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Introduction

Modeling the multivariate dependencies between a set of random variables is an interesting

problem in statistical science that has received considerable attention in the last years. The accurate

analysis of the joint distribution among random variables is very important in many applications,

such as insurance, risk management, energy market, finance and many other areas. One increasingly

popular approach for modeling multivariate dependencies is based on copula functions.

In this thesis, we deal with a Bayesian analysis of AR-copula models, in which the joint distribu-

tion of the innovations of a panel of AR time series is described via a suitable multivariate copula.

In particular, we focus on three alternative copula structures: the tree copulas, the mixture of tree

copulas and the factor copulas.

A copula is a multivariate distribution with uniform margins on the simplex and permits to

obtain the joint multivariate distribution embedding the variable’s dependence structure. Indeed,

according to Sklar’s Theorem, Sklar (1959), each multivariate distribution can be decomposed into

its marginal distributions and a copula C that represents the dependence structure. Given a random

vector X = (X1, . . . , XN ) with absolutely continuous distribution F and density f , this relationship

can be written in terms of density as

f(x1, . . . , xN ) = c
(
F1(x1), . . . , FN (xN )

)
f1(x1) · · · fN (xN )

where c is a copula density and Fj and fj are the marginal distribution function and the density,

respectively, of Xj .

In the literature, there are many different bivariate copula families available that are widely

applied because of their flexibility and the fact that they are easy to compute. Unfortunately, for

the multidimensional setting, the choice of a multivariate copula is rather scarce, due to theoretical

and computational limitations.

Recently, graphical models have been applied in order to simplify the construction of multivariate

copulas. Indeed, the use of graphical structures allow to represent a multivariate copula via a set

of suitable bivariate ones; see e.g. Joe (1996), Bredford and Cooke (2002), Kirshner (2007), Aas

et al. (2009), Silva and Gramacy (2009), Elidan (2013), Stöber and Czado (2014), Krupskii and

Joe (2015), Dalla Valle et al. (2016) and Oh and Patton (2016).
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ii INTRODUCTION

One possible approach for the construction of multivariate copulas in terms of bivariate ones is the

Pair Copula Construction (PCC), introduced by Joe (1996) and largely applied in the literature. The

PCC permits to decompose a multivariate distribution into bivariate unconditional and conditional

copulas, called pair copulas or linking copulas. This factorization is not unique and therefore, in

order to organize all the possible factorizations, Bredford and Cooke (2001) and Bredford and Cooke

(2002) introduced graphical structures, called regular vines (R-vine), as pictorial representation of

PCCs. R-vines are built using a nested set of trees called vine structure. Usually, in concrete

inferential problem, in order to estimate the copula parameters and the vine structure, a two step

procedure is applied. Following Aas and Berg (2009) and Aas et al. (2009), the underlying graphical

structure is chosen a priori, by means of a preliminary dependence analysis, and then, given that

structure, the parameters of the pair copulas are estimated. Indeed, since the number of possible

pair copula structures increase very rapidly with the number of variables, the problem of a complete

inference of both the graphical structure and the copula parameters is an extremely difficult task.

Examples of frequentist two step procedures are the Inference Function for Margins (IFM), Joe

(1997), and the Canonical Marginal Likelihood (CLM), Genest et al. (1995). The combinatorial

complexity of the vine structures turns out to be problematic also in the Bayesian framework. This

leads to the use of suitable Bayesian two step approaches which avoid a direct complete Bayesian

inference. Recently, Gruber and Czado (2015a) and Gruber and Czado (2015b) propose complete

Bayesian model selection procedures for the analysis of regular vines. Unfortunately, due to the

nested structure of these kinds of copulas, their algorithms are very demanding.

In this thesis, in order to reduce the complexity of a fully Bayesian learning procedure, we propose

alternative Bayesian models based on tree copulas, introduced by Kirshner (2007), and on factor

copulas, see e.g. Krupskii and Joe (2013). These copulas are special cases of truncated regular

vines, Kurowicka (2011), and hence present a simpler underlying graphical structure.

Our interest is to apply copula functions to model and to study the dependence of time series. In

this context, the joint density of the innovations is typically described via a suitable copula, replacing

in this way the common assumption of joint normality, see e.g. Hofmann and Czado (2010), Min

and Czado (2010), Czado et al. (2011) . In this thesis, we focus on a specific time series model,

the AR(p). We assume to have a set of N AR(p) series in which the k-th component is given by

Xk,t =
p∑
i=1

αk,iXk,t−i + εk,t

where εt = (ε1,t, · · · , εN,t) is the vector of the innovations, assumed to be independent and identically

distributed. In this work, the alternative Bayesian copula models mentioned above are applied to

make inference on the law of the innovations of the AR(p) models.
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In our first model, we assume that the multivariate density of the innovations is represented via

a tree copula distribution which combines a Markov tree network with suitable bivariate linking

copulas. Through the use of the global Markov property associated to the tree structure, one reads

conditional independencies from the graph and obtains a useful decomposition of the multivariate

density in terms of bivariate linking copulas. More precisely, if the multivariate density f of the

innovations ε has Markov tree dependence structure described by a tree copula with set of edges E ,

then it factorizes as

f(ε1, .., εN ) =
∏

(l,m)∈E

cl,m
(
Fl(εl), Fm(εm)

) N∏
k=1

fk(εk),

where (l,m) denotes the edge between εl and εm and cl,m a bivariate copula density associated to

(l,m). In order to relax the limitations imposed from the assumption of the Markov tree structure,

we also study Bayesian models where the multivariate density is represented via a mixture (finite

and infinite) of tree copula distributions. In particular, for the infinite mixture model, we rely

on the Dirichlet process mixture model. In all these models, we proceed with a fully Bayesian

estimation that allows us to make inference also on the underlying graphical structure associated to

the multivariate density.

As an alternative to the tree copula models, we analyze the one-factor copula model. In this

case, the dependence among the random variables is explained via a latent variable V and again the

multidimensional density is decomposed in the product of suitable linking copulas. In the one-factor

copula model, one assumes that the variables ε1, · · · , εN are conditionally independent given a latent

variable V and, therefore, the joint density can be re-written as

f(ε1, . . . , εN ) =
∫ 1

0

N∏
k=1

(
cθk,0

(
Fk(εk), v

)
fk(εk)

)
dv

where ck,0 denotes the bivariate copula density between εk and V . The underlying graph associated

to a one-factor copula is fixed, but the presence of an additional latent variable allows for more

flexibility.

Finally, we study a Markov switching factor copula model. As usual, in a Markov switching

copula model, one assumes the presence of two or more distinct regimes that are characterized by

different levels of dependence among the examined variables. The switching mechanism is controlled

by an hidden latent state variable St that determines the specific copula structure of the innovations

at time t. (St)t≥1 is assumed to be a first order Markov chain in discrete time which takes values in

a finite set {1, . . . , R}. In particular, we suppose that the joint dependence structure in each regime

is given by a suitable one-factor copula. By permitting switching between the different regimes, this

model is able to capture more complex dependence patterns.
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For all the models, since we obtain posterior densities not in closed form, we develop suitable

MCMC algorithms. We rely on Metropolis-within-Gibbs methods in order to approximate pos-

terior quantities of interest. The most delicate step for the tree copula-based models is related

to the tree structures and copula parameters. To sample these parameters, we use a local move,

called tree-angular move introduced in Silva and Gramacy (2009). In this way, one proposes a

new tree structure and, then, given the new tree, the copula parameters are sampled using a suit-

able random walk proposal. Some MCMC code, written in MatLab, can be found at the link

http://matematica.unipv.it/nicolino/.

As a case study, we present an application of our methodologies to the analysis of Italian and

German energy markets. Our aim is to understand the different roles of the drivers of the energy

price, and to identify the dependence structure characterizing the market. Indeed, the power price

is strongly related to the price and quantity of raw materials used to produce it, such as coal, oil, gas

and also the carbon emission price (CO2). In particular, we consider daily time series of one-year

forward contracts for the commodities Power Italy, Power Germany, Brent (oil), TTF (gas), PSV

(gas), CO2 and Api2 (coal). We apply the different models to each domestic market in order to

obtain information on the dependence structure and we also proceed with portfolio analysis and

evaluation.

The general outline of this thesis is as follows. Chapter 1 presents the mathematical concepts and

the notations that will be used throughout this work. We provide the definition and main results on

copula functions and we introduce important dependence measures and their relations with copulas.

Moreover, we describe the particular copula structures used in the remaining Chapters. Finally,

we show how copula functions can be applied in time series models. In particular, we focus on

Bayesian AR-copula models where the joint density of the innovations is represented through a

suitable multivariate copula.

In Chapter 2, based on material from Bassetti et all. (2016), we study two alternative Bayesian

AR-copula methodologies where a tree copula and a finite mixture of tree copulas are, respectively,

considered. First, we focus on a tree copula model, in which the joint density of the innovations is

represented through a tree copula distribution. In our Bayesian approach, we assume that both the

underlying graphical structure associated to the tree copula and the linking copulas are unknown.

Hence, we consider a complete Bayesian inference for estimate the copula parameters and the tree

structure. In the second model, named tree copula mixture model, in order to overcome the limita-

tions imposed by a tree copula distribution, we consider a model in which the joint density of the

innovations is represented by a finite mixture of tree copulas. Also in this case, both the tree struc-

tures and the copula parameters are assumed unknown and are inferred with a complete Bayesian

approach. For both models, we present the related MCMC algorithms developed to approximate
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posterior quantities of interest. Finally, we study the performance of our models using different

simulation studies.

As an alternative to the mixture tree copula model where one needs to choose a priori the number

of mixture components, in Chapter 3 we develop a Bayesian non parametric approach by using the

Dirichlet Process tree copula model. In this case, the number of components is unknown a priori and

can be inferred from the data. At the beginning of the Chapter, we give a brief introduction to the

Dirichlet process and then we present our Bayesian model and the corresponding MCMC algorithm

based on the slice sampling approach, proposed by Walker (2007) and Kalli et al. (2011). Also

in this case, we perform a complete Bayesian inference on the copula parameters and on the tree

structures. Finally, we report the results obtained in a simulation study.

In Chapter 4, we analyze two models. In the first, named factor copula model, the innovations

of the AR time series are described via a one-factor copula. With this structure we have an additional

latent variable V and the innovations are assumed to be conditionally independent given V . In the

second case, we consider a Markov switching copula model to represent the multivariate distribution

of the innovations. In particular, we assume that, in each regime, the dependence structure is

given through a suitable one-factor copula. For each model, we present the corresponding MCMC

algorithm. For the Markov switching copula model, in order to simulate the hidden Markov chain,

we apply the forward filtering-backward sampling method, Carter and Kohn (1994) and Frühwirth-

Schnatter (1994). Finally, we consider alternative simulation studies in order to investigate the

performance of our models.

Finally, in Chapter 5, we apply the different copula-based models to the analysis of the Italian

and the German market and present the corresponding results. In particular, we focus on the

portfolio evaluations and on dependence structure analysis. For all the models, we obtain a graphical

tree representation of the dependence structure, via maximum a posteriori probability tree in case

of tree copula model or via the minimum spanning tree construction for the other cases. Concerning

dependence analysis, with the tree copula, mixture of tree copulas and factor copula models, we

discover some interesting findings. For the Italian market, the commodity that shows in most

of the cases direct connection with the Italian power price is the TTF. This commodity, in the

factor model, turns out also to be identified as “root” node. This is coherent with the fact that

in the Italian energy market, the power is mainly produced using gas. Moreover, we find always

a strong correlation between TTF and PSV, since they are both gas price, and a path of length

three connecting them to Api2, the coal price. For the German market, an edge between Api2 and

TTF is always presented and we find that Api2 is the commodity that plays a central role in the

factor copula models. Regarding portfolio analysis, our fully Bayesian procedure presents an overall

good performance for both the markets. For sake of comparison, we also consider a Bayesian IFM

procedure. We find that our fully Bayesian approach shows best results respect to the Bayesian
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IFM one in term of mean distances between the historical and predictive portfolios. Among all

the models, we obtain that the DP-tree model shows the lowest values of mean distances for both

market.

With regard to the Markov switching factor copula model, we consider the data from January

2013 to December 2014 and find 3 interesting regimes: state 1 associated to the observations of year

2013, state 3 to year 2014 and a third regime (state 2) that identifies the period of change from one

year to another. We discover that each regime is characterized by significantly different dependence

structures. In particular, state 2 shows higher volatility and higher correlations among the variables.

Acknowledgment. I’m grateful to ENEL Group (Global Trading, Modeling & Pricing Division)

for providing the data and for helpful comments and discussions. I also would like to thank the

referees for carefully reading my dissertation and for giving constructive comments and observations.



Chapter 1

Preliminaries

In this Chapter we introduce some results that we will use in the rest of the thesis. In particular

we provide the main definitions and results on copula functions and the different copula-based models

studied in the following part.

In Section 1.1 are presented fundamentals of copula theory, including the seminal theorem by

Sklar and some important copula families used in the literature. In Section 1.2 are described two

relevant dependence measures (upper tail and Kendall’s tau) and their relations to copulas. In

Section 1.3 we show how to construct particular copulas, named rotated copulas, using suitable

decreasing functions, while in Section 1.4 we focus on the copula structures analyzed in this thesis,

i.e. tree copula, mixture of tree copulas and factor copula. Finally, in Section 1.5 we give an

introduction to the use of copula in time series models, with particular attention to the AR-copula

models.

1.1 Copula Functions

Copula functions are useful instruments for studying the dependence between random variables.

They can be used to joint (or couple) one-dimensional marginal distributions, eventually belonging

to different families, to obtain a joint multivariate distribution. Due to their flexibility, copulas

showed their effectiveness in the dependence analysis in different areas. Examples of applications of

copulas include general multivariate time series [e.g. Hofmann and Czado (2010), Min and Czado

(2010), Czado et al. (2011)], energy market [e.g. Liu (2011), Wen et al. (2012), Wu et al. (2012),

Jaschke (2014), Marimoutou and Soury (2015)], financial data [e.g. Gruber and Czado (2015a),

Gruber and Czado (2015b), Laih (2014)] and many others.

In the following we briefly present the main results concerning the copula function and some

commonly used copula families.

In the rest of the thesis, (Ω,F ,P) denotes the underlying probability space where all the random

variables are defined.

1



2 CHAPTER 1. PRELIMINARIES

1.1.1 Basic Properties

This section provides the definition and a few of the fundamental properties of copulas.

Definition 1.1. A N -dimensional Copula C is a multivariate distribution function with standard

uniform margins on [0, 1].

Definition 1.2. If C is an N -dimensional absolutely continuous copula function, then its density c

is defined as

c(u1, . . . , uN ) = ∂C(u1, . . . , uN )
∂u1 · · · ∂uN

. (1.1)

In the above definition, the derivative is well-defined almost surely.

The following theorem elucidates the role that copula plays in linking a multivariate distribution

with its univariate margins.

Theorem 1.3 (Sklar, 1959). Let X1, X2, . . . , XN be random variables with distribution function

F1, F2, . . . , FN respectively, and joint distribution function F . Then there exists a N -copula C such

that for all x ∈ RN

F (x1, x2, . . . , xN ) = C
(
F1(x1), F2(x2), . . . , FN (xN )

)
. (1.2)

If F is a continuous distribution, then C is uniquely defined as

C(u1, . . . , uN ) = F
(
F−1

1 (u1), . . . , F−1
N (uN )

)
, (1.3)

where F−1
i (u) = inf{x : Fi(x) ≥ u}; otherwise, C is uniquely determined on

Ran(F1)×Ran(F2)× · · · ×Ran(FN ), where Ran(Fi) is the range of the marginal distribution.

Conversely, if C is an N -copula and F1, F2, . . . , FN are distribution functions, then the function

F defined by (1.2) is an N -dimensional distribution function with margins F1, F2, . . . , FN .

This theorem is due to Sklar (1959). For a proof see Theorem 2 in Schweizer and Sklar (1974)

or Theorem 2.10.9 in Nelsen (2006).

If F is absolutely continuous, its probability density function (pdf) can be easily derived from

the corresponding copula function C. In this case (1.2) can be rewritten in terms of densities and it

turns out that the joint pdf f is

f(x1, . . . , xN ) = c
(
F1(x1), . . . , FN (xN )

)
f1(x1) · · · fN (xN ) (1.4)

where f1, . . . , fN are the marginal densities of F .

Another important property of the copula functions is that they are invariant under increasing

transformations. For simplicity we state the next result only for the case N = 2.

Theorem 1.4. Let X1, X2 be random variables with joint distribution function F , marginal distri-

bution functions F1, F2 and corresponding copula C.
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1) If h1 and h2 are strictly increasing functions on Ran(F1) and Ran(F2), respectively, then the

copula function of the vector (h1(X1), h2(X2)) is C.

2) If h1 and h2 are strictly decreasing functions on Ran(F1) and Ran(F2), respectively, then the

copulas C1, C2, C3 of the pairs (h1(X1), X2), (h1(X1), h2(X2)), (X1, h2(X2)), respectively, are

independent of the particular choices of h1 and h2 and are given by

C1(u1, u2) = u2 − C(1− u1, u2)

C2(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2) (1.5)

C3(u1, u2) = u1 − C(u1, 1− u2).

For a proof of the previous theorem see Theorem 3 in Schweizer and Wolf (1981).

Sometimes, the copula defined in Equation (1.5) are called rotated copulas. More precisely, C1 is

usually referred as the 90◦ rotated copula, C2 as the 180◦ rotated copula and C3 as the 270◦ rotated

copula.

1.1.2 Elliptical Copulas

Elliptical copulas are copulas derived from elliptical distributions by the application of the Sklar’s

theorem. The class of elliptical distributions provides an important source of multivariate distribu-

tions such as the multivariate Normal and Student’s t distributions. In general, a N -dimensional

random vector X = (X1, . . . , XN ) is said to be elliptically distributed (or simply elliptical) if and

only if there exist a vector µ ∈ RN , a positive semidefinite symmetric matrix Σ ∈ RN×N , and a

function φ : R+ → R such that the characteristic function t 7−→ ϕX−µ(t) of X − µ corresponds to

t 7−→ φ(t′Σt), t ∈ RN . We recall that the characteristic function ϕX of a vector X is defined as

ϕX(t) = E
[

exp{itTX}
]
.

Definition 1.5. If F is an elliptical distribution function, then a copula C defined via Equation

(1.2) is called elliptical copula.

The two most relevant elliptical copulas are the Gaussian and Student’s t copula that we briefly

introduce.

Gaussian Copula. Let ΦN be the distribution function of a N -dimensional Normal distribution

N (0,Σ) with mean 0 and correlation matrix Σ such that it belongs to [−1, 1]N×N . Then, the

multivariate Gaussian copula C is given by

CΣ(u1, . . . , uN ) = ΦN
(
Φ−1(u1), . . . ,Φ−1(uN )

)
=
∫ Φ−1(u1)

−∞
. . .

∫ Φ−1(uN )

−∞

1√
(2π)N |Σ|

exp
{
− 1

2x
TΣ−1x

}
dx
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where |Σ| is the determinant of Σ, x = (x1, . . . , xN )T and Φ−1 is the inverse of the univariate

standard normal distribution.

If N = 2 and ρ ∈ (−1, 1) is the correlation coefficient, the expression reduces to

Cρ(u1, u2) =
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1
2π
√

1− ρ2
exp

{
− x2

1 − 2ρx1x2 + x2
2

2(1− ρ2)
}
dx1dx2.

The scatter plot of 200 i.i.d. observations simulated from a bivariate Gaussian copula is reported in

Figure 1.1.

Student’s t Copula. Let tν,Σ be the multivariate Student’s t distribution with a symmetric pos-

itive matrix Σ belonging to [−1, 1]N×N and ν degrees of freedom. Then, the multivariate Student’s

t copula is

Cν,Σ(u1, . . . , uN ) =tν,Σ
(
t−1
ν (u1), . . . , t−1

ν (uN )
)

=
∫ t−1

ν (u1)

−∞
. . .

∫ t−1
ν (uN )

−∞

Γ
(
ν+N

2
)
|Σ|−1/2

Γ
(
ν
2
)

(νπ)N/2
(

1 + 1
ν
xTΣ−1x

)− ν+N
2 dx

where t−1
ν is the inverse of the univariate distribution of Student’s t with ν degrees of freedom.

If N = 2, ρ ∈ (−1, 1) is the correlation coefficient and ν > 2, the expression reduces to

Cν,ρ(u1, u2) =
∫ t−1

ν (u1)

−∞

∫ t−1
ν (u2)

−∞

1
2π
√

1− ρ2

(
1 + x2

1 − 2ρx1x2 + x2
2

ν(1− ρ2)

)− ν+2
2 dx1dx2.

1.1.3 Archimedean Copulas

The Archimedean copulas are another important class of copulas, firstly named by Ling (1965).

They offer more flexibility then the elliptical ones, for example allowing asymmetric tails, and, at

least in the bidimensional case, they are easy to build and use.

Archimedean copulas are constructed using a function φ : [0, 1] → R+ ∪ {+∞} continuous,

decreasing, convex and such that φ(1) = 0 called generator. It is said strict generator wherever

φ(0) = +∞.

The pseudo-inverse φ[−1] of φ is defined as

φ[−1](u) =
{
φ−1(u) 0 ≤ u ≤ φ(0)
0 φ(0) ≤ u ≤ +∞.

The pseudo-inverse coincides with the usual inverse if φ is a strict generator.

Definition 1.6. Given a generator φ and its pseudo-inverse, an N -dimensional Archimedean copula

C is defined as

Cφ(u1, . . . , uN ) = φ[−1]
(
φ(u1) + · · ·+ φ(uN )

)
.

The Archimedean copulas are easily related to measures of association such as the Kendall’s tau

or the tail dependence measures, as shown in Section 1.2.

In the following, we present some commonly used families of one parametric Archimedean bi-

variate copulas.
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Figure 1.1: Scatterplots of N = 200 i.i.d. observations from different bivariate copula densities.

Gumbel copula. The generator function for the Gumbel copula is

φδ(x) = (− ln(x))δ

with pseudo-inverse function

φ
[−1]
δ (y) = e−y

1/δ

with x, y ∈ (0, 1) and δ ∈ [1,+∞). The 2-dimensional Gumbel copula distribution is given by

Cδ(u1, u2) = exp
{
− [(− ln u1)δ + (− ln u2)δ]1/δ

}
with density

cδ(u1, u2) = exp
(
x1 + x2 − (xδ1 + xδ2)1/δ

)
(xδ1 + xδ2)−2+ 2

δ (x1x2)δ−1
(

1 + (δ − 1)(xδ1 + xδ2)− 1
δ

)
where xi = (− log ui) for i = 1, 2 and u1, u2 ∈ [0, 1]. The scatter plot of 200 i.i.d. observations

simulated from a bivariate Gumbel copula is reported in Figure 1.1.

Clayton copula. The generator function for the Clayton copula is

φδ(x) = 1
δ

(
x−δ − 1

)
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with pseudo-inverse function

φ
[−1]
δ (y) = (1 + δy)−1/δ

,

x, y ∈ (0, 1) and δ ∈ (0,+∞). The 2-dimensional Clayton copula distribution is equal to

Cδ(u1, u2) =
[

max
(
u−δ1 + u−δ2 , 0

) ]−1/δ

with density

cδ(u1, u2) = (1 + δ)(u1u2)−1−δ (u−δ1 + u−δ2 − 1
)− 1

δ−2

u1, u2 ∈ [0, 1]. The scatter plot of 200 i.i.d. observations simulated from a bivariate Clayton copula

is reported in Figure 1.1.

Joe copula. The generator function for the Joe copula is

φδ(x) = − ln(1− (1− x)δ)

with pseudo-inverse function

φ
[−1]
δ (y) = 1− (1− exp(−y))1/δ,

x, y ∈ (0, 1) and δ ∈ [1,+∞). The 2-dimensional Joe copula distribution is

Cδ(u1, u2) = 1−
[
(1− u)δ + (1− v)δ − (1− u)δ(1− v)δ

]1/δ
with density

cδ(u1, u2) =
[
xδ1 + xδ2 − xδ1xδ2

] 1
δ−2

xδ−1
1 xδ−1

2

[
δ − 1 + xδ1 + xδ2 − xδ1xδ2

]
where xi = (1 − ui) for i = 1, 2 and u1, u2 ∈ [0, 1]. The scatter plot of 200 i.i.d. observations

simulated from a bivariate Joe copula is reported in Figure 1.1.

1.2 Dependence Measures

Copulas provide a natural way to study and measure dependence between random variables.

Indeed, as shown in Theorem 1.4, a copula is invariant under strictly increasing transformations

while the margins may be changed. This suggests that a copula captures the property of a joint

distribution which are invariant under strictly increasing transformations.

In this section we introduce important dependence measures and the main relations with the

copula functions. In particular we focus on the Kendall’s tau and the tail dependence measures that

are commonly used in applications and that will be also considered in the rest of the thesis.
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1.2.1 Kendall’s Tau

In this Sections, we present an important measures of association (concordance) known as

Kendall’s tau and its relation with copula functions.

Definition 1.7. The dependence measure Kendall’s tau of the random vector (X1, X2) with joint

distribution function F is defined as

τX1,X2 = 4
∫ ∞
−∞

∫ ∞
−∞

F (x1, x2)dF (x1, x2)− 1.

One can shown that the Kendall’s tau is simply the probability of concordance minus the prob-

ability of discordance, that is

τ = τX1,X2 = P ((X1 −X ′1)(X2 −X ′2) > 0)− P ((X1 −X ′1)(X2 −X ′2) < 0) ,

where (X ′1, X ′2) is an independent and identically distributed (i.i.d.) copy of (X1, X2); see e.g.

Kruskal (1958).

The empirical version of the Kendall’s tau is defined in terms of concordance as follows. Let

{(x1,i, x2,i), i = 1, . . . , n} a random sample of n observations from a random vector (X1, X2). Then

the empirical Kendall’s tau for the sample is given by

τn = 1(
n
2
) ∑

1≤i<j≤n
sign ((x1,i − x1,j)(x2,i − x2,j)) .

Equivalently, τn is the fraction of the number of concordant pairs minus the number of discordant

pairs of the sample over the total number of possible pairs.

The following theorem establishes a connection between a copula and the Kendall’s tau, and

provides a useful formula to calculate its values for some copula families.

Theorem 1.8. Let (X1, X2) be a vector with absolutely continuous copula C. Then the Kendall’s

tau for (X1, X2) is given by

τX1,X2 = 4
∫ ∫

[0,1]2
C(u, v)dC(u, v)− 1.

The proof follows immediately by a change of variable from Definition 1.7, see Schweizer and

Wolf (1981) or Theorem 5.1.3 in Nelsen (2006).

Corollary 1.9. Let (X1, X2) be a vector with absolutely continuous Archimedean copula C generated

by φ. Then the Kendall’s tau is given by

τX1,X2 = 1 + 4
∫ 1

0

φ(t)
φ′(t)dt.

For a proof see e.g. Theorem 5.1.4 in Nelsen (2006).

In the following, as an example, we report the Kendall’s tau for some specific copula families.
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Example 1.1. If C is a bivariate Gaussian Cρ or a Student’s t copula Cν,ρ, then the Kendall’s tau is

τρ = 2
π

arcsin(ρ).

If C is a Gumbel copula Cδ, its Kendall’s tau is

τδ = 1− 1
δ

;

if Cδ is a Clayton copula then

τδ = δ

δ + 2;

and in case of a Joe copula the Kendall’s tau is

τδ = 1− 4
∞∑
k=1

1
(k(δk + 2)(δ(k − 1) + 2)).

1.2.2 Tail dependence

Tail dependence coefficients are important in modeling dependence of extreme events. Roughly

speaking they represent the probability that a random variable exceeds a certain threshold given

that another random variable has already exceeded that threshold. More formally, the upper and

lower tail dependence coefficients are defined as follows.

Definition 1.10. Let (X1, X2) a random vector with marginal distribution functions F1 and F2,

respectively. The upper tail dependence coefficient of (X1, X2) is defined as:

λU = lim
t→1−

P
[
X2 > F−1

2 (t)|X1 > F−1
1 (t)

]
.

Analogously, the lower tail dependence coefficient of (X1, X2) is defined as:

λL = lim
t→0+

P
[
X2 ≤ F−1

1 (t)|X2 ≤ F−1
2 (t)

]
.

These parameters, as the Kendall’s tau, depend only on the copula of X1 and X2 as shown in

following theorem.

Theorem 1.11. Let (X1, X2) be a vector with absolutely continuous copula C. If the upper and

lower tail coefficient exist, then they are given by

λU = 2− lim
t→1−

1− C(t, t)
1− t

λL = lim
t→0+

C(t, t)
t

.

For a proof of the theorem see Nelsen (2006), Theorem 5.4.2.
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Corollary 1.12. Let (X1, X2) be a vector with absolutely continuous Archimedean copula C generated

by φ. Then

λU = 2− lim
t→1−

1− φ[−1](2φ(t))
1− t = 2− lim

x→0+

1− φ[−1](2x)
1− φ[−1](x)

λL = lim
t→0+

φ[−1](2φ(t))
t

= lim
t→+∞

φ[−1](2x)
φ[−1](x)

.

For a proof see Theorem 5.4.3. in Nelsen (2006).

As an example, we report the upper and lower tail measures for some specific copula families.

Example 1.2. If C is a bivariate Gaussian Cρ then the tail coefficients are

λU = λL = 0,

while, for a Student’s t copula Cν,ρ,

λU = λL = 2tν+1

(
−

√
(ν + 1)(1− ρ)

1 + ρ

)
.

If C is a Gumbel copula or a Joe copula Cδ, then the tail coefficients are

λU = 2− 21/δ λL = 0;

and, in case of Clayton copula, they are equal to

λU = 0 λL = 2−1/δ.

1.3 Rotated Copulas

In order to allow for more general forms of dependence it is possible to modify existing bivariate

copula families using rotations. For example, if a copula C admits only positive dependence, as the

Archimedean copulas presented in 1.1.3, the 90◦ rotated version exhibits only negative dependence.

The list of the possible rotations of a bivariate copula density c is given below:

c90(u1, u2) =c(1− u1, u2) 90◦ rotated copula, (1.6)

c180(u1, u2) =c(1− u1, 1− u2) 180◦ rotated copula,

c270(u1, u2) =c(u1, 1− u2) 270◦ rotated copula.

Through the rotations we are able to study both positive and negative dependence. Note that the

functions in (1.6) are the densities of the copula distributions defined in Theorem 1.4.

For example, using rotations, we obtain the Double Clayton and Double Gumbel copulas. These

copulas combine different rotations of the usual Gumbel and Clayton copula to allow the modeling

of negative dependence. In order to define the different rotations it is useful to re-parameterize
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these copulas in terms of Kendall’s tau. Using the relation between the copula parameter δ and

the Kendall’ tau τ , shown in Example 1.1, we can work with Gumbel and Clayton copula with

parameter τ .

Starting from cG(u, v; τ), the Gumbel copula density with Kendall’ tau equal to τ , the Double

Gumbel copula of first kind of parameter τ is defined by

cDG1(u, v; τ) =
{
cG(u, v; τ) for τ > 0
cG(1− u, v;−τ) for τ < 0

while the Double Gumbel copula of second kind is

cDG2(u, v; τ) =
{
cG(1− u, 1− v; τ) for τ > 0,
cG(u, 1− v;−τ) for τ < 0.

An example of Double Gumbel is reported in Figure 1.2.

Analogously, using the Clayton copula cC(u, v; τ) re-parameterized with the Kendall’ tau, we

define the Double Clayton of first kind DC1 and of second kind DC2 as

cDC1(u, v; τ) =
{
cC(u, v; τ) for τ > 0
cC(1− u, v;−τ) for τ < 0

cDC2(u, v; τ) =
{
cC(1− u, 1− v; τ) for τ > 0,
cC(u, 1− v;−τ) for τ < 0.

1.4 Copulas and Graphical Models

As already noted, there are many parametric copula families available for the two dimensional

case, see e.g. Joe (1997), Nelsen (2006). On the contrary, in the multivariate setting, the use of

families different from Normal and Student’s t is rather scarce, due to computational and theoretical

limitations.

Recently, graphical models have been used to represent a multivariate copula via a set of bivariate

ones, simplifying in this way the construction of multivariate copulas. One approach, widely studied

in literature, is the Pair Copula Constructions (PCCs), firstly introduced by Joe (1996). Through

this construction, the multivariate distribution is represented via a cascade of bivariate conditional

copulas, also known as pair copulas or linking copulas. The PCC is order dependent and the

factorization is not unique. For this reason, Bredford and Cooke (2001) and Bredford and Cooke

(2002) introduced graphical structure called regular vine (R-vine) as pictorial representation of PCCs

in order to organize all the possible factorizations. R-vines represent the decomposition of the joint

distribution into bivariate components using a nested set of trees. The most commonly used regular

vines are the C-vines and D-vines, see Kurowicka and Cooke (2006).

In order to use PCC in a concrete inferential problem, one needs to estimate both all the pair

copulas and the particular vine structure. Due to the fact that the number of possible vine structures

is increasing very rapidly with the number of variables, the problem of fitting an optimal pair copula
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Figure 1.2: Scatterplots of N = 200 i.i.d. observations from Double Gumbel copula with parameter
|τ | = 0.75.

for a given set of data is an extremely difficult task. This problem arises both in the frequentist and

Bayesian framework. For this reason, following e.g. Aas and Berg (2009) and Aas et al. (2009),

usually the underlying structure of a vine copula is chosen a priori and, given that structure, the

parameters of the linking copulas are estimated in a second step. Examples of a frequentist two step

procedure can be found in Liu (2011), Lu et al. (2011), Wu et al. (2012), Jaschke (2014), Arreola

(2014), Laih (2014).

Also in the Bayesian framework, the combinatorial complexity of the vine structures turns out

to be problematic and leads to the use of suitable Bayesian two step approach where the underlying

copula structure is selected a priori, see e.g. Hofmann and Czado (2010), Min and Czado (2010)

and Czado et al. (2011). Recently, complete Bayesian model selection procedures for the analysis

of regular vines have been proposed in Gruber and Czado (2015a) and Gruber and Czado (2015b).

These authors developed a Bayesian approach for vine with structural learning. Unfortunately, due

to the nested structure of these kinds of copulas, the algorithms are computationally demanding.

In order to reduce the complexity of the learning procedure and to develop an efficient fully

Bayesian approach to estimate all the parameters of the model, we focus on two different copula
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structures which are strongly related to vines: the tree copulas and the factor copulas, which are

both particular types of truncated regular vines, Kurowicka (2011).

1.4.1 Tree Copula

A tree copula structure combines copula functions and Markov tree network, a particular graph-

ical model, in order to construct multivariate distributions. They were introduced by Kirshner

(2007) and extensions to mixture of tree copulas were studied by Kirshner and Smyth (2007) and

Silva and Gramacy (2009).

It is well-known that joint probability distributions can be described in term of probabilistic

graphical models, where the structure of the graph is used to provide a pictorial representation of

the conditional independence relationships between the examined variables.

A graph is a collection of nodes and edges between the nodes; each node in the graph represents

a random variable and the edges represent the dependencies between these variables. In order to

read conditional independencies from the graph one assumes the global Markov property. According

to this property nonadjacent variables on a path are conditionally independent given any set of

variables separating them. For more details on graphical models see e.g. Lauritzen (1996).

In this thesis, we consider a Markov tree network (hereafter Markov tree), a particular type of

graphical model that has an undirected tree as underlying graph. An undirected tree is defined by

a set of nodes V = {1, . . . , N} and a set of edges E (unordered pair of nodes) with no cycles. Given

the set of nodes, the structure of the tree is uniquely defined by the set of edges E . In the following

we identify the structure of a tree only via its edge set E , and henceforth we denote with E the tree

structure. Over N nodes there are NN−2 possible tree structures, and we indicate the space of these

tree structures by EN .

LetX be a random vector with multivariate (positive) pdf f on X ⊂ RN that can be represented

by a Markov tree with edge set E . It follows that its density factorizes as

f(x1, .., xN ) =
[ ∏

(l,m)∈E

fl,m(xl, xm)
fl(xl)fm(xm)

]
N∏
k=1

fk(xk), (1.7)

where fk is the marginal density of Xk and fl,m is the joint density of (Xl, Xm).

In the tree copula construction of Kirshner (2007) each density fl,m in (1.7) is represented by

the corresponding bivariate copula density. More precisely, for every edge (l,m) ∈ E , using (1.4)

and Sklar’s theorem, there is a bivariate density copula cl,m such that

fl,m(xl, xm)
fl(xl)fm(xm) = cl,m

(
Fl(xl), Fm(xm)

)
, (1.8)

where Fl and Fm are the marginal cdfs of Xl and Xm. Hence, using (1.8), equation (1.7) can be

rewritten as

f(x1, .., xN ) =
∏

(l,m)∈E

cl,m
(
Fl(xl), Fm(xm)

) N∏
k=1

fk(xk),
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Figure 1.3: Example of tree copula structure on 4 variables.

and the corresponding copula density is c (u1, . . . , uN ) =
∏

(l,m)∈E cl,m(ul, um).

Conversely, if a bivariate copula cl,m(ul, um|θl,m), parameterized through a parameter θl,m, is

associated to every edge (l,m) of E , then the function cθ(u1, . . . , uN ) =
∏

(l,m)∈E cl,m(ul, um|θl,m) is

an admissible copula density, and

fθ(x1, .., xN ) =
∏

(l,m)∈E

cl,m
(
Fl(xl), Fm(xm)|θl,m

) N∏
k=1

fk(xk) (1.9)

is an admissible density for X with margins fk’s; see Kirshner (2007) for more details.

In the rest of the thesis, we simplify the notation as follows. If m is the parent node of l in the

directed version of E with root node 1, we write cθl,m(ul, um) in place of cl,m(ul, um|θl,m); otherwise

if l is the parent node of m we set cl,m(ul, um|θl,m) = cθm,l(um, ul). Hence, from now on in place of

(1.9) we write
∏

(l,m)∈E cθl,m
(
Fl(xl), Fm(xm)

)∏N
k=1 fk(xk) with the above convention.

An example of tree copula distribution on 4 variables is reported in the following.

Example 1.3. The joint density f of the variables X1, X2, X3, X4 can be always decompose as

f(x1, x2, x3, x4) = f1(x1)f2|1(x2|x1)f3|1,2(x3|x1, x2)f4|1,2,3(x4|x1, x2, x3).

If we also assume that f has a Markov tree dependence structure described by the tree copula E of

Figure 1.3, then it further factorizes as

f(x1, x2, x3, x4) = f1(x1)f2|1(x2|x1)f3|1(x3|x1)f4|3(x4|x3) (1.10)

= f1(x1)f1,2(x1, x2)
f1(x1)

f1,3(x1, x3)
f1(x1)

f3,4(x3, x4)
f3(x3)

= cθ1,2 (F1(x1), F2(x2)) cθ1,3 (F1(x1), F3(x3)) cθ3,4 (F3(x3), F4(x4)
4∏
k=1

fk(xk)

where in (1.10) we use the conditional independencies encoded by E .
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1.4.2 Mixture of Tree Copulas

The assumption of Markov tree dependence could be quite restrictive. A possible solution is

to consider a copula obtained as a mixture of tree copulas. In fact any convex combinatorial of

copula functions is a copula. In this way, we preserve the relative low complexity of the Markov tree

structures, taking also into account richer dependencies between the variables.

A mixture of Markov tree copulas is given by

c(u1, . . . , uN ) =
D∑
d=1

wd
∏

(l,m)∈Ed

c
θ

(d)
l,m

(ul, um),

where D ≤ +∞ is the number of mixture components, (wd)d=1,...,D are positive weights with∑D
d=1 wd = 1, Ed (d = 1, . . . , D) is the tree structure of the d-th component of the mixture,

and {θ(d)
l,m} are the copula parameters corresponding to the tree structure Ed. Consequently, if

X = (X1, . . . , XN ) is a random vector with density f that is a mixture of tree copulas, then it

factorizes as

f(x1, .., xN ) =
D∑
d=1

wd
∏

(l,m)∈Ed

c
θ

(d)
l,m

(
Fl(xl), Fm(xm)

) N∏
k=1

fk(xk).

Note that the graphical model associated to a mixture of different trees structures cannot be

straightforwardly identified. For example, even if two variables Xi and Xj are separated by another

variable Xk in every single tree of the mixture, this will not necessary imply that Xi and Xj are

separated by Xk in the mixture structure; see Meilă and Jordan (2000) for more details.

In order to obtain a representative graphical structure for a mixture distribution, one can built a

complete weighted graph in which the weight of each edge, say (l,m), is related to some measure of

dependence between the variables Xl and Xm. For example, one can consider weights functions of

an appropriate pairwise dependence measure such as the Kendall’s tau or the correlation coefficient.

If one is interested in a representative tree structure associated to the mixture, one can apply the

Minimum Spanning Tree (MST) approach to extract a tree from the weighted graph, see e.g. Wang

and Xie (2016). Let us recall that the Minimum Spanning Tree is the spanning tree that minimize

the sum of edge weights.

It is worth noticing that, in general, from the MST structure we can not read any conditional

independence of the variables. In particular there is no connection between this tree and a possible

Markov Tree structure of the joint distribution of the variables.

In this thesis we consider two weighted graphs based on different quantities. In the first case, we

associate to each edge (l,m) the absolute value of the Kendall’s tau between the variables Xl and

Xm, obtaining the weighted graph Γτ . In the second case, we consider the quantity

Υ(l,m)(E,w) =
D∑
d=1

wd1{(l,m) ∈ Ed}, (1.11)
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that represents the global weight associated to edge (l,m) in the mixture with trees E = (E1, . . . , ED)

and weights w = (w1, . . . , wD), constructing the weighted graph Γw. In order to find the tree

structures that maximize the considered quantities, we need to redefine the weights accordingly.

More precisely, if one uses the Kendall’s tau τ , the weights will be defined as 1 − |τ |, while in the

other case as 1−Υ(l,m). Starting from these two new weighted graphs, we construct the corresponding

MST, that in the following will be denoted by τMST and wMST , respectively.

In practice, in order to obtain the previous graphs, one needs to estimate the previous quantities

(i.e. the Kendall’s taus and the Υ(l,m)s).

1.4.3 Factor Copula

In a factor copula model the dependence among the random variables is explained via one or

several latent factors and it is based on bivariate copulas. Factor copulas extend multivariate normal

conditional independence models as shown in Joe (2014). The case with one latent factor was

originally developed in Joe (2011) and later generalized to arbitrary numbers of factors in Krupskii

and Joe (2013). The proposed structured copulas are special cases of truncated vines with latent

variables, where the root nodes are represented by the latent factors. Krupskii and Joe (2013) shows

that, for some financial return data, the factor copula model presents a better fit than truncated

vines in terms of the Akaike or Bayesian information criteria.

Let X = (X1, . . . , XN ) be a random vector with multivariate (positive) cdf F on X ⊂ RN

with density f . In a p-factor copula model, we assume that X1, . . . , XN are conditional independent

given p latent variable V1, . . . , Vp and that these variables are independent and identically distributed

uniformly on (0, 1). It turns out that the joint distribution function F is equal to

F (x1, . . . , xN ) =
∫ 1

0

N∏
k=1

Fk|V1,...,Vp(xk|v1, . . . , vp)dvp · · · dvp (1.12)

where Fk|V1,...,Vp denotes the conditional distribution of Xk given V1, . . . , Vp.

In this thesis we focus on the case with p = 1. In the one-factor copula model, we can eas-

ily rewrite equation (1.12) in terms of suitable bivariate copula density. In this case, the joint

distribution is given by

F (x1, . . . , xN ) =
∫ 1

0

N∏
k=1

Fk|V (xk|v)dv

and, since Fk|V (xk|v) = ∂
∂vFk,V (xk, v) almost everywhere, the joint pdf is

f(x1, . . . , xN ) =
∫ 1

0

N∏
k=1

fk,V (xk, v)dv

where fk,V is the bivariate pdf of (Xk, V ).
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Figure 1.4: Graphical structure of a one-factor copula with N=6 (on the left) and the corresponding
truncated C-vine at the first level (on the right).

As in the tree copula structure, to each bivariate density fk,V we can associate a corresponding

bivariate copula density cθk,0 parameterized through a parameters θk,0. Through the use of the

bivariate copulas, we obtain that the joint density is given by

f(x1, . . . , xN ) =
∫ 1

0

N∏
k=1

(
cθk,0

(
Fk(xk), v

)
fk(xk)

)
dv.

For each copula parameter we use the notation θk,0 to emphasize the connection with the tree

copula. Indeed, the one-factor copula model coincides with a tree copula, i.e. a truncated C-vine at

the first level, where the root node is represented by the latent variable. The copula with parameter

θk,0 is associated to an edge of this structure with neighbor node Xk and V . In Figure 1.4 is reported

the graphical structure of a one-factor copula with N = 6 and the structure of the corresponding

truncated C-vine at the first level.

In the factor model, the pictorial representation of the dependence structure among the variable

(X1, . . . , XN , V ) is obtained straightforwardly. On the contrary there is no direct representation of

the dependence structure of (X1, . . . , XN ). Once again, through the use of the MST approach, we

can built the representative tree for the variables of interest.

1.5 Copula and Time Series Models

In many time series applications copula functions are applied to model and study the dependence

structure among the variables of interest. In this context, the copula are used to represent the joint

density of the innovations, replacing the common assumption of joint normality.

Very broadly, a set of N time series can be represented as

Xt,k =Gt(Ot−1, εk,1:t;αk) k = 1, . . . , N

εt,k ∼Fνk(·) i.i.d.
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where Gt is a suitable function that depends on the innovations εk,1:t = (εk,1, . . . , εk,t), on some

parameters αk, and on Ot−1 that denotes the information up to time t, for t = 1 . . . , T . The

innovations are assumed to be i.i.d. with distribution Fνk , eventually affected by parameters νk and

with density fνk .

A classical example of time series is the GARCH(m,n) model defined as

Xk,t = σk,tεk,t

σ2
k,t = w +

m∑
i=1

ak,iXk,t−i +
n∑
j=1

bk,jσ
2
k,t−j

where εk,t ∼ Fνk(·) i.i.d. In this case, αk = (w,ak, bk) with ak = (ak,1, . . . , ak,m), bk = (bk,1, . . . , bk,n)

and Ot−1 = {(x1,s, . . . , xN,s) s = 1, ..., t− 1}. Another typical example is the ARMA(p, q) model

described as

Xk,t =
m∑
i=1

ak,iXk,t−i +
n∑
j=1

bk,jεk,t−j + εk,t

where the innovations are assumed i.i.d. with marginal distribution Fνk .

In the copula-based models, the joint density of the innovations is represented through a copula

function c(·; Φ) depending on some parameter Φ. With this assumption, for any fixed t, the joint

density of εt := (ε1,t, . . . , εN,t) is given by

fεt(ε1,t, . . . , εN,t|Φ,ν) = c
(
Fν1(ε1,t), . . . , FνN (εN,t); Φ

) N∏
k=1

fνk(εk,t), (1.13)

where ν = (ν1, . . . , νN ) is the collection of the marginal parameters.

1.5.1 Frequentist Inference

As for the inference on the parameters, in literature, most applications of copulas and time series

relay on frequentist approach where a two steps estimation procedure is usually applied. The idea

is to get approximate i.i.d. residuals and then pseudo copula data to be used in estimating the

copula parameter Φ. Under the approach known as Inference Function for Margins (IFM hereafter),

in a first step, the parameters (α̂k, ν̂k) of each univariate marginal model are estimated, for exam-

ple via maximum likelihood or least squares. Using the time series parameters α̂k, the residuals

(ε̂1,t, . . . , ε̂N,t) are obtained and then, applying the estimated marginal cumulative distribution func-

tions (cdfs), the pseudo copula data û1,t = Fν̂1(ε̂1,t), · · · , ûN,t = Fν̂N (ε̂N,t) are determined. In a

second step, one uses the pseudo copula data to estimate the copula parameters by maximizing the

pseudo likelihood function

`(Φ|OT , ν̂, Â) =
T∏
t=1

c(û1,t, . . . , ûN,t; Φ)

where Â = (α̂1, . . . , α̂N ) and ν̂ = (ν̂1, . . . , ν̂N ), see Joe (1997).
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Another possible procedure is the Canonical Marginal Likelihood (CML) in which, firstly the

parameters (α̂1, . . . , α̂N ) are estimated and used to obtain the residuals. Secondly, the pseudo

copula data (û1,t, . . . , ûN,t) are determined through the use of the empirical distribution function

F̂k defined as

F̂k(·) = 1
T

T∑
t=1

1(ε̂k,t ≤ ·)

where 1(·) is the indicator function. Then, through (û1,t, . . . , ûN,t), the copula parameters are

obtained by maximizing the pseudo copula likelihood, see e.g. Genest et al. (1995).

Examples of these frequentist approaches applied to bivariate time series can be found in Lu

et al. (2011), Wen et al. (2012), Wu et al. (2012), Jaschke (2014), Laih (2014); for higher

dimensional cases see, e.g., Liu (2011) and Arreola (2014).

1.5.2 Bayesian Inference

As an alternative to the frequentist procedure, a Bayesian approach can be considered. In this

case, it is required to specify a prior distribution on the parameters of the model and proceed with

Bayesian learning. If we denote with π0(·) the prior density on the parameters (Φ,ν,A), through

the Bayes’ theorem, we obtain the posterior density

π(Φ,ν,A|OT ) ∝ L(OT |Φ,ν,A)π0(Φ,ν,A) (1.14)

where L(·) is the likelihood of the observations and A = (α1, . . . ,αN ).

In some cases, to assume a prior for all the parameters and proceed with a fully Bayesian approach

can be computationally demanding and a two step estimation method, similar to the IFM/CML, can

be considered. For example, Min and Czado (2010) applies a similar procedure to GARCH models

where the law of the innovations is represented through a pair copula. Firstly, GARCH margins

are fitted, and transformed non-parametrically to pseudo copula data; then the parameters of the

pair copula, with bivariate t-copulas as building blocks, are estimated. A more complete Bayesian

approach is considered by Czado et al. (2011), where fully Bayesian inference in a pair copula

with t-copula building blocks and AR(1) margins is studied. A fully Bayesian inference for models

with GARCH(1,1) margins with t-innovations coupled with a pair copula has been developed by

Hofmann and Czado (2010). It is worth noticing that, in the previous works, the structure of the

pair copula is chosen a priori, following Aas and Berg (2009). Recently, Gruber and Czado (2015a)

and Gruber and Czado (2015b) propose Bayesian model selection procedures for the analysis of the

structure of regular vines. In the first work, marginal DLM time series models are considered and a

Bayesian two-step process is applied for estimating the parameters of interest. Firstly, the marginals

parameters are computed and then they are used in a sequential Bayesian strategy where the pair

copulas are selected. Gruber and Czado (2015b) present a fully Bayesian approach applied to

DLM time series models that allows to select the structure of the vine copula.
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1.5.3 Bayesian AR-Copula Model

In this thesis, we focus on one of the simplest time series models, the autoregressive one. Let us

recall that a time series (Xt)t≥1 follows an autoregressive model of order p, AR(p), if

Xt =
p∑
i=1

αiXt−i + εt for t = 1, 2, ...

where the innovations ε1, ε2, . . . are independent and identically distributed.

We shall consider N time series, (Xk,t), t = 1, . . . , T for k = 1, . . . , N , where every series follows

an AR(p) model with a fixed p. The k-th component of the panel is given by

Xk,t =
p∑
i=1

αk,iXk,t−i + εk,t

εk,t ∼ Fνk ,

where αk = (αk1, . . . , αkp) and νk are unknown parameters. In the previous expression Fνk denotes

the univariate marginal cdf of the innovations with density function fνk . The innovation vectors

εt = (ε1,t, . . . , εN,t) for t = 1, . . . , T are assumed to be independent and identically distributed.

We suppose that the joint density of the innovations is represented through a suitable copula

function c(·; Φ) as in Equation (1.13).

For t > p and for each k, using the transformation

εk,t = xk,t −
p∑
i=1

αk,ixk,t−i, (1.15)

we can express the joint conditional density ofXt = (X1,t, . . . , XN,t) given the previous observations

Ot−1 = {(x1,s, . . . , xN,s) , s = 1, ..., t− 1}, as

fXt
(x1,t, . . . , xN,t|Φ,ν,A,Ot−1) =c

(
Fν1(x1,t −

p∑
i=1

α1,ix1,t−i), . . . , FνN (xN,t −
p∑
i=1

αN,ixN,t−i); Φ
)
×

N∏
k=1

fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
.

Hence, the likelihood of the observations is

L(OT |Φ,ν,A) =
T∏
t=1

c

(
Fν1(x1,t −

p∑
i=1

α1,ix1,t−i), . . . , FνN (xN,t −
p∑
i=1

αN,ixN,t−i); Φ
)
×

N∏
k=1

fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)

where the first p observations, denoted by (x0, . . . , x−p+1), are set equal to zero for simplicity.

In this thesis, we propose different Bayesian copula-based models to represent the joint density

of the innovations. In particular we study the following models: a tree copula model where the

dependence structure among the innovations is given by a tree copula (Section 2.1 ), a finite and an
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infinite mixture of tree copula models (Sections 2.3 and 3.2 respectively) and, finally, a one-factor

copula model (Section 4.1). One of the advantages of all these models is that they allow us to

write the joint density of the innovations in terms of suitable bivariate copulas. In the rest of the

thesis, we consider a given set of bivariate copula densities depending on some parameters θl,m where

l,m = 1, . . . , N − 1 for the tree copula models and l = 1, . . . , N and m = 0 for the factor copula

model. Moreover, we assume that the innovations have univariate Normal marginal distributions

with νk = (µk, pk) mean and precision parameters.

As for the linking copulas, we restrict our attention to Gumbel, Clayton and Joe copulas, pre-

sented in Section 1.1.3, that allow us to study upper/lower tail dependence, and that can be easily

re-parameterized through these measures, as showed in Example 1.2. For the Gumbel and Joe cop-

ulas we use the upper tail parameter, setting θl,m = λUl,m, while for the Clayton copula the lower

tail parameter, θl,m = λLl,m.

One possibility is to study a model in which a single family is fixed for all the linking copulas.

As an alternative, one can assume to have different copulas families associated to the edges of the

underlying structure. In this case, it can be useful to express the alternative copulas in terms of

a common parameter. For this reason, we consider only Gumbel and Clayton copulas rewritten in

term of Kendall’s tau. We don’t use the Joe copulas, since for this type of copula, the relation

between the copula parameter δ and the Kendall’s tau does not have a closed form expression, see

Example 1.1. Finally, since Clayton and Gumbel copulas have only positive correlation, we also

consider their rotations in order to capture negative dependence, i.e. we use Double Gumbel and

Double Clayton copulas introduced in Section 1.3.

Summarizing, in the following chapters, we assume θl,m = λ
L/U
l,m ∈ (0, 1) if a given family of cop-

ulas (Clayton, Gumbel or Joe) is fixed for all the bivariate copulas, while we set θl,m = (τl,m, ζl,m) ∈

(−1, 1) × H where H = {DG1, DG2, DC1, DC2} if each bivariate copula can be a Double Gumbel

or a Double Clayton (Combined model).

1.5.4 Bayesian AR-Markov Switching Copula Model

Markov switching models, also called regime switching or hidden Markov models, are time se-

ries models which allow for two or more distinct regimes. The regime changes reflect changes in

the behavior of time series characterized by different level of dependence, that may be caused by

various events, such as economic recession or abrupt variations in government policy. The switching

mechanism is controlled by an unobservable state variable that follows a Markov Chain process.

Regime-switching models were introduced in econometric by Hamilton (1989) and have been widely

applied in economics and finance.

One approach to account for the different levels of dependence is to switch between different

copula structures. Examples of regime-switching copula models can be found in Rodriguez (2007),
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Okimoto (2008), Cholette et al. (2009), Garcia and Tsafack (2011), Stöber and Czado (2014).

In a regime switching copula model, the dependence among N time series (Xk,t), t = 1, . . . , T ,

is driven by an hidden latent state variable St, that determines the specific copula structure of the

innovations.

As usual in the Markov Switching approach, (St)t≥1 is assumed to be a first order Markov chain

(MC) in discrete time which takes values in a finite set R = {1, . . . , R}. The law of (St)t≥1 is

characterized by its transition matrix Q with elements qi,j := P(St = i|St−1 = j) for i, j = 1, . . . , R

and initial distribution (ρ1, . . . , ρR) .

In an AR-Markov Switching copula model, one deals with a set of N AR(p) time series and

assumes that the conditional joint density of the innovations εt = (ε1,t, . . . , εN,t), for any fixed t,

given the regime St = st, is equal to

fεt(ε1,t, . . . , εN,t|st,Φ,ν) = c
(
F
ν

(st)
1

(ε1,t), . . . , Fν(st)
N

(εN,t); Φ(st)
) N∏
k=1

f
ν

(st)
k

(εk,t) (1.16)

where Φ = (Φ(1), . . . ,Φ(R)) collects all the copula parameters and, analogously, ν = (ν(1), . . . ,ν(R))

the marginal parameters, with ν(r) = (ν(1)
1 , . . . , ν

(R)
N ).

In general, one can assume that also the time series coefficients vary at the changes of regimes. In

particular, if we denote with A the collection of the AR parameters in each regime, i.e.

A = {(αr1, . . . ,αrN ), r = 1, . . . , R}, using the transformation (1.15), we obtained that the joint

conditional density of Xt given the latent chain St = st, the parameters and the previous observa-

tions Ot−1 is

fXt
(x1,t, . . . , xN,t|st,Φ,ν,A,Ot−1) =

= c

(
F
ν

(st)
1

(x1,t −
p∑
i=1

α
(st)
1,i x1,t−i), . . . , Fν(st)

N

(xN,t −
p∑
i=1

α
(st)
N,i xN,t−i); Φst

)
×

N∏
k=1

f
ν

(st)
k

(
xk,t −

p∑
i=1

α
(st)
k,i xk,t−i

)
.

In this thesis, we focus on regime switching copula model where the dependence structure in each

regime is represented via a one factor copula and we suppose that the AR parameters do not depend

on the hidden states, see Section 4.3. Also in this case, we consider models in which a single copula

family is assumed for all the bivariate copulas (i.e Gumbel, Clayton or Joe copulas re-parameterized

through tail measure) or models that allow to have different copula families associated to the linking

copulas (i.e. Double Gumbel and Double Clayton re-parameterized through Kendall’s tau).

It is important to observe that the Bayesian models we will describe in Sections 2.1, 2.3, 3.2, 4.1

and 4.3 can be easily adapted to other type of copulas and/or marginal distributions.
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1.5.5 Model Selection Analysis

In this thesis, we propose different models to represent the joint density of the innovations and

hence we face the problem of model selection. Many authors have examined this problem, from both

frequentist and Bayesian perspectives, and many tools have been suggested in the literature, see e.g.

Burnham and Anderson (2002), Claeskens and Hjort (2008).

Here, we rely on the Bayesian Deviance Information Criterion (DIC) introduced by

Spiegelhalter et al. (2002), and on the DIC3 for mixture models, see Celeux et al. (2006)

and Richardson (2002).

Given a set of data y with likelihood function f(y|ϕ) depending on a set of parameters ϕ, the

DIC is defined as

DIC = −4Eϕ
[

log f(y|ϕ)|y
]

+ 2 log f(y|ϕ̃)

where ϕ̃ is a posterior estimate of ϕ (a common choice is the posterior mean).

In mixture model the set of parameters ϕ is not always identifiable, and consequently we cannot

obtain ϕ̃ in a straightforward way. For this reason, we replace the term depending on ϕ̃ in equation

(1.17) with a function invariant under permutation. A natural choice is to consider an estimator of

the density f(y|ϕ), that is invariant under permutation of the parameters. One possibility is to use

the posterior expectation Eϕ
[
f(y|ϕ)|y

]
, obtaining in this way

DIC3 = −4Eϕ
[

log f(y|ϕ)|y
]

+ 2 log
[
Eϕ
[
f(y|ϕ)|y

]]
.

Lower is the value of the DIC/DIC3 associated to a specific model, better is the fit of that model.

The DIC measure presents some limitations, in particular related to its derivation that lacks

theoretical justification (see e.g. Plummer, Robert and Titterington, in discussion of Spiegelhalter

et al., 2002). Moreover, since commonly ϕ̃ is equal to the posterior mean, the DIC must be used

carefully. Indeed, if the examined distribution is not symmetric or not unimodal, the DIC may

not be appropriate, due to the fact that it assumes the posterior mean as good measure of central

location of the distribution. However, the DIC is simple to calculate using Markov chain Monte

Carlo (MCMC) and therefore, despite the criticisms, widely used in literature.

An alternative Bayesian criterion for choosing between models is the Bayes factor. Given a

collection of models {M1, . . . ,ML}, we can compare the different models using the pairwise Bayes

factor. Let ϕr denote the parameter vector that characterized Mr, πr(ϕr|Mr) the prior density

and f(y|Mr,ϕr) the likelihood under the model Mr; then for any two models Mr and Ms, the

Bayes Factor is given by

Brs = m(y|Mr)
m(y|Ms)

where

m(y|Mr) =
∫
f(y|Mr,ϕr)πr(dϕr|Mr)
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is the marginal likelihood. In order to compute the Bayes factor, one needs to evaluate the marginal

likelihood, which is obtained by integrating f(y|Mr,ϕr) with respect to the prior distribution of

the parameters, and not the posterior distribution. For this reason, the MCMC output cannot be

used directly to estimate m(y|Mr). Alternative methods have been proposed to approximate the

marginal likelihood using the MCMC output, see e.g. Chib (1995), Chib and Jeliazkov (2001), Chib

et. all (2002), Basu and Chib (2003), Weinberg (2012). All these approaches require non trivial

computational work in general and the presence of the copula structure in all our model makes the

approximation of the marginal distribution an even more challenging task. For this reason, in the

rest of the thesis, we rely on the DIC/DIC3 criteria for model selection analysis and we leave the

use of the Bayes factor for future developments.



Chapter 2

Tree Copula Model and Tree
Copula Mixture Model

In this Chapter, we consider the AR-copula model described in Section 1.5.3 and we assume that

the joint density of the innovations is given via a tree copula or a finite mixture of tree copulas dis-

tributions. We propose a fully Bayesian approach to estimate all the quantities of interest including

the underlying tree dependence structure.

The tree copula model is presented in Section 2.1 and the MCMC algorithm for posterior inference

is detailed in Section 2.2. The finite mixture of tree copulas model and the corresponding MCMC

algorithm for posterior inference are described, respectively, in Sections 2.3 and 2.4. Finally some

results with simulated data are shown in Section 2.5.

2.1 Bayesian inference for Tree Copula Model

Let us assume that for any fixed time t, t = 1, . . . , T the dependence structure among the

innovations is given by a tree copula distribution with unknown underlying structure E . With this

assumption, Equation (1.13) becomes

fεt(ε1,t, . . . , εN,t|Φ,ν) =
∏

(l,m)∈E

cθl,m

(
Fνl(εl,t), Fνm(εm,t)

) N∏
k=1

fνk(εk,t) (2.1)

and via (1.15), we obtain that the joint density of Xt given Ot−1 is

fXt(x1,t, . . . , xN,t|Φ,ν,A,Ot−1) =
∏

(l,m)∈E

cθl,m

(
Fνl(xl,t −

p∑
i=1

αl,ixl,t−i), Fνm(xm,t −
p∑
i=1

αm,ixm,t−i)
)
×

N∏
k=1

fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
.

In this model, the parameter Φ indicated both the underlying tree structure E and the collection of

the copula parameters for every possible edge (l,m) ∈ E , denoted from now on by θ.

24
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We recall that, in our model, every copula cθl,m belongs to one of the copula families described

in Section 1.5.3 and we suppose univariate Normal marginal pdfs for the innovations with mean µk
and precision parameter pk.

In order to proceed with a Bayesian inference, we assign the following independent prior distri-

butions

νk = (µk, pk) ∼ NG(ak, bk,mk, rk)

αk ∼ Np(Mk,Σk) (2.2)

θl,m ∼ pl,m

E ∼ Ψ(·),

for k = 1, . . . , N and (l,m) ∈ E . In (2.2), NG(a, b,m, r) is a Normal-Gamma distribution, with

density proportional to pa−1 exp{−pb }
√
pr exp{−pr2 (µ − m)2} and Np(M ,Σ) is a p-dimensional

Normal distribution with mean M and covariance matrix Σ. On the one hand the use of these

priors represents the usual choice, since the marginal distributions are assumed to be Normal; on

the other hand, even if, due to the presence of the copula structure, this choice does not allow for

a closed form of the full conditionals, it still gives more simplifications in the computational steps.

If θl,m = λ
U/L
l,m , then pl,m is a Beta distribution with parameters (γl,m, δl,m), otherwise pl,m is the

product of a translated Beta 1 on (−1, 1) with parameters (γl,m, δl,m) and an uniform distribution on

H = {DG1, DG2, DC1, DC2} that we will indicate with UnifH(·). Finally, Ψ is a suitable (discrete)

prior over the space EN .

Regarding Ψ, Meilă and Jaakkola (2006) proposed to use a decomposable prior of the form

Ψ(E|β) = 1
Z(β)

∏
(l,m)∈E

βl,m

where β is a symmetric N × N matrix with non-negative entries and zero on the diagonal. The

normalizing constant Z(β) can be computed explicitly, see Jakkola et al. (1999); moreover there

are exact and randomized algorithms for sampling from such prior distribution, see Kirshner and

Smyth (2007). In our case, in absence of specific prior information on the dependence structure,

we assign a uniform prior on EN ; this is equivalent to setting βl,m = 1 for every (l,m).

The joint posterior density (1.14) in this case is equal to

π(θ,ν,A, E|OT ) ∝
T∏
t=1

∏
(l,m)∈E

cθl,m

(
Fνl(xl,t −

p∑
i=1

αl,ixl,t−i), Fνm(xm,t −
p∑
i=1

αm,ixm,t−i)
)
×

N∏
k=1

fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
π0(θ,ν,A, E),

1X has translated Beta distribution on (−1, 1) with parameters (γ, δ), if X = 2Y −1 where Y has Beta distribution
with parameters (γ, δ). We denote this distribution with Beta(−1,1)(γ, δ).
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where π0(θ,ν,A, E) is the prior density described above.

The previous posterior density cannot be obtained in closed form, hence we propose a suitable

MCMC algorithm to approximate posterior quantities of interest.

2.2 MCMC for Tree Copula Model

The MCMC algorithm developed for the analysis of the tree copula model is a Metropolis within

Gibbs methods, based on the works of Silva and Gramacy (2009), Gruber and Czado (2015a), and

Gruber and Czado (2015b). The algorithm iteratively samples from the full conditionals:

• ν given [E ,θ,A,OT ] (Metropolis-Hasting step);

• A given [E ,θ,ν,OT ] (Metropolis-Hasting step);

• E ,θ given [ν,A,OT ] (Metropolis-Hasting step).

In the following we present in details the full conditional densities and the proposal densities

required for the algorithm. As we will see, in many Metropolis-Hasting steps we will consider

random walk proposals. In these cases, the variances are tuned to achieve acceptance rates between

20% and 80% as proposed in Besag et al. (1995).

Full conditional of ν. We start with the marginal parameters. The full conditional of ν given

(E ,θ,A,OT ) is

π(ν|E ,θ,A,OT ) ∝
T∏
t=1

∏
(l,m)∈E

cθl,m

(
Fνl(εl,t), Fνm(εm,t)

) N∏
k=1

fνk

(
εk,t

)
πν,k(νk)

where πν,k(·) denotes the prior Normal-Gamma NG(ak, bk,mk, rk) and εk,t is given by (1.15). Sam-

ples from this full conditional are obtain using a Metropolis-Hasting step, with proposal density

qν(ν∗|ν) =
N∏
k=1

qν,k(ν∗k |νk).

Recalling that νk = (µk, pk), we take

qν,k(ν∗k |νk) = qp,k(p∗k|pk)qµ,k(µ∗k|µk),

where the proposal density on p∗k is a gamma density with mean pk and fixed variance σ2
p, while the

proposal on µ∗k is a Normal density with mean µk and fixed variance σ2
µ.

The acceptance probability of the MH step for ν is given by

min
{

1,
T∏
t=1

∏
(l,m)∈E

cθl,m
(
Fν∗

l
(εl,t), Fν∗

m
(εm,t)

)
cθl,m

(
Fνl(εl,t), Fνm(εm,t)

) N∏
k=1

fν∗
k

(
εk,t
)
πν,k(ν∗k)qp,k(pk|p∗k)

fνk
(
εk,t
)
πν,k(νk)qp,k(p∗k|pk)

}

where qµ,k(·) simplified since it is a symmetric proposal density.
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Full conditional of A. The full conditional of A given (E ,θ,ν,OT ) is

π(A|E ,θ,ν,OT ) ∝
T∏
t=1

∏
(l,m)∈E

cθl,m

(
Fνl(xl,t −

p∑
i=1

αl,ixl,t−i), Fνm(xm,t −
p∑
i=1

αm,ixm,t−i)
)
×

N∏
k=1

fνk
(
εk,t
)
πA,k(αk)

where πA,k(·) is the p-dimensional Normal prior Np
(
Mk,Σk

)
. We proceed again with a Metropolis-

Hasting step.

The proposal density qA(A∗|A) is a multivariate Normal distribution with mean A and diagonal

covariance matrix. The acceptance probability is

min
{

1,
T∏
t=1

∏
(l,m)∈E

cθl,m

(
Fνl(xl,t −

∑p
i=1 α

∗
l,ixl,t−i), Fνm(xm,t −

∑p
i=1 α

∗
m,ixm,t−i)

)
cθl,m

(
Fνl(xl,t −

∑p
i=1 αl,ixl,t−i), Fνm(xm,t −

∑p
i=1 αm,ixm,t−i)

)×
N∏
k=1

fνk
(
xk,t −

∑p
i=1 α

∗
k,ixk,t−i

)
πA,k(α∗k)

fνk
(
xk,t −

∑p
i=1 αk,ixk,t−i

)
πA,k(αk)

}
.

Also in this case, the proposal density qA(·) simplifies since it is a symmetric proposal.

Full conditional of
(
E ,θ

)
. This is the most delicate step in the algorithm. Samples from the full

conditional of
(
E ,θ

)
given

(
ν,A, ,OT

)
are obtained again by using a Metropolis-Hasting step. The

full conditional is

π(E ,θ|A,ν,OT ) ∝
T∏
t=1

∏
(l,m)∈E

cθl,m

(
Fνl(εl,t), Fνm(εm,t)

)
πE,θ(E ,θ)

where πE,θ is the prior over (E ,θ) specified in Section 2.1.

First, we sample the new tree E∗ and then, conditionally on the new tree E∗, we (independently)

sample the parameters θl,m. Formally, the proposal is

qE,θ(E∗,θ∗|E ,θ) = qE (E∗|E)
∏

(l,m)

qθl,m
(
θ∗l,m|E , θl,m, E∗

)
.

In order to propose a new tree E∗, one can use different proposals. For instance one can simply

sample from the prior or alternatively, as we have done in the simulations, one can use the local move

by Silva and Gramacy (2009). Further details on this local move are given in the next paragraph.

As for the copula parameters, we start describing the proposal density for the case θ = (τ, ζ). We

distinguish between the edges (l,m) /∈ E∗, the edges (l,m) ∈ E ∩ E∗, and the edges (l,m) ∈ (E∗ \ E).

The proposal for the parameters associated to edges (l,m) /∈ E∗ is chosen equal to the prior. Note

that this parameters do not appear in the copula construction and, since they are not used in the

acceptance probability, one need not to sample them. For every (l,m) ∈ E ∩E∗ we sample τ∗l,m (after

an appropriate change of variable) with a random walk proposal on R, while the corresponding
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parameter ζl,m is left unchanged. Finally, for the parameters corresponding to (l,m) ∈ E∗ \ E , we

sample τ∗l,m (after an appropriate change of variable) from a Normal distribution centered on the

(transformed) empirical estimate τ̃l,m (based on the residuals (εl,t, εm,t)t=1,...,T ) of the Kendall’s tau

and we sample ζ∗l,m from the discrete distribution on H

qζ
(
ζ∗l,m = j|τ∗l,m

)
=

∏T
t=1 c(τ∗

l,m
,j)
(
Fνl(εl,t), Fνm(εm,t)

)
∑
h∈H

∏T
t=1 c(τ∗

l,m
,h)
(
Fνl(εl,t), Fνm(εm,t)

)
for j ∈ H. The acceptance probability of the MH step is

min
{

1,
T∏
t=1

∏
(l,m)∈E∗ cθ∗

l,m

(
Fνl(εl,t), Fνmεm,t)

)
Ψ(E∗)qE (E|E∗)

∏
(l,m)∈E∗ pl,m

(
θ∗l,m

)
∏

(l,m)∈E cθl,m

(
Fνl(εl,t), Fνmεm,t)

)
Ψ(E)qE (E∗|E)

∏
(l,m)∈E pl,m (θl,m)

×

∏
(l,m)∈E∗∩E qτ

(
τl,m|τ∗l,m

)∏
(l,m)∈E\E∗ qζ(ζl,m|τl,m)qτ (τl,m|τ̃l,m)∏

(l,m)∈E∗∩E qτ

(
τ∗l,m|τl,m

)∏
(l,m)∈E∗\E qζ(ζ∗l,m|τ∗l,m)qτ (τ∗l,m|τ̃l,m)

}
,

where qτ (·|τ0) is the (transformed) Normal proposal centered on τ0.

In the alternative case, where θl,m = λ
U/L
l,m , for the parameters associated to the edges (l,m) ∈

E∗ ∩ E we sample θl,m (after a suitable change of variable) with a random walk proposal on R. For

all the other parameters corresponding to (l,m) ∈ (E∗ ∩ E)C we take the prior density as proposal.

In this case, the MH acceptance probability is equal to

min
{

1,
T∏
t=1

∏
(l,m)∈E∗ cθ∗

l,m

(
Fνl(εl,t), Fνm(εm,t)

)
Ψ(E∗)qE (E|E∗)

∏
(l,m)∈E∗∩E pl,m

(
θ∗l,m

)
qθ

(
θl,m|θ∗l,m

)
∏

(l,m)∈E cθl,m

(
Fνl(εl,t), Fνm(εm,t)

)
Ψ(E)qE (E∗|E)

∏
(l,m)∈E∗∩E pl,m

(
θl,m

)
qθ

(
θ∗l,m|θl,m

) }

where qθ(·|θ0) is the (transformed) random walk proposal centered on θ0.

Random walk proposal for sampling trees: the tree-angular proposal. Sampling a tree

uniformly or from the prior distribution can frequently produce a tree with very low acceptance

probability. For this reason, we use the local proposal introduced in Silva and Gramacy (2009).

The move leaves the tree unchanged with the exception of a path say i− j − k which is changed to

j − i− k. It is possible to traverse the whole space of spanning trees with sequences of tree-angular

moves, see Proposition 1, as proved in Silva and Gramacy (2009). The tree-angular proposal, say

qTAE (·|E), given a tree E , propose a new tree E∗ as follows:

1. choose an edge (u, v) in E (with some probability);

2. choose a neighbor node w of (u, v) in the tree E , which is neither u nor v, uniformly at random;

3. return a new tree E∗ that results from removing from E the edge (u, v) and adding the edge

(z, w), where z = u if v and w are adjacent in E and otherwise z = v.
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In order to improve the mixing of the chain for the copula parameters, we choose

qE(E∗|E) = ηδE(E∗) + (1− η)qTAE (E∗|E)

with some fixed probability η.

2.3 Bayesian Inference for Finite Tree Copula Mixture Model

We now consider the case in which the joint distribution of the innovations is represented via a

finite mixture of D tree copulas. In this model, the pdf of the innovations is equal to

fεt(ε1,t, . . . , εN,t|Φ,ν,w) =
D∑
d=1

wd
∏

(l,m)∈Ed

c
θ

(d)
l,m

(
Fνl(εl,t), Fνm(εm,t)

) N∏
k=1

fνk(εk,t).

We denote with w = (w1, . . . , wD) the vector of weights, and with Ed and θd = {θ(d)
l,m}, respectively,

the tree copula structure and the vector of copula parameters for the d-th component. Finally, we

set E = {E1, . . . , ED} and Θ = {θ1, . . . ,θD}. In this model the parameter Φ correspond to (E,Θ),

the collection of all the tree structures and of all the copula parameters.

The conditional density of the observations at time t given Ot−1 is obtained using transformation

(1.15) and is given by

fXt
(x1,t, . . . , xN,t|Φ,ν,w,A,Ot−1) = (2.3)

=
D∑
d=1

wd
∏

(l,m)∈Ed

c
θ

(d)
l,m

(
Fνl(xl,t −

p∑
i=1

αl,ixl,t−i), Fνm(xm,t −
p∑
i=1

αm,ixm,t−i)
)
×

N∏
k=1

fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
.

In this model, we assign the following independent prior densities

w ∼ Dir(ψ1, . . . , ψD) (2.4)

νk = (µk, pk) ∼ NG(ak, bk,mk, rk)

αk ∼ Np(Mk,Σk)

θ
(d)
l,m ∼ pl,m

Ed ∼ Ψ(·)

for k = 1, . . . , N and d = 1, . . . , D. Dir(ψ1, . . . , ψD) is a Dirichlet distribution with density propor-

tional to
∏D−1
d=1 wψd−1

d (1−
∑D−1
j=1 wj), with wD = 1−

∑D−1
d=1 wd, Ψ(·) is a uniform prior on EN and,

pl,m is the same as in Section 2.1. Also in this case, the choice of the prior on the marginal and AR

parameters leads to a simplification on the computational steps, while the assumption of a Dirichlet

priors on the weights allows to obtain the corresponding full conditional in closed form.
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The posterior distribution of the finite mixture can be easily obtained from (2.3). In order to

sample from it we adopt a data augmentation approach and introduce an allocation variable for each

observation, It ∈ {1, . . . , D} for t = 1, . . . , T . The complete data likelihood becomes

f(OT , I|Φ,ν,w,A) =
T∏
t=1

wIt
∏

(l,m)∈EIt

c
θ

(It)
l,m

(
Fνl(xl,t −

p∑
i=1

αl,ixl,t−i), Fνm(xm,t −
p∑
i=1

αm,ixm,t−i)
)
×

N∏
k=1

fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
(2.5)

where I = (I1, . . . , IT ). The likelihood of the finite mixture model can be easy obtained as marginal

distribution of (2.5). The posterior density of the allocation variable I and the parameters given

the observations OT is given by

π(E,Θ,ν,A,w, I|OT ) ∝
T∏
t=1

wIt
∏

(l,m)∈EIt

c
θ

(It)
l,m

(
Fνl(xl,t −

p∑
i=1

αl,ixl,t−i), Fνm(xm,t −
p∑
i=1

αm,ixm,t−i)
)
×

N∏
k=1

fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
π0(E,Θ,ν,A,w)

where π0(·) is the prior density described in (2.4).

Also in this case, the posterior density cannot be obtained in closed form; hence, for posterior

inference, we adopt the Metropolis within Gibbs algorithm described in the next Section.

2.4 MCMC for Mixture of Tree Copulas Model

In case of mixture of tree copulas model, the Metropolis within Gibbs algorithm samples itera-

tively from the full conditionals:

• w given [(E,Θ),A,ν,OT , I] (closed form);

• ν given [(E,Θ),A,w,OT , I] (Metropolis-Hasting step);

• A given [(E,Θ),w,ν,OT , I] (Metropolis-Hasting step);

• (E,Θ) given [w,A,ν,OT , I] (Metropolis-Hasting step);

• I given [(E,Θ),w,ν,A,OT ] (closed form).

The variance of the random walk proposal densities are tuned to achieve acceptance rates between

20% and 80%. In the following, we present in details the steps of the algorithm.
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Full conditional of w. The full conditional of w given
(
(E,Θ),A,ν,OT , I

)
is

π(w|(E,Θ),A,ν,OT , I) ∝
T∏
t=1

wItπw(w)

=
D∏
d=1

w
Nd(I)
d πw(w)

where πw is the Dirichlet prior over w and Nd(I) = #{It = d} is the number of the element It equal

to d.

This full conditional is in closed form, since it turns out to be a Dir
(
ψ1 +N1(I), . . . , ψD+ND(I)

)
and we can sample directly from it.

Full conditional of ν. The full conditional of ν given
(
(E,Θ),A,w,OT , I

)
is proportional to

π(ν|(E,Θ),A,OT , I) ∝
T∏
t=1

∏
(l,m)∈EIt

c
θ

(It)
l,m

(
Fνl(εl,t), Fνm(εm,t)

) N∏
k=1

fνk (εk,t)πν,k(νk)

where πν,k is the prior over νk. We sample ν using a MH step, where we sample every ν∗k from the

proposal density

qν,k(ν∗k |νk) = qp,k(p∗k|pk)qµ,k(µ∗k|µk).

The proposal qp,k and qµ,k are chosen, respectively, equal to a gamma density with mean pk and

variance σ2
p, and a Normal density with mean µk and variance σ2

µ. The acceptance probability is

min
{

1,
T∏
t=1

∏
(l,m)∈EIt

c
θ

(It)
l,m

(
Fν∗

l
(εl,t), Fν∗

m
(εm,t)

)∏N
k=1 fν∗

k

(
εk,t
)
πν,k(ν∗k)qp,k(pk|p∗k)∏

(l,m)∈EIt
c
θ

(It)
l,m

(
Fνl(εl,t), Fνm(εm,t)

)∏N
k=1 fνk

(
εk,t
)
πν,k(νk)qp,k(p∗k|pk)

}
.

Full conditional ofA. We sampleA using a MH step. The full conditional ofA given
(
(E,Θ),w,ν,OT , I

)
is

π(A|(E,Θ),w,ν,OT , I) ∝
T∏
t=1

∏
(l,m)∈EIt

c
θ

(It)
l,m

(
Fνl(xl,t −

p∑
i=1

αl,ixl,t−i), Fνm(xm,t −
p∑
i=1

αm,ixm,t−i)
)
×

T∏
t=1

fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
πA,k(αk)

where πA,k(·) is the p-dimensional Normal prior Np (Mk,Σk). We sample every α∗k from the pro-

posal density equal to a p-dimensional Normal density with mean αk and fixed diagonal covariance

matrix.
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The acceptance probability is

min
{

1,
T∏
t=1

∏
(l,m)∈EIt

c
θ

(It)
l,m

(
Fνl(xl,t −

∑p
i=1 α

∗
l,ixl,t−i), Fνm(xm,t −

∑p
i=1 α

∗
m,ixm,t−i)

)
c
θ

(It)
l,m

(
Fνl(xl,t −

∑p
i=1 αl,ixl,t−i), Fνm(xm,t −

∑p
i=1 αm,ixm,t−i)

)×
N∏
k=1

fνk

(
xk,t −

∑p
i=1 α

∗
k,ixk,t−i

)
πA,k(α∗k)

fνk
(
xk,t −

∑p
i=1 αk,ixk,t−i

)
πA,k(αk)

}
.

Full conditional of (E,Θ). In this step we analyze each element of the mixture one at a time.

For every (Ed,θd), d = 1, . . . , D the full conditional is proportional to

π(Ed,θd|w,A,ν, IOT ) ∝
∏
t:It=d

∏
(l,m)∈Ed

c
θ

(d)
l,m

(
Fνl(εl,t), Fνm(εm,t)

)
πE,θ(Ed,θd)

where πE,θ is the prior specified in Section 2.3.

We proceed with a MH step. Let us start with the case in which θd = (τd, ζd). For every component

(Ed,θd), we choose the proposal

qE,θ(E∗d ,θ∗d|E ,θ) = qE (E∗d |Ed)
∏

(l,m)

qθl,m

(
θ

(d)∗
l,m |Ed, θ

(d)
l,m, E

∗
d

)
.

As in the tree copula model, the proposal over the tree structure can be choose equal to the prior

or one can use a local move. For the parameters θd we consider the same proposal density describe

in the previous algorithm.

The acceptance probability of each MH step in case of Double Gumbel and Double Clayton

linking copulas, i.e. θ = (τ, ζ), is given by

min
{

1,
∏
t:It=d

∏
(l,m)∈E∗

d
c
θ

(d)∗
l,m

(
Fνl(εl,t), Fνm(εm,t)

)
Ψ(E∗d )qE (Ed|E∗d )

∏
(l,m)∈E∗

d
pl,m

(
θ

(d)∗
l,m

)
∏

(l,m)∈Ed cθ(d)
l,m

(
Fνl(εl,t), Fνm (εm,t)

)
Ψ(Ed)qE (E∗d |Ed)

∏
(l,m)∈Ed pl,m

(
θ

(d)
l,m

) ×
∏

(l,m)∈E∗
d
∩Ed qτ

(
τ

(d)
l,m|τ

(d)∗
l,m

)∏
(l,m)∈Ed\E∗

d
qζ(ζ(d)

l,m|τ
(d)
l,m)qτ (τ (d)

l,m|τ̃
(d)
l,m)∏

(l,m)∈E∗
d
∩Ed qτ

(
τ

(d)∗
l,m |τ

(d)
l,m

)∏
(l,m)∈E∗

d
\Ed qζ(ζ

(d)∗
l,m |τ

(d)∗
l,m )qτ (τ (d)∗

l,m |τ̃
(d)
l,m)

}
,

where qτ (·|τ0) is the (transformed) Normal proposal centered on τ0.

In the alternative case, where each parameters θl,m corresponds to the upper or lower tail pa-

rameter, the acceptance probability of the MH step is equal to

min
{

1,
T∏

t=It=d

∏
(l,m)∈E∗

d
c
θ

(d)∗
l,m

(
Fνl(εl,t), Fνm(εm,t)

)
Ψ(E∗d )qE (Ed|E∗d )∏

(l,m)∈Ed cθ(d)
l,m

(
Fνl(εl,t), Fνm(εm,t)

)
Ψ(Ed)qE (E∗d |Ed)

×

∏
(l,m)∈E∗

d
∩Ed pl,m

(
θ

(d)∗
l,m

)
qθ

(
θ

(d)
l,m|θ

(d)∗
l,m

)
∏

(l,m)∈E∗
d
∩Ed pl,m

(
θ

(d)
l,m

)
qθ

(
θ

(d)∗
l,m |θ

(d)
l,m

) }

where qθ(·|θ0) is the (transformed) random walk proposal centered on θ0.
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Full conditional of I. The step on the allocation variable is in closed form. The full conditional

of I given
(
(E,Θ),w,ν,A,OT

)
is

π(I|(E,Θ),w,ν,A,OT ) ∝
T∏
t=1

wIt
∏

(l,m)∈EIt

c
θ

(It)
l,m

(
Fνl(εl,t), Fνm(εm,t)

)
.

We sample each It from a discrete distribution on {1, . . . , D} with probability

P
{
It = d

}
=

wd
∏

(l,m)∈Ed cθ(d)
l,m

(
Fνlεl,t), Fνm(εm,t)

)
∑D
h=1 wh

∏
(l,m)∈Eh cθ(h)

l,m

(
Fνlεl,t), Fνm(εm,t)

)
for d = 1, . . . , D and t = 1, . . . , T .

2.5 Simulation Study

We use simulated data to investigate the performance of the methodologies proposed in Sections

2.1 and 2.3. We first present the case in which all copulas cθl,m belong to the same family (Gumbel,

Clayton or Joe) and we use the tail parameterization (θl,m = λ
U/L
l,m ).

We examined different alternative scenarios. In the following we describe and present the results

regarding only the most interesting ones. In scenarios 1-3, we consider a simulated dataset of

T = 300 observations obtained from a multivariate AR model with fixed parameters and a specific

tree copula distribution. We apply the MCMC algorithm described in Section 2.2 with 70000

iterations and a burn-in of 45000 iterations. In scenario 4, we consider a simulated dataset of

300 observations obtained from a multivariate AR model with fixed parameters, and a mixture of

tree copula distributions. We employ the MCMC algorithm described in Section 2.4 with 100000

iterations and a burn-in of 50000. For a tree copula model with five variables and a mixture

tree model with five variables and three components, the algorithms required 3 and 6 minutes,

respectively, per 10000 iterations on a Intel(R) Core(TM) i7 personal computer. The programs

were written in MATLAB. For the choice of the prior settings, we perform sensitivity analysis with

different values for the hyper-parameters. The results show that the choice of the prior hyper-

parameters does not affect significantly the posterior estimates. For the sake of comparison, for all

the scenarios we present the results obtained with two alternative prior settings.

We now describe in more details the examined scenarios. In scenarios 1, we simulate AR-

observations using i.i.d. innovations with tree copula distribution based on Gumbel copulas. Then

we apply the corresponding Bayesian model of Section 2.1 with the same linking copulas (re-

parameterized through the upper tail parameters) and prior specification as in (2.2) for the inference

exercise. In scenarios 2, we generate the data starting from a tree copula distribution with bivariate

Clayton copulas and we apply a tree copula model with linking Clayton copulas. Analogous, in
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Table 2.1: Simulation study: Scenario 1. Tree copula model with bivariate Gumbel copulas re-
parameterized through upper tail dependence parameters. For each prior settings, we report the
posterior mean of the parameters θ,ν,A and the MAP tree structure. For the tree, the posterior
probability is reported in brackets.

Scenario 1 Prior Settings
N = 6 θi,j Beta(1, 1) Beta(1, 1)
p = 2 (µk, pk) NG(1, 10, 1, 0.1) NG(1, 10, 1, 0.1)

αk Np(0.4, 100Ip) Np([0.4, 0.3], 70Ip)
True Values Posterior Means

νk = (µk, 1
pk

) (−0.8, 0.5) (−0.68, 0.49) (−0.82, 0.56)
(0.5, 0.3) (0.48, 0.31) (0.54, 0.29)

(−0.5, 0.5) (−0.42, 0.50) (−0.53, 0.54)
(0, 0.6) (0.04, 0.59) (0.02, 0.57)
(1, 0.2) (0.91 , 0.20) (0.99, 0.21)

(0.5, 0.3) (0.47, 0.30) (0.51, 0.33)
αk (0.3, 0.5) (0.35, 0.47) (0.30, 0.49)

(−0.3, 0.4) (−0.28, 0.36) (−0.34, 0.35)
(0.1, 0.6) (0.13, 0.60) (0.08, 0.58)

(−0.2, 0.4) (−0.14, 0.42) (−0.06, 0.44)
(0.1, 0.5) (0.11, 0.53) (0.13, 0.46)
(0.3, 0.5) (0.31, 0.49) (0.28, 0.50)

θ 0.2 0.13 0.20
0.5 0.53 0.53
0.3 0.33 0.30
0.6 0.56 0.64
0.7 0.71 0.70

E [1, 1, 3, 3]∗ [1, 1, 3, 3](0.8704) [1, 1, 3, 3](0.9911)
∗Prüfer code corresponding to the tree structure {(2, 1), (3, 1), (4, 1), (5, 3), (6, 3)}

scenario 3, we simulate from a tree copula distribution with Joe copulas and we consider the cor-

responding tree copula model for inference. The results are summarized in Tables 2.1, 2.2 and 2.3,

respectively. In these tables, we present the posterior estimates obtained with two alternative prior

settings. In each table we show the values of the parameters (E ,θ,ν,A) used to generate the data,

the prior specifications, the posterior means for (θ,ν,A) and the maximum a posteriori probability

(MAP) tree structure. The trees are denoted by their Prüfer code, see Prüfer (1918).

For each scenario we report the histograms of the simulated values of the posterior distributions

of the parameters θ,ν,A in Figures 2.1, 2.3 and 2.4 respectively. For the AR parameters we present

the histograms only for one AR series; for the others AR coefficients the results are analogous. For

all scenarios the posterior estimates are consistent with the parameters used to generate the data.

Further experiments of this kind have been performed, obtaining similar results. Concerning the

convergence of the algorithm, in Figure 2.2 we report the trace plot and ergodic mean plot for some

parameters of scenario 1, after a discarding of 45000 iterations. From these diagnostic plots we can
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Figure 2.1: Histograms of the simulated values of the posterior distributions for the parameters of
scenario 1 (second prior setting of Table 2.1), where we consider a tree copula model with bivariate
Gumbel copulas re-parameterized through upper tail parameters. For the parameters of the AR
series, we report only the histograms for the coefficients of the third series, i.e. α3.

note a good convergence of our tree copula MCMC algorithm. Also the other scenarios show similar

results and, hence, the related diagnostic plots are not reported.

In scenario 4, we consider simulated AR-observations starting from a mixture of tree copula

distributions with three components and with bivariate Gumbel copulas. We apply our Bayesian

mixture tree copula model presented in Section 2.3 with D = 3, the same linking copulas and

prior specification as in (2.4). In Table 2.4, we present the results obtained with two alternative

prior settings. In this table, we show the values of the parameters used to generate the data, the

prior settings and, the posterior means for (w,ν,A). Also in this case the posterior estimates are

consistent with the parameters used to generate the data.

Due to the label switching problem, more attention should be paid to evaluate the posterior tree

probabilities for scenario 4. In fact, in mixture models, inference on (functions of) parameters, which

are not invariant to parameter permutation, is very delicate if not essentially meaningless. Different

solutions to the label switching problem have been proposed in the literature, see e.g. Jasra et al.

(2005). One possibility is to identify and work only with statistical quantities that are not affected
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Figure 2.2: Diagnostic plots for the marginal parameters of scenario 1 (first prior setting of Table
2.4), where we consider a tree copula model with bivariate Gumbel copulas re-parameterized through
upper tail parameters.

by it. Naturally, if the function of interest is invariant to parameter permutations, label switching

does not create any problem. Hence, in our case, instead of estimating the posterior probability of

the tree appearing in each component, one can simply evaluate the (posterior) probability that a

given tree (i.e. a given conditional dependence structure) belongs to the mixture structure. To this

end, for a tree E0 we can introduce the following permutation invariant function

ΨE0(E,w) =
D∑
d=1

wd1{E0 = Ed}. (2.6)

Equation (2.6) defines the weight of the tree E0 in the mixture and its posterior mean is equal to

the posterior probability that the tree E0 is contained in the mixture.

In last part of Table 2.4 we list the highest posterior probability tree structures. The trees

are sorted in decreasing ordered according to the posterior probability score given in (2.6). More

precisely we list the trees up to the one, used to generate the data, with the smallest posterior

probability. For scenario 4, in Figure 2.5, we present the histograms of the simulated values of the

posterior distributions of the parameters (ν,A) and in Figure 2.6 the trace plot and ergodic mean

plot for some parameters of this scenario.

We also consider model selection analysis. For model comparison, we rely on the DIC and DIC3

criteria introduced in Section 1.5.5.

For comparative purposes, we estimate the parameters of each scenario using a combination of

IFM and Bayesian procedures (shortly B-IFM). In this two steps estimation procedure, the univariate

AR models are fitted separately to each marginal (forward-backward approach), and the residuals

straightforwardly obtained. In the second step the copula and marginal parameters are estimated

using the Bayesian models considered in this Chapter. More precisely, to the simulated data of

scenario 1 we apply a B-IFM procedure using a tree copula distribution with linking Gumbel copulas
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Table 2.2: Simulation study: Scenario 2. Tree copula model with bivariate Clayton copulas re-
parameterized through lower tail dependence parameters. For each prior settings, we report the
posterior mean of the parameters θ,ν,A and the MAP tree structure. For the tree, the posterior
probability is reported in brackets.

Scenario 2 Prior Settings
N = 5 θi,j Beta(1, 1) Beta(1, 5)
p = 2 (µk, pk) NG(1, 10, 1, 0.1) NG(1, 10, 0, 0.1)

αk Np(0.4, 10Ip) Np([0.7, 0.1], 10Ip)
True Values Posterior Means

νk = (µk, 1
pk

) (−0.8, 0.5) (−0.74, 0.49) (−0.91, 0.49)
(0.5, 0.3) (0.48, 0.29) (0.46, 0.30)

(−0.5, 0.5) (−0.53, 0.50) (−0.56, 0.48)
(0, 0.6) (−0.04, 0.60) (−0.02, 0.59)

(0.2, 0.2) (0.17, 0.20) (0.21, 0.20)
αk (0.3, 0.5) (0.29, 0.52) (0.30, 0.46)

(−0.3, 0.4) (−0.30, 0.40) (−0.25, 0.41)
(0.1, 0.6) (0.11, 0.58) (0.09, 0.57)

(−0.2, 0.4) (−0.17, 0.45) (−0.20, 0.39)
(0.1, 0.7) (0.12, 0.68) (0.09, 0.69)

θ 0.7 0.67 0.69
0.5 0.50 0.50
0.1 0.15 0.07
0.6 0.63 0.62

E [1, 4, 5]∗ [1, 4, 5](0.9926) [1, 4, 5](0.8110)
∗Prüfer code corresponding to the tree structure {(2, 1), (3, 5), (4, 1), (5, 4)}

while to the data of scenario 2/scenario 3 a B-IFM procedure with tree copula distribution based on

bivariate Clayton/Joe copulas, respectively. Finally, for the data of scenario 4 we consider a B-IFM

procedure using a mixture of three tree copula distributions with bivariate Gumbel copulas. For the

sake of parsimony, we do not report here all the results obtained via B-IFM, but only the values of

the score functions.

Table 2.5 reports the value of the DIC\DIC3 of the models estimated by our fully Bayesian

procedure using Gumbel, Clayton and Joe tree copula (columns 2-4). Column 5 of the same table

reports the DIC\DIC3 of the model estimated by the B-IFM procedure using the tree copula corre-

sponding to the generating processes (Gumbel, Clayton, Joe and Gumbel Mixture for rows 2 to 5).

As expected, the model from which we generated the data shows the best fits in comparison with

the others. Moreover, the models estimated by the fully Bayesian approach have a lower DIC\DIC3

with respect to the corresponding models estimated by B-IFM procedure.

In the last two scenarios, we focus on models in which Double Gumbel and Double Clayton

copulas with θl,m = (τl,m, ζl,m) are used as linking copula (Combined models).

In scenario 5 we simulated a dataset of T = 300 observations from a multivariate AR model with
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Figure 2.3: Histograms of the simulated values of the posterior distributions for the parameters of
scenario 2 (second prior setting of Table 2.2), where we consider a tree copula model with bivariate
Clayton copulas re-parameterized through lower tail parameters. For the parameters of the AR
series, we report only the histograms for the coefficients of the fourth series, i.e. α4.

fixed parameters, and a specific tree structure with Double Gumbel or Double Clayton bivariate

copulas. We apply the tree copula model with Double Gumbel/Double Clayton as linking copulas

and with parameters θ = (τ, ζ). The results obtained with two alternative prior setting are summa-

rized in Table 2.6. In this table, we report the values of the parameters used to generate the data,

the two prior settings, the maximum a posteriori probability tree structure, the posterior mode of

ζ, and the posterior means of (τ ,ν,A). The histograms of the simulated values of the posterior

distributions for the parameters (τ ,ν,A) are shown in Figure 2.7.

In scenario 6, we consider a dataset of 300 AR-observations generated from a mixture of three

tree copula distributions with bivariate Double Gumbel and Double Clayton copulas. We employ

the mixture of tree copulas model with same linking copulas and apply the algorithm presented in

Section 2.4 with 100000 iterations and a burn-in of 50000. In Table 2.7 are reported the values

of the parameters used to generate the simulated data and the corresponding posterior estimates

obtained with two alternative prior settings. More precisely, for the parameters (w,ν,A) we present

the posterior means, while for the underlying graphical structure, we list the trees with the highest
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Table 2.3: Simulation study: Scenario 3. Tree copula model with bivariate Joe copulas re-
parameterized through upper tail dependence parameters. For each prior settings, we report the
posterior mean of the parameters θ,ν,A and the MAP tree structure. For the tree, the posterior
probability is reported in brackets.

Scenario 3 Prior Settings
N = 5 θi,j Beta(2, 2) Beta(1, 2)
p = 2 (µk, pk) NG(1, 1, 1, 1) NG(1, 1, 0.5, 0.1)

αk Np([0.7, 0.1], 100Ip) Np([0.7, 0.1], 10Ip)
True Values Posterior Means

νk = (µk, 1
pk

) (−0.7, 0.5) (−0.51, 0.52) (−0.62, 0.50)
(0.5, 0.6) (0.50 0.62) (0.58, 0.62)

(−0.5, 0.5) (−0.39, 0.54) (−0.56, 0.53)
(0, 0.3) (0.02, 0.30) (−0.003, 0.31)

(1.5, 0.2) (1.41, 0.24) (1.43, 0.24)
αk (0.3, 0.5) (0.33, 0.45) (0.30, 0.50)

(−0.3, 0.4) (−0.41, 0.26) (−0.32, 0.38)
(0.1, 0.6) (0.16, 0.56) (0.05, 0.58)

(−0.2, 0.4) (−0.20, 0.32) (−0.11, 0.46)
(0.1, 0.5) (0.16, 0.46) (0.11, 0.49)

θ 0.5 0.50 0.51
0.7 0.67 0.73
0.3 0.36 0.30
0.6 0.63 0.61

E [1, 1, 3]∗ [1, 1, 3](0.993) [1, 1, 3](0.964)
∗Prüfer code corresponding to the tree structure {(2, 1), (3, 1), (4, 1), (5, 3)}

posterior probability obtained via (2.6). The histograms of the simulated values of the posterior

distributions of parameters (ν,A) are shown in Figure 2.8.

Also for the Combined models we can evaluate the DIC and DIC3 criteria. In Table 2.8 are re-

ported the values of the DIC and DIC3 for scenario 5 and 6 computed with our fully Bayesian

approach. We also present the DIC/DIC3 estimated with the B-IFM procedure. We apply a

B-IFM procedure using a tree copula with Double Gumbel and Double Clayton copula to the data

of scenario 5 and a B-IFM approach with mixture of tree copulas based on Double Gumbel/Double

Clayton copulas and with D = 3 to the dataset of scenario 6. We note again that the models

estimated by the fully Bayesian approach have a lower DIC\DIC3 with respect to the corresponding

models estimated by B-IFM procedure.



40 CHAPTER 2. TREE COPULA MODEL AND TREE COPULA MIXTURE MODEL

Figure 2.4: Histograms of the simulated values of the posterior distributions for the parameters of
scenario 3 (second prior setting of Table 2.3), where we consider a tree copula model with bivariate
Joe copulas re-parameterized through upper tail parameters. For the parameters of the AR series,
we report only the histograms for the coefficients of the fourth series, i.e. α4.
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Table 2.4: Simulation study: Scenario 4. Mixture of tree copulas model with bivariate Gumbel
copulas re-parameterized through upper tail dependence parameters. For each prior settings, we
present the posterior means of (ν,A,w). In last part of the table, we list the highest posterior
probability tree structures. For each tree structure, the posterior mean of (2.6) is reported in
brackets.

Scenario 4 Prior Settings
N = 5 θi,j Beta(1, 1) Beta(1, 1)
p = 2 (µk, pk) NG(1, 1, 1, 0.1) NG(1, 10, 0, 0.1)
D = 3 αk Np(0.4, 0.1Ip) Np(0.4, 10Ip)

w Dir(10, 10, 10) Dir(10, 10, 10)
True Values Posterior Means

νk = (µk, 1
pk

) (1, 0.5) (1.07, 0.51) (1.04, 0.53)
(−1, 0.3) (−0.91, 0.31) (−0.89, 0.32)
(0.5, 0.4) (−0.45, 0.41) (0.43, 0.42)
(1, 0.5) (1.08, 0.51) (0.95, 0.50)

(−0.5, 0.9) (−0.48, 0.92) (−0.57, 0.91)
αk (0.2, 0.6) (0.20, 0.58) (0.21, 0.57)

(−0.3, 0.5) (−0.26, 0.52) (−0.28, 0.57)
(0.1, 0.5) (0.12, 0.51) (0.14, 0.49)

(−0.1, 0.6) (−0.11, 0.59) (−0.11, 0.60)
(0.2, 0.5) (0.21, 0.49) (0.17, 0.51)

w 0.33 0.349 0.329
0.33 0.333 0.362
0.33 0.317 0.307

E [1, 1, 5] [4,5,5](0.168) [5, 5, 5](0.185)
[2, 3, 5] [2,3,5](0.096) [1,1,5](0.091)
[4, 5, 5] [5, 5, 5](0.078) [2, 1, 5](0.060)

[4, 3, 5](0.060) [4,5,5](0.057)
[2, 2, 5](0.051) [2,3,5](0.054)
[1, 2, 5](0.047)

[1,1,5](0.046)

Table 2.5: Simulated Data: DIC and DIC3 Table. The DIC value is reported in brackets.

Fully Bayesian B-IFM
True Model Gumbel Clayton Joe
Scenatio 1 (Gumbel) 899 (913) 1357 (1347) 1614 (1614) 1030 (1039)
Scenario 2 (Clayton) 1509 (1495) 1200 (1197) 2846 (2783) 1327 (1316)
Scenario 3 (Joe) 1962 (1961) 2333 (2264) 1281 (1293) 1828 (1837)

Fully Bayesian B-IFM
Mixture Mixture Mixture Mixture
Gumbel Clayton Joe B-IFM

Scenario 4(Mixture Gumbel) 1815 2038 1877 1882
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Figure 2.5: Histograms of the simulated values of the posterior distributions for the parameters of
scenario 4 (first prior setting of Table 2.4), where we consider a mixture of tree copulas model with
bivariate Gumbel copulas re-parameterized through upper tail parameters. For the parameters of
the AR series, we report the histograms for the coefficients of the first and fourth series, i.e. α1 and
α4.

Figure 2.6: Diagnostic plots for the marginal parameters of scenario 4 (first prior setting of Table 2.4),
where we consider a mixture of tree copulas model with bivariate Gumbel copulas re-parameterized
through upper tail parameters.
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Table 2.6: Simulation study: Scenario 5. Tree copula model with bivariate Double Gumbel or Double
Clayton copulas re-parameterized through the Kendall’s tau. For each prior settings, we report the
posterior mean of the parameters τ ,ν,A, the posterior mode for ζ and, the MAP tree structure.
For the tree structure, the posterior probability is reported in brackets.

Scenario 5 Prior Settings
N = 5 (τl,m, ζl,m) Beta(−1,1)(1, 1)× Unif(H) Beta(−1,1)(1, 1)× Unif(H)
p = 2 (µk, pk) NG(1, 0.5, 0, 0.1) NG(1, 1, 0.5, 0.1)

αk Np([0.7, 0.1], 100Ip) Np([0.3, 0.4], 10Ip)
True Values Posterior Means/Modes

νk = (µk, 1
pk

) (−0.8, 0.5) (−0.73, 0.49) (−0.74, 0.54)
(0.5, 0.3) (0.57 0.32) (0.49, 0.33)

(−0.5, 0.4) (−0.47, 0.43) (−0.58, 0.39)
(0, 0.6) (−0.04, 0.63) (−0.01, 0.59)
(1, 0.2) (0.98, 0.22) (1.04, 0.22)

αk (0.3, 0.5) (0.25, 0.55) (0.32, 0.48)
(−0.3, 0.4) (−0.33, 0.39) (−0.26, 0.39)
(0.1, 0.6) (0.04, 0.69) (0.14, 0.49)

(−0.2, 0.4) (−0.18, 0.41) (−0.17, 0.35)
(0.1, 0.5) (0.08, 0.52) (0.12, 0.46)

(τ , ζ) (0.7, DC1) (0.54, DG2) (0.69, DC1)
(−0.2, DG1) (−0.23, DG1) (−0.25, DG1)
(0.3, DG2) (0.29, DG2) (0.37, DG2)

(−0.6, DG1) (−0.59, DG1) (−0.61, DG2)
E [1, 2, 5]∗ [1, 2, 5](0.895) [1, 2, 5](0.892)

∗Prüfer code corresponding to the tree structure {(2, 1), (3, 1), (4, 5), (5, 2)}



44 CHAPTER 2. TREE COPULA MODEL AND TREE COPULA MIXTURE MODEL

Figure 2.7: Histograms of the simulated values of the posterior distributions for the parameters of
scenario 5 (second prior setting of Table 2.6), where we consider a tree copula model with bivariate
Double Gumbel and Double Clayton copulas re-parameterized through Kendall’s tau parameters.
For the parameters of the AR series, we report only the histograms for the coefficients of the first
series, i.e. α1.
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Table 2.7: Simulation study: Scenario 6. Mixture of tree copulas model with Double Gumbel and
Double Clayton linking copulas re-parameterized through the Kendall’ tau. For each prior settings,
we present the posterior means of (ν,A,w). In last part of the table, we list the highest posterior
probability tree structures. For each tree structure, the posterior mean of (2.6) is reported in
brackets.

Scenario 6 Prior Settings
N = 5 (τl,m, ζl,m) Beta(−1,1)(1, 1)× Unif(H) Beta(−1,1)(1, 1)× Unif(H)
p = 2 (µk, pk) NG(1, 0.5, 0.5, 0.1) NG(1, 1, 0, 0.1)
D = 3 αk Np([0.3, 0.1], 10Ip) Np([0.3,−0.1], 10Ip)

w Dir(5, 5, 5) Dir(10, 10, 10)
True Values Posterior Means

νk = (µk, 1
pk

) (−0.8, 0.4) (−0.82, 0.44) (−0.71, 0.42)
(0.5, 0.3) (0.49, 0.31) (0.46, 0.31)

(−0.5, 0.5) (−0.47, 0.54) (−0.42, 0.51)
(0, 0.6) (−0.01, 0.62) (0.03, 0.62)

(0.3, 0.2) (0.27, 0.21) (0.26, 0.21)
αk (0.3, 0.5) (0.31, 0.46) (0.32, 0.49)

(−0.3, 0.4) (−0.27, 0.32) (−0.28, 0.43)
(0.1, 0.6) (0.06, 0.62) (0.12, 0.60)

(−0.2, 0.4) (−0.16, 0.37) (−0.21, 0.39)
(0.1, 0.5) (0.13, 0.50) (0.17, 0.48)

w 0.2 0.11 0.15
0.3 0.16 0.40
0.5 0.74 0.45

E [2, 1, 3] [4,1,3](0.720) [2,1,3](0.2708)
[1, 3, 5] [1,3,5](0.116) [1,3,5](0.154)
[4, 1, 3] [2,1,3](0.04) [4,1,3](0.120)

Table 2.8: Simulated Data: DIC and DIC3 Table for Combined models. The DIC value is reported
in brackets.

Fully Bayesian B-IFM
True Model
Scenario 5 (Combined Tree Copula) 528 (532) 579 (582)
Scenario 6 (Mixture of Combined Tree Copula) 1067 1322
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Figure 2.8: Histograms of the simulated values of the posterior distributions for the parameters of
scenario 6 (second prior setting of Table 2.7), where we consider a mixture of tree copulas model
with bivariate Double Gumbel and Double Clayton copulas re-parameterized through Kendall’ tau
parameters. For the parameters of the AR series, we report only the histograms for the coefficients
of the second and third series, i.e. α2 and α3.



Chapter 3

DP-Tree Copula Model

As an extension of the models presented in Chapter 2, here we consider a Bayesian nonparametric

approach based on a Dirichlet process mixture model, named from now on DP-tree copula model.

We focus on a mixture of tree copulas where we assume that the number of mixture components

is unknown a priori. In this framework we consider a Dirichlet process as prior for the copula

parameters and the tree structures.

The Dirichlet process is currently one of the most popular Bayesian nonparametric models. It

was first formalized by Ferguson (1973) for general Bayesian statistical modeling, as a prior over

distributions with wide support yet tractable posteriors. A common application of the Dirichlet

process is in clustering data using mixture models, see e.g. Lo (1984), Neal (1992), Escobar and

West (1995). In order to sample from the posterior distribution of a Dirichlet process mixture

models, many Markov chain methods have been proposed, see e.g. MacEachern and Müller (1998),

Neal (2000), Walker (2007), Kalli et al. (2011), Ishwaran and James (2001). In this work we rely

on the slice sampling approach of Walker (2007) and Kalli et al. (2011).

The outline of the Chapter is the following. In Section 3.1 we briefly introduce the Dirichlet

process, focusing on its stick breaking construction and on related mixture models. In Section 3.2 is

described our DP-tree copula model while in Section 3.3 is illustrated the MCMC algorithm. Finally,

a simulation study is reported in Section 3.4.

3.1 Dirichlet Process

Let G0 be a probability measure on a polish space (B,B) and let ψ be a positive real number.

A random probability measure G over (B,B) has a Dirichlet process distribution with concentration

parameter ψ and base measure G0 (in symbol DP (ψ,G0)) if, for any finite measurable partition

(B1, . . . , BK) of B, the random vector (G(B1), . . . , G(BK)) is distributed as a finite dimensional

Dirichlet distribution with parameters (ψG0(B1), . . . , ψG0(BK)), i.e.

(G(B1), . . . , G(BK)) ∼ Dir (ψG0(B1), . . . , ψG0(BK)) .

47
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We write G ∼ DP (ψ,G0) if G has a Dirichlet process distribution, or briefly if G is a Dirichlet

process (DP).

The existence of such an object was proved by Ferguson (1973).

3.1.1 Stick Breaking Construction

One property of the Dirichlet process distribution is that measures drawn from it are discrete

with probability one. In the stick breaking construction, see Sethuraman (1994), the property of

discreteness is made explicit. Through this construction, the Dirichlet process can be represented as

G(·) =
∑
d≥1

wdδζd(·). (3.1)

The weights wd are generated randomly using the stick-breaking construction where w1 = v1 and

wd = vd
∏
l<d

(1− vl)

with vd i.i.d. random variables with Beta(1, ψ) distribution. The atoms ζd are i.i.d. random

variables with distribution G0 and δζd is a probability measure concentrated on ζd. This stick-

breaking construction is so-called because proportions vd are sequentially broken from the remaining

length
∏
l<d(1− vl) of a unit-length stick.

Sethuraman (1994) showed that G defined in Equation (3.1) is a random probability measure

distributed according to DP (ψ,G0).

An alternative representation of the DP, that we don’t report here, is based on a Pòlya urn

scheme. The interested reader is referred to Blackwell and MacQueen (1973).

3.1.2 Infinite Mixture Models

One of the uses of the Dirichlet process is as a nonparametric prior on the parameters of a

mixture model. In general, in a mixture model the pdf of an observation X is defined as

f(x|G) =
∫
B

K(x|ζ)G(dζ) (3.2)

where K(·|ζ) is a suitable kernel distribution with parameters ζ and G is a suitable random measure

on the parameters space (B,B).

If G is a Dirichlet process, we obtain a mixture model with a countably infinite number of

components usually named Dirichlet process mixture model. In this case, using the stick breaking

representation given above, we obtain that the pdf (3.2) can be rewritten as

f(x|ζ,V ) =
∑
d≥1

wdK(x|ζd) (3.3)

where V = (v1, v2, . . . ), and ζ = (ζ1, ζ2, . . . ).
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The Dirichlet process mixture model can be derived as the limit of a finite mixture model where

the number of the components is taken to infinity. More precisely, let us consider a finite mixture

model with D components where the measure G can be written as

G = GD =
D∑
d=1

wdδζd

with
∑D
d=1 wd = 1. If we consider the following model

ζd|G0
iid∼ G0

w = (w1, . . . , wD)|ψ ∼ Dir
(
ψ

D
, . . . ,

ψ

D

)
(3.4)

then, for each measurable function g, integrable with respect to G0, we have, as D → +∞:∫
B

g(ζ)GD(dζ) D−→
∫
B

g(ζ)G(dζ)

where G ∼ DP (ψ,G0); see Ishwaran and Zarepour (2002).

In case we model a set of observations (X1, . . . ,XT ) via a Dirichlet process mixture model, we

have the following hierarchical representation:

Xi|ζi
ind∼ K(·|ζi)

ζi|G
iid∼ G

G|ψ,G0 ∼ DP (ψ,G0).

Due to the property of discreteness of G, the variables ζi can take the same value simultaneously

and the above model can be seen as a mixture model in which the observations Xi with the same

values of ζi belong to the same cluster. The number of clusters D in the first T observations is

random. Antoniak (1974) showed that the (prior) distribution of D in the first T observation is

equal to

P(D = d|ψ, T ) = T !Γ(ψ)
Γ(ψ + T ) |sTd|ψ

d

for d ≥ 1, where sTd is the signed Stirling number and, Γ(z) =
∫ +∞

0 tz−1e−tdt is the Gamma

function. The expected number of components is directly affected by the value of the concentration

parameter ψ. Indeed the expected number of clusters is

E(D) =
T∑
t=1

ψ

t− 1 + ψ

As the number of observations T → +∞, this gives

E(D) ' ψ log T. (3.5)

For large value of ψ, the probability of the presence of a new component in the mixture increases.

The use of DP mixture model allows for the inclusion of the number of components uncertainty and

the posterior distribution of D given a sample of data provide information on the unknown number

of components.



50 CHAPTER 3. DP-TREE COPULA MODEL

3.2 Bayesian Inference for DP-Tree Copula Model

Coming back to the AR-copula model, in this Chapter we assume that the joint density of the

innovations is represented through a Dirichlet process mixture distribution on the parameters Φ of

the copula structure. More precisely, we assume that the pdf of the innovations at time t has the

form

fεt(ε1,t, . . . , εN,t|G,ν) =
∫
K(ε1,t, . . . , εN,t|Φ,ν)G(dΦ)

where G ∼ DP (ψ,G0) and ν has some distribution Q0. We also suppose that the kernel density K

is represented by a tree copula density, Equation (2.1). Following the stick breaking representation

of the Dirichlet process, we can write the joint density of the innovations as

fεt(ε1,t, . . . , εN,t|Φ,ν,V ) =
∑
d≥1

wd
∏

(l,m)∈Ed

c
θ

(d)
l,m

(
Fνl(εl,t), Fνm(εm,t)

) N∏
k=1

fνk(εk,t)

where Φ represents the collection of all the copula parameters and tree structures, i.e. Φ =

((θ1, E1), (θ2, E2), . . .). Let us recall that V denotes the elements (v1, v2, . . . ) of the stick break-

ing construction, where w1 = v1 and wd = vd
∏
l<d(1− vl). As in the previous Chapter, we assume

that each bivariate copula c
θ

(d)
l,m

belongs to one of the copula families listed in Section 1.5.3, i.e.

Gumbel, Clayton, Joe or Double Gumbel/Double Clayton copulas.

Using transformation (1.15) that involves the AR models, we obtain the conditional joint density

of the observations at time t

fXt
(x1,t, . . . , xN,t|Φ,ν,V ,A,Ot−1) = (3.6)∑

d≥1
wd

∏
(l,m)∈Ed

c
θ

(d)
l,m

(
Fνl(xl,t −

p∑
i=1

αl,ixl,t−i), Fνm(xm,t −
p∑
i=1

αm,ixm,t−i)
)

×
N∏
k=1

fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
.

In our model, each ζd of Equation (3.3) is equal to (θd, Ed), therefore G0 decomposes in the

product of a prior on θd and a prior on Ed. We also assume that the concentration parameter ψ of

the DP is unknown, as well as A, the collection of the AR parameters.

Summarizing, assuming independent prior distributions for the unknown parameters, we have

the following prior setting

νk = (µk, pk) ∼ NG(ak, bk,mk, rk)

αk ∼ Np(Mk,Σk) (3.7)

vd ∼ Beta(1, ψ)

(θd, Ed) ∼ G0(·)

ψ ∼ Gamma(aψ, bψ)



3.2. BAYESIAN INFERENCE FOR DP-TREE COPULA MODEL 51

for k = 1, . . . , N and d ≥ 1. In (3.7), Gamma(a, b) denotes a Gamma density with (a, b) shape and

scale parameters, respectively. Moreover, we assume that G0 is equal to the product between a prior

on θd with density p0 and a uniform prior on the tree structure Ed. Furthermore, since θd = {θ(d)
l,m},

we set p0(·) =
∏

(l,m) pl,m(·) where pl,m is the prior on each copula parameter introduced in Section

2.1. Also in this case, the choice of the prior on the marginal and AR parameters leads to a

simplification on the computational steps.

In order to sample from the posterior distribution one needs to use a simulation method. Silva

and Gramacy (2009) rely on the corresponding truncated version of the DP- model as explained in

Section 3.1.2, following the work of Ishwaran and James (2001). In this thesis, we consider another

approach known as slice sampling algorithm, proposed by Walker (2007) and Kalli et al. (2011).

The slice sampling algorithm introduces a latent variable ut, t = 1, . . . , T such that the joint

density of (x1,t, . . . , xN,t, ut) given all the parameters (Φ,ν,A,V , ψ) and the previous observations

becomes

fXt
(x1,t, . . . , xN,t, ut|Φ,ν,A, ψ,V ,Ot−1) =

∑
d≥1

1(wd > ut)Kt(x1,t, . . . , xN,t|(θd, Ed),ν,A,Ot−1)

where

Kt(x1,t, . . . , xN,t|(θd, Ed),ν,A,Ot−1)

=
∏

(l,m)∈Ed

c
θ

(d)
l,m

(
Fνl(xl,t −

p∑
i=1

αl,ixl,t−i), Fνm(xm,t −
p∑
i=1

αm,ixm,t−i)
)
×

N∏
k=1

fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
.

If we define the set

Bt = {d : wd > ut},

then the likelihood can be rewritten as

f(OT ,U |Φ,ν,A, ψ,V ) =
T∏
t=1

∑
d∈Bt

Kt(x1,t, . . . , xN,t|(θd, Ed),ν,A,Ot−1)

where U = (u1, . . . , uT ). Note that, with the introduction of this latent variable, since Bt is a finite

set for all t, we obtain a finite mixture model.

Now, we can introduce an allocation variable It that identify the component of the mixture model

from which Xt is drawn. The complete data likelihood becomes

f(OT ,U , I|Φ,ν,A, ψ,V ) =
T∏
t=1

1(wIt > ut)Kt(x1,t, . . . , xN,t|(θIt , EIt),ν,A,Ot−1)

where I = (I1, . . . , IT ). From the complete likelihood and the prior distribution setting in (3.7), we

obtain that the augmented posterior density is given by

π(Φ,ν,A, ψ,V ,U , I|OT ) ∝
T∏
t=1

1(wIt > ut)Kt(x1,t, . . . , xN,t|(θIt , EIt),ν,A,Ot−1)π0(Φ,ν,A, ψ,V )
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where π0 is the prior distribution defined above. Samples from this posterior probability are obtained

following the work of Walker (2007) and Kalli et al. (2011). The details of our MCMC algorithm

are presented in the following Section.

3.3 MCMC for DP-Tree Copula Model

We define the set D = {d : ∃t such that It = d} that represents the non empty mixture compo-

nents. The cardinality of D gives the number of the mixture components, denote in Section 3.1.2

with D, and D∗ = maxD is the number of stick breaking components used in the mixture.

The Metropolis within Gibbs algorithm developed for the DP-tree model samples iteratively from

the full conditionals:

• ν given [Φ,A, ψ,V ,U , I,OT ] (Metropolis-Hasting step);

• A given [Φ,ν, ψ,V ,U , I,OT ] (Metropolis-Hasting step);

• Φ given [ν,A, ψ,V ,U , I,OT ] (Metropolis-Hasting step);

• U ,V , ψ given [Φ,ν,A, I,OT ] sampled as a block:

– ψ given [Φ,ν,A, I,OT ] (Metropolis-Hasting step);

– V given [Φ,ν,A, ψ, I,OT ] (closed form);

– U given [Φ,ν,A, ψ,V , I,OT ] (closed form);

• I given [Φ,ν,A, ψ,V ,U , I,OT ] (closed form).

The variance of the random walk proposal densities are tuned to achieve acceptance rates between

20% and 80%. In the following, we present in details the steps of the algorithm.

Full conditional of ν. The full conditional of ν given (Φ,A, ψ,V ,U , I,OT ) is

π(ν|Φ,A, ψ,V ,U , I,OT ) ∝
T∏
t=1

∏
(l,m)∈EIt

c
θ

(It)
l,m

(
Fνl(εl,t), Fνm(εm,t)

) N∏
k=1

fνk(εk,t)πν,k(νk)

where πν,k(·) denotes the prior Normal-Gamma NG(ak, bk,mk, rk) introduced in (3.7). We proceed

with a MH step similar to the one presented for the finite mixture model of Section 2.4. For each

νk (k = 1, . . . , N) we consider a proposal density of the form qν,k(ν∗k |νk) = qp,k(p∗k|pk)qµ,k(µ∗k|µk)

where the proposal density on p∗k is a gamma density with mean pk and fixed variance σ2
p, while for

µ∗k we assume a Normal proposal density with mean µk and fixed variance σ2
µ.
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Full conditional of A. The full conditional of A given (Φ,ν, ψ,V ,U , I,OT ) is

π(A|Φ,ν, ψ,V ,U , I,OT ) ∝
T∏
t=1

∏
(l,m)∈EIt

c
θ

(It)
l,m

(
Fνl(xl,t −

p∑
i=1

αl,ixl,t−i), Fνm(xm,t −
p∑
i=1

αm,ixm,t−i)
)
×

N∏
k=1

fνk(xk,t −
p∑
i=1

αk,ixk,t−i)πA,k(αk)

where πA,k(·) denotes the normal prior Np(Mk,Σk) on αk. We apply a MH step as in the case of

the finite mixture model where a random walk proposal is assumed. We set the proposal density

qA(A∗|A) equal to a multivariate Normal distribution with mean A and fixed diagonal covariance

matrix.

Full conditional of Φ. We recall that in this case Φ = ((θ1, E1), (θ2, E2), . . .) and its full condi-

tional given (ν,A, ψ,V ,U , I,OT ) is

π(Φ|ν,A, ψ,V ,U , I,OT ) =
∏

d:It=d

∏
(l,m)∈Ed

c
θ

(d)
l,m

(
Fνl(εl,t), Fνm(εm,t)

)
g0(θd, Ed)

where g0 is the prior density on (θd, Ed).

We proceed by distinguishing between the element d ∈ D and the elements /∈ D. For every d ∈ D

we used a MH step with a proposal density of the form

qE,θ(E∗d ,θ∗d|Ed,θd) = qE (E∗d |Ed)
∏

(l,m)

q
θ

(d)
l,m

(
θ

(d)∗
l,m |Ed, θ

(d)
l,m, E

∗
d

)
.

as in the finite mixture model. For each θ(d)
l,m ∈ θd we use the same proposal density presented in

Section 2.2 and for the tree structure we apply the tree-angular proposal described in Section 2.2.

For the element d /∈ D we don’t need a MH step and we sample the parameters directly from

the prior. In theory, we need to sample an infinite number of θ(d)
l,m, but actually, in order to proceed

with the algorithm, only a finite number parameters is necessary, i.e. only the elements involved in

the full conditional of I.

Full conditional of (U ,V , ψ). At this step we sample (U ,V , ψ) as a block. This means sampling

ψ given the rest excluded (U ,V ) and then sampling (U ,V ) given all the rest.

Firstly, we present how to sample (U ,V ). Also for this variables we consider a blocking, and we

sample V given the rest excluded U and U given all the other parameters.

The full conditional of V given (Φ,ν,A, ψ, I,OT ) is

π(V |Φ,ν,A, ψ, I,OT ) ∝
∏

d:It=d

(
vd
∏
l<d

(1− vd)
)
πV (vd)

where πV is the prior density Beta(1, ψ). We don’t need a MH step, but we have to distinguish in

three different cases.
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If d ∈ D the full conditional is in closed form and proportional to a Beta(γd, δd) with parameters

γd = 1 +
T∑
t=1

1(It = d)

δd = ψ +
T∑
t=1

1(It > d).

If d /∈ D but d ≤ D∗, we sample vd from a Beta(1, δd), otherwise for all d > D∗ we sample directly

from the prior density Beta(1, ψ). Also in this case, we don’t need to sample an infinite number of

vd, since only the elements affected the full conditional of I are necessary.

Now we can consider the full conditional of U given (Φ,ν,A,V , I, ψ,OT ), that is given by

π(U |Φ,ν,A,V , I, ψ,OT ) ∝
T∏
t=1

1(wIt > ut).

and therefore we can sample each ut from a uniform distribution on (0, wIt), for t = 1, . . . , T .

Finally, we can compute the full conditional of ψ given (Φ,ν,A, I,OT ). The information on ψ

are provided only by the sample size and the different cluster, that is the number of different It.

The full conditional of ψ involves only (I,OT ) and is given by

π(ψ|I,OT ) ∝ ψDΓ(ψ)
Γ(ψ + T )πψ(ψ)

where D is the number of cluster, πψ the Gamma prior on ψ and, Γ(z) =
∫ +∞

0 tz−1e−tdt is the

Gamma function, see Escobar and West (1995). In order to sample from this full conditional,

we consider a MH where as proposal density we choose the prior Beta(aψ, bψ). The acceptance

probability is

min
{

1, ψ
∗DΓ(ψ∗)Γ(ψ + T )
ψDΓ(ψ)Γ(ψ∗ + T )

}
.

Full conditional of I. The full conditional of I given (Φ,ν,A, ψ,V ,U ,OT ) is

π(I|Φ,ν,A, ψ,V ,U ,OT ) ∝
T∏
t=1

1(wIt > ut)Kt(x1,t, . . . , xN,t|(θIt , EIt),ν,A,Ot−1).

For each t, we sample It from a discrete distribution with probability

P
(
It = k|OT ,U , ζ,η,V , ψ

)
∝

T∏
t=1

1(wk > ut)Kt(x1,t, . . . , xN,t|(θk, Ek),ν,A,Ot−1).

As shows in Walker (2007) and Kalli et al. (2011), we have to sample, almost surely, from a finite

set. More precisely, if we define Nt the smallest integer for which

Nt∑
k=1

wk > 1− ut, for t = 1, . . . , T

and N∗ = max(Nt), we can observe that for every k > N∗ and for all t, wk < ut, and therefore

1(wk > ut) = 0.
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Table 3.1: Simulation study: Scenario 1. DP-tree copula model with bivariate Double Gumbel
or Double Clayton linking copulas re-parameterized through Kendall’s tau. For each prior setting
we show the posterior mean of the parameters (ν,A) and the posterior mode D̂ of the number of
cluster. In last part of the table, we list the highest posterior probability tree structures. For each
tree structure, the posterior mean of (2.6) is reported in brackets.

Scenario 1 Prior Settings
N = 5 (τl,m, ζl,m) Beta(−1,1)(1, 2)× Unif(H) Beta(−1,2)(1, 1)× Unif(H)
p = 2 (µk, pk) NG(1, 0.5, 1, 0.01) NG(0.5, 1, 1, 0.01)
D = 2 αk Np([0.1, 0.3], 10Ip) Np([0.2, 0.3], 10Ip)

ψ Gamma(0.2, 1) Gamma(0.08, 25)
True Values Posterior Means/Modes

νk = (µk, 1
pk

) (1, 0.5) (0.99, 0.56) (0.99, 0.53)
(−1, 0.3) (−0.89, 0.36) (−1.08, 0.30)
(0.5, 0.4) (0.46, 0.46) (0.52, 0.42)
(0, 0.7) (0.01, 0.71) (−0.04, 0.71)

(−0.5, 0.9) (−0.53, 0.98) (−0.56, 0.84)
αk (0.3,−0.4) (0.27,−0.35) (0.28,−0.40)

(−0.3, 0.4) (−0.23, 0.44) (−0.34, 0.35)
(0.1, 0.6) (0.12, 0.59) (0.06, 0.62)

(−0.2, 0.4) (−0.16, 0.41) (−0.18, 0.40)
(0.1, 0.5) (0.10, 0.46) (0.05, 0.52)

D̂ 2 2 2
E [1, 2, 5] [1,2,5](0.451) [1,4,5](0.4745)

[1, 4, 5] [1,4,5](0.190) [1,2,5](0.1711)

3.4 Simulation Study

We use simulated data to investigate the performance of our DP-tree copula model. We present

3 alternative scenarios. For each scenario we use a dataset of T = 200 observations generated from

a multivariate AR model with fixed parameters and a specific mixture of tree copula distributions

with fixed number of components D. Also in this case, we perform sensitivity analysis. As is often

the case, the concentration parameter ψ turns out to be more sensible with respect to the other

parameters. Therefore, in the following prior settings, we consider two alternative choice for the

hyper-parameters of the Gamma priors. The first one is an informative setting with small variance,

while the second setting is less informative with a bigger value for the variance.

More precisely, in scenario 1 we consider a dataset simulated from a mixture of two tree copula

distributions with bivariate Double Gumbel/Double Clayton copulas, weights w = [0.5, 0.5] and

copula parameters θl,m = (τl,m, ζl,m). In this case we consider our DP-tree copula model of Section

3.2 based on Double linking copulas and with prior specification as in (3.7). In scenario 2, the AR-

observations are generated starting from a mixture of three tree copulas where each bivariate copulas

belongs to the Gumbel family and w = [1/3, 1/3, 1/3]. In this case, we apply the DP-tree copula
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Figure 3.1: Histograms of the simulated values of the posterior distributions for the marginal and
AR parameters of scenario 1 (first prior setting of Table 3.1), where we consider a DP-tree model
with linking Double Gumbel/Double Clayton copulas re-parameterized through the Kendall’s tau.
We report the results for the AR coefficients of the third and fourth series, i.e. α3 and α4.

model with same linking copulas and parameters θl,m = λUl,m. For these two scenarios, we consider

the MCMC algorithm presented in Section 3.3 with 70000 iterations and a burn-in of 50000. Finally,

in scenario 3, we used simulated data from a mixture of four tree copulas with linking Double copulas

and weights w = [0.25, 0.25, 0.25, 0.25]. Then, we apply our Bayesian DP-tree model with bivariate

Double copulas without assuming a prior for ψ, i.e. fixing a specific value for the concentration

parameter.

For scenario 1 and 2, the results are shown in Tables 3.1 and 3.2, respectively. On each tables

we show the values of the parameters used to generate the data and the corresponding posterior

estimates obtained with two alternative prior settings. In particular, we present the posterior means

of the parameters (ν,A), the posterior mode D̂ of the number of clusters and the list of the higher

posterior probability tree structures obtained via Equation (2.6). For both the scenarios, the pos-

terior estimates are consistent with the parameters used to generate the data. Furthermore, in

Figures 3.1 and 3.4 we display the histograms of the simulated values of the posterior distributions

for ν and for the coefficients of two AR series of the DP-tree model with Double linking copulas
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Figure 3.2: Diagnostic plots for the marginal parameters of scenario 1 (second prior setting of Table
3.1), where we consider a DP-tree model with linking Double Gumbel/Double Clayton copulas
re-parameterized through the Kendall’s tau.

Figure 3.3: Histograms of the simulated values of the posterior distributions of number of components
for scenario 1, where we study a DP-tree copula model with Double Gumbel/Double Clayton linking
copulas and D = 2. On the left, the result with the first prior setting of Table 3.1 and on the right
with the second prior setting.

and of the DP-tree model with Gumbel linking copulas, respectively. Concerning the convergence

of the algorithm, in Figure 3.2, as an example, we report the diagnostic plots for some parameters

of scenario 1. Finally, the histograms of the simulated values of the posterior distributions of the

number of cluster for each prior setting of scenario 1 and of scenario 2 are presented in Figures 3.3

and 3.5. All these histograms are centered on the corresponding true value of D, i.e. D = 2 for

scenario 1 and D = 3 for scenario 2. Note that, for both scenarios, the expected number of cluster

a priori E(D), computed via (3.5), is approximately 1.06 for the first prior settings, while for the

second prior setting is approximately 10.6. Moreover, we observe that the distributions associated

to the first prior setting of each scenario are more concentrated than the distributions related to

the second prior settings. Indeed, for both scenarios, the value of the variance of the Gamma prior
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Table 3.2: Simulation study: Scenario 2. DP-tree copula model with bivariate Gumbel linking
copulas re-parameterized through upper tail parameters. For each prior setting we show the posterior
mean of the parameters (ν,A) and the posterior mode D̂ of the number of cluster. In last part
of the table, we list the highest posterior probability tree structures. For each tree structure, the
posterior mean of (2.6) is reported in brackets.

Scenario 2 Prior Settings
N = 5 θl,m Beta(1, 1) Beta(1, 2)
p = 2 (µk, pk) NG(1, 1, 0, 0.1) NG(1, 2, 0, 0.1)
D = 3 αk Np([0.1, 0.3], 10Ip) Np[0.2, 0.3], 10Ip)

ψ Gamma(0.2, 1) Gamma(0.08, 25)
True Values Posterior Means/Modes

νk = (µk, 1
pk

) (1, 0.5) (1.00, 0.54) (0.91 0.50)
(−1, 0.3) (−1.08, 0.30) (−1.12, 0.31)
(0.5, 0.4) (0.52, 0.40) (0.36, 0.38)
(0, 0.6) (0.02, 0.63) (0.05, 0.62)

(−0.5, 0.9) (−0.45, 0.88) (−0.53, 0.87)
αk (0.3,−0.4) (0.25,−0.40) (0.33,−0.33)

(−0.3, 0.4) (−0.35, 0.39) (−0.35, 0.35)
(0.1, 0.6) (0.06, 0.61) (0.07, 0.70)

(−0.2, 0.4) (−0.17, 0.34) (−0.14, 0.44)
(0.1, 0.5) (0.15, 0.54) (0.03, 0.52)

D̂ 3 3 3
E [1, 1, 1] [1,1,3](0.326) [1,1,1](0.262)

[1, 1, 3] [1, 5, 1](0.123) [1,1,3](0.173)
[1, 5, 5] [1,1,1](0.100) [1,5,5](0.157)

[1,5,5](0.065)

associated to ψ in the first prior setting is equal to 0.2, while in the second prior settings is higher,

i.e. equal to 50.

In scenario 3, we illustrate the results obtained with a DP-tree copula model based on linking

Double Gumbel and Double Clayton copulas where the value of the concentration parameter ψ is

fixed. The values of the parameters used to generate the data and the posterior estimates computed

with two different prior settings are reported in Table 3.3. In particular, the prior settings present

different value for the concentration parameter, respectively ψ = 0.1 and ψ = 0.5. In this table,

for each prior setting, we show the posterior means for the parameters (ν,A), the posterior mode

of the number of clusters and the trees with the higher posterior probability estimated via (2.6).

The histograms of the simulated values of the posterior distributions for the marginal parameters

and for the coefficients of two AR series are presented in Figure 3.6. The posterior distributions

of the number of clusters obtained with each prior setting of scenario 3 are shown in Figure 3.7.

Also in this case, both the distributions are centered around the true value of D. As expected, the

distribution obtained with the first prior setting is more concentrated than the distribution obtained
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Figure 3.4: Histograms of the simulated values of the posterior distributions for the marginal and
AR parameters of scenario 2 (first prior setting of Table 3.2), where we consider a DP-tree model
with linking Gumbel copulas re-parameterized through upper tail parameters. We report the results
for the AR coefficients of the third and fifth series, i.e. α3 and α5.

with the second prior setting that, indeed, shows a higher values of ψ.

Finally, in Table 3.4 are listed the values of the DIC3 criterion computed for each scenario with

our fully Bayesian approach and the B-IFM procedure. As for the B-IFM, to the data of scenario

1/ scenario 2 we apply a B-IFM procedure with, respectively, a mixture of two tree copulas based

on Double copulas and a mixture of three tree copulas with linking Gumbel copulas. To the data of

scenario 3, we apply a B-IFM procedure with mixture of four tree copulas based on Double copulas

and with fixed value of ψ. Also in this case, we observe that the DIC3 values obtained with the fully

Bayesian approach are lower than the DIC3 of the corresponding B-IFM procedure.
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Figure 3.5: Histograms of the simulated values of the posterior distributions of number of components
for scenario 2, where we study a DP-tree copula model with Gumbel linking copulas and D = 3. On
the left, the result with the first prior setting of Table 3.2 and on the right with the second prior
setting.

Figure 3.6: Histograms of the simulated values of the posterior distributions for the marginal and
AR parameters of scenario 3 (first prior setting of Table 3.3, i.e. ψ = 0.1), where we consider a
DP-tree copula model with Double Gumbel and Double Clayton copulas re-parameterized through
Kendall’s tau and fixed value of ψ . We report the results for the AR coefficients of the first and
fourth series, i.e. α1 and α4.
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Table 3.3: Simulation study: Scenario 3. DP-tree copula model with with Double Gumbel and
Double Clayton copulas re-parameterized through Kendall’s tau parameter, and with fixed value of
ψ. For each prior setting we show the posterior mean of the parameters (ν,A) and the posterior
mode D̂ of the number of cluster. In last part of the table, we list the highest posterior probability
tree structures. For each tree structure, the posterior mean of (2.6) is reported in brackets.

Scenario 3 Prior Settings
N = 5 (τl,m, ζl,m) Beta(−1,1)(2, 2)× Unif(H) Beta(−1,1)(1, 2)× Unif(H)
p = 2 (µk, pk) NG(1, 0.5, 1, 0.01) NG(1, 0.5, 1, 0.01)
D = 4 αk Np([0.1, 0.3], 10Ip) Np([0.1, 0.3], 10Ip)

ψ ψ = 0.1 ψ = 0.5
True Values Posterior Means/Modes

νk = (µk, 1
pk

) (1, 0.5) (1.00, 0.55) (0.91, 0.57)
(−1, 0.3) (−0.90, 0.32) (−0.92, 0.34)
(0.5, 0.4) (0.52, 0.44) (0.41, 0.47)
(0, 0.7) (0.01, 0.74) (0.002, 0.68)

(−0.5, 0.9) (−0.53, 0.93) (−0.38, 0.90)
αk (0.3,−0.4) (0.27,−0.34) (0.33,−0.39)

(−0.3, 0.4) (−0.25, 0.44) (−0.24, 0.40)
(0.1, 0.6) (0.15, 0.53) (0.12, 0.62)

(−0.2, 0.4) (−0.23, 0.39) (−0.16, 0.48)
(0.1, 0.5) (0.10, 0.47) (0.23, 0.46)

D̂ 4 4 4
E [1, 2, 5] [2,3,5](0.292) [2,3,5](0.193)

[1, 4, 5] [3, 5, 4](0.080) [1, 4, 5](0.108)
[2, 1, 5] [5, 1, 4](0.078) [1,2,5](0.080)
[2, 3, 5] [1, 2, 3](0.055) [1, 1, 3](0.057)

[1, 5, 1](0.041) [5, 1, 5](0.049)
[1,4,5](0.036) [2, 2, 5](0.045)
[3, 2, 5](0.0298) [2,1,5](0.034)
[2,1,5](0.293) [3, 5, 5](0.030)
[1,2,5](0.278) [1,4,5](0.274)

Table 3.4: Simulated Data: DIC3 Table for DP-tree copula models.

Fully Bayesian B-IFM
True Model
Scenario 1 (Infinite Mixture of Combined Tree Copula) 1208 1446
Scenario 2 (Infinite Mixture of Gumbel Tree Copula) 1079 1185
Scenario 3 (Infinite Mixture of Combined Tree Copula, fixed ψ) 1341 1465
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Figure 3.7: Histograms of the simulated values of the posterior distributions of number of components
for scenario 3, where we study a DP-tree copula model with Double Gumbel/Double Clayton linking
copulas, with fixed value of ψ and D = 4. On the left, the result with the first prior setting of Table
3.3 (ψ = 0.1) and on the right with the second prior setting (ψ = 0.5).



Chapter 4

Factor Copula Model and Markov
Switching Factor Copula Model

As an alternative to the tree copula model and the (finite or infinite) mixture of tree copulas

model presented in Chapters 2 and 3, here we introduce the one-factor copula model. We consider

the AR-model of Section 1.5.3 and assume that the pdf of the innovations is represented via suitable

bivariate copula that link observed data to a latent variable V . Also in this case, a graphical tree

structure can be associated to the joint density of the innovations and V , indeed, as already noted

in Section 1.4.3, the one-factor copula is equivalent to a truncated C-vine at first level with a latent

node. In contrast to the previous models, in the factor copula the underlying tree structure is fixed

and we can not proceed with structural learning but the presence of the latent node allows to study a

more general dependence structure respect to the one associated to a single tree copula distribution.

In this Chapter, we also present a Markov switching factor copula model in which a hidden latent

variable St determines the copula structure of the innovations at time t. (St)t≥1 is assumed to be

a first order Markov chain in discrete time that takes values in {1, . . . , R}, see Section 1.5.4. In

particular, we suppose that in each state r = 1, . . . , R the dependence structure of the innovations

is represented through a specific one factor copula. The presence of different regimes allows to have

a more flexible model.

The outline of this Chapter is the following. The Bayesian one factor copula model is presented

in Section 4.1 and the corresponding MCMC algorithm for posterior estimates is described in Section

4.2. The Markov switching factor copula model and the corresponding MCMC algorithm are detailed

in Sections 4.3 and 4.4. Finally, an application of these methodologies applied to simulated data is

shown in Section 4.5.

4.1 Bayesian Inference for Factor Copula Model

In this model we assume that for any fixed t the joint density of the innovations is represented

via a one-factor copula with latent variable V as described in Section 1.4. With this assumption,

63
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the joint density of εt is given by

fεt(ε1,t, . . . , εN,t|Φ,ν) =
∫ 1

0

N∏
k=1

cθk,0(Fνk(εk,t), v)fνk(εk,t)dv.

Using again the transformation (1.15) that involves the AR-models, we obtain that the joint density

of Xt given the past is equal to

fXt(x1,t, . . . , xN,t|Φ,ν,A,Ot−1) =∫ 1

0

N∏
k=1

cθk,0

(
Fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
, v

)
fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
dv.

For each observation Xt = (X1,t, . . . , XN,t) there is a distinct, independent realization vt of latent

variable V . Hence, for Bayesian inference, V1:T = (V1, . . . , VT ) represents additional independent

latent variables distributed uniformly on [0, 1]. Thus, the complete augmented likelihood is

f(OT , v1:T |Φ,ν,A) =
T∏
t=1

N∏
k=1

cθk,0

(
Fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
, vt

)
fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
.

In this model, since we have T more latent variables V1:T , we assume for simplicity that the means

of the Normal marginal distributions are known, i.e. νk = pk for k = 1, . . . , N . The parameter

Φ denotes only the copula parameters θ = (θ1,0, . . . , θN,0), since we cannot make inference on the

underlying graphical structure.

In order to proceed with Bayesian inference, we assign the following independent prior distribu-

tions

νk ∼ Gamma(ak, bk)

αk ∼ Np(Mk,Σk) (4.1)

θk,0 ∼ pk,0

for k = 1, . . . , N and t = 1, . . . , T . Also for this model, we assume that each bivariate copula

belongs to one of the families presented in Section 1.5.3, i.e. Gumbel, Clayton or Joe copulas re-

parameterized in terms of tail dependence parameters or Double Gumbel/Double Clayton copulas

re-parameterized through Kendall’s tau. Also in this case, for the marginal and AR parameters we

consider the usual prior densities that permit to simplify the computational steps.

If θk,0 is equal to upper or lower tail parameter, pk,0 is a Beta density with parameters (γk,0, δk,0).

For the model that involves the rotated copulas, i.e. θk,0 = (τk,0, ζk,0), more attention should to

be paid. Indeed, if we consider a one-factor copula c(u1, u2) with linking bivariate Gumbel copulas

c(·, ·|τ1) and c180(·, ·|τ2) re-parameterized via the Kendall’s tau, τ1, τ2 > 0 , respectively, then

c(u1, u2) =
∫ 1

0
c(u1, v|τ1)c180(u2, v|τ2)dv

=
∫ 1

0
c(u1, v|τ1)c(1− u2, 1− v|τ2)dv (4.2)
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where in (4.2) we use the relation between a copula density and its 180◦ rotation, see Equation (1.6).

By the change of variable v′ = 1− v, we have

c(u1, u2) =
∫ 1

0
c(u1, v|τ1)c180(u2, v|τ2)dv

=
∫ 1

0
c(u1, 1− v′|τ1)c(1− u2, v

′|τ2)dv′

=
∫ 1

0
c270(u1, v

′| − τ1)c90(u2, v
′| − τ2)dv′.

Therefore the joint density is not uniquely defined by its linking copulas. The problem of iden-

tificability holds also for the Double Clayton copula, and for any number of variable N ≥ 2. In

order to obtain a well-defined model, we have to choose only one rotation between 0◦ and 270◦

and one between 90◦ and 180◦. Hence, the prior pk,0 on θk,0 = (τk,0, ζk,0) is assumed to be the

product of a shifted Beta on (−1, 1) with parameters (γk,0, δk,0) and a uniform density on H1, where

H1 = {DG1, DC1}, i.e. the rotations 0◦ and 90◦ for each copula family.

With this assumptions, the posterior density is given by

π(θ,ν,A,V1:T |OT ) =
T∏
t=1

N∏
k=1

cθk,0

(
Fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
, Vt

)
×

fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
π0(θ,ν,A,V )

where π0(·) is the prior setting presented in (4.1).

Also in this case the previous posterior density is not in closed form and hence, in order to obtain

posterior estimates, we adopt the Metropolis within Gibbs algorithm described in the following

Section.

4.2 MCMC for Factor Copula Model

The MCMC algorithm developed for the analysis of the factor copula model iteratively samples

from the full conditionals:

• ν given [θ,A,V1:T ,OT ] (Metropolis-Hasting step);

• A given [θ,ν,V1:T ,OT ] (Metropolis-Hasting step);

• V1:T given [θ,ν,A,OT ] (Metropolis-Hasting step);

• θ given [ν,A,V1:T ,OT ] (Metropolis-Hasting step).

The variance of the random walk proposal are tuned to achieve acceptance rates between 20% and

80%. The details of each step of the algorithm are given in the following.
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Full conditional of ν. The full conditional of the marginal parameters given (θ,A,V1:T ,OT ) is

given by

π(ν|θ,A,V1:T ,OT ) ∝
T∏
t=1

N∏
k=1

cθk,0

(
Fνk(εk,t), Vt

)
fνk

(
εk,t

)
πν,k(νk)

where πν,k is a Gamma prior since in this model the marginal means are assumed known. As in the

previous models we have to use a Metropolis Hasting step where we consider the proposal density

q(ν∗|ν) =
N∏
k=1

qp,k(p∗k|pk)

where each qp,k(p∗k|pk) is a Gamma distribution with mean pk and fixed variance σ2
p. This choice

allow us to proceed with N different MH steps where each acceptance probability is

min
{

1,
T∏
t=1

cθk,0
(
Fν∗

k
(εk,t), Vt

)
cθk,0

(
Fνk(εk,t), Vt

) fν∗
k

(
εk,t
)
πν,k(ν∗k)qp,k(pk|p∗k)

fνk
(
εk,t
)
πν,k(νk)qp,k(p∗k|pk)

}
for k = 1, . . . , N .

Full conditional of A. The likelihood of the AR(p) parameters given (θ,ν,V1:T ,OT ) is

π(A|θ,ν,V1:T ,OT ) ∝
T∏
t=1

N∏
k=1

cθk,0

(
Fνk(xk,t −

p∑
i=1

αk,ixk,t−i), Vt
)
fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
πα,k(αk)

where πα,k indicates the multivariate Normal prior on αk. As in the step on ν, we can consider a

proposal density of the form

q(A∗|A) =
N∏
k=1

qα,k(α∗k|αk)

and proceed with a MH step for each αk. In particular, we choose each proposal qα,k equal to a p

dimensional Normal density with mean αk and fixed variance σ2
α. Each acceptance probability is

given by

min
{

1,
T∏
t=1

cθk,0
(
Fνk(xk,t −

∑p
i=1 α

∗
k,ixk,t−i), Vt

)
cθk,0

(
Fνk(xk,t −

∑p
i=1 αk,ixk,t−i), Vt

) fνk(xk,t −∑p
i=1 α

∗
k,ixk,t−i

)
πα,k(α∗k)qα,k(αk|α∗k)

fνk
(
xk,t −

∑p
i=1 αk,ixk,t−i

)
πα,k(αk)qα,k(α∗k|αk)

}
for k = 1, . . . , N .

Full conditional of V1:T . Fot the latent variable the full conditional, given (θ,ν,A,OT ), is

π(V1:T |θ,ν,A,OT ) ∝
T∏
t=1

N∏
k=1

cθk,0

(
Fνk(εk,t), Vt

)
.

We proceed with a MH step for each Vt and we choose an uniform proposal density. We obtain for

each t the accettance probability equal to

min
{

1,
N∏
k=1

cθk,0
(
Fνk(εk,t), V ∗t

)
cθk,0

(
Fνk(εk,t), Vt

) }.
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Full conditional of θ. The last full conditional is on the copula parameters and it is equal to

π(θ|ν,A,V1:T ,OT ) ∝
T∏
t=1

N∏
k=1

cθk,0

(
Fνk(εk,t), Vt

)
pk,0(θk,0).

We recall that the prior pk,0(·) is a Beta prior if the parameter θk,0 corresponds to the upper or

lower tail measures, otherwise if θk,0 = (τk,0, ζk,0) it is the product of a shifted Beta on (−1, 1) and

a uniform distribution on H1 = {DG1, DC1}. We consider a proposal density of the form

q(θ∗|θ) =
N∏
k=1

qθ,k(θ∗k,0|θk,0).

In case of θ∗k,0 = (τ∗k,0, ζ∗k,0) we sample ζ∗k,0 from the discrete distribution on H1 with probabilities

qζ,k(ζ∗k,0 = j|τ∗k,0) =

∏T
t=1 c(τ∗

k,0,j)
(
Fνk(εk,t), Vt

)
∑
h∈H1

∏T
t=1 c(τ∗

k,0,h)
(
Fνl(εk,t), Vt)

) ,
while for τ∗k,0, through the transformation h : [−1, 1]→ R defined as

h(x) = log
(1− x

1 + x

)
,

we use a random walk proposal defined on R. In particular, in order to to avoid numerical problems,

we take τ∗k,0 ∈ [−0.99, 0.99] and therefore we consider a truncated random walk proposal defined on

[−5.29, 5.29] since h(−0.99) = −5.29 and h(0.99) = 5.29.

The acceptance probability of the MH step on (τk,0, ζk,0), for k = 1, . . . , N is

min
{

1,
T∏
t=1

cθ∗
k,0

(
Fνk(εk,t), Vt

)
cθk,0

(
Fνk(εk,t), Vt

) pk,0(θ∗k,0)qτ,k(τk,0|τ∗k,0)qζ,k(ζ∗k,0|τ∗k,0)
pk,0(θk,0)qτ,k(τ∗k,0|τk,0)qζ,k(ζk,0|τk,0) .

}
(4.3)

In the case of θk,0 = λ
U/L
k,0 , the situation is more simple with only one parameter that we sample again

with a truncated random walk on [−4.59, 4.59] where the adopted transformation is h(x) = log
( 1−y

y

)
.

The acceptance rate that we obtained is similar to (4.3).

4.3 Bayesian Inference for Markov Switching Factor Copula
Model

In this Section, we consider an AR- Markov switching model - see Section 1.5.4 - where, in

each regime, the dependence structure among the examined variables is represented via a one factor

copula. For the presence of the latent node V of the factor copula and the hidden Markov chain,

we have 2T additional latent variables, and hence, for simplicity, in this model we suppose that the

AR-parameters are known and work directly with the innovations. From the inference perspective,

this is equivalent to consider a B-IFM procedure as described in Section 2.5.
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In the Markov switching factor copula model, Equation (1.16), that represents the conditional

pdf of the innovations at time t, becomes

fεt(ε1, . . . , εN |st,Φ,ν) =
∫ 1

0

N∏
k=1

c
θ

(st)
k,0

(F
ν

(st)
k

(εk,t), v)f
ν

(st)
k

(εk,t)dv

where the hidden first order Markov chain (St)Tt=1 has transition matrix Q and state space

R = {1, . . . , R}. The initial distribution of St is denoted with (ρ1, . . . , ρR). In this model, Φ

denotes the copula parameters of the factor copula of each regime, i.e. Φ = {θ(r), r = 1, . . . , R} with

θ(r) =
(
θ

(r)
1,0, . . . , θ

(r)
N,0

)
and, analogously, ν collects all the parameters of the marginal distributions,

i.e. ν = {ν(r), r = 1, . . . , R} with ν(r) =
(
ν

(r)
1 , . . . , ν

(r)
N

)
. As in the factor copula model of Section

4.1, we assume marginal Normal distributions with unknown precision p
(r)
k , and, therefore, in the

following, ν(r)
k = p

(r)
k for k = 1, . . . , N and r = 1, . . . , R.

The joint density of the innovations ε1:T = (ε1, . . . , εT ) and of the Markov chain

S1:T = (S1, . . . , ST ) is equal to

f(ε1:T , s1:T |Φ,ν,Q) =

= f(ε1|s1,Φ,ν)ρs1

T∏
t=2

f(εt|st,Φ,ν)qst,st−1

=
T∏
t=1

[ ∫ 1

0

N∏
k=1

c
θ

(st)
k,0

(F
ν

(st)
k

(εk), v)f
ν

(st)
k

(εk)dv
]
ρs1

T∏
t=2
qst,st−1 .

As in the factor copula model, for each observation one can consider an additional random

variable Vt related to the latent node. Hence, we consider V1:T = (V1, . . . , VT ) additional independent

random variables distributed uniformly on [0, 1]. In this way, we obtain the augmented likelihood of

the Markov switching factor copula model

f(ε1:T , s1:T ,v1:T |Φ,ν,Q) =
T∏
t=1

[ N∏
k=1

c
θ

(st)
k,0

(F
ν

(st)
k

(εk), vt)fν(st)
k

(εk)
]
ρs1

T∏
t=2
qst,st−1 .

Once again, we assume that the linking copulas belong to one of the copula families presented in

Section 1.5.3, i.e. Gumbel/Clayton or Joe copulas re-parameterized through the tail dependence

measure or Double Gumbel/Double Clayton copulas with Kendall’s tau parameter.

In order to proceed with Bayesian inference, we assume the following independent prior distri-

butions

ν
(r)
k ∼ Gamma(a(r)

k , b
(r)
k )

Qr· ∼ Dir(ψ1,r, . . . , ψR,r) (4.4)

θ
(r)
k,0 ∼ p

(r)
k,0

for k = 1, . . . , N , r = 1, . . . , R and where Qr· denotes the r-th row of the transition matrix Q. The

prior p(r)
k,0 is equal to a Beta density with parameters (γ(r)

k , δ
(r)
k ) if the copula parameters are equal to
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upper or lower tail dependence. Otherwise, in case of Double copulas and θ(r)
k,0 =

(
τ

(r)
k,0 , ζ

(r)
k,0

)
, p(r)

k,0 is

equal to the product of a shifted Beta on (−1, 1) with parameters (γ(r)
k , δ

(r)
k ) and a uniform density

on H1 = {DG1, DC1}. The choice of the Dirichlet prior on each row of the transition matrix allows

a closed form of the related full conditional, while the prior on the marginal parameters permits to

simplify the computational steps.

Assuming the prior setting of (4.4), we obtain the following posterior density

π(Φ,ν,Q,v1:T , s1:T |ε1:T ) ∝
T∏
t=1

[ N∏
k=1

c
θ

(st)
k,0

(F
ν

(st)
k

(εk), vt)fν(st)
k

(εk)
]
ρs1

T∏
t=2
qst,st−1π0(Φ,ν,Q)

where π0 denotes the prior described above.

The previous posterior density is not in closed form, hence in order to obtain posterior samples

we adopt a suitable Metropolis within Gibbs algorithm described in the following Section.

4.4 MCMC for Markov Switching Factor Copula Model

The MCMC algorithm developed for the analysis of the Markov switching factor model iteratively

samples from the full conditional:

• ν given [Φ,Q,V1:T ,S1:T , ε1:T ] (Metropolis-Hasting step);

• Φ given [ν,Q,V1:T ,S1:T , ε1:T ] (Metropolis-Hasting step);

• S1:T given [Φ,ν,Q,V1:T , ε1:T ] (forward filtering-backward sampling);

• Q given [Φ,ν,S1:T ,V1:T , ε1:T ] (closed form);

• V1:T given [Φ,ν,S1:T ,Q, ε1:T ] (Metropolis-Hasting step).

The variance of the random walk proposal are tuned to achieve acceptance rates between 20% and

80%. The details of each step of the algorithm are given in the following.

Full conditional of ν. The full conditional of ν given (Φ,Q,V1:T ,S1:T , ε1:T ) is proportional to

π(ν|Φ,Q,V1:T ,S1:T , ε1:T ) ∝
T∏
t=1

[ N∏
k=1

c
θ

(St)
k,0

(F
ν

(St)
k

(εk), Vt)fν(St)
k

(εk)
]
πν,k(ν(St)

k )

=
R∏
r=1

∏
t:St=r

[ N∏
k=1

c
θ

(r)
k,0

(F
ν

(r)
k

(εk), Vt)fν(r)
k

(εk)
]
πν,k(ν(r)

k ) (4.5)

where πν,k is the Gamma prior introduced in (4.4). We proceed with a Metropolis-Hasting step

for each marginal parameter ν(r)
k for k = 1, . . . , N and r = 1, . . . , R. We recall that, in this case,

ν
(r)
k = p

(r)
k since the marginal means are supposed to be known. As proposal density qp,k

(
p

(r)∗
k |p(r)

k

)
,
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we take a Gamma distribution with mean p
(r)
k and fixed variance. The acceptance probability of

each MH step is equal to

min
{

1,
T∏
t=1

c
θ

(r)
k,0

(
F
ν

(r)∗
k

(εk,t), Vt
)

c
θ

(r)
k,0

(
F
ν

(r)
k

(εk,t), Vt
) fν(r)∗

k

(
εk,t
)
πν,k(ν(r)∗

k )qp,k
(
p

(r)
k |p

(r)∗
k

)
f
ν

(r)
k

(
εk,t
)
πν,k(ν(r)

k )qp,k
(
p

(r)∗
k |p(r)

k

) }

for k = 1, . . . , N and r = 1, . . . , R.

Full conditional of Φ. The full conditional of Φ given (ν,Q,V1:T ,S1:T , ε1:T ) is

π(Φ|ν,Q,V1:T ,S1:T , ε1:T ) ∝
T∏
t=1

[ N∏
k=1

c
θ

(St)
k,0

(F
ν

(St)
k

(εk), Vt)
]
p

(St)
k,0 (θ(St)

k,0 ) =

=
R∏
r=1

∏
t:St=r

[ N∏
k=1

c
θ

(r)
k,0

(F
ν

(r)
k

(εk), Vt)
]
p

(r)
k,0(θ(r)

k,0)

where the prior p(r)
k,0 is a Beta density if as linking copulas we have Gumbel/Clayton or Joe copulas

with parameter upper or lower tail, otherwise, if θ(r)
k,0 =

(
τ

(r)
k,0 , ζ

(r)
k,0

)
, p(r)

k,0 is the product between a

shifted Beta on (−1, 1) and a uniform distribution on H1.

We proceed with a MH step for each copula parameter θ(r)
k,0 with proposal qθ,k

(
θ

(r)∗
k,0 |θ

(r)
k,0

)
. More

precisely, in case of θ(r)∗
k,0 =

(
τ

(r)∗
k,0 , ζ

(r)∗
k,0

)
we sample ζ(r)∗

k,0 from the discrete distribution on H1 with

probabilities

qζ,k(ζ(r)∗
k,0 = j|τ (r)∗

k,0 ) =

∏
t:St=r c

(
τ

(r)∗
k,0 ,j

)(F
ν

(r)
k

(εk,t), Vt
)

∑
h∈H1

∏
t:ST=r c

(
τ

(r)∗
k,0 ,h

)(F
ν

(r)
l

(εk,t), Vt)
) ,

and for τ (r)∗
k,0 , we use a random walk proposal defined on R using a suitable transformation. The

acceptance probability of the MH step for
(
τ

(r)
k,0 , ζ

(r)
k,0

)
is

min
{

1,
∏

t:St=r

c
θ

(r)∗
k,0

(
F
ν

(r)
k

(εk,t), Vt
)

c
θ

(r)
k,0

(
F
ν

(r)
k

(εk,t), Vt
) pk,0(θ(r)∗

k,0 )qτ,k(τ (r)
k,0 |τ

(r)
k,0)qζ,k(ζ(r)∗

k,0 |τ
(r)∗
k,0 )

pk,0(θk,0)qτ,k(τ∗k,0|τk,0)qζ,k(ζk,0|τk,0)

}
. (4.6)

Analogously, if θ(r)
k,0 is equal to the upper or lower tail parameter, we use a random walk proposal

on R and the acceptance probability of the MH step is similar to (4.6).

Full conditional of S1:T . The full conditional of the S1:T given (Φ,ν,Q,V1:T , ε1:T ) is equal to

π(S1:T |Φ,ν,Q,V , ε1:T ) ∝
T∏
t=1

[ N∏
k=1

c
θ

(St)
k,0

(F
ν

(St)
k

(εk), Vt)fν(St)
k

(εk)
]
ρS1

T∏
t=2
qSt,St−1 . (4.7)

In order to sample from the full conditional (4.7), we rely on the forward filtering-backward

sampling algorithm, see e.g Carter and Kohn (1994) and Frühwirth-Schnatter (1994). Indeed, one

can rewrite the conditional probability of S1:T , given the innovations ε1:T and the other parameters



4.4. MCMC FOR MARKOV SWITCHING FACTOR COPULA MODEL 71

Λ := (Φ,ν,Q,V1:T ), as

P(S1:T = s1:T |ε1:T ,Λ) = P(ST = sT |ε1:T ,Λ)P(ST−1 = sT−1|ST , ε1:T−1,Λ)×

P(ST−2 = sT−2|ST−1, ε1:T−2,Λ) · · ·P(S1 = s1|S2, ε1,Λ)

= P(ST = sT |ε1:T ,Λ)
T−1∏
t=1

P(St = st|St+1, ε1:t,Λ), (4.8)

where we use that St, given St+1, does not depend on St+2, . . . , ST and on εt+2, . . . , εT . Now

Equation (4.8) suggests that we can simulate the whole chain S1:T sequentially backward in time,

i.e. we can sample ST conditionally on (ε1:T ,Λ) and then, for t = T − 1, . . . , 1 generate St given

(ε1:t,Λ) and St+1.

The forward filtering-backward sampling algorithm is based on two step. In the first, one com-

putes the filtered probabilities P(St = s|ε1:t,Φ,ν,Q,V1:T ). In the second step, using the filtered

probabilities, the state (St)t=1:T are drawn sequentially backward in time from

P(St = s|St+1 = r, ε1:t,Φ,ν,Q,V1:T ).

For simplicity, we define h(εt|Λ, s) =
∏N
k=1 cθ(s)

k,0
(F
ν

(s)
k

(εk,t), Vt)fν(s)
k

(εk,t).

The two steps in details are:

• Forward filtering: for t = 1, the filtered probabilities are defined as

P(S1 = s|ε1,Λ) = h(ε1|Λ, s)ρs for s = 1, . . . , R.

For t = 2, . . . , T the filtered probabilities are

P(St = s|ε1:t,Λ) ∝ ft(ε1:t, s|Λ)

∝
R∑
r=1

ft,t−1(ε1:t, St = s, St−1 = r|Λ)

∝ h(εt|Λ, s)
R∑
r=1

P(St−1 = r|ε1:t−1,Λ)qs,r

where we denote with ft(ε1:T , s|Λ) the joint density of ε1:T and St = s given Λ. Analogously,

ft,t−1(ε1:t, s, r|Λ) is the joint density of ε1:t, St = s, St−1 = r given Λ.

• Backward sampling: we sample ST from P(ST = s|ε1:T ,Λ), the filtering probability at time

T , obtained from the previous step. Then, for t = T − 1, . . . , 1 we sample each St from

P(St = s|St+1 = r, ε1:t,Λ), where

P(St = s|St+1 = r, ε1:t,Λ) ∝ P(St = s, St+1 = r, ε1:t|Λ)

∝ qr,sP(St = s|ε1:t,Λ).

The quantities P(St = s|ε1:t,Λ) are known from the filtering step.
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Full conditional ofQ. The full conditional of the transition matrixQ given (Φ,ν,S1:T ,V1:T , ε1:T )

is

π(Q|Φ,ν,S1:T ,V1:T , ε1:T ) ∝
T∏
t=2
qSt,St−1

R∏
r=1

πQ(Qr·) =

=
R∏
r=1

R∏
s=1

qNS(r,s)
r,s πQ(Qr·)

where NS(r, s) = #{t : St = r, St−1 = s}, the number of transitions from state s to r, and πQ(Qr·)

is the Dirichlet prior on each row of Q.

Since the Dirichlet and the multinomial distribution are conjugate distributions, also the condi-

tional posterior distribution of each row r is a Dirichlet distributions with parameters

(Ψ1,r +NS(r, 1), . . . , ψR,r +NSr,R).

Full conditional of V1:T . The full conditional of V1:T given (Φ,ν,Q,S1:T , ε1:T ) is proportional

to

π(V1:T |Φ,ν,Q,S1:T , ε1:T ) ∝
T∏
t=1

[ N∏
k=1

c
θ

(St)
k,0

(F
ν

(St)
k

(εk), Vt)
]
.

We proceed with a MH step for each Vt with an uniform proposal density. For each t, we have the

following acceptance probability

min
{

1,
N∏
k=1

c
θ

(St)
k,0

(F
ν

(St)
k

(εk), V ∗t )

c
θ

(St)
k,0

(F
ν

(St)
k

(εk), Vt)

}
.

4.5 Simulation Study

We study the performance of the models described in Sections 4.1 and 4.3 with simulated data.

In the following, first we show the results for the factor copula model and, then, for the Markov

switching factor copula model. For both models, we perform sensitivity analysis with different values

for the hyper-parameters and the results show that the choice of the prior hyper-parameters does

not affect significantly the posterior estimates.

As for the factor copula model, we present two alternative scenarios in which a simulated dataset

of T = 300 observations is obtained from a multivariate AR model with fixed parameters and a

specific one-factor copula distribution. More precisely, in scenario 1 we simulate AR-observations

using i.i.d. innovations with one factor copula based on Double Gumbel and Double Clayton linking

copulas. Then, we apply the corresponding Bayesian model of Section 4.1 with prior specification as

in (4.1). In scenario 2, we generate the data starting from a one factor copula with Gumbel linking

copulas and we apply the factor copula model with bivariate Gumbel copulas. For both scenarios,

we employ the MCMC algorithm described in Section 4.2 with 70000 iterations and a burn-in of

45000.
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Table 4.1: Simulation study: Scenario 1. Factor copula model with Double Gumbel and Double
Clayton linking copulas re-parameterized through the Kendall’s tau. For each prior setting we show
the posterior means of the parameters ν,A, τ and the posterior mode for ζ.

Scenario 1 Prior Settings
N = 6 (τk,0, ζk,0) Beta(−1,1)(1, 1)× Unif(H1) Beta(−1,1)(2, 2)× Unif(H1)
p = 2 pk Gamma(1, 0.5) Gamma(1, 1)

αk Np([0.4, 0.4], 10Ip) Np([0.4, 0.4], 100Ip)
True Values Posterior Means/Modes

νk = 1
pk

0.4 0.41 0.41
0.5 0.49 0.53
0.6 0.58 0.61
0.9 0.87 0.93
0.8 0.79 0.78
0.7 0.72 0.70

αk (0.3, 0.5) (0.31, 0.51) (0.30, 0.46)
(−0.3, 0.4) (−0.36, 0.32) (−0.13, 0.41)
(0.1, 0.6) (0.16, 0.56) (0.07, 0.49)

(−0.2, 0.4) (−0.14, 0.39) (−0.15, 0.48)
(0.1, 0.5) (0.22, 0.39) (0.11, 0.48)
(0.3, 0.5) (0.26, 0.46) (0.37, 0.47)

(τk,0, ζk,0) (0.2, DG1) (0.24, DG1) (0.17, DG1)
(−0.2, DC1) (−0.12, DC1) (−0.19, DG1)
(−0.5, DG1) (−0.58, DG1) (−0.58, DG1)
(0.3, DC1) (0.21, DC1) (0.24, DC1)

(−0.5, DG1) (−0.44, DG1) (−0.47, DG1)
(0.1, DC1) (0.11, DC1) (0.10, DC1)

The results obtained with two alternative prior settings are reported in Tables 4.1 and 4.2,

respectively. On each table are presented the two different prior settings, the values of the parameters

used to generate the data and, the posterior means of (θ,ν,A). In case of Double copulas, we also

report the posterior mode for ζ. For each scenario, we show the histograms of the simulated values

of the posterior distributions of the parameters (θ,ν,A), see Figures 4.1 and 4.4. For the AR

parameters, we report the histograms only for two series; for the other AR coefficients the results

are similar. Furthermore, for scenario 1 and 2, the trace plots of the sample of two latent variables

are displayed in Figures 4.3 and 4.5, respectively. Finally, in Figure 4.2 we report the trace plot and

ergodic mean plot for some parameters of scenario 1. These diagnostic plots show a good convergence

of the model. For the other scenario we obtain similar results.

Also for this model, we compute the DIC3 criterion. In particular, in Table 4.3, we report

the value of DIC3 evaluated, for each scenario, with our fully Bayesian approach and the B-IFM

procedure. To the data of scenario 1, we apply a B-IFM procedure using a one factor copula with

linking Double copulas, while to the data of scenario 2 a B-IFM procedure with one factor copula

distribution based on bivariate Gumbel copulas. Also in this case, the fully Bayesian models present
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Figure 4.1: Histograms of the simulated values of the posterior distributions for the parameters of
scenario 1 (first prior setting of Table 4.1), where we consider a factor copula model with Double
Gumbel/Double Clayton bivariate copulas. For the parameters of the AR series, we report only the
histograms only for the coefficients of the first and fourth series, i.e. α1 and α4.

Figure 4.2: Diagnostic plot for the marginal and copula parameters of scenario 1 (first prior setting of
Table 4.1), where we consider a factor copula model with Double Gumbel/Double Clayton bivariate
copulas. For the parameters of the AR series, we report only the histograms only for the coefficients
of the first and fourth series, i.e. α1 and α4.
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Figure 4.3: Posterior sample of two latent variables, V50 and V218, for scenario 1 where we study a
one factor copula models with linking Double Gumbel and Double Clayton copulas. The red line
denotes the true value of the latent variable.

a better fit respect to the B-IFM ones.

Table 4.2: Simulation study: Scenario 2. Factor copula model with Gumbel linking copulas re-
parameterized through the upper tail parameter. For each prior setting we show the posterior
means of the parameters ν,A,θ.

Scenario 2 Prior Settings
N = 5 θk,0 Beta(1, 1) Beta(1, 2)
p = 3 pk Gamma(1, 1) Gamma(1, 1)

αk Np([0.3, 0.4,−0.1], 10Ip) Np([0.3, 0.4,−0.1], 100Ip)
True Values Posterior Means

νk = 1
pk

0.4 0.40 0.41
0.5 0.52 0.53
0.6 0.64 0.66
0.7 0.77 0.73
0.8 0.80 0.79

αk (0.3, −0.4, 0.2) (0.28, −0.42, 0.24) (0.34, −0.47, 0.29)
(−0.3, 0.4, 0.2) (−0.34, 0.38, 0.26) (−0.21, 0.44, 0.19)
(0.1, 0.6, −0.2) (0.10, 0.58, −0.22) (0.11, 0.60, −0.21)
(−0.2, 0.4, 0.3) (−0.15, 0.43, 0.25) (−0.22, 0.37, 0.31)
(0.1, 0.5, −0.1) (0.13, 0.46, −0.16) (0.07, 0.47, −0.06)

θk,0 0.7 0.73 0.70
0.2 0.20 0.15
0.4 0.37 0.36
0.3 0.29 0.28
0.5 0.48 0.49
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Figure 4.4: Histograms of the simulated values of the posterior distributions for the parameters of
scenario 2 (first prior setting of Table 4.2), where we consider a factor copula model with Gumbel
bivariate copulas. For the parameters of the AR series, we report only the histograms only for the
coefficients of the second and fifth series, i.e. α2 and α5.

Figure 4.5: Posterior sample of two latent variables, V50 and V89, for scenario 2 where we study a
factor copula models with linking Gumbel copulas. The red line denotes the true value of the latent
variables.
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Table 4.3: Simulated Data: DIC3 Table for factor copula models

Fully Bayesian B-IFM
True Model
Scenario 1 (Combined Factor Copula) 2540 2620
Scenario 2 (Gumbel Factor Copula) 2350 2470

Table 4.4: Simulation study: Scenario 3. Markov Switching factor copula model with Double
Gumbel and Double Clayton linking copulas re-parameterized through the Kendall’s tau. For each
prior setting we show the posterior means of the parameters ν, τ ,Q and the posterior mode for ζ.

Scenario 3 Prior Settings

N = 5 (τ (r)
k,0 , ζ

(r)
k,0) Beta(−1,1)(2, 2)× Unif(H1) Beta(−1,1)(1, 1)× Unif(H1)

R = 2 p
(r)
k Gamma(2, 2) Gamma(1, 2)
Qr· Dir(5, 5) Dir(10, 10)

True Values Posterior Means/Modes

Q

[
0.8 0.2
0.2 0.8

] [
0.74 0.26
0.19 0.81

] [
0.79 0.21
0.28 0.72

]
r = 1 r = 2 r = 1 r = 2 r = 1 r = 2

1/p(r)
k 0.5 0.7 0.52 0.80 0.52 0.70

0.4 0.8 0.42 0.90 0.42 0.88
0.5 0.9 0.53 0.99 0.52 1.03
0.9 0.3 0.92 0.36 0.96 0.34
0.8 0.2 0.84 0.26 0.83 0.24

(τ (r)
k,0 , ζ

(r)
k,0) (0.7, DG1) (−0.3, DC1) (0.73, DG1) (−0.38, DC1) (0.74, DG1) (−0.21, DC1)

(0.8, DC1) (0.5, DG1) (0.78, DC1) (0.58, DG1) (0.77, DC1) (0.56, DG1)
(−0.5, DG1) (0.6, DG1) (−0.56, DG1) (0.66, DG1) (−0.50, DG1) (0.63, DG1)
(0.4, DG1) (0.7, DG1) (0.33, DG1) (0.67, DG1) (0.43, DG1) (0.67, DG1)
(0.5, DG1) (0.6, DG1) (0.49, DG1) (0.66, DG1) (0.50, DG1) (0.68, DG1)

Regarding the Markov switching model of Section 4.3, we present two alternative scenarios in

which a simulated dataset of T = 300 observations is obtained from a Markov switching model

with fixed parameters, fixed number of regimes and a specific one-factor copula distribution in each

regime. More precisely, in scenario 3 we consider innovations simulated from a Markov switching

factor model with 2 regimes, a specific transition matrix Q and, in each regime, a one factor copula

based on Double Gumbel and Double Clayton linking copulas. Then, we apply the corresponding

Bayesian model of Section 4.3 with prior specification as in (4.4). In scenario 4 we generate the data

starting from a Markov switching factor model with 2 regimes and one factor copulas with Gumbel

linking copulas in each regime. We apply the Markov switching factor copula model with bivariate

Gumbel copulas. For both the scenarios, we employ the MCMC algorithm described in Section 4.4

with 30000 iterations and a burn-in of 20000.

The results for scenario 3 and scenario 4 obtained with two alternative prior settings are reported

in Tables 4.4 and 4.5, respectively. On each table are presented the two different prior settings, the
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Figure 4.6: Diagnostic plots for the marginal and copula parameters of State 1 of scenario 3 (first
prior setting of Table 4.4) where we study a Markov Switching factor copula models with linking
Double copulas.

values of the parameters used to generate the data and the posterior means of (Φ,ν,Q). In case of

Double copulas, we also report the posterior mode for ζ. Regarding the convergence of the algorithm,

as an example, in Figure 4.6 we display diagnostic plots for some parameters of scenario 3.

As for the hidden Markov chain, one can compute, for each time t, the posterior probability to

be in state r, i.e.

π̂t(r) := P(St = r|ε1:T ),

for r = 1, . . . , R. In Figure 4.7 we report the posterior estimates of being in state r, r = 1, 2,

obtained for scenario 3. In the same figure we also present the posterior mode Ŝt of the hidden

Markov chain and the corresponding true value. The analogous results for scenario 4 are presented

in Figure 4.8. We note that the posterior mode of the hidden Markov chain associates correctly

most of the observations to the true regime.
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Figure 4.7: In the first two figures, we present the posterior probabilities of being in each state r
(r = 1, 2) overtime for scenario3. In the third, we show the comparison between the posterior mode
Ŝt of the hidden Markov chain and the corresponding true value for the same scenario. The results
refer to the first prior setting of Table 4.4
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Table 4.5: Simulation study: Scenario 4. Markov Switching factor copula model with Gumbel
linking copulas re-parameterized through the upper tail parameter. For each prior setting we show
the posterior means of the parameters ν,θ,Q.

Scenario 4 Prior Settings

N = 6 θ
(r)
k,0 Beta(1, 1) Beta(2, 2)

R = 2 p
(r)
k Gamma(1, 1) Gamma(1, 2)
Qr· Dir(5, 5) Dir(3, 3)

True Values Posterior Means

Q

[
0.8 0.2
0.2 0.8

] [
0.74 0.26
0.27 0.73

] [
0.76 0.24
0.24 0.76

]
r = 1 r = 2 r = 1 r = 2 r = 1 r = 2

1/p(r)
k 0.8 0.5 0.78 0.53 0.78 0.54

0.7 0.6 0.73 0.67 0.73 0.69
0.9 0.7 0.91 0.76 0.89 0.81
0.8 0.4 0.79 0.46 0.81 0.42
0.7 0.8 0.65 0.88 0.69 0.83
0.3 0.2 0.33 0.23 0.32 0.24

θ
(r)
k,0 0.6 0.5 0.61 0.54 0.64 0.53

0.7 0.6 0.75 0.57 0.67 0.59
0.8 0.7 0.81 0.76 0.82 0.73
0.9 0.5 0.89 0.54 0.96 0.56
0.2 0.6 0.17 0.60 0.24 0.60
0.3 0.5 0.35 0.55 0.28 0.52
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Figure 4.8: In the first two figures, we present the posterior probabilities of being in each state r
(r = 1, 2) overtime for scenario 4. In the third, we show the comparison between the posterior mode
Ŝt of the hidden Markov chain and the corresponding true value for the same scenario. The results
refer to the first prior setting of Table 4.5



Chapter 5

Energy Data Analysis

In this Chapter we apply the different models presented in the previous part of the thesis to the

analysis of energy market data in order to study the dependence structures among the examined

commodities and to proceed with portfolio analysis and evaluation. Since for the Markov switching

factor copula model we have only preliminary results, we discuss this model in a distinct Section

and, first, we focus on tree copula, mixture (finite and infinite) of tree copulas and, one factor copula

models.

For the tree copula, mixture of tree copulas and factor copula models, we consider daily time

series of one-year forward contracts for Power Italy, Power Germany, Brent, TTF, PSV, CO2 and

Api2. The power prices are obtained from EEX1, the remaining commodities from Reuters2. All

commodities prices are expressed in Euros. The data cover the period from January 2014 to De-

cember 2014. The limited amount of data is due to the intrinsic nature of the examined one-year

contracts. Since the dependence structure can differ significantly from one year to another, we only

consider data referring to a specific year. For the Markov switching model, that is a more flexible

model, we consider daily time series of one-year forward contracts from January 2013 to December

2014 of the same commodities listed previously.

Power Italy and Power Germany are the energy prices for Italian and German markets; TTF and

PSV are prices for natural gas deriving from transactions in virtual trading points in Netherlands

and Italy; Api2 index is the standard reference price benchmark for coal imported into northwest

Europe; Brent is one of the major classifications of oil and can serve as a major benchmark price for

purchases of oil worldwide, and CO2 represents the price to pay for the emission of carbon dioxide

into the atmosphere. Under the Kyoto protocol, OECD countries must reduce their emissions of

greenhouse gas. European plants with large CO2 emissions obtain from their governments allowances

to emit metric tons of CO2 equivalent and these permissions can be traded in spot, future and option

markets. In the European Union, the higher production of CO2 emissions is concentrated on the
1https://www.eex.com
2http://www.reuters.com
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Table 5.1: Descriptive statistics for the examined commodities.

Power Power Brent Api2 TTF PSV CO2Italy Germany
Mean 53.71 35.07 72.84 58.82 25.77 27.47 6.095
Std 1.69 0.82 6.59 1.63 0.92 0.86 0.63
Min 49.80 33.77 50.67 54.68 23.05 24.81 4.48
Max 58.45 36.90 79.66 63.85 27.81 29.10 7.42
Kurt 3.67 2.31 6.94 2.43 2.89 2.70 2.32
Skew 0.86 0.64 -1.97 -0.55 -0.20 -0.38 -0.13

power generation sector. As a consequence of the introduction of CO2 emission constraints on

power generators in the European Union, climate policy is starting to have notable effects on energy

market, see e.g. Reinaud (2007). For this reason, CO2 should be included in the list of the variables

that influence the energy price.

Our aim is to model the dependence structure among each power price (Italian or German) and

the other commodities (gas, coal, oil and CO2) by means of suitable copulas. It is worth noticing

that PSV refers only to the Italian market, we don’t consider it in the analysis of the German

market. Table 5.1 lists descriptive measures for the considered commodities while in Figure 5.1 are

shown the examined time series.

For each series we compute the monthly logarithmic return rates Xt,k = ln
{
St+20,k/St,k

}
where

St,k is the price at each day t of commodity i. The monthly logarithmic return rates, Xt,i, are

modeled with an AR(3) and we suppose dependent innovations with Normal marginal distributions.

The lag of the AR models has been selected via preliminary analysis on the data, and using AIC/BIC

criteria.

The outline of this Chapter is the following. In Section 5.1 we present the alternative models based

on tree copula, mixture of tree copulas and factor copula distributions considered for energy data

analysis and the respective DIC/DIC3 values. In Section 5.2 we proceed with portfolio evaluations

for each domestic market and in Section 5.3 we consider dependence structure analysis among each

power price and the remaining commodities with the models listed in Section 5.1. Finally, some

preliminary results obtained with Markov switching factor copula model are showed in Section 5.4.

5.1 Model Selection

In order to analyze the dependence among the examined commodities, we consider different

models where the likelihood of the innovations is represented via one of the copula structure described

in Chapters 2, 3 and 4, i.e. tree copula, mixture of tree copulas and factor copula.

In the case of tree copula and finite mixture of tree copulas (Chapter 2), for the innovations of

the AR(3) series, we consider the following models :
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Figure 5.1: Time series plots of the examined commodities.
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i) Gumbel tree model; innovations distributed according to a tree copula where all cθl,m are

Gumbel copulas and θl,m = λUl,m,

ii) Joe tree model; innovations distributed according to a tree copula where all cθl,m are Joe

copulas and θl,m = λUl,m,

iii) Clayton tree model; innovations distributed according to a tree copula where all cθl,m are

Clayton copulas and θl,m = λLl,m,

iv) Combined tree model; innovations distributed according to a tree copula where on each edge

the copula can be either a Double Clayton or a Double Gumbel and θl,m = (τl,m, ζl,m),

v) Gumbel mixture model; innovations distributed according to a mixture of tree copulas where

all c
θ

(d)
l,m

are Gumbel copulas and θ(d)
l,m = λ

U(d)
l,m ,

vi) Joe mixture model;innovations distributed according to a mixture of tree copulas where all

c
θ

(d)
l,m

are Joe copulas and θ(d)
l,m = λ

U(d)
l,m ,

vii) Clayton mixture model; innovations distributed according to a mixture of tree copulas where

all c
θ

(d)
l,m

are Clayton copulas and θ(d)
l,m = λ

L(d)
l,m ,

viii) Combined mixture model; innovations distributed according to a mixture of tree copulas where

on each edge the copula can be either a Double Clayton or a Double Gumbel and θ
(d)
l,m =

(τ (d)
l,m, ζ

(d)
l,m).

For these models, we consider the following independent prior distributions. On θl,m and on EN

we assign uniform priors; on νk we assume a Normal-Gamma prior with parameters (1, 1, 0, 0.1).

On αk we set a 3-dimensional Normal prior centered on the forward-backward estimates of the AR

coefficients and covariance matrix 10Ip. For the weights of the mixture models we use a Dirichlet

prior with hyperparameters equal to 10. Sensitivity analysis shows that the choice of the prior

settings does not affect significantly the posterior estimates.

In case of infinite tree copula mixture model (Chapter 3), we apply to the innovations of the

AR(3) series the following structures:

ix) Combined DP-tree model; innovations distributed according to an infinite mixture of tree

copulas where on each edge c
θ

(d)
l,m

can be either a Double Clayton or a Double Gumbel copula

and θ(d)
l,m = (τ (d)

l,m, ζ
(d)
l,m);

x) Gumbel DP-tree model; innovations distributed according to an infinite mixture of tree copulas

where all c
θ

(d)
l,m

are Gumbel copulas and θ(d)
l,m = λ

U(d)
l,m .



86 CHAPTER 5. ENERGY DATA ANALYSIS

Table 5.2: Energy Data: DIC and DIC3 Table. The DIC value is reported in brackets.

Italy Germany
Gumbel Tree Model 706 (726) 714 (731)
Clayton Tree Model 779 (792) 782 (794)
Joe Tree Model 905 (920) 772 (786)
Combined Tree Model 653 (675) 668 (694)
Gumbel Mixture Model 2 Comp. 669 704
Clayton Mixture Model 2 Comp. 714 729
Joe Mixture Model 2 Comp. 892 754
Combined Mixture Model 2 Comp. 641 680
Gumbel Mixture Model 5 Comp. 660 695
Clayton Mixture Model 5 Comp. 696 726
Joe Mixture Model 5 Comp. 862 749
Combined Mixture Model 5 Comp. 695 775
Combined DP-tree Model 597 645
Gumbel DP-tree Model 667 709
Combined Factor Model 856 769
Gumbel Factor Model 865 774

For these models, we use the following independent prior distributions. On θl,m and on EN we assign

uniform priors; on νk we assume a Normal-Gamma prior with parameters (1, 1, 0, 0.1). On αk , the

parameters of the AR models, we set a 3-dimensional Normal prior centered on the forward-backward

estimates of the AR coefficients and covariance matrix 10Ip. On the concentration parameter ψ we

assume a Gamma prior with mean 0.4 and variance 0.8 for the Italian market, while for the German

market a Gamma prior with mean 0.3 and variance 0.6. We consider other values for the Gamma

prior on ψ, but these choices showed the best results in terms of DIC3 criterion.

Finally, for the factor copula structure (Chapter 4), we apply to the innovations the following

models

xi) Combined factor model; innovations distributed according to a one-factor copula where on each

edge cθl,0 can be either a Double Clayton or a Double Gumbel copula and θl,0 = (τl,0, ζl,0);

xii) Gumbel factor model; innovations distributed according to a one-factor copula where all cθl,0
are Gumbel copulas and θl,0 = λUl,0.

In this case, we consider the next independent prior distributions: on θl,0 we use an uniform prior and

on αk we assume a 3-dimensional Normal distribution centered on the forward-backward estimates

of the AR coefficients and with covariance matrix 10Ip. Finally, on the marginals parameters we

assign a Gamma prior with parameters (1, 1); indeed in the factor model we assume that the marginal

means are known and set equal to the empirical mean.

The alternative models are compared via DIC3 and DIC (when feasible), see Table 5.2. Using

these criteria, the Combined DP-tree model presents the lowest values of DIC3, both for the Italian



5.2. ENERGY MARKET PORTFOLIO ANALYSIS 87

Table 5.3: VaR and ES for Italian and German portfolios at time T+1, T corresponding to 15th
December 2014.

Italy Germany
VaR ES VaR ES

Joe tree model 24.63 24.44 -2.09 -2.28
Gumbel tree model 24.74 24.58 -2.09 -2.20
Clayton tree model 24.71 24.55 -1.97 -2.15
Combined tree model 24.78 24.59 -2.05 -2.22
Joe mixture model 2comp. 24.71 24.61 -1.99 -2.18
Gumbel mixture model 2comp. 24.85 24.62 -2.05 -2.27
Clayton mixture model 2comp. 24.95 24.77 -1.98 -2.18
Combined mixture model 2comp. 24.55 24.28 -2.13 -2.34
Combined DP-tree model 24.69 24.51 -2.10 -2.34
Gumbel DP-tree model 24.64 24.27 -2.13 -2.33
Combined factor model 24.69 24.49 -2.17 -2.36
Gumbel factor model 24.73 24.54 -2.14 -2.35

and the German market. Among the tree and mixture of tree models, we note that the Combined

tree model and the Combined mixture model with two components show better results. Moreover,

according to DIC\DIC3, the mixture models with more than two components do not improve sub-

stantially the fitting of the data. As an exemplification, in Table 5.2, we report the results regarding

the mixture with five components for models v), vi) vii) and viii). This fact is coherent with the

results obtained with the DP-tree models. Indeed, with the Combined DP-tree model, for both

the Italian and the German market we find that the posterior mode of the number of cluster is 2,

see Section 5.3.2. We also observe that the DIC3 obtained for the factor models are higher than

most of the other values. As we will show in Section 5.3.3, these models estimate strong correlation

between the latent node and a commodity (TTF for Italian market and Api2 for German market).

Therefore, the presence of the latent node do not give other substantial information with respect to

a tree model and the presence of a fixed underlying tree structure, that it is not the optimal one,

can explain the higher values of the DIC3.

The DIC3/DIC associated to the B-IFM models are similar to the ones obtained with the fully

Bayesian procedure. Nevertheless, for the portfolio analysis, see Section 5.2, the B-IFM results are

substantially inferior to the fully Bayesian ones.

5.2 Energy Market Portfolio Analysis

In energy market framework, it is important to perform portfolio analysis and evaluation. For

each domestic market, we consider a portfolio made of one power asset and the remaining com-

modities. We work in the perspective of an energy company that sells energy and buys the other

commodities in order to produce it. Hence, in the portfolio composition, power has a positive weight,
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Figure 5.2: Italian predictive portfolio density at time T+1, T corresponding to 15th December 2014
with tree models (first row on the right), mixture of trees models with 2 components (first row on
the left), DP-tree models (second row on the right) and factor models (second row on the left).

q1, while the remaining components should have negative weights, −qi (i = 2, . . . , N). Consequently,

the value of the portfolio at time t is given by Vt = q1St,1 −
∑N
i=2 qiSt,i.

For portfolio evaluation, we compute two well-known quantile risk measures: the Value-at-Risk

(VaR) and the Expected Shortfall (ES), see e.g. Klumgman et al. (2008), Szegö (2005). The VaR of

a portfolio, at a given future time T+k (at given probability level β), is P{VT+k ≤ V aR(T+k, β)} =

β. It is one of the most used risk measure in applications, since it is is easy to estimate and to explain

even to non-experts. The 99% VaR for a horizon of two weeks is acceptable for the Basel Committee

on Banking and Supervision of Banks for International Settlement (Basel Committee (1995) and

following amendments). Nevertheless, many authors have criticized its adequacy as a measure of

risk, see e.g. Acerbi and Tasche (2002). One drawback is that it does not provide any information

about the potential size of loss that exceeds the VaR level and this may lead to extremely risky

investment strategies. Furthermore, it is not a coherent risk measure since it lacks the property of

sub-additivity. In order to overcome the previous problems, Artzner et al. (1999) proposed to use

the Expected Shortfall, defined as E
[
VT+k|VT+k < V aR(T + k, β)

]
. It measures the expected value
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Figure 5.3: German predictive portfolio density at time T+1, T corresponding to 15th December
2014 with tree models (first row on the right), mixture of trees models with two components (first
row on the left), DP-tree models (second row on the right) and factor models (second row on the
left).

of a portfolio given that the VaR has been exceeded. It has at least two important advantages over

the VaR; it does quantifies losses exceeding the VaR level and it is a sub-additive coherent measure

of risk.

Using a Bayesian approach, we construct the portfolio predictive distribution at time T + k on

the basis of the information up to time T and we then compute the related Bayesian predictive VaR

and ES, P{VT+k ≤ V aRT+k(β)|OT } = β and E
[
VT+k|VT+k < V aR(T + k, β),OT

]
, respectively.

The previous quantities can be easily approximated using the MCMC output, see e.g. Osiewalski

and Pajor (2010).

For the analysis of the portfolio, we consider the models described in Section 5.1. For the Italian

market we construct an industrial portfolio made of Power Italy, TTF, PSV, Api2, CO2, Brent

with weights [1, 0, 0.14, 0.28, 0.69, 0]. For the German market, we use a trading portfolio made of

Power Germany, TTF, Api2, CO2, Brent with weights [1, 0.61, 0.27, 0.76, 0]. The composition of

each portfolio has been chosen according to information provided by experts of Enel group (Global
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Figure 5.4: One day ahead Italian portfolio estimates with 95% credible intervals (Combined mixture
model); in-sample analysis on the left, out-of-sample (on the last 50 observations) on the right.

Figure 5.5: One day ahead German portfolio estimates with 95% credible intervals (Combined tree
model); in-sample analysis on the left, out-of-sample (on the last 50 observations) on the right.

Trading, Modeling & Pricing Division).

The predictive portfolio distribution at time T + 1 for Italian/German market obtained with all

the alternative models are shown in Figure 5.2/Figure 5.3. We assume T = 224, corresponding to

15th December 2014. In addition, the VaR and ES for each portfolio distribution are reported in

Table 5.3. The predictive distributions are centered around the historical portfolio value.

We also analyze the forecasting performance of our models using both in-sample and an out-

of-sample analysis for one day ahead portfolio estimation. For the in-sample analysis, we consider

the last 195 observations, while for the out-of-sample portfolio we consider the last 50 observations

and we estimate the portfolio by the output of the MCMC algorithm (50000 iterations) for each

t = 174, . . . , 224. As for the tree and mixture of tree models, we present the results obtained with the

Combined mixture model for the Italian portfolio (Figure 5.4) and with the Combined tree model
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Figure 5.6: One day ahead Italian portfolio estimates with 95% credible intervals (Combined DP-
tree model); in-sample analysis on the left, out-of-sample (on the last 50 observations) on the right.

Figure 5.7: One day ahead German portfolio estimates with 95% credible intervals (Combined DP-
tree model); in-sample analysis on the left, out-of-sample (on the last 50 observations) on the right.

for the German portfolio (Figure 5.5). In Figures 5.6/5.7 are shown the Italian and the German

forecasting portfolios computed with the Combined DP-tree model and the analogous results with

the Combined factor model are reported in Figures 5.8/5.9. Note that, there is a good agreement

between the behaviors of predictive portfolios and the historical ones.

Finally, Table 5.4 reports the mean distances between the in-sample forecasting portfolio and

the historical portfolio, that is

1
τ1 − τ0

τ1∑
t=τ0

∣∣∣E[Vt+1|Ot
]
− Vt+1

∣∣∣,
where τ0 = 174 and τ1 = 224. For each model, we report the mean distance obtained using our fully
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Figure 5.8: One day ahead Italian portfolio estimates with 95% credible intervals (Combined factor
model); in-sample analysis on the left, out-of-sample (on the last 50 observations) on the right.

Figure 5.9: One day ahead German portfolio estimates with 95% credible intervals (Combined factor
model); in-sample analysis on the left, out-of-sample (on the last 50 observations) on the right.

Bayesian approach and the B-IFM. For comparative purposes, we also considered and estimated a

model in which the innovations are assumed multivariate normally distributed. In this case, for the

marginal parameters we assume a Normal-Whisart prior distribution and a p-dimensional Normal

prior on the AR parameters. For both markets, the Combined mixture model and the Combined

DP-tree model show the minimum mean distances among all the examined models (including the

multivariate Normal one).

We can observe that the distances obtained with the alternative models are not so different,

while the values obtained with the B-IFM are systematically higher than the corresponding distances

computed with our fully Bayesian procedure.

As a further analysis on the performance of our models, for each domestic market, we consider the

equally weighted portfolio, i.e. q1 = q2 = · · · = qN and
∑N
i=1 qi = 1. Also for this kind of portfolio,
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Table 5.4: Mean distance between the in-sample predictive portfolio and historical portfolio on the
last 50 observations for the Italian market and the German market with fully Bayesian and B-IFM
procedures.

Italy Germany
Fully Bayesian B-IFM Fully Bayesian B-IFM
Mean Distance Mean Distance Mean Distance Mean Distance

Joe tree model 0.186 0.191 0.206 0.215
Gumbel tree model 0.168 0.193 0.198 0.221
Clayton tree model 0.195 0.193 0.206 0.213
Combined tree model 0.175 0.188 0.201 0.218
Joe mixture model 2 Comp. 0.179 0.193 0.206 0.217
Gumbel mixture model 2 Comp. 0.170 0.188 0.204 0.215
Clayton mixture model 2 Comp. 0.170 0.189 0.199 0.210
Combine mixture model 2 Comp. 0.165 0.188 0.195 0.226
Combined DP-tree model 0.162 0.196 0.196 0.227
Gumbel DP-tree model 0.167 0.186 0.201 0.216
Combined factor model 0.172 0.190 0.220 0.215
Gumbel factor model 0.175 0.192 0.207 0.214
Multivariate normal model 0.192 0.192 0.199 0.211

Table 5.5: Equally weighted portfolio: mean distance between the in-sample predictive portfolio
and historical portfolio on the last 50 observations for the Italian market and the German market
with a fully Bayesian procedure.

Italy Germany
Fully Bayesian Fully Bayesian
Mean Distance Mean Distance

Joe tree model 0.177 0.180
Gumbel tree model 0.161 0.182
Clayton tree model 0.157 0.180
Combined tree model 0.160 0.176
Joe mixture model 2 Comp. 0.158 0.184
Gumbel mixture model 2 Comp. 0.159 0.183
Clayton mixture model 2 Comp. 0.157 0.183
Combine mixture model 2 Comp. 0.157 0.178
Combined DP-tree model 0.154 0.169
Gumbel DP-tree model 0.156 0.175
Combined factor model 0.161 0.177
Gumbel factor model 0.163 0.177
Multivariate normal model 0.164 0.186

we compute the mean distances between the in-sample forecasting portfolio and the historical one

on the last 50 observations using our fully Bayesian procedures. The results are presented in Table

5.5. As in the previous case, the distances related to the German market are higher than the

ones obtained for the Italian market. Furthermore, we observe that, also for the equally weighted

portfolio, the Combined DP-tree model shows the best results for both markets respect to all the

other examined models.
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Table 5.6: Posterior mean of the Kendall’s tau between the innovations, for the Italian market (first
table) and the German market (second table), obtained respectively with the Combined tree model
(first row) and the Combined mixture model with two components (second row).

Combined Tree Model
PowIT TTF PSV Api2 CO2 Brent

PowIT 1 0.27 0.25 0.11 -0.02 0.04
TTF 1 0.72 0.33 -0.06 0.07
PSV 1 0.30 -0.06 0.07
Api2 1 -0.12 0.09
CO2 1 -0.01
Brent 1

Combined Tree Model
PowDE TTF Api2 CO2 Brent

PowDE 1 -0.04 -0.02 0.13 0.01
TTF 1 0.34 -0.07 0.07
Api2 1 -0.09 0.10
CO2 1 -0.006
Brent 1

Combined Mixture Model
PowIT TTF PSV Api2 CO2 Brent

PowIT 1 0.20 0.18 0.13 0.09 0.04
TTF 1 0.68 0.31 -0.05 0.07
PSV 1 0.29 -0.02 0.06
Api2 1 -0.11 0.09
CO2 1 0.001
Brent 1

Combined Mixture Model!
PowDE TTF Api2 CO2 Brent

PowDE 1 0.06 -0.02 0.07 0.008
TTF 1 0.32 0.005 0.07
Api2 1 -0.04 0.10
CO2 1 -0.01
Brent 1

5.3 Dependence Structure Analysis

Since we are interested in dependence analysis among the commodities of each domestic market,

we apply the models listed in Section 5.1 in order to get information about the dependence structures.

In the following we present the results obtained with the alternative copula-based structures. For

every model, as an estimate of the Kendall’s tau between the innovations of the AR models, we

compute its posterior mean. Moreover, for the tree copula model, we show the MAP tree structure

that gives a graphical representation of the dependence among the examined variables. For the

others models, we present the weighted graph Γτ based on the absolute values of the estimated

Kendall’s tau and, using the MST construction, we get the associated representative tree τMST . In

case of mixture and DP-tree models, we also show the weighted graph Γw and the related minimum

spanning tree wMST built using the posterior mean of the quantity Υ(l,m), see Equation (1.11).

5.3.1 Tree Copula and Mixture of Tree Copulas Models

In this Section we focus on models i)-viii) presented in Section 5.1. For each model, we compute

the posterior mean of the Kendall’s tau between the innovations of the AR series. In Table 5.6 we

report the results for the Combined tree model and the Combined mixture model that, among the

tree and mixture of tree models, present the lowest DIC3 value, respectively, for the German and the

Italian market. We can observe that some values of the Kendall’s tau are quite small. This is not

surprising since we are dealing with the innovations of log-returns and not directly with prices of the

commodities. In order to check that these small values are not due to mis-specification of the linking

copulas, we estimated these quantities by the forward-backward frequentist approach obtaining
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Figure 5.10: Scatter plots for some commodities. In red the scatter plot of 400 predictive innovations
from the Combined mixture model and in blue the scatter plot of the forward-backward residuals.

comparable results. Also a graphical comparison of the behavior of the predictive innovations with

respect to the forward-backward residuals suggests similar conclusions. As an example, in Figure

5.10 we report the scatter plots of the predictive innovations and the forward-backward residual for

some commodities.

For Joe, Gumbel, Clayton and Combined tree models we can directly visualize the dependence

structure using the trees with highest posterior probabilities. For the mixture models, we consider

the estimated MST.

For the tree copula models, the posterior probability is essentially concentrated on two structures.

This can explain why mixture models with more than two components do not improve relevantly

the fitting in comparison with the two components models.

The two structures with highest posterior probability for each domestic market, obtained using

Gumbel and Clayton tree models, are depicted in Figures 5.11 and 5.12. The highest posterior

probability tree structures obtained with the Joe copula model are the same as the ones obtained

with the Gumbel tree model, with similar values of the parameters. Hence, the results are omitted.

The posterior mean of the dependence parameters and of the Kendall’s tau are reported on each
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Figure 5.11: Tree copula structure with Gumbel copulas for the Italian market (first row) and the German market
(second row). On each edge is reported in blue the posterior mean of the upper tail parameter between the neighbor
nodes, and in a grey box the Kendall’s tau posterior mean.

edge. It is worth noticing that the previous measures are computed conditionally on the considered

tree structure.

We now analyze more in details the selected tree structures for the Italian market. The node

corresponding to coal price is always connected to a gas node. TTF and PSV, the two gas nodes,

are strongly connected in all structures and Brent is always an endpoint node. Finally, CO2 is only

connected with Power Italy. A possible explanation of this, can be found in the different nature of

CO2 with respect to the other variables that represent raw materials prices.

Also for the German market, we can identify some common edges in all the estimated trees. TTF

and Api2 are always connected, also for this market CO2 is only connected to Power Germany.

As already noted, the Gumbel and Joe copulas are suitable for the description of possible upper

tail dependence, while Clayton copula for lower tail dependence. This can explain the differences

in the estimated tree structures between the models. For instance, in the Italian market, the power

price is directly connected with TTF in the Gumbel case, while in the Clayton tree model it is linked

with Api2.
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Figure 5.12: Tree copula structure with Clayton copulas for the Italian market (first row) and the
German market (second row). On each edge is reported in blue the posterior mean of the lower tail
parameter between the neighbor nodes, and in a gray box the Kendall’s tau posterior mean.

In the German market, Gumbel and Clayton trees present more similarities. TTF plays a

central role between power and the other raw materials prices, except for the second tree estimated

via Clayton model which, nevertheless, has a quite low posterior probability. For both markets, the

selected trees are in line with some well-known characteristics of the current energy market. Indeed,

in both markets the power is mainly produced using gas (TTF or PSV) and coal (Api2), while the

use of Brent has drastically decreased in the last years. Coherently, we find the Brent as endpoint

node in all the estimated trees, with the exception of the second structure in the Clayton model.

Finally, in Figure 5.13 are represented the maximum a posteriori trees selected via Combined

tree models. Comparing Figures 5.11-5.12 and 5.13 we note some structural similarities. As in the

previous cases, Api2 is always connected to TTF (a gas node), TTF and PSV is an edge and Brent

is still an endpoint node. There also some structural differences, that can be due to the fact that, in

contrast with the previous model, the combined model can capture negative dependencies. More in

details, one can observe that the edges with the lowest Kendall’s tau coefficient in the previous models

are absent in the corresponding tree structures in Figure 5.13 and edges with negative dependence
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Figure 5.13: Tree copula structure with Combined tree model for the Italian market (first row) and
the German market (second row). On each edge is reported the posterior mean of the Kendall’s tau
between the neighbor nodes.

are now added.

For the mixture models, we use the τMST and the wMST in order to construct a representative

tree. We recall that the τMST is the minimum spanning tree based on the absolute value of the

Kendall’s tau matrix, while the wMST is based on the quantity

Υ(l,m)(E,w) =
D∑
d=1

wd1{(l,m) ∈ Ed}.

The τMSTs obtained for the mixture of Gumbel, mixture of Clayton and mixture of Joe coincide

with the MAP tree selected by the Gumbel model, for both markets. For the Combined mixture

model, the τMST for the Italian market corresponds to the MAP structure of the Combined model

while for the German market it corresponds to the MAP tree of the Gumbel model. Note that

Gumbel tree model presents a lower value of DIC\DIC3 in comparison with the Clayton and Joe

tree models. In Figure 5.14 are reported the weighted graphs Γτ and the corresponding MSTs

computed with the Combined mixture model for the Italian and German markets.

Regarding the minimum spanning tree based on Υ(l,m), in case of mixture of Gumbel, mixture of



5.3. DEPENDENCE STRUCTURE ANALYSIS 99

Figure 5.14: Weighted graphs Γτ computed with the Combined mixture model for Italian (on the
left) and German (on the right) markets. On each edge we show the absolute value of the posterior
mean of the Kendall’s tau between the neighbor nodes. For the Italian market, the edges with weight
<0.05 are not depicted, while for the German case the edge with weight <0.01 are not drawn. The
associated τMST structures are reported in green on each graph.
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Figure 5.15: Weighted graphs Γw computed with the Combined mixture model for Italian (on the
left) and German (on the right) markets. On each edge we show the absolute value of the posterior
mean of the quantity Υ(l,m) between the neighbor nodes. For the Italian market, the edges with
weight <0.05 are not depicted, while for the German case the edge with weight <0.01 are not drawn.
The associated wMST structures are reported in green on each graph.

0.58

0.09

0.37 0.08

0.83

0.46

0.15

0.1

0.25

0.47

0.58

0.12

PowIta

TTFPSV

API

Co2 Brent

0.46

0.06

0.94

0.07

0.97

0.12

0.53 0.73

0.05

PowGer

TTF

API

Co2

Brent



100 CHAPTER 5. ENERGY DATA ANALYSIS

Figure 5.16: Histograms of the posterior distributions of number of clusters with the Combined
DP-tree model for Italian (on the left) and German (on the right) markets.

Clayton and mixture of Joe the wMSTs coincide with the MAP trees of the Gumbel tree model for

both market. For the Combined mixture model, both for Italian and German markets, the wMST

are equal to the MAP structures of the Combined tree model. In Figure 5.15, for example, we

report the weighted graphs Γw and the wMSTs obtained with the Combined mixture model for

each domestic market.

5.3.2 DP-Tree Copula Mixture Model

In case of DP-tree models (models ix-x listed in Section 5.1), an additional information that we

obtain is the posterior estimate of the number of clusters. As already noted in Section 5.1, with

the Combined DP-tree model the posterior mode of the number of clusters is 2 both for the Italian

market and the German market. The posterior histograms of the number of clusters are reported in

Figure 5.16. We have similar results with the Gumbel DP-tree model for which the posterior mode

of the number of cluster is 3 both for the Italian and the German market, respectively.

Concerning dependence analysis, also for the DP-tree models we compute the posterior mean

of the Kendall’s tau measure between the innovations of the AR series. The results for the each

markets, obtained with the Combined DP-tree model, that presents the lowest DIC3 value, are

reported in Table 5.7. We observe that the values of the Kendall’s tau computed with the DP-tree

model are similar to the values reported in Table 5.6.

In order to have a representative dependence graph among the innovations, we consider the MST

construction based on the absolute value of the estimated Kendall’s tau matrix. For both markets,

the τMSTs obtained with the Combined DP-tree model and the Gumbel DP-tree model coincide

with the MAP trees selected by the Gumbel model. In Figure 5.17 we present the weighted graphs

Γτ and the τMSTs obtained with the Combined DP-tree model for the Italian and German markets.
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Table 5.7: Posterior mean of the Kendall’s tau between the innovations, for the Italian market (first
table) and the German market (second table), obtained with the Combined DP-tree model.

Combined DP-Tree Model
PowIT TTF PSV Api2 CO2 Brent

PowIT 1 0.21 0.17 0.08 0.13 0.03
TTF 1 0.69 0.29 0.05 0.06
PSV 1 0.28 0.04 0.05
Api2 1 -0.04 0.09
CO2 1 0.02
Brent 1

Combined DP-Tree Model
PowDE TTF Api2 CO2 Brent

PowDE 1 0.03 0.04 0.11 0.01
TTF 1 0.30 0.01 0.09
Api2 1 -0.05 0.11
CO2 1 -0.01
Brent 1

Figure 5.17: Weighted graphs Γτ computed with the Combined DP-tree model for Italian (on the
left) and German (on the right) markets. On each edge we show the absolute value of the posterior
mean of the Kendall’s tau between the neighbor nodes. For the Italian market, the edges with weight
<0.05 are not depicted, while for the German case the edge with weight <0.01 are not drawn. The
associated τMST structures are reported in green on each graph.
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As an alternative to the τMST , we also construct the wMST based on the posterior mean of

the quantity Υ(l,m), see Equation (1.11). In Figure 5.18 are depicted the graphs Γw and the related

MSTs for the Italian and the German market obtained with the Combined DP-tree model. In the

wMST of the Italian market we observe that the commodity Api2 plays a central role, while for

the German market the wMST coincide with the MAP tree of the Combined tree model. For the

Gumbel DP-tree copula model, the wMST for the Italian market corresponds to the MAP structure

of the Gumbel tree model, while in the German case, the MST structure is similar to the MAP tree

of Gumbel tree model with the edge Brent-Power Germany instead of TTF-Power Germany.
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Figure 5.18: Weighted graphs Γw computed with the Combined DP-tree model for Italian (on the
left) and German (on the right) markets. On each edge we show the absolute value of the posterior
mean of the quantity Υ(l,m) between the neighbor nodes. For the Italian market, the edges with
weight <0.05 are not depicted, while for the German case the edge with weight <0.01 are not drawn.
The associated wMST structures are reported in green on each graph.
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Table 5.8: Posterior mean of the Kendall’s tau between the innovations, for the Italian market (first
table) and the German market (second table), obtained with the Combined factor model.

Combined Factor Model
PowIT TTF PSV Api2 CO2 Brent

PowIT 1 0.22 0.19 0.13 -0.01 0.01
TTF 1 0.70 0.37 -0.03 0.09
PSV 1 0.35 -0.01 0.05
Api2 1 -0.02 0.05
CO2 1 -0.01
Brent 1

Combined Factor Model
PowDE TTF Api2 CO2 Brent

PowDE 1 -0.05 -0.07 0.02 -0.01
TTF 1 0.35 -0.04 0.12
Api2 1 -0.06 0.20
CO2 1 -0.004
Brent 1

5.3.3 Factor Copula Model

We now present the results obtained with the one-factor copula model (models xi) and xii)).

For both models we compute the posterior mean of the Kendall’s tau measures. In Table 5.8 are

reported the posterior estimates for the Italian and the German market obtained with the Combined

factor model. Comparing Table 5.8 with Tables 5.6/5.7, we can observe that the values are quite

similar.

Concerning dependence structure analysis, through the use of a one-factor copula, we have a

fixed underlying tree structure with a latent variable V as root node. Hence, we cannot proceed

with structure learning but we compute the posterior estimates of each bivariate copula parameter.

The results obtained with the Combined factor model and Gumbel factor model for each domestic
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Figure 5.19: Factor copula structure with Double copulas for the Italian market and the German
market. The Kendall’s tau posterior mean is reported on each edge in a gray box.

Figure 5.20: Factor copula structures with Gumbel copulas for the Italian market and the German
market. On each edge is reported the posterior mean of the upper tail parameter between the
neighbor nodes in blue and the Kendall’s tau posterior mean in a gray box.

market are reported in Figure 5.19 and 5.20, respectively. For the Italian market, we can observe

that the copula parameter associated to the edge V-TTF, in both models, has value ≥ 0.9. An high

value for θl,0 on an edge means that the latent node V is strongly correlated with the commodity

on that edge, in this case the TTF. Therefore, using the factor copula model, we find that TTF is

a commodity that plays a central role in the Italian market. This observation is coherent with the

MAP structures of the Combined tree model, Figure 5.13, where the TTF is the node that presents

higher correlation with its neighbor and higher number of connections with other commodities. For

the German market we can note a similar effect in the Combined factor model between the latent

node V and Api2. Also this result is coherent with the role of Api2 in the MAP trees for the German

market of Figure 5.13.
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Figure 5.21: Weighted graphs Γτ computed with the Combined factor model for Italian (on the left)
and German (on the right) markets. On each edge we show the absolute value of the posterior mean
of the Kendall’s tau between the neighbor nodes. For the Italian and the German market, the edges
with weight <0.05 are not depicted. The associated τMST structures are reported in green on each
graph.
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In order to obtain a graphical representation of the dependence structure without the latent

node, we rely on MST construction based on the absolute value of the Kendall’s tau. For both

models, Combined and Gumbel factor models, we obtain the same representative tree structures for

each domestic market. In Figure 5.21 are reported the weighted graphs Γτ and, in green, the related

τMSTs obtained with the Combined factor model. We observe that also for the τMSTs, there is

a commodity, TTF for Italian market and Api2 for German market, that turns out to be a “root”

node.

5.4 Markov Switching Factor Copula Model

In this Section, we present some preliminary results obtained for the Italian and the German

energy market using the Markov switching factor model introduced in Section 4.3.

In this case, for each commodity, we consider daily time series of one year forward contracts from

January 2013 to December 2014. Once again, for each series we compute the monthly logarithmic

return rates Xt,k and model each Xt,k using an AR(3). The innovations are assumed to have Normal

marginal distributions.

In order to apply our Markov switching factor model, we proceed with a B-IFM procedure.

First, the AR models are fitted marginally to each logarithmic return rates Xk,t (forward-backward

approach) and then the Markov switching model is applied to the estimated residuals.
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Table 5.9: Posterior mean of the marginal variances of the innovations in each state, for the Italian
market (first table) and the German market (second table), obtained with the Combined Markov
switching factor model.

Italian Market
State 1 State 2 State 3

PowIT 0.27 0.92 0.30
TTF 0.31 0.86 0.65
PSV 0.27 0.82 0.61
Api2 0.34 0.70 0.37
CO2 0.38 1.01 0.29
Brent 0.29 0.63 0.32

German Market
State 1 State 2 State 3

PowDE 0.35 0.86 0.29
TTF 0.28 0.87 0.62
Api2 0.32 0.65 0.36
CO2 0.37 1.00 0.25
Brent 0.29 0.64 0.33

In particular, we analyze the following Markov switching factor copula structures:

• Combined Markov switching model: innovations distributed according to a Markov switching

factor copula where on each edge the copula c
θ

(r)
k,0

can be either a Double Gumbel or a double

Clayton and θ(r)
k,0 =

(
τ

(r)
k,0 , ζ

(r)
k,0

)
;

• Gumbel Markov switching model: innovations distributed according to a Markov switching

factor copula where all the copulas c
θ

(r)
k,0

are Gumbel copulas re-parameterized through the

upper tail measure.

For these models, we use the following independent prior distributions. On θ(r)
k,0 we assign an uniform

prior; on the marginal parameters (i.e. the precision) we use a Gamma prior with parameters (1,1)

while on each row of the transition matrix Q we set a Dirichlet distribution with hyperparameters

equal to 10. For each model, we assume the presence of three regimes.

Figure 5.22 shows the posterior estimates π̂t(r) of being in state r, r = 1, 2, 3 for the Italian market

computed with the Combined Markov switching model. In the same Figure, we also report the

posterior mode Ŝt of the hidden Markov chain (last picture). The analogous results for the German

market are presented in Figure 5.23. We observe that the first regime identifies, approximately,

the observations of the first year and the third regime the observations of the second year. Finally,

to the second state are associated observations at the beginning or at the end of a year. The

second regime identifies the period of change from one year to another in which usually the data

are characterized by higher volatility. Therefore, our model recognizes three different dependence

structures, one for each year (state 1 and state 3) and one for the period with higher volatility (state

2). In Table 5.9 we list the posterior mean of the marginal variances of each regime, for Italian

and German markets, computed with the Combined Markov switching model. As expected, the

posterior variances associated to state 2 show the highest values.

The posterior estimates π̂t(r), r = 1, 2, 3 and the posterior mode Ŝt of the hidden chain, obtained

with the Gumbel Markov switching model, are reported in Figures 5.24 and 5.25 for the Italian

and the German market, respectively. We note that the observations are associated to the different

regimes in the same way as in the Combined Markov switching model, i.e. state 1 and state 3
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Figure 5.22: In the first three pictures, the posterior probability of being in state r (r = 1, 2, 3)
overtime for the Italian market obtained with the Combined Markov switching factor model. In the
last image, we present the posterior mode Ŝt of the hidden Markov chain. Each point is colored
accordingly to the posterior probability of being in the state identified by Ŝt.

identify the observations of year 2013 and 2014, respectively, and state 2 the period of change from

one year to another. Also for the posterior means of the marginal variances computed with the

Gumbel Markov switching model, we have that the highest values are related to the second regime.

In Figures 5.26 and 5.27 we show the posterior density for each probabilities qi,j , i, j = 1, 2, 3

of the transition matrix Q obtained for Italian and German market with the Combined Markov

switching model and the Gumbel Markov switching model, respectively. For both models and both

markets, state 1 and state 3 present higher persistent probabilities and lower probabilities to move

to other regimes. Instead, as expected, state 2 shows higher probabilities to move from itself to the

other regimes.

Concerning dependence analysis, in case of the Markov switching model, one can study the

dependence structure among the examined variables in each regime. In particular, conditional to

St = r, r = 1, 2, 3, we compute the posterior mean of the Kendall’s tau between the innovations
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Figure 5.23: In the first three pictures, the posterior probability of being in state r (r = 1, 2, 3)
overtime for the German market obtained with the Combined Markov switching factor model. In
the last image, we present the posterior mode Ŝt of the hidden Markov chain. Each point is colored
accordingly to the posterior probability of being in the state identified by Ŝt.

in order to get information about the dependence in each regime. Then, for each state r, we built

the weighted graph Γτ based on the posterior estimates of the Kendall’s tau computed in regime r

and the corresponding minimum spanning tree. The graphs Γτ and the associated τMST s obtained

with the Combined Markov switching model for the Italian and the German market are reported

in Figures 5.28 and 5.29, respectively. In each regime we obtain significantly different dependence

structures. In particular, for both markets, we note that, conditionally to the state that identify the

observations of year 2014 (state 1), the MSTs are equal to the minimum spanning trees obtained

with the Combined factor model, see Figures 5.21. Moreover, we observe that the posterior means

of the Kendall’s tau associated to the regime 2, that identifies the period of transition from one year

to another, are higher than the corresponding posterior estimates in the other states.

We also proceed with portfolio analysis and evaluation with the Markov switching model. For

each domestic market, we consider the portfolio composition presented in Section 5.2. Also for this
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Figure 5.24: In the first three pictures, the posterior probability of being in state r (r = 1, 2, 3)
overtime for the Italian market obtained with the Gumbel Markov switching factor model. In the
last image, we present the posterior mode Ŝt of the hidden Markov chain. Each point is colored
accordingly to the posterior probability of being in the state identified by Ŝt.

methodology, we construct the portfolio predictive distribution at time T+1, where T corresponds to

15th December 2014. The predictive portfolio distributions at time T + 1 for each domestic market

are reported in Figure 5.30.

In order to analyze the forecasting performance of our Markov switching models, we compute

the in-sample portfolio on the last 195 observations, as in Section 5.2. The one day ahead domestic

portfolios obtained with the Combined Markov switching model are reported in Figure 5.31. The

analogous one day ahead portfolios computed with the Gumbel Markov switching model are shown

in Figure 5.32. We can note again that there is a good agreement between the behaviors of predictive

portfolios and the historical ones.

Finally, in Table 5.10 we report the mean distances between the in-sample forecasting portfolio

and the historical one on the last 50 observations computed with the Markov switching models

for each market. For comparative purposes, we compute the mean distances with the DP-mixture
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Figure 5.25: In the first three pictures, the posterior probability of being in state r (r = 1, 2, 3)
overtime for the German market obtained with the Gumbel Markov switching factor model. In the
last image, we present the posterior mode Ŝt of the hidden Markov chain. Each point is colored
accordingly to the posterior probability of being in the state identified by Ŝt.

models and the factor copula models applied to the same data used for the Markov switching model

(from January 2013 to December 2014) with a B-IFM procedure. The results are reported in Table

5.10. We observe that both Markov switching models present the lower values of mean distances

respect to the DP-tree and factor models. In particular, the best results are obtained with the

Combined Markov switching model. Moreover, if we compare the values in Table 5.10 with the

corresponding B-IFM estimates of Table 5.4, computed using only the observations of year 2014,

we note that, for the Italian market, the Combined Markov switching models shows the best results

also respect to all the B-IFM mean distances obtained with the other models. Regarding German

market, we have that the distances of the Markov switching models are in line with the B-IFM

values of Table 5.4.
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Figure 5.26: Posterior density of each transition probability for Italian and German markets obtained
with the Combined Markov switching model.

Figure 5.27: Posterior density of each transition probability for Italian and German markets obtained
with the Gumbel Markov switching model.

Table 5.10: Mean distance between the in-sample predictive portfolio and historical portfolio on
the last 50 observations for the Italian market and the German market with different models (using
the data from January 2013 to December 2014).

B-IFM Mean Distance
Italy Germany

Combined Markov Switching model 0.177 0.213
Gumbel Markov Switching model 0.186 0.214
Combined DP-tree model 0.196 0.219
Gumbel DP-tree model 0.191 0.220
Combined factor model 0.192 0.215
Gumbel factor model 0.194 0.215
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Figure 5.28: Weighted graphs Γτ for each regime computed with the Combined Markov Switching
factor model for Italian market. On each edge we show the absolute value of the posterior mean of
the Kendall’s tau between the neighbor nodes. For the Italian market, the edges with weight <0.08
are not depicted. The associated τMST structures are reported in green on each graph.
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Figure 5.29: Weighted graphs Γτ for each regime computed with the Combined Markov Switching
factor model for German market. On each edge we show the absolute value of the posterior mean of
the Kendall’s tau between the neighbor nodes. For the Italian market, the edges with weight <0.03
are not depicted. The associated τMST structures are reported in green on each graph.
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Figure 5.30: Italian and German predictive portfolio densities at time T+1, T corresponding to 15th
December 2014 with Markov switching models.

Figure 5.31: One day ahead Italian (on the left) and German (on the right) portfolios values with
95% credible intervals obtained with the Combined Markov switching model (in-sample analysis).



114 CHAPTER 5. ENERGY DATA ANALYSIS

Figure 5.32: One day ahead Italian (on the left) and German (on the right) portfolios values with
95% credible intervals obtained with the Gumbel Markov switching model (in-sample analysis).



Chapter 6

Conclusion and Extensions

6.1 Conclusion

In this dissertation we investigated alternative copula-based models in order to study the mul-

tivariate dependence among AR(p) time series. The use of copula structures allows us to analyze

different type of dependence with respect to than the one induced by the multivariate Normal dis-

tribution. In particular, we presented Bayesian models based on tree copula, finite mixture of tree

copulas and factor copula distributions. In these models,the joint density is built using bivariate cop-

ulas and a suitable graphical structure. For each approach, we proposed a fully Bayesian procedure

to estimate all quantities of interest, including, in case of tree copula-based models, the underlying

dependence graphical structure. Additional information on the dependence among the data are de-

duced from posterior estimates of tail parameters and Kendall’s tau. We proposed suitable MCMC

schemes for posterior estimation and predictive analysis.

Moreover, as an extension of the factor copula structure, we developed the Markov switching

factor copula model in which the joint dependence structure in each regime is given by a suitable

one-factor copula. Also for this methodology, we proposed a Bayesian procedure in order to estimate

all quantities and a suitable MCMC scheme for posterior estimates.

Our methodologies have been used to study the behavior of Italian and German energy markets.

In particular, we analyzed the dependence structure among the drivers of each market, and we

evaluated and forecasted each domestic portfolio using suitable risk measures.

In order to obtain a graphical representation of the dependence structure, we proceeded with

structural learning with the tree copula models, while for the other methodologies we relied on the

MST construction based on the posterior mean of the Kendall’s tau. Comparing the tree structures

obtained with the tree copula, mixture of tree copulas and factor copula models, we discovered some

interesting findings. For the Italian market, we found that the commodity mostly connected with

the Italian power price is the TTF. This commodity, both in the Combined factor copula model and

Gumbel factor copula model, turned out also to be identified as “root” node. This is coherent with

115
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the fact that, in the Italian energy market, the power is mainly produced by gas. Furthermore, we

found always a strong correlation between the two gas nodes, TTF and PSV, and a path of length

three connecting them to the coal price (Api2). For the German market, an edge between PSV and

Api2 is always included and, moreover, Api2 is the commodity that plays a central role in the factor

copula models, in particular in the Combined ones. As an alternative to the τMST , for the mixture

tree copula models and DP-tree models, we also built the wMST where the weights are computed

starting from the quantities Υl,m.

Regarding portfolio analysis, our fully Bayesian procedure presents a better performance with

respect to B-IFM in terms of mean distances between the historical and predictive portfolios. The

Combined DP-tree model shows the best performance both for dependence analysis, in terms of

DIC3 criterion, and portfolio analysis, in terms of mean distances.

Finally, we presented some preliminary results obtained with the Markov switching factor copula

model. In this case, we considered the data from January 2013 to December 2014 and assumed to

have 3 regimes. We found that to regimes 1 and 3 are associated to the observations of year 2013

and of year 2014, respectively, while state 2 identifies the period of change from one year to another.

We also computed the posterior mean of the Kendall’s tau in each regime and built the weighted

graphs Γτ and the corresponding τMST s. For both market, we discovered significantly different

dependence structures for each regime. In particular, state 2 shows the higher values of Kendall’s

tau and also the higher values of posterior mean of the marginal variances.

6.2 Future Work

With regard to future perspectives, we are planning to develop different extensions for the alter-

native methodologies proposed in this thesis.

Concerning model selection analysis, we relied on the DIC/DIC3 criteria that, however, present

some limitations. As first step, we aim to consider another criterion for model comparison. In

particular, one could evaluate the Bayes factor using one of the alternative method described in

literature for the approximation of the marginal likelihood. Furthermore, we plan to design a more

systematic comparison of the various models by a large scale simulation study. More precisely,

one could generate different dataset from the same simulated scheme and compare the boxplot

of posterior estimates, obtained with the different models, with the true values. We leave this

comparison for future work since the choice of the simulated scheme is delicate and require further

investigation in order to obtain a fair comparison.
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As further extension, we propose to adapt the different approaches assuming other type of copulas

and marginal distributions and develop suitable Bayesian models. In particular, as alternative

margins, one can consider skewness distributions, such as the skew Normal or the skew t, that allow

to analyze dataset that do not present symmetric distributions.

Another idea is to proceed with a Bayesian inference also on the order p of the AR series or

to consider the Vector Autoregressive (VAR) model that generalize the univariate AR model. We

can also extend the methodologies including alternative type of time series such as the ARMA or

GARCH models, widely used in applications.

Other future works can concern the development of a fully Bayesian approach for the Markov

switching copula model that involves also the AR parameters, assuming a suitable prior distribution

on the time series parameters. Furthermore, it may be interesting to consider different time series

coefficients in each regime of the Markov switching model.

Concerning the DP-tree copula model, one can study an alternative non parametric prior in place

of the Dirichlet process, such as, for example, the Pitman Yor process. Finally, as an extension

for the factor copula model, one can generalized the one-factor copula using a p-factor copula. In

this case, the dependence among the variable is represented by p latent variables and each bivariate

copula links the observed variables to all the latent factors.
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