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Tight entropic uncertainty relations for systems with dimension three to five
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We consider two (natural) families of observables Ok for systems with dimension d = 3,4,5: the spin
observables Sx, Sy , and Sz, and the observables that have mutually unbiased bases as eigenstates. We derive
tight entropic uncertainty relations for these families, in the form

∑
k H (Ok) � αd , where H (Ok) is the Shannon

entropy of the measurement outcomes of Ok and αd is a constant. We show that most of our bounds are stronger
than previously known ones. We also give the form of the states that attain these inequalities.
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I. INTRODUCTION

Entropic uncertainty relations [1–10] nicely express the
concept of quantum uncertainty since their lower bound is
typically state independent, in contrast to the Heisenberg-
Robertson ones [11,12]. The most used one is the Maassen-
Uffink relation [3],

H (A) + H (B) � −2 log2 c = qMU, (1)

where H (A) and H (B) are the Shannon entropies of the
measurement outcomes of two observables A and B, and
c = maxj,k |〈aj |bk〉| is the maximum overlap between their
eigenstates. It is a state-independent bound, meaningful even
if the observables share some common eigenstates. The bound
(1) is tight if A and B have mutually unbiased bases (MUBs) as
eigenstates. Stronger bounds for arbitrary observables, which
involve the second largest term in |〈aj |bk〉|, have been found
recently in [13] and [14]. If one considers more than two
observables, tight bounds were proven only in a few cases,
most of them in dimension d = 2. For a complete set of MUBs,
the strongest bounds were derived by Ivanovic in [15] for odd
d, and by Sanchez in [16] for even d. Moreover, some bounds
for an incomplete set of MUBs are in [17].

In this paper, we derive tight entropic uncertainty relations
for more than two observables for systems of dimensions d =
3,4,5, both for spin observables and for arbitrary numbers of
MUBs. On one hand, for spin observables, we find

H (Sx) + H (Sy) + H (Sz) � γs, (2)

with γs = 2,3 − 3
4 log2 3 � 3.62,3.12 for spin s = 1, 3

2 ,2,
respectively. These inequalities are all stronger than previously
known results. The case of s = 1 has been derived analytically,
while the rest numerically. For half-integer spins, the inequal-
ity is saturated by any of the eigenstates of the three spin
observables, while for integer spins, the inequality is saturated
only by null projection states. Moreover, we find

H (Sj ) + H (Sk) � ξs (3)

for all j,k = x,y,z (j �= k) with ξs = 1,1.71,1.56 for spin
s = 1, 3

2 ,2. The case s = 1 coincides with (1), but the other
cases are equal or stronger than previous results [7,8]. On the
other hand, for observables {Aj } with MUBs as eigenstates [the
eigenvalues are irrelevant for entropic uncertainty relations
(EURs)], we find, for dimension d = 3 (where up to four

MUBs exist),

H (A1) + H (A2) + H (A3) � 3, (4)

H (A1) + H (A2) + H (A3) + H (A4) � 4; (5)

for dimension d = 4 (where up to five MUBs exist),

H (A1) + H (A2) + H (A3) � 3, (6)

H (A1) + H (A2) + H (A3) + H (A4) � 5, (7)

H (A1) + H (A2) + H (A3) + H (A4) + H (A5) � 7; (8)

and, finally, for dimension d = 5,

H (A1) + H (A2) + H (A3) � 2 log2 5, (9)

H (A1) + H (A2) + H (A3) + H (A4) � 6.34, (10)

5∑
j=1

H (Aj ) � 8.33, (11)

6∑
j=1

H (Aj ) � 10.25. (12)

In addition to the above bounds, we also provide the form of
the states that saturate them and we compare them to previous
results in the literature.

The paper is organized as follows. In Sec. II we consider
spin observables. The case s = 1 is developed analytically
from a recent parametrization of the state [18], while the
other cases are solved numerically. In Sec. III we consider
the observables with MUBs as eigenstates: after a brief review
of the previous results, we derive tight entropic uncertainty
relations through numerical methods. In all cases, we detail
the classes of states that saturate the obtained relations. In the
Appendix, we give the details of the numerical procedures that
we employed.

II. ENTROPIC UNCERTAINTY RELATIONS FOR
SPIN OBSERVABLES

We start by considering the entropic uncertainty relations
(EURs) relative to the spin observables Sx, Sy , and Sz for
systems of different dimensions.
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A. Spin 1

The state of a three-dimensional system can be written in
terms of Sx, Sy , and Sz as [18]

ρ =
∑

j=x,y,z

[
ωj

(
I − S2

j

) + ajSj + qjQj

2

]
, (13)

where Qj is the anticommutator of Sk and Sl , with j �= k,l,
i.e., Qj = {Sk,Sl}, and

ωj = 1 − 〈
S2

j

〉
, aj = 〈Sj 〉, qj = 〈Qj 〉, (14)

with 0 � ωj � 1 and |aj | � 1. In matrix form, (13) is

ρ =

⎛
⎜⎜⎝

ωx
−iaz−qz

2
iay−qy

2
iaz−qz

2 ωy
−iax−qx

2
−iay−qy

2
iax−qx

2 ωz

⎞
⎟⎟⎠. (15)

The condition T r[ρ] = 1 implies

ωx + ωy + ωz = 1. (16)

Since ρ [19] is positive semidefinite, all principal minors of
the right-hand-side of (15) are non-negative, which implies the
three inequalities 4ωkωl � a2

j , for k,l = x,y,z and j �= k, j �=
l. These inequalities can be expressed also as

−2
√

ωkωj � aj � 2
√

ωkωl. (17)

In the representation where S2
j are diagonal, the spin

components are

Sx =

⎛
⎜⎝

0 0 0

0 0 −i

0 i 0

⎞
⎟⎠, Sy =

⎛
⎜⎝

0 0 i

0 0 0

−i 0 0

⎞
⎟⎠, (18)

Sz =

⎛
⎜⎝

0 −i 0

i 0 0

0 0 0

⎞
⎟⎠. (19)

The eigenstates of Sx are then given by

|Sx = 0〉 =

⎛
⎜⎝

1

0

0

⎞
⎟⎠, |Sx = ±1〉 = 1√

2

⎛
⎜⎝

0

∓i

1

⎞
⎟⎠, (20)

and similar relations for the other observables. The probabili-
ties of Sj are then given by

pm=0 = ωj , pm=±1 = 1
2 (1 − ωj ∓ aj ), (21)

whence one can calculate the Shannon entropies of Sj as

H (Sj ) = − 1
2 (1 − ωj + aj ) log2

[
1
2 (1 − ωj + aj )

]
− 1

2 (1 − ωj − aj ) log2

[
1
2 (1 − ωj − aj )

]
− ωj log2 ωj . (22)

For two observables, we find the optimal EUR (1),

H (Si) + H (Sj ) � 1; (23)

indeed, c = 1√
2

and, moreover, the above inequality is tight
when calculated on the null projection state of any of the
two observables. For three observables, we obtain an EUR by

FIG. 1. Plot of the function �(ωx,ωy).

finding an upper bound to −∑
j H (Sj ). To this aim, we can

use the conditions (17), employing the monotonicity of the
logarithm as

1
2 (1 − ωj ± aj ) log2

[
1
2 (1 − ωj ± aj )

]
� 1

2 (1 − ωj + 2
√

ωkωl) log2

[
1
2 (1 − ωj + 2

√
ωkωl)

]
.

(24)

Then we have

−
∑

j

H (Sj ) �
∑

j

ωj log2 ωj + (1 − ωj + 2
√

ωkωl)

× log2

[
1 − ωj + 2

√
ωkωl

2

]
. (25)

The right-hand side is a function −�(ωx,ωy), which depends
only on ωx and ωy since the ωj ’s are constrained by (16).
Inverting the inequality, we find the EUR,∑

j

H (Sj ) � �(ωx,ωy) � 2. (26)

The lower bound � is plotted in Fig. 1. Its minimum value
� = 2 is found for ωj = 1 and ωk = ωl = 0. These conditions
imply that aj = 0 for all j through (17). Thus,

∑
j H (Sj ) = 2

is attained on null projection states.
This result shows a different behavior of the EUR for spin

observables in the case of integer spin with respect to the half-
integer case. A simple example of the latter is the qubit case: it
was shown in [16] that for qubits, we have

∑
H (Sj ) � 2, but

the minimum is achieved by any of the eigenstates of one of the
Sj in contrast to the qutrit case obtained here. This difference
in behavior between integer and half-integer spins is true also
for larger spin numbers (see below).

A straightforward generalization of (23) is obtained by
repeating that inequality for pairs of observables, obtaining∑

H (Sj ) � 3
2 . It is weaker than our bound (26).

B. Spin 3
2

For a four-dimensional system, we are unaware of a
representation of the density matrix in terms of the spin
observables and we cannot reproduce the derivation given for
s = 1. We thus develop a simple computational method that
gives tight EUR for small system dimensions d.

An arbitrary pure state |ψ〉 of a d-dimensional system
depends on 2d − 2 real parameters. It is sufficient to consider
pure states because of the concavity of the Shannon entropy:
mixed states have greater entropy. The probability on |ψ〉
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of the measurement outcomes is p(ak) = |〈ak|ψ〉|2 for an
arbitrary observable A = ∑

k ak|ak〉〈ak|, whence the entropy is
H (A) = ∑

k −p(ak) log2 [p(ak)]. Considering n observables
A1,A2, . . . An, we can calculate the quantity

∑n
j=1 H (Aj ),

which can be seen as a function of the 2d − 2 parameters
representing the state. This function can then be numerically
minimized over this parameter space. In addition to finding the
minimum, we then also find the states that saturate the bounds,
which are then tight. In the Appendix we give more details on
the computational procedure; here we present only the results.

For the case of two spin observables, we find

H (Sj ) + H (Sk) � 1.71, (27)

with j,k = x,y,z and j �= k.
To compare this result with the previous results of [13] and

[14], we can express these as [20]

H (A) + H (B) � max(qCP ,qRPZ), (28)

with

qCP = 2

[
− log2 c + 1

2
(1 − √

c) log2
c

c2

]
, (29)

qRPZ = 2

{
− log2 c − log2

[
b2 + c2

c
(1 − b2)

]}
, (30)

where b = 1+√
c

2 , c = maxj,k |〈aj |bk〉| is the maximum overlap
among eigenstates of A and B, and c2 is the second maximum
overlap. Both qCP and qRPZ are greater than qMU of (1).
Our result (27) is an even stronger bound than both qCP and

qRPZ . Indeed, for s = 1, we have c = 1
2

√
3
2 and c2 = 1

2
√

2
, so

qCP = 1.59 and qRPZ = 1.68.
The bound (27) is not saturated by one of the eigenstates

of Sj ; indeed, for any eigenstate, we have H (Sj ) + H (Sk) �
1.81. Instead, it is saturated by the state

|ψ〉 = sin(15◦)|0〉 + cos(15◦)|2〉, (31)

and by similar superpositions weighted by the angle α = 15◦.
The bound (27) is in agreement with the numerical bound
found in [14], but here we also find the state that achieves the
minimum.

For the case of three spin observables, we find

H (Sx) + H (Sy) + H (Sz) � 3 − 3
4 log2 3 = 3.62. (32)

If we employ (27) to obtain a bound for three observables (by
applying it to each pair of observables), we find

H (Sx) + H (Sy) + H (Sz) � 3
2 (1.71) = 2.56, (33)

which is weaker than (32). The same argument applied to qRPZ

of (30) leads to H (Sx) + H (Sy) + H (Sz) � 3
2 (1.68) = 2.52:

also in this case, our result (32) is stronger than previous ones.
The lower bound (32) is achieved by the eigenstates of any

of three observables Sj . This generalizes the result found by
Sanchez in [16]; indeed, in this case the MUBs also represent
the spin components. As mentioned above, the EUR for half-
integer and integer spin values are attained for different classes
of states.

C. Spin 2

A spin-2 system has dimension d = 5. Using the same
algorithm detailed in the previous section, we find

H (Sj ) + H (Sk) � 1.56, (34)

H (Sx) + H (Sy) + H (Sy) � 3.12. (35)

Both of the above inequalities are saturated by the eigenstates
corresponding to the eigenvalue 0 of any of the three
observables Sj , the null projection state (as in the case s = 1).
For example, the above inequalities are saturated by the state

|Sx = 0〉 = 1

2

√
3

2
|0〉 − 1

2
|2〉 + 1

2

√
3

2
|4〉. (36)

The comparison of (34) with the previously known bounds
qMU, qCP , and qRCZ shows that, again, our result is stronger.

In fact, in this case, we have c = 1
2

√
3
2 and c2 = 1

2 . There-
fore, qMU = 1.41, qCP = 1.48, and qRPZ = 1.53, which are
weaker than (34). Instead, the numerical bound found in [14]
agrees with ours, but we also provide the states that saturate it.
If we consider the application of (35) to three spin observables,
we would obtain H (Sx) + H (Sy) + H (Sy) � 3

2 (1.56) = 2.34,

which is weaker than (35); the three-observable bound is again
stronger than the ones obtained by joining two-observable
bounds.

III. ENTROPIC UNCERTAINTY RELATIONS
FOR ARBITRARY NUMBERS OF MUBS

We now consider the EURs relative to observables that
have mutually unbiased bases (MUBs) as eigenstates (the
eigenvalues are irrelevant for the EURs). To obtain the EURs,
we use the same procedure detailed in Sec. II B. However,
we must also calculate the MUBs for each dimension. In
a d-dimensional Hilbert space, there exist d + 1 MUBs if
d is a power of a prime, otherwise only three bases are
known to exist [21]. The properties of the MUBs strongly
depend on the dimension, e.g., for a qubit, MUBs are also
the eigenbases of the spin observables, but this is not true
for d > 2. The problem of finding MUBs can be translated
into finding Hadamard matrices: the columns of such matrices
are the states of the MUBs. This problem was solved in [22]
for dimensions d = 2,3,4,5. Here we use that result to study
EURs: for each dimension d = 3,4,5, we consider up to d + 1
observables A1,A2, . . . ,Ad+1 that have MUBs as eigenstates.

We now briefly review previous results for EURs with MUB
observables. For any number L of these observables, we can
construct an EUR with a trivial generalization of Maassen and
Uffink’s relation (1) by applying (1) to pairs of bases, obtaining

L∑
i=1

H (Ai) � L

2
log2 d. (37)

However, this inequality is almost never tight. A better bound
was given in [15] for L = d + 1,

L∑
i=1

H (Ai) � (d + 1)[log2(d + 1) − 1] = qI , (38)
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which is also not always tight. For even dimension d, a stronger
bound was given in [16],

L∑
i=1

H (Ai) �
(

d

2
log2

d

2
+ d + 1

2
log2

d + 1

2

)
= qS, (39)

which is tight only in dimension two. For L < d + 1 in [23], it
has been shown that if the Hilbert space dimension is a square,
that is, d = r2, then for L < r + 1 the inequality (37) is tight,
namely,

L∑
i=1

H (Ai) � L

2
log2 d = qBW . (40)

A further bound for L < d + 1 was given in [17],

L∑
i=1

H (Ai) � −L log2

(
d + L − 1

dL

)
= qA. (41)

For more details on the above bounds, we refer to [20]. We
now present our results which are tight for all dimensions and
all numbers L of MUBs.

A. Dimension three

In dimension d = 3, four MUBs exist (A1, A2, A3, and
A4), whose states are respectively given by the columns of the
Hadamard matrices,

M1 =

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠, M2 = 1√

3

⎛
⎜⎝

1 1 1

1 ω ω2

1 ω2 ω

⎞
⎟⎠,

M3 = 1√
3

⎛
⎜⎝

1 1 1

ω2 ω 1

1 ω ω2

⎞
⎟⎠, M4 = 1√

3

⎛
⎜⎝

1 1 1

ω ω2 1

1 ω2 ω

⎞
⎟⎠,

(42)

with ω = exp ( 2πi
3 ). If the system is prepared in an eigenstate

of any of the MUBs, the entropy of that observable is null while
the other entropies are maximal: e.g., if H (A1) = 0, then we
have H (A1) + H (A2) + H (A3) = 2 log2 3. In contrast to the
qubit case d = 2, this is not the state that gives the strongest
EUR for d = 3. Indeed, the state 1√

2
(|1〉 − |2〉) has entropies

for all MUBs equal to 1: H (Ai) = 1. Therefore,

H (A1) + H (A2) + H (A3) � 3, (43)

H (A1) + H (A2) + H (A3) + H (A4) � 4. (44)

We have numerically shown that the above inequalities are
the optimal ones. In addition to the above state, they are also
saturated by the following states:

eiϕ |0〉 + |1〉√
2

,
eiϕ|0〉 + |2〉√

2
,

eiϕ |1〉 + |2〉√
2

, (45)

where ϕ = π
3 ,π, 5π

3 . Our bound (43) is stronger than
(37), which in this case gives H (A1) + H (A2) + H (A3) =
3
2 log2 3 = 2.38. For L = 3, the bound (41) gives qA = 2.54,
which is also weaker than (43). For a complete set of MUBs
L = 4, the bound (38) gives qI = 4 and is then equal to our

relation (44). However, here we have proven that (44) is a tight
relation for d = 3, and we have provided that the states achieve
the minimum.

B. Dimension four

In dimension d = 4, five MUBs exist, whose states are
given by the columns of the Hadamard matrices,

M1 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠,

M2 = 1
2

⎛
⎜⎜⎜⎝

1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

⎞
⎟⎟⎟⎠,

M3 = 1
2

⎛
⎜⎜⎜⎝

1 1 1 1

1 1 −1 −1

−i i i −i

i −i i −i

⎞
⎟⎟⎟⎠, (46)

M4 = 1
2

⎛
⎜⎜⎜⎝

1 1 1 1

i −i i −i

−1 −1 1 1

i −i −i i

⎞
⎟⎟⎟⎠,

M5 = 1
2

⎛
⎜⎜⎜⎝

1 1 1 1

i −i i −i

i i −i i

−1 −1 1 1

⎞
⎟⎟⎟⎠.

Since d = 4 = r2 is a square for r = 2, then for L < r + 1 =
3, the inequality (37) is tight [23]. This is then the best bound
up to L = 2. However, for d = 4, we can consider up to L = 5.
For example, for L = 3, we find that the optimal bound is

H (A1) + H (A2) + H (A3) � 3. (47)

It is achieved by the four states

(|0〉 ± |1〉)
√

2, (|2〉 ± |3〉)/
√

2. (48)

By symmetry, similar relations hold by permuting the MUBs
observables, but involving the superposition of different
eigenstates. For example, H (A1) + H (A2) + H (A4) � 3 has
lower bound achieved by (|0〉 ± |2〉)/√2 and (|1〉 ± |3〉)/√2.
Note that in d = 4, it is possible to consider different
triplets of MUBs, which are unitarily inequivalent from the
one considered here. Indeed, it was shown in [22,24] that
there exists a three-parameter family of inequivalent triplets.
However, (47) does not change with different choices of
MUBs.

In the case of L = 4 observables, we find

H (A1) + H (A2) + H (A3) + H (A4) � 5 (49)
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as the optimal bound, which is saturated by the states

(|0〉 ± |1〉)/
√

2, (|0〉 ± |2〉)/
√

2, (|0〉 ± i|3〉)/
√

2,

(|1〉 ± i|2〉)/
√

2, (|1〉 ± |3〉)/
√

2, (|2〉 ± |3〉)/
√

2. (50)

Compare our bound (49) to (40) and (41): for L = 4, we find
qBW = 4 and qA = 4.77. Therefore, our inequality is stronger
than both.

In the case of L = 5 = d + 1 observables (the complete set
of MUBs), we find

H (A1) + H (A2) + H (A3) + H (A4) + H (A5) � 7, (51)

which is saturated by states of the following form:

|ψjk〉 = 1√
2

(|j 〉 ± (i)t |k〉), (52)

with t = 0,1 and j and k are the eigenstates of A1. For d = 4,
the inequality (39) gives qS = 2 + 5

2 log2 5 = 5.30, so that (39)
is weaker than our bound (51) in this case.

C. Dimension five

In dimension d = 5, six MUBs exist, whose states are given
by the columns of the Hadamard matrices,

M1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

, (53)

M2 = 1√
5

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1

1 ω ω2 ω3 ω4

1 ω2 ω4 ω ω3

1 ω3 ω ω4 ω2

1 ω4 ω3 ω2 ω

⎞
⎟⎟⎟⎟⎟⎠

, (54)

M3 = 1√
5

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1

ω ω2 ω3 ω4 1

ω4 ω ω3 1 ω2

ω4 ω2 1 ω3 ω

ω 1 ω4 ω3 ω2

⎞
⎟⎟⎟⎟⎟⎠

, (55)

M4 = 1√
5

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1

ω3 ω4 1 ω ω2

ω2 ω4 ω ω3 1

ω2 1 ω3 ω ω4

ω3 ω2 ω3 1 ω4

⎞
⎟⎟⎟⎟⎟⎠

, (56)

M5 = 1√
5

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1

ω2 ω3 ω4 1 ω

ω3 1 ω2 ω4 ω

ω3 ω ω2 ω2 1

ω2 ω 1 ω4 ω3

⎞
⎟⎟⎟⎟⎟⎠

, (57)

M6 = 1√
5

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 1

ω4 1 ω ω2 ω3

ω ω3 1 ω2 ω4

ω ω4 ω2 1 ω3

ω4 ω3 ω2 ω 1

⎞
⎟⎟⎟⎟⎟⎠

, (58)

with ω = exp ( 2πi
5 ). For three MUB observables, we find that

the optimal bound is

H (A1) + H (A2) + H (A3) � 2 log2 5, (59)

which is saturated by any eigenstate of any of the three MUBs,
as in the qubit d = 2 case (also there the EUR for three
complementary observables is saturated by the eigenstates of
the observables). The bound (59) is the only known entropic
uncertainty relation, apart from the qubit case, with more than
two observables that has this property. In this respect, it is
somewhat similar to Maassen and Uffink’s (1): they are both
achieved by the eigenstates of one of the observables (so that
the entropies of the others are maximum). For L = 3 in (41),
we have qA = 3.30 while 2 log2 5 = 4.64. Our bound is also
stronger than these in this case.

For four MUBs, we find that the optimal bound is

H (A1) + H (A2) + H (A3) + H (A4) � 6.34, (60)

and the minimum is achieved by states that are superposition
of four basis states, e.g.,

|ψ〉 = 0.19ei 5
3 π |0〉 + 0.19|1〉 + 0.68ei 9

5 π |3〉 + 0.68|4〉.
(61)

In this case, we have qA = 5.28, which is again weaker than
our bound (60). For five MUBs, we find

H (A1) + H (A2) + H (A3) + H (A4) + H (A5) � 8.33 .

(62)
And, finally, for the complete set of six MUBs, we find

6∑
i=1

H (Ai) � 10.25. (63)

The two above inequalities are again minimized by states that
can be expressed by the superposition of four basis states,
having the same form of (61). For L = 5, we can compare
(62) to (41) which gives a weaker bound qA = 7.34, while for
the complete set of MUBs we can compare (63) to (38), which
gives a weaker bound qI = 9.51.

IV. CONCLUSIONS

In this paper, we have found several tight entropic un-
certainty relations for two classes of observables: the spin
observables Sx , Sy, Sz and the observables {Aj } with MUB
eigenstates.

For the case of spin observables, for s = 1 we found a
tight relation (26) for the complete set of spin observables; its
minimum value is achieved by null projection states of any of
the three observables. The same types of states also saturate
the inequality (35) for the case of s = 2. Instead, in the case
s = 3

2 , the inequality (32) is minimized by eigenstates of any
of the three spin observables. For both s = 3

2 and s = 2, we
have also found tight inequalities for two spin observables,
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which are in agreement with the optimal bound found in [14],
and we have given the states that minimize them. In the case
of s = 2, they are the null projections states.

For the case of MUB observables, we have derived several
tight inequalities for dimensions d = 3,4,5. For d = 3 the
results (44) equals the previous bound (38) but here we also
found the class of states that saturates it. In contrast, for d =
4,5, the bounds (51) and (63) represent stronger EUR than
known ones. Inequalities have been also found for incomplete
sets of MUBs in every dimension: in each case, the bounds are
tight and we have derived the states that achieve the minimum.
We note the peculiar behavior of (59), which is achieved by any
eigenstate of one of the three MUBs, resembling the behavior
of qubit systems.

APPENDIX : NUMERICAL METHODS

Here we detail the numerical methods used to derive
most of our entropic uncertainty relations. We have used the
software package MATHEMATICA. For the sake of illustration,
we consider the case of s = 3

2 . The most general pure state of
a quantum system for d = 4 is

|ψ〉 = eiχ0 sin a0 sin a1 cos a2|0〉 + eiχ1 sin a0 sin a1 sin a2|1〉
+ eiχ2 sin a0 cos a1|2〉 + cos a0|1〉, (A1)

where ai ∈ [0, π
2 ] and χ0 ∈ [0,2π ]. To compute the probability

distributions of Sx,Sy , and Sz over the state |ψ〉, we work in
the representation of eigenstates of Sz. In this representation,
the spin matrices are

Sx = 1

2

⎛
⎜⎜⎜⎜⎝

0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

⎞
⎟⎟⎟⎟⎠, (A2)

Sy = 1

2i

⎛
⎜⎜⎜⎜⎝

0
√

3 0 0

−√
3 0 2 0

0 −2 0
√

3

0 0 −√
3 0

⎞
⎟⎟⎟⎟⎠, (A3)

Sz = 1

2

⎛
⎜⎜⎜⎝

3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

⎞
⎟⎟⎟⎠. (A4)

The probability distribution of Sz is

p(Sz = +2) = sin2 a0 sin2 a1 cos2 a2, (A5)

p(Sz = +1) = sin2 a0 sin2 a1 sin2 a2, (A6)

p(Sz = −1) = sin2 a0 cos2 a1, (A7)

p(Sz = −2)) = cos2 a0. (A8)

Then the entropy is H (Sz) = −∑
l pl(Sz = l) log2 pl(Sz = l),

which depends only on the three parameters aj .

To calculate the entropy for Sx , consider its eigenstates

|Sx = ±2〉 = 1

2
√

2
(|0〉 ±

√
3|1〉 −

√
3|2〉 ± |3〉),

|Sx = ±1〉 = 1

2
√

2
(
√

3|0〉 ± |1〉 − |2〉 ∓
√

3|3〉). (A9)

We can compute the probability distribution of Sx over |ψ〉
with

p(Sx = ±l) = |〈ψ |Sx = ±l〉|2. (A10)

This expression depends on all six parameters of |ψ〉,
and we can use it to calculate the entropy H (Sx) =
−∑

l pl(Sx = l) log2 pl(Sx = l).
An analogous procedure can be used for Sy , whose

eigenstates are

|Sy = ±2〉 = 1

2
√

2
(|0〉 ± i

√
3|1〉 −

√
3|2〉 ∓ i|3〉), (A11)

|Sy = ±1〉 = 1

2
√

2
(
√

3|0〉 ± i|1〉 + |2〉 ± i
√

3|3〉), (A12)

whence we can calculate the probabilities and the entropy.
To obtain the optimal EUR, we need to minimize the sum

of two or three of the above entropies. Due to their nonlinear
dependence on the parameters, it is highly nontrivial to find
the minimum analytically. We have therefore resorted to
numerical methods: MATHEMATICA permits the minimization
of a function f (x1, . . . ,xn) that depends on n parameters with
the routine

NMinimize[{f (x1, . . . ,xn),γ (x1, . . . ,xn)},{x1, . . . ,xn}],
(A13)

where γ represents possible constraints. This routine returns
both the minimum value of the function and also the parameter
values that attain it, which in our case identify the states that
minimize the EUR. For example, if we define

f (a0,a1,a2,χ0,χ1,χ2) = H (Sx) + H (Sz), (A14)

the instruction

NMinimize[f (ai,χi),{a0,a1,a2,χ0,χ1,χ2}] (A15)

returns[
1.71,

{
a0 → π

12
,a1 → π

4
,a2 → π

4
,χ1 → π

}]
, (A16)

which implies (34). The other relations that we derived can
be similarly obtained.

For example, for the case of spin 2, we can repeat the above
procedure. Again, we can choose the representation of the
eigenbasis of Sz, which gives

Sx = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2 0 0 0

2 0
√

6 0 0

0
√

6 0
√

6 0

0 0
√

6 0 2

0 0 0 2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A17)
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Sy = 1

2i

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2 0 0 0

−2 0
√

6 0 0

0 −√
6 0

√
6 0

0 0 −√
6 0 2

0 0 0 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A18) Sz =

⎛
⎜⎜⎜⎜⎜⎝

2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

. (A19)
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mutually unbiased bases, Int. J. Quantum Inf. 08, 535 (2010).

[22] S. Brierley, S. Weigert, and I. Bengtsson, All mutually unbiased
base in dimension two to five, Quantum Inf. Comput. 10, 0803
(2010).

[23] M. A. Ballester and S. Wehner, Entropic uncertainty relations
for more than two observables, Phys. Rev. A 75, 022319 (2007).

[24] A. Sehrawat and A. B. Klimov, Unitarily inequivalent mutually
unbiased bases for n qubits, Phys. Rev. A 90, 062308 (2014).

032109-7

https://doi.org/10.1103/PhysRevLett.50.631
https://doi.org/10.1103/PhysRevLett.50.631
https://doi.org/10.1103/PhysRevLett.50.631
https://doi.org/10.1103/PhysRevLett.50.631
https://doi.org/10.1103/PhysRevD.35.3070
https://doi.org/10.1103/PhysRevD.35.3070
https://doi.org/10.1103/PhysRevD.35.3070
https://doi.org/10.1103/PhysRevD.35.3070
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1103/PhysRevA.92.032109
https://doi.org/10.1103/PhysRevA.92.032109
https://doi.org/10.1103/PhysRevA.92.032109
https://doi.org/10.1103/PhysRevA.92.032109
http://arxiv.org/abs/arXiv:1701.01139
https://doi.org/10.1088/1751-8121/50/3/03LT01
https://doi.org/10.1088/1751-8121/50/3/03LT01
https://doi.org/10.1088/1751-8121/50/3/03LT01
https://doi.org/10.1088/1751-8121/50/3/03LT01
https://doi.org/10.1088/1367-2630/17/9/093046
https://doi.org/10.1088/1367-2630/17/9/093046
https://doi.org/10.1088/1367-2630/17/9/093046
https://doi.org/10.1088/1367-2630/17/9/093046
https://doi.org/10.1142/S0219749915500458
https://doi.org/10.1142/S0219749915500458
https://doi.org/10.1142/S0219749915500458
https://doi.org/10.1142/S0219749915500458
https://doi.org/10.1103/PhysRevA.93.062123
https://doi.org/10.1103/PhysRevA.93.062123
https://doi.org/10.1103/PhysRevA.93.062123
https://doi.org/10.1103/PhysRevA.93.062123
https://doi.org/10.1209/0295-5075/115/60004
https://doi.org/10.1209/0295-5075/115/60004
https://doi.org/10.1209/0295-5075/115/60004
https://doi.org/10.1209/0295-5075/115/60004
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRevA.89.022112
https://doi.org/10.1103/PhysRevA.89.022112
https://doi.org/10.1103/PhysRevA.89.022112
https://doi.org/10.1103/PhysRevA.89.022112
https://doi.org/10.1103/PhysRevA.89.052115
https://doi.org/10.1103/PhysRevA.89.052115
https://doi.org/10.1103/PhysRevA.89.052115
https://doi.org/10.1103/PhysRevA.89.052115
https://doi.org/10.1088/0305-4470/25/7/014
https://doi.org/10.1088/0305-4470/25/7/014
https://doi.org/10.1088/0305-4470/25/7/014
https://doi.org/10.1088/0305-4470/25/7/014
https://doi.org/10.1016/0375-9601(95)00219-S
https://doi.org/10.1016/0375-9601(95)00219-S
https://doi.org/10.1016/0375-9601(95)00219-S
https://doi.org/10.1016/0375-9601(95)00219-S
http://arxiv.org/abs/arXiv:quant-ph/0412083
https://doi.org/10.1103/PhysRevA.93.062126
https://doi.org/10.1103/PhysRevA.93.062126
https://doi.org/10.1103/PhysRevA.93.062126
https://doi.org/10.1103/PhysRevA.93.062126
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1142/S0219749910006502
https://doi.org/10.1142/S0219749910006502
https://doi.org/10.1142/S0219749910006502
https://doi.org/10.1142/S0219749910006502
https://doi.org/10.1103/PhysRevA.75.022319
https://doi.org/10.1103/PhysRevA.75.022319
https://doi.org/10.1103/PhysRevA.75.022319
https://doi.org/10.1103/PhysRevA.75.022319
https://doi.org/10.1103/PhysRevA.90.062308
https://doi.org/10.1103/PhysRevA.90.062308
https://doi.org/10.1103/PhysRevA.90.062308
https://doi.org/10.1103/PhysRevA.90.062308



