
Università degli Studi di Pavia

Dottorato di Ricerca in Matematica e Statistica
XXIX ciclo

Frobenius type structures and manifolds
from stability conditions on quiver categories

Dottoranda: Anna Barbieri

Relatore: Prof. Jacopo Stoppa

The research leading to this thesis was funded by the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant

agreement no. 307119.5





Introduction

This thesis is concerned with constructing Frobenius type structures as well as semisim-
ple Frobenius manifolds using the data of stability conditions and invariants enumerating
semistable objects in categories.

Frobenius manifolds were introduced by Dubrovin in order to give a geometric inter-
pretation of a special system of partial differential equations appearing in 2-dimensional
topological field theory. The theory of Frobenius manifolds has since developed as an inde-
pendent geometric tool.

Roughly speaking a Frobenius structure on a manifold M is the datum of a Frobenius
algebra structure with associative multiplication ◦ and quadratic form g on the fibres of
the tangent bundle of M . The structure coefficients of ◦ must be given everywhere locally
by the third derivatives ∂a∂b∂cΦ of a single function Φ (raising indices with g), known as
the potential. A Frobenius manifold may be described equivalently in terms of a family
of meromorphic connections on a vector bundle on the complex projective line P1, having
constant (generalised) monodromy.

There is a natural notion of Frobenius type structure on a general holomorphic vec-
tor bundle K → M , introduced by Hertling in his study of geometric structures on un-
folding spaces of singularities. Such a structure is a collection of holomorphic objects
(∇r, C,U ,V, g), with values in the bundle K, where ∇r is a flat connection, g is a non-
degenerate bilinear pairing, C is a Higgs field, and U ,V are endomorphisms on the fibres
of K, satisfying a set of partial differential equations. It can be equivalently described in
terms of a flat meromorphic connection on the pull-back of K to P1 ×M or as a family of
meromorphic connections on P1 with constant generalised monodromy.

It turns out that often (e.g. for many unfolding spaces) Frobenius and Frobenius type
structures are in fact part of more refined “Cecotti-Vafa” (CV) structures, a notion which
was also formalised by Hertling in terms of C∞ objects (D,C, C̃, κ, h,U ,Q) with values in
K, where D is a connection, C, C̃ are (anti)-Higgs fields, κ is an involution, h a hermitian
form and U ,Q are endomorphism, satisfying a set of partial differential equations.

There exists a special theory of (formal) Frobenius manifolds called Quantum Coho-
mology which is related to classical enumerative problems in algebraic geometry. Let V be
a projective algebraic manifold and write H = H∗(V,C). Let Φq be a suitable generating
function for the number of rational curves on V of fixed degree (the genus zero Gromov-
Witten invariants). Φq is a formal power series in an auxiliary variable q and coordinates
on H. Kontsevich and Manin [34] proved that Φq is the potential for a formal Frobenius
structure on H ⊗ C[[q]].

Following ideas of Bridgeland-Toledano Laredo [10] and Joyce [31], in this thesis we
define and study Frobenius type structures appearing in a different kind of enumerative
geometry. Our approach is based on the theory of stability conditions on a triangulated
category developed by Bridgeland [8] as well as the notion of holomorphic generating func-
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tions for invariants enumerating semistable objects in abelian and triangulated categories
introduced by Joyce. We concentrate on the special but instructive setup of categories
described by quivers (oriented graphs) endowed with a potential [9].

Here is a brief outline of the thesis and its main contributions.
Chapter 1 reviews the theory of (semisimple) Frobenius manifolds and its connection

with the theory of isomonodromic deformations. In particular the Stokes matrix S and
maximal analytic continuation of a semisimple Frobenius manifold to the configuration
space Cn are introduced. We recall how analytic continuation can be understood in terms
of an action of the braid group on the Stokes matrices. Finally the notions of Frobenius
type and Cecotti-Vafa (CV) structures are recalled.

Chapter 2 reviews the theory of quivers with potential (Q,W ) and their mutations. We
recall the canonical construction of a 3-Calabi-Yau triangulated category D(Q,W ) with a
finite heart A(Q,W ) ⊂ D(Q,W ). Mutations (Q′,W ′) have equivalent D(Q′,W ′), while the
corresponding hearts are related by a pair of simple tilts. The general theory of Bridgeland
stability conditions is briefly recalled, and applied to the special case of stability conditions
(A, Z) (pairs of a heart and a central charge) supported on finite hearts A ⊂ D(Q,W ). The
invariants DT(α,Z) enumerating Z-semistable objects in D(Q,W ) with Grothendieck class
α are introduced and combined in formal, infinite sums fα(Z) known as Joyce holomorphic
generating functions.

Chapter 3 uses the previous theory to construct Frobenius type and CV-structures on
the space of stability conditions Stab(A) supported on a finite heart A = A(Q,W ): this is
the content of Theorems 3.26 and 3.27. These are formal families taking values in the trivial
bundle K with fibre C[K(A)] (K(A) denoting the Grothendieck group, i.e. the free abelian
group spanned by the isomorphism classes of simple objects [S1], . . . , [Sn]). More precisely
these Frobenius type and CV-structures take values in C[K(A)][[s]] where s = (s1, . . . , sn)
are formal parameters (one for each class of a simple object). Thus the coefficients of these
structures are formal power series in s, and it is natural to ask if they have positive radius
of convergence. Theorem 3.30 (proved in Appendix A) gives such a convergence result for
the CV-structures for all sufficiently large central charges Z, in a precise sense. We explain
that the same argument fails for the Frobenius type structures because of a scale-invariance
property.

In Chapter 4 we study a natural operation of pullback on the infinite-dimensional families
of Frobenius type structures of Chapter 3, from K to the tangent bundle T Stab(A). The
pullback families are also parametrised by s of course. This operation depends on the choice
of a section ζ ∈ O(K). We give necessary and sufficient conditions on the section ζ so that
the pullback to T Stab(A) is a family of structures which is tangent to (or osculates to
higher order) a family of genuine semisimple Frobenius structures: this is the content of
Theorems 4.26 and 4.27. The guiding examples of the quivers A2 and A3 are discussed in
detail. In the case of An we show that the choice of a suitable section ζ produces a family
which contains (at the special value s = (1, . . . , 1)) a branch of the Saito-Dubrovin manifold
for the unfolding space of An.

In Chapter 5 we study the effect of quiver mutations on the constructions of Chapter 4.
We focus on the set of mutations of the basic An quiver. We show that for all mutations of
the basic quiver one can construct an admissible section ζ. The corresponding (families of)
semisimple Frobenius structures can be analytically continued to the whole configuration
space Cn, and can be specialised at s = (1, . . . , 1). Our main result 5.12 says that at
least for n ≤ 5 two such structures are always branches of the same semisimple Frobenius
manifold structure on Cn, that is they are always related by analytic continuation. In
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particular this allows to construct other branches of the Saito-Dubrovin manifold from
stability conditions. We write down explicit relations between the corresponding Stokes
matrices in the braid group. In simple cases (e.g. for a single mutation) there is a natural
bijective correspondence between mutations and braids, but the general situation seems
much more complicated (Cotti, Dubrovin and Guzzetti have informed us that a similar
difficulty arises in their ongoing study of the quantum cohomology of Grassmannians).
Finally we discuss the possibility of extending the result to all values of n, and we give some
further examples of quivers and mutations to which our methods apply.
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Chapter 1

Introduction to Frobenius
manifolds and some generalizations

A Frobenius manifold is a manifold with a Frobenius algebra structure on the fibers of
its tangent bundle varying smoothly. This concept was introduced by Dubrovin in [16] to
formulate in geometrical terms the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations
(1.1.2). Due to its generalizations, it is also related to Hodge theory. In this Chapter
Frobenius and Frobenius-like structures are described, together with some results in the
deformation theory of connections.

The first section presents Frobenius structures; it is based on Manin’s book [37, Chapter
1]. Other good references for an introduction to Frobenius manifolds are [38] by Sabbah
and [27] by Hitchin. Sections 1.6 and 1.7 present instead the concepts of Frobenius type
and CV- structure respectively. The first is a generalization of a Frobenius structure from
the tangent bundle to an auxiliary general vector bundle, the latter is a more complicated
structure. The datum of a special class of Frobenius (the semisimple ones) or Frobenius type
structure can be encoded in flat or isomonodromic families of connections. Sections 1.2 gives
an introduction to the theory of isomonodromic deformations. In the next chapters, we will
be most interested in connections over P1 with a double pole at 0. They are considered in
Section 1.3. The description of a semisimple Frobenius manifold in terms of isomonodromic
connections over P1 is given in Section 1.4.

1.1 Frobenius manifolds

1.1.1 Frobenius algebra and integrability property

Let (A, ·,+) be a finite-dimensional commutative and associative algebra with identity 1
over a field k. We call it a Frobenius algebra if there exists a linear form θ ∈ A∗ such
that contraction of the multiplication with θ is a non-degenerate symmetric bilinear form
(a, b) := θ(a · b) and (a · b, c) = (a, b · c).

A similar structure can be defined on a vector space V of dimension n. It is the datum
of three objects: a function θ ∈ V ∗, a symmetric pairing g ∈ S2V ∗ and a three-symmetric
tensor A ∈ S3V ∗. The operation of multiplication is defined by the conditions g(u, v) =
θ(u · v) and A(u, v, w) = θ(u · v, w). Requiring that · is associative imposes strong algebraic
constraints on θ, g, A.

A Frobenius structure on a manifold M is a structure of Frobenius algebra on each
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tangent space satisfying some axioms. The definition is reproduced in the next Section.
Frobenius structures may be defined over C∞, real, analytic, super- manifolds. In this
thesis, however, only complex manifolds and their holomorphic tangent bundles will be
considered.

1.1.2 Complex Frobenius manifolds

LetM be a complex manifold and g a non-degenerate symmetric bilinear C−valued form on
its tangent bundle TM . Even if it is not a Riemannian metric, there exists a natural notion
of Levi-Civita connection ∇g of g. We denote by OM the sheaf of holomorphic functions,
and by TM its tangent sheaf.

Definition 1.1 (Frobenius manifold). LetM be a complex manifold, with a non-degenerate
symmetric bilinear C−valued pairing g on the fibers of its holomorphic tangent bundle TM .
Assume that there exists a subsheaf T fM ⊂ TM of ∇g-flat (thus commuting) vector fields
such that TM = OM ⊗C T fM . M is called a pre-Frobenius manifold if on fibers of TM it
is defined an OM -bilinear symmetric commutative and associative multiplication ◦, i.e. a
Frobenius algebra structure. It is called a Frobenius manifold if moreover the structure of
Frobenius algebra is compatible with the pairing, in the sense that there exists everywhere
a local function Φ, called potential, such that, for all vector fields X,Y, Z ∈ T fM

XY ZΦ = g(X ◦ Y, Z) = g(X,Y ◦ Z). (1.1.1)

The unit vector field for the multiplication is unique and it is usually denoted by e.

The two equalities in (1.1.1) are called respectively the potentiality and the compatibility
properties.

Abusing notation, the pairing g is often referred to as a metric. The subsheaf T fM define
an affine structure: the structure group induced by the reduction of TM to T fM consists of
linear affine transformations.

Notice that the tensor A(X,Y, Z) := g(X◦Y, Z) is totally symmetric. On the other hand,
any totally symmetric three tensor A : S3(TM )→ OM determines a bilinear multiplication
(and hence a pre-Frobenius structure), setting

X ◦ Y = T
DEF⇐⇒ A(X,Y, Z) = g(T,Z) ∀ Z.

Symmetry of A gives the compatibility of g and ◦.
Denote by xa a basis of local coordinates such that ∂a := ∂/∂xa is a local basis of flat

vector fields. In terms of A

• the multiplication is explicitly given by

∂a ◦ ∂b =
∑
c

Acab∂c

where Aabc := A(∂a, ∂b, ∂c), Acab :=
∑
eAabeg

ec, (gab) := (gab)−1;

• the potential satisfies (XY Z)Φ = A(X,Y, Z) for any flat X,Y, Z: in particular

Φabc := ∂a∂b∂cΦ = Aabc.

It is unique up to a polynomial in flat coordinates of degree less or equal than two;
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• the associativity of ◦ is equivalent to the following (generically) highly non-linear
system of PDE ∑

ef

Φabeg
efΦfcd =

∑
ef

Φbceg
efΦfad ∀ indices a, b, c, d. (1.1.2)

Equations (1.1.2) are deduced from

(∂a ◦ ∂b) ◦ ∂c =
(∑

e

Aeab∂e

)
◦ ∂c =

∑
ef

AeabA
f
ec∂f

∂a ◦ (∂b ◦ ∂c) = ∂a ◦
(∑

e

Aebc∂e

)
=
∑
ef

AebcA
f
ae∂f

expressing Aabc trough a potential. They are called Associativity Equations or WDVV
(Witten-Dijkgraaf-Verlinde-Verlinde) equations. In low dimension it is possible to solve the
WDVV equations explicitly. In the next paragraph, they will be interpreted as the flatness
condition for a one-parameter family of connections.

A Frobenius structure often comes equipped with an Euler field, that induces a grading
of the tangent bundle.

Definition 1.2. An Euler field E is a non-zero vector field such that

LieE(g) = Dg, (1.1.3)
LieE(◦) = d(◦) (1.1.4)

for constants D, d ∈ C. In other words

E(g(X,Y ))− g([E,X], Y )− g(X, [E, Y ]) = Dg(X,Y )
[E,X ◦ Y ]− [E,X] ◦ Y −X ◦ [E, Y ] = dX ◦ Y

for any vector fields X,Y .
D is called the conformal dimension.

Clearly, any scalar multiple of an Euler field is also an Euler field. So, provided that
d 6= 0, we can normalize E by requiring that d = 1.

Proposition 1.3 ([37, Chapt. 1, Sec. 2]). a) In flat coordinates E =
∑
aE

a(x)∂a, where
Ea(x) are polynomials of degree less or equal than 1. b) A conformal vector field E (satis-
fying (1.1.3)) is Euler if and only if

EΦ = (D + d)Φ + quadratic terms in flat coordinates.

c) The Euler field induces a grading of the tangent sheaf

T •M :=
⊕
r∈C
TM (r), TM (r) := {X ∈ TM |[E,X] = (r − d)X} .

We call spectrum of E the set of its eigenvalues together with d and D. In particular
if the identity e is flat, then [e, E] = de and we will put ∂0 := ∂

∂x0
:= e. The spectrum

is reordered (d0 = d, d1, . . . , dn−1, D). If e is not flat, the subscript 0 is not used and the
spectrum is (d, d1, . . . , dn, D).
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When e is flat and g(e, e) = 0 the basis of flat vector fields can be normalized in such a
way that the metric in flat coordinates is represented by the matrix

1
1

. .
.

1
1

 (1.1.5)

If g(e, e) 6= 0, then there exists a basis of flat vector fields such that

g =


g00 0 0 0 0
0 1
... . .

.

0 1
0 1

 .

1.1.3 Structure connections

Denote by ∇g or ∇0 the Levi-Civita connection associated to the metric g of a Frobenius
manifold (M, g,A). It can be deformed to a family of flat connections ∇λ depending on a
complex parameter λ 6= 0 defined as

∇λ : TM → Ω1
M ⊗ TM

∇λ,XY = ∇gXY + λX ◦ Y (1.1.6)

Definition 1.4. The pencil of connections ∇λ (1.1.6) is called the structure connection of
(M, g,A).

Remark. In flat coordinates ∇0,∂a(∂b) = 0 and ∇λ,∂a(∂b) = λ∂a ◦ ∂b = λ
∑
eAab

e∂e =
λ∂b ◦ ∂a = ∇λ,∂b(∂a).

Theorem 1.5 ([37, Chapt. 1, Theo. 1.5]). Let (M, g,A) be a pre-Frobenius manifold. Then
the curvature of ∇λ vanishes identically in λ if and only if M is Frobenius, that is to
associativity and potentiality conditions hold.

Sketch of the proof. ∇0 being the Levi-Civita of g, it is flat. Therefore the curvature of
∇λ is ∇2

λ = R2λ
2 + R1λ, for some coefficients R2 and R1. Clearly R2,XY (Z) = X ◦ (Y ◦

Z) − Y ◦ (X ◦ Z) = 0 if and only if the commutative multiplication is associative. One
can also show that R1 = 0 if and only if (M, g,A) is potential.In fact, in flat coordinates
R1,∂a∂b(∂c) = ∂a(

∑
eAbc

e∂e)− ∂b(
∑
eAac

e∂e) = 0 if and only if

∀ e ∂aAbce = ∂bAace. (1.1.7)

If M is potential (1.1.7) is easily verified replacing Aabc with ∂a∂b∂cΦ since the flat vec-
tor fields commute. On the other side, if one assumes (1.1.7), then for all c, e, the form∑
b dxbAbce is closed and hence locally exact because of the Poincaré Lemma. Thus there

exist local functions Bce = Bec such that Abce = ∂bBce = ∂cBbe = Acbe as A is symmetric.
By the same argument, for all e,

∑
c dxcBce is closed and locally Bce = ∂cCe and finally

Ce = ∂eΦ. It follows that there exists a function Φ such that ∂b∂c∂eΦ = Abce.

4



If, in addition, M is endowed with an Euler field E with d = 1, one can define the
extended structure connection ∇ on an auxiliary bundle. Consider the product of the variety
M with the projective line with coordinate λ, M̂ := M×P1

λ. Call p = p1 and p2 the natural
projection maps toM and P1, and consider the pull-back of the tangent bundle p∗TM → M̂ .
Abusing notation, let X denote also a vector field along the M -direction in T

M̂
. A system

of flat vector fields X is completed to a basis for T
M̂

by a new generator for the P1-direction.
On the other hand, a basis of sections for p∗TM consists of X̂ := p∗X for X ∈ T fM .

Definition 1.6. The extended structure connection for M is the meromorphic connection
∇ on p∗TM → M̂ := M × P1

λ defined by the following formulae for arbitrary Y ∈ TM

∇X(p∗Y ) = p∗(∇0,X(Y ))− λp∗(X ◦ Y ),

∇∂/∂λ(p∗Y ) = p∗(∇0,E(Y )) + p∗(E ◦ Y )− 1
λ
p∗[E, Y ].

(1.1.8)

It is an irregular connection with pole divisors at M0 := {0} ×M and M∞ := {∞} ×M
(see 1.2 for a brief introduction to meromorphic connections) and it gives an equivalent
description of a Frobenius structure.

Theorem 1.7 ([37, Chapt. 1, Theo. 2.5.5]). The extended structure connection ∇ of a pre-
Frobenius manifold M is flat away from its poles if and only if M is Frobenius and E is an
Euler field with constant d = 1.

Proof. The proof follows via direct computations from Theorem 1.5.

Extend the immersion {λ} → P1 to iλ : {λ}×M → P1×M . For any λ (including λ = 0,∞)
there is an isomorphism of bundles

i∗λ(p∗TM ) ' (p∗TM )|M ' TM

With this identification, the restriction of ∇ to M coincides with the first structure connec-
tion.

It is convenient to change the local coordinate on P1 by the automorphism λ 7→ 1
λ , in

order to swap the positions of the poles. We call the new coordinate z and we write the
extended structure connection as

∇X(Y ) = ∇0,X(Y ) + 1
z
X ◦ Y

∇∂/∂z(Y ) = −
(
∇0,E(Y ) + 1

z2 ◦ Y −
1
z

[E, Y ]
) (1.1.9)

From now on, we will refer equivalently either to (1.1.9) or (1.1.8) as extended structure
connection.

Their restriction to P1 will play a special role in the case of semisimple structures defined
below, which can be classified depending on the monodromy of a differential operator. This
is briefly described in Section 1.4.

Theorem 1.7 above gives a characterization of a Frobenius structure on M that leads to
change perspective and to describe it as a collection of objects that can be combined in a flat
connection on the pull-back of the tangent bundle over P1 ×M . This description is named
after K. Saito in [38]. I want to emphasize that the equivalence of these presentations is very
natural: flatness of such meromorphic connection is exactly the same of solving the WDVV
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equations. The specificity of the tangent bundle is marked by the symmetry imposed on
the one-form Θ appearing in Definition 1.8. At the same time, this point of view is most
important for generalizations.

Definition 1.8. A Saito structure endowed with a metric on M consists of

a) a symmetric non-degenerate OM -bilinear form g on TM , with its Levi-Civita connec-
tion ∇.

b) a 1-form Θ with values in End(TM ), symmetric if considered as a bilinear map TM⊗OM
TM → TM

c) two global vector fields e and E of TM ,

subject to the following conditions

1. e is flat (∇e = 0) and Θ(e) = − Id;

2. the meromorphic connection ∇̃ on the vector bundle p∗TM over A1
z ×M

∇̃ = π∗∇+ π∗Θ

z
−
(
Θ(E)
z

+∇E
) d z

z

is flat.

Denote by ∗ the adjoint for g, we also require

3. Θ∗ = Θ, that is ∀X,Y, Z ∈ TM one has g(Θ(X)(Y ), Z) = g(X,Θ(Y )(Z))

4. there exists a rational number q and an integer ω such that
(
∇(E)− q Id

)∗+
(
∇(E)−

q Id
)

= −ω Id.

The next Proposition and Theorem show that a Saito structure is equivalent to a Frobenius
structure with Euler field and rational conformal dimension. In particular the meromor-
phic connection ∇̃ coincides with the extended structure connection of the corresponding
Frobenius structure.

Proposition 1.9 ([38]). Given a Saito structure (g,Θ, e, E) on a complex manifold M , it
is possible to define a Frobenius structure with an Euler field E = E.

Sketch of the proof. One define an OM -bilinear product ◦ on the tangent bundle TM by the
formula X ◦ Y = −Θ(X)(Y ). The symmetry of the Higgs field Θ implies that the product
is commutative. From flatness of ∇̃: Θ ∧Θ = 0, ∇Θ = 0 and ∇(−Θ(E)) = 0. Θ ∧Θ = 0 is
equivalent to associativity of ◦: chose local coordinates xi and the frame ∂i = ∂/∂xi, then
∂i ◦ (∂j ◦ ∂k) = Θ(∂i)

(
Θ(∂j)(∂k)

)
and (∂i ◦ ∂j) ◦ ∂k = Θ(∂k)

(
Θ(∂i)(∂j)

)
and their difference

is
(
(Θ ∧Θ)(∂i, ∂j)

)
(∂k) = 0.

Finally one shows that E is an Euler field.

Theorem 1.10 ([38]). There is a bijective correspondence between Saito structures with
metric and Frobenius structures endowed with flat identity and Euler field.
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Proof. One implication is proved in Proposition 1.9 above. To define a Saito structure on a
Frobenius manifold, define a 1-form Θ : TM → TM ⊗OM Ω1

M by Θ(X)(Y ) = −X ◦Y for any
pair of holomorphic vector fields X and Y . Symmetry of Θ follows from commutativity of
the multiplication on TM . Put ∇ = ∇0, E = E, and e equal to the identity. The extended
structure connection is flat and can be rewritten as

∇X(p∗Y ) = p∗
(
∇0,X(Y ) + 1

z
Θ(X)(Y )

)
∇∂/∂z(p∗Y ) = p∗

(1
z
∇0,E(Y ) + 1

z2E ◦ Y −
1
z

[E, Y ]
)

= −p∗
(1
z
∇0,Y (E) + 1

z2E ◦ Y
)

= −p∗
(
Θ(E)
z

+∇E
) d z

z

It is enough to restrict it to the affine chart A1 ×M centerd at 0.
Property 3. is the compatibility of the multiplication. LetD be the conformal dimension.

To prove property 4., we evaluate the expression ∇(E)− D
2 Id on a flat vector field X. By

(1.1.3), the endomorphism (∇(E)− D
2 Id)(X) = [X,E]− D

2 X is skew-symmetric. Then for
any integer ω, one has that (∇(E)− D+ω

2 Id)∗ + (∇(E)− D+ω
2 Id) = −ω Id.

1.1.4 Semisimple Frobenius manifolds

A Frobenius structure is semisimple if there is a local isomorphism of sheaves

(TM , ◦) ' (OnM , componentwise multiplication).

A handier definition is the following.

Definition 1.11. A Frobenius manifoldM is called semisimple if there exists a local basis of
vector fields {e1, . . . , en} such that ei◦ej = δijej . Such a basis of idempotents is well-defined
up to renumbering.

It imples that the structure group of the tangent bundle TM can be reduced to Sn.
In general this reduction is not compatible with that induced by GL(n), for which TM =
OM ⊗ T fM . This is equivalent to saying that ei, i = 1, . . . , n, are in general not flat.

We set ei := ∂
∂ui

, i = 1, . . . , n, for a suitable system of local coordinates ui over M ,
called canonical coordinates.

In presence of a semisimple structure, the potentiality condition and flatness of g can
be encoded in a function η, called the metric potential.

Theorem 1.12 ([37, Chapt. 1, Theo. 3.3]). Let M be a complex manifold. Suppose we have

a) a reduction of the structure group of TM to Sn, specified by a choice of local bases
{e1, . . . , en} and dual bases {ν1, . . . , νn},

b) a flat symmetric bilinear diagonal pairing g =
∑
ηiν
⊗2
i ,

c) a diagonal totally symmetric cubic tensor A =
∑
i ηiν

⊗3
i .

Then, M is a complex semisimple Frobenius manifold if and only if

1) [ei, ej ] = 0, or equivalently ei = ∂
∂ui

for a local coordinate system u1, . . . , un defined
up to renumbering or constant shifts,
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2) ηi = eiη for a local function η defined up to addition of a constant.

In the presence of a flat identity e, the metric potential is described by a formula

η =
∑
a

xag(∂a, e) + const.

It is worth noticing that the associativity equations (1.1.2) of a semisimple Frobenius
structure, are automatically satisfied when expressed in canonical coordinates. Moreover,
canonical coordinates can be always renormalized in such a way that

E = d
∑
i

uiei.

We introduce the operator U and the OM -linear skew-symmetric operator V : TM → TM
defined by

U(X) := E ◦X

V(X) := ∇0,X(E)− D

2 X
(1.1.10)

In canonical coordinates, U acts diagonally: U(ei) = uiei. Moreover M is semisimple if and
only if U has distinct eigenvalues [24]. The endomorphism V is represented in the basis {ei}
by a matrix with entries

Vij =
∑
j 6=i

(uj − ui)
(eiejη)

2
√

(eiη)(ejη)
.

Canonical coordinates define a local diffeomorphism sending a point m to the eigenvalues
of U evaluated at that point up to permutation

M ' Cn \ diagonals
Sn

m 7→ [u1(m), . . . , un(m)]Sn = [eig(U)]Sn .

Equations (1.1.9) can be rewritten as

∇X(Y ) = ∇gX(Y ) + 1
z
X ◦ Y

∇∂/∂λ(Y ) = −
[ 1
z2U + 1

z
(V + D

2 Id)
]

(Y )

and the extended structure connection takes the form

∇ = dP1 +∇z + 1
z2U d z + 1

z
(V + D

2 Id) d z

1.2 Isomonodromy of meromorphic connections
In this section we briefly recall some basic theory about the generalized monodromy of
meromorphic connections over the projective line and their deformation theory. The goal
is also to fix the notation.

Let Z be a complex manifold and F a vector bundle on it. We denote by Ω1
Z the sheaf

of holomorphic one-forms on Z. Meromorphic one-forms with pole divisor D are denoted
Ω1
Z(D). The sheaf of one-forms valued in a vector space V is Ω1(V ). If F is a holomorphic
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vector bundle, we indicate with O(F ) the sheaf of its holomorphic sections: it is a locally
free OZ-module.

Let D be a divisor in Z. A flat meromorphic connection with pole divisor D on a vector
bundle F over Z is a connection ∇ : O(F ) → O(F ) ⊗OZ Ω1

Z(D), which is flat away from
the support supp(D) of D.

Say (z0, . . . , zN ) are local coordinates on Z such that locally supp(D) = {z0 = 0}. The
order or rank of singularity along the divisor D is r + 1 if locally the connection matrix A
of ∇ = d−A d z can be written as

A = A0(z0, . . . , zN ) d z0

zr+1
0

+
N∑
i=1

Ai(z0, . . . , zN )d zi
zr0

, A0 d z0, A
i d zi ∈ Ω1

Z .

When Z = CP1
z, the pole order at ∞ is r − 1 if the local expression of A around ∞ is

A = −zr−1A∞ d z. r is called the Poincaré rank. The rank of a polar divisor does not
depend on the chosen frame. We have a logarithmic pole or regular singularity when r = 0.
If r ≥ 1 the singularity is said irregular. Accordingly, meromorphic connections and, in
general, linear systems of ODE, are said regular or irregular as well.

The principal part of a connection on a pole of any rank is A0(0, z1, . . . , zN ). If r ≥ 1, it
depends on the choice of local coordinates, and it is multiplied by invertible local functions
on D when coordinates change. Hence, its spectrum is well defined globally on D only for
logarithmic singularities, but the possible semiplicity of the spectrum makes sense for any
r.

In the following, we will be interested in the monodromy and the fundamental solutions
of a (irregular) meromorphic connections on a holomorphically trivial vector bundle over
P1 := CP1.

When singularities are at most regular, the monodromy group of P1 with poles removed
describes analytic continuations of local fundamental solutions. For any point z∗ not in
the singular locus, there exists a neighborhood Uz∗ of z∗ and a fundamental solution of ∇,
that is a holomorphic solution Y in Uz∗ which solves the system of differential equations
dY (z) = A(z)Y (z). A fundamental solution can be analytically continued along paths not
containing any pole. Two analytic continuations differ by the action of the monodromy
group. The monodromy representation is a map

πz
∗

1 := π1
(
P1(C) \ {poles}, z∗

)
→ GLn(C)

It depends by conjugation on the choice of the base point z∗ and of a basis of πz∗1 . Given
two analytic continuations Ỹ and Ỹ ′, defined along γ and γ′ = γ · δ respectively, then
Ỹ ′ = Ỹ Mδ, where Mδ is the monodromy matrix of the class of δ in πz∗1 .

When the system dY (z) = A(z)Y (z) d z has irregular singularities, the situation is much
more involved and the monodromy is described in terms of generalized monodromy data,
consisting of Stokes rays and Stokes multipliers.

Let a be a pole of Poicaré rank r ≥ 1. It is a standard result that there exist sectors of the
disc ∆a punctured in a, where fundamental solutions with prescribed asymptotic behavior
as z → a are well-defined. Expressing meromorphic functions as power series centered in
a, we can express A around the pole a as A(z) =

∑r
k=0Ak(z) d z

(z−a)r+1−k . Assume that
the principal part, which coincides with A0, is diagonal with n distinct ordered eigenvalues
ui = eiπφ(ui), counterclock-wise ordered according to their phase φ(u1) < · · · < φ(un). The
Stokes rays are defined as the rays `ij := R>0(ui−uj). Distinct Stokes rays can be labelled
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counterclock-wise `1, `2, . . . such that `h = R>0 exp{iπφh} and φh < φh+1 with respect to
the positive real ray. Then

Theorem 1.13 ([1, Theorem A]; [40]). There are 2r open regions Rj given by

Rj =
{
z ∈ ∆a|

(j − 1)π
r

< arg z < jπ

r
+ ε

}
, j = 1, . . . 2r, ε > 0 small,

and unique fundamental solutions Yj(z) in Rj with a prescribed asymptotic expansion Ŷ as
z → a in Rj. This is given by Ŷ = zAr exp{T (z)}, where

T (z) = −
(

A0
r(z − a)r + A1

(r − 1)(z − a)r−1 + · · ·+ Ar−1
(z − a)

)
.

The definition domain of Yj can be enlarged to Rj up to the nearest Stokes rays, not included.
The solutions are still unique. Moreover, there exist matrices Sj such that in the overlapping
Rj∩Rj+1, j = 1, . . . , 2r−1, we have Yj+1(z) = Yj(z)Sj, and in the last intersection R2r∩R1
Y1(z) = Y2r(z)S2r.

The matrices Sj are called Stokes multipliers at the point a.

Remark. If A0 is diagonalizable, but not in the form as above, then Ŷ = W (z)zAr expT (z),
where W is such that A′0 = W−1(z)A0(z)W (z) is diagonal with n distinct ordered eigen-
values, and the Stokes multipliers change by conjugation.

This finishes the description of the local generalized monodromy around irregular sin-
gularities. There is also a notion of global monodromy which generalizes the representation
of π1. We don’t go into details; a reference for its description is [24, Section 1.6.1].

1.2.1 Isomonodromic deformations

The aim of the deformation theory of connections is to describe a family of differential
equations with coefficients A(z) = A(z, x) depending on parameters x = (x1, . . . , xN ) ∈ X,
that share the same (generalized) monodromy data irrespective to x.

Definition 1.14. A family of meromorphic connections {∇(x) = dP1 −A(x)(z)}x∈X over
P1(C) parameterized by a space X of deformation parameters is said isomonodromic if for
any x0 there exists a neighborhood U0 ⊂ X of x0 such that all the matrix-valued one-forms
A(x), x ∈ U0, share the same Stokes multipliers defined in common sectors, and the global
monodromy representation is constant.

We present here the key result by Jimbo, Miwa and Ueno [29] (1980) relating isomono-
dromic families of connections over P1 and flat meromorphic connections over families of
P1’s. It essentially says that a family d−A(x) of connection on P1 parametrized by x ∈ X
is isomonodromic if and only if its solutions Y also satisfy dY = Ω(z, x)Y , for a one-form
Ω on X valued in GLn(C), uniquely determined by A(z, x). This is a flatness condition for
a connection ∇ = dP1×X −

(
A(z, x) + Ω(z, x)

)
over P1 ×X.

Theorem 1.15 ([29, Theo. 3.1]). Let X be a simply connected space of deformation pa-
rameters, D =

∑
i(ri + 1){ai} ×X a divisor, for a finite set of points ai ∈ P1. Suppose we

have a flat meromorphic connection ∇ on the trivial bundle F of rank n over P1 ×X, with
poles and their ranks specified by D. Then the restricted bundles F|P1×{x} are isomorphic

10



for any x ∈ X and the set
{
∇(x) := ∇|P1×{x}

}
x
is a family of isomonodromic meromorphic

connections over P1.
Conversely, given a family of isomonodromic meromorphic connections

∇(x) = dP1 −A(x)(z),

varying on a space of parameters X, then for any x0 ∈ X the pull back of ∇(x0) over
P1 × X is the restriction to P1 × {x0} of a flat meromorphic connection ∇ = dP1×X −Ã,
whose one-forms matrix Ã depends only on A(z, x).

∇ is sometimes referred to as “full connection”. Ã(z, x) has the form A(z, x) + Ω(z, x), for
A regarded as a two variable one-form, and

Ω = (dX Y (z, x))Y (z, x)−1

where Y is a fundamental solution of d−A(z, x) on P1 regarded as a matrix valued holo-
morphic function of the parameter x. Flatness of ∇ translates into two equations{

dX Ω = −Ω ∧ Ω
dX A = −dP1 Ω− [A,Ω]

called the deformation equations. A detailed proof of the result is in [6, Chapter 6].

1.3 Monodromy of d−
(
U
z2 + V

z

)
d z

Let us describe the monodromy of the differential operator d−
(
U
z2 + V

z

)
d z in more detail.

It has a order 2 pole at 0 and a logarithmic pole at ∞. The pole divisor is 2 · 0 + 1 · ∞. In
this special case the global monodromy representation is completely determined by the local
monodromy around the double pole, thus we study only the irregular singularity. Assume
U ∈ GLn(C) is a constant diagonal matrix with distinct eigenvalues,

U =


u1

. . .

un


The Stokes rays are `ij = R>0(ui − uj), i 6= j. We say that a ray l ⊂ C is admissible if it is
not a Stokes ray. For any admissible ray l, we denote by Hl the corresponding upper-half
plane

Hl = {z = vw|v ∈ l, Re(w) > 0} ⊂ C∗.

According to Theorem 1.13, for any admissible ray l emanating from the origin, there exists
a unique solution Yl in Hl such that Yl · exp{1

zU} → Id as z → 0 in Hl, [11, Theorem 2.5].
It can be continued in some sectorial neighborhood of Hl clock-wise and counter-clock-wise
to Yl,+ and Yl,− respectively. On the other hand we have a similar solution Y−l in H−l. In
the intersections of the neighborhoods with H−l, the Stokes multipliers are defined by

Yl,±(z) = Y−l(z) · S±.

We introduce an ordered product. Say φ1 < · · · < φm are angles in the complex plane
and Sφi are matrices labelled by φi, then the ordered product

y∏
is defined as

y∏
Sφi :=

Sφm · · ·Sφ1 .
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Proposition 1.16 ([11, Section 2]; [15, Appendix F]). S+ remains constant under a per-
turbation of l so long as l or −l does not intersect any Stokes rays. There exist invertible
matrices S`ij such that, if `ij crosses clock-wise l then

S+ 7→ S`ijS+S−1
−`ij and Yl 7→ YlS−1

`ij
.

A similar result holds for S−. S`ij are called Stokes factors of the operator ∇.
Moreover, the Stokes factors determine the Stokes multipliers for any ray l

S+ =
y∏

`ij⊂iHl

S`ij , S− =
y∏

`ji⊂iH−l

S−1
`ji
.

In fact, a stronger result holds: the Stokes multipliers of a single admissible ray l deter-
mine all the Stokes factors, [10, Lemma 2.10]. Therefore, the generalised monodromy data
around the irregular singularity may be equivalently defined as the set of Stokes rays and
Stokes factors.

A special characterization holds when V is skew-symmetric.

Proposition 1.17 ([15, Prop. 3.10]). If V is skew-symmetric, the Stokes multipliers S±
are such that S+ = (S−)t =: S and the Stokes factors satisfy S`ji = S−t`ij .
S = (sij)ij decomposes as

S = Id +
∑

`ij⊂iHl

sijEij ,

where Eij are the matrices whose entries (hk) are δhiδkj.

A natural choice for l is the positive real ray. In this case S is given by the clockwise
ordered product

S =
y∏
`⊂H
S`.

of Stokes matrices over Stokes rays contained in the open upper-half plane H := {z ∈ C |
0 < arg z < π}. The generalized monodromy is therefore encoded in (S, {`ij}) and one may
call S the Stokes matrix.

Notice that the Stokes factors of two gauge-equivalent connections are the same up to
conjugation by the gauge matrix. The same thus holds also for Stokes multipliers. Whenever
it is possible, we will define the Stokes matrix of a connection with poles 2 · 0 + 1 · ∞ and
diagonal principal part on 0, as the Stokes multiplier S+ referred toH of the gauge-equivalent
connection which has diagonal principal part with distinct eigenvalues and skew-symmetric
residue.

Since by assumptions the global monodromy is determined by the Stokes data around
the origin, isomonodromic families of connections of the form ∇(x) = d−

(
U
z2 + V

z

)
d z are

defined as follows.

Definition 1.18 ([10, Def. 2.11]). The family of connections ∇(x) parametrized by a space
of deformation parameters X is isomonodromic if, for any x0 ∈ X there exists an open
neighborhood U0 ⊂ X of x0 and a ray r such that ±r is admissible for all ∇(x), x ∈ U0,
and the Stokes multipliers S±(x) of ∇(x) relative to r are constant on U0.

Let Σ ⊂ C∗ be a convex open sector whose boundary rays are admissible for all x ∈ U0.
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Proposition 1.19 ([10, Section 2.11]). The isomonodromy may also be defined as the
constancy of the clock-wise ordered product

y∏
`⊂Σ
S`(x)

as x varies in U0.

The deformation equations consist in the system of differential equations

dVij = −
∑
k

VikVkj
(

d log(ui − uk)− d log(uk − uj)
)
.

1.3.1 Bridgeland and Toledano-Laredo formulae for the Stokes map

The monodromy of the connection ∇ = d−
(
U
z2 + V

z

)
d z can be expressed in terms of

multilogarithms. The explicit formula was proved by Bridgeland and Toledano-Laredo in
[11] for a connection with structure group GLn(C) or an arbitrary complex affine algebraic
group G. We consider here the the first case (Theorem 1.22).

Let G = GLn(C), P be the holomorphically trivial, principal G-bundle on P1
z and ∇ a

connection of the form
∇ = d−

(U
z2 + V

z

)
d z, (1.3.1)

where U, V ∈ gln(C), U is diagonalizable with distinct eigenvalues u1, . . . , un, and V is
skew-symmetric.

Introduce the following iterated integrals.

Definition 1.20. Let ω1, . . . , ωk be one-forms defined on a domain U0 ⊂ C, and δ : [0, 1]→
U0 a path in U0. Let

∆ = {(t1, . . . , tn) ∈ [0, 1]n : 0 ≤ ti ≤ · · · ≤ tn ≤ 1} ⊂ [0, 1]n

be the unit simplex. Define∫
δ
ω1 ◦ · · · ◦ ωk :=

∫
∆
f1(t1) · · · fk(tk) d t1 · · · d tk

where δ∗ωi = fi(t) d t.

Definition 1.21. Set M1(z1) = 2πi and, for k ≥ 2, define the function Mk : (C∗)k → C by

Mk(z1, . . . , zk) = (−1)k−12πi
∫
C

d t
t− s1

◦ · · · ◦ d t
t− sk−1

(1.3.2)

where si = z1 + · · ·+ zi, 1 ≤ i ≤ k and the path of integration C is the line segment ]0, sk[,
perturbed if necessary to avoid any point si ∈ [0, sk] by small counterclockwise arcs.

We choose the branch of the complex logarithm with branch-cut along [0,∞[. Therefore,
for instance

M2(z1, z2) = −2πi
(

log z2
z1
− πi

)
.

In general, the multilogarithms Mn are hard to compute already for n = 3.
Introduce the set of roots ΦU = {ui − uj , i 6= j} ⊂ C, that is the set of eigenvalues of

adU . If γ = ui − uj , Vγ stands for the entry Vij . Call Eij the elementary matrices with
only one non-zero entry, in position (i, j).
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Theorem 1.22 ([11, Section 9]). The Stokes factor S` of (1.3.1) corresponding to a Stokes
ray ` is given by

S` = Id +
∑

γ=ui−uj
γ∈`

∑
k≥1

∑
γ1,...,γk∈ΦU
γ1+···+γk=γ

Mk(γ1, . . . , γk)Vγ1 · · ·VγkEij . (1.3.3)

The result extends to the case when U has repeated eigenvalues or G is an arbitrary
complex algebraic group, [11]. Moreover, it is possible to invert the formula 1.3.3

Proposition 1.23 ([11, Theorem 4.8]). Provided the convergence of the resulting formula,
(1.3.3) can be inverted, and one can reconstruct canonically V in terms of the components
of the Stokes factors and the multilogarithms.

1.4 Stokes data of a semisimple Frobenius manifold
One of the main feature of semisimple Frobenius manifolds is that the local moduli space of
semisimple Frobenius structures can be identify with a space of Stokes matrices. This gives
a characterization of Frobenius structures on manifolds of given dimension. The result is
due to Dubrovin and is proven in [15, Section 3].

Consider the differential operator

∇ = d−
(U
z2 + V

z

)
d z (1.4.1)

with diagonal U and skew-symmetric V . On the space of upper triangular matrices, consider
the equivalence given by

S 7→ P−1ISIP (1.4.2)

where P ∈ Σn is a permutation matrix, I an arbitrary diagonal matrix with ±1 diagonal
entries.

Let M be a Frobenius manifold with flat coordinates xa and potential Φ. Define the
multiplication-preserving transformation Sk, k = 1, . . . , n, xa 7→ x̂a

x̂a = ∂a∂kΦ(x1, . . . , xn). (1.4.3)

The transformations Sk preserve the spectrum of the structure up to permutation. Moreover
∂̂2Φ̂
∂̂a∂̂b

= ∂2Φ
∂a∂b

and η̂ab = ηab.

Theorem 1.24 ([15, Theo. 3.2]). There exists a local one-to-one correspondence between{
semisimple Frobenius structures modulo transformations (1.4.3)

}
and{

Stokes matrices S of connections (1.4.1) up to equivalence (1.4.2)
}
.

Without going into the detail of the construction of the correspondence, let us try to
describe the picture.

Let {∇(x)}x∈X a family of connections of type (1.4.1) with prescribed generalized
monodromy. On the space of deformation parameters X there exists a natural Frobe-
nius structure. This structure is determined uniquely up to the symmetry (1.4.2). Con-
versely canonical coordinates of a Frobenius structure on a manifold M define a local dif-
feomorphism between the locus of semisimple pointsM in M and the space of parameters
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(Cn \ {diagonals})/Σn via the map

M' Cn \ {diagonals}
Σn

m 7→ [u1(m), . . . , un(m)]Σn = [eig(U)]Σn .

sending a point m to the n−tuple, up to permutations, of eigenvalues of the endomorphism
U (Eq. (1.1.10)) of the operator d−

(
U
z2 + 1

z (V+ D
2 Id)

)
d z on the tangent bundle, evaluated

at that point m. Therefore, the space of deformation parameters X is (locally) identified
with an open set in a Frobenius manifold M . In particular the rank of the bundle on which
∇ lives equals the dimension of the manifold M .

At the same time, Theorem 1.15 by Jimbo, Miwa and Ueno suggests that the extended
structure connections of the structure on M define a special family of connections over P1

parametrized by M . Dubrovin proved that the WDVV equations are indeed equivalent to
the isomonodromic deformation equations of the operator (1.4.1).

Definition 1.25. The Stokes matrix S of the operator (1.4.1) (considered modulo trans-
formations (1.4.2)) is called the Stokes matrix of the Frobenius manifold.

Having assumed that the endomorphism V is skew-symmetric, the moduli space of
semisimple Frobenius manifolds is identified with the corresponding space of upper tri-
angular Stokes matrices of the connection (1.4.1). The local moduli space of semisimple
Frobenius manifold has dimension n(n− 1)/2.

1.5 Analytic continuation of Frobenius structures
We will now define and briefly describe the analytic continuation of a Frobenius manifold.
The correspondence of Theorem 1.24 is local in the sense that it refers to germs of semisimple
Frobenius structures defined in a small neighborhood U0 of u(0) = (u(0)

1 , . . . , u
(0)
n ) ∈ Cn such

that u(0)
i 6= u

(0)
j for i 6= j. The diagonals {ui = uj}ij are a critical locus for the space

of isomonodromy deformation parameters, which thus presents monodromy itself. The
canonical coordinates and the potential of the Frobenius structure are functions of u ∈ U0
and can be analytically continued to meromorphic functions on the universal covering of
Cn\{diagonals}, [17, Section 4]. This defines analytic continuations of a Frobenius manifold
structure. Unfortunately, their properties are not clear from this description, and comparing
the analytic continuation at a point u(0) along a nontrivial path with the original semisimple
Frobenius structure is a hard problem.

At the same time, canonical coordinates are well defined up to reordering. Therefore,
the analytic continuation of a Frobenius structure with given Stokes matrix is described by
the action of the fundamental group

π1
(
(Cn \ {diagonals})/Σn, u(0)) = Bn

on the Stokes matrix at point u(0). Bn is called the Braid group. Its standard generators
are n− 1 elements β1,2, β2,3, . . . , βn−1,n with relations

βi,i+1βj,j+1 = βj,j+1βi,i+1 for i+ 1 6= j, j + 1 6= i

βi,i+1βi+1,i+2βi,i+1 = βi+1,i+2βi,i+1βi+1,i+2

βi,i+1 corresponds to a loop moving ui counter-clockwise around ui+1 then interchanging
ui, ui+1.
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Theorem 1.26 ([17, Theorem 4.6]). The analytic continuation of a semisimple Frobenius
manifold is described by the following action:

S 7→ βi,i+1(S) := Bi(S)SBt
i(S) (1.5.1)

where the matrix Bi(S) has entries

(Bi(S))kk = 1, k = 1, . . . , n, k 6= i, i+ 1
(Bi(S))i,i+1 = (Bi(S))i+1,i = 1, (Bi(S))i+1,i+1 = −Si,i+1,

(Bi(S))hk = 0 elsewhere.

The representation of the inverse β−1
i,i+1 (corresponding to moving ui and ui+1 clockwise) is

the matrix B−i (S) with entries

(B−i (S))kk = 1, k = 1, . . . , n, k 6= i, i+ 1
(B−i (S))i,i+1 = (B−i (S))i+1,i = 1 (B−i (S))i,i = −Si,i+1

(B−i (S))hk = 0 elsewhere.

It follows that two analytic continuations of a Frobenius structure are parametrized by
Stokes matrices S and S ′ possibly related by a the action of a sequence of permutations P ,
matrices I as in (1.4.2), and braids βi,i+1 or β−1

i,i+1.

1.6 Frobenius type structures
The part of a Frobenius manifold structure which makes sense on an abstract bundle is
called a Frobenius type structure. As far as I know, it is a concept due to Hertling.

Definition 1.27 ([26, Def. 5.6]). A Frobenius type structure on a holomorphic vector bundle
K →M is a collection of holomorphic objects (∇r, C,U ,V, g), with values in the bundle K,
where

a) ∇r is a flat connection,

b) C is a Higgs field, that is a 1-form with values in endomorphisms ofK, with C∧C = 0,

c) U ,V are endomorphisms,

d) g is a symmetric C−valued nondegenerate bilinear form on K (sometimes referred to
as “metric”),

satisfying the conditions

∇r(C) = 0, [C,U ] = 0, ∇r(V) = 0,
∇r(U)− [C,V] + C = 0

(1.6.1)

plus the conditions on the “metric” g

∇r(g) = 0,
g(CXa, b) = g(a,CXb),
g(Ua, b) = g(a,Ub),
g(Va, b) = −g(a,Vb).

(1.6.2)
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There exists an equivalent definition in terms of an extended connection on a holomor-
phic vector bundle H → C×M .

Theorem 1.28 ([26, Theorem 5.7]). Fix ω ∈ Z and the “metric” on K →M . A Frobenius
type structure on a holomorphic vector bundle K → M is equivalent to a triple (H,∇, ω)
where

• H is the space of a holomorphic vector bundle over P1 ×M .

• ∇ is a flat meromorphic connection on H;

• the restriction of ∇ to the affine chart C×M has a pole of Poincaré rank 1 in {0}×M
and is flat in (C \ {0})×M , the restriction to the affine chart (P1 \ {0})×M has a
logarithmic pole at {∞} ×M and is flat and holomorphic out of the singular locus.

Starting from (∇r, C,U ,V), the triple (H,∇, ω) is the datum of

• an integer ω,

• H := p∗K, p : P1 ×M →M ,

• ∇ = ∇r+ 1
zC+

(
1
zU − V + ω

2 Id
)

d z
z for ∇r, C,U ,V canonically extended via pull-back

to H.

Hertling proved also that a Frobenius manifold structure on M gives rise to a Frobenius
type structure on TM →M .

Lemma 1.29 ([26, Lemma 5.11]). Let M be a Frobenius manifold with flat identity e and
Euler field E of conformal dimension d. Denote by gM the metric and by ∇gM its Levi-Civita
connection. Define

• a Higgs field CM by CMX (Y ) = −X ◦ Y ,

• endomorphisms UM and VM by

UM = E ◦ (•),

VM = ∇gM• E − 2− d
2 I.

Then (∇gM , CM ,UM ,VM , gM ) is a Frobenius type structure on the fibers of TM .

It is clear then that a Frobenius type structure is indeed a generalization of a Frobenius
manifold on a generic auxiliary vector bundle and that a Saito structure is equivalent to a
Frobenius type structure on the tangent bundle.

A natural question is whether a Frobenius type structure on a generic K → M may
induce a genuine Frobenius structure over M . It turns out that the answer is positive
provided that K admits a special global section ζ ∈ O(K).

Let K →M be a holomorphic vector bundle on a complex manifoldM , with Higgs field
C. A holomorphic section ζ ∈ O(K) can be contracted with the Higgs field to give a map

v := −C•(ζ) : TM → K (1.6.3)

i. e. the derivative of the section ζ along the Higgs field.
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Theorem 1.30 ([26, Theorem 5.12]). Suppose that K →M has a Frobenius type structure
(∇r, C,U ,V, g) and that ζ is a global section of K such that

• it is a flat section with respect to the flat connection of the Frobenius type structure,
∇r(ζ) = 0,

• it is homogeneous with respect to the endomorphism V, i.e. we have V(ζ) = d
2ζ for

some d ∈ C,

• the map (1.6.3) is an isomorphism.

Then the pullback of (∇r, C,U ,V, g) along the map (1.6.3) gives a Frobenius manifold struc-
ture onM with unit field given by the pullback of the section ζ and with conformal dimension
2− d.

This structure actually corresponds to the Frobenius type structure (according to Lemma
1.29) on the tangent bundle

(∇r,M , CM ,UM ,VM , gM ),

given by

∇r,M = v−1∇rv, CM = v−1Cv,

UM = v−1Uv, VM = v−1Vv,
gM = g(v(−), v(−)).

The proof is well-illustrated in [26]. Here only the main ingredients are recalled. The
multiplication is uniquely characterized by the property

CXCY = −CX◦Y (1.6.4)

and it is given by
X ◦ Y = v−1(CXv(Y )) = −CMX Y.

The flat identity e must satisfies −Ce = Id and it is in fact given by

e = v−1(ζ). (1.6.5)

E := U(e) is an Euler field and satisfies LieE(g) = (2−d)g, where the metric g coincide with
gM . The Levi-Civita connection ∇0 of g is the pullback of ∇r. Denote by ∇ the structure
connection of the Frobenius manifold on P1 ×M . It equals

∇ = v∗∇

= ∇0 + 1
z
C +

(1
z
U − v−1Vv + ω

2 Id
) d z

z
.

1.7 CV structures
The last structure I want to briefly present was introduced by Hertling and is called CV -
structure after Cecotti and Vafa (with reference to [13] and [12]). The CV-geometry is
defined on a generic vector bundle K. However, it shares some common feature with
Frobenius geometry. In particular, a CV-structure embodies (due to an anti-involution κ)
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the so-called reality property of a Frobenius structure. A Frobenius manifold is said to
be real if it admits an antiholomorphic automorphism τ : M → M , or equivalently if the
solutions of the WDVV equations are real. Real Frobenius manifold are discussed in [15].

First the preliminary notion of DCC̃-structure, which is also due to Hertling, is intro-
duced.

Definition 1.31. A (DCC̃)-structure on a C∞ complex vector bundle K → M is the
collection of C∞ objects (D,C, C̃) with values in K where

• D is a connection,

• C is a (1, 0)-form with values in endomorphisms of K,

• C̃ is a (0, 1)-form with values in endomorphisms of K;

satisfying the conditions

(D′′ + C)2 = 0, (D′ + C̃)2 = 0,
D′(C) = 0, D′′(C̃) = 0,

D′D′′ +D′′D′ = −(CC̃ + C̃C) (1.7.1)

where D′ and D′′ are the (1, 0) and (0, 1) parts of D respectively.

A CV-structure is a DCC̃-structure together with a metric and an anti-involution. Two
endomorphisms of the bundle are also defined.

Definition 1.32. A CV-structure on a C∞ complex bundle K →M is a collection of C∞
objects (D,C, C̃, κ, h,U ,Q) with values in K where

• (D,C, C̃) is a (DCC̃)-structure,

• κ is an antilinear involution with D(κ) = 0 which intertwines C and C̃, κCκ = C̃,

• h is a hermitian (not necessarily positive) metric, which satisfiesD(h) = 0, h(CXa, b) =
h(a, C̃X̄b) for (1, 0) fields X and which is real-valued on the real subbundle KR ⊂ K
defined by κ,

• U and Q are endomorphisms,

satisfying the conditions

= 0,
D′(U)− [C,Q] + C = 0,

D′′(U) = 0,
D′(Q) + [C, κUκ] = 0,

Q+ κQκ = 0,
h(Ua, b) = h(a, κUκb),
h(Qa, b) = h(a,Qb).

(1.7.2)
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Similarly to Theorem 1.28, also the CV-geometry of K can be described in terms of a
flat irregular connections on the lifted bundle p∗K → P1 ×M . With this language, it is
the datum of (Ĥ,∇, HR, g), where Ĥ is Ĥ = p∗K, ∇ is the flat meromorhic connection
Ĥ → Ĥ ⊗OP1×M

Ω1
P1×M ({0,∞}×M)

∇ = D + 1
z
C + zC̃ +

(1
z
U −Q+ ω

2 Id−zκUκ
) d z

z
,

for D,C, C̃,U ,Q, κ canonically extended, and HR is a real ∇-flat subbundle of Ĥ|C∗×M is
flat on Ĥ|C×M .
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Chapter 2

Quivers, stability conditions and
generating functions

This Chapter collects some wide background material about

• CY triangulated categories C associated to a quiver with potential,

• the space of stability conditions Stab(C), and

• Joyce generating functions for invariant counting semistable objects.

For this reason it might appear fragmentary. Some notions on triangulated categories are
summed up in Section 2.1. One of the goals is also to fix the notation used henceforth. Given
a category C, there is a concept of stability due to Bridgeland [8]. Stability conditions are an
interesting generalization of slope stability for coherent sheaves, but they are also interesting
in their own right. The set of stability conditions on C is a complex manifold Stab(C) called
the space of stability conditions. It is briefly described in Section 2.3. In particular, if C
admits a so-called bounded t-structure with a finite length heart, an open subset of Stab(C)
can be described as a union of cells, one for each bounded t−structure of finite length. The
way these cells glue together along their boundaries is controlled by an operation on C called
tilt.

Quivers with potential (Q,W ) are oriented graphs together with the choice of a dis-
tinguished collection of cycles. Mutations are transformations of quivers. For any (Q,W )
there is a special triangulated category C = D(Q,W ). The D(Q,W ) provide a big class of
examples for which the space of stability conditions admits a nice description. Mutations
(at the quiver level) incarnate simple tilts (at the category level), thus cells of Stab(C) are in
natural correspondence with the mutation classes of (Q,W ). Quivers and their associated
categories are presented in Section 2.2.

Section 2.4 is devoted to generating functions. It is the starting point for Chapters 3
and 4. For any choice of a stability condition σ, an object in Obj(C) is either σ-semistable
or unstable. Under some assumptions, we can attach to any stability condition σ a system
of invariants virtually enumerating σ-semistable objects. A basic question is whether these
invariants -which jump discontinuously- can be combined in functions which are at least
continuous. This problem was first studied in depth by Joyce in [31]. He introduced a
family of holomorphic generating functions, with interesting geometric implications. The
PDE these functions satisfy allows to regard Stab(C) as the deformation space of a family
of isomonodromic irregular connections over P1.
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2.1 Triangulated categories
The concept of a tringulated category, introduced by Verdier [39], is modeled on the one
of bounded derived category Db(A) of an abelian category. The definition is reproduced
for completeness. For the interested reader, a good reference for an introductory exposition
about triangulated and derived categories is [28]. In this section we focus on the notions of
hearts of a t-structure and the operation of tilting. The next few pages also set once for all
the notation.

We start by giving the axioms of a triangulated structure and by setting the notation.

Definition 2.1. A triangulated category is an additive C-linear category C together with
an additive autoequivalence [1] : C → C (the shift functor) and a collection of distinguished
triangles

X → Y → Z → X[1]

satisfying the following axioms

TR0 any triangle isomorphic to a distinguished triangle is again a distinguished triangle;

TR1 the identity morphism X
id→ X can be completed to a distinguished triangle X id→

X → 0→ X[1];

TR2 ifX f→ Y
g→ Z

h→ X[1] is distinguished, then so is its rotation Y g→ Z
h→ X[1] f [1]→ Y [1],

and vice-versa;

TR3 any morphism X
f→ Y in C can be completed to a distinguished triangle whose third

object Z we call a cone of f ;

TR4 given distinguished triangles X u→ Y
v→ Z

w→ X[1] and X ′ u
′
→ Y ′

v′→ Z ′
w′→ X ′[1], then

each commutative diagram

X
u //

f
��

Y
v //

g

��

Z
w // X[1]

f [1]
��

X ′
u′ // Y ′

v′ // Z ′
w′ // X ′[1]

can be completed to a (possibly not unique) morphism of triangles with h : Z → Z ′;

TR5 [4, octahedral axiom] given a compositionX f→ Y
g→ Z, there exist conesX ′, T ′ and Y ′

of f , f ◦g and g respectively, forming a distinguished triangle X ′ → T ′ → Y ′ → X ′[1],
such that the four distinguished triangles fit into a octahedtron-shaped commuting
diagram.

Distinguished triangles are called also “exact” triangles. In some sense, they are the replace-
ment of short exact sequences in abelian categories, in the sense that they are analogue of
extensions. A distinguished triangle X → Y → Z → X[1] is also represented by

X // Y

��
Z

``
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With the classical notation

Homm
C (X,Y ) := HomC(X,Y [m]).

We say that the triangulated category is of finite type if, for all objects X,Y ∈ C,

dim⊕m∈Z Homm
C (X,Y ) <∞.

Definition 2.2. The Grothendieck group K(C) of a triangulated category is the free abelian
group generated by isomorphism classes [X] of objects X of C modulo the relation

[Y ] = [X] + [Z]

whenever X → Y → Z → X[1] is a distinguished triangle.
The shift functor acts as an involution on K(C): [X[1]] = −[X].

Results of Chapter 3 and 4 hold for finite dimensional K(C) ' Zr. In fact, later we will
restrict to triangulated categories which admit a finite bounded t−structure. In this case
rkK(C) <∞. Moreover, under the finite type condition, the Grothendieck group carries a
bilinear form χ(·, ·) : K(C)×K(C)→ Z, the Euler pairing, defined by the formula

χ(X,Y ) :=
∑
n∈Z

(−1)n dim Homn
C(X,Y ).

If necessary, K(C) is replaced by the numerical Grothendieck group KN (C) = K(C)/K(C)⊥,
for K(C)⊥ := {[E] ∈ K(C)|χ([E], [F ]) = 0 ∀[F ] ∈ K(C)}. Restricted to KN (C) the Euler
form is non-degenerate.

In this thesis, we are interested in Calabi-Yau categories of dimension three.

Definition 2.3. A triangulated category C is said three-Calabi-Yau if there are functorial
isomorphisms

Homm
C (A,B) ' Hom3−m

C (B,A)∗ for all A,B ∈ C.

For a 3CY category, the Euler form is skew-symmetric

χ(A,B) = dim Hom(A,B)− dim Ext1(A,B)− dim Hom(B,A) + dim Ext1(B,A).

2.1.1 t−structures and tilting

Bounded t-structures provide a way to see different abelian categories embedded in a given
triangulated category. They were introduced in [4] in 1982.

Definition 2.4. A t-structure on a triangulated category C is the datum of a full additive
subcategory T ⊂ C, stable under shift (T [1] ⊂ T ), such that, setting

T ⊥ := {V ∈ C : HomC(T, V ) = 0 ∀ V ∈ T } ,

for every object E ∈ C there exists a triangle

T1 → E → T2 → T1[1]

with T1 ∈ T and T2 ∈ T ⊥.
It is said to be bounded if C =

⋃
m∈Z T [−m] ∩ T ⊥[m].
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The heart of a t-structure T ⊂ C is the full subcategory A = T ∩ T ⊥[1] ⊂ C. It is an
abelian category, [4].

A bounded t-structure T ⊂ C is determined by its heart A ⊂ C. Moreover, the following
Lemma holds.

Lemma 2.5 ([8, Lemma 3.2]). Let A ⊂ C be a full additive subcategory of a triangulated
category C. Then A is the heart of a bounded t-structure if and only if the following two
conditions hold:

1. if k1 > k2 are integers and A,B are objects of A, then HomC (A[k1], B[k2]) = 0,

2. for every E ∈ C, E 6= 0, there exists a finite sequence of integers k1 > k2 > · · · > km
and a collection of triangles

0 = E0 // E1 //

��

E2 //

��

· · · // Em−1 // Em

��

= E

A1

__

A2

]]

Am

``

with Aj ∈ A[kj ] for all j.

The class [E] in the Grothendieck group K(C) decomposes as

[E] =
∑
j

[Aj ].

It follows that we can map the class [E] ∈ K(C) of an element E ∈ C to the sum∑
j

(−1)kj [Aj [−kj ]] ∈ K(A).

Proposition 2.6. If A is the heart of a bounded t-structure on C, then K(C) ' K(A).

For C = Db(A), A is a heart of a t-structure. It is called the standard heart. The
standard t-structure T of Db(A) consists of those complexes concentrated in degree less or
equal than 0. This realizes an embedding of A in Db(A). Suppose we have an equivalence
of derived categories Db(A) ' Db(B). Then A is embedded in Db(A), but generically it is
not mapped to B by the restricted isomorphism of categories. However, its image A′ is the
heart of a t−structure on Db(B).

Definition 2.7. A heart is called of finite length if any object A ∈ A has a filtration
0 ⊂ A1 ⊂ · · · ⊂ A such that all Ai/Ai−1 are simple. It is called finite if, moreover, has a
finite number of simple objects.

Whenever we will be concerned in a triangulated category, in Chapters 3 and 4, we
will assume it admits a bounded t-structure with a finite heart. This ensure that its
Grothendieck group has finite rank.

Given a bounded t-structure (T , T ⊥) or its heart A, one can construct many non-trivial
t-structures with a procedure called tilting. We say that a pair of hearts (A1,A2) in C is
a tilting pair if A2 ⊂ 〈A1,A1[−1]〉 and A1 ⊂ 〈A2[1],A2〉. The brackets 〈A,B〉 denote the
extension-closure of A and B, that is the smallest full subcategory of C containing both A
and B and closed with respect to the extension: X,Y ∈ 〈A,B〉 and X → Z → Y → X[1]
implies Z ∈ 〈A,B〉.
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The special construction we will be most interested in is the so-called (left and right)
simple tilt. Given a finite-length heart A ⊂ C and a simple object S ∈ A, denote by 〈S〉 the
full subcategory consisting of direct sums of simple factors isomorphic to S. Define then
the full subcategories

S⊥ := {E ∈ A|HomA(S,E) = 0},
⊥S := {E ∈ A|HomA(E,S) = 0}.

µ−S (A) := 〈S[1],⊥ S〉 and µ+
S (A) := 〈S⊥, S[−1]〉 are hearts of bounded t-structures in C, [9].

They are called respectively left and right simple tilts of the heart A at the simple S.
More generally, we can produce a tilted heart from any torsion pair (T ,F) in a given

heart.

Definition 2.8. A torsion pair in an abelian category A is a pair (T ,F) of full additive
subcategories of A with F ⊆ T ⊥, such that for all E ∈ A there exists a short exact sequence
0→ T (E)→ E → F(E)→ 0, T (E) ∈ T , F(E) ∈ F .

A torsion pair inherits its name from the exemplifying case of the abelian category A =
Coh(X) of coherent sheaves on a smooth projective curve X. The subcategories of torsion
sheaves T and torsion-free sheaves F are torsion pair.

Although the subcategory T ⊂ A above must be not confused with the subcategory
T ⊂ C of Definition 2.4, we can notice the similarity between the two definitions due to the
decomposition of an object into parts lying in a subcategory and its orthogonal.

Proposition 2.9 ([25]). Given a torsion pair (T ,F) in A, the following define hearts of
bounded t-structures in C:

A# = 〈F [1], T 〉,
A[ = 〈F , T [−1]〉.

Vice-versa, given a tilting pair (A1,A2) in C, then the subcategories T = A1 ∩ A2[1] and
F = A1 ∩ A2 form a torsion pair (T ,F) of A1.

2.2 Quivers with potential
In this section we introduced quivers with potential and their mutations. The goal is to
associate a 3CY triangulated category to a quiver with potential and relate mutations of
quivers on quivers to tilts of categories. I learned the material contained in this section
from [33] and [9].

Quiver and Ext−quivers

A quiver is an oriented graph. In general infinitely many vertices and arrows between
two vertices are possible. Here we restrict to finite quivers. Formally a finite quiver Q is
a quadruple Q = (Q0, Q1, s, t) consisting of two finite sets Q0 (vertices) and Q1(arrows),
together with two maps s (source function - giving the starting vertex) and t (target function
- giving the ending vertex) s, t : Q1 → Q0.

An (oriented) path a of length l, l <∞, in Q is a finite sequence of consecutive oriented
arrows a = (a1, . . . , al), with t(ap) = s(ap+1). We can think of a path as a word in ai ∈ Q1.
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It is convenient to consider also the lazy path ei of length 0 at each vertex. We can identify
ei with the corresponding vertex i. The path algebra (or quiver algebra) CQ of Q over C
is the C-vector space spanned by the oriented paths in Q, with a multiplication defined
by the concatenation if the starting point of the second coincides with the tail of the first,
vanishing otherwise,

ab :=
{

(a1 · · · anb1 · · · bn) if t(an) = s(b1)
0 otherwise

.

The path algebra is a graded algebra CQ =
⊕∞

d=0 CQd, the grading being induced by
the length of a path. A path basis is the union over d ∈ N of length-d-path bases. For d = 0
a basis consists on the set of vertices Q0, for d = 1 it is the set of arrows Q1. Inductively,
a basis for CQd is given by products a1 · · · ad, ai ∈ Q1, t(ai) = s(ai+1) for 1 ≤ i < d. The
following definitions, however, are independent of the choice of a basis.

A representation of Q is a module over the path algebra CQ. One can shows that this
is the same as the datum of vector spaces associated to vertices together with a map for
any arrows. For any quiver Q, the abelian category of finite-dimensional representations of
Q is A = Q-Rep with objects V = (Vh)h∈Q0 , Vh′

fa→ Vh′′ for any arrow a = (h′ → h′′) ∈ Q1.

Proposition 2.10 ([5]). When Q has no oriented cycles

χQ−Rep([A], [B]) = dim Hom(A,B)− dimExt1(A,B)
=
∑
i∈Q0

dimAi dimBi −
∑
a∈Q1

dimAs(a) dimBt(a)

for any classes [A], [B] ∈ K(Q−Rep). Moreover, the simple modules are exactly the repre-
sentations Si concentrated at each vertex i, with dimension vector (0, . . . ,

i
1, 0, . . . , 0).

Simple tilts have nice combinatorical expressions, obtained immediately by the commu-
tative diagrams representing morphisms between finite dimensional representations. For
any vertex i ∈ Q0, say T := 〈Si〉 = {⊕nSni } the subcategory of representations sup-
ported at a fixed vertex i. It is easy to verify that F := 〈Si〉⊥ coincides with F ={
V :

⋂
a∈Q1:s(a)=i ker fa = 0

}
. On the other hand, if one choses F := 〈Si〉, then T :=⊥

〈Si〉 =
{
V : ⊕a∈Q1:t(a)=i im fa = Vi

}
.

On the other hand, for any finite abelian category or finite heart A ⊂ C of a triangulated
category there is a finite quiver.

Definition 2.11. The quiver Q(A), whose vertices are indexed by the isomorphism classes
of simple objects Si ∈ A and whose adjacency matrix η has entries ηij = dimC Ext1

A(Si, Sj)
is called the Ext-quiver of A.

Any acyclic quiver Q can be recovered as the Ext-quiver of its abelian category of
representations.

Potential and Ginzburg algebra

The complete path algebra ĈQ is the completion of CQ with respect to the ideal m generated
by the arrows of Q. It is the set of formal sums α =

∑
p αp indexed by oriented paths in Q,

and with multiplication defined by
∑
p αp ∗

∑
q βq =

∑
pq αpβq.
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A quiver can be equipped with relations. A potential on Q is an element of the closure in
ĈQ of the vector space generated by all nontrivial cyclic paths of Q, up to cyclic equivalence.
Two linear combinations of cycles are cyclically equivalent if their difference is in the closure
of the vector space generated by all differences a1 . . . as−a2 . . . asa1, where a1 . . . as is a cycle.

Definition 2.12. A potential is said reduced if it does not contain cycles of length less than
three.

Definition 2.13 ([14, Section 4]). A quiver with potential (Q,W ) is a finite quiver Q
without loops together with a potential W .

Definition 2.14. Two quivers with potential (Q,W ) and (Q′,W ′) are right-equivalent if
Q and Q′ have the same set of vertices and there exists an algebra isomorphism ϕ : ĈQ→
ĈQ′ whose restriction on the vertices is the identity map and ϕ(W ) and W ′ are cyclically
equivalent. Such an isomorphism ϕ is called a right-equivalence.

For an arrow a, the cyclic derivative ∂aW is defined as the sum of words in CQ obtained
by deleting a from all the cycles which composeW , where a has been cycled to the beginning
of each word. 〈∂aW : a ∈ Q1〉 is a left-and-right ideal in ĈQ. The Jacobi algebra J(Q,W )
of a quiver with potential is the quotient of ĈQ by the closure of the ideal generated by the
derivatives {∂aW}a∈Q1 of the potential.

Note that if Q is acyclic then the only potential on Q is the zero potential and J(Q, 0) '
CQ.

The good candidate for the construction of a 3CY triangulated category from a quiver
is a refinement of the Jacobi algebra, introduced by Ginzburg in [21].

We define a graded quiver as a quiver equipped with a grading function deg : Q1 → Z.
Given a quiver with potential (Q,W ) construct a graded quiver Qgr with the same vertices
Qgr0 = Q0 and Qgr1 ⊃ Q1 [33]. Qgr1 is define by reverting all the arrows (for all a = (i →
j) ∈ Q1 add a∗ = (j → i)) and adding a loop ti = (i → i) for every vertex i and assigning
degree 0 to a, −1 to a∗, a ∈ Q1, and −2 to ti. As for the path algebra of a quiver Q, we can
consider the complete graded path algebra ĈQgr in the category of graded algebras with
respect to the ideal generated by the arrows in Qgr1 . It is called Ginzburg dg algebra and
denoted by Γ(Q,W ). On Qgr is defined a differential d as the unique linear endomorphism
homogeneous of degree 1 satisfying

1. d a = 0 for every a ∈ Q1,

2. d a∗ = ∂aW for every a∗, a ∈ Q1,

3. d ti =
∑
a:s(a)=i[a, a∗] for every vertex i,

4. d(uv) = (du)v + (−1)pu(d v), for all u homogeneous of degree p and all v (Leibniz
rule).

The Jacobi algebra J(Q,W ) of a quiver with potential is the 0-th cohomology of the com-
plete Ginzburg algebra, i. e.

J(Q,W ) = H0(Γ(Q,W )).
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Mutations

Quiver mutations are elementary operations on a quiver that create new quivers with the
same set of vertices. We will see later that it is the incarnation of the operation of tilting,
once that the heart of a triangulated category has been associated to a quiver with potential.
Assume (Q,W ) is a quiver with reduced potential without loops and two-cycles. Then, for
any vertex i we can define a new quiver with potential µi(Q,W ) = (Q′,W ′) with the same
vertices set. The set of arrows Q′1 is constructed as follows:

1. for any pair of arrows a, b ∈ Q1 with t(a) = i = s(b), add a new arrow c : s(a)→ t(b),

2. replace any arrow a with source or target i with the reverse a∗.

W ′ is the reduced potential cyclically equivalent to W ′1 +W ′2, where W ′1 is obtained from W
replacing every composition ab with c, and W ′2 =

∑
a,b cb

∗a∗, a, b, c as above. The operation
µi is called the mutation at the vertex i.

Generically, a quiver with potential is non-degenerate, that is µi(Q,W ) has no loops
or 2-cycles, so the process of mutation can be iterated. µ2

i (Q,W ) is right-equivalent to
(Q,W ) and µi acts as an involution on the right-equivalence classes of reduced quivers with
potential without loops and 2-cycles, [14].

2.2.1 3CY -categories associated to (Q, W )
Let D be a 3CY-category with a bounded t-structure and a finite heart A ⊂ D. Associated
to the heart A there is a quiver Q(A) with skew-symmetric adiacency matrix η, ηij =
χA(Si, Sj) and without 2-cycles. Moreover, if all the simples S1, . . . , Sn in A are spherical
(that is Homr

D(Si, Si) has dimension 1 for r = 0, 3, and 0 otherwise), then Q(A) has no
loops. Arguments in [33, sec. 5 and 7] show that the process can be reversed, provided that
a quiver Q is equipped with a potential W .

Let be given (Q,W ) and consider the derived category of the complete Ginzburg alge-
bra D(Γ(Q,W )). The subcategory D(Q,W ) consisting of objects with finite-dimensional
cohomology is 3CY . Moreover J(Q,W ) = H0(Γ(Q,W )) and A = Rep(J(Q,W )) is the
heart of a canonical bounded t-structure on D(Q,W ). So we have the following result.

Theorem 2.15 ([33]; [9, sec. 7.4]). For any quiver with reduced potential (Q,W ) there
exists a 3CY triangulated category D(Q,W ) of finite type, with a bounded t-structure whose
heart A = A(Q,W ) ⊂ D(Q,W ) is of finite length and has associated Ext−quiver Q(A).

We want to emphasize that D(Q,W ) is not the bounded derived category of A(Q,W ) =
Rep(J(Q,W )), [33].

We can now relate tiltings in the triangulated Calabi-Yau-3 category D(Q,W ) with
mutations of the corresponding quiver (Q,W ). This is again a result by Keller and Yang
[33].

Theorem 2.16 ([33, Theo. 3.2]; [9, Theo. 7.3]). Let (Q,W ) be a quiver with no loops or
2-cycles and with reduced potential. Denote by µk(Q,W ) its mutation at the vertex k. There
are two equivalences of triangulated categories

Φ±k : D(µk(Q,W ))→ D(Q,W )

which induce tilts in the simple object Sk in the sense that

Φ±k (A(µk(Q,W ))) = µ±Sk(A(Q,W ))
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and which moreover induce the natural bijection on simple objects.

This statement implies that the operation of mutation on quivers with potential (Q,W )
is the incarnation of a simple tilt on D(Q,W ) and that any tilted heart µ(A) can be thought
as A(µ(Q,W )), where µ denotes respectively a sequence of quiver mutations or a sequence
of simple tilts.

The bijection between vertices of (Q,W ) and µk(Q,W ) is equivalent to the existence
of the isomrphism between the Grothendieck groups K(A) and K(A±k ) := µ±k A induced by
(2.6). The bijection

K(A)→ K(A+
k )

on classes of simple objects of A and A+
k is given by the following “cluster mutation rule”:

[Sj ] 7→
{
−[Sj ] if j = k

[Sj ] + [χ([Sk], [Sj ])]+[Sk] otherwise

where [x]+ denotes the positive part of x, i. e. the maximum of 0 and x. The involution
A = (A+

k )−k inverts the relation. By quiver with potential, here we mean a reduced quiver
in its right-equivalent class. The adjacency matrix η of Q depends on χ and changes
accordingly:

ηji 7→


−ηji if i ∈ {j, k}
ηji + |ηjk|ηki if i 6= j, k and ηjkηki > 0
ηji otherwise

Definition 2.17. We say that a heart A of D(Q,W ) is reachable if it can be obtained from
the standard heart A(Q,W ) by a finite sequence of simple tilts.

2.3 The space of stability conditions

In this section we review the definition of Bridgeland stability conditions on abelian and
triangulated categories. For our pourpose, the most interesting feature is that the set of
stability conditions Stab(C) of a triangulated category C, introduced in [8], is a complex
manifold. It is covered by the closures of domains U(A) of stability conditions supported
on given hearts A of bounded t-structures in C. In the case when the hearts A are of finite
length, the connected components of Stab(C) have a so-called wall and chamber structures,
with chambers the U(A) and walls related to simple tilts.

Definition 2.18. A stability function on an abelian category A is a group homomorphism

Z : K(A)→ C

such that for any non-zero object E ∈ A, Z([E]) ∈ H̄ :=
{
reiπθ|r ∈ R>0, 0 < θ ≤ 1

}
.

Definition 2.19. An object in A is called semistable if the phase φ(F ) := 1
π argZ([F ]) of

any non-zero proper subobject of E satisfies φ(F ) ≤ φ(E). It is called stable if the inequality
holds strictly.

Stability conditions on a triangulated category can be described via stability functions
supported on hearts A ⊂ C, satisfying the properties described below.
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Definition 2.20 (Bridgeland stability condition). A stability condition on a triangulated
category C is a pair σ = (Z,A), where

• A ⊂ C is the heart of a bounded t−structure

• Z : K(A)→ C is a stability function on A which

1. has the Harder-Narashima property,
2. satisfies the support property.

The Harder-Narasimhan property concerns the existence of a filtration (HN filtration)

0 = E0 ⊂ E1 · · · ⊂ Em = E

such that the quotients Ei/Ei−1 are in A, have decreasing phase φi and are semistable, for
any object E. As A is the heart of a bounded t−structure, we can identify K(C) ' K(A).
The stability function Z induces a central charge Z : K(C)→ C and the HN filtration of an
object X ∈ C is indeed a filtration of its cohomology objects.

If K(C) is finite-dimensional, we say that σ = (Z,A) satisfies the support property if there
exists a norm || · || on K(C) such that for any X ∈ C, 0 6= |Z([X])| ≥ ||[X]||. Otherwise, we
require the existence of a finite-dimensional lattice Γ together with a map γ : K(C) → Γ,
such that Z : K(C) → C factors via Γ. A typical choice for Γ might be the numerical
Grothendieck group KN (C). Fixing an arbitrary norm || · || on ΓR = Γ ⊗ R, the definition
lifts naturally.

The support property allows one to continuously deform a stability condition. The set
Stab(C) of all stability conditions on C has a Hausdorff topology [8, Section 8] induced by
the generalized metric

d(σ1, σ2) := sup
06=E∈C

{
|φ−σ2(E)− φ−σ1(E)|, |φ+

σ2(E)− φ+
σ1(E)|, ||Z2 − Z1||

}
∈ [0,+∞]

for σi = (Zi,Ai), φ−(E) := φ(E1/E0), φ+(E) := φ(Em/Em−1).
Moreover, if K(C) has finite rank, any connected component Σ ⊂ Stab(C) is a finite-

dimensional complex manifold, locally homeomorphic to Hom(K(C),C). In the rest of the
thesis we will consider triangulated categories with finite rank Grothendieck group.

Theorem 2.21 ([8, Theo. 1.2]; [3, Theo. A.5]). Let C be a triangulated category with
K(C) ' Zr. Restricted to any connected component Σ ⊂ Stab(C), the forgetful map Z :
Stab(C)→ Hom(K(C),C) sending σ = (Z,A) to its central charge Z, is a local isomorphism
onto its image.

In this thesis, by stability condition we always mean a stability condition in the sense of
Bridgeland (Def. 2.20).

2.3.1 Wall and chamber structure

We say a stability condition is supported on a heart A if it is of the form σ = (Z,A) and
write U(A) for the set of stability condition supported on A.

Suppose that A is of finite length with n isomorphism classes of simple objects, then
U(A) ' H̄n = {(z1, . . . , zn) ∈ Cn|0 < arg zi ≤ π}. If σ = (Z,A) is on the boundary of
U(A), there is some i such that Z([Si]) lies on the real axis. Under this hypothesis, the
following holds
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Lemma 2.22 ([7, Lemma 5.5]). The codimension one boundary components of a region
U(A) are parametrized by simple objects Sk together with a sign. Each of them consists of
stability conditions σ = (Z,A) for which Z(Sk) ∈ R<0 or Z(Sk) ∈ R>0, for a unique k. In
the first case a neighborhood of σ is contained in U(A)∪U(µ+

k A), else in U(A)∪U(µ−k A),
provided that µ±(A) is again of finite type.

If all the tilted hearts are again of finite type, the process can be iterated and subsets of
the space of stability conditions gain a so-called wall and chamber structure. If moreover
A has only a finite number of indecomposables, then the whole connected component of
Stab(C) containing U(A) is covered by chambers U(A′) isomorphic to Stab(A′) ' H (Woolf,
[41]), where A′ is reachable from A and two regions U(A′) and U(A′′) are glued together
along boundaries when A′, A′′ are related by tilts at simple objects. For this reason, when
C = D(Q,W ), mutation classes of Q give a combinatorical description of part of its space
of stability conditions.
Codimension-one boundaries of sets U(A) are called walls of the second kind.

A different type of walls exists in any region U(A) ⊂ Stab(C), for a fixed heart A. Let
α, β ∈ K(A) be two classes not proportional to each other. The setWα(β) of central charges
Z such that Z(β)/Z(α) ∈ R>0 is a codimension one submanifold of Stab(A) ' U(A) and
it is called a wall of marginal stability. Let α =

∑n
i=1 αi[Si], αi ∈ N. Then there are only

finitely many classes β ∈ K(A) such that β =
∑n
i=1 βi[Si] and βi ≤ αi. We write β < α

if the inequality holds strictly for at least one index i. One may consider the complement
Cα ⊂ U(A) of ⋃

β<α

Wα(β).

Lemma 2.23. In any connected component C ⊆ Cα, an object E of class α is (semi)stable
with respect to a central charge Z ∈ C if and only of it is (semi)stable with respect to all
the central charges Z ′ ∈ C.

2.4 Joyce holomorphic generating functions
In this section we introduce the Joyce generating functions for invariants counting semistable
objects and we review their geometric meaning as studied by Bridgeland and Toledano-
Laredo.

It is conjectured [30], and proven in some cases [32, Chapter 7], that given a suitable 3CY
category C and a stability condition Z ∈ Stab(C), one can define enumerative invariants
“counting” Z-semistable objects in C of a given class α ∈ K(C). These invariants should
be extension of the Donaldson-Thomas invariants DT for the derived category Db(X) of
coherent sheaves on a Calabi-Yau three-fold X. In his groundbreaking work [31] Joyce
studied how to combine these Donaldson-Thomas type invariants (which we will refer to
again as DT) into continuous and holomorphic functions fα of the form

fα =
∑
n≥1

∑
α1+···+αn=α

Jn(Z(α1), . . . , Z(αn))
n∏
i=1

DT(αi, Z)c(α1, . . . , αn)xα.

The fα are defined over the space of stability conditions Stab(C) and take values in a graded
Lie algebra generated by elements xα, α ∈ K(C).

Following Joyce, we consider the DT invariants just as Q-valued locally constant func-
tions on the space Stab(C), which jump discontinuously when Z crosses a wall of marginal
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stability and obey some specific transformation laws, [31, Section 2]. Their discontinuity is
balanced by universal functions Jn : (C∗)n → C, depending only on their “wall-crossing”
behavior. In particular, the function Jn are independent on the underlying category. We
refer to these holomorphic functions as the Joyce generating functions.

In the same article, Joyce also pointed out a number of basic convergence problems in the
theory, and showed how the fα lead formally to very interesting new geometric structures.

One of the ideas underlying [31] was to describe a picture with some analogies with
the Gromov-Witten (GW) theory. In GW theory, a formal power series Φ (the Gromov-
Witten potential) encoding invariants counting rational curves on a manifold M satisfies
a special PDE, the WDVV equation. This PDE can be interpreted as the flatness of a
1-parameter family of connections and makes Φ into the potential of a (formal) Frobenius
structure (called the Quantum Cohomology H∗q (M)). This point of view was later ex-
plored by Bridgeland and Toledano-Laredo [10], which reinterpreted the Joyce’s formulae
as defining an irregular connection on P1.

Assume that C admits a well-defined numerical Donaldson-Thomas type theory with
invariants DT(α,Z), virtually enumerating Z-semistable objects with class α ∈ K(C), Z ∈
Stab(C) and satisfying the assumptions of [31, Section 2.2]. We write Z for a stability
function on an abelian category or a point σ = (A, Z) ∈ Stab(C) in the triangulated case.

We define the Kontsevich-Soibelman algebra of a category C with Grothendieck group
K(C).

Definition 2.24. The Kontsevich-Soibelman Poisson algebra gK(C) is the associative group
algebra C[K(C)] generated by formal elements xα, α ∈ K(C), endowed with Lie bracket
induced by the Euler form 〈−,−〉 on C

[xα, xβ] = (−1)〈α,β〉〈α, β〉xα+β.

It is a graded algebra of infinite sums C[K(C)] =
∏
α∈K(C) Cxα with commutative multipli-

cation

Cxα × Cxβ → Cxα+β

xα · xβ = (−1)〈α,β〉xα+β

and with a derivation: a central charge Z ∈ Hom(K(C),C) defines an endomorphism of
C[K(C)] satisfying the Leibniz rule by Z(xα) := Z(α)xα.

We introduce the following coefficients

c(α1, · · · , αn) =
∑
T

1
2n−1

∏
{i→j}⊂T

(−1)〈αi,αj〉〈αi, αj〉, (2.4.1)

given by a sum over connected trees T with vertices labelled by {1, . . . , n}, endowed with
an orientation respecting the total order (edge i→ j implies i < j).

Theorem 2.25 ([31]). a) There exist universal functions Jn : (C∗)n → C continuous and
holomorphic out of the locus where zi/zi+1 ∈ R>0 for some 1 ≤ i < n, such that

fα(Z) :=
∑
n≥1

∑
α1+···+αn=α,
Z(αi) 6=0

Jn(Z(α1), . . . , Z(αn))
n∏
i=1

DT(αi, Z)xα (2.4.2)
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is a formally continuous and holomorphic function taking values in the completion C[K̂>0(C)]
of C[K>0(C)] with respect to the ideal generated by x[S1], . . . , x[Sn] when C is finite abelian,
or
∏
α∈K(C)\{0}Cxα otherwise.

b) The functions Jn, n ≥ 1, satisfy the differential equation

d Jn(z1, . . . , zn) =
n−1∑
n=1

Ji(z1, . . . , zi)Jn−i(zi+1, . . . , zn) d log
(zi+1 + · · ·+ zn
z1 + · · ·+ zi

)
(2.4.3)

and are unique provided that they satisfy the conditions J1(z1) ≡ (2πi)−1, and

Jn(λz1, . . . , λzn) = J(z1, . . . , zn),
Jn(z1, . . . , zn) = 0 if z1 + · · ·+ zn = 0,

for n ≥ 2, λ ∈ C∗.

It is important to note that (2.4.2) are infinite sums and are treated as “convergent in as
strong sense as necessary” in [31]. Convergence issues are considered in [31, Section 5]. Only
in the case when C is a finite abelian category, these functions are known to converge. In
general they are infinite sums and their convergence may depend on the summation order.
For instance, this happens for triangulated 3CY categories. Indeed, the DT invariants are
symmetric with respect to the shift functor, in the sense that DT(α,Z) = DT(−α,Z),
where the involution α 7→ −α in K(C) is induced by the shift functor [1] : C → C. This
implies that there are infinitely many decompositions α1 + · · ·+αn with

∏n
i=1 DT(αi, Z) 6= 0

and the sum (2.4.2) contains in general infinitely many terms: the convergence problem is
ill-posed.

In Section 3.2.2 we reformulate the problem transforming the infinite sum fα into well-
defined formal power series fαs in an auxiliary vector of variables s of the form

fαs (Z) =
∑
n≥1

∑
α1+···+αn=α,

Z(αi) 6=0

Jn(Z(α1), . . . , Z(αn))
∏
i

sαi DT(αi, Z)c(α1, . . . , αn)xα.

Again, we don’t claim convergence results for fαs and an abstract setting is required to be
fully rigorous. However the coefficients are always well-defined since there are only finitely
many decompositions modulo “powers of s”.

In the rest of the Section we deal with Joyce generating functions restricting to the finite
abelian case or ignoring convergence problems.
We define f as the formal infinite sum f(Z) =

∑
α∈K(C)\{0} f

α of elements in C[K̂>0(C)] or∏
α∈K(C)\{0}Cxα. We may write fα(Z), α ∈ K(C) as

fα(Z) = f̂α(Z)xα,

where the holomorphic functions f̂α(Z) are given by

f̂α(Z) =
∑
n≥1

∑
α1+···+αn=α,

Z(αi)6=0

c(α1, . . . , αn)Jn(Z(α1), . . . , Z(αn))
n∏
i=1

DT(αi, Z). (2.4.4)

Equation (2.4.3) is equivalent to the following important PDEs for fα

d fα = −
∑

β+γ=α
[fβ, fγ ] d logZ(β), (2.4.5)
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and for f̂α
d f̂α = −

∑
β+γ=α

(−1)〈β,γ〉〈β, γ〉f̂β f̂γ d logZ(β). (2.4.6)

Joyce also proved that, using the generating functions fα and (2.4.5), it is possible to
define a flat connection on an infinite dimensional bundle on the space Stab(C) with fibres
C[K̂>0(C)] or

∏
α∈K(C)\{0}Cxα.

Theorem 2.26. The connection ∇J = d +Γ(Z), where d is the differential on Stab(C) and

Γ(Z) :=
∑

α∈K(C),Z(α)6=0
fα(Z)dZ(α)

Z(α) ,

has identically vanishing curvature d Γ + Γ ∧ Γ.

Equations (2.4.5) play an important rôle in the work by Bridgeland and Toledano-
Laredo [10]. They constructed an isomonodromic family of connections ∇BTL(Z) over P1

parametrized by the space Stab(A) of stability functions of an abelian category A, whose
isomonodromic deformation equations are exactly (2.4.5).

Let A be a finite abelian category and Z ∈ Stab(A). We define the principal bundle P
on P1

z, with fibers the automorphism group Aut(ĝK(A)) of the completion of the Kontsevich-
Soibelman Lie algebra gK(A) = C[K(A)] with respect to the ideal (x[S1], . . . , x[Sn]). Let ΦZ

be the root system associated to the endomorphism Z.

Theorem 2.27 (Theo. 6.5 (ii),(iii)[10]). There exists a unique connection ∇BTL(Z) on P
of the form

∇BTL(Z) = d−
(Z
z2 + ad f

z

)
d z (2.4.7)

where the components of f =
∑
α∈K>0(A) f

α are the (positive) Joyce generating functions
(2.4.2), with Stokes factors the exponential in the algebra of derivations D(ĝK(C))

S` = expD(ĝK(C))

{ ∑
α:Z(α)∈`

DT(α,Z)[xα,−]
}
.

As Z varies in Stab(A), the family of connections ∇BTL(Z) varies isomonodromically. The
isomonodromy property is equivalent to the system of PDE

d fα = −
∑

β+γ=α,
β,γ∈K>0(A)

[fβ, fγ ] d logZ(β).

Remark. Theorem 2.27 was originally stated for the Ringel-Hall algebra H(A) of con-
structible functions. I refer to [10, Section 4] for the theory of Hall algebras, and to [18,
Section 5] for the correspondence with the formulation above.

Extending the result of Jimbo, Miwa and Ueno to the case of interest, the isomonodromy
of ∇BTL(Z) as Z vary in a subset U0 ⊂ Stab(A) may also be expressed in term of flatness
of the connection

∇ = d−
(Z
z2 + ad f(Z)

z

)
+

∑
α∈K>0(A)

fα(Z)dZ(α)
Z(α) −

1
z

dZ.

on P1 × U0.
Bridgeland and Toledano-Laredo also proved an inversion formula giving the coefficients

Jn in terms of the multilogarithms Mm (Definition 1.21).
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Theorem 2.28 ([11, Section 11]). The functions Jn appearing in Joyce generating functions
can be expressed explicitly asJ1(z1) = (2πi)−1

(2πi)nJn(z1, . . . , zn) =
∑
T

(
−1
2πi

)|V (T )|
LT (z1, . . . , zn)

(2.4.8)

where T and LT are defined below.

The sum in (2.4.8) is over rooted plane tree T with n leaves decorated with z1, . . . , zn,
vertices v ∈ V (T ) with valency val(v) ≥ 3, and outgoing arrows a from w decorated with
sa =

∑
i∈I(v) si depending on the incoming arrows in I(v).

LT (z1, . . . , zn) :=
∏
v∈V (T ) Lval(v)−1(s1, . . . , sval(v)−1). The functions Ln are extensions over

the branchcuts of the iterated integrals Mn (see (1.3.2)). They are complicated functions
(see [11, Section 4.6] for the definition) and coincides with Mn in the open subsets where
they are holomorphic

(z1, . . . , zn) ∈ (C∗)n such that z1 + · · ·+ zi 6∈ [0, z1 + · · ·+ zn] for 0 < i < n.

For example

J2(w1, w2) =− 1
(2πi)2

( 1
2πiM2(w1, w2)

)
(2.4.9)

J3(w1, w2, w3) =− 1
(2πi)4M3(w1, w2, w3) + 1

(2πi)5M2(w1, w2)M2(w1 + w2, w3)+

+ 1
(2πi)5M2(w1, w2 + w3)M2(w2, w3) (2.4.10)

in their holomorphicity domains.
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Chapter 3

Formal infinite-dimensional
Frobenius type structures from DT
theory

The goal of this chapter is to consider (formal) Frobenius type structures and CV-structures
on open subsets of the space of stability conditions on certain 3CY triangulated categories
C. Actually, these families of structures depend on a vector of parameters s and live on an
infinite-dimensional bundle K → Stab(C). They are defined by collections of holomorphic
(∇rs, C,U ,Vs, g) and smooth (D,C, C̃,U ,Qs, κ, h) objects respectively (see Definitions 1.27
and 1.32), using data from a Donaldson-Thomas theory on C. These main results are in
Theorems 3.26 and 3.27.

Part of the result is just a rephrasing of the results by Joyce and Bridgeland-Toledano
Laredo summarized in Section 2.4. Modulo convergence issues, ∇J and ∇BTL naturally
define a Frobenius type structure on a bundle with fibers C[K(C)]. This is part of a more
complicated structure called CV . This picture is described in Section 3.1.

In order to be fully rigorous, we work in an abstract setting. It is introduced in Section
3.2. In particular, to make sense of the Joyce generating functions in the context of trian-
gulated categories, fα is deformed into a well-defined formal power series in the auxiliary
parameter s. Working formally in C[[s]], one can define formal families of Frobenius type
and CV- structures on K. This is proven in Section 3.3. Theorem 3.30 is a result of uniform
convergence for the operator Qs(λZ) and thus for the scaled deformations fαs (λZ) of the
Joyce functions, for |λ| sufficiently large. Since its proof involves techniques not related
with the Frobenius manifold theory, it is given in Appendix A.

3.1 An infinite-dimensional picture

Fix a category C with well-defined numerical Donaldson-Thomas type invariants DT(α,Z)
enumerating objects with class α ∈ K(C), semistable with respect to a choice of stability
condition. Assume that either

• C is finite abelian, with n simple objects S1, . . . , Sn, or

• C is abelian but not finite, or
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• C is a 3CY triangulated category which admits a bounded t−structure with a finite
heart A with n simple objects S1, . . . , Sn. In particular K(C) ' K(A).

Denote by 〈−,−〉 the Euler pairing on K(C) and by Z a point in Stab(C). When C is abelian
Z is a stability function K>0(C) → H. When C is triangulated we write Z for the central
charge of a stability condition σ = (A, Z), Z : K(C)→ C.

Consider the Kontsevich-Soibelman Lie algebra C[K(C)] generated by elements xα. Re-
call that a central charge Z induces a derivation of C[K(C)] acting by Z(xα) = Z(α)xα.

Definition 3.1. Set K → Stab(C) the trivial infinite-dimensional vector bundle with fibers

• C[K̂>0(C)], when C is finite abelian, where C[K̂>0(C)] is the completion of C[K>0(C)]
along the ideal generated by the classes of simple objects [S1], . . . , [Sn];

•
∏
α∈K>0(C)\{0}Cxα when C is abelian not finite; and

•
∏
α∈K(C)\{0}Cxα, otherwise.

Remark. In the rest of this section, when summing over α ∈ K(C), we will always assume
α 6= 0.

Although the following constructions in Proposition 3.2 and 3.5 are ill-defined because
of the convergence problems pointed out in 2.4, they motivate the results of Section 3.3.

Proposition 3.2. Let K → Stab(C) be the trivial infinite-dimensional vector bundle of
Definition 3.1 (in particular we have ∂̄Kxα = 0). Fix a constant g0 ∈ C∗. Then

∇r := d +
∑
α

ad fα(Z)dZ(α)
Z(α) ,

C := −dZ,
U := Z,

V := ad f(Z)

satisfy the conditions (1.6.1) of definition 1.27

∇r(C) = 0, [C,U ] = 0, ∇r(V) = 0,
∇r(U)− [C,V] + C = 0.

If moreover C is triangulated we can complete these to a Frobenius type structure with the
choice

g(xα, xβ) = g0δαβ.

The proof is based on [31] and [10]. The function Z(α)−1fα(Z) extends across the locus
where Z(α) = 0, see [31, Section 5].

Proof. Let us first consider the choice for the Higgs field C. For all γ ∈ K(C) the function
Z 7→ Z(γ) is a local holomorphic function on Stab(C) [31]. So we can define a 1-form with
values in endomorphisms by

dZ(X)xγ = (XZ(γ))xγ
for all local holomorphic vector fields X. One checks that dZ ∧ dZ = 0.
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To check (1.6.1), (1.6.2) one uses repeatedly a PDE on the functions fα(Z) (see [31,
Equation (4)]),

d fα(Z) =
∑

β,γ∈K(C)\{0}, α=β+γ
[fβ, fγ ] d logZ(γ). (3.1.1)

Flatness of ∇r and covariant constancy of V follow from the same computations as in [31]
section 4 (in particular equations (71) - (73)). The other conditions follow from straight-
forward computations. As an example we have

∇r(dZ) = d2 Z + ad
∑
α

fα(Z)dZ(α)
Z(α) ∧ dZ

+ dZ ∧ ad
∑
α

fα(Z)dZ(α)
Z(α)

where ∧ denotes the composition of endomorphisms combined with the wedge product of
forms. Now d2 Z = 0, and evaluating on a section xβ gives a 2-form with values in K

∇r(dZ)xβ =
∑
α

[fα(Z), xβ](Z(α))−1 dZ(α) ∧ dZ(β)

+
∑
α

[fα(Z), xβ](Z(α))−1 dZ(α+ β) ∧ dZ(α).

But we have dZ(α+ β) = dZ(α) + dZ(β) and the vanishing ∇r(dZ)xβ = 0 follows for all
β.

As an example of a condition involving the quadratic form g in the triangulated case we
check skew-symmetry of V. We have

g(Vxα, xβ) =
∑
γ

f̂γ(Z)(−1)〈γ,α〉〈γ, α〉gα+γ,β

= g0
∑
γ

f̂γ(Z)〈γ, α〉δα+γ,β

= g0(−1)〈β,α〉〈β, α〉f̂β−α(Z).

Similarly
g(xα,Vxβ) = g0(−1)〈α,β〉〈α, β〉f̂α−β(Z).

In the 3CY case we have f̂α−β(Z) = f̂β−α(Z) because of the shift functor.

Recall that there is a standard construction of a flat structure connection from a Frobe-
nius type structure (Theorem 1.28). In the Donaldson-Thomas case this has a further scale
invariance property.

Lemma 3.3. Let p : P1
z × Stab(C) → Stab(C) denote the projection. Let λ ∈ R+ denote a

scaling parameter. The meromorphic connection on p∗K given by

∇r + C

z
+
( 1
z2U −

1
z
V
)

d z

is flat and invariant under the rescaling Z 7→ λZ, z 7→ λz. In particular the Joyce function
f(Z) has the “conformal invariance” property f(λZ) = f(Z).

Proof. Flatness of the connection follows from the conditions (1.6.1). Invariance under the
rescaling is equivalent to the property f(λZ) = f(Z) which is established in [31].
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The Frobenius type structure of Proposition 3.2 is part of a more complicated (formal)
CV-structure. This point of view is also suggested naturally by [19]. Recall the notions of
(DC (̃C))− and CV−structures presented in Section 1.7.

Lemma 3.4. Let K → Stab(C) be the vector bundle of Definition 3.1. Then there is a
(DCC̃)-structure on K given by

D′ := ∇r, D′′ := ∂̄K ,

C := −dZ, C̃ := d Z̄.

Proof. Let ∂̄K denote our fixed (trivial) complex structure on K, with ∂̄K(xα) = 0. The
condition (D′′ +C)2 = 0 says that K is holomorphic and C is a holomorphic Higgs bundle
on it, which we know already from Proposition 3.2. Then D′(C) = 0 says that C is flat with
respect to ∇r, which we also know already. The condition (D′+ C̃)2 = 0 says that ∇r is flat
(known), (d Z̄)2 = 0 and ∇r(d Z̄) = 0 (easily checked). The condition D′′(C̃) = 0 becomes
∂̄K(d Z̄) = 0 and can be checked e.g. in local coordinates on Stab(C) given by zk = Z(αk)
where α1, . . . , αk is a basis for K(C). Finally in our case one checks that we have separately
CC̃ + C̃C = 0 and D′D′′ +D′′D′ = 0.

Denote by ι the involution ofK acting as complex conjugation, combined with xα 7→ x−α
in the triangulated case. Let ψ be a fixed endomorphism of K. Then we can make the
following ansatz on part of the data of a CV-structure on K:

• κ is the conjugate involution Adψ(ι),

• the pseudo-hermitian metric h is given by h(a, b) = g(a, κ(b)) where g is the quadratic
form of Proposition 3.2, when C is triangulated,

• U is the endomorphism −Z as in Proposition 3.2,

• the Higgs field C is given by −dZ as in Proposition 3.2, and the anti-Higgs C̃ is given
by κCκ.

Proposition 3.5. Let K → Stab(C) be the vector bundle of Definition 3.1.

(a) There exist endomorphisms ψ(Z), Q(Z) and a connection D on K such that the
choices of C, C̃, κ, h, U above, together with D and Q, give a CV-structure on K (in
the abelian case only the conditions not involving h are satisfied). Moreover ψ and Q
induce fibrewise derivations of C[K(C)] as a commutative algebra.

(b) Fix Z and let λ ∈ R+ denote a scaling parameter. Then

lim
λ→0
Q(λZ) = V,

where V = ad f(Z) is the endomorphism of Proposition 3.2 (i.e. essentially the Joyce
holomorphic generating function).

Proof. We will explain a rigorous approach and prove a rigorous result (which applies to
sufficiently simple abelian and triangulated categories) in section 3.3 and Theorem 3.27. The
present formal statement can be “proved” (in the same sense as Proposition 3.2) by the same
arguments provided we work with formal infinite sums, ignoring convergence issues.
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In the light of Proposition 3.5 (b) it is natural to make the following definition.

Definition 3.6. The CV-deformation of the Joyce holomorphic generating function f(Z)
is the operator Q(Z) given by Proposition 3.5 (a).

There is an analogue of Lemma 3.3, which gives a new point of view on the conformal
invariance property f(λZ) = f(Z). It follows from the proof of Proposition 3.27.

Lemma 3.7. Let (D,C, C̃, κ, h,U ,Q) be the CV-structure of Proposition 3.5. Let p : P1
z ×

Stab(C)→ Stab(C) denote the projection, and suppose λ ∈ R+ is a scaling parameter. The
meromorphic connection on p∗K → P1

z × Stab(C) given by

D + C

z
+ zC̃ +

( 1
z2U −

1
z
Q− κUκ

)
dz

is flat. Under the scaling Z 7→ λZ, z = λt, in the limit λ→ 0 it flows to the flat connection
of Lemma 3.3.

3.2 Abstract setting
We define an abstract setting modeled on the case of a triangulated 3CY category with a
finite heart. It has the advantage of being fully rigorous, independently of the fundational
problems of Donaldson-Thomas theory for 3CY categories. The analogies with the category
language is easily identified. However it is made explicit at the end of the Section.

3.2.1 Stability data

Let Γ be a finite rank lattice with a skew-symmetric bilinear form 〈−,−〉. We denote by n
its rank.

Definition 3.8. A central charge Z is a group homomorphism Γ→ C.

Definition 3.9. A spectrum is a function of the form

(α,Z) 7→ Ω(α,Z) ∈ Q

for all α ∈ Γ and Z varying in an open subset U of a linear subspace of Hom(Γ,C).
We say that the spectrum Ω is

• positive if there exists a Z-basis {γi} of Γ such that Ω(α,Z) vanishes unless α is a
positive integral combination of the γi. In this case we say that {γi} is a positive basis
for Ω;

• symmetric if
Ω(α,Z) = Ω(−α,Z)

for all α ∈ Γ, Z ∈ U .

• the double of a positive spectrum if Ω is symmetric and there is a positive spectrum
Ω̃ such that Ω(α,Z) = Ω̃(±α,Z) for all α ∈ Γ, Z ∈ U .

A distinguished ray `α(Z) ⊂ C∗ is a ray of the form R>0Z(α) such that Ω(α,Z) 6= 0.
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Definition 3.10. Let {γ1, . . . , γn} be a fixed basis for Γ. The locus of positive central
charges Hom+(Γ,C) ⊂ Hom(Γ,C) is given by central charges mapping {γi} to the open
upper half plane H ⊂ C.
By Γ+ we denote the “effective cone” given by positive linear combinations of the {γi}.

Thus, Hom+(Γ,C) consists of central charges mapping Γ+ to H.

Definition 3.11. We say that Z ∈ Hom(Γ,C) and Ω satisfy the support condition if there
exists a constant c > 0 such that picking a norm || − || on Γ⊗ C we have

|Z(α)| > c||α|| (3.2.1)

for all α ∈ Γ with Ω(α,Z) 6= 0. The condition does not depend on the specific choice of
norm.

Note that if Ω is positive or the double of a positive spectrum parametrised by Hom+(Γ,C)
then the support condition is automatically satisfied on Hom+(Γ,C). It holds uniformly on
all subsets of Hom+(Γ, C) where Z is bounded away from zero on the elements of a positive
basis {γi}.

Definition 3.12. We say that a spectrum Ω grows at most exponentially at Z if there is a
λ > 0 such that ∑

α∈Γ
|Ω(α,Z)| exp(−|Z(α)|λ) <∞. (3.2.2)

Definition 3.13. The Kontsevich-Soibelman Poisson algebra gΓ is the (associative, com-
mutative) group algebra C[Γ] endowed with the Lie bracket induced by 〈−,−〉: gΓ is gen-
erated by xα, α ∈ Γ, with bracket [xα, xβ] = (−1)〈α,β〉〈α, β〉xα+β, and product xαxβ =
(−1)〈α,β〉xα+β.

One checks that gΓ is indeed Poisson, i.e. inner Lie algebra derivations are in fact commu-
tative algebra derivations. To avoid confusion we write exp∗ for the commutative algebra
exponential in gΓ.

Lemma 3.14. A central charge Z defines an endomorphism of gΓ by Z(xα) = Z(α)xα.
This is in fact a commutative algebra derivation.

Definition 3.15. Fix a basis {γi} as above. We write g>0 ⊂ gΓ for the monoid generated
by xα where α is nonzero and has nonnegative coefficients with respect to the basis. We let
ĝ>0 be the completion of g>0 along the ideal (xγ1 , . . . , xγn).

Let DT(α,Z) denote the Möbius transform of Ω,

DT(α,Z) =
∑

k>0,k|α

1
k2 Ω(k−1α,Z). (3.2.3)

For a choice of a strictly convex cone Σ ⊂ C∗ and a central charge Z satisfying the
support condition, there is a Poisson Lie algebra gΓ,Σ,Z topologically generated by elements
xα with Z(α) ∈ Σ, and its completion ĝΓ,Σ,Z . Assume that Z(α) 6∈ ∂Σ for any α ∈ Γ.
We denote by exp(gΓ,Σ,Z) and exp(ĝΓ,Σ,Z) the corresponding formal Lie groups (i.e. the
group law is defined formally by the usual Baker-Campbell-Hausdorff formula). Let l ∈ R.
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We define glΓ,Σ,Z the subalgebra generated by elements xα corresponding to points in Γ of
length greater or equal than l

glΓ,Σ,Z = ⊕α∈Γ,Z(α)∈Σ,
l(α)≥l

C · xα ⊂ gΓ,Σ,Z .

Assume that for any l ∈ R>0, there exists an open neighborhood U ′ of Z, U ′ ⊆ U ⊂
Hom(Γ,C), U ′ 6= ∅, such that for any central charge Z ′ ∈ U ′, there are no points γ of length
l(γ) ≤ l and Z ′(γ) ∈ ∂Σ. Then the quotient

g≤lΓ,Σ := gΓ,Σ,Z/g
l
Γ,Σ,Z (3.2.4)

does not change when varying Z as long as no distinguished ray `α(Z) crosses the boundary
∂Σ.

Definition 3.16. The family of stability data on gΓ parametrised by U corresponding to
the spectrum Ω is the gΓ-valued function given by

(α,Z) 7→ DT(α,Z)xα.

This family of stability data on gΓ is continuous in the sense of [35] if the condition above
holds, and if all Z ∈ U ′ satisfy the support condition, and for all fixed strictly convex cone
Σ ⊂ C∗ the group element

y,Z∏
`⊂Σ

exp

 ∑
Z(α)∈`

DT(α,Z)xα

 ∈ exp(g≤lΓ,Σ) (3.2.5)

is constant as long as no distinguished ray `α(Z) crosses the boundary ∂Σ, where
y,Z∏

denotes the operator writing the ensuing group elements from left to right according to the
clockwise Z-order.

We say that the spectrum Ω is continuous is the corresponding family of stability data
on gΓ is. We say that the family of stability data DT(α,Z) is positive, symmetric, or the
double of a positive family if the corresponding condition is satisfied by the underlying
spectrum Ω(α,Z) given by inverting (3.2.3),

Ω(α,Z) =
∑
k|α

1
k2m(k) DT(k−1α,Z)

where m denotes the Möbius function.

It will be important for us to regard the group element in (3.2.5), under suitable condi-
tions, as a product of explicit “symplectomorphisms”.

Definition 3.17. A central charge Z ∈ Hom(Γ,C) is generic if elements xα, xβ with
Z(α), Z(β) lying on the same ray ` have vanishing Lie bracket (i.e. 〈α, β〉 = 0). We say that
Z is strongly generic if Z(α), Z(β) lying on the same ray ` implies that α, β are linearly
dependent. We write Homsg(Γ,C) for the locus of strongly generic central charges.

Let Aut(ĝΓ,Σ,Z) andD(ĝΓ,Σ,Z) denote the group of automorphisms of ĝΓ,Σ,Z as a commu-
tative, associative algebra, respectively the ĝΓ,Σ,Z-module of commutative algebra deriva-
tions. For Ω ∈ Q, Z(β) ∈ Σ let TΩ

β denote the element of Aut(ĝΓ,Σ,Z) given by

TΩ
β (xα) = xα(1− xβ)〈β,α〉Ω
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(the right hand side denoting a formal power series expansion). In fact TΩ
β is a Poisson

automorphism (it preserves the Lie bracket). This follows from the identity

TΩ
β = expD(̂gΓ,Σ,Z)

−Ω
∑
k≥1

[xkβ,−]
k2

 .
Kontsevich-Soibelman noticed that for generic Z there is a factorization in Aut(ĝΓ,Σ,Z)

expD(̂gΓ,Σ,Z)

 ∑
Z(α)∈`

−DT(α,Z)[xα,−]

 =
∏

Z(β)∈`
T

Ω(β,Z)
β . (3.2.6)

The continuity condition becomes the constraint that the product of Poisson automorphisms
y,Z∏
`⊂Σ

∏
Z(α)∈`

T
Ω(α,Z)
α remains constant (where the equalities have to be meant in the sense the

quotients (3.2.4)) in the locus of generic central charges (even when crossing the nongeneric
locus) as long as no rays supporting a nonvanishing factor enter or leave Σ.

Definition 3.18. Let Ω be a positive, continuous spectrum parametrised by Hom+(Γ,C)
and fix a positive basis. The corresponding Joyce function f(Z) is the ĝ>0-valued function
with graded components f̂α(Z)xα given by the expression (2.4.4). This is well-defined
because there are only finitely many possible decompositions in (2.4.4) for each fixed α ∈ Γ+.

3.2.2 Formal data

When C is a triangulated category, the Joyce generating functions and the objects ∇r, V, Q
are always formal infinite sums. The convergence question is a priori ill-posed if no specific
summation order is fixed. In this Section the problem is reformulated by transforming
infinite sums into formal power series.

Introduce an auxiliary vector of parameters s = (s1, . . . , sn), n = rk(Γ). The idea of
working with such formal parameters and creating then formal families of objects comes
from works about scattering diagrams, see e. g. [23]. In this way, we can make sense of
Joyce functions fα as well-defined formal power series. In particular, they are a tool to
make indistinguishable elements referred to variables xα and x−α.

Let {γi} be a basis for Γ and introduce formal parameters s = (s1, . . . , sn). We decom-
pose α ∈ Γ as

α =
∑
i

aiγi

and set
[α]± :=

∑
i

[ai]±

where [ai]± denote the positive and negative parts, that is [ai]+ = max{ai, 0}, [ai]− =
min{ai, 0}. For all α ∈ Γ we write sα for the Laurent monomial

sα =
∏
i

saii .

In particular s[α]+−[α]− =
∏
i s
|ai|
i is a monomial (not just a Laurent monomial) and one can

replace xα with s[α]+−[α]−xα. It will be useful to introduce the following definition.
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Definition 3.19. gΓ[[s1, . . . , sn]] is the algebra generated by formal elements xα, α ∈
K(C), over C[[s1, . . . , sn]], endowed with the Poisson Lie bracket extending [−,−] of gΓ
by C[[s1, . . . , sn]]-linearity.

We call J ⊂ gΓ[[s]] the ideal generated by s1, . . . , sn.

Definition 3.20. Call the integer [α]+ − [α]− the length of α and denote it by l(α).

The original ill-defined expression is recovered for s = (1, . . . , 1), modulo convergence.

Definition 3.21. With a fixed choice of basis as above we write TΩ
β,s for the element of

Aut(gΓ[[s]]) given by
TΩ
β,s(xα) = xα(1− s[β]+−[β]−xβ)〈β,α〉Ω

Lemma 3.22. Let Ω be the double of a positive spectrum. Fix a positive basis {γi}. Suppose
that Ω is continuous, parametrised by Hom+(Γ,C). Then the family of automorphisms
TΩ
β,s ∈ Aut(gΓ[[s]]) comes from a continuous family of stability data with values in gΓ[[s]] via

the construction in (3.2.6).

In particular the products
y,Z∏
`⊂Σ

∏
Z(α)∈`

T
Ω(α,Z)
α,s for all fixed strictly convex sectors Σ remain

constant in the locus of generic central charges in Hom+(Γ,C) (even when crossing the
nongeneric locus) as long as no rays supporting a nonvanishing factor enter or leave Σ.

Proof. Suppose that Ω is the double of a positive, continuous spectrum parametrised by
Hom+(Γ,C). Then the continuity condition given by constancy of the formal Lie group
element (3.2.5) holds if and only if it holds for all strictly convex cones Σ contained in the
open upper half-plane H. On such a cone Σ ⊂ H the constancy condition for (3.2.5) is
compatible with the extra grading by s by the Baker-Campbell-Hausdorff formula.

Definition 3.23. Let Ω be the double of a positive, continuous spectrum parametrised by
Hom+(Γ,C). The corresponding Joyce function fs(Z) is the function with values in gΓ[[s]]
with Γ-graded components f̂αs (Z)xα, where

f̂αs (Z) =
∑

α1+···+αk=α,Z(αi)6=0
c(α1, . . . , αk)J(Z(α1), . . . , Z(αk))

∏
i

s[αi]+−[αi]− DT(αi, Z). (3.2.7)

This is well-defined because there are only finitely many decompositions in (3.2.7) modulo
JN for N � 1.

3.2.3 The categorical setup

The parallelism with the categorical setup is easily described. Suppose that C is a 3CY
triangulated category and assume that C admits a bounded t-structure with a finite heart
A with n simple objects S1, . . . , Sn up to isomorphism. Then there exists an isomorphism
of Grothendieck groups K(C) ' K(A). Moreover K(C) has finite rank n. On K(C), the
Euler pairing is skew-symmetric and integral.

Any stability condition σ = (A, Z) in the sense of Bridgeland (Definition 2.20) in the
space Stab(C) define a central charge Z (Definition 3.8) with the support property (Defini-
tion 3.2.1).
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Call K>0(A) the convex cone of positive linear combinations of [S1], . . . , [Sn]. Let
˚U(A) ⊂ Stab(C) denote the interior of the set of stability conditions supported on A. The

set ˚U(A) is given by stability conditions with heart A and whose central charge Z maps
K>0(A) to the open upper half-plane H. K>0(A) is an “effective cone” for Γ = K(C), with
natural positive basis given by the classes of simple objects in A, and ˚U(A) = Hom+(Γ,C).

Assume moreover that there are well-defined numerical Donaldson-Thomas invariants
DT (α, σ) enumerating objects in C with class α ∈ K(C) which are semistable with respect
to a choice of a stability condition σ. This is a family of stability data with symmetric
spectrum. Restricting to U(A) ⊂ Stab(C), we may write DT (α,Z) for DT (α, σ), where
σ = (A, Z) and α denotes both the class of an object in K(C) and of its image in K(A).

3.3 Formal families of structures

It is now possible to state and prove the main results in the abstract setting defines above.
Fix a basis {γi} of Γ and consider the infinite dimensional vector bundle below.

Definition 3.24. Introduce a holomorphic bundle K → Hom+(Γ,C) given by:

• if Ω is positive, K is the trivial bundle with fiber ĝ>0;

• if Ω is the double of a positive spectrum, K is the trivial bundle with fiber gΓ[[s]].

For the sake of completeness we summarise the results in the case of a positive spectrum
in the following Proposition. The part concerning the Frobenius type structure follows
from the results of [11], while the claims about the CV-structure are proved exactly as in
Proposition 3.26 below, working with ĝ>0 rather than gΓ[[s]].

Proposition 3.25. Let Ω be a positive, continuous spectrum parametrised by Hom+(Γ,C).
Let K → Hom+(Γ,C) be the vector bundle of Definition 3.24. Then the obvious analogues
of Propositions 3.2, 3.5 and Lemmas 3.3, 3.7 hold.

The construction of a Frobenius type structure for the double of a positive spectrum is
similar, so only a sketch of the proof is given.

Theorem 3.26. Let Ω be the double of a positive, continuous spectrum parametrised by
Hom+(Γ,C). Let K → Hom+(Γ,C) be the vector bundle of Definition 3.24, with fiber
gΓ[[s]]. Then there is a C[[s]]-linear Frobenius type structure on K with flat holomorphic
connection given by

∇rs = d+
∑
α

ad fαs (Z)dZ(α)
Z(α) ,

with residue endomorphism
Vs = − ad fs(Z)

and with C,U , g given by −dZ,Z and the quadratic form of Proposition 3.2, extended by
C[[s]]-linearity. In other words the equations (∇rs)2 = 0 and (1.6.1) - (1.6.2) hold as identities
of formal power series in the formal parameters s1, . . . , sn.

In particular the coefficients of the formal power series (3.2.7) in s are well-defined
holomorphic functions on Hom+(Γ,C).
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Proof (sketch). It follows from Lemma 3.22 and the results of [11] that the functions fαs (Z)
satisfy the PDE (3.1.1) as formal power series in s. Then the corresponding Frobenius type
structure is constructed as in the proof of Proposition 3.2.

Let ι denote the involution ofK acting as complex conjugation combined with xα 7→ x−α.
Note that ι is an anti-linear commutative algebra automorphism. Let ψs be a fixed invertible
endomorphism of K. Again one can make the following ansatz on part of the data of a
C[[s]]-linear CV-structure on K:

• κs is the conjugate involution Adψs(ι),

• the pseudo-hermitian metric hs is given by h(a, b) = g(a, κs(b)) where g is the quadratic
form in Proposition 3.2,

• U is the endomorphism Z extended by C[[s]]-linearity,

• the Higgs field C is given by −dZ extended by C[[s]]-linearity, and the anti-Higgs field
C̃s by κsCκs.

Theorem 3.27. Suppose we are in the situation of Theorem 3.26.

(a) There exist C[[s]]-linear endomorphisms ψs and Qs and a connection Ds on K such that
the choices of C, C̃s, κs, hs, Us above together with Qs give a C[[s]]-linear CV-structure
on K. In other words the equations 1.7.1 and 1.7.2 hold as identities of formal power
series in s. Moreover ψs and Qs induce fibrewise C[[s]]-linear derivations of gΓ[[s]] as
a commutative algebra.

(b) We have

lim
λ→0
Qs(λZ) = Vs,

where Vs = ad fs(Z) is the endomorphism of Theorem 3.26 (i.e. essentially the formal
family of Joyce holomorphic generating functions given by (3.2.7)).

Proof. We consider the family of automorphisms of the commutative algebra gΓ[[s]] induced
by TΩ(α,Z)

α,s for Z ∈ Homsg(Γ,C)∩Hom+(Γ,C). Fix Z ∈ Homsg(Γ,C)∩Hom+(Γ,C). In [18]
section 3 the corresponding Riemann-Hilbert factorization problem for a map X : C∗ →
Aut(gΓ[[s]]) is studied. This is the problem of finding a holomorphic function with X(z) on
C∗, with values in Aut(gΓ[[s]]), such that, for all N ≥ 1 and α ∈ Γ, the class of X(z)(xα)
in gΓ[[s]]/JN is a holomorphic function of z in the complement of the distinguished rays `
with ` 6= `±α(Z), and for z0 ∈ ` we have

X(z+
0 )(xα) = X(z−0 ) ◦

∏
Z(β)∈`

T
Ω(β,Z)
β,s (xα) mod JN

where z±0 denote the limits in the counterclockwise, respectively clockwise directions. Note
that by working modulo JN there are only finitely many branch-cuts. In [18] Lemma 3.10
a distinguished explicit solution X(z) is constructed, satisfying some additional properties.
We denote this distinguished family of solutions as Z varies in Homsg(Γ,C) ∩ Hom+(Γ,C)
by X(z, Z), and also set

X̃(z, Z) = X(z, Z) ◦ exp∗(−z−1Z − zZ̄).
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Consider the flat connection on P1
z ×Hom+(Γ,C) given by

∇tr = d− dZ

z
+ zdZ̄ +

(
− 1
z2Z + Z̄

)
dz.

We may regard∇tr as a flat connection on the trivial vector bundle with fiber gΓ[[s]]/JN . To-
gether with g(a, ι(b)) it defines a CV-structure on the trivial vector bundle over Hom+(Γ,C)
with fiber gΓ[[s]]/JN . We pull back ∇tr locally on a sector Σ between consecutive branch-
cuts by X(z, Z) mod JN to the locally defined flat connection

∇str|Σ = d− 1
z
X̃ · dZ + zX̃ · dZ̄ + dZX̃ ◦ X̃−1 +

(
− 1
z2 X̃ · Z + X̃ · Z̄ + ∂zX̃ ◦ X̃−1

)
dz.

By [18] sections 3.7 and 3.9 ∇str glues over different sectors Σ and is induced by a well-
defined real-analytic flat connection on gΓ[[s]]→ P1

z ×Hom+(Γ,C) of the form

∇str(Z) = d+ B(0)(Z) + 1
z
B(−1)(Z) + zB(1)(Z) +

( 1
z2A

(−1) + 1
z
A(0) +A(1)

)
dz.

Moreover A(i), B(i) are derivations of gΓ[[s]] and we have

A(1)(Z) = −ιA(−1)(Z)ι, A(0)(Z) = −ιA(0)(Z)ι,
B(1)(Z) = ιB(−1)(Z)ι, B(0)(Z) = ιB(0)(Z)ι. (3.3.1)

By [18] section 3.7 the limit X̃0(Z) = limz→0 X̃(z, Z) is well-defined, and we have

X̃−1
0 · ∇str(Z) = d+ AdX̃−1

0
B(0)(Z)− 1

z
dZ + zAdX̃−1

0
B(1)(Z)

+
(
− 1
z2Z + 1

z
AdX̃−1

0
A(0) + AdX̃−1

0
A(1)

)
dz. (3.3.2)

Notice that by (3.3.1) and (3.3.2) we have

AdX̃−1
0
A(1) = −AdX̃−1

0
AdιA(−1)

= −AdX̃−1
0

Adι AdX̃0
(−Z),

AdX̃−1
0
B(1) = AdX̃−1

0
Adι B(−1)

= AdX̃−1
0

Adι AdX̃0
(−dZ),

so using the conjugate involution κ = AdX̃−1
0

(ι) we may rewrite (3.3.2) as

X̃−1
0 · ∇str(Z) = d+ AdX̃−1

0
B(0)(Z)− 1

z
dZ + zκ(−dZ)κ

+
(
− 1
z2Z + 1

z
AdX̃−1

0
A(0) + κZκ

)
dz.

Then the flat connection X̃−1
0 · ∇str(Z) together with κ define the required gΓ[[s]]-linear

CV-structure, with D = d + AdX̃−1
0
B(0)(Z), C = −dZ, C̃ = κ(−dZ)κ, U = −dZ, Q =

−AdX̃−1
0
A(0), h(a, b) = g(a, κb). The automorphism in the statement of the Proposition is

given by ψs(Z) = X̃−1
0 (Z).
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The limit
lim
λ→0
Q(λZ) = V(Z)

is proved in [18] Theorem 4.2. We provide a sketch of the argument. Since they are
constructed from a solution to the Riemann-Hilbert factorization problem, the family of
connections on P1

z

d+
(
− 1
z2Z −

1
z
Qs(λZ) + λ2κs(λZ)Zκs(λZ)

)
dz (3.3.3)

parametrised by Hom+(Γ,C) are isomonodromic, with constant generalized monodromy at
z = 0 for generic Z given by rays ` with Stokes factors

∏
Z(β)∈` T

Ω(β,Z)
β,s (xα). One checks

that the limit as λ→ 0 is well-defined and equals

d+
(
− 1
z2Z −

1
z

lim
λ→0
Qs(λZ)

)
dz.

The result follows from a uniqueness result proved in [11].

Definition 3.28. We write ∇s(Z, λ) for the family of meromorphic connections on P1 given
by (3.3.3).

Corollary 3.29. The statement of Lemma 3.7 holds for the Frobenius type and CV-
structures constructed in Theorems 3.26 and 3.27.

We may give an explicit formula for the operator Qs(λZ), depending on integrals at-
tached to rooted trees with vertices decorated by elements of Γ. It is based on the formula
for Q(λZ) in [18] and is expressed in Corollary A.6 in Appendix A.

Theorem 3.27 b), says that the operator Qs may be regarded as a deformation of the
formal family Vs. It is related to Joyce holomorphic generating functions when s = (1, . . . , 1)
because limλ→0Q(λZ) = V(Z). Part of the Frobenius type structure is specified by V(Z) =
ad f(Z) and the quadratic form g. In particular the graded components of the Joyce function
are given by the matrix elements g(xα,V(xβ)) over the natural basis of sections of K.

We considered the convergence problem for the components g(xα,Q(1,...,1)(λZ)(xβ)) and
we obtained the following result.

Theorem 3.30. Suppose that we are in the situation of Theorem 3.26 and that DT(α,Z0)
grows at most exponentially for α ∈ Γ (in the sense of Definition 3.12). Fix a central charge
Z0 ∈ Hom+(Γ,C). Then for all ρ > 0 there exists λ̄ such that for λ > λ̄ all the formal power
series g(xα,Qs(λZ0)(xβ)) converge for ||s|| < ρ. Let U ⊂ Hom+(Γ,C) denote an open subset
such that the exponential growth condition for DT(α,Z) holds uniformly and all Z ∈ U are
uniformly bounded away from zero on elements of the cone Γ+. Then for all sufficiently
large λ the CV-deformations of the Joyce functions, given by g(xα,Q(1,...,1)(λZ)(xβ)), are
well defined and real-analytic on U , and uniformly bounded as α varies in Γ for fixed β.

The proof involves techniques from functional analysis and it is given in Appendix A.
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Chapter 4

Costruction of a Frobenius
structure on Stab(A)

The purpose of this Chapter is to present an approach for endowing the spaces of stability
conditions on some abelian categories with a Frobenius manifold structure. The approach
considered is based on the construction of a Frobenius type structure on an auxiliary vector
bundle to be mapped to a genuine Frobenius structure on the tangent bundle. The idea is
applying Hertling’s Theorem 1.30. It states some conditions under which a Frobenius type
structure on a vector bundle K → M can be pulled back to a structure on the tangent
bundle which makes M into a Frobenius manifold.

In this Chapter we work on the space of stability conditions Stab(A) of a finite abelian
category A and we suppose A is the finite heart of a 3CY triangulated category D attached
to a quiver with potential. This has the advantage of turning some computations into
combinatorical calculations. Moreover, we do know the wall and chamber structure of
Stab(D) and the hope is that one can deduce a Frobenius structure on Stab(D) canonically
from Stab(A).

The first problem we face, following this approach, it that the Frobenius type structure
constructed in the previous Chapter is defined over an infinite dimensional vector bundle
K → Stab(A). Moreover we actually have a family of structures parameterized by a vector
of formal parameters s.

Under suitable hypotheses, the family of structures of Theorem 3.26 may induce a
(new) family of Frobenius type structures on a finite dimensional vector subbundle K(ζ)
of K → U ⊂ Stab(A). This process is not simply a restriction, and the original family
turns out to be just tangent to the new finite-dimensional family. Sections 4.1 ad 4.2 are
devoted to the construction of finite-dimensional Frobenius type structures. In Section 4.3
we consider conditions under which the pull-back to TU is Frobenius. The main result
consists in Theorems 4.26 and 4.27.

The Chapter ends with the explicit study of the construction when Q is the Dynkin
quiver A2, A3, An, with zero potential, in Section 4.4.

4.1 Approximate finite-dimensional Frobenius type structure

Let (Q,W ) a finite quiver with reduced potential and no 2-cycles. Denote by D = D(Q,W )
the CY3 associated category. It has a finite heart A = A(Q,W ), such that Q is the Ext-
quiver Ext(A). In particular the simple objects of A are in natural bijection with vertices
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of Q, and the extensions space between them are based on the adjacency matrix η of Q:

K(A) ' Z|Q0|, ηij = ext1
A(Si, Sj).

The natural embedding A = A(Q,W ) ⊂ D(Q,W ) = D induces an isomorphism K(A) '
K(D), and the submonoid of positive combinations of [Si], i = 1, . . . , n, is the effective cone
K>0(A) ⊂ K(A). It is mapped to H̄ by central charges Z on A, thus Stab(A) ' H̄. One
can also view Stab(A) as embedded in Stab(D).

In fact, for the general construction described in the Chapter, we will only need to
assume that D is a finite CY3 triangulated category with a finite abelian heart A, with
K(D) ' K(A) ' Z⊕n. However, the examples we have in mind come from the theory of
quivers.

Assume that on D there is a well-defined enumerative theory for semistable objects. It
can be restricted to A.

Definition 4.1. Denote by DTA(α,Z) ∈ Q the Donaldson-Thomas type invariant virtually
enumerating objects in D of class α ∈ K(D) ∼= K(A) which are semistable with respect to
the stability condition (A, Z) consisting of the heart A and central charge Z ∈ Stab(A).

The shift functor [1] ∈ Aut(D) preserves the class of semistable objects and acts on
K(D) as −I, so we have

DTA(α,Z) = DTA(−α,Z).

The Kontsevich-Soibelman Lie algebra C[K(A)] is extended by C[[s]]-linearity to C[K(A)][[s]],
s = (s1 . . . , sn). Let K → Stab(A) be the vector bundle with fiber C[K(A)][[s]]. By Theorem
3.26, there is a C[[s]]-linear Frobenius type structure (∇rs, C,U ,Vs, g), given by:

• a connection
∇rs = d +

∑
α 6=0

ad f̂αs (Z)xα
dZ(α)
Z(α) ,

• a 1-form with values in endomorphisms

C = −dZ, (4.1.1)

• endomorphisms

U = Z, (4.1.2)
Vs = ad

∑
α 6=0

f̂αs (Z)xα, (4.1.3)

• a quadratic form
g(xα, xβ) = δαβ. (4.1.4)

Restrict, if necessary, to a suitable open subset U ⊂ Stab(A), which will be explicitly
described later in the Chapter. The idea is to apply Theorem 1.30 to a finite rank subbudle
of K → U , with a Frobenius type structure.

A holomorphic section ζ of K takes the form

ζ =
∑
α∈I′

ζα(Z, s)xα (4.1.5)

52



where I ′ ⊂ K(A) and the ζα(Z, s), α ∈ I ′, are formal power series which do not vanish
identically. The contraction of a holomorphic section ζ of K with the Higgs field C is the
map

−C•(ζ) = dZ(ζ) : TU → K.

Let X be a holomorphic vector field. Then

dZ(X)(ζ) =
∑
α∈I′

ζα(Z, s)dZ(X)(xα)

=
∑
α∈I′

ζα(Z, s)X(Z(α))xα.

Call
K(ζ) = im(dZ(ζ)) ⊂ K.

It is a finite rank subbundle of K. It is natural to ask when ζ is in fact a section of the
bundle K(ζ).
Lemma 4.2. We have ζ ∈ O(K(ζ)) if and only if there are elements α1, . . . , αr ∈ K(A),
linearly independent over R, such that

ζ =
r∑
i=1

ζi(Z, s)xαi +
∑

a1+···+ar=1
a1α1+···+arαr 6=αi, i=1,...,r

ζa1,··· ,ar(Z, s)xa1α1+···+arαr

where ζi(Z, s), ζa1,··· ,an(Z, s) are formal power series in the variables s with holomorphic
coefficients.
Proof. Take a holomorphic section ζ of K of the form (4.1.5). Let X be a holomorphic
vector field. We compute

dZ(X)(ζ) =
∑
α∈I′

ζα(Z, s)X(Z(α))xα.

So ζ ∈ O(K(ζ)) if and only if there exists a holomorphic vector field X such that for all
α ∈ I ′ we have

X(Z(α)) = 1.
Choose a maximal set of elements α1, . . . , αr of I ′ which are linearly independent over R.
The functions Z(α1), . . . , Z(αr) are part of a local coordinate system u1, . . . , un on Stab(A)
with ui = Z(αi) for i = 1, . . . , r. The general solution X to Xui = 1, i = 1, . . . , r is a vector
field

X =
r∑
i=1

∂ui +
n∑

j=r+1
bj∂uj

for arbitrary bj . All the other α ∈ I = I ′ \ {α1, . . . , αr} are linear combinations α =∑r
i=1 aiαi. The condition XZ(α) = 1 holds if and only if

∑r
i=1 ai = 1.

Corollary 4.3. Suppose ζ ∈ O(K(ζ)), U ′ ⊆ Stab(A). The map −C•(ζ) = dZ(ζ) : TU ′ →
K(ζ) is injective (and so an isomorphism) if and only if in Lemma 4.2 we have r = n and
the functions ζ1(Z, s), . . . , ζn(Z, s) are nowhere vanishing on U ′. In this case K(ζ) ⊂ K is
the subbundle generated by

dZ(∂Z(αi))(ζ) = xαi +
∑

a1+···+ar=1
a1α1+···+arαr 6=αj , j=1,...,n

aiζa1,··· ,an(Z, s)xa1α1+···+anαn

for i = 1, . . . , n (following the notation of Lemma 4.2).
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From now on, we assume that U ′ is an open subset where ζi(Z, s), i = 1, . . . , n, are
holomorphic functions with no zeroes, and that the map −C•(ζ) : TU ′ → K(ζ) is an isomor-
phism.

Definition 4.4. Denote by πζ : K → K(ζ) the orthogonal projection onto K(ζ) with
respect to the quadratic form g of (4.1.4). Define

∇r,ζs := πζ ◦ ∇rs|K(ζ), Cζ := πζ ◦ C|K(ζ),

Uζ := πζ ◦ U|K(ζ), Vζs := πζ ◦ Vs|K(ζ),

gζ := g|K(ζ).

The holomorphic data (K(ζ),∇r,ζs , Cζ ,Uζ ,Vζs , gζ) give a formal family of structures on K(ζ)
parametrised by s. In general it is not a family of Frobenius type structures.

However, one can ask if the conditions of Frobenius type structure hold modulo some
power (s)p with p ≥ 3. If the equations defining a Frobenius type manifold are satisfied
modulo terms which are at least cubic, then the formal family (K(ζ),∇r,ζs , Cζ ,Uζ ,Vζs , gζ)
will be tangent to a family of Frobenius type structures on K(ζ). The rest of the section is
devoted to the study of this problem.

Even if it makes sense more generally we will restrict to the case when the bundle K(ζ)
is preserved by the Higgs field and endomorphism U . This condition is clarified by the
following result.

Lemma 4.5. Let ζ be a holomorphic section of K (we do not assume a priori that ζ is a
section of K(ζ)). The following are equivalent:

• K(ζ) is preserved by the Higgs field C = −dZ,

• K(ζ) is preserved by the endomorphism U = Z,

• the section ζ has the form

ζ =
r∑
i=1

ζαi(Z, s)xαi

where α1, . . . , αr ∈ K(A) are linearly independent over R.

Proof. Suppose K(ζ) is preserved by C. Let us write

ζ =
∑
α∈I

ζα(Z, s)xα

where I ⊂ K(A) and the ζα(Z, s), α ∈ I are formal power series which do not vanish
identically. Then by construction sections of the bundle K(ζ) have the form

dZ(X)(ζ) =
∑
α∈I

ζα(Z, s)X(Z(α))xα

as X varies in the space of holomorphic vector fields on U . In order to simplify the no-
tation we set ζX = dZ(X)(ζ). Acting with the Higgs field C = −dZ contracted with a
holomorphic field Y we find

CY ζX = −
∑
α∈I

ζα(Z, s)X(Z(α))Y (Z(α))xα.
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So CY ζX is a section of K(ζ) if and only if there exists a holomorphic field W = W (X,Y )
such that for all α ∈ I we have

W (X,Y )(Z(α)) = −X(Z(α))Y (Z(α)). (4.1.6)

Let α1, . . . , αr denote a maximal set of R-linearly independent elements of I. Suppose there
is a nontrivial α ∈ I \ {α1, . . . , αr}. Decomposing α = a1α1 + · · ·+ arαr we find

W (X,Y )(Z(α)) =
r∑
i=1

aiW (X,Y )(Z(αi))

= −
r∑
i=1

aiX(Z(αi))Y (Z(αi)) (4.1.7)

where the second equality follows from applying (4.1.6) to each αi. On the other hand
applying (4.1.6) to α gives

W (X,Y )(Z(α)) = −
r∑

i,j=1
aiajX(Z(αi))Y (Z(αj)). (4.1.8)

By (4.1.7) for all k 6= l we have

W (∂Z(αk), ∂Z(αl))(Z(α)) = 0.

On the other hand (4.1.8) gives for all k 6= l

W (∂Z(αk), ∂Z(αl))(Z(α)) = −akal.

It follows that ak or al vanish for all k 6= l, i.e. α must be a multiple of one of α1, . . . , αr.
By (4.1.7) for all k we have

W (∂Z(αk), ∂Z(αk))(Z(α)) = −ak.

On the other hand (4.1.8) gives for all k

W (∂Z(αk), ∂Z(αk))(Z(α)) = −a2
k.

It follows that we must have ak = 0 or ak = 1 for all k. Since we already know that at most
one ak does not vanish we see that α must be one of α1, . . . , αr, a contradiction. Thus the
section ζ must take the form

ζ =
r∑
i=1

ζi(Z, s)xαi

where α1, . . . , αr ∈ K(A) are linearly independent over R.
Conversely a straightforward computation shows that for a section ζ of this form and

arbitrary fields X,Y we can find a vector field W (X,Y ) as above, so K(ζ) is preserved by
C.

The argument for the endomorphism U is almost identical.

From now on, we restrict to the open subset U ⊂ U ′ where Z(αi) 6= Z(αj) for the chosen
basis {α1, . . . , αn} of K(A)⊗R, and we consider the bundle K(ζ)→ U . We assume that it
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is preserved by the Higgs field C and the endomorphism U , and that the map −C•(ζ) is an
isomorphism

−C•(ζ) : TU
'→ K(ζ).

According to Corollary 4.3 and Lemma 4.5 this holds precisely when the section ζ takes the
form

ζ =
n∑
i=1

ζi(Z, s)xαi (4.1.9)

where α1, . . . , αn ∈ K(A) are a basis over R and the functions ζi(Z, s) are nowhere vanishing
on U . Then

Cζ = C|K(ζ) and Uζ = U|K(ζ).

Lemma 4.6. Pick a section ζ of the form (4.1.9) (so ζ is a section of K(ζ) and the latter
is preserved by C and U). Fix i, j = 1, . . . n. Suppose the following conditions hold:

1. for all k 6= i, j we have either

〈αj , αi〉〈αj − αk, αk − αi〉 = 〈αj , αk〉〈αk, αi〉,

or f̂αj−αks f̂αk−αis ∈ (s3),

2. for all nontrivial decompositions αj−αi = β+γ with β, γ not equal to αj−αk, αk−αi
the product

〈β, γ〉f̂βs (Z)f̂γs (Z)

is at least cubic in s.

Then the curvature component g(xαj , F (∇r,ζs )xαi) vanishes modulo terms which are at least
cubic in s.

Proof. Under the assumptions the bundle K(ζ) is the subbundle generated by the sections
xα1 , . . . , xαn . Let us write the connection ∇r,ζs with respect to this local trivialization. We
compute

∇r,ζs (xαi) =
∑
α 6=0

πζ
(
f̂αs (Z)(−1)〈α,αi〉〈α, αi〉xα+αi

)
d logZ(α)

=
n∑
j=1

(−1)〈αj ,αi〉〈αj , αi〉f̂
αj−αi
s (Z)xαj d logZ(αj − αi).

So the connection matrix of 1-forms A in this local trivialization is given by

Aji = (−1)〈αj ,αi〉〈αj , αi〉f̂
αj−αi
s (Z) d logZ(αj − αi)

and the curvature form dA+A ∧A is the matrix of 2-forms

(−1)〈αj ,αi〉〈αj , αi〉d f̂
αj−αi
s (Z) ∧ d logZ(αj − αi)

+
n∑
k=1

(−1)〈αj ,αk〉+〈αk,αi〉〈αj , αk〉〈αk, αi〉f̂
αj−αk
s (Z)f̂αk−αis (Z)

d logZ(αj − αk) ∧ d logZ(αk − αi).

56



Flatness of the connection ∇rs on K is expressed by the Joyce PDE

d f̂αs (Z) = −
∑

α=β+γ
(−1)〈β,γ〉〈β, γ〉f̂βs (Z)f̂γs (Z) d logZ(β)

for all α 6= 0 (summing over decompositions with β, γ 6= 0). In our case we choose α = αj−αi
and write the Joyce PDE in the form

d f̂αj−αis (Z) = −
∑
k 6=i,j

(−1)〈αj−αk,αk−αi〉〈αj − αk, αk − αi〉f̂
αj−αk
s (Z)f̂αk−αis (Z)

(
d logZ(αj − αk)− d logZ(αk − αi)

)
−

∑
αj−αi=β′+γ′

(−1)〈β′,γ′〉〈β′, γ′〉f̂β′s (Z)f̂γ′s (Z) d logZ(β′)

where in the last term we sum over decompositions with β′, γ′ not equal to αj −αk, αk−αi
for k 6= i, j. Note that we have(

d logZ(αj − αk)− d logZ(αk − αi)
)
∧ d logZ(αj − αi) =

= d logZ(αj − αk) ∧ d logZ(αk − αi).

It follows that

(−1)〈αj ,αi〉〈αj , αi〉 d f̂
αj−αi
s (Z) ∧ d logZ(αj − αi) =

= −
∑
k 6=i,j

(−1)〈αj ,αi〉+〈αj−αk,αk−αi〉〈αj , αi〉〈αj − αk, αk − αi〉

f̂
αj−αk
s (Z)f̂αk−αis (Z) d logZ(αj − αk) ∧ d logZ(αk − αi)

−
∑

αj−αk=β′+γ′
(−1)〈αj ,αi〉+〈β′,γ′〉〈αj , αi〉〈β′, γ′〉f̂β

′
s (Z)f̂γ′s (Z)

d logZ(β′) ∧ d logZ(αj − αi),

where in the last term the sum is over decompositions with β′, γ′ not equal to αj−αk, αk−αi
for k = 1, . . . , n. Thus if 〈β′, γ′〉f̂β

′
s (Z)f̂γ

′
s (Z) is at least cubic in s and

(−1)〈αj ,αi〉+〈αj−αk,αk−αi〉〈αj , αi〉〈αj − αk, αk − αi〉
= (−1)〈αj ,αk〉+〈αk,αi〉〈αj , αk〉〈αk, αi〉

for at least all k 6= i, j such that f̂αj−αks f̂αk−αis 6∈ (s3) then the xj component of F (∇r,ζs )(xαi)
vanishes modulo terms which are at least cubic in s.

Taking a closer look at the quadratic equations appearing in Lemma 4.6, one can find
constrains on the basis α1, . . . , αn and on the Euler pairing.

Lemma 4.7. Let αi be a basis of K(A)⊗R. The quadratic equations of the condition 1 in
Lemma 4.6 hold for all i, j = 1, . . . , n, that is for all pairwise distinct i, j, k we have

〈αj , αi〉〈αj − αk, αk − αi〉 = 〈αj , αk〉〈αk, αi〉,

if and only if for all i, j = 1, . . . , n we have

〈αi, αj〉 = εijλ
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where εij = ±1 is a skew-symmetric tensor and λ is a fixed arbitrary constant, such that
for all pairwise distinct i, j, k we have

1 + εijεjk + εjiεik + εikεkj = 0.

A particular solution is given by choosing εij = 1 for all i < j.

Proof. We set xij = 〈αi, αj〉, so xij = −xji. The quadratic equations hold if and only if

x2
ij + xijxjk + xjixik + xikxkj = 0 (4.1.10)

for all pairwise distinct i, j, k. Cyclically permuting i→ j → k in (4.1.10) and subtracting
from (4.1.10) gives

x2
ij − x2

jk = 0
for all pairwise distinct i, j, k, so we must have xij = εijλ for a skew-symmetric tensor εij
and a fixed, arbitrary constant λ. Plugging this into (4.1.10) turns it into

1 + εijεjk + εjiεik + εikεkj = 0. (4.1.11)

Direct computation shows that a skew-symmetric index εij with εij = 1 for all i < j is a
solution.

Example 4.8. One may regard (4.1.11) abstractly as a system of quadratic constraints on
a skew-symmetric tensor εij = ±1, without reference to a basis αi for K(A)⊗R. Note that
when rk(K(A)) = 2 the condition (4.1.11) is empty. Many solutions are possible, e.g. when
rk(K(A)) = 3 the possibilities are0 −1 −1

1 0 −1
1 1 0

 ,
 0 1 −1
−1 0 −1
1 1 0

 ,
0 −1 −1

1 0 1
1 −1 0


up to overall multiplication by ±1.

Similarly, one wishes to investigate on the other vanishing condition in Lemma 4.6.

Lemma 4.9. Let [Si] be the basis of K(A) given by classes of simple objects. Let αi be
another basis of K(A)⊗ R. Suppose that for all i, j = 1, . . . , n, i 6= j we have either

1. αj − αi is the class of a simple object or its shift: αj − αi = ±[S], or

2. αj −αi is the sum of two classes of simple objects or their shifts of the form αj −αk,
αk−αi; αj−αi = (±[S])+(±[T ]) where, for some k, ±[Sp] = αi−αk, ±[Sq] = αk−αj,
or

3. αj − αi is not the sum of two classes of simple objects or their shifts.

Then the vanishing condition 2 in Lemma 4.6 holds for all i, j = 1, . . . , n, that is for all
nontrivial decompositions αj−αi = β+γ with β, γ not equal to αj−αk, αk−αi the product
〈β, γ〉f̂βs (Z)f̂γs (Z) is at least cubic in s.

Proof. Recall (3.2.7). If [α]+ − [α]− = l > 2 then for any decomposition β + γ = α

f̂βs (Z)f̂γs (Z) ∈ (s3). Thus, in case 3) there is nothing to prove. If αj − αi = ±[S] is of type
1), then for any nontrivial decomposition β + γ either [β+] − [β−] or [γ+] − [γ−] is equal
to 2 and f̂βs (Z)f̂γs (Z) ∈ (s3). Last, if αj − αi = ±[S] ± [T ], [S], [T ] classes of simples, and
β + γ = αj − αi, then f̂βs (Z)f̂γs (Z) 6∈ (s3) if and only of {β, γ} = {±S,±T}.
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Example 4.10. Let rk(K(A)) = n. A basis satisfying the Lemma above is given, for
instance, by αj =

∑n
i=j [Si], j = 1, . . . , n. Other solutions are possible and are considered

later.

Lemma 4.11. Suppose that the conditions of Lemma 4.6 hold for all i, j = 1, . . . , n (so
F (∇r,ζs ) vanishes modulo terms which are at least cubic in s). Then we have ∇r,ζs (Vζs ) = 0
modulo terms which are at least cubic in s.

Proof. We compute

πζ(Vs(xαl)) = πζ
(∑
α6=0

f̂αs (Z)(−1)〈α,αl〉〈α, αl〉xα+αl

)

=
n∑
k=1

f̂αk−αls (Z)(−1)〈αk,αl〉〈αk, αl〉xαk . (4.1.12)

So in the local trivialization of K(ζ) given by xα1 , . . . , xαn the endomorphism Vζs is given
by the skew-symmetric matrix

(Vζs )kl = (−1)〈αk,αl〉〈αk, αl〉f̂αk−αls (Z).

We have

∇r,ζs (Vζs ) = dVζs + [A,Vζs ]

= d(Vζs )kl +
n∑
p=1

(Akp(Vζs )pl − (Vζs )kpApl)

= (−1)〈αk,αl〉〈αk, αl〉d f̂αk−αls (Z)

+
n∑
p=1

(−1)〈αk,αp〉+〈αp,αl〉〈αk, αp〉〈αp, αl〉f̂
αk−αp
s (Z)f̂αp−αl(Z)

(
d logZ(αk − αp)− d logZ(αp − αl)

)
using the explicit form of Aij , (Vζs )ij found in Lemma 4.6 and above. So if the conditions
of Lemma 4.6 are satisfied for all i, j = 1, . . . , n, the same arguments show that ∇r,ζs (Vζs )
vanishes modulo terms which are at least cubic in s.

The following result is straightforward.

Lemma 4.12. Suppose that ζ is of the form (4.1.9) (so ζ is a section of K(ζ) and the latter
is preserved by C and U). Then we have

∇r,ζs (C|K(ζ)) = 0,
[C|K(ζ),U|K(ζ)] = 0,

∇r,ζs (U|K(ζ))− [C|K(ζ),Vζs ] + C|K(ζ) = 0.

Moreover g|K(ζ) is covariant constant with respect to ∇r,ζs , and C|K(ζ), U|K(ζ) are symmetric
and Vζs is skew-symmetric with respect to g.
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The Lemmas 4.5, 4.6, 4.12 proven in this Section show that the infinite-dimensional
Frobenius type structures (∇rs, C,U ,Vs, g) on K induce approximate finite-dimensional
Frobenius type structures (∇r,ζs , C|K(ζ),U|K(ζ),V

ζ
s , g|K(ζ)) on K(ζ). The result is summa-

rized in the following Corollary.

Corollary 4.13. Pick a section ζ of the form (4.1.9) and suppose that the conditions of
Lemma 4.6 hold for all i, j = 1, . . . , n. Then

• −C•(ζ) : TU → K(ζ) is an isomorphism,

• the structure on K(ζ) given by

(∇r,ζs , C|K(ζ),U|K(ζ),Vζs , g|K(ζ))

is a Frobenius type structure modulo terms which are at least cubic in s. More precisely
the conditions F (∇r,ζs ) = 0 and ∇r,ζs (Vζs ) = 0 hold as identities of formal power series
in s, modulo terms in s which are at least cubic, while the remaining conditions (1.6.1)
and those on the metric g|K(ζ) of Definition 1.27 hold automatically to all orders in
s.

It is worth pointing out that the family of structure onK(ζ) given by (∇r,ζs , C|K(ζ),U|K(ζ),

Vζs , g|K(ζ)) depends on the choice of a section ζ of the form (4.1.9) such that the conditions
of Lemma 4.6 hold for all i, j = 1, . . . , n. In turn, the section ζ encodes moduli given by
the choice of basis αi for K(A) ⊗ R (satisfying the strong constraints of Lemma 4.6), as
well as those given by the choice of holomorphic functions ζi(Z, s). However it is clear from
arguments above that the structures only depends on the the choice of basis.

The choice of ζ =
∑
i ζixαi will be crucial for the construction of the Frobenius manifold

structures, by means of the Theorem 1.30. They will depend on the ζi(Z, s) moduli as well,
through the pullback along −C•(ζ) : TU → K(ζ)).

In order to apply Hertling’s result (Theorem 1.30) it is necessary to consider the problem
of lifting them to genuine Frobenius type structures. This problem will be solved in the
next section.

4.2 Lifting to a finite-dimensional Frobenius type structure

In order to apply Hertling’s result (Theorem 1.30) it is necessary to consider a genuine
Frobenius type structures on the finite rank bundle K(ζ). The current Section is devoted
to proving the following result.

Proposition 4.14. The approximate Frobenius type structure given by Corollary 4.13 can
be lifted canonically to a genuine Frobenius type structure. In other words the solutions
defined modulo (s)3 to the equations F (∇r,ζs ) = 0 and (1.6.1) given by Corollary 4.13 can
be lifted canonically to solutions to all orders in s, and these lifted formal power series
solutions converge provided ||s|| is sufficiently small. Moreover the conditions on the metric
g|K(ζ) are also preserved.

Proving this fact makes use of the general theory of isomonodromy for a family of
meromorphic connections on P1 with poles divisor 2 · 0 + 1 · ∞, recalled in Section 1.3.
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Consider the family of meromorphic connections on the holomorphically trivial vector
bundle on P1 with the same fiber as K(ζ) given by

∇ζs(Z) = d +
(U(Z)

z2 − V
ζ
s (Z)
z

)
d z

with parameter space the suitable opens subset U ⊆ Stab(A) defined at page 55. This
induces a family of connections on the holomorphically trivial principal bundle P on P1

with fiber GL(K(ζ)[[s]]).

Definition 4.15. Let P be the holomorphically trivial principal bundle on P1 with fiber
the complex affine algebraic group GL(K(ζ)[[s]]/(s)3) corresponding to the GL(K(ζ)[[s]])-
bundle described above. The family of connections ∇ζs,3(Z) on P is defined as the reduction
modulo (s)3 of the connections ∇ζs(Z), that is

∇ζs,3(Z) := d +
(U(Z)

z2 −
Vζs,3(Z)

z

)
d z

where Vζs,3 ∈ gl(K(ζ)[[s]]/(s)3) is the reduction modulo (s)3.

By a generalization due to Boalch and Bridgeland - Toledano Laredo of the theory of
Jimbo, Miwa and Ueno (Section 1.2.1) to algebraic groups, the isomonodromy of this family
is equivalent to the flatness of an extended connection on the pullback of P to P1 × U .

Lemma 4.16. The family of connections on P given by ∇ζs,3(Z) is isomonodromic as Z
varies in U .

Proof. By Corollary 4.13 we have F (∇r,ζs,3) = 0 and the equations (1.6.1) hold for dZ,U ,Vζs,3
in the bundle P . This can be stated equivalently by introducing a connection on the pullback
of P to P1 × U , given by

∇r,ζs,3 −
1
z
dZ +

(U(Z)
z2 −

Vζs,3(Z)
z

)
d z,

which is then flat (Theorem 1.28). Flatness of this connection is precisely the isomonodromy
condition for ∇r,ζs,3(Z).

Recall that the generalized monodromy of a differential operator of the form of ∇ζs,3(Z)
is determined by its Stokes rays and the corresponding Stokes factors (see Section 1.3 and
in particular 1.3.1). Before to compute the Stokes data of ∇ζs,3(Z) let us make a remark.

For generic Z, the Stokes factors of ∇ζs,3(Z) can be computed explicitly thanks to the
formula by Bridgeland and Toledano-Laredo (Theorem 1.22, page 14). Theorem 1.22 refers
to a connection of the form ∇ = d−

(
U
z2 + V

z

)
d z, while ∇r,ζs,3 has the form

d +
(U(Z)

z2 − V (Z)
z

)
d z (4.2.1)

with U = Z. This is responsible for a minor modification of formula 1.3.3, which can be
deduced immediately revisiting the proof of the Theorem, given in [11, Sections 8.4, 9.1].
The Stokes factor S` of (4.2.1) attached to a Stokes ray ` = R>0(ui − uj) is given by

S` = Id−
∑

γ=ui−uj
γ∈`

∑
k≥1

∑
γ1,...,γk∈ΦU
γ1+···+γk=γ

Mk(γ1, . . . , γk)Vγ1 · · ·VγkEij , (4.2.2)
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Eij being the elementary matrices. Notice also that Z-stability of an object of class α in A
induces the stability of its shift in A[1], and the DT invariants have the symmetry property
DT(α,Z) = DT(−α,Z). Moreover Mn(z1, . . . , zn) = Mn(−z1, . . . ,−zn), [22].

Lemma 4.17. The generalized monodromy is given by

• the Stokes rays
`ij(Z) = R>0Z(αi − αj) ⊂ C∗

for i 6= j,

• the corresponding Stokes factors

S`ij (Z) = I − 2πi (Vζs,3)ijEij
+
∑
k

M2(Z(αi − αk), Z(αk − αj))(Vζs,3)ik(Vζs,3)kjEij , (4.2.3)

where Eij are the elementary matrices.

Proof. The eigenvalues of ad(U) form a set of roots

ΦZ := {(Z(αi)− Z(αj)), i 6= j} ⊂ C

which are distinct for generic Z ∈ U . The Stokes rays emanate from directions in ΦZ and
are

`ij(Z) = R>0Z(αi − αj).

The corresponding Stokes factors in GL(K(ζ)[[s]]/(s)3) are given by (4.2.2). For order rea-
sons they depend only on the functions M1(z1) = 2πi and M2(z1, z2) = −2πi

∫
[0,z1+z2]

dt
t−z1 .

The monodromy modulo (s)3 can be computed explicitly in the situation of Lemma 4.9.

Corollary 4.18. Suppose αi − αj is the class of a simple object or the sum of classes of
simple objects of the form αi − αk, αk − αj. Then the Stokes factor corresponding to `ij is
given by

S`ij (Z) = I − (−1)〈αi,αj〉〈αi, αj〉DTA(αi − αj , Z)sαi−αjEij .

Proof. If αi−αj is the class of a simple object or its shift then according to (4.2.3) we have
modulo (s)3

S`ij (Z) = I − 2πi(−1)〈αi,αj〉〈αi, αj〉f̂
αi−αj
s (Z)Eij

= I − (−1)〈αi,αj〉〈αi, αj〉DTA(αi − αj , Z)sαi−αjEij .

In the other case we have similarly modulo (s)3

S`ij (Z) = I − 2πi(−1)〈αi,αj〉〈αi, αj〉f̂
αi−αj
s (Z)Eij

+ (−1)〈αi,αk〉+〈αk,αj〉〈αi, αk〉〈αk, αj〉

M2(Z(αk − αi), Z(αj − αk))f̂αi−αks (Z)f̂αk−αjs (Z)Eij .
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Let log(z) denote the branch of the complex logarithm branched along [0,+∞). According
to the formulae for holomorphic generating functions in [10] we have modulo (s)3

f̂
αi−αj
s (Z) = 1

2πi DT(αi − αj , Z)sαi−αj

+ 1
(2πi)2 (−1)〈αi−αk,αk−αj〉〈αi − αk, αk − αj〉

M2(Z(αi − αk), Z(αk − αj))
DTA(αi − αk, Z) DTA(αk − αj , Z)sαi−αj .

On the other hand we have modulo (s)3

f̂αi−αks (Z)f̂αk−αjs (Z) = 1
(2πi)2 DTA(αi − αk, Z) DTA(αk − αj , Z)sαi−αj .

Moreover the quadratic condition gives

(−1)〈αi,αj〉〈αi, αj〉(−1)〈αi−αk,αk−αj〉〈αi − αk, αk − αj〉
= (−1)〈αi,αk〉+〈αk,αj〉〈αi, αk〉〈αk, αj〉.

The claim follows.

Corollary 4.19. Let S`(Z) denote the matrices (4.2.3) corresponding to a choice of central
charge Z, and let Σ ⊂ C∗ be a convex open sector.

• The clockwise ordered product
y∏
`⊂Σ
S`(Z) ∈ GL(K(ζ)[[s]]/s3)

is constant as a function of Z as long as the rays `(Z) do not cross ∂Σ.

• The Stokes multiplier of the connection ∇ζs,3(Z) with respect to the admissible ray
R>0, given by the clockwise ordered product

S =
y∏
`⊂H̄

S`(Z) ∈ GL(K(ζ)[[s]]/s3), (4.2.4)

is in fact constant as a function of Z ∈ U ⊂ Stab(A).

Proof. Both statements are characterizations of isomonodromy (Section 1.3).

Formulae by Bridgeland and Toledano-Laredo [11] allow to invert the process described
above and to define an isomonodromic family of connections on P1 with structure group
GL(K(ζ)[[s]], given its Stokes data.

Definition 4.20. The canonical lift S̃(0) of the Stokes multiplier S given by (4.2.4) to
GL(K(ζ)[s]) is S(Z) regarded as an element of GL(K(ζ)[s]). Note that we have S̃|s=0 = I.
A general lift S̃ of S is a matrix in GL(K(ζ)[s]) which agrees with S̃ modulo (s)3.

The Stokes data of Definition 4.20 defines a new isomonodromic family of connections
corresponding to a family of genuine Frobenius type structure supported by the finite-
dimensional bundle K(ζ). Its data will be distinguished from the previous ones by a ∼.
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Proposition 4.21. For fixed Z and sufficiently small ||s|| there is a canonical choice of a
connection ∇̃ζs(Z) on the trivial principal GL(K(ζ))-bundle, of the form

∇̃ζs(Z) = d +
(U(Z)

z2 − Ṽ
ζ
s (Z)
z

)
d z

with Stokes multiplier with respect to the admissible ray R>0 given by the canonical lift S̃(0).
The connection matrix Ṽζs (Z) is skew-symmetric and depends holomorphically on both Z

and s. The reduction of ∇̃ζs(Z) modulo (s)3 is ∇ζs,3(Z). The same holds for any other
(non-canonical) choice of a lift S̃.

Proof. The result follows from Proposition 1.23 applied to the bundle P .

Definition 4.22. The canonical lift of the approximate Frobenius type structure on K(ζ)
(∇r,ζs , C|K(ζ), U|K(ζ),V

ζ
s , g|K(ζ)) is defined as the collection of holomorphic objects

• endomorphism Ṽζs , of Proposition 4.21,

• connection ∇̃r,ζs
∇̃r,ζs = d +Ã

with connection form Ãij = (Ṽζs )ij d logZ(αi − αj),

• Higgs field C|K(ζ), endomorphism U|K(ζ) and metric g|K(ζ).

Of course one can give an identical definition for any other choice of a lift S̃.

Corollary 4.23. The collection

(∇̃r,ζs , C|K(ζ),U|K(ζ), Ṽζs , g|K(ζ)) (4.2.5)

is a Frobenius type structure on the bundle K(ζ)→ U , depending holomorphically on s for
||s|| sufficiently small. The same holds for any other choice of a lift S̃.

Proof. For fixed s, with ||s|| sufficiently small, the family of connections ∇̃ζs(Z) has constant
generalized monodromy as Z varies in U . By a characterization of isomonodromy (see 1.2.1),
the family of connections on P pulled back to P1 × U

∇̃r,ζs −
1
z

dZ +
(U(Z)

z2 − Ṽ
ζ
s (Z)
z

)
d z

is flat. This is equivalent to the equations F (∇̃r,ζs ) = 0 and (1.6.1). The conditions on g
can be checked directly.

4.3 Pull-back to Frobenius manifolds
So far we have discussed when the finite-dimensional vector bundle K(ζ) is isomorphic to
the tangent bundle over U ⊂ Stab(A) via the map −C•(ζ),

K(ζ) '−→ TU ,

and when it is endowed with a Frobenius type structure (∇̃r,ζs , C|K(ζ),U|K(ζ), Ṽ
ζ
s , g|K(ζ)).

To apply Theorem 1.30, one has to check ∇̃r,ζs −flatness of ζ and the conformal condition
Ṽζs (ζ) = d

2ζ, d ∈ C.
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Lemma 4.24. The endomorphism Ṽζs acts on the space of flat sections of ∇̃r,ζs ; a solution
of ∇̃r,ζs (ζ) = 0 is an eigenvector of Ṽζs and the spectrum of Ṽζs is constant on U , that is in
the Z direction (it depends highly nontrivially on s ∈ ∆).

Proof. Let ψ be a fundamental solution of ∇̃r,ζs , then

∇̃r,ζs (Ṽζsψ) = (d +Ã)(Ṽζsψ) = (d Ṽζs )ψ + [Ã, Ṽζs ]ψ + Ṽζs (dψ) + Ṽζs Ãψ =
= (d Ṽζs )ψ + [Ã, Ṽζs ]ψ − Ṽζs Ãψ + Ṽζs Ãψ =
= ∇̃r,ζs (Ṽζs )ψ = 0.

By ∇̃r,ζs −flatness of Ṽζs , Ã and Ṽζs form a “Lax pair” with respect to the complex variable
Z. Let ζ be a solution of ∇̃r,ζs , i. e. d ζ = −Ãζ, and suppose it is an eigenvector of the
endomorphism Ṽζs . Differentiating Ṽζs (ζ) = D(s, Z)ζ one gets

(d Ṽζs )ζ + Ṽζs (d ζ) = (dD(s, Z))ζ +D(s, Z)(d ζ)

and
(d Ṽζs )ζ + [Ã, Ṽζs ]ζ = (dD(s, Z))ζ.

dZ D(s, Z) = 0 follows from the ∇̃r,ζs −flatness of Ṽζs .

The following Proposition holds as a natural corollary.

Proposition 4.25. Fix the choice of basis αi for K(A)⊗R. Let d
2 be an eigenvalue of Ṽζs .

Then we can find a section ζ of K → U such that{
∇̃r,ζs (ζ) = 0
Ṽζs (ζ) = d

2ζ
. (4.3.1)

Restricting U if necessary we may assume that −dZ(ζ) is still an isomorphism.

The results proven so far lead to conclude that U admits a Frobenius manifold structure.

Theorem 4.26. Let d(s) be an eigenvalue of Ṽζs . There exists a semisimple Frobenius
manifold structure on U ⊂ Stab(A) such that

• the canonical coordinates are given by

ui = Z(αi),

• the Euler field is
E =

∑
i

Z(αi)∂Z(αi)

• the flat metric is given by
gs(u) =

∑
i

ζ2
i (Z, s) du2

i

• the conformal dimension is 2− d(s).

It is given by pulling back the Frobenius type structure (4.2.5) along −dZ(ζ), where ζ is a
section of K → U as in Proposition 4.25.

Moreover if we have αi − αj ∈ ±K(A)>0 for all i 6= j then this can be analytically
continued to a Frobenius manifold structure on all Stab(A), without monodromy.
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Proof. The Theorem follows from the statements 4.23, 4.25 and Theorem 1.30, setting
v = dZ•(ζ). The multiplication and the unit field are given respectively by (1.6.4) and
(1.6.5): X ◦ Y = v−1(CXv(Y )) and e = v−1(ζ) =

∑
i

∂
∂Z(αi) . Flatness of e comes from

flatness of ζ. The inverse image of ζi(Z)xαi is ∂
∂Z(αj) . It is easy to verify that

{
∂

∂Z(αi)

}
i=1,...,n

is a local frame which satisfy ∂
∂Z(αi) ◦

∂
∂Z(αj) = δij

∂
∂Z(αi) , therefore ui := Z(αi), i = 1, . . . , n,

are canonical coordinates.
E := U(e) =

∑
i Z(αi) ∂

∂Z(αi) is an Euler field. The metric entries are

gs(ui, uj) = g|K(ζ)(−dZ∂/∂Z(αi)(ζ),−dZ∂/∂Z(αj)(ζ))
= δijζ

2
i (Z, s).

The Stokes data of the Frobenius manifold structure are functions of the coordinates
ui 6= uj . They can be analytically continued over the universal covering of Cn\{ui = uj}i 6=j .
The continuation extends the structure to all Stab(A) ⊃ U .

Canonical coordinates are in general not flat and flat coordinates are obtained by solv-
ing a differential equation. Call them xk, k = 0, . . . , n − 1, and write the corresponding
coordinate vector fields X(k) := ∂

∂xk
as X(k) =

∑
j a

(k)
j (u) ∂

∂uj
, where u denotes the vec-

tor u1, . . . , un. We can set X0 = e. Say Mζ is the matrix diag {ζ1(s, Z), . . . , ζn(s, Z)},
corresponding to the isomorphism v. Then X(k) are solutions of the system

dX(k) = −M−1
ζ (dMζ + ÃMζ)X(k)

u · ∇a(k)
i (u) = (1− d(k))a

(k)
i (u)

∀i = 0, . . . , n− 1
(4.3.2)

The first equation of (4.3.2) comes from ∇̃r,ζs −flatness, the second is equivalent to semisim-
plicity of − adE. The spectrum of the semisimple Euler field is the datum of the con-
formal dimension D(s) = 2 − d(s) and the eigenvalues of − adE, that is (D(s), d(0) =
1, d(1)(s), . . . , d(n−1)(s)).

Notice that, if d 6= 0, then g(e, e) = 0. In fact g(e, e) =
∑
i gii =

∑
i ζ

2
i . If d(s) 6= 0, from

Ṽζs (ζ) = d
2ζ we have ∑

j 6=i
(Ṽζs )ijζj = d

2ζi

and

d

2
∑
i

ζ2
i =

∑
i

∑
j 6=i

(Ṽζs )ijζj

 ζi =
∑
i,j

(Ṽζs )ijζjζi =
∑
i<j

(Ṽζs )ijζjζi +
∑
i>j

(Ṽζs )ijζjζi = 0.

Thus the flat basis can be normalized in such a way that the metric in flat coordinates has
form (1.1.5).

Finally, one can characterized the Frobenius manifold structure defined in Theorem 4.26
by its monodromy. Denote the connection v∗∇̃r,ζs simply by ∇.

Theorem 4.27. The Stokes matrix of the semisimple Frobenius manifold structure on
Stab(A) of Theorem 4.26 coincides with the Stokes multiplier S̃ (given by Definition 4.20)
of the Frobenius type structure (4.2.5).
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Proof. It is enough to compute the connection ∇ in the basis ∂ũi =
(
ζi(Z, s)

)−1
∂ui .

Remark. The main object of interest seems to be the section ζ of the bundle K. It
determines the conformal dimension and the metric of the Frobenius manifold structure on
Stab(A). Computing ζ = ζ(S̃) as a (multi-valued) function of the Stokes multiplier is an
instance of the (hard) inverse problem for semisimple Frobenius manifolds (see e.g. [24]).

4.4 Some case studies
We can now apply the general theory discussed above to the case of A = Rep(An, 0). The
construction is studied in details for the representation category of A2. For n ≥ 3 explicit
formulae are hard to compute and we classify the resulting structure depending on its Stokes
matrix.

4.4.1 A2 quiver

The category A = Rep(A2) was the model for the construction described in the previous
Sections. The low dimension of the lattice K(A) makes some steps of the machinery trivial or
unnecessary. However, I think it is instructive to have a closer look to the actual construction
of the Frobenius structure. We first look for a basis {α1, α2} of K(A)⊗R satisfying Lemma
4.6. The first requirement of Lemma 4.6 (involving the Euler form 〈·, ·〉 = 〈·, ·〉A on K(A)) is
empty. The second condition requires that for all nontrivial decompositions α1−α2 = β+γ
the term 〈β, γ〉f̂βs (Z)f̂γs (Z) with (β, γ) 6∈ {±(α1 − α2)}2, is zero or of order at least cubic
in s. If we assume that {α1, α2} is an integral basis and write α1 − α2 = p[S1] + q[S2],
p, q ∈ Z, then by (3.2.7), the condition is verified if p or q > 1 or one of the following holds:
(p, q) = (±1, 0) and α1 −α2 = ±[S1] or (p, q) = (0,±1) and α1 −α2 = ±[S2]. We chose the
basis of the classes

α1 = [S1] + [S2]
α2 = [S2]

Notice that we are mostly interested in ±(α1 − α2) = ±[S1].
Let U be an open subset of the space of stability conditions over A. The trivial vector

bundle K → U with fiber C[K(A)][[s]] has a C[[s]]-linear Frobenius type structure

∇rs,= d +
∑
α 6=0

ad fαs
dZ(α)
Z(α) , C = −dZ, U = Z, Vs = ad fs(Z)

)
,

where Z is a point of U acting as a derivation on the fibers of K. Let K(ζ) be the rank two
sub-bundle of K generated by Z(α1), Z(α2), and πζ : K → K(ζ) the projection. We define

Vζs := πζVs, ∇r,ζs := πζ∇rs.

Flatness of Vζs and of ∇r,ζs are equivalent to the ODE

d(Vζs )ij = −
∑
k

(Vζs )ik(Vζs )kj
(

d log(Z(αi − αk))− d log(Z(αk − αj))
)

that is trivial for rk(K(A)) = 2, since d fα1−α2
s = 0 mod (s3). This implies that the

projected Frobenius type structure is still a Frobenius type structure modulo (s3) and one
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can just set

(Vζs )12 = (−1)〈α1,α2〉〈α1, α2〉f̂α1−α2
s /(s3)

= (−1)〈[S1],[S2]〉〈[S1], [S2]〉s1 DT([S1], Z) 1
2πi

= s1
2πi.

Therefore Vζs is a constant endomorphism depending on the complex parameter s := s1 ∈ C∗
and ∇r,ζs has connection matrix A

A =
(

0 s
2πi d log(Z(α1 − α2))

− s
2πi d log(Z(α1 − α2)) 0

)
=

=
(

0 s
2πi d logZ([S1])

− s
2πi d logZ([S1]) 0

)
.

For any value of s, Vζs ,∇r,ζs together with a bilinear pairing g = Id endow U with a Frobenius
type structure.

The main interesting object is the section ζ = ζ1(s, Z)xα1+ζ2(s, Z)xα2 , to be determined.
We require that

• ζ is ∇r,ζs -flat

• ζ is an eigenvector for the automorphism Vζs , i. e. there exists a scalar d ∈ C, with
Vζs ζ = d

2ζ.

We obtain two families of solutions to this problem:

d = s

π
and ζ(s, Z) = BZ(α1 − α2)−s/2π(xα1 + ixα2),

d = − s
π

and ζ(s, Z) = BZ(α1 − α2)s/2π(xα1 − ixα2).

Applying Hertling’s Theorem 1.30 one gets a family of Frobenius structures on TU
parametrized by s ∈ C∗ with

• canonical coordinates u1 = Z(α1), u2 = Z(α2),

• unit field e = ∂
∂u1

+ ∂
∂u2

,

• Euler field E = u1
∂
∂u1

+ u2
∂
∂u2

• conformal dimensions D = 2− d = 2∓ sπ−1

• diagonal metric g̃

g̃

(
∂

∂u1
,
∂

∂u1

)
= B2 (u1 − u2)∓s/π

g̃

(
∂

∂u2
,
∂

∂u2

)
= −B2 (u1 − u2)∓s/π

• metric potential η = B2 (1∓ s
π

)−1 (u1 − u2)1∓s/π
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• extended connection

∇ = dP1×U(A)−
1
z

(
u1 0
0 u2

)
+

+
[

1
z2

(
u1 0
0 u2

)
− 1
z

(
0 ±i s

2πi
∓i s

2πi 0

)]
d z

since ζ−1
1 (s, Z)ζ2(s, Z) = ±i.

The Stokes data of the Frobenius structure above is the generalized monodromy data of

∇(Z) = dP1 +
( U
z2 −

V
z

)
d z,

that is the datum of Stokes rays l± = ±R>0(u2−u1), and the Stokes matrix coincides with
the factor S`12

S(A2) = I − (−1)〈α1,α2〉〈α1, α2〉DTA(α1 − α2, Z)sα1−α2E12

= I − (−1)〈[S1],[S2]〉〈[S1], [S2]〉sE12

= I − sE12

=
(

1 −s
0 1

)
.

Notice that the canonical coordinates u1, u2 are not flat. A flat frame corresponds to
flat sections of K(ζ) → U and depends on the choice of the conformal dimension. We
compute them explicitly for d = s/π. We already know that e is flat and we seek for
Y = a1(Z)c1(Z)xα1 + ia2(Z)c1(Z)xα2 such that ∇r(Y ) = 0. The flatness condition implies
either a1(Z) = a2(Z) = const or{

d(a1 + a2) = 0
d log(a1(Z)− a2(Z)) = d logZ(α1 − α2)s/π

,

We also require that E is semisimple on TU , i.e. that v∗Y is an eigenvector of − adE. It is
equivalent to {

a1 − u1
∂a1
∂u1
− u2

∂1
∂u2

= d1a1

a2 − u1
∂a2
∂u1
− u2

∂a2
∂u2

= d1a2

Therefore a suitable flat bases consists of the unit field ∂0 := e = ∂
∂u1

+ ∂
∂u2

, and ∂1 :=
C(u1 − u2)s/π ∂

∂u1
− C(u1 − u2)s/π ∂

∂u2
, C ∈ C∗.

For any s 6= π, we may invert the Jacobian matrix and get flat coordinates x0 =
1
2(u1 + u2) and x1 = 1

2
(
π−s
π

)−1
C−1(u1 − u2)(π−s)/π .

In these flat coordinates {x0, x1}, the Euler field is semisimple E = x0∂0 +
(
π−s
π

)
x1∂1,

with spectrum (d0, d1) =
(
1, π−sπ

)
. The conformal dimension is D = 1+d1 = 2− s

π (= 2−d),
and the metric is represented by the (hermitian) symmetric real matrix

(
0 2B2C

2B2C 0

)
. We

can make it equal ( 0 1
1 0 ) riscaling the coordinates by chosing C = 2−1/2B−2. The description

in terms of flat coordinates is completed by the potential Φ(x0, x1). For a two-dimensional
Frobenius manifold, and in presence of flat identity and semisimple Euler field, the spectrum
of− adE (equivalently the potential) determines the classification of the Frobenius structure
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(see [37, Chapter I, Section 4]), with critical values d1 = 0, 1,±2. For generic d1 the potential
is Φ(x0, x1) = 1

2x
2
0x1 + cx

(2+d1)/d1
1 . The corresponding critical values for s ∈ C∗ \ {π} are

s = −π, 3π. Therefore the potential in flat coordinates is reduced to

s = −π : E = x0∂0 − 2x1∂1 φ(x0, x1) = 1
2x

2
0x1 + c log x1

s = 3π : E = x0∂0 + 2x1∂1 φ(x0, x1) = 1
2x

2
0x1 + cx2

1 log x1

s 6= 0,±π, 3π : E = x0∂0 + π − s
s

x1∂1 φ(x0, x1) = 1
2x

2
0x1 + cx

(3π−s)/(π−s)
1

Another critical value is s = π. In this case flat coordinates depending on C ∈ C∗{
x0 = 1

2(u1 + u2)
x1 = 1

2C log(u1 − u2)

are defined, with spectrum (d0, d1) = (1, 0) and conformal dimension D = 1 + d1 = 1. The
metric in flat coordinates has matrix

(
0 2B2C

2B2C 0

)
. Moreover

E = x0∂0 + 1
2C∂1, and Φ(x0, x1) = B2Cx2

0x1 + e4Cx1 .

One may wish to compare the affine family of Frobenius structures for the A2 quiver,
with the one defined over the unfolding space of singularities of z3, which is relevant for
this case study. Identify a subspace M of the affine space C2 with the space of polynomials{
p(z) = z3 + az + b |a 6= 0

}
. Call ρ− = −

(
−a

3
)1/2 and ρ+ =

(
−a

3
)1/2 the two distinct roots

of p′(z). Then

Theorem 4.28 ([37, Chpt. I, Sec. 4.5]). M is a semisimple Frobenius manifold with the
following structure data:

• canonical coordinates ui = p(ρ−), u2 = p(ρ+), identity e = ∂
∂u1

+ ∂
∂u2

, Euler field
E = u1

∂
∂u1

+ u2
∂
∂u2

.

• flat metric g := (du1)2

p′′(ρ−) + (du2)2

p′′(ρ+) with metric potential η = −1
2(ρ2
− + ρ2

+)

Specifically, the metric potential equals η = a
3 =

(
1
4

)2/3
(ui − u2)2/3. Therefore, for s = π

3
and B = ±(54)−1/6 the two structures totally agree.

Similar computations may be performed when d = − s
π .

4.4.2 A3 quiver

The construction for A = Rep(A3) is slightly more involved but still comprehensible. We
can use this example to compute a more interesting Stokes matrix.

A3 = •[S1] // •[S2] // •[S3]

Consider the classes of objects

α1 = [S1] + [S2] + [S3]
α2 = [S2] + [S3]
α3 = [S3]
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as a basis for K(A). LetK(ζ) denote the finite dimensional bundle isomorphic to the tangent
bundle TStab(A) via the isomorphism dZ•(ζ) for a suitable section ζ of K (Definition 3.1)
and let U be an open subset of Stab(A). Notice that the reduction modulo (s)3 of the Joyce
functions f̂ [S1] relative to α1−α2 and f̂ [S2] relative to α2−α3 consist only in one linear term.
α1 − α3 = ([S1] + [S2]) has a non-trivial decomposition as (α1 − α2) + (α2 − α3) producing
terms of order two in s in f̂α1−α3 . The truncation modulo s3 of the Joyce functions are
(Theorems 2.25, 2.28)

f̂ [S1] = 1
2πis1

f̂ [S2] = 1
2πis2

f̂ [S1]+[S2] = 1
2πi DT([S1] + [S2], Z)s1s2+

+ 1
(2πi)2

(
log Z(α2 − α3)

Z(α1 − α2) − πi
)
s1s2

The trivial lift to GL3[[s]] of the truncated objects in GLn[[s]]/(s3) depending on the Joyce
functions doesn’t define a family of Frobenius type structure on K(ζ). Consider the family
of connections

∇ζs,3 = d +

Z

z2 −
Vζs,3(Z)

z

 d z

The skewsymmetric Vζs,3 ∈ gl(K(ζ)[[s]]/(s)3) has components (4.1.12)

(Vζs,3)ij = (−1)〈αi,αj〉〈αi, αj〉f̂αi−αj

which do not satisfy the flatness condition for ∇ζs,3

d(Vζs,3)ij = (Vζs,3)ik(Vζs,3)kj
(

d logZ(αk − αj)− d log(Z(αi − αk)
)
.

For example

d(Vζs,3)12 = 0 6= (Vζs,3)13(Vζs,3)32
(

d log(Z(α3 − α2)− d logZ(α1 − α3)
)
.

We proceed as in Section 4.2. Let Z be a central charge sending the simple classes [Si] in
the upper half plane with ordered phase φ(Z([S1])) < φ(Z([S2])) < φ(Z([S3])). According
to Corollary 4.18 we have

S`12 = I − (−1)〈[S1],[S2]〉〈[S1], [S2]〉s1E12,

= I − s1E12,

S`23 = I − (−1)〈[S2],[S3]〉〈[S2], [S3]〉s2E23

= I − s2E23

and

S`13(Z) = I − (−1)〈[S2],[S3]〉〈[S2], [S3]〉DTA([S1] + [S2], Z)s1s2E13

= I −DTA([S1] + [S2], Z)s1s2E13.
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For the particular choice of the stability function Z, the class [S2 + S1] is unstable and the
ordered product of Stokes factor can be canonically lifted to

S̃(0) =

1 −s1 0
0 1 −s2
0 0 1

 ∈ GL3[[s]].

S̃(0) defines a new family of isomonodromic connections

∇̃ζs(Z) = d +
(
Z

z2 −
Ṽζs
z

)
d z

whose order three approximation coincides with ∇ζs,3. We set moreover ∇̃r,ζs = d +Ã,
Ãij = (Ṽζs )ij d logZ(αi − αj), and g = Id. (∇̃r,ζs , Z,dZ, Ṽζs , g) define a Frobenius type
structure over K(ζ).

We write for simplicity V instead of Ṽζs . Solutions of (4.3.1) are
d

2 = 0,±i
√
V12

2 + V23
2 + V13

2 (4.4.1)

By Lemma 4.24 we know that that d/2 ∈ C. It is easy to verify that V12
2 + V23

2 + V13
2 is

constant in Z and lives in C[[s]], by using the fact that flatness of ∇(Z) is equivalent to the
ODE

dVij = VikVkj
(

d logZ(αk − αj)− d log(Z(αi − αk)
)
.

For any choice of d in (4.4.1), the corresponding section ζ : U → K(ζ) may be expressed as
ζ(Z) = ζ1(Z)xα1 + ζ2(Z)xα2 + ζ3(Z)xα3 , where

ζ2(Z) =
V23V13 − d

2V12
d2

4 + (V23)2
ζ1(Z) =: φ2(Z)ζ1(Z)

ζ3(Z) =
V12V23 − d

2V13
d2

4 + (V23)2
ζ1(Z) =: φ3(Z)ζ1(Z)

and ζ1(s, Z) solve the differential equation

d log ζ1(Z) = −V12 d logZ(α1 − α2)φ2(Z)− V13 d logZ(α1 − α3)φ3(Z)

For each choice of d, a family of semisimple Frobenius structures with conformal di-
mension D = 2 − d is well defined on the tangent bundle to U ⊂ Stab(A), via pull
back. They share the same canonical coordinates ui = Z(αi), i = 1, 2, 3, (flat) unit field
e = v−1(ζ) = ∂

∂u1
+ ∂

∂u2
+ ∂

∂u3
and Euler field E = U(e) = Z(α1) ∂

∂u1
+Z(α2) ∂

∂u2
+Z(α3) ∂

∂u3
.

They have diagonal metric g̃ = v∗(g), g̃ii = ζ2
i (s, Z, d), with metric potential η(d, Z)

η(d, Z) =
∫ (
V12

2 + V13
2)2 du1

=
(
d

2

)2 ∫
V12

2 du2 +
∫
V13

2V23
2 du2 + d

∫
V12V13V23 du2

=
(
d

2

)2 ∫
V13

2 du3 +
∫
V12

2V23
2 du3 + d

∫
V12V13V23 du3

in terms of canonical coordinates. Their Stokes matrix is

S(A3) =

1 −s1 0
0 1 −s2
0 0 1
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4.4.3 An quiver

The example A = Rep(A3) can be generalised. Let A be Rep(An, 0), that is the abelian
category of representations of the quiver

•[S1]
// •[S2] · · · // •[Sn]

with n vertices labelled by the ordered classes of simple objects

Si = · · · // 0 //
i
C // 0 // · · · , i = 1, . . . , n

Γ = K(A) is a lattice of rank n endowed with the symmetric bilinear pairing 〈−,−〉 associ-
ated to the Euler form and prescribed by the adjacency matrix of the quiver:

〈[Si], [Sj ]〉 =


−1 if j = i+ 1
1 if j = i− 1
0 otherwise

The basis αi =
∑n
r=i[Sr] satisfies the assumptions of Lemma 4.6. This follows from Lemma

4.9 and the fact that the quadratic condition is identically satisfied. Indeed for j = i+h+1,
k = i+ s,

〈αi, αi+h+1〉〈αi − αi+s, αi+s − αi+h+1〉 = 〈αi, αi+s〉〈αi+s, αi+h+1〉

if and only if

〈Si+h, Si+h+1〉〈Si+s−1, Si+s〉 = 〈Si+s−1, Si+s〉〈Si+h, Si+h+1〉.

Since αi − αj ∈ K>0(A) for all i 6= j, this basis gives a canonical family of Frobenius
manifold structures which is well-defined on all Stab(A(An, 0)) (i.e. the monodromy here is
trivial).

We can classify these structures depending on their Stokes matrix, that coincides (Theo-
rem 4.27) with the ordered product of Stokes factors S`ij of ∇

r,ζ
s .

Because of isomonodromy property, we can chose any stability condition sending [Si] in
the upper half plane H. Choose Z such that

φ(Z([S1])) < · · · < φ(Z([Sn]))

where φ denotes the phases of a complex number in C∗. The only stable objects, in this
configuration, are the simples S1, . . . , Sn. Then

S`ij = Id−(−1)〈αi,αj〉〈αi, αj〉DT(αi − αj , Z)sαi−αjEij
implies that

S`ij =
{

Id−siEi,i+1 if j = i+ 1
Id if j 6= i+ 1

.

We choose the canonical lift, thus for any n ≥ 2 the Stokes matrix of the Frobenius structure
on Stab(A(An, 0)) is S(An) =

∏n−1
j=1 S`n−j,n−j+1 = I −

∑n−1
i=1 siEi,i+1,

S(An) =


1 −s1

1 −s2
. . .

1 −sn
1

 .
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Chapter 5

Mutations and analytic
continuations

If Q and Q′ are mutation equivalent quivers to which the theory of Chapter 4 applies, it is
natural to ask whether the corresponding Frobenius structures are related. The question is
motivated by the fact that mutation-equivalent finite quivers with potential have equivalent
associated CY3 triangulated categories and define finite hearts related by tilts.

The aim of this Chapter is two-fold. On one hand, we discuss several examples to which
we may apply the general theory developed in Chapter 4. We classify Frobenius structures
on the space Stab(A), for A the abelian category Rep(µAn) and µ a finite sequence of
mutations. On the other hand, we observe that the corresponding Stokes matrices, evaluated
at the special point s = 1, are related by a sequence of braids (acting as in (1.5.1)). This
means that the corresponding Frobenius manifolds are related by analytic continuation in
the sense of Section 1.5. In order to do that, we observe that we obtain a better result
if we truncate fαs at order dependent on the length of α. Section 5.1 is devoted to this
refinement. In section 5.2 and 5.3 the construction is applied to many examples and the
braid action is verified.

The work is still in progress and a general picture true for An for any n ≥ 2 is not
reached: our result concerns all the mutations of An, n ≤ 5, and most of the quivers of type
Q = µAn for n > 2.

5.1 A refinement of the construction
In the previous chapter we set

∇r,ζs = πζ · ∇rs|K(ζ), C
ζ = πζ · C|K(ζ),

Uζ = πζ · U|K(ζ), Vζ = πζ · Vs|K(ζ), g
ζ = g|K(ζ)

and proved that under suitable assumptions they define a family of structures osculating a
Frobenius type structures

(∇̃r,ζs , C̃ζ , Ũζ , Ṽζ , g̃ζ)
on Stab(A). The genuine Frobenius type structures coincide with the previous structures
modulo terms of order ≥ 3 in s. The approximation may be improved.

The following example motivates the try of “refining” the construction. It demonstrates
that in general (unlike the example of An given in the previous Chapter) the product of the
Stokes factors of ∇ζs,3 is not in GLn(K(ζ)[[s]]/s3).
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Example 5.1. We consider the quiver

Q1 = •[S1] •[S2]
oo •[S3]

oo •[S4]
oo

and the admissible basis αi =
∑
r≥i[Sr] of K(Rep(Q1, 0)). Similarly to An, we can run the

theory of Chapter 4 and define a Frobenius structure on an open set of Stab(Rep(Q1, 0)).
We chose the stability function Z sending the classes of the simple objects in H

Z([S1])

Z([S2])

Z([S3])

Z([S4])

The only stable objects are S1, S2, S3, S4 and the product of the Stokes factors

S`ij = Id−(−1)〈αi,αj〉〈αi, αj〉DT (αi − αj , Z)sαi−αjEij

of ∇ζs,3(Z) (Definition 4.15) is (Id +s1E12)(Id +s2E23)(Id +s3E34) = Id +s1E12 + s2E23 +
s3E34 + s1s2E13 + s2s3E24 + s1s2s3E14 and equals

1 s1 s1s2 s1s2s3
0 1 s2 s2s3
0 0 1 s3
0 0 0 1

 , (5.1.1)

which is not in GL4(C[[s]]/s3). The Stokes matrix of the genuine Frobenius type structure
induced on U is instead its truncation modulo (s3)

S =


1 s1 s1s2 0
0 1 s2 s2s3
0 0 1 s3
0 0 0 1

 .
It seems natural to choose as a lift S̃ ∈ GL4(C[[s]]) the product (5.1.1) instead of the
canonical lift S̃(0) = S.

In this section, we want to show that, at least when D = D(An, 0), we may define on its
hearts a Frobenius type structure depending on approximations of Joyce functions at order
higher than 3 (Corollary 5.5).
We consider the truncation

f̂
αi−αj
s,L := f̂

αi−αj
s /(sl(αi−αj)+1),

where l(αi − αj) is the length of the class αi − αj ∈ K(A) ⊗ R (Definition 3.20), and we
revisit the construction of Chapter 4. We set Φα = {αi − αj}i 6=j . Arguing as in Lemmas
4.6 and 4.11 we can prove analogous results, replacing 3 with any p ∈ N0.

Lemma 5.2 (Lemma 4.6). Pick a section ζ of the form (4.1.9) (so ζ is a section of K(ζ)
and the latter is preserved by C and U). Fix i, j = 1, . . . n and pij ∈ N0. Suppose the
following conditions hold:
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1. for all k 6= i, j we have either

〈αj , αi〉〈αj − αk, αk − αi〉 = 〈αj , αk〉〈αk, αi〉,

or f̂αj−αks f̂αk−αis ∈ (spij ),

2. for all nontrivial decompositions αj−αi = β+γ with β, γ not equal to αj−αk, αk−αi
the product

〈β, γ〉f̂βs (Z)f̂γs (Z) ∈ (spij )

Then the curvature component g(xαj , F (∇r,ζs )xαi) vanishes modulo terms in (spij ).

Lemma 5.3 (Lemma 4.11). Suppose that the conditions of Lemma 5.2 hold for all i, j =
1, . . . , n. Then the component

(
∇r,ζs (Vζs )

)
ij

vanishes modulo terms of order at least pij in
s.

Example 5.4. Let A = Rep(Q, 0), where Q is any quiver whose underlying unoriented
graph is the same ad An. The basis αi =

∑
j≥i[Sj ] of K(A) satisfies the hypothesis of the

Lemma 5.2 with pij = l(αi − αj) + 1.
With this choice max l(αi − αj) = n− 1.

Proof. Q is •[S1] •[S2] · · · •[Sn] with vertices labelled by the classes of simple
objects in K(A) and any choice of orientation of the edges. Then 〈[Si], [Sj ]〉 = ±1 if
j = i± 1 and vanishes otherwise. We have verified the first condition in Section 4.4.3. Set
pij = l(αi−αj)+1 and let β+γ = αi−αj , β, γ 6∈ Φα2, then either l(β)+l(γ) ≥ l(αi−αj)+1
or β, γ generalizes the following situation: β = [Si] + · · ·+ [̂St] + · · ·+ [Sj−1], γ = [St] + [Sj ],
but ext(St, Sj) = 0.This implies that 〈β, γ〉f̂βs f̂γs = 0 modulo terms of order pij .

From now to the end of the Section, suppose that α1, . . . , αn is a basis of K(A)⊗R and
satisfies the hypothesis of Lemma 5.2. Call it admissible. We define

(Vζs,L)ij = (−1)〈αi,αj〉〈αi, αj〉f̂
αi−αj
s,L ,

∇ζs,L(Z) = d +
(U(Z)

z2 −
Vζs,L
z

)
d z,

ALij = (−1)〈αi,αj〉〈αi, αj〉f̂
αi−αj
s,L d logZ(αi − αj),

∇r,ζs,L = d−AL.

Corollary 5.5. Say l := maxij l(αi−αj)+1. ∇r,ζs,L(Vζs,L) and the curvature F (∇r,ζs,L) vanish
modulo sl. Moreover

a) The structure on K(ζ) given by

(∇r,ζs,L, C|K(ζ),U|K(ζ),V
ζ
s,L, g|K(ζ)) (5.1.2)

is a Frobenius type structure modulo terms which have order at least l in s.

b) The family of connections on the holomorphically trivial principal bundle P on P1

with fiber the complex affine algebraic group GL(K(ζ)[[s]]/(s)l) given by ∇ζs,L(Z) is
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isomonodromic as Z varies in U . The generalized monodromy is given by the Stokes
rays `ij(Z) = R>0Z(αi − αj) ⊂ C∗, for i 6= j, and the corresponding Stokes factors

S`ij (Z) = I−2πi(Vζs,L)ijEij+

−
∑
m≥1

∑
k1 6=···6=km

Mm+1(Z(αi − αk1), . . . , Z(αkm − αj))

(Vζs,L)ik1 · · · (V
ζ
s,L)kmjEij , (5.1.3)

where Eij are the elementary matrices, and the second sum is over decompositions
such that l(αi − αk1) + · · ·+ l(αkm − αj) < l(αi − αj). S`ij ∈ GLn[[s]]/(sl(αi−αj)+1).

c) The connection

∇r,ζs,L −
1
z
dZ +

(U(Z)
z2 −

Vζs,L(Z)
z

)
d z,

on the pullback of P to P1 × U , is flat.

d) Vζs,L is skew-symmetric and the Stokes matrix of ∇ζs,L(Z) is

S :=
y∏

`ij⊂H̄

S`ij (Z) ∈ GL(K(ζ)[[s]]/sl).

Proof. Each point of the Corollary is a direct consequence of Lemmas above. Some ideas
are developed in the previous Chapter. The only point which requires some carefulness is
point d). In order to have a contribution in (sl) among the entries of S, in its ordered
factorization

y∏
`ij⊂H̄

S`ij (Z) should appear S`ikS`kj , such that l(αi−αk) + l(αk−αj) > l, but

these decompositions don’t contribute to the product on the positive half-plane.

Corollary 5.6 (Theorem 4.27). For ||s|| small, the Stokes matrix S =
y∏
`⊂H̄
S`(Z) of the

connection (over P1) ∇r,ζs,L regarded as an element of GL(K(ζ)[[s]]) is the Stokes matrix of
a genuine Frobenius manifold structure on the space Stab(A).

Example 5.7. Choose A = A(An, 0) and the admissible basis of Example 5.4. The Stokes
matrix of the Frobenius structure over Stab(A) is the same computed in Section 4.4.3:

S =


1 −s1

1 −s2
. . .

1 −sn
1

 .

From Corollary 4.18 we can deduce that, when l(αi − αj) ≤ 2,

S`ij (Z) = I − (−1)〈αi,αj〉〈αi, αj〉DTA(αi − αj , Z)Eij .
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Example 5.8. We can give analogous explicit expression also for S`ij when

αi − αj = [Sp1 ] + [Sp2 ] + [Sp3 ], l(αi − αj) = 3,

decomposes as (αi−αk1) + (αk1 −αj) = [Sp1 ] +
(
[Sp2 ] + [Sp3 ]

)
and (αi−αk2) + (αk2 −αj) =(

[Sp1 ] + [Sp2 ]
)

+ [Sp3 ], and the following important assumption holds

〈[Sp1 ], [Sp3 ]〉 = 0.

Notice that it is exactly the case of a length-three difference αi − αj , for a basis as in the
Example 5.4 for any quiver whose underlying graph is the same as An. The computation
involves the iterated integrals Mm and Jm which are very hard to compute already for
m = 3. However, we won’t compute them explicitly and we use the fact that the Joyce
coefficients Jm can be expressed in terms of Mk in a dense set (see (2.4.9)). According to
Formula (4.2.2), S`ij (Z) is given by

S`ij = Id−M1(Vζs,L)ijEij−

−M2(Z(αi − αk1), Z(αk1 − αj)(V
ζ
s,L)ik1(Vζs,L)k1jEik1Ek1j−

−M2(Z(αi − αk2), Z(αk2 − αj)(V
ζ
s,L)ik2(Vζs,L)k2jEik2Ek2j−

−M3(Z(αi − αk1), Z(αk1 − αk2), Z(αk2 − αj))

(Vζs,L)ik1(Vζs,L)k1k2(Vζs,L)k2jEik1Ek1k2Ek2j =

= Id−2πi(−1)〈αi,αj〉〈αi, αj〉

f̂
αi−αj
s,L (Z)Eij−

−M2(Z(αi − αk1), Z(αk1 − αj)(−1)〈αi,αk1 〉+〈αk1 ,αj〉〈αi, αk1〉〈αk1 , αj〉

f̂
αi−αk1
s,L (Z)f̂αk1−αj

s,L Eij−

−M2(Z(αi − αk2), Z(αk2 − αj)(−1)〈αi,αk2 〉+〈αk2 ,αj〉〈αi, αk2〉〈αk2 , αj〉

f̂
αi−αk2
s,L (Z)f̂αk2−αj

s,L Eij−

−M3(Z(αi − αk1), Z(αk1 − αk2), Z(αk2 − αj))(−1)〈αi,αk1 〉+〈αk1 ,αk2 〉+〈αk2 ,αj〉

〈αi, αk1〉〈αk1 , αk2〉〈αk2 , αj〉f̂
αi−αk1
s,L (Z)f̂αk1−αk2

s,L (Z)f̂αk2−αj
s,L Eij

The truncated Joyce functions appearing in the calculation are

f̂
αi−αj
s,L (Z) = 1

2πi DT(αi − αj)sp1sp2sp3 + J2(αi − αk1 , αk1 − αj)(−1)〈αi−αk1 ,αk1−αj〉

〈αi − αk1 , αk1 − αj〉sp1sp2sp3

+ J2(αi − αk2 , αk2 − αj)(−1)〈αi−αk2 ,αk2−αj〉〈αi − αk2 , αk2 − αj〉
DT(αi − αk2) DT(αk2 − αj)sp1sp2sp3+
+

∑
{w1,w2,w3}=

{αi−αk1 ,αk1−αk2 ,αk2−αj}

J3(w1, w2, w3) c(w1, w2, w3)

DT(αi − αk1) DT(αk1 − αk2) DT(αk2 − αj)sp1sp2sp3 ,
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f̂
αk1−αj
s,L (Z) = 1

2πi DT(αk1 − αj)sp2sp3 + (−1)〈αk1−αk2 ,αk2−αj〉〈αk1 − αk2 , αk2 − αj〉,

J2(αk1 − αk2 , αk2 − αj) DT(αk1 − αk2) DT(αk2 − αj)sp2sp3

f̂
αi−αk2
s,L (Z) = 1

2πi DT(αi − αk2)sp1sp2 + (−1)〈αi−αk1 ,αk1−αk2 〉〈αi − αk1 , αk1 − αk2〉,

J2(αi − αk1 , αk1 − αk2) DT(αi − αk1) DT(αk1 − αk2)sp1sp2 ,

and
f̂
αi−αk1
s,L (Z) = sp1

2πi, f̂
αk1−αk1
s,L (Z) = sp2

2πi, f̂
αk2−αj
s,L (Z) = sp3

2πi.

The last piece of data to be computed is the coefficient c (2.4.1). For instance

c([Sp1 ], [Sp2 ], [Sp3 ]) =c([Sp3 ], [Sp2 ], [Sp1 ] =

=1
2(−1)〈[Sp1 ],[Sp2 ]〉〈[Sp1 ], [Sp2 ]〉(−1)〈[Sp2 ],[Sp3 ]〉〈[Sp2 ], [Sp3 ]〉+

+ 1
2(−1)〈[Sp1 ],[Sp2 ]〉〈[Sp1 ], [Sp3 ]〉(−1)〈[Sp1 ],[Sp3 ]〉〈[Sp2 ], [Sp3 ]〉 =

=(−1)〈[Sp1 ],[Sp2 ]〉〈[Sp1 ], [Sp2 ]〉(−1)〈[Sp2 ],[Sp3 ]〉〈[Sp2 ], [Sp3 ]〉

c([Sp2 ], [Sp1 ], [Sp3 ]) =1
2(−1)〈[Sp2 ],[Sp1 ]〉〈[Sp2 ], [Sp1 ]〉(−1)〈[Sp2 ],[Sp3 ]〉〈[Sp2 ], [Sp3 ]〉

Using the quadratic relation of Lemma 5.2, it follows that

Slij = Id +(−1)〈αi,αj〉〈αi, αj〉DT(αi − αj , Z)sp1sp2sp3Eij

Corollary 5.9 (Theorem 4.27). When αi−αj = [Sp1 ], or [Sp1 ]+[Sp2 ], or [Sp1 ]+[Sp2 ]+[Sp3 ]
with 〈[Sp1 ], [Sp3 ]〉 = 0, then

Slij = Id +(−1)〈αi,αj〉〈αi, αj〉DT(αi − αj , Z)sαi−αjEij .

The feeling is that 5.9 can be generalized to any length, under suitable assumptions on
bracket relations.

5.2 Mutations of An

5.2.1 Admissible bases

We consider here the possible configurations of a finite quiver obtained from An applying a
finite number of simple mutations, and admissible bases for such configurations. They can
be reduced to three cases.

For the sake of simplicity, we label the vertices with integers i corresponding to the class
of the simples [Si].

1. If the unoriented graph underlying µAn is the same as An, then choose the basis

αi =
n∑
r=i

[Sr], i = 1, . . . , n. (5.2.1)
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2. If a clockwise oriented triangle appears,

· · · // •
k−1

// •
k+1

}}

// · · ·

•
k

aa

then consider the basis

αi =
∑k−1
j=i [Sj ] + αk−2 for i < k − 2

αk−1 = [Sk−1] + [Sk+1] + αk+2

αk = −[Sk] + [Sk+1] + αk+2

αk+1 = [Sk+1] + αk+2

αi =
∑n
j=i[Sj ] for i ≥ k + 2.

(5.2.2)

If the triangle is counter-clockwise oriented, then consider the same basis, or read the
labels of the vertices from right to the left if necessary.

3.

•
k−1

// •
k+1

||

// •
k+3

zz
•k

bb

•
k+2

dd



αk−1 = [Sk−1] + [Sk+1] + [Sk+3]
αk = −[Sk] + [Sk+1] + [Sk+3]
αk+1 = [Sk+1] + [Sk+3]
αk+2 = −[Sk+2] + [Sk+3]
αk+3 = [Sk+3]

4. The last possible configuration to be studied is

· · · •
li

// •
k−1

// •
k+1

||

// •ri · · ·

•
k

bb

•
di

OO

(5.2.3)

An admissible basis is 

αri =
∑
j≥i[Sri ]

αk+1 = [Sk+1] + αr1
αk−1 = [Sk−1] + [Sk+1] + αr1
αk = −[Sk] + [Sk+1] + αr1
αli =

∑
j≥i[Slj ] + αk−1

αdi =
∑
j≥i[Sdj ] + αk

(5.2.4)

Lemma 5.10. The bases of K(A)⊗ R (5.2.1), (5.2.2) and (5.2.4) satisfy the conditions of
Lemma 5.2.
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The first case was considered in Example 5.4. The other configurations are very similar and
can be directly checked with a simple computer program, for any choice of orientations of
the arrows.
Remark. Of course, those listed above constitute only a special class of admissible bases
and there exist many other examples of generating elements which satisfy the hypotheses
of Lemma 5.2 for the same quivers.
Example 5.11. Other admissible bases for the configuration 4) are given by different
choices of α6

α′6 = [Sli ] + [Sk−1] + [Sdi ],
α′′6 = [Sli ] + [Sk−1] + [Sdi ]± [Sk],
α′′′6 = [Sli ] + [Sk−1] + [Sdi ]± [Sk]± [Sri ]).

For all the examples above, one may compute Stokes factors S`ij of

∇rs,L = d +
(
f̂
αi−αj
s,L d log(Z(αi − αj))

)
ij

and classify the corresponding Frobenius structure on U ⊆ Stab(A) according to their
ordered product.

5.2.2 Stokes matrices and braid action

We give here the Stokes matrices of the Frobenius structures we obtain on Stab(A) with
the refined construction, when A = Rep(Q, 0) and Q = µAn is a heart of D(An, 0), with
the choice of admissible bases given above. Q is obtained from An via finite sequences of
mutations. We denote them as S(µAn). ε is the adjacency matrix in the new basis. We
focus on A2, A3, A4 and A5.

Mutation classes of A2

A2 = •1
// •2 , S(A2) =

(
1 −s
0 1

)
; µ1A2 = •1 •2

oo , S(µ1A2) =
(

1 s
0 1

)

Mutation classes of A3

A3 = •1
// •2

// •3 S(A3) =

1 −s1 0
0 1 −s2
0 0 1

 (5.2.5)

µ3A3 = •1
// •2 •3
oo S(µ3A3) =

1 −s1 0
0 1 s2
0 0 1

 (5.2.6)

µ1A3 = •1 •2
oo // •3 S(µ1A3) =

1 s1 −s1s2
0 1 −s2
0 0 1

 (5.2.7)

µ1µ3A2 = •1 •2
oo •3

oo S(µ1µ3A2) =

1 s1 s1s2
0 1 s2
0 0 1

 (5.2.8)
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µ2A3 = •1
// •3

~~
•2

`` S(µ2A3) =

1 −s1s2 −s1
0 1 0
0 s2 1

 (5.2.9)

µ2µ1µ3A3 = •1

  

•3
oo

•2

>> S(µ2µ1µ3A3) =

1 s1s2 s1
0 1 0
0 −s2 1

 (5.2.10)

Mutation classes of A4

µ1A4 = •1 •2
oo // •3

// •4

S(µ1A4) =


1 s1 −s1s2 0
0 1 −s2 0
0 0 1 −s3
0 0 0 1

 (5.2.11)

µ4A4 = •1
// •2

// •3 •4
oo

S(µ4A4) =


1 −s1 0 0
0 1 −s2 0
0 0 1 s3
0 0 0 1

 (5.2.12)

µ4µ2µ1A4 = •1
// •2 •3
oo •4

oo

S(µ4µ2µ1A4) =


1 −s1 0 0
0 1 s2 s2s3
0 0 1 s3
0 0 0 1

 (5.2.13)

µ1µ4A4 •1 •2
oo // •3

// •4

S(µ1µ4A4) =


1 s1 −s1s2 0
0 1 −s2 0
0 0 1 s3
0 0 0 1

 (5.2.14)

µ2µ1A4 = •1
// •2 •3
oo // •4

S(µ2µ1) =


1 −s1 0 0
0 1 s2 −s2s3
0 0 1 −s3
0 0 0 1

 (5.2.15)

µ1µ2µ1A4 = •1 •2
oo •3

oo // •4

S(µ1µ2µ1A4) =


1 s1 s1s2 −s1s2s3
0 1 s2 −s2s3
0 0 1 −s3
0 0 0 1

 (5.2.16)
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µ4µ1µ2µ1A4 = •1 •2
oo •3

oo •4
oo

S(µ4µ1µ2µ1A4) =


1 s1 s1s2 s1s2s3
0 1 s2 s2s3
0 0 1 s3
0 0 0 1

 (5.2.17)

µ2A4 = •1
// •3

//

~~

•4

•2

``

S(µ2A4) =


1 −s1s2 −s1 0
0 1 0 0
0 s2 1 −s3
0 0 0 1

 (5.2.18)

µ4µ2A4 = •1
// •3

~~

•4
oo

•2

``

S(µ4µ2A4) =


1 −s1s2 −s1 0
0 1 0 0
0 s2 1 s3
0 0 0 1

 (5.2.19)

µ3A4 = •1
// •2

// •4

~~
•3

``

S(µ3A4) =


1 −s1 0 0
0 1 −s2s3 −s2
0 0 1 0
0 0 s3 1

 (5.2.20)

µ1µ3A4 = •1 •2
oo // •4

~~
•3

``

S(µ1µ3A4) =


1 s1 −s1s2s3 −s1s2
0 1 −s2s3 −s2
0 0 1 0
0 0 s3 1

 (5.2.21)

Mutation classes of A5

Given that a mutation at vertex i is a local operation involving only arrows incoming or
outgoing from i, computations for µA4 can be generalized to similar configurations of µA5
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and µAn, n > 5. For instance:
µ1A5 = •1 •2

oo // •3
// •4

// •5

S(µ1A5) =


1 s1 −s1s2 0 0
0 1 −s2 0 0
0 0 1 −s3 0
0 0 0 1 −s4
0 0 0 0 1

 (5.2.22)

µ5A5 = •1
// •2

// •3 •4
oo

S(µ5A5) =


1 s1 0 0 0
0 1 −s2 0 0
0 0 1 −s3 0
0 0 0 1 s4
0 0 0 0 1

 (5.2.23)

µ3A5 = •1
// •2

// •4

~~

// •5

•3

``

S(µ3A5) =


1 −s1 0 0 0
0 1 −s2s3 −s2 0
0 0 1 0 0
0 0 s3 1 −s4
0 0 0 0 1

 (5.2.24)

We consider also some other interesting configurations (they do not complete all the muta-
tion classes of A5 which are 19).
µ1µ4A5 = •1 •2

oo // •3
// •5

~~
•4

``

S(µ1µ4A5) =


1 s1 −s1s2 0 0
0 1 −s2 0 0
0 0 1 −s3s4 −s3
0 0 0 1
0 0 0 s4 1

 (5.2.25)

µ2µ4A5 = •1
// •3

~~

// •5

~~
•2

``

•4

``

S(µ4µ2A5) =


1 −s1s2 −s1 0 0
0 1 0 0 0
0 s2 1 −s3s4 −s3
0 0 0 1 0
0 0 0 s4 1

 (5.2.26)
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µ2µ1µ4A5 = •1
// •2 •3
oo // •5

~~
•4

``

S(µ2µ1µ4A5) =


1 −s1 0 0 0
0 1 s2 −s2s3s4 −s2s3
0 0 1 −s3s4 −s3
0 0 0 1 0
0 0 0 s4 1

 (5.2.27)

µ1µ2µ1µ4A5 = •1 •2
oo •3

oo // •5

~~
•4

``

S(µ1µ2µ1µ4A5) =


1 s1 s1s2 −s2s3s4 −s1s2s3s4
0 1 s2 −s2s3s4 −s2s3
0 0 1 −s3s4 −s3
0 0 0 1 0
0 0 0 s4 1

 (5.2.28)

µ1µ3A5 = •1 •2
oo // •4

~~

// •5

•3

``

S(µ1µ3A5) =


1 s1 −s1s2s3 −s1s2 0
0 1 −s2s3 −s2 0
0 0 1 0 0
0 0 s3 1 −s4
0 0 0 0 1

 (5.2.29)

µ5µ1µ3A5 = •1 •2
oo // •4

~~

•5
oo

•3

``

S(µ5µ1µ3A5) =


1 s1 −s1s2s3 −s1s2 0
0 1 −s2s3 −s2 0
0 0 1 0 0
0 0 s3 1 s4
0 0 0 0 1

 (5.2.30)

5.3 Braid action
We may evaluate the Stokes matrices at the special point s1 = · · · = sn = 1 and compare
them. Recall that analytic continuations of the same germ of Frobenius structures are
related by the action of permutation and diagonal matrices (1.4.2) or that of the braid
group (1.5.1).
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In this Section, we write S for S|s=1(An) and S(µAn) for S|s=1(µAn). We observe
that, when µ is a simple mutation, S(µAn) and S are actually related by the action of
permutation and diagonal matrices I or that of the braid group. Specifically:

if µ = µ1 then S(µAn) = β1,2(S),
if µ = µk, k = 2, . . . , n− 1, then S(µAn) = βk,k+1(Pk,k+1SPk,k+1

)
,

if µ = µn then S(µAn) = InSIn,

where Ik, k = 1, . . . , n, is the matrix which differs from the identity only for the sign of the
(k,k) entry.

Given that mutations are local transformation of the quiver, when µ′ = µjµ and none of
the arrow outgoing/incoming to the vertex labelled with j have been affected by µ, then the
action which transforms S in S(µ′An) is the ordered composition of the actions associated
to the single mutations µ and µj respectively.

The considerations above concern examples (5.2.6)-(5.2.9), (5.2.11)-(5.2.14), (5.2.18)-
(5.2.21) and (5.2.22)-(5.2.26), (5.2.29)-(5.2.30). However we can find similar sequences of
actions for all the examples given. For the mutation of A3:

(5.2.10) S(µ2µ1µ3A3) = P2,3I1S(µ1µ3A3)I1P2,3;
those of A4

(5.2.15) S(µ2µ1A4) = β−1
34
(
S
)
,

(5.2.16) S(µ1µ2µ1A4) = β12
(
β23
(
β12
(
S
)))

,

(5.2.17) S(µ4µ1µ2µ1A4) = P2,3S(µ1µ2µ1A4)P2,3;
and of A5

(5.2.27) S(µ2µ1µ4A5) = β23
(
β12S(µ4A5)

)
,

(5.2.28) S(µ1µ2µ1µ4A5) = β12
(
S(µ2µ1µ4A5)

)
= I5(S(µ1µ2µ1A5)I5.

Corollary 5.12. For An, n ≤ 5, all the Frobenius structures on Stab(A(µ(An, 0))) are
analytic continuations of the same germ of Frobenius manifold structure.

5.4 Further examples
The refined machinery can be applied to many other cases. The examples we give below
admits the basis of Example 5.4.

Q2 = 1

2

3__ 2 //

}}

S(Q2) =

1 −s1 −s1s2
1 s2

1

 ,

Q3 = 1

2

3 4 nZZ 2 //

��

// // S(Q3) =



1 −s1 −s1s2
1 s2 −s2s3

1 −s3
. . .

1 −sn
1
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Q4 = 1

2

3 4 n

��

2oo
CC

// // S(Q4) =



1 s1
1 −s2

1 −s3
. . .

1 −sn
1


,

Q5 =

1

23

4

5 n

XX

2
FF

oo

��

��
//

S(Q5) =



1 s1
1 −s2

1 −s3
. . .

1 −sn
1


,

Q6 = 1

2

3

4

5 2n

2n− 1

aa 2 //

}}

`` 2 //

}}

2 //
``

��

S(Q6) =



1 −s1 −s1s2
1 s2 −s2s3

1 −s3
. . .

1 −s2n−1 −s2n−1s2n
1 s2n

1


.
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Appendix A

A convergence result

In this Chapter we give an explicit formula for the operator Qs(Z) of Theorem 3.27 and
prove a convergence property of its coefficients. The result is part of the preprint [2] and it
is based on [18] due to Garcia-Fernandez, Filippini, Stoppa. The techniques used are due
to them. It could be regarded as the natural deformation as formal power series of some
results in [18] depending on functions fα.

We keep the same notation as in Chapter 3. From now on, we always assume that Γ
is a finite rank lattice and that a positive basis {γi} has been fixed. Moreover, we fix a
continuous symmetric spectrum Ω parametrized by Hom+(Γ,C) which is the double of a
positive spectrum. The main result is the following.

Theorem A.1. Fix a central charge Z0 ∈ Hom+(Γ,C). Suppose that DT(α,Z0) grows at
most exponentially for α ∈ Γ (in the sense of Definition 3.12). Then for all ρ > 0 there
exists λ̄ such that for λ > λ̄ all the formal power series g(xα,Qs(λZ0)(xβ)) converge for
||s|| < ρ. Let U ⊂ Hom+(Γ,C) denote an open subset such that the exponential growth
condition for DT(α,Z) holds uniformly and all Z ∈ U are uniformly bounded away from
zero on elements of the cone Γ+. Then for all sufficiently large λ the CV-deformations of
the Joyce functions, given by g(xα,Q(1,...,1)(λZ)(xβ)), are well defined and real-analytic on
U , and uniformly bounded as α varies in Γ for fixed β.

The proof is very much inspired by the work of Gaiotto, Moore and Neitzke in mathe-
matical physics [19]. In [19, Appendix C] an integral operator is studied, and the proof of
a convergence property for its iterations is sketched using functional analytic techniques. I
am not confident with their work in the context of N = 2 supersymmetric gauge theories
on R3 × S1

R (a circle of radius R) and with functional-analytic tools. To work through
this problem I learned some methods for Sobolev embedding and estimates on the Hilbert
transform operator.

Write T for a finite rooted tree, with vertices decorated by elements of Γ. We assume
that T is connected unless we state explicitly otherwise. Denote the root decoration by αT .
The operation of removing the root produces a finite number of new connected, Γ-decorated
trees T 7→ {Tj}.

The goal is to discuss explicit formulae for th coefficients of the family ∇s(z, Z, λ) of
meromorphic connections on P1 given by (3.3.3). In the meanwhile some formulae from [18]
are recalled and transformed into formal power series in s.
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A.1 Explicit formula
We introduce holomorphic functions with branch-cuts

HT : C∗ ×Hom+(Γ, C) ∩Homsg(Γ,C)× R≥0 → C∗

attached to trees T by the recursion

HT (z, Z, λ) = 1
2πi

∫
`αT

dw

w

z

w − z
exp(−Z(αT )w−1 − λ2Z̄(αT )w)

∏
j

HTj (w), (A.1.1)

with the initial condition H∅ = 1. We also introduce weights WT (Z) ∈ Γ ⊗ Q attached to
trees by

WT (Z) = 1
|Aut(T )| DT(αT , Z)αT

∏
{v→w}⊂T

〈α(v), α(w)〉DT(α(w), Z). (A.1.2)

We can pair WT (Z) with β ∈ Γ to obtain 〈β,WT (Z)〉 ∈ Q. We extend this pairing to
possibly disconnected trees T with finitely many connected components Ti by setting

〈β,WT (Z)〉 =
∏
i

〈β,WTi(Z)〉.

Definition A.2. A distinguished sector Σ is the inverse system under inclusion of sectors
ΣN between consecutive distinguished rays ` such that∑

Z(α)∈`
DT(α,Z)s[α]+−[α]−xα /∈ JN .

This is well defined because for each N there are only finitely many distinguished rays for
which the above sum does not vanish modulo JN .

Proposition A.3. The automorphism Ys(z, Z, λ) of gΓ[[s]] acting by

Ys(z, Z, λ)(xβ) = xβ exp∗
∑
T

〈β,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−xα(v)

= xβ
∑

disconnectedT
〈β,WT (Z)〉HT (z, Z, λ)

∏
v∈T

s[α(v)]+−[α(v)]−xα(v) (A.1.3)

induces a flat section of ∇s(Z, λ) on each distinguished sector Σ.

Proof. This is proved in [18] section 4 (see in particular section 4.3). Note that in the
notation of the proof of Proposition 3.27 we have Ys(z, Z, λ) = X̃−1

0 (λZ) ◦X(λz, λZ).

Remark. For λ = 0, the formula above for Ys(z, Z, 0) define a flat section of ∇BTLs , [18].

Let As ∈ D(gΓ[[s]]) denote the opposite of the connection 1-form of ∇s(z, Z, λ), so

∂zYs(z, Z, λ) = As Ys(z, Z, λ)

(where the right hand side is given by the composition of linear maps). Locally As is given
by the composition of linear maps (∂zYs)Y −1

s , where

∂zYs(xα) = ∂z(Ys(z, Z, λ)(xα))
= Ys(z, Z, λ)(xα)

∑
T

〈α,WT (Z)〉∂zHT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−xα(v).
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Notice that a map of the form (∂zY )Y −1 where Y takes values in automorphisms of a
commutative algebra is automatically a derivation.

Because of its specific form Ys can be inverted explicitly via multivariate Lagrange
inversion. Recall that this gives a concrete way to invert self-maps of a ring of formal power
series R[[ξ1, . . . , ξm]] of the form ξi 7→ ξi exp(−Φi(ξ1, . . . , ξm)) for some Φi(ξ1, . . . , ξm) ∈
R[[ξ1, . . . , ξm]], where R is a ground C-algebra.

To reduce the problem of explicitly inverting Ys to a multivariate Lagrange inversion
we notice that since Ys is a commutative algebra automorphism it is enough to calculate
Y −1

s (xγi) for i = 1, . . . , n. We may then try to apply a Lagrange inversion formula over
the base ring R = C[[s]]. A further technical difficulty arises since Ys is a self-map of a ring
of Laurent polynomials C[[s]][x±1

γ1 , . . . , x
±1
γn ] over C[[s]] rather than formal power series. To

remedy this we introduce 2n auxiliary parameters ξ = (ξ1, . . . , ξ2n) and set for α ∈ Γ

ξα =
n∏
i=1

ξ
[αi]+
i

2n∏
j=n+1

ξ
−[αj ]−
j .

Consider the auxiliary problem of inverting the self-map of C[[s]][[ξ]] given by

(ξ1, . . . , ξ2n) 7→ (F1(ξ), . . . , F2n(ξ)), Fi(ξ) = ξi exp(−Φi(ξ))

where we choose

Φi(ξ) = −
∑
T

〈γi,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−ξα(v)

for i = 1, . . . , n, respectively

Φi(ξ) =
∑
T

〈γi,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−ξα(v)

for i = n + 1, . . . , 2n. If we can solve this then specialising ξi = xγi for i = 1, . . . , n,
respectively ξi = x−1

γi for i = n + 1, . . . , 2n determines the inverse Y −1
s completely. Going

back to the auxiliary problem, suppose that we can solve the equations

Ei(ξ) = ξi exp (Φi(E1(ξ), . . . , E2m(ξ))) . (A.1.4)

Then we have
Fi(E1, . . . , E2m) = Ei exp (−Φi(E1, . . . , E2m)) = ξi,

so the inverse is given by (ξ1, . . . , ξ2m) 7→ (E1(ξ), . . . , E2m(ξ)).

Lemma A.4. There exist unique Ei(ξ) ∈ C[ξ][[s]] solving (A.1.4). Moreover for each multi-
index k ∈ Z2m

>0 the coefficient of ξk in Ei(ξ) is given by

[ξk]Ei(ξ) = [ξk] det(δpq + ξp∂qΦp(ξ))ξi exp

−∑
j

kjΦj(ξ)

 . (A.1.5)

Proof. Regard Φi(ξ) as formal power series in ξ1, . . . , ξ2m with coefficients in C[[s]]. Applying
the multivariate Lagrange inversion formula in a version due to Good (see e.g. [20] Theorem
3, equation (4.5)) over the ground ring C[[s]] shows that there exists a unique solution
(E1, . . . , E2m) of (A.1.4) where Ei ∈ C[[s]][[ξ]] are given by (A.1.5). That we have in fact
Ei(ξ) ∈ C[ξ][[s]] follows from the definition of Φi(ξ).
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For a multi-index k ∈ Z2m
>0 , k = (k1, . . . , k2m) we set [k] =

∑m
i=1(ki− km+i)γi ∈ Γ. Note

that we have
∏m
i=1 x

ki
γi

∏m
j=1 x

−kj+m
γj = ±x[k] for a unique choice of sign, depending only on

k. We denote this sign by (−1)k.

Corollary A.5. For i = 1, . . . ,m and α ∈ Γ we have

g(xα, Y −1
s (xγi)) = g0

∑
[k]=α

(−1)k[ξk]Ei(ξ)

= g0
∑

[k]=α
(−1)k[ξk] det(δpq + ξp∂qΦp(ξ))ξi exp

−∑
j

kjΦj(ξ)

 ∈ C[[s]].

Corollary A.6. For i = 1, . . . ,m we have

As(z, Z, λ)(xγi) =
∑
α∈Γ

∑
[k]=α

(−1)k[ξk] det(δpq + ξp∂qΦp(ξ))ξi exp

−∑
j

kjΦj(ξ)


Y (xα)

∑
T

〈α,WT (Z)〉∂zHT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−xα(v) ∈ gΓ[[s]].

(A.1.6)

In particular the CV-deformation Qs(λZ) is the derivation of gΓ[[s]] determined by

Qs(λZ)(xγi) = Resz=0As(xγi).

A.2 Estimates on graph integrals

Fix a tree T and z∗ ∈ C∗ which does not belong to any of the rays `α(v) for v ∈ T . We
study the graph integral

HT (Z, λ) := H(z∗, Z, λ).

Proposition A.7. Let T be a Γ-labelled rooted tree with n vertices. Then there exist
universal constants λ̄, C1, C2 > 0, depending only on the constant in the support condition
(3.2.1) (in particular, independent of n, z∗), such that

|HT (Z, λ)| ≤ Cn1 exp(−C2
∑
v∈T
|Z(α(v))|λ) (A.2.1)

for all λ > λ̄.

The crucial point is that the estimate (A.2.1) holds up to the boundary of Homsg(Γ,C)
where some distinguished rays collide, and irrespective of the presence of accumulation
points for the set of distinguished rays for a fixed central charge Z.

We now collect some necessary preliminaries to the proof of Proposition A.7. For nonzero
α ∈ Γ, λ > 0 we introduce a function

uα,λ(s) = 1
s

exp(−λ|Z(α)|(s−1 + s))χ(0,+∞).

Notice that uα,λ ∈ C∞(R) ∩ Lp(R) for all 1 ≤ p ≤ ∞.
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Definition A.8. We denote by H the Hilbert transform on the real line, a bounded linear
operator mapping Lp(R) to itself for 1 < p < ∞ (by a theorem of M. Riesz, see e.g. [36]
section 3.2). In particular we have by definition

H[uα,λ](s) = pv
∫ ∞

0

dw

w

1
s− w

exp[−λ|Z(α)|(w−1 + w)].

By the Riesz theorem H[uα,λ](s) lies in Lp(R) for 1 < p < ∞. Standard regularity
results imply that H[uα,λ](s) is in C1(Rs × Rλ>0) and that we can differentiate under the
H operator. One can check by explicit computation that H[uα,λ] as well as ∂sH[uα,λ] lie in
L∞(Rs × Rλ>0).

We consider a class of functions defined iteratively by

τsluα,λ(s)
k∏
i=1
H[vi](s) (A.2.2)

where τ ∈ C∗, l = 0, 1 and each vi is again of the form (A.2.2) for some αi ∈ Γ. Examples
include uα0,λ

∏k
i=1H[uαi,λ] as well as uα0,λH[uα1,λH[uα2,λ · · · ]].

Lemma A.9. Let u be a function of the form (A.2.2), with m corresponding lattice elements
α1, . . . , αm (not necessarily distinct). Then there are constants C1, C2, λ̄1, independent of
m, depending only on τ and a common lower bound on |Z(α1)|, . . . , |Z(αm)|, such that for
all λ > λ̄1 we have

||u(s)||L1 ≤ Cm1
m∏
i=1

exp(−C2|Z(αi)|λ).

Proof. We will argue by induction on m. Using the specific form (A.2.2) of u we find

||u(s)||L1 ≤
k∏
i=1
||H[vi](s)||∞||τsluα,λ(s)||L1

provided all the H[vi] are bounded. By explicit computation (for example using the Laplace
approximation for exponential integrals) the factor ||τsluα,λ(τs)||L1 has the required uniform
exponential decay dominated by C1 exp(−C2|Z(α)|λ) for some fixed uniform C2 and all
sufficiently large C1. So we focus on ||H[vi](s)||∞. By an elementary Sobolev embedding
we have

||H[vi](s)||∞ ≤ c1||H[vi]||W 1,2

so we start by controlling the L2 norms ||H[vi]||L2 , ||∂sH[vi]||L2 . By L2 boundedness of H
and the fact that it commutes with ∂s we find

||H[vi]||L2 ≤ c2||vi||L2 , ||∂sH[vi]||L2 ≤ c2||∂svi||L2 ,

that is
||H[vi]||∞ ≤ c1c2||vi||W 1,2 .

We have reduced the problem to finding exponential bounds on ||vi||L2 and ||∂svi||L2 . Writ-
ing

vi = τis
liuβ,λ(s)

ki∏
j=1
H[wj ](s)
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we get

||vi||L2 ≤
ki∏
j=1
||H[wj ](s)||∞||τisliuβ,λ(s)||L2 ,

||∂svi||L2 ≤
ki∑
r=1
||H[∂swr](s)||L2

∏
j 6=r
||H[wj ](s)||∞||τisliuβ,λ(s)||∞

+
ki∏
j=1
||H[wj ](s)||∞||∂s(τisliuβ,λ(s))||L2

≤ c3

 ki∑
r=1
||∂swr(s)||L2

∏
j 6=r
||H[wj ](s)||∞||τisliuβ,λ(s)||∞

+
ki∏
j=1
||H[wj ](s)||∞||∂s(τisliuβ,λ(s))||L2

 .
Notice that we chose the L2 norm for the factor H[∂swr](s) rather than the supremum norm
so that no further derivatives are required to control this. By explicit computation (e.g.
Laplace approximation) the factors ||τisliuβ,λ(s)||L2 , ||τisliuβ,λ(s)||∞ and ||∂s(τisliuβ,λ(s))||L2

are all dominated by C1 exp(−C2|Z(β)|λ) for some fixed uniform C2 and all large C1. As-
suming inductively that we have the required exponential bounds on the norms ||wj ||L2 ,
||∂swj ||L2 for all j = 1, . . . , ki the inequalities above imply a bound (denoting by mi the
number of lattice elements αij attached to vi, counted with their multiplicities)

||vi||W 1,2 ≤ cmi4

mi∏
j=1

exp(−C2|Z(αij)|λ).

Taking the product over i = 1, . . . ,m yields the result, with C1 = c4.

Proof of Proposition A.7. In the course of the proof we use the notation sv for v ∈ T
to denote positive real integration variables. Hopefully these will not be confused with
the parameters s of our formal families; the latter never appear in the present section.
Parametrising the ray `α(v) for v ∈ T by

λ−1(|Z(α(v))|)−1Z(α(v))sv, sv ∈ R>0

for each v ∈ T turns HT (Z, λ) into an iterated integral along the positive real line (0,+∞).
Pick a vertex w ∈ T with unique incoming vertex v distinct from the root. There is a
corresponding factor in HT (Z, λ) given by

(2πi)−1
∫ ∞

0
dsw

τwsv
τwsv − sw

uα(w),λ(sw),

with
τw = |Z(α(w))|

Z(α(w))
Z(α(v))
|Z(α(v))| .

Let c1, δ > 0 denote positive constants to be determined independently of T (in particular,
independently of n). Suppose that there is an edge {v → w} ⊂ T such that | Im(τw)| < δ.
Choose the edge for which Im(τw) is the smallest possible in T (that is, such that the sine
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of the convex positive angle between the corresponding rays `α(v), `α(w) is less than δ, and
the smallest among edges in T ). Notice that by our minimal choice of v → w there are
no further rays `α(w′) with w → w′ between `α(v) and `α(w). We claim that for sufficiently
small δ there is a uniform c1 such that

|HT (Z, λ)| ≤ c1(|HT,1(Z, λ)|+ |HT,2(Z, λ)|),

where the iterated integrals HT,1(Z, λ) and HT,2(Z, λ) are obtained by replacing the factor

(2πi)−2
∫ ∞

0
dsv

τvso
τvso − sv

uα(v),λ(sv)
∫ ∞

0
dsw

τwsv
τwsv − sw

uα(w),λ(sw) (A.2.3)

attached to the subgraph {o→ v → w} ⊂ T (denoting by o the unique vertex mapping to
v) by the Hilbert transform

(2πi)−2
∫ ∞

0
dsv

τvso
τvso − sv

uα(v),λ(sv)svH[uα(w),λ](sv) (A.2.4)

in the case of HT,1(Z, λ), respectively by

(2πi)−1
∫ ∞

0
dsv

τvso
τvso − sv

uα(v),λ(sv)uα(w),λ(sv) (A.2.5)

in the case of HT,2(Z, λ). This holds because by the classical Sokhotski-Plemelj theorem in
complex analysis (see e.g. [36] section 3.2) the limit of the factor (A.2.3) as τw → 1 is given
by the sum of the principal value part (A.2.4), and the residue part (A.2.5), with suitable
signs (determined by whether Im(τw) → 0 from below or above). The τw → 1 limit holds
uniformly for all α(v), α(w), so the claim follows.

Notice that we can estimate the residue part (A.2.5) by

||uα(w),λ||∞
∣∣∣∣(2πi)−1

∫ ∞
0

dsv
τvso

τvso − sv
uα(v),λ(sv)

∣∣∣∣ .
Let T2 be the rooted, Γ-labelled tree obtained from T by contracting the edge {v → w} ⊂ T
to a single vertex decorated by α(v). By the estimate above we have

|HT,2(Z, λ)| ≤ ||uα(w),λ||∞|HT2(Z, λ)|),

so
|HT (Z, λ)| ≤ c2(|HT,1(Z, λ)|+ ||uα(w),λ||∞|HT,2(Z, λ)|). (A.2.6)

On the other hand edges {v → w} ⊂ T for which we have a fixed lower bound | Im(τw)| ≥
δ > 0 can be “integrated out": let T3 ⊂ T be the (rooted, Γ-labelled) subtree obtained by
chopping out the (rooted, Γ-labelled) subtree T4 ⊂ T with root w. Then there is a constant
c3, depending only on δ, such that

|HT (Z, λ)| ≤ c3|HT3(Z, λ)||HT,4(Z, λ)|,

where HT,4(Z, λ) equals essentially HT4(Z, λ), but with root factor in the integral replaced
with ∫ ∞

0
dswuα(w),λ(sw).

We can now proceed inductively applying the two steps described above, decreasing the
number of vertices of T or increasing the number of H operators inserted. The process stops
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in a finite number of steps, yielding residual functions Hi(Z, λ) for a finite set of indices
i ∈ I, with cardinality |I| ≤ 2n, such that

|HT (Z, λ)| ≤ cn4

(∑
i∈I
|Hi(Z, λ)|

)

where c4 > 0 does not depend on T . By construction each |Hi(Z, λ)| is bounded by a
finite product of factors of the form ||uα(w),λ||∞ or ||u(s)||L1 , where u belongs to the class
of functions (A.2.2). So by Lemma A.9 and repeated application of (A.2.6) each |Hi(Z, λ)|
is bounded by Cn1 exp(−C2

∑
v∈T |Z(α(v))|λ) for absolute constants C1, C2 and all λ > λ̄

(independently of T ). The bound (A.2.1) now follows with that same C2, λ̄ and taking the
constant C1 in the statement to be 2C1c4 in our present notation.

A.3 Functional equation and convergence
In this section we complete the proof of Theorem 4.26. Fix a continuous symmetric spectrum
Ω parametrised by Hom+(Γ,C) which is the double of a positive spectrum.

Definition A.10. Fix constants c1, c2, λ > 0 and a collection of formal power series Sα(s) ∈
C[[s]] for α ∈ Γ. Define a new collection F [S]β(s) ∈ C[[s]] for β ∈ Γ by

F [S]β(s) =
∏
α∈Γ

(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−Sα(s))|〈β,α〉||Ω(α,Z)|.

Let us write S(0) for the family of constant formal power series

S0
β(s) = 1 ∈ C[[s]].

for all β ∈ Γ. We define inductively for i ≥ 0

S
(i+1)
β (s) = F [S(i)]β(s).

Lemma A.11. Fix ρ̄ > 0. There exists λ̄ > 0, depending only on ρ̄ and the constants in
the support and exponential growth conditions (3.2.1), (3.2.2), such that for λ ≥ λ̄ all the
formal power series S(i)

β (s) converge for ||s|| < ρ̄, uniformly for i ≥ 0.

Proof. We argue by induction on i. For r > 0 we write Br = {s ∈ Cn : ||s|| < r} for the
open ball. Pick a norm ||− || on Γ⊗C. Suppose that ρ̄ > 0, λ̄ > 0 and c3 > 0 are constants
such that S(i)

α (s) converges absolutely and uniformly in compact subsets of Bρ̄ and moreover
we have

|S(i)
α (s)| < c3e

||α||. (A.3.1)
for all s ∈ Bρ̄, λ > λ̄, α ∈ Γ. In the case of S0 we can choose the constants ρ̄, λ > 0
arbitrarily, while c3 is a positive constant that only depends on the choice of norm || − ||.

The infinite product∏
α∈Γ

(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−S(i)
α (s))|〈β,α〉||Ω(α,Z)|

converges absolutely and uniformly in compact subsets of Bρ̄ if and only if this happens for
the series ∑

α∈Γ
|〈β, α〉||Ω(α,Z)| log(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−S(i)

α (s)). (A.3.2)
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There is a uniform constant c4 > 0 such that for all sufficiently large λ, depending only on
the constant in the support condition (3.2.1) and the inductive bound (A.3.1), the series
(A.3.2) is bounded by

c4||β||
∑
α∈Γ
||α|||Ω(α,Z)|c1 exp(−c2|Z(α)|λ)c3ρ̄

[α]+−[α]−e||α||. (A.3.3)

This bound is independent of i. If the spectrum Ω(α,Z) has at most exponential growth
then the series (A.3.3) converges for all sufficiently large λ, depending only on ρ̄, the support
condition (3.2.1) and the exponential growth condition (3.2.2). Moreover for all sufficiently
large λ, depending only on (3.2.1), (3.2.2), the sum of the series is bounded by ||β|| log c3,
from which we get

|S(i+1)
β (s)| < c3e

||β||

in Bρ̄. So if we choose our initial λ̄ sufficiently large, depending only on ρ̄ and the conditions
(3.2.1), (3.2.2), the induction goes through.

Let T denote a Γ-labelled rooted tree as usual. We write depth(T ) for the length of
the longest oriented path in T . Let us denote by µ|Ω|(α,Z) the Möbius transform of the
function |Ω(α,Z)|,

µ|Ω|(α,Z) =
∑

k>0, k|α

1
k2 |Ω(k−1α,Z)|.

Note that in general µ|Ω|(α,Z)xα is not a continuous family of stability data in gΓ, and
|Ω(α,Z)| is not a continuous spectrum. This is completely irrelevant for our purposes, since
we will only use the obvious bound

|DT(α,Z)| ≤ µ|Ω|(α,Z).

Let us introduce weights W̃T (Z) ∈ Γ⊗Q by

W̃T (Z) = 1
|Aut(T )|µ|Ω|(αT , Z)αT

∏
{v→w}⊂T

〈α(v), α(w)〉µ|Ω|(α(w), Z).

Lemma A.12. We have

S
(i)
β (s) =

∑
disconnectedT,depth(T )≤i

c
|T |
1 |〈β, W̃T (Z)〉| exp(−c2

∑
v∈T
|Z(α(v))|λ)

∏
v∈T

s[α(v)]+−[α(v)]− .

Proof. We write

S
(i+1)
β = exp

∑
α∈Γ
|〈β, α〉||Ω(α,Z)| log(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−S(i)

α (s)).

The result follows from expanding log(1− c1 exp(−c2|Z(α)|λ)s[α]+−[α]−S
(i)
α (s)) as a formal

power series and arguing by induction, starting from S
(0)
α = 1 for all α, precisely as in [18]

section 3.6.

Corollary A.13. Fix c1, c2, ρ̄ > 0. There exists λ̄ > 0, depending only on ρ̄ and the
constants in the support and exponential growth conditions (3.2.1), (3.2.2), such that for all
λ ≥ λ̄ the formal power series∑

disconnectedT
c
|T |
1 |〈β, W̃T (Z)〉| exp(−c2

∑
v∈T
|Z(α(v))|λ)

∏
v∈T

s[α(v)]+−[α(v)]−

converges for ||s|| < ρ̄.
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We may now prove A.1

Proof of Theorem A.1. We show first that, under the assumptions of the Theorem, for all
sufficiently large λ, depending only on ρ̄ and the constants in the support condition (3.2.1)
and the exponential bound (3.2.2) all the formal power series g(xα, Y (z, Z, λ)(xβ)) converge
absolutely and uniformly for ||s|| < ρ̄.

By our explicit formula (A.1.3) for the action of Y (z, Z, λ)(xβ) it remains to prove that
there exists λ̄ > 0 as above such that for all λ > λ̄ and β ∈ Γ the complex-valued formal
power series ∑

disconnectedT :
∑

v∈T α(v)=α

〈β,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−

converges for ||s|| < ρ̄.
We will in fact prove a statement which is independent of α: we claim that there exists

λ̄ > 0 as above such that for all λ > λ̄ and β ∈ Γ the complex-valued formal power series∑
disconnectedT

〈β,WT (Z)〉HT (z, Z, λ)
∏
v∈T

s[α(v)]+−[α(v)]−

(summing over all decorated trees, without the constraint that
∑
v∈T α(v) is fixed) converges

for ||s|| < ρ̄. By Proposition A.7 and the comparison principle it is enough to prove the
claim for the formal power series∑

disconnectedT
C
|T |
1 |〈β, W̃T (Z)〉| exp(−C2

∑
v∈T
|Z(α(v))|λ)

∏
v∈T

s[α(v)]+−[α(v)]− (A.3.4)

for all β, where C1, C2 are the constants in (A.2.1). By Corollary A.13 we can ensure that
this converges for ||s|| < ρ̄ by choosing λ̄ large enough, depending only on ρ̄ and (3.2.1),
(3.2.2) as required.

To extend the convergence statement to the matrix elements of the connection 1-form
As we rely on our explicit formula (A.1.6). Plugging the expansion for Ys(xγi) in (A.1.6)
one checks that each Γ-graded component of As(xγi) is given by a finite product of factors
which are infinite sums over decorated, disconnected trees and are all dominated by a sum
of the form (A.3.4) for possibly larger but fixed constants C1, C2.
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