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Abstract	(Italiano)	

Negli ultimi anni, in molti settori si è assistito ad un’incredibile crescita 
della quantità di dati raccolti e sfruttati per diversi tipi di analisi. Questo è 
particolarmente vero per l’ambito biomedico, dove informazioni 
caratterizzate da una natura eterogenea sono oggigiorno disponibili per 
diversi scopi. Tuttavia, estrarre nuova conoscenza semplicemente 
combinando molteplici dati grezzi può essere un compito impegnativo, che 
richiede la definizione di nuove strategie e lo sviluppo di specifici 
strumenti. Infatti, questi dati sono spesso rumorosi, eterogenei a difficili da 
integrare, richiedendo così intense operazioni di pre-processing. Le 
tecniche tradizionali di machine learning sono in genere non adeguate a 
eseguire questo tipo di compito, poiché richiedono che tutti i dati di input 
siano strutturati in una forma specifica. In ogni caso, la disponibilità di una 
così grande quantità di dati pubblici ha stimolato lo sviluppo di opportune 
strategie di apprendimento finalizzate all’integrazione di diversi tipi di 
informazione. Questa operazione è comunemente nota come data fusion. 

Questo lavoro è incentrato su una particolare classe di tecniche di data 
fusion, basate su metodi di fattorizzazione matriciale. Questi sono stati 
sviluppati e applicati con successo nell’ambito dei recommender system, 
con l’obbiettivo di predire in modo accurato i gusti di specifici utenti nei 
confronti di specifici prodotti. Grazie alla loro abilità di eseguire una 
riduzione della dimensioni del problema, sono in grado di evidenziare 
strutture latenti nascoste nei dati. Questa proprietà è cruciale in caso di 
dataset grandi e sparsi, che rappresentano una situazione comune in ambito 
biomedico. 

Queste tecniche di fattorizzazione matriciale possono essere integrate in 
un contesto di machine learning tradizionale. Questo è il caso dei modelli 
di Factorization Machine, estensioni di metodi comuni di classificazione e 
regressione ma in grado di incorporare efficacemente le interazioni tra le 
variabili di input grazie all’utilizzo di una decomposizione matriciale. In 
questo modo, questi metodi possono sfruttare e rivelare relazioni sinergiche 
tra le proprietà misurate. 

Altri metodi, sempre basati su fattorizzazione matriciale, possono essere 
direttamente impiegati per eseguire una data fusion. In questa dissertazione 
due di essi sono presentati: il metodo di Tri-fattorizzazione recentemente 
pubblicato e un metodo di nuova concezione basato su una fattorizzazione 
probabilistica Bayesiana. Entrambe queste tecniche richiedono che i dati di 
input siano espressi in forma di matrici relazionali, una per ciascun tipo di 
interazione modellizzata. Relazioni multiple devono coinvolgere gli stessi 
oggetti, al fine di propagare l’informazione tra le diverse sorgenti di dati. I 
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metodi operano una decomposizione congiunta di tutte le matrici di input, 
riassumendo le relative informazioni in vettori di dimensione ridotta. Una 
volta calcolati, questi vettori possono essere manipolati al fine di ricercare 
nuove interessanti associazioni tra coppie di diversi tipi di oggetti.  

In questa tesi, viene presentata l’applicazione di due di queste tecniche, 
il metodo di Tri-fattorizzazione e le Factorization Machine. Entrambe i casi 
di studio riguardano particolari tumori del sangue, le neoplasie mieloidi. 

Per quanto riguarda il metodo di Tri-fattorizzazione, è stato applicato a 
un insieme di diversi tipi di dati nell’ambito delle sindromi 
mielodisplastiche. Cinque tipi di oggetti e le loro relative associazioni sono 
state inclusi nel modello: pazienti, mutazioni, geni, malattie e processi 
biologici. Lo scopo del lavoro era di rivelare nuove interessanti interazioni 
gene-gene associate con la patologia in esame. 

Il secondo caso di studio, invece, è incentrato sull’applicazione di un 
modello di Factorization Machine a un insieme di dati relativi a pazienti 
affetti da leucemia mieloide acuta. L’algoritmo di classificazione è stato 
addestrato per predire la gravità della malattia sulla base di alcuni dati 
personali (età, genere, razza) e includendo nel modello un insieme di 
mutazioni identificate per ciascun paziente. Anche in questo caso, 
particolare attenzione è stata data all’analisi delle interazioni tra geni 
mutati. 

Per entrambe i casi di studio sono stati ottenuti risultati promettenti, 
suggerendo la capacità di questi metodi di sfruttare efficacemente tutta 
l’informazione a disposizione al fine di individuare associazioni non banali. 

 
Nel dettaglio, la tesi è organizzata come segue: 
 
Nel Capitolo 1 saranno descritti alcuni dei diversi tipi di dati biomedici 

con le loro caratteristiche peculiari. In particolare l’attenzione sarà posta 
sulla eterogeneità dei dati e sulle difficoltà legate alla data fusion. 

 
Nel Capitolo 2 sarà presentata una panoramica delle tecniche più comuni 

di fattorizzazione matriciale e tensoriale, sottolineandone le loro proprietà 
matematiche. 

 
Nel Capitolo 3 sarà discussa l’applicazione di metodi di fattorizzazione 

matriciale all’ambito del data mining. Saranno descritti i recommender 
system e i relativi algoritmi. In seguito, sarà introdotto il modello di 
Factorization Machines con le relative caratteristiche. 

 
Nel Capitolo 4 saranno presentate due diverse tecniche di data fusion: il 

metodo di Tri-fattorizzazione e la fattorizzazione matriciale Bayesiana per 
la data fusion. Per entrambe i metodi, il modello sottostante, con i relativi 
parametri, sarà caratterizzato in dettaglio. 

 
Nel Capitolo 5, in due diverse sezioni, saranno descritti i due casi di 

studio. Ciascuna sezione contiene una descrizione del problema iniziale 
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con i dati disponibili e lo scopo dell’analisi. In seguito, sono presentati e 
discussi la configurazione del metodo e i risultati dell’analisi. 

 
Nel Capitolo 6 sono discussi le conclusioni finali e gli sviluppi futuri. 
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Abstract	(English)	

In the last few years many fields have experienced an incredible growth 
of the amount of data collected and exploited for different types of 
analysis. This is particularly true for the biomedical area, where 
information characterized by heterogeneous nature is nowadays available 
for many purposes. However, extracting new knowledge by simply 
combining multiple raw measures can be a challenging task, which requires 
the definition of novel strategies and the development of specific tools. In 
fact, these data are often noisy, heterogeneous, and difficult to integrate, 
requiring heavy pre-processing operations. The traditional machine 
learning techniques are generally inadequate to perform this kind of task, 
since they require all the input data to be structured in a specific form.  
However, the availability of such a big amount of public data has 
stimulated the development of proper learning strategies aimed at 
integrating different kinds of information. This operation is commonly 
known as data fusion. 

This work is focused on a particular class of data fusion techniques, 
based on matrix factorization methods. These ones have been developed 
and successfully applied in the field of recommender systems, with the 
objective of predicting in an accurate way the tastes of specific users 
towards specific products. Thanks to their ability of performing a 
dimensionality reduction, they are able to highlight latent structures hidden 
in the data. This property is crucial in case of large and sparse datasets, 
which represents a common situation in the biomedical field. 

These matrix factorization techniques can be integrated in a traditional 
machine learning framework. This is the case of Factorization Machines 
models, extensions of common classification and regression methods but 
able to effectively incorporate interactions between the input variables, 
thanks to the usage of matrix decomposition. In this way, these methods 
can exploit and reveal synergic relations between the measured features. 

Other methods, still based on matrix factorization, can be directly 
employed to perform data fusion. In this dissertation two of them are 
presented: the recently published Tri-factorization method and a newly 
developed method based on a Bayesian probabilistic factorization. Both 
these techniques require the input data to be expressed in form of relation 
matrices, one for each type of modeled interaction. Multiple relations must 
involve the same objects, in order to propagate the information across the 
different data sources. The methods operate a joint decomposition of all the 
input matrices, summarizing the related information in low dimensional 
vectors. Once computed, these vectors can be manipulated in order to 
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investigate new interesting pairwise associations between different types of 
objects. 

In this thesis, the application of two of those techniques, the Tri-
factorization method and the Factorization Machines, is presented. Both the 
case studies focused on particular blood cancers, the myeloid neoplasms. 

Regarding the Tri-factorization method, it has been applied to a set of 
different types of data within the context of the myelodysplastic 
syndromes. Five types of objects, and their related associations, were 
included in the model: patients, mutations, genes, diseases and pathways. 
The aim of the work was to point out novel interesting gene-gene 
interactions associated with the studied pathology. 

The second case study, instead, is focused on the application of a 
Factorization Machines model to a set of data referring to patients affected 
by acute myeloid leukemia. The classification algorithm has been trained to 
predict the severity of the disease on the basis of some personal data (age, 
gender, race) and including in the model the set of mutations identified for 
each patient. Also in this case, particular attention was given to the analysis 
of the interactions between mutated genes. 

For both the case studies, promising results were obtained, suggesting 
the capability of these methods to effectively exploit all the available 
information in order to detect non-trivial associations. 

 
In details, this thesis is organized as follows: 
 
In Chapter 1, some of the different types of biomedical data, with their 

peculiar characteristics, will be described. In particular the focus will be on 
data heterogeneity and the challenges of data fusion. 

 
In Chapter 2, an overview of all the most common matrix and tensor 

factorization techniques will be presented, highlighting their underlying 
mathematical properties. 

 
In Chapter 3, the application of matrix factorization methods to data 

mining will be discussed. The recommender systems and their related 
algorithms will be described. Afterwards, the Factorization Machines 
model with all its characteristics will be introduced. 

 
In Chapter 4, two data fusion techniques will be presented: the Tri-

factorization method and the Bayesian matrix factorization for data fusion. 
For both of them, the underlying model, with the related parameters, will 
be characterized in detail.  

 
In Chapter 5, the two case studies will be described in two appropriate 

sections. Each of them contains a proper description of the starting problem 
with the available data and the purpose of the analysis. Afterwards, the 
description of the method’s configuration and the results of the analysis are 
presented and discussed. 
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In Chapter 6, the overall conclusions and the future works will be 
discussed.  
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Chapter	1	
1 Introduction		

This first introductory chapter is dedicated to the description of the data 
types commonly available in the biomedical field. Their peculiar 
characteristics, in fact, require the development and the application of 
specific techniques, aimed at exploiting in a proficient way all the available 
information. This dissertation is specifically focused on one of those 
characteristics: the data heterogeneity. Nowadays, different data sources 
are easily accessible, and this represents a great opportunity to increase our 
knowledge about many biological mechanisms and to improve many 
aspects of the medical process. Therefore in this chapter, the main 
characteristics of biomedical data will be discussed, with particular 
attention to the benefits of data integration. 

1.1. The	heterogeneity	of	biomedical	data	
Due to its intrinsic variability, the biomedical field is naturally 

characterized by inevitable data heterogeneity. Dealing with complex 
systems like the human organism, a lot of features are clearly necessary to 
properly describe the overall set of characteristics. As a matter of fact, 
healthcare is one of the most important generator of the so-called Big Data 
[1–4]. This expression has become very popular in the past few years 
across many disciplines. It denotes a class of data characterized by specific 
characteristics, typically referred to as the 4 Vs:  

• Volume: the term “big” is often related explicitly to the 
dimensions of these data. The growth of the amount of data produced 
and collected led to the need of finding proper way to storage this 
information, ranging from terabytes to exabytes. In the biomedical 
field, this characteristic is typical of some molecular exams and of 
bioimages, which produce massive amounts of data for each patient. 
• Velocity: this characteristic refers to the rate at which data are 
generated and transmitted. Hugh amounts of information are 



Introduction	
	

	 2	

nowadays collected very rapidly, making impossible the usage of 
traditional analytics methods. In addition, raw data are more and 
more frequently recorded by remote sensors and applications and 
transferred in real time through the network, generating great streams 
of data that need appropriate technologies to be managed. The social 
media, generating large amounts of data for each user on a daily 
basis, represents a clear example of this phenomenon. In addition, in 
a closer biomedical framework, telemedicine systems are increasingly 
used to remote monitoring the patient’s conditions.  
• Variety: this is a crucial aspect in many contexts, especially the 
biomedical one. Very often in fact, heterogeneous data are gathered 
to describe in a more holistic way a target system. Complementary 
information is collected, describing the system at different levels of 
granularity or from different perspectives. These data are often 
characterized by very different domains (e.g. counts, images, 
unstructured texts…). In addition, also the dimensional scales may 
greatly vary, from the molecular level to the population point of view. 
Moreover, measure may span over different time scales, from 
milliseconds to years. Therefore, for each particular category, specific 
data structures and analysis techniques have to be developed, making 
it challenging a joint integration of all the information sources. 
• Veracity: this term refers to the uncertainty present in the data. It 
may be related to data inconsistency, incompleteness, intrinsic noise, 
and approximations. Also this characteristic plays a key role in the 
biomedical field. In fact, in this context data are very often noisy, 
measured in different settings and acquired with different accuracy 
levels, requiring heavy pre-processing operations to prepare them for 
the subsequent analyses.  

In the next section, some of the most important sources of biomedical 
data will be introduced, with the related characteristic. In any case, 
particular emphasis will be posed on the heterogeneity of all these type of 
data. 

1.2. Biomedical	data	sources	
Depending on the particular context, many different types of data may 

be available for the analysis. The last few years have been characterized by 
an explosion of the amount of data collected and made publically 
accessible by different sources. Other data may be provided by health 
institutions, typically consisting of a set of electronic health records about 
the treated patients. Some of these patients may be part of cohorts 
specifically selected on the basis of some discerning criteria and for 
specific purposes (e.g. clinical trials).  
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From the single patient perspective, many kinds of information may be 
collected. Electronic health records typically contain some personal data, 
such as age, gender, race and more specific features based on the particular 
condition of the patient. For example, on the basis of the diagnosis, specific 
vital parameters may be measured, and specific information about pre-
existing conditions, exposition to risk factors and family medical history 
may be acquired. On the basis of patient’s clinical path, different diagnostic 
exams may be performed, and different laboratory tests may be carried out. 
Therefore it is clear that this type of data source itself may provide very 
heterogeneous information: for example molecular data and bioimages 
belong to completely different domains and required ad hoc techniques to 
be analyzed. In particular, data structures can be completely different, 
including big tabular files, for example for personal data and results of 
laboratory exams, images and signals graphs, unstructured text for the 
notes by the physician.  

The previously cited types of data anyway, are part of the traditional 
clinic features: the only different of recent times is the attempt of 
digitalization of all the information. But the greatest impact of the 
evolution of modern medicine is represented by another source of 
information: the molecular data. Thanks to new cheaper sequencing 
technologies, it is possible to easily get information about single patients’ 
mutations and gene expression values [5]. Due to their peculiar 
characteristic, also these data require appropriate techniques to be stored 
and manipulated.  

 
Switching to public data sources, a large number of databases are easily 

accessible, especially in the field of Bioinformatics, thanks to -omics data 
(such as genomics, proteomics, metabolomics) repositories. Typically each 
of them focuses on a specific topic, but there are many overlap and cross-
references between all of them. In 2016 the journal Nucleic Acids Research 
published a special issues on biological databases containing a list of about 
180 different databanks [6].  

Some of them focus on nucleic acids (DNA, RNAs) under different 
points of view (sequence, structure, regulation, expressions, interactions, 
relations with phenotype). For example, databases such as GenBank [7] and 
the EMBL database [8] contain annotated collection of publicly available 
DNA sequences. This information is obtained through submissions from 
individual laboratories and from large-scale sequencing projects.  

A dual information, but from a protein point of view is collected by 
other data banks such as UniProt [9] and Swiss-Prot [10].  

Other public databases, instead, focus on diseases, try to model in a 
comprehensive ontology all the relations among them (e.g Disease 
Ontology [11]). Some of them, in particular, focus on diseases with a 
genetic component (e.g. OMIM [12]). 

Furthermore, the most important biological processes occurring inside a 
cell have been deeply studied and modeled, and this information is 
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available thanks to public databases such as KEGG [13] and Reactome 
[14]. 

Another interesting data source is represented by the molecular 
interactions. For example, the public data repository STRING [15] contains 
protein-protein interactions coming from different knowledge bases, and 
combine them in order to obtain confidence scores about the associations. 
Same thing can be done directly for genes, as contained in BioGRID [16]. 

Many others can be listed, depending on the particular problem to 
address. The important thing to underline is that these sources are not 
independent from each other and many noteworthy results may be obtained 
from a joint integration of all the knowledge they contain. 

 
Of course, another primary source of information is directly represented 

by the scientific literature. However, it is often hard to mine useful 
information from such a huge mass of documents. For this reason, some 
controlled vocabularies have been proposed in order to index journal 
articles and books, thus facilitating the search. An example in life science 
is represented by the Medical Subject Headings (MeSH) [17]. These terms 
can be put in direct association with other objects, such as diseases or 
genes, thus linking information coming from different sources.  

 
Another type of data that is gaining more and more interest in the last 

years, also in the biomedical field, comes from the social media. This huge 
stream of data may provide useful feedbacks from a patient, even if it 
requires heavy text processing operation, due to the unstructured text often 
characterizing this type of data [18].  

 
At last, a new promising source of information is represented by 

exposomics [19]. This new field of research aims at correlating the health 
condition with some environmental factors to which the people are 
exposed. For example, interesting associations can be found between 
pollution levels and specific pathological conditions.   

1.3. Issues	and	challenges	of	biomedical	data	
fusion	

The availability of huge amounts of data represents, of course, a great 
opportunity both for the clinical practice and the biomedical research. In 
particular, all of these huge public repositories, even if dealing with 
different topics, are characterized by many mutual interactions, thus 
suggesting the possibility of a propagation of the information across them. 
Traditional data mining methods are often inadequate to treat so 
heterogeneous types of data, because they were developed to address 
specific problems. A way to overcome this problem would be to perform 
heavy pre-processing operation in order to represent the input data in a 
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more traditional fashion (e.g. tabular datasets containing different features), 
but in this way the inner structure of data coming from different data 
sources would be lost. Therefore, new strategies and tools are required to 
effectively manage a so variegated class of data [20].  

 
Considering clinical practice, an integrated system would be a crucial 

factor for the improvement of system. For example, the integration of 
imaging, modeling, and real-time sensing can be very useful for the 
management of disease progression and the planning of intervention 
procedures [21].  

In addition, on the basis of the complete set of data about a patient, an 
analogical reasoning could be performed in order to identify similar 
patients, thus allowing the translation of the related treatments [22]. This is 
particularly interesting under the perspective of the precision medicine. 
This expression refers to an emerging approach for disease treatment and 
prevention, more focused on individual patients or small groups of patients. 
The aim is to classify people into subpopulations that differ in their 
susceptibility to a particular disease, in the biology and/or prognosis of the 
diseases they may develop, or in their response to a specific treatment [23]. 
For this reason, an effective integration of different data sources may 
represent a valid evidence-based approach to the decision process for 
diagnosis and therapy. This is of course particularly crucial for oncologic 
patients, often characterized by very specific genetic alterations, which 
make difficult the development of treatments with general effectiveness. 
 

From the research point of view, the availability of these huge amounts 
of data is an incredible stimulus to the development of data mining 
techniques able to discover latent characteristics hidden in this massive 
stack of information. Using a data driven approach and exploiting the 
connections between different data sources, it would be possible to 
highlight complex interactions among different objects, hard to detect using 
standard approaches. This may lead to methods able to suggest new 
research hypothesis, perform prediction and data interpolation.  

Tools may be designed to help biologist in the integration of multiple 
heterogeneous public sources with their own experimental data [24]. 

Another possible application is the drug repurposing [25]: already 
developed drugs may show a potential effectiveness for other types of 
diseases due to the fact that they operate on the same biological 
mechanisms.  

Regarding the genomics field, the research in this area is very intensive, 
and large, highly heterogeneous data are produced continuously. The need 
of finding a suitable representation of this knowledge and linking these 
heterogeneous data sets is a clear issue that has to be addressed in the very 
near future [26]. 
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For all these reasons, the development of new strategies and techniques 
to operate a fusion of data coming from different sources represents 
currently a hot topic in the biomedical research field. 
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Chapter	2	
2 Matrix	factorization	methods	

This chapter is focused on the description of the main factorization 
techniques developed for bidimensional and multidimensional arrays (i.e. 
matrices and tensors). In the first section, some basic concepts will be 
introduced. Afterwards, a set of the most common techniques for both 
matrices and tensors will be described. 

2.1. Basic	concepts	
In Mathematics, the term factorization indicates, generically, a 

procedure aimed at performing the decomposition of a particular object. 
The name comes from the fact that, at the end of this procedure, the initial 
object is expressed as the product of a certain number of elements, the so-
called factors. This work is focused only on matrix and tensors 
factorization techniques, meaning that the starting object is a 2-dimensional 
or N-dimensional vector. There are several methods designed to perform 
this type of decomposition, each of them characterized by different 
mathematical properties, and therefore more or less suitable to address 
specific problems. In any case, these techniques typically express the 
values of the starting object through the product of several elements. 
Depending on the method, the number and the characteristics of the factors 
may vary a lot, as well as the output of the procedure, which can lead to an 
exact or an approximate representation of the initial data. Most of the 
techniques that will be discussed are primarily used for dimensionality 
reduction, meaning that they try to compress the starting information using 
a lower number of features (i.e. vector components). This operation can be 
useful from many points of view. First of all, it allows compressing the 
space needed to store the data. This can be very critical in case of large 
sparse datasets, like for examples those commonly used in the field of 
recommender systems (more on that will be discussed in the next chapter). 
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In addition, from the computational point of view such reduction may lead 
to much faster operations, particularly useful in case of big data 
applications and online processes. From the conceptual point of view 
instead, the decomposition methods play a central role in the analysis of the 
latent structures hidden in the data. The mathematical basis of these 
operations may give interpretability properties to the computed factors, 
revealing unknown interactions of the initial data. For example, the 
reduction of the dimensionality obliges the method to identify common 
characteristics of the data, summarizing them with a small number of 
elements. For all these reasons, matrix and tensor factorization techniques 
are gaining more and more interest in many different applications. Next 
sections will focus on very popular methods, highlighting their principal 
properties and their weaknesses. 

2.2. Single	matrix	factorization	techniques	
This section is dedicated to four different types of decomposition 

specifically designed to target a single bidimensional array, i.e. a matrix.  

2.2.1. Singular	value	decomposition	

The singular value decomposition (SVD) is one of the most popular 
decomposition techniques [27–32]. From the mathematical point of view, 
the SVD decomposes a matrix into the product of three terms: 

 
𝑀 = 𝑈Σ𝑉∗ (1)  

where: 
M is the starting matrix, which can be a real or complex, with dimension 

𝑚×𝑛 and rank r. 
𝑈  is a 𝑚×𝑚  real or complex matrix. If 𝑈  is real, then it is also 

orthogonal, i.e. its transpose 𝑈! is also its inverse 𝑈!!. If 𝑈 is complex, 
then it is unitary, i.e. its conjugate transpose 𝑈∗ is also its inverse.  
Σ is a 𝑚×𝑛 rectangular diagonal matrix, meaning that it contains non-

zeros values only on the main diagonal. In particular, in SVD these entries 
are non-negative real numbers, ordered by decreasing value of magnitude. 
Since M has rank r, there will be exactly r strictly positive values on the 
diagonal, while all the others will be zeros. 
𝑉 is a 𝑛×𝑛 real or complex matrix. Like 𝑈, it is unitary (and therefore 

orthogonal if real). 
 
This type of decomposition is strongly related to the concept of singular 

value. By definition, given the matrix M, a singular value 𝜎 is a non-
negative real number such that: 
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𝑀𝑣 = 𝜎𝑢 𝑎𝑛𝑑 𝑀∗𝑢 = 𝜎𝑣 (2)  

where u and v are unit-length vectors. They are respectively called left-
singular and right-singular vectors for σ. The relation with the SVD is 
pretty straightforward: the positive entries on the diagonal of the Σ matrix 
are the singular values of M, while the first p=min(m,n) columns of 𝑈 and 
the first p columns of 𝑉  are, respectively, the associated left-singular 
vectors and the right-singular vectors.  

In the following, an example of SVD decomposition is shown. Given a 
matrix M: 

 

𝑀 =
3 1 −1 0
1 6 −1 2
4 0 1 4

 (1)  

it can be decomposed in: 
 

𝑀 = 𝑈Σ𝑉∗ 

𝑈 =
−0.34 0.1 0.93
−0.77 −0.6 −0.21
−0.54 0.79 −0.29

 

Σ =
7.4 0 0 0
0 5.08 0 0
0 0 2.91 0

 

𝑉 =

−0.54 0.56 0.5 −0.38
−0.67 −0.7 −0.12 −0.24
0.12 0.23 −0.67 −0.7
−0.5 0.38 −0.54 0.56

 

(2)  

It can be easily noticed that the Σ matrix is diagonal, with the singular 
values (7.4, 5.08, 2.91) sorted in decreasing order of magnitude. The three 
columns of U represent the left singular vectors, while the first three 
columns of V represent the right singular vectors. 

 
The transformation f(x)=Mx maps a vector in ℝ! into a vector in ℝ!. It 

can be shown that the columns of 𝑉 and 𝑈 provide orthogonal bases for the 
domain and the range of f(x) [29]. 

 
For real squared matrices, SVD has a very intuitive interpretation [29]. 

Each of the three matrices can be associated to a transformation so that the 
entire process can be interpreted as the composition of three geometrical 
operations: 𝑈 represents a rotation, Σ represents a scaling and 𝑉 represents 
another rotation. In practice, the transformation f(x)=Mx dilates or 
contracts some components of x (after the first rotation), on the basis of the 
magnitude of the associated singular values. Because of the different 
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dimensions between domain and range, some components may be 
discarded or some zeros may be appended. 

Given this interpretation, there is clearly a strong correlation between 
SVD and the well-known eigenvalue decomposition. Given a square matrix 
𝐴𝜖𝐶!"!, its eigenvalue decomposition is: 

 
𝐴 = 𝑋Λ𝑋!! (3)  

where: 
Λ is a 𝑚×𝑚 diagonal matrix and its entries are called eigenvalues.  
𝑋 is a 𝑚×𝑚 matrix, whose columns are linearly independent vectors 

called eigenvectors. 
 
Even if both these decompositions try to express the starting matrix in a 

diagonal form, they differ for many reasons. First of all, SVD can be 
computed for every matrix, even rectangular ones. Eigenvalues 
decomposition, on the contrary, can be applied only on particular classes of 
squared matrices. In addition, SVD utilizes two different (orthonormal) 
bases, composed respectively by the set of left and the set of right singular 
vectors, while the eigenvalue decomposition uses just one (in general not 
orthonormal) basis, determined by the eigenvectors. The two 
decompositions coincide only for positive semi-definite normal matrices.  

  
But there is also another important association between the two 

operations, which can be expressed and demonstrated through the 
following formulas:  

 
𝑀𝑀∗ = 𝑈Σ𝑉∗𝑉Σ∗𝑈∗ =  𝑈(ΣΣ∗)𝑈∗ 

𝑀∗𝑀 = 𝑉Σ∗𝑈∗𝑈Σ𝑉∗ =  𝑉(Σ∗Σ)𝑉∗ 
(4)  

As can be easily noticed, the left singular vectors represent the 
eigenvectors of 𝑀𝑀∗ , while the right singular vectors represent the 
eigenvectors of 𝑀∗𝑀. In the same way, the non-zeros singular values of 𝑀 
can be seen as the square roots of the eigenvalues of 𝑀𝑀∗or 𝑀∗𝑀. 

 
Another way to describe the SVD is using the outer product form [27]. 

By definition, the outer product of two vectors 𝑢 ∈ ℝ!  and 𝑣 ∈ ℝ!  (in 
symbols 𝑢 𝑣) is a matrix 𝑋 ∈ ℝ!"#, whose generic entry is given by 
𝑋!" = 𝑢!𝑣!. This matrix has rank equals to 1. 

Within this framework, the SVD of the matrix M, can be also expressed 
as: 

 

𝑀 = 𝑋!

!

!!!

= 𝜎!𝑢!⨂𝑣!

!

!!!

 (5)  
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Where 𝜎! is the i-th singular value, with 𝑢! and 𝑣! the associated left and 
right singular vectors. The limit of the summation, r, represents the rank of 
the M matrix, and corresponds also to the number of non-zeros singular 
values. From this perspective, SVD can be interpreted as a weighted sum of 
rank-one matrices. (See Section 2.3.1 CP decomposition for the tensor 
equivalent). 

 
This representation is also useful to show another important property of 

the decomposition. Keeping in mind that the singular values are sorted by 
decreasing value of magnitude, the summation defined above can be 
truncated after 𝜐 < 𝑟 terms: 

 

𝑀! = 𝑋!

!

!!!

= 𝜎!𝑢!⨂𝑣!

!

!!!

 (6)  

From the mathematical point of view, it can be demonstrated that 𝑀! 
represents the best 𝜐-rank approximation of the original matrix M, in terms 
of both 2-norm and Frobenius norm [29]. In addiction, this relation holds: 

 
𝑀! −𝑀 ! = 𝜎!!! (7)  

This is a remarkable characteristic from a dimensionality reduction 
perspective, since it allows keeping just the most important singular values, 
discarding all the others.  

This property is crucial for all the applications that require a low rank 
approximation of the starting matrix. The idea behind this approach is that 
the knowledge represented in the original matrix can be expressed as a 
combination of several (latent) components, some of them very informative 
(those characterized by a high singular value), others negligible (those 
characterized by a low singular value). For this reason, even if the 
summation is truncated, the most explanatory characteristics are in any case 
maintained by the decomposition.  

 
Due to its characteristics, SVD is exploited in many different 

applications. First of all, it is possible to compute the pseudo-inverse of the 
original matrix [33]: 

 
𝑀! =  𝑉Σ!𝑈∗ (8)  

 Where Σ! is the pseudo-inverse of the matrix Σ, and it’s obtained by 
substituting all the non-zero entries on the diagonal with the associated 
reciprocal, and then transposing the resulting matrix. This operation can be 
very useful for example when solving a linear least squares problem. 

 
SVD and its truncated version have also been used extensively in signal 

processing [34,35] and for image compression [36,37].  
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However, the most interesting application of SVD is in the field of 
Recommender systems, which will be extensively described in the 
following chapter. 

2.2.2. Principal	component	analysis	

The SVD is also related to another popular technique, used typically for 
dimensionality reduction in data mining: the Principal Component Analysis 
(PCA) [38]. As the name suggests, the objective of this method is to 
identify the most informative components characterizing in the input 
dataset. It is applied when the dataset is structured as a matrix, whose rows 
represent a group of samples, and the columns represent the associated 
features. The PCA operates an orthogonal transformation on the original 
data, projecting them into a new coordinate system. The transformed 
features are called principal component and they are linearly uncorrelated. 
The first component is characterized by the largest possible variance; the 
remaining ones are sorted by decreasing order of captured variability. To 
describe how the methods works, is thus necessary to start from the 
covariance matrix of the data. 

Starting from a matrix D, with columns mean subtracted and shifted to 
zero, the covariance matrix C is given by 𝐶 = 𝐷!𝐷/(𝑁 − 1), where N is the 
number of rows of D. By construction, this matrix is symmetric and so it 
can be diagonalized with eigenvalue decomposition: 

 
𝐶 = 𝑋Λ𝑋!!= 𝑋Λ𝑋! (9)  

The eigenvectors, represented by the columns of the X matrix, are called 
principal axes or principal directions. Since C is symmetrical, the spectral 
theorem states that X is orthogonal, so 𝑋!! = 𝑋!. The principal components 
mentioned in the name of the method are the projections of the data on the 
principal axes, and they are computed as the columns of a matrix, DX, 
obtained by multiplying the data matrix D by the eigenvectors matrix X.  

To evaluate the relation between PCA and SVD, let’s perform SVD on 
the data matrix D: 

 
𝐷 = 𝑈Σ𝑉! (10)  

The covariance matrix thus becomes: 
 

𝐶 = !!!
!!!

= !!
!!!!!!!

!!!
= 𝑉 !!

!!!
𝑉!  (11)  

This means that the right singular vectors in V are principal directions 
(X=V) and that singular values are related to the eigenvalues of covariance 
matrix by the equivalence 𝜆! = 𝜎!!/(𝑁 − 1). In the same way, the principal 
components can be expressed in terms of SVD as: 
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𝐷𝑋 = 𝑈𝛴𝑉!𝑉 = 𝑈𝛴 (12)  

As for the truncated version of SVD, it is possible to keep just the most 
important components and discarding those characterized by a low 
associated eigenvalue. For PCA, the singular values have also a statistical 
meaning, since they are related to the amount of variance captured by the 
related singular component. For these reasons, PCA is used in many 
applications for dimensionality reduction. 

In the following, an example of PCA is described. Starting from a data 
matrix D: 

 

𝐷 =

0.508 0.929 0.459
0.086 0.730 0.963
0.2625 0.489 0.547
0.801 0.579 0.521
0.029 0.237 0.232

 (3)  

The eigenvalues and the eigenvectors associated to the covariance 
matrix are computed:  

 

Λ =
0.125 0 0
0 0.093 0
0 0 0.022

 

𝑋 =
0.76 −0.538 −0.364
0.596 0.352 0.722
0.26 0.766 −0.588

 

(1)  

By multiplying D and X, the original data are projected into the new 
space where the features are linearly uncorrelated. The first component, 
associated to the eigenvalue 0.125, explains the 52.17% of the entire 
variance (0.125 divided by the sum of all the eigenvalues), while 
considering the first two components, the 90.84% of the variance is 
explained. Therefore, in some application it could be possible to exclude 
the third component from the subsequent analyses, thus performing a data 
size reduction. 

2.2.3. CUR	matrix	decomposition		

As highlighted in the previous sections, one of the most important 
applications of matrix factorization techniques is related to dimensionality 
reduction. SVD and PCA can be valuable tools to provide low rank 
approximations of a data matrix, trying to capture as much information as 
possible. However, since they operate a transformation of the original data, 
it is difficult to assign an explicit meaning to the elements resulting from 
the decomposition. For example, with PCA the principal components are 
linear combination of the original features, so they lack of a proper actual 
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interpretation [39]. A common temptation is to try to associate a meaning 
to these transformed variables. This operation is called reification, and it 
may lead to misleading conclusions.  

In some applications, the interpretability of the results is a crucial factor, 
especially when the final aim is to extract insights from the analysis. For 
this reason, another factorization method, called CUR decomposition, has 
been proposed. This technique tries to approximate a starting matrix M 
with the product of three terms: 

 
𝑀 ≈ 𝐶𝑈𝑅 (13)  

where: 
𝐶 is a matrix consisting of a small number of columns taken from M 
𝑅 is a matrix consisting of a small number of rows taken from M 
U is a matrix defined by minimizing the reconstruction error produced 

by the product of the three matrices, typically measured in term of 
𝑀 − 𝐶𝑈𝑅 ! or 𝑀 − 𝐶𝑈𝑅 !"#$%&'(). 

 
In an equivalent way to SVD, it is possible to obtain a low rank 

approximation of the original matrix. For example, a rank-k approximation 
is achieved by fixing to k the number of columns of C and the number of 
rows of R. In this case, U matrix will be a squared matrix 𝑘×𝑘. 

 
Although CUR decomposition is less accurate of SVD, it provides a 

natural interpretation, since both C and R are composed of actual vectors 
from M. There exist different algorithms to compute the decomposition, 
mainly distinguished by the way the columns and rows are selected from 
the original matrix. The simplest version of CUR is based on a uniform 
random sampling of these vectors [40]. More sophisticated algorithms try 
to weight this sampling using a probability for each column (or row) based 
on the related Euclidean norms [41]. Others aim at reducing the relative 
error by directly taking into account the influence of the vectors on the 
approximation of the original matrix [39].  

 
In addition to interpretability, CUR has another interesting property, 

related to the sparseness of the starting matrix. Very often in fact, CUR is 
applied to matrices characterized by huge dimensions, but with a very large 
number of zero entries. If SVD is applied, this characteristic is lost after the 
decomposition, because the two matrices of left and right singular vectors 
are still huge, but they are dense in general. The matrix containing the 
singular values will be instead diagonal and thus very sparse. On the 
contrary, since CUR uses columns and rows from the starting matrix, both 
C and R will be characterized by high sparseness, while the U matrix, 
although dense, will be small. This characteristic can be crucial from the 
computational point of view, guaranteeing a much lower computational 
time and memory cost to storage the results.   
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2.2.4. Non-negative	matrix	factorization	

In certain applications, constraints on the results of the decomposition 
are required. In many fields, the collected data are typically real positive 
numbers, therefore a factorization with non-negativity condition can 
provide a more natural representation and interpretation of the results. In 
addition, non-negativity constraints may lead to much sparser 
representations, particularly important in case of high dimensional 
problems. For this reason, a class of decompositions has been defined, 
falling under the name of non-negative matrix factorizations (NMF) or non-
negative matrix approximation [42,43]. Since an exact solution of the 
problem can be difficult to compute, often these methods aim at finding a 
good approximate representation of the original matrix. Given a non-
negative matrix M, NMF determines a lower rank non-negative 
approximation given by the product of two matrices, W and H, both of 
them non-negative too: 

 
           𝑀 ≈𝑊𝐻,    𝑤𝑖𝑡ℎ 𝑊 ≥ 0 𝑎𝑛𝑑 𝐻 ≥ 0 (14)  

This operation can be expressed also using a vector representation. In 
this case, the i-th column from M, 𝒎𝒊, is expressed as a linear combination 
of the columns of W, weighted by the values of the i-th column from H: 

 
𝒎𝒊 ≈𝑊𝒉𝒊 = ℎ!"𝒘𝒋

!

 (15)  

From this point of view, W can be interpreted as a suitable basis for the 
linear approximation of the data in M. For this reason W is also called 
component matrix and H is called mixing matrix [44]. 

 
There exists also a strong correlation between this decomposition and 

some well-known clustering techniques. In particular, imposing the 
orthogonality constraint on the H matrix, it is possible to demonstrate that 
this factorization is equivalent to a K-means clustering applied to the 
columns of the starting matrix M [45]. It is also possible to exploit this 
method in order to perform a simultaneous clustering of rows and columns 
of a matrix [45]. 

 
The solution of this factorization problem is not unique, and numerical 

approximations are typically employed. First of all, the dimensions of W 
and H have to be chosen. If M is a 𝑚×𝑛 matrix, the W has dimension 𝑚×𝑝 
and H has dimensions 𝑝×𝑛. As easily understandable, the value of p is 
critical in practice, and it often depends on the specific problem [46]. A 
common choice is to select a value of 𝑝 that is much lower than both 𝑚 and 
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𝑛. The result of the operation will be therefore a compressed version of the 
original data matrix, easier to store and manipulate. In addition, as for SVD 
and PCA, factorizing a data matrix into smaller matrices allows 
highlighting the presence of latent structures in the data.  

As mentioned above, there are multiple algorithms to compute non-
negative matrix factorizations. First of all, a cost function must be defined 
to evaluate the quality of the approximation. A common choice is to use the 
Frobenius norm of the approximation error. In this case, a solution to the 
NMF problem can be obtained by solving an optimization problem: 

 
         min

!,!
 𝑓 𝑊,𝐻 =  !

!
𝑀 −𝑊𝐻 !"#$%&'()

!  (16)  

An example of NMF using this strategy is shown in the following.  
Given a matrix M: 
 

𝑀 =
0.404 0.942 0.06 0.821
0.1 0.96 0.235 0.015
0.132 0.575 0.353 0.04

 (1)  

it can be decomposed using rank-2 matrices: 
 

𝑀 ≈𝑊𝐻 =
1.242 0.104
0.054 0.946
0.022 0.658

0.315 0.681 0.018 0.661
0.118 0.932 0.342 0  

=
0.403 0.943 0.058 0.821
0.129 0.919 0.325 0.036
0.085 0.628 0.225 0.015

 

(2)  

It can be noticed that all the entries of the two decomposition matrices 
W and H are positive. This is a very simple example, using a small dense 
matrix, but more significant and useful results can be obtained on very 
large and sparse matrices. 

 
Additional constraints, depending on the problem-specific prior 

knowledge, can be included to the model. They often are expressed as 
regularization terms, like L1-norm penalty (Lasso), favoring characteristic 
like sparseness, smoothness, or specific relationships between components 
[44,47]. 

Many algorithms have been developed to perform this type 
minimization. The problem of finding the global minimum is particularly 
complex, even without constraints. However, there are many numerical 
techniques that can be applied to find local minima. The simplest method is 
probably the well-known gradient descent, but it is characterized by a slow 
convergence [43]. More complex but faster techniques have been proposed. 
In particular, some iterative methods are very used, one based on 
multiplicative rules and another based on additive rules. The main idea is to 
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iteratively update one matrix at a time by multiplying or adding a term 
dependent on the approximation error [43]. 

 
Anyway, in general the standard NMF algorithms utilize the complete 

data matrix during the entire estimation problem. This can be critical for 
applications where the amount of data is huge and hard to fit into memory 
or if there is a continuous stream of data. For example, for collaborative 
filtering in recommendation systems, the data matrix is composed of a lot 
of users and a lot of items, and it would be very resource consuming to 
recalculate the factorization every time new information is added to the 
system. For this reason, more sophisticated algorithm has to be used [48]. 

 
NMF has been employed in many fields.  
As mentioned above, a very common application is collaborative 

filtering for recommender systems [49]. In this case, the two factors of the 
decomposition can be interpreted as a user-specific matrix and an item-
specific matrix. Then the method can be exploited to propose new items for 
each specific user. 

Another common application of NMF is text mining. In this case, the 
starting matrix contains information about the associations between 
documents and terms. Each entry usually represents the importance inside a 
certain document of a certain word, in general measured on the basis of its 
frequency in the text. In this case, the two matrices produced by the 
decomposition can be used to identify homogeneous groups of documents 
based on the terms they contain. For example, this strategy has been 
applied to documents from PubMed to extract publications related to a 
specific topic [50].  

NMF has been also applied to the Bioinformatics field. For example, 
this technique allows to individuate clusters of genes based on their 
expression levels measured in many samples [44,51,52]. It has also been 
used to identify molecular signatures for human cancers based on somatic 
mutation patterns [53]. 

2.2.5. Probabilistic	factorization	

The problem of matrix factorization can be addressed also in a 
probabilistic fashion [54]. Following this approach, random variables with 
appropriate distributions come to play, and they are used to model the data 
and the latent factors behind them. The basic idea is to consider the generic 
entry of the data matrix as a stochastic variable, whose distribution depends 
on two factors, specifically two low dimensional vectors, one related to the 
element representing the row and the other related to the element 
representing the column. The figure 2.1 shows the structure of the model as 
reported in [54].  
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Figure 2.1: Probabilistic Matrix Factorization Model 

 
This method has been firstly applied to the context of the recommender 

systems: each entry of the starting matrix, 𝑅!" in the figure, represents the 
rating of i-th user with respect to the j-th movie. In this case, the starting 
matrix R is commonly large and very sparse, since in general each user 
rates just few movies. In addition, it is often very imbalanced, with some 
rows and columns characterized by just few values. The objective of the 
method is therefore to fill the gaps, using the information coming from the 
other users. In this context, the two factors have a clear interpretation: one, 
𝑈! in the figure, is a user-specific vector and the other, 𝑉!, a movie-specific 
vector. In practice, to each row and column of the starting matrix a low 
dimensional vector is associated, summarizing the information about the 
related object. The same dimension, D, which is the critical parameter of 
the model, characterizes all the vectors: low values are not enough to 
represent the information, too high values may reconstruct well the original 
matrix but without discovering the latent structure inside the data, and 
therefore they are not useful for prediction. The assumption of an 
underlying probability distribution can be also fundamental for imbalanced 
datasets, since it is always possible, even with little information, to suggest 
a value for each entry of the matrix. 

 
In [54], Salakhutdinov et al. proposed to use a probabilistic linear model 

with Gaussian noise, characterized by the following conditional distribution 
over the entries of the starting matrix R: 

 

𝑝 𝑅 𝑈,𝑉,𝛼 = 𝑁 𝑅!"|𝑈!!𝑉! ,𝛼!!
!!"

!

!!!

!

!!!

 (17)  

where N represents the Gaussian distribution with mean 𝑈!!𝑉!  and 
precision 𝛼 (i.e. the observation noise variance), and 𝐼!"  is the indicator 
variable that is equal to 1 if the entry 𝑅!"  is observed and equal to 0 

i=1,...,N j=1,...,M

Vj

Rij

Ui

α

αU αV
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otherwise. The prior distributions over the low dimensional vectors are 
Gaussian too, with zero mean and an appropriate precision. For example, 
for U: 

 

𝑝 𝑈 𝛼! = 𝑁(𝑈!|0,𝛼!!!𝐼)
!

!!!

 (18)  

The estimation problem can thus be expressed as the maximization of 
the posterior distribution 𝑝(𝑈,𝑉|𝑅,𝛼,𝛼! ,𝛼!). As shown in [54], this is 
equivalent to minimize the following objective function:  

 

𝐸 = !
!

𝐼!"(𝑅!" − 𝑈!!𝑉!)! +
!!
!!

!! !
!

!

!!!
+ !!

!!
!! !

!
!

!!!

!

!!!

!

!!!

 (19)  

As easily observable, this measures the reconstruction error through a 
sum of squares, with the addition of two quadratic regularization terms, one 
for each dimension. There is not a close solution to find a global solution 
for this problem, so other methods like gradient descent are required to find 
a local minimum. Anyway, the problem scales linearly with the number of 
observed entries. 

The two ratios, 𝛼! 𝛼 and 𝛼! 𝛼, can be interpreted as regularization 
parameters. Their choice is critical to make the model generalize well, 
especially when very sparse and imbalances datasets are considered. A 
possible way to find values is to try different reasonable combinations on a 
training set, and test them on a validation set to identify the best one. 
Anyway this solution is very expensive from the computational point of 
view and it is not suitable for many applications. 

 
An alternative solution is to introduce priors for the hyperparameters 𝛼! 

and 𝛼!, and then maximize the posterior distribution over both parameters 
and hyperparameters. In this way, the model complexity is controlled 
automatically using just the training data. 

 
Another alternative is to exploit a fully Bayesian approach, as explained 

by Salakhutdinov et al. in [55]. The model of this Bayesian matrix 
factorization is depicted in figure 2.2. 
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Figure 2.2: Bayesian factorization method 

First of all, they placed prior distributions on top of the hyperparameters 
𝑈! and 𝑉!. Following these assumptions, the distribution of the vector 𝑈 can 
be expressed as: 

 

𝑝 𝑈 𝜇! ,Λ! = 𝑁(𝑈!|𝜇! ,Λ!!!)
!

!!!

 (20)  

where 𝜇! and Λ! denote the hyperparameters of 𝑈, represented by the 
mean and the precision matrix of the associated Gaussian distribution. A 
convenient choice in a Bayesian context is to assume that the 
hyperparameters have Gaussian-Wishart priors [56]. In this case, their 
probability distribution is: 

 
𝑝 𝜇! ,Λ! 𝜇!, β!,𝑊!, 𝜈! = 𝑁(𝜇!|𝜇!, β!Λ! !!)𝑊(Λ!|𝑊!, 𝜈!) (21)  

 
where 𝜇!and 𝛽! represent the mean and the precision of the Gaussian 

distribution, while 𝜐! and 𝑊! represent the degrees of freedom and the DxD 
scale matrix characterizing the Wishart distribution 𝑊. 

As regards the predictive distribution, it is necessary to compute a 
complex posterior distribution by integrating over all the parameters and 
hyperparameters. Since the analytical derivation of this distribution is 
unfeasible, approximate inference has to be used. 

One possibility is to use the so-called variational methods [57]. The 
main idea of these techniques is to factorize the posterior distribution over 
some partition of the latent variables. Each factor is assumed to have a 
specific parametric form such as a Gaussian distribution. These methods 
are widely used because they can be really fast, even if they may lead to 
inaccurate results due to the strong assumptions they introduce. 
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In [55], an MCMC solution, based on Gibbs sampling, is provided. The 
idea behind it is to exploit a Markov chain having the true posterior 
distribution as target distribution. In order to that, each new sample of the 
chain is extracted after a cyclic process. In practice, the latent factors are 
divided into different groups (in this case two groups, parameters and 
hyperparameters). For each group of variables a new value is drawn from 
the related distribution, conditioned on the current values of all the others, 
until all the groups are updated. In order to do that, the fully conditional 
distribution must be of course easy to sample from. For this reason, the 
choice of the priors is critical, and it’s very convenient to use conjugate 
distributions, as decided in [55].  

 
After a burn-in phase, the algorithm converges to the posterior 

distribution of the unknown variables. A sufficiently large number, B, of 
samples is kept to compute the empiric distribution: 

 

𝑝(𝑅!"|𝑅) ≈
1
𝐵 𝑝(𝑅!"|𝑈!

! ,𝑉!
(!))

!

!!!

 (22)  

The result is that, after the learning phase, for each pair a predictive 
distribution can be computed, exploiting the related latent factors. In this 
way it is possible to fill the gaps corresponding to the unknown entries of 
the original matrix. 

2.3. Tensor	factorization	
The term tensor is used to indicate a multidimensional array [58]. Each 

tensor is characterized by an order, i.e. the number of its dimensions. For 
example, a vector is a first-order tensor, a matrix a second-order tensor and 
tensors of order three or higher are called higher-order tensors. The 
dimensions of a tensor are also known as modes or ways. From a 
mathematical point of view, a Nth-order tensor is the result of the tensor 
product of N vector spaces, each of them characterized by its own 
coordinate system. Figure 2.3 shows an example of the simplest higher-
order tensors, the third-order ones, which can be represented with a cube.  
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Figure 2.3: example of a third-order tensor. Figure from [58] 

There exists also a term to express the high order analogue of matrix 
rows and columns. This term is fiber: a fiber is the subset of values 
obtained by fixing all the dimensions but one. Figure 2.4 shows the three 
types of fiber in a third-order tensor. 

 

Figure 2.4: types of fiber in a third-order tensor. Figure from [58] 

From a practical point of view, tensors are a useful tool to represent data 
characterized by multiple dimensions. For example, in the biomedical 
fields, one dimension can be related to the patients, one to the diseases and 
one to the treatments. In this case, each point in this three dimensional 
coordinate system may represent if a certain patient has a certain disease 
and if he/she is treated with a certain therapy. This concept can of course 
be extended to more complex situations, in which many other variables are 
involved. Decompositions for tensors have been studied and applied to 
many fields, from signal processing [59–61] to data mining [62,63], to 
graph analysis [64], to neuroscience [65,66]. Many of the most common 
decompositions can be considered as extension of the previously described 
techniques for matrix factorization like SVD and PCA. In the same way, 
their objectives often coincide: these decompositions allow pointing out 
potential latent structures hidden in the data, through procedures that 
perform a dimensionality reduction. In the following sections, the two most 
common types of tensor decomposition will be briefly described. Before 
that, however, some basic concepts must be introduced.  

 
First of all, a Nth-order tensor is defined as a rank-one tensor if it can be 

written as the outer product of N vectors: 
 

𝒳 = 𝑎(!)⨂𝑎 ! ⨂⋯⨂𝑎(!) (23)  

Equivalently, it means that each entry of the tensor can be computed as: 
 

𝑥!!,!!⋯!! = 𝑎!!
(!)𝑎!!

(!)⋯𝑎!!
(!) (24)  
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Figure 2.5 shows a graphical representation of a rank-one third-order 
tensor. 

 

Figure 2.5: example of a rank-one third-order tensor, resulting from the 
outer product of vectors a, b and c. Figure from [58] 

Many mathematical operations can be defined for tensors. One in 
particular must be introduced to understand the following sections. This 
operation is the tensor n-mode product. It is defined as the multiplication of 
a tensor by a matrix or a vector in mode n (i.e. along the n-th dimension). 
Given a tensor 𝒳 ∈ ℝ!!×!!×⋯×!! and a matrix 𝑈 ∈ ℝ!×!! the result of the 
related n-mode product (in symbols 𝒳 ×!𝑈 ) is a tensor with size 
𝐼!×⋯× 𝐼!!! × 𝐽 × 𝐼!!!×⋯× 𝐼!, whose generic entry is given by: 

 

(𝒳 ×!𝑈)!!×⋯× !!!! × ! × !!!!×⋯× !! = 𝑥!!!!⋯!!!!!!

!!

!!!!

	 (25)  

To express it in a more intuitive way, this operation describes the 
multiplication of each mode-n fiber by the matrix U. 

 
After the introduction of these basic concepts, next sections will be 

focused on the two main factorization developed for the tensors. 

2.3.1. CP	decomposition	

The CANDECOMP/PARAFAC decomposition (canonical 
decomposition [67]/parallel factors [68]) operates the factorization of a 
tensor into a sum of terms represented by rank-one tensors:  

 

𝒳 ≈ 𝜆!

!

!!!

𝑎!
(!)⨂𝑎!

(!)⨂⋯⨂𝑎!
(!)	 (26)  

where R is a positive integer, indicating the number of factors used for 
the decomposition.  

Each entry can be therefore expressed as:  
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𝑥!!,!!,…,!! ≈ 𝜆!

!

!!!

𝑎!!!
(!)𝑎!!!

(!)⋯𝑎!!!
(!)	 (27)  

An example of CP decomposition of a third-order tensor is depicted in 
Figure 2.6.  

Indicating with 𝐴(!) = [𝑎!
!  𝑎!

! …  𝑎𝑟
(!)], an alternative notation is: 

 
𝒳 ≈ 𝜆;𝐴 ! ,𝐴 ! ,… ,𝐴 ! 	 (28)  

These 𝐴(!),𝐴(!),… ,𝐴 !  matrices are commonly called factor matrices. 
As can be easily noticed, the sum of the factors is weighted using the 𝜆! 

coefficients. They are often obtained by normalizing to length one the 
columns of the factor matrices. 

 

 
Figure 2.6: Representation of CP decomposition of a third-order tensor 

using R rank-one factors. In this example, λ=1 for each r. Figure from [58] 

The CP decomposition is strongly related to the rank of a tensor. By 
definition, the rank of a tensor 𝒳 is the minimum number of rank-one 
tensors required to generate 𝒳 as their sum. Therefore, the rank is the 
smallest number of factors required to a CP decomposition to reconstruct 
exactly the original tensor. An exact CP decomposition, using R equals to 
the rank of 𝒳, is called the rank decomposition.  

While matrix decompositions, like SVD, are not unique, under very 
weak conditions rank decomposition leads to the uniqueness of the 
solution. In particular, there is a sufficient condition guaranteeing the 
uniqueness: 

 

𝑘!(!) ≥ 2𝑅 + (𝑁 − 1)
!

!!!

	 (29)  

where 𝑘!(!) is the rank of 𝐴(!). 
On the contrary, if for the truncated SVD 𝜐 factors give the best 𝜐-rank 

decomposition, for CP decomposition the problem is much more complex 
and that property doesn’t hold [69].  
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Concerning the computation of CP decomposition, there is not an exact 
solution to the problem. In fact, it’s not even possible to compute the rank 
of a tensor with a straightforward algorithm (it’s an NP-hard problem [70]). 
The solution can be expressed as the minimization the quantity 𝒳 −𝒳 , 
where 𝒳 is the approximation obtained by summing R rank-one tensors. A 
possible strategy to solve this problem is to use an iterative algorithm to 
find a local minimum. For example, alternating least squares are often 
used. In this case, each of the factor matrices 𝐴(!) is optimized keeping 
fixed all the others. The algorithm stops when some convergence criterion 
is met. 

2.3.2. Tucker	decomposition	

The Tucker decomposition can be seen as a higher order principal 
component analysis. The main idea of this factorization is to express the 
original tensor as a core tensor, multiplied by a matrix along each mode 
[71]. In formulas:  

 
𝒳 ≈ 𝒢×!𝐴(!)×!𝐴(!)…×!𝐴 ! = 𝒢;𝐴(!),𝐴(!),… ,𝐴(!) 	 (30)  

𝒢  is the core tensor, and it expresses the interaction between the 
different components. 𝐴(!),𝐴(!),… ,𝐴(!) are the factor matrices, which are 
in general orthonormal. 

The single elements is thus computed as: 
 

𝑥!!!!⋯!! ≈ ⋯
!!

!!!!

𝑔!!!!⋯!!

!!

!!!!

!!

!!!!

𝑎!!!!
(!) 𝑎!!!!

(!) ⋯𝑎!!!!
(!) 	 (31)  

A graphical representation of Tucker decomposition for a third-order 
tensor is depicted in Figure 2.7.  

 

Figure 2.7: Representation of Tucker decomposition of a third-order 
tensor. Figure from [58] 
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There is a correlation between the Tucker decomposition and the CP 
decomposition. In particular, the CP decomposition can be seen as a 
particular form of Tucker decomposition characterized by a diagonal core 
tensor (i.e. a tensor for which an entry 𝑥!!!!⋯!! ≠ 0 only if 𝑖! = 𝑖! = ⋯ =
𝑖! ). The elements of main diagonal in this case correspond to the 𝜆! 
coefficients. On the contrary of CP decomposition the Tucker 
decomposition is not unique. 

 
The dimensions of the core tensor are typically chosen to be much 

smaller with respect to the dimensions of the original tensor. In this case, it 
can be interpreted as a dense and compressed representation of the original 
information. The factor matrices, instead, can be interpreted as the 
principal components in each mode. Using this strategy it is therefore 
possible to greatly reduce the amount of space needed to store the data 
[72].  
 
Regarding the computation of the Tucker decomposition, some algorithms 
have been proposed [71,73]. In general they focus only on third-order 
tensors, which are a simple case but it’s also the most used in practice. 
Anyway, the common idea of most of the algorithms is to exploit 
alternating least squares to find a local minimum of a cost function 
measuring the reconstruction error. After choosing appropriately the 
dimensions of the core tensor, the factors matrices are initialized. Different 
methods differentiate based on the initialization of the factor matrices, 
which represents a critical aspect. After that, an iterative algorithm is used: 
each of the factor matrices is updated keeping all the other fixed, and at the 
end of this step the core tensor is optimized.  
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Chapter	3	
3 Matrix	factorization	for	data	mining	

This chapter is focused on the application of the matrix factorization 
approach to the data mining field. As highlighted in the previous chapter, 
many mathematical properties characterizing this type of operations can be 
effectively applied for multiple purposes.  

In the following, the topic of recommender systems will be introduced. 
It is currently a pretty hot area of interest, due to the incredible growth of 
online tools made available in the past few years by different type of 
business companies. It will be shown how in this field it is possible to 
exploit some of the characteristics of matrix decompositions in order to 
build efficient algorithms for recommendations prediction.  

Afterwards, a more traditional machine learning problem will be 
discussed. In particular, a method employing a matrix factorization to 
perform both classification and regression will be described. 

3.1. Matrix	factorization	for	recommender	
systems	

In these years, many companies have put great effort into trying to 
model people’s individual tastes, with the final objective of suggesting new 
products they would probably like. This philosophy is on the basis of the 
so-called recommender systems [74–77]. The main idea is to exploit all the 
available information about a specific user in order to customize the offer 
towards him/her. Given a catalogue of available products, a good 
recommendation system is able to perform a ranking of these items, 
specifically calibrated for a certain user.  

A great boost to the research in this area was given by the Netflix prize 
[78]: it was a competition, sponsored by Netflix from 2006 to 2009 with a 
great cash prize (one million dollars), aimed at promoting the development 
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of a new, much more accurate, recommender system for its huge database, 
consisting of millions of movie ratings. That’s the reason why many of the 
algorithms published in recent years use the Netflix dataset as a benchmark 
to evaluate their performance. 

 
The idea behind these systems is really general, therefore similar 

strategies have been proposed in many fields. For example, they are used 
for e-commerce (e.g. by Amazon), to suggest new movies and TV series to 
watch (e.g. by Netflix) or music to listen to (e.g. by Last.fm and Pandora 
Radio), but they are also employed by the social media, to identify similar 
users or even for papers research [79]. For example, some social networks 
like Facebook, LinkedIn and MySpace use recommender systems to 
suggest new friends and groups, often relying on the concept of trust 
between users [77,80]. As far as it concerns the biomedical area, more 
sophisticated and ambitious applications have been proposed, including the 
disease risk diagnosis prediction [81] and connecting patients with similar 
conditions [82]. 

 
Different strategies have been explored with the aim of solving this 

problem, depending on the available information and the way it is 
represented [83]. Figure 3.1 synthetizes the main categories of 
recommender systems. In particular, two great classes of algorithms are 
commonly employed in this context [84]:  

• Content-based methods. The strategy adopted by these algorithms 
is to try to model each object using a certain number of discrete 
characteristics. In practice, for each available object, (item or user), a 
profile is created, trying to capture as much information as possible 
about its nature.  
Typically, the first step of these techniques is to find a proper 
description for each item. This is achieved by identifying a suitable 
set of features characterizing the related object in details, which will 
be of course dependent on the particular domain.  
After that, the user profiles are created, based on both explicit 
feedbacks, like the rating of past choices, and implicit, like the 
amount of time spent examining a particular item.  
The different classes of filtering algorithms are based on machine 
learning techniques that try to use this collected information in order 
to compute a weight for each feature, expressing the importance of 
that aspect for the specific user. Other data, like demographic and 
personal information, may be collected with appropriate techniques 
(like questionnaires) and integrated in the model. Therefore, the trait 
distinguishing the content-based filters is that they the 
recommendation for the users are independent from each other, since 
they are based just on the characteristics (i.e. the content) of the 
items. 
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• Collaborative filtering. For this type of algorithms, the concept of 
object similarity is the key to predict future custom interests. The idea 
behind this approach is quite innovative in the field of data mining, 
and due to its generality it can be easily applied also in contexts 
different from the recommendation field. For this reason, next section 
is focused on the description of the way these algorithms work, with 
particular interest to the techniques based on matrix decomposition. 
• Hybrid approach: it is also possible to combine the two strategies 
described above to exploit their strong points and mitigate their 
limits. There are different ways to combine the two methods. For 
example, both of them can be applied, and then their results are 
combined together. Otherwise, a unique integrate model, exploiting 
both the strategies can be implemented [85]. 

 

Figure 3.1: representation of the main classes of recommender systems.   

3.1.1. Collaborative	filtering	algorithms	

As the name suggests, the collaborative filtering algorithms for 
recommender systems aim at performing a selection, from a large list of 
items, exploiting a sort of collaboration between the users. The basic idea 
is that, if two users have similar tastes, then they would probably like the 
same items [86]. Therefore, the formulation of the problem revolves around 
the research of similarities, between both users and items, and how they are 
associated to each other. The key information in this case is represented by 
the past choices and the ratings of a user: for example, which products 
he/she bought and how he/she evaluated them. Logically, similar users will 
be characterized by similar ratings of the same objects.  Thus, the algorithm 
will suggest to a specific customer all the items characterized by high 
ratings by similar users. From a dual point of view, if two products are 
typically bought together, it means that they are similar. Therefore, if a user 
buys one of them it is also probable he/she will buy also this other.  

Recommender 
system method

Content-based 
filtering

Collaborative 
filtering Hybrid methods

Neighborhood 
methods

Latent factor 
models

Item-based 
methods

User-based 
methods

Matrix factorization 
methods



Matrix	factorization	for	data	mining	
	

	 30	

 
On the contrary of the content-based filtering, in this case a specific 

profile for each object is not required, because it is actually inferred 
directly from the data. This means that every item can be included in the 
catalogue, even if coming from a completely different context, because no 
specific domain knowledge is required. The algorithm itself has the 
capability of capturing the latent features hidden in the data, without any 
external information. The collaborative filtering approach is clearly much 
more general than content-based filtering, and it is easily extendible to 
different fields, since it does not require creating explicit objects’ profiles 
using predefined features. This is particularly relevant when the definition 
of an item’s characteristics is not straightforward. For example, while for 
texts there exist some techniques based on word frequencies, for other 
types of objects like music and movies, this procedure can be challenging 
[84]. 

Of course, there are also some drawbacks. The main critical point of the 
collaborative filtering algorithms is represented by the well known cold 
start problem [87]. It is the typical situation that occurs when a new user is 
added to model. In fact, in this case little information is available about 
his/her tastes, since number of rated items is negligible, and of course the 
algorithm is not able to identify similar users in an accurate way. Same 
thing happens when a new item is added to the catalogue. So, basically, a 
large amount of information is needed to make accurate recommendations. 

Another issue related to collaborative filters is the dimension of the 
starting dataset. If thought as a traditional database, with a record for each 
user and a column for each item, it would be characterized by huge 
dimensions, even if, typically, most of the entries would be zeros, because 
each user in general rates just a very small part of the overall set of items. 
This represents a problem both from a storage point of view, since it is not 
an efficient way to structure the data, and from a computational point of 
view, since massive computational resources are needed to process the 
data. 

 
Even if all based on the same basic idea, many different collaborative 

filters have been proposed in the past few years. In particular, two main 
classes can be distinguished: the neighborhood methods and the latent 
factor models. 

3.1.1.1. Neighborhood	methods	

The core point of the neighborhood methods is the direct evaluation of 
the similarity between objects. Many similarity measures can be used, from 
a simple Pearson correlation coefficient to more advance procedures [88]. 
Two different approaches are typically implemented:   
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• User-user approach: in this case the term neighbors indicates the 
similar users, i.e. users with similar choices and similar ratings. 
• Item-item approach: in this case the neighbors are similar items. 
If a user liked a certain item in the past, he/she will probability like a 
similar one in the future. A famous example this type of item-item 
similarity algorithm was implemented for example by Amazon [89].  

3.1.1.2. Latent	factor	models	

On the opposite side, the other main category of methods, the latent 
factor models, tries to express the relationships between objects by 
identifying hidden characteristics of the data. This operation is achieved by 
extrapolating, directly from the data without an external action, a set of 
latent factors. They may represent clear properties of an object, for 
example, given a movie, the latent factors may roughly represent its genre, 
while for a user they may be related to the age, the gender or the nature. 
Sometimes instead, these factors are not easily interpretable: this is of 
course a point in favor of the method, since it means that it is able to 
capture also non-trivial characteristics of the data. Under this perspective, 
the latent factors can be seen as the axes of a new feature space: they 
operate a projection of the data into a low dimensional space, condensing 
the information in a reduced number of meta-features. The operation is 
performed for both the users and the items. Consequently, to link the two 
features spaces, the algorithm has to learn the associations between the 
different latent factors. The intuitive interpretation of this strategy is the 
following: a user’s ratings will move his/her position inside the users space, 
accordingly to the value of the latent factors, and therefore also the related 
position in the items space to investigate will change [90].  

 
The nature of latent factors model make the problem eligible to be 

addressed using matrix decompositions. The system data, consisting of the 
ratings of all users, can be easily modeled as a very sparse big matrix 
𝑅 ∈  ℝ!"#, with 𝑛 number of users and 𝑚 number of items. In their basic 
formulation, collaborative filters based on matrix factorization map both 
users space and items space in a low dimensional space. This dimension is 
a critical parameter of the method: a too small value is not able to capture 
all the information in the data, a too high value doesn’t allow to generalize 
and thus discover the presence of latent variables. The behavior of each 
user 𝑢 will be summarized in a vector 𝑝! ∈ 𝑅! , while to each item 𝑖 a 
vector 𝑞! ∈ 𝑅! will be associated. The elements of these vectors represent 
the relative importance of the associated latent factor for that object. For 
example, for the users, the latent factors can be interpreted as the distinct 
categories of people using the system, and each value of 𝑝! indicates how 
much the user 𝑢 can be considered as member of that category. The same 
reasoning is valid for items. A simple estimate of the interest of user 𝑢 for 
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item 𝑖 , �̂�!" , can be obtained by the inner product the two related low 
dimensional vectors: 

 
�̂�!" = 𝑞!!𝑝!	 (32)  

Figure 3.2 depicts a representation of this basic recommender system. 

 

Figure 3.2: general schema of a recommender system based on matrix 
factorization. 

As discussed in Chapter 2, there are many ways to compute these 
vectors. From a conceptual point of view, the learning phase should 
perform the minimization of the reconstruction error, measured on the 
known ratings. Since this operation by itself may lead to overfit the original 
data, regularization parameters may be added to the cost function to 
optimize. An example is given in [90]: 

 
min
!·,!·

𝑟!" − 𝑞!!𝑝! ! + 𝜆 𝑞! ! + 𝑝! !

!,! !!

	 (33)  

where K indicates the set of user-item pairs (u,i) for which the 
associated rating 𝑟!" is known. The 𝜆 parameter is used for regularization, 
penalizing the squared norms of the two vectors. 

 
The model described above is just a basic version of a collaborative 

filtering algorithm. In fact, this representation assumes homogeneity among 
the different users and items. However, very often there is an imbalance on 
the values of the ratings. For example, some items may have a higher 
global evaluation (e.g. movies with general acclaim) and in the same way, 
the users can be more or less hard to satisfy. For this reason, it is 
worthwhile to include these biases in the algorithm. The factorization 
model will be therefore used just to express the interaction aspects, while 
all the other effects will be condensed in a bias term. This, for example, 
may have this form: 

R Item1 Item2 Item3 …

User1

User2 ෞ𝐫𝐮𝐢

User3

….

P

𝒑𝒖𝒕

𝑸𝒕 𝒒𝒊
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𝑏!" = 𝜇 + 𝑏! + 𝑏!	 (34)  

where 𝜇 indicates the global mean of all the ratings, while 𝑏!  and 𝑏! 
denote the item bias term and the user bias term, respectively. In practice, 
𝑏! and 𝑏! indicate how much a specific item’s ratings and a specific user’s 
rating commonly differ from the global mean. So, on the contrary of the 
latent factors parameters, these terms have a clear direct interpretation. The 
final recommendation for a certain pair (u,i) will be thus computed as [91]:  

 
�̂�!" = 𝑏!" + 𝑞!!𝑝!	 (35)  

The new cost function will be modified consequently to take in account 
the bias terms: 

 
min
!·,!·,!·

𝑟!" − 𝑏!" − 𝑞!!𝑝! ! + 𝜆 𝑞! ! + 𝑝! ! + 𝑏!! + 𝑏!!

!,! !!

	 (36)  

Despite these improvements, some weaknesses are still present in the 
model. In particular, to address the cold start problem additional 
modifications have to be introduced.  

A viable direction is to include further information about the users. For 
example it is possible to exploit some personal data such as gender, age, 
geographic position… To each of these attributes another low-dimensional 
vector 𝑦!𝜖𝑅!, is associated. Through the dot product of the vector 𝑞!! by 
the vector 𝑦!, the relationship between the item 𝑖 and the property 𝑎 will be 
measured. The procedure is repeated for each attribute, so that the overall 
effect is determined by the sum of these products.  

Another possibility, implemented by algorithms such as the SVD++ 
[88], is to exploit the implicit feedbacks: as mentioned above, this 
expression is used to indicate all the actions that can’t be considered actual 
ratings, for example the simple navigation history. A second item 
vector, 𝑥!𝜖𝑅! , can be introduced in the model, to express the implicit 
feedback of a certain user for the item z. Again, the overall effect of these 
feedbacks can be determined by summing up all the inner products between 
𝑞!! and 𝑥!. 

A possible model that integrates both the solution is the following: 
 

�̂�!" = 𝑏!" + 𝑞!![𝑝! + 𝑦!
!!! !

+  𝑁 𝑢 !!.!  𝑥!
!!!(!)

]	 (37)  

where A(u) is the set of personal attributes available for user u, N(u) is 
the set of items for which for the same user provided an implicit feedback, 
and 𝑁 𝑢 !!.! is a normalizing term to balance the fact that the number of 
implicit feedbacks varies from user to user. 

A similar operation can be also extended to the items representation. 
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Further modifications can be introduced in the model in order to 
improve the performance.  

In particular, another important aspect to take into account is the 
temporal dynamics of the ratings [92]. For example, the popularity of a 
movie may greatly vary over time and therefore sometimes it’s convenient 
to model this evolution by introducing a temporal dependence on the 
associated low dimensional vector 𝑏!(𝑡) . In the same way, the user’s 
characteristics, both related to the bias term and to the explicit feedbacks, 
may vary as well, thus making worthwhile to introduce a temporal 
dependence also for 𝑏!(𝑡) and 𝑝!(𝑡). 

3.2. Application	to	machine	learning	
From a general point of view, the expression machine learning refers to 

a collection of techniques able to exploit a set on data in order to make 
predictions. In a traditional machine learning scenario, the starting dataset 
is composed of a set of examples, and for each of them a certain number of 
features are measured. This information is used to train an algorithm, which 
can vary a lot based on the purpose of the application. In case of supervised 
learning, the objective is to assign to a new, unseen, sample, a certain 
value. It can be a label, associating a class to the object (classification 
problem), or a numerical continuous value (regression problem). In order to 
perform this operation, the algorithm has to be trained on a proper training 
set. This must be composed of complete data, meaning that, for each 
example, also the value of the class or the quantity of interest must be 
known. After the learning phase, the algorithm is able to predict the 
quantity of interest for a new sample, using the values of the other 
measured features. 

Within the traditional machine learning framework, matrix factorization 
techniques may be successfully employed, thanks to their ability of 
capturing the interaction effects among the variables. To highlight this 
aspect, in the next section, an integrated approach, called factorization 
machines, will be described.  

3.2.1. Factorization	machines	

Factorization machines (FMs) [93,94] are a machine learning algorithm 
for classification and regression. Since it is a supervised method, the 
learning phase of the model requires a set S = x ! , y ! , x ! , y ! ,…  
of complete data, composed of a vector of measured features, 𝑥, and an 
associated target value, 𝑦, for each sample. The objective is to use the 
algorithm to predict the target value y for new unseen examples.  

FMs were specifically developed for recommender systems applications. 
Figure 3.3 describes a possible input dataset for movies recommendations. 
In this case, each row represents a different rating, expressed by the value 
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of 𝑦. The set of features, instead, contains different types of information. 
The blue box highlights the mapping of the users: in each row, just one 
entry of those variables is set to 1, indicating the user who rated the movie, 
while all the other entries will be zeros. In the same way, the orange box 
indicates the variables used for the movies mapping. Other information 
may be added to improve predictions. For example, the yellow box 
highlights a set of variables used to represent the previous ratings of each 
user. Further examples are the time of the rating (green box) and the 
previously rated movie (brown box). From this simple example, it’s 
immediately clear that the dataset in characterized by high sparseness, 
since most of the entries are zeros. FMs try to address this problem by 
relying on a matrix decomposition strategy. 

 

 

Figure 3.3: example of input dataset for Recommender systems. Each row 
represents a complete data, including the feature vector 𝑥 and the associated 
target value 𝑦.  Figure from [93] 

From the mathematical point of view, the model is described by the 
following equation: 

 

 𝑦 𝑥 = 𝑤! +  𝑤!𝑥!

!

!!!

+ 𝑣! , 𝑣! 𝑥!𝑥!

!

!!!

!

!!!

	 (38)  

where:  
• 𝑥 is the feature value of the considered example 
• 𝑦(𝑥) is the predicted target value 
• 𝑝 is the number of elements of 𝑥 (i.e. the number of features) 
• . , .  indicates the inner product between two vectors with the 

same dimension. 
• 𝑤! ∈ 𝑅,𝑤 ∈ 𝑅!, 𝑣! ∈ 𝑅! are the parameters of the model. 
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It’s straightforward to notice a clear association with the well-known 
linear regression model, at least for what concerns the first two terms of the 
equation. For this reason, the 𝑤! and 𝑤 parameters are associated the same 
meaning: 𝑤! represents a global bias term of the model, while 𝑤 contains 
the linear weights of each feature, which takes into account the importance 
of the variable for the estimate of target value.  

The last term, instead, represents the key characteristic of the method. 
For each pair of feature, a quantity is computed and added to the global 
summation. This value is equals to the product of the related variables, 
weighted by the dot product of two vectors: 𝑤!,! = 𝑣! , 𝑣! . As easily 
deducible, 𝑤!,! models the effect of the interaction between the i-th and the 
j-th feature. The 𝑣! vectors are all characterized by the same dimension, 𝑘, 
and play the same role of latent factors in the collaborative filtering models 
described above. In practice, they try to summarize the information 
associated to a certain object by mapping it to the low dimensional space 
defined by the latent factors. The inner product between them measures the 
strength of the interaction between the two variables.  

Under this perspective, there is an association with another type of 
regression: the polynomial regression. This one is defined by the following 
equation:  

 

𝑦(𝑥) = 𝑤! + 𝑤!𝑥!

!

!!!

+  𝑊!,!𝑥!𝑥!

!

!!!

!

!!!

	 (39)  

As easily noticeable, the 𝑊 ∈ 𝑅!×! matrix is the only difference with 
respect to the FMs model. In the regression case, for each distinct pair a 
different parameter must be estimated. In the FM case, instead, the 
corresponding term is computed by the inner product of two vectors 𝑣! and 
𝑣! . The low dimensional vectors can be condensed in a single matrix 
𝑉 ∈ 𝑅!"# , where each row is related to a specific feature. Provided to 
choose a small value of 𝑘, in particular 𝑘 ≪ 𝑝, this strategy allows to 
greatly reduce the number of parameters to estimate to model the 
interaction effects, passing from 𝑝×𝑝 to 𝑝×𝑘. The corresponding 𝑊 matrix 
can be anyway computed as the product 𝑊 = 𝑉𝑉!.  

 
It is clear that a key role is played by the value of 𝑘: a small value is not 

enough to model all the data, while a too large value reduces the 
advantages of using this approach.  

3.2.1.1. FM	Properties	

There are several strong points characterizing this method: 

• First of all, as stated above, reducing the number of parameters to 
estimate leads to more robust models, less prone to overfitting. In 



Matrix	factorization	for	data	mining	
	

	 37	

particular, since all the interaction of a specific variable 𝑖 share the 
same 𝑣! , it means that the estimates are not independent. 
Equivalently, all the interactions of a specific feature depend on the 
same low dimensional vector, whose estimate relies also on all the 
other interactions of the same feature. For each variable then, each 
interaction helps the estimate of all the others, making the process 
more robust. This property is particularly critical in case of very 
sparse datasets. In fact, if just few entries are observed, an 
independent estimate of all the pairwise interactions can be 
challenging. It can even be impossible, if a specific combination is 
never observed in the training data.  
• From the computational point of view, another property of the 
method is the linear complexity. In general, if the objective is to 
estimate interaction of n variables, the computational cost should be 
𝑂 𝑛! . For FM instead, thanks to the factorization operated by the 
algorithm, the computational complexity is 𝑂 𝑘𝑛 . To highlight this 
aspect, it’s enough to focus in the term of FM equation characterized 
by a quadratic complexity, 𝑣! , 𝑣! 𝑥!𝑥!

!
!!!

!
!!! . By reformulating 

this term: 

 
 1

2 𝒗! ,𝒗! 𝑥!𝑥!

!

!!!!!

!

!!!

−
1
2 𝒗! ,𝒗! 𝑥!𝑥! =

!

!!!

	

1
2 𝒗! ,𝒗! 𝑥!𝑥!

!

!!!!

!

!!!

− 𝒗! ,𝒗! 𝑥!𝑥!

!

!!!

=	

1
2 𝑣!,!𝑣!,!

!

!!!

!

!!!

!

!!!

𝑥!𝑥! − 𝑣!,!𝑣!,!

!

!!!

!

!!!

𝑥!𝑥! =	

1
2 𝑣!,!𝑥!

!

!!!

𝑣!,!

!

!!!

𝑥! − 𝑣!,!!
!

!!!

𝑥!!
!

!!!

=	

1
2 𝑣!,!𝑥!

!

!!!

!

− 𝑣!,!!
!

!!!

𝑥!!
!

!!!

 	

	

(40)  

• This shows how the complexity is actually proportional to 𝑘×𝑝, 
and so linearly proportional to the number of samples in the dataset. 
Of course this is fundamental when large datasets are analyzed. 
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• A key aspect is represented by the interpretability of the model. 
In fact, starting from the matrix 𝑉 it is possible to obtain the complete 
interaction matrix with a simple operation: 𝑊 = 𝑉𝑉!. 

 
Another property characterizing the FMs is the multilinearity. Indicating 

with Θ = {𝑤!,𝑤!,… ,𝑤! ,… ,𝑤!, 𝑣!,!,… , 𝑣!,! ,… , 𝑣!,!}  all the parameters of 
the model, for each 𝜃 ∈ Θ  it is possible to express the basic equation as:  

 
 𝑦 𝒙 = 𝑔! 𝒙 + 𝜃ℎ!(𝒙)	 (41)  

This means that the predicted value can be seen as a linear combination 
of two functions, 𝑔!  and ℎ! , which depend only on x, while they are 
independent from the value of 𝜃. In particular, ℎ! represents the gradient of 
the FM model, computed as follows: 

 

ℎ! 𝒙 =
𝜕𝑦 𝒙
𝜕𝜃 =

1, 𝑖𝑓 𝜃 𝑖𝑠 𝑤!
𝑥! , 𝑖𝑓 𝜃 𝑖𝑠 𝑤!

𝑥! 𝑣!,!𝑥!

!

!!!

− 𝑣!,!𝑥!!, 𝑖𝑓 𝜃 𝑖𝑠 𝑣!,!

 

	 (42)  

Since the summation 𝑣!,!𝑥!!
!!!  is independent from 𝑖 , it can be 

computed separately. In general, each gradient can be computed in a 𝑂 1 .  
The other function, 𝑔! , can be instead computed as 𝑔! 𝒙 =  𝑦 𝒙 −

 𝜃ℎ!(𝒙). This subdivision will be useful to explain some of the learning 
algorithms developed for the optimization procedure.  

 
The presented model is just the simple form of FM, since only pairwise 

interactions are considered. Anyway, it is easily extendible to a d-way 
model, considering higher order interactions. In this case the model 
equation becomes: 

 

 𝑦 𝑥 = 𝑤0 +  𝑤𝑖𝑥𝑖 +

𝑛

𝑖=1

+ . . .

𝑛

𝑖1=1

𝑑

𝑙=2

𝑥_𝑖𝑗

𝑙

𝑗=1

𝑛

𝑖𝑙=𝑖𝑙−1+1

𝑣𝑖𝑗,𝑓
(𝑙)

𝑙

𝑗=1

  

𝑘𝑙

𝑓=1

	 (43)  

where 𝑑  indicates the maximum order of interactions included in the 
model. The d-order interaction term is obtained by multiplying the values 
of the related d features, weighted by a quantity computed as a function of 
their low dimensional vectors 𝑣!!,!

(!) . A tensor factorization method such as 
the PARAFAC decomposition can be used to determine the interaction 
parameters in this context. 
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3.2.1.2. Comparison	with	other	methods	

In addition to the polynomial regression, FMs have similarities with 
other algorithms, both for machine learning and factorization-based 
recommender systems. 

 
For example, Support Vector Machines (SVM) are a supervised 

classification algorithm very popular in the machine learning field [95]. 
Some similarities with FM will be briefly highlighted. The equation of 
SVM can be expressed as: 

 
 𝑦 𝑥 = 𝜙(𝑥),𝑤 	 (44)  

In practice, the target value is computed as the dot product of the model 
parameters 𝑤 with the function 𝜙(𝑥): this one maps the input data from the 
features space to a space where the classification problem is easier to 
address. Different kernel functions, defined as 𝐾 𝑥, 𝑧 = 𝜙(𝑥),𝜙(𝑧)  , 
discriminates among different classes of SVMs. 

The simplest kernel function is the linear one: 
 

𝐾 𝑥, 𝑧 = 1+ 𝑥, 𝑧 	 (45)  

The equation of the linear SVM is this case becomes: 
 

 𝑦 𝑥 = 𝑤! + 𝑤!𝑥!

!

!!!

	 (46)  

This is of course a linear regression, and no interactions are considered. 
If instead a polynomial kernel is used, it is possible for example to include 
in the model the interaction terms. Given the following polynomial kernel 
function:  

 
𝐾 𝑥, 𝑧 = ( 𝑥, 𝑧 + 1)!	 (47)  

the associated model equation is: 
 

 𝑦 𝑥 = 𝑤! +  2 𝑤!𝑥!

!

!!!

+ 𝑤!,!
(!)𝑥!!

!

!!!

+  2 𝑤!,!! 𝑥!𝑥!

!

!!!!!

!

!!!

	 (48)  

This model is able to take into account all the pairwise interactions, but 
on the contrary of FM all the related parameters are independent, with the 
same overfitting problem of polynomial regression. 

 
FMs have also analogies with other factorization models, for example 

with SVD++. This is immediately clear when considering a typical 
recommender system dataset. For example, each row may relate a certain 
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user 𝑢 ∈ 𝑈, with the item 𝑖 ∈ 𝐼, for which the algorithm wants to estimate 
the user’s interest, and a set of objects 𝑁 𝑢 = 𝑙!, 𝑙!,… , 𝑙! ∈ 𝐿 for which 
user 𝑢 showed interest about. Therefore, the values of vector 𝑥 will be:    

 

𝑥! =

1, 𝑖𝑓 𝑗 = 𝑢 ∨ 𝑗 = 𝑖
1
𝑚
, 𝑖𝑓 𝑗 ∈ 𝑁(𝑢)

0, 𝑒𝑙𝑠𝑒
 

	 (49)  

The FM model in this case becomes: 
 

𝑦 𝑥 = 𝑤! +  𝑤! + 𝑤! + 𝑣!, 𝑣! +
1
𝑚

𝑣! , 𝑣!!

!

!!!

  

+
1
𝑚

𝑤!! +
1
𝑚

𝑣!, 𝑣!! +
1
𝑚 𝑣!! , 𝑣!!!

!

!!!! 

!

!!!

!

!!!

!

!!!

	

(50)  

The first part is similar to the SVD++ model, containing the global bias 
effect, the user and the item effect and some interaction terms between the 
user 𝑢 and the item 𝑖, and between the item 𝑖 and all the objects in 𝑁 𝑢 . 

The second part, instead, differs from the SVD++ model because it 
contains additional interactions between user 𝑢 and the objects in 𝑁 𝑢 , 
along with the bias term and the interaction terms for the objects in 𝑁 𝑢 . 

3.2.1.3. FM	Parameters	Learning	

As most of the matrix factorization techniques, the parameters 
estimation for FMs relies on the optimization of a cost function. Given a set 
𝑆 of complete data for the training, the goal is to find the best set of Θ that 
minimizes the prediction error, i.e. the difference between what the model 
predicts, 𝑦 𝒙|Θ , and the real target value 𝑦. This error is measured using a 
loss function, l(𝑦 𝒙|Θ ,𝑦), which may vary depending on the algorithm. In 
general the learning phase can be therefore summarized in:  

 
𝑂𝑝𝑡 𝑆 = argmin

!
𝑙(𝑦 𝒙|Θ ,𝑦)

(𝒙,!)∈!

	 (51)  

If a regression problem is addressed, a simple choice for the loss 
function is the least squares loss function: 

 
𝑙!"(𝑦 𝒙|Θ ,𝑦) ∶= 𝑦 𝒙|Θ − 𝑦 !	 (52)  

It simply measures the squared error of the difference between the real 
and the predicted value. 
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For a binary classification problem instead, it is possible to use a logistic 
loss function: 

 
𝑙! 𝑦 𝒙|Θ ,𝑦 ∶= −ln σ(𝑦 𝒙|Θ 𝑦)	 (53)  

where  σ x = !
!!!!!

 is the logistic function. 
 
As stated above, the choice of the parameter 𝑘 is fundamental to obtain 

good performance. In particular, when 𝑘 is large, the risk is to make the 
model overfit, i.e. it tries to adapt exactly to the training data, learning also 
the associated noise, and therefore it is not able to generalize well.  

A common approach to avoid this condition is to introduce in the model 
some regularization parameters. For example, in case of L2 regularization, 
the cost function is modified in this sense:  

 

𝑂𝑝𝑡𝑅𝑒𝑔 𝑆 = argmin
!

𝑙(𝑦 𝒙|Θ ,𝑦)
(𝒙,!)∈!

+ 𝜆!𝜃!
!∈!

 	 (54)  

where 𝜆! ∈ 𝑅! is dependent on the specific parameter, meaning that each 
parameter can have a different regularization. In this way the cost function 
is penalized if the modules of the parameters are too high.  
 
The FM model can be also represented in a probabilistic fashion [54], 
leaning on the idea of probabilistic matrix factorization introduced in the 
previous chapter. In this case, proper distribution can be used to model the 
error functions. A comprehensive representation of the probabilistic model 
is shown in Figure 3.4. 
 
For what it concerns the regression problem, the usage of the least squares 
loss function corresponds to the assumption that 𝑦 is Normally distributed, 
with mean 𝑦 𝒙|Θ  and precision 𝛼: 

 
𝑦|𝒙,Θ ~ 𝑁 𝑦 𝒙|Θ , 1 𝛼 	 (55)  

In case of classification instead, 𝑦  is assumed to follow a Bernoulli 
distribution: 

 
𝑦|𝒙,Θ ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑏 𝑦 𝒙|Θ 	 (56)  

where 𝑏 is a link function, defined from ℝ to [0,1]. In general a logistic 
function or the cumulative density function of a standard Gaussian 
distribution is used. 
 
A probabilistic explanation can also be associated to the regularization 
process. In particular, in case of L2 regularization, each parameter 𝜃 is 
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assumed to be Gaussian, with a certain mean 𝜇!  and precision 𝜆! 
(corresponding to the regularization parameter):  

 
𝜃| 𝜇! , 𝜆!  ~ 𝑁 𝜇! , 1 𝜆! 	 (57)  

Again, different values of 𝜇! and 𝜆! can be chosen for each attribute. It 
can be noticed as, assuming 𝛼 = 1 and 𝜇! = 0, the Maximum A Posteriori 
(MAP) estimate of this model is equivalent to the optimization process 
defined by eq.(54). 

 
Since a close solution to the optimization problem does not exist, a 

heuristic approach must be adopted. Some algorithms have been proposed. 
In particular, a tool, called libFM [94], contains the implementation in C++ 
language of three different learning methods: the Stochastic Gradient 
Descent (SGD), the Alternating Least Squares (ALS) and a Markov Chain 
Monte Carlo (MCMC) based method. 

 

Figure 3.4: probabilistic representation of FM model.  Figure from [94] 

3.2.1.4. Stochastic	Gradient	Descent	(SGD)	

As the name suggests, the SGD methods perform a gradient descent to 
find the minimum of a function [96]. This is obtained by computing the 
gradient of the quantity to minimize, which always indicates the direction 
of maximum growth of the function. By moving in the opposite direction is 
thus possible to decrease the value of the target quantity. Repeating this 
operation iteratively, it’s possible to reach a local minimum of the cost 
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function. The first step of the process is therefore to compute the gradients 
of the loss function for each parameter.  

In case of least squares function, the partial derivative for a certain 
parameter is: 

 
𝜕𝑙!" 𝑦 𝒙|Θ ,𝑦

𝜕𝜃 =
𝜕 𝑦 𝒙|Θ − 𝑦 !

𝜕𝜃 = 2 𝑦 𝒙|Θ − 𝑦  
𝜕
𝜕𝜃 𝑦 𝒙|Θ 	 (58)  

For binary classification instead, the partial derivative is given by: 
 
 

𝜕 𝑙! 𝑦 𝒙|Θ ,𝑦
𝜕𝜃 =

𝜕 −ln 𝜎 𝑦𝑦
!

𝜕𝜃  

= 𝜎 𝑦 ∙ 𝑦 𝒙|Θ − 1
𝜕
𝜕𝜃 𝑦 𝒙|Θ 	

(59)  

The peculiarity of this version of gradient descent is that it iterates over 
the single examples 𝒙,𝑦 ∈ 𝑆 of the training dataset. For each sample, all 
the parameters 𝜃 of the model are updated, using the derivative of the L2 
penalized cost function: 

 

𝜃 ← 𝜃 − 𝜂
𝜕
𝜕𝜃 𝑙 𝑦 𝒙|Θ ,𝑦 + 2𝜆! 𝜃 	 (60)  

This methods requires the definition of three input parameters: 

• 𝜂, the learning rate. It indicates how wide each step towards the 
minimum is. This value determines how fast the algorithm goes to 
convergence. If it is chosen too small, then the convergence can be 
too slow, if chosen too high, there could be instability problems 
leading to non convergence. 
• 𝜆!  the regularization terms for each parameter. It is possible to 
assign different values to different groups of features, based on the 
available knowledge about them. 
• 𝜎!, a variance term. It is used by the algorithm to initialize the 
low dimensional vectors of the V matrix. They are in fact drawn from 
a Normal distribution with zero mean and variance 𝜎!. 

After the initialization phase, an iterative process starts, and for each 
sample a small step toward the direction of a smaller loss is performed. The 
process terminates when a stopping criterion, generally based on the quality 
of the performance, is met. The main steps of the algorithm are reported in 
Figure 3.5. This class of algorithms is very popular because they are simple 
to implement, they have a low storage need and, above all, they don’t 
require a lot of computational resources. In particular, for online learning, 
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this strategy is crucial, since it doesn’t require re-estimating the entire 
model when a new entry is added. 

 Figure 3.5: SGD main steps. Figure from [94]  

3.2.1.5. Alternating	Least	Squares	(ALS)	

The alternating least squares algorithms [97], also called coordinate 
descent algorithms, is another class of methods that try to solve the 
minimization problem described above in an iterative way, aimed at finding 
a local minimum of the cost function. On the contrary of SGD, it considers 
all the samples at the same time, and for each parameter it computes the 
optimum value 𝜗∗ , considering fixed all the others Θ {𝜃}. An iterative 
process is still required since fixing the values of the other parameters it 
doesn’t perform global optimization. In case of least squared loss function 
and L2 regularization, a close form for this optimum problem can be 
obtained by exploiting the multilinearity of the FM model [98]: 

 

𝜗∗ = 𝑎𝑟𝑔𝑚𝑖𝑛! 𝑦 𝒙|Θ − 𝑦 !

𝒙,! ∈!

+ 𝜆!𝜗!
!∈𝜽

= 

𝑎𝑟𝑔𝑚𝑖𝑛! 𝑔! 𝒙|Θ {𝜃} + 𝜗ℎ! 𝒙|Θ {𝜃} − 𝑦 !

(𝒙,!)∈!

+ 𝜆!𝜗!
!∈𝜽

 

(61)  

and then finding the roots of the derivatives: 
 

𝜗∗ =
𝜗 ℎ!

! 𝑥!! + ℎ! 𝑥!! 𝑒!
ℎ! 𝑥! !
! + 𝜆!

 (62)  

where 𝑒! is the error calculated in the i-th case: 
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𝑒! = 𝑦! − 𝑦 𝒙!|Θ  (63)  

The function ℎ! can be computed as indicated in (42). In case 𝜃 = 𝑣!,!, 
the quantity ℎ!!,! can be computed as: 

 
ℎ!!,! 𝒙! = 𝑥! 𝑞!,! − 𝑣!,!𝑋!,!  

𝑞!,! = 𝑋!,!𝑣!,!

!

!!!

 
(64)  

where 𝑄 ∈ 𝑅!×!.  
Figure 3.6 reports the main step of the ALS algorithm. 
 
Also this method requires some input parameters. In particular, as for 

SGD, a regularization term, 𝜆! , for each parameter and a variance value 𝜎! 
to initialize the low dimensional vectors are required. On the contrary, a 
learning rate parameter is not necessary, since the method computes the 
exact optimum minimum at each iteration. 

Anyway, in case of classification, it’s not possible to use this method 
because it’s not suitable to perform the minimization of the related loss 
function. 

 

Figure 3.6: ALS main steps. Figure from [94] 
 

 
 



Matrix	factorization	for	data	mining	
	

	 46	

3.2.1.6. Markov	Chain	Monte	Carlo	(MCMC)	

Using the probabilistic interpretation of the FMs model, it’s possible to 
exploit some techniques developed in the field of Bayesian inference. 
Instead of computing point estimates of the parameters, in this case their 
value is obtained by using some sampling strategies. As previously 
described, within a probabilistic framework some distributions and related 
hyperparameters can be introduced in the model. Indicating with Θ! the set 
of all the hyperparameters, this is composed of (see Figure 3.2): 

 
𝛩! ≔ (𝜇!, 𝜆! , (𝜇!! , 𝜆!!), (𝜇!,!! , 𝜆!,!! ): ∀𝜋 ∈ {1,…𝛱},∀𝑓 ∈ {1,… 𝑘}} (65)  

The objective of Bayesian methods is to compute for each parameter its 
posterior distribution. A typical approach in this case is to exploit MCMC 
techniques. Basically they create a Markov chain (i.e. a sequence of 
samples, each of them depending only on the previous one) that, after a 
burn-in phase, converges to the posterior distribution of the parameter. 
Given a parameter θ, keeping fixed all the other parameters, Θ\ 𝜃 , and the 
hyperparameters, Θ!, its posterior distribution has the form of a Gaussian 
distribution: 

 
𝜃 𝑋,𝑦,𝛩{𝜃 ,𝛩!~𝑁(𝜇! ,𝜎!!) (66)  

where: 
 

𝜎!! ≔ 𝛼 ℎ! 𝑥! ! + 𝜆!

!

!!!

!!

 (67)  

 
 

𝜇! = 𝜎!! 𝛼𝜃 ℎ!! 𝒙!
!

!!!
+ 𝛼 ℎ! 𝒙! 𝑒!

!

!!!

+ 𝜇!𝜆!  (68)  

Interestingly to notice, imposing 𝛼 = 1 and 𝜇∙ = 0 in this equation, the 
mean of the posterior distribution is equivalent to the optimum value 
computed by the ALS algorithm, 𝜇! = 𝜃∗ . Anyway, the assumptions 
behind the two methods are completely different, since MCMC uses a 
probability distribution while ALS performs a point estimate. 

 
One of the advantages of the probabilistic interpretation is that the 

regularization parameters can be directly included in the model. In this 
way, the algorithm itself can jointly estimate also their value in the learning 
phase. The basic model must be extended to include hyperpriors 
distribution over the hyperparameters (see Figure 3.7). 
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Figure 3.7: probabilistic representation of FM model with hyperpriors.  
Figure from [94] 

Given a parameter θ, the regularization terms 𝜆! are Gamma variables, 
while the 𝜇! have a Gaussian probability density distribution: 
 

 
𝜇!!~𝑁 𝜇!, 𝛾!𝜆!! , 𝜆!!~𝛤 𝛼!,𝛽! , 

 𝜇!,!! ~𝑁 𝜇!, 𝛾!𝜆!,!! ,   𝜆!.!! ~𝛤 𝛼!,𝛽!   
(69)  

 
where 𝜇!, 𝛾!,𝛼!,𝛽! are the hyperpriors’ parameters.  
A Gamma distribution is also used to describe 𝛼: 
 

𝛼~Γ α!,𝛽!  (70)  

Within this framework, the values of all hyperparameters Θ!  can be 
automatically determined by sampling from the related conditional 
posterior distributions. 
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For 𝛼: 
 

𝛼|𝑦,𝑋,𝛩!,𝛩~𝛤
𝛼! + 𝑛
2 ,

1
2 𝑦! − 𝑦 𝑥!  𝛩

! + 𝛽!

!

!!!

; (71)  

For the regularization parameters 𝜆!: 
 

𝜆! 𝛩!,𝛩!\ {𝜆! ,𝛩~ 

𝛤
𝛼! + 𝑝! + 1

2
,
1
2

𝛿 𝜋 𝑗 = 𝜋 𝜃! − 𝜇!
! + 𝛾! 𝜇! − 𝜇! ! + 𝛽!

!

!!!

  
(72)  

 
For the means parameters 𝜇!: 
 
 

𝜇! 𝛩!,𝛩!\ {𝜆! ,𝛩~ 

𝑁 𝑝! + 𝛾! !! 𝛿 𝜋 𝑗 = 𝜋 𝜃! + 𝛾!𝜇!

!

!!!

,
1

(𝑝! + 𝛾!)𝜆!  
(73)  

with 
 

𝑝!:= 𝛿(𝜋 𝑗 ) = 𝜋)
!

!!!

 (74)  

The price to be paid for this model is the definition of the hyperpriors’ 
parameters. Anyway, it seems to be a reasonable cost, because first of all 
the numbers of these parameters is much smaller than the number of 
regularization terms. In addition, the MCMC algorithm has demonstrate to 
be quite insensible to the value of these parameters [94].  The only critical 
tuning parameter is therefore the variance 𝜎!  used in the initialization 
phase, which may affect the convergence speed of the algorithm. 

The main steps of the algorithm are reported in Figure 3.8 
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Figure 3.8: MCMC main steps. Figure from [94] 
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Chapter	4	
4 Data	fusion	techniques	

As discussed in Chapter 1, in recent years many fields experienced an 
incredible growth of the amount of data collected. The biomedical area is 
one of those characterized by the fastest increase of available information, 
primary related to the advent of low cost technologies for analyzing 
molecular data. Very often, different types of complementary information, 
coming from different data sources, become available for computational 
analysis. Extracting useful information from this stack of raw measures can 
be a challenging task, which requires the definition of novel strategies and 
the development of specific tools. 

In recent times, the expression data fusion is often used to indicate the 
process of integrating heterogeneous data, coming from different sources 
[99]. The basic idea is to combine all the information available in order to 
improve the prediction performance of a model [100]. 

In this chapter, the problem of data integration will be addressed. First 
of all, different strategies of integration will be introduced. Then, two 
different algorithms, based on matrix factorization techniques, will be 
described.  

4.1. Types	of	data	integration	
A common way to discriminate the different data integration strategies is 

to consider the step of the analysis process, in which the actual integration 
is performed [101,102]. Three main approaches can be identified (Figure 
4.1): 

• Early integration: the data fusion is performed at the beginning of 
the process. In this case, a pre-processing step is required to make the 
data homogeneous and comparable. After this phase, all the data are 
integrated in a unified dataset (e.g. a single table with all the features) 



Data	fusion	techniques	
	

	 51	

and after that standard machine learning techniques can be applied. 
For example, let’s suppose that the aim is to predict the risk for a 
patient of developing a disease given a series of data sources (generic 
personal data, clinical exams, somatic mutations, literature…). Using 
this approach, it is necessary to create a traditional dataset, where all 
the information is modeled in terms of patients’ attributes. After this 
phase, standard machine learning techniques can be applied. The 
drawback is that, following this strategy, the peculiar characteristics 
of each data source are lost. Even if it is possible to capture 
interactions between features coming from distinct sources, the 
modular structure of the data is neglected [103]. 
• Late integration: this strategy is the opposite of early integration. 
For each data source a different model is trained, and then the results 
are combined to compute the final output. Using the same example 
described above, in this case for each type of data a traditional dataset 
in built and for each of them a different algorithm can be applied 
(thus giving more flexibility to the model). As can be easily 
imagined, the challenging part lays in the integration of the partial 
results given by each method. Regarding the example, an appropriate 
meta-classifier is needed to merge the risk predictions obtained 
considering the different components (lifestyle, genetic factors, 
clinical situation…), in order to come up with a single holistic score. 
Of course with this approach, it is possible to fully exploit the 
peculiarities of each dataset, but it is necessary to model the relation 
of each dataset with the final target of the method. In addition, the 
integration of the results may be challenging, because it requires a 
way to weight the contribution of each classifier. 
• Intermediate (or partial) integration: this approach consists of 
performing the integration during the learning of the model. More 
precisely, the structure of the data is incorporated within the structure 
of a joint model: in this way the original the information can be 
exploited for the inference. Using the same example used earlier, in 
this case an overall disease risk for each patient is computed by 
considering all the available information at the same time. Of course, 
the algorithm must be able to exploit both patient-related properties 
(e.g. personal data, clinical exams, physiological measurements…) 
and the relation between the different data types (e.g, disease-disease 
associations, drug-disease effectiveness, gene-disease 
associations…).  
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Figure 4.1: Graphical representation of the different types of data 
integration strategies.  

The third strategy, the intermediate integration, is potentially the most 
accurate, since it retains the structure of the original data. Anyway, the key 
point of this solution is, of course, the definition of the inference algorithm. 
Due to the complexity of the problem, it is not trivial to develop a general 
methodology, independent on the problem to address.  
Some classes of algorithms have been proposed to operate an intermediate 
data fusion. Many of them are just heuristic methods heavily bound to the 
specific application. But there are also some general approaches such as 
graphical model-based methods, multiple kernel-based methods and latent 
factors models. Regarding the first ones, there exist different application of 
Bayesian hierarchical modeling used to perform predictions using different 
sets of objects [104]. For example, in order to transfer information coming 
from different data sources it is possible to place common priors on top of 
hierarchical models [105]. On the other hand, kernel methods use non-
parametric kernel functions to express the similarity between pairs of 
objects. Different kernels may correspond to different notions of similarity 
and different kernels can be used for inputs coming from different data 
sources. In order to perform data fusion, a combinations of the different 
kernels can then be obtained using linear or more sophisticated non-linear 
functions [106,107]. 
In this dissertation, the attention is focused on methods based on latent 
factors, obtained by performing a joint decomposition of the starting data 
matrices. 
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4.2. Approaches	based	on	matrix	factorization	
In this section, two examples of data fusion algorithms, based on matrix 

factorization techniques, will be described. The first one, the Tri-
factorization algorithm, has been recently developed [103] and successfully 
applied to many biomedical problem. The second one, Bayesian matrix 
factorization for data fusion, is a novel method introduced in this thesis. 
Both of them have been implemented in the context of this dissertation. At 
the end of the section, a brief comparison between the two methods will be 
discussed. 

4.2.1. Matrix	tri-factorization	algorithm	

The tri-factorization algorithm can be seen as a multi-level extension of 
the generic matrix decomposition used in the field of recommender 
systems. This method has been already successfully applied to a variety of 
problem, such as discovering novel disease-disease associations using 
molecular data [108], prediction of drug-induced liver injury [109], gene 
prioritization [110], gene function prediction [111], for drug repurposing 
for triple negative breast cancer [112] and for multiple protein network 
alignment [113]. 

4.2.1.1. Input	data	

The philosophy behind this method is to structure the available 
information in matrix form. The basic assumption is that every input data 
must be interpretable as an interaction between two objects. For example, 
given microarray data, containing gene expression values for a cohort of 
patients, the related information can be easily structured in a matrix, where 
the rows represent the patients, the columns represent the genes and each 
entry of the matrix represents the expression value for a certain pair 
(patient, gene). Of course a lot of traditional machine learning datasets can 
be easily modeled in this way, except those characterized by higher order 
interactions. In this case, tensors need to be used and the complexity of the 
model drastically increases.  

 
The Tri-factorization algorithm distinguishes two types of input matrices 

[103]: the relation matrices, 𝑅!" ∈ ℝ!!!!! , and the constraint matrices, 
𝜃! ∈ ℝ!!!!!. The first type refers to the case of interactions between two 
different types of objects (e.g. patient-gene interactions). The algorithm 
requires the entries to be bound in the [0,1] interval, where 1 indicates a 
very strong interaction, while 0 represents the absence of interaction or the 
lack of knowledge about it. The constraint matrices, instead, are used to 
model relationships between objects of the same type (e.g. patient-patient 
similarities or gene-gene interactions). The entries of the 𝜃! matrices must 
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be bound in the [-1,1] interval, where -1 indicates a must-link, i.e. a very 
strong association, while 1 represents a cannot-link, i.e. a nearly impossible 
association. Due to the bounded intervals, a pre-processing phase is 
required to rescale the interaction values inside the appropriate limits.  

 
The central point of Tri-factorization method is that the multiple data 

sources to integrate in the model must share some of the object types 
involved in the analysis. So, for example, in case of bioinformatics data, it 
is possible to include different types of interactions for an object of type 
“gene”: patient-gene expression, gene-protein, gene-miRNA, gene-gene… 
In turn, all the other objects may have other interactions: e.g. for patients, 
patient-drug, patient-disease, patient-miRNA expression… In practice, 
each 𝑅!" matrix, relates the two objects types, 𝑖 and 𝑗, that are involved in 
other relations.  

The set of 𝑅!" can be then used to define a comprehensive block matrix, 
𝑅 ∈ ℝ!"!, with 𝑁 = 𝑛!! , containing all the available associations: 

 

𝑅 =

0 𝑅!" ⋯ 𝑅!!
𝑅!" 0 ⋯ 𝑅!!
⋮ ⋮ ⋱ ⋮
𝑅!! 𝑅!! ⋯ 0

 (75)  

In order to obtain compatible dimensions, the rows of 𝑅!" must be made 
equal to the number of the objects of type 𝑖 included in the model and in 
the same way the columns of 𝑅!" must be made equal to the number of the 
objects of type 𝑗. The final R matrix will have null block matrices on the 
main diagonal, because that type of information is contained in the 𝜃! 
matrices. Some other blocks may be null, because the related associations 
are missing (or meaningless). The 𝑅 matrix can be symmetrical, therefore 
to each 𝑅!" is associated a 𝑅!" = 𝑅!"! , or non-symmetrical. In this latter case, 
two different kinds of information, relating the same two types of objects, 
can be included in the model. 
 

As regards the 𝜃!  matrices, the algorithm allows taking into account 
multiple interaction sources for each object. Indicating with 𝑓  the 
maximum cardinality of the 𝜃! matrices, similarly to 𝑅, it is possible to 
define 𝑓 block diagonal 𝜃(!) matrices, containing 𝜃!

(!) (if existing) as i-th 
block on the diagonal: 

 

𝜃(!) =

𝜃!
(!) 0 ⋯ 0
0 𝜃!

(!) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜃!

(!)

  (76)  

where 𝑟 is the number of different object types included in the model. 



Data	fusion	techniques	
	

	 55	

In the same way of 𝑅!", for dimensional compatibility, in 𝜃! there exist a 
row and a corresponding column for each unique element of type 𝑖.  

4.2.1.2. Method	description		

In the typical application contexts, both 𝑅 and 𝜃 are characterized by 
very high sparseness, because, given the complete list of unique elements 
introduced in the model, just few interactions are known. In the same way 
as recommender systems, the objective of the method is to fill the gap in 
order to discover novel interesting unknown associations between two 
specific types of objects. This is achieved by factorizing the starting 𝑅 
matrix into the product of three terms: 

 
𝑅 ≈ 𝐺𝑆𝐺! (77)  

where: 

• 𝐺 ∈ ℝ!"#  is a non-negative block diagonal matrix, and block 
𝐺! ∈ ℝ!!!!! is related to the i-th object type, and 𝐾 = 𝑘!! . The 𝑘! 
terms, also called ranks, define the dimension of the latent factors for 
the i-th object type. In fact, as typically operated by the 
decomposition methods, the Tri-factorization performs a 
dimensionality reduction, with the objective of revealing hidden 
structures in the data. For this reason, 𝑘!  has to be chosen much 
smaller than the associated 𝑛!dimension. For each type of objects, a 
different rank parameter can be defined, in general depending on the 
sparseness of the associated relational matrices. Each row of 𝐺! is a 
low dimensional vector, related to a specific element of type 𝑖. Its 
values indicate the weight of the corresponding latent factor for the 
specific element.  

 

𝐺 =

𝐺!
!!!!! 0 ⋯ 0
0 𝐺!

!!!!! ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐺!

!!!!!

  (78)  

• 𝑆 ∈ ℝ!"! is a squared block matrix. It has null blocks on the 
main diagonal and for all the 𝑆!" ∈ ℝ!!!!!  for which the 
corresponding 𝑅!" is null. This matrix plays the role of modeling 
the associations between the latent factors. Each 𝑆!" ∈ ℝ!!!!! in 
particular, put in relation the latent features of the i-th type of 
objects with the latent features of the j-th type of objects. In 
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practice it represents a compressed version of the related 𝑅!" in a 
smaller space, defined by the latent factors.  

 

𝑆 =

0 𝑆!"
!!!!! ⋯ 𝑆!!

!!!!!

𝑆!"
!!!!! 0 ⋯ 𝑆!!

!!!!!

⋮ ⋮ ⋱ ⋮
𝑆!!
!!!!! 𝑆!!

!!!!! ⋯ 0

 (79)  

Therefore, the basic idea behind the method is to operate a joint 
decomposition of all the starting matrices. This results in a set of two types 
of matrices: 𝐺!, with the latent factors for the i-th object, and 𝑆!" with the 
pairwise relation, in the latent factor space, between object 𝑖 and object 𝑗. 
Figure 4.2 depicts an example of Tri-factorization schema with three 
different types of objects. 

 

Figure 4.2: Example of Tri-factorization for three types of objects and five 
different data sources. Figure from [108] 

Regarding the learning process of the model, the estimate of the values 
of the 𝐺 and 𝑆 matrices can be expressed as an optimization problem, based 
on the minimization of a cost function: 

 

min
!!!

𝐽(𝐺; 𝑆) = 𝑅!" − 𝐺!𝑆!"𝐺!! !"#$%&'()

! +
!!"

𝑡𝑟(𝐺!𝜃(!)𝐺)

!"#
!

!!

!!!

 (80)  

where tr(.) denotes the trace of the matrix. 
This cost function is composed of two distinct terms. The first one 

represents the reconstruction error, computed as the sum, over all the 
starting 𝑅!", of the squared Frobenius norms of the difference between the 
original matrix and the reconstructed one. The second part, instead, is 
related to the constraint matrices. This is very important because it 
penalizes the cost function based on the must-link and cannot-link. In this 
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way, it reduces the risk of overfitting, especially for those types of objects 
characterized by a small number of relation matrices. 

 
This optimization problem cannot be solved in closed form. Anyway, in 

[103] an iterative method is proposed. After a proper initialization of the 𝐺! 
factors, an alternate optimization of 𝐺 and 𝑆 is performed. So, keeping 𝐺 
fixed, 𝑆 is updated, and then, keeping 𝑆 fixed, 𝐺 is updated. The update 
rules for the two types of matrices are obtained by computing the roots and 
the partial derivative of 𝐽, fixing the other matrix.  

 
For the 𝑆 matrix, the update rule is: 
 

𝑆 ← (𝐺!𝐺)!!𝐺!𝑅𝐺(𝐺!𝐺)!! (81)  

For 𝐺, a multiplicative update rule is derived: 
 

𝐺 ← 𝐺 ∘
(𝑅𝐺𝑆)! + 𝐺(𝑆𝐺!𝐺𝑆)! + ((𝜃(!))!𝐺)!

(𝑅𝐺𝑆)! + 𝐺(𝑆𝐺!𝐺𝑆)! + ( 𝜃 ! !𝐺)!
 (82)  

where ∘ indicates the Hadamard product (i.e. the element by element 
product). 𝑋!is a matrix whose generic entry 𝑥!,!!  is equals to 𝑥!,! if 𝑥!,! > 0 
and 0 otherwise, while 𝑋!is a matrix whose generic entry 𝑥!,!!  is equals to 
−𝑥!,! if 𝑥!,! < 0 and 0 otherwise. For this reason 𝑋! and 𝑋! are both non-
negative. 

 
This operation is repeated until the algorithm converges to a local 

minimum of the cost function 𝐽. A possible stopping criterion is based on 
the reconstruction error of a target matrix. For example, if the objective is 
to estimate new relationships between objects of type 𝑖 and 𝑗, a reasonable 
solution is to monitor the following norm: 

 
𝑒𝑟𝑟 = 𝑅!" − 𝐺!𝑆!"𝐺!! !"#$%&'()

!  (83)  

When the difference between this quantity in two consecutive iterations 
goes below a certain threshold, the algorithm stops. For computational 
reasons, the assessment of the error can be evaluated only after a certain 
number of iterations. 

In [103], the mathematical correctness of the method is reported. In 
addition, the demonstration of the fact that 𝐽 is nonincreasing, using the 
reported update rules for 𝐺 and 𝑆, is shown. 

4.2.1.3. Parameters	choice	

A crucial aspect of the method is the choice of the factorization ranks. 
As well as for the other matrix decomposition methods, a high number may 
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lead to overfitting, while a too small number may not be enough to capture 
all the information. There is no general consensus about how to select these 
values. A grid search approach was proposed in [103], based on the 
computation of the model performance testing, for each 𝑘! , a certain 
number of values from a predefined interval. In order to reduce the number 
of tests to try, they proposed a sort of bisection method. For each 
parameter, they start with the midpoint and the border of the interval, and 
then they repeat the process by selecting the subinterval giving the best 
result. The research can be stopped when some criterion is met, for 
example when the cophenetic correlation coefficient starts to decrease 
[103].  

 
Another strategy, adopted for this work, is to select the rank parameters 

on the basis of the total number of interactions available for each type of 
object. This can be easily computed considering, for a certain object type 𝑖, 
the overall associations, 𝑁!, modeled by all the related relation matrices 𝑅!" 
and 𝑅!"  ∀ 𝑗. Afterwards, the obtained value is scaled by a proper factor 𝜆: 

 
𝑘! =

𝑁!
𝜆  (84)  

In this way it is possible to reduce the number of parameters to tune just 
to a single value. A set of reasonable 𝜆 values can be tested, choosing the 
one giving the best performance. 

4.2.1.4. Inference	of	new	associations	

After the learning phase, the computed factors can be employed for 
prediction purposes. First of all a relational target matrix 𝑅!"  must be 
selected: it indicates the objects among which new associations want to be 
discovered. In the same way of collaborative filters, the target matric can 
be approximate by the product of the related latent factors: 

 
𝑅!" ≈ 𝐺!𝑆!"𝐺!! (85)  

While the starting matrix 𝑅!" was sparse, the reconstructed one is dense, 
meaning that the gaps are filled with a certain value. A simple solution to 
identify new associations is to find the new entries in the reconstructed 
matrix with a value higher than an absolute threshold: higher values should 
indicate stronger interaction levels. 

 
More sophisticate techniques can be employed to identify new 

associations in a more robust way. For example, it is possible to relate the 
values of the new predicted interactions with those of the originally known 
association. This can be computed in row-centric perspective or in the dual 
column-centric perspective [103].  
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Following the row-centric rule, a new interaction is considered as 
significant if its value in the reconstructed matrix is higher than the average 
of the entries of the same row, for which an association was known since 
the original relation matrix. In formulas: 

 

𝑅!" 𝑝, 𝑞 >
1

𝐴(𝑜!! , 𝜀!)
𝑅!" 𝑝,𝑚

!!
! ∈!(!!! ,!!)

 (86)  

where 𝑝 and 𝑞 are the indices of the entry, 𝐴(𝑜!! , 𝜀!) is the set all the 
object of type 𝑗 related to object 𝑜!! , of type 𝑖. A criticism of this approach 
is that if the entire row was null, it is impossible to compute that mean. In 
this case, an absolute threshold, for example the global mean, can be used. 

A dual rule, the column-centric one, can operate the same computation 
on the columns. 

 
It is also possible to combine the two rules in order to obtain a score 

value indicating the strength of the newly estimated associations. For 
example, after applying the row-centric rule, the distribution of the 
previously known associations in the same column can be computed. The 
strength of the predicted interaction can be therefore evaluated using its 
position in that distribution, i.e. by computing its inverse percentile in the 
distribution. A threshold can then be used to filter the results, keeping just 
the strongest interactions. Of course, as mentioned above, this operation 
can be critical if none of the values in the column was known at the 
beginning. 

 
The described procedure is useful for extract information in case of 

interactions between objects of different types. However, in case of objects 
of the same type, a direct reconstruction of the interaction matrix is not 
possible. In fact, the 𝑅!!  blocks in the 𝑅  matrix are null, while the 
interaction information for objects of the same type is modeled in the 
constraint matrices. In this case, some tricks have to be applied.  

 
A solution to this problem, proposed in [108], is to exploit the 𝐺! latent 

factors. Since the method operates a dimensionality reduction, each latent 
factor will be associated to a (hidden) holistic characteristic for that object 
type. Therefore, in principle, a sort of clustering can be performed by 
associating each element to a class depending on the highest component of 
its associated low dimensional vector. In practice, for each row of 𝐺! the 
maximum value is computed and the related element is associated to that 
category. Two elements are considered similar, and therefore interacting, if 
they belong to the same class. A binary connectivity matrix 𝐶  can be 
computed to summarize all the identified associations. Figure 4.3 shows an 
example of connectivity matrix construction starting from the related latent 
factor 𝐺!. 
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Figure 4.3: Example of construction of the connectivity matrix from a 
factor 𝐺!. 

4.2.1.5. Implementation	details	

The Tri-factorization algorithm has been implemented in the context of 
this thesis. Matlab and Octave code was used for all the steps. The first 
important choice was the selection of the initialization method for 𝐺!. Some 
of the solution described in [103] were tested, in particular a first attempt 
tried to populate the 𝐺! matrix with columns extracted from the related 
𝑅!"  ∀ 𝑗. Due to the high sparseness of the original matrices, very often this 
strategy led to instability problem during the learning phase. More 
sophisticated techniques, like applying SVD and the concatenation of the 
𝑅!"  ∀ 𝑗 and keeping the top left singular vectors, were tried. In any case, 
some instability problems were observed, due to an incontrollable growth 
of the values in the 𝐺! during the training step. In fact, even if the cost 
function 𝐽  has been demonstrated to be nonincreasing, the two terms 
defining it may growth in opposite directions. So, too high values in 𝐺! may 
determine a high value of the reconstruction error, balanced by very 
negative values of the constraints part. For this reason, a random uniform 
initialization has been chosen. In particular, to avoid the problem described 
above, small values were used, typically in the range [0,10^-3].  

 
The update rule for the 𝑆 matrix requires computing a matrix inversion. 

This operation can be really burdensome from the computational point of 
view. For this reason, instead of computing the value of 𝑦 = (𝐺!𝐺)!!𝐺! 
using an explicit inversion, the associated linear system, 𝐺!𝐺 𝑦 = 𝐺!, is 
solved.  

 
Due to the random initialization, the results of each run of the method 

can be different. For this reason, multiple repetitions of the algorithm are 
computed, in order to obtain more robust solutions. Since they are 
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independent from each other, this operation can be easily parallelized. For 
each repetition, a connectivity matrix 𝐶 is determined for the target matrix. 
If the target is a relation matrix, 𝐶 is computed on the basis of the row- and 
column-centric rule (with an appropriate threshold), otherwise the 
clustering method based on 𝐺! factors is applied. Once all the repetitions 
are completed, a final consensus matrix 𝐶 is computed by averaging all the 
obtained connectivity matrices. 

4.2.2. Bayesian	matrix	factorization	for	data	fusion		

The problem of data fusion can be addressed also in a probabilistic 
fashion. Within the framework of latent factors models, and following a 
number of strategies that applied probabilistic extensions to matrix 
factorization [114–118], a novel method for data integration, based on 
probabilistic matrix factorization has been developed and implemented. 
The basis of the method is represented by the Bayesian matrix factorization 
model presented in [55] and described in Chapter 2. Of course, in order 
make it suitable to perform data fusion, it has been extended with the aim 
of performing a joint decomposition of all the starting matrices. 

4.2.2.1. Input	data	

As well as for the Tri-factorization algorithm, the input data are 
supposed to have a matrix representation. The first step of the process is 
therefore to represent all the knowledge, coming from the different data 
sources, in form of relation matrices, each one formalizing the known 
associations between pairs of distinct elements. In order to propagate the 
information, some elements must be involved in multiple associations with 
different types of objects. To make the matrices comparable, the entries are 
normalized in the interval [0,1], where 0 represents the absence of (known) 
association, and 1 represents a very strong association. On the contrary of 
Tri-factorization, the associations between objects of the same type cannot 
be directly integrated in the model, unless exploiting a weak effect given 
by the hyperparameters setting. 

4.2.2.2. Model	description		

The single matrix factorization considers the generic entry of a matrix as 
a stochastic variable. As for the other latent factor models, the 
decomposition is aimed at computing, for each element involved in the 
analysis, a low dimensional vector, representing its position in the latent 
factors space. However, in this probabilistic framework, the latent factors 
are model as random variables drawn from an appropriate distribution. 
Their values are used to define the parameters of the distribution 
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characterizing the entries of the matrix. In case of data fusion, the latent 
factor characterizing an element has to be related to the overall set of its 
relationships, even if coming from the different sources. On the contrary of 
the Tri-factorization algorithm, all the low dimensional vectors must be 
characterized by the same dimension 𝑘. The choice of this rank parameter 
is of course critical, also because it has to balance the different levels of 
sparseness characterizing the different objects. 

 
Each entry in an observation matrix is considered as drawn from a 

Gaussian distribution, whose parameters depend on the related low 
dimensional vectors. For example, if 𝑈! and 𝑉! the low dimensional vectors 
for objects of type 𝑖 and 𝑗 and 𝑅!" is the related interaction matrix, then:  

 
𝑝 𝑅!" 𝑈! ,𝑉! ,𝛼!,𝛼! = 𝑁(𝑅!"|𝑈!!𝑉! , (𝛼!!!" ∗ 𝛼!!!!!")!!) (87)  

where 𝐼!"  is a variable, indicating if 𝑅!"  is observed (𝐼!" = 1) or not 
(𝐼!"=0). In the first case, the 𝛼! precision parameter is used. Otherwise 
another precision parameter is utilized. While the first one plays the same 
role of the α used in the single matrix model, the second one is used to 
model the unknown relationships (i.e. the zero entries). The idea is to 
represent them as known observations but with less precision in 
comparison with the actual known observations. The motivation behind the 
introduction of this parameter is that the basic schema, taking in account 
just known associations, can be prone to overfitting, leading to a perfect 
reconstruction of the original matrices. This can make the method useless, 
because it doesn’t allow highlighting novel interesting associations. The 
situation is particularly critical for very sparse matrices, which are very 
common in the application contexts for which the method was designed. 
For this reason it’s important to suitably tune the α2 parameter in order to 
allow an adequate flexibility to the model. 

 
The other distributions are the same specified in [55] for the single 

matrix factorization. Therefore, for low dimensional vectors Gaussian 
distributions are chosen and Gaussian-Wishart distributions for the 
hyperparameters Starting from these assumptions, a possible way to 
overcome the problem of representing the interactions between pairs of 
objects of the same type is to exploit the hyperpriors’ parameters. In 
particular, the W scale matrix characterizing the Wishart distribution can 
be interpreted as a condensed version of this type of information, 
represented in the latent factors space. Anyway, the algorithm has proved 
to be quite insensitive to the value of these parameters, therefore unless a 
very strong structure is present in the data, the effects of this step are 
negligible. 

Figure 4.4 shows an example of the model for three different types of 
objects and three relation matrices.  
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Figure 4.4: Graphical representation of the Bayesian matrix factorization 
model for data fusion. In this case, three different objects and three relation 
matrices are used.  

4.2.2.3. Parameters	estimation	though	MCMC		

As regards the predictive distribution, as well as for the single matrix 
decomposition, to get the exact solution it would be necessary to compute a 
complex posterior distribution by integrating over all the parameters and 
hyperparameters. Since the analytical derivation of this distribution is 
intractable, a different strategy has to be employed. The solution adopted 
was to use a MCMC approach using on Gibbs sampling.  

The main idea is to build a Markov chain that, through an iterative 
sampling process, converges to a stationary distribution that approximates 
the true posterior distribution. 

In this particular case, each iteration consists of two main steps: 

• During the first phase, a new value for every hyperparameter is 
independently drawn from the related Gaussian-Wishart distribution, 
conditioned on the current values of all the low dimensional vectors 
related to that particular type of object. The choice of conjugate 
distributions allows to compute a closed form solution, as reported in 
[55]. For example, for 𝑈: 

 
𝑝 𝜇! ,Λ! 𝑈, 𝜇!, β!,𝑊!, 𝜈! = 𝑁 𝜇!|𝜇!∗ , 𝛽!∗Λ! !! 𝑊(Λ!|𝑊!

∗, 𝜐!∗) (88)  

with: 
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𝜇!∗ =
β!𝜇! + 𝑁𝑈
β! + 𝑁

, β!∗ = β! + 𝑁, 𝜐!∗ = 𝜐! + 𝑁,𝑈 =
1
𝑁 𝑈!

!

!

 

[𝑊!
∗]!! =𝑊!

!! + 𝑈!𝑈!!
!

!!!
+

β!𝑁
β! + 𝑁

(𝜇! − 𝑈)(𝜇! − 𝑈)! 

(89)  

Where 𝑁 is the number of elements of type 𝑖. 
• After that, for every different object a new vector is drawn from 
the related distribution, conditioned on both the values of the known 
observations and the values of the hyperparameters. The example for 
𝑈 is: 

 
𝑈!!!! ~ 𝑝 𝑈! 𝑅,𝑉! ,𝑍! , 𝜇!! ,Λ!!  (90)  

where 𝑡  represent the previous iteration. This full conditional 
distribution is still a Gaussian distribution, depending on the current 
values of the low dimensional vectors of all the other types of objects 
for which a relation matrix exists.  Using again the example of 𝑈: 

 
𝑝 𝑈! 𝑅,𝑇,𝑉,𝑍, 𝜇! ,Λ! ,𝛼!,𝛼! = 𝑁(𝑈!|𝜇!∗, [Λ!∗]!!) (91)  

with: 

 

Λ!∗ = Λ! + 𝑉!𝑉!! ∗ 𝛼!!!" ∗ 𝛼!!!!!"
!

!!!

+ 𝑍!𝑍!! ∗ 𝛼!!!" ∗ 𝛼!!!!!"
!

!!!

 (92)  

and: 

 

𝜇!∗ = Λ!∗ !!

𝑉!(𝛼!𝑅!")!!"(𝛼!𝜀)!!!!"
!

!!!

+

+ 𝑍!(𝛼!𝑇!")!!"(𝛼!𝜀)!!!!"
!

!!!

+Λ!𝜇!

 (93)  

One type of object at a time is updated, using the current estimate of 
the low dimensional vectors of all the others. In this way, the 
simultaneous factorization of all the available data matrices is 
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performed. Since the elements belonging to the same type of object 
don’t depend on each other, it is possible to parallelize this operation 
by independently sampling the single low dimensional vectors. 

After a burn-in phase, the algorithm converges to the posterior 
distribution of the unknown variables:  

 

𝑝(𝑜𝑏𝑠!"|𝑜𝑏𝑠) ≈
1
𝐵 𝑝(𝑜𝑏𝑠!"|𝑝𝑎𝑟𝑒𝑛𝑡!

! ,𝑝𝑎𝑟𝑒𝑛𝑡!
(!))

!

!!!

 (94)  

Choosing an arbitrary large number, B, of the last samples it is possible 
to reliably compute sufficient statistics. After the learning phase, each 
element is associated to a set of vectors, one for each sampling, with its 
representation in the latent vectors space.  

4.2.2.4. Inference	from	predictive	distribution	

Starting from the set of low dimensional vectors extracted during the 
learning phase, it is possible to compute the related posterior distribution of 
the predicted interaction for each possible pair of elements. Using an 
approach similar to the one employed by the Tri-factorization algorithm, a 
certain target relation matrix, representing the interactions between two 
specific types of object, can be fully reconstructed. In correspondence of 
the known associations the reconstructed value should be similar to the 
original one, but in correspondence of the new potentially relevant 
relationships the distribution of values should be considerably distant from 
the zero value. In order to identify the most promising interactions, 
different strategies can be adopted. For example, a simple threshold on the 
mean of the posterior distribution may be enough to filter the results, 
keeping just the highest. Otherwise, more sophisticated methods can be 
applied. The advantage of the probabilistic approach, in fact, is that instead 
of a single value (or a bunch of values in case multiple repetitions), an 
entire probability distribution is available. For this reason, many statistical 
properties can be associated to each interaction, as for example a measure 
of uncertainty based on the dispersion of the samples. 

4.2.3. Comparison	of	the	two	methods	

After the description of these two methods, it is worthwhile to highlight 
the similarities and the differences between them.  

 
Both the methods rely on matrix factorization techniques in order to 

represent the available information in a low dimensional space. They both 
can integrate different data sources, whose knowledge is represented in 
matrix form. However, while the Tri-factorization may handle natively 
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associations between objects of the same type, the Bayesian method can 
only integrate them in and indirect way, by properly tuning its parameters.  

 
Another difference is determined by the rank parameters. While for Tri-

factorization a different rank parameter must be specified for each type of 
objects, in the Bayesian method the same dimension characterizes all the 
latent factors allowing less flexibility to the model.  

 
Regarding the predictions, Bayesian factorization provides a more robust 

and complete interpretation of the results with respect to other approaches 
like the Tri-factorization algorithm. The probabilistic assumptions behind 
the model, in fact, allow giving an estimate of the uncertainty of the 
predicted associations. Of course the drawback is that this approach 
imposes a model (in this case Gaussian) to the data, even if it is not always 
a correct assumption.  

 
From the computational point of view, both methods exploit iterative 

algorithms in order to estimate the model’s factors. While Tri-factorization 
requires in each step to use the entire dataset, the Bayesian method can 
exploit its conditional independence properties to perform independent 
sampling from the distributions, making it suitable to be parallelized.  

 
An example of application of the Bayesian method, as compared with 

Tri-factorization, is reported in Appendix 1. 
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Chapter	5	
5 Data	fusion	in	myeloid	neoplasms	

In this chapter, two different applications of previously described matrix 
factorization techniques are presented. Each case study is focused on a 
different blood cancer, both belonging to the myeloid neoplasms category: 
the myelodysplastic syndroms (MDS) for the first analysis, and the acute 
myeloid leukemia (AML) for the second one. The available data and the 
purposes of the two analyses were different, but both of them exploited 
matrix factorization-based algorithms to reach their objective. 

5.1. Myelodysplastic	syndromes		
The term myeloid neoplasms indicates a category of blood tumors 

originating from myeloid stem cells [119]. In normal conditions, the bone 
marrow produces blood stem cells, which are immature in the beginning 
and become mature over time. After the differentiation and maturation 
phase, these cells originate most of the blood cell types: red blood cells, 
platelets and granulocytes (a type of white cells).  

Myeloid neoplasms are clonal diseases of these hematopoietic stem 
cells. The causes are typically genetic and epigenetic alterations, resulting 
in an abnormal activity of key processes such as self-renewal, proliferation 
and impaired cell differentiation [120,121].  

In 2016 the World Health Organization (WHO) revised the classification 
of myeloid neoplasms and acute leukemia [122]. This categorization was 
based on a large number of characteristics: morphology, cytochemistry, 
immunophenotype, genetics, and clinical features. The classification is 
periodically updated to include the newly available information, in order to 
better characterize the different subgroups of tumors. Five main types of 
malignancies are distinguished: 

• Myeloproliferative neoplasms (MPN) 



Data	fusion	in	myeloid	neoplasms	
	

	 68	

• Myeloid/lymphoid neoplasms with eosinophilia and 
rearrangement of PDGFRA, PDGFRB, or FGFR1, or with PCM1-
JAK2 
• Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) 
• Myelodysplastic syndromes (MDS) 
• Acute myeloid leukemia (AML) and related neoplasms 

Each of these categories can be further differentiated on the basis of 
several factors, in order to better characterize different disease subtypes. 

 
In this first case study, the attention is focused on Myelodysplastic 

syndromes (MDS). Patients affected by this malignancy present 
morphologic dysplasia (i.e. an abnormal development and differentiation) 
in hematopoietic cells and peripheral cytopenia (i.e. reduction of the 
number of produced cells) [122]. The same effects can be the result of 
different factors, therefore the diagnosis of MDS is still challenging. The 
revised classification is based on a more precise morphologic interpretation 
and cytopenia assessment, and above all it heavily includes genetic 
information (easily available thanks to the new cheaper technologies) for 
the diagnosis and the classification. Therefore, a study focused on the 
analysis of the genetic network characterizing this type of disorders seems 
to be an interesting starting point to better understand and treat the 
pathology.  

5.1.1. Problem	description	

Within the context of MDS and myeloid neoplasms in general, the 
analysis of genetic machinery underlying the pathology is currently a hot 
topic, as described in [122]. Many studies have been carried on, from gene 
expression profiling [123] of MDS patient, to the analysis of the different 
somatic mutations affecting the stems cells [124–126], to the combination 
of mutation data with expression data to increase the performance in 
outcome prediction [127]. 

 
Under this perspective, this dissertation presents an analysis focused on 

the integration of different types of data sources. The final aim was to 
discover novel interesting gene-gene interactions characterizing MDS 
patients. For this purpose, the Tri-factorization algorithm, described in 
Chapter 4, has been properly set up and employed. Many different data, in 
particular molecular data, were included in the model, mainly retrieved 
from public data sources. The objective of the study was to evaluate the 
possibly of exploiting this information in order to highlight unknown 
genetic interactions characterizing the pathology. 
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5.1.2. Available	data	

Different types of data were collected. The starting point was a dataset 
of mutations provided by the Department of Hematological Oncology of 
Policlinico San Matteo (Pavia, Italy). The other information instead came 
from publically accessible databases. 

 
Going into the details, the types of data employed were: 

• Somatic mutation data. This information was the result of a 
mutation screening conducted on patients affected by MDS. For each 
mutation, different data were collected: chromosome, gene, starting 
position, ending position, sequence of reference and alternative 
sequence introduced by the mutation. Most of these mutations were 
point mutations with the alteration of a single base. 
• Pathways data. Pathways provide useful information to include in 
the model. They, in fact, represent the biological processes occurring 
inside a cell; therefore their knowledge can be helpful in the analysis 
of the tumor cell mechanisms. The data source utilized was KEGG, 
from which different kinds of information about all the modeled 
pathways were collected: the genes, the interaction between different 
pathways and the direct associations with diseases. 
• Gene data. Genes represent the focus of the study, so many forms 
of associations were included in the model for this type of object. 
First of all, each mutation was mapped to its associated gene. Then, 
already known human gene-gene interactions, coming from the public 
database BioGRID [16], were obtained. Different kinds of 
interactions are held by this database: direct physical binding of two 
proteins (produced by the related genes), genetic interaction or, more 
generally, co-existence in a stable complex. BioGRID curates the 
results from the experiments published in scientific journals, 
therefore for each pair of genes, multiple values may be recorded. 
Another source of information about genes is, as mentioned above, 
KEGG, since for each pathway a set of gene can be involved in the 
biological process. In addition, it is also possible to related genes and 
diseases. A curated set of human gene-disease associations were 
obtained from the public database DisGeNET [128]. In particular, this 
database provides a score that ranges from 0 to 1, indicating the 
evidence level. This value is computed by taking into account the 
number and type of data sources as well as the number of publications 
supporting that association.  
• Disease data. This is another important type of object, since 
different diseases may share some disorder at the cellular level. As 
mentioned above, it was possible to obtain the associations between 
genes and disease from DisGeNET. Then, all the diseases altering 
each pathway were extracted from KEGG. In addition the 
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associations between human diseases were obtained, from the Disease 
Ontology [11]. Since it is an ontology, it has a semantic structure. 
Therefore, it is possible to exploit this hierarchy to estimate the 
distance/similarity between two diseases, based on the number of 
steps needed to reach one disease from the other one on the hierarchy.  

5.1.3. Preprocessing	and	matrices	construction	

Given all the available data, they needed an appropriate pre-processing 
in order to be used by the Tri-factorization algorithm. Five type of objects 
were included in the model:  

• 6462 diseases  
• 255 patients 
• 761 mutations 
• 10513 genes 
• 383 pathways. 

Figure 5.1 shows the schema utilized for the Tri-factorization, with the 
related data sources. 

 

Figure 5.1: Adopted Tri-factorization schema. 
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The complete 𝑅 matrix is symmetrical, therefore for each pair of objects 
just one type of data was used. In the following, the construction of each 
matrix will be described: 

• Disease-disease constraint matrix: it contains the associations for 
each pair of diseases. It has been obtained using the semantic 
structure of the diseases in the Disease Ontology. In particular, the 
constraint between two diseases is set to −0.8!, where 𝑛 is the length 
of the shortest path between corresponding terms in the Disease 
Ontology hierarchy (i.e. the minimum number of steps to reach one 
disease from the other one). This value is negative, since for 
constraint matrices, negative values represent similarities. In total, 
35201 interactions were included in the matrix 
• Disease-patient: the patients considered in the analysis were only 
the 255 coming from the San Matteo hospital. The same disease, the 
MDS, characterized all of them. For this reason, this matrix is 
completely empty, except for one row, the MDS one, completely full 
of 1 to indicate the association.  
• Disease-gene: from DisGeNet, 13281 associations of this kind 
were obtained. A transcoding of the diseases, from UMLS to DO, was 
needed, since the data provided by DisGeNet don’t contain the DO 
terms used in the other disease-related matrices. Since the DisGeNet 
score is already in the interval [0,1], no further processing was 
required. 
• Disease-pathway: 605 associations were found from KEGG. Also 
in this case, a transcoding of the diseases, from MESH and OMIM to 
DO, was needed. 
• Patient-patient: since no further information about the patients 
was available, this matrix is completely empty except for the main 
diagonal, which is set to -1 to indicate that each patient is equal to 
himself. 
• Patient-mutation: the data from San Matteo hospital were used. 
To each mutation a unique identifier was assigned by concatenating 5 
data (chromosome, starting position, ending position, sequence of 
reference and alternative sequence). Therefore this matrix indicates 
for each patient all the related mutations, with the value 1 in the 
corresponding entry. The number of measured mutations was 778, out 
of 761 unique mutations. This means that only few mutations are 
shared by different patients, 
• Patient-gene: since most of the mutations are unique, this matrix 
is important because it denotes, for each patient, which genes are 
mutated. Also in this case, of course, the number of non-zeros entries 
is equal to 778. 
• Mutation-mutation: as for patient-patient this matrix is 
completely empty except for the main diagonal, which is set to -1 to 
denote that each mutation is equal to itself. 
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• Mutation-gene: it simply represents the mapping of the mutations 
over the associated gene. 
• Gene-gene: it contains gene-gene interactions from BioGrid. The 
raw data needed a preprocessing step, since, as mentioned above, for 
each pair of genes, the related association may appear multiple times. 
For this reason, denoting with 𝑥 the number of times a certain pair 
appears, its score is determined by: 

 

𝑓 𝑥 = −
1
2 ∗ 1+

ln 𝑥
ln 𝑥!"#

 (95)  

It means that the range goes from -0.5 to -1, using a logarithmic 
function. 24809 unique interactions were at last included in the model 
• Gene-pathway: from KEGG, it contains mapping of the genes 
inside the pathways. This matrix is characterized by 25345 entries. 
• Pathway-pathway: again from KEGG, it contains 1957 entries 
with value -1, representing associations between pathways. 

Figure 5.2 summarizes the dimensions of the data used in the analysis. 

 

Figure 5.2: dimensions of the problem. 

Of course all the matrices were arranged in order to have compatible 
dimensions and the same ordering of the elements. 

5.1.4. Tri-factorization	setting	

After the preparation of the input matrices, the parameters of the Tri-
factorization algorithm had to be set. After some empirical attempts, the 
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ranks of the latent factors were chosen using a scale factor equals to 200. It 
means that, each 𝐺! matrix had a number of columns equals to the number 
of interactions (included in the relation matrices) of all the elements of type 
𝑖, divided by 200. The final ranks for the five objects are reported in Table 
5.1 

Table 5.1: Values of the rank parameter for the different objects 

Object type Rank 

Disease 71 

Gene 201 

Mutation 8 

Pathway 130 

Patient 9 
 
As explained in the beginning, the target matrix in this case was the 

gene-gene interactions matrix. Since it is not possible to directly 
reconstruct it using by multiplication, a connectivity matrix was defined 
from the 𝐺! factor associated to genes as described in Chapter 4. 

 
The convergence of the algorithm was monitored by measuring the norm 

of the reconstruction error of a relation matrix, specifically the gene-
mutation matrix. The algorithm stopped when the difference between two 
consecutive norms was under the threshold 10!!  or after a maximum 
number of iterations of 10,000. 

 
The number of repetitions to build the final matrix was set to 50, in 

order to reduce the effects of random initialization. After that, a global 
consensus matrix was built, averaging all the 50 connectivity matrices. 

5.1.5. Results	

Starting from the consensus matrix, some analyses on the results were 
conducted. First of all, in order to filter the number of the newly predicted 
gene-gene interactions, just those identified in every repetition were kept 
(i.e. those with the value 1 in the corresponding entry of the consensus 
matrix). This operation led to the identification of 323 gene-gene 
interactions. Three of them were already included in the starting matrix 
from BioGRID, the others, instead, were novel predicted pairs. On the basis 
of these results, a set of analyses was carried on in order to evaluate the 
relevance of the found interactions in the context of the specified problem. 
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The complete list of 323 gene-gene interactions can be found in Appendix 
2. 

5.1.5.1. Genetic	interaction	networks	

Starting from the predicted pairs, the related genetic interaction 
networks have been constructed, by linking all the genes according to their 
predicted interactions. Figure 5.3 shows the most important networks (i.e. 
those characterized by the largest number of interacting genes). Some of 
the links are red: they represent already known associations coming from 
BioGRID. They were included to link distinct subnetworks. 

 

Figure 5.3: most important subnetworks identified from the consensus. 

Figure 5.4 shows all the other minor networks.  
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Figure 5.4: minor subnetworks identified from the consensus. 

5.1.5.2. Enrichment	analysis	with	Reactome	

Some of the subnetworks, in particular those characterized by at least 7 
genes, were further investigated. An enrichment analysis was carried on, in 
order to individuate the biological processes that are most influenced by the 
set of genes represented in each subnetwork. In order to do that, the 
pathways from another curated database, Reactome [14], were used. For 
each subnetwork, all the pathways were tested, computing the number of 
genes of the network also present in the pathway. The goal was to evaluate 
if the set of genes was over-represented in a significant way in the pathway. 
An exact Fisher test, based on hypergeometric distribution, was performed 
to determine the probability of obtaining the same number of genes by 
chance. This p-value was then corrected for false discovery rate using the 
Benjamini-Hochberg correction. Then, a threshold of 0.001 was applied to 
the adjusted p-values to select just the most significant. 

For 4 of the considered subnetworks, significant associations with 
pathways were found. They are depicted in Figures 5.5-5.8, where to a 
bigger node corresponds a lower p-value and where the width of the link 
between nodes indicates the number of genes shared by the related 
pathway. 
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Figure 5.5: results of the enrichment analysis conducted on subnetwork 1. 

The largest subnetwork (Figure 5.5), results in different pathways, in 
particular related to metabolism and tRNA aminoacylation. While the first 
term is very generic, specific aminoacyl tRNA synthetases are connected to 
the etiology of several diseases including cancer [129]. Particularly 
interesting is the pathway associated to mitochondrial tRNA, because MDS 
is often associated with mitochondrial dysfunctions. In particular, disorders 
caused by mitochondrial DNA mutations, were found to be associated with 
MDS in many studies [130]. 

 

Figure 5.6: results of the enrichment analysis conducted on subnetwork 2. 

In the second subnetwork (Figure 5.6), two processes are particularly 
interesting: the iron uptake and transport and the ion channel transport. In 
fact, patients with MDS may express an iron overload [131,132], while the 
ion channels are studied generically in the field of blood tumors like 
leukemia, since several ion channels and pumps, and other transport 
mechanisms are often altered [133]. 
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Figure 5.7: results of the enrichment analysis conducted on subnetwork 5. 

The fifth subnetwork (Figure 5.7) is interesting due to the oxidation 
process. Since mitochondria are a main source of biological oxidation and 
energy transformation [134], this may refer again to the mitochondrial 
DNA alterations often present in MDS patients. 

 

Figure 5.8: results of the enrichment analysis conducted on subnetwork 7. 

The seventh subnetwork (Figure 5.8), instead, refers again to the tRNA 
aminoacylation, as already discussed for the first subnetwork. 

5.1.5.3. KEGG	pathways	analysis	

Another type analysis was conducted using the pathways from the 
KEGG database. First of all, still from KEGG, 14 genes with known 
associations with MDS were selected. Then, all the KEGG pathways 
involving at least one of those genes were extracted. For each of them, a 
count was made by considering the number of pairs, from the 323 predicted 
by the algorithm, for which both the genes were included in the pathway. 
The results are shown in Table 5.2  

Table 5.2: pathways related to MDS genes and relative number of pairs 
found. 

Pathway Seed genes 
# pairs 
found 

VEGF signaling pathway NRAS 1 
Ras signaling pathway NRAS 17 

HTLV-I infection NRAS,TP53 8 
Insulin signaling pathway NRAS 10 

Spliceosome U2AF1,SF3B1,SRSF2 49 
Axon guidance NRAS 1 
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Sphingolipid signaling pathway TP53,NRAS 1 
Long-term potentiation NRAS 11 

Peroxisome IDH2,IDH1 5 
Melanogenesis NRAS 16 

Alcoholism NRAS 16 
Amyotrophic lateral sclerosis (ALS) TP53 1 

Huntington's disease TP53 6 
Rap1 signaling pathway NRAS 10 

Neurotrophin signaling pathway NRAS,TP53 10 
Natural killer cell mediated 

cytotoxicity NRAS 1 
Oxytocin signaling pathway NRAS 11 

Metabolic pathways IDH2,IDH1,DNMT3A 87 
Tuberculosis JAK2 13 

Cholinergic synapse NRAS,JAK2 6 
T cell receptor signaling pathway NRAS 1 
B cell receptor signaling pathway NRAS 1 

PI3K-Akt signaling pathway NRAS,JAK2,TP53 6 
Hepatitis B NRAS,TP53 6 
Hepatitis C TP53,NRAS 1 

Glioma NRAS,TP53 10 
Wnt signaling pathway TP53 1 

Prostate cancer NRAS,TP53 6 
Estrogen signaling pathway NRAS 16 
MAPK signaling pathway TP53,NRAS 1 
GnRH signaling pathway NRAS 10 

Longevity regulating pathway NRAS,TP53 6 
Viral carcinogenesis NRAS,TP53 6 

Tight junction NRAS 1 
 
Very interestingly, a lot of pairs were found for metabolic pathways 

(which is a very generic term) and Spliceosome, which is known to be 
related to the MDS [135,136]. Same thing for the Ras signaling pathway, 
characterized by hyperactivation in MDS [137] and Rap1 signaling 
pathway, that plays a crucial role in the pathogenesis of some hematologic 
malignancies [138]. Also the Akt signaling pathway, was proved to be 
strongly related to MDS [139]. Some of the pathways are instead related to 
the other branch of myeloid tumors, the lymphatic ones. For example, the 
HTLV-I is a human virus type responsible of T-cell leukemia [140]. The T 
cell receptor signaling pathway, the B cell receptor signaling pathway and 
the Wnt signaling pathway were found deregulated in studies on MDS 
[141]. Finally, some other pathways are generically related to cancer 
(Glioma, Prostate cancer, Viral carcinogenesis). This means that many of 
the gene-gene pairs predicted by the algorithm are co-present in biological 
processes more or less strictly related to MDS. 
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5.1.5.4. Protein-protein	interactions	

Starting from the discovered gene-gene associations it is possible to 
analyze the related protein-protein interactions. A public database, 
STRING [15], contains protein-protein interactions supported by different 
types of evidence: Neighborhoods, Gene Fusion events, Co-occurrence 
events, Co-expression data, Experimental data, Database information and 
Text-mining association.  

 
Figure 5.9: representation of summary statistics about the discovered 
protein-protein interactions. The distribution of the found interactions on 
the basis of the evidence source is shown on top. For each category of 
evidence, the distribution of the related scores is reported. 
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For each category of evidence, STRING assigns a score value, denoting 
the confidence level about that interaction. If multiple types of evidence are 
available for the same pair, a combined score is computed from the 
different scores. 

Given the 320 novel gene-gene interactions predicted by the Tri-
factorization method, 173 of them were already known as protein-protein 
interactions in STRING. Even more interestingly, more than half of them 
(98/173) have a combined score greater than 0.7, which is the level 
indicated by the STRING curators as high confidence [142]. 

This means that the associations found by the method are, in general, 
real interactions and not just random associations. 

In addition, the single scores can be analyzed. No occurrences were 
found from Gene Fusion events, and just a few from Neighborhoods and 
Co-occurrence events. Many came from text mining, with scores ranging 
more or less uniformly in the entire interval [0,1]. Many co-expression data 
were found, even if with generally low scores. Very interestingly, instead, 
many pairs had an experimental origin, in general with high score, and 
some interactions came from Database information with very high scores. 
Figure 5.9 illustrates all the described characteristics. The complete list of 
scores for each pair can be found in Appendix 2. 

5.1.5.5. Co-expression	analysis	

A further validation analysis was conducted using expression gene data. 
From the Gene Expression Omnibus data repository [143], the data about 
four studies were obtained. In particular: 

• GSE4619: 55 patients with MDS and 11 controls 
• GSE19429: 183 patients with MDS and 17 controls 
• GSE58831: 157 patients with MDS and 17 controls 
• GSE13159: 73 controls 

The raw expression data were normalized using Robust Multichip 
Average (RMA). After that, for each study and for each of the two 
categories of samples (cases and controls), the co-expression between all 
the pairs of genes was computed using the absolute value of the Pearson 
correlation coefficient. For each gene pair, just two co-expresssion values 
were considered, one for cases and one for controls. These values were 
computed by taking the maximum value across all the experiments. 
Afterward, some comparisons between the values distributions were made. 
First of all, for each of the two groups, cases and controls, the overall 
distribution, computed on all the gene pairs, was compared with the 
distribution obtained by considering only the co-expression values 
associated to the 323 predicted pairs.  

Figure 5.10 shows the results for the cases, while Figure 5.11 shows the 
distributions for the controls. In seems clear, especially for the cases, that 
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the global distributions are different from the distributions of the predicted 
pairs. This highlights the fact that the pairs found by the algorithm are not 
obtained by chance, but they represent actual interactions. 

 

Figure 5.10: distribution of co-expressions for cases. On the left the overall 
distribution, containing all the co-expression values. On the right, the 
distribution with only the predicted pairs. 

In order to evaluate the difference between the two distributions, two 
statistical tests were used: the Kolmogorov-Smirnov test and the Mann-
Whitney U test. For cases, both of them rejected the null hypothesis of 
equal distributions with p-values 1.081878 ∗ 10!!" and 8.961556 ∗ 10!!" 
respectively. 

 

 

Figure 5.11: distribution of co-expressions for controls. On the left the 
overall distribution, containing all the co-expression values. On the right, 
the distribution with only the predicted pairs. 

For controls, both of them still rejected the null hypothesis of equal 
distributions, even if with higher p-values: 5.935023 ∗ 10!!  for 
Kolmogorov-Smirnov and 4.410006 ∗ 10!! for the Mann-Whitney U test. 
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This means that the pairs pointed out by the method are relevant for all 
the samples, even if the p-values suggest a more strict connection with 
cases. For this reason, another test was carried on, this time to compare 
cases and controls regarding the related distributions of the predicted pairs. 
Again, Kolmogorov-Smirnov and the Mann-Whitney U tests were used. 
Also in this case, the null hypothesis of equal distributions was rejected 
with p-values 6.676560 ∗ 10!!!  for Kolmogorov-Smirnov and 
1.099889e ∗ 10!!" for the Mann-Whitney U test.  

A final test in this direction was conducted. In particular, a Wilcoxon 
signed rank test was used to evaluate if the differences of the paired co-
expression values in cases and controls came from a distribution with zero 
median. This hypothesis was rejected with a very low p-value, 4.111207 ∗
10!!".  

All these results suggest that, even if the set of predicted pairs are 
relevant in all samples (cases and controls) there is still a noteworthy 
distinction between the two distributions, meaning that most of them are 
specifically associated to the investigated pathology. 

5.1.5.6. Conclusions	

The gene-gene interactions resulting from the Tri-factorization 
algorithm were analyzed under different points of view. Considering the 
pathway connected to them, many interesting relation with MDS were 
found. In particular, some known information, not included in the model, 
was rediscovered using all the other sources of data. Also from the 
associated protein level, strong evidences of interactions were found. In 
addition, the co-expression levels of the predicted pairs of genes showed a 
significant difference with respect to the overall co-expression levels, and 
between cases and controls. For these reasons, the results are promising and 
they suggest to further investigating these findings, possibly with an 
appropriate experimental study.  

5.2. Acute	myeloid	leukemia	
The acute myeloid leukemia is one of the five main types of myeloid 

neoplasms [122]. It is the most common myeloid leukemia, with a 
prevalence of 3.8 cases per 100,000, deeply increasing to 17.9 cases per 
100,000 for people older than 65 years. The median age of onset is 70 
years, and it affects more men than women (3:2 proportion) [144]. It is 
characterized by an increase in the number of myeloid cells in the marrow 
(blasts), which lose the ability to differentiate normally and arrest their 
maturation, often leading to hematopoietic insufficiency [145]. This loss 
leads to fatal infection, bleeding, or organ infiltration, typically, in the 
absence of treatment, within 1 year of diagnosis. Chemotherapy treatments 
have been developed, particularly successful for younger adults, but in case 
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of elderly patients the median survival times are still short, typically only a 
few months. Genetic defects are believed to play a key role in determining 
the response to chemotherapy and outcome [144]. In fact, AML is 
characterized by many genotypic variants, therefore a study focused on this 
aspect may lead to more accurate classifications and treatments for the 
pathology. 

5.2.1. Problem	description	

Within this framework, the problem addressed in this work is to build a 
predictive model, having the survival time as target, and using AML 
genetic mutations, integrated with some other basic information such as age 
and gender, as features. In particular, a factorization machine (FM) model 
(described in Chapter 3) was used. The reason of this choice is related to 
the fact that AML outcomes are often linked to genetic abnormalities. 
Therefore, FMs allow to model also interactions between input variables, 
whose strength can be interpreted on the basis of the values of the related 
parameters. A classification problem was defined, aimed at identifying 
patients with high probability of a short survival time, based in particular 
on mutation data. The classification performance of the algorithm can be 
seen a measure of the quality of model itself and in particular its ability in 
capturing the hidden structures inside the data, while the main focus of the 
work is related to the interpretation of the parameters of the model. 

5.2.2. Available	data	

All the data used for this case study came from the AML cohort (200 
patients) hosted by The Cancer Genome Atlas (TCGA) [146]. For this 
study, the following information was used: 

• Somatic mutations. In particular, 4 type of information were 
used: chromosome, gene, stating position and ending position 
• Vital status: dead or alive 
• Days to death: number of days of survival (if dead) 
• Days to last follow-up 
• Age at initial pathological diagnosis 
• Gender 
• Race 

5.2.3. Data	preprocessing		

Since the objective of the study was to perform a classification based on 
survival time, first of all a threshold was chosen to discriminate the patients 
on the basis of the severity of the pathology. In this context, the cases 
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represent people died before that time threshold, while controls are people 
still alive or at least survived for a longer time than the threshold. Figure 
5.12 shows the histogram of the survival times. To get a balanced dataset, 1 
year was chosen as threshold. Some patients had to be discarded, since the 
time passed from the diagnosis was lesser than 1 year, therefore it was 
impossible to establish the related survival time. After this step, the number 
of obtained cases was 80, while the number of controls was 88. 

 

Figure 5.12: distribution of the survival times. 

Regarding the somatic mutations, a unique identifier for each of them 
was obtained by combining 3 data: chromosome, starting position and 
ending position. After that, we evaluated how many mutations were shared 
by several patients. Unfortunately, almost all the mutations were unique, 
making useless their usage in the model. Therefore another strategy was 
adopted, by taking into account the gene on which the mutations occurred. 
So, for each patient, the number of mutations on each gene was computed. 
Some statistics were evaluated on this dataset. As reported in Table 5.3, 
most of the patients have multiple mutations, in general more than 3. 

Table 5.3: Number of mutations per patient. 

# Patients # Mutations 

2 0 

7 1 

5 2 

8 3 

146 4+ 

Survival	)mes	histogram	

Days	

Co
un

ts
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Even if the majority of the patients have at most one mutation per gene, 

some of them have multiple alterations on the same gene, as indicated in 
Table 5.4. 

Table 5.4: maximum number of mutations on the same gene per patient. 

# Patients Maximum number of 
mutations on the same gene 

2 0 

134 1 

30 2 

2 3 

0 4+ 
 
The problem is that, as reported in Table 5.5, most of the genes are 

mutated in just one patient, thus making impossible to share information 
across the samples. For this reason, a feature selection was performed, to 
keep just those genes mutated in at least 2 patients. For each of them, the 
related value corresponds to the number of mutation of that gene in that 
particular sample. 

Table 5.5: number of times the same gene is mutated across all patients. 

# Mutated genes # Occurrences 

1408 1 

190 2 

31 3 

39 4+ 
 
Regarding the other types of data, two dummy variables were used for 

both gender (male and female) and race (white and black). In addition, the 
variable age was included in the model. 

5.2.4. Factorization	machines	setting		

For this study, the libFM tool [94] was used. The setting of the FM 
algorithm requires choosing some parameters. First of all, a learning 
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method (among SGD, ALS and MCMC) must be selected. Then, the related 
parameters have to be set. Since the focus of the work was centered on the 
interpretation of the model’s parameters, more than on the classification 
performance, the input parameters were chosen to maximize the predictive 
capabilities of the method. These were measured using a 8-fold cross 
validation, where the number 8 was chosen in order to have at least 20 
samples in each test set. Different combinations of the input parameters 
were tested, measuring the classification performance in terms of AUC 
(Area Under the ROC Curve), balanced accuracy, sensitivity and 
specificity. The best set of parameters for each of the three learning 
algorithms is reported in Table 5.6. 

Table 5.6: best set of parameters for each of the three algorithms. 

Method Rank k Std 𝜎 # Iterations Reg params 𝜆 Learning rate 𝜂 

MCMC 2 0.01 500 NA NA 

ALS 6 0.001 1,000 0.01 NA 

SGD 12 0.001 12 0.01 0.0003 
 
The best performance, under all the points of view, was obtained by the 

MCMC method (Table 5.7), which was thus chosen for the following 
analysis. 

Table 5.7: classification performance for the best configuration of the three 
methods. AUC with its 95% confidence intervals, balanced accuracy, 
sensitivity and specificity are reported. 

Method AUC AUC CI Balanced acc Sensitivity Specificity 

MCMC 0.67386 0.60856 0.73917 0.65398 0.6375 0.67045 

ALS 0.60455 0.56228 0.64681 0.58125 0.5375 0.625 

SGD 0.57273 0.4538 0.69165 0.52216 0.4875 0.55682 
 
An important role for MCMC is played by the number of iterations. 

Figure 3.13 shows the trend of the AUC values depending on the number of 
iterations of the algorithm. It is clear that at least 500 iterations are needed 
to reach the convergence. To avoid the burn-in phase, just the last 100 out 
of the 500 iterations were considered. The libFM tool was modified in 
order to output all the parameters extracted from each single iteration. In 
this way, for each parameter the entire distribution (once reached 
convergence) was available for the subsequent analysis.  
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Figure 5.13: AUC values depending on the number of iterations of MCMC 
algorithm. 

5.2.5. Results	

The post-processing phase was focused on the analysis of the predicted 
interactions between the mutated genes. Thanks to the interpretability 
property of the FMs model, the low dimensional vectors associated to each 
input features can be exploited to compute an interaction value between all 
pairs of variables. In this case, only the vectors related to mutated genes 
where considered. Through the dot product between each pair of vectors, 
the correlated interaction value was computed, one for each of the 100 
iterations kept after the burn-in phase. Therefore, at the end of this process, 
for each pair of genes, the related distribution of the interaction score was 
available. For every distribution, a t-test was used to evaluate if the 
interaction differed from 0 in a significant way. For the test, the 
significance threshold for the p-value was set to 𝛼 = 10!!. In this way, a 
set of possible interesting associations was obtained. 

 
Due to the random initialization step, different runs of the algorithm 

yielded quite different lists of interesting associations, with a typical 
overlap of about 20%. For this reason, multiple runs of the algorithm were 
performed. In particular, 1,000 repetitions were carried out, resulting in 
1,000 different lists of interesting associations. Then, to each interaction a 
score value was assigned, based on the number of times (out of 1,000) that 
particular pair resulted to be significant based on the t-test. Figure 5.14 
shows the distribution of these scores. It is immediately cleat that just a few 
of the overall interactions are characterized by high score values. 
Therefore, only the most recurring ones were selected. This was obtained 
by keeping only the pairs with a score higher than the 99-th percentile of 
the distribution of all the scores.  

Itera&ons	
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Figure 5.14: histogram of the score values for all the gene pairs. The 
interaction over the 99-th percentile are pointed out. 

After this step, only 226 interactions survived for the subsequent steps. 
For all of them, the related protein-protein interactions were considered. In 
particular, the combined score from STRING was computed. The complete 
set of interactions with the associated STRING score is reported in 
Appendix 3. The overall mean value of all the scores is 0.4484, which falls 
into the interval of medium confidence defined by STRING curators [142]. 

5.2.5.1. Literature	analysis	

In order to evaluate the results, a literature analysis was conducted using 
PubMed. It is a search engine for publications focused on biomedical 
topics. All the articles containing in their abstract or text one on the pairs 
predicted by the algorithm were extracted. To filter out the results, only 
those publications with at least a MeSH term related to AML were kept. 
For 12 of the predicted pairs, an article at least was found (Table 5.8). 

Table 5.8: gene pairs found in PubMed in association with AML and related 
STRING combined score. 

 

Gene1 Gene2 
PPI combined 

score 

DNMT3A IDH2 0.606000 
NRAS TP53 0.536000 

RUNX1 TP53 0.518000 
CEBPA FLT3 0.487000 
CEBPA RUNX1 0.481000 
FLT3 RUNX1 0.471000 
FLT3 NRAS 0.456000 
IDH1 TP53 0.412000 
KIT NRAS 0.363000 

Score	value	

#	
pa
irs
	

Histogram	of	the	score	values	for	all	the	pairs	

226	interac8ons	



Data	fusion	in	myeloid	neoplasms	
	

	 89	

KRAS NRAS 0.358000 
KIT TP53 0.357000 

PHF6 PTPN11 0.352000 
 
The related publications were then analyzed to find experimental support 

about the interaction of the associated pairs. For some of the couples of 
genes no studies were found focused on the synergic effect of multiple 
mutations on survival. The fact that more genes are co-cited in the same 
paper may relate to the fact that the patients had one of those mutations, but 
not both.  

 
Anyway, interesting results were found for some of the reported pairs. 

For example, NRAS-TP53 and FLT-NRAS are clinically very relevant, 
since RAS, FLT3, and TP53 have important interactions in AML, and 
therefore examining these genes in the same cohort of patients may provide 
information about patterns of genetic disruption of the pathology [147]. 

 
Another interesting association is CEBPA-RUNX1, since it seems that a 

mutation on one of them can influence the expression of the other, 
interfering with the cell differentiation [148]. 

 
In other cases, the direct effects of paired mutations were evaluated. 

This is the case of RUNX1 and TP53, for which co-occurring mutations are 
considered as significant for the development of the AML [149].  

In other cases, additive effects were investigated for paired mutations of 
genes (DNMT3A-IDH2 [150], CEBPA-FLT3 [151,152]) and validated on 
in vivo on mice in case of FLT3-RUNX1 [153,154] 

 
These results suggest the validity of the approach used in this study, 

which may represent a promising starting point for more focused and 
targeted experiments to evaluate the synergic effects of paired mutations on 
genes. 
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Chapter	6	
6 Conclusions	and	future	works	

Data integration represents one of the most interesting challenges for 
digital medicine. The availability of increasingly larger amount of data is 
pushing researchers and companies to investigate novel techniques to 
extract useful information by combining data coming from different 
sources, with the aim of performing prediction, interpolation and analogical 
reasoning. The characteristics of biomedical data make this operation really 
challenging, since very heterogeneous information is available. 

In this dissertation, some solutions to the data integration problem were 
discussed. In particular, the attention was focused on a specific class of 
methods, characterized by the exploitation of matrix factorization 
techniques. The mathematical properties of these methods allow bringing 
out intrinsic characteristics of the data. In fact, by operating a 
dimensionality reduction, the latent structures of an input matrix can be 
revealed by projecting the data into a low dimensional space. 

 This property can be used in a machine learning framework in order to 
capture the interaction effects between variables. The Factorization 
Machines model utilizes this strategy to perform classification and 
regression. An application of this method has been described in this work. 
The input data came from a public data repository (TCGA) and contained 
information about patients affected by acute myeloid leukemia (AML). In 
particular, mutation data, in addition to some other personal information 
(age, gender, race) were used by the method. The algorithm was trained, 
using the severity of the disease, determined on the basis of the survival 
time, as target class. The algorithm was tuned in order to maximize the 
classification performance, while the analysis of the results was focused on 
the interpretation of the model’s parameters. In fact, due to the usage of a 
matrix decomposition technique, the parameters of the model can provide 
insights about the strength of the pairwise associations between the input 
variables. In particular, for the considered case study, the objective was to 
evaluate possible synergic effects of paired mutations on different genes, 
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with respect to the pathology under investigation. Interestingly, some of the 
pairs of mutated genes pointed out by the method were already known in 
literature to play an important role in the development of the disease. For 
some of them in particular, combined effects had already been suggested. 

In case of multiple heterogeneous data, matrix factorization techniques 
can play an important role to simultaneously fuse all the information in a 
joint model. All the input data have to be expressed in form of relation 
matrices, each of them modeling the pairwise interactions between two 
types of objects. If some of these objects are shared by different matrices, a 
joint decomposition of all the matrices allows summarizing the information 
associated to each element in a low dimensional vector, expressing its 
characteristics in a latent features space. Two different approaches have 
been described in this thesis, the Tri-factorization method and the Bayesian 
probabilistic matrix factorization method. While the first one is an already 
published technique, the second one has been developed in the context of 
this thesis. In addition, both of them have been implemented from scratch. 

Regarding the Tri-factorization method, in this dissertation an 
application of the algorithm has been presented. The starting data employed 
for this case study came from a local hospital, and consisted of mutation 
data of people affected by myelodysplastic syndromes (MDS). In this case, 
the objective of the study was to identify new gene-gene interactions 
characterizing the pathology, in order to better understand its underlying 
molecular mechanisms. Other kinds of data were retrieved from public 
datasets, concerning different types of objects: genes, mutations, pathways 
and diseases. All of them were modeled using appropriate matrices and pre-
processed to be used by the Tri-factorization algorithm. After an 
appropriate tuning of the parameters, the method was applied to the input 
data. The result was a list of potentially interesting gene-gene interactions, 
which were analyzed from different points of view. The pathways related to 
those pairs revealed interesting relations with MDS. In particular, some 
known information, not included in the model, was rediscovered using all 
the other sources of data. Moreover, moving to proteins, strong evidences 
of interactions were found. In addition, a co-expression analysis on MDS 
patients showed a significant correlation of the overall set of found 
interactions with respect to the disease. 

In conclusion, this work shows how, thanks to the application of 
factorization-based methods, it is possible to effectively exploit the 
peculiar characteristic of some types of biomedical data in order to extract 
useful information. Of course, a deeper validation step is needed to better 
understand the quality of the results and the direction to take to improve the 
performance. In particular, targeted experiments would be important to 
establish the validity of the discoveries. Anyway, under this perspective, 
the presented methods may be considered as a reliable data driven strategy 
for the definition of new research hypothesis.  
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Appendix	1	
7 Example	of	application	of	the	
Bayesian	factorization	for	data	fusion	

In this appendix, an application to real data of the Bayesian matrix 
factorization method for data fusion, described in Chapter 4, is presented. 
The data sourced employed for the analysis were gene expression data and 
miRNA expression data coming from The Cancer Genome Atlas (TCGA) 
[155]. For each gene and miRNA, the associated expressions valued were 
rescaled in the [0,1] interval. A third matrix was built using gene-miRNA 
interactions coming from MirTarBase [156]. Only the experimentally 
validated interactions with strong evidence were kept in the analysis. For 
computational reasons, the number of genes was filtered, keeping just those 
with at least one known strong gene-miRNA interaction in MirTarBase. At 
the end of the pre-processing phase, the final data consisted of 183 patients, 
760 miRNAs and 2197 genes, thus defining the dimensions of the three 
matrices. The target of this experiment was the gene-miRNA interaction 
matrix, which was very sparse, with a density of 0.003. To evaluate the 
performances of the method, 10% of the entries from the target matrix were 
selected and used as test set. The known interactions inside this set were 
then put to zero to create the input matrix. The number of iterations was set 
to 1000, using the last 500 for the reconstruction of the target matrix. 
Specificity, sensitivity and the Matthews correlation coefficient (MCC) 
were chosen to evaluate the performance. In order to compute them, the 
resulting matrix was binary discretized using a 0.5 cutoff.  

The results, obtained with different configurations parameters are shown 
in Table A1.1. A grid search was performed, using two different values of 
the rank parameter 𝑘 (10 and 50), four different values for the parameter 𝛼! 
(1,10,100,1000), while we set the value of 𝛼!  as one and two orders of 
magnitude lesser than 𝛼!. The results show that the specificity is always 
very high, thus reducing the number of false positive for this very 
imbalanced problem. On the contrary, the specificity is highly dependent 
on the values of the parameters. In particular, low values of 𝛼! tend to 
reconstruct the input matrix, reducing the possibility of highlighting 
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unknown interactions, while very high values may introduce too much 
uncertainty. For 𝑘 =50 the results were always better than with 𝑘 =10, at 
the price of a much slower execution.  

To get a comparison, on the same dataset was applied the Tri-
factorization algorithm described in Chapter 4. Due to the random 
initialization, 15 repetitions were performed. The threshold for the sopping 
criterion was set to 10^-5, but in any case a maximum of 1000 iterations of 
the optimization algorithm were allowed. The rank parameters were set for 
each type of object by scaling the number of the known interactions with a 
factor 200. A consensus matrix was then obtained by averaging the 15 
output matrices of each repetition. On this matrix the same statistics 
computed for the Bayesian method were evaluated. The results show a very 
high specificity (0.99999) but a very low sensitivity (0.0451), with MCC= 
0.2079. Therefore, it seems that the Bayesian method is more flexible, 
allowing a greater control thanks to its parameters.  

Table A1.1: Results for different settings of the parameters  

α1 α2 k Specificity Sensitivity MCC 

1000 10 50 0.9845 0.7130 0.3036 
1000 100 50 0.9974 0.2708 0.2608 
1000 10 10 0.9503 0.4838 0.1133 
1000 100 10 0.9956 0.0794 0.0633 
100 1 50 0.9879 0.8087 0.3801 
100 10 50 0.9979 0.2419 0.2553 
100 1 10 0.9455 0.5794 0.1310 
100 10 10 0.9949 0.1354 0.1008 
10 0.1 50 0.9417 0.6931 0.1532 
10 1 50 0.9962 0.0794 0.0681 
10 0.1 10 0.9409 0.5921 0.1282 
10 1 10 0.9960 0.0614 0.0511 
1 0.01 50 0.9323 0.6372 0.1287 
1 0.1 50 0.9964 0.0199 0.0155 
1 0.01 10 0.9424 0.4946 0.1067 
1 0.1 10 0.9963 0.0199 0.0152 

 
Since the Bayesian method models the data using probabilistic 

distributions, it is also possible to compute an estimate of the uncertainty 
for each pairwise interaction. Figure A1.1. shows an example of two 
different posterior distributions, both of them denoting the presence of an 
association due to a distribution mean greater than 0.5. However, while the 
figure on the left reveals a high uncertainty related to that pair, because the 
related distribution is very broad, the figure on the right is characterized by 
a very tight distribution, suggesting a lower uncertainty for that interaction. 
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Figure A1.1: Example of two different posterior distributions. On the left 
there is an example of predicted association characterized by high 
uncertainty, on the right an example of predicted association characterized 
by low uncertainty 
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Appendix	2	
8 Additional	results	for	MDS	case	study	

All the 320 new gene-gene interactions discovered by the Tri-
factorization algorithm and their associated combined score (if present) 
from STRING are reported in Table A2.1 

Table A2.1: list of all the 320 new gene-gene interactions their associated 
combined score (if present) from STRING. The pairs characterized by high 
significance (combined score>0.7) are marked in light blue. 

Gene1 Gene2 PPI combined score 

DARS LARS 0.999 
DARS EPRS 0.999 
DARS MARS 0.999 
RFC4 RFC5 0.999 
RFC4 RFC3 0.999 
EPRS LARS 0.999 
EPRS MARS 0.999 

SNRPD2 SNRNP70 0.999 
ATP6V1A ATP6V1E1 0.999 
ATP6V1A ATP6V1E2 0.999 

NHP2 NOP10 0.999 
EXOSC1 EXOSC4 0.999 

LARS MARS 0.999 
RFC5 RFC3 0.999 

POLD1 POLD2 0.999 
POLD1 POLD3 0.999 
POLD2 POLD3 0.999 

UGT1A4 UGT1A7 0.999 
UGT1A4 UGT1A3 0.999 
UGT1A7 UGT1A3 0.999 

RPA1 RPA3 0.999 
SNRPD2 CDC5L 0.998 
POLE4 POLE 0.997 
POLD1 POLD4 0.996 

MPHOSPH10 TBL3 0.996 
POLD2 POLD4 0.995 
POLD3 POLD4 0.993 
RPL9 MRPS5 0.990 
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ATP6V1H ATP6V0B 0.989 
WDR75 NAT10 0.988 

ATP6V1D ATP6V1G1 0.984 
ATP6V1E1 ATP6V0E1 0.981 
ATP6V1D ATP6V1G3 0.980 

BUD31 CDC5L 0.978 
DHX8 BUD31 0.964 

ATP6V1E2 ATP6V0E1 0.964 

B3GAT3 CSGALNAC
T2 0.959 

RPP40 RPP30 0.955 
ATP6V1A ATP6V0E1 0.947 

RFC1 POLD1 0.945 
RFC1 RFC2 0.941 
GNL3 NAT10 0.933 

DHX15 DDX42 0.929 
ISY1 CDC5L 0.919 
RFC1 POLD2 0.918 

CHSY1 CSGALNAC
T2 0.915 

NARS YARS 0.915 
SF3A3 HNRNPU 0.915 
PRPF8 SNRPB2 0.914 
RRP7A PWP2 0.913 

ATP6V1G2 ATP6V1E1 0.912 
TARSL2 YARS 0.911 

RFC1 POLD3 0.910 
CLDN18 CLDN20 0.907 
TCIRG1 ATP6V0A1 0.905 

ATP6V1G3 ATP6V1G1 0.903 
SNRNP40 RBMX 0.902 

RFC1 POLD4 0.900 
LARS SARS 0.900 

ATP6V1E1 ATP6V1E2 0.900 
DHX8 CDC5L 0.899 
EPRS AARS2 0.898 
ALG8 ALG5 0.898 

BUD31 ISY1 0.894 
MARS SARS 0.888 

SNRPD2 BUD31 0.887 
MARS WARS2 0.886 

PPP3R2 PPP3CC 0.880 
EPRS DARS2 0.879 
MARS AARS2 0.876 
GNL3 WDR75 0.875 
YARS HARS 0.870 
LARS AARS2 0.870 
PWP2 RBM28 0.869 

NARS2 YARS 0.865 
PRPF6 ZMAT2 0.861 

TARSL2 HARS 0.853 
DHX8 ISY1 0.853 
PPIL1 BUD31 0.847 

TARSL2 NARS 0.836 
HSD17B12 TECR 0.836 

NARS HARS 0.835 
DARS SARS 0.818 
EPRS SARS 0.815 

DHX15 PRPF18 0.792 
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LARS WARS2 0.792 
ATP6V1G2 ATP6V1E2 0.781 

DARS2 AARS2 0.780 
SARS WARS2 0.776 
WARS YARS2 0.764 

B3GAT3 XYLT2 0.761 
CERS5 SPTLC2 0.760 

PLA2G12A PLA2G2D 0.752 
EPRS WARS2 0.745 

ATP6V1A ATP6V1G2 0.736 
VARS TARS 0.736 
BMS1 RIOK1 0.716 
LARS DARS2 0.700 
DHX8 SNRNP70 0.691 
RARS TARS2 0.676 
SARS SEPSECS 0.668 

DARS2 MARS 0.667 
YARS MTFMT 0.654 

EXOSC1 CNOT3 0.652 
DARS2 SARS 0.623 
DARS2 WARS2 0.600 

SNRNP70 CDC5L 0.593 
DHX15 SF3A3 0.584 
SARS AARS2 0.577 
NHP2 BMS1 0.575 
RFC2 POLD1 0.550 

NDST1 XYLT2 0.544 
XAB2 AQR 0.538 

MTMR1 INPP5B 0.534 
CSGALNACT2 XYLT2 0.520 

HNRNPC SLU7 0.516 
ALG3 DDOST 0.498 
DARS AARS2 0.496 

VARS2 LARS2 0.495 
CHSY1 XYLT2 0.490 
SF3A3 PRPF18 0.489 
DARS WARS2 0.484 

DDX42 SF3A3 0.475 
PLA2G12A PLA2G2E 0.472 

EXTL3 DSE 0.465 
RFC2 POLD2 0.455 

CHSY1 B3GAT3 0.434 
B3GAT3 NDST1 0.420 
NARS2 HARS 0.400 

PLA2G12A PLA2G2F 0.400 
DARS DARS2 0.393 
PARS2 VARS 0.388 
PARS2 TARS 0.375 
BUD31 SNRNP70 0.375 
RFC5 XPA 0.372 

SNRNP70 ISY1 0.358 
RFC2 POLD4 0.353 

EXTL2 CHST11 0.352 
TARSL2 NARS2 0.345 
NDST2 B3GALT6 0.337 
NARS2 NARS 0.327 
RFC2 POLD3 0.325 
POP4 RPP25L 0.323 
RFC4 XPA 0.318 
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TARSL2 MTFMT 0.307 
RRP7A RBM28 0.304 
RFC3 XPA 0.281 

FARSB EARS2 0.259 
PPIL1 CDC5L 0.250 

CETN2 XPA 0.234 
SNRPD2 ISY1 0.232 

ALDH3A1 ALDH1A3 0.232 
DHX8 SNRPD2 0.231 

RBM28 LOC81691 0.222 
HARS MTFMT 0.222 
RETN CDKAL1 0.221 

DDX42 PRPF18 0.217 
NHP2 RIOK1 0.217 
PPIL1 ISY1 0.210 

CREB3L2 CREB3L4 0.202 
DCP1B EXOSC5 0.200 

CREB3L1 CREB3L4 0.198 
NUDT7 PEX5L 0.186 
PWP2 LOC81691 0.183 

ATP6V1G2 ATP6V0E1 0.183 

NDST1 CSGALNAC
T2 0.172 

PPIL1 DHX8 0.168 
PPIL1 SNRPD2 0.168 

CHSY1 NDST1 0.165 
DDX42 HNRNPU 0.165 
PPIL1 SNRNP70 0.162 

RRP7A LOC81691 0.158 
DECR2 NUDT7 0.150 
AARS2 SEPSECS Not in STRING 

ALDH1A3 ALDH3B1 Not in STRING 
ALDH3A1 ALDH3B1 Not in STRING 

BMS1 NOP10 Not in STRING 
BTG1 CNOT3 Not in STRING 

CALM1 CALML3 Not in STRING 
CALM1 CALML5 Not in STRING 
CALM2 CALML3 Not in STRING 
CALM2 CALM3 Not in STRING 
CALM2 CALML5 Not in STRING 
CALM2 CALM1 Not in STRING 
CALM3 CALML3 Not in STRING 
CALM3 CALML5 Not in STRING 
CALM3 CALM1 Not in STRING 

CALML5 CALML3 Not in STRING 
CETN2 RFC5 Not in STRING 
CETN2 RFC3 Not in STRING 
CREB3 CREB3L2 Not in STRING 
CREB3 CREB3L1 Not in STRING 
CREB3 CREB3L4 Not in STRING 

CREB3L2 CREB3L1 Not in STRING 
DARS TRNM Not in STRING 
DARS SEPSECS Not in STRING 
DARS TRNR Not in STRING 

DARS2 SEPSECS Not in STRING 
DARS2 TRNR Not in STRING 
DDX42 RP9 Not in STRING 
DDX42 SNRNP27 Not in STRING 
DECR2 PEX5L Not in STRING 
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DHX15 RP9 Not in STRING 
DHX15 HNRNPU Not in STRING 
DHX15 SNRNP27 Not in STRING 

DOLPP1 B4GALT3 Not in STRING 
EARS2 TRNF Not in STRING 
EDC3 EXOSC7 Not in STRING 
EPRS TRNM Not in STRING 
EPRS SEPSECS Not in STRING 
EPRS TRNR Not in STRING 

EXOSC1 BTG1 Not in STRING 
EXOSC4 CNOT3 Not in STRING 
EXOSC4 BTG1 Not in STRING 
FARSB TRNF Not in STRING 

FAU MRPS18A Not in STRING 
HARS2 TRND Not in STRING 

HNRNPU RP9 Not in STRING 
HNRNPU PRPF18 Not in STRING 
JMJD7-

PLA2G4B PLA2G4C Not in STRING 

LARS TRNM Not in STRING 
LARS SEPSECS Not in STRING 
LARS TRNR Not in STRING 
MARS SEPSECS Not in STRING 
NARS MTFMT Not in STRING 
NARS TRNI Not in STRING 

NARS2 MTFMT Not in STRING 
NARS2 TRNI Not in STRING 

PABPC4L PABPC1L2B Not in STRING 
PAOX PHYH Not in STRING 
PARN DDX6 Not in STRING 
PARS2 TRNP Not in STRING 

PLA2G2C PLA2G10 Not in STRING 
PLA2G2D PLA2G2F Not in STRING 
PLA2G2E PLA2G2D Not in STRING 
PLA2G2E PLA2G2F Not in STRING 
PLA2G4B PLA2G4D Not in STRING 

POP4 SNORD3A Not in STRING 
POP4 SNORD3C Not in STRING 

PRPF18 RP9 Not in STRING 
PSTK TRNS1 Not in STRING 
PSTK LARS2 Not in STRING 
PSTK VARS2 Not in STRING 

PXMP4 ACOT8 Not in STRING 
RARS TRNS2 Not in STRING 
RARS TRNL2 Not in STRING 
RFC4 CETN2 Not in STRING 

RIOK1 NOP10 Not in STRING 
RPP25L SNORD3A Not in STRING 
RPP25L SNORD3C Not in STRING 
RRP7A TCOF1 Not in STRING 
SF3A3 RP9 Not in STRING 

SNORD3A SNORD3C Not in STRING 
SNORD3B-1 RPP25L Not in STRING 
SNORD3B-1 SNORD3A Not in STRING 
SNORD3B-1 POP4 Not in STRING 
SNORD3B-1 SNORD3C Not in STRING 
SNORD3B-1 SNORD3B-2 Not in STRING 
SNORD3B-2 RPP25L Not in STRING 
SNORD3B-2 POP4 Not in STRING 
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SNORD3B-2 SNORD3C Not in STRING 
SNORD3B-2 SNORD3A Not in STRING 

SNRNP27 RP9 Not in STRING 
SNRNP27 PRPF18 Not in STRING 
SNRNP27 HNRNPU Not in STRING 
SNRNP27 SF3A3 Not in STRING 

SNRPA PRPF38B Not in STRING 
SYF2 SNRPF Not in STRING 

TARS2 TRNS2 Not in STRING 
TARS2 TRNL2 Not in STRING 

TARSL2 TRNI Not in STRING 
TCOF1 PWP2 Not in STRING 
TCOF1 LOC81691 Not in STRING 
TCOF1 RBM28 Not in STRING 
TRNA TRNY Not in STRING 
TRNA IARS Not in STRING 
TRNI MTFMT Not in STRING 
TRNI HARS Not in STRING 

TRNM WARS2 Not in STRING 
TRNM DARS2 Not in STRING 
TRNM SEPSECS Not in STRING 
TRNM MARS Not in STRING 
TRNM SARS Not in STRING 
TRNM TRNR Not in STRING 
TRNM AARS2 Not in STRING 
TRNN TRNQ Not in STRING 
TRNP TARS Not in STRING 
TRNP VARS Not in STRING 
TRNR WARS2 Not in STRING 
TRNR SEPSECS Not in STRING 
TRNR MARS Not in STRING 
TRNR SARS Not in STRING 
TRNR AARS2 Not in STRING 
TRNS1 VARS2 Not in STRING 
TRNS1 LARS2 Not in STRING 
TRNS2 TRNL2 Not in STRING 
TRNY IARS Not in STRING 

UGT1A4 UGT1A5 Not in STRING 
UGT1A5 UGT1A7 Not in STRING 
UGT1A5 UGT1A3 Not in STRING 
UGT2A1 UGT2B11 Not in STRING 
UGT2A1 UGT1A4 Not in STRING 
UGT2A1 UGT1A5 Not in STRING 
UGT2A1 UGT1A7 Not in STRING 
UGT2A1 UGT1A3 Not in STRING 
UGT2A3 UGT2A1 Not in STRING 
UGT2A3 UGT2B11 Not in STRING 
UGT2A3 UGT1A4 Not in STRING 
UGT2A3 UGT1A5 Not in STRING 
UGT2A3 UGT1A7 Not in STRING 
UGT2A3 UGT1A3 Not in STRING 
UGT2B11 UGT1A4 Not in STRING 
UGT2B11 UGT1A5 Not in STRING 
UGT2B11 UGT1A7 Not in STRING 
UGT2B11 UGT1A3 Not in STRING 
UGT2B28 UGT1A9 Not in STRING 
WARS2 SEPSECS Not in STRING 
WARS2 AARS2 Not in STRING 
WBP11 U2AF1L5 Not in STRING 
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YARS TRNI Not in STRING 
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Appendix	3	
9 Additional	results	for	AML	case	study	

All the 226 gene-gene interactions discovered by the FM model and 
their associated combined score from STRING are reported in Table A3.1 

Table A3.1: list of all the 226 gene-gene interactions their associated 
combined score from STRING. The pairs associated to mesh terms related 
to leukemia are marked in light blue. 

Gene1 Gene2 
PPI combined 

score 

DNMT3A NPM1 0.941000 
DNMT3A NRAS 0.806000 
CEBPA TET2 0.797000 

DNMT3A TET2 0.759000 
DNMT3A FLT3 0.751000 
CEBPA DNMT3A 0.724000 
FLT3 NPM1 0.716000 
BCOR DNMT3A 0.701000 

DNMT3A MT-CO2 0.695000 
DNMT3A MTUS2 0.678000 
DNMT3A MEGF8 0.676000 
DNMT3A PTCH1 0.675000 
DNMT3A TP53 0.651000 
DNMT3A RAD21 0.642000 

NPM1 TET2 0.640000 
NPM1 TP53 0.637000 

CEBPA NRAS 0.624000 
DNMT3A TET1 0.621000 
DNMT3A RUNX1 0.619000 

FLT3 TP53 0.618000 
CRISPLD1 DNMT3A 0.614000 

NRAS TET2 0.610000 
NPM1 NRAS 0.608000 

MT-CO2 NRAS 0.607000 
DNMT3A IDH2 0.606000 
CEBPA MT-CO2 0.591000 
CEBPA NPM1 0.584000 
IDH1 NPM1 0.581000 
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MT-CYB NPM1 0.576000 
DNMT3A TTN 0.574000 

NPM1 RUNX1 0.563000 
NRAS TTN 0.562000 

MT-CO2 NPM1 0.552000 
TET2 TP53 0.547000 

DNMT3A MAGI2 0.542000 
DNMT3A PTPRN 0.542000 

FLT3 TET2 0.538000 
NRAS TP53 0.536000 

C10orf28 DNMT3A 0.533000 
NPM1 RAD21 0.525000 

CEBPA TP53 0.522000 
MT-CO2 TET2 0.522000 
RUNX1 TP53 0.518000 
MTUS2 NRAS 0.516000 
BCOR NPM1 0.515000 

DNMT3A IDH1 0.515000 
CEBPA IDH2 0.510000 

DNMT3A LOC100130211 0.505000 
DNMT3A PTPRT 0.505000 

CBL NPM1 0.504000 
CEBPA TTN 0.504000 
IDH2 NPM1 0.504000 
NPM1 TET1 0.503000 
IDH2 NRAS 0.501000 
IDH2 TET2 0.498000 

MEGF8 NPM1 0.497000 
DNMT3A PHF6 0.494000 
DNMT3A FAM57B 0.493000 
RUNX1 TET2 0.493000 
CEBPA FLT3 0.487000 
MTUS2 NPM1 0.485000 

FAM57B NRAS 0.484000 
NPM1 PTCH1 0.484000 
NRAS RUNX1 0.484000 

CEBPA RUNX1 0.481000 
DNMT3A KIT 0.480000 

NRAS RAD21 0.479000 
FLT3 IDH1 0.478000 
CBL DNMT3A 0.475000 
IDH1 KCNT1 0.474000 
FLT3 RUNX1 0.471000 
NPM1 PHF6 0.465000 
KRT79 NPM1 0.464000 
NRAS PTCH1 0.463000 

DNMT3A KRT79 0.460000 
DNMT3A MT-CYB 0.459000 

IDH2 TP53 0.459000 
MEGF8 NRAS 0.457000 

FLT3 NRAS 0.456000 
KIT NPM1 0.456000 

CEBPA ENSG00000211459 0.455000 
LOC100130211 NPM1 0.453000 

DNMT3A PTPN11 0.452000 
PHF6 TET1 0.452000 
TET2 TTN 0.451000 

PTPRT TTN 0.449000 
CRISPLD1 NRAS 0.447000 
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IDH1 TET2 0.446000 
DSCAM PTPRT 0.444000 
MT-CO2 TP53 0.441000 
CROCC DNMT3A 0.437000 
MT-CO2 TTN 0.437000 

BCOR NRAS 0.436000 
DNMT3A LOC152845 0.436000 
DSCAM TTN 0.435000 
BCOR FLT3 0.433000 

DNMT3A U2AF1 0.433000 
DNMT3A FAM47A 0.432000 

IDH1 IDH2 0.427000 
IDH2 RUNX1 0.427000 
NRAS PTPRT 0.427000 
DST KIT 0.426000 

CEBPA MTUS2 0.425000 
DNMT3A FLG 0.425000 

FLT3 IDH2 0.423000 
DNMT3A NTRK3 0.422000 
DNMT3A WT1 0.422000 
DNMT3A DSCAM 0.421000 
DNMT3A KRAS 0.421000 

IDH2 TTN 0.421000 
DNMT3A TCEAL3 0.420000 
DNMT3A LOC730032 0.419000 
DNMT3A PLCE1 0.419000 

NPM1 TTN 0.418000 
MT-CO2 RUNX1 0.414000 
MTUS2 TET2 0.414000 
CEBPA TCEAL3 0.412000 
IDH1 TP53 0.412000 
IDH1 NRAS 0.411000 
KIT TET2 0.410000 

MTUS2 TTN 0.407000 
SCML2 TET2 0.404000 
CEBPA IDH1 0.403000 
CEBPA FAM57B 0.401000 

DNMT3A PRPF4B 0.400000 
CEBPA MEGF8 0.399000 
CEBPA CRISPLD1 0.398000 
MEGF8 TET2 0.398000 

DNMT3A NMUR2 0.397000 
DNMT3A SEMA4A 0.397000 

NRAS PTPRN 0.397000 
DNMT3A KCNK13 0.395000 
DNMT3A MIR142 0.394000 
DNMT3A SPEN 0.394000 

NPM1 PTPN11 0.393000 
DNMT3A PCDHA13 0.392000 

KRAS TET2 0.392000 
DNMT3A PCDHB18 0.391000 
DNMT3A STAG2 0.391000 

DST TET2 0.391000 
IDH2 MT-CO2 0.390000 
IDH2 MTUS2 0.390000 
NRAS PLCE1 0.386000 
FLT3 MT-CO2 0.385000 
NPM1 PTPRN 0.383000 
FLT3 KRT79 0.382000 
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CEBPA PTCH1 0.381000 
CEBPA WT1 0.381000 

MT-CO2 MTUS2 0.381000 
C10orf28 MAGI2 0.379000 

FLT3 KIT 0.379000 
MAGI2 NPM1 0.379000 
MTUS2 TP53 0.379000 
BCOR TET2 0.378000 

DNMT3A GBP4 0.378000 
PKD1L2 TET2 0.378000 

SMC3 TTN 0.378000 
CROCC TP53 0.377000 

DNMT3A SYT15 0.377000 
NRAS NTRK3 0.377000 

MTUS2 RUNX1 0.376000 
NRAS TCEAL3 0.376000 

FAM57B IDH2 0.375000 
IDH2 KRAS 0.375000 

PTCH1 TET2 0.374000 
RUNX1 TTN 0.374000 
CEBPA SMC3 0.373000 

KIT WT1 0.373000 
DNMT3A OR4H12P 0.372000 
CEBPA KIT 0.371000 

FAM57B TET2 0.371000 
NPM1 U2AF1 0.371000 
NPM1 WT1 0.371000 
TP53 TTN 0.371000 

C10orf28 NPM1 0.370000 
CEBPA KRAS 0.369000 
CEBPA PTPRT 0.369000 
NRAS SMC3 0.369000 

MT-CO2 PTCH1 0.367000 
NRAS PTPN11 0.367000 
CHD4 DNMT3A 0.366000 

C10orf28 NRAS 0.365000 
DSCAM NRAS 0.365000 

DNMT3A MED12 0.363000 
KIT NRAS 0.363000 

FLT3 PHF6 0.361000 
FLT3 TET1 0.361000 

MEGF8 MT-CO2 0.361000 
NRAS STAG2 0.361000 

CRISPLD1 NPM1 0.360000 
FLT3 RAD21 0.359000 

HYDIN NRAS 0.359000 
CEBPA RAD21 0.358000 
FCGBP TET2 0.358000 
KRAS NRAS 0.358000 

CRISPLD1 MT-CO2 0.357000 
IDH1 RUNX1 0.357000 
KIT TP53 0.357000 

NRAS OR4H12P 0.357000 
CBFB DNMT3A 0.356000 

LOC100130211 WT1 0.356000 
ASXL1 DNMT3A 0.355000 
CEBPA PKD1L2 0.354000 
CEBPA PTPN11 0.354000 

CRISPLD1 TET2 0.354000 
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CEBPA PKHD1 0.353000 
DNMT3A SUZ12 0.353000 

TET2 U2AF1 0.353000 
ADCY5 DNMT3A 0.352000 
MAGI2 NRAS 0.352000 
PHF6 PTPN11 0.352000 

DNMT3A SMC3 0.350000 
NMUR2 NRAS 0.350000 
BCOR CEBPA 0.348000 
KRAS NPM1 0.348000 
NRAS PHF6 0.347000 
BCOR TP53 0.346000 

CEBPA FAM47A 0.345000 
FAM47A NRAS 0.344000 

FLT3 MTUS2 0.344000 
NTRK3 TP53 0.344000 

ATG16L1 DNMT3A 0.343000 
CBL NRAS 0.343000 

FAM57B NPM1 0.343000 
MTUS2 PTCH1 0.343000 
NRAS TET1 0.343000 
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