
Twitter data models for bank risk contagion

Paola Cerchiello, Paolo Giudici, Giancarlo Nicola

Abstract

A very important and timely area of research in fi-
nance is systemic risk modelling, which concerns the es-
timation of the relationships between different financial
institutions, with the aim of establishing which of them
are more contagious/subject to contagion. The aim of
this paper is to develop a systemic risk model which, dif-
ferently from existing ones, employs not only the infor-
mation contained in financial market prices, but also big
data coming from financial tweets. From a methodolog-
ical viewpoint, we propose a new framework, based on
graphical Gaussian models, that can estimate systemic
risks with stochastic network models based on two dif-
ferent sources: financial markets and financial tweets,
and suggest a way to combine them, using a Bayesian
approach. From an applied viewpoint, we present the
first systemic risk model based on big data, and show
that such a model can help predicting the default prob-
ability of a bank, conditionally on the others.

1. Introduction

Systemic risk models address the issue of interdepen-
dence between financial institutions and, specifically,
measure how bank default risks are transmitted among
banks.

The study of bank defaults is important for two rea-
sons. First, an understanding of the factors related to
bank failure enables regulatory authorities to supervise
banks more efficiently. If supervisors can detect prob-
lems early enough, regulatory actions can be taken, to
prevent a bank from failing and, therefore, to reduce the
costs of its bail-in, faced by shareholders, bondholders
and depositors; or those of its bail-out, faced by gov-
ernments and, ultimately, by the taxpayers. Second, the
failure of a bank very likely induces failures of other
banks or of parts of the financial system. Understand-
ing the determinants of a single bank failure may thus
help to understand the determinants of financial sys-
temic risks, were they due to microeconomic idiosyn-
cratic factors or to macroeconomic imbalances. When

problems are detected, their causes can be removed or
isolated, to limit “contagion effects”.

Most research papers on bank failures are based on
financial market models, that originate from the semi-
nal paper of Merton (1974), in which the market value
of bank assets is matched against bank liabilities. Due
to its practical limitations, Merton’s model has been
evolved into a reduced form (see e.g. Vasicek, 1984),
leading to a widespread diffusion of the resulting ap-
proach, and the related implementation in regulatory
models.

The last few years have witnessed an increasing re-
search literature on systemic risk, with the aim of iden-
tifying the most contagious institutions and their trans-
mission channels. Specific measures of systemic risk
have been proposed for the banking sector; in partic-
ular, by Acharya et al. (2010), Adrian and Brunner-
meier (2011), Brownlees and Engle (2012), Acharya
et al. (2012), Dumitrescu and Banulescu (2014) and
Hautsch et al. (2015). On the basis of market prices,
these authors calculate the quantiles of the estimated
loss probability distribution of a bank, conditional on
the occurrence of an extreme event in the financial mar-
ket.

The above approach is useful to establish policy
thresholds aimed, in particular, at identifying the most
systemic institutions. However, it is a bivariate ap-
proach, which allows to calculate the risk of an insti-
tution conditional on another (or on a reference mar-
ket), but it does not address the issue of how risks are
transmitted between different institutions in a multivari-
ate framework.

Trying to address the multivariate nature of systemic
risk, researchers have proposed a network modelling
approach, following the idea in Diamond and Dybvig
(1983) and the seminal papers of Sheldon and Maurer
(1998), Eisenberg and Noe (2001), Boss et al. (2004),
Upper and Worms (2004). In this literature, intercon-
nectedness is related to the detection of the most cen-
tral players in a network that describes financial flows
between agents. While the simplest way of measuring
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the centrality of a node in the network is by counting
the number of neighbors that it has, more sophisticate
measures of centrality have been applied, including that
shown in Battiston et al. (2012) who develop a net-
work algorithm -the DebtRank- starting from Google’s
PageRank algorithm.

A different type of network models, recently pro-
posed, are based on correlations (or distances) between
financial descriptors of agents, such as their stock mar-
ket prices, bond interest rate spreads or corporate de-
fault spreads. The first contributions in this frame-
work are Mantegna (1999), Onnela et al. (2004), Tum-
minello et al. (2004) and, recently, Billio et al. (2012)
and Diebold and Yilmaz (2014), who propose mea-
sures of connectedness based on Granger-causality tests
and variance decompositions. Barigozzi and Brownlees
(2013), Ahelegbey et al. (2015) and Giudici and Spelta
(2016) have extended the approach introducing stochas-
tic graphical models.

Here we shall follow this latter approach, and add a
stochastic framework, based on graphical models. We
will thus be able to derive, on the basis of market
price data on a number of financial institutions, the net-
work model that best describes their interrelationships
and, therefore, explains how systemic risk is transmit-
ted among them.

It is well known that market prices are formed in
complex interaction mechanisms that often reflect spec-
ulative behaviours, rather than the fundamentals of the
companies to which they refer. Market models and,
specifically, financial network models based on market
data may, therefore, reflect ”spurious” components that
could bias systemic risk estimation. This weakness of
the market suggests to enrich financial market data with
data coming from other, complementary, sources. In-
deed, market prices are only one of the evaluations that
are carried out on financial institutions: other relevant
ones include ratings issued by rating agencies, reports
of qualified financial analysts, and opinions of influen-
tial media.

Most of the previous sources are private, not avail-
able for data analysis. However, summary reports from
them are now typically reported, almost in real time, in
social networks and, in particular, in tweets. In parallel
with these developments, seminal papers on the statis-
tical analysis of such data have recently appeared: see,
for example, Bollen et al. (2011), Bordino et al. (2012),
Choi et al. (2012), Feldman (2013), Cerchiello and Giu-
dici (2015), Andersen (2016)), who all show the added
value of tweets and, more generally, of textual data, in
economics and finance.

Indeed twitter data offers the opportunity to extract

data that can complement market prices and that can, in
addition, ”replace” market information when not avail-
able (as it occurs for banks that are not listed).

To extract from tweets data that can be assimilated
to market prices, their text has to be preprocessed using
semantic analysis techniques. In our context, if finan-
cial tweets on a number of banks are collected daily,
semantic analysis allows to obtain a daily ”sentiment”
that expresses, for each day, how each considered bank
is, on average, being evaluated by twitterers.

In this paper we propose to build graphical Gaussian
models using daily variation of bank ”sentiment”, and
to integrate them with graphical models based on mar-
ket data, by means of a Bayesian approach. This allows
to obtain a comprehensive measurement framework of
bank interconnectedness, that can be employed to un-
derstand contagion effects.

The novelty of this paper is twofold. From a method-
ological viewpoint, we propose a framework, based on
graphical Gaussian models, that can estimate systemic
risks with models based on two different sources: finan-
cial markets and financial tweets, and suggest a way to
combine them, using a Bayesian approach.

From an applied viewpoint, we propose a novel usage
of big data contained in financial tweets, and show that
such data can shed further light on the interrelationships
between financial institutions.

The rest of the paper is organised as follows: in Sec-
tion 2 we introduce our proposal; in Section 3 we ap-
ply our proposal to financial and tweet data on the Ital-
ian banking market and, finally, in Section 4 we present
some concluding remarks.

2. Methodology

We first introduce the graphical network models that
will be used to estimate relationships between banks,
both with market and tweet data.

Relationships between banks can be measured by
their partial correlation, that expresses the direct influ-
ence of a bank on another. Partial correlations can be es-
timated assuming that the observations follow a graph-
ical Gaussian model, in which Σ is constrained by the
conditional independences described by a graph (see
e.g. Lauritzen, 1996).

More formally, let X = (X1, ..., XN) ∈ RN be a
N−dimensional random vector distributed according to
a multivariate normal distribution N (µ,Σ). Without
loss of generality, we will assume that the data are gen-
erated by a stationary process, and, therefore, µ = 0. In
addition, we will assume throughout that the covariance
matrix Σ is not singular.
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Let G = (V, E) be an undirected graph, with vertex set
V = {1, ...,N}, and edge set E = V × V , a binary matrix,
with elements ei j, that describe whether pairs of vertices
are (symmetrically) linked between each other (ei j = 1),
or not (ei j = 0). If the vertices V of this graph are put
in correspondence with the random variables X1, ..., XN ,
the edge set E induces conditional independence on X
via the so-called Markov properties (see e.g. Lauritzen,
1996).

In particular, the pairwise Markov property deter-
mined by G states that, for all 1 ≤ i < j ≤ N:

ei j = 0⇐⇒ Xi ⊥ X j|XV\{i, j}; (1)

that is, the absence of an edge between vertices i and
j is equivalent to independence between the random
variables Xi and X j, conditionally on all other variables
xV\{i, j}.

Let the elements of Σ−1, the inverse of the variance-
covariance matrix, be indicated as {σi j}, Whittaker
(1990) proved that the following equivalence also holds:

Xi ⊥ X j|XV\{i, j} ⇐⇒ ρi jV = 0 (2)

where

ρi jV =
−σi j

√
σiiσ j j

(3)

denotes the i j-th partial correlation, that is, the correla-
tion between Xi and X j, conditionally on the remaining
variables XV\{i, j}.

Therefore, by means of the pairwise Markov prop-
erty, and given an undirected graph G = (V, E), a graph-
ical Gaussian model can be defined as the family of
all N-variate normal distributions that satisfies the con-
straints induced by the graph on the partial correlations,
as follows:

ei j = 0⇐⇒ ρi jV = 0 (4)

for all 1 ≤ i < j ≤ N.
Stochastic inference in graphical models may lead

to two different types of learning: structural learning,
which implies the estimation of the graphical structure
G that best describes the data, and quantitative learn-
ing, that aims at estimating the parameters of a graphical
model, for a given graph.

Structural learning can be achieved choosing the
graphical structure with maximal likelihood. To this
aim, we now recall the expression of the likelihood of
a graphical Gaussian model.

For a given graph G, consider a sample X of size
n. For a subset of vertices A ⊂ N, let ΣA denote the

variance-covariance matrix of the variables in XA, and
define with S A the corresponding observed variance-
covariance sub-matrix.

When the graph G is decomposable (and we will as-
sume so) the likelihood of the data, under a graphical
Gaussian model, nicely decomposes as follows (see e.g.
Dawid and Lauritzen, 1993):

p(X|Σ,G) =

∏
C∈C p(XC |ΣC)∏
S∈Sp(XS |ΣS )

, (5)

where XC and XS respectively denote the set of random
variables belonging to the cliques and to the separators
of the graph G, and where:

P(XC |ΣC) ∝ |ΣC |
−n/2exp[−

1
2

tr
(
S C (ΣC) −1

)
(6)

and similarly for P(XS |ΣS ).
Operationally, a model selection procedure compares

different G structures by calculating the previous likeli-
hood substituting for Σ its maximum likelihood estima-
tor under G. For a complete (fully connected) graphi-
cal Gaussian model such an estimator is simply the ob-
served variance-covariance matrix. For a general (de-
composable) incomplete graph, an iterative procedure,
based on the clique and separators of a graph, must be
undertaken (see e.g. Lauritzen, 1996).

Through model selection, we obtain a graphical
model that can be used to describe relationships be-
tween banks and, specifically, to understand how risks
propagate in a systemic risk perspective.

Cerchiello and Giudici (2015) and Giudici and Spelta
(2015) have shown, respectively in the context of coun-
try financial flows and bank returns, that Graphical
Gaussian models are well suited to estimate intercon-
nections between a large set of financial institutions,
on the basis, respectively, of the available inter-country
bank liability data or financial market data.

In our context, we have the additional task of select-
ing a graphical model for two different data sources:
not only market data on banks but also big data, com-
ing from financial tweets on the same banks. Indeed,
the two data sources should be combined into a single
one, before performing model selection. This is the ad-
ditional contribution of the present paper, and can be
achieved within a Bayesian framework, characterised
by an Empirical Bayes appraoch to the specification of
the prior distribution.

Empirical Bayes models (see e.g. Casella and
George, 1985 and Carlin et al., 2000) adress the issue of
specifying the prior distribution, an often controversial
subject in Bayesian modelling, not on a priori ground,
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but using data, assumed to come from a population dif-
ferent from the one considered as the main object of
the statistical inference. In our context, the main ob-
ject of inference is the correlation structure of market
prices, which can be summarised in the correlation ma-
trix parameter. Eliciting a prior distribution on a corre-
lation matrix is a rather complex task, especially when
a large number of variables is involved. Furthermore,
even when feasible, such a prior may be highly influ-
ential on final inferences, possibly distorting Bayesian
estimates toward the prior, rather than towards the ac-
tual data (see e.g. Casella and George,1985, Carlin et
al., 2000; and, in a financial context, Giudici, 2001).
The Empirical Bayes approach offers a possible solu-
tion to this problem, allowing the prior distribution to
be also estimated from real data, possibly different from
what used as main object of the inference. In our con-
text, such data is available from Twitter and, therefore,
it can be employed to estimate an ”a priori” correlation
matrix, based on sentiment data, to be combined, in a
Bayesian model, with the market price correlation ma-
trix.

More formally, we first specify a prior distribution for
the parameter Σ. Dawid and Lauritzen (1993) propose a
convenient prior, the hyper inverse Wishart distribution.

The hyper inverse Wishart distribution can be ob-
tained from a collection of clique specific marginal in-
verse Wishart as follows:

l(Σ) =

∏
C∈C l(ΣC)∏
S∈Sl(ΣS )

, (7)

where l(ΣC) is the density of an inverse Wishart dis-
tribution:

l(ΣC) =
|TC |

α
2

2
αp
2 Γp(α2 )

|ΣC |
−
α+p−1

2 exp(−1/2)tr(TCΣ−1
C )(8)

with hyperparameters TC and α, and similarly for
l(ΣS ). For the definition of the hyperparameters here
we follow Giudici and Green (1999) and let TC and TS

be the submatrices of a larger ”scale” matrix T0 of di-
mension N × N, and choose α > N.

Dawid and Lauritzen (1996) and Giudici and Green
(1999) show that, under the previous assumptions, the
posterior distribution of the variance-covariance matrix
Σ is a hyper Wishart distribution with α + n degrees of
freedom and a scale matrix given by:

Tn = T0 + S n (9)

where S n is the sample variance-covariance matrix.
The previous result can be used to combine market

data with tweet data, assuming that the former represent

”data” and the latter ”prior information” in a Bayesian
prior to posterior analysis.

To achieve this task we recall that, under a complete,
fully connected graph, the expected value of the previ-
ous inverse Wishart is:

E(Σ|X) = Tn = (T0 + S n)/(α + n) (10)

and, therefore, the Bayesian estimator of the un-
known variance covariance matrix, the a posteriori
mean, is a linear combination between the prior (tweet)
mean and the observed (market) mean.

When the graph G is not complete, a similar result
holds locally, at the level of each clique and separator.

The previous results suggest to use the above poste-
rior mean as the variance-covariance matrix of a com-
plete graph on which to base model selection, thereby
leading to a new selected graphical model, based on a
”mixed” data source, that contains both financial and
tweet data, in proportions determined by the quantities
α and n. Model selection can be performed by maximis-
ing, rather than the likelihood, the Bayesian a posteriori
probability. To achieve this task in an efficient way we
will implement a Markov Chain Monte Carlo algorithm,
following Giudici and Green (1999).

We now consider the issue of quantitative learning.
In the context of systemic risk, a relevant quantity to be
estimated is the partial correlation coefficient which, in-
terpretationally, corresponds to the geometric mean be-
tween two regression coefficients in two differently di-
rected multiple regression model. More formally:

ρi jV = ρ jiV =
√

ai jV · a jiV . (11)

where ai jV and a jiV are, respectively, the regression
coefficient of the multiple regression of Xi on all other
V variables (including X j) and the regression coefficient
of the multiple regression of X j on all other V variables
(including Xi).

This interpretation of the partial correlation coeffi-
cient helps the construction of a novel contagion effect
model, that can ”modify” the probability of default of
a financial institution with the effect of contagion from
the institutions to which it is connected, in a level spec-
ified by the partial correlation coefficient.

For each node we assume to know the ”idiosyncratic”
probability of default of an institution, πi, for example
on the basis of the rating assigned by a credit rating
agency, or from a credit scoring calculation, based on
balance sheet data. From the probability of default we
can derive, through the inverse Gaussian cumulative dis-
tribution function, the (idiosyncratic) credit score of the
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corresponding institution, as follows:

Z0
i = φ−1(1 − πi) (12)

where πi is the default probability of institution i and
1 − πi is the corresponding survival probability.

We then assume that the idiosyncratic score of an in-
stitution can be modified through contagion, in a man-
ner that depends on the credit scores of the neighbours,
and on their partial correlations with i, as follows:

Z
′

i = φ−1(1 − π0) −
∑

j∈neigh(i)

ai j|restφ
−1(1 − πi) (13)

where ai j|rest is the partial correlation coefficient be-
tween variables Xi and X j given all the others (rest).

To interpret the previous assumption, consider the
frequent case of positive partial correlations (which oc-
cur when banks are highly interrelated, as it occurs
within the same country) and negative scores (which oc-
cur when default probabilities are less than 50%). In
this case the idiosyncratic score increases through con-
tagion and, therefore, the default probability increases
too. This situation is illustrated in Figure 1 below.

Figure 1: The impact of contagion on the probability of default: z is
the credit score before contagion ans z′ after contagion.

3. Application

In this section we consider the application of our pro-
posed methodology. For reasons of information homo-
geneity we concentrate on a single market: the Ital-
ian banking system, characterised by a large number
of banks, dominating the economy of the country, in a
rapidly changing environment. We focus on large listed
banks, for which there exists daily financial market data,
that we would like to compare and integrate with tweet
data.

Table 1 contains the list of banks that we consider,
along with their total assets at the end of the last quarter
of 2013 (in Euro), a measure of bank size. Banks are
described by their stock market code (ticker).

Table 1 about here.

Bank Name Ticker Total Assets
UniCredit UCG 926827
Intesa Sanpaolo ISP 673472
Banca Monte dei Paschi di Siena BMPS 218882
Unione di Banche Italiane UBI 132433
Banco Popolare BP 131921
Mediobanca MB 72841
Banca popolare Emilia Romagna BPE 61637
Banca Popolare di Milano PMI 52475
Banca Carige CRG 49325
Banca Popolare di Sondrio BPSO 32349
Credito Emiliano CE 30748
Credito Valtellinese CVAL 29896

Table 1: List of considered listed Italian Banks

For each bank we consider the daily return, obtained
from the closing price of financial markets, for a period
of 148 consecutive days, from July 2013 to February
2014, as follows:

Rt = log(Pt/Pt−1) (14)

where t is a day, t − 1 the day that preceeds it and Pt

(Pt−1) is the corresponding closing price of that bank in
that day.

For the same period, we have crawled Twitter, using
the package TwitteR, available open source within the
R project environment, and chosen all tweets that con-
tain, besides one of the banks in Table 1, a keyword
belonging to a financial taxonomy based on our knowl-
edge of which balance sheet information may affect fi-
nancial risk, as described in Table 2.

Table 2 about here

Assets Liabilities P& L
Liquidity Deposits Commissions

Corporate bonds Customer deposits Interest Margin
Government bonds Allsale funding Labour Costs

Loans Interbank funding Loans
Consumer loans Capital Loans losses

Derivatives Equity
Shares

Table 2: Initial proposed taxonomy analysis

Keywords in table 2 have been tested preliminarly to
check which ones are the most effective in obtaining in-
formative tweets. In table 3 we report only the relevant
keywords, along with the relative frequencies.

Table 3 about here
Before extracting tweets, we have preliminarly fil-

tered the most relevant financial twitterers, using the T-
index methodology proposed in Cerchiello and Giudici
(2015). Such methodology relies on an index that ranks
sources according to the number of produced tweets,
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Item Frequency*100
Commissions 0.03
Labour costs 1.49

Deposits 0.08
Interbank 0.14

Management 28.58
Interest margin 4.91

Subsidiaries 0.99
Capital 35.67

Loan losses 0.73
Loans 10.11

Table 3: Final taxonomy

and the corresponding re-tweets. The higher is the
T − index, the stronger is the informative impact of a
twitterer, because not only she/he produces many posts
but also because they are highly shared among the com-
munity.

For a formal definition, given a set of n tweets of a
tweeterer to which a count vector of the retweets of each
tweet is associated, we consider the ordered sample of
retweets {X(i)}, that is X(1) ≥ X(2) ≥ . . . ≥ X(n), from
which obviously X(1) (X(n)) denotes the most (the least)
cited tweet. Consequently the T index can be defined as
follows:

T = max{t : X(t) ≥ t} (15)

Once completed the preliminary phase as described
above, each obtained tweet has been classified into a
sentiment class, with categories ranging from 1 to 5.
The higher the category, the more positive the sentiment
(or value) that the tweet assigns to the bank under anal-
ysis, that is: 1=very bad, 2=bad, 3=neutral, 4=good and
5=very good. The sentiment classification has been car-
ried out according to an appropriate classifier, trained
on the data and employing a vocabulary of positive and
negative Italian words adapted to the specific financial
application under analysis. Such vocabulary is inspired
by the famous Hu and Lu’s opinion lexicon (first version
described in Hu and Liu, 2004) that comprises around
6400 terms. In addition, several experiments and man-
ual cross check have been carried out to improve the re-
liability and stability of the results. Moreover, since the
total number of analyzed tweets is around 1000, thus
easily manageable, the quality of the sentiment classi-
fication has been tested accurately comparing methods
based on different versions of the vocabulary.

Table 4 describes the final employed taxonomy, along
with the average sentiment associated to each keyword
in our considered database. Here the sentiment scores
are grouped by keywords, so that the average sentiment
takes into account all the sentiment scores obtained for
that specific word, regardless of the analysed bank.

Table 4 about here

Item Frequency*100 Average Sentiment
Commissions 0.03 2.67
Labour costs 1.49 3.21

Deposits 0.08 2.83
Interbank 0.14 2.19

Management 28.58 3.01
Interest margin 4.91 2.79

Subsidiaries 0.99 3.02
Capital 35.67 3.07

Loan losses 0.73 2.90
Loans 10.11 2.93

Table 4: Taxonomy proposed and descriptive sentiment analysis

For each bank we have then calculated a sentiment
daily variation, that mimics market returns, as follows:

S t = log(Tt/Tt−1) (16)

where t is a day, t − 1 the day that preceeds it, and
Tt is the corresponding average daily sentiment on that
bank for that day.

We now consider the application of our Bayesian
model. In terms of prior parameters, we assume that
α = n + 2 and that T is a diagonal matrix, which implies
zero a priori partial correlations.

In terms of structural learning, the selected model is
the fully connected model: this is quite reasonable, in
a national market that is fully integrated, with a strong
country effect on bank risk.

Concerning quantitative learning, we report in Table
5, below the estimated partial correlations, obtained by
model averaging them overthe most likely models (in-
cluding, of course, the fully connected model). In Table
5 we also report, as a systemic risk measure for each
bank, their weighted degree, calculated as the sum of all
partial correlations, that expresses the intensity of the
contagion.

Table 5 and, in particular, the weighted degree in the
last row indicate, in a clear way, which are the most sys-
temic banks: BPE, BP, followed by PMI and UBI: these
are the four largest cooperative banks that are indeed
linked to each other. The three largest (public) banks,
UCG, ISP and MB, follow. Other smaller banks as well
as the troubled MPS have a lesser degree. Note that
Table 5 is also very useful to draw ”stress test” analy-
sis, such as: if UCG returns drop by 100 basis points,
each of the other connected banks drop, on average, by
7 basis points, with a total impact on the system of 81
basis point. A similar drop in a smaller and relatively
isolated bank, such as CVAL, causes an average drop of
the other banks of only 3 basis points.

The above conclusions do not take bank size into ac-
count. However, it is very likely that the contagion ef-
fect of a bank on another also depends on the relation-
ship between their sizes: the impact of a large bank,
such as UCG, on a small bank, such as CE, is likely to
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Table 5: Partial correlations and systemic risk measures based on the
selected mixed graphical Gaussian model

be greater than what expressed by the weighted degree
in Table 5.

To take size into account, we have inserted in the cal-
culation of the contagion effect on the probability of de-
fault, in equation (1), a weight that is equal to the ratio
of the total assets of the considered bank over the to-
tal market assets. Accordingly, Table 6 indicates the
effect of contagion on the idiosyncratic PDs of the con-
sidered banks. The second and the third column of the
table indicate the probability of default before and after
contagion, and the corresponding percentage variation
(Delta). For robustness purposes, we have also reported
the same percentage variation assuming different values
for the parameters of T : a common partial correlation
of 0.8, rather than 0, which correspond to a more con-
nected graph in the a priori twitter structure, and dif-
ferent values of alpha, which correspond to a higher
weight for the twitter prior.

Bank Contagioned PD Delta Delta (0.8%) Delta (3 ∗ (n + 2)) Delta (30 ∗ (n + 2))

UCG 0.0064 +220 +220 +220 +220
UBI 0.0059 +195 +175 +200 +200
MB 0.0030 +50 95 +50 +50
ISP 0.0086 +330 365 +330 +335
CVAL 0.0055 -28 -1 -28 -28
CE 0.0073 -4 +20 -4 -4
BP 0.1450 +91 +66 +91 +91
BPSO 0.0025 +25 +75 +25 +25
PMI 0.1450 +108 +70 +109 +109
BPE 0.1340 +76 +80 +76 +78
BMPS 0.0024 +20 +5 +20 +20
CRG 0.0070 -8 +12 -8 -8

Table 6: Partial correlations and systemic risk measures based on the
selected mixed graphical Gaussian model

From Table 6 note that the banks which are most vul-
nerable (most impacted by contagion) are the largest
banks ISP, UCG as well as UBI, which is the most con-
nected of the cooperative banks. In terms of robustness
analysis, note that changing the a priori parameters do
not change sensibly the results; this is especially true in
terms of the correlation parameter. This indicates sta-
bility of the proposed model.

We remark that, in our opinion, the main aim of sys-
temic risk analysis on banks is the understanding of the
contagion effects, which is a quantitative learning prob-
lem. Selecting the best graphical model (the structural
learning problem) is somewhat secondary, besides be-
ing more challenging, from a computational viewpoint.
However, if there is a strong interest on searching the
best structure, a computational approach, that relies on
a penalised likelihood strategy, could be taken, for in-
stance through a glasso approach (see e.g. Witten et
al. 2011). While computationally appealing, the glasso
has the disadvantage of arbitrariness in the choice of the
penalty parameter λ. Such penalty deals with the level
of complexity of the model, it is a regularization param-
eter used in the estimation of a sparse inverse covariance
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matrix with a lasso (L1) penalty. Small λ corresponds to
low levels of regularization, indeed if λ is set equal to 0,
the graph results to be completely connected. On the op-
posite large values of λ corresponds to high penalization
resulting in sparser, i.e. a less connected graph. Figure
2 below shows how the best chosen model changes con-
sidering different values of λ.

Figure 2: Selected Gaussian graphical models, with different Glasso
parameters: A) λ = 0, B) λ = 50,C) λ = 150, D) λ = 250

From Figure 2 note that the selected graphical model
sensibly depends on the choice of λ. While A and B cor-
respond to a realistic highly interconnected situation, C
and more so D correspond to less realistic sparse situ-
ations. It is worth mentioning the position of UCG ac-
cording to λ values: in B, UCG starts isolating and such
position is definitely confirmed in D. This happens co-
herently with the nature of UCG, that is the largest pub-
lic Italian bank, the more international one and, there-
fore, the least exposed to national sources of stress.

4. Conclusions

In this paper we have shown how big data and, specif-
ically, tweet data, can be usefully employed in the field
of systemic risk modelling and, specifically, by means
of graphical Gaussian models.

The paper shows how to combine tweet based sys-
temic risk networks with those obtained from financial
market data, using the a Bayesian model of data fusion
and, correspondingly, a Bayesian model selection pro-
cedure.

We believe that our proposal can be very useful to
estimate systemic risks and, therefore, to individuate the
most vulnerable financial institutions. This because it
integrates two different, albeit complementary, sources
of information: market prices and twitter textual data.

Another important value of the model is its capabil-
ity of including in systemic risk models institutions that
are not publicly listed, using the tweet data component
alone: a relevant advantage for banking systems where
many banks are not listed, as it occurs in many Euro-
pean countries, for instance.

The model can be extended in several directions. A
promising one could be to replace the inverse cumula-
tive Gaussian link with an extreme value one, as in Cal-
abrese and Giudici (2015) so to focus more the analysis
on tail events.
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