties of
the convolution kernel KT which will be useful in the treatment of the bifurcations. In
particular, we show that KT is completely monotone when T > 4/π2. Section I.3 contains
the analysis of the bifurcations in the case of a one-dimensional bifurcation kernel; the
main result is the existence of global branch of solutions bifurcating from the trivial line.
The case of two-dimensional bifurcation kernels is instead treated in Section I.4, where
the existence of small-amplitude, two-dimensional sheets of solution is proved.

I.2 Properties of the convolution kernel KT

In the rest of this work we shall make heavy use of the properties of the convolution
kernel KT and its symbol. To start, note that KT = F−1lT is smooth away from the
origin with ∫

R
KT (x) dx = lim

ξ→0
lT (ξ) = 1 (I.2.1)

and

lim
x→0

KT (x) =

∫
R
lT (ξ) dξ = +∞.

Moreover, since lT is analytic, KT has rapid decay at ±∞, whence KT ∈ L1(R) provided
that the blow-up at x = 0 is not too fast. We will show that the singularity at the
origin is of order |x|− 1

2 (there is a lower-order singularity appearing as well), and that the
convolution kernel is completely monotone for strong enough surface tension.

I.2.1 Complete monotonicity

A function g : (0,∞) → [0,∞) is called completely monotone if g is infinitely differ-
entiable with

(−1)ng(n)(λ) > 0

for n = 0, 1, 2, . . . and all λ > 0. If it can furthermore be written in the form

g(λ) =
a

λ
+ b+

∫
(0,∞)

1

λ+ t
dσ(t)

for some constants a, b > 0, with σ a Borel measure satisfying
∫

(0,∞)
1

1+t
dσ(t) <∞, then

it is called Stieltjes. Our interest in such functions is motivated by the following two
results, taken from [10] and [23].
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Lemma I.2.1. [10] Let f : R → R and g : (0,∞) → R be two functions satisfying
f(ξ) = g(ξ2) for ξ 6= 0. Then f is the Fourier transform of an even, integrable, and
completely monotone function if and only if g is Stieltjes with limλ↘0 g(λ) < ∞ and
limλ→∞ g(λ) = 0.

Lemma I.2.2. [23] Let g be a positive function on (0,∞). Then g is Stieltjes if and
only if limλ↘0 g(λ) exists in [0,∞] and g extends analytically to C \ (−∞, 0] such that
Im(z) · Im(g(z)) 6 0.

With f(ξ) = lT (ξ) and g(ξ) = lT (
√
ξ) we want to employ the two above results to

conclude that KT = F−1(lT (ξ)) is completely monotone. Since lT has a unit limit at the
origin and a vanshing limit at infinity, it only remains to prove that lT ◦

√· is Stieltjes.
To this end, define

%T (ζ) =
ζ

(1 + Tζ2) tanh(ζ)
, (I.2.2)

with ζ a complex number. We are interested in lT =
√
%T ,
√· denoting the principal

branch of the square root, and thus want to determine the pre-image of (−∞, 0) together
with the singularities of %T . Let furthermore

Zc =
{
π(k − 1

2
) : k ∈ Z

}
,

Zs = {πk : k ∈ Z \ {0}} ,
ZT =

{
− 1√

T
, 1√

T

}
,

be the set of zeros of cos, sinc and ζ 7→ 1 − Tζ2, respectively. Finally, recall that the
symmetric difference between two sets A and B is the set A4B of elements either in A
and not B, or contrariwise.

Lemma I.2.3. Let ζ = ξ + iη. Then %T takes a zero or infinite value exactly if ξ = 0
and η ∈ Zs ∪ (Zc4 ZT ); and it is negative exactly if ξ = 0, η /∈ Zs ∪ (Zc4 ZT ) and the
intersection (0, |η|) ∩

(
(Zc ∪ Zs)4 ZT

)
contains an odd number of elements.

Proof. By the infinite product formulas for sinh ζ and cosh ζ we obtain

%T (ζ) =
1

1 + Tζ2

∞∏
n=1

1 + ζ2

π2(n− 1
2

)2

1 + ζ2

π2n2

. (I.2.3)

The first part of the lemma now follows immediately, where the symmetric difference
accounts for removable singularities should the term (1 + Tζ2) coincide with a term of

the form 1 + ζ2

π2(n− 1
2

)2
. For the second part we start by showing that %T is never negative

away from the imaginary axis. As %T is symmetric about zero, we restrict our attention
to ξ > 0. We have

Re
[

cosh(ζ)sinh(ζ)
]

=
1

2
sinh(2ξ) > 0,

Re
[
ζ (1 + Tζ2)

]
= ξ + ξT (ξ2 + η2) > 0,
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and consequently | arg( ζ
1+Tζ2

)|, | arg( 1
tanh(ζ)

)| < π
2
. This in turn implies that | arg(%T )| < π,

and so %T cannot be negative. Restricting our attention to the imaginary axis (ζ = iη)
and away from zeroes and singularities, it is clear from (I.2.3) that %T is real valued and
satisfies

sgn(%T ) = sgn(1− Tη2)
∞∏
n=1

sgn
(

1− η2

π2(n− 1
2
)2

)
sgn
(

1− η2

π2n2

)
.

As %T is positive for η = 0, it is negative exactly when an odd number of factors in the
expression above has swapped sign. This is equivalent to the last part of the lemma. �

According to Lemma I.2.3 the real-valued function lT can be extended analytically
as lT =

√
%T outside of its singularities on the imaginary axis. With ζ = ξ + iη, since

furthermore
√

C \ (−∞, 0] = Cξ>0 we can record the following result.

Corollary I.2.4. The symbol lT extends analytically onto the strip R× i(−δ∗, δ∗), where

δ∗ =

{
min{ 1√

T
, π

2
}, T 6= 4/π2,

π T = 4/π2.

Hence, the function ζ 7→
√
%T (
√
ζ) is the unique analytic extension of lT ◦

√· to C \
(−∞, 0].

We may now use Lemma I.2.2 to determine a critical value of the surface tension T for
the Stieltjes property of lT ◦

√·. Note that this value does not correspond to the, likewise
critical, Bond number T = 1

3
that separates strong from weak surface tension.

Theorem I.2.5. The function lT ◦
√· is Stieltjes exactly if T ≥ 4

π2 . These are the values
for which the convolution kernel KT is completely monotone.

Proof. By positivity of lT ◦
√·, the limit limλ↘0 lT (

√
λ) = 1 and the second part of

Corollary I.2.4, it follows from Lemma I.2.2, that lT ◦
√· is Stjeltjes exactly if Im(ζ) ·

Im
√
%T (
√
ζ) 6 0 for ζ ∈ C \ (−∞, 0]. This last property is satisfied if and only if it is

satisfied for %T ◦
√·, which we now prove is the case exactly when T ≥ 4

π2 . Assume first
that T < 4

π2 , then %T (iπ
2
) = 0 and

d%T
dζ

(
i
π

2

)
=

iπ
2

1 + T (iπ
2
)2

d coth

dζ

(
i
π

2

)
=

iπ
2

1− T (π
2
)2
,

demonstrating that for ε > 0 small enough we have Im
[
%T (ε + iπ

2
)
]
> 0. For such an ε,

we can set ζ = (ε + iπ
2
)2 to also obtain Im(ζ) > 0. We turn to the case T ≥ 4

π2 . Moving
the first factor of cosh ζ out of the infinite product in (I.2.3) and taking the argument of
both sides we obtain

arg
(
%T
(√

ζ
))

=
[

arg
(

1 +
4

π2
ζ
)
− arg(1 + Tζ)

]
+
∞∑
n=1

[
arg
(

1 +
ζ

π2(n+ 1
2
)2

)
− arg

(
1 +

ζ

π2n2

)]
.

(I.2.4)
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This equation is valid whenever the right hand side takes values in (−π, π), which in turn
is always true in ζ ∈ C\(−∞, 0] as it is continuous in ζ, zero for ζ > 0 and prevented from
taking a value in {−π, π} as %T (

√
ζ) is never negative (Lemma I.2.3). When Im(ζ) > 0, it

is easy to see that α 7→ arg(1 +αζ) is increasing for α > 0, and so each square bracket in

(I.2.4) is negative, which again implies Im(ζ) · Im
√
%T (
√
ζ) < 0. After a similar argument

for Im(ζ) < 0, we obtain the first part of the theorem. The last part is a direct consequence
of Lemma I.2.1 and the discussion thereafter. �

I.2.2 Regularity properties and decay

In this subsection we split KT according to its singularities, and determine the precise
regularity of these (there are two of them, both at the origin). We also record the rapid
decay and smoothing properties of KT . Write

lT = l− 1
2

+ l 3
2

+ lω,

with l− 1
2

= 1√
T |ξ|

, l 3
2
(ξ) =

√
|ξ|

1+Tξ2
− 1√

T |ξ|
and lω(ξ) = lT (ξ) −

√
|ξ|

1+Tξ2
. The subscripts

represent the regularity of each corresponding term of KT , as will be seen. The decay of
l− 1

2
h |ξ|− 1

2 is clear, and for any fixed T > 0, it is readily seen that

l 3
2
(ξ) h |ξ|− 5

2 ,

and

lω(ξ) =

√
ξ

1 + Tξ2

(√
coth(ξ)− 1

)
h ξ−

1
2 e−2ξ,

both for |ξ| � 1.
To establish the regularity of the corresponding parts of KT we shall use Zygmund

spaces. Let {ψ2
j}∞j=0 be a partition of unity with ψ0(ξ) supported in |ξ| ≤ 1, ψ1(ξ)

supported in 1
2
≤ |ξ| ≤ 2, and ψj(ξ) = ψ1(21−jξ) for j ≥ 2. Then the support of each

ψj is concentrated around ξ h 2j. With D = −i∂x, the Fourier multiplier operators

ψj(D) : f 7→ F−1(ψj f̂) characterises the Zygmund spaces: we say u ∈ Cs(R) if

||u||Cα(R) = sup
j

2jα ||ψ2
j (D)u||L∞ (I.2.5)

is finite. For non-integer values of s ≥ 0 the Zygmund spaces coincide with the standard
(inhomogeneous) Hölder spaces,

Cs(R) ∼= Cs(R), s ∈ R+ \ N0,

and one furthermore has the embedding Ck(R) ↪→ Ck(R) for integer values of k. We refer
the reader to [24, Section 13.8] and [11, Section 1.4].

Now, the symbols l− 1
2
, l 3

2
and lω all have well-defined Fourier transforms, and we let

K− 1
2
(x) = F−1(1/

√
T |ξ|),

K 3
2
(x) = F−1(l 3

2
),

Kω(x) = F−1(lω),
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so that
KT (x) = F−1(lT ) = K− 1

2
(x) +K 3

2
(x) +Kω(x)

where we know that K− 1
2

=
√

2π
T |·| ∈ C

1
2 (R), as it is an eigenfunction of the Fourier

transform. Note also that Kω is real-analytic by Paley–Wiener’s theorem, as lω ∈ L1(R)
has exponential decay rate. The optimal regularity of K 3

2
follows from the following

theorem about the integral kernel KT .

Theorem I.2.6. The integral kernel KT may be written as

KT (x) =

√
2π

T |x| +K 3
2
(x) +Kω(x),

where the second term belongs to the optimal Hölder class C
3
2 and the third is real-analytic.

Consequently,

lim
x→0

√
|x|KT (x) =

√
2π

T

belongs to L1(R). Moreover,

KT (x) . e−δ|x| for |ξ| & 1,

with δ < δ∗ as given in Corollary I.2.4.

Proof. It only remains to determine the regularity ofK 3
2
. We have ψ2

j (D)K 3
2

= F−1
(
ψ2
j l 3

2

)
and, using the L1-norm to estimate the infinity norm, we have that

||ψ2
j (D)K 3

2
||L∞ .

∫ 2j

2j−2

|l 3
2
(ξ)| dξ .

∫ 2j

2j−2

ξ−
5
2 dξ h 2−

3
2
j.

Thus
sup
j

2
3
2
j ||ψ2

j (D)K 3
2
||L∞ . 1,

which proves that K 3
2
(x) ∈ C

3
2∗ (R). As the full kernel has rapid decay and is smooth

outside of the origin, and as K 3
2

and Kω are both continuous, the asymptotics at the
origin and the global integrability of KT follow from the form and local integrability of
K− 1

2
=
√

2π/T | · |. Finally, the decay rate is a direct consequence of Corollary I.2.4 and
Paley–Wiener’s theorem. �

We conclude this section by recording some mapping properties of the convolution
operator LT = KT∗. Let S be the one-dimensional unit sphere of circumference 2π, and
note that the Hölder and Zygmund spaces are straightforward to define on the compact
manifold S (these are the 2π-periodic functions in the larger spaces Cs(R) and Cs(R)).

Lemma I.2.7. For each T > 0 and each s ≥ 0, LT is a continuous linear mapping
Cs(R)→ Cs+1/2(R) and hence compact on Cs(S).
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Proof. Let u ∈ Cs(S). Using that ψ2
j (D)u = F−1(ψ2

j (ξ)û(ξ)), a straightforward cal-
culation using the boundedness and decay rate of lT h l− 1

2
for |ξ| � 1 shows that

||ψ2
j (D)LTu||L∞ 6 2−

j
2

+2||ψ2
j (D)u||L∞ . We then have

sup
j

2j(s+
1
2

) ||ψ2
j (D)LTu||L∞ . sup

j
2jα ||ψ2

j (D)u||L∞ ,

which proves the first assertion. Since S is compact it follows that the embedding
Cs+ 1

2 (S) ↪→ Cs(S) is compact as well, and thus L is a compact operator on any Zygmund
(or Hölder, or Ck) space defined over S. �

I.3 One-dimensional bifurcation

An integral kernel in L1(R) may be periodised to an arbitrary period. Given f ∈
L∞(R) we in particular define the 2π-periodic kernel Kp as the action of L = K∗ in a
single period:

Lf =

∫
R
K(x− y)f(y) dy =

∫ π

−π

(∑
k∈Z

K(x− y + 2kπ)

)
f(y) dy

=

∫ π

−π
Kp(x− y)f(y) dy.

To find nontrivial solutions of the equation (I.1.3), we fix s > 1/2 and define a map
F : Cseven(S)× R→ Cseven(S) via

F (u, c) = u− cLT (u) + LT (u2), (I.3.1)

where Cseven(S) is the subspace of even functions in Cs(S). Then the roots of F correspond
to the even and 2π-periodic solutions of (I.1.3) with wavespeed c. Functions of Zygmund
(Hölder) regularity s > 1

2
have absolutely convergent Fourier series [14]. Hence, we have

F (0, c) = 0 for all c ∈ R and the linearised operator

DuF [0, c] = Id− cLT

has a nontrivial kernel in Cs(S) if and only if c lT (k) = 1 for some k ∈ N0 (we intentionally
include the case k = 0 as it will play a role in the two-dimensional bifurcation to come).
In that case

kerDuF [0, c] = span {cos(mx) : m ∈ N0 such that lT (m) = lT (k)} , (I.3.2)

so the multiplicity of the kernel depends on the graph of the function lT (ξ). In particular,
if T > 1/3 then lT (ξ) is monotone decreasing on R+ and hence the above kernel is simple.
If 0 < T < 1/3, however, the function lT has exactly one local extremum in the interior
of R+, whence opening the possibility of two different integers for which lT (m) = lT (k).
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Concentrating on the primary bifurcation branch, corresponding to k = 1 above, it follows
that in this case the kernel will be simple if and only if T 6∈ {T∗(n)}n∈N0 , where

T∗(n) =
n tanh(1)− tanh(n)

n(n tanh(n)− tanh(1))
,

while it will have multiplicity exactly two when T = T∗(n) for some n ∈ N0. Note
that the function T∗ is strictly decreasing on N0 with T∗(n) → 0 as n → ∞. We here
turn our attention to the branches of solutions {(u, c)} bifurcating from the trivial line
u = 0 at some wavespeed c∗ for a fixed value of the surface tension T > 0 and where
kerDuF [0, c∗] is one-dimensional; two-dimensional bifurcation in the case 0 < T < 1

3
is

dealt with in Section I.4. Note that while one-dimensional kernels appear both for sub-
and supercritical wave speeds, separated by c = 1, two-dimensional kernels only appear
for c ∈ (0, 1].

I.3.1 The parameters

To investigate the bifurcations we will make use in the following sections of three
positive quantities — the wavespeed c, the surface tension T , and a scaling in the period
of the waves, κ. While the first two appear directly in the steady problem (I.1.3), the
scaling ξ 7→ κξ is realised by introducing the corresponding dependence in the convolution
operator L, so that

L̂κ,T (ξ) = lκ,T (ξ) := lT (κξ). (I.3.3)

This operator agrees with the original one for κ = 1. In addition, we see from (I.3.1) that
if u is a 2π-periodic solution of F (u, c) = 0, and we consider u(κ ·), then

û(ξ/κ)− clT (ξ)û(ξ/κ) + lT (ξ)û2(ξ/κ) = 0

is fulfilled on the Fourier side. The change of variables ξ 7→ κξ then justifies the definition
in (I.3.3). This allows us to treat different wavelengths in the same equation by moving
the wavelength parameter to Lκ,T .

Since surface tension is a property of the medium, while the speed and wavenumber
are properties of particular waves, it is physically more relevant to use the two latter as
bifurcation parameters, while holding the surface tension fixed. This is what we will do
in the following.

I.3.2 Local bifurcation via Lyapunov–Schmidt

The following theorem establishes, for fixed wavelength and surface tension, the local
bifurcation of small amplitude steady solutions the capillary Whitham equation. Although
this is by now a standard Crandall–Rabinowitz type result [15], we prove the result using
a direct Lyapunov–Schmidt reduction as to prepare for the two-dimensional bifurcation
in Section I.4. This is similar to the strategy in [6]. As κ and T will be fixed — assuming
that we already have a one-dimensional kernel as described in the beginning of this section
— we shall here suppress the dependence upon these parameters.
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Theorem I.3.1. Let k ∈ N and set c0 = lκ,T (k)−1. For any T, κ > 0 such that
dim kerDuF (0, c0) = 1 there exists a smooth curve

{(u(t), c(t)) : 0 < |t| � 1}

of small-amplitude solutions of the steady capillary Whitham equation (I.1.3) with symbol
given by (I.3.3). These solutions satisfy

u(t) = t cos(kx) +O(t2)

c(t) = c0 +O(t).

in Cseven(S)×R, and constitute all nontrivial solutions in a neighbourhood of (0, c0) in that
space.

Remark I.3.2. There is an additional but qualitatively different bifurcation taking place
at c = 1, where the straight curve of constant solutions (u, c) = (c−1, c) crosses the trivial
solution curve (0, c). These solutions must be taken into consideration when constructing
non-constant waves at c = 1 when the kernel is two-dimensional, see Theorem I.4.1.

Remark I.3.3. By considering the role of κ in the proof of Theorem I.3.1 one can see
that by varying κ one obtains a one-dimensional family of solution curves, the starting
points of which depend smoothly on κ. This may be seen also by applying the implicit
function theorem directly to I.3.1. For each k ∈ N we thus obtain a two-dimensional sheet
of solutions,

Sk = {(u(t, κ), c(t, κ), κ) : 0 < |t| � 1, |κ− κ0| � 1} (I.3.4)

parameterised by (t, κ) in a neighbourhood of a bifurcation point (0, κ0).

Proof. According to the assumptions and the discussion after (I.3.2), we have

kerDuF (0, c0) = ker(Id− c0L) = span{cos(k·)}.

We first write

u(t) = t cos(kx) + v(t),

c(t) = c0 + r(t),

with v(t) ∈ Cseven(S) such that
∫ π
−π cos(kx)v dx = 0 and r(t) ∈ R, and proceed to show

the existence of v and r such that for |t| � 1 we have

F (t cos(kx) + v(t), c0 + r(t)) = 0. (I.3.5)

As a subspace of L2(S), we equip Cseven(S) with the L2 inner product 〈f, g〉 = 1
π

∫ π
−π fg dx

and let Π: Cseven(S) → kerDuF (0, c0) be the projection onto span{cos(k·)} parallel to
range(DuF (0, c0)). We prove in Corollary I.3.5 below that DuF (0, c0) is Fredholm with
index 0, so that Cseven(S) may be written as a direct sum between its kernel and range.
Thus, (I.3.5) is equivalent to

ΠF (t cos(kx) + v, c0 + r) = 0,

(I − Π)F (t cos(kx) + v, c0 + r) = 0,
(I.3.6)
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where we have suppressed the t-dependence in v and r. As

F (t cos(kx) + v, c0 + r)

= t cos(kx) + v − (c0 + r)L(t cos(kx) + v) + L(t cos(kx) + v)2

= DuF (0, c0)(v + t cos(kx))

− rL(t cos(kx) + v) + L(t cos(kx) + v)2,

and cos(k·) is in the kernel of DuF (0, c0) the equation (I.3.5) may similarly be expressed
as

DuF (0, c0)v = rL(t cos(kx) + v)− L(t cos(kx) + v)2 =: g(t, r, v). (I.3.7)

It then follows that (I.3.6) is equivalent to

0 = Πg(t, r, v)

DuF (0, c0)v = (Id− Π)g(t, r, v)
(I.3.8)

Note that since DuF (0, c0) is invertible on (I −Π)Cseven(S), the second equation in (I.3.8)
reads

v = [DuF (0, c0)]−1(Id− Π)g(t, r, v).

At (t, r) = (0, 0), we have both that v = 0 is a solution and that the Frechèt derivative with
respect to v is invertible on (Id − Π) Cseven(S) (because DuF (0, c0) is). Therefore, by the
implicit function theorem on Banach spaces the second line of (I.3.8) has a unique solution
v(t, r) ∈ (Id − Π) Cseven(S) defined in a neighbourhood of (t, r) = (0, 0), and depending
analytically on its arguments. By uniqueness, v(0, r) = 0 for all |r| � 1. Moreover,
differentiation with respect to t at (t, r) = (0, 0) in (I.3.7) shows that ∂

∂t
v(0, r) = 0, which

implies that v has no constant or linear terms in t. As it is smooth in t, it may be
expanded in an (at least) quadratic series around t = 0.

We now need to solve the equation

Πg(t, r, v(t, r)) = Q(r, t) cos(kx) = 0

for r, with
Q(t, r) := 〈g(t, r, v(t, r)), cos(k·)〉.

Notice that that Q(0, r) = 0 since v(0, r) = 0 for all r, which together with the symmetry
of L implies that we can write

Q(t, r) = t [r l(k) +R(t, r)] ,

whereR is analytic withR(0, 0) = ∂rR(0, 0) = 0, again due to the properties of v (here, l =
lT,κ). An application of the implicit function theorem to the equation r l(k)π+R(t, r) = 0
at (t, r) = (0, 0) then yields the existence of a locally unique smooth function r : t 7→ r(t)
with r(0) = 0 such that

Q(t, r(t))) = t(r(t) l(k) + R̃(t, r(t))) = 0

for all |t| � 1. This concludes the proof. �
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I.3.3 Global bifurcation (analytic)

We now extend the local bifurcation curves from Section I.3.2 to global ones by the
means of the analytic bifurcation theory pioneered by Dancer [4, 5] and then developed
further by Buffoni and Toland [3]. We define N : Cs(S)× R+ → Cs+1/2(S), s ≥ 0, by

N(u, c) = L(cu− u2).

Fixed points of N are solutions to the capillary-gravity Whitham equation (I.1.1) and
conversely. Let

S = {(u, c) ∈ Cs(S)× R+ : F (u, c) = 0}
be the set of solutions (fixed points of N). It then follows from Lemma I.2.7 that S ⊂
C∞ × R+, so that all solutions are smooth. By combining this with a diagonal argument
one obtains the following compactness result.

Lemma I.3.4. Bounded and closed sets in S are compact in Cs(S)× R+.

Proof. Let K ⊂ S ⊂ Cs(S)×R+ be closed and bounded, and pick a sequence (uj, cj)j ⊂ K.
Since {c ∈ R+ : (u, c) ∈ K} is a closed and bounded subset of R, it is compact. This means
that (cj)j has a convergent subsequence, name it (ck)k. The sequence (uk, ck)k ⊂ K then
converges in the second component, where uk = N(uk, ck). Since N(·, c) is a compact
operator on Cs(S) thanks to Lemma I.2.7, the sequence (uk)k is pre-compact in Cs(S).
Thus we can pick a further subsequence (ul)l which converges in Cs(S) so that the sequence
(ul, cl)l ⊂ K converges in Cs(S) × R+. As K is closed the limit point belongs to K, and
hence K is compact. �

Corollary I.3.5. The Frechèt derivative DuF (u, c) is a Fredholm operator of index 0 at
any point (u, c) ∈ Cα

even(S)× R.

Proof. This follows immediately from Lemma I.3.4 as then

DuF (u, c) = Id− L(c− 2u)

is a compact perturbation of the identity. �

Theorem I.3.6. Whenever

3c0l(2k)− l(2k)− 2

(c0 − 1)(c0l(2k)− 1)
(I.3.9)

is finite and non-vanishing the local bifurcation curve t 7→ (u(t), c(t)), |t| � 1, from
Lemma I.3.1 extends to a continuous and locally analytically re-parameterisable curve
defined for all t ∈ [0,∞). One of the following alternatives holds:

(i) ‖(u(t), c(t))‖Cs(S)×R →∞ as t→∞.

(ii) t 7→ (u(t), c(t)) is P -periodic for some finite P , so that the curve forms a loop.
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Remark I.3.7. The null set where the condition on (I.3.9) may fail is extremely small.
In particular, for fixed T < 1/3 the numerator of (I.3.9) has two zeros in k, while for
T > 1/3 it has one. It is possible that one could still do global bifurcation in this case
by investigating fourth-order derivatives of the bifurcation curve, but we have not pursued
this here.

Proof. This theorem is a version of the global analytic bifurcation theorem in [3], and —
apart from the bifurcation formulas — the proof goes as in the purely gravitation case
in [7, 10]. The assumptions are fulfilled from Lemma I.3.4 and Corollary I.3.5 if one can
just show that some derivative c(k)(0) is non-vanishing. We give the calculations for ċ(0)
and c̈(0) in the Appendix; the first is 0, and the second is given by (I.3.9). Note that a
third alternative in the theorem in [3] does not happen here, as the set Cs(S)×R lacks a
boundary. �

I.4 Two-dimensional local bifurcation

We now focus our attention on the case of a two-dimensional bifurcation kernel in
Cseven(S). To enable the necessary two degrees of freedom we shall make use of the wave-
length κ in addition to the wavespeed c, while the surface tension T is assumed to be
fixed. We shall therefore study the operator

Fκ(u, c) = u+ Lκ(u
2 − cu)

and its linearisation
L = DuFκ0(0, c0) = Id− c0Lκ0

assuming that T, κ0, c0 > 0 are constants such that

ker(L) = span{cos(k1·), cos(k2·)}, (I.4.1)

which happens when κ0, c0 > 0 and k1, k2 ∈ N0, k1 6= k2, are such that

c0 = lκ0(k1)−1 = lκ0(k2)−1,

as described at the start of Section I.3 (we suppress the dependence on T , as it will not
be used apart from in this assumption). A two-dimensional kernel can arise only for
c0 ∈ (0, 1]. Let now 1 ≤ k1 ≤ k2. With Sk being the sheet of 2π/k-periodic solutions
defined in (I.3.4) we shall show that in addition to the solutions in Sk1 and Sk2 , we may
obtain solutions in a set called Smixed consisting of perturbations of functions in the span
of cos(k1·) and cos(k2·). Assuming that k1 ≤ k2, the resonant case when k2 is a multiple
of k1 (sometimes referred to as Wilton ripples) is more difficult than the generic case, but
we follow here the procedure in [6, 9] to construct a slit disk of solutions also in that case.
Numerical calculations indicate that this set is optimal [22].

When one of the wave numbers is zero (meaning c0 = 1), we instead call that one k2,
and we will automatically have the resonant case, as then k1 | k2. That case is included
in the below theorem. Hence, at c = 1 there is a nontrivial bifurcation, but the arising
waves always have a non-zero component in the constant direction.
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Theorem I.4.1. Let T > 0 be fixed and assume that (I.4.1) holds.

(i) When k1 does not divide k2 there is a full, smooth, sheet

Smixed = {(u(t1, t2), c(t1, t2), κ(t1, t2)) : 0 < |(t1, t2)| � 1}

of solutions

u(t1, t2) = t1 cos(k1x) + t2 cos(k2x) +O(|(t1, t2)|2),

c(t1, t2) = c0 +O((t1, t2)),

κ(t1, t2) = κ0 +O((t1, t2)),

to the steady capillary-gravity Whitham equation (I.1.3). The set Sk1 ∪Sk2 ∪Smixed
contains all nontrivial solutions of this equation in a neighbourhood of (0, c0, κ0).

(ii) When k1 divides k2 there exists for any δ > 0 a small but positive εδ and a slit,
smooth, sheet of solutions

Smixedδ = {(u(%, ϑ), c(%, ϑ), κ(%, ϑ)) : 0 < % < εδ, δ < |ϑ| < π − δ}

with

u(%, ϑ) = % cos(ϑ) cos(k1x) + % sin(ϑ) cos(k2x) +O(%2),

c(%, ϑ) = c0 +O(%),

κ(%, ϑ) = κ0 +O(%).

In a neighbourhood of (0, c0, κ0) the set S = Sk2 ∪ Smixed contains all nontrivial
solutions of (I.1.3) such that δ < |ϑ| < π − δ.

Proof. We start by writing

u(t1, t2) = t1 cos(k1x) + t2 cos(k2x) + v,

c(t1, t2) = c0 + r,

κ(t1, t2) = κ0 + p,

where, generically, we want to find v, r and p parameterised by (t1, t2) such that

Fκ0+p(t1 cos(k1x) + t2 cos(k2x) + v, c0 + r) = 0, (I.4.2)

for sufficiently small values of (t1, t2). As in the proof of Theorem I.3.1 we let Π: Cα
even(S)→

ker(DuFκ0(0, c0)) be the projection onto ker(DuFκ0(0, c0)) parallel to range(DuFκ0(0, c0)),
where we have equipped Cα

even(S) with the L2 inner product 〈f, g〉 = 1
π

∫ π
−π fg dx. Ac-

cording to Corollary I.3.5 equation (I.4.2) is then equivalent to{
ΠFκ(t1,t2) (u(t1, t2), c(t1, t2)) = 0

(Id− Π)Fκ(t1,t2) (u(t1, t2), c(t1, t2)) = 0.
(I.4.3)



34

Note that under the above ansatz, where it is assumed that Πv = 0,

Fκ (u, c) = t1 cos(k1x) + t2 cos(k2x) + v

+ Lκ0+p

[
(t1 cos(k1x) + t2 cos(k2x) + v)2

−(c0 + r) (t1 cos(k1x) + t2 cos(k2x) + v)]

= (v − c0Lκ0+pv) + t1 (cos(k1x)− c0Lκ0+p cos(k1x))

+ t2 (cos(k2x)− c0Lκ0+p cos(k2x))

− rLκ0+p (t1 cos(k1x) + t2 cos(k2x) + v)

+ Lκ0+p (t1 cos(k1x) + t2 cos(k2x) + v)2 ,

and writing Lκ0+p = Lκ0 + (Lκ0+p − Lκ0) we have

Fκ (u, c) = DuFκ0(0, c0)v − c0(Lκ0+p − Lκ0)v
− t1c0(Lκ0+p − Lκ0) cos(k1x)− t2c0(Lκ0+p − Lκ0) cos(k2x)

− rLκ0+p (t1 cos(k1x) + t2 cos(k2x) + v)

+ Lκ0+p (t1 cos(k1x) + t2 cos(k2x) + v)2

=: DuFκ0(0, c0)v − g(t1, t2, r, p, v).

Therefore (I.4.2) is equivalent to

DuFκ0(0, c0)v = g(t1, t2, r, p, v), (I.4.4)

and we can rewrite (I.4.3) as{
0 = Πg(t1, t2, r, p, v)

DuFκ0(0, c0)v = (Id− Π)g(t1, t2, r, p, v).
(I.4.5)

Note that since v is orthogonal to ker(DuFκ0(0, c0)) the second equation in (I.4.5) reads
v = DuFκ0(0, c0)−1(Id− Π)g(t1, t2, r, p, v). It is clear that

DuFκ0(0, c0)v − (Id− Π)g(t1, t2, r, p, v) = 0

has the solution (t1, t2, r, p, v) = (0, 0, 0, 0, 0) and at that point the Frechèt derivative
respect to v is DuFκ0(0, c0), which is invertible on (Id−Π)Cα

even(S). The implicit function
theorem then ensures the existence of a solution v = v(t1, t2, r, p) ∈ (Id−Π)Cα

even(S). By
uniqueness we have that v(0, 0, r, p) = 0 for all small enough values of r and p. Moreover,
note that ∂

∂t1
v(0, 0, 0, 0) = 0 and ∂

∂t2
v(0, 0, 0, 0) = 0. This follows by differentiating (I.4.4)

respect to t1 or t2, and evaluating at (t1, t2, r, p) = (0, 0, 0, 0) recalling that DuFκ0(0, c0) is
invertible on its range. As a consequence, v depends at least quadratically on t1 and t2.

We are now left with solving the finite-dimensional problem given by the first equation
in (I.4.5). To this end, we decompose the projection Π as Π = Π1 + Π2, where Π1 is the
projection onto cos(k1·), and Π2 is the projection onto cos(k2·). Then

Πg = Π1g + Π2g = Q1 cos(k1x) +Q2 cos(k2x),
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with Qj = 〈g, cos(kj·)〉, and the first line of (I.4.5) is equivalent to showing that

Q1 = Q2 = 0. (I.4.6)

The non-resonant case. Assume that k2/k1 /∈ N0. Using the properties of v and Π1, a
direct calculation shows that

Q1 = t1
[
c0

(
l((κ0 + p)k1)− l(κ0k1)

)
+ r l((κ0 + p)k1)

]
− l((κ0 + p)k1)

〈
cos(k1·), (t1 cos(k1·) + t2 cos(k2·) + v(t1, t2, r, p))

2〉 . (I.4.7)

As v(0, t2, r, p) is 2π/k2-periodic and k2 6= k1, the inner product vanishes for t1 = 0.
Therefore we may write

Q1(t1, t2, r, p) = t1 Ψ1(t1, t2, r, p) (I.4.8)

with

Ψ1(t1, t2, r, p) =

∫ 1

0

∂Q1

∂t1
(zt1, t2, r, p) dz (I.4.9)

so that
Ψ1(0, 0, r, p) = c0 [l((κ0 + p)k1)− l(κ0k1)] + r l((κ0 + p)k1). (I.4.10)

Similarly, we have

Q2 = t2
[
c0

(
l((κ0 + p)k2)− l(κ0k2)

)
+ r l((κ0 + p)k2)

]
− l((κ0 + p)k2)

〈
cos(k2·), (t1 cos(k1·) + t2 cos(k2·) + v(t1, t2, r, p))

2〉 (I.4.11)

with the inner product vanishing at t2 = 0 since we assumed k2/k1 /∈ N0. Another
application of the fundamental theorem of calculus yields

Q2(t1, t2, r, p) = t2 Ψ2(t1, t2, r, p) (I.4.12)

with

Ψ2(t1, t2, r, p) =

∫ 1

0

∂Q2

∂t2
(t1, zt2, r, p) dz (I.4.13)

which gives

Ψ2(0, 0, r, p) = c0 [l((κ0 + p)k2)− l(κ0k2)] + r l((κ0 + p)k2). (I.4.14)

Hence, condition (I.4.6) is equivalent to{
t1Ψ1(t1, t2, r, p) = 0

t2Ψ2(t1, t2, r, p) = 0.

We have four cases: t1 = t2 = 0 represents the trivial solutions. When Ψ1 = 0 and
t2 = 0 we can apply the one-dimensional bifurcation theorem and the remark following
it to obtain the solutions in Sk1 . Similarly, when t1 = 0 and Ψ2 = 0 we instead retrieve
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the solutions in Sk2 . To obtain the mixed-period solutions we apply the implicit function
theorem to solve Ψ1 = Ψ2 = 0. Calculating the jacobian of (Ψ2,Ψ2) we have

det

[
DrΨ1(0, 0, r, p) DpΨ1(0, 0, r, p)
DrΨ2(0, 0, r, p) DpΨ2(0, 0, r, p)

]∣∣∣∣
(r,p)=(0,0)

= c0 l(κ0k1) [l′(κ0k2) k2 − l′(κ0k1) k1] (I.4.15)

which is always different from 0 since lT has only one stationary point and lT (κ0k1) 6= 0.
Also note that there can be no cancellation in the parenthesis, since the two derivative
terms always have opposite signs. The Implicit Function Theorem can then be applied,
giving the solutions in Smixed. In every of the four cases the above shows that r = r(t1, t2)
and p = p(t1, t2). The fact that r(0, 0) = p(0, 0) = 0 following from the implicit function
theorem, shows that r and p have at least linear dependence on t1 and t2.

If instead k2/k1 ∈ N0, we do not know that the integral in the expression for Q2

vanishes at t2 = 0; however, we know that it vanishes at t1 = t2 = 0. It is then convenient
to rewrite Q2 with the help of polar coordinates t1 = % cos(ϑ), t2 = % sin(ϑ) to obtain

Q2(%, ϑ, r, p) = % sin(ϑ)c0

(
l((κ0 + p)k2)− l(κ0k2)

)
(I.4.16)

+ % sin(ϑ)r l((κ0 + p)k2)

− l((κ0 + p)k2)
1

π

∫ π

−π
cos(k2x)

[
% cos(ϑ) cos(k1x)

+ % sin(ϑ) cos(k2x) + v(% cos(ϑ), % sin(ϑ), r, p)
]2

dx,

so that now Q2(0, ϑ, r, p) = 0. As before we apply the fundamental theorem of calculus
to obtain

Q2(%, ϑ, r, p) = %Ψ2(%, ϑ, r, p) (I.4.17)

with

Ψ2(%, ϑ, r, p) =

∫ 1

0

∂Q2

∂%
(z%, ϑ, r, p) dz (I.4.18)

and
Ψ2(0, ϑ, r, p) = sin(ϑ) c0 [l((κ0 + p)k2)− l(κ0k2)]

+ r sin(ϑ) l((κ0 + p)k2).
(I.4.19)

For Q1, instead, all the previous calculations remain true and we can still define Ψ1 as
before, simply rewriting it in polar coordinates. We obtain that condition (I.4.6) is now
equivalent to {

% cos(ϑ)Ψ1(%, ϑ, r, p) = 0

%Ψ2(%, ϑ, r, p) = 0.

The case % = 0 corresponds to trivial solutions, while the case cos(ϑ) = 0,Ψ2 = 0
corresponds to solutions in Sk2 . For the case Ψ1 = 0,Ψ2 = 0 we again apply the implicit
function theorem to (Ψ1,Ψ2) at % = 0. The determinant of the jacobian is given by

det

[
DrΨ1(0, ϑ, r, p) DpΨ1(0, ϑ, r, p)
DrΨ2(0, ϑ, r, p) DpΨ2(0, ϑ, r, p)

]∣∣∣∣
(r,p)=(0,0)

= sin(ϑ) c0 l(κ0k1) [l′(κ0k2) k2 − l′(κ0k1) k1] , (I.4.20)
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Figure I.1: A sketch of the solution disk for the Whitham equation at a point where the bifurcation
kernel is tro-dimensional. Note, in particular, that it is possible to connect waves with k1
mode to waves with k2 mode via a curve of mixed-modes solutions.

so the matrix is invertible as long as sin(ϑ) 6= 0, i.e. we require δ < |ϑ| < π − δ.
The quadratic dependence of v on % follows as above by rewriting the second equation

in (I.4.5) in polar coordinates and differentiating respect to %. For r and p the linear
dependence on % comes from the application of the implicit function theorem, showing
r(0, ϑ) = p(0, ϑ) = 0. �

This theorem shows that near a two-dimensional bifurcation point in the case where
k2/k1 /∈ N0 there exist a full disk of solutions, while if k2/k1 ∈ N0 the disk is slit with one
axis removed. This situation is summarised in Figure I.1. In particular this means that it is
possible to find curves connecting solutions with different wavenumbers. Several numerical
examples of this happening have been shown in [22, Section 4.3]. The phenomena of
branches with different modes connecting through secondary bifurcation points has also
been studied by Aston in [2] for the full Euler equations. While we were not able to relate
our values of the parameters, the qualitative behaviour we find here for the Whitham
equation is in line with those results for Euler, see in particular [2, Figure 4 and 5].

I.5 Appendix

This appendix contains higher order expansions of the quantities in Theroem I.3.1 and
Theorem I.4.1. We start with the first and second order terms in the expansion for the
speed c(t) in the one-dimensional bifurcation case, which is required by the proof of the
global extension in Theorem I.3.9, and then proceed to give the first order terms for the
expansions of r and p in the two-dimensional bifurcation case.

I.5.1 One-dimensional bifurcation case

We here determine the derivatives ċ(0) and c̈(0) of the bifurcation curve constructed in
Theorem I.3.1. This can be done either directly using the Lyapunov–Schmidt reduction
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carried out in the proof of Theorem I.3.1 or by the means of bifurcation formulas given
for example in [15]. The latter requires an identification between the bifurcation function
Φ(u, c) = ΠF (u + ψ(u, c), c) used in [15] and the functions v and r used in the proof of
Theorem I.3.1. This relation is given by v(t) = ψ(t cos(kx), c(t)). We, however, start from
the Lyapunov–Schmidt representation

0 = F (t cos(kx) + v(t), c0 + r(t))

= t cos(kx) + v(t)

+ L
[
(t cos(kx) + v(t))2 − (c0 + r(t))(t cos(kx) + v(t))

]
.

Differentiating once and using that v(0) = v̇(0) = r(0) = 0, one easily sees that

ċ(0) = ṙ(0) =
1

2

∫ π
−π (1 + l(2k) cos(2kx)) cos(kx) dx

l(k)π
= 0,

when ker(DuF [0, c0]) is one-dimensional (in the case when l(k) = l(2k) and we have a
two-dimensional bifurcation, this quantity does not vanish). To determine c̈(0) we instead
differentiate twice with respect to t to obtain that

F̈ |t=0 = (Id− c0L)v̈(0) + 2L cos2(kx) = 0,

as r(t) = ṙ(t) = v(0) = v̇(0) = 0. In particular,

v̈(0) = − (DuF [0, c0])−1 L cos2(kx). (I.5.1)

In the same way, taking a third derivative respect to t and evaluating at t = 0, one sees
that

...
F |t=0 =(Id− c0L)

...
v (0)− 3ṙ(0)L cos(kx) + 6L (cos(kx)v̈(0)) = 0,

so that
3l(k) cos(kx)r̈(0) = (Id− c0L)

...
v (0) + 6L (cos(kx)v̈(0)) . (I.5.2)

By (I.5.1),

L (cos(kx)v̈(0)) =

[
l(k)

c0 − 1
+

l(k)l(2k)

2 (c0l(2k)− 1)

]
cos(kx)

+
l(k)l(3k)

2 (c0l(2k)− 1)
cos(3kx),

and as the first term in (I.5.2) is orthogonal to ker(DuF [0, c0]), we may integrate against
cos(kx) to get

〈3l(k)r̈(0) cos(kx), cos(kx)〉

=
6

π

∫ π

−π

[
l(k)

c0 − 1
+

l(k)l(2k)

2 (c0l(2k)− 1)

]
cos2(kx) dx

= 6l(k)

(
1

c0 − 1
+

l(2k)

2 (c0l(2k)− 1)

)
.

This means

r̈(0) =
3c0l(2k)− l(2k)− 2

(c0 − 1)(c0l(2k)− 1)
, (I.5.3)

which is the expression (I.3.9) for c̈(0) given in Theorem I.3.6.
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I.5.2 Two-dimensional bifurcation case

Thanks to Theorem I.4.1 we know that

u(t1, t2) = t1 cos(k1x) + t2 cos(k2x) + v(t1, t2),

c(t1, t2) = c0 + r(t1, t2),

κ(t1, t2) = κ0 + p(t1, t2);

with v of order O(|(t1, t2)|2) and r, p of order O(|(t1, t2)|). For the functions r(t1, t2) and
p(t1, t2) we have the following:

Proposition I.5.1. If k2/k1 /∈ N0,

∇r(0, 0) = 0, ∇p(0, 0) = 0.

If instead k2/k1 ∈ N0, then in polar coordinates

r%(0, 0) = 0, p%(0, 0) = 0,

only if k2 /∈ {0, 2k1}.

Proof. We start with the non-resonant case, k2/k1 /∈ N0. By the definition of r(t1, t2) and
p(t1, t2) we have the identity

Ψi(t1, t2, r(t1, t2), p(t1, t2)) = 0, i = 1, 2;

where the Ψi are the same as in Theorem I.4.1. Differentiating respect to tj, j = 1, 2, and
evaluating at (t1, t2) = (0, 0), gives

Ψi,tj(0, 0, 0, 0) + Ψi,r(0, 0, 0, 0) rtj(0, 0) + Ψi,p(0, 0, 0, 0) ptj(0, 0) = 0.

Note that both of these systems, for j = 1, 2, are solvable for the derivatives of r and p
since the system matrix is invertible by Equation (I.4.15).

We are then left with finding the values of the terms Ψi,tj(0, 0, 0, 0) which, by the
definitions of Ψ1 and Ψ2, amounts to calculating the second order derivatives of Q1 and
Q2. Differentiating Equation (I.4.7) twice respect to t1 gives

∂2Q1

∂t21
(0, 0, 0, 0) = − 2

π
l(κ0k1)

∫ π

−π
cos3(k1x) dx

and the integral vanishes. The same holds for the double derivative of Q2 respect to t2.
The mixed derivative satisfies

∂2Q1

∂t1∂t2
(0, 0, 0, 0) = − 2

π
l(κ0k2)

∫ π

−π
cos2(k1x) cos(k2x) dx

where the integral vanishes since k2/k1 /∈ N0. A similar calculation holds for the mixed
derivative of Q2. We therefore have Ψi,tj = 0 for i = 1, 2 and j = 1, 2. This, together
with the invertibility of the system matrices, gives ∇r(0, 0) = 0 and ∇p(0, 0) = 0.
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If instead k1|k2, we need to solve the system

Ψi,%(0, ϑ, 0, 0) + Ψi,r(0, ϑ, 0, 0) r%(0, ϑ) + Ψi,p(0, ϑ, 0, 0) p%(0, ϑ) = 0. (I.5.4)

Again, the system matrix is invertible by Equation (I.4.20). The function Ψ1 is still defined
as in Equation (I.4.9) but we rewrite it in polar coordinates. Taking one derivative respect
to % gives

Ψ1,%(%, ϑ, 0, 0) =

∫ 1

0

∂2Q1

∂t21
(z% cos(ϑ), % sin(ϑ), 0, 0) z cos(ϑ)

+
∂2Q1

∂t1∂t2
(z% cos(ϑ), % sin(ϑ), 0, 0) sin(ϑ) dz.

For the sake of clarity we keep using the notation ∂Q1

∂t1
, marking that it is to be understood

as the derivative respect to the first variable, and similarly for the mixed derivative. At
% = 0 the double derivative vanishes as before, but from the calculation done in the
previous case we can already see that the mixed derivative will not vanish if k2 = 0 or if
k2 = 2 k1. In those cases we have

Ψ1,%(0, ϑ, 0, 0) = −2 sin(ϑ)l(κ0k1) if k2 = 0,

Ψ1,%(0, ϑ, 0, 0) = − sin(ϑ)l(κ0k1) if k2 = 2k1,
(I.5.5)

which are always non-zero since ϑ is bounded away from 0 and π as by the assumptions of
Theorem I.4.1. This concludes the proof of the statement. For completeness, we give also
the derivatives of Ψ2, defined now as in Equation (I.4.18). Differentianting twice respect
to % we see that ∂2Q2/∂%

2 may not vanish at % = 0 if k2 = 0 or k2 6= 2 k1. In those cases
we calculate

Ψ2,%(0, ϑ, 0, 0) = − cos2(ϑ)l(κ0k2) if k2 = 0,

Ψ2,%(0, ϑ, 0, 0) = −1

2
cos2(ϑ)l(κ0k2) if k2 = 2k1,

(I.5.6)

which are non-zero for ϑ 6= π/2.
�

Remark I.5.2. The special case k2 = 2k1 has been found also in the Euler equations
(with gravity and vorticity) by the authors of [1]. The special case k2 = 0 is instead due
to the transcritical double bifurcation allowed by the capillary Whitham equation.

Remark I.5.3. An explicit example where r%(0, ϑ) 6= 0 can be seen in [22, Figure 6],
where the branch of nontrivial solutions has a non-vertical tangent at the bifurcation point
in the speed-height plane.
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Abstract

The so-called Whitham equation arises in the modeling of free surface water
waves, and combines a generic nonlinear quadratic term with the exact linear dis-
persion relation for gravity waves on the free surface of a fluid with finite depth.

In this work, the effect of incorporating capillarity into the Whitham equation is
in focus. The capillary Whitham equation is a nonlocal equation similar to the usual
Whitham equation, but containing an additional term with a coefficient depending
on the Bond number which measures the relative strength of capillary and gravity
effects on the wave motion.

A spectral collocation scheme for computing approximations to periodic traveling
waves for the capillary Whitham equation is put forward. Numerical approximations
of periodic traveling waves are computed using a bifurcation approach, and a number
of bifurcation curves are found. Our analysis uncovers a rich structure of bifurcation
patterns, including subharmonic bifurcations, as well as connecting and crossing
branches. Indeed, for some values of the Bond number, the bifurcation diagram
features distinct branches of solutions which intersect at a secondary bifurcation
point. The same branches may also cross without connecting, and some bifurcation
curves feature self-crossings without self-connections.

II.1 Introduction

The Korteweg-de Vries (KdV) equation

ηt + c0 ηx +
3

2

c0

h0

η ηx +
1

6
c0h

2
0 ηxxx = 0 (II.1.1)

is a simplified model equation for waves at the surface of a fluid contained in a rectan-
gular channel. The equation includes the competing effects of nonlinear steepening and
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frequency dispersion [19]. Balancing these two effects is the basic mechanism behind the
existence of both solitary-wave solutions and periodic travelling waves. Equation (II.1.1)
is given in dimensional form, c0 =

√
gh0 is the limiting long-wave speed, h0 denotes the

undisturbed water depth, and g is the gravitational constant of acceleration. The func-
tion η(x, t) describes the deflection of the fluid surface from the rest position at a point
x at time t. The equation is a valid approximation describing the evolution of surface
water waves in the case when the waves are long compared to the undisturbed depth h0

of the fluid, the average amplitude of the waves is small when compared to h0, transverse
effects are assumed to be weak, and the waves are predominantly propagating in a single
direction [5, 8, 20, 27].

The linear phase speed of a wave described by the KdV equation is given by

c(ξ) = c0 −
1

6
c0h

2
0ξ

2, (II.1.2)

where ξ = 2π
λ

is the wave number, and λ is the wavelength. This is a second-order
approximation to the wave speed

c(ξ) =
ω

ξ
=
√

g tanh ξh0
ξ

, (II.1.3)

of the linearized water-wave problem. The latter expression for c(ξ) appears when the
full water-wave problem is linearized around the vanishing solution, and solutions of the
form exp(ixξ − iωt) are sought [27].

Comparing the expressions (II.1.2) and (II.1.3), it appears that the linearized KdV
equation does not give a faithful representation of the full dispersion relation even for
intermediate values of the wave number ξ. Recognizing this problem of the KdV equation
as a model equation for water waves, Whitham introduced what is now called the Whitham
equation [28]. The idea was to use the exact form of the wave speed (II.1.3) instead of
a second-order approximation like (II.1.2). The equation proposed by Whitham has the
form

ηt +
3

2

c0

h0

η ηx +Kh0 ∗ ηx = 0, (II.1.4)

where the convolution is in the x-variable. The equation is written in dimensional vari-
ables, with η(x, t) representing the deflection of the surface from rest, just as in the KdV
equation. The convolution kernel is defined via the Fourier transform F by

FKh0 = c(ξ) =
√

g tanhh0ξ
ξ

. (II.1.5)

It should be mentioned that the Whitham equation has excited some interest because it
was conjectured to feature wave breaking and peaking. Wave breaking in this context is
defined as the development of an infinite gradient in the solution. In a physical context,
this kind of breaking may not happen naturally for a free equation such as (II.1.4), but
may require some forcing either by a sloping bottom, or an imposed discharge [4]. While
the KdV equation does not allow the formation of infinite gradients, it features convective
wave breaking which is related to spilling at the wavecrest [7]. Wave peaking describes
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the situation where a steady wave profile features a singular point, such as a peak or a
cusp, such as in the well known highest wave which was conjectured to be peaked by
Stokes, and proved to exist in [1, 25].

Both the existence of peaked and breaking waves were investigated to some degree
already by Whitham [28, 27], and studied at length for a number of related equations by
Naumkin and Shishmarev in the monograph [23]. Recently, proofs of both phenomena
have become available. In particular, it was shown in [14] that the Whitham equation
features waves which develop an infinite gradient, and the existence of a highest, peaked
wave was proved in [11].

In the present article, the Whitham equation is studied in the case when surface
tension is important. The motivation for this pursuit lies partially in the analysis in
[22] where it was shown that the Whitham equation is a valid model for surface waves of
smaller wavelengths than the KdV equation. As a result, it is possible to use the Whitham
equation for surface waves which are short enough for capillary effects to play a role. On
the other hand, there are situations where capillarity is strong, such as in the presence of
a surface film or an interfacial hydrate layer [2, 13, 17]. In this case, capillarity can be
important even for longer waves.

In the general case where both capillary and gravity effects are present, the relation
between the wavenumber ξ and the radial frequency ω in the linearized surface water
wave problem is given by

ω2 = gξ tanh(ξh0)
(

1 + τ
ρg
ξ2
)
, (II.1.6)

where ρ is the density of the fluid, and τ is the surface tension of the free surface.
If restricted to waves propagating into a single direction, the phase velocity can be

written as
c(ξ) =

√
g tanhh0ξ

ξ

(
1 + τ

ρg
ξ2
)
.

Thus in the case of capillary-gravity waves, this definition of c(ξ) is used in the definition
of the integral kernel in (II.1.5). If the undisturbed depth h0 is taken as a unit of length,
and h0/c0 is taken as unit of time, then the Whitham equation with surface tension is

ut +
3

2
uux +KT ∗ ux = 0, (II.1.7)

where the integral kernel KT is given by its Fourier transform, viz.

FKT (x) =
√

(1+Tξ2) tanh(ξ)
ξ

, (II.1.8)

where T = τ
ρgh20

is the inverse of the Bond number which measures the relative strength

of gravity and capillary effects on the wave motion. This equation has recently appeared
in [16] where the stability of progressive waves of small-amplitude was in focus.

Note that the equation (II.1.7) is completely different in structure from the capillary
KdV equation

ut + c0 ux +
3

2
uux +

1

6
uxxx −

T

2
uxxx = 0. (II.1.9)
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This latter equation reduces to the case of the KdV equation with the sign of the dispersive
term being positive or negative depending on the value of T . Since these two cases are
equivalent via a change of sign, they do not differ in a qualitative way [3]. The one case of
greater interest is when T is close to 1/3 as a fifth-order term is then needed in order to
get the correct order of approximation. The resulting equation is known as the Kawahara
equation, and it features competing third and fifth order derivatives. On the other hand,
equation (II.1.7) features two competing nonlocal terms for any value of T , and as will
be seen presently, this configuration has repercussions on the possible solutions of the
equation.

In the present work, steady solutions of (II.1.7) are under consideration and we will
look for solutions in the space of continuous 2π/k-periodic functions, which will be denoted
by C2π/k. For convenience, we use a further rescaling to put (II.1.7) in the tidy form

ut + 2uux +KT ∗ ux = 0, (II.1.10)

and then use the assumption η(x, t) = u(x − µt) to search for travelling wave solutions
with propagation speed µ. The equation can then be written in integrated form as

W (µ, u) = −µu+ u2 +KT ∗ u = 0. (II.1.11)

As will be shown in the body of this article, with the definition of KT in (II.1.8),
equation (II.1.11) features a large variety of solutions. In particular, there are branches
which contain secondary bifurcation points leading to connections with other branches.
There are also crossings of distinct branches without connections, and there are self-
crossing (but not intersecting) bifurcation branches. Such patterns have been seen before
in some cases, such as in the case of tri-modal surface water waves ([12]), but the nature of
the connections appears to be different in the present case. The existence of crossing and
self-crossing branches leads to non-uniqueness of solutions of the steady problem (II.1.11)
which is an interesting problem in itself.

The plan of the paper is as follows. In Section II.2, analytic bifurcation formulae
are provided in order to guide the numerical experiments. In Section II.3, the numerical
scheme is explained in detail, and in Section II.4, numerical experiments are shown.

II.2 Analytic expansions

We now want to provide an analytical expansion of the wave profile and speed near
the bifurcation point. We look for an expansion in the form

uε = u1 ε+ u2 ε
2 + u3 ε

3 + u4 ε
4 + . . . (II.2.1)

µε = µ0 + µ1 ε+ µ2 ε
2 + µ3 ε

3 + . . . . (II.2.2)

In this pursuit, it is important to understand the behavior of the dispersion relation in
terms of different values of T .
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(a) T = 0 (b) T = 0.1

(c) T = 0.2 (d) T = 0.333

Figure II.2: The bifurcation speed µ∗ as a function of the wave number k for various values of T . The
case T = 0 corresponds to the gravitational case of Equation (II.1.11). Panels (b) and (c)
illustrate two cases where the dispersion curve is non-monotone. Panel (d) shows the case
where T = 1/3. For T ≥ 1/3, the curve is monotone.

II.2.1 Bifurcation speed

Analyzing the linearized version of (II.1.11), it is intuitively clear that given k ∈ N,
the speed at which non-trivial 2π/k-periodic solutions bifurcate from the trivial solution
curve is given by

µ∗ = m(k) =

√
(1 + Tk2) tanh(k)

k
(II.2.3)

and the kernel of DuW at the bifurcation point is the span of {cos(kx)}. A firm proof of
this fact can be established in the same way as it was shown for the purely gravitational
case in [10].

It can be shown that for T = 0, Equation (II.2.3) is monotonically decreasing in k,
while it has a global minimum for any value of T > 0. In particular, minm(k) ∈ (0, 1)
for 0 < T < 1

3
, while for T > 1

3
the minimum is 1 and m(k) is monotonically increasing

in k. Some examples are shown in Figure II.2.
This means that given two wavenumbers k1, k2, we can always find a T such that

m(k1) = m(k2), and hence the two branches bifurcate from the same point. Such T is
given by

T (k1, k2) =
k1 tanh(k2)− k2 tanh(k1)

k1k2 (k1 tanh(k1)− k2 tanh(k2))
(II.2.4)
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Note that this implies that for T = T (k1, k2), the kernel of DuW is two-dimensional
at the bifurcation point, and in particular the kernel is the span of {cos(k1x), cos(k2x)}.
This fact, along with the existence of local sheets of solutions, is outside of the scope of
the present paper, but will be rigorously proved in future work.

II.2.2 Expansion coefficients and multi-modal waves

In the case of a one-dimensional kernel, i.e. when T 6= T (k1, k2), the constants in
formulas (II.2.1) and (II.2.2) are given below:

u1 = cos(kx),

u2 =
1

2 (m(k)− 1)
+

1

2 (m(k)−m(2k))
cos(2kx),

u3 =
1

2 (m(k)−m(3k)) (m(k)−m(2k))
cos(3kx),

u4 = A0 + A2k cos(2kx) + A4k cos(4kx).

The last function is defined in terms of the constants

A0 = − 1

4 (m(k)− 1)3
− 1

8 (m(k)− 1)2(m(k)−m(2k))

+
1

8 (m(k)− 1) (m(k)−m(2k))2
,

A2k = − 1

4 (m(k)−m(2k))3
+

1

4 (m(k)−m(2k))2(m(k)−m(3k))
,

A4k =
1

8 (m(k)−m(2k))2(m(k)−m(4k))
,

+
1

2 (m(k)−m(2k)) (m(k)−m(3k)) (m(k)−m(4k))
.

For the expansion of the wave speed µ, we have

µ0 = m(k),

µ1 = 0,

µ2 =
1

m(k)− 1
+

1

2(m(k)−m(2k))
,

µ3 = 0.

Note that these expansions coincide, up to the second order in ε, with the bifurcation
formulas given in [9].

Due to Formula (II.2.4) there exist some values of T for which the above expansion is
not valid, e.g. when T = T (k, 2k). In those cases a more in-depth analysis is required.
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However, since all the terms in the denominator are of the form (m(k)−m(ak)), a ∈ N0, the
expansions (II.2.1) and (II.2.2) remain valid also when T = T (k1, k2) provided k2 6= ak1.
In the other cases, we can still select T in order for (II.2.1) and (II.2.2) to hold while
making the coefficients in a component un arbitrarily large. This explains the existence
of multi-modal waves, which are associated with the property that the bifurcation kernel
can be two-dimensional. For instance, in [12], tri-modal waves were found in the case
of the full-water wave problem with a background shear current. Several examples are
presented in Section II.4.

II.2.3 Tangent and direction of nontrivial curves at the bifurca-
tion point

Due to Equation (II.2.3) it is natural to use the wave speed as a bifurcation parameter,
and we are interested in the shape of curves of nontrivial solutions close to the bifurcation
point. This information is given by the expansion (II.2.2) for the wave speed except in
the cases of a two-dimensional kernel.

In the purely gravitational case we know that any nontrivial branch has a vertical
tangent at the bifurcation point. This is due to the fact that µ1 = 0, and as we have have
just shown it is preserved also in the capillary case.

Moreover, for gravity waves it was shown in [9, Theorem 4.6] that the main branch
(k=1) satisfies µ̈(0) = µ2 < 0, which means that in a neighborhood of the bifurcation
point the main branch will go to the left, in the direction of decreasing velocities. Due
to the effect of T on m(k), we can see from the above bifurcation formulas that there are
values of T for which µ2 changes sign, and therefore the main branch can bifurcate going
to the right, in the direction of increasing velocities. The value of sign(µ2) is plotted in
Figure II.3 for the first four wavenumbers. Note that the branches for k = 3, 4, among
others, bifurcate going to the right also in the purely gravitational case.

II.3 The numerical scheme

We employ a variation of the method presented in [9]. We want to apply a Fourier-
collocation method, which is convenient given the definition of K. Also note that, thanks
to symmetry, we can perform all computations on the half-wavelength L = λ/2 = π/k.
Given k, let N be the total number of collocation points and define the subspace of
L2(0, π)

Sh = span{cos(nx) : 0 6 n 6 N − 1}

and the collocation points xi = (2i−1)π
2Nk

for i = 1, . . . , N . We then discretize Equation
(II.1.11) and search for a solution uh ∈ Sh, uh(xi) = ui such that

−µuh + u2
h +K uh = 0 (II.3.1)
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure II.3: Values of sign(µ2) for T ∈ (0, 1) and k = 1, . . . , 4. Positive values mean the branch goes
to the right of µ∗, negative values that it goes to the left.

To understand the term Kh uh, we need to see how K acts on functions in Sh, therefore
we expand uh in its discrete Fourier (cosine) series:

uh(x) =
N−1∑
n=0

wn an cos(nx), an = wn

N∑
i=1

ui cos(kxi), (II.3.2)

where as usual

wn =

{
1/
√
N n = 0

2/
√
N n > 1.

We then see that K acts on uh as follows:

K ∗ uh =

∫
K(y)uh(x− y) dy =

∫
K(y)

N−1∑
n=0

wn an cos(nx− ny) dy

=

∫
K(y)

N−1∑
n=0

wn an
ei(nx−ny)+e−i(nx−ny)

2
dy.

We now split the integral in the two parts, change variables y 7→ −y in the second integral,
and exploit the fact that K is even, and get that the above becomes

K ∗ uh =
N−1∑
n=0

wn an
einx−e−inx

2

∫
K(y)e−iny dy

=
N−1∑
n=0

wn an cos(nx)
√

(1+Tn2) tanh(n)
n

.
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Expanding the definition of an and rearranging the sums we finally have

=
N∑
i=1

N−1∑
n=0

w2
n

√
(1+Tn2) tanh(n)

n
cos(nxi) cos(nx) ui.

So if we define the matrix K as

K(i, j) =
N−1∑
n=0

w2
n

√
(1+Tn2) tanh(n)

n
cos(nxi) cos(nxj),

we have that the above is transformed into the matrix-vector multiplication K ∗ uh =
Kuh, where uh is the vector [u1, . . . , uN ] whose entries are the discrete solution evaluated
at the collocation points. We can therefore collocate Equation (II.3.1) in the collocation
points xi, and obtain a system of N nonlinear equations

Wh(µ,uh) = −µuh + u2
h + Kuh = 0. (II.3.3)

II.3.1 Choice of parametrization

Problem (II.3.3) requires solving a nonlinear system of equations, written in gen-
eral from as F (y) = 0. This can be done with standard Newton iterations yn+1 =
yn − (JF (yn))−1 F (yn), where JF is the Jacobian of F . Choosing different F ’s allows
to parametrize the problem in different ways, depending on what is most convenient at
any given time. We present here two possible strategies to parametrize and follow the
bifurcation branch: One is based on parameter-continuation, while the other is based on
the pseudo-arclength method.

Parameter-continuation approach

The idea of a parameter-continuation approach consists in choosing a quantity p to
be the parameter, it can be for example the speed of the wave, and then in setting F
so that a solution to F (y) = 0 will satisfy (II.3.3) as well as a constraint linked to the
parameter we have chosen. Once a solution is found, the parameter is updated by a small
step p ; p + h and a new solution is computed. Looking at (II.3.3), the most natural
choice seems to be

Fµ(u) = Wh(µ, uh), (II.3.4)

which corresponds to using the speed as a parametrization of the branch. We can picture
the branch as a curve plotted in the (µ, ζ) plane, where ζ can be any other quantity used
as vertical axis, e.g. the wave height. Given a fixed speed µ̄ and a corresponding solution
u of (II.3.4), we modify the speed with a small step µ̄+h and use the previous solution u
as an initial guess for Newton. The algorithm will then “move” vertically from the point
(µ̄+h, u) and converge to a new solution on the branch with speed equal to µ̄+h. While
this is very robust numerically, it clearly breaks down when the curve has a turning point
or a vertical tangent, as then the implicit function theorem no longer applies.
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Since we already know that nontrivial branches have a vertical tangent at the bifur-
cation point, and that turning points may happen, we want to include other types of
parametrizations. Since µ can no longer be used as a parameter, it needs to be treated as
an unknown, and consequently we must include an additional equation in the system. One
idea would be to use the waveheight as a parameter, and we can identify the numerical
wave height as |uN − u1|. We will then choose F to be

Fwh(u, µ) =

(
Wh(µ, uh)

uN − u1 −wh

)
(II.3.5)

where wh ∈ R+.

While this is convenient in case of turning points or vertical tangents in the branch,
it is based on the assumption that |uN − u1| really describes the wave height, i.e. that
uN and u1 are the crest and the trough of the wave. As we have seen, however, there are
cases where the wave can be multimodal, and therefore crests may not be positioned at
uN . See for example Figure II.9d. When this happens, this parametrization will not give
any control on the height of the wave, and may make it difficult to accurately follow the
branch.

A third option that can be used is to parametrize the curve with the square of the
L2-norm of the solution. This results in a choice of F as

Fl2(u, µ) =

(
Wh(µ, uh)

1
N

(u2
1 + u2

2 + . . . u2
N)− l2

)
(II.3.6)

where as before l2 ∈ R+.

Our strategy in the parameter-continuation setting is to perform the first few iterations
along the branch using the discrete L2-norm parametrization, then switch to (II.3.4). At
every step we control the conditioning of the Jacobian of the parametrization in use, and
when it exceeds a certain tolerance we switch to a different parametrization.

Pseudo-arclength continuation

Another continuation method that can be used is the pseudo-arclength, which is a
predictor-corrector scheme based on the idea that a natural parametrization for a curve is
the arclength. Let y = [µ, u1, u2, . . . , uN ]. Given a solution yn on the branch, we compute
the next solution yn+1 in three steps: First we compute the tangent vector zn ∈ Rn+1 at
yn solving {

Dµ,uhWh(yn) · zn = 0

zn · zn−1 = α
(II.3.7)

where α > 0. The first of (II.3.7) is the tangency condition, while the second is used to
choose the tangent vector with the correct orientation.

Then, given zn (properly normalised) we compute ypn+1, predictor point to yn+1, simply
by

ypn+1 = yn + h zn. (II.3.8)
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Finally, the new point yn+1 is found by projecting ypn+1 onto the branch in a direction
perpendicular to zn. That is, we obtain yn+1 by solving{

Wh(yn+1) = 0

(yn+1 − ypn+1) · zn = 0
(II.3.9)

which is the corrector step of the method.
This method is surprisingly robust, and enables us to easily follow the branch even

in presence of turning points. It is clear, however, that it requires an initial guess for
the first tangent vector z0. The last N components of z0 can be chosen, according to
what was said in Section II.2, as cos(kxi), i = 1, . . . , N . For the first component the
optimal choice would be to use the information coming from (II.2.2); however as we have
noted that expansion is not always valid. In order to circumvent this problem and obtain
information on the “direction” for the speed, we decided to first use the parametrization
(II.3.6), which returns some value µ̃1 as a solution, and then simply set the first component
in z0 as sign(µ̃1 − µ∗).

II.4 Numerical Results

We present in this section the numerical results we obtained applying the scheme pre-
sented earlier. All results have been obtained employing the pseudo-arclength parametriza-
tion described in Section II.3.1. For notational simplicity we will refer to the branch
obtained for k = 1 as the main branch even in the presence of multi-modal waves.

The computed profiles have been tested in a discrete time integrator in order to ascer-
tain their validity as numerical solutions of the Whitham problem. To this end, a fully
discrete time dependent collocation scheme was developed which is similar to the scheme
used in [9]. While a detailed discussion of the time integration scheme and corresponding
results is beyond the scope of this work, we note that well posedness of a class of nonlocal
equations was proved in [21], and convergence of spectral collocation projections of similar
nonlocal equations was proved in [18, 24], so that this discussion is therefore omitted here.

II.4.1 General branches

Figure II.4 presents the plots of the branches for k = 1, . . . , 9, for the same values of
the capillarity parameter T as considered in Figure II.2.

Note that in the purely gravitational case T = 0, Figure II.4a, we took advantage
of the known theoretical result stating that u 6 µ/2. To the best of our knowledge no
similar result is available for the capillary case, hence in Figures II.4b, II.4c, and II.4d we
are showing the branches up to the wave height value of 0.2, in order to keep the plots
readable. It is important to note, however, that the code can continue the branches also
after those heights, and in particular we are able to continue the branches well over heights
of 1. In several cases we tested the highest computed profiles in the time integrator and
let the profile evolve for several periods; all tested waves resulted to be orbitally stable.
However, these waves may still feature modulational instability, such as discussed in [15,
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Figure II.4: Branches of solutions for k = 1, . . . , 9 for different values of the capillarity parameter T .
The value of k is indicated above the corresponding branch. In panel (b), it can be seen
that the branch k = 1 crosses both the branch k = 7 and the branch k = 8.

26] for the purely gravitational Whitham equation and a more general class of equations
in [6]. We also briefly note here that waves high up on the branches may have very steep
profiles, which in turn makes the time evolution error very sensitive to the stepsize used.
We present one such example in Figure II.5.

To the naked eye the plot of the profile can appear so steep that it seems to almost
develop cusps of depression. From the theory it is clear that any solution of the Whitham
problem has to be smooth, in particular C∞, so cusps cannot really develop, but this may
be an indication of a possible blow-up in the derivative.

Going back to Figure II.4 we see that, as expected, the bifurcation speed of the
branches increases with T and for T > 1

3
, µ∗(k) > 1 ∀k. We can also see that the branches

bifurcate in the direction of increasing or decreasing velocities in accordance with Section
II.2.3 (see also Figure II.3). Moreover, we note that turning points are present also in the
capillary case: See for example the branch for k = 2 in Figure II.4b.

Section II.4.3 contains a more detailed discussion of the complex interaction happening
between the main branch and the branch for k = 7 that can be seen in Figure II.4b.
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Figure II.5: Bifurcation branch for T = 0.1 and wave number k = 4. The bifurcation point is µ∗ ≈
0.806. Panel (b) displays a very steep wave of waveheight close to 1.

II.4.2 Two-dimensional Bifurcation

This section is devoted to the cases where T is chosen as in (II.2.4). For these values we
know from Section II.2 that the bifurcation kernel is two-dimensional and the analytical
expansions with the coefficients given in II.2.2 may no longer be valid. Also, as will be
proved in future work, the two-dimensional bifurcation kernel leads to the existence of
two-dimensional sheets of small amplitude solutions. Our code, however, is currently
capable of following only branches of solutions. In the case of a two-dimensional kernel,
this corresponds to following the intersection curve between the sheet of solutions and the
plane T = const.

Figure II.6 shows the plot for the branches for k1 = 1 and k2 = 7 when T = T (1, 7) ≈
0.09918. Note that the profiles of the waves at the points labelled (b), (c), and (d) are
shown in the corresponding subfigures. In this case the bifurcation kernel is spanned by
{cos(x), cos(7x)} and the branches bifurcate from the same point as expected. As we can
see the main branch contains waves with mixed wavenumbers: At the beginning (Figure
II.6b) waves have simple cosine-like profiles, but further up the branch (Figure II.6c)
the influence from the cos(7x) component becomes more pronounced and they develop 7
crests. This change happens somewhat rapidly in the lower part of the branch, while in
the higher part the profiles seem to stabilize to a mix of cos(x) and cos(7x), and little
change in shape is observed between waves even over great distances in the branch. The
waves in the k2 branch, on the other hand, maintain a pure cos(7x)-profile throughout
the branch.

Changing T with the help of (II.2.4) we can produce two-dimensional kernels contain-
ing any k1 and k2: Figure II.7 shows a case similar to the above for the wavenumbers
k1 = 1 and k2 = 2. Note that since now k2 = 2 k1, the expansion formulae with the
coefficients written in Section II.2.2 are no longer valid, and in particular we see that the
k1-branch does not have a vertical tangent at the bifurcation point. As in the previous
case, the main branch contains mixed waves: In the lower part the principal mode is
cos(x), while as one follows the branch the contribution from the cos(2x) mode becomes
noticeable and the profile develops two crests. The profile of waves in the k2 branch,
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Figure II.6: Two bifurcation branches originating from the same bifurcation point µ∗ ≈ 0.915. Here
T is given by T (1, 7) according to formula (II.2.4). Panel (a) shows the two bifurcation
branches. Panels (b) and (c) show wave profiles on the upper (blue) bifurcation curve, and
panel (c) shows a wave profile on the lower (red) bifurcation curve.

instead, is not affected by the lower k1-mode and remains of the form cos(2x). This fact
is clear from a functional-analytical point of view since C2π/2, the space of continuous,
2π/2 periodic functions, is a subset of C2π.

More generally, if k2 = a k1 for some a ∈ N, then C2π/k2 ( C2π/k1 and the k1-branch
will contain solutions with components mixing the wavenumbers k1 and k2. If instead
k2 is not an integer multiple of k1, C2π/k2 * C2π/k1 and therefore the k1 branch will not
contain any component with period 2π/k2: See for example Figure II.8. The numerical
tests show that it is still possible for the k1-branch to include period-halving components,
which will lead to the formation of two new crests in place of the original ones. Looking
at the coefficients in Section II.2.2 it is clear that the height on the branch where this
will happen is proportional to m(k1)−m(2k1), but anyway there will not be components
with pure k2 wavenumbers.

II.4.3 Connecting branches

In this section we explore in more detail the cases where the k1 branch actually connects
to the k2 one. A first example could already be seen in Figure II.4b, where the main branch
connects to the k = 7 branch. We will look at this case in detail, and briefly present other
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Figure II.7: A Pair of bifurcation branches originating from the bifurcation point µ∗ ≈ 0.972. T is
given by T (1, 2) according to formula (II.2.4). Panel (a) shows the two bifurcation branches.
Panel (b) shows a wave profile on the upper (blue) bifurcation curve.
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Figure II.8: A Pair of bifurcation branches originating from the bifurcation point µ∗ ≈ 0.757. T is
given by T (3, 4) according to formula (II.2.4). Panel (a) shows the two bifurcation branches.
Panel (b) shows a wave profile on the lower (blue) bifurcation curve.

cases later.
When k1 = 1, k2 = 7, and T = T (1, 7), we have seen in the previous section that

the two branches bifurcate from the same point. We can therefore view the bifurcation
point as a point of connection between these two branches. Looking at Figure II.6 we
see that the main branch lies on the right and above the 2π/7-branch; however we know
from Formula (II.2.3) and Figure II.2 that with an increase in T , µ∗(k2) will increase
faster than µ∗(k1). We therefore expect the representations of the two branches in the
wavespeed-waveheight plane to cross each other at a certain point. The question now is:
Can we make the two branches connect, i.e. can we make small variations in T such that
there still exists a point (which was originally at (0, µ∗)) where the two branches share
the same wave? The answer in general is yes, provided a multiplicity condition on the
wavenumbers is fulfilled.

Figure II.9 shows the plots for k1 = 1 and k2 = 7, with T = 0.1. Recall from before
that T (1, 7) ≈ 0.09918 so now we have T ≈ T (1, 7) + 0.00082. Closeup pictures of the
connection point are presented in Figure II.10.
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Figure II.9: A Pair of bifurcation branches originating from different but comparable bifurcation points
in the case T = 0.1. Panel (a) shows the two bifurcation branches, and panel (b) shows a
close-up of the self-crossing branch. Panels (c) through (f) show various solution profiles
on the self-crossing branch.

As expected, the main branch now starts to the left and below the k2 branch, and
near the point labelled (c), they cross each other without connecting since they do not
share the same solution at that point. Very similarly to what we have seen in Section
II.4.2, the profile of the wave starts as cos(x) right after the bifurcation point, then loses
monotonicity (Figure II.9c) and rapidly develops seven crests (Figure II.9d). The further
we go up the branch the more evident is the presence of a “carrier” signal like cos(x)
and a high frequency modulation given by the cos(7x) component: See Figure II.9e. The
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main branch then curves and connects to the 2π/7 one: Figure II.10 shows two close-ups
of the connection point. While approaching the 2π/7 branch, the main branch crosses
itself twice but does not self-intersect. After that it also crosses the 2π/7 branch, then
turns back and actually connects to it; the connection point being the left one in Figure
II.10b. Near that point we see that the profiles are essentially identical (Figures II.10c and
II.10d). After the connection the main branch separates again and moves up, forming
a loop (Figure II.9a and closeup in Figure II.9b) before continuing in the direction of
increasing heights. Again, there is no self-intersection in the loop, but only a crossing.
After the connection point with the k2 branch, the profiles in the main branch are flipped
vertically and the contribution from the cos(7x) component diminishes until it reaches a
situation like the one presented in Figure II.9f. The profiles remain essentially unchanged
in shape further up in the branch.
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Figure II.10: Panels (a) and (b) show close-ups of the intersection zone of the two bifurcation branches
shown in Figure II.9. In panel (b), the secondary bifurcation point where the two branches
connect is the left one. Panel (c) shows a solution profile on the blue branch, and panel
(d) shows a solution profile on the red branch.

It is possible to replicate the above picture using any k1 provided k2 is chosen as

k2 = (4 + a) k1, a ∈ N0. (II.4.1)

In particular, our numerical experiments show that if a is odd, and hence k2 is an odd
multiple of k1, then the lower-mode branch connects with the higher one, but after the
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connection it continues and is unbounded as we can see in the previous Figure II.9a. If
instead a is even, then the k1 branch terminates at the connection point and no further
solutions are found: See Figure II.11.
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Figure II.11: Various intersecting and self-crossing branches. Panels (b) and (d) feature secondary
bifurcations.

II.5 Acknowledgments

This research was supported in part by the Research Council of Norway through grants
213474/F20 and 231668. The authors would like to thank Mats Ehrnström for help in the
preparation of this manuscript. The authors would also like to thank Mathew Johnson
and Kyle Claassen for interesting discussions on the pseudo-arclength parametrization.



REFERENCES 65

References

[1] C.J. Amick, L.E. Fraenkel, and J.F. Toland. “On the Stokes conjecture for the wave
of extreme form”. In: Acta Mathematica 148 (1982), pp. 193–214.

[2] T.B. Benjamin. “A new kind of solitary wave”. In: J. Fluid Mech. 245 (1992),
pp. 401–411.

[3] T.B. Benjamin. “The solitary wave with surface tension”. In: Quart. Appl. Math.
40 (1982), pp. 231–234.

[4] M. Bjørkav̊ag and H. Kalisch. “Wave breaking in Boussinesq models for undular
bores”. In: Phys. Lett. A 375 (2011), pp. 1570–1578.

[5] J.L. Bona, T. Colin, and D. Lannes. “Long wave approximations for water waves”.
In: Arch. Ration. Mech. Anal. 178 (2005), pp. 373–410.

[6] J.C. Bronski, V.M. Hur, and M.A. Johnson. “Modulational instability in equations
of KdV type”. In: New Approaches to Nonlinear Waves. Springer, 2016. Chap. 4,
pp. 83–133.

[7] M.K. Brun and H. Kalisch. “Convective wave breaking in the KdV equation”. In:
arXiv:1603.09104 (2016).

[8] W. Craig. “An existence theory for water waves and the Boussinesq and Korteweg de
Vries scaling limits”. In: Comm. Partial Differential Equations 10 (1985), pp. 787–
1003.

[9] M. Ehrnström and H. Kalisch. “Global Bifurcation for the Whitham Equation”. In:
Mathematical Modelling of Natural Phenomena 8 (5 2013), pp. 13–30.

[10] M. Ehrnström and H. Kalisch. “Traveling Waves for the Whitham Equation”. In:
Differential and Integral Equations 22.11-12 (2009), pp. 1193–1210.

[11] M. Ehrnström and E. Wahlén. “On Whitham’s conjecture of a highest cusped wave
for a nonlocal dispersive equation”. In: arXiv:1602.05384 (2016).

[12] M. Ehrnström and E. Wahlén. “Trimodal steady water waves”. In: Arch. Ration.
Mech. Anal. 216 (2015), pp. 449–471.

[13] J. Hove and P.M. Haugan. “Dynamics of a CO2-seawater interface in the deep
ocean”. In: J. Marine. Res. 63 (2005), pp. 563–577.

[14] V.M. Hur. “Breaking in the Whitham equation for shallow water waves”. In: arXiv
(2015). arXiv:1506.04075v3.

[15] V.M. Hur and M.A. Johnson. “Modulational instability in the Whitham equation
of water waves”. In: Studies in Applied Mathematics 134 (2015), pp. 120–143.

[16] V.M. Hur and M.A. Johnson. “Modulational instability in the Whitham equation
with surface tension and vorticity”. In: Nonlinear Analysis 129 (2015), pp. 104–118.

[17] H. Kalisch. “Derivation and comparison of model equations for interfacial capillary-
gravity waves in deep water”. In: Math. Comput. Simulation 74 (2007), pp. 168–
178.



66

[18] H. Kalisch. “Error analysis of a spectral projection of the regularized Benjamin-Ono
equation”. In: BIT Numerical Mathematics 45 (2005), pp. 69–89.

[19] D.J. Korteweg and G. de Vries. “On the change of form of long waves advancing in
a rectangular canal, and on a new type of long stationary waves”. In: Phil. Mag. 5
(1895), pp. 422–443.

[20] D. Lannes. The Water Waves Problem. Vol. 188. Mathematical Surveys and Mono-
graphs. Amer. Math. Soc., Providence, 2013.

[21] F. Linares, D. Pilod, and J.-C. Saut. “Dispersive perturbations of Burgers and
hyperbolic equations I: local theory”. In: SIAM J. Math. Anal. 46 (2014), pp. 1505–
1537.

[22] D. Moldabayev, H. Kalisch, and D. Dutykh. “The Whitham Equation as a model
for surface water waves”. In: Phys. D 309 (2015), pp. 99–107.

[23] P.I. Naumkin and I.A. Shishmarev. Nonlinear nonlocal equations in the theory of
waves. Vol. 133. Translations of Mathematical Monographs. American Mathematical
Society, Providence, 1994.

[24] B. Pelloni and V.A. Dougalis. “Error estimates for a fully discrete spectral scheme
for a class of nonlinear, nonlocal dispersive wave equations”. In: Appl. Numer. Math.
37 (2001), pp. 95–107.

[25] P.I. Plotnikov. “A proof of the Stokes conjecture in the theory of surface waves”.
In: Dinamika Splosh. Sredy 57 (1982). English translation Stud. Appl. Math., 2002,
vol. 108, 217–244, pp. 41–76.

[26] N. Sanford, K. Kodama, J.D. Carter, and H. H Kalisch. “Stability of traveling wave
solutions to the Whitham equation”. In: Phys. Lett. A 378 (2014), pp. 2100–2107.

[27] G.B. Whitham. Linear and nonlinear waves. Pure and Applied Mathematics. John
Wiley and Sons Inc., New York, 1974.

[28] G.B. Whitham. “Variational methods and applications to water waves”. In: Proc.
R. Soc. Lond. A 299 (1967), pp. 6–25.



He who seeks for methods
without having a definite
problem in mind seeks in the
most part in vain.

David Hilbert





Paper III

Isogeometric methods for
free boundary problems

Monica Montardini, Filippo Remonato and Giancarlo Sangalli

Submitted to IMA Journal of Numerical Analysis, March 2018





Isogeometric methods for free boundary
problems

Monica Montardini1, Filippo Remonato1,2, and Giancarlo Sangalli1,3

1 Department of Mathematics, University of Pavia, Pavia, Italy
2 Department of Mathematical Sciences, NTNU, Trondheim, Norway

3 IMATI-CNR “E. Magenes”, Pavia, Italy

Abstract

We present in detail three different quasi-Newton isogeometric algorithms for
the treatment of free boundary problems. Two algorithms are based on standard
Galerkin formulations, while the third is a fully-collocated scheme. With respect
to standard approaches, isogeometric analysis enables the accurate description of
curved geometries, and is thus particularly suitable for free boundary numerical
simulation. We apply the algorithms and compare their performances to several
benchmark tests, considering both Dirichlet and periodic boundary conditions. In
this context, iogeometric collocation turns out to be robust and computationally
more efficient than Galerkin. Our results constitute a starting point of an in-depth
analysis of the Euler equations for incompressible fluids.

III.1 Introduction

This work focuses on the isogeometric analysis (IGA) of free boundary problems. IGA,
first presented in [9], is a recent extension of the standard finite element method where
the unknown solution of the partial differential equation is approximated by the same
functions that are adopted in computer-aided design for the parametrization of the prob-
lem domain. These functions are typically splines and extensions, such as non-uniform
rational B-splines (NURBS). We refer to the monograph [2] for a detailed description of
this approach.

In this work we present three general free boundary algorithms. The first algorithm is
an extension to IGA of the finite elements approach of [11, 12]. Since the finite element
basis produces meshes with straight edges, the authors needed a workaround to approx-
imate the curvature of the boundary; in the new IGA framework this can be avoided
thanks to the natural description of curved geometries through spline functions. IGA of
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free boundary problems was already considered in [10, 22]; our second algorithm uses and
extends these approaches to problems with periodic conditions. Our third and most effi-
cient scheme uses instead an isogeometric variational collocation approach based on the
superconvergent points presented in [7, 13]. The choice of applying an IGA collocation
method is a novelty in this setting and, moreover, allows for a fast computation of the
solution. While speed is marginally important in the benchmarks considered in this work,
it becomes a major concern when one needs to address more complicated problems.

All the algorithms are based on shape calculus techniques, see for example [4, 17].
This results in the three algorithms being of quasi-Newton type, achieving superlinear
convergence.

Our interest in free boundary problems is motivated by a separate analysis, in progress
at the time of writing, of the periodic solutions of the Euler equations describing the flow
of an incompressible fluid over a rigid bottom. The analytical literature on this problem
is quite extensive, with results regarding irrotational flows [8], the limiting Stokes waves
[18], or waves on a rotational current containing one or multiple critical layers [5, 21].
The numerical experiments so far have used finite differences methods [3], boundary-
integral formulations [16], or finite elements [14]. Several other examples and numerical
experiments, also based on boundary formulations, can additionally be found in [19].

This paper is organised as follows: In Section III.2 we describe the details of free
boundary problem, and present two weak formulations that will constitute our starting
point for the algorithms. In Section III.3 we first introduce the necessary shape calculus
tools, and then proceed to linearise the aforementioned weak forms. This will produce the
correct formulations on which to base our quasi-Newton steps. Section III.4 describes the
discrete spaces used in the numerical schemes along with the structure of the algorithms.
Finally, Section III.5 presents the numerical benchmarks and the results we obtained. We
summarise the results and draw our conclusions in Section III.6.

III.2 Free Boundary Problem

Let Ω0 be a domain used as reference configuration with ∂Ω0 = ΓD ∪ ΓP ∪ Γ0; ΓD
being the (fixed) bottom boundary with Dirichlet data, ΓP the (fixed) vertical boundary
with periodic conditions, and Γ0 the (free) upper part of the boundary. Moreover, let
D be a rectangle with basis ΓD, containing Ω0 and all its possible deformations. For
M a domain and Γ a curve, we denote with Ck,λ(M,R2) the space of (k, λ)−Hölder
continuous functions defined on M with values in R2 and by Ck,λ

0 (Γ,R2) the subspace
of Ck,λ(Λ;R2) with compact support, in particular vanishing at the two extremes of the
curve. Then, the set of admissible vector fields acting on the reference domain is defined
as Θ = {V ∈ C0,1(D,R2) ∩ C1,1

0 (Γ0,R2) | V = 0 on ΓD and V(·, y) periodic}. We encode
the deformation of the upper part of the boundary, Γ0, as the action of a vector field
V ∈ Θ such that the deformed domain is smooth enough, does not have self intersections
and does not touch the bottom ΓD. For this reason we denote the deformed free boundary
with ΓV = {x ∈ R2 |x = x0 + V(x0), x0 ∈ Γ0}. Analogously, ΩV will denote the physical
domain with boundary ∂ΩV = ΓD ∪ΓP ∪ΓV ; see Figure III.12 for a representation of this
setting. We remark that Γ0 is in general not flat.
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Figure III.12: The setting of our problem. The vector field V deforms the reference free boundary
Γ0 (dashed line) into the free boundary ΓV (thick solid line). The vertical dotted lines
represent the periodic boundary ΓP , while the thin solid line represents the fixed flat
bottom boundary ΓD. The physical domain and its deformations are contained in a
larger rectangle D.

The Bernoulli-type free boundary problem (FBP) we are interested in can then be
posed as searching for a pair (u,V), both periodic in the x-direction, such that

−∆u = f in ΩV (III.2.1a)

u = h on ΓV ∪ ΓD (III.2.1b)

∂nu = g on ΓV (III.2.1c)

where ∂nu = ∇u · n is the outward normal derivative of u. The functions f , h, and g
are defined in D and are compatible with the periodicity requirement. We will consider
h and g continuous, with g strictly positive and bounded away from zero1.

Remark III.2.1. The analytical treatment of the problem with periodic boundary con-
ditions does not differ much from the case with pure Dirichlet conditions, which we also
consider in our numerical benchmarks.

III.2.1 Weak Formulation

To obtain a formulation of (III.2.1) suitable for a numerical scheme we first follow the
steps presented in [11]. This approach leads to two distinct, coupled weak forms. Given

1The strict positivity is not strictly necessary: If g < 0 one could, for instance, keep track of the sign
of g in the numerical method directly. However, g has to have a definite sign everywhere on ΓV .
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the space H1
per(ΩV) = {u ∈ H1(ΩV) |u(·, y) periodic}, for a known function r periodic in

the x-direction we define the space

H1
r,ΓD

(ΩV) = {ϕ ∈ H1
per(ΩV) |ϕ = r on ΓD}.

The first weak form is then obtained using (III.2.1a), (III.2.1c), and the part of
(III.2.1b) pertaining to ΓD. We select test functions ϕ ∈ H1

0,ΓD
(ΩV) and apply Green’s

formula once to obtain∫
ΩV

∇u · ∇ϕ dΩ−
∫

ΓV

g ϕ dΓ =

∫
ΩV

f ϕ dΩ. (III.2.2)

Using the part of (III.2.1b) on ΓV we employ test functions v ∈ H1
per(ΓV) and write the

second weak form simply as ∫
ΓV

uv dΓ =

∫
ΓV

hv dΓ. (III.2.3)

We select the trial function space by requiring u ∈ H1
h,ΓD

(ΩV), thereby strongly imposing
the Dirichlet boundary conditions on ΓD. This leads to the definition of two linear forms:

M1(u,V ;ϕ) =

∫
ΩV

∇u · ∇ϕ dΩ−
∫

ΓV

g ϕ dΓ−
∫

ΩV

f ϕ dΩ, (III.2.4)

M2(u,V ; v) =

∫
ΓV

uv dΓ−
∫

ΓV

hv dΓ. (III.2.5)

Thus, with this approach the problem is defined as: Search for (u,V) ∈ H1
h,ΓD

(ΩV) × Θ
such that

M1(u,V ;ϕ) = 0,

M2(u,V ; v) = 0,

for all test functions (ϕ, v) ∈ H1
0,ΓD

(ΩV)×H1
per(ΓV).

III.2.2 Very-Weak Formulation

We now follow the approach of [22]. The main difference from the previous formulation
is that we write a single very-weak formulation containing information from all boundary
conditions.

Considering the subspace H2
0,ΓD

(ΩV) = {ϕ ∈ H1
0,ΓD

(ΩV) |ϕ ∈ H2(ΩV)}, we multiply
(III.2.1a) by a test function ϕ ∈ H2

0,ΓD
(ΩV); integrating by parts twice leads to

−
∫

ΩV

(u− h) ∆ϕ dΩ +

∫
ΩV

∇h · ∇ϕ dΩ =

∫
ΩV

f ϕ dΩ +

∫
ΓV

ϕ g dΓ, (III.2.6)

which we demand to be satisfied for all ϕ ∈ H2
0,ΓD

(ΩV). In view of the above formulation
we can then select the trial function space simply as H1

per(ΩV). The Dirichlet boundary
conditions are therefore all imposed weakly.
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From Equation (III.2.6) we define the linear form

N (u,V ;ϕ) = −
∫

ΩV

(u− h) ∆ϕ dΩ +

∫
ΩV

∇h · ∇ϕ dΩ

−
∫

ΩV

f ϕ dΩ −
∫

ΓV

ϕ g dΓ. (III.2.7)

Thus, with this approach the problem is defined as: Search for (u,V) ∈ H1
per(ΩV)×Θ

such that
N (u,V ;ϕ) = 0

for all test functions ϕ ∈ H2
0,ΓD

(ΩV).
Note that this very-weak formulation cannot be used directly to implement a numerical

scheme, as the trial and test spaces are unbalanced.

III.3 Linearising the FBP

We now proceed in deriving a quasi-Newton algorithm to solve the free boundary
problem. The dependence on the domain’s geometry is handled through shape calculus
techniques to express the derivatives with respect to the vector field V .

III.3.1 Shape Derivatives

Here we briefly state the shape calculus results we will need for the linearisation. An
in-depth analysis of the assumptions and regularity requirements can be found in the
original work by Delfour, Zolésio, and Sokolowski [4, 17]. An overview of shape calculus
presented with a more modern approach can also be found in [10].

Let O be a family of admissible (smooth enough) domains; a functional J is called
a shape functional if J : O → R. Note therefore that for a fixed function u and test
functions ϕ and v, the maps defined by the linear forms introduced earlier are shape
functionals provided we identify each element V ∈ Θ with the domain ΩV in which Ω0 is
deformed by the action of V .

In the particular case of a domain functional J (V) =
∫

ΩV
ψ dΩ and a boundary

functional F(V) =
∫

ΓV
φ dΓ, with ψ and φ smooth functions in R2 independent of V , the

shape derivatives of J and F are described by the following Hadamard formulas :

〈 ∂VJ (V), δV 〉 =

∫
ΓV

ψ δV · n dΓ (III.3.1a)

〈 ∂VF(V), δV 〉 =

∫
ΓV

(∂nφ+ Hφ) δV · n dΓ (III.3.1b)

where δV ∈ Θ is a perturbation of the vector field, H is the signed (additive) curva-
ture of ΓV and n is the normal vector pointing outward. In particular, considering a
parametrization of the free boundary ΓV defined as γ(t) = (t, y(t)), then

H = − y′′

[1 + (y′)2]3/2
.
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III.3.2 Linearisation of the weak formulation

Let us first consider the linear forms (III.2.4) and (III.2.5). We want to linearise
M1 and M2 with respect to u and V at an arbitrary approximated solution (u∗,V∗) ∈
H1
h,ΓD

(ΩV∗)×Θ.
Since the dependence of M1 and M2 on u is affine, their Gâteaux derivatives with

respect to u in the direction δu ∈ H1
0,ΓD

(ΩV∗) are simply given by:

〈 ∂uM1[u∗,V∗;ϕ], δu 〉 =

∫
ΩV∗

∇δu · ∇ϕ dΩ (III.3.2a)

〈 ∂uM2[u∗,V∗; v], δu 〉 =

∫
ΓV∗

δu v dΓ. (III.3.2b)

The linearisation with respect to the vector field V in the direction δV ∈ Θ is performed
using the Hadamard formulas; we obtain:

〈 ∂VM1[u∗,V∗;ϕ], δV 〉 =

∫
ΓV∗

∇u∗ · ∇ϕ δV · n dΓ

−
∫

ΓV∗

[KHϕ + g ∂nϕ] δV · n dΓ (III.3.3a)

〈 ∂VM2[u∗,V∗; v], δV 〉 =

∫
ΓV∗

(∂nu
∗ − ∂nh+ H(u∗ − h)) v δV · n dΓ

+

∫
ΓV∗

(u∗ − h) ∂nv δV · n dΓ (III.3.3b)

where KH = ∂ng + Hg + f , and H is the curvature of ΓV∗ .
A Newton step at the point (u∗,V∗) has then the following structure: Search for

δu ∈ H1
0,ΓD

(ΩV∗) and δV ∈ Θ such that

〈 ∂uM1[u∗,V∗;ϕ], δu 〉+ 〈 ∂VM1[u∗,V∗;ϕ], δV 〉 = −M1(u∗,V∗;ϕ) (III.3.4a)

〈 ∂uM2[u∗,V∗; v], δu 〉+ 〈 ∂VM2[u∗,V∗; v], δV 〉 = −M2(u∗,V∗; v) (III.3.4b)

for all (ϕ, v) ∈ H1
0,ΓD

(ΩV∗)×H1
per(ΓV∗).

Therefore, summing up all the contributions, we search for ũ = u∗ + δu ∈ H1
h,ΓD

(ΩV∗)
and δV ∈ Θ such that∫

ΩV∗

∇ũ · ∇ϕ dΩ +

∫
ΓV∗

(∂nu
∗ − g) ∂nϕ δV · n dΓ +

∫
ΓV∗

∇Γu
∗ · ∇ϕ δV · n dΓ

−
∫

ΓV∗

KHϕ δV · n dΓ =

∫
ΩV∗

f ϕ dΩ +

∫
ΓV∗

g ϕ dΓ (III.3.5a)

∫
ΓV∗

ũ v dΓ+

∫
ΓV∗

[(∂nu
∗ − ∂nh+ H(u∗ − h)) v + (u∗ − h) ∂nv] δV · n dΓ

=

∫
ΓV∗

h v dΓ (III.3.5b)
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for all ϕ ∈ H1
0,ΓD

(ΩV∗) and v ∈ H1
per(ΓV∗).

In the above steps we used the tangential gradient splitting, with the tangential gra-
dient of a real function being defined as ∇Γ(·) = ∇(·)− ∂n(·)n.

So far we carried out the computations in full generality, and (III.3.5) is an exact
Newton scheme. We now proceed to comment on, and apply, some simplifications.

Simplification 1. Without loss of generality one can consider ∂nh = 0 on ΓV∗. Further-
more, we consider the case of constant data h = h0, so then ∇Γh = 0 and ∇h = 0 on
ΓV∗.

Simplification 2. The above formulas can be simplified further by considering, on ΓV∗,
u∗ = h0 and ∂nu

∗ = g. These conditions are consistent with the exact solution of the
FBP, and lead to a quasi-Newton method as in [11, 22].

Applying the above simplifications produces the following quasi-Newton scheme:
Search for ũ ∈ H1

h,ΓD
(ΩV∗) and δV ∈ Θ such that∫

ΩV∗

∇ũ · ∇ϕ dΩ−
∫

ΓV∗

KH ϕ δV · n dΓ =

∫
ΩV∗

fϕ dΩ +

∫
ΓV∗

g ϕ dΓ (III.3.6a)∫
ΓV∗

ũ v dΓ +

∫
ΓV∗

g v δV · n dΓ =

∫
ΓV∗

h0 v dΓ (III.3.6b)

for all (ϕ, v) ∈ H1
0,ΓD

(ΩV∗)×H1
per(ΓV∗).

Remark III.3.1. The Simplification 2 above is the reason why the scheme (III.3.6) is not
and exact Newton scheme, but only quasi-Newton method: The derivatives are not calcu-
lated in the current approximation, but rather they are an approximation of the derivatives
at the exact solution. This has the consequence that (III.3.6) does not achieve quadratic
convergence, but only superlinear.

III.3.3 Linearisation of the very-weak formulation

We now want to derive a linearisation for (III.2.7) at an arbitrary approximated solu-
tion (u∗,V∗), where as before u∗ ∈ H1

per(ΩV∗) and V∗ ∈ Θ. The Gâteaux derivative of N
at (u∗,V∗) with respect to u in the direction δu is given by

〈 ∂uN [u∗,V∗;ϕ], δu 〉 = −
∫

ΩV∗

δu∆ϕ dΩ. (III.3.7)

The linearisation with respect to the vector field is again performed using the Hadamard
formulas (III.3.1):

〈 ∂VN [u∗,V∗;ϕ], δV 〉 =

∫
ΓV∗

∇h · ∇ϕ δV · n dΓ−
∫

ΓV∗

(u∗ − h)∆ϕ δV · n dΓ

−
∫

ΓV∗

[KH ϕ+ g ∂nϕ] δV · n dΓ. (III.3.8)



78

A Newton step at the point (u∗,V∗) has then the following form: Search for δu ∈
H1

0,ΓD
(ΩV∗) and δV ∈ Θ such that

〈 ∂uN [u∗,V∗;ϕ], δu 〉+ 〈 ∂VN [u∗,V∗;ϕ], δV 〉 = −N (u∗,V∗;ϕ) , (III.3.9)

for all ϕ ∈ H2
0,ΓD

(ΩV).
Summing the various terms we then search for ũ = u∗+ δu ∈ H1

h,ΓD
(ΩV∗) and δV ∈ Θ

such that∫
ΩV∗

(h− ũ) ∆ϕ dΩ−
∫

ΓV∗

[KHϕ+ g ∂nϕ+ (u∗ − h)∆ϕ] δV · n dΓ

+

∫
ΓV∗

∇h · ∇ϕ δV · n dΓ =

∫
ΓV∗

gϕ dΓ +

∫
ΩV∗

fϕ dΩ−
∫

ΩV∗

∇h · ∇ϕ dΩ, (III.3.10)

for all ϕ ∈ H2
0,ΓD

(ΩV).
We proceed to apply Simplifications 1 and 2, thereby obtaining the followings quasi-

Newton scheme: Search for ũ ∈ H1
h,ΓD

(ΩV∗) and δV ∈ Θ such that∫
ΩV∗

(h− ũ) ∆ϕ dΩ −
∫

ΓV∗

[KHϕ+ g ∂nϕ] δV · n dΓ

=

∫
ΓV∗

gϕ dΓ +

∫
ΩV∗

fϕ dΩ−
∫

ΩV∗

∇h · ∇ϕ dΩ , (III.3.11)

for all ϕ ∈ H2
0,ΓD

(ΩV).
As we pointed out above, we cannot yet employ this formulation to produce a numerical

scheme; we need to extract the strong form implied by (III.3.11) and then write a new
weak formulation. Using standard variational arguments one can see that such strong
form is:

−∆ũ = f in ΩV∗ (III.3.12a)

∂ũn −KH δV · n = g on ΓV∗ (III.3.12b)

ũ = h on ΓD (III.3.12c)

g δV · n = h0 − ũ on ΓV∗ . (III.3.12d)

Thanks to the initial requirement on g not vanishing, one can solve (III.3.12d) for δV · n,
obtaining the boundary update formula

δV · n =
h0 − ũ
g

. (III.3.13)

Substituting in (III.3.12b) and using (III.3.12a)–(III.3.12c) allows to write the new weak
formulation: Search for ũ ∈ H1

h,ΓD
(ΩV∗) such that∫

ΩV∗

∇ũ · ∇ϕ dΩ−
∫

ΓV∗

(
KH

h0 − ũ
g

+ g

)
ϕ dΓ =

∫
ΩV∗

fϕ dΩ, (III.3.14)

for all ϕ ∈ H1
0,ΓD

(ΩV∗).
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Remark III.3.2. Solving Equation (III.3.6b) for δV · n one obtains exactly Equation
(III.3.13). Plugging then into Equation (III.3.6b) gives Equation (III.3.14). This shows
that the two methods, the coupled system (III.3.6) and the formulation (III.3.14) with
boundary update as in (III.3.13), are variationally equivalent, so we can expect the be-
haviours of these two approaches to be very similar. On the other hand, even though they
are equivalent in an infinite-dimensional setting, the difference in the way the vector field
is handled (as a coupled projection in the former case, or a splitting method in the latter
case) may be reflected in the performances at the discretised level. This will indeed be the
case, as our numerical tests illustrate.

The strong form (III.3.12) will also be used in the implementation of a collocation
scheme, outlined in the next section. In passing, we comment that in the case of non-
constant Dirichlet data on the free boundary, from Equation (III.3.10) one could split the
gradient of h in the third integral in its tangential and normal component, and apply the
tangential Green’s identity [4, p. 367]. See also [22] for details.

III.4 Numerical Schemes

In our numerical tests we used two Galerkin methods, one arising from (III.3.6) and
one from (III.3.14). The main difference between them is that from the former one obtains
a coupled method, while the latter yields a decoupled splitting method. We implemented,
moreover, a collocation method to solve the strong form (III.3.12).

III.4.1 B-splines based Isogeometric analysis

This section presents the essentials of B-splines. For more details we refer the inter-
ested reader to any of the specialised books on the subject, for instance [6].

A knot vector is a set of non-decreasing points Ξ = {ξ1 ≤ . . . ≤ ξn+p+1 } with ξi ∈ R
and n the number of basis functions of degree p to be built.

A knot vector is said to be open if its first and last knots have multiplicity p+ 1, and
in this case it is customary to take ξ1 = 0 and ξn+p+1 = 1. The maximum multiplicity of
each internal knot can never exceed p. A knot vector is said to be uniform if the knots
are equispaced; in this case it is common to take ξ1 = −pτ and ξn+p+1 = pτ , with τ the
distance between two consecutive knots.

Univariate B-splines functions can be defined using the Cox-de Boor recursion formulas
[1] as follows:

for p = 0:

ψ̂i,0(ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise

for p ≥ 1:

ψ̂i,p(ξ) =


ξ − ξi
ξi+p − ξi

ψ̂i,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

ψ̂i+1,p−1(ξ) ξi ≤ ξ < ξi+p+1

0 otherwise
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Figure III.13: Example of open and periodic B-spline basis. (a) Cubic basis on an open knot vector.
(b) A periodic cubic basis on a uniform knot vector.

where we adopt the convention 0/0 = 0. A B-spline basis function is therefore a piecewise
polynomial in every knot span and at the knots it achieves regularity Cp−l where l is the
multiplicity of the knot. We will always use internal knots of multiplicity one, in order to
have maximal regularity.

We denote with Ŝp = span{ψ̂i,p | i = 1, . . . , n} the space spanned by n B-splines of
degree p. We will often omit to explicitly indicate the polynomial degree. On a uniform
knot vector one can in addition construct a periodic basis by appropriately identifying
together functions laying at the beginning and at the end of the parametric domain:

Ŝpper = span{ψ̂perk } with

{
ψ̂perk := ψ̂k + ψ̂n−p+k, k = 1, . . . , p;

ψ̂perk = ψ̂k, otherwise
(III.4.1)

Note that dim(Ŝpper) = n − p. Figure III.13b shows an example of maximum-regularity
periodic B-splines basis with degree p = 3.

We can derive bivariate B-splines spaces, which we indicate in boldface, simply con-
sidering the tensor product of univariate ones. Moreover, in our numerical tests we will
use the same degree in each parametric direction.

Now, let F : Ω̂→ Ω be a B-spline parametrisation of the physical domain Ω, and let Ŝp

be a space spanned byN bivariate B-splines φ̂k defined on the parametric domain Ω̂. Then,
the corresponding space on Ω is defined as Sp = span{φk | φk = φ̂k ◦F−1, k = 1, . . . , N}.
We moreover need to introduce a bivariate spline space spanned by functions periodic in
x, that we denote Spper. This space is defined as the push-forward through the geometrical

map F of the cross product between the periodic space Ŝpper, and the space Ŝp built from
an open knot vector.

III.4.2 Isogeometric Galerkin methods

In both Galerkin-based schemes we choose as a trial space for ũ

Vp
h := Spper ∩H1

h,ΓD
(ΩV∗), (III.4.2)

while as test space
Vp

0 := Spper ∩H1
0,ΓD

(ΩV∗). (III.4.3)
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The structure of the two algorithms is illustrated below.

Algorithm 1 - Coupled Galerkin scheme

1: Choose the starting V0,
2: Given Vk, compute (ũk, δV · nk) solution of (III.3.6) in the domain ΩVk ,
3: Update the free boundary with Vk+1 = Vk + (δV · nk)mk,
4: Repeat steps 2–3 until ‖δV · nk‖ ≤ tol.

Algorithm 2 - Decoupled (splitting) Galerkin scheme

1: Choose the starting V0,
2: Given Vk, compute ũk solution of (III.3.14) in the domain ΩVk ,
3: Compute δV · nk from (III.3.13),
4: Update the free boundary with Vk+1 = Vk + (δV · nk)mk,
5: Repeat steps 2–4 until ‖δV · nk‖ ≤ tol.

The vector field mk : ΓVk → R represents the direction in which the update of the free
boundary is performed, and has to satisfy mk · nk = 1. In our tests we choose to perform
a vertical update, therefore selecting mk = [0, 1/(nk)y]. This choice allows to consider as
unknown δV ·n instead of δV , which permits to discretise (III.3.6b) and (III.3.13) directly,
using Spper as both the test and trial space. A choice of mk = nk in the algorithms would
instead amount to performing the update in the direction normal to the boundary.

Remark III.4.1. It is important to realise that when performing the update with Equation
(III.3.13) one has to divide two spline functions. The resulting function is therefore, in
general, not a spline, and a projection onto the appropriate spline space is then required.
In our tests we treated this by means of an L2 projection into the space defined by the
boundary test functions. After each boundary update, the internal mesh is then fitted
using a Coons interpolation technique.

III.4.3 Isogeometric collocation method

The isogeometric collocation method presented here is built from (III.3.12): We solve
(III.3.12d) for δV · n and replace its value in (III.3.12b), obtaining the following:

−∆ũ = f in Ω, (III.4.4a)

∇ũ · n− (∂ng + H g + f)
h0 − ũ
g

= g on ΓV , (III.4.4b)

ũ = h on ΓD, (III.4.4c)

δV · n =
h0 − ũ
g

on ΓV . (III.4.4d)

The structure of this algorithm is summarised below.
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Algorithm 3 - Collocation scheme

1: Choose the starting V0,
2: Given Vk, compute ũk, collocated solution of (III.4.4a)–(III.4.4c),
3: Compute δV · nk from (III.4.4d),
4: Update the free boundary with V(k+1) = V(k) + (δV · nk)mk ,
5: Repeat steps 2–4 until ‖δV · nk‖ ≤ tol.

F

Figure III.14: CSP collocation points in the parametric and in the physical domain. The points are
the cross product of the periodic CSP points in the x-direction and the Dirichlet CSP
points in the y-direction.

The solution of (III.4.4a)–(III.4.4c) and the boundary update (III.4.4d) are performed
using a collocation approach. Given the finite dimensional spaces Vp

h and Spper in which
we search for a solution (ũ, δV · n), the idea is to accurately choose a number of points
τ1, . . . , τn ∈ Ω, called collocation points, where n is the number of degrees of freedom of
the problem, and enforce the equations to hold strongly at those points.

The appropriate selection of collocation points is crucial for the rate of convergence.
Most of the classical choices of collocation points, for example, return suboptimal con-
vergence rate even in a Poisson problem, contrary to the Galerkin approach which is
optimal [15]. However, the recent work [13] suggests the use of a particular subset of
Galerkin-superconvergent points, called clustered superconvergent points (CSP), as col-
location points. This choice, that is the one that we adopt here, succeeds in achieving
optimality for at least odd degrees B-splines discretisations. In particular, the collocation
points we use for the periodic problem (III.4.4) are obtained by taking the cross product
between univariate periodic CSP and univariate Dirichlet CSP (see [13] for more details).
In our tests we however included also problems with only Dirichlet boundary conditions.
In that case the collocation points are selected as the push-forward of the cross-product of
the univariate Dirichlet CSP points in the two parametric directions. Figure III.14 shows
an example of CSP points in both the parametric and physical domain. Note that we do
not take any collocation points on the boundary {y = 0}, because we enforce the Dirichlet
boundary conditions in the finite dimensional space that we consider, cf. (III.4.2).

Similarly, the free boundary update is performed by collocating equation (III.4.4d) in
the univariate periodic CSP, producing a fully-collocated scheme for problem (III.4.4).
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III.5 Numerical Results

This section collects our numerical results. All algorithms have been implemented
in Matlab using the GeoPDEs suite. GeoPDEs is an Octave/Matlab software package
for isogeometric analysis of partial differential equations [20]. We applied the above
Algorithms 1, 2, and 3 to different types of problems with either Dirichlet or periodic
boundary conditions on the vertical sides. It is clear that the error quantities in the
problem are driven by the position of the free boundary: If the computed boundary
matches the exact boundary solution, then the error on the internal function u is simply
the standard finite elements (IGA) or collocation approximation error. For this reason,
when evaluating the performance of the algorithms we have chosen the error quantities
of interest to be the Dirichlet error, ‖ũ(ΓV)− h0‖L2 , the error the computed function
u commits in satisfying the Dirichlet condition on the free boundary, and the surface
position error, ‖ΓV − Γex‖L2 , the error in the position of the computed free surface.

III.5.1 Test 1: Parabolic boundary, Dirichlet b.c.

This problem is constructed from the exact solution

uex(x, y) =
y

1 + α(x)
+ α(x)

y

1 + α(x)

(
1− y

1 + α(x)

)
(III.5.1)

with

α(x) =
1

4
x (1− x).

The solution uex attains constant value uex|ΓV = 1 on the parabolic curve given by Γex =
{(x, y) | y = 1 + α(x), 0 6 x 6 1}, which is therefore the exact free-boundary solution of
the problem.

The data for problem (III.2.1) are then found as follows:

f = −∆uex,

g = ∇uex ·
(

1
2
x− 1

4
, 1
)
/

√
1 +

(
1
2
x− 1

4

)2
.

We cast this problem with complete Dirichlet boundary conditions. This amounts to
imposing h0 = 1 on the free boundary and h = y on ΓD ∪ ΓP . We start our algorithms
with Γ0 = {y = 1, 0 6 x 6 1} as an initial guess for the boundary.

Figure III.15 shows the first three iterations of the boundary update, together with
the exact boundary solution, performed with a mesh with only 1 element and quadratic
basis functions. Those iterations have in particular been performed with Algorithm 2, but
Algorithm 1 and Algorithm 3 yielded identical results. Figure III.16 shows the convergence
history of Algorithm 2 for both the Dirichlet error and the surface position error for various
mesh sizes, using a quadratic basis.

Figure III.17 instead shows a comparison of the three different approaches using cubic
basis functions. The error plots show that Algorithm 1 improves the convergence speed
once the solution is close enough. The same behaviour is present also in the collocated
scheme, Algorithm 3, albeit to a less degree, while it is not that apparent in Algorithm 2.
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Figure III.15: The first three iterations of Algorithm 2 for the Test 1 case, using a one element mesh
and quadratic basis starting from a flat boundary with y = 1.
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Figure III.16: Error quantities for Algorithm 2, with a quadratic basis, on various mesh sizes. (Left)
The Dirichlet error ‖ũ(ΓV)− h‖L2 as a function of the iterations. (Right) The surface
position error ‖ΓV − Γex‖L2 . Machine precision is achieved for any mesh size.

However, all three algorithms’ performances are quite similar on this test problem. When
it comes to runtime, Algorithm 3 is much faster per iteration than the two Galerkin
approaches, which is expected of a collocation scheme.

Note that this is the same setting as the “Testcase I: Parabolic Free-Boundary” pre-
sented in [22, Section 5.2]. However, in contrast to the results presented there we do not
see a plateau in the error quantities, and machine precision is reached for any mesh size
because the exact free boundary curve Γex and the exact solution uex restricted to Γex
belong to the discrete space of the numerical approximation.
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Figure III.17: A comparison of the three algorithms on Test 1 for different mesh sizes with cubic basis
functions.

III.5.2 Test 2: Sinusoidal boundary, Dirichlet b.c.

We now give an example where a plateau in the error is to be expected, and is actually
found. The problem data is derived as for Test 1 with an exact solution given by Equation
(III.5.1) but with

αex(x) =
1

16
sin(2πx),

so that the exact boundary Γex = {(x, y) | y = 1 + α(x), 0 6 x 6 1} is now a sinusoidal
curve. The boundary conditions are maintained of Dirichlet type, with h0 = 1 on the free
boundary, and h = y on ΓD ∪ ΓP . Figure III.18 shows the first three boundary updates
performed by Algorithm 3. The mesh is made of 8 elements, and the basis is cubic. The
initial boundary is again taken as the flat curve Γ0 = {y = 1, 0 6 x 6 1}

Figure III.19 shows the error quantities vs iterations for the three algorithms.
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Figure III.18: The first three iterations of Algorithm 3 for the Test 2 case, with sinusoidal boundary
and Dirichlet conditions, with an 8 elements mesh and cubic basis. Starting from a flat
boundary with y = 1.

As the mesh is refined we note that the collocation algorithm, Algorithm 3, has a
slightly higher error than the other two approaches. The surface position error, moreover,
is abated with finer meshes in all approaches but remains always present. This is due to
the fact that a cubic B-spline cannot exactly represent a sinusoidal curve, and therefore
the exact free boundary solution to this problems lies outside of the trial function space.
Lastly, Figure III.19 shows how closely related Algorithms 1 and 2 are, achieving almost
identical performance on this benchmark test.
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Figure III.19: A comparison of the three algorithms on Test 2 for different mesh sizes with cubic basis
functions.

III.5.3 Test 3: Sinusoidal boundary, periodic b.c.

In our third benchmark we employ the same problem data as in Test 2, but now
periodic boundary conditions are placed on the lateral sides instead of Dirichlet ones. In
this test case we used the highest-possible regularity for the periodic conditions, meaning
that the boundary functions are “glued” together with Cp−1 continuity.

The introduction of the periodic conditions affects the behaviour of the three quasi-
Newton schemes, but not dramatically. As shown in Figure III.20, the algorithms require a
couple extra iterations to reach the tolerance respect to the Dirichlet boundary condition
case. The convergence of the surface position error is also a bit rougher than in the
previous cases. However, the relative performances are not at all affected, and all three
algorithms are still comparable. As before Algorithms 1 and 2 display essentially equal
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results. In this test we kept the same choice for the initial guess for the free boundary:
The flat curve Γ0 = {y = 1, 0 6 x 6 1}.

Since the position of the exact free boundary does not lie in the trial functions space
formed by the cubic B-splines basis, as in Test 2 a plateau is always reached, even though
the level of the plateau is lowered with finer meshes.
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Figure III.20: A comparison of the three algorithms on Test 3 for different mesh sizes with cubic basis
functions.

III.6 Conclusions

In this work we presented three different isogeometric-based algorithms for free bound-
ary problems: Two follow a Galerkin approach and are an extension or modification of
previously existing works, while one is a novel fully collocated scheme. The dependence
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on the unknown geometry of the domain is handled through shape calculus, which results
in a quasi-Newton method to be underlying the update strategy of the free boundary
position. While our interests in such algorithms is motivated by future applications, in
the present paper we focused on giving a clear description of the implementation and
numerical aspects.

We applied and compared the three algorithms to benchmark tests, with either Dirich-
let or periodic boundary conditions on the lateral vertical sides of the domain. The re-
sults show that, while having slight variations, the performances of all three algorithms
are qualitatively comparable, and each of them converged to the correct solution of the
problem.

The treatment of free boundary problems is computationally intense, especially in
more complex problems. For this reason the efficiency and speed of the algorithm is
an important feature that needs to be taken into account. In this respect, even if the
collocated algorithm appeared to have slightly worse accuracy and sometimes required
one or two extra iterations to reach the convergence tolerance, it proved to significantly
outmatch the two Galerkin-based schemes on runtime, requiring in general less than half
the time to complete the benchmarks.

Our future aim is now to apply the algorithms developed here to the resolution of the
bifurcation branches of the Euler equations. That problem presents several challenges due
to the greater complexity of the equations and the intrinsic non-uniqueness of solutions
at the bifurcation points, therefore both efficiency and precision are expected to play an
important role.
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The thing that doesn’t fit is the
thing that’s the most
interesting: the part that
doesn’t go according to what
you expected.

Richard P. Feynman
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Historical Notes

A.1 On some history of Water Waves: From a soli-

tary wave to the Whitham Equation

In this section I will give a brief overview of the main steps that lead to the Whitham
equation. Being very aware of my own gaps when it comes to History in general, I am
not claiming that what follows is a precise list of all the important facts that surrounded
the development of the field in general, or even the Whitham equation in particular.
However, I think it is a fascinating story that not many other equations have, and as such
it deserves a space in this thesis; if anything, at least to encourage any future masters
student reading it to continue on the path of Science.

A.1.1 A chance encounter with a peculiar wave

The first encounter of John Scott Russell with what will later be knows as the solitary
wave has been recorded many times in several works on the subject of water waves, so I
will not dwell too much on the details. The interested reader is invited to take vision of
Russell’s original report, On Waves, [7].

John Scott Russell was a Scottish engineer, specialised in naval architecture and ship
building. In August 1834 he was strolling on his horse along the Union Canal, a canal in
Scotland connecting Falkirk to Edinburgh, following a boat that was being pulled forward
by a pair of horses. An obstacle suddenly stopped the boat in its course, and the heap
of water accumulated on the front of the hull started rolling forward, as a wave. Russell
immediately noticed and was puzzled by the phenomenon, which he described as “a large
solitary elevation, a rounded, smooth and well-defined heap of water, which continued its
course along the channel apparently without change of form or diminution of speed.”. He
kept following the wave, which after some time began losing its height until eventually
disappearing in the channel, about three kilometres ahead of the starting point.

From the description we find three notable features to what Russell called the great
wave of translation: It preserved its shape, its speed, and was a single, solitary bump.
Russell then built his own wave tank to experiment with the creation of such waves, and
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described these experiments, together with his first encounter with the solitary wave, in
his today well known report [7] in 1845. However, his work has initially not been met very
positively; his descriptions were in contrast to the available mathematical theory, which
predicted waves to be periodic and to either vanish, i.e. diminish in height, or steepen at
the top and break. Two of the most well known opponents to Russell were Sir George
Biddell Airy and Sir George Gabriel Stokes.

A.1.2 Airy and Stokes on Russell’s wave

Sir G.B. Airy was a British mathematician and astronomer which at that time was
considered perhaps the best authority on the subject of waves1 [6]. In his treatise Tides
and Waves [1] in 1845, while still recognising the importance of the experimental works
of Russell, in particular saying “They [Russell’s experiments] constitute, upon the whole,
the most important body of experimental information in regard to the motion of Waves
which we possess.” and praising Russell’s ingenious measurements techniques, Airy first
rejects the importance of the discovery, stating that the phenomenon of a solitary wave
was already predicted by his (Airy’s) linear theory2, and then says that such a wave would
have to disperse in its basic components, consequently losing height3.

Sir George Gabriel Stokes was an Irish physicist and mathematician who produced
important results in several fields in Science. Among his outstanding contributions are
the famous Navier-Stokes equation, which is regarded as the equation describing fluid
flows, listed in the Millennium Prize Problems4, and the equally famous Stokes’ theorem
in vector calculus. In his report to the British Association in 1846 [9], Stokes is more
hesitant than Airy in judging the results on the solitary wave. He points out that “the
laws of the motion of a solitary wave, deduced by Mr. Green from the theory of long waves,
agree with the observations of Mr. Russell” but warns that this was done considering
infinitely-long waves, and that when one tries to take the finite-length of Russell’s wave
into consideration, the problem becomes exceedingly difficult, and its solution has been
attempted through the use of discontinuous functions, which are physically not justified.
Stokes further notes a work by Earnshaw and comments that “it turns out that the motion
is possible, as far as the wave itself is concerned [...] the formula for the velocity of
propagation of the positive wave, at which Mr. Earnshaw has arrived, agrees very well
with the experiments of Mr. Russell; the formula for the negative wave also agrees, but
not so closely” but further remarks that “However, in order that the motion in question
should actually take place, it is necessary that there should be an instantaneous generation
or destruction of a finite velocity, and likewise an abrupt change of pressure, [...] both
of which are evidently impossible.”. In the final part of the paragraph dedicated to the

1Among his many achievements is also the decision of Greenwich as the zeroth-meridian.
2“We are not disposed to recognize this wave as deserving the epithets “great” or “primary”, and we

conceive that, ever since it was known that the theory of shallow waves of great length was contained in

the equation d2X
dt2 = gk d2X

dx2 , [...] the theory of the solitary wave has been perfectly well known.”
3“The wave, therefore, would tend to split into several waves, each of which would move with its own

velocity; and this appears to have happened in some instances (rejected in Mr. Russell’s table of results).”
4The Millennium Prize Problems are seven problems selected by the Clay Mathematics Institute as

some of the major challenges in Science; the solution of each of which is rewarded with $1 million.
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solitary wave, Stokes cautiously concludes with “It is the opinion of Mr. Russell that
the solitary wave is a phænomenon sui generis, in nowise deriving its character from
the circumstances of the generation of the wave. His experiments seem to render this
conclusion probable. Should it be correct, the analytical character of the solitary wave
remains to be discovered.”, letting transpire that he expects further analyses to eventually
confirm Russell’s results. However, shortly after, in 1847, Stokes publishes the report On
the Theory of Oscillatory Waves [8] where he considers nonlinear waves approximation.
There he shows that the velocity of the wave is independent of the height (as observed by
Russell) only up to a second order approximation, but not to a third order5. In particular,
he concludes that the only wave with the property of being propagated at constant speed
and without changing shape must be infinitely-periodic and of the form

y = a cos(mx)−Ka2 cos(2mx),

so that “a solitary wave cannot be propagated in this manner.”.
At this point then, Russell’s claims were dismissed by Airy on the basis of linear

theory, and by Stokes on the basis of nonlinear theory. Few would have guessed that it is
exactly the balanced interplay of linear and nonlinear effects that allows for the existence
of a solitary travelling wave.

A.1.3 Boussinesq and Rayleigh on Russell’s wave

It was only a few years later, at the beginnings of 1870, that important mathematical
results were generated in favour of Russell, in particular by Boussinesq and Rayleigh.

Joseph Valentin Boussinesq, a French mathematician, made important contributions
to the theory of hydrodynamics, elasticity and heat. His interest in the solitary wave was
first shown in the works [2, 4], where he develops much of his theory for the movement of
fluids in a rectangular channel. In particular, in [4] is the first explicit appearance of the
famous Boussinesq equation, on which his analysis is based. In those works Boussinesq
confirms some of the earlier formulas which Russell derived experimentally, with particular
regard to the speed of the wave, but it is only in the much more extensive work [3],
expanding on the previous two papers, that he calculates the profile of the wave, deriving
the sech2 shape and the corresponding speed in accordance to the results of Russell.

Lord John William Strutt Rayleigh was an English physicist and former student of
Stokes. Together with William Ramsey he discovered the element Argon, which made him
win the Nobel prize in Physics in 1904, and is moreover known for several phenomena
that now bring his name, like Rayleigh waves, Rayleigh scattering, and Rayleigh flows.
In his paper On Waves [6], in 1876, he first starts by recalling and acknowledging the
objections of Airy and Stokes, but then on the basis of his analysis firmly supports Russell,
confirming, as Boussinesq before him, the sech2 shape and the formula for the velocity:
“The velocity of propagation is given by [Formula] (H), which is Scott Russell’s formula
exactly. In words, the velocity of the wave is that due to half the greatest depth of the
water.”. Furthermore, Rayleigh concludes the section dedicated to the solitary wave with
an explanation of another of the features noted by Russell in his experiments, namely that

5That work also contains initial investigations of what will later become known as Stokes’ drift.
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the wave breaks at a certain height: “When the wave is treated as stationary, it is evident
from the dynamics that its height can never exceed that due to the velocity of the stream
in the undisturbed part; [...] When the wave is on the point of breaking, the water at the
crest is moving with the velocity of the wave.”. In this last sentence we can recognise the
description of what is called a point of stagnation.

A.1.4 Korteweg and de Vries

Even if Rayleigh certainly supports Russell’s work, it must have seemed to Diederik
Korteweg, one of the most well known Dutch mathematicians, and his PhD student
Gustav de Vries, that such support was not definite enough, as they open their famous
1895 paper [5] in the following way: “In such excellent treatises on hydrodynamics as
those of Lamb and Basset, we find that even when friction is neglected long waves in a
rectangular canal must necessarily change their form as they advance [...]. Yet, since
the investigations of Boussinesq, Lord Rayleigh, and St. Venant on the solitary wave,
there has been some cause to doubt the truth of this assertion. Indeed, if the reasons
adduced were really decisive, it is difficult to see why the solitary wave should make an
exception; but even Lord Rayleigh and McCowan, who have successfully and thoroughly
treated the theory of this wave, do not directly contradict the statement in question. They
are, as it seems to us, inclined to the opinion that the solitary wave is stationary only to
a certain approximation. It is the desire to settle this question definitively which has led
us into the somewhat tedious calculations which are to be found at the end of our paper.”.
This was the motivation behind their work: To finally refute Airy’s opinion that waves
had to change shape when travelling, and to ultimately prove that Russell’s description
was accurate. In their paper what would later be known as the KdV equation received
relatively little attention.

All things considered, the curiosity of a single man sparked a debate that included
some of the most prominent mathematician of those times, leading to the creation of new
scientific knowledge over an arc of sixty years.
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[3] J. Boussinesq. “Théorie des ondes et des remous qui se propagent le long d’un
canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal
des vitesses sensiblement pareilles de la surface au fond”. In: J. de Mathématiques
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