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Abstract (Italiano) 

Oggigiorno, una delle principali sfide che i ricercatori devono superare è 
determinare il modo in cui i dati biologici, resisi disponibili a diverse scale 
spaziali e temporali (dalla genetica alla fisiologia), possano essere 
raggruppati al fine di migliorare la conoscenza globale dei fenomeni fisici. 
La modellistica matematica è una tecnica valida per cercare di espletare 
questo compito, ma richiede un approccio modulare peculiare della 
cosiddetta biologia dei sistemi. Ciò significa che nuovi modelli più raffinati 
e complessi sono costruiti da alcuni più semplici già pubblicati in 
letteratura e che si occupano della descrizione funzionale di singoli 
processi biologici. Durante questo processo, si deve conoscere il livello di 
dettaglio cui si tende e verificare le differenze e somiglianze tra i modelli 
elementari impiegati (per quanto riguarda equazioni, parametri e unità di 
misura). Dopo aver sviluppato un nuovo modello, si possono eseguire 
simulazioni in silico. Esse rappresentano una delle tecniche che s’ispirano 
al principio della sostituzione completa (o almeno parziale) dell’uso degli 
animali nella ricerca con materiale non senziente. Tale principio fu 
introdotto da Russell e Burch nel 1959 [185] attraverso il loro concetto 
delle 3 R (Replacement o sostituzione, Reduction o riduzione e Refinement 
o perfezionamento) e costituisce ancora oggi una delle idee basilari di 
molte politiche etiche e legislative. 

In particolare, grazie ai recenti progressi nel campo delle tecnologie 
hardware e software (in termini di dimensioni delle memorie, linguaggi di 
programmazione, librerie di funzioni e tecniche d’imaging medico), il 
cuore è diventato l’organo più virtualmente utilizzato per studi 
computazionali. Modellizzare il suo comportamento può fornire ai 
ricercatori interessanti risultati sugli effetti di strutture molecolari e 
meccanismi di recente scoperta (ad esempio, recettori e canali sulla 
membrana plasmatica o pathway intracellulari) o dare loro l’opportunità di 
studiare la risposta e l’adattamento dell’organo a stimoli ambientali fisici o 
chimici. Inoltre, le simulazioni consentono potenzialmente di prevedere il 
decorso clinico di malattie cardiache o l’esito di specifici trattamenti 
chirurgici o farmacologici finalizzati alla guarigione del tessuto cardiaco o 
almeno al mantenimento di un livello accettabile di funzionalità. 

Com’è intuibile, i modelli più accurati descrivono matematicamente 
l’intero comportamento elettromeccanico del cuore, sebbene siano 
attualmente più un’eccezione che una regola a causa della complessità delle 
equazioni in gioco. Infatti, essi spiegano sia la propagazione 
dell’eccitazione elettrica attraverso l’organo, risolvendo una o più 
equazioni non lineari a derivate parziali di reazione-diffusione, sia la 
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successiva deformazione meccanica del tessuto cardiaco, risolvendo un 
sistema di equazioni non lineari nella meccanica del continuo. In 
particolare, il flusso di corrente avviene attraverso la membrana plasmatica 
dei singoli cardiomiociti e le giunzioni serrate a bassa resistenza tra gli 
stessi in seguito all’applicazione di uno stimolo elettrico. Il primo flusso 
dipende dalle correnti ioniche attraverso diversi canali di membrana, 
mentre il secondo risente dell’organizzazione delle cellule in fibre e 
foglietti a livello tissutale. Se lo stimolo è sufficientemente intenso, si 
scatena un potenziale d’azione e s’innesca il rilascio di calcio dai 
compartimenti intracellulari. Con un certo ritardo, gli ioni calcio si legano a 
specifici filamenti sarcomerici e determinano lo sviluppo di forza attiva, 
fenomeno comunemente chiamato accoppiamento eccitazione-contrazione. 
L’intera contrazione meccanica considera anche le proprietà materiali 
passive del tessuto cardiaco definite da diverse strutture proteiche 
extracellulari o intracellulari, le quali possono organizzarsi secondo 
l’architettura delle fibre. A sua volta, la contrazione può avere effetti sul 
legame degli ioni calcio ai sarcomeri, sulla forma del potenziale d’azione e 
sulle conducibilità elettriche passive mediante meccanismi di feedback 
meccanico. Pertanto, i modelli elettromeccanici tengono in considerazione 
l’interazione reciproca tra fenomeni elettrici e meccanici, la quale 
influenza, com’è noto, l’attività del cuore in condizioni sia fisiologiche sia 
patologiche. Di conseguenza, il valore dei risultati delle simulazioni 
derivanti da essi aumenta notevolmente. 

Questa tesi desidera essere un contributo nel campo della modellistica 
cardiaca, sfruttando un modello elettromeccanico fortemente accoppiato 
per affrontare due temi di notevole rilevanza e innovativi:  

• le patologie cardiache, in particolare l’ipertrofia, analizzando il 
comportamento di strutture con geometria a complessità crescente 
(fibra, campione di parete e ventricolo); 
• l’ingegneria tissutale cardiaca, in particolare le colture in vitro 
progettate per diventare patch impiantabili. 

La dissertazione è organizzata come segue. 
 
Il Capitolo 1 riassume i principali tratti anatomici e fisiologici del 

tessuto cardiaco dei mammiferi, aggiungendo l’esempio di patologia 
considerata in questa tesi, cioè l’ipertrofia, ed una breve discussione sulle 
colture cardiache. 

 
Il Capitolo 2 descrive in dettaglio il modello elettromeccanico e 

l’algoritmo più generali impiegati per simulare qualunque struttura cardiaca 
in questa tesi. 

 
Il Capitolo 3 riporta i risultati delle simulazioni riguardanti la risposta 

elettromeccanica di una fibra cardiaca caratterizzata da crescita ipertrofica 
di tessuto in modo eccentrico mentre è soggetta a diversi protocolli di 
eccitazione-contrazione; un’analisi sui feedback meccanici è inclusa. 
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Il Capitolo 4 tratta la risposta elettromeccanica di un campione di parete 

cardiaca che si contrae liberamente in condizioni di ipertrofia concentrica, 
di cui sono analizzati i fenomeni di crescita tissutale e dispersione delle 
fibre. 

 
Il Capitolo 5 studia la risposta elettromeccanica di un ventricolo colpito 

da stenosi aortica e ipertrofia concentrica (caratterizzata da sola crescita 
tissutale) durante un intero ciclo cardiaco; come nel Capitolo 3, si indaga 
anche sul ruolo dei feedback meccanici. 

 
Il Capitolo 6 analizza gli effetti elettromeccanici dettati dalla scelta di 

una specifica struttura intrinseca ed uno specifico spessore per una coltura 
cardiaca che si sviluppa in un patch a fini di trapianto. 

 
Il Capitolo 7 trae le conclusioni generali di questo lavoro. 

 
Tutte le attività di ricerca descritte in questa tesi sono state condotte al 

Centro di Tecnologie per la Salute (Centre for Health Technologies, 
C.H.T.) dell’Università di Pavia in collaborazione con il Dipartimento di 
Matematica di Pavia e il Dipartimento di Matematica dell’Università di 
Milano, che ha fornito i codici tridimensionali elementari e la piattaforma 
per eseguire simulazioni in calcolo parallelo all’occorrenza. 

In merito all’influenza dei feedback meccanici sull’attività elettrica, i 
risultati delle simulazioni non mostrano sostanziali differenze quando uno o 
più di essi è trascurato nel caso di fibre sia sane sia colpite da ipertrofia 
eccentrica. Tuttavia, differenze rilevanti si ottengono nel caso di ventricoli, 
in particolare nelle aree attivate più tardivamente. La presenza di un 
termine convettivo nel modello di reazione-diffusione aumenta la 
dispersione della ripolarizzazione e della durata del potenziale d’azione nel 
caso di un ventricolo sano. Inoltre, incrementa i singoli valori di durata del 
potenziale d’azione. I suoi due ultimi effetti sono presenti anche nel caso di 
un ventricolo ipertrofico, sebbene in misura minore. Invece la presenza del 
feedback meccanoelettrico, dovuto alla corrente attraverso i canali di 
membrana attivati dallo stretch, riduce la dispersione della ripolarizzazione 
per entrambi i ventricoli e i valori della durata del potenziale d’azione per 
il solo ventricolo ipertrofico. 

Confrontando le risposte elettriche in condizioni sane e patologiche, 
risulta che una fibra colpita da ipertrofia eccentrica possiede all’incirca lo 
stesso comportamento di quella sana. Nel caso di un campione di parete o 
di un ventricolo colpito da ipertrofia concentrica, invece, si ottengono 
differenze rilevanti. Il campione di parete, caratterizzato in questa tesi da 
conducibilità che non dipendono dalla crescita, presenta valori più bassi per 
la durata del potenziale d’azione e per la velocità di conduzione 
all’epicardio; pertanto, il rischio di promuovere aritmie è più elevato. 
Invece il ventricolo, caratterizzato da conducibilità dipendenti dalla 
crescita, ha valori più bassi per il solo potenziale d’azione, mentre la 
velocità di conduzione è più alta. Per quanto riguarda le risposte 
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meccaniche, i risultati mostrano che una fibra colpita da ipertrofia 
eccentrica, rispetto a una sana, sviluppa meno forza durante la sistole 
isovolumica del ciclo cardiaco, è più contrattile durante la fase di efflusso 
del sangue e si allunga maggiormente durante il riempimento diastolico. 
Anche un campione di parete colpito da ipertrofia concentrica che batte 
liberamente è più contrattile, ma può sviluppare forza in misura maggiore e 
tali effetti s’intensificano con la dispersione delle fibre. Tuttavia, se si 
considerano un ciclo cardiaco e una geometria più complessa, come quella 
di un ventricolo, la contrattilità durante la fase di efflusso non varia 
significativamente in caso di ipertrofia concentrica, nonostante la forza 
prodotta si mantenga maggiore per contrastare la stenosi aortica. Inoltre, 
all’epicardio, dove la crescita è massima, il ventricolo ipertrofico si contrae 
meno durante la fase di efflusso e si allunga maggiormente durante il 
riempimento diastolico, sebbene il volume a fine sistole della cavità interna 
sia simile a quello del caso sano e il volume a fine diastole sia più ridotto di 
quello sano. 

Infine, tramite l’analisi delle colture cardiache, si dimostra l’importanza 
di riprodurre l’architettura anisotropa e ordinata del tessuto cardiaco e di 
selezionare un adeguato spessore mentre si progettano patch.  
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Abstract (English) 

Nowadays, one of the main challenges researchers have to overcome is 
determining the way in which biological data, made available at different 
spatial and temporal scales (from genetics to physiology), can be grouped 
together in order to improve the global knowledge of physical phenomena. 
Mathematical modeling is a valid technique to try to carry out this task, but 
it needs a modular approach peculiar to the so-called system biology. This 
means that new more refined and complex models are built upon some 
simpler ones already published in the literature and dealing with the 
functional description of individual biological processes. During this 
process, one must know the level of detail he/she aims at and check the 
differences and similarities among the employed basic models (as regards 
equations, parameters and measure units). After developing a new model, 
in silico simulations can be run. They represent one of the techniques 
complying with the principle of the total (or at least partial) replacement of 
the use of animals in research with insentient material. This principle was 
introduced by Russell and Burch in 1959 [185] by their 3Rs concept 
(Replacement, Reduction and Refinement) and it is still one of the key 
ideas for many ethical and legislative policies. 

In particular, thanks to the recent advancements in the field of hardware 
and software technologies (in terms of memory sizes, programming 
languages, libraries of functions and medical imaging techniques), the heart 
has become the most virtually used organ for computational studies. 
Modeling its behavior can provide researchers with interesting insights on 
the effects of recently discovered molecular structures and mechanisms (for 
instance, receptors and channels on the plasma membrane or intracellular 
pathways) or give them the opportunity to study the heart response and 
adaptation to physical or chemical environmental stimuli. Moreover, 
simulations let virtually predict the clinical course of cardiac diseases or 
the outcome of specific surgical or pharmacological treatments aimed at 
healing the cardiac tissue or maintaining an acceptable level of 
functionality at least. 

As one might guess, the most accurate models describe mathematically 
the whole electromechanical behavior of the heart, though they are 
currently the exception rather than the rule due to the complexity of 
equations. Actually, they explain both the propagation of the electrical 
excitation through the organ, by solving one or more non-linear reaction-
diffusion partial differential equations, and the following mechanical 
deformation of the cardiac tissue, by solving a system of non-linear 
equations related to continuum mechanics. In particular, the current flow 
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occurs through the plasma membrane of single cardiomyocytes and the 
low-resistance gap junctions among them after the delivery of an electrical 
stimulus. The former flow depends on the ionic currents through different 
membrane channels, whilst the latter one is affected from the organization 
of cells into fibers and sheets at the tissue level. If the stimulus is strong 
enough, an action potential arises and the calcium release from intracellular 
stores is triggered. With a certain delay, calcium ions bind to specific 
sarcomere filaments and cause the development of active force, a 
phenomenon usually called excitation-contraction coupling. The whole 
mechanical contraction also considers the passive material properties of the 
cardiac tissue defined by different extracellular or intracellular protein 
structures, which may arrange themselves according to the fiber 
architecture. In turn, contraction may have effects on the calcium ions 
binding to sarcomeres, the shape of the action potential and the electrical 
passive conductivities by mechanical feedback mechanisms. Therefore, the 
electromechanical models take into account the mutual interaction between 
electrical and mechanical phenomena, which is known to affect the heart 
activity under both physiological and pathological conditions. As a 
consequence, the relevance of the simulation results deriving from them is 
dramatically enhanced. 

This thesis would like to contribute to the field of cardiac modeling by 
exploiting a strongly-coupled electromechanical model to face two 
challenging and innovative topics: 

• cardiac pathologies, in particular hypertrophy, by analyzing the 
behavior of structures with an increasing geometric complexity (fiber, 
wedge and ventricle); 
• cardiac tissue engineering, in particular the in vitro cultures 
designed to become implantable patches. 

The dissertation is organized as follows. 
 
Chapter 1 resumes the main anatomical and physiological features of 

the mammalian cardiac tissue, adding the example of pathology considered 
in this thesis, i.e. hypertrophy, and a brief discussion on cardiac cultures. 

 
Chapter 2 describes in detail the most general form of the 

electromechanical model and of the algorithm employed for simulating any 
cardiac structure in this thesis. 

 
Chapter 3 reports the simulation results about the electromechanical 

response of a cardiac fiber characterized by eccentric hypertrophic growth 
while it is subjected to different excitation-contraction protocols; an 
analysis on the mechanical feedbacks is included. 
 

Chapter 4 deals with the electromechanical response of a cardiac wedge 
contracting freely under concentric hypertrophic conditions, whose 
phenomena of tissue growth and fiber dispersion are analyzed. 
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Chapter 5 studies the electromechanical response of a ventricle affected 

from aortic stenosis and concentric hypertrophy (characterized by tissue 
growth only) during an entire cardiac cycle; as in Chapter 3, the role of the 
mechanical feedbacks is investigated too. 

 
Chapter 6 analyzes the electromechanical effects dictated by the choice 

of a specific intrinsic structure and thickness for a cardiac culture 
developing into a patch for transplantation. 

 
Chapter 7 draws the overall conclusions of this work. 

 
All research activities described in this thesis have been carried out at 

the Centre for Health Technologies (C.H.T.) of the University of Pavia in 
collaboration with the Department of Mathematics in Pavia and the 
Department of Mathematics at the University of Milano, which has 
provided the basic three-dimensional codes and the cluster for performing 
parallel computing simulations when needed. 

As regards the influence of the mechanical feedbacks on the 
bioelectrical activity, the simulation results show no relevant discrepancies 
when one or more of them are disregarded in case of both healthy and 
eccentric hypertrophic fibers. However, significant differences are yielded 
in case of ventricles, in particular in the latest activated areas. The presence 
of a convective term in the reaction-diffusion model increases the 
dispersion of repolarization and of the action potential duration in case of a 
healthy ventricle. Moreover, it raises the single values of the action 
potential duration. Its last two effects are also present in case of a 
hypertrophic ventricle, though to a lesser extent. On the contrary, the 
presence of the mechanoelectric feedback, due to the stretch-activated 
membrane channels current, decreases the dispersion of repolarization for 
both ventricles and the values of the action potential duration for the sole 
hypertrophic ventricle. 

By comparing the electrical responses under healthy and pathological 
conditions, it turns out that an eccentric hypertrophic fiber displays nearly 
the same behavior of the healthy one. In case of a concentric hypertrophic 
wedge or ventricle, some significant discrepancies are found instead. The 
wedge, characterized in this thesis by conductivities that do not depend on 
growth, shows lower values for the action potential duration and the 
conduction velocity on the epicardium; therefore, the risk of promoting 
arrhythmias is greater. On the contrary, the ventricle, characterized by 
growth-dependent conductivities, has lower values only for the action 
potential duration, whilst the conduction velocity is higher.  

As far as the mechanical responses are concerned, the results show that 
an eccentric hypertrophic fiber, compared with a healthy one, develops less 
force during the isovolumic systole of the cardiac cycle, it is more 
contractile during the blood efflux phase and it stretches more during the 
diastolic filling. A freely beating concentric hypertrophic wedge is more 
contractile too, but it can develop force to a higher extent and these effects 
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are enhanced with fiber dispersion. However, if a cardiac cycle and a more 
complex geometry, like the one of a ventricle, are taken into account, the 
contractility during the efflux phase does not vary significantly in case of 
concentric hypertrophy, though the developed force keeps higher to 
counteract aortic stenosis. Moreover, on the epicardium, where growth is 
maximal, the hypertrophic ventricle contracts less during the efflux phase 
and it stretches more during the diastolic filling, though the end-systolic 
volume of the internal cavity is similar to the healthy case and the end-
diastolic volume is lower than the healthy one. 

At last, by the analysis of cardiac cultures, it is proved that it is 
important to reproduce the anisotropic and ordered architecture of the 
cardiac tissue and to select a proper thickness while designing patches. 
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Chapter 1 
1 The cardiac tissue 

In this chapter, the main aspects concerning the anatomy and physiology of 
the mammalian cardiac tissue are briefly reviewed to better understand the 
electromechanical modeling framework described in Chapter 2. A 
discussion on hypertrophy is also present as it will be the cardiac pathology 
considered in this thesis. For an easier understanding, the reference species 
chosen is the human one, though simulations in Chapter 3, Chapter 4 and 
Chapter 5 will involve other animals when selecting specific models of 
electrophysiology and mechanics: the guinea-pig, the mouse and the pig. 
However, the main qualitative features of the human cardiac tissue can be 
retrieved in all other mammalian species. Differences may arise only when 
phenomena are quantitatively described; in particular, in this chapter, all 
measures refer to the human species again. Moreover, the cardiac tissue is 
compared with the skeletal one, which is the most similar one in mammals, 
stressing similarities and differences. A final section is devoted to cardiac 
cultures, which represent a relatively recent way to study in vitro the 
electromechanical behavior of the cardiac tissue and, mainly, to regenerate 
infarcted areas in the in vivo heart. Simulations on them will be reported in 
Chapter 6. 

1.1. The heart 

1.1.1. Basic anatomy 

The heart is a pump composed of four chambers [16,30]: two atria in the 
upper part, separated by the interatrial septum, and two ventricles in the 
lower part, separated by the interventricular septum (Figure 1.1). Each 
atrium communicates with its corresponding ventricle by an 
atrioventricular valve: the bicuspid or mitral valve to the left and the 



The cardiac tissue  

 2

tricuspid valve to the right. Then, each ventricle is connected to the 
circulatory system by a semilunar valve: the aortic valve between the left 
ventricle and the aorta and the pulmonary valve between the right ventricle 
and the pulmonary artery. The aorta and the pulmonary artery are the first 
two blood vessels of the systemic circulation (reaching all body tissues) 
and the pulmonary one (passing through the lungs) respectively. The four 
pulmonary veins and the two venae cavae, instead, are the terminal vessels 
of the two previous circulations and they end into the left and right atria 
respectively. All valves are made of connective tissue covered with 
endothelial cells and work passively, i.e. they open or close according to 
the pressure gradient across them that changes during a cardiac cycle as it 
will be discussed later. 

 

Figure 1.1: Schematic diagram of the heart anatomy (adapted from [85]). 

The cardiac wall is formed by: 

• the epicardium, which is a thin connective layer covering the 
external surface of the heart; 
• the endocardium, which is a thin endothelial layer covering the 
internal surface of cardiac chambers; 
• the (active) myocardium, which is the muscular tissue between 
the epicardium and the endocardium and is composed of several 
layers of parallel and differently oriented cardiomyocytes, forming 
fibers that rotate from the subepicardial region to the subendocardial 
one. 

The myocardium is also reinforced with connective structures (the 
elastin and collagen fibers secreted by fibroblasts that form the so-called 
passive myocardium), among which the most important one is a fibrous 
ring towards the base of ventricles near the atrioventricular valves. 
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Moreover, in both ventricles, it is connected to some fusiform papillary 
muscles (a kind of trabeculae carneae) that ensure the proper closing of the 
atrioventricular valves during the ventricular systole of the cardiac cycle, 
when the blood in ventricles may flow into atria again. 

There are significant differences regarding the thickness of the 
myocardium. The atrial walls are largely thinner than the ventricular ones, 
whereas the left ventricle is about three times thicker than the right one. 
Actually, the left ventricle must deliver blood with a higher pressure into 
the systemic circulation, which is far longer than the pulmonary one 
starting from the right ventricle. 

Besides its muscular component, the heart is also characterized by a 
complex network (of myocardial origin), which is responsible for the 
generation and propagation of electrical stimuli in the heart. This 
conduction system groups together the following structures (Figure 1.2): 

• the Keith-Flack sinoatrial node located on the posterior part of 
the right atrium, where the spontaneous and repetitive beating of the 
heart comes from; 
• the Tawara atrioventricular node near the tricuspid valve, which 
collects the electrical excitation after crossing the atrial musculature 
and sends it to ventricles with a certain delay (about 170÷200 ms); 
• the bundle of His that, starting from the atrioventricular node, 
runs through the interventricular septum and progressively splits into 
several smaller and smaller branches (forming the Purkinje network), 
which transmit the electrical stimulation to ventricular 
cardiomyocytes from the apex to the base of the heart. 

 

Figure 1.2: Schematic diagram of the heart conduction system (adapted 
from [86]). 
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At last, the whole heart is held in a double-walled sac, i.e. the 
pericardium, made of a parietal layer, which adheres to the mediastinum, 
and a visceral one, which is fused to the epicardium. The two layers 
enclose a cavity that contains a mucous fluid avoiding friction during the 
heart beating. 

1.1.2. The cardiac cycle 

The propagation of the electrical signal throughout the heart determines an 
ordered series of mechanical events usually referred to as the cardiac cycle 
[16,30] (Figure 1.3). 

 

Figure 1.3: Schematic diagram of the cardiac cycle (adapted from [87]). 

At the beginning of this cycle, the atrial and ventricular musculatures are 
completely relaxed, the cardiac chambers are almost filled with blood, the 
atrioventricular valves are open and the semilunar valves are closed. When 
the atrial systole arises, a slight increase of pressure in atria and ventricles 
occurs. Actually, the atrial systole does not last long, the atrial muscular 
mass is limited and the ventricular chambers have already been passively 
filled for more than two-thirds of their total capacity at the end of the 
diastolic phase of the previous cycle. However, thanks to the atrial systole, 
the volume of each ventricle reaches the end-diastolic volume (120÷130 
ml). At the end of the atrial contraction, the sudden deceleration of blood 
against the ventricular walls causes a whirling motion that tends to close 
the atrioventricular valves. 

In the meanwhile, the electrical excitation has completely propagated 
from atria to ventricles, leading to the ventricular systole and promoting an 
abrupt increase of pressure in ventricles that finally seals the 
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atrioventricular valves. The first phase of the ventricular systole is 
isovolumic because all valves are closed and the contraction of the 
ventricular musculature determines an increase of pressure without 
modifications in volume. It ends when the pressure in ventricles exceeds 
the one in the aorta and in the pulmonary artery; actually, the semilunar 
valves open and blood starts to flow into these vessels. This second phase 
is the ventricular ejection (or blood efflux) and it is characterized by a 
significant decrease of the ventricular volume up to the end-systolic 
volume (50÷60 ml) together with, first, an increase and, then, a decrease of 
pressure. 

When the pressure in ventricles gets lower than the one in the aorta and 
in the pulmonary artery, the semilunar valves shut. The first phase of the 
ventricular diastole then starts. It is isovolumic since pressure significantly 
decreases while volume is not affected. When the pressure in ventricles is 
lower than the one in atria, the atrioventricular valves open and blood from 
veins starts to flow into ventricles through atria, which have already 
relaxed during their diastole. Thus, the second phase of the ventricular 
diastole begins, i.e. the diastolic filling. 

The volume and pressure values in ventricles are useful to describe a 
diagram that summarizes the four just recalled phases of a cardiac cycle, 
i.e. the isovolumic systole, the ejection or blood efflux, the isovolumic 
diastole and the diastolic filling (Figure 1.4). 

 

Figure 1.4: Pressure-volume loop of the left ventricle (adapted from [88]). 

1.1.3. The Frank-Starling law 

The heart must deliver blood to all body tissues by promptly adjusting its 
cardiac output, defined as the product of the stroke volume, which is the 
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volume of blood ejected from the left ventricle per beat, i.e. the difference 
between the end-diastolic volume and the end-systolic one, and the heart 
rate, when their degree of activity changes from rest to physical exercise 
and vice versa or under pathological conditions [16,30]. The regulation of 
the cardiac output can be intrinsic, i.e. related to the heart ability to vary its 
contraction force, or extrinsic, i.e. achieved via the sympathetic and 
parasympathetic fibers of the autonomic nervous system or by the 
hormones flowing through blood, among which the most important ones 
are the two catecholamines adrenaline and noradrenaline. To meet the aims 
of this thesis, only the former regulation is discussed. 

The heart intrinsic regulation was first discovered by Frank for the 
isolated frog heart at the end of the 19th century [58], following the first 
observations made by Cyon, Coats and Bowditch [230], and then 
formalized by Starling at the beginning of the 20th century [204]. Starling 
used a specific heart-lungs preparation on a dog (Figure 1.5), where the 
systemic circulation of the animal was completely replaced with an 
artificial extracorporeal one, whose mechanical features (for instance, its 
hydraulic resistance and pressures) could be tuned and which permitted to 
directly measure the resultant cardiac output. The pulmonary circulation 
and the lungs of the animal remained active to oxygenate blood. The 
extracorporeal circulation included: a connecting hose with a manometer 
that replaced the arterial tree, a compression chamber that simulated the 
vessel elasticity, a compressible tube that regulated the peripheral 
resistance, a thermostatic coil that kept blood at body temperature in pipes 
and a reservoir from which blood came back to the right atrium again. 

 

Figure 1.5: Schematic diagram of Starling’s heart-lungs preparation on a 
dog: 1) heart and lungs; 2) connecting hose with manometer; 3) 
compression chamber; 4) compressible tube; 5) thermostatic coil; 6) 
reservoir (adapted from [45]). 
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By moving the reservoir up and down, Starling could modify the blood 
pressure in the right atrium, thus regulating the diastolic filling of the heart. 
He remarked that, at a constant heart rate, the cardiac output slightly 
increased when the arterial pressure was varied (for instance, by raising the 
circulatory resistance). The output considerably increased, instead, when 
the venous pressure was raised. This phenomenon proved that the more the 
ventricular musculature stretched during the diastolic filling the more it 
contracted during the subsequent systole. Then, Starling stated the 
following law: the contraction energy of cardiac fibers increases with their 
initial elongation. This law is valid within a physiological range; actually, 
if stretching exceeds a certain limit, contraction energy does not increase 
any longer, but it starts to decrease because the heart failure condition is 
reached. Therefore, there is an optimal length at which cardiac fibers are 
able to develop a maximum value of contraction energy. This can be 
highlighted by a graph where the end-diastolic volume on the abscissa is 
put in relation with the stroke volume on the ordinate (Figure 1.6). The 
end-diastolic volume points out the initial length of fibers at the beginning 
of the cardiac cycle, whereas the stroke volume is an index for the 
maximum force developed by fibers. Under physiological conditions of rest 
and physical exercise, the degree of filling is always kept under the 
previous optimal length value, where the Frank-Starling law is valid. When 
the blood demand of tissues increases, the vasodilation that occurs in them 
sends more blood to the right atrium, thus raising the venous pressure and 
the diastolic filling of ventricles. This automatically causes an increase of 
the ventricular contraction force and of the stroke volume. Details on the 
cell mechanisms at the basis of the Frank-Starling law will be given in 
Chapter 2. 

 

Figure 1.6: Relationship between the ventricular end-diastolic volume and 
the stroke volume showing the Frank-Starling law [89]. 
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1.2. General properties of the myocardium 
From the previous section, it follows that the myocardium is the primary 
tissue accounting for both the electrical propagation (by the conduction 
system) and the mechanical contraction (through the active and passive 
myocardia) of the heart. Since the simulations reported in the next chapters 
will involve this tissue, further details about its properties are given below 
[16,30]. 

1.2.1. Excitability 

The myocardium is able to respond to electrical stimuli like the skeletal 
muscle. If the stimulus is strong enough to exceed a threshold intensity 
value, it evokes an electrical and mechanical response, otherwise it does 
not trigger any response. Actually, the stimulus determines a 
cardiomyocyte activation process characterized by the onset of an electrical 
phenomenon, called action potential, at the level of the plasma membrane 
that is followed, with a certain delay, by the mechanical contraction of the 
cell. 

The typical action potential of the human ventricular myocardium is 
displayed in Figure 1.7 together with its main phases:  

1. a depolarization phase, during which the transmembrane 
potential, i.e. the difference between the intracellular and 
extracellular potentials, quickly rises from its negative resting 
value of -80÷-90 mV, crosses 0 mV and reaches a positive peak 
of about 20÷50 mV; 

2. a plateau phase, a quite long period (100÷300 ms) in the human 
and other mammalian species (except from rats and mice that 
lack it), during which the transmembrane potential is near 0 
mV; 

3. a repolarization phase, during which the plasma membrane 
regains its resting value. 

 

Figure 1.7: Schematic plot of a human ventricular action potential with its 
phases: 1) depolarization; 2) plateau; 3) repolarization (adapted from [90]). 
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All previous phases come out from specific ionic phenomena. The 
depolarization up to the threshold value of about -70 mV induces the 
opening of the fast sodium channels. These ones bring positive charges 
inside the myocyte, i.e. an inward current INa that further depolarizes the 
membrane, triggering a self-sustained process, until the sign inversion of 
the transmembrane potential. The plateau is due to the overlap of different 
ionic events. At the beginning of it, while INa is extinguishing, some 
calcium channels, which are activated at about -40 mV, drive an inward 
current ICaL that is positive again, thus keeping the membrane depolarized. 
During the plateau, while the ICaL channels are deactivating, the slow 
delayed rectifier channels carrying an outward potassium current IKs get 
open. Therefore, the plateau can be explained in terms of the balance 
between these two opposite currents. At last, the repolarization up to the 
resting value is mainly due to the late activation of the rapid delayed 
rectifiers, which are another kind of potassium channels that, at the end of 
the plateau, let potassium ions (represented by the current IKr) leave the 
myocyte, thus promoting the membrane repolarization till when these 
channels deactivate. 

The presence of the plateau is the main difference between the action 
potential of cardiomyocytes and the one of skeletal myocytes (if rodents are 
disregarded). Thus, it may happen that the mechanical contraction starts 
before the electrical activation ends in cardiac myocytes, whilst it may not 
in the skeletal ones, where the action potential has already come to an end. 

1.2.2. Refractoriness 

When the myocardial tissue is electrically excited and an action potential 
develops, it becomes refractory for a certain period of time, i.e. it is unable 
to respond to another stimulus. In particular, the whole refractory period is 
divided into two phases. During the first one, refractoriness is absolute, i.e. 
no stimuli can elicit a new electrical response independently of their 
amplitude; this period corresponds to the plateau phase of the action 
potential. Then, at the beginning of the repolarization phase, refractoriness 
becomes relative and cardiomyocytes can gradually recover their 
excitability provided that the second stimulus is sufficiently stronger than 
the first one. 

In skeletal myocytes, the duration of the action potential is limited to 
some milliseconds, thus the whole refractory period is very short and it 
terminates immediately after the depolarization of the plasma membrane. In 
cardiomyocytes, instead, where the action potential can last hundreds of 
milliseconds, the absolute refractoriness covers most of the contraction 
period (Figure 1.8). This aspect prevents high-frequency electrical stimuli 
from causing the merging of subsequent contractions in the myocardium, a 
phenomenon that may happen in the skeletal muscle instead, giving rise to 
the so-called muscular tetanus. Therefore, the heart cannot be tetanized. 
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Figure 1.8: Relationship between cardiac refractoriness and contraction 
(adapted from [91]). 

At last, there are significant differences as regards the refractoriness 
duration throughout the heart. For instance, refractoriness is shorter in the 
atrial myocardium than in the ventricular one, whilst it is far longer in the 
atrioventricular node in order to protect ventricles from too frequent stimuli 
deriving from functional disorders in atria. 

1.2.3. Conductivity 

Cardiomyocytes are longitudinally and transversely interconnected in order 
to create a syncytium (Figure 1.9). Connections are characterized by some 
intercalated discs, where the plasma membranes of two adjacent cells are 
very close and they may fuse to form gap junctions. This configuration 
ensures a very low electrical resistance, which fosters the transmission of 
the action potential from the stimulation point (i.e. the sinoatrial node) to 
the whole heart. The diffusion of electrotonic currents is strong enough to 
propagate from the active cells to the resting ones and to elicit new action 
potentials. The conduction velocity depends on the action potential features 
(i.e. the intensity of the transmembrane currents) and the geometry of the 
cardiac network. Moreover, it is usually higher along the major axis of 
cardiomyocytes than in any transverse direction thanks to the higher 
concentration of gap junctions and the larger cross-sectional area. 
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Figure 1.9: Syncytial aspect of the cardiac tissue [92]. 

Skeletal myocytes, instead, do not show intercalated discs and gap 
junctions because each of them is isolated and directly driven by the 
synaptic terminal of a motoneuron after the arrival of an electrical impulse 
from the central nervous system. 

1.2.4. Contractility 

The myocardium can contract under electrical stimulation like the skeletal 
muscle. For both tissues, the concentration of cytoplasmic (or intracellular) 
calcium must increase in order to elicit the mechanical contraction, though 
this is achieved in two different ways as it is discussed below. 

Both the myocardium and the skeletal muscle have a transverse T-tubule 
system made of long invaginations of plasma membrane inside cells 
(Figure 1.10). These structures form diads in cardiomyocytes or triads in 
skeletal myocytes according to the number of terminal cisternae of the 
sarcoplasmic reticulum they are in contact with, i.e. one cisterna in the 
former cells and two cisternae in the latter ones. Thanks to the T-tubules, 
the electrical activation reaches the deepest areas of cells [17]. 
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Figure 1.10: Schematic diagram of the T-tubule system in a cardiomyocyte 
[93]. 

In cardiomyocytes, the inward calcium current ICaL accompanying the 
action potential and entering through the L-type channels at the level of the 
T-tubules triggers a multiplicative phenomenon known as Calcium-Induced 
Calcium Release (CICR). Actually, starting from a small amount of 
calcium ions at the level of the plasma membrane, a bigger amount of them 
is released, through the ryanodine receptors, from the sarcoplasmic 
reticulum (where they are buffered to the calsequestrin protein) to the 
dyadic space between the T-tubules and the reticulum first and to the 
cytoplasm then. 

In skeletal myocytes, instead, the calcium release from the sarcoplasmic 
reticulum occurs thanks to the mechanical opening of some channels driven 
by a morphological change of the dihydropyridine (DHP) receptors in the 
T-tubule membrane. 

However, after the increase of intracellular calcium, the following 
mechanism for the development of force is the same in cardiomyocytes and 
skeletal myocytes and it occurs in sarcomeres [4,68,202]. 

Sarcomeres show repetitive light and dark stripes (Figure 1.11). They 
are placed between two dark Z lines that split the light I bands (made of 
only thin actin filaments) in two halves belonging to two adjacent 
sarcomeres. The central A band includes thick myosin and thin actin 
filaments and, in the middle of it, a light H zone with the M line represents 
the part of thick filaments that is not superimposed by the thin ones. 
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Figure 1.11: Sarcomere aspect through a polarization microscope (top) and 
schematic diagram of its components (bottom) [94]. 

A thin filament is a double helix of F-actin, i.e. the polymerized form of 
the globular protein G-actin that provides the binding sites with myosin 
(Figure 1.12). It is covered with tropomyosin, a protein with two α-helixes 
between the two actin helixes, and troponin, which is a complex of three 
globular units regularly placed along the tropomyosin filament: troponin C 
(TnC), which includes the binding site with the intracellular calcium, 
troponin I (TnI), which inhibits the actin-myosin interaction, and troponin 
T (TnT) that binds TnC, TnI and tropomyosin. In particular, TnC is a long 
helix with two globular C and N ends. The C end includes the binding sites 
III and IV that bind calcium and magnesium competitively, but they are 
saturated under physiological conditions. The N end includes the binding 
sites I and II for calcium, which are both active for skeletal myocytes, 
whilst only the site II is active for cardiomyocytes (thus, it controls 
contraction) due to a high positive charge near the site I that prevents 
calcium from binding. 

 

Figure 1.12: Schematic diagram of a thin filament (adapted from [95]). 

A thick filament, instead, is made of about 250 myosin molecules with 
many tails bending outside the filament and ending with a head interacting 
with actin and ATP (adenosine triphosphate) (Figure 1.13). 
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Figure 1.13: Schematic diagram of a thick filament (adapted from [96]). 

At rest, the troponin-tropomyosin complex inhibits the actin-myosin 
interaction. When the intracellular calcium increases, the binding between 
calcium and TnC shifts tropomyosin, exposing the actin-myosin binding 
site and allowing the formation of a weak or strong cross-bridge. Myosin 
releases a phosphate group Pi in order to provide its head with enough 
energy to rotate and to push the actin filament towards the center of the 
sarcomere till when ADP (adenosine diphosphate) is released from myosin 
too. Then, the head separates from actin because it binds to another ATP 
molecule, it comes back to its original position thanks to the ATP 
hydrolysis carried out by myosin ATPase and it binds to a new actin 
molecule. This cycle is followed repeatedly by each myosin molecule in 
order to develop the contraction force at the cell level (Figure 1.14); as a 
remark, only strong cross-bridges determine force. 

 

Figure 1.14: Schematic diagram of the actin-myosin interactions during a 
contraction cycle (adapted from [97]). 
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The deactivation of the contractile apparatus is similar to the one in the 
skeletal muscle and it is achieved by bringing back the intracellular 
calcium concentration to its resting value (<0.1 μM); the remaining 
intracellular calcium is bound to the calmodulin protein because free 
calcium is toxic for cells. This is done by a SERCA pump that gathers 
calcium ions inside the sarcoplasmic reticulum, a plasma membrane 
sodium/calcium exchanger and a plasma membrane ATP-mediated 
transport. 

At the level of the entire myocardial tissue, contraction is synchronous 
thanks to its syncytial feature and it cannot be voluntarily modulated. In the 
skeletal muscle, instead, the developed force can be modulated by the 
central nervous system thanks to the recruitment of a variable number of 
motor units. However, the skeletal muscle may be also responsible for 
involuntary motor acts (the so-called reflexes) in response to environmental 
stimuli. 

1.3. Example of myocardial pathology: 
hypertrophy 
As all other body tissues, the myocardium may be affected from several 
pathologies that threaten its regular pumping function and may lead to 
disability and death; more than 25 million people worldwide are affected 
from heart failure and this figure is expected to increase in the future [152]. 
In this thesis, the focus is on a recurrent pathology worldwide, i.e. 
hypertrophy [131,165,205]. Since the heart is part of the cardiovascular 
system, it may be affected from long-term changes in its mechanical 
environment and it may adapt to them in time. Hypertrophy is one of these 
adaptive processes, trying to keep the cardiac output stable by a 
geometrical remodeling of the organ. Cardiomyocytes grow in size but not 
in number, thus differencing from hyperplasia, which is another response 
body tissues may undertake during a maladaptive remodeling. Cells 
succeed in doing so by carrying out sarcomerogenesis, i.e. by synthetizing 
and assembling new sarcomere units next to the preexistent ones. Several 
intracellular signaling pathways come into play during both the 
transduction of extracellular mechanical stimuli and the subsequent growth 
[78,106,164,210]. Although hypertrophy may be also a physiological and 
reversible response, for instance in strength and endurance athletes 
[50,151,171], it is more often a pathological and irreversible response in 
people of all ages. 

If a chronic volume overload affects the heart (for instance, due to mitral 
valve regurgitation), the high diastolic strains trigger the development of 
new sarcomeres in series, which lengthen cells without significant 
modifications in their cross-sectional area; a length-to-width ratio up to 
about 11:1 [62] versus a physiological one of 7:1 [63] has been detected. 
Therefore, ventricles increase their volume, but the wall thickness is 
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preserved. This kind of cardiac growth is conventionally called eccentric 
hypertrophy. 

On the contrary, a chronic pressure overload (for instance, due to 
systemic hypertension or aortic valve stenosis) causes high systolic 
stresses. Cardiomyocytes respond by depositing new sarcomeres in parallel, 
thus increasing their cross-sectional area, while keeping their length 
unchanged. The length-to-width ratio can decrease up to 3:1 [146,189]. On 
the macroscopic scale, this remodeling determines the thickening of 
ventricular walls without altering the corresponding chamber volumes. This 
kind of cardiac growth is usually called concentric hypertrophy. Figure 
1.15 resumes the effects of the two previous hypertrophic phenotypes on 
the microscopic scale of a cardiomyocyte and on the macroscopic one of a 
ventricle. 

 

Figure 1.15: Effects of eccentric (middle) and concentric (right) 
hypertrophy on cardiomyocytes (top) and on ventricles (bottom) compared 
with the healthy heart (left) (adapted from [66,67]). 

However, cardiac growth is not necessarily an ordered phenomenon, 
especially if it worsens with time and it may lead to severe 
cardiomyopathies, such as dilated cardiomyopathy DCM, with an eccentric 
phenotype, and hypertrophic cardiomyopathy HCM with a concentric one 
[98]. Then, it could be not only a compensatory process, but also the cause 
of serious ventricular dysfunctions and heart failure. The added sarcomeres 
may make myocardial fibers lose their structurally rotating architecture, i.e. 
a fiber dispersion may happen [28,49,209,213]. Moreover, hypertrophy 
may be accompanied with an increase of fibrosis (additional connective 
tissue) and an extracellular matrix remodeling [72,78,205]. 

At last, a hypertrophic phenotype may also derive from one or more 
well-known inherited genetic defects [145,180]. However, in this thesis, 
hypertrophy is considered only as an adaptive cardiac response to 
mechanical alterations in time, thus neglecting any genetic cause. 
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1.4. Cardiac cultures 
Nowadays, cardiac cultures have become a milestone for various 
researchers involved in discovering the mechanisms of the heart beating 
thanks to their relatively cheap, easy and reproducible in vitro preparation 
dictated by well-established protocols [188]. They are generally made of 
cardiomyocytes derived from neonatal hearts through enzymatic digestion 
or differentiated from embryonic or induced pluripotent stem cells that can 
proliferate and self-beat on Petri dishes (differently from adult cells that are 
not able). Since the second half of the 20th century they have formed the 
basis for physiological and pharmacological studies (e.g., [54,55]) as an 
effective and safer alternative to the isolation of the in vivo heart prescribed 
by Langendorff in 1898 [134]. Actually, starting from a control culture, one 
can deliver drugs (for instance, isoproterenol or phenylephrine) or analyze 
how the propagation of the electrical signal is affected from the way 
cardiomyocytes are oriented in the space, for instance an isotropic 
propagation versus an anisotropic one. Moreover, if they are associated 
with special micromodified substrates or with porous scaffolds and if they 
are grown together with other cell types (like fibroblasts and endothelial 
cells) under appropriate mechanical or electrical stimuli in bioreactors, they 
may develop into functional and viable tissue engineering cardiac patches 
(monolayered or, better, multilayered). Then, these patches can be grafted 
onto injured parts of the heart (for instance, infarcted areas), thus 
promoting a gradual healing [12,25-27,174]. After their transplantation, 
they must be able to develop enough contractile force and to propagate 
electrical stimuli in a proper way like the anisotropic surrounding tissue. 

Figure 1.16 resumes the most recurrent procedures to build in vitro a 
multilayered cardiac patch. Solutions a) and b) are based on scaffolds. 
From a physical point of view, scaffolds must be highly porous with 
adequate pore dimensions promoting the implantation of cells, the diffusion 
of oxygen and nutrients and the removal of waste products throughout the 
entire structure. From a chemical point of view, they must be 
biodegradable, i.e. they must be reabsorbed by the surrounding tissue 
avoiding any surgical procedure to remove it, and they must have a proper 
degradation rate in order to ensure that the new tissue will be able to bear a 
high mechanical load and to propagate electrical signals when it completely 
degrades. In particular, solution a) is the classical one in tissue engineering 
based on preformed scaffolds. These ones are first synthetized without 
cells, which are then seeded just before the culturing process. They are 
made of only natural materials (for instance, collagen, decellularized 
extracellular matrixes, fibrinogen or fibroin) or combined with synthetic 
ones (for instance, polymers of polylactic and polyglycolic acids PLGA). 
Their main advantage is the high control on the structure, dimensions and 
orientation of pores, i.e. on the spatial development of cells. Solution b), 
instead, is represented by hydrogel scaffolds, characterized by a polymeric 
network with a high amount of water among protein chains. They can trap 
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cells in this dense network and they can be freely molded by cells 
themselves. They are liquid outside the body and they become semisolid 
gels inside thanks to their chemical and physical features and their response 
to environmental stimuli like temperature and pH; thus, they can be also 
injected directly inside an infarcted area via a catheter. They are made of 
fibrin, collagen or chitosan combined with PLGA or polyethylene glycol 
PEG. At last, solution c) is the most innovative one, i.e. cell-sheet 
engineering. This is a scaffoldless approach, i.e. no external scaffolds are 
used because cells are stimulated to produce their own supporting structure. 
This is achieved thanks to a cell culture surface fixed on a polymeric 
biomaterial that is sensible to temperature (for instance, poly(N-
isopropylacrylamide) PIPAAm). By temperature, cells proliferate, attach to 
the surface, create interconnections and build their own extracellular 
matrix. This technique is beneficial because it reduces the number of 
foreign materials to be grafted in vivo, thus limiting immunological issues 
like rejections. However, similarly to hydrogels, it does not govern the 
proper spatial distribution and growth of cells owing to their autonomous 
fabrication of the scaffold. 

 

Figure 1.16: Different techniques to build in vitro a multilayered cardiac 
patch for transplantation on the injured heart: a) preformed scaffolds; b) 
hydrogels; c) scaffoldless approaches (adapted from [196]). 
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Chapter 2 
2 The electromechanical framework 

In this chapter, the general three-dimensional mathematical model of a 
myocardial tissue structure is developed in order to describe its 
microscopic and macroscopic electrophysiology and mechanics. A section 
about tissue growth is also present. The specific models or laws that vary 
according to the type of simulations carried out will be highlighted in the 
next chapters instead. Additional details concerning the space and time 
discretizations of the whole model and the most general algorithm followed 
to run all simulations are given at the end of this chapter. 

2.1. Overview 
A complete model of cardiac electromechanics includes three components 
at least (see an example in Figure 2.1): 

• a cell model that describes the main phenomena occurring at the 
level of a single cardiomyocyte, among which the evolutions of the 
action potential, ionic currents and intracellular concentrations and 
the development of contraction force; 
• a mechanical model based on finite elasticity, which computes 
the tissue deformation as a response to the electrical activation by 
taking into account the passive mechanical properties and the 
contraction force; 
• a reaction-diffusion model, i.e. a Monodomain or Bidomain 
model, which drives the propagation of the electrical activation 
throughout the tissue. 

In particular, the reaction-diffusion model is connected to the cell model 
through the transmembrane potential and the ionic currents. The 
mechanical model is driven by the active tension (or simply by an 
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intracellular concentration like the calcium one) developed at the cell scale, 
which acts as an electromechanical coupling variable. Vice versa, it may 
affect the cell processes by some feedback mechanisms, like the stretch-
activated channels in the plasma membrane and the calcium-troponin C 
binding in sarcomeres. Moreover, it may have effects on the conductivities 
of the reaction-diffusion model that drive the propagation of the electrical 
signal. In particular, the influence of mechanics on stretch-activated 
channels defines the so-called mechanoelectric feedback. 

 

Figure 2.1: Schematic representation of the main components and 
interactions in a full cardiac electromechanical model [132]. 

2.2. Cell modeling 

2.2.1. The membrane model 

As in all excitable cells, the plasma membrane of a cardiomyocyte is a 
double layer of phospholipids with proteins that can be channels, pumps or 
exchangers for the selective transport of ions from the extracellular space 
to the intracellular one and vice versa [36,69,115]. Therefore, the study of 
the ionic currents flowing through these proteins turns out to be necessary 
to understand the evolution of the action potential and of the concentration 
gradients across the membrane. In particular, the main ions driving the 
electrophysiology of a cardiomyocyte are sodium Na+, potassium K+ and 
calcium Ca2+. Their concentration gradients are held stable by active 
transport mechanisms that employ the chemical energy from ATP 
molecules to pump specific ions inside or outside the cell (for instance, the 
sodium-potassium pump). These active mechanisms counterbalance the 
passive ionic flows that are simply driven by concentration gradients. The 
exchangers, instead, are able to remove and attract specific ions without 
wasting energy. 
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Due to its function of separating charges, the plasma membrane is 
generally considered as a capacitor, whose capacitance Cm is expressed as 
the ratio of the transmembrane charge q to the voltage v  
 

m

q
C = .

v
(2.1) 

If Cm is constant, the corresponding capacitive current Icap is  
 

mcap

dq dv
= =C .

dt dt
I (2.2) 

The previous capacitor is then put in parallel to a resistor (with resistance 
Rm) representing the sum of all ionic currents Iion (Figure 2.2), thus the 
conservation law imposes that the sum of Icap and Iion must be equal to the 
applied stimulation current Iapp  
 

m ion app

dv
C

d
=+I I .

t
(2.3) 

 

Figure 2.2: General electrical circuit model of the plasma membrane of a 
cardiomyocyte: Rm is the resistance and Cm is the capacitance (adapted from 
[36]). 

Iion is given by the specific ionic membrane model adopted. Its generic 
expression in a unit area of membrane surface is the following one  
 

ion =g(v,I t)Φ(v), (2.4) 

where g(v,t) is the proportion of open channels in a unit area of membrane 
surface and Φ(v) is the current-voltage relation of one open channel. Φ(v) 
may be linear or non-linear with respect to v. A linear relation may derive 
from the approximation for long channels of the Poisson-Nernst-Planck 
(PNP) equation (see [194] for a derivation of the PNP system from the 
Langevin model of ionic motion)  
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e i

c

c -c
(v-E)=g (v-E),

E

zFD
Φ(v)=

L
(2.5) 

where F is the Faraday constant, L is the channel length and, considering an 
ionic species flowing through that channel, z is its valence, D its diffusion 
coefficient, ce and ci its fixed resting extracellular and intracellular 

concentrations and e ilog(E=RT/(z c) /cF )  (with R the gas constant and T the 

absolute temperature) its Nernst equilibrium (or reversal) potential. The 
product between the first two ratios is constant and it can be resumed in the 
channel conductance gc. On the contrary, a non-linear relation may come 
from the complementary approximation for short channels of the PNP 
equation, which gives the so-called Goldman-Hodgkin-Katz (GHK) 
equation  
 

i e
zF

- v2 2 RT

zF
- v
RT

z F c -c eD
Φ(v)=

RTL
e1-

v .  (2.6) 

See [36] for a rigorous derivation of the two previous relations. g(v,t), 
instead, can be expressed as  
 

tot tot

tot

N NN N
= w,

S S
g(v,t

N
)

S
= = (2.7) 

where N is the number of open channels, Ntot is the total number of 
membrane channels, S is the membrane surface area and w is the 
percentage of open channels, also called gating variable. Thus, for a long 
channel, it derives that  
 

tot c
cion

N g
I w(v= =G w(v-E)

S
-E), (2.8) 

where cG  is the maximum channel conductance per unit area of the 
membrane surface, whereas, for a short channel, it derives that  
 

i
zF

- v2 2 RT
tot

ion zF
- v
R

e

T

N z F c -c e
I

D
=

RT
e

L
v

1-

w .
S

 (2.9) 

The evolution of w is described by an ODE (Ordinary Differential 
Equation)  
 

dw
=α(1-w)

dt
-βw, (2.10) 
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where α and β are the transition rate constants (dependent on v) between 
the closed and open states of a channel made of one protein subunit. By 
setting =α/( )w α+β∞  and wτ =1/(α+β),  the previous equation can be 

transformed into  
 

w

wd

t
= ,

-w

d

w

τ
∞

(2.11) 

where w∞ is the equilibrium state and τw is the time constant. See [36] for a 
complete discussion about w when different types of channel structures are 
accounted for in order to better fit the experimental conductance curves. 

Therefore, the general structure of a cardiomyocyte membrane model 
turns out to be described by the following system of ODEs  
 

m ion app

0

dv
C +I I

d
- (v, )=

dt
d

- (v, , )=
dt
v(0)=v

(v, , )=
dt

, (0)= , (0)= ,









 0 0

w c

w
R w 0

c
S w c 0

w w c c

 (2.12) 

where Cm, Iion and Iapp are expressed per unit area of the membrane surface 
and w and c are two vectors including the gating variables and ionic 
concentrations. In particular, Iion is described by the following general 
equation in the remainder of this thesis  
 

jk

MN

k=

p

ion k j k n
1 j=1

(v, , )= (v, ) (v-EI (G w ( )))+I (v, , ), ∏w c c c w c (2.13) 

where N is the number of ionic currents, M is the number of gating 
variables per ionic current, Gk is the membrane conductance and Ek the 
reversal potential for the k-th current, 

kj
p  are integers that account for the 

number of subunits of a certain type for each channel and In groups 
together all time-independent ionic currents. The evolution of all w, 
instead, is represented by the Hodgkin-Huxley formalism [81]  
 

j
j j j j j

j j,0

j j j

dt
(0)=

dw
=R (v, )=α (v)(1-w )-β (v)w

w w

α ,β > 0 1, j=1,...,M,0, w






≤


≤



w  (2.14) 

whilst the one for all c is given by  
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where Acap is the capacitive membrane area, 
jcI  is the sum of the ionic 

currents carrying the ion cj, 
jcV  is the volume of the compartment where cj 

is updated and 
jcz  is the valence of cj. 

The specific forms of Iion and of the evolutions of wj and cj depend on 
the adopted cardiac plasma membrane model. In the literature, several such 
models for the ventricular cardiomyocytes of different mammalian species 
have been published since the first one by Beeler and Reuter in 1977 [14]. 
In particular, a group of first generation models, like the one just recalled 
and [141], assumed that the intracellular sodium and potassium 
concentrations do not vary during an action potential, whereas they 
described the evolution of the intracellular calcium concentration in a 
phenomenological way. Then, a group of second generation models were 
developed, representing the current gold standard (e.g., 
[18,40,80,105,110,138,139,142-144,160,163,166,197,207,225]). These 
models do not neglect the ionic concentrations changes in cardiomyocytes 
because they can affect the shape of the action potential especially at high 
pacing rates. Moreover, they describe the calcium concentration changes in 
a more biophysically detailed way by taking into account the Calcium-
Induced Calcium Release phenomenon. At last, some of them (e.g., 
[19,74]) are introducing more and more specific signaling pathways that 
describe the cardiac cell response to different substrates. In the next 
chapters, additional details regarding the specific plasma membrane models 
used for simulations will be reported. 

At last, in this thesis, the Iion computed from the adopted plasma 
membrane model may be summed to a stretch-activated channels current 
ISAC, which represents a mechanical feedback, in particular a 
mechanoelectric feedback [124], as it has been recalled at the beginning of 
this chapter. In the literature, different equations for this current have been 
developed (e.g., [73,123,212,216]). In this thesis, it is modeled as in [157], 
i.e. as the sum of non-selective and selective currents SAC SAC,n KoI =I +I .  The 

former current ISAC,n is given by SAC,n SAC,Na SAC,KI =I +I ,  i.e. by the sum of a 

sodium-related current ISAC,Na and a potassium-related one ISAC,K, whereas 
the second one IKo is only potassium-related. In more detail, the equations 
for ISAC,Na, ISAC,K and IKo are  
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e
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where SACG =4.13·10-3 mS/cm2 and KoG =1.2·10-2 mS/cm2 are the 
maximum channel conductances per unit area of the membrane surface, 

( )SL,SAC =10max -1,0γ λ  and ( )SL,Ko =0.7+3max -1,0γ λ  account for the linear 

dependence of currents on the stretch λ (as proved experimentally, e.g., in 
[101,176,178,186,227-229]) and ER=-10 mV, EK=-85 mV and ENa=65 mV 
are the reversal potentials of ISAC, potassium and sodium. Thus, ISAC is 
active only when λ>1 according to the experimental results reported in the 
literature (e.g., [124]). 

2.2.2. The active tension generation model 

After the electrical activation and the increase of intracellular calcium, a 
cardiomyocyte develops its force and contracts thanks to its sarcomere 
apparatus. As regards the development of force, the models in the literature 
differ according to the level of detail reached while implementing the series 
of events occurring during a contraction cycle. The simplest ones describe 
it in a phenomenological way, thus using some macroscopic variables or 
functions that do not correspond to real entities but have the same 
dynamics and effect on the development of force (e.g., 
[65,119,140,154,182]). They are composed of a limited number of ODEs 
coupled with the previous cell electrophysiological model (2.12) and 
depending only on the transmembrane potential, intracellular calcium 
concentration or a time delay variable with respect to the electrical 
activation. Biochemically detailed models, instead, may help researchers 
get relevant insights into the actin-myosin interactions especially under 
non-physiological conditions, when tuning specific parameters may be 
necessary to simulate the effects of a pathology in a more proper way (e.g., 
[107,108,133,156,177,187,193,211,224]). They may include only ODEs or 
couple them with some algebraic equations and even one or more partial 
differential equations (PDEs), if spatial issues during the mutual sliding 
between thick and thin filaments (for instance, the myofilament lattice 
spacing, i.e. the ordered structure of such filaments) are taken into account. 
However, to be suitable for simulations at higher dimensions (1D, 2D and 
3D) than the one of a single cell (0D) in terms of computational time and 
memory size at each time step, the level of detail in their equations must be 
reduced, while still including the main phenomena characterizing a 
contraction cycle. Therefore, some processes are described in a 
phenomenological way again. The full general form of such a model 
(employed in this thesis) is given by the following system made of 
Differential-Algebraic Equations (DAEs), i.e. including a limited number 
of ODEs, which describe the biochemical events during a contraction cycle, 
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and an algebraic equation that computes the force or active tension Ta (if 
expressed per unit area of the cell cross-section)  
 

2+
i

a

d dλ
- ,[Ca ] λ, =0

dt dt

(0

,

)=

T ( ,λ)=h ,

  
   






0

a
G a

a a

a

 (2.17) 

where a is a vector of physical and phenomenological differential variables, 
[Ca2+]i is the intracellular calcium concentration computed from the 
previous membrane model, λ is the stretch already introduced for the 
stretch-activated channels current and computed from the tissue finite 
elasticity model (see below) and dλ/dt is the corresponding stretch rate. 

In particular, the role of λ and dλ/dt in modulating Ta represents another 
mechanical influence on the cell model (in addition to the stretch-activated 
channels) acting on the calcium-troponin C binding in sarcomeres and 
recalled at the beginning of this chapter. Moreover, the dependence on λ 
accounts for the Frank-Starling law at the cell level. The two main aspects 
underlying this law are the degree of overlap between thick and thin 
filaments and the myofilament sensitivity to calcium ions [59,125,199]. 
Indeed, the former directly determines the availability of cross-bridges, 
whilst the latter may cause an increase of tension by an increase of stretch 
without a corresponding rise in intracellular calcium. Both of them are 
phenomenologically represented in (2.17) by a scaling factor for Ta and a 
change in the intracellular calcium required for the half-maximal tension 
generation respectively. Nevertheless, the way in which the myofilament 
calcium sensitivity is regulated is still debated. A possible mechanism is 
the thin filament cooperativity, by which the first generated strong cross-
bridges enhance the formation of many other ones through a further shift of 
tropomyosin along actin and an increase of the apparent affinity of troponin 
C for calcium. The model in (2.17) captures this cooperativity using two 
standard equations for the calcium binding and cross-bridge formation with 
a Hill curve as their steady state solution. Another two factors may be the 
myofilament lattice spacing and the elastic protein titin in sarcomeres. The 
former is compressed when the cell is stretched, thus making thick and thin 
filaments closer and promoting the formation of new strong cross-bridges. 
The latter is the main determinant of the passive longitudinal and radial 
tensions at sarcomere lengths below the optimum value for tension; 
actually, it binds to myosin at the A band and to actin at the Z line. 
However, both previous factors are disregarded in (2.17) and in this thesis 
accordingly. The dependence of (2.17) on dλ/dt, instead, is included 
through a phenomenological fading memory model [107], which is the time 
representation of the frequency response of muscles studied by sinusoidal 
analysis experiments. 



The electromechanical framework  

 27

To better understand such a discussion, the general system (2.17) is now 
replaced by the specific model by Land [133], which will be employed in 
all next chapters  
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(2.18) 

where TRPN is the fraction of regulatory TnC (troponin C) sites bound to 
calcium, kTRPN is the unbinding rate of calcium from TnC, [Ca2+]T50 is the 
calcium concentration needed for a 50% bound TnC at steady state (i.e. the 
intracellular calcium required for the half-maximal tension generation), 
nTRPN is the Hill coefficient for the cooperative binding of calcium to TnC, 

2+ ref
T50[Ca ]  is [Ca2+]T50 at resting sarcomere length (i.e. the myofilament 

sensitivity to calcium ions), β1 is the magnitude of length-dependent 
activation effects, XB is the fraction of actively cycling cross-bridges, kXB 
is the breaking rate of cross-bridges, TRPN50 is the 50% bound TnC at 
steady state, nXB is the Hill coefficient for the cooperative cross-bridge 
formation, h(λ) and h2(λ) are two scaling factors limiting and regulating the 
myofilament overlap, β0 is the magnitude of myofilament overlap effects, 
Qi are the fading memory model variables, Ai and αi are the corresponding 
parameters, g(Q) is the velocity-dependent effect on active tension and Tref 
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is the reference tension at resting sarcomere length. As a remark, this 
model is a reformulation of the one by Niederer [156] based upon the 
model by Rice [177]. 

2.3. Tissue modeling 

2.3.1. The finite elasticity model 

The most common framework to describe the macroscopic cardiac 
mechanics is the theory of large deformations of continuous solids [82], 
which involves non-rigid bodies (the relative distance among their points 
may change in time) characterized by a well-defined shape and volume 
(differently from fluids, which have a volume but not a shape, or gases that 
have neither of them) and defined through a continuous region, often a 
subset of the 3  space where continuous and differentiable functions and 
other mathematical operators can be suitably applied. According to this 
theory, a mechanical model is built on three elements:  

• kinematics, i.e. the study of the body deformation; 
• equilibrium, i.e. the study of the static and dynamic equilibrium 
conditions for the whole body or some of its subsets; 
• constitutive law, i.e. the bond between kinematics and 
equilibrium variables. 

As regards kinematics, the reference configuration for a body is denoted 
by 3

0Ω ⊂   and it is generally considered to be the undeformed 

configuration, whereas the current configuration is denoted by 3(t)Ω ⊂  

and it represents the deformed configuration at each time step. A body 
point in Ω0 is described through the position vector X=(X1,X2,X3)

T, whilst 
a body point in Ω(t) is defined by the position vector x=(x1,x2,x3)

T. In the 
remainder of this paragraph, the indexes appearing in the indicial notation 
of equations will have the values 1, 2 and 3 for a general three-dimensional 
body. Moreover, from now on, capital indexes will be used for the 
variables defined in Ω0 and small indexes for those defined in Ω(t); the 
same convention will be applied to the initial letters of the mathematical 
operators gradient and divergence. 

Let ϕ be the deformation map between Ω0 and Ω(t) (Figure 2.3)  
 

i i( ,t)= ,t) x = )( ( ,t .φ φx X X X (2.19) 
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Figure 2.3: Role of the deformation map ϕ between the reference 
configuration Ω0 and the current one Ω [11]. 

The map ϕ must respect the boundary conditions and the continuity of the 
body. Therefore, it is assumed to be continuous, differentiable with 
differentiable derivatives (C2) and invertible (by which the body breaking 
is avoided). Thanks to the invertibility requirement, in addition to (2.19), it 
can be written  
 

-1 -1
i i= ,t) =( ( ,t)( X ) .φ φX x x (2.20) 

Consequently, one can select either X or x as the independent variable. If X 
is chosen, a material (or Lagrangian) description, suitable for solid 
mechanics (like in this thesis), is adopted, otherwise, if x is chosen, a 
spatial (or Eulerian) description, suitable for fluid mechanics, is used. 

Focusing on the elementary neighborhood of a material point, a Taylor 
series of ϕ can be written and stopped at the first-order term in order to 
define the deformation gradient tensor F through the expression  
 

i

J
iJ(( ,t)=  ,t) =

X
F

∂
∂

φφF X Grad X (2.21) 

or, if ϕ coincides with x,  
 

i
J

J
i

x
(( ,t)=  ,t) = .

X
F

∂
∂

F X Grad x X (2.22) 

Through F, an infinitesimal vector dX with its origin in X is transformed 
into the infinitesimal vector dx with the origin in x (Figure 2.4)  
 

i iJ J= =dx .F dXdx FdX (2.23) 

This means that F includes all information related to the local strain in an 
infinitesimal neighborhood of each body point. 
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Figure 2.4: Role of the tensor F between the infinitesimal vectors dX in Ω0 
and dx in Ω [11]. 

Another common kinematic measure is the right Cauchy-Green 
deformation tensor C, which is directly obtained from F as  
 

aJ
T

l aJI= =FC .FC F F (2.24) 

Each tensor like F admits the so-called polar decomposition  
 

T T 3= , = ,w >0ith , ,, ∈ ≠∀F RU R R I z Uz z z 0  (2.25) 

i.e. F is the product between an orthogonal rotation tensor R and a 
symmetric and positive definite strain tensor U; in particular, R acts on a 
vector in the reference configuration by modifying only its direction, whilst 
U acts on the same vector but it modifies its length independently of any 
rigid motion. Therefore, C can be also written as  
 

2= .C U (2.26) 

However, neither F nor C are suitable strain measures because both of 
them are equal to the identity tensor I in the reference configuration, whilst 
one would expect that strain is equal to the zero tensor 0. Hence, a more 
realistic strain measure is given by the Green-Lagrange strain tensor E  
 

II J JJ I

1 1
= ( - ) =E -I(

2
,C

2
)E C I (2.27) 

which is symmetric like C and equal to 0 in the reference configuration. 
The deformation can be also described through the vector field of 

displacements u, which is defined as the difference between the current 
position and the reference one (Figure 2.5)  
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thus  
 

( ,t)= ,t)= + ( ,t( ).φx X X X u X (2.29) 

 

Figure 2.5: Displacement u of a point between Ω0 and Ω [11]. 

The previous variables written with respect to ϕ can be now expressed in 
terms of u, i.e.  
 

i
i

J
J

u
with J= = ( + )= + =  = ,

X

∂ ∂ ∂
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x
F X u I J J Grad u

X X
 (2.30) 

where the tensor J is the displacement jacobian, and  
 

T T T= = + ++C F F I J J J J

T T1 1 1
= ( - )= ( + )+

2 2 2
+ ,= 1 2E C I J J J J E E

(2.31) 

where E1 is the so-called small strain tensor (it is the linear component of 
E) and E2 is the so-called local rotation tensor (it is the non-linear 
component of E that is neglected under the hypothesis of small 
displacements). 

The map ϕ also affects the volumes of parallelepipeds defined by three 
vectors in the reference configuration (Figure 2.6). It can be proved that the 
volume change is equal to  
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=det(
dv

,
dV

)=JF (2.32) 

where dv is the infinitesimal current parallelepiped volume and dV is the 
corresponding reference one. Biological tissues, like the cardiac one, are 
quasi-incompressible materials, thus one could impose the total 
incompressibility by setting  
 

J=1. (2.33) 

 

Figure 2.6: Role of ϕ when a parallelepiped volume dV changes into dv 
[11]. 

As far as equilibrium is concerned, it must be recalled that the 
mechanical accelerations in the cardiac tissue are very small, hence inertial 
effects can be neglected and a quasi-static regime can be considered. Such 
a regime is then defined by an axiom, which states that, for each time 
instant t, a deformable body is in equilibrium if and only if the resultants of 
forces r and of moments of forces m on the whole body are zero vectors. 
This must be valid on each subset P of the body itself too, i.e.  
 

(t)

(P)=

(P)= P

P (t)

∀ ⊆
∀ ⊆

Ω
 Ω .
r 0

m 0
(2.34) 

This means that, for each time instant t,  
 

P P

P P

(t) dv+ (t) da= (t)
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 
 

n

n

b t 0

x b x t 0
 (2.35) 

where b(t) is the resultant of forces per unit volume of the whole body Ω(t) 
and tn(t) is the normal component of forces per unit area of the surface of 
the subset P with respect to the outward normal n from P (see Figure 2.7 
for the whole body and Figure 2.8 for two of its subsets). 
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Figure 2.7: Interactions between the external environment and the body Ω: 
b are the forces per unit volume of Ω and t are the normal forces per unit 
area of the surface of Ω [11]. 

 

Figure 2.8: Interactions between two internal subsets P and Ω/P of the body 
Ω: n is the outward normal to P and tn is the normal of forces per unit area 
of the surface of P [11]. 

It can be proved that the first equation of (2.35) is the global integral 
formulation of the corresponding local differential formulation of the linear 
momentum balance (first equation of (2.34))  
 

ij j i, ( , t)+ (t)= σ b =0,+div σ x b 0 (2.36) 

where σ is the Cauchy stress tensor that, through the Cauchy tetrahedron 
proof, is equal to  
 

3

i=1

= ,⊗ ie iσ t e (2.37) 

where 
iet  is the traction vector acting on the tetrahedron face with normal 

ei (unit vector along the i-th reference axis). In particular, the (i,j)-th 
element of σ is the i-th component of the traction vector acting on the face 
with normal vector ej. Thus, σ holds all information related to the local 
stress state, i.e. the forces per unit area of the current configuration that act 
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on this configuration in each point. Actually, starting from σ, the traction 
vector tn acting on any surface with normal vector n can be computed  
 

n,i ij j= = n .σtnt σn (2.38) 

Similarly, the second equation of (2.35) is the global integral 
formulation of the corresponding local differential formulation of the 
angular momentum balance (second equation of (2.34))  
 

ij j
T

i= = ,σσσ σ (2.39) 

i.e. σ is a symmetric tensor. 
So far, the equilibrium conditions have been written with respect to the 

current configuration and they have been defined in terms of geometrical 
variables related to the current configuration again (like n), which 
represents the natural configuration where equilibrium holds. Nevertheless, 
thanks to the invertibility of the map ϕ, one can also write:  

• equilibrium equations related to the current configuration in 
terms of geometrical variables related to the reference configuration; 
• equilibrium equations related to the reference configuration in 
terms of geometrical variables related to the same reference 
configuration. 

Following the first idea, it can be proved that the first Piola-Kirchhoff 
stress tensor P derives  
 

-T( ,t)=JP X σF (2.40) 

with local equilibrium equations  
 

iJ,J i

T T
iJ aJ aJ iJ

 +J = b =0

P F

P +J

= =F P



 ,



Div P b 0

PF FP
(2.41) 

i.e. P is not a symmetric tensor. Analogously to σ, the (i,J)-th element of P 
is the i-th component of the traction vector acting on the face with normal 
vector eJ (unit vector along the J-th reference axis). Hence, the elements of 
P are the forces per unit area of the reference configuration that act on the 
current configuration in each point. Actually, starting from P, the traction 
vector tN acting on any surface with normal vector N can be computed  
 

N,i i JJ= = N .PtNt PN (2.42) 

On the contrary, following the second idea, the second Piola-Kirchhoff 
stress tensor S derives  
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-1 -T( ,t)= .JS X F σF (2.43) 

Noting that =P FS  and replacing this relation in the first equation of (2.41), 
the following local equilibrium equations hold  
 

iJ JI ,J i

T
IJ JI

(F ) +( )+J = S b =0

S

J

S == ,





Div FS b 0

S S
(2.44) 

i.e. S is a symmetric tensor like σ. Analogously to σ and P, the (I,J)-th 
element of S is the I-th component of the traction vector acting on the face 
with normal vector eJ. Hence, the elements of S are the forces per unit area 
of the reference configuration that act on this configuration in each point. 
Actually, starting from S, the traction vector SN acting on every surface 
with normal vector N can be computed  
 

N,I I JJ= = N .SSNS SN (2.45) 

In this thesis, S is adopted because a Lagrangian approach is followed. 
The equilibrium equation that is valid for each point X of the reference 

configuration is  
 

3

iN NM
N,M=1 M

(F S )=0,
X

∂
∂ (2.46) 

i.e. b is the zero vector because no volume forces act on the mechanically 
insulated body. Then, the boundary ∂Ω0 is also split into two different 
components, i.e. ∂Ω0

D, where Dirichlet boundary conditions on 
displacements hold, and ∂Ω0

N, where Neumann boundary conditions on the 
external tractions applied to the body are given. The general form of the 
previous boundary conditions is  
 

 D
i i 0

3

iN NM M i 0
N,M=1

N

(

(

x ,t)=x ( ,t)

F S N =b ,t)

 ∈∂Ω

 ∈∂Ω


,

X X X

X X
 (2.47) 

where ( ,t)x X  is a fixed position vector. Moreover, the following initial 

conditions at time t=0 are added  
 

0( ,t )= .( )0x X x X (2.48) 

Due to the rotation of cardiac fibers in the radial layers from the 
epicardium to the endocardium (Paragraph 1.1.1), it is suitable to employ a 
right-handed triplet of orthonormal axes in each point x of the current 
configuration with af(x) (or f(x)) representing the local fiber direction, as(x) 
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(or s(x)) the sheet direction (perpendicular to af(x) and pointing in the 
radial direction) and an(x) (or n(x)) the sheet-normal direction orthogonal 

to af(x) and as(x). Figure 2.9 shows the corresponding directions ( )fa X  (or 

f0(X)), ( )sa X (or s0(X)) and ( )na X  (or n0(X)) in each point X of the 

reference configuration. 

 

Figure 2.9: Reference system in a point X of the reference configuration 
Ω0: f0 is the fiber direction, s0 is the sheet direction and n0 is the sheet-
normal direction [175]. 

Following the classical and widely used active stress approach (e.g., 
[65,119,153,154,162,170,215]) instead of the more recent active strain one 
(first developed in [31] and then used in, e.g., [8,159,181]), S is the sum of 
an active component Sact, biochemically developed at the cell scale and 
dependent on the active tension Ta (Paragraph 2.2.2), and a passive elastic 
one Spas due to the extracellular matrix elements, among which the collagen 
and elastin fibers (Paragraph 1.1.1)  
 

= + .act pasS S S (2.49) 

To derive a proper expression for Sact as a function of Ta, it must be 
recalled that Ta is defined in terms of the current configuration, i.e. it is 
expressed per unit deformed area. Moreover, Ta is a scalar and not a tensor. 
Therefore, first, the active Cauchy stress tensor σact must be computed as  
 

-1
a=J T ,⊗act

f fσ a a (2.50) 

where it is supposed that the active tension develops only along the fiber 
direction (e.g., [170,223]). Then, the unit vector for this direction turns out 

to be     T
)= .( / = /f f f f f fa x Fa Fa Fa a Ca  Thus, it immediately follows that  



The electromechanical framework  

 37

 
 





 

T
T

2 T= = .⊗ ⊗f f f f
f f

f ff

Fa Fa Fa a F
a a

a CaFa
(2.51) 

At last, by using (2.43), the corresponding active second Piola-Kirchhoff 
stress tensor Sact turns out to be  
 

 
 

 
 -1 -T acta a

MN MNT T

T T
= =S ( )=J .⊗ ⊗act act

f f f f

f f f f

S F σ F a a a a
a Ca a Ca

 (2.52) 

Writing σact as in (2.50) and Sact as in (2.52) is the most common way 
found in the literature (e.g., [38,39,51,52,116,154,167,168]), though 
Humphrey states in his book [104] that  
 

a=T ,⊗act
f fσ a a (2.53) 

thus  
 

 
 -1 -T a

T==J .
JT ⊗act act

f f

f f

S F σ F a a
a Ca

(2.54) 

In this dissertation, the expression (2.52) is used. Moreover, since in the 
remainder of this thesis it is assumed that the stretch λ, introduced in 
Paragraph 2.2.1 for the stretch-activated channels current and Paragraph 

2.2.2 for the active tension, occurs along  ,fa  its expression is the following 

one  
 

 T
= .λ f fa Ca (2.55) 

To derive a general form for Spas, a constitutive law must be introduced 
instead. It describes some intrinsic qualities of a simple material, i.e. of a 
material with a response that is function of only local variables, 
disregarding all dependences on other points and possible temperature 
excursions during its deformation (isothermal processes). Moreover, a 
constitutive law must satisfy two requirements:  

• the independence of the observer (or material response 
objectivity), i.e. the constitutive law must not be affected from any 
change in the point of view of an observer (or, equivalently, from any 
rigid motion superimposed on the body deformation); 
• the material symmetry, i.e. the constitutive law must take into 
account some particular intrinsic structures of a material (for 
instance, a group of aligned fibers) that make it symmetric. 
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The first requirement can be met by postulating a hyperelastic (or 
Green) material. This one ensures the existence of a scalar strain energy 
function W, dependent on F (through C or E), by which σ can be expressed 
by the following formula for a compressible material  
 

TW
J =

W W
= =

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

E C
σ F F F F

F E C F E
(2.56) 

or by the following formula for an incompressible one (for which (2.33) is 
valid too)  
 

TW W W
-p == = - ,-p p

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

E C
σ F I F I F F I

F E C F E
(2.57) 

where p is a Lagrange multiplier representing the hydrostatic pressure. 
Therefore, by using (2.43) and (2.56), Spas for a compressible material turns 
out to be  
 

MN
MN NM

pasW 1 W
= S

E

W
= + ,

2 E

 ∂ ∂ ∂
 ∂ ∂ ∂ 

pasS
E

(2.58) 

whereas, by using (2.57) and (2.27), the corresponding equation for an 
incompressible material becomes  
 

pas-1 -1 -1
MN MN

MN NM

W W 1 W W
-p( = -p == 2 ) S

E E
+ -p( ) .

2

 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 

+pasS I E C C
E E

 (2.59) 

The second requirement is met by the specific strain energy function W 
used. In the literature, many functions have been developed for the adult 
cardiac tissue. The early ones considered the myocardium as a linear 
isotropic material (see [102,226] for a review on these works) or they 
proposed elementary non-linear relations (e.g., [47]), but they failed. Then, 
authors started to introduce anisotropy by assuming the myocardium as a 
non-linear transversely isotropic material, i.e. composed of an isotropic 

matrix with a preferred direction ( )fa X  determined by the aligned fibers 

and equal mechanical responses along the transverse directions ( )sa X  and 

( )na X  (e.g., [41,70,84,102,103,119]). One of them [109] also added a 

viscoelastic component to W, which depends on the application rate of 
external loads, because the loading and unloading curves during in vitro 
tests show a little hysteresis. However, more and more researchers (e.g., 
[42,83,107,191]) are modeling the myocardium as an orthotropic material, 
i.e. with different mechanical responses along each direction, as from more 
recent experiments (e.g., [48,137]). In this thesis, Chapter 3, Chapter 4 and 
Chapter 5 will include both transversely isotropic and orthotropic laws for 
the adult myocardium, whereas Chapter 6 will involve only the isotropic 
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one for the neonatal myocardium. The viscoelasticity and the further 
existence of a residual stress in the unloaded myocardium will be neglected 
in all simulations. Further details regarding the specific laws employed will 
be given in each chapter. Figure 2.10 clearly shows the just recalled 
anisotropic, non-linear and slightly viscoelastic response of a typical 
myocardial tissue sample under uniaxial shear stress tests. 

 

Figure 2.10: Loading and unloading curves during uniaxial shear stress 
tests on a cubic sample of pig ventricular myocardium; the (i,j)-th curve 
stands for the stress along the j-th direction in the (i,j)-th plane, i.e. the fs 
plane (defined by af and as), the fn plane (defined by af and an) and the sn 
plane (defined by as and an) [83]. 

A final remark is about the incompressibility constraint. Sometimes, it is 
replaced by a quasi-incompressibility one, represented by the tensor Sqi, in 
order to reduce the computational cost of simulations and to let the cardiac 
tissue modify its shape more freely during its contraction and relaxation 
processes. Therefore, Spas for a quasi-incompressible material becomes  
 

qi qi
p

q
as

MN
MN NM MN

i

NM

W W W 1 W W 1 W W
+ + = += = S

E E E E
+ + ,

2 2

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

pas qiS S
E E E

 (2.60) 

where Wqi is a volume change penalization term that is characterized by the 
expression [215]  
 

qi 2JW K( -1)= , (2.61) 
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where K is the so-called bulk modulus parameter, when it is used for the 
simulations in this thesis. 

2.3.2. The reaction-diffusion models 

The most thorough model of macroscopic electrical excitation propagation 
is the Bidomain one [36]. A heuristic derivation of it based on the concept 
of interpenetrating domains [192] is here reviewed. 

The cardiac tissue is considered as formed by two ohmic conducting 
media (the intracellular and extracellular spaces) that are split by a 
continuous distributed and active plasma membrane (Figure 2.11). These 
two media are characterized by the anisotropic conductivity tensors Di and 
De respectively, which are inhomogeneous functions of space and take into 
account the local changes in conductivities due to the syncytial structure of 
the myocardium, i.e. they are affected from the way cardiac fibers are 
organized and from the presence of more or fewer gap junctions and higher 
or lower cross-sectional areas according to the end-to-end or side-to-side 
connections among cells (Paragraph 1.2.3). 

 

Figure 2.11: General electrical circuit model for the Bidomain 
representation of the cardiac tissue: Rix, Riy, Rex and Rey are the intra- and 
extracellular resistances along the x and y axes [190]. 

Let e
f
i,σ ,  e

s
i,σ  and e

n
i,σ  be the conductivity coefficients in the intra- and 

extracellular media of the current tissue configuration Ω(t) and measured 
along the corresponding directions af, as and an. They may depend on the 
position x according to the local state of the cardiac tissue. Nevertheless, 
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they are assumed constant in the remainder of this chapter for an easier 
understanding of the general model. Hence, Di and De are given by  
 

i,e i,e ,e
, f

i
s n( ( ( ( ( ()=σ ) )+σ ) )+σ ) )(⊗ ⊗ ⊗i e f f s s n nD x a x a x a x a x a x a x  (2.62) 

or alternatively, thanks to the orthonormality of af, as and an (i.e. 
( ( () )+ ) )+ ) )( ( =(⊗ ⊗ ⊗f f s s n na x a x a x a x a x a x I ),  

 
i,e i,e i,e i,e
f s

i,e
f, n f)=σ +(σ σ ) ) )+(σ σ( - ( ( - ) ( ) ( )⊗ ⊗i e s s n nD x I a x a x a x a x  (2.63) 

or again  
 

i,e i,e i,e i,e
s f

i,e
s n, s)=σ +(σ σ ) ) )+(σ σ )( - ( ( - ) ( ).(⊗ ⊗i e f f n nD x I a x a x a x a x  (2.64) 

In case of transversely isotropic tissues, i
n
i,e ,e

s=σ σ  holds, thus  

 
i,e i,e
s f s

i,e
, )=σ +(σ σ )( - ) ).( (⊗i e f fD x I a x a x (2.65) 

By imposing the current conservation law on a volume surrounding x, 
i.e. the flux leaving the intracellular volume must be equal to the flux 
reaching the extracellular one and both of them must correspond to the 
transmembrane current per unit volume across the plasma membrane im, it 
derives that, taking the limit as the volume tends to zero,  
 

mdiv ( , t)=-div ( ,t)= ,ie iJ x J x (2.66) 

where , , i,e-  u=i e i eJ D grad  are the local average intracellular and extracellular 

current densities per unit area of the intracellular and extracellular media 
and im is equal to m m m ion=χ = dv/dti I c +i (v, , ),w c  where χ is the ratio of 

surface membrane area per tissue volume and m mc =χC  and ion ioni =χI  are the 

membrane capacitance and ionic current per unit volume. Therefore, the 
Bidomain model can be described through a system made of two parabolic 
reaction-diffusion partial differential equations coupled with two systems 
made of ordinary differential equations for M gating variables and S ionic 
concentrations. Given the applied intracellular and extracellular currents 

per unit volume i,e
app:Ω×(0,i T) →  and initial conditions 0v :Ω ,→  

M:Ω →0w   and S:Ω ,→0c   find the intracellular and extracellular 

potentials i,e:Ω×(u 0,T) ,→  the transmembrane potential 

i ev= :Ω×(0,u -u T) ,→  the gating variables M:Ω (0,T)× →w   and the ionic 

concentrations S:Ω×(0,T) →c   such that  
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
 0 0x w x w x c x c x

 (2.67) 

where the stretch-activated channels current iSAC is included and the 
boundary ∂Ω is assumed insulated. 

The previous system, which coincides with the classical Bidomain 
model used during those simulations taking into account only the electrical 
activity of the cardiac tissue, is posed on the current configuration Ω. This 
is required when the Bidomain model is strongly coupled with a 
mechanical model (e.g., [1,8,37,39,43,65,117,118,154,167,170,182,223]), 
as in this thesis, otherwise, if a weak coupling is considered, the Bidomain 
model is posed on the reference configuration Ω0 (e.g., [120,155]). 
Therefore, in the former case, when the Bidomain model is reformulated on 
Ω0 following a Lagrangian framework, it becomes dependent on the 
deformation gradient F as it is proved herein. Let V(X,t)=v(x,t) be the 
transmembrane potential referred to the reference configuration Ω0. 

Considering that V/ t v/ t+  v / t,=∂ ∂ ∂ ∂ ⋅∂ ∂grad x  -1 -1div  =J D v(J )if F f  and 
-T , f =  fgrad F Grad  where f is a general vector field and f is a general 

scalar field, the following formulation holds. Given the applied 
intracellular and extracellular currents per unit undeformed volume 

i,e
app 0:Ω ×(0i ,T) →  and the applied initial conditions 0 0V :Ω ,→  

M:Ω →0w   and S:Ω ,→0c  find the intracellular and extracellular 

potentials i,e 0U :Ω ×(0,T) ,→   the transmembrane potential 

i e 0V=U :Ω ×(0,T-U ) ,→  the gating variables M:Ω (0,T)× →w   and the 

ionic concentrations S:Ω×(0,T) →c   such that  
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 (2.68) 

where cm, iion, iSAC are defined per unit undeformed volume, F is the 

deformation gradient tensor and mc t /V− ∂ ∂⋅TF Grad x  is a convective term 

depending on the tissue deformation rate / t;∂ ∂x  this convective term 

together with the dependence of the diffusive term on F represent two 
geometric feedbacks on the electrical propagation that add to the 
mechanoelectric feedback by the stretch-activated channels already 
introduced in this chapter. As a remark, if one already wrote the convective 
term in the current configuration Ω, then such a term would cancel when 
pulling back to the reference configuration Ω0. Although this last situation 
sounds more physically correct in case of moving particles, in this thesis 
the Bidomain model is written in Ω (so the convective term appears in Ω0) 
since it is still not sure if the same approach is valid for a moving 
activation wavefront among cells, which shift only around their reference 
positions; a detailed comparison with experimental data should define the 
correct way to proceed. 

For the computation of the product F-1Di,eF
-T, (2.64) must be recalled. 

Moreover, the following consideration holds. In the reference configuration 

Ω0, the unit vector na  is given by  

 
  = ,×n f sa a a (2.69) 

whereas, in the current configuration Ω,  
 

 
  .

||
=

||

×
×

f s
n

f s

Fa Fa
a

Fa Fa
(2.70) 

Since ( ) -T× =de ( ),t ×Au Av A A u v  where A is a general tensor field and u and 

v are two general vector fields, then     -T -T=J ( )=J ,× ×f s f s nFa Fa F a a F a   



The electromechanical framework  

 44

 



-T

-T|
=

| ||
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F a
(2.71) 

and  
 

 

 

-T -T

T
-1

= .
⊗⊗ n n

n n

n n

F a F a
a a

a C a
(2.72) 

Therefore, the product F-1Di,eF
-T for an orthotropic tissue can be computed 

as  
 

 
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1 1
-1 -T i,e -1 i,e i,e i,e i,e

f s n s, T T
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( (
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− −⊗ ⊗f f n n
i e

f f n n

a X a X C Xa X C Xa X
F D F X C X

a XCXa X a XC Xa X
 (2.73) 

which, for a transversely isotropic one, reduces to  
 

 

 
-1 -T i,e -1 i,e i,e

, Ts f s

( (
)( ( ) -

) )
( )=σ +(σ σ )

()(
.

( ) )

⊗f f
i e

f f

a X a X
F D F X C X

a X C X a X
(2.74) 

The resolution of the Bidomain model requires a high computational 
time and memory size mainly due to the small space and time steps (of the 
order of 0.1 mm and 0.01 ms respectively) necessary for the correct 
simulation of the excitation process, which is characterized by an about 
0.5-mm-wide and 1-ms-long propagating layer. This represents a 
tremendous drawback especially for large scale simulations at the ventricle 
scale. Therefore, some less demanding approximations are made from the 
Bidomain model, among which the Monodomain one [36]. In the 
following, the derivation of this model is briefly resumed. 

Let = +tot i eJ J J  be the total current flux in the intracellular and 

extracellular media and = +tot i eD D D  the conductivity tensor of the bulk 

medium. Substituting i eu =v+u  into i e=-  u u −tot i eJ D grad D grad  and 

solving for ue, it follows that  
 

-1 -1
e =-  v . u -tot i tot totgrad D D grad D J (2.75) 

Therefore, the second equation of the Bidomain system (2.67) can be 
rewritten as  
 

-1 -1 -1
m ion app

ev
-div( )+div( )--c  v (v, , )= .

t
i i

∂
∂ e tot i e tot totD D D grad D D J w c  (2.76) 

Using the second alternative expression for the conductivity tensor (2.63), 
it derives that  
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-1

f s
e e e

nf f
e e= +( )- - ,+( )μ μ μ μ μ⊗ ⊗e tot s s n nD D I a a a a (2.77) 

where e e e
f,s,n f,s,n f,s,n f,s,n

i= /( + ).μ σ σ σ  If the conductivity coefficients are constant, 

the following expression can be written  
 

-1 e e e T e e T
nf s f fdiv( )= +( )ddiv - ) - )div( ,+( )iv(μ μ μ μ μe tot tot tot s s tot n n totD D J J a a J a a J  (2.78) 

which immediately turns into  
 

f s f
-1 e i e e e T e e T

app ap n fpdiv( )= i i +( )div( +(( + ) - ) - )div( )μ μ μ μ μe tot tot s s tot n n totD D J a a J a a J  (2.79) 

because it holds that i e
app appdiv i= + .i totJ  From (2.75), it follows that 

-1 -1
e-  v=  ,u+e tot i e tot tot eD D D grad D D J D grad  thus  

 
T -1 T -1 T

e-  v= +  .ue tot i e tot tot en D D D grad n D D J n D grad (2.80) 

By employing (2.77), the first term on the right-hand side of the last 
equation becomes  
 

T -1 e T e e T T e e T T
nf s f f( ) - )( ) - )( )= +( )( +( ( ).μ μ μ μ μe tot tot tot s s tot n n totn D D J n J n a a J n a a J  (2.81) 

From the insulating conditions T T = ,= 0i en J n J  it follows that T =0,totn J  

which means that Jtot is tangent to ∂Ω. If cardiac fibers are tangent to ∂Ω 
too, T =0nn a  and T =0.s tota J  By replacing these conditions in (2.80) and 

(2.81), then (2.81) itself gives  
 

T -1  =v 0.e tot in D D D grad (2.82) 

Since for media having an equal anisotropic ratio, i.e. e e ei i i
f f s s n n/ = / = / ,σ σ σ σ σ σ  

it holds that e e
f n

e
s= = ,μμ μ  the two terms in (2.79) representing the projection 

of Jtot along the orthogonal directions to fibers T
s tota J  and T

n tota J  are zero, 

obtaining -1 e i e
app appfdiv( ) i i( + ).≈ μe tot totD D J  By replacing this approximation in 

(2.76) and taking into account the boundary condition (2.82), the 
Monodomain model can be written. It is a system made of only one 
parabolic reaction-diffusion partial differential equation for v coupled with 
the two previous systems made of ordinary differential equations for the 
gating variables and ionic concentrations  
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m ion app

T

0

m
SAC

v
-div(  v)+i i (v, , ) i

- (v, )=0 in Ω×(0,T)
t

- (v, , )=0 in Ω×(0

c (v, , )+ = in Ω×(0,T)
t

( , ( 0)= (

,T)
t

 v=0 on Ω×(0,T)

v( ,0)=v ) , ) ,, ( 0)= ( ) in Ω,

∂ λ


∂
 ∂
∂
 ∂




∂



∂




0 0

Dgrad w c c

w
R w

c
S w c

n Dgrad

x x w x w x c x c x

 (2.83) 

where D is the conductivity tensor equal to -1= e tot iD D D D  and m
appi  is the 

applied stimulation current equal to i e e
app ap

m e i i
app f f f fpi =( - )/( .σ i + )i σ σ σ  However, 

analogously to Di,e, D is computed in simulations as  
 

f s n( ( ( ()=σ ) )+σ ) )+σ( ( () ),⊗ ⊗ ⊗f f s s n nD x a x a x a x a x a x a x (2.84) 

where i e i e
f f f f f=( )/σ σ σ σ σ( + ),  i e i e

s s s s s=( )/( +σ σ )σ σ σ  and i e i e
n n n n n=( )/σ σ σ σ σ( + ),  or 

alternatively as before  
 

f s f fn)=σ +(σ σ )( - ( ( - ) () )+(σ σ () )⊗ ⊗s s n nD x I a x a x a x a x (2.85) 

or again  
 

s f sns( - ( ( - ) ( ()=σ +(σ σ ) ) )+(σ σ ) ).⊗ ⊗f f n nD x I a x a x a x a x (2.86) 

In case of transversely isotropic tissues, snσ =σ  holds, thus  

 
s f s)=σ +(σ σ )( - ( ) )( .⊗f fD x I a x a x (2.87) 

The previous Monodomain system is valid for the current configuration 
Ω, thus it must be rewritten in the reference configuration Ω0 for a 
Lagrangian description. Following the same procedure for the Bidomain 
model, it can be rewritten as  
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m ion app 0
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0
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0 0
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V
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∂

∂ ∂ λ
∂

∂
∂
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∂
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0 0
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w
R w

c
S wc

NF DF Grad

X X wx w x cx c ) in Ω.




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
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







x

 (2.88) 

For the computation of the product F-1DF-T, similar equations to the 
Bidomain formulation hold, i.e.  
 

 

 

 

 

-1 -1
-1 -T -1

nT T
-

s f s s
1

) ) ) )
( )=σ

( ( ( ) ( (
+

) (
)( ( ) -(σ σ ) +(σ -

( ( ) ( ( ( )
σ )

() ) ) )

⊗ ⊗f f n n

f f n n

a X a X C Xa X C Xa X
F DF X C X

a XCXa X a XC Xa X
 (2.89) 

for an orthotropic tissue and  
 

 

 s f s
-1 -T -1

T

) )
( )=σ +(σ σ )

( (
)( ( ) -

( ( )) )(

⊗f f

f f

a X a X
F DF X C X

a X C X a X
(2.90) 

for a transversely isotropic one. 

2.4. The theory of finite volumetric growth 
The three-dimensional model introduced so far is here slightly modified to 
include tissue growth, which will be analyzed in Chapter 3, Chapter 4 and 
Chapter 5. 

Following [179], a quite recurrent framework researchers refer to is the 
continuum theory of finite volumetric growth; see [9,20,135,149] for 
extensive reviews on the state of the art of different modeling approaches 
to growth related not only to the heart [15,66,67,121,136,175] but also to 
other soft and hard biological structures, such as bones (e.g., 
[127,128,169,206,219]), arteries (e.g., [2,3,7,79,129,214]), skin (e.g., 
[32,201,208,231,232]) and tumors (e.g., [5,6,10,33,172]). This framework 
is characterized by the multiplicative decomposition of the deformation 
gradient tensor F into an elastic part Fe and a growth part Fg  
 

= ,e gF F F (2.91) 

which defines an intermediate growth configuration Ωg (Figure 2.12). This 
new configuration is incompatible, i.e. equilibrium cannot be enforced 
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because, differently from F, neither Fe nor Fg can be derived from a vector 
field. 

 

Figure 2.12: Multiplicative decomposition = e gF F F  between the reference 
configuration Ω0, the intermediate growth configuration Ωg and the current 
configuration Ω (adapted from [9]). 

By rewriting equation (2.91) with respect to Fe  
 

1= ) ,( −e gF F F (2.92) 

it immediately follows from (2.24) that the elastic part Ce of the right 
Cauchy-Green deformation tensor C is  
 

T=( ) ,e e eC F F (2.93) 

from which the elastic part Ee of the Lagrange-Green strain tensor E is 
directly derived (as in (2.27))  
 

1
(= ).

2
−e eE C I (2.94) 

By using (2.49), the elastic part Se of the total second Piola-Kirchhoff 
stress tensor S is computed as  
 

, ,= .+e e act e pasS S S (2.95) 

The elastic active component Se,act is related to the cell active tension Ta 
that is supposed to develop only along the fiber direction, i.e. from (2.52)  
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 
 , a

T=
T

,⊗e act
f f

e
f f

S a a
a C a

(2.96) 

where Ta is computed through the previously recalled model by Land, 
which can be now summarized in the following way (similarly to (2.17))  
 

e
2+ e

i 0

0

e
a 0

dλ
- ,[Ca ] λ , =0 in Ω ×(0,T)

t dt

( ,0)= in Ω

,

( )

=hT ( ,λ ) in Ω ×(0,T),

  ∂
  ∂  






0

a
G a

a X a X

a

 (2.97) 

where λe and dλe/dt are the elastic stretch and stretch rate. The variables λe 
and dλe/dt are used instead of the total ones λ and dλ/dt because growth is 
carried out by adding new sarcomeres in cardiomyocytes rather than 
lengthening or widening the preexistent ones (as observed in [136] or 
inferred from [175]). In particular, from (2.55) λe is given by  
 

 T
e = ,λ e

f fa C a (2.98) 

which is also used to compute the stretch-activated channels current ISAC 
(2.16) by the new factors  
 

( ) ( )e e
SL,SAC SL,Ko=10max -1,0 =0.7+3ma, x -1 .,0γ λ γ λ (2.99) 

If the cardiac tissue is modeled as a compressible material, the elastic 
passive component Se,pas is related only to a strain energy function W (as in 
(2.58))  
 

, W
= ,

∂
∂

e pas
e

S
E

(2.100) 

otherwise, if it is incompressible, Se,pas is related to an incompressibility 
term too (as in (2.59))  
 

, -1W
= -p( ) .

∂
∂

e pas e
e

S C
E

(2.101) 

After computing the elastic part Se, the total S can be derived as  
 

g 1 T=J ( ) ( ) ,− −g e gS F S F (2.102) 
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where g =detJ ( ),gF  from the intermediate growth configuration Ωg to the 

reference one Ω0. Then, the total S enters the quasi-static equilibrium 
condition (2.46). 

The growth tensor Fg is assumed to be symmetric and it is given the 
following generic equation that takes into account the orthotropic nature of 
the cardiac tissue [66,67]  
 

     
f s nθ +θ= θ ,+⊗ ⊗ ⊗g

f f s s n nF a a a a a a (2.103) 

where θf, θs and θn are the growth parameters along  ,fa  sa  and na  that 

usually depend on time and space; they take the value 1 in the plain elastic 
case, they are smaller than 1 for shrinkage and they are larger than 1 for 
growth. Details on the way they evolve or not during growth and of the 
specific equations used for Fg will be given in Chapter 3, Chapter 4 and 
Chapter 5, where some other parameters belonging to the three-dimensional 
model will be affected from growth too. 

2.5. The discretization of the complete model 
The space and time discretizations of all previous equations are necessary 
to implement the electromechanical model in a computational code for 
simulations. 

2.5.1. The space discretization 

In the literature, many space discretization procedures can be retrieved, 
such as finite differences, first- or high-order finite elements, finite 
volumes, non-conforming finite elements and adaptive remeshing 
techniques. In this thesis, the whole electromechanical model is spatially 
discretized by first-order finite elements [22]. 

The discretization of the Bidomain and Monodomain models is based on 
the Galerkin procedure [60] applied to the variational formulations of these 
models. Actually, their forms in (2.67) and (2.83) are similar to the Poisson 
parabolic equation with a symmetric anisotropic diffusive tensor 

T( )= ( )D x D x   

 
u

-div(  u)=f in Ω× ,T)
t

(0 ,
∂
∂

Dgrad (2.104) 

where u is the Poisson variable (it would be the transmembrane potential v) 
and f(x,t) is the constant term (it would be i,e,

SA
m

app Cioni -i (v, , )-i (v, , )).λw c c  

Leaving out here the entire Galerkin procedure, in the following, the final 
finite-element discretization of the previous models is reported directly. Let 
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Th be a uniform mesh of the current configuration Ω(t) and Wh the 
corresponding finite-element space. By selecting a finite-element basis φi 
for Wh and a suitable quadrature rule, the discretization of the first two 
equations of the Bidomain system (2.67) turns out to be [36]  
 

h
m ,h ,h h h h ,h h h h ,h

h
m ,h ,h h h h ,h h h h ,h

c ( , , )+ ( , , )=
t

-c - ( , , )- ( , , )= ,
t

+ +

+

∂

 ∂

∂


 ∂

i
i i ion SAC app

e
e e ion SAC app

v
M A u Mi v w c Mi v c λ Mi

v
M A u Mi v w c Mi v c λ Mi

 (2.105) 

where ui,h, ue,h, h ,h ,h= , ,-i ev u u  wh, ch, λh, ,h ,ioni  ,hSACi and ,
,h

i e
appi  are the finite-

element approximations (vectors of nodal values) of ui, ue, v, w, c, λ, iion, 

iSAC and e
app
i,i ,  whereas M is the mass matrix and Ai,e are the stiffness 

matrixes defined in the following way  
 

i,e T
rs r s , rs r , s= d }, = (  )  d={m ={a }.

Ω Ω
ϕ ϕ Ω ϕ ϕ Ω i e i eM A grad D grad  (2.106) 

The previous system can be alternatively written in a compact form as  
 

  ,h,h ,h ,h h h h ,h h h h

m
,h ,h ,h h h h ,h h h h ,h

, + ( , , i( , )
c

( ,

)
+ +

)
= ,

- - ( ,t i, , )

      ∂
             ∂        

i
appi i ion SAC

e
e e ion SAC app

Mu u Mi v w c Mi v c λ
M A

u u Mi v w c Mi v c λ M
 (2.107) 

where  
 

 -
= , = .

-

  
  

   

i

e

A 0M M
M A

0 AM M
(2.108) 

The first equation of the Monodomain system (2.83) becomes, instead, [36]  
 

h
m h ,h h h h ,h h h h ,hc ( , , )+ + ( , , )= ,+

t
i

∂
∂

m
ion SAC app

v
M Av Mi v w c Mi v c λ M  (2.109) 

where ,him
app  is the finite-element approximation of m

appi  and the stiffness 

matrix A is  
 

T
rs r s= (  )={a d }.

Ω
ϕ ϕ ΩA grad Dgrad (2.110) 

Then, (2.105) or (2.109) are coupled with the approximations of the gating 
variables and ionic concentrations systems [36]  
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h h
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h h h
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w
R v w 0

c
S v w c 0

 (2.111) 

Similarly, in a Lagrangian setting, the first two equations of the 
Bidomain system (2.68) turn out to be  
 

-1h h
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c i i ion SAC app
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c e e ion SAC app

V x
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V x
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 (2.112) 

where xh is the finite-element approximation of x, Ai,e have now the 
following structure  
 

0

i,e T -1 -T
, rs r , s 0= J(={a )  d }

Ω
ϕ ϕ Ωi e i eA Grad F D F Grad (2.113) 

and Ac is another stiffness matrix defined by  
 

0

-T
rs r 0
c

s=  d }{a .=
Ω

ϕ ϕ ΩcA F Grad (2.114) 

The previous system can be written in a compact form again as  

  ,h,h ,h ,h h h h ,h h h h-1h
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 (2.115) 

The first equation of the Monodomain system (2.88) becomes, instead,  
 

-1h h
m h ,h h h h ,h h h h ,hc ( , , )+ ( , , )= ,

t t
+ +J + i

 
 ∂ ∂ 

∂ ∂ m
c ion SAC app

V x
M A AV Mi V w c Mi V c λ M  (2.116) 

where A is now  
 

0

T -1 -T
rs r s 0={ = J(  )  da }.

Ω
ϕ ϕ ΩA Grad F DF Grad (2.117) 

Then, (2.112) or (2.116) are coupled with the approximations of the gating 
variables and ionic concentrations systems (2.111) again. 

Analogously, the first and third equation of the active tension generation 
system (2.17), now written in a three-dimensional setting like in (2.97), are 
discretized in the following way  
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where ah, [Ca2+]i,h, dλh/dt and Ta,h are the finite-element approximations of 
a, [Ca2+]i, dλ/dt and Ta. 

Since the non-linear equilibrium equation of the mechanical model is 
solved by means of the iterative Newton-Raphson algorithm, a residual 
vector Fmec and a jacobian matrix = /∂ ∂mec mecJ F x  are computed for a 

generic iteration as  
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n
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s r
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rs l r s l
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s
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Ω Ω
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 
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mec

mec

F x Grad SGrad

S
J Grad SGrad x Grad Grad Grad

x

 (2.119) 

where np,mec is the number of nodes of the employed mechanical mesh. The 
variation of coordinates Δx is then obtained from the resolution of the 
linearized system  
 

) =-( ( )mec mecJ x Δx F x (2.120) 

in all points x where a Dirichlet boundary condition is not assigned. 
In conclusion, the electrical equations are solved on a mesh with a 

uniform spacing Δhel, whereas the mechanical ones together with the active 
tension generation system on a coarser mesh with a uniform spacing Δhmec 
because the quasi-static tissue deformation turns out to be much slower 
than the electrical propagation. 

2.5.2. The time discretization 

As for the space discretization, one can find several techniques to perform 
the time discretization of a model in the literature like explicit, implicit or 
semi-implicit methods and splitting operators. However, in the remainder 
of this paragraph, only the procedures employed for the simulations in this 
thesis will be recalled. 

The discretization of the Bidomain and Monodomain models is achieved 
via the Godunov splitting [64] or a decoupled semi-implicit method [36]. 

The former is part of the so-called splitting methods. These ones 
separate the diffusive term, which describes the propagation of the 
electrical signal in a tissue through the conductivity tensor D, from the non-
linear reaction one iion that accounts for the time evolution of the ionic 
concentrations and gating variables belonging to a plasma membrane 
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model. In this way, the time updating of variables gets easier because 
different numerical schemes can be applied to the two previous terms. 
However, the accuracy of results is threatened due to the lack of 
simultaneous dependences among the model variables. In particular, the 
Godunov splitting includes two subsequent steps. First, starting from the 

values for eln ,v  elnw  and elnc  at the previous electrical time step elnt (and the 

value of mecnλ  at the previous mechanical time step mecnt  for the stretch-
activated channels current), the new values el 1n +w  and el 1n +c  at the current 

time step el 1n +t are found and a temporary value el *n +1,v  is computed by 
solving the system of ODEs (written in the discretized space without the 
subscript h for sake of clearness)  
 

m

d
+ + ,

d
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dt
d
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i v w c i v c λ 0

w
R v w 0

c
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 (2.121) 

In particular, in this thesis, the explicit Forward Euler method is used to 
solve the first equation and the system of ionic concentrations, whereas the 
implicit Rush-Larsen scheme [184] is applied to the system of gating 
variables (see below for the general formulation of both methods). Then, 

from the just computed el +n 1,*,v  the new values at el 1n +t  for eln +1
iu  and eln +1

eu  

in case of the Bidomain model or for el 1n +v  in case of the Monodomain one 
are found by solving the corresponding system of PDEs, i.e.  
 

m

m

d
+

d

c =
dt
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 (2.122) 

or  
 

m

d
+c = .

dt
m
app

v
M Av Mi (2.123) 

In a Lagrangian framework, the previous two systems and equation 
become  
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for the first step and  
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or  
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m
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for the second one. 
The latter method, the semi-implicit one, is based on an implicit 

treatment of the diffusive term and of the resolution of the ODE system of 
gating variables (by the Backward Euler method or the Rush-Larsen 
scheme respectively in this thesis), whereas an explicit method (the 
Forward Euler method in this thesis) is used for solving the ODE system of 
ionic concentrations. Two steps are required by this method too. During the 

first one, starting from the values for eln ,v  elnw  and elnc  at elnt ,  the values 
el 1n +w  and el 1n +c  at el 1n +t  are computed by solving  

 
el el el el

el el el el el
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(2.127) 

where el eln +1 n
elt = -t tΔ  is the electrical time-step size. During the second one, 

in case of the Bidomain model, the new el el eln +1 n +1 n +1, )=( i eu u u  is found by 

solving the linear system  
 

eln +1= ,bidA u F (2.128) 

where  
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and  
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In case of the Monodomain model, instead, during the second step, the new 
el 1n +v  is found by solving the linear system  

 
eln +1= ,monA v F (2.131) 

where  
 

m
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t

c

ΔmonA M A (2.132) 

and  
 

 el el el el el elmecn n +1 n +1 n n +1 n ,n +1( ,= [- , - , ,) ) ]+ .( m
ion SAC appF M i v w c i v c λ i (2.133) 

In a Lagrangian framework again, during the second step, the new 
el el eln +1 n +1 n +1, )=( i eU U U  is found by solving the following linear system for the 

Bidomain model  
 

eln +1= ,bidA U F (2.134) 

where the constant term is now  
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and mec mecn +1 n
mect = -t tΔ  is the mechanical time-step size, i.e. the difference 

between the current and previous mechanical time steps mec 1n +t  and mecnt  that 
is taken bigger than (or equal to) Δtel due to the quasi-static mechanical 
response. The new el 1n +V  for the Monodomain model, instead, is found by 
solving the new linear system  
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eln +1= ,monA V F (2.136) 

where  
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As it has already been recalled, for both the Godunov splitting and the 
semi-implicit method, the ODE system of ionic concentrations is solved by 
means of the explicit Forward Euler method, which can be written as  
 

el el el el eln +1 n n n +1 n
el ( ,= + t , ).Δc c S v w c (2.138) 

The ODE system of gating variables is solved, instead, by the implicit 
Rush-Larsen scheme, which ensures the stability for Hodgkin-Huxley-type 
gates by assuming that the opening and closing probabilities of channels at 

el 1n +t  are approximatively constant and equal to the corresponding ones at 
elnt   
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where w∞ and τw are the equilibrium state and time constant (2.11) that 
depend on eln .v  

As regards the active tension generation system, the first and third 
equation are generally discretized by means of the Backward Euler method 
in this way  
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However, the non-linear equations appearing in this system are discretized 
by means of the Forward Euler method in order to avoid further Newton-
Raphson algorithms for their resolution, thus limiting the computational 
time while keeping the numerical schema stable. Additional details on the 
updating of this system will be given in the next section. 

2.6. The general algorithm for the resolution of 
the complete model 
The general algorithm followed to solve the complete electromechanical 
model during all simulations is shown in Figure 2.13. A deeper explanation 
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is given in the remainder of this section, whereas further details on the 
specific procedures implemented during each group of simulations will be 
reported in the next chapters. 

 

Figure 2.13: General algorithm for the resolution of the electromechanical 
model during all simulations (see text for details). 

First, assign the initial values to all differential variables, i.e. V, w and c, 
and the initial values to Ta, λ and dλ/dt in all nodes belonging to the 
electrical and mechanical meshes. Moreover, initialize coordinates x and 
compute the initial forms of the matrixes M, A and Ac. 

Then, for el end:t=0 tt ,:Δ  do the following steps. 

1. Perform the first step of the Godunov splitting or semi-implicit 
method in all electrical mesh nodes, i.e. solve the systems of the 
ionic concentrations c and gating variables w and, in case of the 
former technique, the equation in terms of the transmembrane 
potential V without the diffusive term too. 

2. If mect=i Δt∗  with i=1,2,3…, then do the following steps. 

2.1. Select the values of the intracellular calcium concentration 
[Ca2+]i belonging to those electrical mesh nodes that coincide 
with the mechanical ones. 

2.2. Apply the Newton-Raphson algorithm till when the error 
k(rr= )e mecF x  (computed from the mechanical mesh nodes 

where a Dirichlet boundary condition is not assigned) is lower 
than a tolerance value toll or the number of iterations k is equal 
to a maximum value kmax. 
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2.2.1. Solve the active tension generation system with [Ca2+]i, 
the stretch λ(xk), and stretch rate dλ/dt(xk) as its inputs in 

order to compute ak+1 and k+1 k
a ( .T )x  

2.2.2. Solve again the active tension generation system with the 
same inputs as before but with λ(xk) and dλ/dt(xk) raised by 

a small Δλ=10-8 in order to compute k+1 k
a,incr ( .T )x  

2.2.3. Compute k k+1 k k+1 k
a a,incr a( ) / (dT d )- (=(T )T )/ .λ Δλx x x  

2.2.4. Evaluate Fmec(x
k) by computing S(xk) with k+1 k

aT ( )x  as 

input. 
2.2.5. Evaluate Jmec(x

k) by computing S(xk) and ∂S(xk)/∂xk with 
k+1 k
aT ( )x  and dTa(x

k)/dλ as inputs. 

2.2.6. Compute the variation of coordinates Δxk by solving the 
linearized system (2.120) for all nodes without a Dirichlet 
boundary condition. 

2.2.7. Update coordinates k+1 k k= + .x x Δx  
2.2.8. Compute the new values λ(xk+1) and 

k+1 k+1
mec( )d ( )/ -dt= /( ( ) t)λ λλ Δx x x  with λ(x) equal to the 

stretch at time mecnt . 
2.3. Linearly interpolate the new values of x, Ta(x) and λ(x) in all 

mechanical mesh nodes to get the corresponding ones in all 
electrical mesh nodes. 

2.4. Assemble the new matrixes M, A and Ac. 
3. Compute the new values for the transmembrane potential V in all 

electrical mesh nodes by performing the second step of the Godunov 
splitting or semi-implicit method. 

Therefore, the cell component of active tension generation has not been 
solved together with the plasma membrane model. This latter feature is 
peculiar to the so-called fixed method (see, e.g., [120,155,200]), according 
to which the new computed value for the active tension Ta keeps constant 
during the resolution of the mechanical deformation by the Newton-
Raphson algorithm. In this thesis, an update approach [158] is followed 
instead, thus the new value of active tension must be continuously updated 
during each iteration of the previous algorithm by solving a differential-
algebraic equation together with the stretch λ and the stretch rate dλ/dt. 
Actually, it has been proved that the dependence of the active tension on 
the stretch and stretch rate makes the algorithm more unstable if its value is 
kept fixed. A predictor-corrector splitting between the differential electrical 
component and the algebraic mechanical one cannot be done, i.e. the 
electrical and mechanical problems cannot be solved sequentially and 
separated from each other, but the electromechanical coupling carried out 
by the active tension must be treated in a strong way. This means that the 
non-linear system deriving from the discretization of the quasi-static elastic 
model must be solved implicitly by the Newton-Raphson algorithm, 
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involving both the passive tensor and the active one (with the jacobian 
matrix Jmec computed analytically for the passive component and 
approximately for the active one). 
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Chapter 3 
3 Simulations on an eccentric 

hypertrophic fiber 

In this chapter, the finite-element strongly-coupled electromechanical 
model introduced in Chapter 2 is applied to a one-dimensional myocardial 
ventricular fiber affected from eccentric hypertrophy that undertakes 
different types of contraction according to well-known protocols. First, the 
three-dimensional model including tissue growth is properly reduced to the 
one-dimensional case. Then, the typical isometric, afterloaded isotonic and 
quick-release tests that are made in vitro on cardiac muscles are run in 
silico. This is done to investigate the influence of the geometric feedbacks, 
i.e. the conductivity and convection ones, and of the mechanoelectric 
feedback due to stretch-activated channels on the electrical current flow 
model written in the reference configuration and to study the electrical and 
mechanical responses of that fiber. Since there are no experimental studies 
run on eccentric hypertrophic fibers in the literature, the simulation results 
reported in this chapter turn out to be innovative in predicting their 
electromechanical behavior. 

3.1. Introduction 
As it has been recalled in Section 1.3, eccentric hypertrophy may be a heart 
response to a chronic volume overload caused by different factors, such as 
mitral regurgitation. This yields a dilation of ventricles with a negligible 
wall thinning. Actually, the high diastolic wall strains developing in such 
an environment lead to the serial deposition of new sarcomere units inside 
cells without significant changes in their cross-sectional area. Eccentric 
hypertrophy may also be the phenotype deriving from genetic mutations 
that affect the correct encoding of some cytoskeletal proteins. 
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In the literature, there are a few recent studies dealing with the 
mathematical modeling of eccentric hypertrophy in the whole heart (e.g., 
[15,66,67,121,136]). However, they have mainly focused on the 
mechanical activity of hypertrophic hearts, disregarding the coupling with a 
model of bioelectrical activity, except from [15,136]. The latter ones do not 
take into account any mechanical feedback though. 

The focus of this chapter, instead, is the cardiac elementary anatomical 
structure, i.e. the fiber, whose contraction and relaxation processes are 
associated with the pumping function of the heart. In the literature, many 
models referring to the electromechanics of ventricular fibers have been 
proposed. They have been either lumped parameter models, like the ones 
derived from the original Hill three-element model of skeletal muscle (e.g., 
[113,114,130,161,217]), or continuous electromechanical models for one- 
or three-dimensional fibers (e.g., [158,223]), which have only focused on 
free-loaded or isometric contractions. However, experimental studies with 
in vivo ventricular myocardium fibers have never been performed, whereas 
there exist many in vitro and involving papillary muscles (Paragraph 1.1.1) 
due to their tendon ends (like the ones of skeletal muscles) that help their 
fixing on a measurement apparatus [147]. Since they are made up with the 
same cardiomyocytes [56] and they have the same long and thin shape, 
papillary muscles are traditionally taken as a model of ventricular fibers 
[21,44,46,75,111,147,148,161,203]. Therefore, various experimental 
protocols have been proposed and applied on papillary muscles in the 
literature to replicate the in vivo behavior of the myocardium (e.g., 
[13,21,23,24,44,46,57,75,111,122,147,148,161,203]). In doing so, for 
instance, researchers have often proved the existence of the Frank-Starling 
law of the heart (Paragraph 1.1.3). 

The novelty of this chapter is the development of a finite-element 
strongly-coupled electromechanical model that is able to investigate both 
the electrical and mechanical activities of eccentric hypertrophic 
ventricular fibers. Three classical in vitro protocols, i.e. the isometric, 
afterloaded isotonic and quick-release ones, which are known to reproduce 
the different types of contraction and relaxation during the four phases of a 
cardiac cycle (the isovolumic systole, the blood efflux, the isovolumic 
diastole and the diastolic filling) are implemented. The whole model 
consists of a zero-dimensional cardiomyocyte model of bioelectrical 
activity, calcium dynamics and active tension generation and a one-
dimensional mechanical model of finite elasticity coupled with the 
Monodomain reaction-diffusion equation written in the current fiber 
configuration and describing the electrical current flow. As it is discussed 
in Paragraph 2.3.2, in a Lagrangian framework, the corresponding 
Monodomain equation written in the reference configuration includes two 
types of geometric feedback: the conductivity feedback, i.e. the influence 
of the deformation gradient on the conductivity tensor, and the convection 
feedback, by introducing a dependence on the deformation rate. Moreover, 
the mechanoelectric feedback represented by the influence of stretch-
activated membrane channels on the ionic current is taken into account. In 
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the literature, there are already several studies on the impact of mechanical 
feedbacks on the bioelectrical activity under physiological and pathological 
conditions (e.g., [38,39,112,114,116,117,130,150,154,167,168,217,222]). 
However, no previous works have investigated the effects of all previous 
mechanical influences in case of both healthy and eccentric hypertrophic 
fibers. Therefore, this is the first problem faced in this chapter by 
considering isometric contractions. Then, the remainder of this chapter 
aims at studying the electromechanical behavior of fibers contracting under 
not only isometric but also afterloaded isotonic and quick-release 
conditions, by employing some classical measures and curves found in the 
literature of in vitro and in silico studies. For the first time, hypertrophic 
alterations are added both at the level of a single cardiomyocyte and at the 
level of the entire fiber and for both electrical and mechanical activities. 
Moreover, the effects of the mechanical feedback induced by a finite 
growth and of the changes in cardiomyocyte size on the propagation of the 
electrical signal are considered. 

3.2. Methods 
The adopted full cell model includes the bioelectrical activity and calcium 
dynamics model by Faber-Rudy [53] for the guinea-pig and the active 
tension generation model by Land [133] for the mouse. Despite the 
different species, the Land model is already calibrated at the same 
physiological temperature of 37°C of the Faber-Rudy model and it is able 
to catch the fast relaxation kinetics at that temperature, so its parameters 
are not modified. Then, this cell model is coupled with a quasi-static finite 
elasticity model and a Monodomain model. 

3.2.1. The mechanical model: implementation of eccentric 
growth and one-dimensional reformulation 

In a three-dimensional framework, to characterize eccentric hypertrophy, 
the general equation (2.103) for Fg is simplified as in [15,66,67,136] to 
represent the cardiomyocytes elongation due to the serial deposition of new 
sarcomeres, i.e.  
 

 
f+(θ -1)= ,⊗g

f fF I a a (3.1) 

where fa  is the unit vector for the local fiber direction in the reference 

configuration Ω0 and θf is the growth parameter along the fiber, which 
depends on time and space varying typically between 1 and 2 in those 
computational studies dealing with eccentric hypertrophy in a ventricular 
model. 
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Then, in this chapter, for W the orthotropic law proposed in [83] is 
adopted. For a transverse isotropic structure like the fiber, it simplifies into  
 

e 2e e 2
4s1 4f sf b (I -1)b(I -3) b (I - s

s

1)l

l

aaa
W= e + (e -1)+ (e -1),

2b 2b 2b
(3.2) 

where a, b, af, bf, as and bs are fixed parameters taken from [220], which 
fitted the experimental data from [48] about the passive properties of the 

porcine myocardium, whilst e
1I = ,:eC I   T

e
4fI = e

f fa C a  and  T
e
4sI = e

s sa C a  are the 

elastic invariants [15,82] ( sa  is the unit vector for the local sheet direction 

that is orthogonal to fa  in the reference configuration). 

Following [170,223], the cardiac domain is assumed to be composed of 

fibers parallel to X1=(1,0,0)T, hence  ( )T
= 1,0,0fa  and  ( )T

= 0,0 .,1sa  Thus, 

the analytical expression of Se,act simplifies into  
 

, T e,acta a
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T T
= S

C
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C
,δ δe act

1 1S X X (3.3) 

where M,N=1,2,3 and δij are the Kronecker symbols. Then, since the 
behavior of a single fiber must be modeled, it is assumed that 
xi(X,t)=xi(Xi,t) for i=1,2,3 in order to reduce (3.2) to the one-dimensional 
case keeping into account the three-dimensional properties of the fiber; 
such a procedure is suggested in [223], whilst another one is proposed in 
[29]. In this case, Fe, Ce, Ee and Se become diagonal tensors. In particular, 
considering only Se,pas, it can be written as  
 

e,pas e,pas
MM MN

MM MM
e e

p
S - , S =0 N.

E 2E +1

W
= if M

∂
∂ ≠ (3.4) 

If the traction exerted by the load acts only in the direction of the fiber, 
then e,pas e,pas

22 33S S= =0.  Considering that soft tissues (like the fiber in this 

chapter) may be characterized by relevant volume changes during growth, 
the incompressibility constraint (2.33) is set only on the elastic part of the 

deformation [175], i.e. e =det(J 1,)=eF  which, in terms of e
MME ,  is written as  

 
e e e
11 22 33(2E +1)(2E +1)(2E +1)=1. (3.5) 

At last, an equation for s
11
e,paS  as a function of e

11E  is written following the 

procedure suggested in [223],  
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 (3.6) 
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In particular, while deriving the expression for p in (3.6), e
22E  is taken 

equal to e
33E because the fiber is a transversely isotropic structure. 

Since a one-dimensional framework is used in the remainder of this 
chapter, the following identities hold  
 

1 1 0 0

act pas
11 11 11 11 11

X=X x Ω L Ω(t)=[0,L(t)],

F=F E S

, x= , x(X,t): =[0, ]

, C=C , E= , +=S S

→
(3.7) 

and  
 

e e e e e e e e,act e,pas
11 11 11 11 11 11

g g, , C =C , E =F =F F =F E S =S S, + , (3.8) 

where  
 

e,act
11 e

11

a=
C

T
S . (3.9) 

After computing the elastic part Se, the total S can be derived as  
 

f

eS=S
1

θ
, (3.10) 

which is the simplified one-dimensional form of the corresponding three-
dimensional pull-back equation (2.102). 

Then, the scalar S enters the quasi-static equilibrium condition written in 
Ω0 for the one-dimensional fiber  
 

d(FS)
=0

dX
, (3.11) 

which is closed by suitable boundary conditions described later. 
At last, the active tension Ta in (3.9) is computed through the model by 

Land (2.97), where [Ca2+]i is the intracellular calcium concentration from 
the bioelectrical activity and calcium dynamics model by Faber-Rudy and 
λe is given by  
 

e e e
11 11λ = C =F . (3.12) 

3.2.2. The electrophysiological model: one-dimensional 
reformulation and dependence on eccentric growth 

The Monodomain model coupled with the Faber-Rudy one is adopted for 
electrophysiology in this chapter. Taking into account the incompressibility 
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constraint e =det(J )=1,eF  it follows that e
f

gJ )=J J=det .=θ(F  By assuming 

homogeneous electrical properties across the fiber too, the full three-
dimensional electrophysiological model in the reference configuration Ω0 
(2.88) can be reduced to  
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 (3.13) 

where w and c contain the gating variables and ionic concentrations 
belonging to the Faber-Rudy model and cm is the membrane capacitance, σf 
the fiber electrical conductivity coefficient, iion the total ionic current, iSAC 
the stretch-activated channels current (where the dependence on λ is 

replaced by the one on λe) and m
appi  the applied current stimulus all 

expressed per unit length of the undeformed fiber. 
The conductivity coefficient σf in (3.13) is written as (Paragraph 2.3.2)  

 
i e
f f

if
f f

e

σ σ
σ =

σ +σ
, (3.14) 

where e
fσ  is the extracellular conductivity with a conservative value of 2 

mS/cm (e.g., [36]), whilst i
fσ  is the intracellular one computed as [76,183]  

 
i
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r
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r
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,
(3.15) 

where rcyt and rjunct are the cytoplasmic and gap junction resistivities and 

cell f cell,healthyL=L θ  is the cardiomyocytes length (with Lcell,healthy the length 

value from the original Faber-Rudy membrane model, i.e. 0.01 cm). The 
values rcyt=150 Ω·cm and rjunct=1.5 Ω·cm2 from [198] are used to obtain a 
value of 3 mS/cm for i

fσ  [36] if θf=1, which, together with the conservative 

one chosen for cm (1 μF/cm), ensures a conduction velocity between 0.06 
and 0.07 cm/ms in case of the healthy fiber. Moreover, the same variable 
Lcell is computed as before when solving the Faber-Rudy membrane model 
related to the single cardiomyocyte; this, in turn, affects the geometric 
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plasma membrane area 2
cellg cell celleoA =2 +R R L2π π  (where Rcell is the 

cardiomyocytes radius, i.e. 0.0011 cm), the capacitive one cap geoA =2A  and 

the cell volume 2
cellc c le ell lV = L .Rπ  

As in Paragraph 2.3.2, the second term in the first equation of (3.13) 
contains a convective term depending on F and on the fiber deformation 
rate ∂x/∂t, whereas the third term is only dependent on F; these two 
geometric feedbacks are the convection and conductivity ones respectively. 
Moreover, the membrane current iSAC, depending on the elastic stretch λe, 
points out the addition of stretch-activated channels to the original Faber-
Rudy model, which define the mechanoelectric feedback acting only when 
λe>1. 

3.2.3. Details on the discretization and implementation of the 
complete model 

A uniform mesh of 100 linear finite elements (defining a spacing Δhel=0.1 
mm) and a constant time step Δtel=0.05 ms are used for the electrical 
components, whereas 50 linear finite elements (defining a spacing 
Δhmec=0.2 mm) and a constant time step Δtmec=1 ms (if not otherwise 
specified) are used for the mechanical ones. Moreover, a Godunov splitting 
is employed to perform the time discretization of the model. 

Simulations are run in Matlab®. 

3.2.4. The geometry, growth and electrical stimulation of the 
fiber 

The reference fiber is a one-dimensional rod with a uniform cross-section 
and a reference length L0 of 1 cm (Figure 3.1, panel A). Its initial length 
changes according to the type of fiber, i.e. it is equal to 1 cm for the 
healthy fiber and about 1.95 cm for the hypertrophic one, which is obtained 
at the end of five beats by following the two experimentally validated 
assumptions recalled in [136]. The first one is that an appreciable growth 
can be detected only after many heartbeats. Thus, its timing is slower than 
the contraction-relaxation processes characterizing a single cardiac cycle 
and the growth tensor Fg can be considered a time constant during this 
cycle. The second one is that the mechanical stimuli inducing growth span 
over an entire cycle rather than limiting to specific phases, hence the 
cardiomyocytes response is affected from the overall time-varying stress or 
strain signals (for instance, in terms of their means or maximum values). 
No cardiac cycle phases are implemented at the level of the fiber for 
simplicity. For each beat, the fiber is first stretched at its right end by a 
load equal to 6 kPa, which should simulate the rise in ventricular end-
diastolic pressure from a healthy value of 2 kPa due to an increase of atrial 
pressure during mitral regurgitation. Then, it is excited for 1 ms by a 
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current stimulus m
appi  of 250 mA/cm towards its left end (that is always 

fixed) in order to contract and relax without modifying its length. At last, at 
the end of the beat, the fiber can grow. In the literature, there are two 
approaches for updating tissue growth, i.e. the fixed reference 
configuration method or the updated reference configuration one (see [126] 
for a comparison between them). In this chapter, the former one is adopted. 
Thus, first, after the fiber unloading, the local increments for θf between the 
beats n and n+1, i.e. θf,*, are computed by  
 

e e
f,* f,n n hθ =1+k(θ λ -λ)( ). (3.16) 

Here, k is a rate-limiting function with the expression  
 

max
f f,n

max
f

θ -θ1
k= ,

θ -1

γ
 
  τ  

(3.17) 

where τ and γ are the sarcomere deposition time and non-linearity (with 
values 0.2 and 1 respectively) and max

fθ  is the maximum limit for θf (with a 

value of 4 to increase growth). The growth criterion e e
n hλ -λ ,  instead, is 

given by the deviation of the local time-averaged elastic stretch during the 
beat n from the local time-averaged homeostatic set point value dictated by 
a healthy simulation with a preload equal to 2 kPa. Then, the new local 
values for θf at the beat n+1, i.e. θf,n+1, are computed from the product of 
θf,* with θf,n, which represents the cumulative growth of all previous beats 
up to the beat n. At last, the new unloaded growth configuration for the 
fiber is found by solving the equilibrium equation (3.11) with θf,n+1 as 
input. 

Panel B of Figure 3.1 displays the resultant spatial distribution of θf at 
the end of the fifth beat on the reference configuration. The resultant 
inhomogeneity of such a distribution mainly derives from the isometric 
beat performed before triggering growth, which has been found to enhance 
differences in local growth better than an isotonic one with a constant 
applied load. Due to the fact that both fiber ends are fixed, a more 

inhomogeneous distribution of e
nλ  values (driving fiber growth) comes out. 

The nodes closer to the left end, which are the first activated ones, contract 

to a lesser extent, hence they show more positive e
nλ  values, whilst the 

ones closer to the right end, which are activated later, contract to a higher 

extent, thus they exhibit less positive e
nλ  values. Actually, the former nodes 

develop a lower value of active tension Ta due to the lower values of e
nλ  

before their contraction compared with the latter nodes, which develop a 
higher value of Ta because the e

nλ  values are raised by the preceding 

contraction of the leftmost nodes. 
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Figure 3.1: A) reference configuration between 0 and 1 cm for the healthy 
and hypertrophic fibers. The left end is always kept fixed, whilst the right 
one can be subjected to a load. The current stimulus is given at the left end. 
B) spatial distribution of the growth parameter θf shown in the reference 
configuration (see text for details on its derivation). C-F) time evolutions of 
the transmembrane potential V (C), intracellular calcium concentration 
[Ca2+]i (D), active tension Ta (E) and elastic stretch λe (F), all referring to 
five equally-spaced nodes (denoted by dots and selected at 3, 4, 5, 6 and 7 
mm from the left end in A)) during an isometric simulation with a preload 
equal to 4 kPa and involving the healthy (blue) or hypertrophic (red) fiber. 

Even for the protocols applied in the remainder of this chapter, the 
current stimulus is delivered to the left end and then propagates towards the 
right end in order to better simulate the in vivo propagation of current 
stimuli along fibers. This aspect is visible in panels C-F of Figure 3.1, 
which represent the time evolutions of the transmembrane potential V, 
intracellular calcium concentration [Ca2+]i, active tension Ta and elastic 
stretch λe in five equally-spaced nodes along the healthy and hypertrophic 
fibers (denoted by dots and chosen at 3, 4, 5, 6 and 7 mm from the left end 
in panel A) in case of isometric simulations with a preload equal to 4 kPa. 
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Actually, with this point stimulation protocol, an action potential 
propagating wavefront along the fiber is generated, unlike the usual in vitro 
experiments, where the entire fiber is stimulated simultaneously. 

3.2.5. The implemented tests 

In this chapter, three types of tests are implemented: isometric tests, 
afterloaded isotonic tests and quick-release tests. 

At the beginning of all protocols, a specific preload is applied to the 
right end of the fiber to stretch it passively; a preload is so called because it 
is applied to the muscle prior to its contraction [203]. Then, the fiber is 
fixed at the right end and five isometric beats are run to reach a steady state 
for that preload. The final values for nodal stretches, coordinates and all 
Faber-Rudy-Land model variables are saved and represent the initial 
conditions for all tests made later. The stretch rate is set to zero for all 
nodes because the fiber stops after its stretching. 

For the isometric tests, only another isometric twitch is run. This kind of 
test is useful to characterize in vitro the passive and active responses of a 
muscle due to changes in its length (e.g., [75,111,203]). Moreover, it is 
usually employed in silico to analyze the electrical response of fibers (e.g., 
[114,130,217]). 

The afterloaded isotonic tests, instead, consider a muscle that, after 
being stretched by a preload, contracts against a variable afterload (e.g., 
[23,75,161,203]). To implement these tests, the right end is automatically 
fixed solely as long as the fiber does not contract. Thus, an initial isometric 
contraction phase occurs before becoming purely isotonic as soon as the 
developed tension (i.e. the reaction at the left end of the fiber) equals the 
applied load. In experimental studies, this load is the sum of the previous 
preload and another externally applied afterload, which is so called because 
it is sensed after the onset of fiber contraction [203]. However, the in silico 
protocol proposed in this chapter automatically sets a unique afterload, 
which virtually includes the preload and the afterload, by the following 
procedure. First, an isometric twitch is run after the preloading phase. 
Then, the range between the maximum and the minimum values of the 
developed tension is equally divided in ten parts, obtaining a constant 
increment step. At last, starting from the minimum value, the afterload is 
raised by this constant step in an iterative way, resulting in many isotonic 
tests that start from the same initial conditions assigned to the isometric 
twitch. When the afterload is too heavy, i.e. it is equal to the maximum 
value of the developed tension, then the last isotonic test becomes totally 
isometric. A simulation with a zero afterload is run for each preload too. 

The quick-release tests are similar to the afterloaded isotonic ones apart 
from the fact that the transition from the isometric contraction to the 
isotonic one is externally enforced by removing the stop that fixes the free 
end of a muscle at a certain time (e.g., [23,161]). They have been 
developed to overcome the problem of a not equal level of muscle 



Simulations on an eccentric hypertrophic fiber  

 71

activation when isotonic contractions start during the afterloaded isotonic 
tests. For the simulations reported in this chapter, the fiber is allowed to 
contract isotonically only when it develops the maximum tension due to a 
specific initial length; thus, the initial isometric contraction is prolonged to 
elicit at the same time all subsequent isotonic contractions for different 
afterloads. A simulation with a zero afterload is eventually performed 
again. 

3.3. Results and discussion 

3.3.1. The electrical response 

The electrical responses of healthy and hypertrophic fibers are compared 
by means of isometric tests. 

The first issue is the analysis of the relevance of the mechanical 
feedbacks in the Monodomain model of electrophysiology (3.13). For both 
healthy and hypertrophic fibers, the following simulations are run: i) a 
simulation with the conductivity feedback (COND); ii) a simulation with 
the conductivity and convection feedbacks (COND+CONV); iii) a 
simulation with the conductivity and mechanoelectric feedbacks 
(COND+SAC); iv) a simulation with all three feedbacks 
(COND+CONV+SAC). For these simulations, Δtmec is chosen equal to Δtel 
in order to improve the accuracy of results. 

Figure 3.2 and Figure 3.3 report the resulting spatial distributions 
(shown in the reference configuration) of the activation time AT, 
repolarization time RT, corresponding action potential duration 
APD=RT-AT  and propagation (or conduction) velocity vprop for the healthy 
and hypertrophic fibers respectively under all simulated conditions. In this 
chapter, AT is defined as the time instant when V exceeds the threshold 
value of -40 mV, RT is defined as the time instant when V becomes less 
than its 90% repolarization value of -76.5 mV and vprop is computed as the 
ratio of the coordinate of each node at the moment of its electrical 
activation to its activation time. From a visual inspection, it appears that 
the AT of the healthy fiber is not affected at all. A maximum discrepancy 
of only 2 ms is present at the right end of the hypertrophic fiber instead. As 
regards both RT and APD, a systematic but slight difference is found along 
the entire healthy fiber between the COND or COND+CONV case and the 
COND+SAC or COND+CONV+SAC one. A similar difference is detected 
for APD only in case of the hypertrophic fiber. By computing dispersions 
as the differences between the maximum and minimum values in Figure 3.2 
and Figure 3.3, Table 3.1 shows that negligible differences among the four 
cases characterize AT, RT and APD for both fibers; actually, they are 
lower than 2 ms in case of the healthy fiber and lower than or equal to 3 ms 
in case of the hypertrophic one. Moreover, from Figure 3.2 and Figure 3.3 
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again, vprop for both fibers turns out not to be strongly affected from 
mechanical feedbacks. 

Table 3.2 reports the relative errors computed for AT, RT and APD 
between the COND+CONV+SAC case (that represents the most complete 
model) and the other ones. For both fibers, the convection feedback 
determines the smallest error on AT, whilst the mechanoelectric feedback 
has the same effect on RT and APD. Therefore, the convection feedback 
tends to prevail during the activation phase, so does the mechanoelectric 
one during the repolarization phase. However, although errors get higher 
with the hypertrophic fiber, they remain too small to be evident. 

 

Figure 3.2: Spatial distributions of electrical variables shown in the 
reference configuration in case of isometric simulations with a preload 
equal to 4 kPa and involving the healthy fiber: activation time AT (A), 
repolarization time RT (B), action potential duration APD (C) and 
propagation velocity vprop (D). The different curves belong to a simulation 
with the conductivity feedback alone (red, continuous) or together with the 
convection feedback (blue, dotted), the mechanoelectric feedback (blue, 
continuous) or both of them (red, dotted). 
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Figure 3.3: Spatial distributions of electrical variables shown in the 
reference configuration in case of isometric simulations with a preload 
equal to 4 kPa and involving the hypertrophic fiber. Same format as in 
Figure 3.2. 

Table 3.1: Dispersions (differences between the maximum and minimum 
values) in ms of the activation time AT, repolarization time RT and action 
potential duration APD in case of isometric simulations with a preload 
equal to 4 kPa and involving the healthy (A) or hypertrophic (B) fiber. 
Simulations may include the conductivity feedback alone (COND) or 
together with the convection feedback (COND+CONV), the 
mechanoelectric feedback (COND+SAC) or both of them 
(COND+CONV+SAC). 

A 

 
HEALTHY 

COND COND+CONV COND+SAC COND+CONV+SAC 
AT dispersion 15.06 14.88 14.92 14.75 
RT dispersion 10.22 10.09 8.66 8.53 

APD dispersion 4.84 4.80 6.26 6.22 
 

B 

 
HYPERTROPHIC 

COND COND+CONV COND+SAC COND+CONV+SAC 
AT dispersion 30.99 29.86 30.26 29.20 
RT dispersion 26.39 25.22 24.38 23.29 

APD dispersion 4.62 4.66 5.89 5.92 
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Table 3.2: Relative errors of the activation time AT, repolarization time RT 
and action potential duration APD in case of isometric simulations with a 
preload equal to 4 kPa and involving the healthy (A) or hypertrophic (B) 
fiber. All errors are computed with respect to the associated reference 
variable belonging to a simulation with all mechanical feedbacks, i.e. the 
conductivity, convection and mechanoelectric ones. The symbol * denotes a 
simulation disregarding the convection and mechanoelectric feedbacks 
(COND), the sole mechanoelectric feedback (COND+CONV) or the sole 
convection feedback (COND+SAC). 

A 

 
HEALTHY 

* = COND * = COND+CONV * = COND+SAC 

REF 2* REF 2AT-AT |||| / || T ||A  1.73·10-2 7.90·10-3 9.37·10-3 

* 2 RE EF 2R FRT-RT |||| / || T ||R  4.81·10-3 4.41·10-3 4.14·10-4 

* 2 REF 2REFAPD -APD |||| / || PD ||A  4.16·10-3 4.26·10-3 2.85·10-4 

 
B 

 
HYPERTROPHIC 

* = COND * = COND+CONV * = COND+SAC 

* 2 RE EF 2R FAT-AT |||| / || T ||A  5.88·10-2 1.91·10-2 3.77·10-2 

* 2 RE EF 2R FRT-RT |||| / || T ||R  1.03·10-2 5.70·10-3 5.00·10-3 

* 2 REF 2REFAPD -APD |||| / || PD ||A  4.82·10-3 4.81·10-3 4.78·10-4 

 
In the remainder of this chapter, the effects of all feedbacks are always 

included. Therefore, to better compare the electrical responses of healthy 
and hypertrophic fibers, panels A and B of Figure 3.4 collect the spatial 
distributions of APD and vprop for the COND+CONV+SAC case. From 
panel A, it turns out that the decreasing trend of APD for the hypertrophic 
fiber is less linear than the one for the healthy fiber, but the overall 
dispersion is not significantly affected. From panel B, hypertrophy does not 
alter vprop. Moreover, panels C and D display the time evolutions of the 
transmembrane potential V in those nodes where the maximum and 
minimum values for the growth parameter θf are detected compared with 
the corresponding time evolutions of the healthy case. Similarly, panels A 
and B of Figure 3.6 show the same evolutions for the hypertrophic fiber 
(with different local values for θf) compared with the ones for the case with 
all local θf values equal to the mean of their distribution along the fiber 
(Figure 3.1, panel B). No significant differences in terms of APD are found 
in both figures again. 
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Figure 3.4: Electrical responses of the healthy (blue) and hypertrophic (red) 
fibers in case of isometric simulations with a preload equal to 4 kPa and all 
mechanical feedbacks. A-B) spatial distributions of the action potential 
duration APD (A) and propagation velocity vprop (B) shown in the reference 
configuration. C-D) time evolutions of the transmembrane potential V in 
the nodes with the maximum (C) and minimum (D) values for θf in case of 
the hypertrophic fiber compared with the corresponding evolutions of the 
healthy case. 

Therefore, the electrical results achieved by isometric tests suggest that 
eccentric hypertrophy does not raise the risk of inducing arrhythmogenic 
phenomena at the level of a single ventricular fiber, which are more likely 
to be fostered by a reduced propagation velocity and action potential 
duration instead (see, e.g., [36] for a discussion and a series of examples 
about reentry phenomena, which lie at the basis of arrhythmias, in the 
three-dimensional case of a slab or a ventricle). 

3.3.2. The mechanical response 

The mechanical responses of healthy and hypertrophic fibers are studied by 
means of isometric, afterloaded isotonic and quick-release tests. 

As regards the isometric tests, panel A of Figure 3.5 shows the time 
evolutions of the tension T developed by the healthy and hypertrophic 
fibers at the left end after their electrical stimulation when the preload is 
varied (0, 1, 2, 3 or 4 kPa). The peak values of curves get higher and higher 
as the preload increases, but they decrease with hypertrophy. Panel B 
reports the length-tension relationships, where the tensions before and after 
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the electrical stimulation are represented as function of the increments in 
muscle length ΔL, caused by the applied preloads. The length-tension 
relationships are the corresponding curves at the fiber scale of the 
relationships at the ventricle scale between the end-diastolic volume and 
the stroke volume or the peak value of pressure developed during the 
isovolumic systole. Again, the peak value for the tension developed after 
the electrical stimulation Tmax decreases owing to the pathology. This result 
suggests that, in a three-dimensional environment, eccentric hypertrophic 
ventricles may develop a lower pressure during their isovolumic systole. 
Moreover, if the same preload is taken into account in panel B, it appears 
that the hypertrophic fiber gets more stretched than the healthy one during 
the preloading phase according to panel F of Figure 3.1, where the values 
of λe are generally higher for the former fiber. This phenomenon is peculiar 
to cardiac fibers that are more likely to cause ventricular dilation during the 
diastolic filling, thus leading to a higher end-diastolic volume. 
Interestingly, both previous results are obtained without altering the 
mechanical parameters belonging to the strain energy function in (3.2). 
Moreover, for the hypertrophic fiber, the previous decrease in Tmax, which 
includes both active and passive components, occurs while the active 
tension Ta in panel E of Figure 3.1 increases due to the higher values of λe. 
However, in panel B of Figure 3.5, for all fibers, a higher preload 
determines a higher peak of isometric tension (defining a positive slope), 
which proves the implementation of the Frank-Starling law in the adopted 
excitation-contraction model [133]. Then, similarly to APD, panels C and 
D of Figure 3.5 display the time evolutions of the elastic stretch λe where 
the maximum and minimum values for the growth parameter θf are found, 
comparing them with the healthy case. Moreover, panels C and D of Figure 
3.6 display the same evolutions for the hypertrophic fiber (with different 
local values for θf) compared with the ones for the case with a constant θf 
equal to the mean value along the fiber. From both figures, it appears that, 
where θf is maximum (panel C), contraction is depressed. Conversely, 
where θf is minimum (panel D), contraction is enhanced. This proves that 
the more growth gets heterogeneous along the fiber the more the resulting 
mechanical response during the isovolumic systole of the cardiac cycle gets 
heterogeneous too. 
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Figure 3.5: Mechanical responses of the healthy (blue) and hypertrophic 
(red) fibers in case of isometric simulations. A) time evolutions of the 
tension T developed by the two fibers after their electrical stimulation for 
increasing preloads (0, 1, 2, 3 or 4 kPa). B) corresponding length-tension 
relationships. ΔL on the abscissa is the increment in fiber length from the 
initial value according to the type of fiber, whereas Tmax on the ordinate is 
the maximum value for the tensions developed before (circles) and after 
(triangles) the electrical stimulation. C-D) time evolutions of the elastic 
stretch λe in the nodes with the maximum (C) and minimum (D) values for 
θf in case of the hypertrophic fiber compared with the corresponding 
evolutions of the healthy case. 

As a final remark, it has to be noted that a load (i.e. the preload) must be 
assigned as an input to the implemented isometric tests because only in this 
way a length change can be elicited during the computation of the 
mechanical deformation, whereas the in vitro isometric experiments can 
receive a length change as their input thanks to the attached lever, being 
able to give a tension as their output [57,111,203]. Despite this limitation, 
results are the same because a length-tension relationship is univocally 
determined. 
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Figure 3.6: Time evolutions of electrical and mechanical variables in the 
nodes with the maximum (A-C) and minimum (B-D) values for θf in case of 
the hypertrophic fiber with an inhomogeneous growth (red) compared with 
the ones in the same nodes for the fiber with a homogeneous growth 
(black), i.e. with all local θf values equal to their mean along the fiber: A-B) 
transmembrane potential V; C-D) elastic stretch λe. These results belong to 
isometric simulations with a preload equal to 4 kPa and all mechanical 
feedbacks. 

As far as the afterloaded isotonic and quick-release tests are concerned, 
panel A of Figure 3.7 illustrates an example of the time evolutions of the 
tension T developed by the two fibers during the afterloaded isotonic 
contractions with a preload equal to 4 kPa, whereas panel B depicts the 
corresponding time evolutions of the fiber length L. Panels A and B of 
Figure 3.8, instead, show the corresponding time evolutions during the 
quick-release contractions under the same preload. 
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Figure 3.7: Mechanical responses of the healthy (blue) and hypertrophic 
(red) fibers in case of afterloaded isotonic simulations. A) time evolutions 
of the tension T developed by the two fibers after their electrical 
stimulation with a preload equal to 4 kPa and afterloads ranging from the 
minimum to the maximum value of T. B) corresponding time evolutions of 
the fiber length L. C) tension-velocity curves for increasing preloads (0, 1, 
2, 3 or 4 kPa). The afterloads on the abscissa are equal to the tensions 
developed by the two fibers during their isotonic phase. The isotonic 
contraction velocities vcontr are taken positive. D) corresponding maximum 
shortenings ΔLmax. 

 

Figure 3.8: Mechanical responses of the healthy (blue) and hypertrophic 
(red) fibers in case of quick-release simulations. Same format as in Figure 
3.7. 
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As it can be seen from panels A and B of Figure 3.7, during an 
afterloaded isotonic test, fiber shortening does not start immediately apart 
from the case of an afterload that is zero or equal to the minimum value of 
the tension developed during the initial isometric twitch. It requires a 
certain amount of time to develop sufficient tension during an initial 
isometric phase; this one lasts more ms for heavier and heavier afterloads. 
Only when the developed tension equals the load, contraction becomes 
really isotonic and the muscle can modify its length; first, the muscle 
contracts, then it relaxes under the effect of the same afterload. The bigger 
the afterload is the more limited the extent of contraction results. 
Moreover, the isotonic phase becomes shorter and shorter as the afterload 
increases, but it can last more than the corresponding isometric twitch. 
When the fiber length reaches its original value at the end of the preloading 
phase, relaxation becomes isometric; the afterload is removed and the right 
end is fixed. Eventually, isometric relaxation lasts till the end time of the 
simulation. In panel A, the bigger the afterload is the more an initial rapid 
decay of tension occurs, whereas the following exponential decay is slower 
and it is very similar to the relaxation of the isometric twitch, so it is 
independent of the applied afterload [24]. 

From panels A and B of Figure 3.8, instead, it is evident that, during a 
quick-release test, the initial isometric contraction lasts the same amount of 
time for all afterloads, in particular the time needed to reach the peak value 
for tension at a given initial length. Then, the stop is removed and 
contraction becomes isotonic, letting the muscle modify its length. There is 
a rapid transient directly after the release (not present in the afterloaded 
isotonic length curves), which is followed by a muscle contraction at a 
quite constant velocity since the fiber length linearly decreases for about 
20-30 ms after the release (see panel B). Again, the bigger the afterload is 
the more limited the extent of contraction results. Then, till the end of the 
simulation, the isotonic contraction and relaxation and the isometric 
relaxation are similar to the corresponding phases during the afterloaded 
isotonic tests. 

By considering all preloads from 0 to 4 kPa, tension-velocity 
relationships are derived from both afterloaded isotonic and quick-release 
tests (panels C of Figure 3.7 and Figure 3.8). The afterloads on the abscissa 
correspond to the developed tensions during the isotonic phase, whereas the 
contraction velocities vcontr on the ordinate (taken positive) are computed 
from the constant slopes of the length curves in time as soon as the two 
fibers start to contract isotonically [23,75,161,203]. In particular, when the 
afterload is zero, the initial reduction of the fiber length up to the rest value 
within the first ms in panel B of Figure 3.7 must be neglected for the 
measurement of the isotonic contraction velocity. From both afterloaded 
isotonic and quick-release tests, tension-velocity curves shift upwards and 
rightwards as the preload increases; this result displays the Frank-Starling 
law again. Now, it has to be remarked that, during an in vitro experiment, 
too small values for the afterload cannot be chosen [23,75,161,203]. On the 
contrary, in silico simulations permit to do that, so the values for the 
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corresponding velocities can be computed, even for the ones at a zero 
afterload, which are often estimated by extrapolation of the tension-
velocity equation to a zero afterload [23,57,75,161,203]. Such a procedure 
often computes contraction velocity values at a zero afterload that may not 
coincide for all curves. In case of the simulations reported in this chapter, 
these values are the same during the afterloaded isotonic tests, whilst they 
change during the quick-release ones. This different result may come out 
from the nature of the test itself. On one hand, the afterloaded isotonic test 
is the protocol that mimics best the in vivo transition from the isometric 
contraction to the isotonic one. On the other hand, the quick-release test is 
the one that most approaches the in vitro experiments run on tetanized 
skeletal muscles, to which cardiac fibers are often compared; actually, 
although the heart cannot be tetanized, researchers try to reach an equally-
activated muscle state by making constant the time during contraction at 
which the isotonic contraction velocity is measured. This discrepancy may 
lead to tension-velocity relationships that are not similar to Hill hyperbolas 
[77] (especially for small afterloads as in this chapter) when they are 
derived from afterloaded isotonic tests, whilst they could be entirely fitted 
to hyperbolas in case of quick-release tests. Nevertheless, from both tests, 
higher values of contraction velocity are reached by the hypertrophic fiber 
at smaller afterloads (and at a zero one accordingly), whereas lower values 
are found at bigger afterloads. The same trend characterizes the maximum 
shortenings ΔLmax (that are nearly the same for both tests too) during the 
isotonic phase under each applied afterload in panels D of Figure 3.7 and 
Figure 3.8. The two previous results point out that, in case of small 
afterloads (for example, when the aortic resistance to blood flow is 
physiological), eccentric hypertrophy may determine greater volume 
variations for a three-dimensional ventricle during the systolic blood efflux 
phase of the cardiac cycle. 

Therefore, if taken altogether, the mechanical results from the isometric, 
afterloaded isotonic and quick-release tests suggest a pressure-volume loop 
for eccentric hypertrophic ventricles that enlarges over volumes and is 
more likely to shrink over pressures. 

3.3.3. Comparison among the in vitro, in silico and in vivo fiber 
behaviors 

Despite all previous results, it must be noted that the in vitro tests on 
papillary muscles are not able to simulate the real sequence of events that 
characterize the dynamics of ventricular fibers during a cardiac cycle. 

In a typical pressure-volume diagram of the in vivo mammalian ventricle 
(Paragraph 1.1.2), all transitions among phases are determined by pressure 
differences between the ventricle and an artery (the aortic or pulmonary 
one) or between the atrium and the ventricle. During the in vitro 
afterloaded isotonic experiments on papillary muscles, whose protocol is 
the closest to mimic the in vivo reality in comparison with the isometric 
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and the quick-release ones, the transition between the isometric contraction 
and the isotonic one takes place when the muscle tension is equal to the 
applied afterload, which is the analogue for the aortic or pulmonary artery 
pressure at the fiber scale. However, the transition between the isotonic 
relaxation and the isometric one is not governed by loads, but it occurs 
when the fiber length reaches its original value after the preloading phase. 
For the in silico simulations run in this chapter, the first transition is 
performed by looking at the fiber length again, i.e. the fiber starts to 
contract isotonically when the new length computed from the mechanical 
deformation is lower than the initial length attained by the preload. In this 
way, the force equilibrium between the fiber tension and the applied 
afterload necessary to perform the transition is not externally enforced, but 
it is automatically reached by the implemented protocols. 

During the in vivo functioning, the pressure in the aorta or in the 
pulmonary artery changes during the isotonic contraction of ventricles, in 
particular it rises due to the blood filling of those arteries, till when the 
semilunar valve closes. The in vitro experiments and in silico simulations 
are characterized, instead, by a constant afterload that does not let fiber 
tension vary too during the isotonic contraction and relaxation. So, the 
same value of tension is achieved both at the beginning and at the end of 
the isotonic contraction, a situation that does not happen in vivo since the 
ventricular pressure is usually higher at the end of this phase than at the 
beginning. 

Another important difference between the in vivo and in vitro/in silico 
cardiac cycles is the time order of the different phases. In intact hearts, the 
isotonic relaxation comes after the isometric one since the isovolumic 
diastole anticipates the diastolic filling, during which the venous blood 
pressure drives the lengthening of ventricular fibers. During the in vitro 
experiments and in silico simulations, instead, the isotonic relaxation 
comes before the isometric one, which only starts when the fiber length 
reaches its initial value after the preloading phase. Moreover, an analogue 
for the diastolic filling is absent during the entire afterloaded isotonic test 
because it is replaced by the initial preloading phase that stretches fibers 
according to the applied preload. However, the tension-velocity 
relationships are meaningful because they are built from the values 
recorded at the beginning of the isotonic contraction, which follows the 
isometric one like during the in vivo functioning. 

3.4. Conclusions 
In this chapter, a one-dimensional strongly-coupled model has been 
developed to simulate the electromechanical activity of a ventricular fiber 
affected from eccentric hypertrophy while it contracts according to 
different protocols. In the literature, there are no experimental data for 
eccentric hypertrophic fibers, thus the simulation results of this chapter 
have tried to fill this lack of information. Hypertrophy has been 
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implemented both in the electrophysiological model and in the mechanical 
one to better analyze the full electromechanical response of contracting 
fibers. First, the effects of the geometric feedbacks and of the 
mechanoelectric one on the electrical response of both healthy and 
hypertrophic fibers have been investigated. Then, by including all previous 
feedbacks, the electrical and mechanical responses of such fibers have been 
compared too. To achieve this aim, the same preloads (from 0 to 4 kPa) 
have been applied to both fibers as it would be done during in vitro 
experiments, though the corresponding diastolic fillings for the in vivo 
heart are different. 

Future simulations may include the effects of eccentric growth at a 
molecular level through one or more genetic defects, which could not 
preserve the shape of the action potential due to modifications involving 
the total number of membrane channels. 
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Chapter 4 
4 Simulations on a concentric 

hypertrophic wedge 

In this chapter, the three-dimensional electromechanical model introduced 
in Chapter 2 is used to simulate the response of a cardiac ventricular wedge 
affected from concentric hypertrophy and contracting freely. To achieve 
this aim, the previous model includes concentric hypertrophy both at the 
level of a single cardiomyocyte and at the one of the entire tissue (as in 
Chapter 3 for eccentric hypertrophy). In particular, two increasing stages of 
severity are considered: a first stage characterized by the sole growth of the 
cardiac tissue and a second one with the further spatial dispersion of fibers 
that may originate from hypertrophy. An initial single beat is simulated to 
show qualitative differences characterizing the electrograms and the 
mechanical trajectories of some epicardial markers. Then, the electrical and 
mechanical responses are quantitatively studied by means of some 
macroscopic measures computed over a higher number of markers and 
beats. The results in this chapter may provide researchers with new 
challenging results for future work. 

4.1. Introduction 
Like the corresponding eccentric phenotype, concentric hypertrophy may 
be a physiological adaptive response of some athletes to effort, but it is 
more often a pathological remodeling caused by a long-term pressure 
overload inside ventricles. Actually, the activation of specific signaling 
pathways leads to a progressive intracellular deposition of new sarcomere 
units in parallel to the preexistent ones, causing thickened ventricular walls 
without significant alterations in cardiomyocytes length. Moreover, growth 
may be accompanied by some changes in the overall myocardial structure 
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to accommodate for the increase in pressure or volume in ventricles. One of 
such alterations is a higher angular dispersion of fibers. 

Therefore, the aim of this chapter is to study how growth and fiber 
dispersion characterizing concentric hypertrophy correlate with changes in 
the electromechanical response of a simulated ventricular wedge, which 
should represent a portion of the cardiac wall with a simplified geometry. 
The adopted strongly-coupled electromechanical model joins together an 
electrophysiological model, an active tension generation model and a finite 
elasticity model. By following the same framework of finite growth already 
applied to eccentric hypertrophy in Chapter 3, hypertrophic conditions are 
properly added to the healthy model. No genetic defects are included and 
the wedge contracts without any constraints or loads applied on it, hence it 
is not subjected to any phase of the cardiac cycle. Nevertheless, previous in 
silico studies (e.g., [51,61,66,67,121,175,195]) have investigated the 
effects of growth and fiber dispersion separately. Here, both effects are 
grouped together instead, trying to better elucidate the hypertrophic 
consequences on cardiac electromechanics. 

4.2. Methods 
The same model of bioelectrical activity, calcium dynamics and active 
tension generation, i.e. the Faber-Rudy-Land model [53,133], introduced in 
Chapter 3 is adopted for a single cardiomyocyte. Then, a quasi-static finite 
elastic model and a Bidomain or Monodomain model are added. Only those 
modifications needed to consider the growth and fiber dispersion related to 
concentric hypertrophy rather than to the eccentric one are discussed 
below. 

4.2.1. The mechanical model: implementation of concentric 
growth and fiber dispersion 

Concentric growth is introduced by writing the growth tensor Fg as in 
[15,66,67,175] to model the cardiomyocytes thickening due to the parallel 
deposition of new sarcomeres  
 

 
s+(θ -1)= ,⊗g

s sF I a a (4.1) 

where sa  is the unit vector for the local sheet direction in the reference 

configuration Ω0 and θs is the corresponding growth parameter, which is 
assumed to be constant in time and space in this chapter. 

The elastic active component Se,act of the total elastic stress tensor Se is 
expressed as [51,61]  
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where kf is a fiber dispersion parameter that is taken constant in space and 
time like θs. 

The passive myocardium is modeled as an almost incompressible 
orthotropic material. Hence, Se,pas is derived from an orthotropic strain 
energy function W, in particular the one by Holzapfel [83] introduced and 
reduced to the transversely isotropic case in Chapter 3, that includes a 
volumetric term (as in (2.60))  
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where afs, bfs and c are three further fixed parameters taken from [220] and 

[215], whilst e
1I = ,:eC I   T

e e
4f f 1 f+(1-I =k k3 )I ,e

f fa C a   T
e
4sI = e

s sa C a  and 

 T
e
8fsI = e

f sa C a  are the elastic invariants, among which e
4fI  includes the 

dependence on kf again [51,61,82,175]. 

4.2.2. The electrophysiological model: dependence on 
concentric growth and independence of fiber dispersion 

Both the Bidomain (2.68) and Monodomain (2.88) models are used in this 
chapter together with the Faber-Rudy one in order to model 
electrophysiology. However, both the convective term and the stretch-
activated channels current are here disregarded. Hence, the Bidomain and 
Monodomain systems read as follows  
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The ratio of surface membrane area per tissue volume χ appearing in the 
products m mc = Cχ  and ion ion= Ιi χ  is computed as 

2 2
cell cell cell cell= 2(B +C )/(B C )χ  to take into account the resultant elliptical 

cross-section of a concentric hypertrophic cell originally modeled as a 

cylinder. Actually, Bcell, which is the cell semi-major axis along ,sa  is 

defined as cell s cellB = Rθ  (where Rcell is the cell radius from the Faber-Rudy 

model), thus it depends on the growth parameter θs; the cell semi-minor 
axis Ccell is kept equal to Rcell instead. However, χ is divided by 2 to make 
its value closer to the conservative one of 1000 cm-1 [36] in case of the 
healthy wedge. The same values for Bcell and Ccell are used when solving 
the Faber-Rudy model for a single cardiomyocyte so that the cell geometric 

area 2 2
cell cell cell cell ceo llge 2(A =2 B C + + )LB Cπ π  (where Lcell is the cell length 

from the Faber-Rudy model), the cell capacitive membrane area cap geoA =2A  

and the cell volume cell ccell ell cellLV = CπΒ  are affected accordingly. The 

conductivity coefficients defining Di, De and D do not depend on growth 
and are taken from [39] for the case of an orthotropic electrical 
propagation. Moreover, they do not depend on fiber dispersion as it is 
proved herein in case of the Monodomain model for simplicity. If fiber 
dispersion is introduced only along the local fiber direction af in the current 
configuration Ω, then, similarly to [51] for the active second Piola-
Kirchhoff stress tensor, the conductivity tensor D should be written as  
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If ν denotes the unit vector normal to the excitation wavefront, the 

propagation velocity along ν turns out to be proportional to T .ν Dν  This 
last quadratic form is equal to  
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which, for ν=af,as,an, gives  
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Hence, σs and σn increase by ( )f f fσ k / 1-2k ,  which does not make sense. 

Actually, the way the conductivity tensors are built in the Monodomain and 
Bidomain models requires the knowledge of all local directions af, as and 
an simultaneously, thus a change in any of these directions affects the 
remaining ones. As regards mechanics, instead, since the strain-energy 
function is built upon some invariants that do not interact with one another, 
a single direction can be dispersed and the corresponding contribution to 
the energy function can be modified without altering the other ones. The 
proper formulation of D in Ω to solve the previous problem is  

f f f f
f

f f f f
ns f f

k k k k
)=σ ) ) + σ σ ) )+ σ σ ) ),

1-2k k 1-

1-3
( + ( ( - ( ( - ( (

1-2 2k 1-2k

   
⊗ ⊗ ⊗   

 

   
 
 

f f s s n nDx I a x a x a x a x a x a x  (4.9) 

from which Tν Dν  gives, for ν=af,as,an,  
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However, if (4.9) is rewritten by replacing ) )( (⊗s sa x a x  with 

- ) )- ) ( )( ( (⊗ ⊗f f n nI a x a x a x a x  and rearranging the resultant terms, then it 

follows that  
 

s f s sn)=σ +(σ σ )( - ( ( - ) () )+(σ σ () )⊗ ⊗f f n nD x I a x a x a x a x (4.11) 

like the case without dispersion (2.86). In any case, future computational 
and experimental studies are needed to investigate and model accurately 
fiber dispersion in a continuous framework that couples mechanics with 
electrophysiology. 

4.2.3. Details on the discretization and implementation of the 
complete model 

The electrical components of the model are approximated on a uniform 
mesh of 200 × 200 × 50 trilinear finite elements (yielding a mesh size 
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Δhel=0.1 mm) and using a constant time step Δtel=0.05 ms. The mechanical 
components, instead, are approximated on a uniform coarser mesh of 40 × 
40 × 10 trilinear finite elements (yielding a mesh size Δhmec=0.5 mm) and 
using a constant time step Δtmec=1 ms. The time discretization is carried out 
by a decoupled semi-implicit method. 

Simulations are run on the Linux cluster of the Department of 
Mathematics of the University of Milan [99]. The electromechanical code 
is written in FORTRAN 90 and parallelized by means of PETSc libraries 
from the Argonne National Laboratory [100]. 

4.2.4. The geometry and electrical stimulation of the wedge 

The ventricular wedge is modeled as a slab with the reference configuration 
in Figure 4.1. Growth is introduced by choosing θs=2 [67], whereas fiber 
dispersion is obtained by setting kf=0.0886 [51]; the healthy values are 1 
and 0 respectively. In particular, θs=2 means that the initial thickness of the 
hypertrophic wedge is twice bigger than the one of the healthy wedge. The 
endocardium is kept fixed to avoid any rigid motion. Fibers rotate linearly 
and in a counterclockwise fashion from the epicardium (-45o) to the 
endocardium (+45o). 

 

Figure 4.1: Reference configuration for the ventricular wedge. A 2 cm × 2 
cm × 0.5 cm slab with a fixed endocardium is adopted. The green cube of 
nodes is given the first electrical stimulus necessary for the initial 
qualitative analysis of the electromechanical response of the wedge, whilst 
the red one is given the other electrical stimuli necessary for the 
quantitative analysis. Nine points (denoted by numbered blue spots) 
belonging to a uniform 3 × 3 grid central to the epicardium are chosen for 
the qualitative analysis. 

Two different clusters of nodes located on the endocardium are 
delivered electrical stimuli. The green cube of nodes in Figure 4.1 is given 

one current stimulus e
appi  with amplitude equal to 250 mA/cm3 and duration 

1 ms to compare qualitatively the epicardial electrograms close to and far 
from the stimulation site and the epicardial trajectories in case of healthy 
and hypertrophic wedges. The red cube, instead, is given a sequence of ten 

current stimuli m
appi  with amplitude equal to 250 mA/cm3, duration 1 ms and 
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basic cycle length 300 ms to compare quantitatively the macroscopic 
bioelectrical and biomechanical measures listed below. 

4.2.5. Bioelectrical and biomechanical measures and statistics 

During the quantitative analysis of the electromechanical response of the 
wedge, the transmembrane potential values V(t) and (x(t),y(t),z(t)) 
coordinates are saved in 121 nodes of a uniform 11 × 11 grid on the 
epicardium (in the following called markers); see Figure 4.2 for an example 
of the time evolution of V and the trajectory described in the XY plane. 

 

Figure 4.2: Typical simulation results for a marker: A) time evolution of 
the transmembrane potential V; B) trajectory in the XY plane. 

The previous simulation results are postprocessed by using two 
algorithms implemented in Matlab® to derive the following bioelectrical 
and biomechanical measures for each marker. 

As regards the electrical activity, first, the activation and repolarization 
times are computed from the time evolution of the transmembrane potential 
like the one in panel A of Figure 4.2. The activation times are defined as 
the time delays between the moments when the transmembrane potential 
exceeds the threshold value of -40 mV and the ones when the 
corresponding stimulus is delivered to the red cluster in Figure 4.1. The 
repolarization times, instead, are defined as the time delays between the 
moments when the transmembrane potential reaches its 90% repolarization 
value (-76.5 mV) and the ones when the corresponding stimulus is 
delivered as before. Then, the action potential durations APDi are 
computed as the differences between the repolarization and activation times 
and their mean gives the mean action potential duration APDmean  
 

b

mean i
i=

N

1b

APD APD
N

1
= , (4.12) 

where Nb is the total number of considered beats. Moreover, the mean 
conduction velocity is estimated in the following way. First, for each beat i, 
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the (x,y,z) coordinates of a marker at the moment of its electrical activation 
are detected and its distance from the central node of the red cluster in the 
bottom layer (that is fixed during all simulations) is computed. Then, the 
value of the conduction velocity CVi is achieved by dividing this distance 
with respect to the activation time. Again, by taking the mean over all 
beats, the mean conduction velocity CVmean is obtained  
 

bN

mean i
i=1b

CV CV
N

1
= . (4.13) 

For the mechanical activity, an already published algorithm developed 
for in vitro experimental results on cultures [54] is employed starting from 
the trajectory described by each marker in the XY plane like the one in 
panel B of Figure 4.2. Briefly, first, the values for the velocities along the 

X and Y axes ( )x,m m+1 m mecv = x -x /Δt  and ( )y,m m+1 m mecv = y -y /Δt ,  where 

( )m+1 mx -x  and ( )m+1 my -y  are the displacements along the X and Y axes for 

m=1,…,M-1 and M is the number of time steps, are derived. Then, for the 
beat i, the contractility CTi is computed by identifying the velocity vector 
v=(vx,vy)

T with the highest magnitude during the corresponding contraction 
phase and the mean contractility over all beats CTmean is defined as  
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CT CT
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1
= . (4.14) 

Moreover, the mean contraction force CFmean is derived as  
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1

m
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where CFm is a force whose expression can be derived using the 
Hamiltonian mechanics  
 

T
m =-( ) .∇xCF v v (4.16) 

Therefore, the mass of the epicardium is neglected because it is a constant 
among simulations (CFmean is actually normalized). 

Finally, the 121 values for APDmean, CVmean, CTmean and CFmean 
belonging to the healthy case (in the following called H) and to the 
hypertrophic ones with only growth (G) or together with fiber dispersion 
(G+FD) are statistically compared by means of the one-way ANOVA and 
LSD test with a significance level of 0.05. 
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4.3. Results and discussion 

4.3.1. Qualitative analysis of the electromechanical response 

Figure 4.3 displays the extracellular potentials Ue (or unipolar electrograms 
EGs) in nine nodes of a uniform 3 × 3 grid central to the epicardium (the 
blue spots in Figure 4.1) for the healthy wedge and the hypertrophic ones 
with only growth or together with fiber dispersion. In the healthy wedge, 
the EGs located in the early excited and repolarized epicardial area show a 
deep Q wave in the local QRS complex followed by a positive T wave. 
When the epicardium is half excited and half repolarized, the EGs at sites 
on this boundary exhibit positive R and negative S waves with about the 
same amplitude followed by biphasic T waves. Finally, large R and 
negative T waves indicate a late excitation and repolarization. These EG 
morphologies are in agreement with those measured and simulated after a 
local stimulation in dogs [35]. When growth is incorporated, in the early 
excited and repolarized epicardial sites, the EGs display a local QRS 
complex with Q and S waves of the same amplitude and large R waves 
followed by multiphasic T waves. Conversely, in the late excited and 
repolarized sites, the EGs exhibit large R waves followed by negative T 
waves as in the healthy wedge. In those sites excited when the epicardium 
is half activated and half repolarized, the EGs show R and S waves with the 
same amplitude and biphasic T waves similarly to the healthy case again. 
The presence of fiber dispersion does not change further the morphology of 
EGs. 

However, the trajectories described by the nine nodes in the XY plane in 
Figure 4.4 enlarge not only with growth but also with fiber dispersion. This 
means that the ventricular wedge requires more and more energy to beat 
and overcome its maladaptive remodeling. 
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Figure 4.3: Electrograms Ue computed in the nine selected nodes of Figure 
4.1 for the healthy case (blue), the hypertrophic one with only growth (red) 
and the one with growth and fiber dispersion (black); all values on the 
abscissa are in ms, whereas the ones on the ordinate are in mV. 

 

Figure 4.4: Trajectories in the XY plane computed in the nine selected 
nodes of Figure 4.1 for the healthy case (blue), the hypertrophic one with 
only growth (red) and the one with growth and fiber dispersion (black); all 
values are in cm. 
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4.3.2. Quantitative analysis of the electromechanical response 

Panel A of Figure 4.5 reports significant differences (p<0.05) of APDmean 
between the H case and the G or G+FD ones. Again, as regards CVmean, 
there are significant differences (p<0.05) between the H case and the G or 
G+FD ones in panel B. All remaining differences in Figure 4.5 are 
insignificant (p>0.05). In particular, simulation results suggest that growth, 
both with and without fiber dispersion, is responsible for a slight decrease 
of APDmean (about 6 ms). Moreover, growth strongly decreases CVmean. 
Both previous effects raise the risk of inducing arrhythmogenic phenomena 
in a thickened cardiac wall. 

 

Figure 4.5: Statistical results for the bioelectrical activity of the healthy 
wedge (H) and of the two hypertrophic ones with only growth (G) or with 
fiber dispersion too (G+FD): A) mean action potential duration APDmean; B) 
mean conduction velocity CVmean. The horizontal bars are the 95% 
confidence intervals for the differences between means according to the 
LSD test. 

Panel A of Figure 4.6 shows significant differences (p<0.05) of CTmean 
among all cases. Considering CFmean, there is a significant difference 
(p<0.05) between the H or G case and the G+FD one in panel B. Again, all 
other differences in Figure 4.6 are insignificant (p>0.05). In particular, both 
growth and fiber dispersion cause an increase of CTmean and CFmean. This 
means that the ventricular wall requires more energy to beat and develops 
more force to keep on pumping blood efficiently [205] in accordance with 
the widening of trajectories in the XY plane in Figure 4.4. 
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Figure 4.6: Statistical results for the biomechanical activity of the healthy 
wedge (H) and of the two hypertrophic ones with only growth (G) or with 
fiber dispersion too (G+FD): A) mean contractility CTmean; B) mean 
contraction force CFmean. The horizontal bars are the 95% confidence 
intervals for the differences between means according to the LSD test. 

4.4. Conclusions 
The aim of this chapter has been to get insights into the electromechanical 
behavior of the cardiac wall when growth and fiber dispersion are 
accounted for during concentric hypertrophy. A ventricular wedge has been 
modeled as a 3D slab including the main features of the wall structure, such 
as the transmural rotation of fibers and the orthotropic mechanical and 
electrical properties. The dependence of the electrical response on the 
mechanical deformation through the tensor F in the diffusive terms of (4.4) 
and (4.5) has been included too, though the convective term and the 
stretch-activated channels current have been disregarded. 

In this chapter, cardiomyocytes have been assumed to preserve an 
organized contractile apparatus under hypertrophic conditions, i.e. with 
sarcomeres still made of correctly-polymerized actin and myosin fibers 
locally oriented along a preferential direction. Therefore, the 
phenomenological description of growth and fiber dispersion in (4.1), (4.2) 
and (4.3) in terms of the parameters θs and kf has been adopted. Moreover, 
the interstitial fibrosis due to the proliferation of fibroblasts that often 
accompanies myocyte hypertrophy has not been considered. At last, the 
structure of the T-tubule system acting upon the calcium-induced calcium 
release phenomenon has not been altered, though experimental evidence 
points out morphological changes during concentric hypertrophy [71]. 

Future investigations may include a non-uniform and time-dependent 
growth and fiber dispersion and other phenotypic features related to 
concentric hypertrophy in order to analyze their additional effects on the 
electromechanical response of the wedge. 
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Chapter 5 
5 Simulations on a concentric 

hypertrophic ventricle 

In this chapter, a cardiac ventricle affected from concentric hypertrophy is 
studied while it is subjected to an entire cardiac cycle. Similarly to Chapter 
4, the hypertrophic phenotype is properly implemented at the microscopic 
level of a cardiomyocyte and at the macroscopic one of the tissue, starting 
from the three-dimensional electromechanical model in Chapter 2 again. 
Only growth is considered, disregarding any spatial dispersion of fibers, 
but the case with aortic stenosis (causing hypertrophy) and without growth 
is taken into account too. The electrical response is investigated through 
activation, repolarization and action potential duration maps, by including 
the analysis of the effects of the mechanical feedbacks as in Chapter 3. 
Moreover, the electrograms related to specific nodes of the ventricle are 
displayed. The mechanical response is studied by means of pressure-
volume loops and the same kinematic and dynamic measures of Chapter 4, 
i.e. the contractility and contraction force. Furthermore, the maps of the 
principal cardiac strains both at end systole and at end diastole are reported. 
Thus, the simulation results reported in this chapter contribute to better 
forecast the electromechanical effects of concentric hypertrophy on a whole 
ventricle. 

5.1. Introduction 
As it has already been recalled in Chapter 1 and Chapter 4, concentric 
hypertrophy is one of the phenotypes developing in the heart when an 
excessive load characterizes the closed loop of blood circulation. It may 
represent an athlete’s response during an intensive and prolonged training 
or a pathological remodeling due to aortic stenosis for instance. A parallel 
deposition of new sarcomere units inside cardiomyocytes is peculiar to this 
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phenotype, thus increasing the cross-sectional area of cells and determining 
a thickening of the cardiac wall. Moreover, it may be the expression of 
genetic mutations encoding for some sarcolemmal and cytoskeletal 
proteins. 

Similarly to Chapter 3 for eccentric hypertrophy, there are already a few 
studies in the literature aimed at modeling concentric hypertrophy at the 
level of a ventricle (e.g., [15,66,67,121,175]). The first works focused only 
on the mechanical activity of hypertrophic hearts, whilst the most recent 
ones are including a model of bioelectrical activity too. However, the 
influence of mechanical feedbacks on the cardiac electrical activity has not 
been studied yet. 

The novelty of this chapter is the analysis of the electromechanical 
activity of concentric hypertrophic ventricles by a finite-element strongly-
coupled electromechanical model. The model is composed of a zero-
dimensional cardiomyocyte model of bioelectrical activity, calcium 
dynamics and active tension generation and a three-dimensional 
mechanical model of finite elasticity coupled with the Bidomain reaction-
diffusion equation describing the electrical current flow. The Bidomain 
equation is written in the reference configuration, thus including the two 
geometric feedbacks of conductivity and convection. The mechanoelectric 
feedback carried out by stretch-activated membrane channels is taken into 
account too. First, the effects of these mechanical feedbacks on the 
bioelectrical activity of both a healthy and a hypertrophic ventricle are 
investigated. Then, the electromechanical behavior of such ventricles is 
studied. In particular, to attain a proper initial configuration for the 
hypertrophic ventricle, aortic stenosis is implemented in a cardiac cycle 
and the corresponding consequent maladaptive growth process is triggered. 
Hypertrophic modifications are applied to each single cardiomyocyte and 
the whole ventricle as regards both electrophysiology and mechanics. 
Moreover, the hypertrophic case is compared with the stenotic one without 
growth in order to find out to which extent growth counteracts the effects 
of aortic stenosis as never done before. 

5.2. Methods 
Once again, the Faber-Rudy-Land model [53,133] is used for the 
bioelectrical activity, calcium dynamics and active tension generation of a 
cardiomyocyte. A quasi-static finite elasticity model and a Bidomain model 
are employed too. Even if most of the equations related to concentric 
growth have already been reported in Chapter 4, some of them are collected 
below again for sake of clearness. 
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5.2.1. The mechanical model: implementation of concentric 
growth 

The parallel deposition of sarcomeres occurring during concentric 
hypertrophy is represented by the following expression for Fg 
[15,66,67,175]  
 

 
s+(θ -1)= ,⊗g

s sF I a a (5.1) 

where sa  is the unit vector for the local sheet direction in the reference 

configuration Ω0 and θs is the corresponding local growth parameter. 
Differently from Chapter 4 and similarly to Chapter 3 in case of eccentric 
hypertrophy, θs is not assumed constant in space and time in this chapter. 

The elastic active component Se,act of the total elastic stress tensor Se is 
defined as  
 

 
 , a

T=
T

,⊗e act
f f

e
f f

S a a
a C a

(5.2) 

where fa  is the unit vector for the local fiber direction in Ω0; hence, fiber 

dispersion is disregarded in this chapter. 
As in Chapter 4, the elastic passive component Se,pas comes from the 

orthotropic strain energy function W by Holzapfel [83], including a 
volumetric term too,  
 

e 2 e 2e e 2
4ss fsf 8s1 4f b (I -1) b (I )b(I -3 sf

f s

) b (I -1) 2fs

fs

a aaa
W= e + (e -1)+ (e -1)+ (e -1)+c( det( )-1)

2b 2b 2b 2b
,eC  (5.3) 

where the parameters a, b, af, bf, as, bs, afs, bfs and c are taken from [220] 

and [215], but the elastic invariants are now e
1I = ,:eC I   T

e
4fI = ,e

f fa C a  

 T
e
4sI = e

s sa C a  and  T
e
8fsI = e

f sa C a  [82,175], thus fiber dispersion is not 

included again. 

5.2.2. The electrophysiological model: dependence on 
concentric growth 

The most complete form of the Bidomain system (2.68), including all 
mechanical feedbacks, is used for the simulations run in this chapter 
together with the Faber-Rudy model  
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As in Chapter 4, the ratio χ in m mc = ,Cχ  ion ion= Ιi χ and SAC SAC= Ιi χ  is 

computed as 2 2
cell cell cell cell= 2(B +C )/(B C ),χ  where cell s cellB = Rθ  is the semi-

major axis along sa  (with Rcell the cell radius from the Faber-Rudy model) 

and cell cellC =R  the semi-minor axis. Then, χ is divided by 2 to make its 

value closer to the conservative one of 1000 cm-1 in case of the healthy 
ventricle again. The orthotropic intra- and extracellular conductivity 

coefficients f,s,
e

n
i,σ  building up Di,e have the following expressions or values 

(in mS/cm) [36,76,183]  
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 (5.5) 

where rcyt=150 Ω·cm and rjunct=1.5 Ω·cm2 are the cytoplasmic and gap 
junction resistivities [198], whilst Lcell (from the original Faber-Rudy 
model) and cell cell cellB CA =π  are the length and cross-sectional area of 

cardiomyocytes. Hence, differently from Chapter 4, the conductivity 
coefficients depend on local growth now. 

The same variables Bcell and Ccell are computed as before when solving 
the Faber-Rudy model related to the single cardiomyocyte; this, in turn, 
affects the geometric plasma membrane area 

2 2
cell cell cell cell ceo llge 2(A =2 B C + B +C ) ,Lπ π  the capacitive one cap geoA =2A  and 

the cell volume cell cell ccel ll e lV = LC .πΒ  
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5.2.3. Details on the discretization and implementation of the 
complete model 

The space discretization is performed by trilinear finite elements on two 
hexahedral structured grids, the former with a mesh size Δhel=0.1 mm for 
the electrical model being a refinement of the latter with a mesh size 
Δhmec=0.8 mm for the mechanical model. The time discretization is carried 
out by a decoupled semi-implicit method. A constant time step Δtel=0.05 
ms is used for the electrical model, whilst a constant time step Δtmec=0.25 
ms is employed for the mechanical one. 

As in Chapter 4, simulations are performed on the Linux cluster of the 
Department of Mathematics of the University of Milan [99]. The 
electromechanical code is written in FORTRAN 90 and parallelized by 
means of PETSc libraries from the Argonne National Laboratory [100]. 

5.2.4. The geometry and electrical stimulation of the ventricle 

The reference configuration of the ventricle (the left one) is schematized in 
panel A of Figure 5.1. It consists of a portion of truncated ellipsoid with the 
nodes located on the endocardial boundary of its base completely fixed and 
the other nodes of the base constrained only along the Z axis to avoid rigid 
motions. Fibers rotate linearly and in a counterclockwise fashion from the 
epicardium to the endocardium for a total amount of 120o. In general, they 
are not tangent to the radial sheets of the ventricular wall; actually, they 
may cross them obliquely, thus defining a non-zero imbrication angle [34]. 
The pressure boundary conditions imposed by the ventricular deformation 
and the vascular system are applied to the whole endocardium. 

 

Figure 5.1: A) reference configuration for the healthy and hypertrophic 
ventricles. The entire base is constrained along the Z axis and the 
corresponding nodes on the endocardium are constrained along the X and Y 
axes too. The whole endocardial surface is subjected to pressure. The 
current stimuli are given towards the center of the ventricle on the anterior 
view of the endocardium. B) three-element Windkessel model of the 
circulatory system during the blood efflux phase of the cardiac cycle: the 
current ( )I t =-dV/dt  stands for the blood flow, Car is the compliance of the 

aorta and large elastic arteries, Rao is the characteristic impedance of the 
aorta and Rp is the peripheral resistance. 
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Extracellular current stimuli of 250 mA/cm3 are delivered for 1 ms at a 
basic cycle length of 400 ms to a small volume of tissue located at the 
center of the anterior view of the endocardial surface. This point 
stimulation indicates that the electrical activation of the ventricle via the 
Purkinje network is disregarded in this chapter for simplicity. 

5.2.5. The cardiac cycle and growth of the ventricle 

Under healthy conditions or in presence of aortic stenosis, the dynamics of 
the ventricular pressure P and volume V follow the usual four phases of a 
cardiac cycle: the isovolumic systole, the blood efflux, the isovolumic 
diastole and the diastolic filling (Paragraph 1.1.2). Starting from a non-
physiological initial phase with a linear increase of pressure from P=0 kPa 
to P=EDP (with EDP the ventricular end-diastolic pressure), the previous 
phases are implemented as follows. During the isovolumic systole, which 
begins when P equals EDP and dV/dt becomes negative (i.e. the ventricle is 
not inflating anymore), P is computed by employing the iterative relation  
 

n+1 n
1

p
+ n

1
n

V -V
P +

C
=P (5.6) 

to keep V constant (dV/dt=0 ml/ms), while choosing an adequate value for 
the penalty parameter Cp1 for a robust convergence. When P is greater than 
a prescribed arterial pressure Par, the blood efflux starts and a three-element 
Windkessel model (Figure 5.1, panel B) is connected to the ventricle to 
simulate the circulatory system  
 

ao
ar ao

p

2

ar 2
p

Rd dV d V
+ =- 1+ - R ,

dt dt d

P P
C C

R R t

 
  
 

(5.7) 

where Car is the compliance of the aorta and large elastic arteries, Rao is the 
characteristic impedance of the aorta (due to the aortic valve), 
approximated as a simple resistance, and Rp is the peripheral resistance. 
This equation is discretized implicitly with respect to P and the resulting 
term including d2V/dt2 is disregarded because it generates instabilities 
when Rao≠0 kPa·ms/ml in case of aortic stenosis; nevertheless, Rao is 
present in the term depending on dV/dt. The ejection phase ends when 
dV/dt becomes positive (i.e. the ventricle is not deflating anymore). Then, 
during the isovolumic diastole, an equation similar to (5.6) (with another 
penalty parameter Cp2) holds. At last, when P becomes lower than a 
prescribed atrial pressure at the end of the atrial diastole Pat, the diastolic 
filling starts. It consists of a linear increase of P up to EDP till the end of 
the cardiac cycle. Table 5.1 collects the values of all parameters introduced 
before. 
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Table 5.1: Values of parameters used for simulating the healthy and 
stenotic cardiac cycles: end-diastolic pressure EDP; penalty parameter for 
the isovolumic systole Cp1; arterial pressure at the end of the isovolumic 
systole Par; compliance of the aorta and large elastic arteries Car; peripheral 
resistance Rp; characteristic impedance of the aorta Rao; penalty parameter 
for the isovolumic diastole Cp2; atrial pressure at the end of the atrial 
diastole Pat. 

 HEALTHY STENOTIC 
EDP (kPa) 2 2 

Cp1 (ml/kPa) -2 -2 
Par (kPa) 10 10 

Car (ml/kPa) 1 1 
Rp (kPa ms/ml) 80 80 
Rao (kPa ms/ml) 0 100 

Cp2 (ml/kPa) -5 -5 
Pat (kPa) 1 1 

 
To trigger a concentric growth, a similar procedure to the one suggested 

in Chapter 3 for eccentric hypertrophy is followed. Therefore, the ventricle 
is allowed to grow at the end of each cardiac cycle, maintaining its 
reference configuration. However, in this chapter, the deviation of the time-

averaged trace of the elastic Mandel stress tensor = ,⋅e e eM C S  denoted by 

tr( ),eM  from the corresponding homeostatic set point value htr( )eM  (given 

by a healthy simulation), i.e. htr( )-tr( ) ,e eM M  represents the mechanical 

stimulus driving concentric growth in each node. The use of tr(Me) can be 
found in [66,67], though there are some experimental studies showing that 
concentric hypertrophy is driven by strain rather than stress similarly to the 
eccentric one (see [121] for a thorough discussion on this topic). Thus, the 
local increments for θs between the beats n and n+1, i.e. θs,*, are now given 
by  
 

s,* s,n n hθ =1+k(θ )(tr( ) -tr( ) )e eM M (5.8) 

in those nodes where n htr( ) -tr( )e eM M  is positive, except from the ones on 

the base because the constraints on displacements provoke higher local 
stresses that would generate too high values of θs compared with the 
remaining ventricle. In the previous equation, the rate-limiting function k 
has the expression  
 

max
s s,n

max
s

θ -θ1
k= ,

θ -1

γ
 
  τ 

(5.9) 

where τ and γ have the values 1000 and 1 respectively and max
sθ  is the 

maximum limit for θs (value of 2). 
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First, five cardiac cycles are run for the healthy case and the resulting 

values for htr( )eM  at the fifth cycle are saved. Then, twenty cycles with 

aortic stenosis and concentric hypertrophy are simulated with htr( )eM  as 

input and the spatial distribution of θs at the end of the twentieth cycle as 
output. Figure 5.2 displays this distribution on the anterior and posterior 
views of the epicardium, midmyocardium and endocardium and of two 
central transmural sections, a horizontal and a vertical one. Growth gets 
more and more pronounced from the endocardium to the epicardium, where 
wall stresses are higher [66,67]. As a remark, in the next figures, the two-
dimensional distributions of electrical variables will be shown in the same 
nodes of Figure 5.2. 

 

Figure 5.2: Spatial distributions of the growth parameter θs in case of the 
concentric hypertrophic ventricle on the anterior (ANT) and posterior 
(POST) views of the epicardium (EPI), midmyocardium (MID) and 
endocardium (ENDO) and of a central horizontal (HOR) and vertical 
(VERT) transmural section (see text for details on their derivation). 
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5.3. Results and discussion 

5.3.1. The electrical response 

An initial analysis on the relevance of the mechanical feedbacks in the 
Bidomain model of electrophysiology (5.4) is carried out. For both the 
healthy and hypertrophic ventricle, a cardiac cycle is simulated with: i) the 
conductivity feedback alone (COND); ii) the conductivity and convection 
feedbacks (COND+CONV); iii) the conductivity and mechanoelectric 
feedbacks (COND+SAC); iv) all three feedbacks (COND+CONV+SAC). 
All these simulations are performed starting from the values of all 
mechanical and electrical model variables, nodal coordinates, ventricular 
pressure P and volume derivative dV/dt saved at the end of five cycles run 
with the healthy or hypertrophic ventricle to reach a steady state. For the 
hypertrophic case, the values of θs saved at the end of the twentieth growth 
cycle represent further inputs. 

Figure 5.3, Figure 5.4 and Figure 5.5 report the epicardial, 
midmyocardial and endocardial distributions (shown in the reference 
configuration) of the activation time AT, repolarization time RT and action 
potential duration APD=RT-AT  for the healthy ventricle under all 
simulated conditions i)-iv). Figure 5.7, Figure 5.8 and Figure 5.9 show the 
corresponding distributions for the hypertrophic ventricle. Moreover, 
Figure 5.6 and Figure 5.10 display the horizontal and vertical transmural 
distributions of APD for both ventricles. In this chapter, AT is the time 
instant when V exceeds -40 mV and RT is the time instant when V 
becomes less than its 90% repolarization value (-76.5 mV). For both 
ventricles, the AT patterns on all anterior views are similar and 
characterized by a wavefront that, starting from the center of the 
endocardium where the stimulus is applied, spreads faster along the fibers 
direction than across them in an ellipsoidal way towards the epicardium, 
where it tends to become spherical. On the contrary, the AT patterns on all 
posterior views display a V shape that is distorted by the fibers twist and 
accentuates from the endocardium to the epicardium, similarly to an apical 
pacing of a ventricle characterized by a late activation of the base [34]. 
From a visual inspection, no immediate differences are detectable for both 
ventricles. By looking at the numbers under the maps, instead, the presence 
of the convective feedback in the COND+CONV case generates an increase 
of dispersion, given by the difference between the maximum and minimum 
values, of about 4 ms with respect to the COND case on the anterior views 
of the healthy ventricle. However, this reduction is partially cut down by 
adding the mechanoelectric feedback in the COND+CONV+SAC case 
(compare the COND and COND+SAC cases too). Such a trend is also 
present on the posterior views of the epicardium and midmyocardium. On 
the endocardium, instead, both the convective feedback and the 
mechanoelectric one cause a decrease of the AT dispersion, which amounts 
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to nearly 7 ms in the COND+CONV+SAC case. For the hypertrophic 
ventricle, the convective feedback affects the AT dispersion to a lower 
extent; actually, its increase is always lower than 2 ms between the COND 
case and the COND+CONV one. Nevertheless, the mechanoelectric 
feedback is responsible for a decrease up to about 4 ms on the posterior 
views between the COND case and the COND+SAC one. As regards RT, 
no differences are visible at first sight again. However, by looking at the 
maximum and minimum values, it turns out that the convective feedback 
determines the greatest variations on the posterior views of the healthy 
ventricle, especially the endocardial one, where an increase of dispersion of 
nearly 9 ms can be found between the COND case and the COND+CONV 
one. The mechanoelectric feedback tends to reduce RT everywhere, mainly 
on the posterior views again, where a decrease up to 4÷5 ms can be 
computed for the dispersion on the midmyocardium between the COND 
case and the COND+SAC one. With the hypertrophic ventricle, the effects 
of the former feedback vanish, whilst the ones of the latter are still present 
with the same decrease of dispersion of 4÷5 ms on the midmyocardium. As 
far as APD is concerned, it immediately appears that, for the healthy 
ventricle, its values are higher on average on every intramural posterior 
view where the convective feedback is present. Moreover, there is an 
increase of dispersion for all distributions between the COND case and the 
COND+CONV or COND+CONV+SAC one. Actually, for the anterior 
views, this increase amounts to nearly 13 ms on the epicardium and 
endocardium and about 9 ms on the midmyocardium. For the posterior 
views, it reaches about 20 ms on the endocardium, 19 ms on the epicardium 
and 13÷14 ms on the midmyocardium. The mechanoelectric feedback does 
not play a significant role instead. For the hypertrophic ventricle, the 
effects of the convective feedback on the anterior views disappear, whilst 
the ones on the posterior views are still present, even if to a lesser extent 
compared with the healthy ventricle. Actually, fewer nodes have a higher 
value for APD and the increase of dispersion amounts to 6 ms on the 
epicardium, 3 ms on the midmyocardium and 3÷4 ms on the endocardium. 
The mechanoelectric feedback tends to reduce APD mainly on the posterior 
views of the midmyocardium (compare the COND+SAC or 
COND+CONV+SAC case with the COND or COND+CONV one 
respectively). Similarly to the intramural distributions, the transmural ones 
for the healthy ventricle show an increase of the number of nodes with a 
higher value for APD on all posterior views where the convective feedback 
is present. Moreover, the dispersion rises on the horizontal and vertical 
posterior views and on the horizontal anterior view; in particular, shifts of 
5÷6 ms characterize the horizontal views and a shift of 10÷11 ms 
characterize the vertical one. As for the intramural distributions again, no 
visible differences are introduced by the mechanoelectric feedback. 
Furthermore, fewer nodes have a higher value for APD when the 
convective feedback is taken into account for the hypertrophic ventricle. 
Such a feedback increases the dispersion to a lesser extent than the healthy 
ventricle, i.e. about 4 ms both on the horizontal and vertical posterior 
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views. The mechanoelectric feedback slightly reduces the APD values on 
all posterior views. 

 

Figure 5.3: Spatial distributions of the activation time AT shown in the 
reference configuration in case of the healthy ventricle: anterior (ANT) and 
posterior (POST) views of the epicardium (EPI), midmyocardium (MID) 
and endocardium (ENDO). Simulations may include the conductivity 
feedback alone (COND) or together with the convection feedback 
(COND+CONV), the mechanoelectric feedback (COND+SAC) or both of 
them (COND+CONV+SAC). The minimum and maximum values and the 
step (all in ms) of the displayed maps are reported below each panel. 
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Figure 5.4: Spatial distributions of the repolarization time RT shown in the 
reference configuration in case of the healthy ventricle. Same format as in 
Figure 5.3. 
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Figure 5.5: Spatial distributions of the action potential duration APD 
shown in the reference configuration in case of the healthy ventricle. Same 
format as in Figure 5.3. 
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Figure 5.6: Spatial distributions of the action potential duration APD 
shown in the reference configuration in case of the healthy ventricle: 
anterior (ANT) and posterior (POST) views of the horizontal (HOR) and 
vertical (VERT) transmural sections. Simulations may include the 
conductivity feedback alone (COND) or together with the convection 
feedback (COND+CONV), the mechanoelectric feedback (COND+SAC) or 
both of them (COND+CONV+SAC). The minimum and maximum values 
and the step (all in ms) of the displayed maps are reported below each 
panel. 
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Figure 5.7: Spatial distributions of the activation time AT shown in the 
reference configuration in case of the hypertrophic ventricle. Same format 
as in Figure 5.3. 
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Figure 5.8: Spatial distributions of the repolarization time RT shown in the 
reference configuration in case of the hypertrophic ventricle. Same format 
as in Figure 5.3. 
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Figure 5.9: Spatial distributions of the action potential duration APD 
shown in the reference configuration in case of the hypertrophic ventricle. 
Same format as in Figure 5.3. 
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Figure 5.10: Spatial distributions of the action potential duration APD 
shown in the reference configuration in case of the hypertrophic ventricle. 
Same format as in Figure 5.6. 

The total AT, RT and APD dispersions, i.e. the differences between their 
maximum and minimum values in the whole ventricle, are reported in 
Table 5.2. They point out that the total AT dispersion reduces by about 4-5 
ms between the COND case and the COND+CONV+SAC one for the 
healthy ventricle, thus both the convective feedback and the 
mechanoelectric one are responsible for this decrease. This also happens 
for the total RT dispersion, which reduces up to nearly 6 ms. The total APD 
dispersion, instead, rises by about 19÷20 ms when the sole convective 
feedback is included, whereas the mechanoelectric one has no effects. The 
total AT and RT dispersions of the hypertrophic ventricle are affected from 
the sole mechanoelectric feedback, which determines decreases of 3÷4 ms 
when it is included. As for the healthy ventricle, the convective feedback 
acts on the total APD dispersion of the hypertrophic one, but it causes an 
increase of only 2 ms when it is accounted for. 

Table 5.3 collects the relative errors for AT, RT and APD between the 
COND+CONV+SAC case (that is the most complete model) and the other 
ones. For the healthy ventricle, the convection feedback determines the 
smallest error on AT, RT and APD. However, for the hypertrophic 
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ventricle, the convective feedback is predominant for APD only, whilst the 
mechanoelectric one has the major effect on AT and RT. 

Table 5.2: Total dispersions (differences between the maximum and 
minimum values in the whole ventricle) in ms of the activation time AT, 
repolarization time RT and action potential duration APD in case of the 
healthy (A) and hypertrophic (B) ventricles. Simulations may include the 
conductivity feedback alone (COND) or together with the convection 
feedback (COND+CONV), the mechanoelectric feedback (COND+SAC) or 
both of them (COND+CONV+SAC). 

A 

 
HEALTHY 

COND COND+CONV COND+SAC COND+CONV+SAC 
AT dispersion 164.57 162.41 161.12 160.12 
RT dispersion 157.10 153.62 153.84 151.23 

APD dispersion 8.33 28.07 8.36 27.50 
 

B 

 
HYPERTROPHIC 

COND COND+CONV COND+SAC COND+CONV+SAC 
AT dispersion 161.58 162.16 158.03 158.43 
RT dispersion 154.08 153.80 150.64 150.33 

APD dispersion 9.24 11.28 9.46 11.07 
 

Table 5.3: Relative errors of the activation time AT, repolarization time RT 
and action potential duration APD in case of the healthy (A) and 
hypertrophic (B) ventricles. All errors are computed with respect to the 
associated reference variable belonging to a simulation with all mechanical 
feedbacks, i.e. the conductivity, convection and mechanoelectric ones. The 
symbol * denotes a simulation disregarding the convection and 
mechanoelectric feedbacks (COND), the sole mechanoelectric feedback 
(COND+CONV) or the sole convection feedback (COND+SAC). 

A 

 
HEALTHY 

* = COND * = COND+CONV * = COND+SAC 

REF 2* REF 2AT-AT |||| / || T ||A  3.71·10-2 1.77·10-2 3.30·10-2 

* 2 RE EF 2R FRT-RT |||| / || T ||R  1.79·10-2 8.34·10-3 1.76·10-2 

* 2 REF 2REFAPD -APD |||| / || PD ||A  3.13·10-2 3.73·10-3 3.21·10-2 

 
B 

 
HYPERTROPHIC 

* = COND * = COND+CONV * = COND+SAC 

* 2 RE EF 2R FAT-AT |||| / || T ||A  2.10·10-2 1.70·10-2 1.33·10-2 

* 2 RE EF 2R FRT-RT |||| / || T ||R  9.12·10-3 8.79·10-3 7.01·10-3 

* 2 REF 2REFAPD -APD |||| / || PD ||A  1.24·10-2 4.26·10-3 1.36·10-2 
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From now on, the effects of all mechanical feedbacks will be included 
while comparing the electrical and mechanical responses of healthy and 
hypertrophic ventricles. Thus, Figure 5.11, Figure 5.12, Figure 5.13, Figure 
5.14, Figure 5.15 and Figure 5.16 first collect the epicardial, 
midmyocardial, endocardial and horizontal and vertical transmural 
distributions of AT, RT and APD for the COND+CONV+SAC case and 
both ventricles. The corresponding distributions for the case of aortic 
stenosis without growth at steady state are also shown. It turns out that the 
healthy and stenotic cases are almost equal; from a visual inspection, one 
can only find a slight decrease in APD values on the horizontal views from 
the former case to the latter one. However, the strongest decrease of AT, 
RT and APD values occurs with hypertrophy. Moreover, the corresponding 
dispersions decrease more than increasing; actually, the maximum 
increments with respect to the healthy case are about 4 ms, about 5 ms and 
less than 1 ms for AT, RT and APD respectively, whilst the maximum 
decrements are 6÷7 ms, about 10 ms and about 17 ms. Therefore, although 
concentric hypertrophy causes a lowering of the action potential duration, it 
increases the propagation velocity (related to the inverse of the activation 
time) and does not affect negatively the RT dispersion, thus trying to avoid 
triggering arrhythmogenic phenomena [36]. The result on propagation 
velocity differs from the one reported in Chapter 4 for the wedge and it 
may be due mainly to the fact that the conductivity coefficients are here 
dependent on local growth. 

At last, Figure 5.17 displays the time evolutions of the extracellular 
potential Ue (or unipolar electrograms) in eighteen nodes located along the 
middle longitudinal lines of the anterior and posterior views of the 
epicardium (six nodes), midmyocardium (six nodes) and endocardium (six 
nodes) near the apex, the center and the base of the healthy, stenotic and 
hypertrophic ventricles. For all ventricles, there is always a discordance 
between the polarity of the QRS complex and the one of the T wave, i.e. if 
the former is positive, then the latter is negative and vice versa. No relevant 
morphological changes in the QRS complexes, ST segments and T waves 
are detectable. Some discrepancies are only found in terms of time delays 
on the posterior views, which are the latest activated areas; the total 
duration of the response is shortened in accordance with the previous 
lowering of the action potential duration. Therefore, once again, if local 
conductivity coefficients change with growth, the activation wavefront and 
the subsequent repolarization phase are not negatively affected from 
hypertrophy. 
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Figure 5.11: Spatial distributions of the activation time AT shown in the 
reference configuration for the healthy, stenotic and hypertrophic ventricles 
with all mechanical feedbacks included: anterior (ANT) and posterior 
(POST) views of the epicardium (EPI), midmyocardium (MID) and 
endocardium (ENDO). The minimum and maximum values and the step (all 
in ms) of the displayed maps are reported below each panel. 
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Figure 5.12: Spatial distributions of the activation time AT shown in the 
reference configuration for the healthy, stenotic and hypertrophic ventricles 
with all mechanical feedbacks included: anterior (ANT) and posterior 
(POST) views of the horizontal (HOR) and vertical (VERT) transmural 
sections. The minimum and maximum values and the step (all in ms) of the 
displayed maps are reported below each panel. 
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Figure 5.13: Spatial distributions of the repolarization time RT shown in 
the reference configuration for the healthy, stenotic and hypertrophic 
ventricles with all mechanical feedbacks included. Same format as in Figure 
5.11. 
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Figure 5.14: Spatial distributions of the repolarization time RT shown in 
the reference configuration for the healthy, stenotic and hypertrophic 
ventricles with all mechanical feedbacks included. Same format as in Figure 
5.12. 
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Figure 5.15: Spatial distributions of the action potential duration APD 
shown in the reference configuration for the healthy, stenotic and 
hypertrophic ventricles with all mechanical feedbacks included. Same 
format as in Figure 5.11. 
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Figure 5.16: Spatial distributions of the action potential duration APD 
shown in the reference configuration for the healthy, stenotic and 
hypertrophic ventricles with all mechanical feedbacks included. Same 
format as in Figure 5.12. 
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Figure 5.17: Electrograms Ue in eighteen epicardial, midmyocardial and 
endocardial nodes on the anterior (ANT) and posterior (POST) views near 
the apex, the center and the base of the healthy (blue), stenotic (black) and 
hypertrophic (red) ventricles; all values on the abscissa are in ms, whereas 
the ones on the ordinate are in mV. 

5.3.2. The mechanical response 

Figure 5.18 shows the steady-state pressure-volume loops related to the 
healthy, stenotic and hypertrophic ventricles. Compared with the healthy 
case, the two ventricles affected from aortic stenosis display an increase of 
pressure during the blood efflux phase due to a higher value of Rao, which 
acts as an afterload, thus determining a higher end-systolic value for the 
developed pressure. However, by comparing the stenotic and hypertrophic 
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cases, it turns out that growth tends to reduce, i.e. normalize, the end-
systolic pressure. Moreover, by growth, the ventricle recovers its healthy 
end-systolic volume, hence counteracting the increase due to stenosis, 
which limits the ejection of blood. Nevertheless, during the diastolic filling, 
it cannot reach its healthy end-diastolic volume for a given EDP, which 
represents the preload [15], thus impairing filling and leading to possible 
diastolic dysfunction. As a remark, the healthy value for the end-systolic 
volume may not be recovered if one modified the coefficients of the strain-
energy function in (5.3) and/or added fiber dispersion in order to account 
for a remodeling accompanying hypertrophy too (see, e.g., [51]). 

 

Figure 5.18: Pressure-volume (P-V) loops of the healthy (blue), stenotic 
(black) and hypertrophic (red) ventricles. 

Figure 5.19, Figure 5.20, Figure 5.21, Figure 5.22, Figure 5.23 and 
Figure 5.24 report the end-systolic and end-diastolic epicardial, 
midmyocardial, endocardial and horizontal and vertical transmural 
distributions of the elastic longitudinal strain e

llE ,  circumferential strain 
e
ccE  and radial strain e

rrE  for the healthy, stenotic and hypertrophic 

ventricles; the end-diastolic strains for the stenotic case are not displayed 
because stenosis acts only during the blood efflux phase, hence they would 
coincide with the healthy ones. The longitudinal strains are directed along 
the axis tangent to the ventricular surface in each node from the apex to the 
base and they point out to which extent the ventricles contract/relax along 
the Z axis. The hypertrophic ventricle shows more positive values for them 
on the epicardium (where the values for θs are maximal) both at end systole 
and at end diastole compared with the healthy and stenotic ones, meaning 
that growth makes the epicardial wall contract to a lesser extent during the 
blood efflux phase and stretch to a higher extent during the diastolic filling. 
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The circumferential strains lie on the axis tangent to the wall plane in the 
circumferential direction and they measure the twist of ventricles. More 
precisely, at end systole, this twist is due to an opposite trend between the 
anterior and posterior views, which is maximal on the epicardium; one can 
also guess that ventricles twist clockwise with less positive values on the 
anterior views, where fibers are more contracted, and more positive values 
on the posterior views, where fibers are more stretched. Then, by 
comparing the three ventricles, it turns out that the values of the stenotic 
ventricle are slightly more positive on all views at end systole compared 
with the healthy one. The hypertrophic ventricle tends to enhance this trend 
on the epicardium, whilst it causes the opposite phenomenon on the 
endocardium, where values get closer to the healthy ones again. Therefore, 
similarly to the longitudinal strains at end diastole, growth on the 
epicardium makes fibers on the posterior views stretch to a higher extent 
during the systolic twist, but, in accordance to the longitudinal strains at 
end systole, it reduces their contraction on the anterior views. At end 
diastole, less homogenous and less positive values characterize the 
hypertrophic ventricle on the endocardium, meaning that it keeps more 
twisted there. The radial strains are computed along the axis from the 
endocardium to the epicardium and they quantify the inflation/deflation of 
the ventricular wall. Their trend is opposite to the one of the longitudinal 
strains. At end systole, the former ones are more positive on the 
endocardium and more negative on the epicardium, whilst at end diastole 
they are more negative everywhere. On the contrary, at end systole the 
latter ones are more negative on the endocardium and more positive on the 
epicardium, whereas at end diastole they are more positive everywhere. 
Then, they are generally less positive for the stenotic ventricle compared 
with the healthy one on all views at end systole. Hypertrophy emphasizes 
this trend on the epicardium, pointing out that growth limits the 
enlargement of the ventricular wall there, while normalizing the values on 
the endocardium. No differences are detectable at end diastole instead. 
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Figure 5.19: End-systolic and end-diastolic spatial distributions of the 
elastic longitudinal strain e

llE  shown in the reference configuration for the 

healthy, stenotic and hypertrophic ventricles: anterior (ANT) and posterior 
(POST) views of the epicardium (EPI), midmyocardium (MID) and 
endocardium (ENDO). The minimum and maximum values and the step of 
the displayed maps are reported below each panel. 
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Figure 5.20: End-systolic and end-diastolic spatial distributions of the 
elastic longitudinal strain e

llE  shown in the reference configuration for the 

healthy, stenotic and hypertrophic ventricles: anterior (ANT) and posterior 
(POST) views of the horizontal (HOR) and vertical (VERT) transmural 
sections. The minimum and maximum values and the step of the displayed 
maps are reported below each panel. 
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Figure 5.21: End-systolic and end-diastolic spatial distributions of the 
elastic circumferential strain e

ccE  shown in the reference configuration for 

the healthy, stenotic and hypertrophic ventricles. Same format as in Figure 
5.19. 
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Figure 5.22: End-systolic and end-diastolic spatial distributions of the 
elastic circumferential strain e

ccE  shown in the reference configuration for 

the healthy, stenotic and hypertrophic ventricles. Same format as in Figure 
5.20. 
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Figure 5.23: End-systolic and end-diastolic spatial distributions of the 
elastic radial strain e

rrE  shown in the reference configuration for the healthy, 

stenotic and hypertrophic ventricles. Same format as in Figure 5.19. 



Simulations on a concentric hypertrophic ventricle  

 131

 

Figure 5.24: End-systolic and end-diastolic spatial distributions of the 
elastic radial strain e

rrE  shown in the reference configuration for the healthy, 

stenotic and hypertrophic ventricles. Same format as in Figure 5.20. 

In addition to loops and strains, the same macroscopic measures 
introduced in Chapter 4 to describe the mechanical activity of the wedge 
are here computed again for the ventricle over one cycle, i.e. the mean 
contractility CTmean (that directly corresponds to the contractility CT in this 
case) during the blood efflux phase and the mean contraction force CFmean. 
In particular, the algorithm already described in two dimensions on the XY 
coordinate plane is extended to the three-dimensional case by computing 

the displacements ( )m+1 mz -z  and contraction velocities 

( )z,m m+1 m mecv = z -z /Δt  along the Z axis too. In this chapter, 216 equidistant 

nodes are selected as markers on the epicardium. The resulting values for 
CT and CFmean belonging to a simulation with the healthy (H), stenotic 
(STEN) or hypertrophic (HYP) ventricle are statistically compared by 
means of the one-way ANOVA and LSD test with a significance level of 
0.05 as in Chapter 4. Figure 5.25 shows these results. It appears that CT 
does not vary significantly (p>0.05) among the three cases. As regards 
CFmean, instead, there is a significant increase (p<0.05) from the H or STEN 
case to the HYP one, which is in accordance with the trend for the 
hypertrophic wedge in Chapter 4, pointing out that, by growth, the heart 
can face the higher internal pressure due to aortic stenosis, while preserving 
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the end-systolic volume in case of no remodeling. The increase from the H 
case to the STEN one is insignificant (p>0.05) instead. 

 

Figure 5.25: Statistical results for the mechanical response of the healthy 
(H), stenotic (STEN) and hypertrophic (HYP) ventricles: A) contractility 
CT and B) mean contraction force CFmean. The horizontal bars are the 95% 
confidence intervals for the differences between means according to the 
LSD test. 

5.4. Conclusions 
In this chapter, the electromechanical activity of a concentric hypertrophic 
ventricle has been simulated during a cardiac cycle. A three-dimensional 
finite-element strongly-coupled model has been coupled to a simplified 
model of the circulatory system, including aortic stenosis and a model of 
concentric growth, whose effects on electrophysiology and mechanics have 
been taken into account. First, an analysis of the geometric and 
mechanoelectric feedbacks on the electrical response of healthy and 
hypertrophic ventricles has been carried out. Then, the electrical and 
mechanical responses of such ventricles have been studied when all 
mechanical feedbacks are included; the case with only aortic stenosis 
without growth has been considered too. 

As in Chapter 4, hypertrophic cardiomyocytes have not lost the 
organization of their sarcomeres, the interstitial fibrosis caused by 
fibroblasts has been neglected and the T-tubule system has not been 
remodeled. 

In the future, the molecular effects of concentric growth due to specific 
genetic defects could be implemented in order to study to which extent they 
further affect the cardiac electromechanical performance. Moreover, the 
same framework could include fiber dispersion and be applied to eccentric 
hypertrophy. 
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Chapter 6 
6 Simulations on a culture 

In this chapter, the three-dimensional electromechanical model introduced 
in Chapter 2 is applied to a cardiac culture that is grown to become a 
tissue-engineered patch. In particular, the goal of this chapter is to study 
how the fiber architecture of cultures, i.e. the way cell sarcomeres are 
locally oriented, and their thickness affect their electromechanical 
response. The culture is multilayered, i.e. it is made of more than one layer 
of ventricular cells. Moreover, it can be characterized by four possible 
architectures consisting of: i) random fibers in all cells; ii) randomly 
rotating fibers among layers; iii) structurally rotating fibers from the 
bottom layer to the top one; iv) parallel fibers among layers. First, the 
effects of the fiber architecture are analyzed, then, after choosing the 
configuration iii), the effects of thickness are explored too. The electrical 
and mechanical measures introduced in Chapter 4 will be used to 
investigate the electromechanics of cultures, i.e. the action potential 
duration, conduction velocity, contractility and contraction force in some 
nodes belonging to the top layer. This study is pioneering in the literature 
because it is the first in silico analysis focusing on the problem of how 
properly driving the development of cardiac patches before their 
transplantation on the in vivo heart. 

6.1. Introduction 
As it has already been recalled in Section 1.4, cardiac cultures offer today a 
valid alternative to the isolation of the in vivo heart to perform not only 
different kinds of electromechanical studies but also to heal an infarcted 
area of the organ, if they develop into cardiac patches. During this process, 
a crucial issue that must be accounted for is the way cardiac cells organize 
their internal myofilaments to create a functional syncytium ready to be 
delivered on the infarcted region [26,27,218]. Moreover, they must 
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proliferate to a sufficient number in order to contribute significantly to the 
heart pumping function [27,218]. 

Therefore, the first aim of this study is to investigate, by a finite-element 
electromechanical model, if changes in the internal fiber configuration of a 
three-dimensional multilayered culture lead to significant differences in 
terms of the electrical activity and mechanical contraction. This topic has 
never been tackled by in silico studies, whereas the in vitro ones have only 
focused on the propagation of the electrical signal [12,25-27]. Thus, this 
lack of information in the literature is filled with the simulation results 
reported in this chapter. 

Then, the same electromechanical model is used to check if thickness 
significantly changes the electrical and mechanical responses. Different 
thicknesses are yielded by increasing the number of cardiomyocytes layers 
without considering any other cell type. Again, the in silico results of this 
chapter are innovative in this field. 

6.2. Methods 
Since cardiac cultures may consist of cardiomyocytes derived from 
neonatal hearts, the bioelectrical activity and calcium dynamics model by 
Wang-Sobie [221] for the neonatal mouse is chosen. However, there are no 
models in the literature about the development of active tension in neonatal 
cardiomyocytes. Thus, the Wang-Sobie model is coupled with the active 
tension generation model by Land [133] for the adult mouse again. Then, a 
quasi-static finite elasticity model and a Monodomain model are added to 
simulate the electromechanical response of the culture. 

6.2.1. The mechanical model: details and remarks 

In this chapter, the isotropic strain-energy function W in [83] is adopted in 
order to reduce the anisotropic contribution of other structures that are not 
cell sarcomeres (for instance, the extracellular matrix fibers made of elastin 
and collagen). Moreover, like for the adult tissue in Chapter 4 and Chapter 
5, the neonatal one is assumed to be a quasi-incompressible tissue. 
Therefore, W is given by  
 

2a
W= exp(b(tr( )-3)+c(J-1) ,

2b
C (6.1) 

where a, b and c are fixed parameters taken from [52,215]. 
As regards the contribution of sarcomeres, it must be noted the 

dependence in (2.52) of the active second Piola-Kirchhoff stress tensor Sact 

on the chosen fiber architecture by the unit vector ( )fa X  for the local fiber 

direction in the reference configuration Ω0. This is the variable stated in 
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different random ways at the beginning of each simulation as described 
later. 

6.2.2. The electrophysiological model: details and remarks 

Electrophysiology is modeled by the Monodomain representation coupled 
with the Wang-Sobie model for the neonatal mouse. As in Chapter 4, the 
convective term appearing in (2.88) and the iSAC current are disregarded. 
Thus, the full Monodomain system becomes again  
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where w and c are vectors containing the gating variables and ionic 
concentrations belonging to the Wang-Sobie model. The ratio χ is assumed 
equal to 1000 cm-1 and the conductivity values making up D are taken from 
[36]; in particular, the culture is assumed to be transversely isotropic, thus 
equal conductivities are enforced along the transverse directions to fibers. 

The value for m
appi  should be equal to zero since cardiac cultures 

spontaneously beat [188], but this aspect is here neglected because it does 
not fit the purposes of this chapter. 

6.2.3. Details on the discretization and implementation of the 
complete model 

For the electrical components of the model, a uniform mesh of 80 × 80 
linear finite elements on each XY layer is employed (defining a spacing 
Δhel=0.1 mm that is also used among layers on the Z axis) together with a 
constant time step Δtel of 0.05 ms. For the mechanical components, instead, 
a uniform coarser mesh of 20 × 20 linear finite elements on each XY layer 
is employed (defining a spacing Δhmec=0.4 mm that is also used among 
layers on the Z axis) together with a constant time step Δtmec of 1 ms. 
Moreover, the time discretization is performed via a decoupled semi-
implicit method. 

As in Chapter 4 and Chapter 5, the numerical code for the 
electromechanical model is implemented in FORTRAN 90 and based on 
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the parallel library PETSc [100], whereas all simulations are performed on 
the Linux cluster of the Department of Mathematics of the University of 
Milan [99]. 

6.2.4. The geometry and electrical stimulation of the culture 

With reference to Figure 6.1, the culture is modeled as a slab whose length 
and width are fixed (8 mm × 8 mm) and are of the order of the typical in 
vitro cultures with only cardiomyocytes. Its thickness, instead, may vary or 
not according to whether simulations deal with the study of the effects of 
thickness or the fiber architecture respectively (in the latter case, a constant 
value of 1.2 mm for thickness is adopted). The bottom layer is fixed in the 
same manner a culture is attached to a rigid substrate; this also avoids rigid 
motions of the whole culture. 

 

Figure 6.1: Schematic representation of the reference configuration of the 
culture. The culture is a slab with a fixed length and width (8 mm × 8 mm) 
and a varying thickness. The bottom layer is kept fixed. The current stimuli 
are applied to the red cluster of nodes. 

For all simulations, twenty current stimuli m
appi  of amplitude 250 mA/cm3 

and duration 1 ms are delivered at a basic cycle length of 500 ms (yielding 
a frequency of 2 Hz, which is a typical value among the physiological ones 
recorded from in vitro cultures [54]) to a cluster of nodes central to the 
lowest layers (red cube in Figure 6.1), like the stimuli applied to the 
endocardial side of the simulated ventricular wedge in Chapter 4. 

6.2.5. Bioelectrical and biomechanical measures 

Sixteen points equidistant and belonging to a 4 × 4 grid central to the top 
layer represent the markers for results, similarly to the measures extracted 
from the epicardial side of the ventricular wedge in Chapter 4. In particular, 
the results consist of the transmembrane potential V values and (x,y,z) 
coordinates for all markers during the last ten beats. Then, they are 
postprocessed by using the same two algorithms implemented in Matlab® 
to derive the nodal bioelectrical and biomechanical measures listed in 
Chapter 4 for each of the sixteen markers, i.e. the mean action potential 
duration APDmean, the mean conduction velocity CVmean, the mean 
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contractility CTmean and the mean contraction force CFmean. Panel A of 
Figure 6.2 displays an example of the time evolution of the transmembrane 
potential from which the activation and repolarization times are computed. 
In particular, the threshold value for identifying the activation times is set 
to -50 mV, whilst the one for identifying the repolarization ones is set to 
the 90% repolarization value, i.e. -72 mV. Panel B, instead, shows an 
example of the trajectory described by each marker in the XY plane. 

 

Figure 6.2: Example of simulation results for a marker: A) time evolution 
of the transmembrane potential V; B) trajectory in the XY plane. 

6.2.6. Statistics 

In a first group of simulations, four fiber architectures that may be used for 
an in vitro culture are statistically compared: 

• fibers with different random directions for all nodes (in the 
following called random fibers RF); 
• fibers with the same randomly specified direction in each XY 
plane but without an ordering along the Z axis (in the following 
called randomly rotating fibers RRF); 
• fibers with the same specified direction in each XY plane 
determined by gradually rotating them along the Z axis from the 
bottom layer to the top one in a clockwise or counterclockwise 
fashion; the direction of fibers belonging to the top layer and the 
overall rotation angle from the bottom layer to the top one are 
randomly found (in the following called structurally rotating fibers 
SRF); 
• parallel fibers for all layers and whose direction is randomly 
specified (in the following called parallel fibers PF). 

In a second group of simulations, instead, the SRF configuration is 
selected and three increasing thicknesses are compared: 1.2 mm, 2.4 mm 
and 3.6 mm. In the following, they will be called TH1, TH2 and TH3, i.e. 
thickness 1, thickness 2 and thickness 3 respectively. 
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For both groups, each of the previous four or three types of simulation 
are repeated with five configurations randomly defined as just discussed, 
thus computing 16×5=80 values for the four electromechanical measures. 
Then, analogously to Chapter 4 and Chapter 5, in Matlab® the one-way 
ANOVA and LSD test are applied, choosing a significance level of 0.05. 

6.3. Results and discussion 

6.3.1. Effects of the fiber architecture 

Panel A of Figure 6.3 shows no significant differences (p>0.05) among 
cultures in terms of their APDmean. Considering CVmean in panel B, instead, 
there are only two significant differences (p<0.05) between the RRF or 
SRF case and the PF one, whereas the remaining ones are insignificant 
(p>0.05). 

 

Figure 6.3: Statistical results for the bioelectrical activity of cultures when 
different fiber architectures are chosen: A) mean action potential duration 
APDmean; B) mean conduction velocity CVmean. The horizontal bars are the 
95% confidence intervals for the differences between means according to 
the LSD test. Labels RF, RRF, SRF and PF stand for random, randomly 
rotating, structurally rotating and parallel fibers respectively. 

Panel A of Figure 6.4 reports significant differences (p<0.05) of CTmean 
among all cases. Note that the mean value for CTmean increases by about six 
times from the RF case to the PF one. As regards CFmean in panel B, there 
are significant differences (p<0.05) between the RF case and the SRF or PF 
one, between the RRF case and the PF one and between the SRF case and 
the PF one again; all other differences are insignificant (p>0.05). 
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Figure 6.4: Statistical results for the biomechanical activity of cultures 
when different fiber architectures are chosen: A) mean contractility CTmean; 
B) mean contraction force CFmean. The horizontal bars are the 95% 
confidence intervals for the differences between means according to the 
LSD test. Labels RF, RRF, SRF and PF stand for random, randomly 
rotating, structurally rotating and parallel fibers respectively. 

Therefore, according to the results, changing the underlying fiber 
architecture does not alter the action potential duration as it would be 
suggested by different values of APDmean in panel A of Figure 6.3. This 
result may be due to the fact that all cells are characterized by a 
bioelectrical model [221] that is not affected from the mechanoelectric 
feedback carried out by stretch-activated channels (Chapter 2). By 
considering the other three measures in Figure 6.3 (panel B) and Figure 6.4 
(panels A and B), instead, the optimal configuration turns out to be the 
culture with structurally rotating fibers because it has the highest value of 
electrical conduction velocity while keeping relatively high values of 
contractility and contraction force. Actually, a lower conduction velocity is 
more likely to promote arrhythmogenic mechanisms like reentries 
[12,26,36], whereas low mechanical performances may make the patch 
unable to respond to high loads after its implantation [27,174]. 

As a consequence, the reported results suggest that, even for a thin 
culture like the one here modeled, the best way to build a cardiac patch is 
mimicking the anisotropic and ordered architecture of the in vivo tissue. 

6.3.2. Effects of thickness 

Figure 6.5 shows significant differences (p<0.05) among all cases in terms 
of APDmean (panel A) and CVmean (panel B). Note that the mean value for 
CVmean reduces by about 30% from the TH1 case to the TH3 one. 
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Figure 6.5: Statistical results for the bioelectrical activity of cultures when 
their thickness is varied: A) mean action potential duration APDmean; B) 
mean conduction velocity CVmean. The horizontal bars are the 95% 
confidence intervals for the differences between means according to the 
LSD test. Labels TH1, TH2 and TH3 stand for thickness 1, thickness 2 and 
thickness 3 respectively. 

Panel A of Figure 6.6 reports significant differences (p<0.05) of CTmean 
among all cases. As regards CFmean in panel B, instead, there are significant 
differences (p<0.05) between the TH3 case and the other ones, whereas the 
difference between the TH1 case and the TH2 one is insignificant (p>0.05). 
Note that the mean values for CTmean and CFmean double at least from the 
TH1 case to the TH3 one. 

 

Figure 6.6: Statistical results for the biomechanical activity of cultures 
when their thickness is varied: A) mean contractility CTmean; B) mean 
contraction force CFmean. The horizontal bars are the 95% confidence 
intervals for the differences between means according to the LSD test. 
Labels TH1, TH2 and TH3 stand for thickness 1, thickness 2 and thickness 
3 respectively. 

Therefore, from panel A of Figure 6.5, the mean value for APDmean 
slightly decreases while increasing thickness in the same manner the action 
potential of cells belonging to a ventricular wall shortens a little from the 
endocardium to the epicardium (see, e.g., [36]). Again, this result is 
achieved without considering the mechanoelectric feedback represented by 
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the stretch-activated channels on the original bioelectrical model of cells. 
Changes in APDmean are of the order of only 1 ms; refining the mesh in 
time would give more accurate values for the single values of APDmean, but 
the differences among them would be similar to the ones that have already 
been achieved. The other three measures in Figure 6.5 (panel B) and Figure 
6.6 (panels A and B), instead, point out that an increase of thickness leads 
to improvements in the mechanical contraction, but it causes the electrical 
conduction velocity to decrease, raising the risk of inducing 
arrhythmogenic phenomena [36]. However, future simulations are needed 
to provide a thorough vision of thickness proarrhythmic effects because in 
this study, for example, the effects of thickness on the dynamics of the 
excitation wave propagation due to the increased mass of the tissue are not 
considered; actually, multiple wavelets favoring an arrhythmia maintenance 
may be harbored [173]. 

If only cardiomyocytes are accounted for, the thicker a culture is the 
more the innermost cells are likely to suffer from a lack of oxygen and 
nutrients because they are too far from the growth medium in bioreactors to 
let diffusion operate alone; they need some kind of tissue vascularization 
too [27,174,218]. Hence, their electrical and mechanical functionalities are 
reduced. At the present time, this condition is not modeled because all 
cardiomyocytes are assumed to be healthy even without a vascular network. 
Nevertheless, it is noteworthy that the results are independent of the fine 
configuration of these cardiomyocytes; actually, the change rate of the 
rotation angle for fibers among layers is randomly chosen not only inside 
the three groups (TH1, TH2 and TH3) but also among them. 

Thus, for any fiber architecture, some attention must be paid while 
designing the thickness of a cardiac patch because the correct compromise 
between good electrical and mechanical performances must be found. 

6.4. Conclusions 
In the literature of in silico studies, the model presented in this chapter has 
been a first attempt to analyze the electromechanical behavior of a cardiac 
culture. In particular, it has focused on the interaction among the fine 
configuration of cardiomyocytes or thickness and the overall electrical and 
mechanical responses of the resultant tissue, when this last one is designed 
for a cardiac patch in tissue engineering. To achieve this aim, both previous 
responses have been made dependent on the local fiber direction, 
neglecting some experimental findings. For example, the electrical 
propagation has been modeled as transversely isotropic, though it should be 
fully isotropic because gap junctions develop uniformly on cell membranes 
both in isotropic and anisotropic cultures as a peculiar feature of neonatal 
cardiomyocytes [26]. Moreover, cardiomyocytes have had a mature 
contractile apparatus, i.e. their sarcomeres have been made of correctly-
polymerized actin and myosin fibers locally oriented along a preferential 
direction; thus, the active tension generation model for the adult mouse 
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[133] has been used. This has been done even for the case of cultures with 
random fibers, whose internal configuration should assume a star-like 
pattern because of their isotropic nature [26]. At last, the lack of calibration 
studies in the literature aimed at defining the values of the electrical and 
mechanical parameters at the tissue scale for in vitro cardiac cultures have 
been bypassed since the present study has focused on cultures designed to 
become cardiac patches similar to the in vivo tissue. Therefore, some 
typical values retrieved in the literature of the heart tissue for the 
conductivity tensor D and the ratio χ in the Monodomain model of 
electrical propagation and for the parameters a, b and c in the strain energy 
function W have been employed. Moreover, using a Monodomain model 
instead of the more complex Bidomain one for the electrical current flow 
description has a negligible impact on the mechanical properties and action 
potential duration, whereas it might weakly affect the conduction velocity 
[36]. 

In the future, some other types of cells (for instance, fibroblasts and 
endothelial cells) may be added to cardiomyocytes in order to get closer to 
the in vitro reality of a cardiac patch. Moreover, the effects of the 
vascularization inside cultures and of the progressive lowering of nutrients 
for the innermost cells could be some other interesting topics to be studied. 
In doing so, it would be worth implementing the time process of growth of 
cardiac patches; in this way, cardiomyocytes themselves could evolve 
progressively from neonatal to adult cells and build their fully functional 
extracellular matrix. 
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Chapter 7 
7 Overall conclusions 

The aim of this thesis has been to get new insights into the field of cardiac 
modeling by studying the electromechanical effects of some factors altering 
the geometry and structure of the cardiac tissue. To achieve this aim, a 
strongly-coupled electromechanical model has been developed to take into 
account simultaneously both electrophysiology and mechanics and the 
mutual interactions between them. The first part of this dissertation has 
focused on hypertrophy, which is one of the most recurrent pathologies 
affecting the industrialized world today. More and more complex 
geometries have been used to investigate the effects of such a remodeling, 
i.e. a single one-dimensional fiber or a three-dimensional slab-shaped 
wedge or truncated ellipsoidal ventricle. A deep analysis on the relevance 
of the mechanical feedbacks has been performed too. The second part has 
dealt with cardiac cultures and their potential development into patches for 
tissue engineering purposes. In particular, the influence of two design 
parameters, i.e. the fiber architecture and the culture thickness, has been 
analyzed. 

The present thesis has the following general limitations. First of all, a 
model is always a simplification of reality, so results are never accurate and 
they might not reflect the real behavior of a system. Then, the specific 
models employed in all chapters do not refer to the same mammalian 
species. This is a common drawback in cardiac modeling because the 
experimental data derive from studies performed on different animals 
according to which species the laws of a country allow to use and a 
research laboratory is used to handling. Thus, it adds to the already existent 
intrinsic variability of experimental data and testing conditions. As a 
consequence, there are very few cases in the literature of some cardiac 
models first developed independently of one another and then coupled. Due 
to the complexity of such models, for which the parameters calibration 
requires several experimental procedures that could not be performed 
during the last three years, and of the cardiac topics tackled, the parameters 
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of the employed basic models have not been redefined and the 
corresponding simulation results have not been quantitatively validated. 
Nevertheless, the developed framework has proven to be a valid tool for 
studying qualitatively the behavior of different cardiac tissue samples 
without exploiting any animal. 

In the future, the reported in silico results might be quantitatively 
assessed by biological and physiological data coming from in vivo or in 
vitro tests applied on the same cardiac muscle preparations analyzed in this 
thesis. Actually, some electrical and mechanical measures that can be 
easily computed directly or inferred from experiments have been 
intentionally employed. Moreover, the general developed framework may 
be a useful tool for investigating other cardiac diseases, possibly together 
with their treatment too, or learning more about the interaction between 
cardiac cultures and their response to some modifications in their 
composition or to various physical or chemical stimuli. Last but not the 
least, even before the comparison with experimental data, a discussion on 
the sensitivity of the numerical results with respect to variations of some 
relevant model parameters in their own range of uncertainty should be 
carried out in order to test their robustness. 
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