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Introduction

Let S be a topological surface of genus g with n points p1, . . . , pn removed,
called punctures of S, with negative Euler characteristic χ(S) = 2− 2g− n.
Denote by TS the Teichmüller space of S, namely

TS = {hyperbolic complete metrics on S of finite area}/Diff0(S)

where Diff0(S) denotes the group of homotopically trivial diffeomorphisms
of S.
Hyperbolic earthquakes constitute a well known class of deformations of
elements of TS . Given h ∈ TS , a closed geodesic c on (S, h) and a positive
number ω, an elementary hyperbolic left (respectively right) earthquake on
(S, h) along c with shearing amount ω cuts (S, h) along c and glues back
along c shearing towards the left (respectively right) by a factor ω, obtaining
a new element h′ ∈ TS . In general, a hyperbolic left (respectively right)
earthquake on (S, h) is the limit of elementary hyperbolic left (respectively
right) earthquakes on (S, h). Any earthquake on S determines a subset of
(S, h) foliated by geodesics, called the fault locus of the earthquake, which is
the subset along which the shearing occurs. The shearing amounts give rise
to a transverse measure on the arcs on S with the fault locus as support,
giving raise to what is called a measured geodesic lamination on S. We
will denote the space of measured geodesic laminations on S by MLS . It
turns out that any measured geodesic lamination on S is the fault locus of
a left/right earthquake ([26]). W. P. Thurston in [34] proved the following
celebrated result.

Thurston’s Earthquake Theorem, [34]. If S is a closed surface of genus
greater than 1 then for every (h, h′) ∈ TS × TS there is a unique couple of
measured geodesic laminations (λ, µ) such that

h′ = Eλl (h) = Eµr (h). (1)

This result still holds in the case n 6= 0 (see S. P. Kerckhoff, [28]).

For any h ∈ TS , the surface (S, h) is isometric to the quotient of H2 by
the action of a discrete subgroup Γ of Isom0(H2) ∼= PSL(2,R), which ex-
tends uniquely to a subgroup Γ̂ of the isometries of H3, so that Γ̂\H3 is
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6 Introduction

isomorphic to S × R. Such hyperbolic metrics on S × R are called Fuch-
sian. Denote by FS the space of Fuchsian metrics on S × R; it is called
the Fuhsian locus of S. A quasi-Fuchsian metric on S × R is a hyperbolic
metric obtained by a quasi-conformal deformation of a Fuchsian metric. A
classical result of L. Bers (see [9]) assures that quasi-Fuchsian manifolds are
determined by their conformal structures at infinity. It turns out that the
space QFS of quasi-Fuchsian metrics on S ×R is parametrized by TS ×TS .
For every η ∈ QFS there exists a minimal non-empty η-convex subset CC(η)
called the convex core of η (see [36], [21]). If η is Fuchsian, then CC(η) is
a totally geodesic surface isometric to S endowed with a hyperbolic metric.
Otherwise, CC(η) is a 3-dimensional subset of S × R with two boundary
components ∂±CC(η), each homeomorphic to S. As seen in S × R, they
are surfaces bent along a family of geodesics, a couple of measured geodesic
laminations (λ−, λ+) = Ψ(η) ∈ MLS ×MLS . Notice that the preimage
through Ψ : QFS →MLS ×MLS of the couple of void laminations is the
Fuchsian locus FS .
It is simple to check that if (λ−, λ+) ∈MLS×MLS are bending laminations
of the convex core CC(η) for a certain η ∈ QFS , then they fill up S, in the
sense that any other lamination on S must intersect at least one of them.
Moreover, the weight of any closed curve c in λ± cannot exceed π, since it

corresponds to the bending angle along c of ∂±CC(η). Denoting by FML(π)
S

the subset ofMLS×MLS of pairs of lamination satisfying those conditions,

Thurston conjectured that any couple of laminations in FML(π)
S is uniquely

realized as the bending laminations of the convex core of a quasi-Fuchsian
manifold. F. Bonahon and J.-P. Otal proved in [12] the existence of such

η ∈ QFS , providing that the image of Ψ is exactly the space FML(π)
S . In

fact they also proved the uniqueness of the preimage, when the laminations
are weighted multicurves. Moreover, with a different approach, Bonahon in
[11] proved the uniqueness of the preimage if the laminations are sufficiently
small: there exists a neighbourhood V of the Fuchsian locus such that the
restriction of Ψ on V r F is a homeomorphism onto its image.

Quasi-Fuchsian metrics have a connection with Anti de Sitter 3-dimensional
manifolds, which are locally modelled by the space

AdS3 = {[x] ∈ PR3 | 〈x, x〉(2,2) < 0}

where 〈x, x〉(2,2) = x2
1 + x2

2 − x2
3 − x2

4 for every x ∈ R4. Such space inher-
its a Lorentzian metric, induced from 〈∗, ∗〉(2,2). An AdS3-spacetime M is
globally hyperbolic if it contains a Cauchy surface, i.e. a space-like surface
S intersecting each inextensible time-like geodesic exactly once. As a con-
sequence, there is a homeomorphism τ : R× S → M with τ({0} × S) = S.
Also, the metric on M induced on R × S has the form −dt2 + ht where ht
is a continuous family of Riemannian metrics on S. See [6], [24].
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A globally hyperbolic AdS-spacetime is globally hyperbolic compact (GHC)
if it admits a closed Cauchy surface. In [29] G. Mess studied the space of
globally hyperbolic maximal compact (GHMC) AdS3-spacetimes (maximal-
ity of GHC is considered for isometric embeddings), pointing out striking
analogies with the quasi-Fuchsian case. See also [2]. It turns out that
GHMC AdS3-spacetimes are determined by a couple of hyperbolic metrics
on a surface S, showing that the relevant moduli space is TS×TS . However,
the correspondence is not based on an asymptotic compactification. The
point here is that the orientation-preserving isometry group of AdS3 is the
product PSL(2,R) × PSL(2,R); if (ρL, ρR) is the holonomy of a MGHC
AdS3-spacetime M = R × S, Mess showed that ρL and ρR are Fuchsian
representations. Let us denote by hL and hR the hyperbolic metrics on
S associated respectively with ρL and ρR. As in the quasi-Fuchsian case, a
GHMC AdS3-manifold contains a convex core, whose boundary components
are two hyperbolic surfaces (S+, h+), (S−, h−) bent along two pleated lami-
nations λ− and λ+ respectively. Mess discovered a simple relation in terms
of earthquakes between the immersion data of the boundary of the convex
core and the left and right hyperbolic metrics:

hR = Eλ+r (h+) = Eλ+r
(
(E

λ+
l )−1(hL)

)
hR = E

λ−
l (h−) = E

λ−
l

(
(Eλ−r )−1(hL)

)
.

The inverse of a right earthquake is a left earthquake, and vice versa. There-
fore, Mess actually gave a proof of Thurston’s Earthquake Theorem in the
GHMC AdS3-manifold language.
Furthermore, a question on bending loci was arisen in this AdS setting:
which couples of laminations on S can be realized as the bending lamina-
tions of a GHMC AdS3-spacetime R × S? As in the hyperbolic setting, it
can be easily checked that if λ, µ are such bending laminations, then they
must fill up S (whereas the condition on weights of simple curves is not
meaningful in this setting). Conjecturally, every pair of filling laminations
can be uniquely realized as the bending locus of a GHMC AdS3-spacetime.
Several generalization of Mess results have been considered in the study of
Anti de Sitter geometry in dimension 3. In particular the case of non com-
pact surfaces has been considered by different authors (see for instance: [15]
for surfaces with closed geodesic boundaries, [16] for closed surfaces with
cone singularities,[20] for ideal polygons in H2).

Multi-black holes (MBH) manifolds, which take their name from physics
literature, are analogous to GHMC AdS3-manifolds. However, they are foli-
ated by non-compact space-like surfaces, and yet they contain inextendible
causal curves which do not meet all the surfaces of the foliation. Those
spacetimes admit a causal bordification that is the union of time-like annuli
(one for each boundary component). Denoting by T ′S the Teichmüller space
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of the metrics on S for which the completion has closed geodesic bound-
ary, T. Barbot in [3] and [4] showed that MBH manifolds are parametrized
by T ′S × T ′S . R. Benedetti and F. Bonsante in [7] proved that for every
(hl, hr) ∈ T ′S ×T ′S and for every right (respectively left) earthquake between
hl and hr there is a unique space-like, convex, bent, inextendible surface
in the MBH manifold M associated with (hl, hr). Bonsante, Krasnov and
Schlenker proved that bent surfaces in M associated with earthquakes be-
tween hl and hr do not meet “at infinity” the asymptotic boundary of M ,
and conversely any bent surface in a MBH manifold that does not accumu-
late on the asymptotic boundary is associated with an earthquake between
(S, hl) and (S, hr). Using this characterization they get the following earth-
quake theorem for hyperbolic surfaces with closed geodesic boundary.

Theorem (F. Bonsante, K. Krasnov, J.-M. Schlenker, [15]). For
every (hl, hr) ∈ T ′S ×T ′S there are exactly 2k right earthquakes sending hl to
hr, where k is the number of punctures of S which correspond to a closed
geodesic boundary component of S.

The result clearly holds also for left earthquakes. In general, k can be
different from n, since metrics with some cusps are elements of T ′S . See also
[14]. The number 2k comes by counting the number of bent surfaces, in a
given MBH manifold M , which do not meet the asymptotic boundary. On
the universal covering AdS3 of M , the preimages of the asymptotic boundary
of those surfaces are contained in π1(S)-invariant achronal meridians in the
boundary of AdS3 and do not meet the preimages of the asymptotic regions
of M . It turns out that those meridians must be contained in the closure
of the boundaries of such asymptotic regions; this set contains exactly 2k

invariant achronal meridians.

The first aim of this work is to provide an earthquake theorem to ciliated
surfaces. As defined in [23], a ciliated surface is the data of a surface S,
topologically obtained by removing from a closed surface a finite number of
mutually disjoint disks ∆i, and of a finite subset Q of

⋃
∂∆i, whose ele-

ments are called cilia. The associated Teichmüller space T ?S (C) is given by
the space of hyperbolic metrics on S = (S∪

⋃
∆i)rQ of finite area such that

each connected component of
⋃
∂∆i r Q is totally geodesic, up to diffeo-

morphisms of S fixing Q which are isotopic to the identity. We assume that
Q ∩∆i 6= Ø for every i. Chapter 2 is devoted to the proof of the following
result.

Theorem A. For every hl, hr ∈ T ?S there exists a unique right earthquake
sending hl to hr.

Again, the same holds if we consider left earthquakes. The argument
makes large use of the techniques used in [15] for the MBH case. Each
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pair of ciliated surfaces (Sl, Sr) gives rise to a MBH manifold M with some
marked points on the asymptotic boundary (one for each cilium of S). The
key point is to look for bent surfaces in M associated with a right earthquake
between Sl and Sr. If S is such a surface, we will prove that the asymptotic
boundary of S contains the marked points and that S is contained in the
closure of the past of those points. We will also show the converse: every
bent surface having these properties is associated with a right earthquake
from Sl to Sr. As the asymptotic boundary of S is achronal, we will deduce
that it must coincide with the boundary of the union of the past of the
marked points. From there, the existence and the uniqueness of the right
earthquake between the two ciliated surfaces immediately follows.
As a particular example, we will show how the construction of such an earth-
quake can be applied to the case of ideal polygons of H2, strongly related
to the inscribability of ideal polyhedra in AdS3 (see the proof J. Danciger,
S. Maloni, J.-M. Schlenker give in [20] of the earthquake theorem for ideal
polygons).

AdS bending lamination conjecture: The problem of giving a character-
ization of which couples of measured laminations can be realized as the
bending laminations of MGHC AdS3-spacetimes was solved by Bonsante
and Schlenker in the closed case.

Theorem (F. Bonsante and J.-M. Schlenker, [17]). If S is a closed
surface and (λ, µ) is a couple of filling laminations on S, then there is a
couple (h, h′) ∈ TS × TS for which (1) holds.

This result is achieved in two steps: first – following the same ideas of
Bonahon in the quasi-Fuchsian case – they proved that any pair of small lam-
inations filling up S is uniquely realized, and then showed that the bending
lamination map

Φ : TS × TS → FMLS = {(λ, µ) ∈MLS ×MLS | (λ, µ) fills up S} (2)

is proper. As a consequence, the topological degree of Φ is defined. The
local injectivity close the Fuchsian locus D (the diagonal of TS×TS) implies
that deg Φ must be 1, so the map must be surjective.
Local injectivity of Φ close the Fuchsian locus is achieved by using that
earthquakes along tλ form the Hamiltonian flow of the length function
Lλ : TS → R of λ (see [38]). Indeed the convexity properties of Lλ allows
to solve the “infinitesimal version” of the problem in the normal bundle of
the Fuchsian locus D, and then, by an application of the implicit function
theorem, one gets the local injectivity of the map in a neighbourhood of D.
The properness is instead proved by showing that the length of the bending
laminations of a MGHC AdS3-spacetime, say with respect to the left metric,
can be bounded only in terms of their intersection.
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In this work we consider an analogous bending lamination problem in the
setting of hyperbolic metrics on a surface S with n closed geodesic bound-
ary, whose Teichmüller space is denoted by T ◦S . Notice that since a MBH
manifold M contains many past-convex and future-convex surfaces, the for-
mulation of the problem must be adapted to this setting. The key point is
that M contains a convex core – meaning a minimal convex subset – whose
boundary is the union of two bent space-like surfaces, which can be deter-
mined as those with “minimal” bending around the boundary curves. In
fact bending laminations for a bent surface in M may contain leaves spi-
ralling around boundary components. In [15] a signed intersection (or signed
mass) m(c, λ) of the bending lamination λ with any boundary component c
is defined, so that the sign determines the spiralling sense. If λ is a bending
lamination of a surface that is a boundary component of a convex core in M
associated with an earthquake between hl and hr, then for every boundary
curve c the relation

|`hl(c)± 2m(c, λ)| = `hr(c)

holds, where ± depends on the past/future convexity of the surface. The
upper bending lamination λ+ of the upper boundary S+ of the convex core
is determined by requiring that 2m(c, λ+) < `hl(c), while the lower bending
lamination λ− verifies m(c, λ−) = −m(c, λ+). In particular it turns out that
the signed masses of the bending laminations of the boundary of a convex
core are opposite.
We will prove the following theorem.

Theorem B. Let λ and µ be two filling measured geodesic laminations on
S, such that for any boundary component c1, . . . , cn of S the corresponding
signed masses m(λ, ci) and m(µ, ci) are opposite. Let us fix a positive number
bi > 2m(ci, λ) for each i = 1, . . . , n. Then there exists (hl, hr) in T ◦S × T ◦S
such that

1. λ and µ are the upper and lower bending laminations of the boundary
of the convex core of the MBH manifold associated with (hl, hr);

2. the length of ci with respect to hl is bi.

An immediate remark is that, in the setting of multi-black holes, the
spacetime M is not determined by the bending laminations: one must at
least fix the boundary lengths. However, a dimensional computation shows
that this requirement is not baseless: both T ◦S × T ◦S and the space of filling
laminations FML◦S have dimension 12g − 12 + 6n, however the image of Φ
(the analogue of the map in (2) with domain T ◦S × T ◦S ) is contained in the

subspace FML(=)
S ⊂ FML◦S of laminations having opposite masses at each

boundary component. Thus, FML(=)
S has dimension 12g−12 + 5n, making
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it reasonable that the fibre of Φ has dimension n.
Fixed b = (b1, . . . , bn) ∈ (R>0)n, set

T ◦S (b) = {h ∈ T ◦S | `h(ci) = bi, for i = 1 . . . , n}
FML◦S(b) = {(λ, µ) ∈ FML◦S | −m(ci, 2µ) = m(ci, 2λ) < bi for i = 1, . . . , n}.

For (λ, µ) ∈ FML◦S(b) ⊂ FML(=)
S , the composition Eλl ◦ E

µ
l preserves

the space T ◦S (b). Using the relations between bending laminations and
holonomies of a MBH spacetime, the result of Theorem B can be also ex-
pressed in terms of fixed points of Eλl ◦ E

µ
l .

Theorem. If (λ, µ) ∈ FML◦S(b), then the composition of hyperbolic earth-
quakes Etλl ◦ E

tµ
l : T ◦S (b)→ T ◦S (b) admits a fixed point.

The proof of Theorem B is carried out following the same steps as in the
closed case: we prove first that small laminations can be uniquely realized
as bending laminations of convex cores in MBH manifolds with assigned
boundary lengths, then that the restriction

Φb = Φ
∣∣
T ◦S (b)×T ◦S

: T ◦S (b)× T ◦S → FML◦S(b)

is proper. Notice however that in order to prove those facts we cannot rely
on the theory of length of laminations, because there is no simple extension
of the notion of length in the case of spiralling leaves. Using a normalization
procedure we are able to construct for any pair of measured laminations –
under the condition that boundary masses are opposite – a function L(λ,µ) :
T ◦S (b)→ R that satisfies the following properties.

1. L(λ,µ) is proper.

2. L(λ,µ) is convex along earthquake deformations on compactly sup-
ported laminations.

3. L(λ,µ) has positive definite Hessian in its critical points.

4. Using a natural Weil-Petersson symplectic form on T ◦S (b), the sym-
plectic gradient of L(λ,µ) is the sum of the two infinitesimal earthquakes
along λ and µ (that turns out to be tangent to T ◦S (b) by the condition
on the masses).

Another tricky point in following the argument of the proof of Bonsante and
Schlenker’s Theorem is the computation of the main estimate, bounding
the length (in the above sense) of the bending laminations (λ, µ) for the
left metric hl in terms of the intersection number. In [17] it was obtained
studying a time-like section A of the convex core K; the region A was
defined starting from a closed leaf γ of the bending locus of K, resulting as
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an annulus of finite area, with a boundary component isometric to γ and
a piece-wise geodesic boundary component with well known angles at the
vertices. In our context, however, the spiralling leaves of the laminations are
not approximable by closed weighted curves, so we will spend a little more
effort to get an analogous estimate for lengths of spiralling laminations.

Plan

In order to fix some notations and introduce the spaces and environments
mostly considered in the following, in Chapter 1 we first recall well known
formulas about the upper half-plane model and the hyperboloid model of
H2, and define the Teichmüller space T ?S (C) of hyperbolic metrics on a cil-
iated surface (S,Q) and the Teichmüller space T ◦S of hyperbolic metrics on
a punctured surface S with closed geodesic boundary (Section 1.1). Defi-
nitions and basic properties regarding measured geodesic laminations and
hyperbolic earthquakes are shown in Section 1.2. In particular, we will de-
scribe the topology of the spaces of measured laminations on ciliated surfaces
and on hyperbolic surfaces with closed geodesic boundary. Finally, Section
1.3 deals with AdS3 structures and convex subsets associated with earth-
quakes, with a detailed description of achronal meridians in the asymptotic
boundary of AdS3.
In Chapter 2, after showing the correspondence between complex struc-
tures on a ciliated surface and hyperbolic metrics of finite area with totally
geodesic boundary (Section 2.1), we characterize convex subsets associated
with earthquakes between ciliated surfaces (Section 2.2). The last part of
the chapter applies the constructions to ideal polygons in H2.
The first section of Chapter 3 recalls the structure of measured laminations
on hyperbolic surfaces with closed geodesic boundary. Section 3.2 is devoted
to the definition of a length map L(λ,µ) for (λ, µ) ∈ FML◦S(b) which is a
Hamiltonian for the sum of the two infinitesimal earthquakes along λ and µ,
with respect to a Weil-Petersson symplectic form on T ◦S (b). The computa-
tion of the first order variation of L(λ,µ) along earthquakes with compactly
supported fault locus will show that this condition holds. In Section 3.3 we
verify that L(λ,µ) : T ◦S (b) → R is a proper map and with positive definite
Hessian at its critical point (which is unique), as required.
The estimate (analogous to the main one in [17]) that allows to bound
L(λ,µ)(h) in terms of the intersection between λ and µ, if they are bending
laminations of a convex core associated with (h, h′) ∈ T ◦S (b) × T ◦S , is com-
puted in Section 3.4. As outlined before, the presence of spiralling leaves in
the laminations requires some specific modifications in the argument for the
compactly supported bending laminations. Because of such adjustments,
the proof in Section 3.5 of the properness of Φb : T ◦S (b)×T ◦S → FML

◦
S(b)

will turn up more technical than in the closed case. Again, this implies that
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the topological degree of Φb is defined.
Finally, Section 3.6 concludes with the proof of Theorem B, following the
argument in [17]: showing the existence of preimages of small laminations
in FML◦S(b), we will deduce that deg Φb = 1, so that Φb is surjective.





Chapter 1

Preliminaries

1.1 Models of H2

Several formulas occuring in this work will be computed on the hyperbolic
plane H2, namely in the upper half-plane model either in the hyperboloid
model. First we therefore want to fix some notations and introduce general
formulas related to such models. The Poincaré disk model will be only used
in some figures, in order to make easier the visualization of certain ideas.
In the last subsection we introduce the Teichmüller spaces we will consider
in Chapters 2 and 3.

1.1.1 The upper half-plane model

The upper half-plane H+ = {z ∈ C | =z > 0} endowed with the metric
(=z)−2|dz|2 is one of the most used model of H2. See [8] for details. The
formula for the distance between points is the following:

tanh d(z, w) =

∣∣∣∣z − wz − w

∣∣∣∣.
The geodesics of H+ are supported by vertical rays and semicirles with
endpoints in R. The boundary at infinity ∂H2 of H2 is clearly visualizable
here as R ∪ {∞}, thus compactifying H+.
An isometry on H+ has the form

z 7→ az + b

cz + d
with

[
a b
c d

]
∈ PSL(2,R) ∼= Isom+(H2).

We will widely use this form when computations are based on a fixed hy-
perbolic isometry. Recall that a hyperbolic isometry A has a fixed repulsive
point in ∂H2, denoted by x−(A), and an attractive one, denoted by x+(A).
The axis ax(A) of A is the geodesic going from x−(A) to x+(A). The pos-
itive number T(A) such that every point p ∈ ax(A) is sent by A to the

15



16 CHAPTER 1. PRELIMINARIES

point A(p) ∈ ax(A) distant T(A) from p is called translation length of A. If
MA ∈ PSL(2,R) is a matrix representing A, we have

cosh
T(A)

2
=
| tr(MA)|

2
> 1.

We will use the upper half-plane model when the computations involve a
fixed hyperbolic isometry A: it is always possible in fact to conjugate A
with an isometry B so that BAB−1 : z 7→ eT(A)z. Therefore, a change of
coordinate will allow us to suppose that A has a very simple form.

1.1.2 The hyperboloid model

Another useful model of H2 that will allow us to make easier computations
is the hyperboloid model. Let R2,1 be R3 endowed with the scalar product

〈x, y〉 = −x0y0 + x1y1 + x2y2.

An element x ∈ R1,2 is called time-like vector if 〈x, x〉 < 0, light-like vector
if 〈x, x〉 = 0 and space-like vector if 〈x, x〉 > 0. Define ‖x‖2,1 =

√
|〈x, x〉|.

Consider the hyperboloid of equation 〈x, x〉 = −1 and take its connected
component

I = {x ∈ R2,1 | 〈x, x〉 = −1, x0 > 0}
with the inherited metric, which has constant curvature -1. Its isometries
are the elements preserving I of

SO(2, 1) = {A ∈ Mat3×3(R) |ATJ3A = J3}

where

J3 =

−1 0 0
0 1 0
0 0 1

 ∈ Mat3×3(R).

A vector v is tangent to I at x if and only if 〈x, v〉 = 0. Geodesics are
intersections of linear subspaces of R2,1 with I, namely for every geodesic γ
there is a space-like vector n such that

γ = {x ∈ I | 〈x, n〉 = 0}.

The unitary vector normal to γ (pointing towards the same half-plane bounded
by γ) is thus constant along γ.
The boundary at infinity of I is identified with

∂∞I = {x ∈ R2,1 | 〈x, x〉 = 0}/
x ∼ ax, a ∈ R∗

and its elements will be written within square brackets. The compactifica-
tion of I is actually I ∪ ∂∞I: a sequence xn ∈ I tends to [z] ∈ ∂∞I if and
only if the class of xn in RP 3 tends to the class of z. See also [8].
The following formulas will be useful in Chapter 3.
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1. Denoting by d the hyperbolic distance on I, for every x, y ∈ I

cosh d(x, y) = −〈x, y〉.

2. If v ∈ TxI has unitary norm, then the geodesic through x with tangent
vector v at x is parametrized by

R 3 s 7→ (cosh s)x+ (sinh s)v ∈ I.

3. If a geodesic has normal unitary vector n and ideal endpoints [z1] and
[z2] then it is parametrized by

R 3 s 7→ e−sz1 + esz2

−2〈z1, z2〉
∈ I;

moreover,
〈n, z1〉 = 〈n, z2〉 = 0.

4. for every x ∈ I and every geodesic γ, if n is a unitary vector n normal
to γ pointing towards x then

sinh d(x, γ) = 〈x, n〉.

The cross product in R2,1

There is a notion of cross product in R2,1, analogous to the Euclidean envi-
ronment: if dV denotes the volume form in R2,1, the cross product between
x ∈ R2,1 and y ∈ R2,1 is the vector x� y ∈ R2,1 such that for every z ∈ R2,1

〈x� y, z〉 = dV (x, y, z).

An explicit expression of the cross product is

x� y =

x2y1 − x1y2

x2y0 − x0y2

x0y1 − x1y0

 .

The following are basic formulas of the cross product:

x� y = −y � x
x� x = 0

〈x, x� y〉 = 0

〈x, y � z〉 = 〈z, x� y〉
(x� y)� z = 〈y, z〉x− 〈x, z〉y

〈x� y, x� y〉 = 〈x, y〉2 − 〈x, x〉〈y, y〉

for every x, y, z ∈ R2,1.
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Remark 1.1.1. If γ is a geodesic in I passing through x with tangent vector
v, then x � v lies in TxI, being normal to x, and is orthogonal to γ, being
normal also to v. Moreover,

〈x� v, x� v〉 = 〈x, v〉2 − 〈x, x〉〈v, v〉 = 1,

so x�v is one of the two unitary vectors normal to γ. Since dV (x, v, x�v) is
equal to 1, x� v is the one such that (x, v, x� v) is an orthonormal positive
basis of R2,1. Actually, the map v 7→ x� v from TxI to itself corresponds to
the complex structure induced on I.

1.1.3 Teichmüller spaces

Fix once and for all a topological surface S obtained by removing n points
p1, . . . , pn (called punctures of S) from a compact surface of genus g, and
suppose that the Euler characteristic χ(S) = 2− 2g − n of S is negative.
In this work, subspaces of the set of the hyperbolic metrics on S having the
following properties will be considered:

1. the universal covering is isometric to an open subset H of H2 with
geodesic boundary;

2. the area of S is finite.

Classically, the most studied subspace of this set is the space of complete

Figure 1.1

hyperbolic metrics on S of finite area, that we will denote by Met−1(S). For
its elements, at the n punctures of S only cusps occur (see Figure 1.1) and
the universal covering is the whole H2. Actually the space considered is

TS = Met−1(S)/Diff0(S), (1.1)

where the action on Met−1(S) of the group Diff0(S) of homotopically trivial
diffeomorphisms of S is quite obvious.
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Definition 1.1.1. A surface W, homeomorphic for a certain r ∈ (0, 1) to
the one obtained by removing from the closed annulus

A(0, r, 1) = {z ∈ C : r ≤ |z| ≤ 1}

a finite subset {z1, . . . , zJ} of {z ∈ C : |z| = 1}, provided with a complete
hyperbolic metric with geodesic boundary and finite area, is called crown.
The points at infinity corresponding to z1, . . . , zJ are called tips of W.

Consider S now as a surface topologically obtained by removing n closed
mutually disjoint disks ∆1, . . . ,∆n from a closed surface of genus g so that
2 − 2g − n < 0. Fix once and for all a finite subset C of

⋃
∂∆i, such that

C ∩ ∂∆i 6= Ø for every i = 1, . . . , n. Denote by Met?−1(S,C) the set of
hyperbolic metrics on S of finite area whose completion S is topologically
S ∪

(⋃
∂∆i

)
r C and so that each boundary component is totally geodesic.

In Chapter 2 we will focus on the space

Figure 1.2

T ?S (C) = Met?−1(S,C)/Diff0(S|C). (1.2)

Here Diff0(S|C) denotes the identity component of the subgroup of elements
F ∈ Diff0(S) extendible to homeomorphisms of S ∪ C that pointwise fix
C. Notice that for every h ∈ T ?S (C) the surface (S, h) has n crown-shaped
punctures, as in Figure 1.2. Moreover, a Dehn twist along a peripheral loop
(see for instance [35]) is not an element of Diff0(S|C).

On the other hand, fix once and for all b = (b1, . . . , bn) ∈ (R>0)n. Let
Met◦−1(S) be the set of hyperbolic metrics on S of finite area where S is
complete and has n closed geodesic boundary components. In Chapter 3 we
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will consider the spaces T ◦S = Met◦−1(S)/Diff0(S) and

T ◦S (b) = {h ∈ Met◦−1(S) | each puncture pi corresponds to a closed geodesic

boundary component of S of h-length bi}/Diff0(S).
(1.3)

Here the n boundary components of S are homeomorphic to S1 (see Figure

Figure 1.3

1.3).

1.2 Measured laminations and earthquakes

1.2.1 The space of measured laminations

Definition 1.2.1. Given a hyperbolic metric h on a surface S, a geodesic
lamination on (S, h) is the data λ of a family of mutually disjoint complete
simple geodesics (called the leaves of λ) whose union is a closed subset (called
the support of λ and denoted by supp(λ)) of S. Every connected component
of S r λ is called gap or plaque; a stratum of λ is either a leaf or a gap. A
measured geodesic lamination of S is the data of a geodesic lamination λ
and a transverse measure measλ, that is a measure defined on the arcs on S
transverse to each leaf of λ and with endpoints in S r supp(λ) such that

- measλ(c) 6= 0 if and only if c ∩ supp(λ) 6= Ø;

- if there exists an isotopy between two arcs c1 and c2 realized through
arcs transverse to λ then measλ(c1) = measλ(c2).

It is known (see [19]) that the Lebesgue measure of the support of a
geodesic lamination is zero.

Example 1.2.1. Weighted multicurves are the simplest examples of mea-
sured geodesic lamination on S. The support is the finite union of simple
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closed mutually disjoint non trivial geodesics γi. Chosen real positive num-
bers ωi (called weights) respectively assigned to γi, the transverse measure
is given by

c 7→
∑
i

ωi ·#(γi ∩ c)

for any arc c transverse to
⋃
γi.

If h ∈ TS (see (1.1) in Subsection 1.1.3) then any measured geodesic
lamination λ on (S, h) has a maximal compact sublamination λ(0), in the
sense that if µ is a sublamination of λ with compact support in S then µ is a
sublamination of λ(0) too. Each leaf of supp(λ)rsupp(λ(0)) is homeomorphic

Figure 1.4: A measured geodesic lamination inMLS with two leaves home-
omorphic to R and a closed leaf

to R and, roughly speaking, its ideal endpoints are in the points at infinity
of the cusps (see Figure 1.4).
If we denote by ML(S,h) the measured geodesic laminations on (S, h) with
h ∈ TS , being a space of measures it seems natural to provide it with the
topology of the weak-convergence of measures (sometimes also called weak∗-
convergence). It is known (see Section 1.7 of [31]) that for every h1, h2 in
TS there is a homeomorphism F : ML(S,h1) → ML(S,h2) so that, roughly
speaking, supp(F (λ)) is obtained straightening with respect to h2 the leaves
of supp(λ). This suggests that it makes sense to associate TS with the space
MLS of measured laminations, whose support is only a topological data;
this space inherits the weak convergence topology. Finally, define

CMLS = {λ ∈MLS |λ = λ(0)},

the space of laminations with compact support. The following theorem is a
well known result (see [31]).

Theorem 1.2.1. The space of weighted multicurves on S is dense in CMLS.

We can analogously associate T ?S (C) and T ◦S (see (1.2) and (1.3) in Sub-
section 1.1.3) with the relative spaces of measured laminations.
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The space ML?S(C)

Let us start from h ∈ T ?S (C). Any element λ of ML?(S,h)(C) has again a

maximal compact sublamination λ(0). The leaves in supp(λ)rsupp(λ(0)) are
homeomorphic to R and, roughly speaking, their ideal endpoints are in the
tips of the crowns (see Figure 1.5). For every h1, h2 ∈ T ?S (C) there exists the
analogous homeomorphism betweenML?(S,h1)(C) andML?(S,h2)(C), so again

Figure 1.5: A measured geodesic lamination in ML?S(C) with two leaves
homeomorphic to R and a closed leaf

we can associate T ?S (C) with the spaceML?S(C) of measured laminations and
the space CML?S(C) of measured laminations with compact support.
In order to give to this space a proper topology, pick h ∈ T ?S (C) and denote
by 2S the surface obtained glueing two copies S+, S− of the h-completion of
S through the identification of their boundaries isomorphic to R, which are
geodesic; this fact assures that the double (Sd, hd) of (S, h) is a hyperbolic
surface of genus 2g with #C punctures. Also, hd ∈ TSd and (Sd, hd) has
finite area (twice the area of S).
More precisely, consider id± : S → S±; then

Sd =
(
S+

∐
S−
)
/ ∼ (1.4)

where

x ∼ y ⇐⇒ x = y or id−1
+ (x) = id−1

− (y) ∈ ∂S.

Consider the maps i± : S → Sd defined by i±(x) = [id±(x)]∼. The metric
hd is the one such that (i±)∗(hd) = h. We can define the involution map
I : Sd → Sd such that I(i±(x)) = i∓(x); roughly speaking, I interchanges
S+ and S−. Note that I ∈ Isom(Sd).
In order to give a topology toML?S(C), consider the map M fromML?S(C)
to MLSd that associates every λ ∈ ML?S(C) with the doubled lamination
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λd in MLSd ; it is injective and its image is strictly contained in the sub-
space of MLSd of I-invariant measured laminations. We equip ML?S(C)
with the unique topology such that the map M :ML?S(C)→ M(ML?S(C))
is a homeomorphism onto its image.

The space ML◦S

Let us fix for a moment h ∈ T ◦S and consider a measured geodesic lamination
λ on (S, h). If a leaf of λ is not contained contained in a compact subset
of S, then, in order to be a complete geodesic with no self-intersections, it
must spiral along one or two connected components of ∂S. There are two
possible senses of spiralization, as shown in Figure1.7.
Fix a ε-collar Nε(∂) of a boundary component ∂ such that every leaf of λ
intersecting Nε(∂) spirals near ∂ (see Lemma 3.2.3 for the existence of ε). If
a leaf δ of λ spirals near ∂ and ∂̃ is a lift of ∂ in the boundary of the universal

Figure 1.6

covering H of (S, h), let A be the generator of Stab(∂̃) < hol(π1(S)), where
hol is the holonomy of h. The liftings of δ meeting the ε-collar Ñε of ∂̃ share
an ideal endpoint with ∂̃ (in Figure 1.6 is∞) and their union coincides with
the 〈A〉-orbit of δ̃, one of such lifts of δ. The ideal endpoint that ∂̃ has in
common with those liftings of δ depends on the sense of spiralization of δ
itself near ∂.

It is possible to define the mass ι(∂, λ) of ∂ with respect to λ, a positive
number that indicates how much the measure of λ is concentrated near ∂.
It is constructed as follows. For every x ∈ Nε(∂) denote by cx the loop with
vertex at x parallel at ∂ such that cx r {x} is an open geodesic arc. Since
measλ(cx) = measλ(cy) for every x, y ∈ Nε, as shown in [17], Subsection 2.3,
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it is well defined the mass ι(∂, λ) = measλ(cx). Moreover, ι(∂, λ) = 0 if and
only if supp(λ) ∩Nε = Ø. The mass of ∂ does not take in account in which
sense λ spirals. Fix once for all an orientation of ∂S. Such choice defines a
positive and a negative sense of spiralization around ∂, as in Figure 1.7. It

Figure 1.7: Respectively, positive and negative sense of spiralling

is now possible to define the signed mass m(∂, λ) of ∂ with respect to λ as

m(∂, λ) =

{
+ι(∂, λ)if λ spirals in the positive sense around ∂
−ι(∂, λ)if λ spirals in the negative sense around ∂

. (1.5)

Remark 1.2.1. The signed mass of ∂ with respect to λ is positive (respec-
tively negative) if and only if for every oriented lift of ∂ on H its ending
(respectively starting) ideal endpoint is contained in the set of the ideal
points of the whole preimage of λ.

Now take h ∈ T ◦S . Any element λ ofML◦(S,h) has again a maximal com-

pact sublamination λ(0). The leaves in supp(λ)r supp(λ(0)) are homeomor-
phic to R and spiral near two boundary components (possibly coincident) of
S (see Figure 1.8). They cannot spiral near a boundary component in one
direction and stay in the compact part in the other direction, since geodesic
laminations spiralling inside the surface cannot carry a transverse measure.
See also [17]. As before, we can associate T ◦S with the space ML◦S of mea-
sured laminations and the subspace CML◦S of measured laminations with
compact support.
Now we are going to give to ML◦S a manifold structure. First let us in-
troduce the straightening νR of a measured lamination ν ∈ ML◦S . If γ is
a spiralling geodesic between two connected components ∂i and ∂j of ∂S,
consider its preimage Γ on the universal cover H ⊂ H2. Every connected
component of Γ is a geodesic γ̃ with endpoints in the (ideal closure) of cer-
tain lifts ∂̃i and ∂̃j of ∂i and ∂j respectively. If we replace each γ̃ with the
geodesic arc γ̃R with endpoints on ∂̃i and ∂̃j perpendicular to ∂̃i and ∂̃j and
we project γ̃R on S, we obtain a geodesic arc γR on S normal to ∂i and ∂j
with endpoints on ∂i and ∂j . For each ν ∈ ML◦S denote by νR the set of
geodesic (weighted) arcs obtained by ν replacing each spiralling geodesic γ
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Figure 1.8: A measured geodesic lamination in ML◦S with two spiralling
leaves

of ν with γR.
Consider the set {νR | ν ∈ML◦S}. This space is a submanifold of the space

of measured laminations (that we denote by ML#
S ) studied in [1]; we will

mention only the necessary details. Using the notations of [1], fixed a pant
decomposition

P = {C1, . . . , C3g−3+n, B1 = ∂1, . . . , Bn = ∂n}

of S with internal curves C1, . . . , C3g−3+n and boundary curves B1 = ∂1, . . . ,

Bn = ∂n, every lamination σ ∈ML#
S has coordinates(

DT (σ,C1), . . . , DT (σ,C3g−3+n), θ̂(σ,B1), . . . , θ̂(σ,Bn)
)

where DT (σ,Ci) ∈ R2 depends on the behaviour of σ with respect to the
internal decomposition curves Ci and θ̂(σ, ∂i) ∈ R depends on the behaviour
with respect to the boundary component ∂i. Following their constructions,
it turns out that, for every ν ∈ ML◦S , θ̂(νR, ∂i) = ι(ν, ∂i) ≥ 0. So if we
consider the coordinates ΘP :ML◦ → R6g−6+3n such that

ΘP (ν) =
(
DT (νR, C1), . . . , DT (νR, C3g−3+n),m(ν, ∂1), . . . ,m(ν, ∂n)

)
(1.6)

for ν ∈ ML◦S , where m(ν, ∂i) is the signed mass defined by (1.5), we pro-
videML◦S with a manifold structure. Such coordinates depend on the pant
decomposition P ; however, if P ′ is another pant decomposition, notice that
the last n coordinates does not depend on the pant decomposition, whereas
applying the results in [1] the change of coordinates of the other components
is smooth.
Even if the projection ML◦S → MLRS is not injective, the map ΘP is in-
jective, since we have avoided the ambiguity given by the spiralling senses
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around ∂S.
For every λ, µ ∈ ML◦S we can now define their intersection number ι(λ, µ)
as half the intersection number between the double of λR and the double of
µR in the double S. For the definition of the intersection number between
two measured laminations in a closed surface, see [30]. If λi is a ωi-weighted
curve ci on a closed surface Σ for i = 1, 2, then ι(λ1, λ2) = ω1ω2#(c1 ∩ c2).
The extension of ι to multicurves on Σ is quite obvious, while the general
case requires a little more attention.
The topology on ML#

S actually coincides with the topology of the weak∗-
convergence of measures. We are interested to show that also for ML◦S the
topology is the one of weak∗-convergence of measures.

Lemma 1.2.2. Consider a sequence λn converging to λ. If λ[s] is the sub-
lamination of λ made by spiralling leaves, then the support of λ[s] is con-
tained in λn for n sufficiently big. In particular, there exist decompositions

λn = λ[c]
n ∪ λ[s]

n ∪ λ[v]
n ,

λ = λ[cc] ∪ λ[s] ∪ λ[cv]

such that, up to passing to a subsequence,

• λ[c]
n is the maximal compact sublamination of λn, and λ

[c]
n converges to

λ[cc];

• λ[s] is the sublamination of λ whose support consists of the spiralling

leaves of λ, and λ
[s]
n is the maximal sublamination of λn such that

supp(λ
[s]
n ) = supp(λ[s]); moreover, λ

[s]
n tends to λ[s];

• λ[v]
n is the complementary of λ

[s]
n in the spiralling part of λn, so that

λ
[v]
n converges to the compact lamination λ[cv].

Proof. A sequence νn converges to ν inML◦S when Θ(νn) (see (1.6)) tends to

Θ(ν), i.e. when νRn converges to νR inML#
S and sign(m(nn, ∂i) converges to

sign(m(ν, ∂i)) for every i = 1, . . . , n. The convergence of λRn to λR in ML#
S

is equivalent, as shown in [1], to the weak∗-convergence of Λn, the double
of λRn , to Λ, the double of λR, in ML2S . We say that Λn is the doubled
straightening of λn and Λ is the doubled straightening of λ. Analogously

define the double straightenings Λ
[s]
n , Λ

[v]
n , Λ[s] and Λ[cv]; every leaves of them

inherits the weight of their corresponding ones in respectively λ
[s]
n , λ

[v]
n , λ[s]

and λ[cv].
First let us show that any leaf of Λ[s] is contained in λn for big n. Consider
a leaf l of λ[s], going say between the boundary components ∂i and ∂j of S.
On the universal covering H ⊂ H2 of S, consider a lift l̃ of l, going from
∂̃i and ∂̃j , the boundary components of ∂H who projects onto ∂i and ∂j
respectively. The straightening l̃R of l̃ has an endpoint zi ∈ ∂̃i. There is
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a δ-neighbourhood D of l̃R in H such that for every z ∈ (D ∩ ∂̃i) r {zi}
the complete geodesic of H2 normal to ∂̃1 passing through z must intersect
∂̃j , but this intersection cannot be orthogonal, so if a lamination ν ∈ML#

S

meets D ∩ ∂̃i, then it must contain the leaf l. Thus, leaves of Λ[s] must be

contained in Λ
[s]
n for big n, and in fact Λ[s] must be the limit of Λ

[s]
n . It

follows that up to subsequence λ
[v]
n must converge to a compact lamination

λ[cv] and λ
[c]
n to a compact lamination λ[cc]. Using that λn converges to λ

we get the result.

Proposition 1.2.3. If λn → λ in ML◦S then for every arc α on S with
endpoints in S r

(
supp(λ) ∪

⋃
supp(λn)

)
and for every ϕ ∈ C∞c (α)∫

α
ϕd(measλn)

n→∞−−−→
∫
α
ϕd(measλ).

Proof. From now on, for simplicity we will write dλn and dλ respectively
for d(measλn) and d(measλ).
Take the decomposition

λn = λ[c]
n ∪ λ[s]

n ∪ λ[v]
n ,

λ = λ[cc] ∪ λ[s] ∪ λ[cv]

provided by Lemma 1.2.2, and consider the induced decomposition on the
double straightenings Λn, Λ of λn, λ respectively:

Λn = Λ[c]
n ∪ Λ[s]

n ∪ Λ[v]
n ,

Λ = Λ[cc] ∪ Λ[s] ∪ Λ[cv].

Notice that the weights of the leaves of Λ
[v]
n are going to 0, since the masses

Figure 1.9
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of Λ
[v]
n at the boundary of S are vanishing.

Fixed ε > 0 and denoting by

T1 =

∣∣∣∣ ∫
α
ϕdλ[c]

n −
∫
α
ϕdλ[cc]

∣∣∣∣
T2 =

∣∣∣∣ ∫
α
ϕdλ[s]

n −
∫
α
ϕdλ[s]

∣∣∣∣
T3 =

∣∣∣∣ ∫
α
ϕdλ[v]

n −
∫
α
ϕdλ[cv]

∣∣∣∣
it suffices to show that for n sufficiently large T1 + T2 + T3 ≤ 6ε. The term

T1 is easy to estimate: since (λ
[c]
n )R = λ

[c]
n and (λ[cc])R = λ[cc], actually

T1 =

∣∣∣∣ ∫
α
ϕdΛ[c]

n −
∫
α
ϕdΛ[cc]

∣∣∣∣,
where with a slight abuse of notation we denote by α also the copy of the arc
α itself lying in the orientation-preserving copy of S included in 2S, and also

by ϕ the obvious function induced on the copy of α by ϕ. Since Λ
[c]
n → Λ[cc]

in the weak∗ sense, T1 is not greater than ε for n large enough.

As stated in Lemma 1.2.2, the leaves of Λ
[s]
n are the leaves of Λ[s], so for

every leaf Γ of Λ[s] the weight of Γ in Λ
[s]
n tends to weight of Γ itself in Λ[s].

If Γ is the doubled straightening of γ, recall that the weight of Γ coincides
with the weight of γ. Thus, the weight of any leaf γ of λ[s] is the limit of its

weight as a leaf of λ
[s]
n . It is then clear then T2 ≤ ε for n large enough.

The term T3 requires more attention. First of all, let us split is as

T3 ≤
∣∣∣∣ ∫

α
ϕdλ[v]

n −
∫
α
ϕdΛ[v]

n

∣∣∣∣+

∣∣∣∣ ∫
α
ϕdΛ[v]

n −
∫
α
ϕdλ[cv]

∣∣∣∣ =

=

∣∣∣∣ ∫
α
ϕdλ[v]

n −
∫
α
ϕdΛ[v]

n

∣∣∣∣+

∣∣∣∣ ∫
α
ϕdΛ[v]

n −
∫
α
ϕdΛ[cv]

∣∣∣∣.
The second term of the last member is not greater then ε for n large enough,

since Λ
[v]
n → Λ[cv]. Let us consider the first one. Fix a lift α̃ of α in the

universal covering of S. For every leaf δ̃ of the preimage of a leaf δ of Λ
[v]
n

denote by Dα̃(δ̃) the minimum between the lengths of the two connected
components of δ̃Rrα̃ if δ̃R∩α̃ is non empty. See also Figure 1.10. There is a
constant M = M(α, ε) > 0 such that if Dα̃(δ̃) > M then the ideal endpoints
of δ̃ are close to the ones of the prolongation of δ̃R, in the Euclidean sense,
so that ∣∣∣∣ ∫

α
ϕdλ[v]+

n −
∫
α
ϕdΛ[v]+

n

∣∣∣∣ ≤ ε
for n sufficiently large, where λ

[v]+
n is the sublamination of λ

[v]
n of the leaves δ

whose straightening meets α having Dα̃(δ̃) > M , while Λ
[v]+
n is the doubled



1.2. MEASURED LAMINATIONS AND EARTHQUAKES 29

Figure 1.10: The points in the grey region have distance from α̃ less than

M(α, ε); the leaf δ̃1 of λ̃
[v]
n is contained in λ̃

[v]+
n , while δ̃2 and δ̃3 are contained

in λ̃
[v]−
n

straightening of λ
[v]+
n . Set λ

[v]−
n = λ

[v]
n rλ

[v]+
n and Λ

[v]−
n = Λ

[v]
n rΛ

[v]+
n . Now∣∣∣∣ ∫

α
ϕdλ[v]

n −
∫
α
ϕdΛ[v]

n

∣∣∣∣ ≤ ∣∣∣∣ ∫
α
ϕdλ[v]+

n −
∫
α
ϕdΛ[v]+

n

∣∣∣∣+
+

∣∣∣∣ ∫
α
ϕdλ[v]−

n −
∫
α
ϕdΛ[v]−

n

∣∣∣∣ ≤ ε+

∣∣∣∣ ∫
α
ϕdλ[v]−

n

∣∣∣∣+

∣∣∣∣ ∫
α
ϕdΛ[v]−

n

∣∣∣∣.
Actually, Λ

[v]−
n (and consequently λ

[v]−
n ) is vanishing, since its number of

leaves is bounded from above by a constant depending only on the geometry
of S: on its universal covering H, it is easy to see that the number of
connected components of ∂H distant at most M from α̃, which has compact

support, are finite. Morever, the weights of the leaves of Λ
[v]
n are going to 0,

as λ
[v]
n converges to a compact lamination. Thus, for n big,∣∣∣∣ ∫

α
ϕdλ[v]−

n

∣∣∣∣+

∣∣∣∣ ∫
α
ϕdΛ[v]−

n

∣∣∣∣ ≤ 2ε.

1.2.2 Hyperbolic earthquakes

Let H be a convex subset of H2 with geodesic boundary.

Definition 1.2.2. Given a geodesic lamination λ in H, a left (respectively
right) hyperbolic earthquake on H along λ is an injective (possibly discon-
tinuous) map E : H → H2 such that
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- the restriction of E on a stratum of λ is an isometry;

- denoting by AF ∈ PSL(2,R) the isometry of H2 extending E|F for
every stratum F , the comparison map

cmp(F,G) = A−1
F ◦AG : H2 → H2

between two different strata F and G of λ is a hyperbolic transforma-
tion whose axis weakly separates F and G and which translates to the
left (respectively right), as viewed from F .

The lamination λ is called fault locus of the earthquake E.
It turns out that E(H) is still a convex subset of H2 with geodesic boundary,
as a consequence of Lemma 8.4 in [15].
Given a surface S and two hyperbolic metrics h1, h2 on S, set Si = (S, hi)
for i = 1, 2. Suppose that the universal covering Hi ⊂ H2 of Si is convex
with geodesic boundary. A bijective map E : S1 → S2 is a left (respectively
right) hyperbolic earthquake if it has a lifting Ẽ : H1 → H2 which is a left
(respectively right) hyperbolic earthquake on H1.

Example 1.2.2. Given a close geodesic c on a closed surface S and a real
positive ω > 0, a left hyperbolic earthquake on S along c can be performed
as follows: cut S along c, shift an edge along c to the left of a distance ω
and then glue along c.

In this example it is clear that the fault locus can be endowed with a
transverse measure encoding the shearing of the earthquake, obtaining a
measured geodesic lamination: the ω-weighted curve c. This can be done in
general, as stated in the following ([34], Proposition 6.1).

Proposition 1.2.4. A measured geodesic lamination λ is associated to any
earthquake so that supp(λ) coincides with the fault locus; if a : [0, 1] → H2

is an arc with endpoints in two gaps of λ then

measλ(a) = sup
P partition of [0,1]

IP∑
i=1

T(cmp(AFi−1 , AFi))

where for every partition P = (0 = t0, t1, t2, . . . , tIP = 1) of [0, 1] the stratum
Fi of λ is the one containing ti. Here T(B) denotes the translation length
of a hyperbolic transformation B.

Moreover, Thurston showed that different earthquakes produce different
measured geodesic laminations (see [34]). The converse holds, since we did
not suppose that E is surjective:

Proposition 1.2.5. For every measured geodesic lamination λ on H there
is a left earthquake E : H → H2 with shearing lamination λ itself. More-
over, two earthquakes on H with the same shearing lamination differ by
precomposition by an isometry of H2.
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How earthquakes work on closed surfaces is well known. Given instead
h ∈ T ?S (C), with holonomy hol : π1(S)→ PSL(2,R), consider the universal
covering H of (S, h). It is the convex hull of the limit set of hol and of the
preimages of the tips. A measured geodesic lamination λ ∈ ML?S(C) has
a hol-invariant lift λ̃ in H. Denote by Ẽ : H → H2 the left earthquake
along λ̃. For every γ ∈ π1(S) the map Ẽ ◦ hol(γ) : H → H2 is again a left
earthquake with shearing lamination λ̃. By Proposition 1.2.5, there exists
ρ(γ) ∈ PSL(2,R) such that

Ẽ ◦ hol(γ) = ρ(γ) ◦ Ẽ. (1.7)

Proposition 1.2.6. The representation ρ : π1(S) → PSL(2,R) is faithful
and discrete. The quotient ρ(π1(S))\H2 is homeomorphic to S. The hy-
perbolic metric induced on ρ\Ẽ(H) lies in T ?S . The map Ẽ descends to the
quotient as an earthquake map

E : hol(π1(S))\H → ρ(π1(S))\Ẽ(H).

Proof. Since hol is faithful and Ẽ is injective, ρ is faithful. Also, ρ is discrete
since for every x lies in a gap of λ̃ the ρ-orbit of Ẽ(x) accumulates at Ẽ(p)
if and only if the hol-orbit of p accumulates at p, by (1.7). Thus, being hol
discrete, ρ is discrete too.
Since the family ρt, the faithful and discrete representation associated to
Ẽtλ for t ∈ [0, 1], is a path from hol to ρ, the surface ρ(π1(S))\Ẽ(H) is
homeomorphic to hol(π1(S))\H ∼= S.
Finally, we have to see that Ẽ(H) is the convex hull of the limit set of ρ and
of a discrete set of ∂H2 which is ρ-invariant. First of all, Ẽ(H) is convex
with geodesic boundary (see [7]) and it contains the convex core of ρ (see
[15]). Consider two consecutive element q and q′ in the preimage C̃ of the
tips on (S, h), in the sense that one of the open arc on ∂H2 between q and
q′ is disjoint from ∂∞H. There are elements p, p′ ∈ C̃ distinct from q and
q′ such that p is consecutive to q and p′ is consecutive to q′. Denoting by
[q, q′] the geodesic with ideal endpoints q and q′, there is a bidimensional
stratum F of λ̃ containing [q, q′]. In fact, bidimensional strata of λ̃ can not
accumulate on [q, q′]: otherwise, they would have ideal vertices (that are
elements of ∂∞H) accumulating near q or q′, which is impossible, as there is
no element of ∂∞H2 between p and q, q and q′, q′ and p′. Thus Ẽ([q, q′]) is
a complete geodesic of H2 contained in ∂Ẽ(H), being F isometric to Ẽ(F );
moreover the images Ẽ(q), Ẽ(q′) are well defined isolated consecutive points
of ∂∞Ẽ(H). The discrete set Ẽ(C̃) is ρ-invariant, since C̃ is hol-invariant.

Remark 1.2.2. The first part of the argument of the previous theorem is
the one used to show in [15] that for every h ∈ T ◦S any measured geodesic
lamination λ ∈ ML◦S induces a left earthquake E : (S, h) → (S, h′) with
h′ ∈ T ◦S . In that case, H coincides with the convex hull of the limit set of
hol.
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This results allow to introduce the following maps between Teichmüller
spaces:

Definition 1.2.3. For every measured geodesic lamination λ ∈ ML?S(C)
denote by

Eλl , E
λ
r : T ?S (C)→ T ?S (C)

respectively the left and right earthquake map associated to λ that sends
h ∈ T ?S (C) to the metric on the image of the left and right earthquake along
λ respectively applied on (S, h).
Analogously define

Eλl , E
λ
r : T ◦S → T ◦S

for λ ∈ML◦S .

There will be no misinterpretations in this work, since the context will
be always clear. In particular, Chapter 2 will focus on ciliated surfaces and
Chapter 3 on closed geodesic boundaries.

1.3 The space AdS3

1.3.1 Definition and properties of AdS3

Consider the space R2,2, i.e. R4 with the bilinear symmetric form

〈x, y〉 = x1y1 + x2y2 − x3y3 − x4y4.

Let ÂdS3 be {x ∈ R2,2 : 〈x, x〉 = −1} and consider the restriction q

to ÂdS3 of the projection (R2,2)∗ → RP 3; the Klein model of AdS3 is by

definition q(ÂdS3) together with the Lorentzian structure induced by the
bilinear form 〈·, ·〉. We can thus write AdS3 = {[x] ∈ RP 3 : 〈x, x〉 < 0}.
Notice that q : ÂdS3 → AdS3 is a 2:1 covering.
The homeomorphism AdS3 → D2 × S1 defined by

[x] 7→ 1√
x2

3 + x2
4

(
(x1, x2), (x3, x4)

)
shows that AdS3 is not simply connected.
The space AdS3 can also be identified with PSL(2,R) via

[x] 7→ A[x] =

[
x3 − x1 x2 − x4

x2 + x4 x3 + x1.

]
Defining 〈A[x], A[y]〉 = 〈x, y〉, it turns out that

〈A[x], A[y]〉 = −
tr(A[x]A

−1
[y] )

2
.
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In RP 3, we can consider ∂∞AdS3 = {[x] ∈ RP 3 : 〈x, x〉 = 0}. There are
two foliations Fl,Fr of ∂∞AdS3 such that every leaf is a projective line and
the intersection of any leaf of Fr with any leaf of Fl is a point (see [29], [2]).
Denoting by ϕl and ϕr respectively the homology class of the elements of Fl
and Fr, the assignment of an orientation with ϕl and ϕr induces an orien-
tation to the leaves of the two foliations. We fix once for all the orientation
on ∂∞AdS3 defined as follows: if p ∈ ∂∞AdS3 and el, er ∈ Tp∂∞AdS3 are
positive vectors tangent respectively to Fl and Fr, then (el, er) is a positive
basis of Tp∂∞AdS3. Finally, orient AdS3 compatibly with such orientation
on ∂∞AdS3.
We can also fix on any space-like plane P the orientation such that the ho-
mology class of ∂∞P with the orientation inherited by P is ϕl−ϕr. A time-
orientation on AdS3 is induced as follows: a time-like vector v ∈ TpAdS3

with p ∈ AdS3 is future-pointing if it induces on the space-like plane through
p normal to v the positive orientation.
One of the reasons to use the Klein model of AdS3 is that its geodesics are

Figure 1.11: Geodesics in AdS3 in an affine chart

the projective lines. In particular, considering lines that intersect AdS3 as
in Figure 1.11,

• those that do not intersect ∂∞AdS3 are time-like geodesics; they are
closed, entirely contained in AdS3 and have length π;

• those that intersect ∂∞AdS3 in two distinct points are space-like geodesics;

• those that intersect ∂∞AdS3 in one single point are light-like geodesics;
they are tangent to ∂∞AdS3.

Totally geodesic planes in AdS3 are intersection of projective planes with
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Figure 1.12: Totally geodesic planes in AdS3 in an affine chart

AdS3. In particular, as shown in Figure 1.12:

• time-like planes are topologically Moebius bands;

• space-like planes are topologically disks;

• light-like planes are tangent to ∂∞AdS3.

One can associate every point p of AdS3 with the space-like plane S(p) con-
sisting of the midpoints of all time-like geodesics starting from p; that plane

Figure 1.13: Duality between points and space-like planes in AdS3

is such that ∂∞S(p) = ∂∞I0(p) where I0(p) is union of light-like geodesics
passing through p. Conversely, all time-like geodesics orthogonal to a space-
like plane S meet in a single point p and it is such that S = S(p). So
p 7→ S(p) is a bijective map from AdS3 to the set of space-like planes of
AdS3, as in Figure 1.13; let S(p) be called the dual plane of p. One can also
define a correspondence L between ∂∞AdS3 and the set of light-like planes
of AdS3 by putting L(p) the plane tangent to ∂∞AdS3 at p.

Now fix a space-like plane P0. It is a simply connected complete hyper-
bolic surface, so it is isometric to H2. In particular, we can identify ∂∞P0



1.3. THE SPACE AdS3 35

Figure 1.14: Foliations of ∂∞AdS3

with ∂H2. For every point p ∈ ∂∞AdS3 there is a unique leaf fl(p) ∈ Fl
that passes through p; denote by πl(p) the intersection between fl(p) and
∂∞P0

∼= ∂H2, as in Figure 1.14. Analogously, define πr(p). The obtained
map (πl, πr) : ∂∞AdS3 → ∂H2×∂H2 is a correspondence (notice in fact that
(πl, πr)(fl(x) ∩ fr(y)) = (x, y) for every (x, y) ∈ ∂H2 × ∂H2).
It is known (see [2]) that under the identification between ∂∞AdS3 and
∂H2 × ∂H2, for every space-like plane S there exists A ∈ PSL(2,R) such
that ∂∞S = graph(A). Conversely, for every A ∈ PSL(2,R), graph(A) is
the boundary at infinity of a space-like plane PA, namely α(P0) where α is
the extension to AdS3 of the isometry (id, A) of ∂∞AdS3.
Notice that the correspondence A↔ PA between PSL(2,R) and space-like
planes of AdS3 coincides, under the identification between PSL(2,R) and
AdS3, with the duality p ↔ S(p) between points and space-like planes of
AdS3. Moreover, if (A,B) ∈ PSL(2,R) × PSL(2,R) ∼= Isom0(AdS3) then
(A,B)(X) = AXB−1 for every X ∈ PSL(2,R) ∼= AdS3.

Remark 1.3.1. Since PA = graph(A) for every A ∈ PSL(2,R), two space-
like planes PA and PB

• meet transversely if and only if AB−1 has two ideal fixed points, i.e.
AB−1 is hyperbolic;

• are tangent at one point in ∂∞AdS3 if and only if AB−1 has one ideal
fixed point, i.e. AB−1 is parabolic;

• have disjoint ideal boundary if and only if AB−1 has no ideal fixed
points, i.e. AB−1 is elliptic.
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1.3.2 Bent surfaces and convex hulls

Even if AdS3 is time-oriented, the notion of future of a point is not useful:
it is in fact the whole AdS3. It can be only a local notion. Then say that an
embedded topological surface S is locally achronal in AdS3 if there are open
subsets Vj of AdS3 covering S such that for every j any two distinct points
x, y ∈ S ∩ Vj are not joint by a time-like arc in S ∩ Vj . Say also that S is
past convex (respectively future convex) if it is locally achronal and if there
exists an open covering {Ui} of S in AdS3 such that for every i the geodesic
connecting two points of S ∩ Ui does not intersect the future (respectively
the past) of S in Ui.
A support plane for S in p ∈ S turns out to be a space-like plane P such
that S∩P is convex and contains p. Notice that S is past convex if and only
if for every i and for every p ∈ Ui there is a support plane P of S in p that
does not intersect S ∩ Ui if slightly moved in the future.

Definition 1.3.1. A past (respectively future) bent surface is a topological
embedding b : H → AdS3 where:

• H is an open convex subset of H2 with geodesic boundary;

• there is a lamination λ of H such that the restriction of b to any
stratum of λ is isometric and totally geodesic;

• b(H) is a past (respectively future) convex surface.

Example 1.3.1. Consider two space-like planes P and Q meeting along l:
taken p ∈ l, consider the future-pointing unit vectors nP , nQ orthogonal in
p respectively in P and Q and define the bending angle between P and Q as
ϑ(P,Q) = cosh−1 |〈nP , nQ〉|. If l is oriented, we can assign a signed bending
angle ϑ(P,Q): it is positive (respectively negative) if v, nP , nQ, where v is
the positive unit tangent vector of l in p, is a positive (respectively negative)
basis of TpAdS3.
Notice that if l = Pid ∩ PB is oriented from the repulsive point of B to the
attractive one then ϑ(Pid,PB) > 0.
Since the translation length T(X) of a hyperbolic element X in PSL(2,R)
is given by the formula T(X) = 2 cosh−1(| tr(X)|/2), the bending angle
between PA,PB is

cosh−1 |〈A,B〉| = cosh−1 | tr(AB−1)|
2

=
T(AB−1)

2
.

Consider S = Pr ∪ l∪Ql where Pr is the right component of P r l and Ql is
the left component of Qr l with respect to l. Then S is an achronal surface.
Moreover, it is a past bent surface if ϑ(P,Q) > 0.
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Remark 1.3.2. It is possible to associate to any past bent surface a transverse
measure of λ. If c : [0, 1]→ H is an arc transverse to λ and

I = (0 = t0 < t1 < . . . < tk = 1)

is a partition of [0, 1], chosen a support plane for every b(c(ti)) let ν(c, I) be
the sum of the bending angles between the support planes of b(c(ti)) and
b(c(ti+1)). Notice that if three space-like planes PA,PB,PC with non-empty
mutual intersections are such that PA ∩ PC lies above PB then ax(AC−1)
lies between ax(AB−1) and ax(BC−1) so the inequality

ϑ(PA,PB)+ϑ(PB,PC) =
T(AB−1)

2
+

T(BC−1)

2
≤

≤T(AB−1BC−1)

2
= ϑ(PA,PC)

holds. This property of bending angles leads to the monotonicity of ν(c, ·);
more precisely, if J is finer than I then ν(c, J) ≤ ν(c, I). Therefore

µ(c) = lim
|I|→0

ν(c, I)

is well defined.

Remark 1.3.3. If supp(λ) is locally finite, then the transverse measure con-
structed in the remark above simply assigns to each leaf a weight: if l is
a leaf adjacent to two gaps F1 and F2, then its weight coincides with the
bending angle between b(F1) and b(F2).

Achronal meridians

In this subsection we will consider a particular class of meridians in ∂∞AdS3,
whose properties are better understood on the universal covering of ∂∞AdS3.
Under the identification of it with ∂H2 × ∂H2 and fixed from now on the
universal covering R → ∂H2 ∼= S1 given by t 7→ e2πit, we will consider the
universal convering Υ : R2 → ∂H2 × ∂H2 given by Υ(x, y) = (e2πix, e2πiy).
Notice that the preimage by Υ of a leaf of the left foliation has the form
(Z + x) × R for some x ∈ R and the preimage of a right leaf has the form
R× (Z + y) for some y ∈ R.

Remark 1.3.4. A lifting of a space-like curve C in ∂∞AdS3 is the graph of a
continuous and strictly increasing function f : R→ R such that

f(x+ n) = f(x) +m,

where n,m ∈ Z are such that the homotopy class [C] of C is n[fl] + m[fr]
with fl ∈ Fl and fr ∈ Fr. In particular, liftings of space-like meridians
are graphs of orientation-preserving homeomorphisms f : R→ R such that
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f(x+ 1) = f(x) + 1.
The closure of space-like meridians contains also locally achronal meridians,
i.e. meridians C where every p ∈ C has a neighbourhood U in ∂∞AdS3 such
that no pair of points q, r ∈ U ∩C is joint by a time-like arc in U . Therefore,
locally achronal meridians are associated to limits of graphs of orientation-
preserving (1, 1)-periodic homeomorphisms f : R → R; such limits are of
the form

Grf =
{

(x, y) ∈ R2 | lim
t→x−

f(t) ≤ y ≤ lim
t→x+

f(t)
}

with f : R→ R not decreasing such that f(·+ 1) = f(·) + 1.
The converse does not hold: there are non-decreasing functions f : R → R
such that f(· + 1) = f(·) + 1 but Υ(Grf ) is not an achronal meridian.
Namely, they are of the form fα,β(x) = bx + αc+ β with (α, β) ∈ R2. It is
not difficult to see that Υ(Grfα,β ) is the union of the two leaves fl(Υ(α, β))
and fr(Υ(α, β)) of the left and right foliations Fl and Fr of ∂∞AdS3 passing
through the point Υ(α, β).

The following lemmas and remarks will be useful in the next section,
where we consider the relation between locally achronal meridians and bent
surfaces in AdS3.

Lemma 1.3.1. If C is an achronal meridian, then there exists a space-like
plane P in AdS3 such that C ∩ ∂∞P = Ø.

Proof. Consider a function f : R → R such that Grf projects to C; up to
isometries, we can suppose that f(0) = 0 (and so f(1) = 1), f(1/2) = 1/2
and f is continuous in 0 and 1/2. The function f is not decreasing so

Grf ∩[0, 1]2 ⊂ [0, 1/2]2 ∪ [1/2, 1]2

and the continuity of f in 0, 1 and 1/2 prevents that the points (0, 1/2) and
(1/2, 1) lie on Grf .
Therefore, graph(x 7→ x+1/2) is disjoint from Grf ; notice that x 7→ x+1/2

is a lifting of the rotation of angle π of ∂H2, so it is the lifting of the trace at
infinity of an isometry A ∈ PSL(2,R). It follows that C ∩ ∂∞PA = Ø.
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The previous lemma implies that considering the convex hull K of a lo-
cally achronal meridian C makes sense: it is well defined in the affine chart
R3 = RP 3 r P. That convex hull has the properties that its interior is
contained in AdS3 and its boundary in R3 meets ∂∞AdS3 exactly in C (see
Lemma 6.3 in [15]).

Remark 1.3.5. Support planes of K cannot be time-like, because for homo-
logical reasons time-like planes always meet C (transversely) . If C is not
the boundary at infinity of a space-like plane then K is topologically a closed
ball and ∂K in AdS3 has two connected components (separated by C), which
are achronal surfaces; we will refer to the past convex one as ∂+K, the upper
boundary of K, and to the future convex one as ∂−K, the lower boundary
of K.
If P is a space-like support plane then P ∩ ∂K = CH(P ∩ C) is either
a geodesic or a hyperbolic ideal polygon (also with an infinite number of
edges); if P is a light-like support plane then it is tangent to ∂∞AdS3 at
a certain p ∈ C and P ∩ ∂K = CH(P ∩ C) is a (light-like) triangle with a
vertex in p and two edges lying in fl(p) and fr(p). We will refer to the set of
points of ∂±K which admit only space-like support planes as the space-like
part of ∂±K.

Remark 1.3.6. If f : R→ R is an increasing function such that Υ(Grf ) = C
and A ∈ PSL(2,R) then PA is an upper support plane for C if and only if
there is a lifting Ã : R→ R of A|∂H2 such that Ã−1(f(x)) ≤ x for every x ∈ R
and Ã−1 ◦ f admits two fixed points in [0, 1). In fact PA = CH{(x,A(x))}
does not disconnect C = Υ(Grf ) if and only if there is a lifting Ã such
that f(t) ≤ Ã(t) for every t ∈ R (since PA is an upper support plane) and
PA ∩K is a geodesic or an ideal polygon if and only if at least two points lie
in ∂∞PA ∩ C, meaning that Ã(t) = f(t) for at least two point t ∈ [0, 1).

Lemma 1.3.2. If P and Q are space-like upper support planes of K then
they intersect along a line a. Moreover, if a is oriented so that ϑ(P,Q) > 0,
then P∩K is contained in the right side Pr of a in P and Q∩K is contained
in the left side Ql of a in Q.

Proof. If by contradiction P and Q are disjoint, then you can slightly move
them in the future to get space-like planes P ′ and Q′ such that P, Q, P ′
and Q′ are mutually disjoint and P ′ ∩ K = Q′ ∩ K = Ø.
Notice that P and Q are contained in two different connected components

of AdS3 r (P ′ ∪ Q′). However, K is connected, since it is convex, and both
its intersections with P and Q are not empty, leading to a contradiction.
Moreover, any geodesic segment joining a point of P ∩ K with a point of
Q∩Kmust be contained inK and can not intersect space-like planes obtained
slighty moving P and Q in the future. Then the only possibility is that the
endpoints of the segment lie respectively in Pr and Ql.
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Figure 1.15

Remark 1.3.7. Consider P, Q, a, Pr and Ql as in Lemma 1.3.2 and Figure
1.15. Let p− = (x−, y−) be the starting point of a and p+ = (x+, y+) the
ending one. Let s be the geodesic in H2 with starting point x− and ending
point x+. Since ∂∞(P ∩ K) = P ∩ C = {(xα, yα)} is contained in ∂∞Pr, all
the points xα lie on the right side of s, and analogously all the points x′β
lie on the left side of s, where Q ∩ C = {(x′β, y′β)}. In particular, s weakly
separates CH{xα} from CH{x′β}.

Sets connectible by achronal meridians

For any points x, y, z ∈ ∂H2 such that x 6= z, we write x ≤ y ≤ z if y lies
in the positive segment in ∂H2 with first endpoint x and second endpoint z.
We write x < y < z if x ≤ y ≤ z and x 6= y 6= z.

Definition 1.3.2. A subset Ω of ∂∞AdS3 not contained in a right or in a left
leaf is said to be connectible by an achronal meridian if given three points
(x1, y1), (x2, y2), (x3, y3) ∈ Ω with x1 < x2 < x3 then either y1 = y2 = y3 or
y1 < y2 < y3.

Any achronal meridian C is connectible by an achronal meridian: it is
the projection of Grf for a certain increasing function f : R→ R such that
f(x+ 1) = f(x) + 1.

Lemma 1.3.3. For every set Ω connectible by an achronal meridian there
exists an achronal meridian containing Ω. Moreover, there are two extremal
achronal meridians C−(Ω), C+(Ω) containing Ω such that every achronal
meridian containing Ω lies between them.

Proof. Let Ω̃ = Υ−1(Ω) ∩ [0, 1]2, where Υ : R2 → ∂H2 × ∂H2 is the cov-
ering map described at the beginning of Subsection 1.3.2. By definition, if
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(x̃, ỹ), (x̃′, ỹ′) ∈ Ω̃ and x̃ < x̃′ then ỹ ≤ ỹ′. Define f− : [0, 1] → [0, 1] by
setting f−(0) = 0, f−(1) = 1 and

f−(t) = sup{ỹ | ∃(x̃, ỹ) ∈ Ω̃ s.t. x̃ ≤ t}

where we consider sup Ø = 0. Extend this function to the increasing map
f− : R→ R such that f−(t+1) = f−(t)+1. If (x̃, ỹ) ∈ Ω̃ then by construction
f−(x̃) ≥ ỹ; on the other hand, by the property of Ω̃, lim f−(t) ≤ ỹ as
t → x̃−. Therefore, (x̃, ỹ) ∈ Grf− . Notice also that if Υ(t, 0) ∈ Ω then
(0, t)× {0} ⊂ Grf− .
The curve C−(Ω) = Υ(Gf−) contains Ω so it cannot be contained in a right
or left leaf of ∂∞AdS3; hence, C−(Ω) is an achronal meridian, containing Ω.
Analogously, define f+ : [0, 1]→ [0, 1] by setting f+(0) = 0, f+(1) = 1 and

f+(t) = inf{ỹ | ∃(x̃, ỹ) ∈ Ω̃ s.t. x̃ ≥ t}

where we consider inf Ø = 1, and extend this function to the increasing map
f+ : R → R such that f+(t + 1) = f+(t) + 1. Also C+(Ω) = Υ(Grf+) is an
achronal meridian containing Ω.
Moreover, any achronal meridian C containing Ω has to be Υ(Grf ) for some
increasing map f : R→ R such that f(x+ 1) = f(x) + 1 and f(0) = 0. By
construction, f− ≤ f ≤ f+.

Remark 1.3.8. If Ω ⊂ ∂∞AdS3 is connectible by an achronal meridian C,
then Ω ⊆ C = C. Thus Ω is connectible by an achronal meridian.

Relating to the notations of the previous proof, one can consider the
region

B(Ω) = Υ({(x, y) ∈ [0, 1]2 | f−(x) ≤ y ≤ f+(x)}) (1.8)

which turns out to be the union of all the achronal meridians containing Ω.
It is the union of Ω and some (possibly degenerate) rectangles of the form
[x, x′] × [y, y′] with light-like edges. Rectangles of the form [x, x′] × [y, y′]
such that x 6= x′ correspond to connected components of ∂H2 r πl(Ω) and
viceversa.

Definition 1.3.3. An achronal meridian is said Ω-extremal if it is contained
in the boundary of B(Ω).

Remark 1.3.9. The lower meridian and the upper meridian passing through
∂∞S are Ω-extremal meridians. Every meridian contained in the union of
the upper and the lower meridian is an Ω-extremal meridian. There are no
other Ω-extremal meridians.





Chapter 2

Earthquakes between ciliated
surfaces

2.1 Ciliated surfaces and T ?S (C)

Definition 2.1.1. A ciliated surface is the data of:

• a surface S, topologically obtained by removing n mutually disjoint
open disks ∆1, . . . ,∆n from a compact connected oriented surface;

• m distinct points p1, . . . , pm on S r
⋃
∂∆i;

• s points q1, . . . , qs, called cilia, on
⋃
∂∆i.

Let us call C = {q1, . . . , qs}. In this section we make the hypothesis that
m = 0 and that ∂∆i ∩ C 6= Ø for every i = 1, . . . , n. At the end, we will
show what happens otherwise.
Consider the Teichmüller space T ?S (C) = Met?−1(S,C)/Diff0(S|C) introduced
in 1.2. In this section we will show that there is a correspondence between
T ?S (C) and the space JS(C) of complex structures on S = S ∪

⋃
∂∆i up to

the action of Diff0(S|C). For the generalization of complex structures on
surfaces with boundaries, see [23]
Given J ∈ JS(C), take its corresponding Fuchsian representation ρ ∈ T ?S (C)
given by the Uniformisation Theorem. The developing map dev (see [8])
from the universal cover of S to H2 induces an isometric immersion

(S, J)→ ρ(π1(S))\(H2 r Λρ),

where Λρ is the limit set of ρ.
Notice that if ψ : (S, J) → (S, J ′) is an isometric element of Diff0(S|C), we
get a lift ψ̂ : Ŝ → Ŝ′ on the universal covers which extends to the ideal
boundary of Ŝ so that its restriction Ψ from ∂Ŝ onto ∂Ŝ′ is an equivariant
homeomorphism: for every γ ∈ π1(S) and x ∈ ∂Ŝ,

Ψ(γ.x) = γ.Ψ(x).

43
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Now the developing maps dev and dev′ are defined up to post-composition
by an element of Isom0(H2), so we can suppose dev

∣∣
∂Ŝ

= dev′ ◦Ψ. If Ĉ ⊂ Ŝ
and Ĉ′ ⊂ Ŝ′ are the preimages of Q, then Ψ(Ĉ) = Ĉ′. Thus,

dev(Ĉ) = dev′(Ψ(Ĉ)) = dev′(Ĉ′).

Therefore, on H2
the closure ΛC in H2

of the set dev(Ĉ) is independent on the
choice of the developing map, and well defined up to elements of PSL(2,R).
Also, we have

ΛC = Λρ ∪ C̃, (2.1)

being C̃ = dev(Ĉ) discrete in H2 r Λρ. Consider the convex hull H ⊂ H2

of ΛC. The hyperbolic metric h ∈ T ?S (C) on ρ(π1(S))\H is the element we
associate with the class of J .

Remark 2.1.1. In Subsection 1.1 the double Sd of S was defined (see Equa-
tion (1.4)). The orientation-preserving immersion i = i+ : (S, h)→ (Sd, hd)
can be lifted to ĩ : H → H2 so that ĩ(H) = H.
Now take (hl, hr) ∈ T ?S (C)× T ?S (C) and consider (hdl , h

d
r) ∈ TSd × TSd and

ĩl : Hl = CH(ΛCl)→ S̃dl = H2

ĩr : Hr = CH(ΛCr)→ S̃dr = H2.

If F : (S, hl)→ (S, hr) is an element of Diff(S|C), let F d : (Sd, hdl )→ (Sd, hdr)
be the induced diffeomorphism. It is known (see [21]) that F d can be lifted
to F̃ d : H2 → H2 so that the restriction F̃ d∞ : ∂H2 → ∂H2 of its extension to
H2 is a homeomorphism.

Sdl

Sl Sr

Sdr S̃dl

Hl Hr

S̃drH2 = = H2

H2 ⊃ ⊂ H2Hl Hr

S̃dr

F //
� _

il
��

� _

ir
��

F d //

F̃ //
� _

ĩl
��

� _

ĩr
��

F̃ d //

In particular, the restriction of F̃ d∞ to ĩl(ΛCr) is a homeomorphism onto
ĩr(ΛCl). Thus, we get a homeomorphism ϕ = F̃ d∞ : ∂H2 → ∂H2 whose
restriction on ΛCl extends F̃ : Hl → Hr.
Remark 2.1.2. In [23], also a notion of complex structures that in p1, . . . , pm
(the points removed in Definition 2.1.1) have cusps is studied. We could have
considered the set of metrics with crowns and cusps instead of Met?−1(S,C)
(which has only crowns) not assuming m = 0, and all the conclusions would
still hold, but for coherence and simplicity we chose to focus on T ?S (C).
On the contrary, the assumption that ∂∆i ∩ C 6= Ø for every i will be a
necessary condition to get uniqueness in the statement of the earthquake
theorem for ciliated surfaces, as it will be pointed out in Remark 2.2.2.
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2.2 Earthquakes and bent surfaces

In this section we will first show how to construct bent surfaces in AdS3

that encode hyperbolic earthquakes between two given hyperbolic metrics
hl, hr ∈ T ?S (C). Afterwards, we will show that the boundary at infinity of
such bent surfaces are sets connectible by achronal meridians.
Finally, we will prove Theorem A using such constructions.

2.2.1 Bent surfaces associated with earthquakes

Consider two surfaces Sl = (S, hl) and Sr = (S, hr) with (hl, hr) ∈ T ?S (C) and
holonomies holl, holr respectively, related by a right hyperbolic earthquake
Eλr : Sl → Sr associated with λ ∈ MLS(S). Consider its π1(S)-invariant
lifting to the universal coverings Ẽ : Hl → Hr. The aim of this subsection
is to show how to construct a bent surface S in AdS3 that encodes Ẽ, as in
[29], [2], [15].
Given a gap G of λ̃l, the preimage of λ in Hl, let A(G) ∈ PSL(2,R) be the
extension of Ẽ|G and {xα} the set of ideal vertices of G. On the space-like

plane PG = PA(G) whose boundary in ∂∞AdS3 is graph(A(G)) consider the
convex hull K(G) of {(xα, A(G)(xα))}. Let also rG : H2 → AdS3 be the
isometric embedding with image PA(G) such that the trace at infinity of rG
is (id, A(G)).

Proposition 2.2.1.

S =
⋃
G gap

K(G)

is a π1(S)-invariant past bent surface in AdS3.

Proof. Assume that λ is locally finite, so that we are in the situation de-
scribed in Remark 1.3.3. The general case is obtained through an approxi-
mation argument, using past bent surfaces (along locally finite laminations)
in the future of S tending to S (see the construction of the transverse mea-
sure in Remark 1.3.2).
By construction (see Subsection 1.3.1), the trace at infinity of the space-like
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plane P0 is graph(id). Given two gaps F and G of λ̃l, consider the isometries
(id, A(F )) : P0 → PF and (id, A(G)) : P0 → PG. Then

rG = (id, A(G)) ◦ (id, A(F ))−1 ◦ rF = (id, B) ◦ rF

where B = A(G) ◦A(F )−1. So K(G) = rG(G) = (id, B)
(
rF (G)

)
.

Let l be the image of the axis of B∗ = cmp(F,G) = A(F )−1 ◦A(G) through
rF ; remembering that the attractive and repulsive points of hyperbolic ele-
ments verify

x±(A1 ◦A2 ◦A−1
1 ) = A1(x±(A2))

for every transformation A1, A2 ∈ PSL(2,R), the endpoints of l are

p± =
(

x±(B∗), A(F ) x±(B∗)
)

=

=
(

x±(B∗), x±(A(F ) ◦B∗ ◦A(F )−1)
)

=

=
(

x±(B∗), x±(B)
)
.

For (id, B)(p±) =
(

x±(B∗), B(x±(B))
)

= p±, l is (id, B)-invariant. If Pl and
Pr are the half-planes on PF (the space-like plane whose trace at infinity is
the graph of the isometry A(F ) that extends Ẽ|F ) bounded by l such that

K(F ) = CH({(xα, A(G)(xα))}) = rF (F ) ⊂ Pl

and rF (G) ⊂ Pr, then

K(G) = rG(G) = (id, B)
(
rF (G)

)
⊂ (id, B)(Pr).

Since K(F ) ∪K(G) ⊂ Pl ∪ (id, B)Pr which is achronal, S is achronal.
Notice that, since Ẽ is π1(S)-invariant (denoting by CH(∗) the convex hull
of its argument),

K(holl(γ)(F )) = CH
{(

holl(γ)(xα), A(F ) holl(γ)(xα)
)}

=

= CH
{(

holl(γ)(xα), holr(γ)A(F )(γ)(xα)
)}

=

= (holl(γ), holr(γ))
(

CH
{(
xα, A(F )(xα)

)})
=

= (holl(γ), holr(γ))(K(F ))

and so S is π1(S)-invariant.
It is not true that glueing the maps rF gives a bending map b : H → S,
because it is not well defined on λ̃: if p ∈ F ∩G and F 6= G then

rG(p) = (id, B) ◦ rF (p).

The transformation (id, B) acts on l as a translation of length

T(B)

2
=

T(B∗)

2
=

T(cmp(F,G))

2
.
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So if we fix a gap F0, translate on the right its adjacent ones of a factor half
the weight of their separating leaf and iterate (that is, a right earthquake
on Hl associated with λ̃l/2), we get a domain H on which is induced and
well defined the bending map b : H → S.
Every internal point of K(F ) has a neighbourhood where it is immediate to
check that S is past convex. In the case where a point q lies in K(F )∩K(G),
notice that K(F ) ∪K(G) ⊂ Pr ∪ (id, B)Pl and

ϑ(PA(F ), (id, B)PA(F )) = ϑ(Pid, (id, B)Pid) = ϑ(Pid,PB) > 0

so by Remark 1.3.1 also q has a neighbourhood where the past convexity of
S is verified.

2.2.2 Achronal meridians and convex sets associated with
bent surfaces

Now we will see that the boundary at infinity of the bent surface S in
AdS3 associated previously with Eλr : Sl → Sr is connectible by achronal
meridians; among them, there is one whose convex hull in AdS3 has S itself
contained in the boundary. .
Since Ẽ : Hl → Hr can be equivariantly extended on ∂G ⊂ ∂H2 for every
stratum G, the set

∂∞S = {(x, Ẽ(x)) ∈ ∂∞AdS3 : x ∈ ∂G with G stratum}

is well defined. Notice that ∂∞S =
⋃
∂∞K(G). Moreover, any point of ∂G

is an element of the limit set of Hl or the preimage of a tip of Sl.

Lemma 2.2.2. The set ∂∞S is connectible by an achronal meridian.

Proof. By Remark 1.3.8, it is sufficient to show that the set

T = {(x, Ẽ(x)) ∈ ∂∞AdS3 : x ∈ ∂G with G stratum}

is connectible by an achronal meridian, being ∂∞S = T . By definition,
we must check that if (x1, y1), (x2, y2), (x3, y3) are points in T such that
x1 < x2 < x3 then y1 < y2 < y3. For every i = 1, 2, 3 there is a stratum Fi
of λ̃r such that (xi, yi) ∈ K(Fi). Suppose that F1 6= F2 6= F3 (it is easy to
check the other cases, once this one is considered). We can suppose without
loss of generality that F2 separates F1 and F3 or there exists a stratum F4

separating F1, F2 and F3. In the first case, there are points x′1, x
′′
1, x
′
3, x
′′
3 in

∂∞F2 such that

x′1 ≤ x1 ≤ x′′1 and x′3 ≤ x3 ≤ x′′3
and the intervals (x′1, x

′′
1) and (x′3, x

′′
3) are disjoint and do not contain points

of ∂∞F2. Notice that either x′′1 = x2 = x′3 or x′′1 ≤ x2 ≤ x′3.
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Now take the extension A ∈ PSL(2,R) of Eλ̃rr
∣∣
F2

. Since A−1 ◦Eλ̃rr fixes F2,

A−1
(
Eλ̃rr (xi)

)
∈ [x′i, x

′′
i ] for i = 1, 3. Therefore,

A−1y1 = A−1
(
Eλ̃rr (x1)

)
< x2 < A−1

(
Eλ̃rr (x3)

)
= A−1y3.

Since the trace at infinity of A preserves the orientation of ∂H2, we conclude
that y1 < y2 < y3.
The latter case is similar (considering the earthquake B−1 ◦ Eλ̃rr , where

B ∈ PSL(2,R) extends Eλ̃rr
∣∣
F4

).

Remark 2.2.1. Since S is invariant by the action of π1(S) (see Proposition
2.2.1), it is easy to check that also C−(∂∞S) and C+(∂∞S), the extremal
meridians introduced in Lemma 1.3.3, are π1(S)-invariant.

The following proposition shows how to recover S from C−(∂∞S).

Proposition 2.2.3. The bent surface S is the space-like part of the upper
boundary of K = CH(C−(∂∞S)), called the future boundary of K and denoted
by ∂+K.

Proof. The first part of the argument follows [15]. Recall that, for ev-
ery stratum G of λ̃l with ideal vertices {xα}, K(G) is the convex hull of
{(xα, Ẽ(xα))} ⊂ C−(∂∞S); then S ⊂ K.
In order to prove that S ⊂ ∂+K, it is sufficient to show that for every gap
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F of λ̃l the space-like plane PF containing K(F ) is an upper support plane
for K.
Without loss of generality, suppose that Ẽ|F = A(F ) = idF . Then PF = P0.
If G is another gap then there are x, x′ ∈ ∂∞F such that the geodesic with
endpoints x, x′ is a component of ∂F and x ≤ y ≤ x′ for every y ∈ ∂∞G.
Then x < Ẽ(y) < y or y = Ẽ(y) ∈ {x, x′} for every y ∈ ∂∞G, being Ẽ a
right earthquake. Therefore, f−(t) ≤ t for every t ∈ [0, 1]; using Remark
1.3.6 and noticing that x, x′ are fixed points of f−, PF turns out to be an
upper support plane for K.
In order to prove that ∂+KrS is not space-like, it is sufficient to show that
for every p ∈ ∂+K r b(H) there exists a support light-like plane for K in p.
Take a support plane P for K in p. It can not be time-like. If it is light-like,
we have finished. If it is space-like instead, consider

P ∩ C−(∂∞S) = {(xα, yα)}

and the convex hull DP ⊂ H2 of {xα}. By Remark 1.3.7, DP is weakly
separated from all the strata of λ̃l, and so from Hl. Then there is a com-
ponent I = (x′, x′′) of ∂H2 r ∂Hl such that {xα} ⊂ I. It follows that
P ∩ C−(∂∞S) ⊂ Ī × J̄ where J = (Ẽ(x′), Ẽ(x′′)) = (y′, y′′). More precisely,

P ∩ C−(∂∞S) ⊂ (Ī × J̄) ∩ C−(∂∞S) = (Ī × {y′}) ∪ ({x′′} × J̄) = Z.

If q′ = (x′, y′) and q′′ = (x′′, y′′), the only way for the space-like plane P to
be an upper support plane for CH(C−(∂∞S)) is to meet Z only in q′ and
q′′. Moreover, since P is a support plane in p /∈ b(H), p lies on the geodesic
s with endpoints q′, q′′.
By Remark 1.3.5, the light-like plane L dual to d = (x′, y′′) is a support plane
for K. It contains fl(d), fr(d), so in particular q′, q′′. Thus, p ∈ s ⊂ L.

2.2.3 Existence and uniqueness of E : Sl → Sr

This subsection is devoted to the proof of Theorem A.

Theorem 2.2.4. For every hl, hr ∈ T ?S (C) there exists a unique right earth-
quake between Sl = (S, hl) and (S, hr).

Proof. Consider the universal covers

Hl → Sl = holl(π1(S))\Hl
Hr → Sr = holr(π1(S))\Hr

with Hl,Hr ⊂ H2, defined in Section 2.1. Recall that the developing maps
devl : S̃l → H2 and devr : S̃r → H2 can be extended on the preimages of the
tips and determine the same set in H2 up to post-composition by elements



50 CHAPTER 2. EARTHQUAKES BETWEEN CILIATED SURFACES

of PSL(2,R). This fact lead us in Remark 2.1.1 to find a homeomorphism
ϕ : ∂H2 → ∂H2 such that its graph contains{(

x+(holl(γ)), x+(holr(γ))
)

: γ ∈ π1(S)
}
,

where x+(A) denotes the attractive point of any hyperbolic element A in
PSL(2,R). Also, the restriction of ϕ to C̃l, the ideal set in ∂∞Hl corre-
sponding to the preimage of C̃, is an equivariant homeomorphism onto C̃r,
so that q̃ and ϕ(q̃) project to the same cilium for every q̃ ∈ C̃l. Since ϕ is a
homeomorphism, its graph is an achronal meridian in ∂∞AdS3, by Remark
1.3.4. In particular, Ω = graph(ϕ

∣∣
ΛQl

) is a set connectible by an achronal

meridian.

By the work of Benedetti and Bonsante, [? ] earthquakes between sur-
faces with geodesic boundary with holonomy holl and holr, are in bijective
correspondence with (holl, holr)-invariant bent surfaces in AdS3, through
the construction given in the previous sections. In particular a bijective
correspondence exists between those earthquakes and (holl, holr)-invariant
achronal meridians, up to isometries of AdS3. To prove the theorem we will
look for achronal meridians corresponding to earthquakes between ciliated
surfaces which fix the tips (that is E(q̃) = ϕ(q̃) for any q̃ ∈ ΛCl).
Recall that ∂∞AdS3 has a left foliation Fl and a right one Fr. Fixed a
space-like plane P0, identified with H2, consider the left and right projec-
tions πl, πr : ∂∞AdS3 → ∂∞P0

∼= ∂H2 through the leaves of Fl and Fr.
Now pick an achronal meridian C in ∂∞AdS3. Given a face or a bending
line F of the space-like part S+(C) of the future boundary of the convex
hull of C we can consider the ideal convex sets or geodesics Fl and Fr in
H2 obtained as the convex hull of the left and right projections of endpoints
of F . The domain Hl of the right earthquake associated with S+(C) is the
convex domain of H2 obtained as the union of the faces Fl, and the earth-
quake sends Fl to Fr. Also, from S−(C), we get a left earthquake between
Hl and Hr. See [7] for details. We are looking for those achronal curves C
for which Hl = Hl and Hr = Hr, which means that πl(S+(C)) = ΛCl and
πr(S+(C)) = ΛCr .
Consider q̃ ∈ Cl. It is an isolated vertex of Hl. As seen before, if a ver-
tex of a stratum of S+ lies on [q̃, q̃′] × [ϕ(q̃), ϕ(q̃′)], then it must be one of
the vertices. As we are requiring that Ẽ(q̃) = ϕ(q̃), any stratum meeting
[q̃, q̃′] × [ϕ(q̃), ϕ(q̃′)] must have a vertex either at (q̃, ϕ(q̃)) or at (q̃′, ϕ(q̃′)).
Imposing that Ẽ(q̃) = ϕ(q̃), we also have that (q̃, ϕ(q̃)) must be either a
point in a stratum or an accumulation point of strata. However, the lat-
ter case cannot hold, since the left (or the right) projections of ideal points
of accumulating strata would be elements of Hl (or Hr) tending to q̃′ (or
ϕ(q̃)′), leading to a contradiction. Thus we get that there is a stratum pass-
ing through (q̃, ϕ(q̃)). However, we need that q̃ lies in ∂∞Hl and ϕ(q̃) lies
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in ∂∞Hr, so there must be a strata of S+ whose trace contains (q̃, ϕ(q̃)).
Therefore, C has to be an achronal meridian containing Ω.
In order to see that C has also to be Ω-extremal, take the light-like plane
L dual to (q̃′, ϕ(q̃)). Suppose that it transversally meet S+(C); then it de-
composes S+(C) in two regions, and the asymptotic boundary of one of the
two regions must be contained in (q̃, q̃′)× (ϕ(q̃), ϕ(q̃′)). As we know that no
stratum has endpoints in this region we get a contradiction. Thus L must be
a light-like support plane, so the curve C is a past Ω-extremal curve. Thus,
C can be only the achronal meridian C−(Ω). This shows the uniqueness
part of the statement.
We now have to show that the curve C−(Ω) is associated with an earth-
quake between the ciliated surfaces. First notice that as the light-like plane
dual to (q̃, ϕ(q̃′)) is a future support plane for S+(C), so the space-like line
between (q̃, ϕ(q̃)) and (q̃′, ϕ(q̃′)) disconnects S+(C) in two regions, one of
them being a light-like triangle. So space-like strata of S+(C) can meet
[q̃, q̃′]× [ϕ(q̃), ϕ′(q̃)] only at (q̃, ϕ(q̃)), (q̃′, ϕ(q̃′)). It follows that Hl contains
points q̃, but no other points between two tips. So Hl coincides with Hl,
and Ẽ sends q̃ to ϕ(q̃).

Remark 2.2.2. As outlined in Section 2.1, this result can be easily generalized
to all types of ciliated surfaces. We chose S as the topological data of a closed
surface with m = 0 points and n−m closed disjoint disks ∆i removed and
of a finite set C in

⋃
∂∆i so that C ∩ ∂∆i 6= Ø for every i, in order to

have only crowns at the n punctures. If we drop the restriction m = 0,
at the punctures in the removed points p1, . . . , pm cusps occur. If we also
eliminate the condition that ∂∆i must have at least one cilium for every i,
the disks without cilia give raise to closed geodesic boundary components.
All the arguments in [7] and [15] apply also in this case, with a convenient
Teichmüller space (where punctures can have cusp, crown or closed geodesic
structure), and again given two admissible hyperbolic metrics (hl, hr) on S
there will be 2k right earthquakes sending hl to hr, as in Theorem , where
k is the number of boundary components of S having a closed geodesic
structure both in hl and hr.

2.3 Ideal polygons

In this section we are dealing with ideal polygons of H2, considered as simply
connected hyperbolic surfaces of genus 0 with one puncture and as many
cilia as their ideal vertices. The existence and uniqueness of earthquakes
between two ideal n-gons is already known (see for example [20], ore use
an argument of double). Here we show the constructive proof, using bent
surfaces in AdS3 as in [20]. That is meant to be an illustrative example of
the arguments involved in the previous section.
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Proposition 2.3.1. Let V and W two ideal n-gons in H2. Suppose the
vertices of V and W numbered as v1, . . . , vn and w1, . . . , wn respectively,
consecutively and counterclockwise. Then there exists a unique right earth-
quake E : V →W such that E(vj) = wj ∀j.

Proof. Let U be the set {uj = (vj , wj) ∈ ∂∞AdS3 | j = 1, . . . , n}. There
exists ψ ∈ Homeo+(∂H2) such that ψ(vj) = wj for j = 1, . . . , n. Then we
can find a space-like plane Q disjoint from graph(ψ) ∈ ∂∞AdS3. Consider
K = CH(U) in (an affine chart of) AdS3 and his future boundary

∂+K = {x ∈ ∂K | K ⊂ I−(P) for every support plane P of K with x ∈ P}.

Denote by C the union of the geodesics with ideal endpoints uj and uj+1,
for j = 0, . . . , n (where u0 = un). Notice that K can be thought as an ideal

Figure 2.1: The convex hull of U

polyhedron in AdS3 and that ∂K topologically is S2 with n punctures joint
by a close curve C. The two connected components of S2 r C correspond
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to the future and the past boundary of K.
No faces of ∂+K can be light-like (in the sense that they can not lie on
light-like planes). In order to check this, by contradiction suppose there are
three distinct vertices ua, ub, uc of a face contained in a light-like plane L;
then

ua, ub, uc ∈ L ∩ ∂∞AdS3 = fl(q) ∪ fr(q)

for a certain q ∈ ∂∞AdS3 (by fl(q) and fr(q) we respectively refer to the left
and the right leaf of ∂∞AdS3 passing through q). Therefore, two vertices
lie in the same leaf, e.g. ua e ub. However, if ua, ub ∈ fl(q) then va = vb
and if instead ua, ub ∈ fr(q) then wa = wb, which in both cases gives a
contraddiction.
Faces of ∂+K can not be time-like: every time-like plane meets graph(ψ) in
at most two points.
For every space-like plane S denote by φS,l : S → Pid and φS,r : S → Pid

the isometries such that
(
φS,l

)
|∂∞S = πl and

(
φS,r

)
|∂∞S = πr. For every

x ∈ ∂+K choose a space-like support plane S(x). Consider the earthquake
maps El : ∂+K → Pid and Er : ∂+K → Pid such that El(x) = φS(x),l(x) and
Er(x) = φS(x),r(x).
We claim that El(∂+K) = V and Er(∂+K) = W . It is in fact true that, for
every j, El(uj) = vj , so if a face F of ∂+K has vertices uj1 , . . . , ujk then
El(F ) is the ideal polygon with vertices vj1 , . . . , vjk . From the topological
point of view discussed above, the faces of ∂+K partition a disk and all
the vertices lie on ∂∞AdS3. Therefore the images through El of such faces
partition CH({v1, . . . , vn}), which coincides with V .
So the map E = Er ◦(El)−1 : V →W is well defined and by construction it is

Figure 2.2: The projections of the bending loci of ∂+K and ∂−K on V

a right earthquake (see next Remark, point 1) such that E(vj) = wj ∀j.

Remark 2.3.1. Since U can be contained in exactly 2n extremal meridians, a
natural question is if for each one of them there exists an earthquake induced
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by the future boundaries of their convex hulls, obtaining 2n earthquakes with
the same boundary conditions.
Extremal meridians containing U are closed polygonal chains in ∂∞AdS3

with vertices uj for some j ∈ {0, . . . , n} and

dj ∈ {fl(uj) ∩ fr(uj+1), fr(uj) ∩ fl(uj+1)}

for every j ∈ {1, . . . , n} (where un+1 = u1).
For every q ∈ ∂∞AdS3, let L(q) be the light-like plane tangent in q to

∂∞AdS3. Choose M between the 2n considered extremal meridians and let
H be CH(M). We say that dj is upper if dj = fl(uj) ∩ fr(uj+1), lower if
dj = fr(uj) ∩ fl(uj+1); we have three cases.

1) Every dj is lower. In that case

∂+H = ∂+K ∪
n⋃
j=1

CH({uj , dj , uj+1}),

but, for every j, CH({uj , dj , uj+1}) ⊂ L(dj). Then the future boundary of
H is ∂+K and so we get the earthquake of the Proposition 2.3.1.

2) Every dj is upper. In that case (where we assume d0 = dn)

∂+H = ∂+ CH({d1, . . . , dn}) ∪
n⋃
j=1

CH({uj , dj , dj−1})

but, for every j, CH({uj , dj , dj−1}) ⊂ L(uj). Then the future boundary of
H is ∂+ CH({d1, . . . , dn}). However, the earthquake obtained as Er ◦ (El)−1

has vj 7→ wj+1 as boundary conditions, since πl(dj) = vj and πr(dj) = wj+1.

3) There are an upper di and a lower dk. In that case (where we assume
d0 = dn) there exists j such that dj−1 is upper and dj lower, or viceversa.
Let us consider the first possibility (the second one is analogous). It turns
out that uj lies in ∂+H but not in its space-like part: the unique face of
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Figure 2.3: Every dj is lower. Compare to Figure 2.1

Figure 2.4: Every dj is upper

∂+H where uj lies in is the one containing CH({dj−1, dj , uj+1), which is
itself contained in L(dj).

Notice now that
(
πl|M

)−1
(vj) = {uj}. Thus the image through El of the

future boundary of H does not contain vj and then Er ◦ (El)−1, (beyond the
fact that a priori it may not be an hyperbolic earthquake), does not have V
as domain.
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Figure 2.5: A dj is lower and dj−1 is upper



Chapter 3

The map
Φb :T ◦S (b)×T ◦S → F

0ML(b)

3.1 Setting

Let S be a surface of genus g with n boundary components, named ∂1, . . . , ∂n,
with χ(S) = 2− 2g − n < 0. For every λ ∈ ML◦S let Eλr : T ◦S → T ◦S be the
right earthquake along λ on S and Eλl : T ◦S → T ◦S be the left earthquake
along λ on S.
In the closed case, namely when n = 0, it is well known that given an el-
ement (h, h′) ∈ TS × TS there exists a unique element Φ(h, h′) = (λ, µ) in
MLS ×MLS such that h′ = Eλl (h) = Eµr (h) (see [34]). Moreover, λ and
µ fill up S, which means that any closed curve with no intersection with λ
and µ is homotopically trivial.
The inverse problem can be stated in the following form: given two fill-
ing measured geodesic laminations λ and µ on S, what can be said about
Φ−1(λ, µ)? An answer is given by Theorem 1.1 in [15], which asserts that
there exists an element (h, h′) in TS × TS such that h′ = Eλl (h) = Eµr (h).
In the case where n 6= 0, the analogous questions can be considered. For
every (h, h′) ∈ T ◦S × T ◦S there are exactly 2n couples of measured geodesic
laminations such that the left earthquake along the first one and the right
earthquakes along the second one take h to h′. This is Theorem 1.2 in [15].
Moreover, λ and µ fill up S, in the sense that any closed curve with no
intersections with λ and µ is homotopically trivial or isotopic to a boundary
component of S.
One of the main differences with respect to the closed case is that measured
geodesic laminations on S can contain spiralling leaves around some bound-
ary components of S. Fixed an orientation on S, the induced one on ∂S
allows to define a positive sense of spiralling near each ∂i and a negative one
(see [15]). This two possibilities are related to the lack of uniqueness of the
earthquakes. For every couple (λ, µ) such that h′ = Eλl (h) = Eµr (h), if λ

57
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spirals near a component ∂i then µ spirals near ∂i in the opposite way to λ.
In order to find an analogue of the map Φ considered in the closed case, in
the next subsection we will give more details on the behaviour of earthquakes
near ∂S.

3.1.1 Boundary conditions

Let λ ∈ML◦S be a measured lamination on S and ∂i a boundary component
of S. Call ι(∂i, λ) the mass of λ at ∂i (see [15], subsection 2.3) and m(∂i, λ)
the signed mass, such that

m(∂i, λ) =

{
+ι(∂i, λ) if λ spirals in the positive sense near ∂i
−ι(∂i, λ) otherwise

,

where the positive sense is determined by the orientation on ∂S induced by
the orientation of S. In particular (see [15], Proposition 3.3){

`Eλr (h)(∂i) = |`h(∂i) +m(∂i, λ)|
`Eλl (h)(∂i) = |`h(∂i)−m(∂i, λ)|

So there are two ways to transform the length of a boundary component
∂i from bi to b′i through a left earthquake along λ; one changes the way of
spiralling of λ (and roughly speaking passes through a cusp), the other one
keeps the way of spiralling of λ (and does not pass through a cusp). See
Subsection 3.3 in [15].

`h(∂i) = bi `h′(∂i) = b′i Cusp `h′(∂i) = b′i

Figure 3.7: The case bi > b′i

For every (h, h′) ∈ T ◦S × T ◦S , Theorem shows that there are 2n couples of

filling laminations (λ, µ) such that E2λ
l (h) = E2µ

r (h) = h′. Each couple
(λ, µ) satisfies then

`h′(∂i) = |`h(∂i) +m(∂i, 2µ)| = |`h(∂i)−m(∂, 2λ)|

for every i = 1, . . . , n. There is exactly one couple for which the two earth-
quakes do not pass through a cusp, namely the one verifying (see [15])

`h(∂i) +m(∂i, 2µ) = `h(∂i)−m(∂, 2λ) > 0 ∀i = 1, . . . , n.
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Therefore, we have the open condition m(∂i, 2µ) = −m(∂, 2λ) > −`h(∂i). If
we fix b = (b1, . . . , bn) and consider

FML◦S(b) = {(λ, µ) ∈ML◦S ×ML◦S |λ ∪ µ fills up S, and

−m(∂i, 2µ) = m(∂i, 2λ) < bi for i = 1, . . . , n}

then it is well defined the map

Φb : T ◦S (b)× T ◦S → FML◦S(b) ∪ {(0, 0)}

where
T ◦S (b) = {h ∈ T ◦S | `h(∂i) = bi, for i = 1 . . . , n},

that associates (h, h′) with the unique (λ, µ) ∈ FML◦S(b) such that

Eλl (h) = Eµr (h) = h′.

We have denoted by (0, 0) ∈ ML◦S ×ML◦S the couple of void laminations;
let F0ML◦S(b) be FML◦S(b)∪{(0, 0)}. The aim of this chapter is to prove
Theorem B.

3.1.2 Infinitesimal earthquakes

Definition 3.1.1. Given λ ∈ML◦S , the infinitesimal left earthquake along
λ is the vector field eλl : T ◦S → TT ◦S such that

eλl (h) =
d

dt |0
Etλl (h).

A pant decomposition of S with (internal) curves κi induces the coordi-
nates

(l, τ ,β) = (l1 . . . , l3g−3+n, τ1, . . . , τ3g−3+n, β1, . . . , βn)

on T ◦S , where lj denotes the length of κj , τj the twist factor of κj , and βi
the length of the boundary component ∂i of S. The space T ◦S (b) is the
submanifold of T ◦S individuated by the N equations β = b.
If µ has not compact support then there exists i ∈ {1, . . . , n} such that
mi = m(∂i, µ) 6= 0, so we have

`Etλl (h)(∂i) = |bi − 2tmi| 6= bi

for t ∈ (0, ε) with ε sufficiently small; such a linear behaviour shows that
if h ∈ T ◦S (b) then eλl (h) does not lie in ThT ◦S (b). However, for every (λ, µ)
in FML◦S(b), and t ∈ [0, 1], the composition Etλl ◦ E

tµ
l preserves T ◦S (b), so

that eλl + eµl is a tangent vector field of T ◦S (b).
In the closed case, the following theorem (see [11]) is the key to find fixed
points of Etλl ◦ E

tµ
l for (λ, µ) filling measured laminations and small t.
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Theorem 3.1.1. Let S be a closed surface of genus greater than 1 and λ
and µ measured laminations on S. The intersection between eλl and −eµl ,
considered as submanifolds in TTS, is transverse. Moreover, if λ and µ fill
up S then these sections meet in exactly one point k0(λ, µ). Otherwise, they
are disjoint.

In the proof, k0(λ, µ) is found as the unique minimum point of the func-
tion Lλ + Lµ : T ◦S → [0,+∞), defined as follows.

Defintion 3.1.2. Let S be a closed surface of genus greater than 1 and λ
a measured lamination on S. If the support of λ is a closed curve c with
weight ω, the map Lλ : TS → [0,+∞) associates h with ω `h(c). For any
λ ∈MLS , since the space of weighted closed curves is dense in MLS , if λn
are weighted closed curves approximating λ then define Lλ(h) as limLλn(h).

The key properties of the map Lλ+Lµ, under the fundamental hypothesis
when (λ, µ) fills up S, are that:

- It is strictly convex along earthquake paths, which means that for
every h ∈ TS and ν ∈ MLS the function t 7→ (Lλ + Lµ)(Etνl (h)) is
convex on [0, 1] (see [26]);

- It is proper (see [26]);

- eλl + eµl is the symplectic gradient of Lλ + Lµ with respect to the
Weil-Petersson symplectic form (see [38]).

In our setting, we need to provide T ◦S (b) with a symplectic form $. We
notice that T ◦S is not in general a symplectic manifold as its dimension could
be odd. However, there is a natural Weil-Petersson form on T ◦S (b) obtained
in the following way. Let 2S be the double of S along its boundary. It is
a closed oriented surface of genus 2g + n − 1. Denote by ι+ : S → 2S the
orientation-preserving natural inclusion and by ι− : S → 2S the orientation-
reversing one. If we consider a pant decomposition on S with internal curves
κ1, . . . , κ6(g−1)+2n and boundary curves ∂1, . . . , ∂n, there is an induced pant
decomposition on 2S invariant by the natural involution, namely the one
with curves ι±(κj), ι

+(∂i) = ι−(∂i). Let $WP denote the Weil-Petersson
form on the Teichmüller space T2S of 2S. It can be written as

$WP =

6(g−1)+2n∑
j=1

(d`+j ∧ dτ
+
j + d`−j ∧ dτ

−
j ) +

n∑
i=1

d`0i ∧ dτ0
i

where `±j and τ±j denote respectively the length coordinate and the twist

coordinate relative to ι±(κj), while `0i and τ0
i denote respectively the length
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Figure 3.8

and twist coordinate relative to ι+(∂i). Consider the natural immersion
f : T ◦S (b)→ T2S that doubles a metric on S. With the 2-form

$ = f∗$WP = 2

6(g−1)+2n∑
j=1

d`j ∧ dτj

it turns out that (T ◦S (b), $) is a symplectic manifold. Since $WP (v1, v2)
does not depend on the pant decomposition of 2S, also $(w1, w2) does not
depend on the chosen pant decomposition of S.

3.1.3 Plan

The first step to prove Theorem B is defining a function length

L(λ,µ) : T ◦S (b)→ R

for (λ, µ) ∈ FML◦S(b) such that

• L(λ,µ) coincides with Lλ + Lµ if (λ, µ) ∈ CML◦S × CML◦S , where

CML◦S = {λ ∈ML◦S : λ has compact support};

• L(λ,µ) is proper and convex along earthquakes paths;

• a multiple of L(λ,µ) is a Hamiltonian of eλl + eµl with respect to the
symplectic form $ = ι∗$WP , which means that there exists c ∈ R∗
such that $(∗, eλl + eµl ) = c · dL(λ,µ)(∗).

This will be the aim of Section 3.2.
Section 3.4 is devoted to the proof of a technical estimate, analogous to the
one proved in Section 4 in [17] but requiring a deeper analysis, due to the
presence of spiralling leaves of λ and µ. Given (h, h′) ∈ T ◦S (b) × T ◦S and
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(λ, µ) = Φb(h, h′), the estimate relates L(λ,µ)(h) with the intersection num-
ber ι(λ, µ), defined as the total measure of λ×µ (see for example [26], I.B).
In Section 3.5 the estimate of Section 3.4 will lead to the properness of Φb.
Again, spiralling leaves will be carefully treated.
Section 3.6.1 will be devoted to the proof of the existence of an open neigh-
bourhood U of D = {(h, h) : h ∈ T ◦S (b)} in T ◦S (b) × T ◦S such that the re-
striction of Φb to UrD is a homeomorphism onto its image V ⊂ FML◦S(b),
which for any (λ, µ) ∈ FML◦S(b) and for t sufficiently small contains
(tλ, tµ). Notice that Φb(D) = {(0, 0)}; this is why we have to remove D
from U to get a homeomeorphism. Also, (0, 0) /∈ FML◦S(b).
Since Φb is continuous and proper, it is possible to define its degree, which,
by the result of Section 3.6.1, is 1. Therefore, Theorem B will be easily
proved.

3.2 The field eλl + eµl is Hamiltonian

Consider (λ, µ) in the space

ML◦S(b) = {(ν, ν ′) ∈ (ML◦S)2 : −m(∂i, ν
′) = m(∂i, ν) < bi ∀i = 1, . . . , n}

such that the support of λ and the support of µ consist both of one spiralling
geodesic between two boundary components ∂ and ∂′. We will define the
map L = L(λ,µ) : T ◦S (b) → R in this simple case in the first subsection;
then in the next two subsections we will study respectively its first order
variation and its convexity along earthquakes.
The last subsection will be devoted to the definition of the length function
L(λ,µ) : T ◦S (b) → R for a generic couple (λ, µ) ∈ ML◦S(b). Since it will be
constructed as the sum of maps having the form of the first defined, the
properties enlightened in the first two subsections still will hold.
In the next section we will study the properness and show that L(λ,µ) is a

Hamiltonian for eλl + eµl .

3.2.1 The condition $(eλl + eµl , ∗)

Proposition 3.2.1. For any h ∈ T ◦S (b) the map ψh : CML◦S → ThT ◦S (b)
such that ψh(ν) = eνl (h) is a homeomorphism.

Proof. For every h ∈ T ◦S (b) the map ψh is well defined, since ι(∂i, ν) = 0
for every ν ∈ CML◦S and for every i = 1, . . . , n.
In order to see that ψh is injective, consider the Teichmüller space T2S of
the double of S and the space ML2S of the measured laminations on 2S.
Denote by ι+ : S → 2S the orientation-preserving natural inclusion and
by ι− : S → 2S the orientation-reversing one. For any h−, h+ ∈ T ◦S (b)
denote by h− ∗ h+ the element in T2S such that ι∗±(h− ∗ h+) = h±, say with
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null twisting factor on the components of ∂S. Fixed h0 ∈ T ◦S (b), the maps
ϕ : T ◦S (b) → T2S and η : CML◦S → ML2S such that ϕ(h) = h0 ∗ h and
η(ν) = ι+(ν) are injections.
Notice also that the map ϕ : T ◦S (b) → T2S is an immersion that for every
ν ∈ CML◦S conjugates Eν : T ◦S (b) → T ◦S (b) with Eη(ν) : T2S → T2S . Thus,
if v ∈ ThT ◦S (b) then (by [17]) there is a unique ν+ ∈ ML2S such that
dϕ(v) = eν+ , being 2S compact, and it must be supported only on ι+(S),
so ν+ = η(ν) for some ν ∈ CML◦S . It follows that v = eν . This shows that
ψh is a bijection.
Since ThT ◦S (b) and CML◦S are topological manifolds of the same dimension
6(g − 1) + 2n, by invariance of domain ψh is actually a homeomorphism.

Consider a simple closed curve γ not isotopic to a boundary component.
Choose a pant decomposition {γ, κ2, κ3, . . .} of S. Denoting by γ also the
measured lamination supported by the curve γ with unitary weight, we have
for every h ∈ T ◦S that

$h(eγl , e
λ
l + eµl ) = 2

(
d`γ ∧ dτγ +

∑
i

d`κi ∧ dτκi

)
(eγl , e

λ
l + eµl ) =

= d`γ(eλl + eµl ) =
1

2
dLγ(eλl + eµl ) =

=
d

dt |0

(
Lγ(Etλl (h)) + Lγ(Etµl (h))

)
.

Kerckhoff in [26] proved that on a closed surface S if γ and ν are laminations
with a closed curve as support then for every h in the Teichmüller space of
S the following holds:

d

dt |0
Lγ(Etνl (h)) =

∫
γ

cos θ(γ,ν)(h)dν (3.1)

where θ(γ,ν)(h) denotes the angle measured counterclockwise from γ to ν
in the h-realization. In the proof in [26] of Equation (3.1) the fact that ν
was a closed curve was actually irrelevant. Thus, in our context, the same
argument shows that for any h in T ◦S and ν ∈ML◦S

d

dt |0
Lγ(Etνl (h)) =

∫
γ

cos θ(γ,ν)(h)dν.

Therefore,

$(eγl , e
λ
l + eµl ) =

(∫
γ

cos θ(γ,λ)dλ+

∫
γ

cos θ(γ,µ)dµ

)
=

=
(

Cos(γ, λ) + Cos(γ, µ)
)



64 CHAPTER 3. THE MAP Φb :T ◦S (b)×T ◦S → F0ML(b)

where, following the notation of [28], we put

Cos(γ, λ) =

∫
cos θ(γ,λ)dλ⊗ dγ

Cos(γ, µ) =

∫
cos θ(γ,µ)dµ⊗ dγ.

Here we are using the function

(r1, r2) 7→ cos θ(r1,r2) (3.2)

defined on the space

G2(H2) ∼=
{(

(S1 × S1) r diag(S1)
)/

(x, y) ∼ (y, x)

}2

of couples of geodesics in H2 and supported by the subspace of couples of
incident geodesics. Here again θ(r1,r2) is measured counterclockwise from r1

to r2.
If a function H : T ◦S (b)→ R verifies

dH(eγl ) =
(

Cos(γ, λ) + Cos(γ, µ)
)
,

then, since the space of simple weighted closed curves is dense in CML◦S , by
an approximation argument we get that for every ν ∈ CML◦S

dH(eνl ) =
(

Cos(ν, λ) + Cos(ν, µ)
)

= $(eνl , e
λ
l + eµl ).

Thus, by definition, H is Hamiltonian of the field eλl + eµl .
If λ and µ have compact support, with the same argument one gets that
H = −(Lλ + Lµ) is a suitable Hamiltonian. In the following sections we
will show that it is always possible to construct a Hamiltonian of eλl + eµl for
every (λ, µ) ∈ML◦S(b).

3.2.2 The map L : T ◦S (b)→ R

Given (λ, µ) ∈ ML◦S(b) such that the support of λ and the support of µ
consist both of one geodesic spiralling between two boundary components
∂ and ∂′, in this subsection we will make constructions and show properties
related to the neigbourhoods of ∂ and ∂′ that will be useful in this section
and in the following ones.
Take a hyperbolic metric h ∈ T ◦S (b) and let b and b′ be respectively `h(∂)
and `h(∂′). Orient λ and µ so that they go from ∂′ to ∂. If ∂ = ∂′, such
orientation is chosen so that the ideal endpoints of any lift ∂̃ of ∂ are both
starting or both ending ideal endpoints of the lifts of λ and µ tangent to ∂̃ at
infinity. We claim there exists p0 ∈ λ ∩ µ with the following two properties.
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1. Denote by λ∗ and µ∗ the rays in λ and µ respectively originating at p0

with positive direction and enumerate consecutively on λ∗ the elements
of λ∗∩µ∗, starting from p0, as p1, p2, p3, . . . . Denote by λ̂k the arc of
λ going from pk to pk+1 and by µ̂k the arc of µ going from pk to pk+1.
Then for every k ∈ N the piecewise geodesic loop λ̂k ∪ µ̂k is isotopic
to ∂.

2. In λr λ∗ there is no point with the previous property.

If such p0 exists, it is clearly unique. Analogously there is a point p′0 ∈ λ∩µ
with the same properties relatively to ∂′ (here λ′∗ and µ′∗ must start at p′0
with negative direction).

Proposition 3.2.2. There exists p0 ∈ λ ∩ µ satisfying properties 1 and 2.

Proof. On the universal cover H in the upper half-plane model of H2 choose
coordinates such that a preimage of ∂ coincides with the imaginary ray and
a lift λ̃ of λ is 1 + iR>0. Here we are supposing that λ spirals around ∂ in
say the positive sense. The following argument still works in the negative
sense case, where we require that a lift of λ is −1 + iR>0.
Let γ : z 7→ ebz denote the holonomy transformation corresponding to ∂.
The union of the lifts of µ with an ideal endpoint in 0 is γ-invariant. Among
them, there exists a unique µ̃ such that λ̃ ∩ γk(µ̃) is nonempty for every
k ≥ 0 and λ̃∩ γk(µ̃) is empty for every k < 0. For every k ≥ 0 let p̃k be the
intersection between λ̃ and γk(µ̃) and pk the projection of p̃k on S.
The points p0, p1, . . . turn out to be the points in λ∗ ∩ µ∗ enumerated con-
secutively on λ∗. To check Property 1, it suffices to show that they are also
enumerated consecutively from the point of view of µ∗. Consider the lift µ̃∗
of µ∗ starting at p̃0 with ideal endpoint in 0. Its points have real part in
(0, 1], so µ̃∗ meets γn(λ̃) (which has ideal endpoints ebn and ∞) if and only
if ebn ≤ 1, i.e. n ≤ 0. Denote by λ̃∗ the lift of λ∗ contained in λ̃. It has
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origin in p̃0 and ideal endpoint in ∞. The rays γn(λ̃∗) are lifts of λ∗ for
every n ∈ Z. In particular, for every n ≥ 0, the origin γ−n(p̃0) of γ−n(λ̃∗)
lies in the halfplane bounded by µ̃ whose boundary at infinity contains 1, so
µ̃∗ meets γ−n(λ̃∗) for every n ≥ 0. Therefore, µ∗ meets λ∗ consecutively in
the projections of the points

γ−n(λ̃∗) ∩ µ̃∗ = γ−n
(
λ̃∗ ∩ γn(µ̃∗)

)
= γ−n

(
λ̃ ∩ γn(µ̃)

)
= γ−n(p̃n)

which are exactly p0, p1, p2, . . ..
The way we found p̃0 shows that property 2 is verified.

Remark 3.2.1. Let us consider the points p̃k found in the proof of the pre-
vious proposition. They belong to λ̃, so <p̃k = 1 for every k. The geodesic
µ spirals around ∂ in the opposite sense of λ, so an ideal endpoint of µ
must be 0. In order to determine the other ideal endpoint, say 2r, denote
by φ ∈ (0, π/2) the argument of the point p̃0. Since p̃0 ∈ µ̃, it must be
|r − p̃0| = r. Thus,

r2 + |p̃0|2 − 2r<p̃0 = r2

2r =
|p̃0|2

<p̃0
=

1 + tan2 φ

1
= cos−2 φ.

Moreover, this implies that γk(µ̃) has ideal endpoints 0 and ebk cos−2 φ.
From this, for every k ≥ 0 we can compute the imaginary part of the points
p̃k = λ̃ ∩ γk(µ̃): ∣∣∣∣ebk cos−2 φ

2
− p̃k

∣∣∣∣ =
ebk cos−2 φ

2

1 + (=p̃k)2 − ebk cos−2 φ = 0

and so
p̃k = λ̃ ∩ γk(µ̃) = 1 + i

√
ebk cos−2 φ− 1. (3.3)

Remark 3.2.2. The distance between pk and ∂ is computed by

tanh d(pk, ∂) = tanh d(p̃k ∂̃) = cos arg p̃k =
<p̃k
|p̃k|

= e−bk/2 cosφ.

Lemma 3.2.3. Fix b ∈ (R>0)N . For every boundary component ∂ of S
there exists ε(∂) > 0 such that for every h ∈ T ◦S (b) every simple complete
geodesic that enters the ε(∂)-collar N (∂) of ∂ exits no more.

Proof. Choose h ∈ T ◦S (b) and set b = `(∂). On the universal cover H ⊂ H2

take coordinates such that the imaginary ray projects on a boundary com-
ponent ∂. If γ : z 7→ ebz is the corresponding holonomy transforma-
tion, consider the geodesic σ0 in H2 corresponding to the Euclidean semi-
circumference centered in 1 such that γ(σ0) has a common ideal point with σ0
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Figure 3.9

different from 0, as in figure, and consider the Euclidean ray e starting from 0
and tangent to both the geodesics. The angle ϕ(∂) that e forms with the pos-
itive x axis is such that sinϕ(∂) = tanh(b/2); the ray e bounds the ε(∂)-collar

V of the imaginary ray, where cosh ε(∂) =
(

sinϕ(∂)
)−1

=
(

tanh(b/2)
)−1

.
Now notice that if a geodesic σ in H2 enters and exits V then its projection
on S is not simple, since γ(σ) would meet σ. So, for every simple geodesic
σ : R → S and for every t∗ ∈ R, if σ(t∗) lies in the projection U of V on S
then either σ(t) ∈ U for every t ≥ t∗ or σ(t) ∈ U for every t ≤ t∗.

For every boundary component ∂i of S, we will denote by N (∂i) the
ε(∂i)-collar of ∂i and we will call the union N of such collars spiralization
neighbourhood.

Remark 3.2.3. If k ≥ 1 then pk lies in N (∂). In fact, a point x of λ lies in
N (∂) if and only if the preimage of x lying in λ̃ has imaginary part greater
than tanϕ(∂) = sinh(b/2) (see Lemma 3.2.3). For k ≥ 1 we have

=p̃k ≥ =p̃1 =
√
eb cos−2 φ− 1 ≥

√
eb − 1 ≥ sinh(b/2).

It may be possible that p0 does not lie in N (∂). That is the reason why the
definition of L will involve p1 and not p0.
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Denote by p′1 the point near ∂′ analogous to p1. Now we can define
a continuous map L = L(λ,µ) : T ◦S (b) → R, that will turn out to be the

opposite of a Hamiltonian of eλl + eµl .

Definition 3.2.1. Take (λ, µ) ∈ML◦S(b) such that the support of λ and the
support of µ consist respectively of a single ω-weighted geodesic spiralling
between two boundary components ∂ and ∂′, and consider the points p1

and p′1 introduced above. Let ρ be the union of the geodesic arc in λ with
endpoints p1 and p′1 and the the geodesic arc in µ with endpoints p1 and p′1.
For every h ∈ T ◦S (b), set

L(h) = ω`h(ρ) + 2ω log
(

cosh dh(p1, ∂) · cosh dh(p′1, ∂
′)
)
.

Remark 3.2.4. In the definition above, if we choose pk and p′k instead of p1

and p′1 then we get a map

Lk = ω`h(ρk) + 2ω log
(

cosh dh(pk, ∂) · cosh dh(p′k, ∂
′)
)
, (3.4)

where ρk is the loop made by the truncations of λ and µ at pk and p′k.
The function Lk is different from L = L1, but has the property that the
difference is constant; indeed we have

Lk − L ≡ ω(k − 1)(b+ b′), (3.5)

so −L is a Hamiltonian of eλl + eµl if and only if −Lk is. In order to see that

Lk − L is constant, denote by λ̂k the projection on λ ⊂ S of the geodesic
arc [p̃k, p̃k+1] ⊂ λ̃ and by µ̂k the projection on µ ⊂ S of the geodesic arc
[γ−k(p̃k), γ

−k(p̃k+1)] ⊂ µ̃. Let ρk be the union of the geodesic arc in λ with
endpoints pk and p′k and the the geodesic arc in µ with endpoints pk and p′k.
Notice that

ρk = ρ ∪
k−1⋃
m=1

(λ̂m ∪ µ̂m ∪ λ̂′m ∪ µ̂′m).

The map Lk takes the form

Lk(h) = ω`h(ρk) + 2ω log
(

cosh dh(pk, ∂) · cosh dh(p′k, ∂
′)
)
.

Using Equation (3.3), we get

cosh d(pk, ∂) = cosh d(p̃k, ∂̃) = sin−1 arg p̃k =
|p̃k|
=p̃k

=

=
ebk/2 cos−1 φ√
ebk cos−2 φ− 1

=
1√

1− ebk cos−2 φ
(3.6)

and

`(λ̂k) = d(p̃k, p̃k+1) =
1

2
log

eb(k+1) − cos2 φ

e2k − cos2 φ

`(µ̂k) = d(γ−k(p̃k), γ
−k(p̃k+1)) = d(p̃k, p̃k+1),
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so

dk = `(λ̂k) = `(µ̂k) =
1

2
log

eb(k+1) − cos2 φ

e2k − cos2 φ
. (3.7)

Similarly subarcs λ̂′k and µ̂′k have length

d′k =
1

2
log

eb
′(k+1) − cos2 φ′

eb′k − cos2 φ′
.

Now consider the following limit, for m ≥ 1.

lim
n→∞

(
`h(ρn)− nb− nb′

)
=

=`h(ρm) + lim
n→∞

( n−1∑
k=m

(
`h(λ̂k) + `h(µ̂k) + `h(λ̂′k) + `h(µ̂′k)

)
− nb− nb′

)
=

=`h(ρm) + lim
n→∞

( n−1∑
k=m

(
2dk + 2d′k

)
− nb− nb′

)
=

=`h(ρm) + lim
n→∞

(S(m)
n + S′(m)

n )

where S
(m)
n = −nb+

∑
2dk and S

′(m)
n = −nb′ +

∑
2d′k. By Equation (3.7),

S(m)
n = −nb+

n−1∑
k=m

[
log

eb(k+1) − cos2 φ

e2k − cos2 φ

]
=

= −nb+

n−1∑
k=m

[
log eb

1− e−b(k+1) cos2 φ

1− e−bk cos2 φ

]
=

= −nb+ (n−m)b+

n−1∑
k=m

log
1− e−b(k+1) cos2 φ

1− e−bk cos2 φ
=

= −mb+ log
n−1∏
k=m

1− e−b(k+1) cos2 φ

1− e−bk cos2 φ
=

= −mb+ log
1− e−bn cos2 φ

1− e−bm cos2 φ

and so, by Equation (3.6),

lim
n→∞

S(m)
n = −mb+ log

1

1− e−bm cos2 φ
= −mb+ 2 log cosh d(pm, ∂)

and analogously

lim
n→∞

S(m)
n = −mb′ + 2 log cosh d(p′m, ∂

′).
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Therefore,

limn→∞

(
`h(ρn)− nb− nb′

)
= `h(ρm)−mb−mb′+

= + 2 log
(

cosh dh(pm, ∂) · cosh dh(p′m, ∂
′)
)

=

=ω−1Lm(h)−m(b+ b′)

for every m ≥ 1. In particular, ω−1Lk(h)− k(b+ b′) = ω−1L1(h)− (b+ b′),
so

Lk(h)− L(h) = ω(k − 1)(b+ b′)

for every h ∈ T ◦S (b) and k ≥ 1.

Actually, this works also for k = 0, providing ρ0 = ρr (λ̂0 ∪ µ̂0). Therefore,
we can conclude that for every k ≥ 0 the map Lk differs from L by a constant
depending only on b and k.

Now we will give bounds to the distance between pk and ∂ depending
only on k and the lengths of the boundary components of S and not on the
choice of h ∈ T ◦S (b). These estimates will be useful in Section 3.5. Clearly,
there exist analogous bounds for d(p′k, ∂

′).

Remark 3.2.5. In the setting of the proof of Proposition 3.2.2 and Remark
3.2.1, p0 was chosen such that λ̃ ∩ γk(µ̃) is nonempty for every k ≥ 0 and
λ̃∩γk(µ̃) is empty for every k < 0. Since µ̃ has ideal endpoints 0 and cos−2 φ
(where φ depends on h ∈ T ◦S (b)), it must be

γ−1(cos−2 φ) = e−b cos−2 φ < 1 < cos−2 φ

and so cosφ > e−b/2. Now

tanh d(pk, ∂) = tanh d(p̃k, ∂̃) = cos arg p̃k =

=
<p̃k
|p̃k|

= e−bk/2 cosφ > e−b(k+1)/2 > 0,

and on the other hand

tanh d(pk, ∂) = e−bk/2 cosφ < e−bk/2 < 1.

Remark 3.2.6. Consider the arc λ̂1 from p1 to p′1. Consider the arc τ in
λ r λ̂1 with an endpoint in p1 of length log cosh d(p1, ∂) and the arc τ ′ in
λr λ̂1 with an endpoint in p′1 of length log cosh d(p′1, ∂

′). Denote by λ• the
arc τ ∪ λ̂1 ∪ τ ′ ⊂ supp(λ). The distances of the endpoints of λ• from ∂ and
∂′ are still bounded from above and below by positive constants depending
only on b. If µ• is the analogous arc in supp(µ), then we have

L(λ,µ)(h) = ω `h(λ• ∪ µ•).
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3.2.3 The first order variation of L

The goal of this Subsection is to prove the following proposition:

Proposition 3.2.4. Take (λ, µ) ∈ML◦S(b) such that the support of λ and
the support of µ consist respectively of a single ω-weighted geodesic spiralling
between two boundary components ∂ and ∂′, and consider the map L =
L(λ,µ) : T ◦S (b) → R given by definition 3.2.1. For every non-peripheral and
nontrivial simple close curve γ on S and for every h ∈ T ◦S (b) the equation

d

dt
L(Etγl (h)) =

∫
cos θ(λ,γ)(t) dγ ⊗ dλ+

∫
cos θ(µ,γ)(t) dγ ⊗ µ (3.8)

holds, where θ(λ,γ)(t) is the angle measured counterclockwise from the sup-
port of λ to γ and θ(µ,γ)(t) is the angle measured counterclockwise from the

support of µ to γ, in the Etγl (h)-realization of γ, λ and µ.

Notice that we are slightly abusing the notation, denoting by γ also
the measured lamination supported by the curve γ with unitary weight.
This proposition will be true more in general, replacing γ with a measured
lamination ν with compact support, as shown at the end of the Subsection.
Since

L(h) = ω`h(ρ) + 2ω log[cosh dh(p1, ∂) · cosh dh(p′1, ∂
′)],

we will first compute the derivative in t = 0 of `Etγl (h)(ρ), which will turn

out to be

d

dt |t=0
`Etγl (h)(ρ) =

∫
cos θ(λ,γ)(0) dγ ⊗ dλ+

∫
cos θ(µ,γ)(0) dγ ⊗ dµ+

+R(0) +R′(0)

where R,R′ are terms due to the presence of the two vertices p1 and p′1 in ρ.
The strategy follows Kerckhoff’s proof of the Nielsen Realization Problem
([? ]).
After that, setting F (d) = 2 log cosh d, we will show that

R(0) +
d

dt |t=0
F
(
dEtγl (h)(p1, ∂)

)
= 0 (3.9)

R′(0) +
d

dt |t=0
F
(
dEtγl (h)(p

′
1, ∂
′)
)

= 0 (3.10)

thus proving Equation (3.8).
Let us start to compute the derivative of `Etγl (h)(ρ). Notice that the loop

ρ is piecewise geodesic and has exactly two vertices, which are p1 and p′1.

If ι(γ, λ) = ι(γ, µ) = 0 then `(ρ) is constant. Otherwise, γ meets at least
one between λ and µ. Notice that γ ∩ ρ = γ ∩ (λ ∪ µ), since p1 and p′1
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Figure 3.10: Determination of ρ̂ and Âi

Figure 3.11: Determination of Ai

lie in the spiralization neighbourhood (see Lemma 3.2.3 and Remark 3.2.3).
Choosing an orientation of ρ, enumerate consecutively its intersections with
γ as s0, s1, . . . , sm−1. Pick a preimage s̃0 of s0 on the universal cover H of S.
If r : [0, 1]→ S is a parametrization of the loop ρ such that r(0) = r(1) = s0,
take the lift r̃ : [0, 1] → H with r̃(0) = s̃0. The preimages of γ determine
the strata of the lifting Ẽ of Etγl . In particular, denote by γ̃i the preimage
of γ that meets r̃([0, 1]) at a preimage of si, for i = 1, . . . ,m− 1; denote by
γ̃0 the preimage of γ passing through s̃0 and γ̃m the one passing through
r̃(1) = s̃m.
The path r̃ is piecewise geodesic, with vertices p̃1 and p̃′1. The prolongations
of the three geodesic arcs of r̃ end at six points on ∂∞H. Applying Ẽ, the
images of these six points and of γ̃0 and γ̃m are sufficient to define the arc
ρ̂ (which does not coincide with the image of r̃) starting from Ẽ(γ̃0) and
ending in Ẽ(γ̃m) such that its length is equal to `Etγl (h)(ρ). The arc ρ̂ is

divided in m subarcs Â0, . . . , Âm−1 such that Âi has endpoints on Ẽ(γ̃i)
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and Ẽ(γ̃i+1). These subarcs are all geodesic, except for those containing the
vertices p̂1 and p̂′1 of ρ̂. Let k be the index of the subarc of r̃ containing the
vertex p̂2 and k′ the index of the subarc containing the vertex p̂′2. Notice
that k can be different from k′, as in Figure 3.10, or equal, as in Figure 3.12.
In any case, the preimage Ai under Ẽ of Âi is a geodesic arc for i 6= k, k′

Figure 3.12: Case k = k′

and a piecewise geodesic for i = k, k′, with endpoints on γ̃i and γ̃i+1 with
the same length as Âi. This leads to

`Etγl (h)(ρ) =

m−1∑
i=0

`h(Ai(t)).

Denote with θi the angle in s̃i measured counterclockwise from r̃ to γ̃i, by vi
the unitary tangent vector to κ at s̃i and by ui the unitary tangent vector
to γ̃i at s̃i such that π − θi is the angle between vi and ui. Notice that∫

cos θ(λ,γ) dγ ⊗ dλ+

∫
cos θ(µ,γ) dγ ⊗ dµ = ω

m∑
i=1

cos θi.

Recall that in the statement of Proposition 3.2.4 λ and µ have weight ω
while γ has weight 1. We want to prove first the following result.

Proposition 3.2.5.

d

dt |0

m−1∑
i=0

`h(Ai(t)) =

m∑
i=1

cos θi +R(0) +R′(0) (3.11)

where R and R′ are terms related to the two vertices of κ (explicitly computed
in the proof, see equations (3.14) and (3.15)).

Proof. Consider in R2,1 = (R3, 〈∗, ∗〉) (where 〈x, y〉 = −x0y0 + x1y1 + x2y2)
the hyperboloid model of H2, namely {x ∈ R2,1 : 〈x, x〉 = −1, x0 > 0}. See
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Figure 3.13

Subsection 1.1.2.
For every i 6= k, k′, the arcs Ai(t) have endpoints xi(t) ∈ γ̃i and yi(t) ∈ γ̃i+1

and length li(t). Since cosh li(t) = −〈xi(t), yi(t)〉, denoting by ei = `(Ai(0))
and differentiating in t = 0 we get

(sinh ei)l̇i(0) = −〈ẋi(0), yi(0)〉 − 〈xi(0), ẏi(0)〉.

From

yi(0) = xi(0) cosh ei + vi sinh ei

xi(0) = yi(0) cosh ei − vi+1 sinh ei

we get

(sinh ei)l̇i(0) =− 〈ẋi(0), xi(0)〉 cosh ei − 〈ẋi(0), vi〉 sinh ei−
− 〈ẏi(0), yi(0)〉 cosh ei + 〈ẏi(0), vi+1〉 sinh ei,

which gives

l̇i(0) = −〈ẋi(0), vi〉+ 〈ẏi(0), vi+1〉.

Denote by w− the unitary tangent vector to the first geodesic piece of Ak
at p̃1 and by w+ the unitary tangent vector to the second geodesic piece of
Ak at p̃1, both pointing towards ∂H. Analogously define w′− and w′+ at p̃′1.
With the same argument, if k 6= k′ we get

l̇k(0) =
(
− 〈ẋk(0), vk〉+ 〈 ˙̃p2(0), w−〉

)
+
(
− 〈 ˙̃p2(0),−w+〉+ 〈ẏk(0), vk+1〉

)
=

=− 〈ẋk(0), vk〉+ 〈 ˙̃p2(0), w− + w+〉+ 〈ẏk(0), vk+1〉
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and

l̇k′(0) = −〈ẋk′(0), vk′〉+ 〈 ˙̃p′2(0), w′− + w′+〉+ 〈ẏk′(0), vk′+1〉,

while if k = k′ then

l̇k(0) =
(
− 〈ẋk(0), vk〉+ 〈 ˙̃p2(0), w−〉

)
+
(
− 〈 ˙̃p2(0),−w+〉+ 〈 ˙̃p′2(0), w′−〉

)
+

+
(
− 〈 ˙̃p′2(0),−w′+〉+ 〈ẏk′(0), vk′+1〉

)
= −〈ẋk(0), vk〉+

+ 〈 ˙̃p2(0), w− + w+〉+ 〈 ˙̃p′2(0), w′− + w′+〉+ 〈ẏk′(0), vk′+1〉.

In both cases, the sum of the derivatives of the length of all Ai’s gives

d

dt |t=0
`Etγl (h)(ρ0) =

m−1∑
i=0

l̇i(0) =
m−1∑
i=0

(
− 〈ẋi(0), vi〉+ 〈ẏi(0), vi+1〉

)
+

+ 〈 ˙̃p2(0), w− + w+〉+ 〈 ˙̃p′2(0), w′− + w′+〉. (3.12)

We claim that for i = 1, . . . ,m− 1, the following identity holds:

ẏi−1(0) = ẋi(0)− ui, (3.13)

where ui is the unitary tangent vector to γ̃i at xi(0) so that − cos θi = 〈ui, vi〉
(see Figure 3.13). Denote by di(t) the signed distance between yi−1(0) =
xi(0) and yi−1(t) on γ̃i oriented as ui. Then

yi−1(t) = xi(0) cosh di(t) + ui sinh di(t)

xi(t) = xi(0) cosh
(
di(t) + t

)
+ ui sinh

(
di(t) + t

)
.

Therefore,

ẏi−1(0) = uiḋi(0)

ẋi(0) = ui
(
ḋi(0) + 1

)
leading to (3.13).
Since s0 is a point were ρ0 is smooth and s̃0 = x0(0) and s̃m = ym−1(0)
are preimages of s0, there exists a covering transformation T such that
ẏm−1(0) = T ẋ(0) and vm = Tv0.
Using (3.13), now we can write the sum in (3.12) as

m−1∑
i=0

(
− 〈ẋi(0), vi〉+ 〈ẏi(0), vi+1〉

)
=

=−
m−1∑
i=0

〈ẋi(0), vi〉+
m−1∑
i=1

〈ẏi−1(0), vi〉+ 〈ẏm−1(0), vm〉 =

=−
m−1∑
i=0

〈ẋi(0), vi〉+
m−1∑
i=1

〈ẋi(0)− ui, vi〉+ 〈T ẋ0(0), T v0〉 =

=− 〈ẋ0(0), v0〉 −
m∑
i=1

〈ui, vi〉+ 〈ẋ0(0), v0〉 =
m∑
i=1

cos θi.
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Setting

R(0) = 〈 ˙̃p2(0), w− + w+〉 (3.14)

R′(0) = 〈 ˙̃p′2(0), w′− + w′+〉. (3.15)

we get that (3.11) holds.

Now we have to show that Equations (3.9) and (3.10) hold. The latter
equation is analogous to the former one, so we will prove only Equation
(3.9).
In the hyperboloid model of H2, keep the notations of the proof of Proposi-
tion 3.2.5 and denote by [z+] and [z−] the ideal endpoints of ∂̃, so that w±

is pointing towards [z±]. The unitary vector

n =
z− � z+

‖z− � z+‖2,1

is the normal unitary vector of ∂̃ pointing towards p̃1. Up to precomposing

by a proper isometry, we can suppose that [z+] and [z−] are kept fixed by Ẽ,
thus Ẽ(n) = n. If p = p̃1 and d = d(p1, ∂) = d(p̃1, ∂̃), then sinh d = 〈p, n〉.
Therefore

ḋ =
〈ṗ, n〉
cosh d

and
d

dt
F (d) = 2

sinh d

cosh2 d
〈ṗ, n〉,

where we have set F (d) = 2 log cosh d, so that the expression of L is

L(h) = `h(ρ) + F (dh(p1, ∂)) + F (dh(p′1, ∂
′)).

Now Equation (3.9) becomes〈
ṗ, w+ + w− + 2

sinh d

cosh2 d
n

〉
= 0.
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The following proposition will prove such equation computing w± in terms
of p and n.

Proposition 3.2.6.

〈ṗ, w+ + w−〉 = −2
sinh d

cosh2 d
〈ṗ, n〉.

Proof. The vector w± can be written as p � ν±, where ν± is the unitary
vector tangent to H2 and normal to w± (i.e. to λ/µ) oriented in the proper
way; namely,

ν± = −
z± � p

‖z± � p‖2,1
.

Thus,

w± = −p�
z± � p

‖z± � p‖2,1
= −
−〈p, p〉z± + 〈z±, p〉p

〈z±, p〉
= −

z± + 〈z±, p〉p
〈z±, p〉

.

We claim we can suppose that

z± = p− (sinh d)n± p� n. (3.16)

First, we have to see that the second term of (3.16) is a null vector; let us
compute the square norm of p� n:

〈p� n, p� n〉 = 〈p, n〉2 − 〈p, p〉〈n, n〉 = sinh2 d+ 1 = cosh2 d

Now

〈p− (sinh d)n± p� n, p− (sinh d)n± p� n〉 =

=〈p, p〉 − (sinh d)〈p, n〉 − (sinh d)〈n, p〉+ (sinh2 d)〈n, n〉+ 〈p� n, p� n〉 =

=− 1− sinh2 d− sinh2 d+ sinh2 d+ cosh2 d = 0.

On the other hand, we have to check that p− (sinh d)n± p�n are the ideal

endpoints of ∂̃ (or equivalently 〈p− (sinh d)n± p� n, n〉 = 0) such that(
〈p− (sinh d)n− p� n, p− (sinh d)n+ p� n, n

)
forms a negative basis of R2,1. Now

〈p− (sinh d)n± p� n, n〉 = 〈p, n〉 − (sinh d)〈n, n〉 = 0

and

〈p− (sinh d)n− p� n, (p− (sinh d)n+ p� n)� n〉 =

=〈p− (sinh d)n− p� n, p� n+ p〉 = −1− cosh2 d < 0.
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Thus, we can compute

〈z±, p〉 = 〈p− (sinh d)n± p� n, p〉 = − cosh2 d

and

w± = −
z± + 〈z±, p〉p
〈z±, p〉

=

=−
p− (sinh d)n± p� n− (cosh2 d)p

− cosh2 d
=

=−
(sinh2 d)p+ (sinh d)n∓ p� n

cosh2 d
.

Now

〈ṗ, w+ + w−〉 =

〈
ṗ,−

(2 sinh2 d)p+ (2 sinh d)n

cosh2 d

〉
= −2

sinh d

cosh2 d
〈ṗ, n〉.

Finally, let us consider the general case: the first order variation of
t 7→ L(Etνl(h)) when ν ∈ CML◦S .

Proposition 3.2.7. Take (λ, µ) ∈ML◦S(b) such that the supports of λ and
µ consist respectively of a single weighted geodesic spiralling between two
boundary components ∂ and ∂′. For every h ∈ T ◦S (b) and ν ∈ CML◦S the
following formula holds:

d

dt
L(λ,µ)(E

tν
l (h)) =

∫
cos θ(λ,ν)(t)dν ⊗ dλ+

∫
cos θ(µ,ν)(t)dν ⊗ dµ.

Proof. The space of weighted curves on S is dense in CML◦S (see [31]), so
take a sequence (γn) of weighted curves converging to ν. With the notation
used in [28] and recalled in Subsection 3.2.1, we have seen that

d

dt
L(λ,µ)(E

tγn
l (h)) = Cos(λ, γn)(t) + Cos(µ, γn)(t).

Clearly L(λ,µ)(E
tγn
l (h))|t=0 = L(λ,µ)(E

tν
l (h))|t=0 for every n, so if we prove

that Cos(λ, γn) + Cos(µ, γn) tends uniformly to Cos(λ, ν) + Cos(µ, ν) then
L(λ,µ)(E

tγn
l (h)) tends to L(λ,µ)(E

tν
l (h)) and (3.17) holds. Kerckhoff showed

in [28] itself that Cos(δ, γn) tends uniformly to Cos(δ, ν) for every δ closed
curve in S, but his argument still works if δ is a spiralling leaf of a lamination
on S, so we can conclude.
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3.2.4 The map L(λ,µ) : T ◦S (b)→ R

We have defined L(λ,µ) in the simple case where λ and µ are made of a unique
spiralling leaf with weight ω and we have seen that for any ν ∈ML0(S) the
following formula holds:

d

dt
L(λ,µ)(E

tν
l (h)) =

∫
cos θ(λ,ν)dν ⊗ dλ+

∫
cos θ(µ,ν)dν ⊗ dµ. (3.17)

Using this result, we construct here a function L(λ,µ) on T ◦S (b) for a general
(λ, µ) in

ML◦S(b) = {(λ, µ) ∈ (ML◦S)2 : − 2m(∂i, µ) = 2m(∂i, λ) < bi

∀i = 1, . . . , n}

that satisfies (3.17).
If λ1 and λ2 are measured laminations with empty transverse intersection,
their sum λ1⊕λ2 is defined by putting supp(λ1⊕λ2) = supp(λ1)∪ supp(λ2)
and measλ1⊕λ2 = measλ1 + measλ2 . By example, if λ = (δ, ω) is a weighted
curve and ω = ω1 + ω2 then λ is the sum of λ1 = (δ, ω1) and λ2 = (δ, ω2).

Remark 3.2.7. If λ = λ1⊕λ2, consider the relative left earthquakes Eλl , Eλ1l
and Eλ2l . Add to λ1 the leaves of λ2 r λ1 and provide them with weight 0;
do the same to λ2 with the leaves of λ1 r λ2. The shearing amount of Eλ

along any leaf δ of λ is now the sum of the shearing amounts along δ of Eλ1

and of Eλ2 , so that Eλ = Eλ1 ◦ Eλ2 . More in general, Etλ = Etλ1 ◦ Etλ2for
every t ∈ [0, 1]. It follows that eλl = eλ1l + eλ2l .

Definition 3.2.2. We say that a couple of laminations (λ, µ) is a circuit of
laminations if it can be expressed as

(λ, µ) =

(
I⊕
i=1

λi,
I⊕
i=1

µi

)

where I ∈ N, such that

• λi and µi are single spiralling weighted leaves for every i = 1, . . . , I,
all with the same weight ω;

• for every i = 1, . . . , I there are boundary componentsDi
± ∈ {∂1, . . . , ∂N}

of S such that λi spirals between Di
− and Di

+ while µi spirals between

Di
+ and Di+1

− , providing DI+1
− = D1

−.

Notice that there can be distinct i and j such that λi = λj or µi = µj ,
as in the following example.
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Figure 3.14

Example 3.2.1. Consider two laminations as in Figure 3.14, realized in a
certain metric h.
They can be outlined in the first scheme of Figure 3.15, where it is easy to
see that (λ, µ) can be decomposed in the second scheme of the same figure,
which is a 1-weighted circuit.
Figure 3.16 shows that the decomposition is not unique and that (λ, µ) can

Figure 3.15

also be seen as the sum of two circuital laminations.

Remark 3.2.8. If (
I⊕
i=1

λi,
I⊕
i=1

µi

)
is a circuit of laminations, then for every boundary component ∂ of S

ι

( I⊕
i=1

λi, ∂

)
= ι

( I⊕
i=1

µi, ∂

)
.
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Figure 3.16

An important result on circuits of laminations is the following:

Proposition 3.2.8. If (λ, µ) =
(⊕I

i=1 λi,
⊕I

i=1 µi
)

is a circuit of lamina-
tions with weight ω, there is a truncation ρ = λ1∪µ1∪λ2∪. . .∪µI , analogous
to ρ1 in the case I = 1 considered in Subsection 3.2.2, which is a loop with
2I vertices q1, . . . , q2I lying in the spiralization neighbourhood. Denote by
Di the boundary component such that qi ∈ N (Di). Define

L(λ,µ)(h) = ω `h(ρ) + 2ω log

2I∏
i=1

cosh dh(qi, Di). (3.18)

Then Equation (3.17) still holds.

Proof. In Subsection 3.2.3 Equation (3.17) was proven in the simple case
where I = 1 in Proposition 3.2.4, where exactly two vertices (called p1 and
p′1) of the truncation ρ of supp(λ)∪ supp(µ) occurred. However, the number
of vertices of the truncation was irrelevant: doing again the computations,
we would get analogously

ω
d

dt
`Etγl (h)(ρ) = Cos(λ, γ) + Cos(µ, γ) + ω

2I∑
i=1

Ri

and, for every i = 1, . . . , 2I,

Ri +
d

dt
log cosh dEtγl (h)(qi, Di) = 0,

proving that Equation (3.17) still holds if (λ, µ) is a circuit of lamination.

Therefore, in order to extend the definition of L(λ,µ) to the general case,
if we prove that (λ, µ) is decomposable into the sum of their compact parts
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(λ(0), µ(0)) and of circuits of laminations (λ(j), µ(j)) for j = 1, . . . , J , then
we can define a function

L = L(λ,µ) =
J∑
j=0

L(j) (3.19)

where L(0) = Lλ(0) + Lµ(0) and L(j) is the length map of (λ(j), µ(j)) pointed
out in Proposition 3.2.8, for j 6= 0. Since Equation (3.17) holds for every
L(j), we can deduce

d

dt
L(Etνl (h)) =

∫
cos θ(λ,ν)dν ⊗ dλ+

∫
cos θ(µ,ν)dν ⊗ dµ (3.20)

for every ν ∈ CML◦S and h ∈ T ◦S (b).
That (λ, µ) can be decomposed into compact and circuital laminations is
the statement of the following result.

Proposition 3.2.9. Every (λ, µ) ∈ FML◦S(b) can be decomposed as

(λ, µ) =

(
λ(0) ⊕

J⊕
j=1

λ(j), µ(0) ⊕
J⊕
j=1

µ(j)

)

where (λ(0), µ(0)) is the compact part of (λ, µ) and (λ(j), µ(j)) is for every
j = 1, . . . , J a circuit of lamimations.

Proof. If (λ, µ) = (λ(0), µ(0)) there is nothing to prove. Otherwise, consider
the graph G associated with (λs, µs) = (λrλ(0), µrµ(0)) where the vertices
correspond to the boundary components of ∂S and the edges correspond to
the leaves of λ and µ. The edges are coloured, say blue if it is a leaf of λ
and red otherwise. Two vertices of an edge can coincide; also, there can be
two vertices bounding more than one or two edges of any colour.
We start to look for a circuit of laminations (λ(1), µ(1)) = (⊕λi,⊕µi) which
is a sublamination of (λs, µs); this is equivalent to find a cycle in the graph
G with alternating colours. Such cycle can pass through an edge more than
once, since, as we noticed, in the circuit i 6= j can occur such that λi = λj
or µi = µj .
Since (λ, µ) ∈ FML◦S(b), if a vertex is reached by a red edge then it is also
a vertex of a blue edge, and vice versa.
Let us start from a vertex D0 reached by a blue edge δ1 and denote by D1 the
other vertex (maybe coincident with D0) of δ1. There must be a red edge η1

starting from D1 and ending in a certain vertex D2. If D2 = D0 then (δ1, η1)
is an alternating cycle and we therefore found a circuital sublamination of
(λ, µ). Otherwise, again there must be a blue edge δ2 starting in D2 and
ending in a certain vertex D3. If D3 = D1 then we found the cycle (δ2, η1),
otherwise we can exit from D3 following a blue edge η2. Continuing with
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these steps, we find an alternating path on G (in the sense that consecutive
edges in this path have different colours).
Iterating this construction, if we can find M such that there is N < M and
the subpath from DN to DM is an alternating cycle, then we have finished.
We claim that if we visit a vertex Dj for the third time then either we have
already found such M (and it is less than j) or there is N < j such that the
path from DN to Dj is an alternating cycle (so j is the M we were looking
for). There are only two possibilities when we visit a Dj for the third time.

Figure 3.17

• Two edges l1 and l2 of the same colour have already entered Dj (with
l1 walked before l2) and consequently two edges of the other colour m1

and m2 have exited, as in Figure 3.17 (a). But then we already found
an alternating cycle: the one starting with m1 and ending with l2.

• Two edges l1 and m2 of different colours have already entered Dj and
consequently two edges m1, l2 of the colour respectively of m2 and l1
have already exited. If we enter Dj for the third time with an edge
n of the same colour of l1 and l2, as in Figure 3.17 (b), then take the
alternating cycle starting from m1 and ending with n; otherwise, as in
Figure 3.17 (c), take the alternating cycle starting with l2 and ending
with n.

So there exists an alternating cycle in G made by the sequence of edges

(r1, s1, . . . , rK , sK).

Up to cycling rename the edges, we can suppose r1 is red. Each edge rk
corresponds to a leaf λk of λ, while each edge sk corresponds to a leaf µk of
µ.
We want now to endow the circuit of lamination

(λ(1), µ(1)) =

( K⊕
k=1

λk,
K⊕
k=1

µk

)
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with a weight ω(1) so that if (Λ,M) is the couple of laminations such that

(λ, µ) = (λ(0), µ(0))⊕ (λ(1), µ(1))⊕ (Λ,M)

then (λ(1), µ(1)) has at least one leaf not contained in the support of (Λ,M).
For every spiralling leaf δ of λ, denote by ωδ its weight. Define

W (δ) =
ωδ

#{k ∈ {1, . . . ,K} |λk = δ}
.

Analogously, define

W (η) =
ωη

#{k ∈ {1, . . . ,K} |µk = η}
.

for every spiralling leaf η of µ. Now set

ω(1) = min{W (ζ) | ζ is a leaf of λ or a leaf of µ}.

In this way, the leaf of λ or µ where such minimum is achieved does not
appear in the support of (Λ,M).
If (Λ,M) is the couple of void laminations, we have finished. Otherwise,
notice that again (Λ,M) ∈ FML◦S(b) (it depends on the fact that λ(1), µ(1))
lies in FML◦S(b); see Remark 3.2.8). Moreover (Λ,M) has less leaves than
(λ, µ). By a simple inductive argument we get the decomposition of (λ, µ)
in circuital sublaminations

(λ, µ) =

(
J⊕
j=0

λ(j),
J⊕
j=0

µ(j)

)
.

Remark 3.2.9. The decomposition described in the proposition above is not
unique: different choices of edges of G exiting from a vertex produce dif-
ferent cycles; also, the choice of the vertex D0 was made arbitrarily. The
length function L defined in Equation (3.19) depends on the resulting de-
composition of (λ, µ). However, for every ν ∈ CML◦S and h ∈ T ◦S (b), by
Remark 3.2.7 (forgetting for a moment of writing k)

d

dt |t=0
L(λ,µ)(E

tν
l (h)) =

d

dt |t=0

[(
Lλ(0) + Lµ(0) +

J∑
j=1

L(j)

)
(Etνl (h))

]
=

=

J∑
j=0

(∫
cos θ(λ(j),ν)(h)dν ⊗ dλ(j) +

∫
cos θ(µ(j),ν)(h)dν ⊗ dµ(j)

)
=

=−
J∑
j=0

$h

(
eνl , e

λ(j)

l + eµ
(j)

l

)
= −2$h

(
eνl , e

λ
l + eµl

)
and this holds for any other length map constructed with different allowed
choices. Therefore, all these maps are Hamiltonians of −(eλl + eµl ), differing
one from the other by a constant.
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3.3 Properties of L(λ,µ)

3.3.1 The properness of L(λ,µ)

As explained in section 1.2 any spiralling geodesic γ of a measured geodesic
lamination can be replaced by a geodesic arc γR orthogonal to the boundary.
For each ν ∈ MLS denote by νR the set of geodesic arcs obtained by ν
replacing each spiralling geodesic γ of ν with γR.
Now consider (λ, µ) ∈ FML◦S(b). Then (λR, µR) still fills up S, in the
sense that every simple closed non trivial curve on S intersects λR ∪ µR or
is isotopic to a boundary component of S. In fact if c is a simple closed non
trivial curve not isotopic to a boundary component then it meets a leaf γ of
λ∪µ in a certain point p. Take a preimage p̃ on the universal cover H in the
Poincaré disk model and denote by γ̃ and c̃ the lifts of γ and c respectively
that pass through p̃. Now γ̃ and the prolongation of its replacement ρ
separate the same two maximal subsets of ∂∞H. One endpoint of c̃ lies
in one of these subsets and the other endpoint in the other one, so c still
intersects γR.

Lemma 3.3.1. Consider two disjoint geodesics ∂ and ∂′ in H2, a geodesic
γ going from an endpoint of ∂ to an endpoint of ∂′, the geodesic arc γR

with endpoints on ∂ and ∂′ normal to ∂ and ∂′, two positive real numbers
ε, ε′ ≤ `(γR)/2, the ε-collars N of ∂ and the ε′-collar N ′ of ∂′. Then

`(γ r (N ∪N ′)) ≥ `(γR r (N ∪N ′)) = `(γR)− ε− ε′

Proof. Denote by w and w′ the intersections of γR with ∂N and ∂N ′ re-
spectively and with x and x′ the intersections of γ with ∂N and ∂N ′ re-
spectively. Take σ and σ′, the geodesics normal to γR passing respectively
through w and w′. Denote by y and y′ the intersections of γ with σ and
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σ′ respectively. Notice that N and N ′ are included respectively in the re-
gion between ∂ and σ and in the region between ∂′ and σ′. Therefore,
d(w,w′) ≤ d(y, y′) ≤ d(x, x′).

Proposition 3.3.2. The map L(λ,µ) : T ◦S (b)→ R is proper.

Proof. Choose a pant decomposition of S with curves κ1, . . . , κ3(g−1)+n,
∂1, . . . , ∂n and consider the related coordinates

(l1, . . . , l3(g−1)+n, τ1, . . . , τ3(g−1)+n)

on T ◦S (b), where li is the length of κi and τi is the twist factor on κi. Choose
also for every κi two dual curves κ∗i and κ∗∗i whose lengths can reconstruct
τi (as explained in [22]; see Figure 3.18).
We have seen at the beginning of this subsection that if (λ, µ) ∈ FML◦S(b)
then λR ∪ µR fills up S; this implies that every simple closed non-trivial

Figure 3.18

curve in S is isotopic to a curve on G = λR ∪ µR ∪D, where D =
⋃
∂j .

We claim that

LG :T ◦S (b)→ R
h 7→ `h(λR) + `h(µR) + b1 + . . .+ bn

is a proper map. Pick a divergent sequence {hn} in T ◦S (b); then the sequence

{(l1, . . . , l3(g−1)+n, τ1, . . . , τ3(g−1)+n)(hn)}

is divergent in R6(g−1)+2n. This implies that

Sn =

3(g−1)+n∑
i=1

[
`hn([κi]) + `hn([κ∗i ]) + `hn([κ∗∗i ])

] n→∞−−−→ +∞,
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where for any closed curve κ and hyperbolic metric h we denote by `h([κ])
the h-length of the geodesic h-realization of κ.
Each κi (and κ∗i and κ∗∗i ) is isotopic to many (not necessarily simple) curves
in G, but for every i the number

mi = min

{
max
p∈G

{
#
(
π−1(p) ∩ ([0, 1]× {0})

)} ∣∣∣π : [0, 1]× [0, 1]→ S isotopy

between π(∗, 0) = κi and π(∗, 1) closed curve in G

}
,

which denotes a sort of minimum of the degrees of the isotopies between κi
and any curve in G, does not depend on the metric. The same holds for m∗i
and m∗∗i (the analogous numbers for κ∗i and κ∗∗i respectively). If m0 is the
maximum among all mi’s, m

∗
i ’s and m∗∗i ’s, then Sn ≤ m0LG(hn). Therefore,

{LG(hn)} is going to infinity as {hn} is diverging.
Since LG(hn) = `hn(λR ∪ µR) +

∑
bi is diverging, two possibilities occur:

• a compact sublamination νR of λR∪µR has divergent length; but since
νR = ν, also L(λ,µ)(hn) is diverging;

• no closed leaf of λR ∪ µR has divergent length; then an arc γR in
λR ∪ µR (replacement of a spiralling leaf γ of λ ∪ µ between ∂ and
∂′) has divergent length. Also `hn

(
γ r (N (∂) ∪ N (∂′))

)
diverges, by

Lemma 3.3.1, where N (∂) is the ε(∂)-collar introduced in Section 3.3.
From the definition,

L(λ,µ)(hn) > ω`hn(γ −N (∂)−N (∂′)) > ω
(
`hn(γR)− ε(∂)− ε(∂′)

)
,

implying that L(λ,µ)(hn) is diverging.

3.3.2 The second order variation of L(λ,µ)

Now we want to show that L(λ,µ) is convex along any left earthquake along
ν ∈ CML◦S .

Lemma 3.3.3. Take counterclockwise six distinct points Q, Q′, M , P ,
P ′, N consecutively on ∂∞H2, as in Figure 3.19. Denoting by [z1, z2] the
geodesic with ideal endpoints z1 and z2, let O and O′′ be the points where
[M,N ] meets respectively [P,Q] and [P ′, Q′]. Then ](MÔQ) > ](MÔ′′Q′).

Proof. Let O′ be the point where [M,N ] meets [P ′, Q]. The area A of the
triangle MOQ is smaller than the area A′ of the triangle MO′Q, so

π − ](MÔQ) = A < A′ = π − ](MÔ′Q),
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Figure 3.19

that is ](MÔQ) > ](MÔ′Q).
Analogously, the area S of the triangle NO′′P ′ is greater than the area S ′
of the triangle NO′P ′, so

π − ](NÔ′′P ′) = S > S ′ = π − ](NÔ′P ′),

that is ](MÔ′′P ′) > ](MÔ′P ).

Remark 3.3.1. The strict inequality of Lemma 3.3.3 still holds if P = P ′

and Q 6= Q′ or viceversa.

Proposition 3.3.4. The map L(λ,µ) : T ◦S (b)→ R≥0 is strictly convex along
left earthquakes; equivalently, t 7→ L(Etνl (h)) is strictly convex for every ν
in CML◦S and every h ∈ T ◦S (b).

Proof. We already know that

d

dt
L(E tνl (h)) =

∫
λ

cos θ(λ,ν)(t)dν +

∫
µ

cos θ(µ,ν)(t)dν,

so we have to check that θ(t) is a strictly decreasing function of t. It is
sufficient to check the discrete case.
On the universal cover, pick a lift l of a leaf of ν and without loss of generality
suppose it is kept fixed by the left earthquake. Choose a lift c of a leaf λ∪µ
that intersects l at a certain point O, preimage of a point x ∈ (λ ∪ µ) ∩ ν,
and denote by θx the angle taken counterclockwise from l to c, by M and
N the endpoints of l and by P and Q the endpoints of c in such a way that
the counterclocwise order is M , P , N , Q.
The left earthquake Etγl will move P to a point P ′ between P and N and
will move Q to a point Q′ between Q and M . The angle θx becomes the
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angle θx(t) that l forms with [P ′, Q′], taken counterclockwise. So we are in
the conditions of Lemma 3.3.3 (more precisely, of Remark 3.3.1) and we can
say that θx > θx(t).
Since the first order variation of L(λ,µ) is the sum of cos θx(t) taken on all
x ∈ (λ ∪ µ) ∩ ν, we can conclude that t 7→ θ(t) is strictly decreasing.

Corollary 3.3.5. The map L(λ,µ) : T ◦S (b)→ R admits exactly one point of
minimum.

Proof. Since L(λ,µ) : T ◦S (b) → R≥0 is a continuous proper map, it has a
minimum. Pick two points of minimum h1 and h2. From the main theorem
of [15], there exists 2n left earthquakes between h1 and h2; however, since
the boundary lengths of S are the same with respect to h1 and h2, one
of such earthquakes has a compact lamination ν as fault locus. Therefore,
φ : t 7→ Etνl (h1) is a continuous path in T ◦S (b) from φ(0) = h1 and φ(1) =
h2. By Proposition 3.3.4, t 7→ L(λ,µ)(φ(t)) is a strictly convex map. But
L(λ,µ)(φ(0)) = L(λ,µ)(φ(1)). Then it must be h1 = h2.

3.3.3 The Hessian of L(λ,µ)

The goal of this subsection is to show that the Hessian of L(λ,µ) is positive
definite on a critical point h ∈ T ◦S (b) of L(λ,µ). If λ and µ have compact
discrete support, then the result is already known (and can be easily ex-
tended to the compact support case) through explicit formulas (see [38],
[18]), which however involve quantities that are not definible in our setting.
Let us consider ν ∈ CML◦S . We already know from Subsections 3.2.3 and
3.2.4 that

d

dt
L(λ,µ)(E

tν
l (h)) =

∫
cos θ(λ,ν)(t) dν ⊗ dλ+

∫
cos θ(µ,ν)(t) dγ ⊗ µ

holds, where θ(λ,ν)(t) is the angle measured counterclockwise from the sup-
port of λ to ν and θ(µ,ν)(t) is the angle measured counterclockwise from the
support of µ to ν, in the Etνl (h)-realization of ν, λ and µ.
The compact part of ν is approximated by closed weighted curves, so let us
consider first a unitary closed curve γ. If δ is a weighted spiralling leaf of
λ ∪ µ, we will first compute

d

dt |0

∫
cos θ(δ,γ)(t) dγ ⊗ dδ =

m∑
i=1

d

dt |0
cos θi,

where, enumerating consecutively along δ the points x1, . . . , xm in ζ∩γ, θi is
the angle measured counterclockwise from δ to γ at xi. Then we will deduce
an estimate which guarantees that even passing at the limit of closed curves
the second derivative stays positive.
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Figure 3.20

Let us transfer the problem in the universal covering H ⊂ H2 of S in the hy-
perboloid model (see Subsection 1.1.2). Fix a lift δ̃ of δ; denote by x̃1, . . . , x̃m
the preimages of x1, . . . , xm on δ̃ and by L1, . . . , Lm the liftings of γ passing
respectively through x̃1, . . . , x̃m. Denote by [ξ] and [ζ] the ideal endpoints
of δ̃ so that x̃1, . . . , x̃m are enumerated from [ξ] to [ζ] and ξ0 = ζ0 = 1, if
we write vectors x in R2,1 as x = (x0, x1, x2). We can choose coordinates
such that 〈ξ, ζ〉 = −1. Fix k ∈ {1, . . . ,m} and consider the lift Ẽt of Etγl
which fixes Lk and Lk−1 (if k = 1 take the earthquake that fixes the gap
adjacent with L1 whose ideal boundary contains [ξ]). Choose unitary vec-
tors w1, . . . , wm normal respectively to L1, . . . , Lm so that cos θi = 〈wk, n〉
for every i. See Figure (3.20). Now, since we are in the hyperboloid model
of H2, let us identify R2,1 with the Lie algebra so(2, 1). Now

ξ(t) = Ẽt(ξ) = exp(−tw1) · · · exp(−twk−1)ξ,

ζ(t) = Ẽt(ζ) = exp(+twk) · · · exp(+twm)ζ,

n(t) =
ξ(t)� ζ(t)

‖ξ(t)� ζ(t)‖2,1
=

ξ(t)� ζ(t)

−〈ξ(t), ζ(t)〉
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so

ξ̇(0) = −
k−1∑
i=1

wi � ξ, (3.21)

ζ̇(0) =
m∑
i=k

wi � ζ. (3.22)

Since
d

dt |0
cos θk(t) =

d

dt |0
〈wk, n(t)〉 = 〈wk, ṅ(0)〉,

let us compute ṅ(0). In general,

ṅ(0) =
ξ̇(0)� ζ + ξ � ζ̇(0)

−〈ξ � ζ〉
+

ξ � ζ
〈ξ � ζ〉2

d

dt |0
〈ξ(t), ζ(t)〉 =

=ξ̇(0)� ζ + ξ � ζ̇(0) + n · d

dt |0
〈ξ(t), ζ(t)〉.

Setting z = ξ̇(0) � ζ + ξ̇(0) � ζ, we deduce that there is β ∈ R such that
ṅ(0) = z + βn. So from

0 = 〈ṅ(0), n〉 = 〈z, n〉+ β〈n, n〉 = 〈z, n〉+ β

we get
ṅ(0) = z − 〈z, n〉n.

Shortly writing ξ̇ for ξ̇(0) and ζ̇ for ζ̇(0), setting for every i

wi = aiξ + biζ + cin,

and using (3.21), (3.22), we compute z as

z =ξ̇ � ζ + ξ � ζ̇ = −
k−1∑
i=1

(wi � ξ)� ζ +
m∑
i=k

ξ � (wi � ζ) =

=−
( k−1∑
i=1

(
〈ξ, ζ〉wi − 〈wi, ζ〉ξ

)
+

m∑
i=k

(
〈ζ, ξ〉wi − 〈wi, ξ〉ζ

))
=

=−
( k−1∑
i=1

(
− wi + aiξ

)
+

m∑
i=k

(
− wi + biζ

))
=

=−
( k−1∑
i=1

(−biζ − cin) +
m∑
i=k

(−aiξ − cin)

)
=

=
k−1∑
i=1

biζ +
m∑
i=k

aiξ +
m∑
i=1

cin.
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Now

d

dt |0
cos θk(t) =〈wk, ṅ(0)〉 = 〈wk, z〉 − 〈z, n〉〈wk, n〉.

The three products take values

〈wk, z〉 =

〈
akξ + bkζ + ckn ,

k−1∑
i=1

biζ +

m∑
i=k

aiξ +

m∑
i=1

cin

〉
=

=−
k−1∑
i=1

akbi −
m∑
i=k

aibk +

m∑
i=1

cick

〈z, n〉 =

〈 k−1∑
i=1

biζ +
m∑
i=k

aiξ +
m∑
i=1

cin , n

〉
=

m∑
i=1

ci

〈wk, n〉 =〈akξ + bkζ + ckn , n〉 = ck

so

d

dt |0
cos θk(t) = −

k−1∑
i=1

akbi −
m∑
i=k

aibk.

The sum over k gives

m∑
k=1

d

dt |0
cos θk(t) = −

m∑
k=1

k−1∑
i=1

akbi −
m∑
k=1

m∑
i=k

aibk = −
m∑
k=1

akbk − 2
∑
i<k

aibk.

Notice that ck = 〈wk, n〉 = cos θk and

1 = 〈wk, wk〉 = −2akbk + c2
k,

which implies −akbk = (sin2 θk)/2. The terms rik = −aibk > 0 have the
property that rikrki = (sin2 θi sin2 θk)/4; moreover,

cosh d(Li, Lk) = 〈wi, wk〉 = −aibk − akbi + cick = rik + rki + cos θi cos θk.

Since d(Li, Lk) is bounded by the maximal length of a curve in
(

supp(λ) ∪
supp(µ)

)
rN , there is M0 > 0 such that

rik + rki = cosh d(Li, Lk)− cos θi cos θk ≤ coshM0 + 1.

Now

rik =
rikrki
rki

≥ rikrki
rik + rki

≥ sin2 θi sin2 θk
4(coshM0 + 1)

.

We finally get

m∑
k=1

d

dt |0
cos θk(t) ≥

1

2

( m∑
k=1

sin2 θk +
∑
i<k

sin2 θi sin2 θk
2(coshM0 + 1)

)
.
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This holds for a spiralling leaf δ in λ∪µ. Considering all the leaves of λ and
µ, there is M1 > 0 such that we obtain

d2

dt2
L(λ,µ)(E

tγ
l (h)) ≥M1

∫
λ

∫
λ

sin2 θ(λ,γ)(x) sin2 θ(λ,γ)(y)dγ(x)dγ(y)+

+M1

∫
µ

∫
µ

sin2 θ(µ,γ)(x) sin2 θ(µ,γ)(y)dγ(x)dγ(y)

or equivalently

Hessh L(λ,µ)(e
γ
l (h), eγl (h)) ≥M1

∫∫
sin2 θ(λ,γ)(x) sin2 θ(λ,γ)(y)dγ(x)dγ(y)+

+M1

∫∫
sin2 θ(µ,γ)(x) sin2 θ(µ,γ)(y)dγ(x)dγ(y).

Now let us consider a generic ν ∈ CML◦S . It is the limit of weighted closed
curves γn. As for the first order variation of L(λ,µ), with an approximation
argument we get that

Hessh L(λ,µ)(e
ν
l (h), eνl (h)) ≥M1

∫∫
sin2 θ(λ,ν)(x) sin2 θ(λ,ν)(y)dν(x)dν(y)+

+M1

∫∫
sin2 θ(µ,ν)(x) sin2 θ(µ,ν)(y)dν(x)dν(y).

Therefore, Hessh L(λ,µ) is definite positive.

3.4 The estimate

For the purposes of the next two sections, given (h, h′) ∈ T ◦S (b) × T ◦S and
(λ, µ) = Φb(h, h′) ∈ FML◦S(b), we need that the weighted length of an arc
c in supp(λ) can be controlled by the intersection number between λ and µ.
More precisely, the statement is the following.

Theorem 3.4.1. Given (h, h′) ∈ T ◦S (b) × T ◦S and (λ, µ) = Φb(h, h′), con-
sider the associated convex K in AdS3 with S± = ∂±K bent over λ̃±. Suppose
λ+ is a ω-weigthed spiralling curve. Consider a leaf L of λ̃+, a face F of
S+ whose boundary contains L and the time-like plane Π perpendicular to F
containing L. Take a geodesic arc c on L. Denote by U the arc S−∩

⋃
z∈c τz.

Denote by m and m′ the positive masses of (λ, µ) near the boundaries be-
tween which the projection of L is spiralling. Then

`(c) min{κ̄0, K̄0ω `(c)} ≤ ι(U, µ) + C̄0

(
m(M̄ + F (m)) +m′(M̄ + F (m′))

)
.

(3.23)
The constants in (3.23) depend only on b and on the distances of the end-
points of c from the boundary components, while F : R≥0 → R is a universal
function which is increasing, differentiable and with F (0) = 0.
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The inequality that will be found in the last part of this section is linear
for large weighted lengths and quadratic for small ones; those two properties
will be used respectively in Section 3.5 and Section 3.6.
The estimate is computed in the AdS3 environment: following [17], we will
take a region R in a time-like section of the convex core K of (h, h′), so that
∂+K ∩ R is the lift of the arc c. First, we bound Area(R) from below by a
function of the length of c and its weight, which corresponds to the bending
angle along the lift of c of ∂+K. Unlike the closed case, the accumulation of
the measure of (λ, µ) near ∂S will force us to look for a sort of control on
the support planes near the boundary of S+, depending only on the distance
between the endpoints of c and ∂S. A Gauss-Bonnet formula in the Anti de
Sitter context will then relate Area(R) with the angles occurring in ∂−K∩R,
leading to an upper bound for Area(R) depending in a certain way on the
intersection number between c and µ.

3.4.1 Bounding Area(R) from below

The following lemma was proved in the Appendix of [17]:

Lemma 3.4.2. There exists ∆ > 0 as follows. Let a and b be two disjoint
lines in H2 and let x be a point in the connected component of H2 r (a ∪ b)
with boundary a ∪ b. Suppose that d(x, a) ≤ ∆ and d(x, b) ≤ ∆. Then the
geodesic segment σ of length 1 starting orthogonally from a and containing
x intersects b.

If λ is a measured lamination formed by a unique leaf with weight ω and
spiralling, take a geodesic arc c in the support of λ with at least an endpoint
in the spiralization neighbourhood N . Choose an orientation on c and for
every x ∈ c denote by σx the (length-arc parametrized) geodesic segment of
length 1 starting orthogonally from x towards say the left side of c.
Take some B > 0 and consider

c∗ = {x ∈ c : #(σx ∩ c) ≤ B}.

Lemma 3.4.3.
∆ · `(c∗) ≤ B ·Area(S).

Proof. Consider the normal exponential map

exp : c∗ × [0,∆]→ S

(x, r) 7→ σx(r).

Pick y ∈ S and consider # exp−1(y) = {(x1, r1), . . . , (xn, rn)}. If ỹ is a
preimage of y on the universal cover H ⊂ H2 of S, choose for every xi a
preimage x̃i such that the lift of exp({xi}×[0,∆]) passing through ỹ contains
x̃i too. Let also c̃i be the lifts of c containing x̃i respectively and denote by



3.4. THE ESTIMATE 95

Ci the complete geodesics containing c̃i respectively.
Since the segment [ỹ, x̃i] is orthogonal to Ci, for any j 6= i the line Cj is
disjoint from Ci.
Up to changing the indices, we can suppose that there are half-planes P1

and P2, bounded by C1 and C2 respectively, that do not meet any other Ci
and such that ỹ /∈ P1.
If Ci separates ỹ and C1 then the segment σ̃1 of length 1 starting from x̃1 and
passing through ỹ intersects Ci. Otherwise, d(ỹ, Ci) ≤ ∆ and d(ỹ, C1) ≤ ∆;
by Lemma 3.4.2, σ̃1 meets Ci.
Now, since x1 ∈ c∗,

n = #

(
σ̃1 ∩

⋃
Ci

)
= #(σx1 ∩ c) ≤ B.

This implies that # exp−1(y) ≤ B for every y ∈ S. Therefore,

∆ · `(c∗) ≤ Area(c∗ × [0,∆]) ≤ B ·Area(S).

Corollary 3.4.4. Providing every σx with unitary weight, if

c† =

{
x ∈ c : ι(σx, c) ≥ ω

∆ · `(c)
2 Area(S)

}
then `(c†) ≥ `(c)/2.

Proof. The intersection number ι(σx, c) has value ω · #(σx ∩ c). Choosing

B = ∆·`(c)
2 Area(S) we have that `(c∗) ≤ `(c)

2 . Therefore

`(cr c∗) ≥ `(c)

2
.

The following Lemma is proved in [17].

Lemma 3.4.5. Let Σ+ be a convex surface obtained by bending a space-like
plane in AdS3 along a finite measured lamination λ̃+. Let σ be any geodesic
path in Σ+ joining a point x ∈ λ̃+ to some point y. Let P be the space-like
plane through x extending the face of Σ+ that does not meet σ r {x}. If y
lies on a bending line, let Q be the space-like plane through y extending the
face of Σ+ that does not meet σ r {y}; otherwise, let Q be the space-like
plane extending the face of Σ+ containing y.
Then P and Q meet along a space-like line r. Moreover, the following two
properties hold:

• ϑ(P,Q) ≥ ι(σ, λ̃+), where also the intersection in x is counted;
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• if dP(x, r) is the distance from x to r on the plane P and dQ(y, r) is the
distance from y to r on the plane Q, then dP(x, r) + dQ(y, r) ≤ `(σ).

If (h, h′) ∈ T ◦S (b) × T ◦S and (λ, µ) = Φ(h, h′) are such that λ has a
spiralling curve L, say with weight ω, consider the associated convex set K
in AdS3 with upper bending lamination λ̃+. Choose a geodesic arc c in a
leaf L̃ of λ̃+, which is a preimage of L, and let δ be the minimum of the
distances of the endpoints of c from ∂S+, the one-dimensional boundary of
the space-like part of the two-dimensional future boundary of K. For every
x in c denote by σx,δ the segment on S+ starting from x orthogonal to c of
length δ and by τx the time-like geodesic through x orthogonal to the face
F of S+ such that F ∩ σx,δ = {x}. Let y be the endpoint of σx,δ distinct
from x. Notice that

dS+(y, ∂S+) ≥ δ.

Denote by P the space-like plane containing the face F , by Q the one con-
taining the face of S+ containing y (if y lies on a leaf of λ̃+, take as Q the
space-like plane containing the face F ′ of S+ such that F ′ ∩ σx,δ = {y}).
Such planes meet along a space-like geodesic l. Denote by R the union of
the closed half-planes of P and Q, determined by l, intersecting S+; we say
that R is a roof of S+, since S+ lies entirely in the past of R.
The time-like plane Π′ containing y and τx meets ∂+K along a curve with
endpoints x′ and y′ at distance at least δ from x or y. The roof R determines
on Π′ a triangle with angle α at the future vertex w.

Figure 3.21

Lemma 3.4.6. Let Π be a time-like plane in AdS3, and let P and Q be two
space-like planes, such that Π, P and Q meet exactly at one point. Then the
angle in Π between Π ∩ P and Π ∩ Q is smaller than the angle between P
and Q.

For the proof, see [17]. In particular, α < θ = ϑ(P,Q).

If ux is the length of τx ∩ K, we have the following results.

Lemma 3.4.7. The distance d(x,w) is not greater than δ.



3.4. THE ESTIMATE 97

Proof. For every r ∈ Π′ ∩ S+, denote by Γr the piecewise geodesic arc in
Π′ ∩ S+ from x to r. The arc Γy = σx,δ has vertices x = x0, x1, . . ., xm = y.
Suppose that y ∈ λ̃+. The other case can be proved with same argument
as the following. Denote, for k = 1, . . . ,m, by wk the future vertex of the
triangle in Π′ individuated by the intersection of Π′ with the past of the roof
of Γxk , as in Figure 3.21. We claim that

d(x,wk) + d(wk, xk) ≤ `(Γxk) for every k. (3.24)

We proceed by induction on k. If k = 1 then

d(x,w1) + d(w1, x1) ≤ d(x, x1) = `(Γx1).

If k > 1, suppose that d(x,wk) + d(wk, xk) ≤ `(Γxk). Moreover,

d(wk, wk+1) + d(wk+1, xk+1) ≤ d(wk, xk+1) = d(wk, xk) + d(xk, xk+1).

Now

d(x,wk) + d(wk, xk)+d(wk, wk+1) + d(wk+1, xk+1) ≤
≤`(Γxk) + d(wk, xk) + d(xk, xk+1)

d(x,wk+1)+d(wk+1, xk+1) ≤ `(Γxk+1
).

Thus, (3.24) is proved. In particular, it holds for k = m. So

d(x,w) =≤ d(x,w) + d(w, y) ≤ `(Γy).

Lemma 3.4.8. For every κ > 0 there is K1 > 0 depending only on δ and κ
such that if ι(λ̃+, σx,δ) ≥ κ then ux ≥ K1.

Proof. Notice first that ux ≥ `(τx ∩ T ) where T is the triangle in Π′ with
future vertex w and two edges contained in R∩Π′. Since

θ ≥ ι(λ̃+, σx,δ) ≥ κ,

the worst configuration (which means the one that minimizes `(τx ∩ T ))
happens when θ = κ and the l is as far from x as possible. However, w ∈ l
and d(x,w) ≤ δ, so in such configuration there is K1 such that ux ≥ K1.
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Lemma 3.4.9. For every κ > 0 there is K2 = K2(δ) > 0 such that if
ι(λ̃+, σx,δ) ≤ κ then θ ≤ K2.

Proof. Assume that there exists a sequence (S+
n , xn,Rn) of surfaces, points

and roofs (with Rn ⊂ Pn ∪Qn and yn ∈ Qn) such that ι(λ+
n , σxn,δ) ≤ κ but

θn > n. Up to translating by an isometry we can assume that xn and Pn are
fixed. Now S+

n is the image of a bending map b+
n and we may suppose that

xn = b+
n (z0) and yn = b+

n (z1) for every n, where z0 and z1 are fixed points
at distance δ. As we are assuming that ι(λ+

n , σxn,δ) < κ, then the bending
maps converge to a bent space-like immersion in a neighbourhood of [z0, z1].
So the tangent plane at b+

n (z1) cannot become light-like and then the angle
θn is bounded.

Lemma 3.4.10. Consider a family (S+
n ,Rn, xn, yn) of bent surfaces, roofs

and points as usually. If there is κ > 0 such that ι(λ̃+
n , σxn,δ) ≤ κ then there

is ε = ε(δ) > 0 not depending on xn such that the angle ψn in wn between
[xn, wn] and ln is greater than ε.

Proof. By contradiction suppose that, up to subsequences, the angles ψn go
to 0. We can assume that xn ≡ x and Pn ≡ P. Notice that by the assump-
tion on the intersection, the subsurface S′n made of strata separating x from
yn converge to a bent surface S′ ⊂ S+

n (up to a subsequence). Analogously
Rn converges to a roof R. Notice that R and S′ must contain the limit of
points yn (that are at bounded distance from x). If x is not on the bend-
ing line of R, the distance from x to the bending line of Rn is uniformly
bounded from above and as wn is at bounded distance from x the angle ψn
cannot converge to 0. If x lies on the bending line of R, then also S′ must be
contained in a face of R. Notice however that, as on S′n x and yn are related
by a geodesic orthogonal to the bending line through x, the line between x
and y on R must be orthogonal to the bending line. But then the plane Πn

is almost orthogonal to the bending line, so that ψn → π/2.
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Lemma 3.4.11. For every κ there is K3 = K3(δ) > 0 such that if

ι(λ̃+, σx,δ) ≤ κ

then α, the angle at the future vertex of the triangle individuated by the roof
R on Π′, is greater than or equal to K3ι(λ̃

+, σx,δ).

Proof. The value of α is the distance of the orthogonal projections of N1

and N2, the future-pointing unitary vectors at w normal respectively to P
and Q, on TwΠ′. Being P perpendicular to Π′, N1 ∈ TwΠ. On the other
hand, N2 ∈ TwΠ′′′ with Π′′′ time-like, passing through w and orthogonal to
l. Identify H2 with the unitary future-pointing vectors at w. We get that
N1 and N2 lie in the geodesic corresponding to Π′′′, which forms with the
geodesic corresponding to Π′ an angle of π/2−ψ. Lemma 3.4.5 assures that
θ = d(NP , NQ) ≥ ι(λ̃+, σx,δ), while Lemma 3.4.10 says that ψ ≥ ε. Now if
n is the projection of N2 on the Π′, we get

sin(π/2− ψ)

sinh d(n,N2)
=

sin(π/2)

sinh θ

sinh d(n,N2) = cosψ sinh θ ≤ cos ε sinh θ

α ≥ θ − d(n,N2) ≥ θ − arcsinh(cos ε sinh θ) ≥ K3θ ≥ K3ι(λ̃
+, σx,δ).

Lemma 3.4.12. If (h, h′) ∈ T ◦S (b) × T ◦S and (λ, µ) = Φ(h, h′) are such
that λ has a spiralling curve l, say with weight ω, consider the associated
convex set K in AdS3 with upper bending lamination λ̃+. Choose a number
δ ∈ (0, ε(b)). There exist κ0,K0 > 0 depending only on δ such that for every
geodesic arc c in a leaf of λ̃+, which is a preimage of l, if both endpoints of
c have distance from ∂S+ greater than δ, where S+ is the space-like part of
∂+K, then for every x ∈ c

ux = `(τx ∩ K) > K0 min{κ0, ι(σx,δ, λ+)}
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where σx,δ is the segment on S+ starting from x orthogonal to c of length δ
and τx is the time-like geodesic through x in the time-like plane Π orthogonal
to the face F of S+ such that F ∩ σx,δ = {x}.

Proof. Let us construct the roof R bent along l using the plane P extending
F and a support planeQ at y, the other endpoint of σx,δ. Let Π′ be the plane
orthogonal to P containing x and y. The intersection of Π′ with S+ is a curve
Γ with two endpoints e′, e′′ that could be at the interior of AdS3. Consider
the light-like lines through e′ and e′′ pointing in the direction opposite to
Γ. Consider the intersection points w′, w′′ of the roof R with this lines.
Notice that the line [w′, w′′] is in the future of the line [e′, e′′], so the length
of τx ∩ K is bigger than the length of τx ∩ T , where T is the triangle with
vertices w′, w, w′′, where {w} = l ∩ Π′. As the interval of the curve Γ with
endpoints e′ and x can be orthogonally projected on a subinterval of [x,w′],
then the length of [x,w′] is bigger than δ. Analogously the length of [w,w′]
is bigger than δ.
By previous lemmas we also have that
(a) the distance D = d(x,w) is not bigger than δ;
(b) there are constants K1, κ1 depending only on δ such that

α ≥ K1 min{κ1, ι(λ̃
+, σx,δ)}.

Now the triangle T has d(w,w′) > δ + D and d(w′′, w) > δ. The length of
the segment starting at x orthogonally to [w′, w] and ending in [w′, w′′] is
greater than a function F (δ, α) (which can easily be computed in convenient
coordinates on AdS2) such that F (δ, α) tends linearly to 0 as α→ 0.
We get

ux ≥ F (δ, α) ≥ K2 min{κ2, α} ≥ K0 min{κ0, ι(λ̃
+, σx,δ)}.
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Lemma 3.4.13. In the hypothesis of Lemma 3.4.12, if

R =
⋃
x∈c

(τx ∩ K),

then
Area(R) ≥ `(c) min{κ̄0, K̄0ω `(c)},

where κ̄0, and K̄0 depend only on δ.

Proof. We know from Corollary 3.4.4 that

`(c†) ≥ `(c)

2
.

For every x ∈ c†, ι(σx,δ, λ+) ≥ B† · ω∆ `(c). Then, by Lemma 3.4.12,

`(τx ∩R) ≥ K0 min{κ0, ι(σx,δ, λ+)} ≥ K0 min{κ0,B† · ω∆ `(c)}. (3.25)

Denoting by G the latter member of inequality (3.25), the map

τ : c† × [0, G]→ R

(x, s) 7→ τx(s)

has the Jacobian at (x, s) equal to cos s (see [25]), and so at least 1/2. This
leads to

Area(R) ≥ Area(τ(c† × [0, G])) ≥ G

2
`(c†) ≥ G

4
`(c)

3.4.2 Bounding Area(R) from above

We are going to show that Area(R) can be estimated in terms of ι(λ, µ) and
of the weights of the spiralling leaves. Gauss-Bonnet formula for regions
in time-like planes applied to R, which has piecewise geodesic boundary,
implies that

Area(R) ≤ φ2 − φ1 +

m∑
n=1

θn

where θ1, . . . , θm are the external angles at the m vertices of the m+1 space-
like edges of ∂R ∩ S−, while φ1 and φ2 are angles that ∂R ∩ S− forms with
the two time-like edges of ∂R starting orthogonally at the endpoints of c.
Since R is contained in

A = K ∩Π,

where Π was defined introduced in the statement of Lemma 3.4.12, if we
show that the sum of the infinitely many angles θk on S−∩∂A is finite, then
Area(R) ≤ Area(A) and it suffices to bound the area of A in terms of ι(λ, µ)
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and of the weights of the spiralling leaves.

We first have to check that if a point p in the past boundary of K is not
too close to ∂S− (in a sense that we are going to specify in the statement
of Lemma 3.4.16) then a past support plane passing through p is far from
being a space-light plane (again, in a suitable sense). Some sublemmas are
required for this purpose.

Sublemma 3.4.14. Fixed A,B,C ∈ ∂∞AdS3 and a time-like plane Π with
A,B ∈ ∂∞Π, denote by L1,L2 the light-like planes through [A,C] such that
B ∈ V = I−(L1) ∩ I+(L2). Then for every δ > 0 there is time-like plane
Πδ orthogonal to [A,C], such that if p ∈ Π ∩ I−(L1) ∩ I+(L2) has distance
in AdS3 from [A,C] greater than or equal to δ, then Πδ separates p and A,
in the sense that the ray from p to A meets Πδ.

Proof. Consider the dual line [D,E] of [A,C]. We can suppose (confusing
elements of R2,2 with their projections of AdS3) that

〈A,C〉 = 〈D,E〉 = − 1√
2
.

Fix coordinates (s, t, u) on V so that

(s, t, u)↔ 1√
2

(
(coshu)(etA+ e−tC) + (sinhu)(esE − e−sD)

)
Notice that d

(
(s, t, u), [A,C]

)
= u and {t = T} is for every T a plane

orthogonal to [A,C]. The unitary vector N normal to Π has the form
aA+ (ebE − e−bD)/

√
2 with a > 0, so from p ∈ Π we get

0 = 〈N, p〉 = −ae
−t coshu

2
+

sinhu

2
√

2
(e−s+b + es−b)

e−t =

√
2

a
(tanhu) cosh(s− b) ≥

√
2

a
tanhu

t ≤ − log

(√
2

a
tanhu

)
= T (a, u).
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Thus, take Πδ = {t = T (a, δ)} in order to conclude.

Sublemma 3.4.15. Consider bending maps

bn : H+ = {z ∈ H2 | <z > 0} → AdS3

along laminations λn with leaves ending in ∞ invariant by a hyperbolic sub-
group 〈gn〉 < PSL(2,R) with axis [0,∞], such that moreover [1,∞] is a leaf
of λn for every n. Suppose there is Ω > 0 such that ι(λn, ∂i) ≤ Ω < T(gn),
where T(gn) is the translation length of gn. Also, assume that bn converge
to a bending map b∞ and that bn(∞) = C e bn(0) = A.
Let B′n = bn(1) and sn,k = hol(gkn)([C,B′n]). Then there exists k (indepen-
dent on n) such that sn,k does not meet Π if k ≥ k, and sn,k meets Πδ before
Π (following the orientation from C towards B′n) if k < −k, where Πδ is the
time-like plane defined in Sublemma 3.4.14.

Proof. The points B′n lie in a compact region of

∂∞AdS3 r (fl(A) ∪ fr(A) ∪ fl(C) ∪ fr(C))

where fl(X) and fr(X) denote the leaves of respectively the left and right
foliation of ∂∞AdS3 passing through X ∈ ∂∞AdS3. Under the identification
∂∞AdS3 = ∂H2 × ∂H2, if A = (a, a′), C = (c, c′) and B′n = (xn, x

′
n), then

xn lies in a compact subset of S1 r {a, c} while x′n lies in a compact subset
S1 r {a′, c′}.
Given ε > 0 there exists L such that if Γ,Γ′ are hyperbolic transformations
with axis [a, c] and [a′, c′] and repulsive points a and a′ have translation
length greater than L then Γ(xn) e Γ′(x′n) have Euclidean distance from c
and c′ less than ε. Taking k such that hol(gn)k has translation length bigger
than L for every n, we get that for every ε there is k1 such that, for every
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k ≥ k1 and for every n, hol(gn)k(xn) e hol(gn)k(x′n) have Euclidean distance
from c and c′ respectively less than ε.
Now fix ε such that the region

Q = (c− ε, c+ ε)× (c′ − ε, c′ + ε) ⊂ ∂∞AdS3

does not meet Π. If k > k1 then the endpoint of sn,k = hol(gn)k([C,B′n])
different from C lies in Q for every n, so sn,k does not intersect Π.
On the other hand, consider the plane Π∗ through C and Π ∩ Πδ. Notice
that A /∈ Π∗. So there is a neighbourhood U of A disjoint from Π∗.
If a geodesic from C ends in U then it must meet Πδ before Π. With an
argument analogous to the previous one, there is k2 independent on n such
that, for every n and for every k ≤ k2, the endpoint of sn,−k different from
C lies in U .
Finally, take k0 = max{k1, k2}.

Now fix in T ◦S (b)×T ◦S the family TΩ of representations (holl, holr) such
that

- the masses of the associated bending laminations (λ, µ) have modulus
bounded by Ω;

- the holr-lengths of the boundary components are greater than Ω−1.

Notice that this is equivalent to asking that

−Ω ≤ −m(µ, ∂i) = m(λ, ∂i) ≤ min{Ω, bi − Ω−1}.

This is a condition that holds in the case where (λ, µ) lies in a compact
subset of FML◦S(b).

Lemma 3.4.16. Fix A,B,C and Π as in Sublemma 3.4.14. For every δ > 0
there exists a compact family Z of space-like planes depending only on Ω, b
and δ veirifying the following property.
For every couple (holl, holr) ∈ TΩ, consider the universal covering of S and
take the convex core K associated with (holl, holr) in AdS3 such that [A,B]
is a leaf of the upper bending lamination and [A,C] is a boundary component
of S−n . If p ∈ Π lies in spiralization neighbourhood of the space-like lower
part of ∂K and has distance from [A,C] greater than δ, then the support
plane through p lies in Z.

Proof. Suppose there is a sequence of convex cores Kn as in the statement
and points pn in the spiralization neighbourhood of S−n with distance from
[A,C] in (δ, ε) but such that the support plane through pn tends to a light-
like plane.
Let S̄n the surface obtained bending H+ = {z ∈ H2 | <z > 0} following
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the sublamination µ̄n of the leaves of µ̃n ending in ∞. Since µ̄n varies in a
compact subset, there is a subsequence of S̄n tending to a space-like bent
surface S̄∞; moreover, we can suppose the bending maps b−n are converging
to b−∞ : H+ → S−∞ on the spiralization neighbourhood.
From Sublemma 3.4.15 we know that xn = (b−n )−1(pn) lies in the region
of H2 between two geodesics [M−k0 ,∞] and [Mk0 ,∞], with M > 0. Since
d(xn, [0,∞]) ∈ [δ, ε(b)], the point xn actually lies in a compact domain of
H2, thus (up to subsequence) pn converges to a point of S̄∞. This contradicts
the fact that the support planes of pn tend to a light-like plane.

Lemma 3.4.17. Consider the curve

U =
⋃

x∈[A,B]

τx ∩ ∂−K

Choose in U ∩N (∂̃)∩ λ̃− a vertex of U at distance δ from [A,C]. It belongs
to a leaf l of λ̃−. If γ is the hyperbolic transformation associated to ∂̃, with
attractive point in A, denote by pk the points U ∩ γk(l). Then there are
constants a0, d0 depending only on the masses of µ and on the weights of its
spiralling leaves such that the angle θk at pk of U is less than or equal to
d0e
−a0kζ, where ζ is the weight of l.

Proof. Notice that γk(l) has C as ideal endpoint for every k. Clearly pk → A.
Denote by P and Q the support planes containing l such that θ1 = ϑ(P,Q).
The angle θk can be computed as follows:

θk = ϑ(γk(P) ∩Π, γk(Q) ∩Π) = ϑ(P ∩ γ−k(Π),Q∩ γ−k(Π)).

Let us consider the 1-parameter group γs such that γ1 = γ and study the
dependence of θs on s. Fix the basis (A,C,E,D) of R2,2 (we are confusing
elements of R2,2 with the corresponding points in the projective space) so
that A,C,E,D are light-like vectors with E and D lying in the line dual to
the one passing through A and C. Let us rescale so that:
(i) 〈A,C〉 = 〈D,E〉 = −1/

√
2;

(ii) a multiple of p is the center of mass of A,C,E,D;
(iii) γs(A) = ebsA, γs(C) = e−bsC, γs(D) = eb

′s, γs(E) = e−b
′sE.

The numbers b and b′ depend on b but are bounded and positive.
We have that the normal of Π is aA+cC+dD+fE with c = 0, being A ∈ Π,
so with d, e 6= 0 (Π would be light-like otherwise). Thus, the normal n(s)
to γs(Π) is aebsA + deb

′sD + fe−b
′sE. Denote by NP and NQ the normal

vectors to P and Q respectively. For s > 0,

|〈NP , n(−s)〉| ≥ eb′sd|〈NP , D〉| − k0

|〈NQ, n(−s)〉| ≥ eb′sd|〈NQ, D〉| − k0.
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Imposing that C lies in P and Q we have that NP = cC + (aD + a−1E)
and analogously NQ = c′C + (a′D + (a′)−1E). By Lemma 3.4.16, NP and
NQ lie in some compact region of space-like planes which depend only on Ω,
a constant that bounds the masses of (λ, µ) at the components of ∂S. So
there are constant depending only on Ω such that

|〈NP , n(−s)〉| ≥ k1e
b′s

|〈NQ, n(−s)〉| ≥ k1e
b′s.

If {z} = P ∩ Q ∩ γ−s(Π), then Tzγ−s(Π) = n(−s)⊥; moreover, the normal
vector to P ∩ γ−s(Π) is the orthogonal projection of NP on n(−s)⊥. The
same considerations holds for Q∩ γ−s(Π).
Identifying H2 with UTz, we have that n(−s)⊥ is a line and the distance
between NP and NQ from that line is greater than arcsinh(k1e

bs). Since NP
and NQ have distance ζ, the segment with endpoints NP and NQ does not
meet n(−s)⊥ and the projections of NP and NQ on n(−s)⊥ have distance
η verifying

−1 + cosh η < e−s(−1 + cosh ζ).

We claim that there is K = K(ζ) with K(0) = 1 such that

a2(−1 + cosh ζ) < −1 + cosh(Kaζ).

Write−1+coshx = x2g(x), where g(0) = 1/2 and g is smooth and increasing
on R>0. Consider the function

F (a, ζ) =
−1 + cosh(Kaζ)

a2(−1 + cosh ζ)
=

(Kaζ)2g(kaζ)

a2(ζ)2g(ζ)
=

=
K2g(kaζ)

g(ζ)
>
K2g(0)

g(ζ)
.

We can choose K(ζ) so that K(ζ)2 > g(ζ)/g(0), which gives

−1 + cosh(K(ζ)aζ) > a2(−1 + cosh ζ)

and so η < K(ζ)e−s/2ζ. Now take s = k: we have found θk ≤ K(ζ)e−k/2ζ.

Remark 3.4.1. In the last part of the proof of the previous lemma, K(ζ) was
required to be greater than an increasing function of ζ which has value 1 at
ζ = 0. Therefore, we can also suppose that K is a differentiable increasing
function on R≥0. Now, Lemma 3.4.17 says that there is a differentiable
increasing function F of ζ such that θk ≤ F (ζ)e−a0k with F (0) = 0.

The path

Uj =
⋃

z∈]A,B[

(τj(z) ∩ S−j ) ⊃ c−j (3.26)



3.5. THE PROPERNESS OF Φb 107

on S−j is a piecewise geodesic space-like curve from A to B. Moreover, there

is a homotopy H : [0, 1]×Uj → S−j between Uj and the h−j -realization r such

that, for every connected component ν of Ujr λ̃−j , the restriction H|[0,1]×ν is
an isotopy between ν and a subarc of r realized through arcs with endpoints
in the two leaves of λ̃j containing ∂ν. In this sense, we can say that Uj
meets λ̃−j as r does.
Gauss-Bonnet formula gives us that

A = ι(U, µ) +
∑
k≥1

θk +
∑
k≥1

θ′k ≤

≤ι(U, µ) + C(a0) ·
∑

ζi weights of the
spiralling leaves

near ∂ of µ

F (ζi) + C(a′0) ·
∑

ζ′j weights of the

spiralling leaves
near ∂′ of µ

F (ζ ′j)

where C(a0) = (1 − e−a0)−1 and C(a′0) = (1 − e−a
′
0)−1. Moreover, we

know that
∑
ζi = |m(λ, ∂)| = |m(µ, ∂)| and

∑
ζ ′j = |m(λ, ∂′)| = |m(µ, ∂′)|.

Denoting by m and m′ these two quantities and setting

M̄ = sup
[0,1]

F (t)

t

it turns out that
∑
F (ζi) ≤ m(M̄ +F (m)) and

∑
F (ζ ′i) ≤ m′(M̄ +F (m′)).

Therefore, we can say there are constants C̄0 and M̄ , depending only on b
and on δ, such that

Area(R) = A ≤ ι(U, µ) + C̄0

(
m(M̄ + F (m)) +m′(M̄ + F (m′))

)
.

Using also Lemma 3.4.13, Theorem 3.4.1 immediately follows.

3.5 The properness of Φb

Taken a sequence (hj , h
′
j) in T ◦S (b)× T ◦S such that the sequence

(λj , µj) = Φb(hj , h
′
j)
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is converging in FML◦S(b) to a certain (λ0, µ0), we want to show that there
exists lim(hj , h

′
j) ∈ (Φb)−1(λ0, µ0) ⊂ T ◦S (b)×T ◦S . This is precisely the state-

ment of the last theorem of this section. Estimate (3.23) plays his first role
in the proof of the properness of the map Φb : T ◦S (b) × T ◦S → FML

◦
S(b).

Another key ingredient to get such result is the fact that the length map
L(λ,µ) is proper for every (λ, µ) ∈ FML◦S(b), as stated in Proposition 3.3.2.
If (λ0, µ0) ∈ CML◦S × CML◦S , then the existence of lim(hj , h

′
j) is already

proved slightly adapting the argument for the case of S closed in [17], since
all the estimates involved there still hold if (hj , h

′
j) ∈ T ◦S (b)×T ◦S . Otherwise,

in order to find a compact subset of T ◦S (b)× T ◦S where (hj , h
′
j) live, we will

try to uniformly bound L(λj ,µj)(hj) in R. Since (λj , µj) is converging, we
will see that ι(λj , µj) is uniformly bounded: using such a limitation we will
bound L(λj ,µj). For every (λ, µ) the construction of the terms of L(λ,µ) was

based on `(λ̂•) + `(µ̂•), where λ̂• and µ̂• (see Subsection 3.2.2) are arcs in λ
and µ whose endpoints are in the spiralization neighbourhood of S and have
distance from the boundary components of ∂S bounded above and below by
positive constants depending only on b (see Remark 3.2.6). In particular,
`(λ̂•) and `(µ̂•) are those terms of L(λ,µ) that we are interested to bound.
In inequality (3.23) the weighted length of an arc c in the bending locus
of a past convex bent surface is involved and actually is bounded from an
intersection number: taking cj ⊇ (λ̂•)j , we will bound each L(λj ,µj)(hj) by
limiting each term of them through estimate (3.23) and using the uniform
bound on ι(λj , µj).
With respect to the closed case we need to add some technical work, due
to the fact that spiralling leaves of (λ, µ) are not approximated by weighted
closed curves.

First of all we fix j and focus on a spiralling leaf γj of λj such that γj
tends to a leaf of λ0. Notice that ωj does not converge to 0, since γj tends
to a spiralling leaf of λ0 (moreover, supp(γj) is definitevly constant). Since
(λj , µj) → (λ0, µ0), there exists Ω > 0 such that the positive masses of λj
and µj near any boundary component of ∂S are less than or equal to Ω.
Let Kj be the convex core in AdS3 associated to (hj , h

′
j) and b±j : H → AdS3

be the bending maps with image S±j = ∂±Kj , with fault locus λ̃±j ⊂ S±j .
Fix three distinct points A,B,C on ∂∞AdS3 lying in the ideal boundary of
a space-like plane P0. As in Section 3.2, take on H a lift γ̃j of γj and pick
on γ̃j the preimages p̃, p̃′ of p1, p

′
1 respectively (in Proposition 3.2.8 they

correspond to qi, qi+1 for a certain i). Up to post-composing b+
j with an

isometry we may assume b+
j (γ̃j) = [A,B] and [A,C] ⊂ ∂Kj . In this way,

[A,C] is the image through b+
j of the lift ∂̃ of a boundary component ∂ of

S near which γ is spiralling. Let Πj a time-like plane in AdS3 containing
[A,B] and normal to a face of S+

j with an edge coinciding with [A,B]. We

are interested in the arc cj = [b+
j (p̃),b+

j (p̃′)] ⊂ [A,B]. Now, from Theorem
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3.4.1, we have

ωj`(cj) min{κ̄0, K̄0ωj `(cj)} ≤

≤ ι(λj , µj) + C̄0ωj

(
mj(M̄ + F (mj)) +m′j(M̄ + F (m′j))

)
. (3.27)

Recall that there is Ω such that all the positive masses of (λj , µj) near the
boundary components of S are not bigger than Ω; moreover, F is increasing.
Estimate (3.27) becomes then

ωj`(cj) min
{
κ̄0, K̄0ωj`(cj)

}
≤ ι(λj , µj) + Ω̄. (3.28)

for a certain constant Ω̄ independent on j.

Now we have all the elements to prove that the sequence (hj , h
′
j) consid-

ered in the beginning of this section converges in T ◦S (b) × T ◦S to a couple
(h0, h

′
0) ∈ (Φb)−1

(
lim Φb(hj , h

′
j)
)
. We show first that LΦb(hj ,h′j)

(hj) is a

bounded sequence in R.

Lemma 3.5.1. If (hj , h
′
j) ∈ T ◦S (b)×T ◦S are such that (λj , µj) = Φb(hj , h

′
j)

converge to (λ0, µ0) ∈ FML◦S(b), then there exists a constant C0 > 0 such
that L(λj ,µj)(hj) ≤ C0 for every j.

Proof. Since ι(∗ , ∗) is continuous, there exists ῑ > 0 such that ι(λj , µj) ≤ ῑ.
Notice that λj and µj cannot have more than N spiralling leaves, with N
depending only on the genus g and the number of bondary components n.
The map Lλj ,µj , following the construction in Subsection 3.2.4, can actually

be rewritten as the sum of the compact part L
(0)
j with the spiralling part.

Slightly adapting the argument for the closed case, we know that there is
C1 > 0 such that, for every j,

L
(0)
j (hj) = L

λ
(0)
j

(hj) + L
µ
(0)
j

(hj) ≤ C1.

The compact parts (λ
(0)
j , µ

(0)
j ) could not fill up S, but that was not a neces-

sary hypothesis in [17] to get that estimate.
The spiralling part of L(λj ,µj), looking at how it is defined, is actually less
than ∑

i

ωj,i`(cj,i) +
∑
k

ζj,k`(dj,k) (3.29)

where cj,i are arcs on γj,i (assuming that the spiralling part of λj is
⋃
i γj,i)

whose endpoints have distance from the boundary components bounded
from above and below by positive constants depending only on b, and ωj,i
is the weight of the leaf γj,i. The second term in (3.29) refers analogously
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to µj .
From (3.28), there is a constant C2 independent on j such that∑

i

ωj,i`(cj,i) +
∑
k

ζj,k`(dj,k) ≤ NC2 +NC2.

Now we have that

L(λj ,µj)(hj) ≤ C1 + 2NC2 = C0.

Theorem 3.5.2. If (hj , h
′
j) ∈ T ◦S (b)×T ◦S are such that (λj , µj) = Φb(hj , h

′
j)

converge to (λ0, µ0) ∈ FML◦S(b), then there exists a subsequence of (hj , h
′
j)

converging to (h0, h
′
0) in T ◦S (b)× T ◦S and (λ0, µ0) = Φb(h0, h

′
0).

Proof. The previous lemma states that for every j

hj ∈ Kj = L−1
(λj ,µj)

([0, C0]).

We noticed in Remark 3.2.9 that in the construction of the map L(λj ,µj) cer-
tain choices were made. However, the convergence of the 1-forms dL(λj ,µj)

to dL(λ0,µ0) does not depend on such choices. On the other hand, fixed h∗
in T ◦S (b), since (λj , µj) tends to (λ0, µ0) we can make such choices so that
L(λj ,µj)(h∗) is convergent. Therefore, there exists F : T ◦S (b) → R such that
L(λj ,µj)(h) tends to F(h) for every h ∈ T ◦S (b) and dF = dL(λ0,µ0). Also,
being F− L(λ0,µ0) constant, F is proper.
Since L(λj ,µj) is proper, the subsets Kj are compact and convex for earth-

quake paths, so Kj → K = F−1([0, C0]) (see [17]).
So hj remains in a compact subset of T ◦S (b) and, after taking a subsequence,

hj converges to a limit h0. Take h′0 = Eλ0l (h0) to conclude.

3.6 The map Φb is surjective

3.6.1 Existence for small laminations

Let D be the space {(h, h) ∈ T ◦S (b) × T ◦S : h ∈ T ◦S (b)}. The aim of this
subsection is to find a neighbourhood U of D in T ◦S (b)×T ◦S such that the re-
striction of Φb to UrD is a homeomorphism onto its image V ⊂ FML◦S(b)
with the property that for any (λ, µ) ∈ FML◦S(b) there is t > 0 sufficiently
small such that (tλ, tµ) ∈ V .

Proposition 3.6.1. Let eλl +eµl denote the vector field d
dt |0(Etλl ◦E

tµ
l ), given

(λ, µ) ∈ FML◦S(b). Then eλl + eµl is a smooth vector field on T ◦S (b).



3.6. THE MAP Φb IS SURJECTIVE 111

Proof. Let us suppose (λ, µ) has a non empty compact sublamination. De-
compose (λ, µ) = (λc, µc) ⊕ (λs, µs) as the sum of the compact maximal
sublaminations with the spiralling sublamination. Then eλl + eµl can be de-

composed as eλcl + eλsl + eµcl + eµsl . By classical results, eλcl + eµcl is smooth.
So we can suppose (λ, µ) = (λs, µs) and consider only this case.
It is convenient to see T ◦S (b) as the space of faithful discrete representations
ρ : π1(S) → PSL(2,R) with conditions that fix the images of peripheral
loops, up to conjugacy. For every ρ ∈ T ◦S (b), consider the universal cover-
ingH of S such that ρ(π1(S))\H ∼= S and fix a point z ∈ H; the infinitesimal
earthquake, regarded as an element of the cohomology H1(π1(S),R2,1), is
represented by the element eλl (ρ) : π1(S)→ so(2, 1) ∼= R2,1 has the form

γ 7→
∫
G
v(r)χG(γ)(r) dλ

where

• the space

so(2, 1) =
{
M ∈ Mat3×3(R) |MT · J3 + J3 ·M = 0

}
is the Lie algebra of SO(2, 1) and J3 =

−1 0 0
0 1 0
0 0 1

,

• the space
G ∼= (S1 × S1) r diag(S1)

is the set of oriented geodesics on H2,

• the map
v : G → so(2, 1)

sends r ∈ G to the infinitesimal generator of the hyperbolic transfor-
mations on I ⊂ R2,1 (see Section 1.1.2) with r as oriented axis,

• the set G(γ) ⊂ G is the subset containing the leaves of supp(λ), oriented
consistently with the λ-earthquake whose lifting λ̃ on H fixes z, that
meet the geodesic arc [z, ρ(γ)(z)],

• dλ denotes d measλ.

Given a smooth family (ρt)t∈I ⊂ T ◦S (b), where I is an interval of R contain-
ing 0, we want to show that for every γ ∈ π1(S) the map t 7→ eλl (ρt)(γ) is
smooth. Consider the covers Ht and subsets Gt(γ) ⊂ G. Denote by λ̃t the
realization of λ̃ in Ht. Now

eλl (ρt)(γ) =

∫
G
v(r)χGt(γ)(r) dλt.
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For every t ∈ I there exists a homeomorphism ζt : ∂H0 → ∂Ht which is
ρt-equivariant, i.e.

ζt(ρt(β)(x)) = ρt(β)(ζt(x)) ∀x ∈ ∂H0 ∀β ∈ π1(S),

and such that for every x that is an endpoint of an axis of ρ0(α) for some
α ∈ π1(S) the map t 7→ ζt(x) is smooth. It induces a map

Zt = (ζt)∗ : G ∼−→ G.

The function t 7→ Zt(r) is smooth for every geodesic r with endpoints in Λ0,
while t 7→ Z−1

t (r) is smooth for every geodesic r with endpoints that are
also endpoints of axis of some transformation of ρ0(π1(S)). It turns out that
λt = Zt(λ0), in the obvious sense. Notice that the endpoints of the leaves
of λt are also endpoints of boundary components for every t ∈ I. Also,
Gt(γ)(Zt(s)) = G0(γ)(s) for every s ∈ G. Now we have

eλl (ρt)(γ) =

∫
G
v(r)χGt(γ)(r) dZt(λ0) =

∫
G
v(Zt(s))χG0(γ)(s) dλ0.

The integrand of the latter member is a smooth function of t, so we get that
t 7→ eλl (ρt)(γ) is smooth for every γ ∈ π1(S).

The following theorem is the generalization of Theorem 3.1.1 for surfaces
with n closed geodesic boundary components.

Theorem 3.6.2. Let S be a surface with n punctures and negative Euler
characteristic and let λ and µ be measured laminations on S. The intersec-
tion between eλl and −eµl , considered as submanifolds in TT ◦S , is transverse.
Moreover, if λ and µ fill up S then these sections meet in exactly one point
k0(λ, µ). Otherwise, they are disjoint.

Proof. The proof works like in [11], where the key points are that there exists
a unique critical point h0 of L(λ,µ) (see Corollary 3.3.5), which also has the
property that Hessh0(L(λ,µ)) is positive definite (see Subsection 3.3.3), and

that L(λ,µ) is the symplectic gradient of eλl +eµl . You only have to decompose
L(λ,µ) as Lλ + Lµ, where, following the notations of Subsection 3.2.4,

Lλ(h) = Lλ(0)(h) +
J∑
j=1

ω(j)

[
`h(ρ(j) ∩ λ) + log

2I∏
i=1

cosh dh(q
(j)
i , D

(j)
i )

]

Lµ(h) = Lµ(0)(h) +

J∑
j=1

ω(j)

[
`h(ρ(j) ∩ µ) + log

2I∏
i=1

cosh dh(q
(j)
i , D

(j)
i )

]

and work on T ◦S (b) instead of T ◦S .
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Proposition 3.6.5 finds its analogous in the closed case. Actually, the
argument is quite the same one, but paying attention to the spaces we
are working on: we are now considering earthquakes between different Te-
ichmüller spaces, as pointed out during the proof, and the space

F0ML◦S(b) = FML◦S(b) ∪ {(0, 0)}

is not a cone, since it is not true that for every (λ, µ) ∈ F0ML◦S(b) the
couple (tλ, tµ) lies in F0ML◦S(b) for any t ∈ [0,∞); however, it is true for
any t ∈ [0, 1]. First we state some known results of Riemannian geometry.

Lemma 3.6.3. Let M be a differentiable manifold, J ⊂ R an interval con-
taining 0, X : M × J → TM a vector field of class Ck (k ≥ 1) continuously
depending on the real variable. Then there exists W open neighbourhood
of M × {0} in M × J and φ : W → M of class Ck such that, for every
(p0, 0) ∈W , φ(p0, ·) is a Ck+1 solution of{

ḟ(t) = X(f(t), t)
f(0) = p0

.

Lemma 3.6.4. Let Y be a topological space, M a differentiable n-dimensional
manifold, {ψy : M → Rn}y∈Y a family of maps of class Ck (k ≥ 1) so that

Y 3 y 7→ ψy ∈ Ck(M,Rn)

is a continuous map. Suppose there exist y0 ∈ Y and p0 ∈ M such that
ψy0(p0) = 0 and dp0ψy0 is not singular. Then there exist a neighbourhood
V of y0 and a neighbourhood U of p0 such that for any y ∈ V there exists a
unique solution p = u(y) ∈ U of

ψy(p) = 0.

Moreover, the map

V 3 y 7→ u(y) ∈ U

is continuous.

Proposition 3.6.5. Consider (λ0, µ0) ∈ FML◦S(b) and let h0 = k0(λ0, µ0)
be the unique critical point of L(λ(0),µ(0)). There exist ε > 0, a neighbour-
hood V of (λ0, µ0) in FML◦S(b), a neighbourhood U of h0 in T ◦S (b) and a
continuous map k : V × [0, ε)→ U such that:

• for (λ, µ, t) ∈ V × (0, ε), k(λ, µ, t) is the unique fixed point of Etλl ◦E
tµ
l

lying in in U ;

• for (λ, µ) ∈ V , k(λ, µ, 0) = k0(λ, µ).
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Proof. If (λ, µ) ∈ FML◦S(b) then Etλl and Etµr go from T ◦S (b) to T ◦S (b−tmλ)
where mλ = (m(∂1, λ), . . . ,m(∂n, λ)). There exist coordinate maps

x(λ,µ,t) : T ◦S (b− tmλ)→ R6(g−1)+2n

such that

(λ, µ, t) 7→ E tλl − E tµr = x(λ,µ,t) ◦ Etλl − x(λ,µ,t) ◦ Etµr

is a continuous map from FML◦S(b)×[0, 1] to C1(T ◦S (b),R6(g−1)+2n), equipped
with the C1-topology.
Now define

ϕ(λ,µ,t)(h) =
E tλl (h)− E tµr (h)

t
for (λ, µ, t) ∈ FML◦S(b)× (0, 1] (3.30)

ϕ(λ,µ,0)(h) = dx(λ,µ,0)(e
λ
l (h) + eµl (h)) for (λ, µ) ∈ FML◦S(b) (3.31)

where implicitly we are identifying Tx(h)R6(g−1)+2n with R6(g−1)+2n. Such

ϕ : FML◦S(b) × [0, 1] → C1(T ◦S (b),R6(g−1)+2n) is continuous, by Lemma
3.6.3, and

ϕ(λ0,µ0,0)(h0) = dx(λ0,µ0,0)(e
λ0
l (h0) + eµ0l (h0)) = dx(λ0,µ0,0)(0) = 0.

By Theorem 3.6.2, dh0
(
ϕ(λ0,µ0,0)

)
is non-singular. So applying Theorem

3.6.4 there exist V neighbourhood of (λ0, µ0) in FML◦S(b), ε > 0, U neigh-
bourhood of h0 in T ◦S (b) and a continuous function k : V × [0, ε)→ U such
that k(λ, µ, t) is the unique point in U such that ϕ(λ,µ,t)(k(λ, µ, t)) = 0. If
t > 0 then, by equation (3.30), k(λ, µ, t) is the unique fixed point in U of
Etλl ◦ E

tµ
l . If t = 0 then, by equation (3.31), k(λ, µ, 0) = k0(λ, µ).

Now consider a hypersurface S in FML◦S(b) such that for every (λ, µ)
in FML◦S(b) there exists a unique t ∈ (0,+∞) such that (tλ, tµ) ∈ S. The
previous Proposition shows that there exist an open covering {V (i)}i∈I of S
and maps k(i) : V (i) × [0, ε(i))→ U (i) ⊂ T ◦S (b) such that for all i ∈ I

1. for (λ, µ, t) ∈ V (i) × (0, ε(i)), k(i)(λ, µ, t) is the unique fixed point of
Etλl ◦ E

tµ
l lying in in U (i);

2. for (λ, µ) ∈ V (i), k(i)(λ, µ, 0) = k0(λ, µ).

These maps can be glued to a global map, as shown in the following
lemma.

Lemma 3.6.6. There exist an open neighbourhood W of S×{0} in S×[0, 1]
and a continuous map k∗ : W → T ◦S (b) such that

• for t > 0 and (λ, µ, t) ∈W , k∗(λ, µ, t) is a fixed point of Etλl ◦ E
tµ
l ;
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• for (λ, µ, 0) ∈W , k∗(λ, µ, 0) = k0(λ, µ);

• for (λ, µ, t) ∈W , {(λ, µ)} × [0, t] ⊂W .

The proof of Lemma 3.6.6 follows the argument of Lemma 3.6 in [17].
Now consider the diffeomorphism

π : S × (0, 1]→ π
(
S × (0, 1]

)
⊂ FML◦S(b)

defined by π(λ, µ, t) = (tλ, tµ). Set V = π
(
W r (S × {0})

)
, where W is the

open subset defined in Lemma 3.6.6, and set k = k∗ ◦ (π−1) : V → T ◦S (b).
This map leads to the construction on V of a right inverse of the map Φb.

Corollary 3.6.7. The open set V verifies the following properties.

• For every (λ, µ) ∈ FML◦S(b) there is t > 0 such that (tλ, tµ) ∈ V .

• If (λ, µ) ∈ V then (tλ, tµ) ∈ V for every t ∈ (0, 1].

• There is a continuous map σ : V → T ◦S (b)×T ◦S that is a right inverse
for Φb. Moreover

lim
t→0+

σ(tλ, tµ) =
(
k0(λ, µ), k0(λ, µ)

)
.

Proof. The first two properties follow directly from the construction of V .
Since k(λ, µ) is by construction a fixed point of Eλl ◦E

µ
l , the map σ can be

defined by putting

σ(λ, µ) =
(
k(λ, µ), Eλ(k(λ, µ))

)
.

Existence near D

Denote by U the image of the injective map σ : V → T ◦S (b)×T ◦S introduced
in Corollary 3.6.7. By the Theorem of the Invariance of Domain, U is an
open subset of T ◦S (b)×T ◦S . In this subsection we will prove that U = U∪D is
an open neighbourhood in T ◦S (b)×T ◦S of the set D defined at the beginning
of the current section.

Lemma 3.6.8. Let {(hk, h′k)} ⊂ T ◦S (b) × T ◦S be a sequence converging to
(h, h) ∈ D ⊂ T ◦S (b)× T ◦S and {tk} ⊂ (0,+∞) a sequence such that, putting
Φb(hk, h

′
k) = (tkλk, tkµk), the sequence {λk} converges to a measured lami-

nation λ 6= 0. Then the sequence {µk} also converges to a measured lami-
nation µ. Moreover (λ, µ) ∈ FML◦S(b) and h = k0(λ, µ).
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Proof. The argument of the proof of this lemma is the same of Lemma 3.9
in [17], where it was proved that

lim
n→∞

eµkr (hk) = eλl (h).

Being in the case where S was a closed surface, the map

ML◦S × T ◦S → TT ◦S
(µ, h) 7→ eµr (h)

was a homeomorphism onto its image and they could conclude.
In our case, we have to consider this modification: since we are considering
T ◦S (b), let us define

ML◦S(b)r = {µ ∈MLS : −m(∂i, µ) < bi for i = 1, . . . , n}.

We need that also F : ML◦S(b)r × T ◦S (b) 3 (µ, h) 7→ eµr (h) ∈ TT ◦S is a
homeomorphism onto its image. Equipping ML◦S(b)r with the topology
induced by the bijection with T ◦S given by µ 7→ Eµr (h), where h ∈ T ◦S (b),
and since T ◦S (b) is a submanifold of T ◦S (with codimension n), we get that the
continuous injective map F is actually a homeomorphism onto its image.

Corollary 3.6.9. If {(hk, h′k)} ⊂ T ◦S (b) × T ◦S converges to an element
(h, h) ∈ D ⊂ T ◦S (b) × T ◦S then there exists a sequence {tk} ⊂ (0,+∞)
such that, putting Φb(hk, h

′
k) = (tkλk, tkµk), the sequence {(λk, µk)} is pre-

compact in FML◦S(b).

Lemma 3.6.10. The set U is an open neighbourhood of D in T ◦S (b)× T ◦S .

3.6.2 Surjectivity of Φb

In this subsection we will prove Theorem B. The results of Subsection 3.6.1,
combined with the estimate (3.23), will lead to the proof that there exists
an open subset U of T ◦S (b) × T ◦S such that the restriction of Φb from U
to Φb(U) is a homeomorhpism. Then the result in Section 3.5 about the
properness of Φb will be the last step of the proof of Theorem B.

Proposition 3.6.11. If

X =
{

(h, h′) ∈ T ◦S (b)× T ◦S : (Φb)−1
(
Φb(h, h′)

)
= {(h, h′)}

}
then X ∪ D is a neighbourhood of D in T ◦S (b)× T ◦S .

Proof. By contradiction, suppose there exists a sequence

{(hn, h′n)} ⊂ (T ◦S (b)× T ◦S ) rX
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converging to (h, h) ∈ D. By Proposition 3.6.10 there exist other elements
(gn, g

′
n) ∈ U = U r D such that Φb(gn, g

′
n) = Φb(hn, h

′
n). Moreover, by

Lemma 3.6.9, there exists an infinitesimal sequence {tn} ⊂ R>0 such that

Φb(gn, g
′
n) = Φb(hn, h

′
n) = (tnλn, tnµn)

with {(λn, µn)} precompact in FML◦S(b). Taking a subsequence we can
suppose (λn, µn)→ (λ, µ); so h is the critical point k0(λ, µ) of eλl +eµl . Also,
there is Ω > 0 such that for every n the positive masses of (λn, µn) near ∂S
are less than Ω.
Estimate (3.28) about (tnλn, tnµn), remembering how it descends from (3.27),
for n sufficiently large, becomes

K̄0

(
tnωn`gn(cn)

)2
≤ ι(tnλn, tnµn) + t2nΩ̄

which gives

K̄0

(
ωn`gn(cn)

)2
≤ ι(λn, µn) + Ω̄.

So it turns out that L(λn,µn)(gn) (and analogously g′n) is bounded by a con-
stant L0 not depending on n. Since {(λn, µn)} is converging, the compact
subsets L−1

(λn,µn)([0, L0]), which respectively contain gn and g′n, are converg-

ing to the compact subset L−1
(λ,µ)([0, L0]). Therefore gn and g′n range in a

compact subset. By Lemmas 3.6.8 and 3.6.9, any convergent subsequence of
gn or g′n must converge to k0(λ, µ) = h. Thus we deduce (gn, g

′
n)→ (h, h).

Now by Corollary 3.6.7 the neighbourhood U of (h, h) has the property that
Φb restricted to U = U rD is a homeomorphism onto its open image. How-
ever, both (hn, h

′
n) and (gn, g

′
n) lie in U for n sufficiently large, leading to a

contradiction.

Corollary 3.6.12. There is an open set W ⊂ FML◦S(b) such that the
restriction of Φb to (Φb)−1(W ) is a homeomorphism onto W .

Proof. There is an open subset Y in X such that Y ∪ D is an open neigh-
bourhood of D in T ◦S (b)×T ◦S . Put W = Φb(Y ). By Corollary 3.6.7 we can
actually choose Y such that Φb restricted to Y is injective, so that W is an
open set. Moreover, since Y ⊂ X, (Φb)−1(w) = {w} for every w ∈W ; thus
(Φb)−1(W ) = Y .

Corollary 3.6.13. The degree of the map Φb is 1.

Proof. Since a continuous proper map which restricts to an homeomorphism
from an open subset to its image has degree 1, the proof follows directly from
Corollary 3.6.12.

Therefore we can conclude that Φb : T ◦S (b) × T ◦S → FML
◦
S(b) is a

surjective map, thus proving Theorem B.
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