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Abstract

The Casimir effect offers an interesting test of our understanding of regular-
ization. The diverging zero-point energy of a quantum field confined between
Dirichlet boundary conditions can be cured by different paradigms often with-
out a clear criterion to select one of them in particular. Starting from the
energy density as the main object of interest (local approach), we revise sys-
tematically the regularization of such quantity by framing it in an axiomatic
formulation of the underlying quantum field theory. For our purposes, it is
natural to work in the framework of quantum field theory on curved space-
times, based on the locality principle proposed by Haag. This allows for a
generalization, regarding the physical setting of the Casimir effect as a quan-
tum field theory on spacetimes with boundaries. A generalization of the usual
framework of quantum field theory on globally hyperbolic spacetimes is thus
required in order to include geodesically incomplete manifolds. In particular
we need a suitable definition of Hadamard states, which are the main tool of
the regularization paradigm we deal with. We repeat the analysis for three
paramount cases of manifold with boundary: the half Minkowski spacetime, a
slab confined between two parallel plates and a wedge-shaped region, confined
between two intercepting plates. We exploit the method of images in order re-
late our theory to a suitable counterpart in Minkowski spacetime. Despite we
apply a constructive technique which make use of Minkowski spacetime, our
approach provides an intrinsic theory, since all objects and results refers only
to elements of the system. We obtain a full characterization of the quantum
field theory in each case study, inspecting its axiomatic structure and defining
consistently the regularized observables, included the energy density.
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Riassunto

L’effetto Casimir mette alla prova la nostra comprensione della regolarizzazione
nella teoria quantistica dei campi. La divergenza nell’energia di punto zero di
un campo quantizzato, confinato in una regione dello spaziotempo da con-
dizioni al contorno, è solitamente rimossa attraverso diversi paradigmi di re-
golarizzazione, che spesso difettano di un criterio coerente che permetta di
preferirli ad altri. Partendo dalla definizione della densità di energia (approc-
cio locale), in questo lavoro si affronta sistematicamente la regolarizzazione,
inquadrandola in una teoria assiomatica di campo. A tal proposito, appare
naturale rifarsi alla teoria quantistica dei campi su spaziotempi curvi, che si
basa sul principio di località introdotto da Haag. Occorre allora generalizzare
la situazione tipica relativa all’effetto Casimir con la definizione di una teo-
ria quantistica di campo su spaziotempi con bordo, estendendo il formalismo
standard della toeria quantistica dei campi su varietà globalmente iperboliche
a varietà differenziabili geodeticamente incomplete. In particolare è neces-
sario dare una definizione adattata di stati di Hadamard, che costituiscono
l’elemento principale alla base del paradigma di regolarizzazione di cui si ci
intende avvalere. In questa tesi saranno analizzate le tre principali geome-
trie piane associate all’effetto Casimir: lo spaziotempo di Minkowski diviso a
metà, i due piatti paralleli e la regione interna ad uno spigolo. Attraverso l’uso
del metodo delle immmagini, vengono costruite esplicitamente le tre teorie,
passando al vaglio la loro struttura assiomatica e definendo coerentemente le
osservabili regolarizzate, con particolare riferimento alla densità di energia.
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Introduction

One of the most peculiar experimentally verified fingerprints of quantum field
theory is undoubtedly the Casimir effect. In its original formulation [Cas48], it
predicts the existence of an attracting force generated by quantum fluctuations
of the electromagnetic field between uncharged, perfectly conducting metal
plates in vacuum. It is argued in [Cas48] that such phenomenon can be ascribed
to the response to confinement of a quantized field in the ground state. This
conclusion is neither tied to a specific geometry nor to the choice of a precise
field theoretical model. There is a vast literature on this topic and offering
an overview is beyond the goals of this work. An interested reader could refer
for example to [Mil01] and [BKMM09]. Let us just outline the main aspects
which are of interest in this thesis.

The theoretical setting of the Casimir effect is based upon a Lagrangian
quantum field theory confined in a bounded region of Minkowski space, where
the confinement is modeled by suitable boundary conditions on the field equa-
tion. At a computational level the attracting force at the heart of the Casimir
effect can be evaluated in two different ways. The first one, the original one,
starts from estimating the total energy associated to a quantum field. In this
global approach, the force is derived as the gradient of the energy. The second
one is a local approach, since it focuses on the energy density. The latter is de-
fined as the temporal component of the stress-energy tensor, which is built as
the variation of the Lagrangian action with respect to the background metric.
The Casimir force arises as the gradient of the energy density integrated over
a suitable (spacelike) volume. The two approaches are equivalent in principle,
since the energy contained in a volume is defined as the latter integration over
the volume itself. Nonetheless, the quantization introduces some subtleties as
we are going to explain.

Both the total energy and the energy density are evaluated as the expecta-
tion value of suitable (regularized) quantum observables, with respect to the
ground state, that is the state of minimal energy, usually associated to the
concept of vacuum. A quantum field on Minkowski space has a vanishing ex-
pectation value both for the energy and for the energy density in the ground
state. This is not the case for a confined field. The non vanishing expectation
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Introduction

value of its components represents ultimately the Casimir effect itself and it
has a pure quantum nature since it is not predicted by any classical theory.
Indeed, with reference specifically to the total energy, the Casimir effect is
commonly considered as one of the paramount manifestations of the so called
zero-point energy. With zero-point energy it is meant the energy associated
to the ground state of any quantum mechanical system, and, as a feature of
quantization, it has a non vanishing expectation value. When dealing with
quantization of fields this general feature has even more dramatic effects, since
a direct attempt to evaluate such energy yields a divergent quantity. In quan-
tum field theory on the whole Minkowski spacetime this issue is cured by a
regularization procedure, the normal ordering, which ultimately amounts to
subtracting the divergent part of the ground energy, leaving hence a vanishing
expectation value. An infinite zero-point energy is still present when dealing
with a spatial boundary. Yet we observe that the diverging contribution to the
total energy in the ground state is removed by subtracting that of the vacuum
energy on the space without boundaries. The non vanishing energy underlying
the Casimir effect is indeed the (finite) contribution surviving to such subtrac-
tion. From a physical perspective, this could be understood with the idea that
only differences of energy are relevant, so that the subtraction represents a
rescaling of a potential energy. From a formal point of view, the subtraction is
rather part of a regularization procedure, which involves a wider class of local
observables, in particular all those defined in terms of polynomials of the sec-
ond quantized field observable. On Minkowski spacetime, such objects are the
well known Wick polynomials, built by means of normal ordering. The observ-
ables associated to the energy density and to all other components of the stress
energy tensor are naturally in this class, being proportional to a squared field
(and to its second derivatives). When a boundary (condition) is introduced,
as for the total energy, a regularization of the energy density can be achieved
by subtracting the divergent contribution of the Minkowski counterpart. The
subtraction is part of the point-splitting regularization scheme, in which the
divergent squared field is redefined as a coincidence limit of a bilinear form.
This approach yields finite values, but it is not intrinsic, since it requires the
introduction of a reference quantum field, set in a larger spacetime. Many reg-
ularization schemes have been proposed – see [BKMM09] – in order to find a
procedure which depends only on the system properties, such as the geometry
of boundaries. At this stage the choice of the global or local approach does
matter. On the one hand, regularizations of the total energy, like the global
zeta function regularization, are not defining local observables1. On the other
hand, the regularized energy density may diverge approaching the boundary.
This divergence, surviving to the regularization procedure, should be consid-
ered as a direct consequence of the boundary itself, rather than an effect of the
quantum zero-point energy – [Ful89]. In this thesis, we are inclined to consider

1In this sense they are often considered as renormalizations (of the total energy) rather
then proper regularization schemes.
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the stress-energy tensor as a fundamental quantity, to which it is associated a
quantum observable. We will thus focus on the local approach. We regard the
total energy as a classical object, defined by an integration of the expectation
value of the temporal diagonal component of the stress-energy tensor. A pos-
sible divergence of such integral would trigger a reinterpretation of what we
consider physically meaningful rather than formally correct.

The aim of this thesis is to frame the regularization of the quantum stress-
energy tensor in an axiomatic formulation of the underlying quantum field the-
ory. For our purposes, it is natural to work in the framework of quantum field
theory on curved spacetimes, whose long history can be traced back in some
monographs, [DeW75, BD84, Ful89, KW91, Wal94]. It is formalized within the
approach of local quantum field theory – for recent reviews see [BDH13, HW14]
and the book [BDFY15]. This is an axiomatic framework, first introduced by
Haag & Kastler in the sixties – see [HK64], which divides the quantization of
a physical system in two separate steps. The first consists of assigning to any
region of spacetime the collection of all observables localized therein, which
are structured in a unital ∗-algebra, encoding all information on the dynamics
of the system. Such assignment is made in such a way to fulfil compatibility
between overlapping regions as well as causality. The collection of all possible
local observables form the algebra of observables for the quantum field. In the
second step, one identifies a quantum state, that is a positive, normalized lin-
ear functional on the algebra of observables. Via the renowned GNS theorem,
one can recover the standard probabilistic interpretation of all quantum theo-
ries. In this framework, different regularization schemes have been proposed,
but nowadays it is widely accepted that the most effective relies on the con-
cept of Hadamard states. They are a particular class of algebraic states being
characterized by a fixed singular structure of the underlying two-point corre-
lation function – [Rad96a, Rad96b]. Restricting to Hadamard states allows us
to approach regularization by means of a point-splitting procedure, subtract-
ing the divergent part due to the state. This procedure is intrinsic, since it
turns out that the singularities of Hadamard states are fully characterized by
local geometric quantities and by the dynamics of field. To apply such general
analysis to the Casimir effect, we need a slight shift in perspective. Instead
of considering a quantum field theory on Minkowski spacetime with boundary
conditions, we want to regard it as a quantum field theory on a spacetime
with non-empty boundaries2. Unfortunately this poses the first main obsta-
cle. Models of quantum field theory covered by the algebraic approach are in
general required to be defined on globally hyperbolic spacetimes, a geometri-

2A similar point of view is not unprecedented. It has been considered since the early
attempts of quantization on curved spacetime as a model of non trivial background [DeW75].
Curiously enough, Casimir effect has found its main application in the study of regularization
of the stress-energy tensor, as a prototypical example ([BD84, Ful89, Kay79]). In a sense,
we are introducing quantum field theory on curved spacetime in the analysis of Casimir
effect backwardly. Unfortunately in none of these analyses it has been faced a rigorous
construction of the quantum theory in presence of a boundary.
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Introduction

cal requirement which ensures the well-posedness of the Cauchy problem, out
of which these models are defined. A spacetime with boundaries in general
does not fulfil this property, leaving us with the need of including boundary
conditions in our framework. An early mathematically rigorous analysis of
quantum field theories on spacetimes with boundaries can be found in [DC79].
Preliminary investigations in the algebraic framework can be found in [Kay79,
Appendix] and [Küh05, Nie09, Som06]. It is especially noteworthy the anal-
ysis in [Som06] which associates to a quantum field theory on a region with
boundaries the algebra generated by the subalgebras of properly embedded
globally hyperbolic subregions (with a construction known as universal alge-
bra, [BDF87] and [BFM09, Appendix B]). Boundary conditions are taken into
account via appropriate algebraic ideals. Although this is a viable alternative,
we shall not focus on it, leaving a comparison to our methods to future inves-
tigations. Another notable analysis of quantum field theory in spacetime with
boundaries is represented by [Her04, Her05, Her10], although our approach
should be seen as parallel and complementary rather than a continuation of
these works. Before going into details of the main body of this thesis let us
mention the alternative regularization of the Casimir energy density by means
of local zeta function techniques. This method, which has been proved to be
equivalent to point-splitting in [HM12], was first introduced in [Haw77], in the
context of an Euclidean approach (Wick rotation) to field theories on curved
space-times. The interested reader may refer to [FP14b] (and to the related
series of papers). Even though we will not focus on this regularization, we
will often refer to its results, being the real alternative to point-splitting in the
context of local approach to Casimir effect.

Let us outline more in detail this thesis. We are interested in three idealized
scenarios of a real scalar field on different bounded regions of Minkowski space-
time: a half space, bounded by a single infinitely extended hyperplane, a slab,
bounded by two parallel infinitely extended hyperplanes, and a wedge, defined
by two incident infinitely extended hyperplanes. Dynamics is ruled by the
Klein-Gordon equation with Dirichlet boundary conditions. The first two sce-
narios represent standard examples, usually dubbed respectively as Casimir-
Polder system, in analogy with [CP48], and as Casimir system with reference
to [Cas48]. The third one is less known consisting of two intercepting plates di-
viding the space in wedges. We will focus on one of the wedge-shaped regions,
dubbing the scenario built on it wedge-shaped Casimir system.

We address several issues concerning specific structural aspects of these sys-
tems. The first concerns which is the correct algebra of observables to associate
to a free quantum field theory in a confined region such as those considered.
This is not an obvious question since the standard procedure in the algebraic
approach relies heavily on the underlying manifold being globally hyperbolic
and on finding the smooth solutions to the equation(s) of motion, seen as an
initial value problem. Both features are not present in our model(s). In order
to tackle this problem we adapt to the case at hand the so-called functional
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formalism which has been used successfully in the algebraic framework in the
past few years – see for an introduction [BDF09, BF09, FR15]. The net advan-
tage of this procedure is the following: Observables are seen as functionals on
a space of kinematical/dynamical configurations and the algebraic structure is
obtained by deforming the standard pointwise product so to include the infor-
mation of the canonical commutation relations. As soon as one either wants
to deal with interactions at a perturbative level or is interested in the expec-
tation value of quantities such as the stress-energy tensor, Wick polynomials
are needed. Although their rigorous construction is known since more than a
decade [HW01], the functional formalism allows for an easier identification not
only of the polynomials themselves but also of the underlying algebraic struc-
ture via an additional deformation of the pointwise product. In order to select
a specific class of functionals we adapt to the case at hand a procedure which
was already successfully applied recently to the analysis of Abelian gauge the-
ories [BDS12, BDS13, SDH12] and of linearized gravity [BDM14]: We start by
constructing the space of all possible configurations allowed by the underlying
dynamics, by means of a well-known procedure in PDE theory, the method of
images. At this stage the analysis of the third case calls for an extension of
the method itself. Most notably, we exploit the existence of an embedding of
the wedge-shaped region into a second manifold whose geometry allows for the
application of the method of images as in the two parallel plate case. Subse-
quently we identify a set of linear functionals on the collection of dynamical
configurations which plays the role of the generators for the underlying algebra
of observables. In order to justify our choice we will argue that they answer
to a set of minimal requirements which need to be met, following the analysis
of [Ben16]. At this stage the analysis of a Casimir-Polder, of a Casimir and
of a wedge Casimir system will start to diverge considerably. While in the
first case we will show that the generators are, up to an isomorphism, a subset
of those for a Klein-Gordon field in Minkowski spacetime, in the second, this
feature is lost. The third situation, despite its peculiarities in the application
of the method of images, shares common features with the second, once the
underlying quantum scalar field theory is realized on the embedding spacetime.
Additionally we verify that the algebra of observables enjoys also the so-called
F-locality property introduced by Kay in [Kay92]. It states that the restriction
of such algebra to any globally hyperbolic subregion of the underlying manifold
should be ∗-isomorphic to the one built directly on the region itself seen as a
genuine globally hyperbolic manifold of its own. An important novel point,
which our investigation shall uncover, is that the algebra of observables for the
three cases enjoys the same structural properties of the standard Minkowski
counterpart, especially the time-slice axiom, a feature which was not consid-
ered before.

The second question to which we wish to give an answer concerns the choice
of an algebraic quantum state of Hadamard form. The microlocal characteriza-
tion of the Hadamard condition was formulated by [Rad96a, Rad96b] for scalar
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field theories on globally hyperbolic spacetimes. Here we extend the definition
so that it can be applied also to theories in bounded regions. In particular
we shall call a state Hadamard if such property is satisfied by its restriction
to any globally hyperbolic submanifold of the underlying spacetime, extending
at a level of states the above mentioned F-locality property. Subsequently we
investigate explicit examples. Also at this stage, the three examples, that we
consider, differ greatly. In the Casimir-Polder one, it turns out that algebraic
states can be constructed via pull-back from those in the whole Minkowski
spacetime inheriting, moreover, the Hadamard property. In the Casimir sys-
tem, the situation is far more complicated. Here our main goal is to make
contact with the procedures often followed in the standard physics literature,
where states are constructed either with the method of Green operators or,
thanks to the special geometry of the system, via the method of images – for
a preliminary investigation see [Nie09]. The aim, especially of the latter, is to
show that one can construct states for a Casimir system starting directly from
those for a Klein-Gordon field on the whole Minkowski spacetime. We stress
one additional advantage, which is almost never mentioned: The method of
images does not rely on modes and hence on a Fourier transform, being thus
a natural candidate to be used for a generalization of our results to (a suit-
able class of) curved backgrounds. We investigate how to translate rigorously
this procedure in the algebraic framework and we show that, in the case of a
massless real scalar field, if we start from the Poincaré vacuum, we obtain a
full-fledged Hadamard state for a Casimir system. At the same time we show
that we can consider a larger class of states on the whole Minkowski space-
time as starting point. More precisely we give sufficient conditions to identify
them and we show that KMS states at finite temperature meet them. As a
byproduct, it turns out that the corresponding state for the Casimir system
preserves the KMS condition. In a wedge-shaped region the construction of
states by the method of images presents a further complication, since, in order
to implement the Hadamard property we need to prove whether it is possible
to define Hadamard states on the larger spacetime. An answer is not obvious,
since there are obstructions in extending states fulfilling locally the Hadamard
property to states defined on the whole algebra of observables. This question is
left open, but an insightful example of a Hadamard state with a global explicit
extension is given.

Eventually, in view of the microlocal characterization of the Hadamard
states for the two systems under investigation, we are able to construct the
extended algebra of Wick polynomials. Noteworthy is the fact that, in order
to embed the local Wick polynomials, i.e., those constructed in a globally hy-
perbolic subregion, into a global extended algebra, a non-local deformation of
the ordinary star product is necessary. In this respect, we recall that the local
extended algebra depends only on the choice of the Hadamard function, used
to deform the star-product. Different choices of Hadamard functions yield iso-
morphic algebras and the intertwining isomorphism is a regular deformation
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Introduction

[BDF09]. Yet, in the systems under investigation, contrary to the Minkowski
case, it is impossible to construct a global Hadamard function which depends
only on local geometric properties. Hence, the Wick polynomials constructed
out of local property of the spacetime can be represented in a global algebra
only after applying a local deformation. The necessity for such deformation
becomes manifest since, without it the correlations between local observables
constructed on certain different globally hyperbolic subregions is ill-defined.
The extended algebra of observables allows us to introduce the stress-energy
tensor and make contact with previous results in literature. In particular, we
obtain at the boundary the same divergences for the energy density. These pre-
vent the total energy from being defined by integrating the energy density over
the whole region. Often this difficulty is by-passed by ad hoc regularizations,
which seem unsatisfactory in the present framework, where Wick polynomials
are defined locally. Yet, we tend not to worry about such issue, ascribing it to
the idealization of strong confinement.

Let us outline a synopsis of this work. In the first chapter we will present
a condensed introduction to the main aspects of algebraic quantum field the-
ory and functional formalism.In the second section, instead we focus on a
Casimir-Polder system. To start with, we classify all dynamically allowed con-
figurations, constructing out of them the ∗-algebra of fields and relating it to a
subalgebra of the one for a Klein-Gordon field on Minkowski spacetime. Sub-
sequently we give a notion of Hadamard states for a Casimir-Polder system
and we show how they are related to those on the whole Minkowski spacetime.
Eventually we discuss the notion of Wick polynomials and of Hadamard reg-
ularization pointing out the differences with the standard approach. We show
how one can recover, starting from the Poincaré vacuum, the usual results for
the two-point function and for the regularized energy density. In the third
section instead we focus on a Casimir system. Mimicking the same procedure
of the second section, first we construct all dynamical configurations and then
the unital ∗-algebra of fields. After giving the notion of Hadamard states, we
investigate how to construct them starting from those on the whole Minkowski
spacetime. In particular we discuss the method of images and we show that it
gives well-defined results if we start either from the Poincaré vacuum or from
a KMS state at finite temperature, if we consider a massless Klein-Gordon
field. In this respect we extend to the algebraic framework earlier analyses, see
in particular [BM69, FR87, KCD79] for the thermal case and [Ful89] for the
vacuum case. Eventually we compute also in this case the expectation value of
the two-point function and of the regularized energy density. The last chapter
is devoted to the case of a wedge-shaped Casimir system. Here the analy-
sis deviates to an ancillary problem: The quantization of Klein-Gordon field
on Dowker space. Dowker space is obtained, heuristically, from Minkowski
space, considered with cylindrical coordinates, where the angular coordinate
is taken ranging all over R. This space represents the base for the application
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of the method of images in wedge geometry. On it the construction of alge-
braic quantization of Casimir system may be repeated almost identically for
wedge-shaped Casimir system. To define a quantum field theory on Dowker
space however we loose completely the advantage of the method of images. We
are then forced to adapt some result from the theory of normally hyperbolic
operators on globally hyperbolic spacetimes. The construction of an algebraic
quantum field theory on a wedge-shaped region is eventually built from the
one on Dowker, by means of the same construction applied to the case of a
Casimir system.

Part of this work has been published in a joint work with Dappiaggi and
Pinamonti, [DNP16], as part of the research activity of the author during his
Ph. D. studentship. Apart from some modifications necessary to introduce it
in this thesis, the mentioned paper became the second and the third chapters.
As well, the introduction has been readjusted and integrated to the present
thesis. The same matter has appeared in the proceeding of Marcel Grossmann
workshop on Algebraic Quantum Field Theory - XIV, [Nos15].
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Chapter 1
Algebraic quantum field theory
and functional approach

The algebraic approach provides an axiomatic description of quantum field the-
ory which allows for a very effective extension to arbitrary globally hyperbolic
spacetimes of the canonical quantization procedure for Minkowski spacetime.
The latter approach, based on assigning of a Hilbert space to the physical
system, fails on curved background in face of several obstacles. The absence
of a large isometry group such as the Poincaré group implies the lacking of
a fundamental tool in the construction of a classical free field theory, Fourier
transform, on which is based the construction of a mode expansion for field op-
erators. Whenever the metric coefficients are explicitly time dependant, even
concepts such as positive and negative frequency parts are lost. Furthermore
one loses a preferred criterion for the identification of a ground state for the
quantum theory leading to problems in selecting the right Hilbert space on
which observables are represented.

The perspective offered by an algebraic approach shifts the attention from
the identification of Hilbert space, to the definition of an abstract algebra of
observables. It is organized in two steps:

1. The recollection of all possible observables in a single body with the struc-
ture of an algebra encoding the main properties of locality and causality,
the canonical commutation relations and the dynamics of the system;

2. The identification of a quantum state, that is a positive, normalized linear
functional on the algebra of observables.

The choice of a state yields the standard Hilbert space picture via the GNS
theorem. In this sense Algebraic Quantum Field Theory does not represent
an alternative approach to field quantization, but rather a complementary
viewpoint.

In this chapter we introduce the algebraic quantization of a free scalar field
theory on a globally hyperbolic spacetime. The goal of this presentation is

1



1. Algebraic quantum field theory and functional approach

providing the reader with the main concepts and tools of algebraic quantum
field theory and with a guideline to be followed in the forthcoming case studies
of a scalar field theory on manifolds with boundaries.

1.1 Algebraic preliminaries

We start this brief summary of algebraic quantum field theory presenting the
main definitions needed and introducing the GNS theorem, which provides a
bridge with the canonical quantization scheme on Hilbert spaces.

Definition 1.1.1. An algebra A over the field C is a C-vector space with a
bilinear operation · : A×A → A called product such that:

(i) it is associative, (a · b) · c = a · (b · c), for all a, b, c ∈ A;

(ii) it is distributive with respect to product in C, α(a ·b) = (αa) ·b = a ·(αb),
for all a, b, c ∈ A and α ∈ C.

An algebra A is called unital if there exists an element I ∈ A such that
Ia = aI = a, for all a ∈ A.
An algebra morphism is a map φ : A → B which is compatible with the
vector space structure and the product, that is for all a, b ∈ A and for all
α ∈ C,

φ(αa+ b) = αφ(a) + φ(b), φ(a · b) = φ(a) · φ(b). (1.1)

We need a notion of continuity of functionals on A, which is provided by
introducing a notion of topology:

Definition 1.1.2. A topological vector space X is a vector space over C,
endowed with a topology such that vector addition and scalar multiplication
are continuous functions. An algebra A is said topological if it is topological
as a vector space.

The following definition gives the real minimal structure needed for quantum
theory, providing an abstract model of any algebra of linear operators. In
particular we shall identify an abstract counterpart for the operation of“taking
the adjoint” of an operator.

Definition 1.1.3. A ∗-algebra A is an algebra over C which is endowed with
an involution, that is a map ∗ : A → A which fulfils the following properties:

(i) (a+ b)∗ = a∗ + b∗, (a · b)∗ = b∗ · a∗, for all a, b ∈ A;

(ii) (αa)∗ = αa∗, for every α ∈ C and every a ∈ A;

(iii) (a∗)∗ = a, for all a ∈ A.

2



1.1. Algebraic preliminaries

The physical data relative to the system are encoded in the algebra by adding
further suitable structures. We postpone this discussion to a later stage, in
order to keep this algebraic prologue as general as possible.

Let us proceed to the definition of algebraic states. In the algebraic ap-
proach, algebraic states represents states of a physical system, providing ex-
pectation values of observables.

Definition 1.1.4. An algebraic state on a unital ∗-algebra A is a linear
functional ω : A → C such that

• it is positive, ω(a∗a) ≥ 0 for all a ∈ A,

• it is normalized, ω(I) = 1 being I ∈ A the unit element.

Algebraic states are fundamental ingredients to recover the Hilbert space for-
mulation of a quantum theory. Before bridging this gap, we need the notion
of representation of a ∗-algebra.

Definition 1.1.5. A ∗-morphism is a map φ : A → B between ∗-algebras A
and B, which is an algebra morphism compatible with the involution, that is
φ(a∗) = φ(a)∗ for all a ∈ A.

Let us consider now (H, 〈·, ·〉), a separable Hilbert space together with its
Hermitian inner product 〈·, ·〉 : H × H → H and let L (K) be the space of
linear operators on a dense invariant subspace K of a Hilbert space H. We
recall that, given a linear operator A ∈ L (H), a subspace K ⊂ H is invariant
under A if for all ψ ∈ K, Aψ ∈ K. Let us suppose, in addiction, that L (K)
forms a ∗-algebra, with a ∗-involution given by the adjoint operation. With
these assumptions, we define,

Definition 1.1.6. A ∗-representation of a ∗-algebra A is a unit preserving
∗-homomorphism π : A → L (K). Given two different ∗-representations of A,
π on H and π′ on H′, we say that they are unitarily equivalent if there is a
unitary U : H → H′ such that Uπ(A) = π′(A)U .

The celebrated Gelfand-Naimark-Segal (GNS) theorem yields finally the sought
junction with Hilbert spaces, showing that every algebraic state can be repre-
sented by a vector in a Hilbert space.

Theorem 1.1.1 (GNS). Let ω be a state on a unital ∗-algebra A. Then there
exists a triple (H, π,Ω) such that:

(i) H is a Hilbert space, π is a ∗-representation of A in H and Ω ∈ H is a
unit vector,

(ii) ω(a) = 〈ω, π(a)ω〉, for all a ∈ A,

(iii) π(A)Ω is dense in H.
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1. Algebraic quantum field theory and functional approach

Furthermore, the triple (H, π,Ω) is unique up to unitary equivalence.

Remark 1.1.1. For completeness, let us mention the definition of C∗-algebras,

Definition 1.1.7. A unital ∗-algebra A is called a C∗-algebra if it is endowed
with a norm || · || : A → R such that A is complete with respect to || · || and, for
all a, b ∈ A, ||a · b|| ≤ ||a|| ||b||. Furthermore, ||a∗|| ||a|| = ||a||2, for all a ∈ A.

An important C∗-algebra is BL (H), the algebra of bounded linear opera-
tors on Hilbert space H, which is often used in the description of physical
systems for its relation with Von Neumann algebras. In our analysis we will
refer to ∗-algebras, rather than C∗-algebras, since we are eventually interested
to introduce Wick polynomials, which are not representable as bounded op-
erators. An interested reader could refer to a vast literature, in particular
[BR87, Haa92, BDFY15].

1.2 Cauchy problem for the Klein Gordon

equation

We now start to develop the quantization of a real scalar field theory. Before
constructing the algebra of observables and identifying suitable states, we need
to characterize the classical dynamics. Consider the Klein-Gordon equation for
a real scalar field φ : M → R on a Lorentzian manifold (M, g),

Pφ = (�−m2 − ξR)φ = 0, (1.2)

where � = ∇a∇a is the D’Alambert operator built out of g, m ≥ 0 is a mass
term, ξ ∈ R is a coupling with R, the scalar curvature. Notice that, although
R vanishes identically on certain manifolds, such as for example Minkowski
of Schwarzschild spacetime, the coupling term ξR entails the existence of an
additional term in the underlying Lagrangian L,

LKG[φ] = −1

2

(
∂µφ∂

µφ+m2φ2 + ξRφ2
)

(1.3)

This has far reaching consequences on the form of notable quantities, first and
foremost the stress-energy tensor, which is proportional to the variation of the
Lagrangian with respect to the metric. It is customary to characterize those
φ ∈ C∞(M) satisfying (1.2) in terms of an initial value problem. On curved
backgrounds, however, it is not guaranteed the well-posedness of Cauchy prob-
lems and additional requirements are needed to guarantee the existence of a
unique solution.
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1.2. Cauchy problem for the Klein Gordon equation

1.2.1 Causal structure and global hyperbolicity

We consider from now on M , a connected, second countable1, smooth 4-
dimensional manifold, together with g a Lorentzian metric with signature
(−,+,+,+). We call Lorentzian manifold the pair (M, g) and, for notational
simplicity, we denote it as M ≡ (M, g). We recall that a (smooth) vector field
X ∈ X(M) is

• timelike if gx(X,X) < 0 for all x ∈M ,

• null or lightlike if gx(X,X) = 0 for all x ∈M ,

• spacelike if gx(X,X) > 0 for all x ∈M .

A vector field is called causal if it is either null or timelike. A continuous
piecewise C1-curve γ : I ⊆ R → M is called timelike, lightlike, spacelike or
causal if its tangent vector γ̇ is at each point of the curve timelike, lightlike,
spacelike or causal, respectively. We will assume also that M is orientable and
time-oriented, meaning that,

Definition 1.2.1. A Lorentzian manifold (M, g) is orientable if it is equipped
with a differential form of maximal degree which does not vanish anywhere. It
is time-orientable if it admits a vector field Y ∈ X(M) with gx(Y, Y ) < 0 for
any x ∈ M . A Lorentzian manifold together with such a vector field is called
time-oriented.

Having fixed a time-orientation Y , we call a timelike or a null vector field X
future-pointing, if gx(X, Y ) < 0 for all x ∈M , or past-pointing, if gx(X, Y ) > 0
for all x ∈ M . In what follows an orientable and time-oriented Lorentzian
manifold will be referred to as spacetime. Time orientation allows for a
partial ordering, for any x, x′ ∈M

• x << x′ iff there is a future-directed timelike curve in M from x to x′,

• x < x′ iff there is a future-directed causal curve in M from x to x′,

• x ≺ x′ iff x < x′ or x = x′.

Causal relations yield a causal structure on M defined as follows,

Definition 1.2.2. The chronological future IM+ (x) and the causal future
JM+ (x) of x ∈M are the set of points

IM+ (x) = {x′ ∈M | x < x′} , JM+ (x) = {x′ ∈M | x ≺ x′}.
1A manifold M is second countable if there exists a countable collection O = {Oi}∞i=1 of

open subsets of M such that any open subset of M can be written as a union of elements of
some subfamily of O. Second countability is a topological property which provides us with
a partition of unity.
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1. Algebraic quantum field theory and functional approach

The chronological future of a subset A ⊂ M and its causal future are defined
to be

IM+ (A) :=
⋃
x∈A

IM+ (x) , JM+ (A) :=
⋃
x∈A

JM+ (x).

Similarly, we define the chronological past IM− (x) and the causal past
JM− (x) of x ∈M as the set of points

IM− (x) = {x′ ∈M | x′ < x} , JM− (x) = {x′ ∈M | x′ ≺ x}.

The chronological past of a subset A ⊂M and its causal past are, accordingly,

IM− (A) :=
⋃
x∈A

IM− (x) , JM− (A) :=
⋃
x∈A

JM− (x).

.

We can define accordingly

Definition 1.2.3. Two subsets O1 and O2 in M are called causally sepa-
rated if they cannot be connected by a causal curve, i.e., if for all x ∈ O1 ,
J±(x) has empty intersection with O2.

Having defined a causal structure unveils that we have possible concerns
with causality. The main pathologies to single out are closed causal curves
as well as causal curves that can fall off the edge of a spacetime in a finite
coordinate time. The first should make undetermined consecutio cause-effect,
while the second involves a world line of a causal physical observer which ends
for finite value of any of its affine parameters: Both scenarios look unphysi-
cal. Furthermore, aiming at defining well-posed Cauchy problems, we should
be able to make sense of a foliation of hypersurfaces where to assign initial
data. Remarkably all these issues turns out to have the same medicine, global
hyperbolicity of spacetime M . Let us introduce additional structures,

Definition 1.2.4. Let (M, g) a spacetime. We say that,

• M is causal if it has no closed causal curves.

• Given a subset A of M , the domain of dependence of A is the set
of all points x ∈ M such that every inextensible causal curve through x
intersects A.

• A subset A of M is achronal if no causal curve intersects A more than
once.

• The edge of a subset A of M is the set of x ∈ A such that, for all open
O ⊂ M containing x, there exist x′ ∈ O ∩ I+(x) and x′′ ∈ O ∩ I−(x) as
well as a timelike curve which joins x′ and x′′ without intersecting A.

• A Cauchy surface Σ for M is a closed achronal set with empty edge
and whose domain of dependence coincides with M .
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1.2. Cauchy problem for the Klein Gordon equation

We can define a globally hyperbolic spacetime, after [BGP07, Th. 1.3.10]:

Definition 1.2.5. Given a spacetime M the three following conditions are
equivalent:

1. The spacetime has a Cauchy surface;

2. The spacetime is causal, and for every pair of points x, x′ ∈ M , the
subset JM− (x) ∩ JM+ (x′) is compact or empty;

3. M is isometric to R×Σ with ds2 = −βdt2+ht, where β ∈ C∞(M ; (0,∞)),
ht is a Riemannian metric on Σ depending smoothly on t and each locus
{t = const}×Σ is a smooth spacelike Cauchy hypersurface embedded in
M .

Each condition identifies M as a globally hyperbolic spacetime.

Remark 1.2.1. Equivalence of the three conditions is the arrival point of a
long elaboration of the concept of global hyperbolicity. In particular, the
first condition is due to [Ger70], who showed its equivalence with the original
definition by [Ler52], the second is due to [HE73] and [BS07] (the latter having
relaxed the stronger hypothesis of strong causality), while the last one is due
to Bernal and Sánchez [BS03]. Other characterizations are possible, see for
example [Min09].

A key point in the following analysis is that the (static) Casimir effect in general
involves regions of Minkowski spacetime, Ω ⊂ R4, with (timelike) boundaries
which are not globally hyperbolic. Heuristically, the information propagating
due to the dynamics from a set of initial data could be lost when hitting the
boundary, as well as additional informations could emanate from the boundary
itself. Fixing boundary conditions is, in this perspective a cure to restore
well-posedness of the dynamical problem. Rigorously, the fact that globally
hyperbolicity is lost can be read in the second characterization in Definition
1.2.5, since2one can always find a pair x, x′ ∈ Ω such that J Ω̊

−(x) ∩ J Ω̊
+(x′) is

not compact, [MS08, Remark 3.72].
In the three specific examples we aim at dealing with, another criterion

applies, due to [Kay78], which exploits an additional property of spacetimes,
the ultrastatic property.

Definition 1.2.6. We say that a spacetime (M, g) is ultrastatic if there is a
Riemannian manifold (N, h) such that M = R × N and in local coordinates
(t, xi), with (xi), i = 1, 2, 3, local coordinates on N , the metric is written

ds2 = −dt2 + hij(x)dxidxj

for any x ∈M
2Here we are implicitly considering that a manifold with boundary M is globally hy-

perbolic if and only if its interior M̊ is globally hyperbolic. Such definition appears in
Globally hyperbolic manifold – Wikipedia, without a clear reference in the literature. Up to
our knowledge on this topic, no author refers to this notion for manifolds with boundaries.
Nevertheless we assume its validity in this context, since it works for our purposes.
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1. Algebraic quantum field theory and functional approach

With reference to the notation in Definition 1.2.6, for an ultrastatic space-
time the following criterion applies, [Kay78],

Proposition 1.2.1. An ultrastatic spacetime (M, g) is globally hyperbolic if
and only if (N, h) is geodesically complete.

1.2.2 Normally hyperbolic operators and Klein-Gordon
operator

A key application of global hyperbolicity is the well-posedness of the Cauchy
problem for Klein-Gordon equation. For definiteness, let us assume that a
choice of a foliation M ≡ R×Σ of M by Cauchy surfaces has been made. We
then write: 

Pφ = (�−m2 − ξR)φ = 0

φ|Σ = φ0

∇Nφ|Σ = φ1

, (1.4)

where Σ is any Cauchy surface, φ0 and φ1 ∈ C∞(Σ) and N is the smooth
vector field which is defined pointwisely as future directed normal vector to Σ,
normalized so that gx(N,N) = −1 for all x ∈M . Existence and uniqueness of
solutions of (1.2) are consequence of the general theory of normally hyperbolic
operators,

Definition 1.2.7. Given a spacetime M , a linear operator P : C∞(M) →
C∞(M) is normally hyperbolic if for any choice of a local chart it can be
expressed locally as

P = gµν(x)∂µ∂ν + Aµ(x)∂µ +B(x), µ, ν = 0, . . . , 3, (1.5)

where B and Aµ are real smooth functions on M for all µ = 0, . . . , 3.

Remark 1.2.2. The Klein-Gordon operator defined in (1.2) is normally hyper-
bolic.

We shall need the following spaces of functions:

• C∞sc (M) :=
{
f ∈ C∞(M) | supp(f) ⊆ JM+ (K) ∪ JM− (K) for some compact

K ⊂M};

• C∞fc(M) :=
{
f ∈ C∞(M) | supp(f) ∩ JM+ (x) is either compact or empty

∀x ∈M};

• C∞pc (M) :=
{
f ∈ C∞(M) | supp(f) ∩ JM− (x) is either compact or empty

∀x ∈M};

• C∞tc (M) :=C∞fc(M) ∩ C∞pc (M).

Elements of these spaces are called spacelike, futurelike, pastlike and timelike
compact, respectively. Following [Fri75, Bär15],
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1.2. Cauchy problem for the Klein Gordon equation

Theorem 1.2.2. Let (M, g) be a globally hyperbolic spacetime and let P be a
normally hyperbolic operator. Then there exist unique advanced (−) and re-
tarded (+) Green operators E+ : C∞0 (M)→ C∞sc (M) and E− : C∞0 (M)→
C∞sc (M) such that they are linear and

(i) P ◦ E± = id : C∞0 (M)→ C∞0 (M)

(ii) E± ◦ P = id : C∞0 (M)→ C∞0 (M)

(iii) supp(E±(f)) ⊆ JM± (supp(f)) f ∈ C∞0 (M)

We define a pairing 〈·, ·〉 : C∞(M)× C∞0 (M)→ R as

〈u, f〉 :=
∫
M

dµg(x)u(x)f(x), ∀u ∈ C∞(M), f ∈ C∞0 (M),

being dµg the metric induced volume form on M . With respect to the pairing,
P is symmetric, that is, for all f, g ∈ C∞0 (M),

〈Pf, g〉 =

∫
M

dµg(x)(Pf)(x)g(x)

=

∫
M

dµg(x)f(x)Pg(x)

= 〈f, Pg〉,

where we used integration by parts and the fact that f and g are compactly
supported. Consequently, we have that (E±)∗ = E∓, in fact

〈E±f, g〉 =

∫
M

dµg(x)(E±f)(x)g(x)

=

∫
M

dµg(x)(E±f)(x)(PE∓g)(x)

=

∫
M

dµg(x)(PE±f)(x)(E∓g)(x)

= 〈f, E∓g〉

where we used the properties of E± and where the integration by parts in the
second step gives vanishing boundary terms since supp(G±f) ∩ supp(G∓g) ⊂
JM± (supp(f)) ∩ JM∓ (supp(g)) is compact in a globally hyperbolic spacetime.

Remark 1.2.3. By the Schwartz kernel theorem [Hör90, Th. 5.2.1], advanced
and retarded operators define bidistributions, E± ∈ D′(M ×M), with respect
to the pairng,

〈E±f, f ′〉 :=E±(f, f ′), ∀f, f ′ ∈ C∞0 (M).

In particular, they are solutions of the equation:

PE± = δ

where δ is the Dirac delta distribution and the equation is interpreted in a
distributional sense.
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1. Algebraic quantum field theory and functional approach

The difference between the advanced and retarded operators is dubbed
causal propagator (or Pauli-Jordan commutator function), E = E+ − E−.
Let us list its main properties.

Proposition 1.2.3. Given a normally hyperbolic operator P on a globally
hyperbolic spacetime M , defined the causal propagator as

E :=E+ − E− : C∞0 (M)→ C∞sc (M)

it holds that

(i) P ◦ E = E ◦ P = 0;

(ii) Calling SKGsc (M) the space of spacelike compact solutions to (1.4), there
exists an isomorphism of topological vector spaces

C∞0 (M)

P (C∞0 (M))
' SKGsc (M), (1.6)

the isomorphism being implemented by E.

The causal propagator induces a symplectic structure on SKGsc (M). Before
stating this we recall that a (possibly infinite dimensional) vector space X is
called pre-symplectic if it is endowed with a map σ : X × X → R which is
bilinear and antisymmetric. Furthermore σ induces a map σ0 : X → X∗ such
that σ0(v) = σ(v, ·) for all v ∈ X. If σ0 is an injective map, than we say that
σ is weakly non-degenerate, and (X, σ) is a symplectic space.

Proposition 1.2.4. The map σ :
C∞0 (M)

P (C∞0 (M))
× C∞0 (M)

P (C∞0 (M))
→ C defined by

σ(f, f ′) :=

∫
M

dµg(x)f(x)Ef ′(x), (1.7)

for any representatives of [f ] and [f ′] ∈ C∞0 (M)

P (C∞0 (M))
, is a weakly non-degenerate

symplectic form.

So far we characterized only spacelike solutions. Part of the above anal-
ysis can be applied to smooth solutions, provided to extending advanced and
retarded Green operators [Bär15].

Proposition 1.2.5. There are unique extensions of E±

E+ : C∞pc (M)→ C∞pc (M), E− : C∞fc(M)→ C∞fc(M), (1.8)

such that, for all f ∈ C∞pc (M),

P (E+f) = E+(Pf) = f,

and
supp(E+f) ⊂ JM+ (supp(f)).

and accordingly for E− substituting pc with fc.
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1.3. Algebra of observables

The extensions of the advanced and retarded Green operators yield in turn
an extension of the causal propagator,

E :=E+ − E− : C∞tc (M)→ C∞(M),

such that,

P ◦ E = E ◦ P = 0 on C∞tc (M),

This provides us with a full characterization of the space of smooth solutions
for (1.4).

Corollary 1.2.6. The causal propagator E∞ induces the following isomor-
phism,

C∞tc (M)

P (C∞tc (M))
' SKG(M). (1.9)

Remark 1.2.4 (Notation). From now on we will denote E± and E the extended
propagators, with a slight abuse of notation.

1.3 Algebra of observables

We aim at modeling observables as numerical assignments to configurations of
a physical system. In case of a classical or quantum field, we shall distinguish

• dynamical configurations, that is all suitable solutions to the Cauchy
problem for the field equation,

• kinematical configurations, or kinematically allowed configurations,
which fix the required regularity of dynamical configurations.

The space of kinematical configurations for a Klein-Gordon field is CKG(M) ≡
C∞(M) and we consider it endowed it with the compact-open topology – see
[Tre67]. We consider the topological dual of C ′KG(M) ≡ E ′(M), where E ′(M)
is the space of compactly supported distributions. We call the dual pairing
〈·, ·〉 : E ′(M)×C∞(M)→ C. The space of dynamical configurations SKG(M)
is the subspace of kinematical configurations which are solutions of (1.4).

1.3.1 Classical observables and quantization

Aiming at quantizing a scalar field theory, we shall provide preliminarily a no-
tion of classical observable. With the minimal requirements of being a linear
functional on the kinematical configurations, it is natural to identify classical
observables with elements of E ′(M), distributions with compact support. Fol-
lowing [Ben16], we refine our notion requiring observables to be optimal with
respect to configurations, which means the two following properties:
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1. Algebraic quantum field theory and functional approach

• Observables are separating for configurations, that is, for every pair
of different configurations φ, φ′ ∈ CKG(M), there exists a classical ob-
servable F ∈ E ′(M) such that F (φ) 6= F (φ′). This means that classical
observables are sufficiently rich to distinguish all possible classical field
configurations;

• Observables are non-redundant, that is for every pair of classical ob-
servables F, F ′ ∈ E ′(M), there exists at least one configuration φ ∈
CKG(M) such that F (φ) 6= F ′(φ). This amounts to require that no el-
ements in this space provide the same outcomes upon evaluation on all
possible configurations. If this is not the case, then one is over-counting
observables.

On account of standard results in functional analysis we know that C∞0 (M,C) ⊂
E ′(M) is separating and non-redundant with respect to CKG(M) via the dual
pairing. In order to implement dynamics we shall restrict to dynamical con-
figurations. In this way we loose optimality. In fact, being φ ∈ SKG(M) and
f ∈ C∞0 (M,C) and observing that f+Pf ′ ∈ C∞0 (M,C) for any f ∈ C∞0 (M,C),
with P as in (1.2), we have

〈φ, f + Pf ′〉 = 〈φ, f〉+ 〈φ, Pf ′〉 = 〈φ, f〉+ 〈Pφ, f ′〉 = 〈φ, f〉,

where we used that P is symmetric. The way to restore optimality is to

consider class of equivalences in
C∞0 (M,C)

P (C∞0 (M,C))
. On account of Proposition 1.2.4,

we see that classical observables comes endowed with a symplectic structure
induced by causal propagator E. Let us define finally,

Definition 1.3.1. The complex span of all functionals F[f ] : SKG(M) → C,

[f ] ∈ C∞0 (M,C)

P (C∞0 (M,C))
such that F[f ](φ) =

∫
M

dµg(x)f(x)φ(x), denoted by OKG(M),

is the space of classical observables. This space is symplectic if endowed
with the following weakly non-degenerate symplectic form:

σ : OKG(M)×OKG(M)→ R,

σ(F[f ], F[f ′]) := 〈f, E(f ′)〉 =

∫
M

dµg(x) f(x)E(f ′)(x),

where f and f ′ are representatives of the respective equivalence classes [f ] and
[f ′].

Remark 1.3.1. Recalling3that, on account of Corollary 1.2.6, SKG(M) is iso-

morphic to
C∞tc (R4)

P [C∞tc (R4)]
, we can redefine classical observables as

[α] 7→ F[f ]([α]) :=

∫
M

dµg(x)f(x)Eα(x), ∀[α] ∈ SKGsc (M), α ∈ [α],

for all [f ] ∈ C∞0 (M)

P [C∞0 (M)]
.

3From now on, with a slight abuse of notation, we will denote C∞0 (M,C) ≡ C∞0 (M).
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1.3. Algebra of observables

Given classical observables, we would like to implement the algebraic quan-
tization. We gather the guiding idea from Dirac’s canonical quantization: Look
for a Hilbert spaceH on which classical observables Ff ∈ OKG(M) are uniquely

associated to operators F̂f ∈ L (H) such that

[F̂[f ], F̂[f ′]] := iσ(F[f ], F[f ′])I = iE(f, f ′)I,

that is such that canonical commutation relations (CCRs) are implemented.
Accordingly we would like to encode classical observables in a ∗-algebra, en-
dowed with a suitable product ·, such that

[F[f ], F[f ′]] :=F[f ] · F[f ′] − F[f ′] · F[f ] = iE(f, f ′)I.

There are different ways to implement this procedure. In what follows we
will follow the functional approach, introduced by Brunetti, Fredenhagen and
Dütsch in [BDF09], based on the identification of a suitable product which en-
codes directly CCRs. Other important approaches are for example Borchers-
Uhlmann algebra and Weyl algebra. Both of these approaches rely on a quo-
tient operation between a suitable algebra of classical observables and an ideal
implementing the CCRs. They differ on the specific classical algebra. In par-
ticular Weyl algebra has the additional property of being a C∗-algebra.

1.3.2 Regular functionals and algebra of observables

Following the same approach of [BDF09, BF09], we model observables as suit-
able functionals defined on CKG(M). To better characterize, we need the
following,

Definition 1.3.2. Let F : CKG(M) → C be any functional and let U ⊂
CKG(M) be an open set. We say that F is differentiable of order k if, for all
m = 1, ..., k, the following m-th order (Gâteaux) derivatives exist as jointly

continuous maps from U ×
(
CKG(M)

)⊗m
to C:

F (m)[φ](φ1, ..., φm) = 〈F (m)[φ], φ1 ⊗ ...⊗ φm〉

.
=

∂m

∂λ1...∂λm

∣∣∣∣
λ1=...=λm=0

F

(
φ+

m∑
j=1

λjφj

)
.

We say that a functional F is smooth if it is differentiable at all orders k ∈ N.

Functionals come endowed with a notion of support,

Definition 1.3.3. Given a functional F : CKG(M) → C, we call support of
F

supp(F )
.
= {x ∈M | ∀ neighbourhoodsU 3 x, ∃u, u′ ∈ CKG(M), supp(u) ⊆ U,

such that F [u+ u′] 6= F [u]}.

A functional is compactly supported if its support is compact.
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1. Algebraic quantum field theory and functional approach

Functionals of paramount relevance are

• linear functionals, Ff , defined for any f ∈ C∞0 (M) as

Ff (φ) =

∫
M

dµg(x)φ(x)f(x) ∀φ ∈ CKG(M), (1.10)

where dµg is the metric induced volume form;

• polynomial functionals, defined for any N ∈ N as

F (φ) =
N<∞∑
k=1

∫
M

dµg(x)φ(x1) . . . φ(xk)fk(x1, . . . , xk) ∀φ ∈ CKG(M),

(1.11)
with symmetrical distributional densities fk with compact support.

Functionals are a rather huge class of objects and we refine it imposing a
regularity requirement.

Definition 1.3.4. A functional F : CKG(M) → R, is called regular if it is
smooth and if, for all k ≥ 1 and for all φ ∈ CKG(M), F (k)[φ] ∈ C∞0 (Mk).
In addition we require that only finitely many functional derivatives do not
vanish. We indicate this set as F0(M).

Since the dynamics is ruled by a Green-hyperbolic operator, we can endow
F0(M) with the structure of a ∗-algebra by means of the following product
? : F0(M)×F0(M)→ F0(M):

(F ? F ′) (φ) = (M◦ exp (iΓE) (F ⊗ F ′)) (φ), (1.12)

where F, F ′ ∈ F0(M). Here M stands for the pointwise multiplication, i.e.,
M(F ⊗ F ′)(φ)

.
= F (φ)F ′(φ), whereas

ΓE
.
=

1

2

∫
M×M

dµg(x)dµg(x
′)E(x, x′)

δ

δφ(x)
⊗ δ

δφ(x′)
,

where E(x, x′) is the integral kernel of the causal propagator associated to P .
The exponential in (1.12) is defined intrinsically in terms of the associated
power series and, consequently, we can rewrite the product also as

(F ? F ′) (φ) =
∞∑
n=0

in

2nn!
〈F (n)(φ), E⊗n(F ′(n))(φ)〉, (1.13)

where the 0-th order is the pointwise multiplication, 〈F (0)(φ), (F ′(0))(φ)〉 .
=

F (φ)F ′(φ). The ∗-operation is complex conjugation, that is, for all F ∈ F0(M)

and for all φ ∈ CKG(M), F ∗(φ) = F (φ). Since regular functionals are such
that only a finite number of functional derivatives do not vanish, there is no
issue concerning the convergence of (1.13).
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1.3. Algebra of observables

Definition 1.3.5. We call AKG(M)
.
= (F0(M), ?) the off-shell algebra of a

Klein-Gordon field endowed with complex conjugation as ∗-operation.

We can realize AKG(M) as being generated by linear functionals, barring a
completion needed to account for the fact that C∞0 (M)× ...×C∞0 (M) is dense
in C∞0 (M × ... ×M), with respect to the topology of smooth and compactly
supported functions. In this respect, compactly supported functions represent
the labelling space of the off-shell algebra of functionals, building, thus, a
bridge towards the more traditional approaches to a covariant quantization of
a Klein-Gordon scalar field – see the remark at the end of this section. The
?-product implements CCRs, as it can be checked at the level of generators:

[Ff , Ff ′ ]?(φ) = (Ff ? Ff ′)(φ)− (Ff ′ ? Ff )(φ)

= i〈F (1)
f (φ), EF

(1)
f ′ (φ)〉

= iE(f, f ′)

where we used antisymmetry of E in the second step.

Remark 1.3.2. The off-shell algebra (F0(M), ?) represents a deformation of
the ∗-algebra of regular functionals endowed with the pointwise multiplica-
tion [FR15, §4-5]. In such approach one should assign a Poisson structure
to the (classical) commutative algebra, in terms of Peierls brackets [Pei52], a
functional counterpart of the symplectic form on linear functionals. For our
purposes this is a rather technical aspect and we shall not dwell on details. An
interested reader may refer to [BDF09].

Dynamics can be encoded by simply restricting functionals to SKG(M). As
a by-product, F0(M) contains redundant functionals, that is those F ∈ F0(M)
such that F (φ) = 0 for all φ ∈ SKG(M). At the level of AKG(M), this
restriction can be implemented considering the quotient between such algebra
and the ideal IKG(M) generated by those functionals of the form (1.10) with
f = P (h), h ∈ C∞0 (M), P being the operator in (1.2). The ?-product descends
to the quotient, as it can be checked at the level of generators, for any φ ∈
SKG(M), for any f, f ′, h, h′ ∈ C∞0 (M) such that f, f + Ph ∈ [f ] ∈ C∞0

P (C∞0 (M))

and f ′, f ′ + Ph′ ∈ [f ′] ∈ C∞0
P (C∞0 (M))

(Ff+Ph ? Ff ′+Ph′) (φ) =

=

∫
M

dµg (f + Ph)(f ′ + Ph′)φ− i〈(f + Ph), E(f ′ + Ph′)〉

=

∫
M

dµg f f
′φ− i〈(f + Ph), E(f ′ + Ph′)〉

=

∫
M

dµg f f
′φ− i〈f, Ef ′〉

= (Ff ? Ff ′) (φ), (1.14)
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1. Algebraic quantum field theory and functional approach

where in the second step integrations of h and h′ vanish integrating by part
and being φ a solution to Pφ = 0, and in the third step we used the properties
of the causal propagator E.

We can give the following definition,

Definition 1.3.6. We call on-shell algebra of Klein-Gordon field the quotient

AKGon (M)
.
=
AKG(M)

IKG(M)
.

Remark 1.3.3. As we observed for the off-shell algebra, AKGon (M) is gener-
ated by linear functionals (up to completion of C∞0 (M) × · · · × C∞0 (M) in
C∞0 (M ×· · ·×M) at the quotient), whose labelling space is constituted by the

equivalence classes lying in
C∞0 (M)

P [C∞0 (M)]
. This allows to make contact with the

Borchers-Uhlmann algebra,

Definition 1.3.7. The Borchers-Uhlmann algebra BKG(M) is defined as

BKG(M) :=
T (M)

J KG(M)
,

where T (M) is the universal tensor algebra of compactly supported functions,

T (M)
.
= C⊕

∞⊕
n=1

[C∞0 (M)⊗n],

and with a ∗-operation defined by the antilinear extension of [f ∗](x1, . . . , xn) =
f̄(xn, . . . , x1), whose elements are finite linear combinations of multi-component
test functions. The set J KG(M) is the closed ∗-ideal of T (M) generated by el-
ements of the form−iE(f, f ′)⊕(f⊗f ′−f ′⊗f) for any f, f ′ ∈ C∞0 (M), where E
is the causal propagator and for all f, f ′ ∈ C∞0 (M) f⊗f ′ ∈ C∞0 (M)⊗C∞0 (M),
and Pf for all f ∈ C∞0 .

Notice that having implemented CCRs by the quotient operation is tantamount
to having deformed the point-wise product of a classical algebra of observables.

This algebra admits a set of generators which is labelled by
C∞0 (M)

P [C∞0 (M)]
, the same

labelling space of generators of AKGon (M). This is the guiding idea to prove that
AKGon (M) is ∗-isomorphic to BKG(M). Borchers-Uhlmann algebra is considered
a rather standard construction – [Dim80, Hac10] – but its structure is less
flexible compared to the algebra of functionals when dealing with extensions
to less regular observables, as Wick polynomials.

1.3.3 Axiomatic structure

The algebra of a Klein-Gordon field constructed in terms of functionals fulfils a
set of important properties, which are in agreement with the axiomatic struc-
ture of local quantum field theory. These properties are named after Haag
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1.3. Algebra of observables

and Kastler who first formulated them in [HK64]. They originate from the
implementation of principle of locality in the general algebraic framework of
quantum theory, presented in Section 1.1. A quantum field theory is modeled
by assigning to any open region O ⊂ M of a spacetime M a ∗-algebra of
observables A(O). The assignement should fulfil isotony: If O′ ⊂ O , then
A(O′) ⊂ A(O), that means A(O′) describes a subsystem of A(O). This condi-
tion guarantees that one does not loose observables when considering a larger
region of spacetime. Locality is then implemented by isotony and the two
properties:

• Causality – for any pair of open sets O,O′ ⊂ M such that they are
spacelike separated, i.e., O ∩ (J+(O′) ∪ J−(O′)) = ∅,

[A(O),A(O′)] = 0;

• Covariance – to any isometry ϕ : O → O′ is associated a ∗-isomorphism
αϕ : A(O)→ A(O′).

The algebra of functionals AKG(M) fulfils isotony, causality and covariance.
We define AKG(O) for any O ⊂ M as the ∗-subalgebra of AKG(M), of func-
tionals supported in O. Isotony follows naturally from such defition. For any
open neighbourhood O ∈ M , AKG(O) can be constructed out of f ∈ C∞0 (O),
smooth functions such that supp(f) ⊂ O. The other two properties can thus
be checked on generators. Causality is a consequence of the fact that for
any f, f ′ ∈ C∞0 (M) such that supp(f) and supp(f ′) are causally separated,
it holds E(f, f ′) = 0. Finally for any isometry ϕ : O → O′ the pullback
f 7→ ϕ∗(φ)(f)

.
= φ(f ◦ ϕ−1) preserves the symplectic form.

Haag-Kastler axioms include additional requirements, such as the spectrum
condition, which is related to the positivity of energy. It depends strictly on
Poincaré invariance in Minkowski spacetime. A formulation of the complete
set of axioms can be found in [HK64, Haa92, Dim80]. It is important to stress
that the Haag-Kastler axioms are required as necessary conditions that an
algebra of observables should satisfy to be used in the quantization of a field
theory. Our perspective is instead different: we start from a classical field
theory, we construct the space of solutions and we associate to it an algebra of
functionals endowed with suitable ?-product. Even if the axiomatic structure
is proved a posteriori, this procedure is unambiguous, since it depends only
on the global hyperbolicity of the spacetime M . In particular, it results that
AKG(M) coincides with the universal algebra, that is inductive limit of local
algebras ⋃

O

AKG(O), (1.15)

the completion being taken in the norm topology.
To conclude this section on the construction of the algebra of observables,

we introduce the time-slice axiom,
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1. Algebraic quantum field theory and functional approach

• Time-slice axiom – Given a Cauchy surface Σ ∈ M (M being glob-
ally hyperbolic) and U an open geodesically convex neighbourhood of Σ,
A(O) is ∗-isomorphic to A(M), the quasi-local algebra in (1.15).

Time-slice axiom is intrinsically an on-shell property and relies on well-posedness
of initial value problems. It can be proved that AKGon (M) fulfils this property
– see [BD15].

Proposition 1.3.1. The algebra AKGon (M) of on-shell observables of Klein-
Gordon field fulfils the time-slice axiom.

1.4 States for Klein-Gordon field

Having constructed the algebra of observables for a Klein-Gordon field, we
can focus on discussing algebraic states thereon, namely any linear functional
ω : AKG(M)→ C for which

ω(I) = 1, ω(F ∗F ) ≥ 0, ∀F ∈ AKG(M),

where I is the identity element. We stress that algebraic states make connec-
tion with Hilbert spaces, providing a cyclic representation through the GNS
theorem.

Being the algebra of functionals ∗-isomorphic to an algebra of test functions,
assigning a positive and normalized functional ω̃ : AKG(M)→ C is tantamount
to defining n-point functions, ωn : [C∞0 (M)]⊗n → C, that means elements of
D′(Mn), subjected to suitable constraint induced by the structural properties
of AKG(M) and AKGon (M). It is customary to consider quasifree4states, which
are determined only by the two-point function.

Definition 1.4.1. Given the ∗-algebra of functionals AKG(M), a state ω :
AKG(M) → C is quasifree if it has vanishing n-point functions for all odd
n ∈ N and all even n-point can be built in terms of the 2-point function via
the following expression:

ω̃2n(f1 ⊗ ...⊗ f2n) =
∑

π2n∈S′2n

n∏
i=1

ω̃2

(
fπ2n(i−1) ⊗ fπ2n(i)

)
,

where S ′2n stands for the set of ordered permutations of 2n-elements.

Quasifree states are preferred partly for consistency with standard quantum
field theory on Minkowski spacetime, where quasifree states are related to Fock
space representations – Minkowski vacuum state is actually quasifree.

The two-point function is subjected to the following constraints ω2 ∈
D′(M ×M):

4We give here, for convenience, the definition of quasifree states for a Klein-Gordon field.
Nonetheless, the definition is not tied to any field theoretical model, [KM15].
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1.4. States for Klein-Gordon field

(i) ω(f, f) ≥ 0 for any f ∈ C∞0 (M);

(ii) ω2(f, f ′)− ω2(f ′, f) = iE(f, f ′) for any f, f ′ ∈ C∞0 (M) (CCRs);

(iii) ω2(f, Pf ′) = ω2(Pf, f ′) = 0 for any [f ], [f ′] ∈ C∞0 (M)

P (C∞0 (M))
and for any

f ∈ [f ], f ′ ∈ [f ′] (on-shell property).

In particular the third condition entails that the state descends to the quotient
C∞0 (M)

P (C∞0 (M))
and thus it restricts to a state on AKGon (M).

Another type of state which will be of interest in what follows is the KMS
class of quasi-free states.

Definition 1.4.2. Let αt denote a one-parameter group of ∗-automorphism
on A(M). A state ω is αt-invariant if

ω(αt(a)) = ω(a) ∀a ∈ A(M).

In particular ω is a KMS state if it satisfies the KMS condition, i.e., ∀a, b ∈
A(M):

• ω(αt(a)b) extends to the complex plane as an analytic function in the
strip −β < Imz < 0;

• ω(bαt(a)) extends to the complex plane as an analytic function in the
strip 0 < Imz < β;

• ω(bαt+iβ(a)) = ω(αt(a)b)

The KMS condition gives a generalization in the algebraic language of
the concept of thermal state. On suitable backgrounds, e.g. on Minkowski
spacetime or ultrastatic spacetimes, αt represents a time evolution. As a con-
sequence, β is an inverse temperature, and the condition describes the thermal
equilibrium. In this framework, ground states are KMS states associated to
zero temperature.

Remark 1.4.1. Ground states, as well as KMS states, can be further charac-
terized as passive states. We do not go into details of this topic. Yet passiv-
ity allows to prove that positive frequency two-point functions induce ground
states, following the argument in [SV00].

1.4.1 Hadamard states

We have sketched very minimal requirements allowing for an enormous set of
possible states so that it is appropriate restricting to a suitable class under
physically reasonable requirements. To this extent, a physically acceptable
state should be such that

• it is consistent with the Minkowski vacuum, meaning that it shall mimic
its UV behaviour;
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1. Algebraic quantum field theory and functional approach

• yields finite quantum fluctuations of the expectation value of the mea-
sured observables, such as the smeared components of the stress-energy
tensor.

The two requirements entail consistency with the theory on flat spacetime and
in particular they call for bridging the gap with normal ordering regularization
and the definition Wick polynomials in Minkowski space. Wick polynomials
are of paramount importance since they are the natural objects one uses to
discuss perturbative interactions and – what is relevant for studying Casimir
effect – to define the stress-energy tensor.

Let us make this clear by considering a massless free scalar field theory
on Minkowski space. The integral kernel of the two-point function for the
Poincaré invariant vacuum state is:

ω0
2(x, x′) = lim

ε→0+

1

4π2

1

(x− x′)2 + iε(x0 − x′0) + ε2
(1.16)

where (x− x′)2 is meant as the product induced by the Minkowski metric and
the limit is taken after smearing against two test functions. The limiting pa-
rameter is introduced to regularize the singularity at nulllike separated points,
i.e., for (x−x′)2 = 0. Vacuum state induces a Fock space representation, being
|0〉 the cyclic vector of the GNS triple, and the expression (1.16) may be read
formally as:

ω0
2(x, x′)

.
= 〈0|Φ(x)Φ(x′)|0〉,

representing the mean value of a product of free field operators at separate
points, Φ(x)Φ(x′). As far as the definition of Φ2(x) is concerned, one is study-
ing products of pairs of field operators evaluated at the coincidence limit x→ x′

– this procedure is usually known as point-splitting. Taking the limit to the
point-separated product yields a strongly singular expression, as one could
check by inspection of the above two point function, and a suitable regular-
ization is needed to define a well-behaved observable. On Minkowski space,
this role is played by normal ordering. This tool deals with unsmeared field
operators expanded in momentum space in terms of creation and annihilation
operators:

Φ(t,x) =

∫
d3k

(2π)3

1√
2ωk

(
a(k)eik·xe−iωkt + a∗(k)e−ik·xeiωkt

)
,

where ω2
k := |k|2 and k · x denotes the Euclidean product. Normal ordering

does mean replacing a(k)a∗(k′) by a∗(k′)a(k) in the product φ(x)φ(x′),

Φ(t,x)Φ(t′,x′) =

∫
d3k

(2π)3

d3k′

(2π)3

1

2
√
ωkω′k′

(
a(k)eik·xe−iωkt + a∗(k)e−ik·xeiωkt

)
×

×
(
a(k′)eik

′·x′e−iωk′ t
′
+ a∗(k′)e−ik

′·x′eiωk′ t
′
)
.
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1.4. States for Klein-Gordon field

where a(k) and a∗(k) are the annihilation and creation operators, here fulfilling
the commutation relations[

a(k), a∗(k′)
]

= δ(k− k′)I ,

the substitution in the integral leads to

:Φ(t,x)Φ(t′,x′): = Φ(t,x)Φ(t′,x′)−
∫

d3k

(2π)3

1

2ωk

eik·xe−iωktI,

The integral term in the above expression is singular but, if we evaluate this
expression on the Poincaré vacuum ω0, we realize that the ω0

2(:Φ(t,x)Φ(t′,x′):)
becomes a meaningful expression also when x→ x′ since it is actually smooth.
The message of the previous example is that, if one controls the singular struc-
ture of the two-point function it is possible to remove all the unwanted patholo-
gies by means of a suitable subtraction (also known as regularization). It looks
appropriate to require that physical reasonable states are those where such a
procedure can be implemented.

The idea can be applied to a curved background, using suitable analytical
tools to study singularities of distributions on manifolds. In this analysis the
notion of wavefront set is crucial and we give a brief overview in Appendix
A. On curved spacetimes, “squared fields” could be modelled as non-linear
functionals of the form

F 2
f (φ) =

∫
M

dµg(x)φ2(x)f(x), (1.17)

where f ∈ C∞0 (M) while φ ∈ SKG(M), with expectation values given by

ω(F 2
f (φ))“=”

∫
M×M

dµg(x)dµg(x
′)ω2(x, x′)f(x)δ(x− x′),

where “=” means that we would like to define the left hand side as the right
hand side. Yet the product ω2δ is not necessarily a well defined distribution.
Sufficient conditions for pointwise multiplication are provided by [Hör90, Th.
8.2.10] – see Appendix A – in terms of the wavefront set of distributions. Gen-
eralising normal ordering in curved spacetimes, means selecting states whose
two-point functions are regular enough to allow pointwise multiplication after
a suitable regularization procedure. The following paramount definition hits
the target:

Definition 1.4.3. A quasi-free state ω : AKGon (M) → C is called Hadamard
state if its defining two-point function ω̃2 ∈ D′(M ×M) is of Hadamard form,
meaning that

WF (ω̃2) = {(x, x′, kx,−kx′) ∈ T ∗(M ×M) \ {0} | (x, kx) ∼ (x′, kx′), kx . 0} ,
(1.18)

where ∼ entails that x and x′ are connected via a lightlike geodesic γ such
that kx is coparallel and cotangent to γ at x and kx′ is the parallel transport
of kx from x to x′ along γ. The symbol . entails that kx is a future pointing
covector.
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1. Algebraic quantum field theory and functional approach

As partial justification of the above definition, let us make the following impor-
tant remark. The wavefront set prescription has been introduced by Radzikowski
[Rad96a, Rad96b], who has made a connection with a pre-existing definition of
the Hadamard condition in terms of local parametrix [Wal77, Wal78a, KW91].

Definition 1.4.4. A state ω : AKG(M)→ C is of local Hadamard form if, in
any convex normal neighbourhood O ∈M , the kernel integral of its two-point
function is of the form:

ω2(x, x′) = lim
ε→0+

(
U(x, x′)

4π2σε(x, x′)
+ V (x, x′) log

(
σε(x, x

′)

λ2

))
+W (x, y)

:=H(x, x′) +W (x, x′), (1.19)

where U, V ∈ C∞(O×O), being T any local time coordinate increasing toward
the future

σε(x, x
′) := σ(x, x′) + 2iε(T (x)− T (x′)) + ε2,

where σ(x, x′) is the halved square geodesic separation between x and x′ (well-
defined in a geodesically convex neighbourhood). Here λ > 0 is a renormal-
ization length scale and W ∈ C∞(O × O) is determined by the state up to
redefinition of λ. The kernel H(x, x′) is the Hadamard parametrix.

Notice that on Minkowski space σε = −(t − t′ − iε)2 + (x − x′)2, x standing
for spatial coordinates, and (1.19) has the same denominator of the Minkowski
vacuum two-point function for the massless scalar field (1.16).

The functions U(x, x′) and V (x, x′) are defined in terms of geometric quan-
tities and of the operator P in (1.2), ruling the dynamics. The length scale
λ provides a residual freedom in the definition of the Hadamard parametrix
H(x, x′), a multiplicative constant in the logarithmic term determined by the
scalar curvature R, the mass m and the coupling constant ξ. This yields a
renormalisation degree freedom in the definition of Wick polynomials [HW01]
as we shall see in what follows.

1.5 Extended algebra of observables

The algebra AKG(M) contains only basic observables and no Wick polynomi-
als. We are left thus with two questions:

• How to extend the algebra of observables to a suitable notion of Wick
polynomials?

• How to give a meaning to expectation values of such more singular ob-
servables?

Hadamard regularisation. The first question calls for a generalization
to curved spacetime of normal ordering. To obtain this, we can combine
Hadamard states with point-splitting regularisation. Consider the example
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of a quadratic observable (1.17). Following [HW01], we define the regularised
squared Wick polynomial for any geodesic convex, open neighbourhood O ∈M
and f ∈ C∞0 (O),

:φ2:H(f)
.
=

∫
M×M

dµg(x) dµg(x
′) (φ(x)φ(x′)−H(x, x′)) f(x)δ(x, x′),

where H(x, x′) is the Hadamard parametrix in (1.19), dµg is the metric induced
volume form and the integral is taken over the whole manifold on account of
the support properties of f . Notice that the notation :φ2:H(f) is building a
bridge with the Wick regularization in Minkowski space, but it does no longer
mean “normal ordering” since we are not referring to any annihilation/creation
operator. The expectation value

ω(:φ2:H(f)) =

∫
M

∫
M

dµg(x)dµg(x
′) (ω2(x, x′)−H(x, x′)) f(x)δ(x− x′),

is well defined on Hadamard states.

Remark 1.5.1. As already pointed out, the local parametrix is only determined
up to λ. In particular, [HW01] observe that two definitions :φ2:H(f) and
:φ2:H′(f) are related as

:φ2:H′(f) = :φ2:H(f) + αR + βm2,

where α and β are dimensionless constants, in which we have included the
contribution due to ξ.

The composition of two of these functionals via the ?−product introduced
in (1.13) is, however, ill-defined at a microlocal level. For any f, f ′ ∈ C∞0 (M)
in fact we have

:φ2:H(f) ? :φ2:H(f ′) =∫
M×M

dµg(x)dµg(x
′)f(x)f ′(x′)×

×
(
:φ2:H(x) :φ2:H(x′) + 4iE(x, x′) :φ(x)φ(x′):H −2E(x, x′)2

)
where E(x, x′) is the integral kernel of the causal propagator. The problematic
term in the above expression is the square of the distribution E. We see this
considering its wavefront set,

WF (E) = {(x, x′, kx,−kx′) ∈ T ∗(M ×M) \ {0} | (x, kx) ∼ (x′, kx′)} , (1.20)

where ∼ entails that x and x′ are connected via a lightlike geodesic γ such that
kx is coparallel and cotangent to γ at x and kx′ is the parallel transport of kx
from x to x′ along γ. The square of E(x, x′) cannot be defined in terms of Hör-
mander’s criterion for the multiplication of distribution [Hör90, Th. 8.2.10],
since the sum of two vectors in the wave front set can yield zero. In order to
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overcome this difficulty, we follow [BDF09, BF09, FR15], modifying the com-
position rule in AKG(M) and then extending the set ofobservables to include
also additional regularized fields. The sought modification must preserve the
commutation relations among the generators of AKG(M). It can be written as
in (1.12) with ΓE replaced by

ΓH = −i
∫

M×M

dµg(x)dµg(x
′)H(x, x′)

δ

δφ(x)
⊗ δ

δφ(x′)
.

The product obtained in this way is denoted by ?H and on AKG(M) it takes
the same form given in (1.13) where the integral kernel E(x, x′) is replaced by
−2iH(x, x′), up to multiplicative constants the (global) Hadamard parametrix.
Notice that the antisymmetric part of −2iH(x, x′) coincides with E(x, x′) and
hence the canonical commutation relations among the generators of AKG(M)
are left untouched. Furthermore, since the new ?-product is built only out
of local structures, covariance of the scheme is guaranteed. In addition, the
form (1.18) of the wavefront set of H(x, x′) entails that powers of H(x, x′) are
meaningful since the Hörmander criterion for multiplication of distributions is
satisfied – see [Hör90, Th. 8.2.10].

Equipping F0(M) with the product ?H instead of the original ? we obtain
an algebra which is isomorphic to AKG(M). Furthermore, following [BDF09],
this isomorphism can be understood as a deformation of the original algebra
AKG(M) which is generated by

αH
.
=
∞∑
n=0

ΓnH
n!

: AKG → AKG (1.21)

via
(F ?H F

′) = αH
(
α−1
H (F ) ? α−1

H (F ′)
)
.

After such deformation, the set of elements constituting the algebra can be
enriched by adding also local non linear functionals like those of the form
(1.17). For completeness, we recall the form of the set on which, after the
deformation, the algebra of fields can be extended.

Definition 1.5.1. We call microcausal functionals for the Klein-Gordon field,
AKGµ (M), the collection of all smooth functionals F : CKG(M) → C such for

all n ≥ 1 and for all φ ∈ CKG(M), F (n)[φ] ∈ E ′(M)⊗n. Only a finite number
of functional derivatives do not vanish and WF(F (n)) ⊂ Ξn, where

Ξn
.
= T ∗(M)n \

{
(x1, ..., xn, k1, ..., kn) | (k1, ..., kn) ∈

(
V
n

+ ∪ V
n

−
)∣∣

(x1,...,xn)

}
,

where V ± are the subsets of T ∗M formed by elements (xi, ki) where each
covector ki, i = 1, ..., n lies in the closed future (+) and in the closed past
(-) light cone. The pair (AKGµ (M), ?H) is called extended algebra of Wick
polynomials.
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1.5. Extended algebra of observables

Notice that the expectation values of products of generators of AKG(M) with
respect to a state ω must be invariant under the deformation. In other words
AKGµ (M) contains a ∗-subalgebra isomorphic to AKG(M).

As a last remark on this procedure we stress that there is a degree of
freedom in the definition of Wick polynomials. This is known as regulariza-
tion freedom and it is an intrinsic feature of the theory. As pointed out in
[HW01, HW05], under minimal physical requirements, like covariance, scaling
behaviour or commutation relations, Wick polynomials are determined up to
local curvature terms, the mass m and the coupling to scalar curvature ξ. This
can be seen to be a by-product of the free choice of the length parameter λ in
H(x, x′) – see Remark 1.5.1. In principle, regularization freedom can only be
fixed by comparison with experiments [DFP08, DHMP10].

1.5.1 The stress-energy tensor observable

The classical stress-energy is defined as the variation of the Klein-Gordon field
action SKG with respect to the metric tensor g, as follows

Tµν
.
=

−2√
|detg|

δSKG

δgµν
,

where the action of the Klein-Gordon field is defined by the Lagrangian (1.3)

SKG[φ] =

∫
M

dµg(x)LKG[φ](x)

= −1

2

∫
M

dµg(x)
(
∇µφ(x)∇µφ(x) +m2φ2 + ξR(x)φ2(x)

)
where g is the metric tensor and dµg the related element of volume, R is the
scalar curvature, ξ is the coupling to scalar curvature. From computing the
related stress-energy tensor it turns out

Tµν(x) = ∂µφ(x)∂νφ(x)− 1

2
gµν(x)∂ρφ(x)∂ρφ(x)+

+

(
ξ

(
gµν(x)∇ρ∂

ρ −∇µ∂ν +Rµν −
1

2
gµνR

)
− m2

2

)
φ2(x) (1.22)

being Rµν the Ricci tensor – notice that even when Rµν = 0 = R the coupling
constant ξ is contributing. The stress-energy tensor has the important property

∇νTµν(x) ≡ 0,

which should have a counterpart for any sensible quantum stress-energy ob-
servable – see remark below. As the classical expression for Tµν is (at least)
quadratic in the field, one can expect that a quantum stress-energy tensor has
to be defined in terms of Wick squared observable :φ2:H(x), yielding a regu-
larised observable :Tµν(x):H (Derivatives do not increase the wavefront set of
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1. Algebraic quantum field theory and functional approach

a distribution, so we can safely restrict our considerations to squared fields. A
rigorous treatment of such derivative terms can be found in [Mor03, HW05]).
In order to define the regularized quantum stress-energy tensor we need a
suitable “point-splitted” counterpart,

D(x,x′)
µν (x, x′) = ∂µφ(x)γν

′

ν (x, x′)∂ν′φ(x′)− 1

2
gµν(x)∇ρφ(x)γρ

′

ρ (x, x′)∂ρ
′
φ(x′)+

+φ(x′)

(
ξ

(
gµν(x)∇ρ∂

ρ −∇µ∂ν +Rµν −
1

2
gµνR

)
− m2

2

)
φ(x) (1.23)

where primed indexes means that the covariant derivative must be performed
on the primed variable in the same point, while γµ

′
µ (x, x′)∇ν′ is parallel trans-

port of ∇ν′ from x to x′.
Various schemes to regularise the quantum stress-energy tensor have been

proposed, including ζ-function regularisation [Haw77], which is often applied
fruitfully in computations of the Casimir effect, [FP14a]. We remark that
ζ-function regularization and point-splitting regularization yield consistent re-
sults, as discussed in [HM12]. It is natural to wonder which are the min-
imal requirements that any regularisation scheme should satisfy to give a
physically sensible stress-energy tensor. The answer is provided by Wald’s
axioms, [Wal77] (developed in [Wal78b, Wal94, HW05]), which entail state-
independence of regularization, covariance, covariant conservation (of the mean-
value) and consistency with the theory in Minkowski space. Throughout the
course of such analysis, it has been pointed out that for any regularization
prescription there exists a family of different regularization prescriptions. This
is the regularization freedom mentioned above. This leads to a four parameter
family of stress-energy tensor observables, which differs by four divergence-free
tensors, constructed out of the metric and the Riemann tensor, [Wal77, HW05].
In the following chapters, we will always assume the minimal choice yielding
the normal ordered stress-energy tensor.

Remark 1.5.2. In [Mor03] it has been proposed to add a term proportional
to the field operator P , 1

3
gµνφPφ. Such term accounts for the so-called trace

anomaly. The quantum observable built with the bidifferential operator (1.23)
is missing “semi-classical” covariant conservation,

∇νω(:Tµν :H(f)) ≡ 0 ∀f ∈ CKG
0 (M).

The term restores covariant conservation, but, as a by-product, produces a
non-vanishing trace in case of conformally coupled theory (trace anomaly).
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Chapter 2
Algebraic quantum field theory
and the Casimir-Polder effect

In1 this chapter we consider a prototypical example of spacetime with bound-
ary, the half Minkowski spacetime. The aim is to have a first insight on the
main features related to the introduction of a boundary in the theory out-
lined in Chapter 1. We exploit systematically the renowned method of images,
which provides a useful tool to prove the main results by relating them to the
theory on Minkowski spacetime. Despite we apply a constructive technique
which make use of Minkowski spacetime, our approach provides an intrinsic
theory, since all objects and results refers only to elements of the system. At
the end of this chapter we discuss the construction of an extended algebra of
regularized observables. We are going to show that a regularization in terms
of a local parametrix, analogous to the Hadamard regularization presented in
Chapter 1, provide well-defined obsevables only localized in globally hyperbolic
subregion of the half-space. This does not prevent to give sense locally to the
energy density as we shall discuss.

Let us consider the following region of Minkowski spacetime, (H4, η), where
H4 = R3 × [0,∞) is the four dimensional upper half-plane endowed with the
Lorentzian flat metric. We introduce cartesian coordinate such that the in-
terval [0,∞), is described by the spatial coordinate z. For later convenience,
we introduce also the notation (x, z) := (t, x, y, z). We consider a real scalar
field vanishing on the boundary ∂H4 and whose dynamics is ruled by the
Klein-Gordon equation (1.2). This scenario is often associated in the physics
literature to the so-called Casimir-Polder effect [CP48], which describes origi-
nally the interaction between a neutral atom in an electromagnetic cavity and
a perfectly conducting wall at a distance d. For that reason, from now on we
shall refer to our setting as a Casimir-Polder system.

We recall a standard definition in analysis [Lee00, Chapter 1]:

1The content of this chapter is part of [DNP16, Section 2].
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2. Algebraic quantum field theory and the Casimir-Polder effect

Definition 2.1. Let O ⊆ H4. We say that u ∈ C∞(O) if and only if there

exist both an open subset Õ of R4 such that O ⊆ Õ and ũ ∈ C∞(Õ) such that
ũ|O = u.

Notice that the existence of ũ is guaranteed if and only if u is continuous on
the whole O, smooth on the interior O̊

.
= O \∂O and each partial derivative of

u on O̊ has a continuous extension to ∂O. With this last definition and in full
analogy with the standard case of a real scalar field on Minkowski spacetime, we
call dynamical configurations of a Casimir-Polder system the set SCP (H4)
of all u ∈ C∞(H4) such that u satisfies the following boundary condition
problem: {

Pu = (�−m2 − ξR)u = 0, m ≥ 0 and ξ ∈ R
u(x, 0) = 0

, (2.1)

where R is the scalar curvature. We recall that, although the scalar curva-
ture on Minkowski spacetime or on any of its subsets vanishes identically, the
coupling term ξR has a consequence on the form of the stress-energy tensor,
which is proportional to the variation of the Lagrangian with respect to the
metric.

2.1 Algebra of observables of a Casimir-Polder

system

The half space is not a globally hyperbolic spacetime2. This can be argued
by the criterion in Proposition 1.2.1, since H4 inherits the ultrastatic property
from R4 and (referring to the notation in Defition 1.2.6) the spacelike section
N = R2 × [0,∞) is not geodesically complete at the boundary. The failure
of globally hyperbolic property forces the introduction of boundary conditions
in the dynamical problem. In order to tackle the boundary conditions, we
construct dynamical configurations via the method of images. The analysis
which will involve the remainder of the section can be divided in three parts
and it will follows conceptually the one outlined for the Klein-Gordon scalar
field on globally hyperbolic spacetime in Chapter 1.

Part 1 – Dynamical configurations: We introduce the isometry ιz : R4 →
R4 for which (x, z) 7→ (x,−z), bearing in mind the notation (x, z) := (t, x, y, z).
With a slight abuse of notation, we adopt the same symbol also to indicate its
natural action on C∞(R4) and on generic distribution. We also recall, that, in
view of Poincaré covariance, ιz ◦E = E ◦ ιz, where E is the causal propagator
of P .

Let us call C∞− (R4) the set of all smooth functions on Minkowski spacetime
such that α(x, z) = −α(x,−z). The elements lying in this set are said to be odd
(under reflection along the hyperplane z = 0). Conversely we refer to C∞+ (R4)

2In the sense of footnote 2.
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2.1. Algebra of observables of a Casimir-Polder system

as the collection of smooth functions which are even under reflection along the
hyperplane z = 0, that is α(x, z) = α(x,−z). Notice the following splitting of
vector spaces: C∞(R4) = C∞− (R4)⊕C∞+ (R4). Furthermore, since the operator
P contains only the second derivative along the z-direction, it holds that P :
C∞± (R4)→ C∞± (R4) and, thus, P [C∞(R4)] = P [C∞− (R4)]⊕ P [C∞+ (R4)] as well
as

C∞(R4)

P [C∞(R4)]
'

C∞− (R4)

P [C∞− (R4)]
⊕

C∞+ (R4)

P [C∞+ (R4)]
. (2.2)

The isomorphism (2.2) holds true even restricted to C∞tc (R4), C∞sc (R4) and to
C∞0 (R4).

Proposition 2.1.1. Let SCP (H4) be the dynamical configurations of a Casimir-

Polder system. It holds that ρH4 ◦ (E − ιz ◦ E) :
C∞tc,−(R4)

P [C∞tc,−(R4)]
→ SCP (H4) is a

bijection. Here ρH4 stands for the restriction map on H4.

Proof. The map E − ιz ◦ E implements the method of images on Minkowski
spacetime. Hence its image is a solution to Klein-Gordon equation on R4

and, once restricted to H4 via ρ, it implements also the Dirichlet boundary
condition.

Let us prove surjectivity. For any u ∈ C∞(H4) fulfilling (2.1) we define the
auxiliary function

ũ(x, z) =

{
u(x, z), ∀ (x, z) ∈ H4

−u(x,−z) ∀ (x, z) ∈ R3 × (−∞, 0)
.

Notice that ũ ∈ C∞(R4). To show it, it suffices to control the behaviour of the
function at ∂H4 = R3 × {0}. Since u(x, 0) = 0 then ũ is continuous at ∂H4.
Let us consider now the first order partial derivatives: Continuity at ∂H4 is
guaranteed along any of the x-directions since u(x, 0) = 0 whereas that along
the z-direction descends from the fact that ũ is odd along the z-directions and
thus ∂zũ is even. A similar string of reasoning can be applied slavishly to the
second derivative barring that along the z-direction for which we have first to
recall that ∂2

zu(x, z) =
(
∂2
t − ∂2

x − ∂2
y +m2 + ξR

)
u(x, z). Consequently since

u vanishes on ∂H4, so does ∂2
zu. Reiterating the procedure to all orders yields

in combination with Schwarz theorem the sought result. Furthermore, since
u is a solution of (2.1), it holds that Pũ = 0. Consequently, in view of our

discussion in Chapter 1, there exists [α] ∈ C∞tc (R4)

P [C∞tc (R4)]
such that ũ = E(α).

Since ũ is an odd function, 0 = ũ+ ιzũ = E(α) + ιzE(α) = E(α+ ιzα) = 0.
Hence there exists λ ∈ C∞tc,+(R4), for which α + ιzα = Pλ. If we add the
information that E◦P = 0 and that P [C∞tc (R4)] = P [C∞tc,+(R4)]⊕P [C∞tc,−(R4)],

to each u ∈ SCP (H4), we can associate an equivalence class [α] ∈ C∞tc,−(R4)

P [C∞tc,−(R4)]
.

This proves surjectivity. Notice that this map is per construction injective as, if
u = 0, then ũ = 0 and, thus we can write ũ = E(α) with α ∈ P

[
C∞tc,−(R4)

]
.
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2. Algebraic quantum field theory and the Casimir-Polder effect

Part 2 – The off-shell algebra: Following the scheme given in Chapter 1,
we define at first a space of kinematical configurations for a Casimir-Polder
system. Let us introduce the following map:

η : C∞(R4)→ C∞(H4),

φ(x, z) 7→ u(x, z)
.
=

1√
2

(φ(x, z)− ιzφ(x, z))

∣∣∣∣
H4

, (2.3)

where the numerical pre-factor is a normalization.

Definition 2.1.1. We call space of kinematical/off-shell configurations for a
Casimir-Polder system

CCP (H4)
.
=
{
u ∈ C∞(H4) | u|∂H4 = 0 and ∃φ ∈ CKG(R4) such that u = η(φ)

}
,

where η is the map defined in (2.3). Since CCP (H4) ⊂ C∞(H4) and since η is for
construction surjective thereon, we endow CCP (H4) with the quotient topology.
In complete analogy we shall also consider CCP0 (H4) where the subscript 0
stands for compact support.

For later convenience, we introduce η† : C∞0 (H4)→ E ′(R4) defined via

〈η†(h), φ〉 .= 〈h, η(φ)〉H4 =

∫
H4

d4xh(x)η(φ)(x),

Notice both that it is possible to write the integral kernel of η†(h) ∈ E ′(R4) as
1√
2

(h(x)Θ(z)− [ιz(h)](x)Θ(−z)), where Θ is the Heaviside step function and
that

WF (η†(h)) ⊂ {(x, k) ∈ T ∗R4 \ {0} | x ∈ ∂H4 and ki = gijkj = 0, ∀i 6= z},
(2.4)

where g stands here for the Minkowski metric written in Cartesian coordinates.
In analogy with Definition 1.3.2, we now introduce regular functionals on

CCP (H4).

Definition 2.1.2. Let F : CCP (H4) → C be any smooth functional. We call
it regular if for all k ≥ 1 and for all u ∈ CCP (H4), F (k)[u] ∈ C∞0 (H4k) and if
only finitely many functional derivatives do not vanish. We indicate this set
as F0(H4).

In order to introduce a suitable product in F0(H4), analogous to (1.12), we
define a map which plays the role of E in (2.6):

EH4 : C∞0 (H4)→ SCP , EH4(h)
.
= η ◦ E ◦ η†(h), (2.5)

and we call it CP-propagator. Observe that E ◦ η†(h) is well-defined in
view of (2.4) and of [Hör90, Th. 8.2.13]. The latter also ensures that, for all
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2.1. Algebra of observables of a Casimir-Polder system

h ∈ C∞0 (H4), E(η†(h)) ∈ C∞sc (R4) and it solves the Klein-Gordon equation. As
a consequence EH4 is well-defined map into SCP .

Let us consider now:

?H4 : F0(H4)×F0(H4)→ F0(H4),

which associates to each F, F ′ ∈ F0(H4)

(F ?H4 F ′) (u) =
(
M◦ exp(iΓE4

H
)(F ⊗ F ′)

)
(u). (2.6)

HereM stands for the pointwise multiplication, i.e.,M(F⊗F ′)(u)
.
= F (u)F ′(u),

whereas

ΓEH4

.
=

1

2

∫
H4×H4

EH4(x, x′)
δ

δu(x)
⊗ δ

δu(x′)
,

where EH4(x, x′) is the integral kernel of (2.5). The exponential in (2.6) is
defined intrinsically in terms of the associated power series and, consequently,
we can rewrite the product also as

(F ?H4 F ′) (u) =
∞∑
n=0

in

2nn!
〈F (n)(u), E⊗nH4 (F ′(n))(u)〉H4 , (2.7)

where 〈, 〉H4 stands for the pairing on H4 built of out integration. The 0-th
order is defined as the pointwise multiplication, that is 〈F (0)(u), F ′(0)(u)〉 .

=
F (u)F ′(u). Notice that (2.7) defines a ?-product. In view of the definition of
the CP-propagator, (2.5), 〈F (n)(u), E⊗nH4 (F ′(n))(u)〉H4 is well-defined for all n ≥
0 and the non-vanishing derivatives of F ?H4 F ′ evaluated on any u ∈ CCP (H4)
are compactly suppported.

Definition 2.1.3. We call ACP (H4) ≡ (F0(H4), ?H4) the off-shell ∗-algebra of
a Casimir-Polder system endowed with complex conjugation as ∗-operation.
It is generated by the functionals Fh(u) =

∫
H4

d4xu(x)h(x) where h ∈ C∞0 (H4)

while u ∈ CCP (H4).

Part 3 – The on-shell algebra: To conclude our investigation on the
algebra of observables for a Casimir-Polder system, we want to investigate
how ACP (H4) should be modified if we restrict the allowed configurations from
CCP (H4) to SCP (H4). At this stage it is more advantageous to work on the
counterpart of SCP (H4) on Minkowski spacetime specified by Proposition 2.1.1.

Proposition 2.1.2. Let OKG− (R4) be the span of all functionals F[ζ] :
C∞tc,−(R4)

P [C∞tc,−(R4)]
→

C, [ζ] ∈ C∞0,−(R4)

P [C∞0,−(R4)]
such that F[ζ]([α]) =

∫
R4

ζE(α). This space is:

1. separating, that is for every pair of different configurations [α], [α′] ∈
C∞tc,−(R4)

P [C∞tc,−(R4)]
, there exists a classical observable [ζ] ∈ C∞0,−(R4)

P [C∞0,−(R4)]
such that

F[ζ]([α]) 6= F[ζ]([α
′]).
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2. Algebraic quantum field theory and the Casimir-Polder effect

2. optimal, that is, for every pair of classical observables [ζ], [ζ ′] ∈ C∞0,−(R4)

P [C∞0,−(R4)]

there exists at least one configuration [α] ∈ C∞tc,−(R4)

P [C∞tc,−(R4)]
such that F[ζ]([α]) =

F[ζ′]([α])

3. symplectic if endowed with the following weakly non-degenerate sym-
plectic form3:

σ : OKG− (R4)×OKG− (R4)→ R,

σ(F[ζ], F[ζ′]) = 〈ζ, E(ζ ′)〉 =

∫
R4

d4x ζ(x)E(ζ ′)(x).

Proof. Let us prove 1. Consider any pair [α], [α′] ∈ SCP (H4), [α] 6= [α′], and
two representatives α, α′ ∈ C∞tc,−(R4). On account of standard arguments in
analysis we know that C∞0 (R4) is separating for C∞(R4) with respect to the
pairing (1.3.2). Hence, since E(α−α′) ∈ C∞(R4) is not vanishing, there must
exist β ∈ C∞0 (R4) such that (β,E(α−α′)) 6= 0. Since E(α−α′) ∈ C∞− (R4), it
holds that (β,E(α−α′)) = (ζ, E(α−α′)) where ζ(x, z)

.
= β(x, z)−β(x,−z) ∈

C∞0,−(R4). ζ identifies a non trivial element in OKG− (R4), hence the statement
is proven.

We focus on 2. Let [ζ], [ζ ′] ∈ OKG− (R4) and let ζ, ζ ′ be two arbitrary
representatives. For the same reason as in the previous point, since E(ζ−ζ ′) ∈
C∞(R4) is non vanishing there must exist γ ∈ C∞0 (R4) such that supp(γ) ∩
(supp(E(ζ)) ∪ supp(E(ζ ′))) 6= ∅ and that (γ,E(ζ − ζ ′)) 6= 0. Let α(x, z)

.
=

γ(x, z)− γ(x,−z) ∈ C∞0,−(R4) ⊂ C∞tc,−(R4) individuate an element in SCP (H4)
via the action of the causal propagator E. It holds that F[ζ]−[ζ′]([α]) = (ζ −
ζ ′, E(α)) = −(E(ζ − ζ ′), α)) = 2(E(ζ − ζ ′), γ) 6= 0, which entails the sought
result.

At last we prove 3. Notice that, per construction, σ is bilinear and antisym-
metric. Suppose that, per absurd, there exists a non trivial F[ζ] ∈ OKG− (R4)
such that σ(F[ζ], F[ζ′]) = 0 for every F[ζ′] ∈ OKG− (R4). Since every representa-

tive of [ζ] is odd, the same statement holds true for every [ζ ′] ∈ C∞0 (R4)

P [C∞0 (R4)]
since

C∞0,−(R4)

P [C∞0,−(R4)]
and

C∞0,+(R4)

P [C∞0,+(R4)]
are orthogonal to each other with respect to σ.

Corollary 2.1.3. Let OCP (H4) be the span of all functionals F[h] : SCP (H4)→
C with [h] ∈ CCP0 (H4)

P [CCP0 (H4)]
such that F[h](u) =

∫
H4

d4x h(x)u(x), endowed with the

symplectic form:

σH4 : OCP (H4)×OCP (H4)→ R,

σH4(F[h], F[h′])
.
= 〈h,EH4h′〉H4 =

∫
H4

d4x h(x)EH4(h′)(x).

3Notice that, from a geometrical point of view, it would be more appropriate to refer
to σ as a Poisson structure. We stick to the more traditional codification used in algebraic
quantum field theory.
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2.1. Algebra of observables of a Casimir-Polder system

There exists an isomorphism of symplectic spaces between OCP (H4) and OKG− (R4).

Proof. First of all we notice that F[h](u) with u ∈ SCP (H4) and [h] ∈ CCP0 (H4)

P [CCP0 (H4)]

is well-defined as the choice of the representative of [h] is not relevant. As a
matter of fact, on account of the boundary conditions of all elements involved,
we can still integrate by parts canceling all boundary terms so that, for all
Ph′, h′ ∈ CCP0 (H4),

∫
H4

d4xP (h′)u =
∫
H4

d4xh′Pu = 0 since u ∈ SCP (H4). To

prove the isomorphism we construct explicitly a bijective map from OCP (H4)
to OKG− (R4), preserving the symplectic structure. We observe that the map
η of (2.3) is injective on C∞0,−(R4) thus it admits an inverse map η−1 defined
on η[C∞0,−(R4)] ≡ CCP0 (H4). Since both η and η−1 descend to the quotients
C∞0,−(R4)

P [C∞0,−(R4)]
and

CCP0 (H4)

P [CCP0 (H4)]
, we can define with a slight abuse of notation the

pull-back:

η∗ : OCP (H4)→ OKG− (R4), η∗(F[h])([α])
.
= F[h](η(φ)), (2.8)

where φ = E([α]) ∈ SKG. Since any u ∈ SCP is the unique image of a

[α] ∈ C∞tc,−(R4)

P [C∞tc,−(R4)]
via the bijection 2. of Proposition 2.1.1, η∗ is an isomorphism

of vector spaces. It also preserving the symplectic structure σH4 . To prove it,
let us observe that η∗(F[h]) = Fη†([h]). We thus can write:

σ(η∗(F[h]), η
∗(F[h′])) = σ(Fη†([h]), Fη†([h′]))

= 〈η†(h), E(η†(h′))〉 = 〈h, ηEη†(h′)〉H4 =

= σH4(F[h], F[h′]),

which is valid for all F[h], F[h′] ∈ OCP (H4).

By a computation analogous to (1.14), it is possible to prove that the ?-product
of Definition 1.12 descends to OCP (H4). Corollary 2.1.3 thus ensures that ?H4

defined in (2.6) is well defined on OCP (H4). Consequently, we have finally,

Definition 2.1.4. We call on-shell ∗-algebra of observables for a Casimir-
Polder system the algebra

(
ACPon (H4), ?H4

)
generated by the functionals de-

fined in Corollary 2.1.3, OCP (H4), where ?H4 is defined in (2.6).

Before proving several important properties of ACPon (H4), we want to inves-
tigate how it relates with the Minkowski counterpart AKG(R4). This will give
us the chance to prove the already mentioned properties.

Proposition 2.1.4. Let η̃∗ : ACPon (H4) → AKGon (R4) be the natural exten-
sion of the pull-back map η∗ defined on OCP (H4). This is an injective ∗-
homomorphism of algebras which becomes an isomorphism onto AKGon,−(R4),
the ∗-subalgebra of AKG(R4) generated by functionals OKG− (R4).
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2. Algebraic quantum field theory and the Casimir-Polder effect

Proof. Let us prove that η̃∗ is injective. Suppose that there exists F[h] ∈
ACPon (H4) such that η∗(F[h]) is the vanishing functional. Then, for all φ ∈
SKG(R4) one has 0 = η∗(F[h])(φ) = F[h](η(φ)) = Fη†([h])(φ). Since φ is arbi-
trary, the only possible solution is η†([h]) = 0 and, thus, [h] = 0, which entails
the sought injectivity. In order to prove that η̃∗ is also a ∗-homomorphism it
suffices to focus again only on the generators. Let F[h], F[h′] ∈ OCP (H4) and
φ ∈ SKG(R4). Then, on account of (2.6) the following holds true:(

η∗(F[h]) ? η
∗(F[h′])

)
(φ) = (Fη†([h]) ? Fη†([h′]))(φ)

= Fη†([h])(φ)Fη†([h′])(φ) +
i

2
〈η†(h), E(η†(h′))〉 =

= F[h](η(φ))Fh′(η(φ)) +
i

2
〈h, ηEη†(h′)〉H4 =

=
(
F[h] ?H4 F[h′]

)
(φ).

Since the ∗-operation is complex conjugation, it is left untouched by all the op-
erations above and, as a consequence, we can infer that η̃∗ is a ∗-homomorphism.
The isomorphism ACPon (H4) ' AKGon,−(R4) descends directly from Corollary
2.1.3.

In the following proposition, we investigate the structural properties ofACP (H4),
in particular causality and the time-slice axiom [BFV01, Dim80]. The latter
property needs a few comments. Recall that AKGon (R4) fulfills the time-slice
axiom, namely, given any open neighbourhood N of a Cauchy surface Σ in
Minkowski spacetime, containing all causal curves whose endpoints lie in N ,
then AKGon (R4) is ∗-isomorphic to AKGon (N ). Since H4 is not globally hyperbolic
there is no notion of a Cauchy surface. Yet, if we consider the extension of
the isomorphism of Proposition 2.1.4 to ACPon (H4), this is ∗-isomorphic to a
∗-subalgebra of AKGon (R4) for which the time-slice axiom is a well-defined con-
cept. The validity of the time-slice axiom carries the idea that the boundary
is never acting as an absorber or emitter of dynamical information. This is
ultimately a consequence of having fixed a boundary condition. In addition to
these two properties, we show that ACPon (H4) satisfies the F-locality condition
[FH95, Kay92], a requirement which should be met by the algebra of observ-
ables of a quantum field theory on a non globally-hyperbolic spacetime. In a
few words and in the case at hand, it requires that ACP (H4) and AKG(R4),
restricted to any globally hyperbolic subregion of H4 must be ∗-isomorphic.
Such condition can be seen as an extension of the locality paradigm, according
to which, from local algebras, one should not be able to extract information on
the global structure of the background. Let us denote ACPon (O) the localization
of the algebra of observables ACPon (H4) on any subregion O ⊂ H4, that is the
∗-subalgebra whose generators are supported in O.

Proposition 2.1.5. The algebra ACPon (H4) is causal, it fulfills the time-slice
axiom and it satisfies the F-locality property, namely ACPon (O) is isomorphic to
AKGon (O) where O is any globally hyperbolic subregion of H4. The isomorphism
is implemented by the identity.
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2.2. Hadamard states for a Casimir-Polder system

Proof. ACPon (H4) is causal, since, for any two generators F[h], F[h′], [h], [h′] ∈
CCP0 (H4)

P [CCP0 (H4)]
such that there exists two representatives h, h′ ∈ C∞0,−(H4) which are

spacelike separated, F[h]?H4F[h′]−F[h′]?H4F[h] = i〈h,EH4h′〉 = 0. This descends
from supp(h) ∩ (supp(E(h′)) ∪ supp(E(ιz(h

′)))) = ∅.
In order to prove the time-slice axiom, we need to show that, given any

geodesically convex neighbourhood N of a Cauchy surface Σ in Minkowski
spacetime, then ACPon (N ) = ACPon (H4) where ACPon (N ) is the subalgebra of
ACPon (H4) obtained by considering only those h ∈ CCP0 (H4) such that supp(h) ⊂
N . In view of Corollary 2.1.3 and of Proposition 2.1.2, this is equivalent
to considering any F[ζ] ∈ OKG− (R4) and showing that there exists at least a
representative of the label [ζ] whose support is contained in N . Let us thus
fix any Σ and N as above and let us consider two Cauchy surfaces Σ± such
that Σ ⊂ J+(Σ−) ∩ J−(Σ+) ⊂ N . Choose χ ∈ C∞(R4) such that χ is z-
independent and χ = 1 for all points in J+(Σ+) while it vanishes on J−(Σ−).
Let us consider any [ζ] ∈ OKG− (R4) and any of its representatives which we
indicate with ζ. Define the new function

ζ̃
.
= ζ − P

(
E−(ζ) + χE(ζ)

)
, (2.9)

where E− is the retarded fundamental solution of P . Notice that, per construc-
tion and on account of the support properties of both E± and χ, ζ̃ ∈ C∞0,−(N )
and it is a representative of [ζ].

We are left to prove that AKGon (O) is isomorphic to ACPon (O). Each of
these algebras is generated by those functionals whose labeling space is C∞0 (O)
and the identity map represents an isomorphism of topological vector spaces.
Since the ∗-operation is complex conjugation, which is not affected by the
identity map, to conclude the proof, it suffices to exhibit the following chain of
identities: Let h, h′ ∈ C∞0 (O) and let F[h] and F[h′] be the associated generators
in ACPon (O), then, for any u ∈ CCP (H4)(

F[h] ?H4 F[h′]

)
[u] = F[h](u)F[h′](u) +

i

2
〈h,EH4(h′)〉 =

(
F[h] ? F[h′]

)
[u]. (2.10)

The last equality descends from

〈h,EH4(h′)〉 = 〈η†h,E(η†h′)〉 = 〈h,E(h′)〉,

which holds true since ιz(O) is causally disjoint from O. Notice that (2.10)
entails that the isomorphism between ACPon (O) and AKGon (O) is implemented
by the identity map.

2.2 Hadamard states for a Casimir-Polder

system

Having constructed the algebra of observables for a Casimir-Polder system, we
can focus on discussing algebraic states thereon, namely, as in Definition 1.1.4,
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2. Algebraic quantum field theory and the Casimir-Polder effect

any linear functional ω : ACP (H4)→ C for which

ω(I) = 1, ω(a∗a) ≥ 0, ∀a ∈ ACP (H4),

where I is the identity element. As for the usual free field theories on any
globally hyperbolic spacetime, the key question is under which conditions ω is
physically acceptable. We recall that the answer for AKG(R4), the algebra of
observables for a Klein-Gordon field on the whole Minkowski spacetime, goes
under the name of Hadamard states, Definition 1.4.3. In view of the structure
of H4, extending such notion to ACP (H4) is not straightforward. A similar
problem appeared in Abelian gauge theories [FP03] or in linearized gravity
[BDM14, FH12]. The way out that we propose is partly inspired by these
papers, partly by F-locality: We require that a physically acceptable, quasi-
free state on ACP (H4) is such that its restriction to any globally hyperbolic
subregion of H4 descends from a bi-distribution, thereon of Hadamard form.

Definition 2.2.1. We call a linear map ω : ACP (H4) → C a quasi-free
Hadamard state for a Casimir-Polder system if it is normalized, posi-
tive, quasi-free and if, for all globally hyperbolic submanifolds O ⊂ H4, the
restriction of ω to ACP (O) is such that there exists ω2 ∈ D′(O × O) whose
wavefront set is of Hadamard form

WF (ω2) = {(x, x′, kx,−kx′) ∈ T ∗(O ×O) \ {0} | (x, kx) ∼ (x′, kx′), kx . 0} ,

and, for all Fh, Fh′ ∈ ACP (O)

ω (Fh ?H4 Fh′) = ω2(h, h′).

In order for ω to descend to a state on ACPon (H4) a compatibility condition
with the equations of motion must be required4. In other words, the two-point
function defining a Hadamard state on the on-shell algebra is also a bisolution
to the boundary value problem (2.1).

In view of the last definition, the first question to answer is whether one
can build a connection between Hadamard states for the on-shell algebra of
the Klein-Gordon field on Minkowski spacetime and that of a Casimir-Polder
system.

Proposition 2.2.1. Let η̃∗ : ACPon (H4) → AKGon (R4) be the map defined in
Proposition 2.1.4. Then, for every quasi-free state ω̃ : AKGon (R4) → C, there
exists a quasi-free state ω on ACPon (H4) such that for all a ∈ ACPon (H4), ω(a)

.
=

ω̃(η̃∗(a)). In particular, if ω̃ is of Hadamard form, so is ω.

Proof. As a starting point, notice that ω inherits the normalization, positivity
and the property of being quasi-free directly from ω̃. We need only to check

4The descended state will be called Hadamard state as well.
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2.2. Hadamard states for a Casimir-Polder system

the Hadamard property. Let O ⊂ H4 be any globally hyperbolic submanifold;
for every Fh, Fh′ ∈ ACP (O)

ω(Fh ?H4 Fh′) = ω̃(η∗(Fh ?H4 Fh′)) = ω̃(Fh ? Fh′) =
1

2
ω̃2(h− ιz(h), h′ − ιz(h′)).

In other words the bi-distribution associated to ω can be built out of ω̃2 itself.
Since the latter has per hypothesis the Hadamard wavefront set and since,
if supp(h), supp(h′) ⊂ O ⊂ H4, then neither ιz(h) nor ιz(h

′) can be entirely
supported therein, the only singular term in the above identity is ω̃2(h, h′).
Hence ω is of Hadamard form.

As a last step, we wish to compare our approach with the method of
images which is commonly used on Minkowski spacetime.

Lemma 2.2.2. Let ω̃ be any quasi-free Hadamard state for AKG(R4) whose
associated two-point function ω̃2 ∈ D′(R4×R4) has an integral kernel which is
invariant under reflection in both entries along the z-direction, that is such that
ω̃2(x, z, x′, z′) = ω̃2(x,−z, x′,−z′). Then the state ω on ACP (H4) built as per
Proposition 2.2.1 is a quasi-free Hadamard state whose associated two-point
function ω2 ∈ D′(H4 ×H4) has the following integral kernel

ω2(x, z, x′, z′) = ω̃2(x, z, x′, z′)− ω̃2(x,−z, x′, z′). (2.11)

Proof. On account of Proposition 2.2.1, we can conclude that ω is a Hadamard
state onACP (H4) and it is quasi-free per construction. In order to show the last
statement, it suffices instead an explicit calculation. Let ω be as per hypothesis
and let ω2 be the associated bi-distribution. For all h, h′ ∈ CCP0 (H4)], seen as
labels for two generators of ACP (H4), it holds in view of Proposition 2.2.1

ω(Fh ?H4 Fh′) = ω̃(η∗ (Fh ?H4 Fh′)) =

1

2
ω̃2(h− ιz(h), h′ − ιz(h′)) = ω̃2(h− ιz(h), h′),

where, in the last equality, we used the symmetry hypothesis of the two-
point function to conclude that ω2(h, h′) = ω2(ιz(h), ιz(h

′)) and ω2(h, ιz(h
′)) =

ω2(ιz(h), h′). The above chain of equalities entails the sought identity at a level
of integral kernels.

Remark 2.2.1. The statement of Lemma 2.2.2 applies to the Poincaré vacuum
and the KMS state for a massive or massless Klein-Gordon field on Minkowski
spacetime, for which ω̃2 induces the same quasi-free state which one obtains
via the method of images.

For completeness, we want now to discuss the form of the singular structure
of the two-point function of the states obtained in Lemma 2.2.2. In view of
(2.11) we have that

WF (ω2) = WF ( ω̃2|H4) ∪WF ((ω̃2 ◦ (ιz ⊗ I)) |H4) (2.12)
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where the restriction map refers to the points of the singular support. Fur-
thermore

WF ( ω̃2 ◦ (ιz ⊗ I)|H4) ={
(x, x′, kx,−k′x′) ∈ T ∗

(
H4 ×H4

)
\ {0} | (x, kx) ∼ (ιzx

′, (ιz)∗k
′
x′), kx . 0

}
= (ιz ⊗ I)WF ( ω̃2|H4).

In the previous expression, ιz acts on covectors inverting the sign of the
z−component. Heuristically, we might say that (x, x′; kx, k

′
x′) are contained in

WF ((ω̃2 (ιz ⊗ I)) |H4) if and only if x and x′ are connected by a null geodesic
reflected at the surface ∂H and if η−1(kx) and η−1(−k′x′) are tangent vectors at
the end points of this reflected geodesic. Notice that, whenever ω2 is restricted
to a globally hyperbolic region O ⊂ H, its wave front set enjoys the microlo-
cal spectrum condition because WF ((ω̃2 ◦ (ιz ⊗ I)) |O) is the empty set. No
lightlike geodesic starting from O can re-enter after reflection.

2.2.1 Wick ordering in a Casimir-Polder system

To conclude the section, we show how to make contact between the previous
analysis and the standard results in the literature concerning the Casimir-
Polder energy. To this end, we need first of all to introduce the (local) Wick
polynomials for a Casimir-Polder system. From a conceptual point of view,
this question is the same as for a Klein-Gordon field on a globally hyperbolic
spacetime. We shall see, however, that, on every globally hyperbolic submani-
folds of H4, the local Wick monomials generate an algebra of observables which
is isomorphic to the restriction thereon of the Klein-Gordon one. Hence it is
well-defined. Yet, in order to build a global algebra of Wick polynomials, one
has to take into account that, on account of the presence of the boundary con-
ditions, it is not possible to define a global Hadamard function which depends
only on local properties of the spacetime. We shall show that such obstacle
can be circumvented, though at the price that the the embedding of the local
algebras into the global one involves a non-local deformation.

We start the construction Wick polynomials restricting to any globally
hyperbolic submanifold O ⊂ H4 and extending ∗-algebra ACP (O) as in Section
1.5. To this end we recall the definition of support for functionals as introduced
in [FR15] and adapted to our case.

Definition 2.2.2. Let F : CCP (H4) → C be any functional on the space of
off-shell configurations for a Casimir-Polder system as per Definition 2.1.1. We
call support of F

supp(F )
.
= {x ∈ H4 | ∀ neighbourhoodsU 3 x, ∃u, u′ ∈ CCP (H4), supp(u) ⊆ U,

such that F [u+ u′] 6= F [u]}.

Let O ⊂ H4 be any globally hyperbolic submanifold, to which we associate
ACP (O) as per Proposition 2.1.5. In view of Definition 2.2.1 we follow the
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same procedure, used for AKGµ (R4), to obtain ACPµ (O) an extended algebra
of Wick polynomials. Furthermore, in view of Proposition 2.1.5, ACPµ (O) is
∗-isomorphic to AKGµ (O), the restriction of AKGµ (R4) to O.

The next step consists of gluing together all ACPµ (O), so to obtain a global
extend algebra of Wick polynomials for a Casimir-Polder system. The following
remark shows that an obstruction arises in considering ?H as the product for
the global extended algebra. It turns out that the gluing becomes possible
only after a suitable deformation of ?H .

Remark 2.2.2. Let O1 and O2 be two globally hyperbolic submanifolds of H4

whose union is not contained in a third globally hyperbolic submanifold of H4.
Consider now F

(2)
h ∈ ACPµ (O1, ?H) and F

(2)
h′ ∈ ACPµ (O2, ?H) such that

F
(2)
h (u)

.
=

∫
H4

dµg(x)h(x)u2(x), F
(2)
h′ (u)

.
=

∫
H4

h′(x)dµg(x)u2(x),

where u ∈ CCP (H4) while supph ⊂ O1 and supph′ ⊂ O2. In view of Proposition
2.1.5, we choose the Hadamard parametrix H(x, x′) to be the same one as for
a Klein-Gordon scalar field on Minkowkski spacetime, though restricted to the
region(s) of interest. In order to compute the correlations between the above
two elements, we need to recognize them as being part of a larger extended
algebra. Yet, if we try to follow the same procedure used in (1.5) for AKGµ (R4),
we notice that the local ?-products for the non-deformed algebra are defined
replacing i

2
EH4(x, x′) with

H(x, x′) +
i

2
(EH4(x, x′)− E(x, x′)) .

In the computation of F
(2)
h ?H F

(2)
h′ some pathologies occur, due to terms in-

cluding (EH4(x, x′)− E(x, x′)) multiplied with itself, which are ill-defined.
Such obstructions can be removed exploiting the fact that algebras whose

?-products are constructed with different Hadamard functions are ∗-isomorphic
[BDF09]. Mimicking the construction of EH4 starting from E, and in view of
(2.11), let us consider the bidistribution HH4 whose integral kernel is

HH4(x, z, x′, z′)
.
= H(x, z, x′, z′)−H(x,−z, x′, z′).

Notice that HH4 yields ACPµ (H4, ?HH4 ), a well defined global algebra. Hence,
the correlations among elements ofACPµ (O1, ?H) and ofACPµ (O2, ?H) are mean-
ingful only if we embed them in ACPµ (H4, ?HH4 ). Such embedding is realized
by αHH4−H as in (1.21) and it is an injective ∗-isomorphism.

Despite this hurdle, concepts like smeared energy density are still well-
defined within each ACPµ (O, ?H). In particular the finite vacuum expectation
values of the stress-energy components agrees with the non-vanishing quanti-
ties found in literature - [BD84, DeW75, DeW79]. Furthermore, regardless
of the existence of an extended algebra of observables, well-known blows-
up in computing quantities, such as the energy density, still remain due to
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additional divergences present in observables supported on the boundaries.
The regularized vacuum expectation values of the stress-energy components
in ACPµ (O, ?HH4 ) are vanishing in the ground state. Nonetheless it would be
inappropriate claiming that no Casimir-Polder effect occurs, rather it should
be addressed the question what is the physical meaning of those quantities. In
fact, the quantum counterpart of the energy density should be considered the
observable regularized with the local parametrix H, for compatibility reasons
with the usual notion in Minkowski spacetime.

We can make finally a correspondence to the standard results in the lit-
erature, in particular recovering the dependence of the energy density on the
forth power of the distance along the z-axis between a point in the bulk and
one on the boundary. Before stating the result, we recall that, on Minkowski
spacetime, the so-called improved stress-energy tensor of a massless confor-
mally coupled scalar field φ is on-shell [CCJ70, Mor03]

Tµν = ∂µφ∂νφ−
1

2
ηµν∂

ρφ∂ρφ+ ξ(ηµν�− ∂µ∂ν)φ2, (2.13)

where ξ is the coupling constant with the scalar curvature R introduced in
(2.1).

Lemma 2.2.3. Let us consider a massless, arbitrarily coupled to scalar cur-
vature, scalar field and let ω0 be the Hadamard state for ACP (H4) induced
from the Poincaré vacuum ω̃0 via Lemma 2.2.2. Let O be a globally hyperbolic
subregion of H4 and ACPµ (O) the extended algebra defined on O (with the ?H
product). Then, for all h ∈ C∞0 (O),

ω0(:φ2:H(h)) = − 1

32π2

∫
R4

d4x
h(x, z)

z2
,

and

ω0(:Tµν :H(h)) = Aµν
6ξ − 1

32π2

∫
R4

d4x
h(x, z)

z4
,

where {Tµν} are the components of the stress-energy tensor (2.13) while A =
diag(−1, 1, 1, 0).

Proof. We need only to collect what already proven together with the explicit
form of

ω̃0
2(x, x′) =

lim
ε→0+

1

4π2

1(
ηµν3 (xµ − x′µ)(xν − x′ν) + (z − z′)2

)
+ iε(x0 − x′0) + ε2

, (2.14)

where η3 = diag(−1, 1, 1). On account of both Proposition 2.2.1 and Lemma
2.2.2, we know that ω0 is a Hadamard state for ACP (H4). The definition of
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ACPµ (H4) together with both ω̃0
2(x, x′) = H(x, z, x′, z′) = H(x,−z, x′,−z′) and

Proposition 2.2.1 entail that, calling ω0
2(x, x′) the two-point function of ω0

ω0(:φ2:H(ζ))
.
=∫

H4×H4

d4x d4x′
(
ω0

2(x, x′)−H(x, z, x′, z′)
)
h(x, z)δ(x− x′) =

= −
∫

H4×H4

d4x d4x′H(x,−z, x′, z′)h(x, z)δ(x− x′) = − 1

16π2

∫
H4

d4x
h(x, z)

z2

In order to compute ω0(:Tµν :H(ζ)) it suffices to apply the point-splitting scheme
as introduced in [Mor03]. All results obtained in this cited paper apply without
modifications to the case at hand. In particular it holds that

ω0(:Tµν :H(ζ)) =∫
R4×R4

d4x d4x′
(
D(x,x′)
µν

(
ω0

2(x, x′)−H(x, z, x′, z′)
))
h(x, z)δ(x− x′),

where – see [Hac10, §4]

D(x,x′)
µν =

∂

∂xµ
∂

∂x′ν
− 1

2
ηµνη

αβ ∂

∂xα
∂

∂x′β

+ξ

(
ηµνη

ρλ ∂

∂xρ
∂

∂xλ
− ∂

∂xµ
∂

∂xν

)
. (2.15)

Thesought resultis then achived by inserting this expression in the above inte-
gral and replacing ω0

2(x, x′)−H(x, z, x′, z′) with H(x,−z, x′, z′).

Let us make some observation on the above result.

1. We have defined the Wick polynomials only for smooth and compactly
supported functions whose support does not intersect the boundary of
the region of interest. The reason can be seen explicitly by looking at
the last lemma: If we inspect the integral kernels ω̃2(x,−z, x′, z′) and
ω̃2(x, z, x′,−z′), they become singular at z = z′ = 0 so that they cannot
be tested with δ(z−z′). This is no surprise and it is at the heart of the of-
ten mentioned problem that, in a Casimir or in a Casimir-Polder system,
the total energy, computed out of the integral of the time-component of
the stress-energy tensor diverges.

2. By Lemma 2.2.3 we have shown that our construction reproduces the
known results for a mass-less scalar field in presence of a boundary –
[BD84, DeW75, DeW79, BKMM09, Mil01]. At the same time, as a
new feature, it frames them in an intrinsic axiomatic theory. So we are
inclined to regard the divergence of the integrated energy density, men-
tioned in the above remark, as not a consequence of a bad or incomplete
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regularization. Often in literature this is regarded as consequence of the
fact that the Dirichlet boundary condition is not suitable to model a real
confinement. Physically oriented models of boundaries are offered by the
delta-potential approach, where the boundary condition is replaced by a
background potential, peaked in correspondence of the boundary itself –
[GJK02]. The analysis of such models, however, goes beyond the aim of
this thesis.

3. In case of conformal coupling (ξ = 1
6
), all the component of the stress-

energy tensor are vanishing. We postpone any comment at this regard
to the next section, where an analogous cancellation occurs.
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Chapter 3
Algebraic quantum field theory
and the Casimir effect

In1 this section we shall focus on the second scenario, we are interested in,
namely the one of a massless scalar field defined between two parallel infinite
spacelike surfaces. It is related to the Casimir effect, namely the attraction
force between two parallel, perfectly conducting, plates as discussed for the first
time in [Cas48]. We shall refer to it as the Casimir system. To carry out the
analysis we exploit the method of images as in the previous chapter. Despite
we apply a constructive technique which make use of Minkowski spacetime,
our approach provides an intrinsic theory, since all objects and results refers
only to elements of the system. In the present situation time the application of
the method of images presents several complications, since the presence of two
boundaries implies to consider a series of images which could be not converging.
This has relevance in the definition of states induced by the method of images,
since one has to pay attention to some convergence requirements. As for a
Casimir-Polder system, the construction of the extended algebra via the local
Hadamard parametrix H works only on globally hyperbolic subregions.

At a geometric level, the model consists of the region Z
.
= R3× [0, d] ⊂ R4

endowed with the (restriction of the) Minkowski metric. In analogy to the pre-
vious section, the interval [0, d] runs along the spacelike z-direction. At a field
theoretical level, our starting point are are all u ∈ C∞(Z), where smoothness is
meant as in Definition 2.1 since Z ⊂ H4. Dynamical configurations are instead
the elements of the vector space SC(Z) built out of the smooth solutions of{

Pu = (�− ξR−m2)u = 0, m2 ≥ 0, ξ ∈ R
u(x, 0) = u(x, d) = 0

, (3.1)

where R is the scalar curvature and we recall the notation (x, z) := (t, x, y, z).
Since the scalar curvature vanishes, the term ξR plays no role at a dynamical

1The content of this chapter is part of [DNP16, Section 3].
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3. Algebraic quantum field theory and the Casimir effect

level, but it affects the structure of the stress-energy tensor which we will
consider later.

3.1 Algebra of observable of a Casimir system

We follow the same path as in a Casimir-Polder system, proceeding in three
main steps.

Part 1 – Dynamical configurations:
Notice that, in full analogy with the previous section, neither is (Z, η) a

globally hyperbolic spacetime, nor is (3.1) an initial value problem, rather it is
a boundary value problem. Hence, in order to characterize SC(Z), we follow
the same strategy used in a Casimir-Polder system, namely we identify each
smooth solution of (3.1) with a specific counterpart for a Klein-Gordon field
on the whole Minkowski spacetime. Before outlining the details, we introduce
the auxiliary regions

Y0
.
= R3 × [−d, d],

Yn
.
= {x ∈ R4 | ∃(x, z) ∈ Y0 for which x = (x, z + 2nd)}, n ∈ Z}. (3.2)

As a consequence R4 =
⋃
n∈Z

Yn.

Proposition 3.1.1. There exists a vector space isomorphism between SC(Z)

and the quotient
C∞tc,C(R4)

P [C∞tc,C(R4)]
where C∞tc,C(R4) is the collection of all α ∈ C∞tc (R4)

such that the following conditions are met:

1. α ∈ C∞tc,−(R4), that is α(x, z) = −α(x,−z)

2. α(x, z) = −α(x, 2d− z)

Proof. As a first step we show that there exists an isomorphism between SC(Z)
and a vector subspace of SKG(R4)

.
= {φ ∈ C∞(R4) | Pφ = 0}. Let u ∈ SC(Z)

and let

v(x)
.
=

{
u(x), x ∈ Z
−u(−x), x ∈ Y0 \ Z

.

Following the same argument as in the proof of Proposition 2.1.1, we can
conclude that v ∈ C∞(Y0) and v(x, 0) = v(x, d) = v(x,−d) = 0. Define
φ(x) = φ(x, z)

.
= v(x, z − 2nd), for any x ∈ Yn. By a similar argument as

for v(x), it descends that φ ∈ C∞(R4) and that, moreover, Pφ = 0, as this
property is traded from that of u. In other words we have found a linear map

F : SC(Z)→ SC(R4) ⊂ SKG(R4)

SC(R4) =
{
φ ∈ C∞− (R4) | Pφ = 0 and φ(x, 2d− z) = −φ(x, z)

}
. (3.3)

The map is per construction surjective, since for every φ ∈ SC(R4), φ|Z ∈
SC(Z) and F (φ|Z) = φ. Furthermore F is also injective since F (u) = 0 ∈
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3.1. Algebra of observable of a Casimir system

SC(R4) implies φ = 0 and, thus u = φ|Z = 0. In other words F is an
isomorphism of vector spaces. To prove the statement of the proposition we

need to show that SC(R4) is isomorphic to
C∞tc,C(R4)

P [C∞tc,C(R4)]
. As a first step we

show that the map induced by E is surjective. Let thus φ ∈ SC(R4). Since
Pφ = 0, there must exist α ∈ C∞tc (R4) such that φ = E(α). Since φ is odd
per reflection along the hyperplane z = 0, we know from Proposition 2.1.1
that α must lie in C∞tc,−(R4). Repeating slavishly the proof of Proposition 2.1.1
with respect to the condition φ(x, 2d − z) = −φ(x, z) we obtain that α ∈
C∞tc,−,d(R4) where C∞tc,−,d(R4) = {α ∈ C∞tc | α(x, 2d− z) = −α(x, z)}. Putting
all together α ∈ C∞tc,−(R4) ∩ C∞tc,−,d(R4) = C∞tc,C(R4). Taking into account
that E ◦ P = 0, we have associated to each element in SC(R4) an equivalence

class in
C∞tc,C(R4)

P [C∞tc,C(R4)]
. We focus now on injectivity. Let α ∈ C∞tc,C(R4) and let

φα
.
= E(α) where E is the causal propagator of P on Minkowski spacetime.

Per construction Pφα = 0. Furthermore since both the map ιz : R4 → R4

such that ιz(x, z) = (x,−z) and ιs : R4 → R4 such that ιs(x, z) = (x, z + s),
s ∈ R, are isometries of (R4, η) it holds that E ◦ ιz = ιz ◦ E and E ◦ ιs =
ιs ◦ E. Consequently φ = E(α) = E(−ιzα) = −ιzE(α) = −ιzφ which entails
φ(x, 0) = 0. At the same time, replacing ιz with ιs ◦ ιz, s = 2d, we obtain that
φ(x, 2d − z) = −φ(x, z) which implies φ(x, d) = 0. Since E ◦ P = 0, the map

which associates to each [α] ∈ C∞tc,C(R4)

P [C∞tc,C(R4)]
, E(α) ∈ SC(R4) does not depend

on the choice of the representative in [α] and it is, moreover, injective. As a
matter of facts, suppose E(α) = 0. This entails that there exists ρ ∈ C∞tc (R4)
such that α = Pρ. Yet, since α(x, z) = −α(x,−z) = −α(x, 2d − z) and since
P is invariant both under the map (x, z) 7→ (x,−z) and (x, z) 7→ (x, z + 2d),
ρ ∈ C∞tc,C(R4). As a consequence Pρ lies in the trivial equivalence class of
C∞tc,C(R4)

P [C∞tc,C(R4)]
.

Remark 3.1.1. It is noteworthy that the two conditions defining the elements
of SC(R4) in (3.3) are actually already implementing the method of images
at a level of dynamical configurations. As a matter of facts, consider any
φ ∈ SC(R4): For any n ∈ Z, first applying the reflection along the hyperplane
(x, d) and then the one along (x, 0), the following chain of identities holds true:

φ(x, z + 2nd) = −φ(x,−z − 2(n− 1)d) = φ(x, z + 2(n− 1)d),

and equivalently φ(x, z + 2nd) = φ(x, z + 2(n + 1)d). In other words every
element in SC(R4) is both odd with respect to the reflection along the hyper-
plane z = 0 and 2d-periodic.

Our next goal is to expand cohesively the content of the above remark.
Therein our philosophy was to show that, to each dynamical configuration
for a Casimir system, we can associate a solution of the equation of motion
of a Klein-Gordon scalar field, which is periodic along the z-direction. From
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3. Algebraic quantum field theory and the Casimir effect

the quantum field theory point of view, especially when constructing algebraic
states, we will be interested in a complementary problem, namely we would
like to start from an element of SKG(R4)

.
= {φ ∈ C∞(R4) | Pφ = 0} and

associate to it one in SC(R4). Following an argument almost identical to
that of Proposition 3.1.1, this problem can be translated to associating to an
element of C∞tc (R4) one of C∞tc,C(R4). Barring the reflection along the plane
z = 0, the key procedure consists of making a smooth function on R4 periodic.
This operation, which is strongly tied to the Poisson’s summation formula –
see [Hör90, §7.2], does not yield in general a well-defined result on the whole
C∞tc (R4). Yet we can individuate a notable subset which suffices to reach our
goal. More precisely

Proposition 3.1.2. Let C∞0,C(R4)
.
=
{
α ∈ C∞tc,C(R4) | supp(α) ∩ (R3 × {z}) is

compact ∀z ∈ R} and let N : C∞0 (R4)→ C∞0,C(R4) be defined as

N(f)(x, z) =
∞∑

n=−∞

(f(x, z + 2nd)− f(x,−z + 2nd)) . (3.4)

The following statements hold true:

1. The map N is surjective, but not injective.

2. N is an isomorphism between C∞0 (Z̊) ⊂ C∞0 (R4) and C∞0,I(R4) ⊂ C∞0,C(R4),
where

C∞0,I(R4)
.
= {α ∈ C∞tc,C(R4) | supp(α) ∩ Z̊ is compact}.

Proof. We remark, that, per construction N(f) is a smooth function which is
2d-periodic and odd for reflection along the z-axis for any f ∈ C∞0 (R4). The
compact support ensures the convergence of the series.

Let us focus on 1.: To show that N is surjective, let ζ ∈ C∞0,C(R4) and
let χ ∈ C∞(R4) be a function constructed as follows. It depends only on z
and, at fixed value of x, χ(z) ∈ C∞0 (R4) in such a way that χ vanishes for
all |z| ≥ 2d − α, α ∈ (0, d). Furthermore χ(z) = 1 if z ∈ (−α, α] and for all
other values of z it is such to satisfy the identity χ(z) + χ(z + 2d) = 1 for all
z ∈ [−2d, 0]. Consequently χζ ∈ C∞0 (R4) and a direct calculation shows that
N(χζ) = ζ. Hence N is surjective. To show that N is not injective it suffices
to exhibit an explicit example: Consider any β ∈ C∞0 ((0, d)× R3) and f(x, z)
as β(x, z) if z > 0 and as −β(x,−z) if z < 0. At the same time define

β′(x, z) =

{
1
2
β(x, z) z ∈ (0, d)

1
2
β(x, z − d) z ∈ (d, 2d)

.

If we consider f ′(x, z) as β′(x, z) if z > 0 and as −β′(x,−z) if z < 0, using
(3.4), it turns out that N(f) = N(f ′).

Let us now focus on 2.: Let ζ ∈ C∞0,I(R4); per definition f
.
= ζ|Z ∈ C∞0 (Z).

On account of (3.4) N(f) = ζ, that is N is surjective on C∞0,C(R4). Let us
assume that there exists f ′ ∈ C∞0 (Z) such that N(f ′) = 0. Formula (3.4)
entails that N(f ′)|Z = f ′ = 0, which proves that N is injective.
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According to our overall strategy, the next step calls for the identification
of a counterpart for a Casimir system of EH4 which played a key role in study-
ing a Casimir-Polder system. Notice that the key role of EH4 was on the one
hand to generate all smooth solutions with the wanted boundary conditions,
while on the other hand, it yielded a symplectic form on the space of classical
observables. We have emphasized this second aspect since it is easy to grasp
that identifying eventually a symplectic form in Casimir system, is more diffi-
cult on account of the periodicity of the elements in SC(Z). A solution to this
problem lies in this proposition:

Proposition 3.1.3. We call SCsc(Z) the collection of all solutions u ∈ C∞(Z)
of (3.1) such that supp(u) ∩ ({t} × R2 × [0, d]) is compact for all t ∈ R. This
is

1. a vector space isomorphic to
C∞0,C(R4)

P [C∞0,C(R4)]
,

2. a symplectic space if endowed with the following weakly non-degenerate
symplectic form:

σC(u, u′) = σC([ζ], [ζ ′]) = (ζ, E(ζ ′))C = − (E(ζ), ζ ′)C , (3.5)

where ζ and ζ ′ are representatives of [ζ], [ζ ′] ∈ C∞0,C(R4)

P [C∞0,C(R4)]
so that u = E(ζ)

and u′ = E(ζ ′) and where

(ζ, E(ζ ′))C
.
=

∫
R3

d3x

d∫
0

dz ζE(ζ ′) = −
∫
R3

d3x

d∫
0

dz E(ζ)ζ ′. (3.6)

Proof. On account of Proposition 3.1.1, to every element u ∈ SCsc(Z) ⊂ SC(Z),
we can associate via the map F in (3.3) a function φ ∈ C∞− (R4), solution of

Pφ = 0, so that u = φ|Z . Furthermore, there exists [α] ∈ C∞tc,C(R4)

P [C∞tc,C(R4)]
such

that φ = E(α). Since φ is per hypothesis compactly supported along the x, y-
directions, but neither in time nor along z, the standard support properties of
the causal propagator E entail, in turn, that α must be smooth and compactly
supported along the t, x, y-directions without additional constraints imposed
along the z-direction. Repeating slavishly the proof of Proposition 3.1.1, 1.
descends.

Let us focus on 2.: As a first step, we show that (3.6) is well-posed. Since

for any u, u′ ∈ SC(Z), there exists [ζ], [ζ ′] ∈ C∞0,C(R4)

P [C∞0,C(R4)]
, such that u(′) = E(ζ(′)),

well-posedness descends from showing that for any ζ ′ ∈ C∞0,C(R4) the integral∫
R3

d3x
d∫
0

dz P (ζ ′)E(ζ) vanishes. Define P(3) = P − ∂2

∂z2
and rewrite the integral

as∫
R3

d3x

d∫
0

dz

(
P(3) +

∂2ζ ′

∂z2

)
E(ζ) =

∫
R3

d3x

d∫
0

dz

(
∂2ζ ′

∂z2
E(ζ) + ζ ′P(3)E(ζ)

)
,
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where we used both that P(3) is a formally self-adjoint operator which does not
depend on z and that we are integrating along the whole R3. If we use the

identity P(3)E(ζ) = PE(ζ)− ∂2E(ζ)
∂z2

and we integrate by parts, it holds

∫
R3

d3x

d∫
0

dz

(
∂2ζ ′

∂z2
E(ζ) + ζ ′P(3)E(ζ)

)
=

(
∂ζ ′

∂z
E(ζ)− ζ ′∂E(ζ)

∂z

)∣∣∣∣d
0

= 0,

where we used that both ζ ′ and E(ζ) vanish both at z = 0 and at z = d. From
this computation it also descends that, for any ζ, ζ ′ ∈ C∞0,C(R4)

(ζ, E+(ζ ′))C = (PE−ζ, E+(ζ ′))C = (E−ζ, ζ ′)C ,

where E± are the advanced and the retarded fundamental solutions of P on
the whole Minkowski spacetime. From this last identity it descends that
(ζ, E(ζ ′))C = −(E(ζ), ζ ′)C . In other words, σC is both bilinear and anti-

symmetric. To prove non-degenerateness, suppose there exists [ζ] ∈ C∞0,C(R4)

P [C∞0,C(R4)]

such that (ζ, E(ζ ′))C = 0 for all [ζ ′] ∈ C∞0,C(R4)

P [C∞0,C(R4)]
. In particular this entails that

(E(ζ), ζ ′)C = 0. If we choose ζ ′ so that (supp(ζ ′) ∩ Z) ⊂ Z̊, calling ζ0
.
= ζ ′|Z

the following identity holds true:

(E(ζ), ζ ′)C =

∫
R4

d4xE(ζ)ζ0.

Notice that ζ ∈ C∞0,C(R4) ⊂ C∞tc (R4) and that the right hand side coincides with

the standard pairing between
C∞tc (R4)

P [C∞tc (R4)]
and

C∞0 (R4)

P [C∞0 R4)]
on the whole Minkowski

spacetime, which is non degenerate – see for example [Ben16]. Hence there
must exist α ∈ C∞tc (R4) such that ζ = Pα. Notice that, since (3.4) guarantees
us that N is built out of isometries of the standard Minkowski metric, it holds
that E± ◦ N = N ◦ E±. Since α = E+(ζ) = E−(ζ) and ζ ∈ C∞0,C(R4) per
hypothesis, α lies in C∞0,C(R4), concluding the proof that σC is weakly non-
degenerate.

Notice that restricting the domain of integration in (3.6) is necessary to
obtain finite quantities and it encodes the physical idea that only the informa-
tion contained between the boundaries at z = 0 and at z = d are physically
relevant. Before concluding this part of our investigation of a Casimir system,
we elaborate from Proposition 3.1.3 the following Definition

Definition 3.1.1. We call Casimir causal propagator the map

EZ : C∞0 (R4)→ SCsc(Z),

EZ
.
= ρZ ◦ E ◦N,

where N is defined in (3.4), E is the causal propagator of the Klein-Gordon
scalar field on Minkowski spacetime, while ρZ is the restriction map to Z.
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Remark 3.1.2. Notice that there is no symplectic isomorphism between SCsc(R4)
and the space of spacelike compact solutions of the Klein-Gordon equation on
Minkowski spacetime . The reason is that N does not preserve the symplectic
form, since for arbitrary f, f ′ ∈ C∞0 (R4),

E(f, f ′) 6= σC ((E ◦N)(f), (E ◦N)(f ′)) = (ζ, E(ζ ′))C , (3.7)

where σC is the one introduced in (3.5) and, setting ζ = N(f) and ζ ′ = N(f ′),
the last equality holds on account of (3.6). The main consequence of this failure
will be the impossibility at a later stage to construct states for the algebra of
observables for a Casimir system as the pull-back of states for the counterpart
on the whole Minkowski spacetime.

Part 2 – The off-shell algebra: Having characterized all possible dynam-
ical configurations for a Casimir system, we can address the question on how
to build an algebra of observables following the construction given in Chapter
1. Our guiding principle will be the same as in section 2 and, in particular,
we shall use the functional formalism. We stress that there will be several
modifications in comparison to our analysis of the previous section. These can
be ultimately ascribed to the more complicated underlying geometry and to
the fact that we have well under control the convergence of the series (3.4)
only with respect to compactly supported functions.

Definition 3.1.2. We call space of kinematical/off-shell configurations for a
Casimir system

CC(Z)
.
=
{
u ∈ C∞(Z) | u|∂Z = 0 and ∃φ ∈ CKG(R4) such that u = φ|Z

}
,

We consider CC(Z) endowed with the compact-open topology.

Notice that SC(Z) ⊂ CC(Z). As next step, we want to construct a space
of functionals measuring off-shell configurations and we want to endow it with
the structure of a ∗-algebra. In this respect Definition 3.1.1 plays a key role.

Definition 3.1.3. Let F : CC(Z) → C be any smooth functional. We call
it regular if for all k ≥ 1 and for all u ∈ CC(Z), F (k)[u] ∈ C∞0 (Zk), and if
only finitely many functional derivatives do not vanish. We indicate this set
as FC0 (Z).

Let us define, analagously to (1.12):

?Z : FC0 (Z)×FC0 (Z)→ FC0 (Z),

which associates to each F, F ′ ∈ FC0 (Z)

(F ?Z F
′) (u) = (M◦ exp(iΓEZ )(F ⊗ F ′)) (u) (3.8)

HereM stands for the pointwise multiplication, i.e.,M(F⊗F ′)(u)
.
= F (u)F ′(u),

whereas

ΓEZ
.
=

1

2

∫
Z×Z

EZ(x, x′)
δ

δu(x)
⊗ δ

δu(x′)
,
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where EZ(x, x′) is the integral kernel of (2.5). The exponential in (3.8) is
defined intrinsically in terms of the associated power series and, consequently,
we can rewrite the product also as

(F ?Z F
′) (u) =

∞∑
n=0

in

2nn!
〈F (n)(u), E⊗nZ (F ′(n))(u)〉, (3.9)

where the 0-th order is the pointwise multiplication, 〈F (0)(u), F ′(0)(u)〉 .
=

F (u)F ′(u). Notice that (3.9) is well-defined, since EZ = E ◦ N and thus
elements in C∞0,C(Z) are per definition such that their image under the action
of N lies in C∞tc,C(Z). To summarize

Definition 3.1.4. We call AC(Z) ≡
(
FC0 (Z), ?Z

)
the off-shell ∗-algebra of a

Casimir system endowed with complex conjugation as ∗-operation.

Remark 3.1.3. Notice that, in complete analogy with ACP (H4), AC(Z) can be

seen as being generated by the functionals Fh(u) =
∫
R3

d3x
d∫
0

dz u(x, z)h(x, z)

where h ∈ C∞0 (Z), while u ∈ CC(Z). At the same time, if we consider as
generating functionals only those whose labeling space is C∞0 (Z̊), we obtain
the extensible ∗-algebraACext(Z), which is a ∗-subalgebra of bothAC(Z). Notice
that ACext(Z) plays a distinguished role as we will be able to define Hadamard
states only for such algebra.

The causal propagator for the Casimir system is constructed modifying the
causal propagator of the Minkowski spacetime with the operator N . Thanks
to the causal properties of E, when employed on test functions supported in a
globally hyperbolic set O strictly contained in Z it holds that

EZ(f, f ′) = E(f, f ′), f, f ′ ∈ C∞0 (O)

because the reflections and the translations used in N map the support of f ′

in regions which are causally disjoint from O. The following proposition states
that the local algebra of observables of a Casimir system cannot be distin-
guished from Klein-Gordon counterpart, in full agreement with the paradigm
of locality.

Proposition 3.1.4. Let O be any globally hyperbolic open region strictly con-
tained in Z. There exists a ∗-isomorphism between AKG(O)

.
= AKG(R4)

∣∣
O

and AC(O)
.
= AC(Z)

∣∣
O. The isomorphism is implemented by the identity

map.

The proof of this proposition can be obtained along the guidelines of that
of Proposition 2.1.5 together with the property of EZ stated above.

Part 3 – The on-shell algebra: Having investigated the algebra probing
kinematical configurations, we want to conclude our analysis by constructing
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the counterpart on the solutions to the equation of motion. This is tantamount
to restricting the allowed configurations from CC(Z) to SC(Z). As outlined in
Chapter 1 and in Chapter 2 for a Casimir-Polder system, this entails that sev-
eral functionals become redundant as they are automatically vanishing when
evaluated on any solution. This calls for the identification and for the elimi-
nation of these observables via a suitable quotient. At a level of algebras the
solution of this problem is contained in Proposition 3.1.1 and in the isomor-

phism between SC(Z) and
C∞tc,C(R4)

P [C∞tc,C(R4)]
. This suggests to consider the functionals

F[ζ] :
C∞tc,C(R4)

P [C∞tc,C(R4)]
→ R so that F[ζ]([α]) = (ζ, E(α))C , where the right hand side

is defined in (3.6).
Notice that, still in view of Proposition 3.1.1, we can rewrite each of these

functionals also as F[ζ] : SC(Z)→ C, thus as a genuine classical observable on
the dynamical configurations of a Casimir system. The underlying philosophy

is to single out via the labeling space
C∞0,C(R4)

P [C∞0,C(R4)]
the generators of an on-shell

algebra of observables for a Casimir system. As a preliminary step, we exhibit
some relevant properties of these generating functionals, which justify their
choice:

Proposition 3.1.5. We call classical observable for a Casimir system

the linear functional F[ζ] :
C∞tc,C(R4)

P [C∞tc,C(R4)]
→ C, [ζ] ∈ C∞0,C(R4)

P [C∞0,C(R4)]
, defined as

F[ζ]([α]) = (ζ, E(α))C , (3.10)

where ζ and α are arbitrary representatives of [ζ] and [α] respectively. The col-
lection of all classical observables OC(Z) is a vector space which is both sepa-
rating and optimal in the sense of Proposition 2.1.2. Furthermore (OC(Z), σC)
is a symplectic space, σC being defined in (3.5).

Proof. We notice that (3.10) is a well-defined quantity whose right hand side
does not depend on the representatives chosen, as one can infer by repeating
slavishly the same reasoning as in Proposition 3.1.3 using additionally that
(supp(ζ) ∩ supp(E(α)) ∩ Z is compact.

Since O[ζ] is linear in [ζ], OC(Z) is a vector space which is isomorphic to
SCsc(Z). Hence, since the latter is a symplectic space as proven in Proposition
3.1.3, so is OC(Z) endowed with σC . We need only to show that the collection
of classical observables is separating and optimal. The first descends from

the following remark:
C∞tc,C(R4)

P [C∞tc,C(R4)]
is isomorphic via E to SC(Z) which in turn

identifies a vector subspace of C∞(Z)
P [C∞(Z)]

. With respect to the pairing we have

introduced, standard arguments in functional analysis guarantee that
C∞0 (Z)

P [C∞0 (Z)]

separates C∞(Z)
P [C∞(Z)]

. Since C∞0 (Z) ⊂ C∞0,C(Z) the sought statement holds true.
To conclude we show that our choice is optimal. Suppose that there exists

a classical observable generated by ζ ∈ C∞0,C(R4) such that (ζ, E(α))C = 0 for
all α ∈ C∞tc,C(R4). Equivalently this entails that (E(ζ), α)C = 0. Since α is
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an arbitrary timelike compact function in Z, the same reasoning as for the
scalar field on the whole Minkowski spacetime entails that E(ζ) must vanish
thereon. In other words ζ ∈ P [C∞0,C(R4)], that is it generates the trivial class

in
C∞0,C(R4)

P [C∞0,C(R4)]
.

By a computation analogous to (1.14), it is possible to prove that the ?-product
of Definition 1.12 descends to OC(Z). Consequently, we have finally,

Definition 3.1.5. We call on-shell ∗-algebra of observables for a Casimir
system the algebra

(
ACon(Z), ?Z

)
generated by the functionals F[ζ] : SC(Z)→

C with [ζ] ∈ C∞0,C(R4)

P [C∞0,C(R4)]
such that F[ζ](u) =

∫
R3

d3x
d∫
0

dz ζ(x, z)u(x, z), u ∈

SC(Z).

Let us show that our choice for the algebra of observables enjoys causality
and the time-slice property. The validity of the time-slice axiom carries the
idea that the boundary is never acting as an absorber or emitter of dynamical
information. This is ultimately a consequence of having fixed a boundary
condition.

Lemma 3.1.6. The algebra ACon(Z) is causal and it satisfies the time-slice
axiom.

Proof. The property of an algebra being causal is tantamount to showing that
spacelike separated observables do commute. It suffices to check it for all

generators and it is equivalent to proving that, for all [ζ], [ζ ′] ∈ C∞0,C(R4)

P [C∞0,C(R4)]
, it

holds σC([ζ], [ζ ′]) = 0 if there exists two representative ζ, ζ ′ which are spacelike
separated. On account of Proposition 3.1.3 this is a consequence of the support
properties of the causal propagator.

With respect to the time-slice axiom, mutatis mutandis, the procedure is
identical to the one outlined in the proof of Lemma 2.1.5 and we shall thus not
repeat it.

To conclude we remark that ACon(Z) could have been realized also as the
quotient between AC(Z) and the ∗-ideal generated by elements of the form
Ph, where P is the Klein-Gordon operator and h ∈ C∞0,C(Z).

3.2 Hadamard states for a Casimir system

In this section we discuss a possible way to construct a certain class of states for
the Casimir system. We shall restrict our attention to those which are quasi-
free and have suitable regularity. In particular we follow the same philosophy
used in the previous section, namely we will focus our attention on those states
from which stems a prescription to construct Wick polynomials which coincides
with the standard one if we restrict our attention to any globally hyperbolic
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3.2. Hadamard states for a Casimir system

submanifold O ⊂ Z. Well-posedness of this line of thought is a by-product of
Proposition 3.1.4, which guarantees that AC(O) is ∗-isomorphic to AKG(O).
Accordingly,

Definition 3.2.1. A state ω : AC(Z) → C is of Hadamard form if it is
normalized, positive, quasi-free and, if, for any globally hyperbolic submanifold
O ⊂ Z, the restriction of ω to AC(O) is such that there exists ω2 ∈ D′(O×O)
whose wavefront set is

WF (ω2) = {(x, x′, kx,−kx′) ∈ T ∗(O ×O) \ {0} | (x, kx) ∼ (x′, kx′), kx . 0} ,

and, for all Fh, Fh′ ∈ AC(O)

ω (Fh ?Z Fh′) = ω2(h, h′), h, h′ ∈ C∞0 (O).

As for a Casimir-Polder system we want to exhibit explicit examples of
Hadmard states for a Casimir system and our initial plan is to build them
starting from a quasi-free counterpart ω̃ : AKG(R4)→ C, which is of Hadamard
form itself. In other words we would like to mimic the content of Proposition
2.2.1. Alas, there does not exist a ∗−homomorphism between AC(Z) and
AKG(R4) and hence no corresponding pull-back of states. We shall avoid such
hurdle by working directly at the level of the two-point function adapting the
image method used previously in Definition 3.1.1 for the causal propagator.
Notice that, with this procedure, we will be constructing actually a state for
ACext(Z).

More precisely our starting point is any Hadamard state ω̃ : AKG(R4)→ C,
whose associated two-point function ω̃2 ∈ D′(R4 × R4). In view of Definition
3.1.1, applying the image method to ω̃2 is tantamount to proving that ω̃2 ◦ (I⊗
N) ∈ D′(Z̊ × Z̊). Notice that the outcome does not define an image state for
AC(Z) but only for ACext(Z).

Since our goal is to exhibit explicit cases where this procedure works, we
restrict the attention only to quasi-free states for AKG(R4) whose associated
two-point function has an integral kernel which is invariant under the simul-
taneous action on both entries of both ιz, the reflection along the hyperplane
z = 0 and of ιs, the translation of step s along the z-direction, s ∈ R:

ω̃2(ιz(f), ιz(f
′)) = ω̃2(ιs(f), ιs(f

′)) = ω̃2(f, f ′), (3.11)

where f, f ′ ∈ C∞0 (R4). As an additional ingredient we recall, that all two-
points functions of Hadamard form differ only by a smooth integral kernel.
Hence, since in this section we are interested in a massless real scalar field, we
can split

ω̃2(x, x′) = ω̃0
2(x, x′) +W (x, x′) (3.12)

where W ∈ C∞(R4 × R4), while ω̃0
2(x, x′) is the integral-kernel of the two-

point function of the Poincaré vacuum. Therefore, we will analyze separately
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W (x, x′) and ω̃0
2(x, x′) starting from the latter, which fulfills the requirements

of (3.11). Recall that

ω̃0
2(f, f ′)

.
= lim

ε→0+

1

4π2

∫
R4×R4

d4x d4x′
f(x)f ′(x′)

−(t− t′ − iε)2 + (x− x′)2
. (3.13)

Upon Fourier transform, we can rewrite the last expression as

ω̃0
2(f, f ′) =

∫
R
dt

∫
R
dt′
∫
R3

d3k
1

2|k|
e−i(t−t

′)|k|f̂(t,k)f̂ ′(t′,k) (3.14)

where f̂(t,k) is the three dimensional spatial Fourier transform2 of f(t,x).

Proposition 3.2.1. Let ω̃0
2 be the two-point function of the Poincaré vacuum

for a real, massless scalar field on Minkowski spacetime. Then ω0
2
.
= ω̃0

2 ◦
(I⊗N) = ω̃0

2 ◦ (N ⊗ I) ∈ D′(Z̊ × Z̊). Furthermore the integral kernel of ω0
2

can be written as the ε→ 0 limit of the following ε-regularized integral kernel:

1

8πdχε

(
sinh πχε

d

cosh πχε
d
− cos

(
π
d
(z − z′)

) − sinh πχε
d

cosh πχε
d
− cos

(
π
d
(z + z′)

)) (3.15)

where χε
.
= −(x0 − x′0 − iε)2 + (x1 − x′1)2 + (x2 − x′2)2.

Proof. With respect to the standard Cartesian coordinates (but keeping the
notation x = (x, z)) and fixing e0 = (1, 0, 0, 0) and e3 = (0, 0, 0, 1), we can
write the formal expression

ω̃0
2(f,Nf ′) =

lim
ε→0+

∫
d4xd4x′

[
ω̃0

2(x+ iεe0, x′)− ω̃0
2(x+ iεe0, ιzx

′)
]
f(x)

∑
n

f ′(x′ + 2nde3).

Up to a change of variables of integration for every element of the sum, we
obtain

lim
ε→0+

∫
d4xd4x′

∑
n

[
ω̃0

2(x+ iεe0, x′ + 2dne3)− ω̃0
2(x+ iεe0, ιzx

′ + 2dne3)
]
f(x)f ′(x′).

For every ε > 0, (
ω̃0

2 ◦ (I⊗N)
)

(x+ iεe0, x′) =

lim
m→∞

∑
|n|<m

[
ω̃0

2(x+ iεe0, x′ + 2dne3)− ω̃0
2(x+ iεe0, ιzx

′ + 2dne3)
]
.

2Our convention for the spatial Fourier transform is the following: f̂(t,k)
.
=

1
(
√
2π)3

∫
d3xeik·xf(t,x).
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If we recall that for complex variables a, b ∈ C, it holds – see [GR07, §1.445]

∞∑
n=−∞

1

a2 + (b+ n)2
=
π

a

sinh(2πa)

cosh(2πa)− cos(2πb)
,

and if we recall the form of ω̃0
2(x, x′) given in (3.13) we can show that the

ω̃0
2 ◦ (I⊗N) converges to

ω0
2(x, x′) =

lim
ε→0+

1

8πdχε

(
sinh πχε

d

cosh πχε
d
− cos

(
π
d
(x3 − y3)

) − sinh πχε
d

cosh πχε
d
− cos

(
π
d
(x3 + y3)

)) .
in the limit of n→∞.

We interpret x0 − x′0 + iε as an extension of x0 − x′0 to the complex plane
and we investigate the properties of (3.15) as an analytic function. Notice
that sinh(ξ)/ξ is entire analytic as a function of ξ2. Hence its composition
with ξ2 = (π/d)2χ2(x, x′) = (π/d)2(−(x0−x′0)2 +(x1−x′1)2 +(x2−x′2)2) is in
turn entire analytic itself on C8. Furthermore, since the function 1/(cosh(α)−
cos(β)) can be expanded in Laurent series in terms of α2 and β2 whenever
cosh(α) 6= cos(β), this result applies to our scenario whenever x0−x′0 + iε has
a sufficiently large imaginary component while the other coordinates have a
small imaginary part. Under these conditions we can conlcude the existence of
a domain of analyticity for (3.15). Notice that a boundary component of such
domain is obtained constraining all spatial coordinates to be real and taking
the limit ε = Im(x0 − x′0) to 0+. Furthermore, by direct inspection, (3.15)
is bounded up to a multiplicative constant by ε−2, close to the mentioned
boundary component. Hence we can apply Theorem 3.1.15 of Hörmander
[Hör90] to conclude that the boundary value of (3.15) at ε = 0 is itself a
distribution.

To conclude that ω0
2(x, x′) defines a state on ACext(Z) we prove the following:

Proposition 3.2.2. The distribution ω0
2 ∈ D′(Z̊×Z̊) built in Proposition 3.2.1

is the two-point function of a quasi-free state ω0 : ACext(Z)→ C.

Proof. In view of the previous proposition and of the properties of the Poincaré
vacuum, it remains to be shown that ω is positive. We shall check it for
test functions f and f ′ that can be factorized in the z−direction, namely
of the form f (′)(x, z) = f

(′)
⊥ (x)f

(′)
z (z) where f

(′)
⊥ ∈ C∞0 (R3) and where f

(′)
z ∈

C∞0 ((0, d)). Notice that, although we are not exhausting all possible elements
of C∞0 (Z̊), we are still considering a dense subset, which suffices as far as
positivity is concerned. With respect to this kind of functions we can introduce
the following distribution on C∞0 ((0, d)× (0, d))

wf
′
⊥,f⊥(f ′z, fz)

.
= ω̃0

2(f ′⊥f
′
z, f⊥fz) = lim

ε→0+

∫ d

0

dz

∫ d

0

dz′w
f ′⊥,f⊥
2,ε (z − z′)fz(z)f ′z(z

′),
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where as usual the limits are meant in the weak sense. Since wf
′
⊥,f⊥ is a

Schwartz distribution, see e.g. (3.14), we might rewrite it in the Fourier domain

ω̃0
2(f ′⊥f

′
z, f⊥fz) = wf

′
⊥,f⊥(f ′z, fz) =

∫
R
dξ ŵ

f ′⊥,f⊥
2 (ξ)f̂ ′z(ξ)f̂z(ξ). (3.16)

Notice that, since the two-point function ω̃2 of the Poincaré vacuum is itself

a quadratic form, we have that ŵf⊥,f⊥2 (ξ) is a positive function which is con-
tinuous almost everywhere. In particular, from the expression of the spectrum
built in (3.14), we can infer that continuity could fail only at ξ = 0, although

ŵf⊥,f⊥2 (ξ) is a locally integrable function, also in a neighbourhood of 0.
Let us now consider wf⊥,f⊥ applied to (fz, Nfz). By Poisson summation

formula it holds
∑

l fz(z + 2dl) =
∑

n fne
inzπ/d where fn are the Fourier co-

efficients of fz computed in the interval [−d, d] and they coincide with the

ordinary Fourier transform evaluated at ξ = nπ/d, namely fn = f̂z(nπ/d).
Hence, taking into account the anti-symmetrization present in N , Nfz =∑

n(fn − f−n)einzπ/d. Furthermore, its Fourier transform can be computed
in a distributional sense as

N̂fz :=
(
f̂z(ξ)− f̂z(−ξ)

)∑
n

δ
(
ξ − nπ

d

)
.

Dropping the superscripts f⊥, f⊥ from both w and ŵ it holds

w(fz, Nfz) =

∫
dξ ŵ2(ξ)

(
f̂z(ξ)− f̂z(−ξ)

)∑
n

δ
(
ξ − nπ

d

)
f̂z(ξ).

Notice that, despite of the presence of an infinite sum of Dirac delta functions,
the previous expression is well defined because ŵ2(ξ) is continuous for ξ 6= 0,
it grows at most polynomially for large |ξ| and it is bounded close to zero3.
The only delta function in the sum which could give a divergent contribution

is the one supported at 0. Since f̂z is a Schwartz function,
(
f̂z(ξ)− f̂z(−ξ)

)
vanishes, however, at zero and hence, thanks to the boundedness of ŵ2(ξ) near
that point, the contribution of the delta function supported at 0 vanishes. We

3In order to check boundedness of ŵ2(ξ), notice from (3.14) that for some positive con-
stant C

|ŵ(ξ)| ≤ C sup
t,t′∈I

∫
R2

dk⊥
1√

k2⊥ + ξ2
|f̂⊥(t, k⊥)||f̂ ′⊥(t′, k⊥)|

≤ C sup
t,t′∈I

∫ ∞
0

d|k⊥|
∫ 2π

0

dθ|f̂⊥(t, k⊥)||f̂ ′⊥(t′, k⊥)|

where the supremum is taken in some interval I chosen in such a way that I × R2 contains
the supports of both f⊥ and f ′⊥. Furthermore, f̂⊥ and f̂ ′⊥ are the spatial Fourier transform
of f⊥ and f ′⊥ and hence they decay rapidly for large values of |k⊥|. The result of the two
integrals can thus be bounded by some positive constant.
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have

w(fz, Nfz) =
∑
n

ŵ2(nπ/d)(fn − f−n)fn =
∑
n≥1

ŵ2(nπ/d)|fn − f−n|2

where, in the last equality, we use the fact that ω2 is symmetric under
z−reflections and hence ŵ2(nπ/d) = ŵ2(−nπ/d). The last term of the above
chain of equalities is positive because it is a sum of positive quantities, since
we have started from the two-point function of a state and, hence, ŵ2(nπ/d)
is a quadratic form for every n.

In order to generalize the result obtained for another quasi-free Hadamard
state ω̃ whose two-point function integral kernel enjoys the symmetries stated
in (3.11), we recall that the two-point function of such state differs from the
vacuum one by a smooth function W (x, x′). We have now to make sure that
I⊗N can be applied also to W (x, x′). To this end, we need to impose technical
restrictions on the admissible class of smooth functions.

Proposition 3.2.3. Let ω̃ be a quasi-free state of Hadamard form for AKG(R4).
Suppose that the integral kernel of its two-point function ω̃2(x, x′) = ω̃0

2(x, x′)+
W (x, x′) is invariant under (3.11). Suppose that the following conditions hold
for the smooth part W ∈ C∞(R4 × R4):

(i) the function W f⊥,h⊥(z, z′) :=
∫

R3×R3

d3xd3x′ W (x, z, x′, z′)f⊥(x)f ′⊥(x′) lies

in S ′(R2) for every f⊥, h⊥ ∈ D(R3).

(ii) for every value of x3 and x′3, W f⊥,f
′
⊥(z, z′) generates a distribution in

D′(R6), hence it is continuous on D(R6).

(iii) Let w(z− z′) .
= W f⊥,f

′
⊥(z, z′) and let ŵ(ξ) be its Fourier transform. It is

a continuous function for ξ ≥ π
d
,

(iv) ξ 7→ ŵ(ξ)ξ is a continuous function in a neighbourhood of ξ = 0 and it
vanishes for ξ = 0.

Hence, in view of Proposition 3.1.2 we can extend ω̃2 to a map on C∞0 (Z̊) ×
N [C∞0 (Z̊)] and

ω2(f ′, f) = ω̃2(f ′, Nf).

gives rise to a quasi-free state ω : ACext(Z)→ C.

Proof. Consider a compactly supported smooth function f ∈ D(Z̊) which can
be factorized in the following way f(x, z) = f⊥(x)fz(z). Let us study Nf
and notice that N acts only on fz. Furthermore, by the Poisson summation
formula (see [Hör90, §7.2]), we know that Nfz(z) =

∑
n(fn − f−n)einzπ/d and,

as discussed in the proof of the previous proposition, the Fourier transform
can be computed in the distributional sense yielding

N̂fz(ξ) :=
(
f̂z(ξ)− f̂z(−ξ)

)∑
n

δ
(
ξ − nπ

d

)
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where δ is the Dirac delta function. For every other f ′ ∈ D(Z̊) which can also
be factorized, we analyze

W (f ′, Nf) :=

∫
R4×R4

d4xd4x′ f ′(x)W (x, x′)Nf(x′)

=

∫
R
dξ Ŵ f ′⊥,f⊥(ξ)f̂ ′z(ξ)N̂fz(ξ) =

=

∫
R
dξ ŵ(ξ)f̂ ′z(ξ)

(
f̂z(ξ)− f̂z(−ξ)

)∑
n

δ
(
ξ − nπ

d

)
.

The previous expression is well defined for the following reasons:

a) conditions (iii) implies that ŵ(ξ) is continuous for |ξ| ≥ π/d,

b) thanks to hypothesis (i), w(z) is a Schwartz distribution, hence its Fourier
transform, grows at most polynomially for large ξ and

c) requirement (iv) implies that ŵ(ξ)ξ is continuous near zero and vanishes
for ξ = 0.

The Dirac delta supported in 0 gives a vanishing contribution to the sum

because
(
f̂z(ξ)− f̂z(−ξ)

)
/ξ is a continuous function near zero and hence

ŵ(ξ)ξ ·
(
f̂z(ξ)− f̂z(−ξ)

)
/ξ is continuous in 0 and there it vanishes. Fur-

thermore, what remains is

W (f ′, Nf) =
∑
n

ŵ
(nπ
d

)
f ′n (fn − f−n) =

∑
n≥1

ŵ
(nπ
d

)
(f ′n − f ′−n) (fn − f−n)

which is continuous with respect to the topology of D′((0, d)× (0, d)). Hence,
taking into account hypothesis (ii), W (f ′, Nf) is separately continuous on
D((0, d)× (0, d))⊗D(R6) and thus it is a distribution in D′(Z̊ × Z̊).

For this reason, ω2 is also a well-defined distribution being the sum of
ω0

2 and W ◦ (I⊗N). Positivity remains to be shown, but it can be checked
following a proof similar to the proof of Proposition 3.2.2, hence we shall omit
it.

The requirements of the previous proposition are quite involved to check.
For this reason, in the following lemma we give an alternative sufficient condi-
tion which implies the four points assumed in the previous proposition.

Lemma 3.2.4. Let ω̃ be a quasi-free state of Hadamard form for AKG(R4).
Suppose that its two-point function ω̃2 = ω̃0

2 is invariant under z−reflections
and under z−translations as in (3.11). Consider the smooth function W :=
ω̃2−ω̃0

2. Suppose that W ∈ L∞(Z) and that the integral over z of ∂
∂z
W (x, z, x′, z′)

is bounded uniformly in x and x′. Then the hypotheses of the previous propo-
sition are satisfied and thus the following expression

ω2(f ′, f) = ω̃2(f ′, Nf).

is a well defined two-point function of a quasi-free state ω : ACext(Z)→ C.
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Proof. Since W is bounded, it is the integral kernel of a Schwarz distribution.
Hence, by the Schwartz kernel theorem W can be seen as a map between
smooth functions over R6 and Schwartz distributions over R2. The first three
requirements of Proposition 3.2.3 descend immediately. The forth one requires
a few words. Since the derivative along z of W is in L1, by the Riemann-
Lebesgue lemma, its Fourier transform along the z−direction ŵ(ξ) is equal to
a continuous function u(ξ) divided by ξ. Furthermore, since W is symmetric
under reflections generated by ιz, ŵ must be invariant under mapping of ξ →
−ξ, and thus u(ξ) = ξŵ(ξ) is an odd continuous function, hence it must vanish
for ξ = 0.

Before concluding this section we analyze the singular structure of Hadamard
states obtained by the image method described so far. We already know that
these states are of Hadamard form when restricted on globally hyperbolic sub
regions of H, hence therein the singular structure is known, however we ex-
pect further singularities when states for the full algebra AC(Z) is considered.
Actually, the following proposition holds.

Proposition 3.2.5. Consider the two-point function of a quasi-free state ω
for AC(Z) obtained by the image method starting from a quasi-free Hadamard
state ω̃ of AKG(R4). The wave front set of its two-point function ω2 has the
following form

WF (ω2) =
{

(x, x′, kx,−kx′) ∈ T ∗
(
Z̊ × Z̊

)
\ {0}|(x, kx) ∼Z (x′, kx′), kx . 0

}
where (x, kx) ∼Z (x′, kx′) whenever there exists a null geodesic γ reflected at
the boundaries a countable number of times, such that x, y are its end points,
kx is the cotangent vector to γ at x while ky is the parallel transport of kx along
γ.

Proof. We recall that

ω2(x, x′) =
∑
n∈N

[ω̃2(x, (x′, z′ + 2nd))− ω̃2(x, (x′,−z′ + 2nd))] ,

Hence, WF (ω2) is contained in the union of the wavefront sets of ω̃2(x, (x′, z′+
2nd)) and of ω̃2(x, (x′,−z′ + 2nd)).

Let us analyze WF (ω̃2(x, (x′, z′ + 2nd))). Notice that ω̃2(x, (x′, z′ + 2nd))
is nothing but as ω̃2 in Minkowski with a translation applied to x′. Hence
we just need to apply the corresponding transformation on its wavefront set
to obtain the wavefront set of WF (ω̃2(x, (x′, z′ + 2nd))). Furthermore, if the
points (x, x′) are contained in its singular support, this means that x and
ι2nd(x

′) are connected by a null geodesic in Minkowski spacetime. This geodesic
in Minkowski passes trough the points z where z3 is a multiple of d, |2n|
times. Hence, in the Casimir region, it is like a null geodesic reflected 2n
times at the boundaries. We can treat in a similar way WF (ω̃(x, (x,−z′ +
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2nd))) and it coincides with the wave front set of ω̃ where the second entry of
that distribution is reflected and translated 2n times. Hence, (x, x′) are in its
singular support only if they are connected by a null geodesic reflected |2n−1|
times at the boundaries.

Finally, we notice that the wave front set of ω̃(x, (x′, z′ + 2nd)) and of
ω̃(x, (x′,−z′ + 2nd)) are all disjoined, (their singular support might overlap
only when both z = z′ = d/2 but in this case the corresponding covectors
have opposite z−direction). Hence, in the sum defining ω2 no cancellation of
singularity might occur. We thus conclude that WF (ω2) coincides with the
union of the wave front sets of the distributions in the sum written above.

3.2.1 The vacuum and the KMS states for the Casimir
system

In this subsection, we shall construct states ωT : ACext(Z) → C at finite tem-
perature T for the Casimir system. We shall show that these states are ob-
tained applying the image method to a KMS state for a Klein-Gordon field on
Minkowski spacetime. As a corollary, we obtain that ω0 is the vacuum state of
the theory and it coincides with limT→0 ω

T . Our computations are consistent
with the literature on the topic, see for example [BM69, FR87, KCD79] for the
thermal case and [Ful89] for the vacuum.

As before, we work at the level of two-point function. Hence, let us suppose
that the hypotheses of Proposition 3.2.3 are met. If so, we can apply the image
method to a state ω̃ on AKG(R4) to obtain a quasi-free Hadamard state ω for
ACext(Z), such that ω2(f, f ′) = ω̃2(f,Nf ′), f, f ′ ∈ C∞0,C(R4). Suppose also that
the state ω̃ is invariant under the natural action induced on it by the time
translation tξ of step ξ ∈ R. Since N commutes with tξ, also the state ω must
be invariant under time translations.

Consider now the quasi-free KMS state ω̃T : AKG(R4)→ C at temperature
T which is invariant under the action induced by tξ. For every f, f ′ ∈ C∞0 (R4)
the function ξ 7→ ω̃2(tξf, g) is analytic in the strip Im(ξ) ∈ [0, β] where
β = (kBT )−1 is the inverse temperature and kB is the Boltzmann constant.
Furthermore, the KMS condition holds, namely

ω̃T2 (tiβf, f
′) = ω̃T2 (f ′, f).

We recall also that,

ω̃T2 (x, x′) = lim
ε→0+

1

2πβ|x− x′|

sinh
(

2π |x−x
′|

β

)
cosh

(
2π |x−x

′|
β

)
− cosh

(
2π (t−t′−iε)

β

) ,
for Im(t− t′) ∈ (−β + ε, 0], where we use t for the time coordinate and x for
the space coordinates. Furthermore

ω̃T2 (x, x′) = lim
ε→0+

∫
R3

d3k
eik·(x−x

′)

2|k|

(
e−i|k|(t−t

′)

1− e−β|k|
+
ei|k|(t−t

′)

eβ|k| − 1

)
e−ε|k|
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3.2. Hadamard states for a Casimir system

We shall check that, it is possible to apply the image method to this state by
analyzing the behavior of W := ω̃T2 − ω̃0

2 and verifying that the hypotheses
of Lemma 3.2.4 is satisfied and thus Proposition 3.2.3 holds. First of all, we
notice that W is a Schwartz distribution, which has the desired symmetry
properties (3.11). The spatial Fourier transform of its integral kernel has the
following form

Ŵ (t, t′; k) = C
1

|k|

(
cos(|k|(t− t′))

eβ|k| − 1

)
.

It is a smooth function except when |k| = 0 and it decays rapidly for large |k|.
From this observation conditions (i),(ii) and (iii) of Proposition 3.2.3 are met.
It remains to prove the (iv). In order to check it we proceed analyzing

ŵT (ξ) =

∫
R
dt

∫
R
dt′
∫
R2

dk⊥Ŵ (t, t′; k⊥, ξ)f̂⊥(t, k⊥)f̂ ′⊥(t′, k⊥).

for a pair of compactly supported function f⊥, f
′
⊥ ∈ D(R3). Above, f̂⊥(t, k⊥)

is the spatial (two-dimensional) Fourier transform of f⊥(t, x1, x2). Notice that

there exists a positive constant C such that |Ŵ (t, t′; k)| ≤ C/|k|2. Hence

|ŵT (ξ)| ≤ C sup
t,t′∈I

∫
R2

dk⊥
1

k2
⊥ + ξ2

|f̂⊥(t, k⊥)||ĥ⊥(t′, k⊥)|,

where the supremum is taken in an interval I chosen in accordance to the
supports of both f⊥ and f ′⊥. Since, f̂⊥ and f̂ ′⊥ are two Schwartz functions it
holds that

|ŵ(ξ)| ≤ sup
t,t′∈I

C ′(t, t′)

∫ ∞
0

dk
k

k2 + ξ2

1

1 + k2

for some positive set of constants C ′(t, t′) bounded in I2. The k−integral can
be computed and it yields a function of ξ which is logarithmically divergent
near 0, and hence, also requirement (iv) of Proposition 3.2.3 is met.

For completeness we check the applicability of the image method directly
on the two-point function. We obtain

ωT2 (x, x′)
.
=
(
ω̃T2 (I⊗N)

)
(x, x′) =

−
∞∑

n=−∞

(
1

2πβrn

sinh 2πrn
β

cosh 2πrn
β
− cos 2πi

β
(x0 − x′0 + iε)

+

− 1

2πβr̃n

sinh 2πr̃n
β

cosh 2πr̃n
β
− cos 2πi

β
(x0 − x′0 + iε)

)
, (3.17)

where r2
n
.
= (x1 − x′1)2 + (x2 − x′2)2 + (z − z′ + 2nd)2 while r̃2

n
.
= (x1 − x′1)2 +

(x2 − x′2)2 + (−z − z′ + 2nd)2. Notice that, for every ε > 0 and for every x, y
in Z we have the the sum is absolutely convergent. As a matter of fact, for
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3. Algebraic quantum field theory and the Casimir effect

large n, both rn and r̃n grow like 2nd hence, the asymptotic behavior of the
n−th element of series is governed by

1

2πβrn
− 1

2πβr̃n
=

1

2πβ

r̃n − rn
rnr̃n

=
1

2πβ

r̃2
n − r2

n

rnr̃n(rn + r̃n)

and the right hand side of the previous expression is majored by C/n2 hence
it can be summed.

We conclude this section with a proposition which ensures that the image
method preserves the thermal properties of states.

Proposition 3.2.6. The quasi-free state ωT : ACext(Z) → C, whose two-point
function ωT2 is obtained applying the image method to the two-point function
ω̃T2 of the KMS state ω̃T as in (3.17) is a KMS state. The limit of ωT as T → 0
is a vacuum state.

Proof. In order to prove the proposition, we want now to show that ωT2 (f, f ′) =
ω̃T2 (f,Nf ′) for f, f ′ ∈ C∞0 (Z̊), enjoys the KMS condition in ACext(Z). To this
end we recall that the KMS condition can alternatively be written as

ω̃T2 (tiβ(f), f ′)− ω̃T2 (f, f ′) = −iE(f, f ′)

where E is the causal propagator of the theory. Hence, let us analyze it for ωT

ωT2 (tiβ(f), f ′)− ωT2 (f, f ′) =

ω̃T2 (tiβ(f), Nf ′)− ω̃T2 (f,Nf ′) = −iE(f,Nf ′) = −iEZ(f, f ′),

where EZ is constructed in Definition 3.1.1 Since in the limit β → 0 we recover
ω0

2 we might safely say that ω0 is the ground state of the Casimir system.

Notice that the very same conclusion could have been drawn using instead
a more general argument following the analysis of [SV00]. It is noteworthy
that the analysis of this section could have been performed for the Hadamard
states of a massive real scalar field on the whole Minkowski spacetime. Yet,
in such case, on account of the fall-off properties at infinity of the Poincaré
vacuum, we would have obtained far better convergence results of the image
method.

3.2.2 Wick ordering in a Casimir system

To conclude the section, as for a Casimir-Polder system we want to make
contact with the standard results in the literature concerning the expectation
value of the regularized two-point function and stress-energy tensor. To this
end we need first of all to define the extended algebra of Wick polynomials.
The procedure is identical to the one discussed in Section 2.2.1 and, thus, we
will not repeat it here. In particular it is possible to introduce an algebra of
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3.2. Hadamard states for a Casimir system

extended observables on any globally hyperbolic submanifolds O ⊂ Z. Fur-
thermore, thereon, ACµ (O) is ∗-isomorphic (actually it coincides) to AKGµ (O).
For the same reasons discussed in the Casimir-Polder case, however, the ex-
tended algebras ACµ (O) can be realized as part of a global extended algebra
ACµ (Z) only after a deformation of the ?Z product into a globally defined one.
This can be built for example by replacing H with the two-point function of a
Hadamard state.

Despite of this difficulty, we can locally make sense of observables like the
stress tensor or the Wick square. In particular the finite vacuum expectation
values of the stress-energy components agrees with the non-vanishing quantities
found in literature - [BD84, Ful89, SF02, BKMM09, Mil01]. This is proved by
the following:

Lemma 3.2.7. Let us consider a massless, real scalar field and let ω : ACext(Z)→
C be the quasi-free state whose two-point function ω2 = (N ⊗ I) ω̃0

2 is built with
the image method from the Poincaré vacuum. Let O be a globally hyperbolic
subregion of H4 and ACPµ (O) the extended algebra defined on O (with the ?H
product). Then, the expectation value of the unsmeared squared field (localized
in O) turns out to be

ω0(:φ2:H(x)) =
1

48d2

(
1− 3

sin2 πz
d

)
,

and the expectation values of the unsmeared components of the stress-energy
tensor (localized in O) turn out,

ω0(:Tµν :H(x)) =

π2

1440d4


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

− (ξ − 1

6

)
π2

8d4

3− 2 sin2
(
π
d
z
)

sin4
(
π
d
z
)


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

Proof. Recall that, according to Proposition 3.2.2, ω is a Hadamard state as
per Definition 3.2.1. In order to compute the Wick squared scalar field, we
recall result of the image method and we obtain, for any ζ ∈ C∞0,C(O),

ω0(:φ2:H(ζ)) =
∞∑

n=−∞
n6=0

∫
R4×R4

d4xd4x′ζ(x, z)δ(x− x′)×

×
(
ω̃0

2(x− x′, z − z′ + 2nd)− ω̃0
2(x− x′,−z − z′ + 2nd)

)
=

=
1

4π2

∞∑
n=−∞
n6=0

∫
R4

d4x

(
1

(2nd)2
− 1

(2z + 2nd)2

)
ζ(x, z)

=

∫
R4

d4x

(
1

96d4
− 1

32d4

1

sin2 πz
d

)
ζ(x, z),
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where we used the smoothness property of the sum of the integral kernels in
the region of interest, first to deduce that the result of the integrals is finite
and then to exchange the sum with the integrals. In the last equality we have
computed the sum by using for the first term the definition of the Riemann
zeta function and in the second still [GR07, §1.445]. In order to compute the
expectation value of the smeared Wick ordered time-diagonal component of the
stress-energy tensor, we follow the same procedure as in the proof of Lemma
2.2.3, that is, for any ζ ∈ C∞0,C(O),

ω(:Tµν :H(ζ)) =

∫
R4×R4

d4x d4x′D(x,x′)
µν (ω2(x, x′)−H(x, x′)) ζ(x)δ(x− x′),

where D
(x,x′)
µν is the same as in (2.15). Following the same procedure as for

ω(:φ2:H(ζ)) the sought result descends.

Let us make some observation on the above result.

1. As in the previous chapter, we have defined the Wick polynomials only
for smooth and compactly supported functions whose support does not
intersect the boundary of the region of interest. The reason is analogous
to the case of Casimir-Polder system, and it can be seen explicitly by
looking at the smeared quantities of the last lemma, which diverges as
z−4 and (d − z)−4. As a consequence the total energy, computed out of
the integral of the time-component of the stress-energy tensor diverges.

2. By Lemma 3.2.7 we have shown that our construction reproduces the
known results for a mass-less scalar field confined between two parallel
plates – [BD84, Ful89, SF02, BKMM09, Mil01]. At the same time, as a
new feature, it frames them in an intrinsic axiomatic theory. So we are
inclined to regard the divergence of the integrated energy density, men-
tioned in the above remark, as not a consequence of a bad or incomplete
regularization.

3. In the limit d→∞ we recover the case of the Casimir-Polder effect. This
is desirable of course, for consistency. At the same time it suggests the
idea that there are two kind of contributions: one constant, depending
on the length of the cavity d, and one depending on the coordinate z,
related saparately to the presence of the boundary in z = 0 and in z = d.
Following Fulling, [Ful89], we interpret the first contribution as due to
resonances of the ground state in the cavity. The second one shall be
ascribed to the fact that the boundary condition tends to suppress the
quantum fluctuations of the field in the immediate vicinity of the wall,
so that the equilibrium condition of the field in that region is not the
same as in the open space.
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3.2. Hadamard states for a Casimir system

4. The conformal coupling (ξ = 1
6
) cancels the contribution due to boundary

effects, described in the above remark. As a matter of fact, this removes
also the divergences at the boundary, allowing us to define the total
energy (at fixed time). This fact is quite misterious, but it allows us to
derive the Casimir effect. The total energy per unit area between the
walls at time t is, for ξ = 1

6
,

E(t) :=

∫ d

0

ω0(:T00(z):H)dz = − π2

1440d3
.

If the walls are themselves physical objects capable of motion, there
should be an attractive force between them,

F =
∂E

∂d
= − π2

480d4
.

The result is similar for the case of an electromagnetic field, where the Dirichlet
walls are replaced by perfectly conducting plates, depicted in [Cas48].
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Chapter 4
Algebraic quantum field theory
and the Casimir effect
in a wedge

Before starting our analysis of wedge-shaped geometry for the Casimir effect,
let us outline a brief history of the problem. The first analyses of the Casimir
effect between two intercepting planes for a quantum scalar field are due to
Dowker and Kennedy [Dow77, DK78] and to Deutsch and Candelas [DC79]
(who investigated this scenario also for an electromagnetic field). The early
interest was related mostly to the analysis of quantum field theory in presence
of a conical singularity [Dow78, Dow87a, Dow90] and for the close analogy with
the model of a straight and ultra tight cosmic string [Dow87b]. Nevertheless
many computations of two-point functions and Green operators apply in either
wedge, cones and cosmic string senarios. The interest in wedge-shaped regions
traces back to the older and more classical problem of diffraction around cones
and edges. The first rigorous example is due to Sommerfeld who analyzed the
diffraction into the shadow region behind a straight edge in two dimensions. In
a series of papers [Som96, Som97, Som01] he developed the use of the method
of images to solve the problem, advocating Riemann surfaces as a necessary
tool to apply the method in a more general situation. He only sketched a treat-
ment of the most general situation by means of an infinitely sheeted surface.
Carslaw [Car99, Car10, Car20] gave credit to such idea developing a theory of
“Diffraction of waves by a wedge of any angle” (1920). The idea of Sommer-
feld and the work of Carslaw fixed a standard in the approach to the wedge
problem, as we find in [Obe54, Sta67]. As far as the more general problem of
diffraction by sharp obstacles is concerned, many more examples were studied
by Friedlander [Fri58]. A cornerstone in such analysis is represented by the
work of Cheeger, who generalized it to elliptic differential operators in presence
of conical singularities using techniques based on functional calculus, involving
the Hankel transform [Che79, Che83]. This work led to a collaboration with
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4. Algebraic quantum field theory and the Casimir effect in a wedge

Taylor on the diffraction of waves by conical singularities [CT82a], which covers
the example of wedges [CT82b]. This approach is not related with the method
of images, yet it represents a reference point in the analysis of singularities for
the causal propagator. A last historical remark has to be done. Until [Dow77]
the infinitely sheeted Riemannian surface was considered just an artificial tool.
Related to its cosmological interest, Dowker regarded it as a Lorentzian man-
ifold, paving the way to its study in the context of quantum field theory on
curved backgrounds. Many approaches followed the one of Dowker, leading to
many complementary and equivalent results for Green functions, propagators
and stress-energy tensor – we remand the reader to [FTTW12] for an overview.
We postpone to the last section of this chapter the main references dealing with
wedges and Casimir effect, when we will draw comparisons with our results.
The Casimir effect in a wedge-shaped region found its place also in standard
textbooks of quantum field theory on curved backgrounds [BD84, Ful89].

A wedge-shaped region consists of a portion of Minkowski space bounded
by two infinite plates intercepting along an axis γ with an opening angle 0 <
α ≤ π. It manifests a cylindrical symmetry, so that it appears natural adopting
cylindrical coordinates along the axis,

(t, z, r, θ), t ∈ R, z ∈ R, r ∈ [0,∞), θ ∈ (0, α], such that {γ} ≡ {r = 0},
(4.1)

yielding the following local expression of the metric,

ds2 = −dt2 + dz2 + dr2 + r2dθ2. (4.2)

We then define the following region, which has a non empty boundary,

Wα := {x ∈ R4 | r ∈ [0,∞) , θ ∈ [0, α]},
∂Wα = {x ∈ R4 | r = 0 , θ = 0 or α}.

If we allow α = π or 2π, we reconstruct H4 and R4, modulo the identification
of θ = 0 with θ = 2π in the second case. We thus define the wedge-shaped
region as

Wα :=Wα \ {γ},
where we are excluding the edge of the corner, at r = 0. This choice is better
motivated later in this section. Notice that its boundary is ∂Wα = ∂Wα \ {γ}

We consider a real scalar field vanishing at the boundary ∂Wα whose dy-
namics is ruled by the Klein-Gordon equation. This scenario has several analo-
gies with a Casimir system, so we call it wedge-shaped Casimir system
(a shortened version is “wedge Casimir system”). As in the previous cases,
we call dynamical configurations for a wedge-shaped Casimir system the set
Swed(Wα) ⊂ C∞(Wα) of all smooth solutions of the boundary value problem:{

Pu = (�− ξR−m2)u, ξ ∈ R, m ≥ 0

u(z, 0) = 0 = u(z, α)
, (4.3)
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where we used the notation (t, z, r, θ) := (z, θ) – not to be confused with (x, z)
of the previous section. The scalar curvature on Minkowski spacetime or on any
of its subsets vanishes identically, but, as already stressed, the coupling term
ξR contributes to the variation of the Lagrangian with respect to the metric,
in the definition of the stress-energy tensor. The � operator in cylindrical
coordinates reads

− ∂2

∂t2
+

∂2

∂z2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
, (4.4)

which is defined on Wα, having excluded the singular point. Analogously to
H4 and Z, wedge-shaped regions, Wα, are not globally hyperbolic spacetimes
and we ask whether it is possible to adapt the previous approaches based on
the method of images to the study of wedge Casimir systems.

Method of images and Dowker space For particular values of the open-
ing angle, α = π

N
for any integer N ∈ N, a solution to the Dirichlet problem

(4.3) is given in terms of method of images applied along the angular coor-
dinate. Heuristically, if we consider perpendicular reflections through each
boundary plane, we realize that the series of reflections closes consistently and
the application of the method consists of a finite summation. For generic an-
gles α, the series of reflections closes in more than one turns around the axis,
or even it could not close at all, therefore the method of images does not apply.
Nevertheless, as pointed out throughout the work of Sommerfeld and Carslaw,
it is possible to circumvent such obstacle by considering a different spacetime
embedding a wedge-shaped region, such that the series of images is no longer
periodic.

We consider Minkowski spacetime deprived of {γ} and the cylindrical co-
ordinates given in (4.1), and we observe that the local form of the metric is
not influenced by the range of the angular coordinate θ. We regard thus the
angular coordinate as the restriction to (0, 2π] of a Cartesian coordinate s ∈ R.
We call Dowker space, W , the Lorentzian manifold with global coordinates,
(t, z, r, s), yielding a metric

ηW = −dt⊗ dt+ dz ⊗ dz + dr ⊗ dr + r2ds⊗ ds.

The nomenclature is historically motivated, after Dowker’s [Dow77], and ap-
peared recently in [FTTW12]. This space is connected and time-oriented, dif-
feomorphic to R3×(0,∞) and it is ultrastatic, being N = R2×(0,∞) 3 (z, r, s)
the leaf of the timelike foliation (we refer to the notation in Defition 1.2.6).

The wedge region, in which we are interested, is defined as the region for
which s ∈ [0, α] and it presents close analogies with the parallel plates of
Casimir systems, in particular it is possible to apply the method of images
because θ is no longer periodic. To adapt the analysis of Chapter 3 to wedge-
shaped Casimir systems, however, we shall start from the theory of a Klein-
Gordon field on Dowker space. This is the goal of the next section.
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4. Algebraic quantum field theory and the Casimir effect in a wedge

Remark 4.0.1. So defined, Dowker space is an open manifold. The choice of
excluding the boundary ∂W ≡ {r = 0} from the definition of W is physically
motivated choice. The closure W is a conic spacetime, since it has a conical
singularity at the boundary. In other words, at r = 0 it produces a delta-like
singularity in the curvatures invariants of the manifolds [FS95]. Regarding
Wα as a subregion of Dowker space, thus, the choice of removing r = 0 is
tantamount to avoiding spacetime singularities, which appear unphysical in
the context of Casimir effect, where subregions of Minkowski spacetime are
considered. A different comment would be made in the context of cosmological
applications, as cosmic strings – see the historical overview.

4.1 Scalar field theory on Dowker space

Aiming at studying Klein-Gordon equation on Dowker space, we shall notice
that, as in the previous cases, a Cauchy problem is not well posed since W
is not globally hyperbolic. This can be argued by the criterion in Proposi-
tion 1.2.1, since W ultrastatic and R2× (0,∞) is not geodesically complete at
the boundary. A boundary condition is needed and, in the present context,
it appears natural to prescribe Dirichlet boundary conditions. This time the
method of images will not help at all, since we miss a larger space where reflec-
tions would take place. The way we follow is then the most direct: We shall
adapt the main results of normally hyperbolic operators on globally hyperbolic
spacetimes to the case at hand. We will see how boundary conditions make
up for the missing global hyperbolicity of the background.

Let us, thus, consider the following{
Pu = (�− ξR−m2)u, ξ ∈ R, m ≥ 0

u|x→∂W = 0
, (4.5)

where, having excluded the singular boundary, the Ricci scalar R is everywhere
vanishing, but it plays a role in the definition of the stress-energy tensor, as
already remarked. The D’Alambert operator � is of the form (4.4),

− ∂2

∂t2
+

∂2

∂z2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂s2
, (4.6)

As next step we identify kinematical and dynamical configurations1.

Definition 4.1.1. We call space of kinematical configurations for the
Klein-Gordon field on Dowker spacetime the space

CD(W ) := {f ∈ C∞(W ) | lim
x→∂W

f(x) = 0, where x = (t, z, r, s)}.

1From now on, a D superscript or subscript will mean “Dowker”.
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4.1. Scalar field theory on Dowker space

As for the kinematical configurations in Minkowski spacetime, we consider
CD(W ) endowed with the compact-open topology and we consider its topolog-
ical dual C ′D(W ). We call the dual pairing 〈·, ·〉W : C ′D(W )× CD(W )→ C.

In order to characterize support prescriptions for kinematical configura-
tions, let us denote causal structures of W as JW± (x) and IW± (x) for any x ∈ W .
We define the space of kinematical configurations with compact support as fol-
lows,

CD0 (W ) := {f ∈ CD(W ) | supp(f) ⊂ K for some compactK ⊂ W}.

Accordingly, we can give the notion of spacelike compact configurations,

CDsc(W ) := {f ∈ CD(W ) | supp(f) ⊂ JW+ (K)∪JW− (K) for some compactK ⊂ W}.

The definition of timelike compact functions requires a further refinement.

Definition 4.1.2. A function f ∈ CD(W ) is pastlike (futurelike) compact if

supp(f) ∩ JW− (x) (supp(f) ∩ JW+ (x)) is either compact or empty for all x ∈
W . We denote the set of such functions CDpc(W ) (CDfc(W )). Timelike compact
functions are defined to be elements of CDtc (W ) = CDpc(W ) ∩ CDfc(W ).

Solutions to (4.5), i.e., dynamical configurations, are elements of SD(W ) ⊂
CD(W ). We call consistently SDsc(W ) ⊂ CDsc(W ) the space of spacelike compact
configurations.

Having completed the zoo of functions, let us start our analysis. Recall
that neither the spacetime is globally hyperbolic, nor we can rely on a con-
structive procedure such as the method of images. The first goal is thus to
adapt the main results of normally hyperbolic operators on globally hyperbolic
backgrounds to the present situation.

4.1.1 Klein-Gordon operator on Dowker spacetime

We start constructing advanced and retarded operators for (4.5). According
to Remark 1.2.3, we look for E±D ∈ D′(W ×W ) such that

PE±D = δ (4.7)

defined respectively for t > t′ and t′ < t, where δ is the Dirac delta. This non-
homogeneous equation can be solved by standard methods of partial differential
equations, based on the Fourier and Hankel tranforms. For the remainder, we
will restrict our attention to the massless case, but all considerations extend to
the massive case modulo more complicated expressions. We are thus left with(
− ∂2

∂t2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂s2
+

∂2

∂z2

)
E±D =

1

r
δ(t−t′)δ(z−z′)δ(r−r′)δ(s−s′).

Applying Fourier transform along t, z and s, it turns out(
∂2

∂r2
+

1

r

∂

∂r
+ (ω2 − k2)− ν2

r2

)
Ê±D(r, r′; ξ) =

δ(r − r′)
r

(4.8)
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where ξ = (ω, k, ν) and where Ê±D is given by

Ê±D(r, r′; ξ) =

∫
R3

d3xE±D(r, x, r′, x′) e−iξ·(x−x
′),

with x = (t, z, s) and ξ ·x := −ωt+kz+νs. Notice that the two expressions of

E±D are translational symmetric in x and x′, i.e. they depend on the difference
x− x′. Equation (4.8) can be further expanded via an Hankel transform,

Hν(g)(λ) =

∫ ∞
0

dr r g(r)Jν(λr) ∀g ∈ L2(0,+∞), λ ∈ R

which is defined in L2((0,∞), λ dλ) for any ν ≥ −1/2. We can exploit the
completness relation, [Wat22],∫ ∞

0

dλ λ Jν(λr)Jν(λr
′) =

δ(r − r′)
r

,

and

Hν [Pνg](λ) =

∫ ∞
0

dr r

(
∂2

∂r2
+

1

r

∂

∂r
− ν2

r2

)
g(r)Jν(λr)

= −λ2Hν [g](λ),

to write

E±D(r, x, r′, x′) =

∫
R3

d3ξ

∫ ∞
0

dλ λ Ẽ±D(λ, ξ)J|ν|(λr)J|ν|(λr
′)e−iξ·(x−x

′), (4.9)

Ẽ±D(λ, ξ) being

Ẽ±D(λ, ξ) =
1

ω2 − (λ2 + k2)
. (4.10)

The absolute value in the order of the Bessel functions implements Dirichlet
boundary condition E±D = 0 both at r = 0 and r′ = 0, since for any ν > 0,
Jν(0) = 0. We first integrate (4.9) with respect to the temporal momentum,

and we observe that Ẽ±D(λ, ξ) has two poles. The integral can be performed
using standard complex analysis techniques. We need thus to fix a suitable of
integration in the complex plane, the choice of which leads to different forms
for the bisolution to (4.7). Advanced (t′ > t) and retarded (t′ < t) operators
are defined by the two choices indicated in Figure 4.1 – [Ful89, §4].

We thus have:

E±D(r, x, r′, x′) = (4.11)

lim
ε→0+

1

4π2

∫
R3

d3ξ

∫ ∞
0

dλ λ
e−iξ·(x−x

′)

(ω ± iε)2 − ω′2
J|ν|(λr)J|ν|(λr

′)

= lim
ε→0+

1

4π2

∫
R2

dν dk

∫ ∞
0

dλ λ
sin(ω′(t− t′ ∓ iε))

ω′
× (4.12)

×J|ν|(λr)J|ν|(λr′)e−i(k(z−z′)+ν(s−s′)) (4.13)

where ω′2 = λ2 + k2.
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4.1. Scalar field theory on Dowker space

Reω

Imω
t′ > t

ω0−ω0

Reω

Imω
t′ < t

ω0−ω0

Figure 4.1: Contours of integration; ω2
0 = λ2 + k2.

Lemma 4.1.1. The two integrals, (+) and (−), in (4.13) defines respectively
two operators

E±D : CD0 (W )→ CDsc(W )

which enjoy the following properties:

(i) P (E±Df) = E±D(Pf) = f , for all f ∈ CD0 (W ),

(ii) supp(E±D(f)) ⊆ JW± (supp(f)), for all f ∈ CD0 (W ).

Proof. Property (i) is given by construction, by (4.7) and the regularization
prescriptions in the integral kernels. Thus, we need to prove that, for all
f ∈ CD0 (W ), E±D(f) ∈ CD(W ). We apply Hörmander’s theorem on partial
evaluation of bidistributions, [Hör90, Th. 8.2.12]. By the argument in Ap-
pendix B, we can write that

WF (E±D) =

{(x, x′, kx,−kx′) ∈ T ∗(W ×W ) \ {0} | (x, kx) ∼D (x′, kx′), kx is lightlike} ,

where ∼D entails that x and x′ are connected via a lightlike geodesic γ, possibly
reflected at the boundary, such that kx is coparallel and cotangent to γ at x
and kx′ is the parallel transport of kx from x to x′ along γ. Since WF (E±D) does
not contain any point of the form (x, x′, kx, 0) ∈ T ∗(W ×W ) \ {0}, by [Hör90,
Th. 8.2.12] we can conclude that WF (E±D(f)) = ∅ for any f ∈ C∞0 (W ), which
entails E±D(f) ∈ CD(W ). Condition (ii) can be inferred by the general theory
of the Klein-Gordon operator P on globally hyperbolic spacetimes. By explicit
computations – see Appendix B – it turns out that, fixing x′, E±D are supported
only in JW± (x′), and the same holds true inverting the role of x and of x′. This
proves the support properties in (ii).

Let 〈·, ·〉W denote the integral pairing with respect to the measure dµD =
rdr dz ds dt on Dowker space. From now on we exploit selfadjointness of the
operator P on CD0 (W ),

〈Pf, f ′〉W = 〈f, Pf ′〉W , for any f, f ′ ∈ CD0 (W ),

which stems from the Dirichlet boundary conditions in (4.5).
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4. Algebraic quantum field theory and the Casimir effect in a wedge

Lemma 4.1.2. For any f , g ∈ CD0 (W ), it holds that

〈E±Df, g〉W = 〈f, E∓Dg〉W

Proof. On account of the properties of E±D, in Lemma 4.1.1, we can write

〈E±Df, g〉W =

∫
W

dµD (E±Df)P (E∓Dg)

=

∫
W

dµD P (E±Df) (E∓Dg)

= 〈f, E∓Dg〉W

where the partial integration in the second equation is justified by the fact that
supp(E±Df) ∩ supp(E∓Dg) is compact and E±Df and E∓Dg vanish for r, r′ = 0,
according to Dirichlet boundary conditions.

The causal propagator of the Klein-Gordon operator in (4.5) on Dowker
spacetime is ED :=E+

D − E
−
D, such that

(i) ED : CD0 (W )→ SDsc(W ),

(ii) P (EDf) = ED(Pf) = 0, for all f ∈ CD0 (W ).

We are now ready to prove the main result of this section, which provides
a first characterization of spacelike compact dynamical configurations.

Proposition 4.1.3. The sequence of linear maps

0 −→ CD0 (W )
P−→ CD0 (W )

ED−→ CDsc(W )
P−→ CDsc(W )

is exact. The causal propagator ED induces the following isomorphism,

CD0 (W )

P (CD0 (W ))
' SDsc(W ). (4.14)

Proof. To prove exactness at the first step, we need to prove that P : CD0 (W )→
CD0 (W ) is injective. Equivalently, we prove that kerP = {0}. Consider an f ∈
CD0 such that Pf = 0. Then, by the properties of E+

D, f = E+
D(Pf) = E+

D0 = 0.
This proves injectivity of P . Exactness at the second arrow means to prove that
ImP = KerED. Let f ∈ CD0 (W ) such that EDf = 0. Thus, E+

Df = E−Df := g.
We shall now show that g ∈ CD0 (W ). Observe that g ∈ CD(W ), by Lemma
4.1.1, and

supp(g) =
(
supp(E+

Df) ∩ supp(E−Df)
)
⊂ JW+ (supp(f)) ∩ JW− (supp(f)),

which is compact everywhere, and vanishing at the boundary ∂W . We can
conclude therefore that g ∈ CD0 (W ). Thus, it holds that Pg = P (E±Df) =
f , that means f ∈ P (CD0 (W )). Exactness at the third arrow entails that
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4.1. Scalar field theory on Dowker space

ImED = KerP . Consider u ∈ CDsc(W ) such that Pu = 0. We assume that
there exists K ⊂ W , compact but at the boundary, such that supp(u) ⊂
IW+ (K)∪ IW− (K). We thus define the partition of unity χ ∈ C∞(W ), such that
χ = 1 on IW+ (K) ∪ IW− (K) \ IW− (K) while χ = 0 on IW+ (K) ∪ IW− (K) \ IW+ (K).
Hence it holds u = χu+(1−χ)u and it follows that P (χu) = −P ((1−χ)u) :=h.

By construction supp(h) ⊂ JW+ (K)∩JW− (K) and we see that h ∈ C∞0 (W ). On
account of Lemma 4.1.2 and of the self-adjointness of P , we have that for any
ϕ ∈ CD0 (W ) ∫

W

dµD ϕE
+
D(P (χu)) =

∫
W

dµD (E−Dϕ) (P (χu))

=

∫
W

dµD P (E−Dϕ)χu

=

∫
W

dµD ϕχu,

thus, by Riesz theorem, we can conclude that E+
D(h) = χu. Similarly we can

prove that E−D(h) = (1− χ)u. In conclusion, EDh = E+
Dh−E

−
Dh = u and u is

proved to be the image of h. To summarize, we have that

0 −→ CD0 (W )
P−→ CD0 (W )

ED−→ SDsc(W ) −→ 0,

which yields the isomorphism in (4.14).

Remark 4.1.1. The proofs of Lemma 4.1.2 and Theorem 4.1.3 follows slavishly
those of [BGP07, Lem. 3.4.4] and [BGP07, Th. 3.4.7], with the unique dif-
ference that, whenever in the original proof it is used compactness of double
cones, here we use the Dirichlet boundary conditions imposed at ∂W .

The previous proposition provides a characterization of spacelike config-
urations. In order to have control of all smooth solutions we need to prove
an extension to timelike compact initial data. It descends from the following
proposition.

Proposition 4.1.4. There exist unique extensions of E+
D and E−D,

E
+

D : CDpc(W )→ CDpc(W ), E
−
D : CDfc(W )→ CDfc(W ), (4.15)

such that, for all f ∈ CDpc(W ),

P (E
+

Df) = E
+

D(Pf) = f, and supp(E
+

Df) ⊂ JW+ (supp(f)),

and such that, respectively, for all f ∈ CDfc(W ),

P (E
−
Df) = E

−
D(Pf) = f, and supp(E

−
Df) ⊂ JW− (supp(f)).
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4. Algebraic quantum field theory and the Casimir effect in a wedge

Proof. The proof proceeds as in [Bär15, Th. 3.8], adapting to the present

situation the definition of the pointwise action of E
±
D. Fix a point x ∈ W and

define χ ∈ C∞0 (W ), such that χ ≡ 1 in JW∓ (x) ∩ supp(f) and vanishes on the
complement. We define

(E
±
Df)(x) := (E±D(χf))(x).

Observe that it is well-defined since χf ∈ CD0 (W ). The remainder of the proof
follows on account of self-adjointness of P .

The extensions of the advanced and retarded operators yields

ED :=E
+

D − E
−
D : CDtc (W )→ CD(W ),

such that, for all f ∈ CDtc (W ),

P (EDf) = ED(Pf) = 0.

As a by-product we obtain a full characterization of the space of smooth solu-
tions for (4.5).

Corollary 4.1.5. The causal propagator ED induces the following isomor-
phism of topological vector spaces,

CDtc (W )

P (CDtc (W ))
' SD(W ). (4.16)

Remark 4.1.2 (Notation). Being interested in the characterization of the ob-
servables for all smooth configurations, from now on, with a slight abuse of
notation, we will denote the extended propagators E±D and ED.

4.1.2 Algebraic quantization of a scalar field on Dowker
space

In complete analogy with the theory on Minkowski spacetime, we construct
the off-shell algebra of observables associated to the (massless) Klein-Gordon
scalar field by introducing regular functionals on CD(W ) as well as suitable
product.

Definition 4.1.3. We call regular functional on CD(W ) any F : CD(W )→
C such that for all k ≥ 1 and for all u ∈ CD(W ), F (k)[u] ∈ C∞0 (W ) and if
only finitely many functional derivatives do not vanish. We indicate this set
as FD0 (W ).

We endow FD0 (W ) with a ?-product (algebra structure), ?D : FD0 (W ) ×
FD0 (W )→ FD0 (W ), defined by:

(F ?D F
′) (u) = (M◦ exp(iΓED)(F ⊗ F ′)) (u). (4.17)
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4.1. Scalar field theory on Dowker space

HereM stands for the pointwise multiplication, i.e.,M(F⊗F ′)(u)
.
= F (u)F ′(u),

whereas

ΓED
.
=

1

2

∫
W×W

dµD(x) dµD(x′)ED(x, x′)
δ

δu(x)
⊗ δ

δu(x′)
,

where ED(x, x′) is the integral kernel of the causal propagator. The exponential
in (4.17) is defined intrinsically in terms of the associated power series and,
consequently, we can rewrite the product also as

(F ?D F
′) (u) =

∞∑
n=0

in

2nn!
〈F (n)(u), E⊗nD (F ′(n))(u)〉W , (4.18)

where 〈, 〉W stands for the pairing on W built of out integration. The 0-th
order is defined as the pointwise multiplication, that is 〈F (0)(u), F ′(0)(u)〉 .

=
F (u)F ′(u). In view of the properties of ED, (4.18) defines a ?-product on
regular functionals. Endowing FD0 (W ) with the usual ∗-operation induced by
complex conjugation, we can eventually define

Definition 4.1.4. We call AD(W ) :=
(
FD0 (W ), ?D

)
the off-shell ∗-algebra

of a scalar field on Dowker space endowed with complex conjugation as ∗-
operation.

The off-shell algebra of observables is generated by linear functionals Ff :
CD(W )→ C such that

u 7→ Ff (u) =

∫
W

dµD u(x)f(x) ∀u ∈ CD(W ) (4.19)

for any f ∈ CD0 (W ) (up to the completion of CD0 (W )×CD0 (W ) as CD0 (W ×W )).
With the similar techniques mentioned in 1.3.1 for the Minkowskian case, it
turns out that:

• OD(W ) separates CD(W ), that is, for every pair of different configura-
tions u, u′ ∈ CD(W ), there exists a linear observable Ff ∈ AD(W ) such
that Ff (u) 6= Ff ′(u

′);

• OD(W ) is non redundant CD(W ), that is for every pair of linear ob-
servables Ff , Ff ′ ∈ AD(W ), there exists at least one configuration u ∈
CD(W ) such that Ff (u) 6= Ff ′(u).

In order to encode dynamics at the level of observables, we proceed by
quotienting the off-shell functionals with the ideal ID(W ) generated by linear
functionals of the form (4.19) with f = P (h), for h ∈ CD(W ). The ?-product
descends to the quotient, as it can be proved at the level of generators: For

any [f ], [f ′] ∈ CD0 (W )

P (CD0 (W ))
, consider two representatives, respectively f and f ′.
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4. Algebraic quantum field theory and the Casimir effect in a wedge

Being h ∈ CD0 (W ), for any u ∈ SD(W ) we write

(Ff ?D Ff ′+Ph)(u) = Ff (u)Ff ′+Ph(u) +
i

2
〈f, E(f ′ + Ph)〉W

= Ff (u) ·
∫
W

dµD u(x) (f ′(x) + Ph(x)) +
i

2
〈f, Ef ′〉W

= Ff (u) ·
∫
W

dµD u(x)f ′(x) +
i

2
〈f, Ef ′〉W

= (Ff ?D Ff ′)(u),

where the third equality holds since P is self-adjoint due to boundary condi-
tions.

We can therefore define, in its full glory, the following

Definition 4.1.5. The on-shell ∗-algebra of a scalar field on Dowker space
is the algebra

ADon(W )
.
=
AD(W )

ID(W )
.

On generators, this yields the following functionals,

u 7→ F[f ](u) =

∫
W

dµD u(x)f(x), ∀u ∈ CD(W ), (4.20)

for any f ∈ CD0 (W )

P (CD0 (W ))
and for any f ∈ [f ]. On account of Corollary 4.1.5, we

can redefine them as F[f ] :
CDtc(W )

P (CDtc(W ))
→ C such that

[α] 7→ F[f ](u) =

∫
W

dµD (Eα)(x)f(x), ∀[α] ∈ CDtc (W )

P (CDtc (W ))
and α ∈ [α]

We can introduce the space of classical observables OD(W ), spanned by the
functionals (4.20) and endow it with a bilinear form,

σD : OD(W )×OD(W )→ R, σD(F[h], F[h′]) = 〈f, ED(f ′)〉W , (4.21)

which is proved to be symplectic analogously to Proposition 1.2.4. It is also
true that OD(W ) separating and non-redundant for dynamical configurations,
SD(W ).

Before concluding the analysis of the algebra of observables for the scalar
field on Dowker space, we test its structural properties, in order to check its
compatibility with the axiomatic framework of local quantum field theory. As
in the previous cases, the question arises from the observation that we are work-
ing in a different framework then the usual one of Cauchy problems on globally
hyperbolic spacetimes. On Dowker spacetime there is a further complication
with the timeslice axiom, since we miss in principle the possibility to define a
timeslice in terms of restriction of a Cauchy surface of Minkowski spacetime.
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4.1. Scalar field theory on Dowker space

Nonetheless we can bypass such obstruction. As a first step, we define a times-
lice on Dowker space as an open and geodesically convex neighbourhood of any
spacelike hypersurface of codimension one which restricts to Cauchy surface of
Minkowski spacetime on the region R4 ⊂ W , i.e., for s ∈ [0, 2π).

Proposition 4.1.6. The algebra ADon(W ) is causal and fulfils the timeslice
axiom.

Proof. The property of an algebra being causal is a consequence of the support
properties of the causal propagator, in particular its action on CD0 (W ). To
check the time-slice axiom we shall adapt the procedure employed in the proof
of Lemma 2.1.5 and the proof of Proposition 4.1.3. Let us consider a spacelike
hypersurface of codimension one Σ̃ ⊂ W , such that

Σ̃ := {(t, z, r, s) ∈ W | t ≡ t0, ∀t0 ∈ R},

and observe that it restricts to a Cauchy surface for Minkowski for s ∈ [0, 2π).

Consider thus V , any neighbourhood of Σ̃ and define a smooth cutoff function
χ ∈ C∞(W ) such that χ = 1 on JW+ (V) \ V and χ = 0 on JW− (V) \ V . Let
us consider any [f ] ∈ OD(W ) and any of its representatives which we indicate
with f . Define the new function

f̃
.
= f − P

(
E−D(f) + χED(f)

)
,

and notice that, per construction and on account of the support properties of
both E±D and χ, f̃ ∈ CD0 (W ) and it is a representative of [f ].

4.1.3 Hadamard states and regularization

Having constructed the algebra of observables, we focus on states. An algebraic
state is than defined, as in Section 1.4, to be any continuous linear functional
ω : AD(W ) → C which is positive and normalized. As discussed in Section
1.4, we must select a class of states which is suitable to describe a physical
state. To this avail, in analogy with the Definitions 2.2.1 and 3.2.1, we adapt
the notion of Hadamard states to Dowker space.

Definition 4.1.6. A state ω : AD(W ) → C is of Hadamard form if it is
normalized, positive, quasi-free and, if, for any globally hyperbolic region O ⊂
W , the restriction of ω to AD(O) is such that there exists ω2 ∈ D′(O × O)
whose wavefront set is

WF (ω2) = {(x, x′, kx,−kx′) ∈ T ∗(O ×O) \ {0} | (x, kx) ∼ (x′, kx′), kx . 0} ,

where ∼ entails that x and x′ are connected via a lightlike geodesic γ such
that kx is coparallel and cotangent to γ at x and kx′ is the parallel transport
of kx from x to x′ along γ. The symbol . entails that kx is a future pointing
covector. We also require that, for all Fh, Fh′ ∈ AD(O),

ω (Fh ?D Fh′) = ω2(h, h′), h, h′ ∈ C∞0 (O).
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4. Algebraic quantum field theory and the Casimir effect in a wedge

It turns out straightforwardly that states on AD(W ) descend to counterparts
on the on-shell algebra ADon(W ), provided that ω2 ∈ D′(W ×W ) is a bisolution
of (4.5),

ω2(f, Pf ′) = ω2(Pf, f ′) = 0, ∀f, f ′ ∈ CD0 (W ), (4.22)

with the antisymmetric part fixed by the causal propagator,

ω2(h, h′)− ω2(h′, h) = ED(h, h′), ∀f, f ′ ∈ CD0 (W ),

where ED(x, x′) is the integral kernel of the causal propagator.
It is not guaranteed in general that a two-point function ω2 ∈ D′(O × O)

being of Hadamard form for any O ⊂W , extends to a state on AD(W ). Such
issue in particular prevents us from inducing Hadamard states for Dowker
system (in the sense of Definition 4.1.6) from Hadamard states on Minkowski
(in the sense of Definition 1.4.3), even though R4 ⊂ W . In this thesis we
do not provide any criterion for the extendibility of local two-point functions
of Hadamard. Yet we provide the explicit example of the ground state for a
massless scalar field. We construct it directly from the general definition in
Section 4.1.1, as the positive frequency bisolution (4.22). We start from(

− ∂2

∂t2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂s2
+

∂2

∂z2

)
ω2(r, x, r′, x′) = 0,

where we use the same notation on Section 4.1.1, x := (t, z, s). By means of
separation of variables, we have

ω2(r, x, r′, x′) =

∫
R3

d3ξ

∫ ∞
0

dλ λ ω̃2(λ, ξ)J|ν|(λr)J|ν|(λr
′)e−iξ·(x−x

′),

which can be integrated in the complex plane. Selecting positive frequencies
is tantamount at choosing a contour of integration as in Figure 4.2 – the two-
point function defined by this choice is often dubbed as Wightman function,
see [Ful89, §4]. The integration yields,

ω2(r, x, r′, x′) =

lim
ε→0+

1

4π2

∫
R2

dν dk

∫ ∞
0

dλ λ
e−iω

′(t−t′−iε)

ω′
J|ν|(λr)J|ν|(λr

′)e−i(k(z−z′)+ν(s−s′))

with ω′2 = λ2 + k2, which can be evaluated explicitly – full calculations in
Appendix B,

ω2(x, x′) = − lim
ε→0+

1

2π2rr′ sinhχε

χε
χ2
ε + θ2

, (4.23)

where, by means of analytic continuation,

2rr′ coshχε
.
=
(
−(t− t′ − iε)2 + r2 + r′2 + (z − z′)2

)
. (4.24)

These computations agree with [FTTW12] and are consistent with the conical
case treated in [Dow77]. We recall that the state defined by (4.23) is a ground
state thanks to the argument in [SV00]. In addition, by the argument reported
in Appendix B, we can reasonably conjecture that it is of Hadamard form in
the sense of Definition 4.1.6.
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Reω

Imω

ω0−ω0

Figure 4.2: Contour of integration; ω2
0 = λ2 + k2.

Remark 4.1.3. As pointed out in [FTTW12], it is possible to obtain the Dowker
two-point function in an alternative way. We find (the integral kernel of) the
Fourier expansion in θ of the two point function of the Poincaré vacuum (3.13),
in cylindrical coordinates:

ω0
2(x, x′) = lim

ε→0+

1

(2π)2

1

2rr′
1

coshχε − cos(θ − θ′)
(4.25)

= lim
ε→0+

1

(2π)2

1

2rr′ sinhχε

+∞∑
n=−∞

e−χε|n|eiθn, (4.26)

where χε is defined as in (4.24). It holds the identity

sinhχε
coshχε − cos θ

=
+∞∑

n=−∞

e−χε|n|−inθ

being a geometric series. The two-point function (4.23) agrees with (4.25)
provided that we substitute summation (in n) with an integration in dν over
R. Apparently this seems to be a mere escamotage, but it is motivated by
the definition of gruond state to be invariant under all isometries and by the
observation that by the extension of the angular coordinate we are promoting
a rotational degree of freedom (related to the Fourier series) to a translational
one (related to the Fourier transform). Furthermore, this simple approach
could suggest a general way to induce states from Minkowski spacetime to
states for Dowker. Yet, even though the extension of modes does preserve
the Hadamard form of any restriction of the two point function of globally
hyperbolic regions ofW , one should already prove that the states extends to the
whole algebra AD(W ). This aspect should be object of further investigations.

4.2 Method of images and the wedge-shaped

geometry

Having at hand the algebra of observables for the massless scalar field on
Dowker space, we can apply the method of images to construct the quantum
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4. Algebraic quantum field theory and the Casimir effect in a wedge

theory of wedge-shaped Casimir system. In complete analogy with the case of
Casimir system, we call

Nwed : CD0 (W )→ CD(W )

Nwed(f)(z, s) =
∞∑

n=−∞

(f(z, s+ 2nα)− f(z,−s+ 2nα)) ,

which is the counterpart of N defined by (3.4). Accordingly it is surjective on
a subspace of CD(W ), of functions 2α-periodic in s. Actually we can adapt the
entire construction of Chapter 3 to the present case just by replacing all spaces
of functions on R4 as well as then support prescriptions with the respective
counterparts on W :

C∞(R4) 7→ CD(W ), C∞0 (R4) 7→ CD0 (W ), (4.27)

C∞sc (R4) 7→ CDsc(W ), C∞tc (R4) 7→ CDtc (W ). (4.28)

In this way we can construct off-shell and on-shell algebra of observables,
Awed(Wα) and Awedon (Wα), define Hadamard states with the distinguished class
of image states and eventually discuss Wick polynomials and regularization of
stress energy tensor. We do not present the entire construction, since it would
follow slavishly from Section 3.1.

As already discussed, it is reasonable to require consistency between any
localization of Awed(Wα) and AKG(R4) in globally hyperbolic open regions of
Wα. Proposition 3.1.4 can be proved equivalently for wedge Casimir systems,
but it does not represent the sought property, since we aim at relating such
systems with their physical embedding space, that is Minkowski spacetime.
We thus need to prove the following

Proposition 4.2.1. For any globally hyperbolic open region O ⊂ Wα, there
exists a ∗-isomorphism implemented by the identity map between AKG(O) and
Awed(O)

.
= Awed(Wα)

∣∣
O.

Proof. We show first that the following chain of isomorphisms is implemented
by the identity map at any step, for any globally hyperbolic O ⊂Wα,

Awed(Wα)
∣∣
O ' A

D(O) ' Awed(Wπ)
∣∣
O ' A

CP (O). (4.29)

The statement, thus, follows by Proposition 2.1.5. The proof of the first iso-
morphism is analogous to Proposition 3.1.4, mutatis mutandis, as well as the
second one, since O ⊂ Wα ⊂ Wπ. The last isomorphism follows straightfor-
wardly by the observing that Awed(Wπ) ' ACP (H4), since they are generated
by the same labelling space and the two causal propagators EH4 and Ewed
coincide, as can be directly checked by integral kernels.

Turning our attention to states, we shall give a definition of Hadamard
states which adapts to the wedge-shaped geometry, combining Definitions 4.1.6
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4.2. Method of images and the wedge-shaped geometry

and 3.2.1. We can use the method of images to induces explicit examples,
adapting to the present case the analysis of Section 3.2 and in particular Propo-
sition 3.2.3. In analogy with Casimir systems, the method of images induces
states defined on a ∗-subalgebra of observables localized out of the boundary,
i.e., on W̊α.

In order to build a connection with the existing literature on the Casimir
effect on wedge geometries, we report the example of the ground state for the
massless case. The application of the method of images to the ground state
for Dowker space, (4.23), yields the following,

ω2(x, x′) = − lim
ε→0+

1

2παrr′ sinhχε
×

×
(

sinh(2π
α
χε)

cosh(2π
α
χε)− cos 2π

α
(θ − θ′)

−
sinh(2π

α
χε)

cosh(2π
α
χε)− cos 2π

α
(θ + θ′)

)
, (4.30)

recalling that 2rr′ coshχ = −(t − t′ − i0)2 + (z − z′)2 + r2 + r′2. Formula
(4.30) is the integral kernel of ω2 ∈ D′(W̊α × W̊α), the two-point function of a
state on Awedon (W̊α). This state is of Hadamard form, as a consequence of what
conjectured in Proposition 3.2.5. It is also a ground state, since the method
of images does not modify positivity of frequencies in (4.23). Equation (4.30)
agrees with previous results, in particular [DC79, FTTW12, FP14c].

Remark 4.2.1. As it has been discussed in Section 4.1.3, we have not a criterion
for constructing Hadamard states for Klein-Gordon field on Dowker spacetime.
Moreover, in an operative perspective, we rather ought to induce states for a
wedge-shaped Casimir system from states for Klein-Gordon field on Minkowski
spacetime. At this regard, Remark 4.1.3 offers an interesting suggestion for a
two-step procedure hitting the target. Yet, untill now, this is still in the realm
of congectures.

4.2.1 Extended algebra and stress-energy tensor

Having a notion of Hadamard states, we aim at defining an extended algebra
of Wick polynomials. For any globally hyperbolic region O ⊂ Wα an algebra
of extended observables, Awedµ (O), is given and it is ∗-isomorphic to AKGµ (O),
analogously to Casimir-Polder and Casimir systems. Accordingly, the extended
algebrasAwedµ (O) can be realized as part of a global extended algebraAwedµ (Wα)
only after a suitable deformation, which yields a different definition of the
regularized Wick polynomials. Notwithstanding, we are interested to local
extensions, in order to preserve the usual regularization and make contact
with standard results in literature. In particular, we make sense of the stress-
energy tensor observable, bridging the gap with the previous analyses of the
Casimir effect.

The classical stress-energy tensor for a massless scalar field in a wedge-
shaped region of Minkowski spacetime (coupled by ξ with the scalar curvature
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R) is

Tµν(x) = ∂µφ(x)∂νφ(x)− 1

2
gµν(x)∂ρφ(x)∂ρφ(x)+ξ (gµν(x)∇ρ∂

ρ −∇µ∂ν)φ
2(x),

where the covariant derivatives are induced by the cylindrical metric (4.2),
such that,

∇t∂t = ∂2
t , ∇z∂z = ∂2

z , ∇r∂r = ∂2
r ,

∇θ∂θ = ∂2
θ + r∂r, ∇r∂θ = ∇θ∂r = ∂r∂θ −

1

r
∂θ.

After a long and tedious computation, we have the following,

Proposition 4.2.2. Let us consider a massless, real scalar field and let ω0 :
Awed(W̊α)→ C be the quasi-free state whose two-point function is given by the
integral kernel (4.30) and it is built with the image method from the Poincaré
vacuum. Then, the expectation value of the unsmeared squared field turns out
to be

ω0(:φ2:H(x)) =
1

48α2r2

(
1− α2

π2

)
− 1

16α2r2 sin2
(
πθ
α

) , (4.31)

where x = (t, z, r, θ), and the expectation values of the unsmeared components
of the stress-energy tensor turn out,

ω0(:Ttt:H(x)) = −ω0(:Tzz:H(x)) = − 1

1440α2r4

(
π2

α2
− α2

π2

)
+

(
ξ − 1

6

)
32α2r4

{
8

3

(
1− α2

π2

)
− 12

sin2(πθ
α

)

[
π2

α2

sin2(πθ
α

)
− 2

3

π2

α2
+

2

3

]}
,

ω0(:Trr:H(x)) =
1

1440α2r4

(
π2

α2
− α2

π2

)
+

(
ξ − 1

6

)
32α2r4

{
4

3

(
1− α2

π2

)
+

12

sin2
(
πθ
α

) [ π2

α2

sin2
(
πθ
α

) − 2

3

π2

α2
− 1

3

]}
,

ω0(:Trθ:H(x)) = ω0(:Tθr:H(x)) = −
(
ξ − 1

6

)
8α2r2

3

sin
(
πθ
α

) d
dθ

1

sin
(
πθ
α

) ,
ω0(:Tθθ:H(x)) = − 3

1440α2r4

(
π2

α2
− α2

π2

)
−
(
ξ − 1

6

)
8α2r2

(
1− α2

π2
− 3

sin2
(
πθ
α

)) .
These results agree with those one derived by Saharian and Tarloyan by

means of the point-splitting regularization in [ST05]. It agrees also with former
results for the case of conformal coupling ξ = 1

6
, in [DC79, BD84, BL96].

A computation of the general coupling limited to the tt-component is also
available in [RS02]. A last remarkable result is that of [FP14c, NLS02], which
has the same result for the full tensor with generic coupling in a different
regularization scheme, namely that of the local ζ-function.

Let us comment about the structure of the rather complicated stress energy
tensor.
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4.2. Method of images and the wedge-shaped geometry

1. The tensor contains a term which depends on the arc length rα and which
is analogous to the conformally coupled Casimir stress-energy tensor of
Lemma 3.2.7:

π2

1440(αr)4


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

 .

2. A term depending on r−4 has the same tensorial structure of the previous
one. Such dependence on the radial coordinate is not surprising, on
account of the underlying geometry. In particular we observe that for
very small values of the angle parameter α the term depending on the
arc length rα is leading, which correspond to the situation in which the
wedge-shaped region “looks like” the geometry of two parallel plates.

3. Any dependence on the angular coordinate is cancelled by the introduc-
tion of the conformal coupling (ξ = 1

6
), in complete analogy with the

previous situations. In particular the usual divergences at the boundary
occur, at θ = 0 and θ = α. For comments on those infinities we refer to
comments at the end of Chapter 2 and 3

4. Off diagonal terms occurs, mixing the radial and the angular compo-
nents. They could be ascribed to pressures contributions along the arc
coordinate.

5. As in the the case of parallel plates, if we consider the conformal coupling
ξ = 1

6
we are able to compute the Casimir effect. In this case we will

deal with a torque rather than a force.
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Appendix A
The wavefront set

To carry out a singularity analysis, there exist two approaches in the litera-
ture. One consists of looking at the concrete realization of two-point function,
dealing hence with the construction of a local Hadamard parametrix. That is
an explicit expression for the ultraviolet behavior of ωvac

2 (x, y) which must hold
true for every state. Although this method is well-suited for actual calcula-
tions, it is quite unwieldy and leaves no clear evidence of conceptual problems.
The other way is rather abstract and it is based on microlocal analysis. The
motivating idea of this subject is that the decay properties of the Fourier trans-
form of a distribution are related to its smoothness. Even if in general a global
Fourier transform is not defined if the spacetime metric g is not covariant under
the action of some translation, one may point-wisely restricts to the tangent
space, which is isomorphic to R4. Turning back to the manifold is a matter of
finding a suitable local chart which defines a local isomorphism between open
neighborhoods, like the exponential map. The reader interested in a more
comprehensive treating of microlocal analysis might not ignore the capital ref-
erence of Hormander, [Hör90, §8]. Two examples are introduced to clarify the
interaction between the Fourier transform and the underling singularities.

1. Consider u ∈ C∞0 (Rn) and write(
1 + |k|2m

)
|f̂(k)| =

∣∣[1 + (−̂∆)mf
]
(k)
∣∣ ≤ ∫ dnx

∣∣[1 + (−∆)mf
]
(x)
∣∣ <∞

In particular for each N ∈ N, there exists a constant CN such that

|f̂(k)| ≤ CN
1 + |k|N

as |k| → ∞ ∀k

which implies that the Fourier transform is rapidly decaying for |k| → ∞.

2. Consider the Dirac δ-distribution. After testing with an arbitrary f ∈
C∞0 (Rn), it turns out

δ̂(f) =

∫
dnx

∫
dnk

(2π)
n
2

eikxδ(x)f(k) =

∫
dnk

(2π)
n
2

f(k)
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A. The wavefront set

which implies that δ̂ = 1 which exhibits no decay at ∞.

These two examples show the connection between smoothness and Fourier
transform decay properties, cited above. Such observation suggests the defini-
tion of a regular direction. Before introducing it its definition, the following
ancillary notion is needed:

Definition A.0.1 (Conic Neighborhood). A neighborhood O of k0 ∈ Rn is
called conic if k ∈ O implies λk ∈ O for all λ ∈ (0,∞).

Definition A.0.2 (Regular Direction). Given u ∈ D′(Rn), a pair (x, k) ∈
Rn × (Rn \ {0}) is a regular direction for u if there exists φ ∈ C∞0 (Rn) with
φ(x) 6= 0, a conic neighborhood V of k and constants CN ,N ∈ N such that

|φ̂u(k)| < CN
1 + |k|N

∀ k ∈ V ,N ∈ N

φ̂u is said to be rapidly decreasing as |k| → ∞

The main object of microlocal analysis is the wavefront set. The idea of
the wave front set is to investigate both the points and the directions in which
a distribution takes singular values.

Definition A.0.3 (Wavefront Set). Given a distribution u ∈ D′(Rn), the
wavefront set of u is defined to be

WF (u)
.
=
{

(x, k) ∈ Rn × (Rn \ {0}) | (x, k) is not a regular direction foru
}

Glancing at the previous examples may be explicative.

1. Being u ∈ C∞0 (Rn), every pair (x, k) ∈ Rn × (Rn \ {0}) must be regular,
so that

WF (u) = ∅

2. Note that ∀φ ∈ C∞0 (Rn) such that 0 6∈ supp(φ), 〈δ, φ〉 = φ(0) so (x, k) is
a regular direction ∀x 6= 0; otherwise 〈δ, φ〉 = φ(0), the Fourier transform
is never rapidly decreasing. According to the definition:

WF (δ) =
{

(0, k) ∈ Rn × (Rn \ {0}) | k 6= 0
}

The above definitions have to be extended to manifolds. To this avail it is
fundamental to make precise how the wavefront set transforms under a diffeo-
morphism.

Theorem A.0.3 (Transformation Properties under Diffeomorphism). Given
V and U ⊂ Rn, a distribution u ∈ D′(V ) and a diffeomorphism ϕ : V → U ,
define ϕ∗u by (ϕ∗u)(f)

.
= u(f ◦ ϕ−1). Then

WF (ϕ∗u) = ϕ∗WF (u)
.
=
{

(ϕ(x), ϕ∗k) | (x, k) ∈ WF (u)
}

88



Thus under coordinate changes, the wavefront set transforms as a subset
of the cotangent bundle. Having characterized its geometrical nature it is
now possible to extend it to distributions on general curved manifolds M by
patching together wavefront sets in different coordinate maps of M :

WF (u) =
⋃
O

WF (u|O)

and, as a consequence, given a distribution u ∈ D′(M), WF (u) ⊂ T ∗M \ 0.
The great advantages, one gains in using wavefront set, are due to its

properties.

Theorem A.0.4 (Wavefront set properties-I ). Given a distribution u ∈ D′(Rn)

(i) if u is smooth, it holds WF (u) = ∅

(ii) for every u, v ∈ D′(Rn) and ∀α, β ∈ C it holds

WF (αu+ βv) ⊆ WF (u) ∪WF (v)

The importance of these first two properties is clear if one recalls the first
regularity requirement carried out in Minkowski case analysis: The difference
ω2−ωvac

2 must be smooth for every ω2 in order to take a well-defined coincidence
limit. In the light of (i) it must be

WF (ω2 − ωvac
2 ) = ∅ (A.1)

The (ii) tells that it is possible to control wavefront set of such a subtraction.
The following properties of WF give a precise characterization of the singu-

larity structure only in terms of field equations and the surrounding spacetime
geometry. Few definitions are needed

Definition A.0.4 (Principal Symbol and Characteristic Set). Given m ∈ N \
{0}, α a multiindex and Dα .

= ∂|α|

∂α1 ...∂αk
, let P =

∑
|α|=m aα(x)(iD)α be an

m-order partial differential operator, the principal symbol is

pm(x, k)
.
=
∑
|α|=m

aα(x)kα

and the characteristic set is

CharP =
{

(x, k) ∈ Rn × (Rn \ {0}) | pm(x, k) = 0
}

The following holds true:

Theorem A.0.5 (Wavefront set properties-II ). Given a distribution u ∈
D′(Rn)
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A. The wavefront set

(iii) Let P be a differential operator on a manifold M . It holds

WF (Pu) ⊆ WF (u) ⊆ WF (Pu) ∪ CharP

(iv) Given a differential operator P on a manifold M , with real valued prin-
cipal symbol pm, and f ∈ C∞(M), let Pu = f . Then WF (u) \WF (f)
is invariant under the local hamiltonian flow generated by pm on T ∗M \
WF (f).

Properties (iii) and (iv) correlate wavefront set of a solution of a certain
differential equation with the properties of the operator itself. What is of
great interest is the fact that in particular one gets the capability to derive
singular structure of solutions by only looking at the principal symbol of the
differential operator and at the integral curves of an Hamiltonian flow. To
understand the importance of this theorem it is convenient to apply these last
properties directly to the case of interest, i.e. Klein-Gordon.

Let P be the Klein-Gordon operator in (1.2) for the massless field. Its
principal symbol is

p2(x, k) = −gµνkµkν
and so the characteristic set is

CharP = N0

which is a bundle of non-zero null covectors in T ∗xM , N0
.
= {(x, y) ∈ T ∗M |

gµνkµkν = 0}. Hence the wavefront set of any distributional solution to Pu = 0
obeys

WF (u) ⊆ N0

Moreover, WF (u) is invariant under the Hamiltonian flow λ 7→
(
x(λ), k(λ)

)
∈

T ∗M given by p2(x, k), namely{
ẋµ = −gµνkν x(0) = p

k̇ρ = −∇ρg
µνkµkν = 0 k(0) = k

which entails that ẋµ is parallel transported along the curve λ 7→ x(λ) and
that k̇ρ is cotangent to this curve. Thus if (x, k) ∈ WF (u), the wavefront set
contains every point

(
x(λ), k(λ)

)
for λ ∈ R, where x(λ) is the null geodesic

through x with gµνkν as tangent vector and k(λ) is the parallel transport of k
along x(λ).
Since the present interest lies in the analysis of two-point function, it is correct
to consider bisolutions to Klein-Gordon equation. Bisolutions are as follows:
G ∈ D′(M ×M) such that

PxG(x, y) = PyG(x, y) = 0

The operator Px has principal symbol

p2(x, k;x′, k′) = −gµν(x)kµkν
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and characteristic set

CharPx = N0 × T ∗M \ {0}

where N0 coincides with N , though without the request of non-zero covectors
and T ∗M \ {0} is the cotangent bundle of M with the zero section deleted.
Similarly, I⊗ P has the principal symbol

p′2(x, k;x′, k′) = −gµν(x′)k′µk′ν

and characteristic set

I⊗ CharP = T ∗M \ {0} × N0 (A.2)

The bisolution G therefore has wavefront set with upper buond

WF (G) ⊆
(
N0 × T ∗M \ {0}

)
∩
(
T ∗M \ {0} × N0

)
⊆ N0 ×N0 (A.3)
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Appendix B
Computation of Green
operators on Dower spacetime

In this appendix we aim at providing explicit computations for the following
results:

1. A closed form for the integral kernel of the advanced and retarded oper-
ators on Dowker spacetime, E±D(x, x′);

2. A closed form for the integral kernel of the two-point function of the
ground state on Dowker spacetime, ω0

2(x, x′);

3. Make considerations on the wavefront sets of the two mentioned bidis-
tributions.

In the first two computations, we follow [FTTW12].

Let us start with the computation for advanced and retarded operators.
The starting point is (4.9), which we repeat conveniently here,

lim
ε→0+

1

4π2

∫
R2

dν dk

∫ ∞
0

dλ λ
sin(ω′(t∓ iε))

ω′
J|ν|(λr)J|ν|(λr

′)e−i(k(z)+ν(s)),

where ω′2 = λ2 + k2 and we set t′ = z′ = s′ = 0 for notational convenience.
The sine can be suitably rewritten such that

Im lim
ε→0+

1

8π2

∫
R2

dν dk

∫ ∞
0

dλ λ
e−iω

′(t−t′∓iε)

ω′
J|ν|(λr)J|ν|(λr

′)e−i(k(z−z′)+ν(s−s′)),

where the imaginary part and the limit cannot be exchanged, due to the dis-
tributional nature of the integral kernel. Integration in dk can be performed
on account of [GR07, 3.961.2], reading

∞∫
−∞

dk
e−i
√
λ2+k2(t−t′∓iε)
√
λ2 + k2

eikz = lim
ε→0+

ImK0(λ
√
−(t− iε)2 + z2). (B.1)
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B. Computation of Green operators on Dower spacetime

We then focus on integration in dλ, which can be computed by means of [GR07,
6.522.3], ∫ ∞

0

dλ λ J|ν|(λr)J|ν|(λr
′)K0(λζ) =

1

r1r2

(
r2 − r1

r2 + r1

)|ν|
, (B.2)

where ζε :=
√
−(t− iε)2 + z2,

r1 ≡
√

(r − r′)2 + ζ2
ε and r2 ≡

√
(r + r′)2 + ζ2

ε . (B.3)

Finally, to perform the last integration, we define (at least by analytic contin-
uation)

r2 − r1

r2 + r1

≡ e−χε ,

such that the integral becomes

E±D(x, x′) = Im lim
ε→0+

− 1

4π2r′r sinhχε

∫ ∞
−∞

dν e−|ν|χε+iν(s−s′) (B.4)

= Im lim
ε→0+

− 1

4π2r′r sinhχε

2χε
(s− s′)2 + χ2

ε

.

The computation for the two-point function ω0
2(x, x′) follows exactly from

above by dropping the Im operation (this is actually the computation per-
formed in [FTTW12]).

From (B.3) we see that all null-like separated pairs x, x′ ∈ W are in the sin-
gular support of E±D and ω2. By direct comparison with the case on Minkowski
spacetime and by checking the decaying properties of the Fourier transform in
s, (B.4), we can conjecture that the wavefront set is given by WF (E±) and
WF (ω0

2) on Minkowski by adding all light rays reflected at the boundary.
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[Som97] A. Sommerfeld, “Über verzweigte Potentiale im Raum,” Proc. Lon.
Math. Soc. 28 (1897).

[Som01] A. Sommerfeld,“Theoretisches über die Beugung der Röntgenstralen,”
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