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Abstract (Italiano) 

 
Il cancro dell’endometrio è il tumore ginecologico più comune nei paesi 
sviluppati ed è al mondo il sesto tumore più comune nelle donne. 

In quasi l'80% dei casi, il tumore dell’endometrio è di tipo I (istotipo 
endometrioide), per lo più di basso grado, mentre il restante 20% dei 
tumori si definisce di tipo II (non endometrioide) e normalmente ha 
prognosi più aggressiva rispetto ai tumori di tipo I. 

Attualmente, la definizione del grado del tumore di tipo I avviene 
tramite analisi anatomo-patologica della morfologia tumorale, ma spesso 
la valutazione del tipo e del grado del tumore non è sufficiente a predire la 
prognosi. L’identificazione di variabili genetiche e/o molecolari associate 
al fenotipo e ai profili di aggressività di questi tumori è necessaria al fine 
di sviluppare nuovi e più efficaci strumenti prognostici.   

Lo scopo di questo studio è lo sviluppo di un metodo di predizione 
basato sull'analisi mutazionale, che sia utile per stratificare i tumori 
dell'endometrio nelle categorie “buona prognosi" e “cattiva prognosi”.  

L'analisi è stata effettuata su 89 campioni di tumore dell'endometrio a 
diversi gradi. Ha previsto il sequenziamento high-throughput, mediante 
sequenziatore MiSeq Illumina, utilizzando il kit “Trusight Tumor 26” il 
quale consente l'analisi delle mutazioni somatiche descritte su 174 
ampliconi all’interno di 26 geni selezionati tra quelli maggiormente 
associati a tumori solidi in letteratura.   

Un’analisi di clustering non supervisionato è stata effettuata per 
suddividere i campioni in due gruppi, sulla base del profilo mutazionale. 
L'analisi di sopravvivenza effettuata ha mostrato un comportamento 
tendenzialmente differente dei due gruppi (Morti 18% nel cluster 1 e 11% 
nel cluster 2, Recidive 23 % nel cluster 1 e 11% nel cluster 2). 

L’analisi ha inoltre mostrato l'associazione della clusterizzazione su 
base molecolare con il grado del tumore, in particolare distinguendo 
perfettamente i campioni di grado G1 e collocandoli tutti nel cluster 1 a 
buona prognosi.  

L’analisi di frequenza dei geni mutati e del numero di mutazioni di 
ciascuno nei campioni dei due clusters ha evidenziato come i geni APC, 
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CTNNB1, KRAS, PIK3CA, PTEN siano differentemente mutati nei due 
gruppi 

Le mutazioni sui geni CTNNB1, KRAS, PIK3CA, SMAD4 e TP53 
sono risultate inoltre associate al diverso grado dei tumori. 

Lo studio propone quindi un nuovo approccio su base molecolare, che 
prevedendo il sequenziamento di un piccolo pannello di geni, potrebbe 
affiancare l'analisi istologica del tumore dell'endometrio nella predizione 
dell'outcome tumorale, soprattutto dei casi a prognosi più incerta. 
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Abstract (English) 

 
Endometrial cancer is the most common gynecologic cancer in 

developed countries and the world's sixth most common cancer in women. 
In almost 80% of cases, endometrial cancer is of type I (endometrioid 
histological type), mostly of low grade, while the remaining 20% of the 
tumors is called type II (non-endometrioid) and normally has poor 
prognosis. 

Currently, grading classification of type I endometrial cancer takes 
place through pathologic analysis of tumor morphology, but often the 
assessment of the type and tumor grading is not sufficient to predict 
prognosis. In order to develop new and more effective prognostic tools the 
identification of genetic and/or molecular variables associated to the 
phenotype and profiles of aggressiveness of these tumors is necessary.  

The purpose of this study is to develop a prediction method based on 
genes mutational status, useful to stratify the endometrial tumors in the 
categories "good prognosis" and "poor prognosis". 

The analysis was performed on 89 samples of endometrial cancer of 
different degrees. High-throughput sequencing was performed on Illumina 
MiSeq sequencer using the "Trusight Tumor 26 kit", which allows the 
analysis of somatic mutations described to 174 amplicons within 26 genes 
selected among those most associated with solid tumors in literature. 
An unsupervised clustering analysis was carried out to divide samples into 
two groups, based on the mutational profile. Survival analysis showed a 
basically different behavior of the two groups (18% deaths in cluster 1 and 
11% in cluster 2, 23% recurrence in cluster 1 and 11% in cluster 2). 

The analysis also showed the association of the clustering with the 
grading of the tumors, in particular distinguishing perfectly grade G1 
samples and placing them all in the “good prognosis” cluster 1.  
The analysis of frequency of the mutated genes and their number of 
mutations in clusterized samples showed that APC, CTNNB1, KRAS, 
PIK3CA, PTEN mutation status was different in the two groups. 
Mutations on CTNNB1, KRAS, PIK3CA, SMAD4 and TP53 were also 
found associated with the different grading of endometrial tumors. 
The study therefore proposes a new approach based on molecular 
profiling, that trough the sequencing of a small panel of genes, could 
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support the histological analysis in endometrial cancer outcome 
prediction, especially in doubtful cases. 
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Chapter 1 

1 Introduction to endometrial cancer 

1.1.  Epidemiology 

 
Endometrial cancer (EC) is the most common gynecological cancer in 

industrialized countries. 
Each year, EC develops in about 142000 women worldwide, and an 

estimated 42000 women die from this cancer [1]. 
In Italy, EC is the fourth most common cancer among women, 

accounting for 5% of all malignant neoplasms with about 8200 estimated 
new cases each year. [2]. 

The typical age-incidence curve for EC shows that most cases are 
diagnosed after the menopause, with the highest incidence around the 
seventh decade of life. [1] 

The early appearance of symptoms explains why about 70% of these 
patients have early-stage disease at presentation resulting in a favorable 
prognosis, with 5-year overall survival rate of 77%. However, for those 
women with more advanced or recurrent disease, response rates to 
conventional chemotherapy are low and clinical outcomes are extremely 
poor [3].  
Commonly, EC is classified into two types based upon clinical-pathologic 
features [4]: Type 1 EC are endometrioid cancer, associated with 
hyperestrogeneism and typically preceded by endometrial hyperplasia. 
They are often diagnosed at an early stage, and have a good prognosis. 
Type 2 EC includes non-endometrioid cancers such as serous, clear cell, 
mixed cell, undifferentiated and carcinosarcoma. These neoplasms are not 
estrogen correlate, often occur in the presence of an atrophic endometrium 
and have a poor prognosis.  
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1.2. Risk factors 

Several risk factors are reported in association to type I EC patients.  
Age is demonstrated to be a risk factor and a predictor of poor 

prognosis in EC and over 90% of the cases are diagnosed after the age of 
50 years [5]. 

The main risk factor for type I EC is a prolonged exposure to estrogen 
during women reproductive life [6], reason why early age at menarche and 
late age at menopause were associated with increased risk of endometrioid 
EC. 

Additional risk factor for type I EC are indeed Chronic Anovulation 
and Polycystic Ovary Syndrome (PCOS) because characterized by 
elevated serum estrogen levels [7, 8]. 

Lower parity and/or null parity were found to increase the risk of 
developing endometrioid EC up to four fold, while any additional birth 
among parous women (after the birth of the second child) was 
demonstrated to decrease the risk of developing the disease by 10 % for 
every new child [9]. This is because pregnancy is characterized by a 
protective progesterone increase and a estrogen decrease, which results in 
suppressed endometrial mitotic activity. 

Type I EC risk was also positively correlated with high-fat diet or high 
energy intake A high fat diet is considered a risk factor for type I EC both 
directly and indirectly because it promotes estrogen metabolism and leads 
to development of obesity, respectively [10]. 

Obesity is a well-identified risk factor for type I EC both in pre-
menopausal and post-menopausal women [11]. The risk of type I EC is 
higher when obesity is associated with infertility or amenorrhea, 
conditions in which estrogen levels are already high, and obesity further 
increases estrogen exposure and insulin resistance. On contrary, type II 
EC is not correlated with obesity. 

Diabetic women have 2 to 3 fold increased risk of developing type I 
EC, compared to not diabetic women and the risk is 6 fold higher when 
diabetes is associated with obesity [12]. 

Hypertension is an additional risk factor in EC, hypertensive women 
have 3-fold increased risk of developing type I EC compared to healthy 
women[7]. 

In patients with estrogen receptor positive breast cancer treated with 
Tamoxifen, a selective estrogen receptor modulator, EC risk increases 
with the duration of the therapy. Indeed, Tamoxifen stimulates 
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endometrial proliferation increasing the thickness of the endometrium 
[13].  

Unexpectedly, smoking is considered a protective factor against EC. 
Smokers have lower endogenous estrogen levels compared to non-
smokers and smoking also reduced the effect of estrogen by reducing the 
age of menopause and consequently the total number of menstrual cycles 
[14].  

Type II carcinomas onset was demonstrated to be ordinarily 
independent from hormonal levels, age and obesity while it was 
demonstrated to be strongly associated with a first-degree family history 
of cancer [15]. 

About 5% of EC cases have a family history of the disease. In women 
less than 50 years old, about 9% of EC is due to mutations in mismatch 
repair genes (MSH1, MSH2, MSH6), that result in Lynch II syndrome, a 
multiple diseases condition in which Hereditary Non-Polyposis Colorectal 
Cancer (HNPCC) is associated with other cancers of the gastrointestinal 
tract or reproductive system [16]. 

Cowden Syndrome is also associated with an increased life time risk 
(5-10%) of EC due to the autosomal dominant germinal PTEN mutation 
[17]. 

 

1.3.  Diagnosis of endometrial cancer 

Uterine bleeding in a postmenopausal woman is the main presenting 
sign of endometrial carcinoma. Pre or perimenopausal women with 
acyclical bleeding should also undergo through diagnostic evaluation, 
particularly if they have risk factors for EC. 

Targeted screening examinations for early detection, with endovaginal 
sonography followed by endometrial biopsy, may be reasonable for 
women at high risk (e.g., those with Lynch syndrome)[18]. 

Women with abnormal bleeding of the types described should undergo 
the following studies: 

• Gynecological examination to localize the source of bleeding 
and determine its physical extent; transvaginal ultrasonography for 
evaluation of the endometrium and adnexa. In postmenopausal 
patients with uterine bleeding, an endometrial thickness exceeding 5 
mm is considered suspect. In contrast, no reliable cut off has been 
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reported in pre- or perimenopausal women, as well as in 
postmenopausal women taking hormone replacement therapy or 
tamoxifen. 
• Hysteroscopy and fractionated uterine curettage. 

1.4. Histological and molecular classification of 

endometrial cancer 

1.4.1. The original classification: two histotypes of endometrial 

cancer 

In 1983 Bokhman proposed a dualic classification of endometrial 
tumorigenesis based on both etiology and clinical behaviour. To date EC 
are still broadly classified as type 1 and type 2 though this model is not 
entirely accurate and pathologic assignment of some uterine cancers 
remain controversial [4]. 

Type 1 tumors represent the 70-80% of sporadic cases of EC. Risk 
factors for this EC histotype include obesity, anovulation, nulliparity, and 
exogenous estrogen exposure. These lesions present endometrioid 
phenotype, arise in a background of hyperplasia and commonly express 
estrogen and progesterone receptors.  Clinically, type 1 cancers are more 
often low-grade tumors with a favorable prognosis. 

Type 2 ECs are less common, accounting for about 20% of total ECs. 
They are often of non endometrioid, high-grade tumors, usually papillary 
serous or clear cell. Clinically, type 2 cancers are characterized by an 
aggressive clinical course, and they have a propensity for early spread and 
poor prognosis [19]. 

The 5-year overall survival rate (OS) of Endometrioid cancer patients 
ranges from 75% to 86%, in contrast to 50% to 60% of non endometrioid 
EC patients. 

Aside from their morphological and clinical features, type 1 and type 2 
ECs are further distinguished by genetic alterations (Table 1) [20]. 
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 Type I Type II 

Clinical, endocrinological, and morphological components (Bokhman 
classification) 
Distribution 60–70% 30–40% 

Background endometrium Hyperplasia Atrophy 

Oestrogen associated Yes No 

Associated obesity, hyperlipidaemia, and 
diabetes mellitus 

Yes No 

Myometrial invasion Superficial Deep 

Potential for lymphogenic metastatic spread Low High 

Prognosis Favourable Unfavourable 

Sensitivity to progestagens High Low 

Outcome (5-year survival) 86% 59% 

Clinicopathological and molecular correlates 
Prototypical histological type Endometrioid Serous 

Oestrogen-receptor or progesterone-receptor 
expression 

High Low 

Stage at diagnosis 
Early                  
(FIGO stage  
I–II) 

Advanced              
(FIGO stage  
III–IV)  

Common genetic alterations 

PTEN mutation 52–78% 1–11% 

PIK3CA mutation 36–52% 24–42% 

PIK3R1 mutation 21–43% 0–12% 

KRAS mutation 15–43% 2–8% 

ARID1A mutation 25–48% 6–11% 

CTNNB1 mutation 23–24% 0–3% 

TP53 mutation 9–12% 60–91% 

PPP2R1A mutation 5–7% 15–43% 

HER2 amplification 0% 27–44% 

Microsatellite instability 28–40% 0–2% 
FIGO=International Federation of Gynaecology and Obstetrics 

Table 1: Dualistic classification of epithelial EC, including clinical, 
pathological and common molecular genetic correlates [20]         
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Type 1 endometrioid ECs present high percentage of mutations in PTEN, 
KRAS, ARID1A and CTNNB1, as well as defects in DNA mismatch 
repair.  

 Type 2 non-endometrioid ECs frequently show aneuploidy, p53 
mutations and HER2 amplification. PIK3CA  mutations are frequent in 
both EC histotypes. 

 

1.4.1.1. Histological grading of endometrial cancer 

The EC cell differentiation is a key marker to predict outcome and to 
evaluate the most appropriate therapy. 

Endometrioid type 1 ECs can be classified in histological grade G1, G2 
and G3. G1 tumors have the best prognosis, cancer cells are still well 
differentiated and similar to normal cells and the solid component is lower 
than 5%. In G2 tumors the solid component varies from 6% to 50%, and 
the cancerous cells have major differences from their normal counterpart. 
The G3 tumors have the worst prognosis, with more than 50% of solid 
component. 

In type 2 endometrial cancer grading classification is not necessary, 
since all tumors are considered grade tumors, with high percentage of 
undifferentiated cells [21]. 

 

1.4.1.2. Surgical staging of endometrial cancer 

Surgical staging of endometrial cancer was first proposed in 1988, and 
the staging system was updated in 2009 [22]. In revised FIGO 
(International Federation of Gynaecology and Obstetrics) staging system, 
tumors classification is based on tissues invasion (Table 2) Tumors 
confined to the endometrium as well as those invading the inner half of 
the myometrium are designated as stage IA tumors and tumors invading 
the outer half of the myometrium are designated as stage IB tumors.  

In 2009 FIGO staging system, tumors with endocervical glandular 
invasion are considered stage I tumors, while tumors with cervical stromal 
invasion are defined as stage II tumors. 

Stage III comprised three groups: IIIA, IIIB, and IIIC. Stage IIIA 
tumors invade the serosa or adnexa, stage IIIB tumors invade the vagina 
or parametrium and stage IIIC is divided into stage IIIC1, which is 
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characterized by pelvic lymph node involvement, and stage IIIC2, which 
is characterized by paraaortic lymph node involvement.  

Stage IV tumors present the worst prognosis: Stage IVA extend into 
adjacent bladder or bowel, and stage IVB tumors have distant metastases 
(e.g, to the liver or lungs) [23].  

 
 

 

Table 2: 2009 FIGO Staing System for Endometrial Cancer  

 

1.4.1.3. Lax Kurman binary grading system 

In 2000 Lax and Kurman described a novel, binary architectural 
grading system that uses low-magnification assessment of amount of solid 
growth, pattern of invasion and presence of necrosis to divide 
endometrioid type I carcinomas into low and high grade tumors [24]. 

Based on these criteria a tumor can be classified as high grade if at 
least two of the following three criteria are present: 

Stage Description 

IA Tumor confined to uterus, <50% myometrial invasion 

IB Tumor confined to uterus,  ≥50% myometrial invasion 

II Cervical stromal invasion 

IIIA Tumor invasion into serosa or adnexa 

IIIB Vaginal or parametrial involvement 

IIIC1 Pelvic node involvement 

IIIC2 Paraaortic node involvement 

IVA Tumor invasion into bladder or bowel mucosa 

IVB 
Distant metastases (including abdominal metastases) or inguinal  
lymph node involvemen 
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• More than 50% solid growth, without distinction between 
squamous versus nonsquamous differentiation 
• A diffusely infiltrative growth pattern characterized by 
irregularly distributed glands, masses, cords or nests of tumor cells 
infiltrating the myometrium 
• Tumor cell necrosis  

1.4.2. TCGA genomic classification of endometrial carcinoma 

 

The Cancer Genome Atlas Research Network (TCGA) has reported in 
2013 a comprehensive genomic and transcriptomic analysis of endometrial 
cancers based on next-generation sequencing technologies, analysis of 
DNA methylation, reverse-phase protein array, and microsatellite 
instability[25].  

The study focused on common histological types that, were further 
categorized into four genomic classes (Table 3):  

• Ultra-mutated tumors (POLE) characterized by very high 
mutation rates and hotspot mutations in the exonuclease domain of 
POLE (a subunit of DNA polymerase), few copy number 
aberrations, mutations in PTEN, PIK3R1, PIK3CA, FBXW7, and 
KRAS, and favorable outcome;  
• A microsatellite-instable group of tumors (MSI hyper-mutated), 
characterized by MLH1 promoter methylation, high mutation rates, 
few copy-number aberrations, recurrent RPL22 frameshift deletions, 
and KRAS and PTEN mutations;  
• Low Copy Number tumors (endometrioid), comprising 
microsatellite-stable grade 1 and 2 endometrioid cancers with low 
mutation rates, characterized by frequent CTNNB1 mutations;  
• High Copy Number tumors (serous-like), characterized by 
extensive copy number aberrations and low mutation rates, recurrent 
TP53, FBXW7, and PPP2R1A mutations, infrequent PTEN and 
KRAS mutations, and poor outcome.  
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POLE 

(ultramutated) 
MSI 

(hypermutated) 

Copy-number 
low 

(endometrioid) 

Copy-number 
high  

(serous-like) 

Copy-
number 

aberrations 
Low Low Low High 

MSI/MLH1 
methylation 

Mixed MSI 
high, low, 

stable 
MSI high MSI stable MSI stable 

Mutation 
rate 

Very high                

(232 × 10−6 
mutations/Mb) 

High                        

(18 × 10−6 
mutations/Mb) 

Low                         

(2·9 × 10−6 
mutations/Mb) 

Low                        

(2·3 × 10−6 
mutations/Mb) 

Genes 
commonly 
mutated 

(prevalence) 

POLE (100%) 
PTEN (94%) 

PIK3CA (71%) 
PIK3R1 (65%) 
FBXW7 (82%) 
ARID1A (76%) 

KRAS (53%) 
ARID5B (47%) 

PTEN (88%) 
RPL22 (37%) 
KRAS (35%) 

PIK3CA (54%) 
PIK3R1 (40%) 
ARID1A (37%) 

PTEN (77%) 
CTNNB1 (52%) 
PIK3CA (53%) 
PIK3R1 (33%) 
ARID1A (42%) 

TP53 (92%) 
PPP2R1A 

(22%) 
PIK3CA (47%) 

Histological 
type 

Endometrioid Endometrioid Endometrioid 

Serous, 
endometrioid, 

and mixed 
serous and 

endometrioid 

Tumour 
grade 

Mixed               
(grades 1–3) 

Mixed           
(grades 1–3) 

Grades 1 and 2 Grade 3 

Progression
-free 

survival 
Good Intermediate Intermediate Poor 

 

Table 3: Characteristics of four genomic classes of endometrioid and 
serous carcinomas [25] 

 

The TCGA study revealed that also a subset of tumors diagnosed as 
high-grade endometrioid carcinomas harbored copy number and 
mutational profiles more similar to those of serous carcinomas and in 
general no mutations (excluding POLE) were identified as unique to any 
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of the four genomic classes. In view of the substantial genetic and 
morphological heterogeneity in endometrial carcinomas, these data 
suggested that the current approach of histopathology-based classification 
requires a revision, which could take into account also the complicated 
molecular profiles of these tumors [20]. 
 

1.5. Treatment of endometrial cancer 

The International Federation of Gynecology and Obstetrics 
recommends systematic surgical staging for most patients, consisting of 
hysterectomy with bilateral adnexal removal and systematic pelvic and 
para-aortic lymphadenectomy. It should be performed by laparoscopic 
approach.  

In many cases, laparoscopy seems to be as safe and effective as an open 
abdominal procedure and superior with respect to postoperative morbidity 
and recovery. 

The findings obtained through this basic initial treatment serve as the 
definitive guide to the potential use of further adjuvant therapy, depending 
on the stage of disease. 

Patients with tumor stage IA and grade 1 or 2 are unlikely to have 
lymph node involvement, and their prognosis is usually very good. Thus, 
systematic lymphadenectomy is not indicated for such patients as it can’t 
guarantee any survival advantage. 

On the other hand, patients with advanced disease and negative 
outcome can benefit from surgical intervention in addition to various 
palliative therapies. 

With regards to the surgical removal of endometrial carcinoma, some 
controversy surrounds the question whether additional pelvic and para-
aortic lymphadenectomy could grant more diagnostic or therapeutic 
benefits.[18]. Taken together, histotype classification, tumor grading, 
tumor size and myometrial infiltration, may help in the decision to 
perform or not lymphadenectomy.  

Adjuvant treatment could be delivered only when the final stage and 
grade are known. 

Well known clinical-pathological prognostic factors for EC include: 
age, FIGO stage, depth of myometrial invasion, tumor differentiation 
grade, tumor type (endometrioid versus serous and clear cell) and 
lymphovascular space invasion (LVSI). According to these factors, 
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patients were stratified in risk groups (Table 4), to guide adjuvant therapy 
use [26].  
 

 
Risk group Description 

Low 
Stage I endometrioid, grade 1–2, <50% myometrial 
invasion, LVSI negative 

Intermediate 
Stage I endometrioid, grade 1–2, 
≥50% myometrial invasion, LVSI negative 

High-
intermediate 

Stage I endometrioid, grade 3, 
<50% myometrial invasion, regardless of LVSI status 

Stage I endometrioid, grade 1–2,LVSI unequivocally 
positive, 
regardless of depth of invasion 

High 

Stage I endometrioid, grade 3,  ≥50% myometrial 
invasion, 
regardless of LVSI status 

Stage II 

Stage III endometrioid, no residual disease 

Non-endometrioid (serous or clear-cell or undifferentiated 
carcinoma, or carcinosarcoma) 

Advanced Stage III residual disease and stage IVA 

Metastatic Stage IVB 

 

Table 4: New risk groups to guide adjuvant therapy use in EC [26]. 

 
 
Based on risk group summarized below, in Italy AIOM (Italian 

Association of Medical Oncology) guidelines suggest: 

• IA G3, IB G1-G2 EC patients (intermediate risk) require 
brachytherapy particularly in case of age > 60 years. 
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• IB G3 EC patients (high risk) and type II require external beam 
radiotherapy with brachytherapy and chemotherapy should be 
considered.  
• Stage II-III EC patients require external beam radiotherapy with 
brachytherapy and chemotherapy. 
• Stage IV EC patients require chemotherapy and palliative 
radiotherapy should be considered.  
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Chapter 2 

2 Aim of the study  

Although more than one classification of EC have been proposed based 
on histological and molecular characterization, numerous EC cases, in 
particular those with intermediate phenotype and grading (e.g. 
endometrioid tumor G2) still have uncertain prognosis. 

While low-grade endometrioid and serous carcinomas integrate well 
into Bokhman’s model (being, respectively, prototypical type I and II 
tumors), many in the range of endometrioid EC fall outside a simple 
dichotomous classification. Between 10% and 19% of endometrioid 
carcinomas are high grade and have clinical, histopathological and 
molecular features that are either intermediate between those of types I 
and II. By contrast, not all serous carcinomas behave as prototypical type 
II cancers. For example, 2% of serous carcinomas arise in association with 
endometrial hyperplasia, and at least 20% lack deep myometrial invasion 
[20]. 

TGCA molecular classification, on the other hand, offers a complete 
molecular characterization of different EC groups but the use of a so large 
and complex mutational screening in clinical routine, for rapid prognostic 
prediction and treatment choice, results still too expensive in terms of time 
and costs and far from being realistic. Furthermore TGCA classification 
was only partially associated with prognosis, giving results that seem to be 
in contrast with literature data and would need further investigation. 

This study intends to propose a novel molecular-based approach to 
predict prognosis in EC. The model, based on DNA sequencing of few 
genes, subdivides endometrial tumors in “good prognosis” and “bad 
prognosis”, to be applied for the investigation of doubtful cases, and 
support Bokhman’s model and histological grading when the canonical 
approach is not sufficient to predict tumor outcome. 
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Chapter 3 

3 Next generation approach of target 

resequencing  

3.1.  Trusight Tumor 26 Kit Illumina 

With the aim to identify a reduced panel of genes able to stratify cases 
with good or bad prognosis we use Trusight Tumor 26 kit Illumina to 
analyze our population of EC Formalin Fixed Paraffin Embedded (FFPE) 
samples.  

TruSight Tumor offers an approach of amplicon-based sequencing of 
26 oncogenes and tumor suppressor genes selected for their involvement 
in common solid tumors (Table 5). Through 174 amplicons Trusight 
Tumor 26 kit provides coverage of hot-spot coding regions which 
variation were described and cataloged in the COSMIC database in 
oncogenes, and coverage of all exons in tumor suppressor genes. 

Using a paired-end sequencing approach Trusight tumor 26 achieves 
limits of detection below 5% variant allele frequency, with a minimum of 
1000X coverage.  
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AKT1 EGFR GNAS NRAS STK11 

ALK ERBB2 KIT PDGFRA TP53 

APC FBXW7 KRAS PIK3CA 
 

BRAF FGFR2 MAP2K1 PTEN 
 

CDH1 FOXL2 MET SMAD4 
 

CTNNB1 GNAQ MSH6 SRC 
 

 

Table 5: Trusight Tumor 26 gene panel 

 
Due to the high level of resolution reached by the system the 

sequencing can detect DNA damage, specifically DNA deamination, 
caused by formalin fixation. Deamination events effectively result in a 
C/T single nucleotide change on a single strand of DNA, which appear as 
a G/A variant when sequenced. TruSight Tumor assay was designed ad 
hoc for analysis of DNA from FFPE tissues: both strands of the DNA 
template were treated with two different pools of primers named FPA and 
FPB and so targeted with highly specific amplicon designs. In this way the 
method permit to compare the two strands of the same template, cytosine 
deamination results in a nucleotide change in one strand of a DNA 
molecule, but does not alter the complementary nucleotide on the opposite 
strand. Sequencing each strand independently will yield base calls that 
differ between the 2 strands and will be excluded because considered false 
positive. A true DNA mutation results in a nucleotide change in both 
strands of a DNA molecule. Sequencing each strand independently will 
yield the same variant call for both strands, the mutation will pass filters 
and will be considered a true positive (Figure.1) 
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Figure 1: Detection and differentiation of DNA damage from mutation 
using Trusight Tumor chemistry 

 

3.2.  Miseq reporter Amplicon DS primary 

analysis 

The Amplicon DS workflow is uniquely suited for detection of somatic 
mutations in formalin-fixed paraffin-embedded (FFPE) samples. 

This workflow independently processes variants from the forward and 
reverse strands of the sample material, and then algorithmically reconciles 
the calls. 

The Amplicon DS workflow consists in:  

• Demultiplexing: data from pooled samples are separated based 
on short index sequences used to tag different libraries. 
• FASTQ file generation: MiSeq Reporter generates intermediate 
analysis files in the FASTQ format. FASTQ files contain reads for 
each sample and their quality scores, excluding reads identified as 
inline controls and clusters that did not pass filter 
• Alignment: Smith-Waterman algorithm aligns clusters from 
each sample against amplicon sequences specified in the manifest 
file. Each paired-end read is evaluated in terms of its alignment to 
the relevant probe sequences for that read. If the start of a read 
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matches a probe sequence with no more than 1 mismatch, the full 
length of the read is aligned against the amplicon target for that 
sequence. Alignments that include more than 3 indels are filtered 
from alignment results. Filtered alignments are written in alignment 
files as unaligned and are not used in variant calling. 
Paired-End Evaluation: for paired-end runs, the top-scoring 
alignment for each read is considered.  
Reads are flagged as an unresolved pair if either read did not align, 
the paired reads aligned to different chromosomes or if two 
alignments come from different amplicons or different targets of the 
manifests. 
Finally, reads are sorted by sample and chromosome, and then by 
chromosome position. Results are written to one BAM file per 
sample. 
• Variant Calling:  SNPs and short indels are identified using the 
somatic variant caller tool developed by Illumina. The somatic 
variant caller identifies variants present at low frequency in the 
DNA sample and minimizes false positives. The somatic variant 
caller identifies SNPs in 3 steps: 

� Considers each position in the reference genome separately 
� Counts bases at the given position for aligned reads that 

overlap the position 
� Computes a variant score that measures the quality of the 

call. 
Variant scores are computed using a Poisson model that 
excludes variants with a quality score below Q20.  

The model only calls variants for bases that are covered at 300x or 
greater for a single amplicon. 

To exclude false positive due to DNA damage, first the variants for 
each pool (FPA and FPB) are called separately, then are compared and 
combined into a single output file. 

If a variant meets the following criteria, the variant is marked as PASS 
in the variant file: 

� Must be present in both pools 

� Cumulatively have a depth of 1000 or an average depth of 500x 
per pool 
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� Have variant frequency of 3% or greater  
 
In our study only PASS variants were considered for further analysis. 
 

3.3. Variant Studio secondary analysis and 

Basespace variants annotation 

MiSeq reporter Amplicon DS workflow finally produces a VCF v4.1 
file that can be imported in Illumina VariantStudio  desktop application 
for secondary analysis. 

The Illumina VariantStudio desktop application provides commands to 
annotate variants, filter results using various filtering options, classify 
variant according to their biological impact, and export results to a report. 

Variant studio aggregates information from multiple sources, capturing 
annotations at variant, gene and transcript level. 

 Through Variant Effect Predictor (VEP) Variant Studio consults 
databases such as NCBI Reference Sequence Database (RefSeq) and 
algorithms such as Polymorphism Phenotyping (PolyPhen)3 and SIFT. 
Information about known disease association can be obtained from the 
Catalogue of Somatic Mutations in Cancer (COSMIC), ClinVar, and 
Online Mendelian Inheritance in Man (OMIM), via the ClinVar database.  

Resources such as dbSNP, the Ensembl 1,000 Genomes Project, and 
Exome Variant Server provide information about the occurrence and 
frequencies of variants within a population.  
 

3.3.1. Selection of genetic variants with effect on protein 

function 

In our study we used a sequencing kit designed to investigate mutations 
in a set of oncogenes and oncosoppressors genes.  

In order to outline a molecular profile with prognostic potential we 
decided to consider only somatic genetic variants supposed to have an 
effect on protein coding. With this approach we wanted to focus only on 
genetic alterations occurred during neoplastic transformation and in 
particular on those that, modifying proteins sequence could be drivers in 
the acquisition of tumor cells aggressive phenotype.   
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The exclusion of germinal variants, polymorphisms and non coding 
variants preserved the model from bias do to patients genetic 
predisposition and susceptibility, permitting to define a “tumor specific” 
classification model more easily applicable to further different 
populations. 

Consistently, after Variant Studio workflow, variants annotated as 
synonymous variants, 3’ prime UTR variants, inframe deletions, intron 
variants and non coding exon variants have been excluded from further 
analysis. Also missense variants considered polymorphisms because 
known to be highly frequent in normal population were excluded. 

Table 6 summarizes all 1178 genetic alterations identified by 
sequencing: following criterions described above 608 variants were 
excluded and 285 were included in further analysis. 
  



 

 

Table 6: Numeric report of all 1178 genetic variants identified by NGS. Only 285 somatic variants supposed to have effect 
on proteins functions were included in further analysis.  

1178 Genetic variants identified 
 285 Genetic variants included in the analysis 608 Genetic variants excluded from the analysis 

 
Missense 
variants 

Frameshift 
variants 

Splice 
acceptor 
variants 

Splice 
donor 

variants 
Stop gain 
variants Tot 

Synonymous 
variants 

3 prime 
UTR 

variants 

Polymorphic 
Missense 
variants  

Intron 
variants 

Non 
coding 
exon 

variants Tot 
AKT1 1 0 0 0 0 1 0 0 0 0 0 0 
ALK 1 0 0 0 0 1 0 0 0 0 0 0 
APC 2 2 0 0 5 9 78 0 0 0 0 78 

BRAF 5 0 0 0 0 5 0 0 0 0 0 0 
CDH1 1 0 0 0 0 1 8 0 0 0 0 8 

CTNNB1 16 0 0 0 0 16 0 0 0 0 0 0 
EGFR 6 0 0 0 0 6 2 0 0 1 66 69 
ERBB2 0 0 0 0 0 0 2 0 0 0 0 2 
FBXW7 19 0 0 0 5 24 1 0 0 0 0 1 
FGFR2 10 0 0 0 0 10 1 0 0 0 0 1 
FOXL2 0 0 0 0 0 0 0 0 0 0 0 0 
GNAQ 3 0 0 0 0 3 0 0 0 46 0 46 
GNAS 1 0 0 0 0 1 0 0 0 0 0 0 
KIT 2 0 0 0 0 2 27 0 0 0 0 27 

KRAS 18 0 0 0 0 18 0 35 0 0 0 35 
MAP2K1 0 0 0 0 0 0 0 0 0 0 0 0 

MET 14 0 1 0 0 15 128 0 3 0 0 131 
MSH6 3 0 0 0 0 3 1 0 0 0 0 1 
NRAS 6 0 0 0 0 6 0 0 0 0 0 0 

PDGFRA 2 0 0 0 0 2 113 0 0 0 0 113 
PIK3CA 53 0 0 0 0 53 4 0 0 0 0 4 

PTEN 40 17 3 2 16 78 4 0 0 2 0 6 
SMAD4 5 0 0 0 0 5 0 0 0 0 0 0 

SRC 0 0 0 0 0 0 1 0 0 0 0 1 
STK11 1 0 0 0 0 1 0 0 0 0 0 0 
TP53 19 2 0 0 4 25 9 0 76 0 0 85 
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3.4. Results validation by Sanger sequencing  

To confirm the NGS results reliability we decided to validate some 
mutations randomly using gold standard Sanger sequencing. In figure 2 
electropherograms show results obtained on PIK3CA exon 20 and KRAS 
exon 2. A subgroup of WT and mutated samples were analyzed and all 
NGS results were confirmed. 
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Figure 2: Electropherograms obtained by Sanger sequencing validation of 
KRAS and PIK3CA genes mutations. 
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Chapter 4 

4 Study population  

4.1.  Clinical and pathological description 

In this study we analyzed DNA from Formalin Fixed Paraffin 
Embedded tumoral tissues of 89 patients with EC. 

Our study population had a mean age of 65 years (range 42-85 years) 
and a mean BMI of 30 (range 19-59).  Fifty patients had hypertension and 
18 were affected by diabetes. 

The population was composed by 82 patients with endometrioid, type 1 
EC and 7 patients with type 2 EC. Among the 82 type 1 patients 33 had a 
G1 well differentiated tumor, 16 had a G2 tumor and 33 patients had a G3 
undifferentiated tumor. 

Thirteen tumors were classified as FIGO stage IA, 36 as IB, 17 as IC; 8 
patients had a tumor with FIGO stage II, 14 stage III (5 IIIA, 1 IIIB and 8 
IIIC) and 1 stage IV. 

49 cases were classified as Lax Kurman low grade, 36 as Lax Kurman 
high grade and 4 cases remained unclassified. 

Mean follow up was 79 months (range 1-192 months), 14 patients had 
recurrence during follow up (14/89, 15.7%) and 11 patients died because o 
the tumor (11/89, 12.3%).  

4.2.  Molecular description 

For this study only variants passing quality filter with a probable effect 
on proteins function were considered.  

Seventy-six of 89 cases presented at least one mutation in one of the 26 
genes analyzed by Trusight tumor while 13 didn’t present any somatic 
mutations in genes considered.  
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Four genes (ERBB2, FOXL2, MAP2K1, SRC) resulted non-mutated in 
all cases and were excluded.  

Further analyses were conducted on the 22 mutated genes. Only 
somatic mutation with effect on protein coding were taken into account. 
All variants considered passed Variant Studio quality filter, with a 
minimum frequency of 3%, a sequency depth of at least 1000 and a 
minimum average depth of 500x. 
PTEN and PIK3CA resulted the most mutated genes: 66/89 (74.1%) 

patients presented at least one mutation in PTEN, 37/89 (41.6%) in 

PIK3CA. 20 patients had more than one somatic mutation in PTEN and 

12 had more than one in PIK3CA. Even 4 mutations for gene in the same 

patient were identified for PIK3CA and PTEN.  
Twelve genes (APC, BRAF, CTNNB1, EGFR, FGFR2, KRAS, MET, 
NRAS, PIK3CA, PTEN, SMAD4, TP53) presented at least 5 mutations. 
Five genes (AKT1, ALK, CDH1, GNAS, PDGFRA) were mutated in only 
one patient. 
APC, CTNNB1, EGFR, APC, CTNNB1, EGFR, KRAS, MET, NRAS, 
PIK3CA, PTEN, TP53 genes presented in some patients the coexistence of 
more than one variant in different nucleotide positions. (Table 7). 
 

Gene 
Total 

number of 
mutation 

Number 
of 

mutated 
patients 

HGVSc 

AKT1 1 1 c.142C>T 

ALK 1 1 c.3521T>C 

APC 9 5 c.3925G>T, c.4630G>T, c.4729G>T, c.2626C>T, 
c.4661delA, c.4738A>G, c.2677G>A, c.4385_4386delAG 

BRAF 5 5 c.1328G>T,  c.1805C>A 

CDH1 1 1 c.1073C>T 

CTNNB1 16 14 
c.94G>C, c.122C>T, c.94G>A, c.101G>A, c.121A>G, 
c.101G>T, c.134C>T, c.98C>G, c.110C>T, c.100G>A, 
c.97T>G 

EGFR 6 5 c.2505C>A, c.2505C>A, c.2491C>T, c.2258C>T, 
c.2591C>T 
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FBXW7 24 16 

c.1660G>T, c.1719C>A, c.2009G>T, c.2065C>T, 
c.1660G>T, c.1513C>T, c.2066G>A, c.1345G>T, 
c.1436G>A, c.1634A>T, c.1393C>T, c.1694T>G, 
c.1552G>A, c.1268G>T, c.1394G>A 

FGFR2 10 10 c.755C>G 

GNAQ 3 3 c.524C>T, c.803C>T, c.562G>T 

GNAS 1 1 c.2524C>T 

KIT 2 2 c.1652C>A, c.1444G>A 

KRAS 18 16 c.35G>T, c.35G>C, c.35G>A, c.312G>T, c.38G>A, 
c.35G>T, c.34G>T 

MET 15 11 
c.1586G>T, c.638C>T, c.1586G>T, c.3817C>A, 
c.4036C>A, c.3314-1G>T, c.901A>G, c.3029C>T, 
c.1688C>T, c.2962C>T, c.504G>T 

MSH6 3 3  c.3232G>T, c.3319G>T, c.3388G>A 

NRAS 6 5 c.191A>G, c.235C>A, c.405G>T, c.181C>A, c.35G>A, 
c.122G>A 

PDGFRA 2 1 c.1780G>T, c.1921C>T 

PIK3CA 53 37 

 c.263G>A, c.1337G>T, c.1634A>G, c.302_304delTAA, 
c.3140A>G, c.3143A>G, c.113G>A, c.112C>T, 
c.3139_3140delCAinsAT, c.3010A>G, c.333G>C, 
c.3104C>T, c.1258T>C, c.3169T>C, c.241G>A, 
c.1345C>T, c.419G>A, c.277C>T, c.329_331delAAA, 
c.1351G>A, c.3062A>G, c.3073A>G, c.278G>A, c.23G>A, 
c.1634A>C, c.1633G>A, c.1625A>C, c.317G>T, 
c.353G>A, c.1624G>A 
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HGVSc= Human Genome Variation Society coding sequences 

Table 7: Summary of somatic mutations alleged to have effect on protein 
function and included in further analysis.  

 

 
 
 
 
 
 

 
 
 
 
 

PTEN 81 40 

c.748delT, c.389G>A, c.462C>A, c.388C>T, c.361G>A, 
c.193T>G, c.395G>A, c.528delT, c.388C>G, 
c.64_69delGACTTA, c.517C>T, c.697C>T, 
c.224_228delATTAT, c.217_218insA, c.406T>C, 
c.403A>G, c.1031_1040delAGCTGTACTT, c.289C>T, 
c.511C>T, c.601G>T, c.794_795insA, c.380G>A, 
c.518G>A, c.94_96delATT, c.635-1G>A, c.740_741insA, 
c.253+1G>T, c.697_700delCGAC, c.274G>T, c.295G>T, 
c.19G>T, c.16A>G, c.100G>A, c.493G>A, c.389G>T, 
c.217G>T, c.634+1G>T, 
c.85_101delTATCCAAACATTATTGC, c.795delA, 
c.179A>C, c.431A>C, c.677C>T, c.237_238insA, 
c.464A>G, c.165-2A>G, c.631_632insG, 
c.665_678delTGAAGATATATTCC, c.37A>T, c.746T>G, 
c.635-1G>C, c.511C>A, c.610delC, c.389delG, c.385G>A, 
c.476G>T, c.323T>A 

SMAD4 5 5 c.1544G>T, c.1612G>A, c.1609G>T, c.1487G>A 

STK11 1 1 c.929G>A 

TP53 25 22 

c.659A>G, c.610G>T, c.1091C>A, c.645T>A, c.817C>T, 
c.659A>G, c.523C>T, c.359A>C, c.475G>A, c.637C>T, 
c.365_366delTG, c.524G>A, c.800G>A, c.380C>T, 
c.140delC, c.799C>T, c.742C>T, c.743G>A, c.452C>G, 
c.993G>T 
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Chapter 5 

5 Unsupervised identification of two 

population subgroups with different 

prognosis 

5.1.  Unsupervised hierarchical clustering analysis 

We used an unsupervised hierarchical clustering analysis to 
automatically subdivide our EC patients in two groups with different 
molecular characteristics to principally understand if this small genetic 
profile obtained by Trusight Tumor could be sufficient to individuate any 
differences within our study population. 

We decided to extract two clusters, hoping to obtain two numerically 
comparable groups of patients and to avoid the formation of subgroups too 
small to be statistically analyzed. 

Unsupervised hierarchical clustering analysis was conducted 
considering the number of non-silent mutations occurred in each gene for 
each patient. Variables were considered as ordinal values with a range 
from 0 (no mutation) to 4. Euclidean distance was used to compute 
distance measures when clusters are generated in order to highlight the 
difference between the number of mutations. Ward agglomerative 
hierarchical clustering procedure was applied. Only data obtained from 
sequencing were used as attributes in the analysis, none clinical variable 
was included. 

Clustering analysis derive a first cluster composed by 23 cases (cluster 
1) and a second cluster composed by 66 cases (cluster 2). Interestingly, no 
G1 well differentiated EC are present in cluster 1 (Figure 3). 
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Figure 3: Binary unsupervised hierarchical clustering      
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5.2. Overall survival and disease free survival 

analysis  

To determinate if molecular based clusterization could be useful to 
differentiate patients with different prognosis independently from 
histological characteristics, a Cox proportion hazard model was applied to 
compare overall survival and disease free survival in the two clusters. 

Initially, the analysis was conducted considering total population (89 
patients). Table 8 summarizes the number of events of death and 
recurrence registered in total population and reported the hazard ratio 
between the two clusters. Differences between the two groups didn’t 
reached significance but, in particular for disease free survival, an 
interesting difference was observed in the percentage of events registered 
in the two groups. Considering EC, in which the events of death and 
recurrence are normally a small percentage, a difference from 22% for 
cluster 1 to 14% for cluster 2 could be clinically interesting, the lack of a 
significance in statistical analysis could probably be due to the small 
number of patients included in the study. 

The Kaplan Meier curves (Figure 4) effectively show this different 
trend of DFS between the two clusters.  

 

 

Table 8: Cox proportional hazard model for overall survival and disease 
free survival comparison between the 2 clusters. Total population (89 
patients) was considered. 

 

Total Population 

   
Patients 

Events 
N,(%) 

HR 
Logrank 
P value 

Overall 
Survival 

Cluster 1 23 4 (17%) - - 

Cluster 2 66 7 (11%) 0.46 0.205 

Disease Free 
Survival 

Cluster 1 23 5 (22%) - - 

Cluster 2 66 9 (14%) 0.42 0.119 
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Figure 4: Kaplan Meier curves of overall survival and disease free 
survival in the 2 clusters. Total population (89 patients) was considered. 

The same analysis was also carried on considering only patients with a 
histotype 1 EC (82 cases), to evaluate if molecular clusterization could be 
differently applied to subpopulations with different histological 
characteristics. In this case Cox proportion hazard model demonstrated a 
significant difference (Logrank P value= 0.033) in overall survival 
between the two clusters, in particular cluster 2 presented a 4 times lower 
risk of death because of the tumor (HR=0.26) (Table 9). 

Disease free survival analysis didn’t result in a significant difference 
between the two clusters but showed an interesting trend (Logrank P 
value= 0.108), observable in Kaplan Meier curves (Figure 5), as already 
described for total population. We think that the lack of significance of 
this data could be due the small number of events considered and our 
observation could be reinforced increasing the number of cases 
considered. 
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Histotype 1 Population 

  
Patients 

Events 
N, (%) 

HR 
Logrank 
P value 

Overall 
Survival 

Cluster 1 20 4 (20%) - - 

Cluster 2 62 5 (8%) 0.26 0.033 

Disease Free 
Survival 

Cluster 1 20 4 (20%) - - 

Cluster 2 62 7 (11%) 0.38 0.108 

 

Table 9: Cox proportional hazard model for overall survival and disease 
free survival comparison between the 2 clusters. Type I EC population (82 
patients) was considered. 

 

Figure 5: Kaplan Meier curves of overall survival and disease free 
survival in the 2 clusters. Type I EC population (82 patients) was 
considered. 

 
Although it is clear the need to enlarge the study population to confirm 

survival differences between the two groups obtained by molecular 
clusterization, we judge the method as an useful tool for distinguish “good 
prognosis” EC patients from “poor prognosis” EC patients. 
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As clustering conformation suggested (figure 3), we decided to 
evaluate also samples clusterization and prognostic profiles considering to 
subdivide overall population in four clusters instead of two. 
The new clustering analysis generated numerically heterogeneous groups 
of patients (Figure 6A) and Cox analysis demonstrated that not 
significantly differences in overall survival (Figure 6B) (Logrank P value 
=0.263)  and disease free survival (Figure 6C) (Logrank P value =0.379) 
can be observed between the 4 population clusters. 

 

 
 

Figure 6: K=4 hierarchical clustering (A) and Kaplan Meier curves 
representing overall survival (B) and disease free survival (C) trend in EC 
population subdivided in 4 clusters.  
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Chapter 6 

6  Characterization of the generated 

prognostic clusters  

6.1. Statistical analysis of frequency of the 

clinical-pathological characteristics between 

the two clusters 

After a first evaluation of the capability of the clusterization method to 
distinguish two groups with different prognosis we performed some 
statistical association analysis to investigate how the unsupervised 
approach subdivided samples. 

Fisher test was used to analyze statistical association between 
clusterization and clinic-pathological characteristics of EC patients. 

Table 10 summarizes the frequencies of clinical features within the two 
clusters. Very intriguingly data show a strong association between 
clusterization and tumor grading (P value <0.001), in particular the 
molecular model perfectly distinguish type 1 G1 tumors, localizing as 
expected all these cases in the “good prognosis” cluster 2. Also Lax 
Kurman histological classification resulted significantly associated with 
cluster subdivision, as expected about the 85% of the low grade tumors 
were classified in cluster 2. 

No differences of age, BMI, FIGO stage, lymph nodes positivity 
between the two clusters was observed. 
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Table 10: Distribution of clinical features within the two clusters. P value 
were calculated performing Fisher test 

  
These data suggest that the molecular clusterization based on Trusight 
tumor 26 profiling could be particularly useful to distinguish tumor at 
different histological grades and could be used to support cases where the 
histopathology classification results particularly difficult.  
Subsequently, we tried to understand if the unsupervised clusterization 
was driven by specific mutated genes and if some genetic variants or a 
different mutational load were characteristic of the two clusters.  

  
CLUSTER 

 

  
1 

N, (%) 
2 

N,(%) 
P value 

Tot 
 

23 66 
 

Age 64.8±10.1 66.6±11.7 64.1±9.6 0.328 

BMI 30.7±8.4 31.8±10.0 30.4±7.9 0.523 

Grade 
   

<0.001 

G1 33 0 (0.0) 33 (100.0) 
 

G2 16 7 (43.8) 9 (56.2) 
 

G3 33 13 (39.4) 20 (60.6) 
 

Histotype 2 7 3 (42.9) 4 (57.1) 
 

Lax Kurman 
   

0.037 

Low 49 7 (14.3) 42 (85.7) 
 

High 36 13 (36.1) 23 (63.9) 
 

NA 4 3 1 
 

FIGO Stage 
   

0.522 

I -II 74 18 (24.3) 56 (75.7) 
 

III-IV 15 5 (33.3) 10 (66.7) 
 

Lymph node positivity 
   

1 

0 80 21 (26.2) 59 (73.8) 
 

At least 1 9 2 (22.2) 7 (77.8) 
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6.2. Representation of the gene variants 

frequencies between the two clusters 

In order to investigate the molecular aspect of the two clusters and the 
drivers responsible for their formation, we generated an heat map that, 
preserving patients subdivision, represent the number of mutation 
occurred in each gene for each case (Figure 7). Y axis show clusters 
dendrogram, each row represent a patient and a color codify for the 
histological grade of the tumor while X axis reports the gene list. In each 
column the number of mutations of a gene in different samples are 
represented. 
Some molecular aspects resulted particular evident in heat map 
representation: 

• no mutations in APC gene were found in 66 patients in cluster 2, 
while 9 mutations in 5/23 patients were observed in cluster 1 
• no mutations in KRAS were observed in cluster 1, while 14 
patients in cluster 2 presented at least one KRAS mutation 
• 23/23 patients in cluster 1 and 14/66 in cluster 2 presented 
PIK3CA mutations, but all tumors presenting more than one variant 
of the gene were localized in cluster 1 
• In cluster 1 19/23 patients presented both PIK3CA and PTEN 
mutation. In cluster 2 the coexistence of these mutated genes was 
observed only in 9/66 cases. 
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Figure 7: Heat map representation of gene mutations distribution in 
patients subdivided in 2 clusters 
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6.3. Statistical analysis of frequency of genes 

mutations between the two clusters 

In order to statistically investigate the observations listed above and 
identify genes principally associated to the clustering, we analyzed the 
frequencies of mutations of each gene in the two clusters. Fisher test was 
used to recognize significant associations. Initially all genes were 
evaluated but only most interesting ones: with at least 5 mutations in our 
samples and with lower P values in gene-cluster association analysis, were 
showed in table 11. These genes (APC, CTNNB1, KRAS, PIK3CA, 
PTEN, SMAD4 and TP53) had been the only ones considered in further 
analysis.  

A generalized linear model was conducted considering all 7 genes in a 
multivariate analysis, to discover most significant associations and to 
individuate principal drivers of hierarchical clustering. 

Statistical univariate analysis confirmed the significantly different 
distribution of APC, CTNNB1, KRAS, PIK3CA, PTEN, as observed in 
heat map. In addition, total mutational load (calculated considering all 26 
Trusight tumor genes) was found to be statistically different in the two 
clusters, too: while in “bad prognosis” cluster 1 a mean of 5.8 mutations 
for patient was observed, in cluster 2 the mean mutational load was only 
2.3, suggesting as expected that the coexistence of a larger number of 
mutations could influence the development of a worse tumor phenotype.  

Multivariate analysis confirmed in particular the significance of APC, 
CTNNB1 and PIK3CA mutations different distribution, suggesting a 
possible role of these gene mutational profiles as drivers of the cluster 
generation. 

Based on the strong association described in table 11 and on the role of 
some genes mutations in clustering formation we also investigated if 
mutation of these genes resulted directly associated to different 
histological grades. 

 
 
 

  



Characterization of the generated prognostic clusters 
 

46 

 

 
 
 

  
Cluster 

 
 

  
1 2 

Univariate 
Analysis  

P 

Multivariate 
analysis 

P 
Total patients 89 23 66 

 
 

APC 
   

<0.001 0.002 
0 84 (94.4) 18 (78.3) 66 (100.0) 

 
 

1 2 (2.2) 2 (8.7) 0 (0.0) 
 

 
More than 1 3 (3.4) 3 (13.0) 0 (0.0) 

 
 

CTNNB1 
   

0.001 0.008 
0 65 (84.3) 14 (60.9) 61 (92.4) 

 
 

1 13 (14.6) 8 (34.8) 5 (7.6) 
 

 
More than 1 1 (1.1) 1 (4.3) 0 (0.0) 

 
 

KRAS 
   

0.021 0.067 
0 73 (82.0) 23 (100.0) 50 (75.8) 

 
 

1 14 (15.7) 0 (0.0) 14 (21.2) 
 

 
More than 1 2 (2.3) 0 (0.0) 2 (3.0) 

 
 

PIK3CA 
   

<0.001 <0.001 
0 52 (58.4) 0 (0.0) 52 (78.8) 

 
 

1 25 (28.1) 11 (47.8) 14 (21.2) 
 

 
More than 1 12 (13.5) 12 (52.2) 0 (0.0) 

 
 

PTEN 
   

0.049 0.255 
0 33 (37.1) 4 (17.4) 29 (43.9) 

 
 

1 36 (40.4) 11 (47.8) 25 (37.9) 
 

 
More than 1 20 (22.5) 8 (34.8) 12 (18.2) 

 
 

SMAD4 
   

0.106 0.960 
0 84 (94.4) 20 (87.0) 64 (97.0) 

 
 

1 5 (5.6) 3 (13.0) 2 (3.0) 
 

 
More than 1 0 (0.0) 0 (0.0) 0 (0.0) 

 
 

TP53 
   

0.186 0.042 
0 67 (75.3) 15 (65.2) 52 (78.8) 

 
 

1 19 (21.3) 6 (28.1) 13 (19.7) 
 

 
More than 1 3 (3.4) 2 (87.0) 1 (1.5) 

 
 

Total Mutational Load 
 

5.8±3.1 2.3±2.3 <0.001 0.834 
 

Table 11: Univariate and multivariate analysis of association between the 
mutational status of 7 genes (considered the most interesting) and clusters 
subdivision 
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Table 12 shows the significant association of CTNNB1, KRAS, 
PIK3CA, SMAD4 and TP53 with tumor grading.  

 

 G1 P G2 P G3 P Type 2 P 

Total 
patients  

33 
 

16 
 

33 
 

7 
 

APC  
 

- 
 

0.596 
 

0.114 
 

0.078 
0  33 (100.0) 

 
15 (93.8) 

 
30 (90.9) 

 
6 (85.7) 

 
1  0 (0.0) 

 
1 (6.2) 

 
1 (3.0) 

 
0 (0.0) 

 
More than 1  0 (0.0) 

 
0 (0.0) 

 
2 (6.1) 

 
1 (14.3) 

 
CTNNB1  

 
- 

 
<0.001 

 
0.239 

 
0.861 

0  32 (97.0) 
 

8 (50.0) 
 

28 (84.8) 
 

7 (100.0) 
 

1  1 (3.0) 
 

7 (43.8) 
 

5 (15.2) 
 

0 (0.0) 
 

More than 1  0 (0.0) 
 

1 (6.2) 
 

0 (0.0) 
 

0 (0.0) 
 

KRAS  
 

- 
 

0.008 
 

0.098 
 

0.051 
0  23 (69.7) 

 
16 (100.0) 

 
27 (81.8) 

 
7 (100.0) 

 
1  8 (24.2) 

 
0 (0.0) 

 
6 (18.2) 

 
0 (0.0) 

 
More than 1  2 (6.1) 

 
0 (0.0) 

 
0 (0.0) 

 
0 (0.0) 

 
PIK3CA  

 
- 

 
0.050 

 
0.001 

 
0.027 

0  26(78.8) 
 

7(43.8) 
 

17 (51.5) 
 

2 (28.6) 
 

1  7 (21.2) 
 

8 (50.0) 
 

6 (18.2) 
 

4 (57.1) 
 

More than 1  0 (0.0) 
 

1 (6.2) 
 

10 (30.3) 
 

1 (14.3) 
 

PTEN  
 

- 
 

0.591 
 

0.525 
 

0.485 
0  12 (36.4) 

 
4 (25.0) 

 
14 (42.4) 

 
3 (42.9) 

 
1  11 (33.3) 

 
11 (68.8) 

 
11 (33.3) 

 
3 (42.9) 

 
More than 1  10 (30.3) 

 
1 (6.2) 

 
8 (24.3) 

 
1 (14.2) 

 
SMAD4  

 
- 

 
0.659 

 
0.584 

 
0.008 

0  32 (97.0) 
 

16 (100.0) 
 

31 (100.0) 
 

5 (71.4) 
 

1  1 (3.0) 
 

0 (0.0) 
 

2 (0.0) 
 

2 (28.6) 
 

More than 1  0 (0.0) 
 

0 (0.0) 
 

0 (0.0) 
 

0 (0.0) 
 

TP53  
 

- 
 

0.502 
 

0.021 
 

<0.001 

0  30 (90.9) 
 

13 (81.2) 
 

22 (66.7) 
 

2 (28.6) 
 

1  3 (9.1) 
 

3 (18.8) 
 

10 (30.3) 
 

3 (42.8) 
 

More than 1  0 (0.0) 
 

0 (0.0) 
 

1 (3.0) 
 

2 (28.6) 
 

Total 
Mutational 
Load  

2.5±2.6 - 2.6±1.5 0.928 4.0±3.6 0.044 4.3±2.8 0.151 

Table 12: Analysis of association between the mutational status of genes 
and tumor histological grading 
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Table shows that for some genes (CTNNB1, KRAS, TP53) the 
association between mutational status and histology of ECs was observed 
only for some specific grades of tumor differentiation. PIK3CA was the 
only gene which mutational status resulted associated to all tumor grades. 
These data sustain the hypothesis that the analysis of single genes could 
not be sufficient to distinguish tumor with different prognostic 
characteristics but the definition of a mutational profile based on the 
investigation of a small group of genes could be more effective in 
supporting tumor outcome prediction. 

 

6.4. Lasso and Elastic-Net Regularized 

Generalized Linear Model to investigate genes 

effect on patients survival 

We applied a Lasso and Elastic-Net Regularized Generalized linear 
model (glmnet) in order to evaluate if the mutational status of a single 
gene could independently influence patients’ overall survival and disease 
free survival. 
As shown in figure 8A the glmnet applied to overall survival analysis 
presented an optimal lambda value of -3.2, associated with the most 
regularized model. At this lambda value the model maintained only two 
covariates coefficients activated: CTNNB1 and TP53 presented a 
coefficient of 0.91 and 0.26 respectively, suggesting a possible 
independent effect of these genes on patients’ overall survival. (Figure 
8B) 
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Figure 8: Glmnet used to investigate single gene influence on Overall 
survival. A. Cross validated error plot for the investigation of the optimal 
lambda associated with the most regularized model.  B. Plot of single genes 
glmnet coefficient trend in relation to log (lambda).  

The same analysis applied to disease free survival presented an optimal 
lambda at -2.8 but no covariant coefficients were kept activated, 
suggesting that none of the variables considered have an independent 
effect on patients disease free survival (Figure 9 A-B) 

 
 

 
Figure 9: Glmnet used to investigate single gene influence on Disease free 
survival. A. Cross validated error plot for the investigation of the optimal 
lambda associated with the most regularized model. B. Plot of single genes 
glmnet coefficient trend in relation to log (lambda). 
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Considered together glmnet results supported the necessity to evaluate 
a more complex molecular profile that integrates the mutational status of 
the small set of genes considered to generate a prognostic model for 
endometrial cancer. 

 
 

6.5. Data mining approaches used to define 

classification rules driving clusterization 

After the evaluation of the statistical association existing between the 
presence of mutations in some genes, the formation of the two clusters and 
the patients’ survival we wanted to generate a sequence of classification 
rules that could drive the definition of two groups of EC patients with 
different prognosis. 

To do that we used Orange Canvas software to apply three different 
methods of data mining: classification tree, CN2 rules analysis and linear 
regression for nomogram generation. In all three approaches, we 
submitted the mutational status of genes APC, CTNNB1, KRAS, 
PIK3CA, PTEN, SMAD4, TP53 as attribute and considered cluster 1 and 
2 as classes. 

6.5.1. Classification tree 

As first method of data mining for cluster generation we created a 
classification tree, using information gain ratio as attribute selection 
criterion (Figure 10). 
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Figure 10: Decision tree for tumors classification in 2 prognostic clusters. 
The 7 genes mutational status considered were used as attributes. In 
squares: first row reports the majority class, second row expresses the 
frequency of the majority class, third row reports the number of instances 
considered in that leaf, fourth row shows the class of destination or the 
next attribute that should be evaluated. 
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We obtained a decision tree were PIK3CA, PTEN and CTNNB1 mutations 

resulted to be the principal drivers in cluster generation. 
In particular, to generate two clusters of EC patients with different 
prognosis, the method proceeded as follow: 

• First step: evaluation of PIK3CA mutational status   
o If tumor presented more than 1 PIK3CA mutation it was 

classified in cluster 1 (12 cases) 
o If tumor presented no mutation in PIK3CA gene it was 

classified in cluster 2 (52 cases) 
o If tumor presented only 1 PIK3CA mutation, PTEN had 

to be evaluated 
• Second Step: evaluation of PTEN mutational status 

o If tumor presented 1 mutation in PIK3CA and no 
mutation in PTEN it was classified in cluster 2 (5 cases) 

o If tumor present 1 mutation in PIK3CA and at least one 
mutation in PTEN, CTNNB1 had to be evaluated 

• Third step: evaluation of CTNNB1 mutational status 
o If tumor presented 1 mutation in PIK3CA, at least one 

mutation in PTEN and at least one mutation in 
CTNNB1, it was classified in cluster 1 (6 cases) 

o Otherwise tumors were classified in cluster 2 but for 
these cases the method was not so accurate  

A 10-fold cross validation was used to evaluate this data mining 
method. Decision tree proposed above had 90% classification accuracy, 
76% Matthew Correlation Coefficient, 74% sensitivity and 97% 
specificity. 
 

6.5.2. CN2 analysis 

As second method of data mining for the definition of rules driving our 
cluster generation we performed a CN2 analysis. 

The CN2 algorithm is a classification technique designed for the 
efficient induction of simple, comprehensible rules of form “if cond then 
predict class”, even in domains where noise may be present. 

Table 13 summarizes The CN2 rules generated for the distinction of the 
two clusters we created. 
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Rule 

quality 
Coverage IF THEN 

0.929 12 PIK3CA>1 CLUSTER 1 

0.875 6 
CTNNB1>0 and 
PTEN>0 and 
PIK3CA>0 

CLUSTER 1 

0.750 2 APC>0 CLUSTER 1 

0.308 11 
PIK3CA>0 and 
TP53=0 

CLUSTER 1 

0.981 52 PIK3CA=0 CLUSTER 2 

0.857 5 
PIK3CA<=1 and 
PTEN=0 

CLUSTER 2 

0.800 3 KRAS>0 CLUSTER 2 

 

Table 13: CN2 rules summary and quality evaluation 

 

In this case the method, evaluated by a 10-fold cross validation, 
presented 93% classification accuracy, 82% Matthew correlation 
coefficient, 74% sensitivity and 100% specificity. 

 
Both data mining methods described confirmed that the majority of EC 

cases could be classified in 2 groups with different prognosis through the 
analysis at first of PIK3CA, PTEN and CTNNB1 mutational status. Small 
difference observed between rules generated with decision tree and CN2 
were probably due to the analysis parameters fixed for each one. 
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6.5.3. Logistic regression and nomogram generation 

Considering concordance and differences between the two data mining 
methods described above we decided to develop a third approach, a 
logistic regression and nomogram generation, to integrate together the 
effect of all considered genes mutational load. 

The nomogram, based on a logistic regression analysis, was designed to 
calculate the probability for the patients to take part to cluster 1 (bad 
prognosis) on the basis of the number of variants sequenced on APC, 
CTNNB1, KRAS, PIK3CA, PTEN, SMAD4, TP53. 

Nomogram represents an easy-to-use system, which can be easily 
applied in the clinic, to compute the probability for each patient to belong 
to the bad prognosis group starting from mutational profiling results.  

To use this tool clinician have to regulate each ruler of the nomogram 
in reference to the number of mutation occurred in each gene, and 
automatically the method calculates the probability of cluster 1 
membership (Figure 11). 

In this case the method, evaluated by a 10-fold cross validation, 
presented 89% classification accuracy, 73% Matthew correlation 
coefficient, 78% sensitivity and 94% specificity. 
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Figure 11: Nomogram tool to calculate patients’ probability to belong to 
the cluster with bad prognosis. Probability scale is expressed as log odd 
ratio  
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6.6.  Investigation of genes variants damaging 

effects in clusters 

6.6.1.  PaPI score calculation 

The analysis described above suggested the role of some genes 
mutations to predict prognosis in endometrial tumors. Interestingly in 
some cases data demonstrated that not only the existence of mutated genes 
in tumor DNA, but also the number of mutation registered in each of these 
genes can influence patient’s outcome. 

Based on this observation we used PaPI method to quantify the real 
damaging effect of each mutated genes taking into account both the type 
and the number of variations occurred on each gene, for each patient.  

PaPI is a machine learning ensemble method [27], able to score the 
functional effect of coding single nucleotide variants, deletions, insertions 
and indels. The method is based on a pseudo amino acid composition 
model integrated with Polyphen2 and Sift algorithms of prediction. The 
PaPI score reflects the probability for the variant to be classified as 
damaging. The score varies from 0 to 1: values from 0.5 to 1 indicate that 
the variant is damaging, otherwise it is considered as benign.  

The PaPI method takes into account also the existence of different 
transcripts for a single gene, giving in some case more than one more PaPI 
score for variant. We calculated the final score as follow: 

• we selected the maximum PaPI score for each variant 

• when more than one variant for gene coexisted in the same 
tumor we summed the maximum PaPI score of each one 

In this way we obtained a single value of PaPI score for each gene, in 
each patient. 

 
To evaluate if mutated genes had different damaging effect in the two 

generated clusters, we compared the PaPI score distribution for each gene 
in the two groups (Figure 12). Wilcoxon test was used to evaluate 
statistical differences between curves.  
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Figure 12: Curves of distribution of gene PaPI score in the 2 clusters. P 
values were calculated performing Wilcoxon test. 

 
Noticeably, this approach further confirmed the previously described 

results. APC, CTNNB1, KRAS and PIK3CA displayed a PaPI score 
distribution significantly different between the two clusters. APC and 
CTNNB1 curves show that a PaPI score different to 0 is more frequent in 
cluster 1 (bad prognosis) while opposite situation was observed for 
KRAS.  PIK3CA curves show a higher frequence of Papi Score ranging 
from 1 to 3 in cluster 1.  

This data are in line with conclusions drawn from the analysis of the 
mutational load. PaPI evaluation of single variants indicated that most of 
those have a score near to 1 (damaging) so that gene PaPI score and 
mutational load often overlap. 
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Chapter 7 

7 Discussion 

7.1. Proposal of an alternative molecular-

based approach of prognosis prediction in 

Endometrial cancer  

To date histological characterization is the gold standard for EC 
prognosis. Different tumor histological criterion such as Bockman typing, 
FIGO stage, grading and Lax Kurman binary classification [4, 19-24] can 
be used to predict EC outcome.  

Nevertheless, in some morphologically intermediate and doubtful 
cases, anatomo-pathological classification and risk based stratification 
turns out to be insufficient and inefficient. 

In this study we explored the mutational profile of a selected cohort of 
EC with the aim of developing a genetic signature to improve the current 
risk based stratification of EC patients.  

We used the Trusight tumor 26 kit Illumina to analyze the occurrence 
of mutations in a panel of 26 cancer related genes, in a population of 89 
EC with different histological characteristics and different outcome. An 
unsupervised hierarchical clustering analysis demonstrated that the 
mutational profiles obtained from the Trusight tumor analysis effectively 
separate endometrial tumors in two groups characterized by a different 
prognosis (good and bad).  

Subsequent analysis demonstrated that this clusterization independently 
identifies G1 well differentiated endometrioid EC, assigning all these 
tumors, characterized by a positive outcome, to the same “good 
prognosis” cluster. 

Next, statistical analysis were performed to define which mutated genes 
investigated in the NGS panel could be considered drivers of the 
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prognostic clusterization. Three different data mining strategies (decision 
trees, CN2 analysis and logistic regression) were used to define a list of 
classification rules applicable to EC risk based stratification. APC, 
CTNNB1, PIK3CA, PTEN, SMAD4 and TP53 resulted the most 
interesting genes. Rules definition indicates that not only the presence or 
absence of somatic and damaging mutations on these genes, but also the 
number of variants occurred on the same gene in each sample can be 
determinant in predicting patient outcome. 

Interestingly PIK3CA and PTEN mutations were the principal 
determinants of the patients prognostic clusterization. These mutations 
were already described as very frequent in EC and often coexistent in this 
kind of tumor. Accumulation of more than one PIK3CA mutations was 
sufficient to classify patient in the “bad prognosis” cluster 1.  

By contrast, in case of presence of a single PIK3CA mutation, the 
existence of PTEN variants was considered the second classification 
criteria to predict negative outcome (cluster 1). 

The phosphoinositide 3-kinase (PI3K) pathway regulates key aspects of 
cancer biology including metabolism, cellular growth, survival and 
resistance to apoptosis [28].  

Upon ligand stimulation of tyrosine kinase receptors (RTK), PI3K 
phosphorylates the lipid phosphatidylinositol 4,5- biphosphate (PIP2), 
creating phosphatidylinositol 3,4,5- triphosphate (PIP3) [29]. PIP3 recruits 
pleckstrin homology domain-containing proteins, including the protein 
kinase AKT, to the membrane. Among its targets, AKT phosphorylates 
and inhibits tuberous sclerosis complex 2 (TSC2) within the multiprotein 
TSC complex, which indirectly inhibits mTOR complex 1 (mTORC1). 
Hence, PI3K-AKT signaling activates mTORC1, a key regulator of 
metabolism and biosynthetic processes[30]. PTEN hydrolyzes PIP3 back 
to PIP2, deactivating the pathway [31].  

The PI3K/AKT/mTOR pathway is also involved in cross-talk with 
other signaling pathways, including the RAS/RAF/MEK [32] and estrogen 
receptor (ER) pathways [33] (Figure 13)[34].  
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Figure 13: Overview of the PI3K/AKT/mTOR pathway, and cross-talk 
with other pathways relevant to endometrial cancer [34] 

Noticeably, estrogenic signaling, that is considered the principal risk 
factor for type I EC, is known to heavily cooperate during tumor 
progression, confirming the existence of a functional correlation between 
tumor genetic profiles and phenotypic characteristics. Likely, a prolonged 
exposure to estrogen during women life induces activation of PI3K/AKT 
signaling, favoring oncogenic mechanisms. Later mutations on crucial 
genes could maintain PI3K/AKT pathway constitutively activated after the 
end of the estrogen exposure. 

Based on our observations and on literature reports that constitutive 
activation of the PI3K/AKT pathway in endometrial cancer occurs most 
commonly through inactivating mutations of PTEN tumor suppressor or 
activating variants in PIK3CA [35]. 

Given the frequency of abnormalities in the PI3K/AKT pathway, this 
signaling pathway represents one of the most promising targets for 
endometrial cancer therapy. Thus, the identification of genetic mutations 
within key genes of this pathway, like the one we have identified in our 
analysis, could represent valuable markers for patient selection and 
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therapy response monitoring. Figure 14 summarizes the principal 
PI3K/AKT pathway inhibitors developed in preclinical studies. These 
molecules fall into 4 main categories: mTOR inhibitors, PI3K inhibitors, 
dual mTOR/PI3K inhibitors, and AKT inhibitors[34]. 

 

 
 

Figure 14: PI3K/AKT/mTOR pathway inhibitors [34] 

 
These data suggest that the approach described by this work could 

became a double function tool:  
• it represent an easy ad relatively economic molecular profiling 

of EC that could be associated to histological classification to 
make tumor prognosis in particular in doubtful, intermediate 
cases 

• it could represent a rapid method to investigate mutational status 
of the genes that up to date are considered the most promising 
molecular target for EC therapy. 
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7.2. Related works and molecular models 

comparison 

In 2013 TCGA provided new information on the genetic and molecular 
events that underlie EC progression and identified four classes of ECs 
with different molecular profiles that correlate with different patterns of 
survival.  

As already discussed in paragraph 1.4.2 molecular profiles proposed by 
this work integrated different multiple -omics data and patients prognosis 
was based in particular on a complex molecular profiling based on genes 
mutational status, copy number alteration status and Microsatellite 
Instability [25].  

Because the complexity of the approach this stratification results still 
far to be a applied in clinical routine nevertheless more than one 
subsequent works [3] [36] tried to combine only the most relevant assays 
suggested by TCGA to generate a lower labor-intensive and cost-
prohibitive prognostic approach. 

At the moment it is not possible to compare the method we described in 
this work with that proposed by TCGA and subsequently adapted for 
clinical use because not the same genetic features were taken in 
consideration. 

In addition it is important to consider that also different NGS strategies 
were used and mutational results could not be totally comparable. TCGA 
applied a tumor/normal pairs exome sequencing, with a minimum  read-
depth of  20X  to investigate mutations occurred during neoplastic 
transformation and present at high frequency in tumor specimens. We 
used  an amplicon based target resequencing strategy, focused only on 
genes hot spot regions. Considering the heterogeneity of tumors and the 
consequent possible existence  of different cancer cell clones in the same 
specimen we decided to apply a minimum  read-depth filter of 500X to 
detect also mutations existing in a small percentage of tumor cells. These 
mutations, although present in subclones of tumor cells, may be 
responsible for relapse or therapy resistance, leading to a bad prognosis 
for the patient.  

In future, it should be interesting to integrate our model with only the 
most effective molecular tests proposed by TCGA model such as POLE 
mutational status and  MSI, to integrate our prognostic approach and try to 
correctly predict also the outcome of  the little percentage of cases 
remained uncertain.  
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7.3. Further validations of the model 

Even if promising the observations of this work are still preliminary 
and need to be corroborated in separates sets of EC. Based on the 
molecular profile, obtained by Trusight tumor next generation sequencing, 
the unsupervised hierarchical clustering generated 2 groups of patients 
with different prognosis. In particular significant differences in overall 
survival were observed between the two groups considering only 82 type I 
EC patients, while the analysis conducted on total population showed only 
a trend of difference between clusters’ survival curves. Considering total 
population, DFS varied from 22% of cluster 1 to 14% of cluster 2; the data 
could be clinically interesting considering the low rate of death and 
recurrence in EC but P value resulted higher than significance probably 
because of the low number of patients. To confirm the efficacy of the 
method in stratifying EC with different prognosis we intend to collect a 
validation set of at least 100 tumors with various histological 
characteristics. 

To perform molecular profiling in the new set of tumors we will 
generate a NGS custom panel comprehensive of the amplicons necessary 
to completely sequence only the seven genes resulted important for the 
prediction (APC, CTNNB1, PIK3CA, PTEN, SMAD4 and TP53). In this 
way we will create a smaller sequencing panel that could be economically 
advantageous both for the validation section but also, if data will be 
confirmed, for a subsequent introduction in clinical routine. 

In parallel with the profiling of a new population by next generation 
sequencing we will continue to randomly analyze some DNA samples by 
gold standard Sanger sequencing  to validate the reliability of the NGS 
results. 
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Chapter 8 

8 Conclusions 

This study presented a method for EC stratification in two groups with 
different prognosis. 

The genetic profiling was able to recognize with 100% accuracy tumors 
with endometrioid G1 characteristics. This data indicate that this method 
could be particularly useful to improve risk based prediction in those cases 
with intermediate morphological profile (normally G2) in which 
histological characteristics are not sufficient to make prognosis.   

The study proposes a user-friendly tool for the interpretation of 
molecular profiling results in order to support prognosis of EC doubtful 
cases. 

If confirmed in an independent validation set this test could be easily 
introduced in clinical routine. Clinician could propose the NGS panel 
sequencing when the histology based prognostic interpretation of the EC 
cases result difficult. A nomogram or a decision tree tool could be 
equipped to easily interpret NGS panel results and to calculate patient 
probability to have a good or bad prognosis. 
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Chapter 9 

9 Methods and supplementary 

informations 

9.1. Next generation sequencing 

9.1.1. DNA extraction and quality evaluation 

Dna was extracted from Formalin fixed paraffin embedded (FFPE) EC 
tissues using Maxwell nucleic acid extractor (Promega). 

Dna was quantified and quality evaluated using Kapa SYBR Fast qPCR 
kit as suggested by Illumina. 

 

9.1.2. Trusight Tumor kit Illumina 

Ten microliters of DNA, diluted as required after Kapa SYBR Fast 
qPCR kit, was used for each sample. 

Trusight tumor library preparation was subdivided in the following 
phases. 

• Oligo pool hybridization.  
FPA and FPB oligo pool were mixed to DNA, placed in a pre-heated 
scigene block at 95°C for 1 minute and then incubated until the 
temperature reached 40°C (about 80 minutes) 
• Removal of unbound Oligos 
Two wash step using stringent wash buffer and filter capable of size 
selection were performed on samples. 
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• Extension-ligation of bound oligos.  
Hybridized upstream and downstream oligos were connected 
together through the action of a DNA polymerase and a DNA ligase 
incubated at 37°C for 45 minutes. 
• PCR amplification 
The extension-ligation products are amplified using primers that add 
index sequencing for sample multiplexing as well as common 
adapters required for cluster generation. 

PCR program: 
95°C for 3 minutes 
27 cycles of: 
95°C for 30 seconds 
62°C for 30 seconds 
72°C for 60 seconds 
72°C for 5 minutes 
Hold at 10°C 

• PCR clean-up 
PCR products were purified using AMPure XP beads and 80% 
Ethanol washes and finally re-suspended in elution buffer 
• Libraries quality control 
Libraries quality control was performed using Agilent Technologies 
Bioanalyzer 2100_Agilent DNA 1000 kit. 
Libraries size distribution between 300 and 330 bps were considered 
adequate. 
• Libraries quantification and dilution 
Libraries was quantified using Qubit fluorimeter. All library were 
diluted to a concentration of 4 nM 
• Libraries denaturing and pooling. 
Libraries prepared for a single Miseq Run were pooled together (5 ul 
for each). 
Library pool was denaturated by incubation with 1N NaOH at room 
temperature for 5 minute and next diluted to a final concentration of 
12.5 p M. 
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9.1.3. MiSeq run 

For the sequencing of 89 EC DNA Twelve Miseq run using V2 
cartridge 300 cycles (paired end sequencing 2x121) were performed. 

MiSeq V2 cartridge 300 cycles produces about 5 Gb output and about 
15 M reads. 8 patients (16 library FPA+FPB) were pooled in the same run 
to obtain a coverage of at least 1000x, as suggested by Illumina for low 
frequency somatic variants detection.  

 

9.2. NGS data analysis 

MiSeq Reporter was used to elaborate MiSeq row data and produce 
*.fastq and *.vcf files, as described in introduction paragraph. 

Variant studio was used to visualize list of mutations occurred in each 
sample, annotate them and apply selection filters. Based on the high 
coverage obtained from these run, variant studio considered reliable 
mutation with a minimum frequency of 5%. 

9.3. Sanger Sequencing 

Sanger sequencing was performed by 3500Dx Genetic Analyzer 
(Applied Biosystem) using Big Dye Terminator V 3.1 Cycle sequencing 
kit. 

 
KRAS exon 2 Sequencing primers 
Forward: GTATTAACCTTATGTGTGACA 
Reverse: GTCCTGCACCAGTAATATGC 
 
PIK3CA exon 20 Sequencing primers 
Forward: ATCATTTGCTCCAAACTGACCA 
Reverse: TTGTGTGGAAGATCCAATCCAT 
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9.4. Hierarchical clustering analysis and 

statistical analysis 

All analysis performed in this study were elaborated using R software. 
To generate unsupervised hierarchical clustering we calculated 

euclidean distance between samples, and Ward clustering method was 
applied. 

Survival analysis was conducted applying Cox model and Kaplan 
Meier curves were generated. 

Analysis of association between clusters and clinical characteristics and 
between clusters and gene mutations were performed using Fisher test and 
generalized linear models. Association were considered statistically 
different if presented a P value lower than 0.05 

 

9.5. Data mining methods 

To generate decision tree, CN2 analysis and nomogram Orange Canvas 
software was used. In all three analysis mutational status of APC, 
CTNNB1, KRAS, PIK3CA, PTEN, SMAD4 AND TP53 were the only 
attributes considered and “cluster 1” and “cluster 2” were the two decision 
class. All attributes were defined as continuous. 

Classification accuracy, sensitivity and specificity of these method 
were calculated after a 10-fold cross-validation. 

9.5.1. Decision tree 

To generate decision tree gain ratio was used as attribute selection 
criterion.  

For pre-pruning a minimum of 5 instances for leave was fixed. For 
post-pruning the recursively merging of leaves with the same majority 
class was performed and m parameter was fixed to 1. 
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9.5.2. CN2 analysis 

In CN2 analysis default parameters were fixed: rule quality estimation 
was conducted using Laplace method, pre-puning alpha value was fixed to 
0.05 and the beam width was 5. 

9.5.3. Nomogram 

Nomogram was based on logistic regression. 
Bad prognosis cluster 1 was considered the target class. The scale for 

class probability was expressed in log odd ratio. 
 
 

9.6. PaPI Score analysis 

PaPI score of each single variant was calculated submitting all variants 
to the informatics tool available on http://papi.unipv.it/. 

A Perl script was used to select maximum PaPI score of each variant 
(in cases in which more than one transcript was considered) and then to 
summarize Papi score of the same gene in cases in which more than one 
variant for gene in the same patient was detected. 

 
PaPI distribution curves representation was generated using R software 

and Wilcoxon test was performed to statistically compare the distribution 
of Papi score for each gene between the two groups of patients. 
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